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Abstract

The increasing demand for eco-sustainable structures and low-carbon emission systems

is driving the research in many engineering fields, pushing the boundaries of scientific

knowledge. High-performance structures, i.e. more efficient and lighter structures, are

required to comply with the continuously more stringent regulations, nowadays imposed

by many countries. This undermines the linear approximation used for modelling the

behaviour of mechanical systems and structures, exposing their ultimately nonlinear

nature. In this context, the need for a better understanding of the nonlinear dynamics

behaviour of mechanical structures is becoming of primary importance, serving as a mo-

tivation for this work. In the literature, many authors have investigated the nonlinear

behaviour of mechanical systems, mostly focusing on simplified mathematical repre-

sentation with a single degree of freedom, especially in the analysis that involves the

study of the global dynamic behaviour of the systems. This is particularly evident for

systems which show strong nonlinear behaviour, e.g. systems with contact and impact,

whose dynamics are extremely complicated and rich. In addition, it is not well known

how accurate the identified mathematical models are, especially under which conditions

they fail to capture the system dynamics from a qualitative and quantitative point of

view.

This thesis focuses on the dynamics of multi-degree freedom systems that exhibit

strong nonlinear behaviours and aims to improve the tools/methods for their analysis

and identification. In particular, mechanical systems with two degrees of freedom and

piecewise (non-smooth) stiffness characteristics are considered. The dynamics of the

systems are studied from a numerical and experimental point of view, tackling practical

problems that currently represent an issue for their analysis and identification. Firstly,

ii



Chapter 0. Abstract

the rich dynamics of the system are investigated using numerical procedures. The

presence of multiple period-doubling isolas and a bifurcation of the backbone curve is

numerically proven using path-following techniques and numerical integration schemes.

This represents an improvement in the fundamental understanding of the dynamics and

bifurcation mechanisms of two-degree-of-freedom piecewise systems. Then, the effect

of smoothing functions in approximating piecewise stiffness characteristics is assessed

via a comparison of the dynamics of the approximate and non-approximate systems.

It is demonstrated that the usage of the smoothing function permits obtaining a high

level of accuracy, especially when chaos or quasi-periodic behaviours are avoided, signif-

icantly reducing the computational effort of the numerical calculations and simplifying

the overall procedure. To prove the existence of bifurcation of the backbone curves and

the presence of period doubling isolas encountered during the numerical analyses, an

experimental test rigs are designed and tested exciting the main structure in two dif-

ferent ways, i.e. using an asymmetric (test-rig #1) and symmetric excitation (test-rig

#2) condition. The obtained results confirm the existence of the investigated nonlin-

ear phenomena and provide an accurate base of experimental data that can be used

for testing nonlinear models and/or methods for parameters identification. Building

on existing techniques, a novel method for the identification of nonlinear systems is

proposed. The method, named the Nonlinear Restoring Force (NRF) Method, is ca-

pable of interfacing with linear identification methods and can be easily implemented

in current industrial identification procedures, improving the accuracy of the identified

models. The proposed method is used to identify the parameters of reduced-order mod-

els associated with the experimental test rigs. The identified reduced-order models are

then validated against experimental results, using levels of excitation that are different

from the one used for the identification process. This demonstrates the efficacy of the

proposed identification method and proves that the identified reduced-order models are

capable to capture the dynamics of strongly nonlinear systems from a qualitative and

quantitative point of view.
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Poincaré sections (a) and displacement amplitude (b). . . . . . . . . . . 29

2.7 Basin of attraction for a Duffing oscillator (m = 1 kg, c = 0.04 Ns/m,

k = 2 N/m, µ = 0.75 N/m3, and Q = 0.1 N) at different excitation

frequency Ω equal to 1.55 (a), 1.65 (b), and 1.75 (c) rad/s. Panels (d-f)

graphically show the two considered coexisting solutions for each basin

of attraction. The intensity scale indicates the amplitude of the solutions

in the different regions of the basin. . . . . . . . . . . . . . . . . . . . . 31

2.8 FRCs of the Duffing oscillator obtained with HBM (H = 1) in three

different conditions: nonlinear (hardening), nonlinear (softening), linear.

Amplitude (a) and phase (b) of the response are shown. . . . . . . . . . 37

2.9 Restoring forces associated with the stiffness characteristics: linear (dashed

black line), nonlinear hardening (red continuous line), nonlinear soften-

ing (blue continuous line). . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.10 Frequency response of the Duffing oscillator (H = 1) with m = 1 kg,

c = 0.04 Ns/m, k = 2 N/m, and µ = 0.75 at different excitation

amplitudes: 0.01, 0.18, 0.027, 0.05, 0.075, and 0.1 N. Amplitude (a) and

phase (b) of the dynamic response are shown. . . . . . . . . . . . . . . . 38

2.11 Solving numerically the parametrised equation of a circle: (a) iterative

method and (b) numerical continuation. The continuous black line rep-

resents the analytical solution while the circles denotes numerical solutions. 46

x



List of Figures

2.12 Predictor-correct procedure: (u0, λ0) is the initial point, (u∗0, λ
∗
0) is pre-

dicted point, and (u1, λ1) is the corrected point. . . . . . . . . . . . . . . 47

2.13 Duffing oscillator with m = 1 kg, c = 0.04 Ns/m, k = 2 N/m, µ = ±0.15

N/m3, and F = 0.1 N: the amplitude of the response is continued using

the harmonic balance method (H = 1) (a) and collocation methods (b). 48

3.1 Example of piecewise-smooth continuous (a), reset-map (b), and discon-

tinuous (c) characteristics. The discontinuity boundary is indicated by

Σ and dashed regions indicate non-physical regions of the domain. . . . 51

3.2 Phase portraits of a grazing bifurcation a Duffing oscillator with asymet-

ric piecewise characteristic: (a) before, (b) at, and after (c) the bifurca-

tion. Parameters considered: m = 1 kg, c = 0.04 Ns/m, k = 2 N/m,

µ = 0.15 N/m3, and Q = 0.1 N with piecewise stiffness kp = 10 N/m

and gap a = 0.15 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Bilinear stiffness characteristic and the associated smooth approxima-

tions. Panel (a) show the restoring force, while panel (b) illustrates the

derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Schematic of the two-mass system with a free-play gap [1]. . . . . . . . 56

3.5 Graphical representation of the radius of influence and comparison be-

tween approximated and ideal piecewise functions. The approximation

is obtained using δ = 1500 and the relevant data from Tab. 3.2 [1]. . . . 59

3.6 Vector fields of the undamped unforced piecewise system, represented

by Eq. 3.3, when the second mass is blocked (x2 = 0 and ẋ2 = 0). Nu-
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Chapter 1

Introduction

1.1 The Importance of Nonlinear Dynamics of Mechanical

Structures

Mechanical systems and structures have been studied for many years by engineers as

they are fundamental to developing new technologies and improving current engineer-

ing solutions. In the scientific literature, they are studied in terms of static response,

e.g. when static loads are applied, or in terms of dynamic behaviour, i.e. when time-

varying excitation is applied and the inertial effect of the structure is considered to be

relevant. The focus of this thesis is the study of the dynamic response of mechanical

systems and structures when sinusoidal-like excitation is applied. Linear mathemati-

cal models capable of representing the dynamics of mechanical systems and structures

have been developed and are currently used in industry and academia. The capability

of such models to be effective and simple in their implementation has been proved in

practical and experimental [7] engineering applications. Nonetheless, these models are

based on the assumption of linear behaviour which represents an idealisation of the real

world as mechanical systems and structures are ultimately nonlinear in their dynamic

behaviour. When an underlying linear system exists, mechanical structures show a

linear dynamic behaviour at low amplitudes of excitation. On the contrary, nonlinear

phenomena and nonlinear dynamics effects appear frequently in mechanical structures

when large amplitudes of excitation are applied or/and when boundary conditions fa-
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cilitate the generation of nonlinear characteristics in the structure, e.g. the presence

of joints may introduce friction or contacts. Following this perspective, linear models

correctly describe the dynamic behaviour of mechanical systems and structures only in

certain operational ranges: this represents a problem for their design and simulation

as, most of the time, it is not known a priori if the operational conditions can trigger

nonlinear dynamic behaviour in the mechanical structures. The consequences of this

Figure 1.1: Tacoma bridge (1940) vertical and twisting limit cycle oscillations due to
the fluid-structure interaction.

could be catastrophic, e.g. unstable dynamic response, unexpected amplitude of vibra-

tion, and, in the worst cases, collapse of structures. One of the most famous examples

is the collapse of Tacoma Bridge (1940) which occurred due to the interaction between

the slender structure of the bridge and the wind. The aerodynamic loading led the

system to uncontrolled vibration which resulted in high-amplitude limit cycle oscilla-

tions (represented in Fig. 1.1 1) and ultimately in the collapse of the structures. Other

examples come from aerospace engineering where ground test vibrations of spacecraft

and aircraft revealed the presence of nonlinear dynamic behaviours in the Cassini space-

craft [8] and the Airbus A400M [9]. The presence of nonlinear dynamic phenomena

1Figure available from https://www.structuremag.org/?p=19995
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complicated the ground test activities and required time and effort to understand the

source of nonlinearity and its effect on the dynamics of the systems. The complexity

of the phenomenon did not allow for finding a nonlinear dynamic model capable of

representing the observed dynamics. Therefore, in both cases, linear models were mod-

ified so that a conservative envelope or modified linear model would incorporate the

nonlinear effect in the Frequency Response Functions (FRFs). This approach is very

conservative, but still needed to overcome the certification of the aircraft/spacecraft

and obtain the clearance to fly. On the other hand, the necessity to improve the model

representing the dynamics of mechanical structures considering nonlinear effects has

been felt since the 80’ [10], were first studies on nonlinear flutter were commissioned

by international organisations like NATO. Nowadays, the scientific literature offers

many examples of nonlinear behaviour in aerospace structures: Kerschen and collabo-

rators [11, 12] showed the presence of complex dynamic behaviour in real aircraft and

spacecraft investigating the nature of the nonlinearities and demonstrated that nonlin-

ear models are able to characterise and represent the complex dynamic behaviour of

the considered systems. Coetzee et al. [13–16] demonstrated that typical instabilities in

ground manoeuvres of aircraft can be represented with nonlinear models and numerical

continuation techniques. High-aspect ratio wings have also been extensively studied in

aerospace engineering to optimise the drag/lift ratio and several studies [17–20] con-

cluded that nonlinear aeroelastic models, which account for structural nonlinearities,

are necessary to correctly capture the dynamics of the high aspect-ratio wings. Other

applications of nonlinear dynamic models for the analysis of aerospace structures can

be found in [21–23].

Nonlinear behaviour is typically found in mechanical systems and structures: Snoeys

et al. [24] showed that typically used mechanical structures like car frames, measure-

ment instruments, rubber and others, show nonlinear behaviours due to the presence of

nonlinear properties in their damping or stiffness characteristics. In early experimental

studies, De Langre et al. [25] showed the intricate dynamics scenarios behind a fairly

simple Duffing oscillator that presents symmetric and asymetric contacts. The authors

demonstrated the presence of co-existing stable solutions which cannot be described
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with any linear dynamic model. Claeys [26] demonstrated, numerically and experimen-

tally, the importance of non-ideal boundary conditions to describe the highly nonlinear

behaviour of a mechanical beam in clamped-clamped conditions which cannot be re-

duced to a simple linear system. More recently, Thomas and collaborators [27–29]

studied the nonlinear dynamic response of a circular plate, a Chinese gong and a piezo-

electric cantilever beam. The authors showed the presence of complex dynamics in

the considered systems characterised by internal resonances and demonstrated that

some acoustic features (e.g. pitch glide in a Chinese gong) are generated by the pres-

ence of nonlinearities in the structures. In aerospace, mechanical, marine and civil

engineering, nonlinear dynamic phenomena found practical applications in the study

of impacting capsule systems [30], impact drilling systems [31], cracked systems [32],

geared system with backslash [33, 34], mechanical oscillators [35–39] and aeroelastic

systems with free-play gaps [40, 41], description of aerodynamics forces [42], buildings

subjected to earthquakes [43], impact oscillators with rigid walls [44–46], nonlinear en-

ergy sinks [47–53] for vibration suppression and mitigation, load in vessels [54], dynamic

positioning control of floating marine structures [55], and vortex-induced vibration of

marine risers [56].

In the field of energy harvesting, instead, nonlinearities are introduced to improve

the performance of the system; in fact, linear Vibration Energy Harvesters (VEHs)

suffer from a reduced frequency bandwidth in which a high amplitude of response is

reached. This limits their energy output, and thus their potential applications. In this

context, researchers have tried to improve the frequency bandwidth of harvesters by

adding purposeful nonlinear characteristics: Cammarano et al. [6] designed, tested, and

characterised a bistable Electromagnetic Vibration Energy Harvester (EVEH) which

exploited the magnetic forces to generate a double-potential well. In certain condi-

tions, the harvester is able to trigger inter-well oscillations, generating a substantial

amount of energy. Under sinusoidal excitation, the author demonstrated the pres-

ence of a broadband high-amplitude response, highlighting its potential applicability

as broadband VEH. Wang et al. [57] introduced a frequency-up converted Piezoelectric

Vibration Energy Harvester (PVEH). The system exploits the presence of magnets to
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generate quintuple-well potential and stoppers to induce vibrations at frequencies of

excitation lower than the natural frequency of the harvester. In general, nonlinearities

in energy harvesters are associated with a wider frequency bandwidth and higher per-

formance of the harvesters [58, 59] and their presence, intentional or unintentional, is

well documented in the scientific literature [60–67].

All these examples show the presence of considerable nonlinear dynamic behaviours

in mechanical, aerospace, civil, and marine systems which should not be neglected and,

in some cases, could be exploited to enhance the system performance (e.g. in the case

of vibration energy harvesters). Under this perspective, nonlinear dynamic models

become important because:

1. they can describe the dynamics of systems that linear models are unable to cap-

ture, from a quantitative and qualitative point of view.

2. they represent a more general and accurate representation of the dynamics of the

systems which include both the linear and nonlinear dynamic behaviours.

Although these statements may appear similar at first glance there is a subtle and

important difference between them. The first statement suggests that nonlinear mod-

els are necessary only when linear models are proved to be inadequate, i.e. when the

linear models are not able to capture the dynamics of the investigated system. This

approach to the problem has pushed industries and engineers to develop nonlinear anal-

yses only occasionally, often after the occurrence of catastrophic events, like incidents

due to shimmy oscillations in landing gears [13]. In this context, nonlinear models are

perceived as a last resource for the characterisation of a certain phenomenon of the

investigated system, following the principle of ’functionality’, i.e. understanding when

the effect of nonlinearities is not negligible anymore, or in other words when and under

which conditions the linear approximation fails to describe the dynamic behaviour of

the investigated system.

The second statement, instead, considers nonlinear models as an upgraded version

of linear models. This has more profound consequences, especially nowadays that the

industry is trying to reduce its carbon footprint: in fact, the stringent green policies, im-
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posed by many countries, are forcing industries to move towards more efficient and per-

forming structures. For example, the automotive and aviation transport sectors [68,69]

have shown a change of paradigm in recent years, moving from a design strategy based

on the strength and durability of materials to a design strategy based on lightweight

structures. To reduce the weight, less material and more slender sections are utilised in

the structures. This inevitably generates large stresses and deformation, which leads to

nonlinear dynamic behaviours, and thus requires the usage of nonlinear models for the

analysis and design of these structures. A second example comes from the aerospace

industry: the usage of high-aspect-ratio wing in commercial aircraft would allow to re-

duce fuel consumption and emissions in the aviation sector. Nonetheless, aircraft would

have a very large wing span which would not allow them to access airports during op-

erations like boarding/disembarking of passengers. To solve this problem, hinges in the

wings have been proposed as a possible solution [22]. However, the presence of hinges

may generate friction and contact between components, leading to a severe nonlinear

response of the structure. Under this perspective, nonlinear models play a central role

not only in the understanding of the dynamics of mechanical structures but also in the

improvement of their performance and capabilities and, ultimately, in the reduction of

associated CO2 emissions.

1.2 Overview on the Dynamics of Nonlinear Structures

This section focuses attention on nonlinear mechanical systems and structures and pro-

poses an overview of the methods and the areas of engineering that might be involved

in the study of their dynamics. From an engineering perspective, nonlinear vibrations

can be divided into three main application areas: numerical and analytical analyses,

system identification, and experimental analyses. The proposed classification is graphi-

cally illustrated in Fig. 1.2. The first area incorporates all the numerical and analytical

methods that are used for solving nonlinear systems and obtaining a solution from a

mathematical point of view; this ranges from numerical techniques like nonlinear Finite

Element Analysis (FEA) and numerical continuation to approximate analytical solu-

tion like the Multiple-Scales (MS) or Harmonic Balance Method (HBM). Chapter 2 will
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provide an extensive overview of this area with practical examples. The second group

1. Numerical &
Analytical Analysis

2. Nonlinear
Systems

Identification

3. Nonlinear
Experimental Analysis

Nonlinear Systems and Structures
in Engineering

Figure 1.2: Application areas of nonlinear systems and structures in engineering.

considers all the techniques and methods that are used to identify equivalent nonlinear

mechanical models and their parameters from experimental data. These techniques re-

quire different sets of data and therefore are generally distinguished into time-domain,

frequency-domain, and time-frequency domain (see [70, 71] for a complete overview

about the different classes of methods in nonlinear systems identification). Finally,

the last group considers the experimental techniques that are used to investigate the

behaviour of nonlinear structures. The development of mathematical theory behind

nonlinear vibrations, instead, has not been considered in the above classification as it

is equally shared between mathematicians and engineers, and it will not be considered

in this work. In the field of nonlinear vibrations, the above-mentioned areas share the

same problem: the increase in complexity of nonlinear analyses when the number of De-

grees of Freedom (DOFs) of the system increases. This problem is sometimes referred

as the curse of dimensionality [72], and can make unpractical or, in certain cases, im-

possible the analysis/identification of nonlinear systems. The concept is graphically ex-

plained in Fig. 1.3 where the dynamic models typically used in engineering applications

are reported in terms of the number of degrees of freedom and degree of nonlinearity.

When Multiple-Degrees-of-Freedom (MDOFs) structures are considered in the analy-

sis/identification process, the degree of nonlinearities of the model is generally very

small or absent. This means that models are linear or that nonlinearities are localised

and affect only one or few DOFs. On the contrary, when the degree of nonlinearities of

the structure is large, simple Single-Degree-of-Freedom (SDOF) models are generally
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Figure 1.3: Mathematical models adopted for describing and analysing dynamic phe-
nomena in terms of the degree of nonlinearities of the system and number of degrees
of freedom.

used to study the dynamics. In the literature, only a few studies have addressed the

problem of the dynamics of strongly nonlinear MDOF systems. This thesis focuses on

the investigation of the dynamics of these systems, specifically considering those which

feature an underlying linear behaviour [73,74]. The dynamic behaviour of these systems

is graphically described in Fig. 1.4 in terms of the degree of nonlinearity and amplitude

of excitation. The light-grey area indicates the presence of a linear dynamic behaviour,

hence the system obeys the linear dynamic theory for these levels of nonlinearities and

forcing amplitude. This area is associated with low amplitudes of excitation and a large

degree of nonlinearity or, conversely, large amplitudes of excitation and a low degree

of nonlinearity. When higher forcing is applied to a system with a discrete degree of

nonlinearity, the system starts to show a weak nonlinear behaviour. This condition is

characterised by the presence of forces associated with linear terms (e.g. inertial and

linear stiffness for a Duffing oscillator) that are orders of magnitude higher than the

forces associated with nonlinear terms (e.g. the cubic stiffness for a Duffing oscillator).

Typical examples are the presence of bent peaks in the FRF due to the presence of
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Figure 1.4: Dynamic behaviour of mechanical systems in terms of the degree of non-
linearities and forcing amplitude.

hardening/softening characteristics [73]. If the level of forcing increases, the system

starts to develop a strong nonlinear behaviour with the appearance of complicated

dynamics phenomena [75] which include chaos and quasi-periodic responses. Fig. 1.5

shows the four types of possible dynamic behaviour [76] that may arise from nonlinear

systems when a sinusoidal excitation is applied: between them, there are aperiodic

and multi-harmonic responses which are typically found in strongly nonlinear systems.

Finally, the dashed area of Fig 1.4 indicates a region where strong nonlinear behaviour

may occur at a lower amplitude of excitation. This typically occurs on systems that

present non-smooth characteristics such as backlash or contacts. Non-smooth terms

generate higher forces and therefore trigger strong nonlinear behaviour even when the

amplitude of excitation is not particularly large.

1.3 Research Motivation

The thesis project finds motivation from the following research questions:

• What is the dynamic behaviour of strongly nonlinear mechanical systems with

multiple degrees of freedom?
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Nonlinear SystemHarmonic Excitation

Harmonic Response

Multi-Harmonic Response

Quasi-Periodic Response

Chaotic Response

Figure 1.5: Dynamic behaviours of nonlinear mechanical systems.

• To what extent mathematical are models capable of reproducing the complex dy-

namics behaviour of nonlinear structures and when linear models fail to accurately

predict the dynamics of the investigated system?

To answer these questions, the thesis has the following specific objectives:

• to further investigate the dynamics behaviour of mechanical multi-degree of free-

dom systems with a strong nonlinear behaviour, especially in the presence of

contact. This includes studying particular dynamics phenomena such as back-

bone curve bifurcations and modal interactions in nonlinear systems.

• develop system identification procedures based on well-established identification

methods and numerical tools for nonlinear mechanical systems with the intent to

ease their implementation in industrial practices.

• validate the identified models against experimental results and evaluate their

prediction capabilities at different excitation conditions.

11
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1.4 Thesis Outline

The rest of the thesis is outlined as follows:

• Chapter 2 provides an overview of the scientific literature on the numerical and

analytical techniques for analysing nonlinear systems. This chapter aims to in-

troduce the reader to the mathematical approaches commonly used to compute

the dynamic response of mechanical nonlinear systems. Particular attention is

devoted to highlighting the limitations, problems, and validity of the solution

obtained with the different methodologies.

• Chapter 3 introduces a strongly nonlinear MDOF system featuring piecewise

stiffness (contacts). The nonlinear system is analysed with numerical integration

and continuation schemes. The most interesting dynamic features, like the bi-

furcations of the backbone curves, isolas, and aperiodic dynamic responses are

analysed utilising the numerical tools introduced in Chapter 2. Finally, it is

demonstrated that, under certain conditions, approximated definitions of piece-

wise stiffness characteristics do not affect the dynamics of the system, resulting

in simplified numerical analyses.

• Chapter 4 discusses the design of the test rigs representing the previously analysed

system. This test rig serves as the ground truth to validate the complex nonlinear

phenomena encountered in the numerical analyses of the previous chapter. Firstly,

the product design specifications of the experimental test rig are introduced and

then a numerical design is carried out. To this end, FEA and CAD are used

to obtain a Reduced Order Model (ROM) of the experimental system and to

perform the linear design of the test rig. The ROM is then used to conduct the

design of the nonlinear behaviour of the system, paying particular attention to

the associated bifurcation scenario.

• Chapter 5 describes the experimental results obtained using two versions of the

designed test rig, named Test Rig #1 and Test Rig #2. The dynamics of the

systems are analysed in terms of time histories, steady-state orbits, frequency

12
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response, and Poincaré sections, investigating the route to chaos and demonstrat-

ing the presence of quasi-periodic oscillations. In order to generate a consistent

database, the dynamics of test rigs are investigated with and without the pres-

ence of the piecewise stiffness characteristic, simulated by two motion limiting

constraints.

• Chapter 6 discusses the identification of ROMs representing the two test rigs.

Following the experimental activities, the smooth and non-smooth characteris-

tics are identified separately, using meta-heuristic optimisation methods and a

novel methodology, named the Nonlinear Restoring Force (NLRF) method. The

method is based on the separation of the linear and nonlinear restoring force of the

system and aims to simplify the identification procedure of the nonlinear system,

thanks to the possibility of being interfaced with linear identification methods.

The method is introduced through a numerical example and it is used to identify

the nonlinear characteristics associated with the two experimental test rigs.

• In Chapter 7, the identified ROMs are used to perform additional numerical

simulations, carrying out comparisons with experimental data and Finite Element

(FE) models. The scope of the chapter is two-fold: firstly it aims to validate

the identified nonlinear models and then it wants to show their extrapolation

capabilities. To this end, the numerical models are tested at different excitation

amplitudes, comparing the numerical simulations with a set of experimental data

that were not used during the identification procedure. At the end of the chapter,

the identified and validated model is used to obtain a complete characterisation of

the experimental system, proving the presence of complex dynamic phenomena

such as the bifurcation of the backbone curves and the detached isolas in the

investigated frequency domain.

• Chapter 8 proposes the analysis and investigation of mechanical engineering sys-

tems for which the implementation of nonlinear characteristics may have benefi-

cial effects on their dynamics and performance. To this end, mechanical systems

that require high performance, such as vibration energy harvesters, are consid-
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ered. Specifically, two case studies are analysed: the first case study investigates

the dynamics of an electromagnetic bistable nonlinear energy harvester while the

second one shows the optimisation of a 3D planar-shaped piezoelectric energy

harvester that behaves linearly. The chapter concludes by discussing the per-

formance of two vibration energy harvesters, highlighting the advantages and

disadvantages of the different mechanical structures from an engineering point of

view.

• Finally, Chapter 9 discusses the conclusion of the project and highlights the di-

rection of further works.

1.5 Publications

The following publications, journal and conference papers, have been produced as a

result of this project:

• Martinelli, C., Coraddu, A., & Cammarano, A. (2023). Performance-aware de-

sign for piezoelectric energy harvesting optimisation via finite element analysis.

International Journal of Mechanics and Materials in Design, 19(1), 121-136..

• Martinelli, C., Coraddu, A., & Cammarano, A. (2023). Approximating piece-

wise nonlinearities in dynamic systems with sigmoid functions: advantages and

limitations. Nonlinear Dynamics, 111(9), 8545-8569.

• Martinelli, C., Coraddu, A., & Cammarano, A. (2024). Strongly nonlinear multi-

degree of freedom systems: Experimental analysis and model identification. Me-

chanical Systems and Signal Processing, 218, 111532.

• Martinelli, C., Avadhani, R., & Cammarano, A. (2023). Identification of Nonlin-

ear Characteristics of an Additive Manufactured Vibration Absorber. In Society

for Experimental Mechanics Annual Conference and Exposition (pp. 229-235).

Cham: Springer Nature Switzerland.

• Martinelli, C., Coraddu, A., & Cammarano, A. (2023). Experimental Parameter

Identification of Nonlinear Mechanical Systems via Meta-heuristic Optimisation
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Methods. In Society for Experimental Mechanics Annual Conference and Expo-

sition (pp. 215-223). Cham: Springer Nature Switzerland.

• Martinelli, C., Coraddu, A., & Cammarano, A. (2023). Experimental Analysis of

a Nonlinear Piecewise Multi-degrees-of-Freedom System. In International Con-

ference on Nonlinear Dynamics and Applications (pp. 665-675). Cham: Springer

Nature Switzerland.
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Numerical and Analytical

Techniques for the Analysis of

Nonlinear Systems

2.1 Introduction

This chapter provides an introduction to the analytical and numerical techniques that

are used in the following chapters for analysing the nonlinear dynamics behaviour of

mechanical systems. A comprehensive and complete overview of all the analytical

and numerical techniques is out of the scope of this thesis and the proposed overview

should be considered as an introduction to the most common methods/techniques for

the analysis of nonlinear mechanical systems. In the considered cases, the systems

are representable as a set of Ordinary Differential Equations (ODEs) and practical

numerical examples are also presented, discussing the potential advantages/limitations

of the different methods. In detail, the chapters treat the following aspects:

• Section 2.2 introduces the numerical integration techniques and provides guide-

lines for their usage in the analysis of nonlinear mechanical systems. The concept

of bifurcation diagrams, Poincaré section, and basin of attraction are described

in detail, providing numerical examples and linking the numerical results with

practical physical aspects. To this end, simple nonlinear systems, i.e. the Duffing
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oscillator (in its mono- and bistable configurations) and the Van der Pol oscillator,

are utilised as reference examples.

• Section 2.3 introduces the analytical methods that are mostly used in the sci-

entific literature to compute the steady-state behaviour of mechanical systems.

Particular attention is dedicated to the harmonic balance method, highlighting

its advantages and limitations.

• Section 2.4 provides an introduction to numerical continuation techniques: firstly

collocation methods are introduced and then the concept of pseudo-arc-length

continuation is explained by solving nonlinear algebraic equations.

2.2 Numerical Integration Based Techniques - Bridging

Mathematics and Engineering Perspective

Direct numerical integration of ODEs represents one of the most important tools for

the analysis of nonlinear systems. These methods are generally referred to as numerical

integration in the scientific literature and consist of directly integrating the equation of

motion associated with the system under investigation. By performing the integration,

it is possible to obtain approximate dynamic response of the system in the time domain.

Formally, numerical integration techniques are applied to an Initial Value Problem

(IVP), representing a general nonlinear system, in the following form

ẏ(t) = f(t,y(t))

y(t = 0) = y0

(2.1)

where y represents state vector and y0 is the set of initial conditions. Differently from

some approximate methods, numerical integration provides a solution for the nonlinear

system only in the time domain, introducing numerical errors [77] with respect to the

exact solution. In the literature, such methods are considered a valuable tool for under-

standing the dynamics of nonlinear mechanical systems, nonetheless a formal treatment

of numerical integration procedures, e.g. Runge-Kutta or linear multi-step methods,
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is not presented and it is considered outside the scope of this thesis. The interested

reader should refer to references [77, 78] to have more insights about this aspect. In-

stead, this Section aims to show how numerical integration schemes are used to obtain

valuable information and graphical representations of the dynamic behaviour of nonlin-

ear systems, particularly using the following tools: (1) phase portrait, (2) bifurcation

diagrams, (3) Poincaré stroboscopic maps and sections, and (4) basins of attractions.

These graphical representations of systems dynamics are constantly used in the scien-

tific literature (see for example [6, 33, 37, 38, 40, 41, 46, 79–83] and references therein),

therefore they are considered essential tools for the analysis of nonlinear systems.

2.2.1 Orbits, Phase portrait, and Poincaré Maps

The time response is fundamental to understanding the dynamic behaviour of a nonlin-

ear system. In mathematics, the time-history of a nonlinear system (dynamical system)

is generally called a trajectory or orbit [75, 84]. One powerful tool for visualising the

dynamics of a nonlinear system is the phase portrait ; from a mathematical point of

view, the phase portrait is formally defined as the partitioning of the state space into

orbits [84] 1, i.e. it is a projection of the system trajectory into a limited number of

states (generally two or three for graphical reasons). In engineering applications, the

phase portrait is intended as the representation of the system trajectory in terms of

displacement and velocity, see for example the references [33, 37, 41]. Although the

phase portrait could be qualitatively obtained with analytical techniques, an analytical

solution of the nonlinear system is generally not achievable, thus numerical integration

is used for quantitative representation. In order to practically visualise a phase portrait

of a nonlinear system, a Van der Pol oscillator is considered. The Van der Pol oscilla-

tor is a non-conservative system with nonlinear damping, generally used in engineering

to represent self-excited vibrations. The system is characterised by a single degree of

freedom and the associated phase portrait of the steady-state dynamic orbit is shown

in Fig. 2.1. The equation of motion of the Van der Pol oscillator is represented by the

1formally, the state space is the space of all the families of trajectory associated with a nonlinear
system.
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following expression:

ẍ+ Γ(x2 − 1)ẋ+ x = 0 (2.2)

where Γ is the nonlinear damping parameter, x is the displacement, ẋ is the velocity, ẍ

is the acceleration. Fig. 2.1(a-b) show the trajectories of the oscillator, in two different

conditions and starting from the same initial condition (1,0). When the parameter Γ is

equal to -1 the system shows the presence of a stable fixed point [75], i.e. an equilibrium

point where the trajectory ends, while instead when Γ = 1 the system exhibits a stable

limit cycle, i.e. a cycle in a neighbourhood of which there are no other cycles [84],

which attracts the trajectory of the oscillator and results in a steady-state orbit. It

Figure 2.1: Phase portrait representation of the dynamics of the van der Pol oscillator
for a fixed point when Γ = −1 (a) and a limit cycle when Γ = 1 (b).

is worth noticing, that, under this definition, periodic orbits of undamped unforced

mechanical systems are not considered limit cycles. The change of behaviour in the

system is due to a Hopf bifurcation which transforms the fixed point (equilibrium) into

a limit cycle when the parameter Γ is modified. Fig. 2.1 shows the two attractors [75],

i.e. a set of states towards which the systems tends. Attractors are stable by defini-

tion, thus the opposite is referred to as repellers [75], i.e. a set of states from which

the systems escape. From an engineering point of view, these conditions correspond

to two typical states encountered in the dynamics of the system: fixed or equilibrium

points are steady-state static conditions, e.g. a mass-damper oscillator at the rest-

ing position; limit cycles, instead, correspond to the periodic response of mechanical
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systems, e.g. the steady-state periodic response of a mechanical oscillator. Nonethe-

less, nonlinear systems also offer other types of attractors: named torus attractors and

strange attractors. The first one is characterised, in certain conditions, by the presence

of quasi-periodic oscillations, a form of aperiodic response which only occurs on state

spaces with torus shape [75]. These oscillations are characterised by the presence of at

least two incommensurable harmonic components in the response [85], i.e. harmonic

components whose ratio is irrational. This causes the presence of a long-term oscilla-

tion which goes around the torus never closing itself. From a mechanical perspective,

this phenomenon occurs in MDOF nonlinear or self-excited systems driven by an ex-

ternal harmonic excitation. In these cases, the system can show the presence of both

periodic oscillations (lock-in condition) and quasi-periodic oscillations (lock-off condi-

tion). In both conditions, the trajectory of the system is moving along the torus but

in the first case, the trajectory repeats itself after a certain number of periods. Strange

attractors, instead, are associated with chaotic behaviours. Chaos is a deterministic

aperiodic dynamic behaviour that nonlinear systems exhibit in certain conditions and

it is characterised by a strong sensitive dependence on initial conditions [75]. From a

practical point of view, this means that neighbouring trajectories, i.e. trajectories that

are slightly perturbed one from the other, can separate very fast from each other lead-

ing to completely different dynamic states after a certain amount of time. The four

Figure 2.2: Poincaré maps: stroboscopic map (a) and section maps (b) for forced peri-
odic oscillations (limit cycle). In the panels, x represents the displacement, y denotes
the velocity, t indicates the time, and z is defined as the product Ωt.
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Figure 2.3: Attractors of a bistable oscillator (m = 1 kg, c = 0.04 Ns/m, k = −2 N/m,
µ = 0.75 N/m3, and Ω = 0.81 rad/s) analysed in terms of 3D phase portrait, 2D phase
portrait, FFT, Poincaré stroboscopic map, and time-history. In the panels, x represents
the displacement, y denotes the velocity, t indicates the time, and z is defined as Ωt.

attractors previously mentioned, i.e. fixed point, limit cycle, torus, and strange attrac-

tors, show different dynamic behaviours and, although not being an exhaustive list of

all the possible attractors/repellers, they are sufficient to describe most of the dynamic

phenomena associated with the mechanical systems, especially the ones considered in

this thesis.

Graphical representations can facilitate the visualisation of the dynamic behaviour

of nonlinear mechanical systems, showing what type of attractor is driving its dynamics.

Together with the phase portrait, Poincaré maps are one of the graphical tools for the

analysis of nonlinear systems. Formally, the Poincaré map is a mapping of the trajectory
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Figure 2.4: Attractors of a forced Van der Pol (F = 18 N and Γ = 1) oscillator analysed
in terms of 3D phase portrait, 2D phase portrait, FFT, Poincaré stroboscopic map,
and time-history.In the panels, x represents the displacement, y denotes the velocity, t
indicates the time, and z is defined as Ωt.

of a system from section P of the state-space to itself [75]. The intersection between

the trajectory and the section P defines the Poincaré map. From a mathematical point

of view, the section can represent any state of the system, including the time. This

happens because, in non-autonomous systems, i.e. systems with direct expression of

the time t in the equation of motion, the time represents one state of the system. Non-

autonomous systems can be reduced to an autonomous version by adding additional

states to the set of equations that describe the dynamics of the system. Let’s consider

a simple linear mechanical forced oscillator as a reference example. The associated
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equation of motion can be written as:

mẍ+ cẋ+ kx = F cos (Ωt) (2.3)

where m, k, c, and F are the mass, damping, stiffness, and forcing amplitude. The term

cos (Ωt) contains the frequency of excitation Ω and the time t. Reducing the system to

its first-order form, an additional equation is added to the system along with a second

variable y = ẋ. Similarly, it is possible to eliminate the direct dependence from the

time t by adding an equation and another state; in this case, the variable z = Ωt is

added. The system of Eq. 2.3 is transformed into the following first-order system:
ẋ = y

ẏ = − c
my − k

mx+ F
m cos(z)

ż = Ω

(2.4)

From an engineering perspective, time is generally considered a special state. This

results in a slight distinction between Poincaré stroboscopic maps and Poincaré section

maps: the first one represents a map which samples the trajectory every period T (or

combinations of it) while the second one indicates a Poincaré map which samples the

trajectory of every time that it passes to physical phase space section, e.g. x = 0.

The two concepts are graphically reported in Fig. 2.2 for a steady state limit cycle,

Fig. 2.2(a) describes a Poincaré stroboscopic map and Fig. 2.2(b) describes a Poincaré

section for x = 0 forced oscillator. It should be noted that in both cases a periodic

oscillation (limit cycle) is represented but in the stroboscopic map the additional state

is the time and the mapping occurs every n period T (in the figure n = 1) while in the

Poincaré section consider the additional state z = Ωt

In order to visualise the different types of attractors, two simple SDOF nonlinear

models are considered: a bistable and a forced van der Pol oscillator. These systems

possess the four attractors previously introduced and therefore are chosen as reference

examples. Firstly a bistable oscillator is considered to visualise: fixed points, limit

cycles, and chaotic attractors. The bistable oscillator presents the following equation
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of motion in the autonomous form:
ẋ = y

ẏ = − c
my + k

mx− µ
mx3 + F

m cos(z)

ż = Ω

(2.5)

where µ represents the cubic stiffness coefficient. The forced Van Der Pol oscillator has

the following equation of motion instead:
ẋ = y

ẏ = −Γ(x2 − 1)y − x+ F sin(z)

ż = Ω

(2.6)

The attractors of the two oscillators are obtained by varying the force F and the

excitation frequency Ω. The attractors associated with the first system are reported

in Fig. 2.3 where the panels in the first row represent 3D attractors, the second row

represents the phase portrait, the third row the FFT of the state x, the fourth row

indicates the Poincaré stroboscopic maps, and the last row shows the associated time

histories. Each column is associated with a different force level in the following order

from left to right: 0, 0.15, 0.5, 0.99, and 1.05 N. At F = 0 N, the bistable oscillator shows

one of its stable equilibrium points (in the potential well at negative displacement) 2,

at F = 1.05 N the oscillator shows the presence of a chaotic attractor, and at F = 0.15,

0.5, and 0.99 N the oscillator is characterised by periodic responses with different

periods, respectively, single period (1:1), period-doubling (2:1), and period-tripling

(3:1) 3. Moving from left to right it is possible to see that the steady-state orbits

increase in complexity, requiring more periods of excitation to complete a cycle. When

the force is large enough, the system ends in chaos, as shown by the last column of

Fig. 2.3. It is possible to note that the increment of the periods in the response is

associated with an increment in the frequency content of the FFT of the associated

2For graphical reasons, the 3D attractor is represented with a point.
3Period doubling responses are defined as M : N , where M represents the number of periods of the

excitation frequency and N is the number period necessary to complete a multi-periodic response.
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time history. The Poincaré maps provide useful information about the dynamics of

the system: when a fixed point or single period limit-cycle is found, the map shows

just a point. This occurs because the map is sampling the trajectory every period of

excitation; in the case of the fixed point the system does not move so the sampling occurs

in the same point of the phase space, leading to a single point in the Poincaré map. In

the case of a single-period response, instead, the system returns to the same point of

the phase space at every period. Since the sampling occurs every period, the Poincaré

map appears, once again, as a single point. When the response of the system passes

through a period-doubling bifurcation, more points appear in the Poincaré maps. This

occurs because period-doubling dynamic responses require more periods of excitation

to complete a cycle. This leads to finding the system at different locations of the phase

space if the map samples the trajectory at every period of excitation. Specifically, if

sampled every period, the number of points in the map indicates the number of periods

that are required to complete a periodic response. For example, the Poincaré map of

Fig. 2.3 associated with F = 0.5 N (third column) shows two points which evidence the

presence of a 2:1 period doubling dynamic response. Moving towards a higher amplitude

of excitation, the bistable oscillator passes through the typical period-doubling cascade

that ends with the generation of chaos. The chaotic response is represented by the last

column of the figure: in this condition, the dynamics of the system is aperiodic and the

system continuously oscillates around the two equilibrium points. Given the presence

of chaos, the associated Poincaré map results in a strange attractor. The last row of

Fig. 2.3 shows the time histories associated with the investigated attractors. Differently,

from the FFT and Poincaré maps, the time histories do not provide particularly useful

information about the dynamics of the system. It is quite difficult to see the difference

between the multi-periodic and chaotic attractors. On the contrary, phase portrait and

Poincaré maps offer more insights into the dynamics of the system.

A sinusoidally excited bistable oscillator does not show quasi-periodic behaviour;

to visualise the attractor associated with this dynamic condition, a forced Van der Pol

oscillator (Eq. 2.6) is taken as a reference example. Similarly to the bistable oscillator,

the attractors of the system are studied in terms of 3D phase portraits, 2D phase
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portraits, FFT of the time-histories, Poincaré maps, and time-histories. Fig. 2.4 shows

the results when the frequency and force are varied. The figure follows the same

description of Fig. 2.3 with the different columns, from left to right, representing the

following conditions: F = 0 N and Ω = 0 rad/s, F = 18 N and Ω = 3 rad/s, F = 18

N and Ω = 5 rad/s, and F = 18 N and Ω = 4 rad/s. The system shows the presence

of a fixed point (first column), a single limit cycle (second column), a 5:1 period-

doubling limit cycle (third column), and a limit torus (last column). Again, the FTT

shows the increment in the frequency content of the response which results in a more

complicated phase portrait. In the case of a limit torus, the frequency response is

composed of incommensurable frequencies, as shown in the detail of the FFT. This is

a clear indication of the presence of quasi-periodic oscillations in the system response.

More interestingly, the quasi-periodic oscillations result in an invariant circle in the

Poincaré map, i.e. a continuous closed line. The detail of the limit torus attractor

demonstrates that the 3D representation of the invariant circle coincides with a section

of the torus, as expected from the definition of quasi-periodic oscillations.

Fig. 2.3 and Fig. 2.4 presented the attractors associated with a bistable oscillator

and a forced Van der Pol oscillator. The figures demonstrate the usefulness of graphical

representations such as Poincaré maps and phase portraits, showing how they allow

gathering additional insights into the system dynamics.

2.2.2 Bifurcations and Bifurcation Diagrams

Poincaré sections, time histories, and phase portraits are useful tools to understand

the dynamics of nonlinear systems and their attractors. Nonetheless, as shown by

the analysis of the van der Pol and bistable oscillator, attractors may change when

a parameter of the system is modified. In the scientific literature, the topological

change in the phase-portrait is known as a bifurcation [84]. Formally, the bifurcation is

defined as a topological change of the attractor and indicates a change in the dynamic

behaviour of the system. A complete classification of bifurcations is out of the scope

of this section, and the interested reader is invited to refer to the references [75,84] for

more information about the classification of bifurcations. Nonetheless, to introduce the
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reader to the concepts discussed in the next chapters, a short list of the bifurcations,

typically encountered in the dynamics of mechanical nonlinear systems, is presented:

• Saddle-Node bifurcation of a cycle: indicates the coalesce and annihilate of

two limit cycles. An example of this bifurcation is the change of stability in the

periodic response of a Duffing oscillator.

• Period doubling bifurcation: it occurs when the topology of limit cycles

changes and a different number of periods is required to complete the cycle. In

the previous examples, both the forced Van der Pol oscillator and the bistable

oscillator showed the presence of period-doubling bifurcations when the frequency

and/or amplitude of the forcing function changes.

• Hopf bifurcation: it is the transformation of a fixed point into a limit cycle.

This bifurcation is typically encountered in self-excited systems, e.g. aeroelastic

systems that overcome the flutter speed. In the previous examples, a Hopf bi-

furcation is found in the unforced Van der Pol oscillator when the parameter Γ

changes from -1 to 1.

• Neimark-Sacker bifurcation: this bifurcation occurs when the periodic re-

sponse of the system changes and becomes aperiodic. It is also called secondary

Hopf bifurcation as it is equivalent to a Hopf bifurcation in the Poincaré maps,

i.e. a point becomes an invariant closed curve.

• Branch bifurcation: this bifurcation occurs when a cycle or a fixed point bi-

furcates into two possible solutions, e.g. pitchfork bifurcation.

Engineers and mathematicians rely on the bifurcation analysis to understand and

visualise how one or more system parameters influence the dynamic of the system and

its bifurcation scenario. In the field of nonlinear vibrations, the bifurcation parameter,

generally called λ, is typically represented by the forcing amplitude F or by the fre-

quency of excitation Ω, although times to times other parameters might be used. The

bifurcation diagrams describe the evolution of the system dynamics for a certain bifur-

cation parameter λ; they can be obtained by exploiting numerical integration schemes:
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Figure 2.5: Bifurcation diagram of the Duffing oscillator (m = 1 kg, c = 0.04 Ns/m,
k = 2 N/m, µ = 0.75 N/m3, and Q = 0.1 N) in terms of displacement amplitude.

firstly the steady-state dynamic response must be achieved for a certain set of system

parameters. This can be obtained by letting the transient dynamics die throughout a

long enough numerical integration procedure. At this point, the obtained steady-state

condition is post-processed and plotted for a single value of the bifurcation parameter

in the bifurcation diagram. The procedure is then repeated changing the bifurcation

parameter to obtain more points in the bifurcation diagram. Authors often use either

amplitude, maximum/minimum value, or value of the Poincaré section of the selected

signal, achieving a different representation of the bifurcation diagram. The subsequent

steady-state conditions can be obtained by ’continuing’ the previous solution. The ’con-

tinuation’ of the solution can be performed without resetting the initial condition [73],

i.e. passing the final condition of the system as initial conditions for the next integra-

tion procedure, or by continuously resetting the initial condition to achieve multiple

co-existing steady-state solutions.

Taking a forced Duffing oscillator as a reference example, Fig. 2.5 shows the bifur-

cation diagram in terms of the amplitude of response at different excitation frequencies

Ω. In this case, the bifurcation parameter λ is set equal to Ω. The equation of motion
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for a forced Duffing oscillator is represented by the following expression:

mẍ+ cẋ+ kx+ µx3 = F cosΩt (2.7)

where µ represents the cubic stiffness parameter. The diagram is obtained without

resetting the initial conditions and by performing forward/backward frequency sweeps.

This allows obtaining a clear understanding of the region where co-existing steady

solutions exist. The arrows indicate the typical jump phenomenon: this occurs when

the system loses stability and, moving to the adjacent frequency, it is forced to ’jump’

to another stable steady-state response.

Figure 2.6: Bifurcation diagram of the bistable oscillator (m = 1 kg, c = 0.04 Ns/m,
k = −2 N/m, µ = 0.75 N/m3, and Q = 1.5 N) in terms of value of the Poincaré sections
(a) and displacement amplitude (b).

It should be noted that the bifurcation diagram obtained with the numerical in-

tegration has the disadvantage of considering only stable solutions. On the contrary

numerical continuation techniques are capable of continuing both stable and unstable

solutions; these methods utilise path-following continuation, e.g. pseudo-arc length
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continuation, to track the changes of limit-cycles or fixed points when one or more

bifurcation parameters are modified. These methods are quite powerful and allow ob-

taining the bifurcation diagrams of nonlinear systems. Numerical continuation methods

are discussed in detail in Section 2.4, nonetheless, it is worth pointing out that these

methods have also limitations. Indeed, aperiodic solutions, such as chaotic and quasi-

periodic responses, are difficult to track with numerical continuation and, thus the

associated bifurcation diagrams often cannot be obtained. Differently from numerical

continuation, bifurcation diagrams obtained with numerical integration procedures can

track the evolution of the system dynamics through chaotic behaviours. This results

in an extremely valuable tool for understanding the route to chaos of a system. To

demonstrate this concept, the bistable oscillator described by Eq. 2.5 is now used as a

reference example to compute the bifurcation diagram. By increasing the forcing am-

plitude F , the bistable oscillator passes through period-doubling cascades [73, 75] and

reaches chaos. Two different output quantities, i.e. value of the Poincaré sections and

displacement amplitude, are used to create the bifurcation diagram of the bistable oscil-

lator and monitor the evolution of the response towards chaos. The results are reported

in Fig. 2.6: when the value of the Poincaré section is considered as output quantity

(Fig. 2.6(a)), it is possible to appreciate the period doubling evolution, especially near

chaos (indicated by a dense band full of Poincaré points), as shown by the zooms

Fig. 2.6(1-4). On the contrary, when the amplitude of the response is considered as

output quantity (Fig. 2.6 (b)), the period-doubling cascade cannot be appreciated and

chaos is barely detected by the proposed zoom. This happens because the amplitude of

the response does not detect effectively the presence of period-doubling responses and

their evolution in terms of the number of periods to complete a cycle, especially when

these do not change abruptly in amplitude. Nonetheless, the amplitude of response can

be a good output quantity for the bifurcation diagram. This depends on the nonlinear

phenomenon under investigation. As a reference example, the bifurcation diagram of

Fig. 2.5 can be considered again; the diagram uses the amplitude of the Duffing oscil-

lator as the output quantity for the bifurcation diagram and aims to show the jump

phenomenon. In this case, the use of the amplitude of the response is appropriate and
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permits understanding and appreciating in full the nonlinear phenomenon, showing the

presence of jumps in the frequency response.

These examples show the necessity and the importance of selecting the appropriate

output quantity, e.g. Poincaré section, amplitude, or max value, in the bifurcation

diagrams to illustrate and investigate different nonlinear phenomena.

2.2.3 Basins of Attractions

The bifurcation diagrams provide useful information about the system bifurcations

and the presence of co-existing steady-state dynamic responses. Nonetheless, these
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Figure 2.7: Basin of attraction for a Duffing oscillator (m = 1 kg, c = 0.04 Ns/m,
k = 2 N/m, µ = 0.75 N/m3, and Q = 0.1 N) at different excitation frequency Ω
equal to 1.55 (a), 1.65 (b), and 1.75 (c) rad/s. Panels (d-f) graphically show the two
considered coexisting solutions for each basin of attraction. The intensity scale indicates
the amplitude of the solutions in the different regions of the basin.

diagrams provide little information about the effect of the initial conditions on system

dynamics, often not sufficient for in-depth analysis of the system. To this end, Basins of

Attractions (BoA) are often used to study in detail the effect of initial conditions on the

dynamics of the system. The BoA represent the steady-state response of the system that
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is achieved when certain initial conditions are used, graphically showing a direct link

between these two quantities. Generally, the amplitude, the maximum, or the minimum

of the response of the system is used to create the BoA, however, different quantities

can be used to illustrate different nonlinear phenomena. BoA are a powerful illustration

of the dynamics of the system when co-existing solutions exist: they illustrate the set of

initial conditions that allow reaching a certain stable steady-state solution, identifying

boundaries in the investigated domain of initial conditions. In the case of a system

with a single steady-state stable solution in the initial conditions domain and for the

set of parameters selected (e.g. for a linear system) the BoA becomes trivial, showing

a constant plain diagram. One problem of the BoA is the resolution: the domain of

initial conditions of the BoA is discretised and each set of initial conditions is used to

identify the final steady-state dynamics once the transient dynamics have vanished. To

increase the resolution of the BoA and visualise the boundaries of different steady-state

solutions, a fine discretisation is required. When an approximate analytical solution is

not available, numerical integration schemes are often used to compute the final steady-

state response. The presence of fine discretisation of the initial conditions domain can

lead to millions of sets of initial conditions, which require an equivalent number of

simulations. This can lead to computationally expensive simulations, often possible

only in clusters via parallel computation.

Taking as a reference example, the Duffing oscillator of Eq. 2.7, the associated BoA

for different values of the frequency of excitation Ω are reported in Fig. 2.7. In the top

panels, the figure shows the three basins of attraction for excitation frequencies equal

to 1.55, 1.65, and 1.75 rad/s. The three excitation conditions are chosen in the portion

of the frequency domain where two co-existing solutions exist for the Duffing oscillator.

This is demonstrated by the bottom panels Fig. 2.7 that show the bifurcation diagram

of the Duffing oscillator and highlight the considered frequency of excitation with a

vertical blue line. The blue circles indicate the considered amplitude of response of the

Duffing oscillator that is plotted with a scale of colour in the above BoA. The basins

of attraction provide very valuable information about the dynamics of the system and

the sets of initial condition that leads to a certain dynamic response: when Ω = 1.65
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rad/s (Fig. 2.7(b)) we are in the middle of the frequency region where two co-existing

solutions are present, as shown by (Fig. 2.7(e); this results in the possibility of ending in

both the lower and upper branch of Fig. 2.7 with approximately the same probability, as

the basin of attraction show around one half of the considered initial condition domain

covered by high-amplitude responses (light yellow) and then other half covered by low-

amplitude responses (dark red). When we move towards lower frequencies of excitation,

the lower branch destabilises leading the upper branch of the steady-state solution to

be ’more attractive’: this results in basins of attraction that have more combinations

of initial conditions (as shown in Fig. 2.7(a)) which lead to high-amplitude of responses

(yellow), thus making more probable to end in those dynamic state. Contrarily, when

the frequency of excitation moves towards higher frequencies, the upper branch of

the solution tends to destabilise, making it more likely to end in dynamic states that

show a low-amplitude response (dark red). This is demonstrated by Fig. 2.7(c) which

shows that the dark region associated with low amplitude is much larger than the high

amplitude counterpart.

In conclusion, the BoA are a powerful tool to monitor and visualise how initial con-

ditions influence the dynamics of nonlinear systems. Although often computationally

expensive to achieve, they represent a fundamental tool for the investigation of nonlin-

ear systems, integrating the information obtained from bifurcation diagrams and phase

portraits.

2.3 Approximate Methods for Nonlinear Systems

This section provides an overview of the approximate methods that are mostly used in

engineering applications to solve nonlinear systems. These methods have been widely

used in the literature for analysing nonlinear mechanical systems. Some examples can

be found in the following references [29, 34, 48, 50, 86, 87] which demonstrate the use-

fulness of approximate methods in understanding the dynamic behaviour of nonlinear

structures. Approximate methods, conversely to direct numerical solutions, utilise ap-

proximations to obtain a simplified solution representing the dynamic behaviour of the
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system. To distinguish the linear behaviour in the frequency domain from the nonlin-

ear one, the terms Frequency Response Curve (FRC) is adopted to refer to the FRF

of a nonlinear system. This clarification is justified by the fact that, in nonlinear sys-

tems, co-existing solutions may exist at the same frequency of excitation, making it

impossible to represent the frequency response with a function.

2.3.1 Harmonic Balance

One of the most adopted methods for obtaining the approximated solution of a nonlin-

ear system is the Harmonic Balance Method (HBM) [73,85]. The HBM is a technique

that allows for the calculation of the approximate steady-state system response by ap-

proximating the solution with a truncated Fourier series. Essentially, the response of

the system is assumed to be of the following form (typically called ansatz ) :

x(t) = a0 +
H∑
k=1

(ak) cos(kλt) + (bk) sin(kλt) (2.8)

where ak and bk are the coefficients of each harmonic and H is the higher harmonic

order considered in the ansatz. Ideally, an infinite number of harmonics would be

required to represent a general response of a nonlinear system. Nonetheless, to make

the process feasible, the order of the harmonics is limited, introducing an approximation

into the sought solution. Substituting the ansatz and its derivatives into the governing

equations of motion and balancing the coefficients of each harmonic term lead to a set

of nonlinear Algebraic Equations (AE). This process of moving from a set of ODEs to a

set of algebraic equations is known in the literature as Weighted Residual Methods [88].

In the case of nonlinear systems, the response is composed of many harmonics therefore

increasingH leads to a better approximation of the solution. In some cases, it is possible

to achieve a closed-form solution of the nonlinear AEs, e.g. for a Duffing oscillator at

the first-order approximation. This closed-form solution becomes exact in the case of

a linear system. Nonetheless, closed-form solutions are generally achievable when the

system is characterised by few DOFs, polynomial nonlinearities, and few harmonics

are considered. More generally, the associated set of AEs can be solved numerically or
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in combination with path-following methods, e.g. pseudo-arc-length continuation. In

these cases, the HBM can be applied to more complicated systems, even characterised

by many degrees of freedom, especially when the nonlinearities are confined only to few

DOFs of the considered structure. The HBM can be applied to solve both self-excited

and forced systems with different types of nonlinear behaviour, as long as the sought

solution is representable as a periodic function. Therefore, the HBM cannot be used

to find transient, random, or aperiodic responses.

For example, the HBM can be used to find the steady-state dynamic response of

the Duffing oscillator. In this case, the mechanical oscillator is characterised by hard-

ening/softening nonlinear stiffness that can be represented with a polynomial function.

Let’s start recalling the ODE that represents the harmonically forced version of the

Duffing oscillator:

mẍ+ cẋ+ kx+ µx3 = f cos(Ωt) (2.9)

where k is the linear stiffness coefficient, c is linear damping coefficient, m is the mass,

µ is the nonlinear stiffness coefficient, x is the displacement of the oscillator, f is the

forcing amplitude, and Ω forcing frequency. Truncating the ansatz to the first-order

harmonic (H = 1), the following approximate solution is obtained:

x(t) ≈ X1 cos(Ωt)−X2 sin(Ωt) ≈ |x| cos(Ωt+ ϕ) (2.10)

where X1 = |x| cos(ϕ), X2 = |x| sin(ϕ), ϕ is the phase, and |x| represents the amplitude

of response of the Duffing oscillator. Substituting Eq. 2.10 and its derivatives into

Eq. 2.9 leads to the following equation:

−mΩ2X1 cos(Ωt) +mΩ2X2 sin(Ωt)− cX1Ωsin(Ωt)− cX2Ωcos(Ωt) + kX1 cos(Ωt)+

− kX2 sin(Ωt) + µ(X3
1 cos

3(Ωt)−X3
2 sin

3(Ωt) + 3X1X
2
2 cos(Ωt) sin

2(Ωt)+

− 3X2
1X2 cos

2(Ωt) sin(Ωt)) = F cos(Ωt)) + h.o.t.

(2.11)

where higher order terms (h.o.t.) are terms generated by higher harmonics of the
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solution. Considering the previous operation of truncation of Eq. 2.10, these terms

are neglected and not considered in the following harmonic balance. Eq. 2.11 can be

simplified using the following trigonometric relationships:

cos(Ωt)3 = 3/4 cos(Ωt) + 1/4 cos(3Ωt) (2.12a)

sin(Ωt)3 = 3/4 sin(Ωt)− 1/4 sin(3Ωt) (2.12b)

cos(Ωt)2 sin(Ωt) = 1/4 sin(Ωt) + 1/4 sin(3Ωt) (2.12c)

sin(Ωt)2 cos(Ωt) = 1/4 cos(Ωt)− 1/4 cos(3Ωt) (2.12d)

Once again, higher order terms (i.e. cos(3Ωt) and sin(3Ωt)), generated by the substi-

tution of Eq. 2.12 are neglected. At this stage, it is possible to balance the remaining

harmonics, obtaining the following system of nonlinear algebraic equations:

−mΩ2X1 − cΩX2 + kX1 + 3/4µX3
1 + 3/4µX1X

2
2 = F (2.13a)

mΩ2X2 − cΩX1 − kX2 − 3/4µX3
2 − 3/4µX2

1X2 = 0 (2.13b)

Eq 2.13 can be solved and a closed-form solution can be obtained in terms of X1 and

X2. To this end, the MATLAB function solve is used and a symbolic closed-form

solution is obtained. The solution is then combined to obtain the amplitude and phase

of response of the Duffing oscillator by using the following relationships:

|x| =
√
X2

1 +X2
2 (2.14a)

ϕ = acos(X1/|x|) = asin(X2/|x|) (2.14b)

In this example, the unstable solutions are retrieved by searching for the regions of

the frequency domain where there are three co-existing solutions. Then the solutions

with the largest and the lowest amplitude of response are known to be stable while the

remaining solution is assumed to be unstable. Using Eq. 2.13 and Eq. 2.14 it is possible

to compute the FRC of the Duffing oscillator; Fig. 2.8 compared the FRC of a Duffing

oscillator with hardening/softening behaviour with the linear counter-part when the

following properties are considered: m = 1 kg, c = 0.04 Ns/m, k = 2 N/m, µ = ±0.15
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Figure 2.8: FRCs of the Duffing oscillator obtained with HBM (H = 1) in three different
conditions: nonlinear (hardening), nonlinear (softening), linear. Amplitude (a) and
phase (b) of the response are shown.
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Figure 2.9: Restoring forces associated with the stiffness characteristics: linear (dashed
black line), nonlinear hardening (red continuous line), nonlinear softening (blue con-
tinuous line).

N/m3, and F = 0.1 N. The figure shows that the resonance peak is bent toward higher

frequencies when the hardening stiffness characteristic is applied to the oscillator, and

toward lower frequencies when a softening stiffness characteristic is considered. This

nonlinear effect is responsible for the classic jumps in the frequency sweep of the non-

linear oscillator. Fig. 2.9 shows the restoring forces generated by softening/hardening

stiffness characteristics: the softening stiffness shows a reduction of the restoring force

for large displacements while the hardening characteristic leads to an increment of the

37



Chapter 2. Numerical and Analytical Techniques for Nonlinear Systems

1 1.2 1.4 1.6 1.8 2
Frequency [Rad/s]

0.5

1

1.5
A

m
pl

it
ud

e 
[m

]

Amplitude - Unstable
Amplitude -Stable
Backbone

1 1.2 1.4 1.6 1.8 2
Frequency [Rad/s]

-160

-140

-120

-100

-80

-60

-40

-20

P
ha

se
 [

de
g]

0.01 N 0.01 N

0.1 N

(b)0.1 N(a)

Figure 2.10: Frequency response of the Duffing oscillator (H = 1) with m = 1 kg,
c = 0.04 Ns/m, k = 2 N/m, and µ = 0.75 at different excitation amplitudes: 0.01,
0.18, 0.027, 0.05, 0.075, and 0.1 N. Amplitude (a) and phase (b) of the dynamic response
are shown.

restoring force. This behaviour is in agreement with the results of the harmonic balance

which shows the bending of the resonance peak towards higher/lower frequencies when

hardening/softening stiffness characteristics are applied to the oscillator. Focusing the

attention on the hardening behaviour, the FRC of the Duffing oscillator is computed for

different excitation amplitudes (Fig. 2.10): when low forcing amplitudes are applied,

the system tends to behave linearly and its FRC does not show any unstable regions.

Instead, when the system is forced with a medium level of excitation amplitudes, the

FRC starts to become skewed and unstable regions appear in the steady-state solution.

Finally, when large excitation amplitude is used, the system shows a strong nonlin-

ear behaviour with large regions of frequency domain characterised by the presence of

co-existing steady-state solutions at high- and low-amplitude. This behaviour is typi-

cally found in nonlinear systems characterised by the presence of an underlying linear

system. The FRCs and the steady-state dynamics of these nonlinear systems are de-

scribed by the behaviour represented in Fig. 1.4, i.e. there is a tendency towards a linear

behaviour when the forcing amplitude is very small. In addition to the steady-state re-

sponse, Fig. 2.10(a) shows the backbone curve of the considered Duffing oscillator: this

curve represents the unforced undamped response of the system and provides valuable

information about the dynamic behaviour of the system. For example in the considered
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oscillator, the backbone is bent towards higher frequencies indicating that the natural

frequency of the system increases with the amplitude of response, as expected in the

case of hardening stiffness characteristics. The backbone curve is computed with the

same approximation (H=1) used in the computation of the forced response. The only

difference is that the forcing and damping terms are dropped and the resulting set of

algebraic equations is simplified.

Thanks to its simplicity, the HBM has been widely used to find an approximate

solution for nonlinear systems [85]. The method is theoretically applicable to strong

nonlinear systems and it is based on the following assumption: the response of the

system can be approximated with a combination of a few harmonics. When the system

is linear, one harmonic is sufficient to find an exact solution, while when the system

has smooth nonlinearities 4 the response is composed of many harmonics with the first

ones being sufficient to cover most of the dynamic content. This is particularly true for

weakly nonlinear systems. Nonetheless, the HBM is considered to be inconsistent [73]

because higher frequency terms are not balanced, especially when H = 1. In addition,

it is important to note that in the previous example, the system of algebraic equa-

tions (Eq. 2.13) is solved by looking for a closed-form solution. When this solution is

available, it is possible to obtain all the solutions of the system, stable and unstable,

for each frequency of excitation. In most of the engineering applicative cases, there

is the necessity to deal with more complicated systems characterised by many DOFs

and different nonlinear characteristics. In these cases, the ansatz needs to consider

higher harmonics to better represent the dynamic response of the system and, thus,

it is extremely complicated to achieve a closed-form solution. To solve this problem,

numerical techniques are often used to obtain the dynamic response of the investigated

systems. This includes the usage of numerical solvers, e.g. Netwon-Rapson method,

and continuation techniques, e.g. pseudo-arc-length continuation. Differently from the

proposed simplified example, more sophisticated techniques for the computation of the

stability of the system (e.g. the Floquet Theory) and for handling the switch between

bifurcating branches of solution are often used in literature [85,86,88–91].

4Smooth nonlinearities are characteristics that can be approximated with continuous function with
continuous derivative.
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2.3.2 Other Approximation Techniques

The HBM is not the only available method to obtain approximate solutions of nonlinear

systems. A full description of the different approximate methods for solving nonlin-

ear systems is out of the scope of the thesis and the reader is invited to consult the

references [73, 92] for more information. For completeness, two widely used methods

in engineering applications are briefly described. These methods, differently from the

harmonic balance, are applicable only to weakly nonlinear systems, i.e. nonlinear sys-

tems whose nonlinear terms are relatively small compared to the linear ones, and have

the form:

ẍ+ ω2
nx = ϵN(x, ẋ) (2.15)

where ωn is the natural frequency, N(x, ẋ) is the nonlinear terms, and ϵ is a small pa-

rameters. It should be also noted that the methods work on systems that are slightly

damped and forced as N(x, ẋ) contains the damping and forcing terms. Finally, differ-

ent from the harmonic balance, these methods can be used to obtain the both transient

and steady-state response of the systems. Among these methods, there are:

• Averaging method: this method can be used to find an approximate solu-

tion to weakly nonlinear systems. The sought solution has the form: x =

xc(t) cos(ωnt) + xs(t) sin(ωnt), where xc(t) and xs(t) are unknown time depen-

dent functions. A first-order representation of their derivative is obtained and

averaged over one cycle of oscillations via analytical integration. The result is

the underlying amplitude envelope which represents the approximate response

of the system purified by higher frequency content. The approximation is made

so that the terms xc(t) and xs(t), associated with the weakly nonlinear function

ϵN(x, ẋ), are considered to be constant over a cycle. This method can be used

to find transient and steady-state approximate solutions, with the steady-state

solution requiring frequency detuning and time scaling parameters [73].

• Perturbation method: this method applies to weakly nonlinear systems and

it is based on the idea that the system response can be approximated with the

following power series: x(t) = x0 + ϵx1 + ϵ2x2 + ...+ ϵnxn. Often, the first term
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in the series (x0) represents the linear response while the additional terms are

perturbations of the linear response. Two approaches can be adopted: (1) Regu-

lar Perturbation Theory: substitute the response above in the equation of motion

and balance the terms of different exponent ϵ. This could result in erroneous

results since secular terms, unbounded with time, may arise; (2) Multiple Scale

Approach: This technique is based on the observation that the response of me-

chanical systems consists of terms that change rapidly and terms that change

slowly (e.g. the decay rate is much slower than the frequency oscillation in most

of the mechanical systems). In this case, before applying the series expansion,

the following solution is sought x = Xc(ϵt) cos(ωt) +Xs(ϵt) sin(ωt), where T = ϵt

and τ = ωt represents the two time scale variables. The solution, steady-state

or transient, is achieved by considering the derivatives of the sought solution,

by balancing/solving the equation associated with each scale of the power series,

and, by solving the secular equations, i.e. the equations that allow to remove the

secular terms.

2.4 Numerical Continuation

The previous sections demonstrated that nonlinear structures excited with harmonic

forcing functions may have complex dynamic responses which include bifurcations and

unstable dynamic periodic responses. In this context, numerical integration schemes

and approximate methods may struggle to provide a complete understanding of the

dynamics of the system. Numerical continuation is a powerful technique for the analysis

of nonlinear systems: this method is particularly useful in understanding the behaviour

of solutions under varying parameters and identifying branching points. Applications

range from studying equilibrium solutions in algebraic systems to analysing the stability

of periodic orbits in dynamic systems. This permits obtaining a clear understanding

of the dynamics of the system in terms of stable/unstable solutions and bifurcating

branches that are not achievable with other numerical tools. Numerical continuation

has been successfully used to study the dynamic behaviour of a variety of mechanical
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systems, ranging from piecewise-linear systems [30, 31], nonlinear energy sinks [48],

piezoelectric energy harvesters [86], reduced-order models of geometrically nonlinear

structures [93], full-scale aircraft [11] and circular plates [29]. This section introduces

the mathematical background behind numerical continuation, highlighting how the

technique can be used to continue solution branches of periodic oscillations in nonlinear

systems.

2.4.1 An Introduction to Numerical Continuation

Numerical continuation is a method for computing solutions of parameterised nonlinear

systems in the form:

G(u, λ) = 0 (2.16)

where λ ∈ R represents the general continuation parameter, u ∈ Rn is the variable

vector, and G(u) ∈ Rn is a nonlinear set of equations. The basic idea behind numerical

continuation is to continue the solution branch (or solution family) u(λ) varying the

parameter λ. To this end, the continuation process is initialised from a known solution

u0. The continuation procedure is based on the persistence of the solution u0 in its

neighbourhood 5 while the parameter λ is varied. Two basic theorems are used:

1. Contraction Theorem: given a function F : R → R, it guarantees the existence

and the uniqueness of a solution x∗ in the neighbour x0 for the problem x = F (x)

2. Implicit Function Theorem (IFT): given a function G : Rm × R → R that

satisfy:

(a) G(u0, λ0) = 0

(b) Gu(u0, λ0) (the Jacobian) is nonsingular (full rank) with bounded inverse,

i.e. u0 is an isolated solution

(c) Gu and G are smooth 6 (or at least Lipschitz continuous)

then there exists a unique smooth (or Lipschitz continuous) solution family u(λ)

such that u(λ0) = u0 and G(u(λ)), λ) = 0 for all λ near λ0.

5For a formal definition of neighbourhood, the reader should refer to [94]
6A smooth function is continuous differentiable function with continuous derivative
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Therefore, under the assumption of smoothness (or Lipschitz continuity) and isolated

solution, the IFT guarantees the existence of a locally unique solution branch u = u(λ)

with u(λ0) = u0. In the case of a set of nonlinear equations (e.g. equilibrium point of

nonlinear system), for which u0, λ0, and u′
0

7 are known the next solution u1, λ1 can

be found using a nonlinear root-finding method, like the Newton-Raphson method:
Gu(u

(ν)
1 , λi)∆u

(ν)
i = −Gλ(u

(ν)
1 , λi)

∆u
(ν+1)
i = uν

i +∆u
(ν)
i

(2.17)

where ν is the iteration number and i identifies the solution along the branch. Thanks

to the implicit function theorem, the solution branch u(λ) is known to exist and be

unique, therefore parametric-continuation can be enforced with λ1 = λ0 + ∆λ and

u
(0)
1 = u0 + ∆λu′

0. After the convergence, u1 is used to obtain an estimation of the

new direction vector u′
1:

Gu(u1, λ1)u
′
1 = −Gλ(u1, λ1) (2.18)

This technique is repeated for different values of λ and fails when there is a fold of the

solution. In order to avoid this problem pseudo-arc-length continuation is introduced:

it consists in increasing the dimension of the problem by adding an arc-length equation.

This additional equation ’locks’ the selection of the parameter λ which will follow the

solutions branch. The problem can be rewritten as follows:
G(u1, λ1) = 0

(u1 − u0)
Tu′

0 + (λ1 − λ0)λ
′
0 −∆s = 0

(2.19)

where ∆s represents the continuation step and (u′
0 and λ′

0) are the new direction vector.

If we incorporate Newton’s Method, we obtain:

(G1
u)

(ν) (G1
λ)

(ν)

u′ T
0 λ′

0

∆u
(ν)
1

∆λ
(ν)
1

 = −

 G(u
(ν)
1 , λ

(ν)
1 )

(u
(ν)
1 − u0)

Tu′
0 + (λ

(ν)
1 − λ0)λ

′
0 −∆s

 (2.20)

7u′
0 = ∂u0

∂λ
is the tangent vector
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with the new direction being:

(G1
u) (G1

λ)

u′ T
0 λ′

0

u′
1

λ′
1

 =

0

1

 (2.21)

It is important to note that the orientation of the branch is preserved if ∆s is suffi-

ciently small and the direction vector is scaled so that ||u′
1||2 + λ′ 2

1 = 1. It is possible

to demonstrate that the Jacobian of the pseudo-arclength system is nonsingular at a

regular point 8. The implicit function theorem fails at branching points where the solu-

tion branches bifurcate in more than one branch [94,95]. There the x0 is not a regular

solution and the Jacobian Gx(x0) is singular. To handle a branching point three steps

are necessary: (1) detection, (2) localisation, and (3) switching of the branch. Differ-

ent techniques exist for solving these problems like the usage of the bifurcation test

functions or specific perturbation methods [85,95].

Eq. 2.20 and 2.21 can be used to continue an equilibrium point of nonlinear systems;

in the case of periodic solutions, a Boundary Value Problem (BVP) problem must be

formulated. In general, the BVP can be formulated as follows:

u̇(t) = f(u(t), λ), with u(t) = u(t+ T ) (2.22)

where T is the period. Now, in the context of numerical continuation, we can say:

u̇(t) = T f(u(t), λ), with u(0) = u(1) (2.23)

In this way, the periodic solution can be confined in the range [0,1] and the period T

becomes one of the unknown. In order to fix the periodic solution in time, a phase

condition (see [94] for more information) is also added. At this stage, it is possible to

discretise the BVP with techniques like finite difference and reconstruct an equivalent

set of nonlinear equations. Often, orthogonal collocation is used to discretise a periodic

solution and solve the BVP. Specifically, piecewise polynomials are used to approxi-

8A regular solution is defined such that G0
x = Gx(x0) is full rank where G(x) = 0 with x =

{u, λ} G : Rn+1 → R , see [94] for more information
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mate the periodic solution of nonlinear systems [94]. Another possibility consists of

directly reducing the set of ODEs to a set of nonlinear algebraic equations by imposing

the periodicity of the solution. This process is typically utilised in the application of

the HBM and the resulting nonlinear algebraic equations can be cast in a numerical

continuation procedure [85]. Finally, the stability analysis of the continued solution

is important to address the behaviour of the system. Different methodologies exist:

for equilibrium points (fixed points) linearisation is often used to analyze stability.

This involves linearising the system around the equilibrium point and examining the

eigenvalues of the resulting linear system matrix. For periodic solutions, instead, the

Floquet Theory is often used. This requires computing the Monodromy Matrix and the

associated Floquet multipliers which provide information about the stability and the

type of bifurcation [85]. A practical discussion on different methods for computing the

monodromy matrix using numerically can be found at [88].

Today many toolbox implements numerical continuation and collocation methods

such as MatCont [96], COCO [97] and AUTO-07 [98]. This software allows for solving

nonlinear systems and continuing their solution, therefore in this work, they are used

to perform the continuation analyses.

2.4.2 Solving Nonlinear Systems with Pseudo-Arclength Continua-

tion

In its most simple form, numerical continuation can be applied to solve algebraic non-

linear equations. If we consider the parametrised equation of a circle, the associated

set of nonlinear equations with pseudo-arclength continuation is:
u21 + λ2

1 − 1 = 0

(u1 − u0)
Tu′0 + (λ1 − λ0)

Tλ′
0 −∆s = 0

(2.24)

Eq. 2.24 is then solved with the numerical continuation procedure previously outlined.

To this end, the MATLAB function Fsolve is used to solve the nonlinear system of

equations with iterative methods, similar to the Newton-Raphson method. Then, the

direction (u′0, λ
′
0) is updated and the procedure is repeated for the next point. A nu-
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Figure 2.11: Solving numerically the parametrised equation of a circle: (a) iterative
method and (b) numerical continuation. The continuous black line represents the an-
alytical solution while the circles denotes numerical solutions.

merical example is reported in Fig 2.11 where a circle with centre (0,0) and radius equal

to 1 is solved with (Fig 2.11(b)) and without (Fig 2.11(a)) pseudo-arclength continua-

tion. When the pseudo-arclength continuation is not used, the previous solution is used

as the initial guess for obtaining the next solution and the continuation parameter is

increased as follows: λ1 = λ0+∆λ. As shown in the figure, the two numerical solutions

start from the same point identified by ∗, nonetheless, only the numerical continuation

is able to pass the folding point. A detailed representation of the predictor-corrector

procedure is reported in Fig 2.12: the dotted line indicates the tangent direction of

the branch in the initial point (u0, λ0); this is exploited to find predictor point (u∗0, λ
∗
0),

from which, enforcing the perpendicular direction to the tangent (dashed line), it is

possible to obtain the corrected point (u1, λ1).

The path-following techniques can be also used to continue a solution branch of the

set of nonlinear equations obtained from a weighted residual method (e.g. from the

HBM). Fig. 2.13 shows the use of numerical continuation for computing the amplitude

of response of a Duffing oscillator. Specifically, Fig. 2.13 (a) illustrate the continued

solution of the oscillator when continuation methods are used together with the HBM: in

this case, the resulting nonlinear equations (Eq. 2.13) are continued with the pseudo-

arclength continuation. This technique can be also combined with the methods for

computing the monodromy matrix, thus obtaining the stability of the system, as shown
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Figure 2.12: Predictor-correct procedure: (u0, λ0) is the initial point, (u∗0, λ
∗
0) is pre-

dicted point, and (u1, λ1) is the corrected point.

in many works in the literature [85,86,88]. Fig. 2.13 (b), instead, shows the numerical

continuation performed with collocation methods directly applied to systems of ODEs.

Bifurcation points are identified by the symbol • along with the description of the

type of bifurcation (SN = Saddle Node, and FP = Fold Point). In this case, the

toolbox COCO [97] is used to perform the continuation: this toolbox is able to continue

periodic responses or equilibrium of nonlinear systems, compute their stability, and

detect, locate, and switch between branching solutions.

Numerical continuation with collocation methods is often used as a reference solu-

tion when approximate solutions with harmonic balance or other methods are devel-

oped [87, 99]. This is because this technique is very accurate and easy to implement

for solving general BVP associated with periodic solutions. Nonetheless, the technique

has also limits. This includes numerical instabilities, difficulties in dealing with aperi-

odic solutions (in the presented form), high computational burden in high-dimensional

systems, lack of parallelisation, and initial guess dependency. The latter is particularly

important for the dynamics of systems that exhibit the presence of isola, i.e. detached

closed solution branch in the bifurcation diagram, and it will be better discussed in the

next chapters.
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Figure 2.13: Duffing oscillator with m = 1 kg, c = 0.04 Ns/m, k = 2 N/m, µ = ±0.15
N/m3, and F = 0.1 N: the amplitude of the response is continued using the harmonic
balance method (H = 1) (a) and collocation methods (b).

2.5 Summary

This section introduces the most common mathematical tools for the analysis of non-

linear systems that are representable with a set of ODEs. For each tool, a description

of the mathematical background and a discussion about the advantages and limitations

are proposed. Specifically, the section discusses how numerical integration schemes can

be used to generate phase portraits, Poincaré sections/maps, basins of attraction, and

bifurcation diagrams. In addition, approximate methods for nonlinear systems are dis-

cussed and numerical continuation techniques are introduced. These techniques will be

used in the next chapters for the analysis/validation of various numerical models.
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Chapter 3

Numerical Analysis of a

Multi-Degree of Freedom System

with Contacts

3.1 Introduction

This chapter analyses the dynamic behaviour of a strongly nonlinear system with soft

contacts and multiple degrees of freedom. Most of the literature focuses attention

on the analysis of the dynamics of non-smooth systems with a single DOF, missing

phenomena like modal interactions that may occur when additional DOFs are consid-

ered. The chapter utilises the previously introduced tools, such as basins of attraction,

bifurcation diagrams, and numerical continuation, to analyse the dynamics of a two-

DOF mechanical system with soft contacts. To this end, piecewise-smooth continuous

characteristics are used to simulate the presence of the contacts. The chapter, also,

aims to understand how smoothing approximations of piecewise characteristics, like

sigmoid functions, affect the dynamics of the system. Specifically, the following points

are discussed:

• The admissibility of smoothing approximation for piecewise-smooth continuous

characteristics representing contact in mechanical systems: in particular, an in-

dicator called the radius of influence is introduced and proposed for the selection
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of the parameters that control the degree of smoothness of the approximating

function (e.g. sigmoid functions).

• The steady-state dynamic behaviour of a piecewise-smooth continuous MDOF

system with soft contacts: the identified smoothing function is utilised to perform

numerical analyses and to investigate the system dynamic features, including

chaotic and quasi-periodic behaviour, period-doubling bifurcations, and detached

isolas.

• The undamped-unforced dynamic behaviour of a piecewise-smooth continuous

MDOF system with a soft contact: the concept of bifurcation of the backbone

curve and modal interaction is discussed and investigated via numerical continu-

ation.

• The comparison between the dynamics of the approximate (i.e. the system with

sigmoid approximation) and non-approximated (i.e. ideal non-smooth system)

system: in particular, the dynamics of two versions of the system are compared

using numerical integration and numerical continuation methods in terms of qual-

ity of the bifurcation diagram, robustness of the simulation, and computational

effort.

3.2 Smoothing Approximations in Non-Smooth Systems

This section discusses the methodology employed for approximating non-smooth char-

acteristics using smoothing functions in nonlinear mechanical systems. The advantages

of the approximation are examined, and an indicator (the radius of influence) to eval-

uate the appropriateness of the approximation parameter that regulates the degree of

smoothness is proposed.

3.2.1 Introduction to Non-smooth Systems

Mechanical systems incorporating free-play gaps and contacts have captured the atten-

tion of researchers in recent decades. These systems find practical engineering appli-
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Figure 3.1: Example of piecewise-smooth continuous (a), reset-map (b), and discon-
tinuous (c) characteristics. The discontinuity boundary is indicated by Σ and dashed
regions indicate non-physical regions of the domain.

cations in the investigation of the dynamics of impacting capsule systems [30], impact

drilling systems [31], cracked systems [32], mechanical oscillators [35–37,39], aeroelastic

systems with free-play gaps [40,41], buildings exposed to earthquakes [43], and impact

oscillators with rigid walls [44–46]. These systems belong to the category of non-smooth

dynamical systems, i.e. they are mechanical systems with non-smooth properties. From

the mathematical perspective, they involve discrete events which guide the associated

solution through regions of the domain where different properties are applied. They

demonstrate unique dynamic features, named discontinuity-induced bifurcations, which

are not present in smooth dynamical systems. These phenomena include border colli-

sions, border-equilibrium, grazing, sliding-sticking, and corner angle bifurcations [100].

Non-smooth systems are distinguished 1 in Filippov systems, hybrid dynamical systems,

and piecewise-smooth continuous systems, depending on the type of non-smooth char-

acteristic. Filippov systems possess discontinuous characteristics that define different

regions of the domain. Hybrid systems, instead, are mathematically defined by reset

maps that impose specific initial conditions when the discontinuity boundary Σ of the

domain is reached. Finally, piecewise-smooth continuous systems are characterised by

the presence of continuous characteristics whose derivative might be discontinuous at

the discontinuity boundary Σ.

An example of the three types of characteristics is reported in Fig. 3.1. The figure

illustrates a piecewise-smooth continuous characteristic (a), a reset map (b), and dis-

1This work considers the classification introduced by di Bernardo et al. [100].
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continuous characteristic (c). The piecewise-smooth continuous characteristic (Fig. 3.1

(a)) shows that there are two regions of domain x (grey and blue regions) where two

different mathematical functions govern the behaviour of the nonlinear characteristic

f(x). The nonlinear property is valid on both regions of the domain and the govern-

ing functions have the same value on the discontinuity boundary Σ. This property

characterises the piecewise-smooth continuous systems and it is often used to model

impact oscillators that have deformable walls [37,38]. Hybrid systems are instead char-

acterised by nonlinear properties with ’inaccessible’ regions, i.e. regions of the domain

where the solution of the system is non-physical. Fig. 3.1 (b) proposes an example of

such characteristic and highlights the non-physical regions of domain x with dashed

areas. When the system reaches the discontinuity boundary Σ it cannot proceed in the

dashed regions but its energy must be conserved or dissipated imposing a certain law,

e.g. elastic/inelastic impact. This can be done by using a reset map that re-initialises

the initial conditions of the system after the interaction with the discontinuity bound-

ary. Reset maps are typically used to model impact oscillators that interact with rigid

walls [44–46] and this class of systems possess dynamic phenomena (e.g. chattering

sequences [101] and sticking conditions [100]) that are not present in piecewise-smooth

continuous systems. The last class of non-smooth systems is represented by the Fil-

ippov systems. Fig. 3.1 (c) shows a typical nonlinear characteristic associated with a

Filippov system. As shown, the nonlinear characteristic possesses a discontinuity at

the boundary Σ and requires functions such as sign(x) for its mathematical represen-

tation. It is worth noticing that the mathematical functions representing the system

characteristics of two adjacent regions of the domain do not converge to the same value

at the discontinuity boundary. This may trigger dynamic phenomena that do not exist

in piecewise-smooth continuous systems. For example, the system could remain ’stuck’

in the discontinuity boundary Σ, giving birth to sliding bifurcations [72,100,102].

The proposed explanation and examples are a functional/practical description of

non-smooth systems. For a more rigorous and exhaustive definition, the reader is

encouraged to consult the book [100]. Nevertheless, this brief description serves to

introduce various types of non-smooth systems and comprehend their characteristics
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along with the potential implications on the dynamic response of dynamical systems.

3.2.2 Grazing Bifurcations and Smoothing Functions

In engineering applications, nonlinear systems with free-play gaps and contacts are

often modelled with piecewise-smooth continuous characteristics [37, 38, 41, 83]: these

systems are characterised by the presence of discontinuity-induced bifurcations, named

grazing bifurcations [45,103]. An example of grazing bifurcation is described in Fig. 3.2

where a piecewise stiffness characteristic (similar to one proposed in Fig. 3.1 (a)) is

added to a Duffing oscillator. The figure shows the phase portraits before, during, and

after the occurrence of the grazing bifurcation. The bifurcation occurs exactly when

the steady-state orbit is ’grazing’ the discontinuity boundary Σ. After the grazing

condition, the orbit is forced to enter the second region of the phase space where the

properties applied to the system are different, i.e. where the stiffness is larger. This

induces a topological change in the phase-portrait, i.e. the generation of a bifurcation

in the system dynamics. In practice, under harmonic loading, the bifurcation can be

achieved by modifying the excitation conditions of the oscillator i.e. the amplitude Q,

or the frequency Ω. Although nonlinear dynamic phenomena that typically occur in

Filippov systems, e.g. sliding bifurcations [100] or hidden dynamics 2 [72,102,104,105],

are not present in piecewise-smooth continuous systems, their dynamics may end in very

complex behaviours [1,39,41,45] that include all the dynamic phenomena discussed in

Chapter 2, such as stability change, period-doubling, chaos, etc.

In the literature, authors have proposed analytical solutions [35,106,107] and map-

ping techniques [45, 103, 108–110] to study the dynamics of these systems, nonethe-

less, numerical methods are typically adopted in engineering applications as they are

flexible and applicable to a wide range of systems. Direct numerical integration has

found significant application in existing literature [36, 37, 40, 41, 43, 111]. It can handle

non-smooth characteristics through two distinct approaches: either by identifying the

precise discontinuity point, referred to as the boundary point Σ, and restarting the

integration process, or by directly integrating the function across its discontinuity. If

2In Filippov systems, dynamic responses may occur during sliding motion at the discontinuity
boundary. These phenomena are generally referred to as hidden dynamics [102].
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Figure 3.2: Phase portraits of a grazing bifurcation a Duffing oscillator with asymetric
piecewise characteristic: (a) before, (b) at, and after (c) the bifurcation. Parameters
considered: m = 1 kg, c = 0.04 Ns/m, k = 2 N/m, µ = 0.15 N/m3, and Q = 0.1 N
with piecewise stiffness kp = 10 N/m and gap a = 0.15 m.

the discontinuity point is not correctly identified, the dynamics of the piecewise-smooth

systems might be affected: thus, methods such as the Henon’s method [112] and the

MATLAB built-in event function [113] have been utilised in recent studies [37, 40].

Although this approach offers higher accuracy in the numerical solution, the process

demands significant computational resources, strict tolerances, and more complicated

algorithms to handle the identification of the discontinuity point. Alternatively, path-

following continuation methods have been used to study the dynamics of non-smooth

systems [80,81,114–117]. Numerical continuation techniques are based on the implicit

function theorem which guarantees the presence of a single family of solutions only when

sufficiently smooth functions are adopted. This makes most of the numerical continua-

tion toolboxes, like MatCont [96] and AUTO-07 [98], incapable of treating non-smooth

systems without introducing proper smoothing approximations. Other toolboxes, in-

stead, can deal with non-smooth dynamical systems, introducing the multi-segments

continuation [97, 118] which consents to continue periodic solutions in portions of the

domains where the system characteristics are sufficiently smooth. Examples of multi-

segment continuation applied to mechanical systems can be found in the following refer-

ences [30,31,118]. Nonetheless, the adoption of the multi-segment continuation method

is time-consuming, complex, and long, especially when multiple re-segmentation pro-

cedures are required [97]. This affects the overall numerical analysis and prevents the
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adoption of such methodologies in common industrial practices.

To address this challenge, researchers have proposed the use of smoothing functions

to convert non-smooth dynamical systems into their smoothed version [38,40,82,83,89].

In some works [91, 119, 120], authors employed smoothed functions to avoid numerical

problems during the computation of the response of non-smooth dynamical systems

with the Harmonic Balance methods. Among the most adopted approximation func-

tions there are: arctangent, hyperbolic tangent, and generalised sigmoid approximation.

Other approximations can be found at [38]. Taking as reference the following symmetric

piecewise stiffness:

Fp =


kp (x1 − a) if x1 > a

0 if −a ≤ x1 ≤ a

kp (x1 + a) if x1 < −a

(3.1)

the associated arctangent, hyperbolic tangent, and generalised sigmoid approximations

are expressed by the following relationships:

Fp,1 =
kp
2

((
1− 2

π
atan(δ(x+ a))

)
(x+ a) +

(
1 +

2

π
atan(δ(x− a2))

)
(x− a2)

)
(3.2a)

Fp,2 =
kp
2
((1− tanh(δ(x+ a)))(x+ a) + (1 + tanh(δ(x− a)))(x− a))) (3.2b)

Fp,3 = kp

(
a+ x

(exp(δ(a+ x)) + 1)n
− a− x

(exp(δ(a− x)) + 1)n

)
(3.2c)

where kp is the piecewise stiffness and a represents the upper and lower limit of the free

gap. Fp,1, Fp,2, and Fp,3 are, respectively, the arctangent, hyperbolic tangent, and gen-

eralised sigmoid approximation. The parameter δ defines the degree of approximation:

when δ → ∞ the smoothing approximation becomes equivalent to the piecewise charac-

teristic. In such a scenario, the benefits of having a smooth function are compromised,

and the previously mentioned issues persist. On the contrary, using a too-small δ the

smooth function does not approximate very well the piecewise characteristic, leading to

erroneous dynamic responses of the system. Fig. 3.3 shows the approximation functions

for a bilinear stiffness characteristic when kp = 10 N/m, a = 0.15 m, and δ = 50. The
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Figure 3.3: Bilinear stiffness characteristic and the associated smooth approximations.
Panel (a) show the restoring force, while panel (b) illustrates the derivative.

figure highlights that the smoothing approximations are quite good in reproducing the

restoring force, nonetheless, the discontinuity in the derivative introduces a substantial

error in the approximation which may affect the dynamics of the approximate system.

One of the main problems in selecting δ is represented by the lack of physical interpre-

tation of the parameter. To address this problem, an indicator called radius of influence

is introduced in the following subsection and the resulting approximate characteristic is

used to perform the dynamic analysis of a two-mass non-smooth system characterised

by a piecewise-smooth continuous characteristic.

3.2.3 Sigmoid Approximations in a Mechanical Non-smooth System

𝑚 𝑚

𝑘, 𝜇

𝑐

𝑘𝑝

𝑐𝑑

𝑘𝑑 , 𝜇𝑑 𝑘, 𝜇

𝑐

𝑥1

𝑄1

𝑥2

𝑄2

Figure 3.4: Schematic of the two-mass system with a free-play gap [1].
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To study the effect of smoothing approximation on the dynamics of MDOF non-

smooth systems, the mechanical system depicted in Fig. 3.4 is considered. The system

is slightly damped and presents cubic and free-play nonlinearities. The latter is mod-

elled using the bilinear piecewise stiffness characteristic represented by Eq. 3.1. The

Table 3.1: Non-dimensional parameters of the two-mass system.

Non-Dimensional Parameter Dimensional Parameter
x1 x1/lr
x2 x2/lr
Ω̃ Ω/Ωr

t̃ tΩr

m̃ m/mr

Q̃1 Q1/(mrlrΩ
2
r)

Q̃2 Q2/(mrlrΩ
2
r)

k̃ k/(mrΩ
2
r)

k̃d kd/(mrΩ
2
r)

c̃ c/(mrΩr)
c̃d cd/(mrΩr)
µ̃ µl2r/(mrΩ

2
r)

µ̃d µdl
2
r/(mrΩ

2
r)

ã a/lr
k̃p kp/(mrΩ

2
r)

second order non-dimensional equation of motion is reported in Eq. 3.3 and the non-

dimensional parameters are defined in Tab. 3.1. The reference values Ωr [rad/s], tr

[s], and lr [m], are chosen to be 1. For simplicity, the following sections will refer to

non-dimensional equations without employing the symbols •̃ and •.

m̃ẍ1 + c̃ẋ1 + k̃x1 + µ̃x3
1 − k̃d(x2 − x1)− µ̃d(x2 − x1)

3 − c̃d(ẋ2 − ẋ1) + F̃p = Q̃1 cos(Ω̃t̃) (3.3a)

m̃ẍ2 + c̃ẋ2 + k̃x2 + µ̃x3
2 + k̃d(x2 − x1) + µ̃d(x2 − x1)

3 + c̃d(ẋ2 − ẋ1) = Q̃2 cos(Ω̃t̃) (3.3b)

Following the procedure outlined in Chapter 2, Eq. 3.3 can be easily converted in its

autonomous first order version, reported for completeness in the Appendix A.1. The

obtained set of equations of motion formally represents a piecewise-smooth continu-

ous dynamical system. This system is characterised by a C0 class function on the

right-hand side, i.e. a Lipschitz continuous function. This definition is fundamental in

demonstrating that the considered piecewise function can be mathematically approxi-

mated using a smoothing approximation 3. Table 3.2 presents the parameters utilised

3The mathematical admissibility of smoothing regularisation in approximating piecewise-smooth is
demonstrated in [1], using the theorems developed by Danca [121–123]
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for analyzing the two-mass system. These dimensional parameters are derived from

data employed in previous analyses of slightly damped nonlinear systems [99].

Table 3.2: Numerical parameters of the two-DOF system.

Parameter Value Units
m 1 kg
k 1 N/m
c 0.009 Ns/m
µ 0.5 N/m3

kd 0.5 N/m
cd 5e-05 Ns/m
µd 0.1 N/m3

Q1 0 N
Q2 0.015 N
kp 10 N/m
a 0.05 m

To evaluate the effect of smoothing functions on the mechanical response of the

two-mass system, the piecewise bilinear restoring force of Eq. 3.1 is approximated with

the sigmoid function Fp,3 (n = 1) outlined in Eq. 3.2c. The error introduced by the

approximation function Fp,3 with respect to the ideal piecewise function Fp is illustrated

in Fig. 3.5 for a value δ = 1500. An appropriate value for δ can be determined by

comparing the dynamic responses of the ideal and approximate smooth dynamical

systems using the values specified in Table 3.2

For this purpose, the vector fields of both versions of the system, piecewise and ap-

proximate, are calculated analytically and compared around the discontinuity boundary

Σ with δ = 1500. To simplify the computation and prevent intersecting lines, the vec-

tor fields are computed for the undamped unforced version of the two-mass system,

considering the second mass blocked, i.e. imposing x2 = 0 and ẋ2 = 0. The piecewise

function can be expressed with a linear combination of sign(x) functions, as follows:

Fp = kp
(x1 + a)

2
(sign(−x1 − a) + 1) + kp

(x1 − a)

2
(sign(x1 − a) + 1) (3.4)

The comparison is reported in Fig. 3.6. Blue and black arrows represent the system

vector fields for the approximate and non-approximate conditions and appear to be

completely overlapped. The pseudo-colour images, instead, represent the percentage
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error between the vector fields obtained with sigmoid and the ideal piecewise functions

in terms of magnitude (Fig. 3.6(a)) and direction (Fig. 3.6(b)). Three orbits associ-

ated with the first mass are computed numerically and are displayed in the figure:

the smallest (POA) illustrates the non-contact condition, the largest (POC) denotes

a fully-developed contact condition, and the middle orbit (POB) represents the graz-

ing condition. Both vector fields appear to completely overlap throughout the entire

domain, including near the discontinuity boundary Σ. This indicates that the cho-

sen degree of approximation δ does not introduce significant distortion in the vector

field of the two-mass system. The percentage error maps reveal that the distorted

Figure 3.5: Graphical representation of the radius of influence and comparison between
approximated and ideal piecewise functions. The approximation is obtained using δ =
1500 and the relevant data from Tab. 3.2 [1].

field is restricted to regions of the domains very close to the discontinuity boundary

Σ. The identified maximum errors in magnitude and direction of the approximate field

are respectively equal to 2.4% and 1.8%. This proves that the chosen approximation

parameter δ = 1500 is accurate enough to describe the dynamics of the considered

piecewise-smooth continuous system. To further demonstrate the accuracy of the cho-

sen approximation, numerical experiments are performed. Specifically, two numerical

attractors of the two-mass systems are considered and the associated orbits are com-

puted using the smoothing approximation with δ = 1500 (Eq. 3.2c) and adopting a

piecewise function (Eq. 3.4). The numerical simulations are performed in MATLAB,
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Figure 3.6: Vector fields of the undamped unforced piecewise system, represented by
Eq. 3.3, when the second mass is blocked (x2 = 0 and ẋ2 = 0). Numerical periodic
orbits at different amplitudes of response (POA, POB, and POC) are also reported.
The intensity scale indicates the numerical difference between the vector fields of the
approximate and non-approximate systems, in terms of magnitude (a) and direction
(b). The parameters of Tab 3.2 and δ = 1500 are used for the analysis [1].

using the function ode45 with a maximum time step ∆t = 0.4s. Two forcing frequen-

cies, namely Ω = 1.2 and Ω = 1.3 are utilised to identify the two attractors in both

versions of the system. Fig. 3.7 shows the comparison between the numerical orbits:

the attractors are very similar and practically overlapped therefore, the chosen param-

eter δ = 1500 is considered to be sufficiently accurate to describe system dynamics,

also from a numerical point of view.

To improve the comprehension of the relationship between the approximating pa-

rameter δ and the distortion introduced by the approximated function, the radius of

influence Ri is introduced. This mathematical tool serves to identify a suitable smooth-

ing parameter δ, bypassing the need for the analytical and numerical analyses previously

described. This in turn enhances and simplifies the parameter selection process. As

the approximation error typically concentrates around the discontinuity point, the ra-

dius Ri tries to delineate the extent of the error from that point, considering both an

approximate and non-approximate definition of the characteristic. The radius is com-

puted by considering the sum of two areas, indicated by area 1 and area 2 in Fig. 3.8.

These areas define the error between the chosen approximation and a piecewise func-
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Figure 3.7: Comparison between approximate and non-approximate attractors. The
attractors are obtained using a forcing function equal to Ω = 1.2 (a) and Ω = 1.3 (b)
and using an approximation parameter equal to: δ = 1500. The parameters of Tab 3.2
are utilised to perform the numerical analysis [1].

tion. Starting from the discontinuity point, it is possible to calculate the error area of

a sufficiently large portion of the domain such that we reach an asymptotic numerical

value of the error. This is guaranteed by the smoothing functions such as sigmoids,

arc-tangent, and hyperbolic tangent functions which globally approximate piecewise-

smooth continuous characteristics. The total error is reached for an infinite distance

from the discontinuity; to make the procedure feasible it is possible to consider a finite

distance from the discontinuity point, specifically the one that constitutes the 68.0%

of the total asymptotic error, i.e., the σ1 error. Considering the discontinuity point at

negative displacement, the error can be numerically evaluated as follows:

Ea =

∫ −a+r

−a

Fp,s(x)

kp
+
∣∣∣ ∫ −a+r

−a−r

Fp(x)

kp
−
∫ −a

−a−r

Fp,s(x)

kp

∣∣∣ (3.5)

where r indicates the radius extension around the discontinuity point. Similarly, it is

straightforward to derive the expression of the error at the discontinuity point with

positive displacement. The radius is computed within a domain where the horizontal

axis represents the physical displacement, and the vertical axis indicates the equivalent

displacement of the piecewise restoring function, i.e., Fp/kp. This ensures that δ is

the only parameter influencing the radius Ri. Taking into account the soft symmetric

piecewise constraint employed in this study (kp = 10 and a = 0.05) along with the
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Figure 3.8: Areas considered in the computation of the radius of influence Ri. The
approximate function considers an approximation parameter equal to δ = 1500 [1].

sigmoid approximation using δ = 1500, the radius results in the following value: Ri =

0.0017. This indicates that the region of the domain around the discontinuity point

and within the radius contains 68% of the distortion error due to the introduction of

a smoothing function. This result is acceptable as it accounts for only 3.4% of the

non-contact gap and indicates that the region affected by approximation error is quite

limited, and so confirms that the chosen parameter δ is sufficiently accurate to describe

the dynamics of the piecewise system.

3.3 Steady-State Behaviour of the Non-Smooth System

This section investigates the dynamic behaviour of the previously introduced MDOF

non-smooth system. Initially, the system is studied using the sigmoid approximation

Fp,3 (Eq. 3.2c), employing the identified approximation parameter δ = 1500, n = 1, and

the parameters of Tab. 3.2. Subsequently, to verify the accuracy of the approximation,

the obtained dynamic response is compared against the dynamic behaviour of the ideal

counterpart, computed with a piecewise function Fp (Eq. 3.1).
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3.3.1 Approximate System Dynamics

Initially, the dynamics of the system are investigated by computing the bifurcation

diagram. The diagram is obtained via numerical integration using the MATLAB func-

tion ode45, a Runge-Kutta scheme, sampling 100 Poincaré points from the steady-state

response. The final diagram is illustrated in Fig. 3.9 and reveals the presence of co-

existing attractors. The bifurcation diagram provides a clear overview of the system

Figure 3.9: Bifurcation diagram of the approximate MDOF system. Numerical simu-
lations are carried out using the parameters of Tab. 3.2 and different initial conditions
(x0 = [x1; ẋ1;x2; ẋ2]), i.e. x0 = [±0.2; 0;±0.2; 0], x0 = [0; 0; 0.1; 0], and x0 = [0; 0; 0; 0].
The Poincaré section ẋ1 = 0 are utilised to create the diagram [1].

dynamics, highlighting the presence of chaotic and multi-periodic regions. However,

solutions with small basins of attraction, are difficult to obtain and result in scattered

non-continuous branches, as shown in Fig. 3.9(b). As generally happens for impact

oscillators [81, 103], chaos originates after the grazing bifurcations. This behaviour is

evident in two regions: Ω ≈ 0.93 − 0.98 and Ω ≈ 1.3 − 1.75. Interestingly, chaos does

not occur via the typical period-doubling cascade [124] but, instead, it seems to be gen-

erated by sudden bifurcations, which abruptly transform regular attractors into chaotic
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ones [81,82]. These sudden shifts transform periodic responses into chaotic ones. This

phenomenon is illustrated in Fig. 3.9(a) and 3.9(c-d) which highlights a mixture of

multi-periodic and chaotic responses.

The bifurcation diagram provides important information about the system dynam-

ics, locating frequency ranges where stable period-doubling orbits exist and where

chaotic or quasi-periodic behaviour is prevalent. One important by-product of the

bifurcation diagram is the associated steady-state dynamic responses: they are partic-

ularly valuable to initialise path-following procedures. This enables the continuation

of both stable and unstable branches, solving the challenges highlighted by Fig. 3.9(b),

and facilitates the exploration of solution branches that cannot be easily continued

from other solution branches, i.e. isolas. To this end, the module po of the continu-

ation toolbox COCO [97] is utilised to perform numerical continuation analyses: the

results of the analyses are shown in Fig. 3.10 and Fig. 3.11, where PD denotes a period-

doubling bifurcation point, BP indicated a branch bifurcation point, and TR indicates

a Neimark-Sacker (torus) bifurcation point. PO indicates the periodic orbit amplitude

used to initialise the branch and, to help the graphical interpretation, fold (FP) and

saddle-node (SN) bifurcations are not reported in the obtained bifurcation diagrams.

Finally, continuous and dashed lines indicate stable and unstable solutions.

Fig. 3.10(a) shows the numerical continuation of single-period orbits. The chosen

projection, i.e. amplitude of the first DOF (x1) versus excitation frequency (Ω), is used

to obtain the frequency response of the system, i.e. the Frequency Response Curve

(FRC). Branch B1 shows the continued solution of single period orbits originated from

the steady-state solution PO1. This orbit is associated with the ’main’ response of the

system and persists in both the contact and non-contact regions, transitioning through a

grazing bifurcation. After the contact, B1 show the presence of branch (BP) and torus

(TR) bifurcation points, as highlighted in Fig. 3.10(b-c): the first bifurcation point

generates a second stable branch of solutions, named B2, whose associated periodic

orbits are described by PO2A and PO2B at two different level of amplitude of response.

These periodic orbits show a symmetric behaviour which generates two peaks in the

planemax(x1) vs Ω, as shown in Fig. 3.10(a). The second bifurcation, instead, produces
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Figure 3.10: Numerical continuation of single period branches/isolas and associated
periodic orbits [1]. Parameters of Tab. 3.2 and δ = 1500 are utilised to carry out the
simulations. The panels on the left column show the steady-state orbits of the system,
panels (a,d,e) illustrate the FRCs of the system in terms of amplitude x1 and frequency
of excitation Ω, and panels(b,c) highlight zooms and details of the FRCs.

a region of frequencies where the system exhibits chaotic and quasi-periodic behaviour.

Fig. 3.10(d) shows the continuation of the single periodic orbits PO3A, and PO3B.

These periodic orbits exhibit a symmetric behaviour similar to those of PO2A and

PO2B. In both cases, the vertical axis serves as the plane of symmetry and initial

conditions that are opposite in sign allow to achieve the two symmetric orbits. The

continuation of this solution branch results in a closed isola, named I1 which appears

to be overlapped to B2 in the projection plane that considers the amplitude of the first

DOF (x1) versus excitation frequency (Ω). To demonstrate that I1 is not connected
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to other branches, the branches B1, B2, are I1 are projected to another plane which

considers the amplitude of the first DOF in terms of displacement (x1) and velocity

(ẋ1). Fig. 3.10(e) shows the new projection, demonstrating that the solution is closed

Figure 3.11: Numerical continuation of period-doubling isolas and associated initial
periodic orbits [1]. Parameters of Tab. 3.2 and δ = 1500 are utilised to carry out
the simulations. The panels on the left column show the steady-state orbits of the
system, the panels in the central column illustrate the FRC in terms of amplitude x1
and frequency of excitation Ω, and the panels in the right column show zooms and
details of each isola.
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Figure 3.11: Numerical continuation of period-doubling isolas and associated initial
periodic orbits [1]. Parameters of Tab. 3.2 and δ = 1500 are utilised to carry out
the simulations. The panels on the left column show the steady-state orbits of the
system, the panels in the central column illustrate the FRC in terms of amplitude x1
and frequency of excitation Ω, and the panels in the right column show zooms and
details of each isola. (cont.)

and detached, and thus represents an isola.

At this point, multi-periodic stable orbits are continued with path-following analy-

ses. To this end, the steady-state multi-periodic responses previously identified in the

bifurcation diagram are used as the initial solution of the numerical continuation. The

idea is to obtain the intricate network of branches that originate from the multi-periodic

orbits, by exploiting the numerical continuation. Nonetheless, given the multitude of

co-existing solutions, it is expected that some orbits will not be identified and thus

continued, especially the ones close to chaos. Once again, the initial steady-state re-

sponses are reported in the left column of Fig. 3.11. Fig. 3.11(a,e,i) illustrates the

location of the isolas in the frequency domain and their position with respect to the

main branches B1 and B2. Most of the isolas appear to be completely detached from

the main branches in the considered projection, i.e. frequency Ω versus the amplitude

of the first DOF x1. As shown earlier for I1, the ones that appear to be overlapped,

e.g. I3, are demonstrated to be completely detached from other branches by project-
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ing the continued solution in a different space. Panels (b,c,d), (f,g,h), and (j,k,l) of

Fig. 3.11 show the detailed views of each isola: the isolas demonstrate the presence

of many period-doubling (PD) and torus (TR) bifurcation points. Certain isolas, such

as I2 and I6, are notably small and predominantly unstable. However, larger isolas

like I10 exhibit a broad range of frequencies where solutions are stable. This poses a

potential concern for mechanical systems featuring contacts. If the presence of isolas

is not carefully assessed, the system dynamics could become trapped in one of these

isolas, where the amplitude response exceeds the one predicted by the main branch

B1. This may ultimately lead to unwanted vibration states and amplitude of responses

that might exceed the design envelopes of the mechanical system. Finally, it is im-

portant to note that isolas I4, I6, and I7 are partially located within chaotic regions,

posing challenges for their identification without the use of path-following continuation

procedures. Overall, the obtained frequency response diagrams show the presence of

branches of the solution, chaotic regions, and period-doubling isolas, highlighting the

highly rich and complex dynamics of the investigated two-mass systems.

The dynamics of the unforced undamped version of the system are also studied via

numerical continuation: to perform this analysis the modal version of the equation of

motion is obtained by applying a linear modal transformation to Eq. 3.3. The resulting

system of equations is obtained:

q̈1 + 2ζ1ωn,1q̇1 + ω2
n,1q1 +

µ

2m
(q1 + q2)

3 +
µ

2m
(q1 − q2)

3 +
Fp

2m
= 0 (3.6a)

q̈2 + 2ζ2ωn,2q̇2 + ω2
n,2q2 +

µ

2m
(q1 + q2)

3 +
8µ2

m
q32 −

µ

2m
(q1 − q2)

3 +
Fp

2m
= 0 (3.6b)

where q1 and q2 indicate the modal coordinates. Backbone curves are then computed

by tracking the limit cycle oscillations generated by the Hopf bifurcation (HB) which

is identified by moving the stable equilibrium point x1 = 0, ẋ1 = 0, x2 = 0, and ẋ2 = 0

from positive to negative modal damping parameter. Finally, the identified periodic

responses are continued keeping the modal parameters equal to zero [125]. The presence

of two modal damping consents to easily control and continue the periodic oscillations

arising from the two modes of the system. Fig. 3.12 displays the outcomes of the
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Figure 3.12: Backbone curves of the nonlinear system in real (x1) and modal coordinates
(q1 and q2). The panels in the first row show the backbone curves of the system when
the piecewise characteristic (approximated by a sigmoid function) is considered while
the panels in the second row illustrate the backbone curves of the system when the
piecewise characteristic is not present. Several backbones are represented: S1 and S2

denote the main curves, i.e. the backbone curves that originate the linear mode shape,
while S3 indicates the backbone curve that branches from the bifurcation point. The
parameters of Tab 3.2 and δ = 1500 are utilised to perform the analysis

analysis, presenting the backbone curves plotted under various conditions and different

coordinates. Panels (a),(b) and (c) describe the backbones of the approximate non-

smooth system while panels (d), (e), and (f) show the backbones of the system when

the piecewise stiffness is completely removed. The backbone curves are reported in

terms of real (x1) and modal (q1, q2) amplitude: specifically, Fig. 3.12 (a,d) show the

backbones in terms of real coordinates, while Fig. 3.12 (b,c,e,f) show the same curves

in terms of modal amplitudes. In the free-play region, below x1 = 0.05, there is no

significant coupling between the modes, i.e., the first backbone S1 has a low contribution

from the second modal DOF and vice versa. This is valid in both the considered version

of the two-mass system and it is proven by the analysis of the backbone in the absence

of contact. In addition, panels (e,f) show that the effect of q2 on the first backbone, and

conversely, the effect of q1 on the second backbone, is small and negligible even at high
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Figure 3.13: Basins of attraction at Ω equal to 1.2 (a) and 1.25 (b). The colour map
indicates the maximum amplitude of the first mass. For each region of the basin of
attraction, the associated periodic orbits are shown. The black dots represent the
points obtained from the Poincaré sections. The parameters of Tab 3.2 and δ = 1500
are utilised to perform the numerical analyses [1].

amplitudes of response when the piecewise characteristic is not applied. Above the free-

play gap limit, instead, the backbones, S1 and S2 have strong modal coupling when the

piecewise stiffness is present. This results in the presence of non-negligible components

of q1 and q2 in both backbones, as shown by Fig 3.12 (b,c). At a certain amplitude,

the modal interaction results in a bifurcation of the backbone curve and generates the

branch S3. This phenomenon is probably triggered by the incremental frequency of

the first mode which may trigger a 1:1 internal resonance and further investigation

is needed to identify the root causes. It is worth noticing that the bifurcation of the

backbone curve results in a bifurcation of the stable single-period branch B1 which

initiates the branch B2 as shown by Fig. 3.10(b).

The dynamic behaviour of the approximate system is further examined by analysing

its Basins of Attraction (BoA). The BoA are computed using direct numerical integra-

tion and considering various excitation frequencies Ω, namely equal to 1.2, 1.25, 1.30

and 1.35. These values are chosen because the system shows multiple co-existing at-
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Figure 3.14: Basins of attraction at Ω equal to 1.3 (a) and 1.35 (b). The colour map
indicates the maximum amplitude of the first mass. For each region of the basin of
attraction, the associated periodic orbit is shown. The black dots represent the points
obtained from the Poincaré sections. The parameters of Tab 3.2 and δ = 1500 are
utilised to perform the numerical analyses [1].

tractors and transitions to chaos in the interval Ω = [1.20 − 1.35]. To facilitate the

graphical representation and interpretation of the results, the maximum amplitude of

the first mass is considered as the output quantity to represent the BoA and its value

is indicated by the colour map. The BoA are computed by keeping the initial velocities

ẋ1 and ẋ2 equal to zero and by imposing different initial displacements x1 and x2. The

ranges of the initial displacements are adjusted so that diverse steady-state conditions

are achieved for all the considered excitation frequencies while the resolution of the

BoA, i.e. the total number of simulations to achieve the steady-state dynamics, is kept

constant (150 × 150). The resulting BoA are shown in Fig. 3.13: when Ω is equal to

1.20 (Fig. 3.13(a)) two distinct regions, denoted as R1 and R2, are identified: the first
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one delineate the initial conditions that lead to the single-period orbits PO1 of branch

B1, whereas the second one shows the initial conditions that allow reaching the higher

amplitude orbits PO2 associated with branch B2. Moving towards higher frequencies of

excitation, the BoA becomes more complicated: co-existing steady-state solutions in-

crease in number and the different regions become more complicated in terms of shape.

Fig. 3.13(b) shows the BoA of the approximate two-mass system when Ω = 1.25. In

this case, the BoA is dominated by quite a large region of low amplitude solutions,

named R3. This region is associated with the single-period orbit PO1 and represents

the evolution of region R1. The BoA shows also the presence of a second region, named

R4, where single-period and multi-period orbits coexist. Specifically, the following pe-

riodic orbits are found: PO2, PO3, and PO11; the first two steady-state solutions are

single-period solutions, while the last one has period 4. R4 lacks a well-defined shape,

and the coexistence of such varied solutions within the same area of the BoA indicates

the proximity to chaotic behaviour. The chaos in this system appears to be generated

from the continuous transition between different periodic orbits within the same region

of the basin of attraction.

A similar analysis applies to the BoA of the system obtained at the frequency of

excitation Ω = 1.30, reported in Fig. 3.14 (a). In this case, the regions R5 and R6

show the alternation of low amplitude single-period solution and bands of co-existing

attractors. Differently, from the previous BoA, the low amplitude region repeats itself

even when significantly large initial conditions are applied to the system. In addition,

the BoA shows the presence of a consistently larger number of steady-state solutions,

namely the orbits PO1, PO2, PO3, PO5, and PO10. Complete chaotic solutions begin

to emerge at Ω = 1.35 as demonstrated by Fig. 3.14 (b). Once again, two regions

are visible: the first one, R7, is associated with a low amplitude of response, and the

second one, R8, shows a significantly larger amplitude of response. Chaos appears in

the regions with lower amplitude response, and it is mixed with regular multi-periodic

orbits, while the high amplitude region R8 shows again the co-existence of multiple

periodic solutions, but not chaos.
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3.3.2 Comparison between Approximate and Non-approximate Sys-

tems

The previous analyses showed the dynamics of the two-mass system when the piecewise

characteristic is approximated using a sigmoid function. To understand the effect of

this approximation, the obtained dynamics are compared against the dynamics of the

non-approximate version of the system, i.e. a version of the system that utilises a

piecewise-smooth continuous characteristic for describing the presence of the contact.

To this end, numerical integration and numerical continuation analyses are utilised

and, to account for the presence of a non-smooth characteristic, ad-hoc procedures are

adopted. Specifically, numerical continuation is performed using the COCO toolbox

named hspo. This toolbox allows to continue limit-cycles associated with non-smooth

dynamical systems, enabling the so-called multi-segment numerical continuation. This

technique exploits the fact that different portions of the orbit, referred to as segments,

are defined on different but smooth domains and thus they can be continued without

invalidating the implicit function theorem. A detailed explanation of the multi-segment

continuation procedures is out of the scope of this thesis and the interested reader should

refer to reference [97]. The practical application of the procedure employed in this study

is similar to the approach utilised by Liu et al. [117], wherein each segment of the orbit is

represented by a smooth equation corresponding to a specific condition of the piecewise

characteristic. Since more than one segment is present, a set of smooth equations

called vector field equations, must be defined to perform the numerical continuation

of the system. An event function delineates the boundary between adjacent segments,

capturing the behaviour at the discontinuity point. Subsequently, a restart function

is employed to establish the initial conditions for the next segment of the orbit. The

vector field equations, the event function, and the restart function for the considered

system are reported in Appendix A.1.

Although this procedure does not require any approximation of the piecewise char-

acteristic, its practical application is often difficult, computationally expensive and

time-consuming: this is especially true for systems that show many grazing bifurcation

points in the same branch. Indeed, grazing bifurcation generates or eliminates segments
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Figure 3.15: Re-segmentation procedure after grazing bifurcations (GR). Orbits ob-
tained before (A), at (GR), and after (B) the grazing bifurcation are reported on the
left. The parameters of Tab 3.2 are utilised to perform the numerical analyses [1].

during the path-following continuation process: this demands a re-segmentation of the

orbits to avoid ending in non-physical dynamic responses [97]. The re-segmentation pro-

cedure is graphically shown in Fig. 3.15: when the orbit is small enough and contact

does not occur, two segments fully describe the steady-state dynamics of the system,

as depicted in Fig. 3.15(a). The two segments belong to the non-contact condition

and they are used only for practical reasons as they allow for monitoring the maxi-

mum and minimum amplitude of the orbit, identifying when the grazing bifurcation

occurs. As the frequency increases, the orbit approaches the grazing condition (GR):

here, the maximum and minimum displacements of the first mass correspond to the

free-play gap a and a grazing contact occurs at both the extremities of the orbits when

the velocity is zero, i.e. at y1 = 0. From a numerical continuation point of view, two

degenerate segments represent the occurrence of the grazing condition. Fig. 3.15(b)

represents the degenerate segments as two additional points at x1 = ±a. By further

increasing the excitation frequency, the system overcomes the grazing condition and the

two degenerate segments increase their length as shown in Fig. 3.15(c). This process,

termed re-segmentation, is necessary at every grazing bifurcation point to prevent the

formation of non-physical dynamics.
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Figure 3.16: Comparison between continued branches associated with the approximate
version (blue) and the non-approximate version (black) of the non-smooth system. The
parameters of Tab 3.2 and δ = 1500 (only for the approximate version) are utilised to
perform the numerical analyses [1].

Considering the challenges associated with the re-segmentation procedure, only a

subset of solutions obtained using the sigmoid approximation are now reproduced for

the comparative analysis. Fig. 3.16 presents the comparison between the dynamics of

the system when the sigmoid approximation is used (blue lines) and when the piecewise

characteristic (black lines) is adopted. To visualise the difference between the different

branches, each panel represents a zoom. The location of the zoom is indicated in each

panel, using a red circle. Fig. 3.16 (a) shows the two grazing bifurcation points asso-

ciated with the main branch B1 (i.e. the continuation of single-periodic orbits): given

its smooth nature, the sigmoid approximation can not detect the grazing condition,

however, it correctly identifies torus bifurcations nearby grazing bifurcation points and

the change of stability of the response. Fig. 3.16(b) shows the continuation of the two

versions of the system across the bifurcation point between branches B1 and B2. In this

case, the sigmoid function correctly locates branch, flip, and saddle-node bifurcation

points. However, it fails to detect the instability of the first branch before the point

BP and the occurrence of a torus bifurcation. It is worth mentioning that employing
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smaller steps in the continuation procedure could help to improve the quality of the

continued solution, reducing the difference between the two systems. Moreover, the in-

accuracies are confined to a small region surrounding the BP point, suggesting that also

in this case the dynamic response of the systems is very similar. Fig. 3.16(c,d) compare

the single period isolas I1 obtained with the approximate and non-approximate sys-

tems. Once more, stability and amplitude are generally accurately identified; however,

discrepancies arise near the grazing bifurcation points. This is evident in Fig. 3.16(c),

where the S-shaped solution is shifted towards higher frequencies when the approxi-

mation is adopted, and in Fig. 3.16(d), where a torus bifurcation is identified in the

approximated solution but it is not observed when the multi-segment procedure is

adopted. Finally, Fig. 3.16(e,f) compare the period-tripling isolas I3 obtained with

the two versions of the system. In Fig. 3.16(e), the sigmoid function correctly locates

the period-doubling bifurcation points and the changes in the stability of the contin-

ued solution. Fig. 3.16(f), instead, shows a point where multiple grazing bifurcations

occur: differences between the approximate and non-approximate solution are visible

in terms of the amplitude of response only near the grazing conditions. Nevertheless,

such discrepancies remain minimal even in this complex scenario, characterised by the

presence of multi-periodic attractors. Overall, the usage of the sigmoid function allows

for obtaining dynamic responses that are close to the dynamics of the non-approximate

counterpart in terms of amplitude and stability of the solution. Differences emerge

only near the grazing bifurcation points where the smoothed function fails to precisely

replicate the piecewise characteristic. It is important to note that such differences are

limited and do not significantly impact the overall solution, both when single-period

and multi-period dynamics are considered.

As a final demonstration of the good approximation capabilities of the identified sig-

moid function, the BoA of the approximate and non-approximate versions of the system

are compared. To perform the comparison, the BoA of the non-approximate version

of the system are computed using numerical integration procedures. The MATLAB

function ode45 and the built-in event function are used to handle the discontinuity

point of the piecewise characteristic, using a procedure similar to the one adopted
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Figure 3.17: Time history (a) and associated steady-state orbit (b) at Ω = 1.15 com-
puted with MATLAB event function. The parameters of Tab 3.2 are utilised to perform
the numerical analyses

in [37, 111, 126]. For each event occurrence, i.e. when the contact occurs or ends, the

integration procedure is stopped, the time at which the event occurred is identified, and

the associated final conditions are saved. These final conditions are then used as initial

conditions for the next integration step, which accounts for a different set of equations

of motion that correctly describe the new situation, e.g. the presence of a larger stiff-

ness if the contact has occurred. To correctly represent the dynamics of the contact,

Eq. 3.1 is used to define the event function, and the governing equations of motion are

changed accordingly to the piecewise characteristic. An example of time history and

steady-state orbit is described by Fig 3.17. The black line indicates solutions computed

in the non-contact region, i.e. when the additional piecewise stiffness is not considered.

The red and blue lines, instead, define solutions obtained in the presence of contact.

The comparison of the BoA is carried out using the relative and absolute toler-

ances, the maximum time step, and the time span, described in Tab. 3.3. Fig. 3.18

shows the BoA of the two versions of the system when the excitation frequency Ω is

equal to 1.20, 1.25, 1.30, and 1.35. The BoA in the top row of Fig. 3.18 are obtained

using the exact event location while the BoA in the bottom row are generated using

the approximate smoothing function. Fig. 3.18 shows that the sigmoid approximation

correctly represents the BoA of the considered two-DOF system with high accuracy,

without introducing significant errors or distortions in the dynamics of the system and
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Figure 3.18: Basins of attraction of the system at Ω equal to 1.2, 1.25, 1.3 and 1.35.
The colour map indicates the maximum amplitude of the first mass. The panels in
the top row (a-d) show the BoA of the non-smooth version of the system while the
panels in the bottom row illustrate the BoA of the smoothed version of the system.
The parameters of Tab 3.2 and δ = 1500 (only for the approximate version) are utilised
to perform the numerical analyses [1].

Table 3.3: MATLAB options for the computation of the BoA with event function and
sigmoid approximation [1].

Ω Rel. & Abs. Tol. Max Step Time Span
1.20 1e-09 0.08 s 3500 s
1.25 1e-09 0.08 s 7500 s
1.30 1e-09 0.08 s 28500 s
1.35 1e-09 0.08 s 28500 s

its BoA. Across all examined excitation frequencies, the introduction of the approxi-

mation does not significantly alter the shape, boundaries, or maximum amplitude of

the basins. Tab. 3.4 shows the elapsed time of a single simulation of the BoA when the

sigmoid function and event location are utilised. The results show that the simulation

time is significantly reduced when the smoothing approximation is utilised, with an

elapsed time up to ten times shorter than the simulations with event location.
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Table 3.4: Elapsed time in the numerical simulations of the first point of the BoA. For
each frequency, the options prescribed in Tab. 3.3 are used [1].

Approx. Ω = 1.2 Ω = 1.25 Ω = 1.3 Ω = 1.35
Sigmoids 0.800 s 1.652 s 6.183 s 6.364 s
Event Loc. 6.590 s 15.448 s 61.905 s 39.149 s

3.4 Summary

This chapter analysed the dynamic behaviour of a strongly nonlinear system charac-

terised by multiple degrees of freedom and soft piecewise constraints. The system is

studied using numerical continuation and numerical integration procedures, with a spe-

cific focus on investigating how smoothing approximations of piecewise characteristics

affect the system dynamics. To this end, bifurcation diagrams, frequency response

curves, and basins of attraction are computed for the smoothed and ideal version of

the system, comparing the obtained dynamics.

Firstly, the mathematical admissibility of the proposed smoothing approximation is

verified, using analytical and numerical tests. To facilitate the selection of the smooth-

ing approximation parameter δ, a tool, named the radius of influence, is proposed.

This tool aims to link the mathematical parameter δ with the distortion induced by

the smoothing approximation. Then, the dynamics of the obtained nonlinear MDOF

smoothed system are investigated. The numerical simulations demonstrate that the

presence of a soft contact generates strong nonlinear phenomena and a rich dynamic

behaviour, characterised by the presence of bifurcation of the backbone curves and

period-doubling isolas. It is demonstrated that these isolas are associated with higher

amplitudes of response. In addition, the bifurcation of the backbone curve generates

a second branch of high-amplitude stable steady-state response. These phenomena are

potentially dangerous for mechanical structures as they may lead the system to un-

wanted vibrations and stress levels, higher than the ones predicted by the main branch

(B1). Linear models are unable to predict similar nonlinear phenomena, and missing

these dynamics might lead to a mismatch between experimental data and numerical

results, especially in common industrial practice. Finally, the effect of the smoothing ap-

proximation on the dynamics response of the system is analysed: a comparison between
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the dynamics of the non-approximate (piecewise) and the approximate (smoothed) ver-

sion of the system is carried out; by using numerical continuation techniques, the main

branches B1 and B2, and some isolas, namely I1 and I3, are compared in terms of the

bifurcation scenario and amplitude of the response; in addition, exploiting numerical

integration schemes, the BoA of the two versions of the system are compared in terms of

shape of the basins and computational effort. The results show that the smoothed ver-

sion of the system is able to capture the dynamics of the non-smooth system, especially

when periodic responses are considered. The main discrepancies between the non-

approximate and the approximate systems are found near grazing bifurcation points,

where the smoothing approximation is less accurate. No distorted or non-physical solu-

tions are identified during the analysis, however, a systematic increase in the amplitude

response of the approximate solution is encountered: this is due to the approximation

error introduced by the sigmoids function and remarks the necessity of tools, like the

proposed radius of influence, to control the degree of approximation introduced in such

systems.

In general, the robustness, lower computational burden, and efficacy of smoothing

approximations make the proposed approach very attractive, especially in industrial-

related contexts where simple and robust solutions are necessary.
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Chapter 4

Design of an Experimental

Multi-Degree-of-Freedom

Non-Smooth System

4.1 Introduction

This chapter discusses the design of the experimental test rig utilised in the project.

The model consists of an MDOF mechanical system with piecewise stiffness charac-

teristics and has two main purposes: firstly it serves as ground truth to validate the

complex dynamics phenomena encountered in the numerical simulations of previous

chapters and, secondly, it is used to develop novel methods/approaches to identify

MDOF nonlinear systems from experimental data. In particular, the experimental ac-

tivity seeks to find evidence about the presence of bifurcation of backbone curves and

isolated solutions that have been encountered during the numerical investigations of

Chapter 3. Specifically, the following points are discussed:

• Section 4.2, borrowing from design techniques, introduces the Product Design

Specifications (PDS) document of the experimental model, highlighting the con-

straints and the functional requirements of the test rig. This comprises the re-

quired dynamic features as well as practical constraints such as the budget and

time allocated for the design of the model and its experimentation.
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• Section 4.3 discusses the design of the proposed mechanical structure, using nu-

merical tools. Different versions of the test rig are proposed and investigated high-

lighting practical problems and design constraints. Along with classical tools, i.e.

linear MDOF models and FEA, the usage of numerical continuation techniques

is proposed to design the mechanical structure. In particular, a ROM is derived

from a full FE model and it is used to design the nonlinear behaviour of the exper-

imental system. Then, the unknown nonlinear characteristics are investigated via

parametric study demonstrating that the bifurcation of backbone curves persists

in many different model versions.

• Section 4.4 discusses the initial experimental tests that are carried out to check

that the model behaves as expected. To this end, the model is built, assembled,

and tested. Particular care is paid to the excitation conditions, which are modified

to guarantee the respect of all the product design specifications. The section

concludes by showing that, using the proposed adjustments, the experimental

test rig guarantees the occurrence of nonlinear dynamic behaviours, fundamental

to the proposed investigation.

4.2 Product Design Specifications

This section shows the product design specifications that are considered in the design

of the experimental test rig. The specifications affect the model and its complexity,

specifying the resources (time and budget) available for the experimental activities. In

particular, the following specifications are taken into account:

1. Research Objectives: the experimental activities aim to investigate the dy-

namic behaviour of nonlinear MDOF systems with strong nonlinearities. Its pri-

mary objective is the investigation of the nonlinear phenomena identified in the

previous numerical analysis. Particular attention is dedicated to obtaining evi-

dence about the presence of isolated solutions and bifurcation of the backbone

curves. The experimental data serve also to validate the numerical results pre-

viously obtained and contribute to increasing the limited experimental data on
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MDOF nonlinear systems in the existing literature.

2. Functional Requirements: the model must respect the following functional

requirements: the experimental model must have (1) multiple degrees of free-

dom, (2) a high degree of smooth nonlinearity, (3) the presence of non-smooth

characteristics, and (4) the presence of two modes in a close range of frequencies.

3. Nonlinear Dynamic Features: the model has to show the presence of isolas,

bifurcation of backbone curves, and modal interactions between two modes. These

phenomena are not easy to identify prior to the experimental tests, therefore the

model must be made adjustable so that characteristics like the piecewise stiffness

and the non-contact gap can be controlled and modulated in a simple manner.

4. Data: the model and the experimental set-up need to be able to generate exper-

imental data in the time and frequency domain. The experimental setup must

be made so that the system can be excited in the frequency range of interest and

that the post-processing of the data in the frequency domain is feasible.

5. Practical Constraints: The model should be compatible with the current lab-

oratory instrumentation and tools, such as unidirectional accelerometers, electro-

magnetic contact shakers with specified maximum displacement and force, table

dimensions, available sensors, and control units.

6. Resources Constraints: the experimental activities must not exceed the avail-

able resources in terms of budget and time. In particular, the time required

for the design and testing (up to 6 months) is limited due to the availability of

the laboratory and mechanical workshop as well as the budget for building the

experimental model (≈ £500 ).

4.3 Test Rig Design: Numerical Simulations

In this section, the design of the experimental model is introduced and discussed.

To satisfy the nonlinear and functional requirements, a parallel beam configuration

with mechanical motion limiting constraints (also called stoppers) is chosen. This

83



Chapter 4. Design of an Experimental Multi-Degree-of-Freedom Non-Smooth System

configuration has been successfully implemented in previous experimental analyses of

nonlinear impacting systems with a single degree of freedom [25, 119]. Contrarily to

those studies, the proposed model considers two masses (see Fig. 4.1 and Fig. 4.5 for

graphical representation of the initial versions of the system) to simulate the presence

of multiple degrees of freedom in the mechanical structure and it offers the following

features: (1) it allows the addition of non-smooth characteristics to the system, by

adding motion limiting constraints, (2) it introduces a hardening stiffness behaviour

to the system (due to the parallel beam configuration), (3) it incorporates multiple

masses, generating an MDOF structure, and (4) it enables tuning two modes in a close

frequency range. These properties allow the experimental model to effectively meet

the functional requirements of the experimental activity as described in the PDS. The

required nonlinear dynamic features like backbone curves and isolas, instead, cannot

be guaranteed a priori but numerical analyses and experimental tests are necessary to

identify them and prove their existence.

At the initial design stage, most of the properties are unknown and can only be

estimated; this is particularly true for nonlinear properties like hardening and contact

stiffness. To address this challenge, FEA and numerical continuation techniques are

utilised: firstly a linear FE model of the structure is created and a ROM is obtained by

comparing the dynamic response of the two models. Then, numerical continuation is

used to perform parametric analyses of the system, investigating the effect of parameters

on the nonlinear dynamic behaviour of the system. This process is repeated for different

versions of the system until the final configuration is achieved.

4.3.1 Initial Design: Model Version 1 & 2

A finite element model is created in Ansys APDL as depicted in Fig. 4.1: the system

is composed of two parallel beams, modelled with shell elements (SHELL281) and two

main masses, modelled with solid elements (SOLID186). The extremities of the model

are fully constrained to simulate the presence of external rigid supports. The figure

shows the different components: external beams (light blue), internal beams (purple),

external locking components (red), and mass blocks (blue). In order to transfer the
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Figure 4.1: Finite element model of the two-mass system (Version 1) and main dimen-
sions.

Table 4.1: Dimensions and material properties of the two initial versions of the FE
model.

Parameter Version 1 Version 2
Ysteel 210GPa 210GPa
ρsteel 7800 kg/m3 7800 kg/m3

ζ 1% 2%
am 70mm 160mm
bm 90mm 250mm
cm 30mm 80mm
dm 30mm 80mm
hm 45mm 60mm
sm,1 0.8mm 1mm
sm,2 0.8mm 1mm
sm,c 5mm 15mm

rotational stiffness of the beams to the solid blocks, the external locking components

are modelled with shell elements and are attached to the solid element of the masses.

Linear Analysis and Reduced Order Model Identification

The system is studied in two different versions: the first one is smaller and presents a

small damping ratio while the second one is larger with a larger damping ratio. In both

versions, the model is entirely designed with metallic components whose dimensions and

properties are reported in Tab. 4.1. The two versions of the model are obtained after

initial practical considerations and three analyses are performed to evaluate its dynamic
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Table 4.2: Modal and static analysis of the FE models representing the experimental
test-rig (version 1 and 2).

Analysis Version 1 Version 2
mode 1 (global) 40.8Hz 6.2Hz
mode 2 (global) 57.6Hz 7.7Hz
mode 3 (local) 543.4Hz 87.3Hz

next global mode 998.4Hz 168.3Hz
max static deflection 0.3µm 13.3µm

and static behaviour: static analysis, modal analysis, and harmonic analysis. The first

simulation allows us to understand the static deflection of the model. The second one

instead provides the natural frequencies and the modes shapes, and the third analysis

consents to obtain the linear harmonic response of the system. These analyses are

important to identify the correct dynamic behaviour of the experimental model: the

static deflection must not be excessive while the first two natural frequencies must exist

in a close range of frequencies to show strong modal interaction. In addition, modes

higher than the required number of DOFs must be found at very high frequencies so

that a simplified ROM can be used to capture most of the system dynamics. The

results of the modal analysis are reported in Fig. 4.2 and 4.3: the first figure shows

the first two modes of the two versions of the system while the second one shows the

third mode and the next first global mode, i.e. the first mode after the second one that

involves the motion of the entire structure. Tab 4.2 summarises the results of the

modal and static analyses. Additional details about the static/dynamic analyses can

be found in Appendix B.1. The static deflections of the two versions of the system are

small enough to avoid significant deformation of the test rigs under gravitational loads.

The first two modes affect the whole structures and are found in a close frequency

range in both model versions. The third mode of the structure is represented by a

local mode whose frequency is one order of magnitude larger than the second mode.

This guarantees to maximise the possibility of interaction between the first two modes,

i.e. the modes of interest, minimising the interferences from the higher modes. In

addition, the next global mode is found at even higher frequencies for the proposed

configurations. These results satisfy some of the functional and dynamic constraints

of the experimental analysis and allow us to proceed to identify a reduced-order model
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(a) (b)

(c) (d)

Figure 4.2: First two modes of the first (a,c) and second (b,d) version of the experimen-
tal test rig. The material properties and the dimensions of the FE models are reported
in Tab. 4.1. The following natural frequencies are identified: 40.8 Hz (a), 6.2 Hz (b),
57.6 Hz (c), 7.7 Hz (d).

of the structure. A ROM is obtained by comparing the harmonic response of the FE

model with the dynamics of a lumped parameter model whose equation of motion is

represented by:

mẍ1 + cẋ1 + kx1 − kd(x2 − x1)− cd(ẋ2 − ẋ1) = Q1 cos(Ωt) (4.1a)

mẍ2 + cẋ2 + kx2 + kd(x2 − x1) + cd(ẋ2 − ẋ1) = Q2 cos(Ωt) (4.1b)

In matrix form, the ROM is represented by the following equation:

m 0

0 m

ẍ1

ẍ2

+

c+ cd −cd

−cd c+ cd

ẋ1

ẋ2

+

k + kd −kd

−kd k + kd

x1

x2

 =

Q1

Q2

 (4.2)
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(a) (b)

(c) (d)

Figure 4.3: Third (local) modes of the first (a) and second (b) version of the experi-
mental test rig, and first next global mode of the first (c) and second (d) version of the
experimental test rig. The material properties and the dimensions of the FE models
are reported in Tab. 4.1. The following natural frequencies are identified: 543.4 Hz (a),
87.3 Hz (b), 998.4 Hz (c), 168.3 Hz (d).

By performing the modal analysis and by applying the modal transformation to Eq. 4.2,

it is possible to obtain the following relationships (see Appendix B.1 for their deriva-

tion):

k = ω2
n,1m (4.3a)

kd =
ω2
n,2m− k

2
(4.3b)

c = 2ζ1mωn,1 (4.3c)

cd =
2ζ2mωn,2 − c

2
(4.3d)
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Figure 4.4: FRF computed using the ROM and the FE model for the first (a) and
second (b) versions of the model. The FRFs are computed using the linear parameters
reported in Tab. 4.3 for the ROM and the material properties and dimensions reported
in Tab. 4.1 for the FE models. Forcing amplitudes Q1 and Q2 are set equal, respectively,
to 0 N and 45 N for all the models.

Table 4.3: Parameters of the ROMs representing the FE models. The parameters
are obtained using information about the geometry, the material of the structure, and
Eq. 4.3 (see Appendix B.1 for more details).

Parameter Version 1 Version 2
m 0.4212Kg 4.1184Kg
k 2.7664× 104 N/m 6.2461× 103 N/m
c 2.1589Ns/m 6.4154Ns/m
kd 1.3722× 104 N/m 1.6817× 103 N/m
cd 0.4441Ns/m 0.7710Ns/m

where ωn is the natural frequency and ζ is the damping ratio. These relationships are

exploited to compute the numerical value of the equivalent parameters of the reduced-

order models. In particular, the equivalent mass m of the two blocks can be calculated

by using the volume of the masses and the density of the material utilised (see Ap-

pendix B.1) while the stiffness and damping parameters are computed with Eq. 4.3

using the natural frequencies and the damping ratio of the FE model. The final param-

eters of the ROMs are reported in Tab. 4.3 and they are used to compute the dynamic

response of the ROM under harmonic excitation. The obtained FRFs are then com-

pared against the response of the FE models: the results for the two versions of the

system are reported in Fig. 4.4 in terms of the amplitude of the first mass. The ROMs

are shown to be in good agreement with the full FE model, confirming the capability
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Nonlinear Spring (cubic stiffness)
(External)

Piecewise Stiffness

Nonlinear Spring (cubic stiffness)
(Internal)

Figure 4.5: Experimental model (Version 2) with nonlinear elements.

of a reduced model to correctly predict the linear dynamic behaviour of the considered

system.

Nonlinear Reduced Order Models and Parametric Analysis

The previous analyses confirmed the capability of the equivalent ROM to predict the

linear dynamics of the FE model. Nonetheless, the ability of the ROM to capture the

nonlinear dynamic behaviour of the full FE model remains unconfirmed at this stage.

To this end, nonlinear analyses are performed and the dynamics of the ROM and the

FE models are compared. For the sake of simplicity, the second version of the system

is chosen to perform nonlinear analyses. Firstly the FE model is slightly modified to

account for the presence of nonlinear characteristics which are simulated by adding

nonlinear elements as shown in Fig. 4.5. Specifically, COMBIN39 elements are added:

they consent to add lumped spring/damper nonlinear elements between two nodes of

the model. In this case, cubic stiffness elements acting in the Y direction are placed

between the masses and the ground, which represent the supports. Then a piecewise

stiffness is applied between the centre of the first mass and the ground to simulate the

presence of a contact. Consistently, the ROM is updated by adding cubic stiffness

and piecewise stiffness terms in the equation of motion which results in the following
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Figure 4.6: Nonlinear response of the model (Version 2) under harmonic loading using
a full finite element (FEA) and a reduced order model (ROM). Time histories (a)
and steady-state orbits (b) of the first mass are shown. The dynamic responses are
computed using the FE model of Fig. 4.5 and the ROM of Eq. 4.4 with the following
parameters: Q1 = 0 N, Q2 = 4 N, µ = 3e7 N/m3 (internal cubic stiffness), µd = 1e7
N/m3 (external cubic stiffness), kp = 56400 N/m (piecewise stiffness), a = 1 mm (non-
contact gap), and Ω = 7 Hz (frequency of excitation). The remaining linear parameters
utilised in the analysis are reported in Tab. 4.3 (model Version 2) for the ROM and in
Tab. 4.1 (model Version 2) for the FE model.

expression:

mẍ1 + cẋ1 + kx1 + µx3
1 − kd(x2 − x1)− cd(ẋ2 − ẋ1)− µd(x2 − x1)

3 + Fp = Q1 cos(Ωt) (4.4a)

mẍ2 + cẋ2 + kx2 + µx3
2 + kd(x2 − x1) + cd(ẋ2 − ẋ1) + µd(x2 − x1)

3 = Q2 cos(Ωt) (4.4b)

Eq. 4.4 represents the equation of motion of the two-mass system discussed in Chap-

ter 3, specifically represented by Eq. 3.3, where Fp denotes the restoring force of a

piecewise stiffness element. Direct numerical integration is used to compute the dy-

namic response of the FE model and the ROM. To this end, the piecewise restoring force

is approximated using Eq. 3.4 and the following parameters are considered: Q2 = 4

N, µ = 3e7 N/m3, µd = 1e7 N/m3, kp = 56400 N/m, and a = 1 mm or a = 0.4

mm. The results are reported in Fig. 4.6 and 4.7: the first figure shows the tran-

sient and steady-state dynamic behaviour of the system when contact occurs. The

simulations are started from the resting position, i.e. with initial conditions equal to

x1 = x2 = ẋ1 = ẋ2 = 0, using an excitation frequency Ω = 7 Hz and a free-play gap

a = 1 mm. The obtained dynamic behaviour corresponds to a period-1 response (PO1
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Figure 4.7: Nonlinear responses of the model (version 2) with full (FEA) and reduced
(ROM) model. Time histories (a,c) and steady-state orbits (b,d) of the masses are
shown. The dynamic responses are computed using the FE model of Fig. 4.5 and the
ROM of Eq. 4.4 with the following parameters: Q1 = 0 N, Q2 = 4 N, µ = 3e7 N/m3 ,
µd = 1e7 N/m3, kp = 56400 N/m, a = 0.4 mm, and Ω = 7 Hz. The remaining linear
parameters are reported in Tab. 4.3 and Tab. 4.1 (model version 2).

of Fig. 3.10) that is generated after the first grazing bifurcation, as demonstrated in the

analysis of Chapter 3. The second figure instead, shows the transient and steady-state

behaviour when contact occurs and when Ω = 7 Hz, a = 0.4 mm, and initial conditions

equal to x1 = 3.44 mm, x2 = 0.73 mm and ẋ1 = ẋ2 = 0 are imposed. The resulting

steady-state dynamics (Fig 4.7(b)) is very similar to the orbit (PO3 of Fig. 3.10) which

belongs to a period-1 isola. The figures demonstrate that the dynamic response of the

ROM is in good agreement with the dynamics of the full FE model both in the transient

and in the steady state condition. It is also demonstrated that the ROM can find the

same attractors of the FE model when initial conditions are imposed, confirming that
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Figure 4.8: Numerical continuation of the ROM (Version 1) considering different cu-
bic nonlinear stiffness µ and µd (a,b) and different non-contact gaps a (c,d). Linear
parameters are reported in Tab. 4.3 while the following nonlinear parameters and am-
plitudes of excitation (where applicable) are considered: a = {0.005, 0.0025, 0.001} m,
kp = 270000 N/m, µ = {3e5, 3e6, 3e7} N/m3, µd = {1e5, 1e6, 1e7} N/m3, Q1 = 0 N,
and Q2 = 45 N. The parameter δ is selected as follows: δ = 15000 for a = 5 mm,
δ = 30000 for a = 2.5 mm, and δ = 75000 for a = 1 mm.

the considered ROM is capable of correctly predicting the nonlinear dynamics of the

two-mass system.

The nonlinear ROM of Eq. 4.4 is now utilised to perform the numerical continuation

of stable solutions. For the sake of simplicity, only the main branch (B1) is continued.

In addition, the backbone curves of the system are computed to provide additional

details to the analysis. To facilitate the analysis, the numerical continuation of the

non-smooth system is performed with the sigmoid regularisation (Eq. 3.3): to this end,

the radius of influence is used to keep constant (or smaller) the distortion error to 3.5
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%. Firstly the ROM associated with the first version of the model is analysed: since

it is not known in which conditions the bifurcation of the backbone curve occurs, a

parametric study is performed. Different values of the cubic stiffness (µ and µd) are

utilised along with different non-contact gaps (a). The stiffness of the impact springs

(i.e. the piecewise stiffness kp) is obtained from commercial websites. The results are

reported in Fig. 4.8: panels (a) and (b) describe the variation of main branch under

harmonic loading and the associated backbone curves of the first mode for three cubic

stiffness pairs, namely: µ = 3 × 105 and µd = 1 × 105 (black line), µ = 3 × 106 and

µd = 1 × 106 (blue line), µ = 3 × 107 and µd = 1 × 107 (red line). The following

nonlinear characteristics and amplitude of excitation are also considered: a = 0.005

m, kp = 270000 N/m, Q1 = 0 N, and Q2 = 45 N (where applicable). To guarantee a

distortion error of 3.5 %, the following parameter is utilised: δ = 15000 . The remaining

properties of the ROM are obtained from Tab. 4.3 (Version 1). The the first two panels

show that the nonlinear cubic characteristic influences the dynamic behaviour of the

system: in particular, it is proven that when µ and µd are small enough, a modal

interaction in the system occurs, inducing the generation of a bifurcation in the first

backbone curve, as demonstrated by Fig. 4.8(b). For µ = 3× 106 and µd = 1× 106 the

backbone curve associated with the first mode shows the same bifurcation previously

encountered in the numerical analyses of Chapter 3. When the nonlinear parameters

are set equal to µ = 3 × 105 and µd = 1 × 105 the backbone shows an even more

complicated behaviour, as demonstrated by the detail of Fig. 4.8(b). Finally, when the

cubic stiffness is large enough, i.e. when µ = 3× 107 and µd = 1× 107, no bifurcation

of the backbone curve is found. It is worth noting that the generation of bifurcation

on the backbone induced a change in the stability in the first peak of the main branch,

as shown by Fig. 4.8(a). This is in agreement with the results obtained in the previous

numerical analyses of Chapter 3 and provides a simple way to understand when this

phenomenon occurs.

Since the cubic stiffness is not easily controllable in an experimental setup, the

properties of the non-smooth nonlinearities are varied to understand if it is possible to

obtain the bifurcation of the backbone for the worst-case scenario, i.e when µ = 3×107
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Figure 4.9: Numerical continuation of the ROM (Version 2) considering different non-
contact gaps a. Forced responses (a) and backbone curves (b) are shown. Linear
parameters are reported in Tab. 4.3 while the following nonlinear parameters and am-
plitudes of excitation (where applicable) are considered: kp = 56400 N/m, µ = 3e7
N/m3, µd = 1e7 N/m3, δ = 190000, a = {0.0004, 0.0008, 0.001, 0.0015} m, Q1 = 0 N,
and Q2 = 4 N.

and µd = 1 × 107. To this end, the following non-contact gaps are used: a = 0.005 m

(red line), a = 0.0025 m (blue line), and a = 0.001 m (black line). Also in this case,

to guarantee a distortion error of 3.5 %, the following approximation parameters are

utilised: δ = 15000 for a = 5 mm, δ = 30000 for a = 2.5 mm, and δ = 75000 for a = 1

mm. The results of the numerical continuation are shown in Fig. 4.8 (c,d): the panels

show the continuation of the backbone curves of the first mode from two perspectives

(3D and 2D representations). The analysis shows that by reducing the non-contact

gap, the influence of the non-smooth characteristic on the dynamic response of the

system becomes prevalent and leads to a bifurcating branch in the first backbone. More

importantly, the analysis demonstrates that is possible to control the bifurcation of the

backbone by appropriately changing the non-smooth characteristic. This is particularly

important for obtaining the desired nonlinear dynamics behaviour (i.e. the bifurcation

of the backbone curve) in the experimental test rig, where only certain parameters,

such as the non-contact gaps, can be easily modified.

A similar parametric analysis is performed for the second version of the model. The

parameters of Tab. 4.3 are used to perform the analysis along with: kp = 56400 N/m,

Q1 = 0 N, Q2 = 4 N, µ = 3×107, µd = 1×107, δ = 190000. Different non-contact gaps
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Figure 4.10: Numerical continuation of the ROM (Version 2) considering different
non-contact gaps a = {0.0004, 0.0008, 0.001, 0.0015} m and two levels of excitation
amplitude: Q2 = 4 N (a) and Q2 = 1.4 N (b). Linear parameters are reported in
Tab. 4.3 while the following nonlinear parameters and amplitudes of excitation are
considered: kp = 56400 N/m, µ = 3e7 N/m3, µd = 1e7 N/m3, δ = 190000, and Q1 = 0
N.

are used, namely a = 0.4 mm, a = 0.8 mm, a = 1.0 mm, and a = 1.5 mm. The results

are reported in Fig. 4.9: again, reducing the non-contact gap induces the backbone of

the first mode to generate a bifurcation and this results in the destabilisation of the

first peak of the forced response. To investigate the effect of the bifurcation on the

forced response, the system is excited with another level of excitation (Q2 = 1.4 N)

keeping unchanged the other parameters. The results are shown in Fig. 4.10. The figure

shows that for Q2 = 4N (Fig. 4.10(a)) bifurcation points are present on the first peak

of the forced response only when the bifurcation of the backbone exists. Nonetheless,

if the excitation amplitude is reduced to Q2 = 1.4 N (Fig. 4.10(b)), the bifurcation

points disappear. Only when a = 0.4 mm, BP points persist on the forced response

of the system. This numerical analysis demonstrates that two conditions must be met

to obtain the bifurcation of the main branch in the forced response: firstly the system

must show a bifurcation of backbone at a certain amplitude of response, and second,

the excitation must be large enough to reach the amplitude threshold. Finally, it is

worth noticing that Neimark-Sacker bifurcation appears on the second peak in all the

considered cases when contact occurs (not reported in Fig. 4.10).
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Figure 4.11: CAD assembly representing the designed model (Version 1).

Final Design and CAD Assembly

The numerical analyses of the two versions of the system provided satisfying results:

the FEA and linear analysis of the ROMs proved that the functional requirements of

the experimental model are satisfied in the proposed configurations. In addition, the

nonlinear analyses demonstrated that the required nonlinear dynamics features can

be obtained under certain parameter conditions. Specifically, it was shown that by

reducing the non-contact gap, the bifurcation of the backbone curve occurs even for

high values of cubic stiffness. At this point, a detailed CAD of the model is used to

understand if practical requirements, like space, are satisfied and if the assembling of

the system is feasible. Specifically, the dimensions of the supports, shaker, table, and

motion limiting constraints are considered and their compatibility with the selected

designed version is analysed. The CAD models for the two versions of the system are

reported in Fig. 4.11 and 4.12. The motion limiting constraints are modelled with

supports and impact springs and they are adjustable in terms of housed spring and

distance from the mass. This allows for control of the non-contact gap and the stiffness

of the piecewise characteristic. The masses are instead placed at a predefined distance,
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Figure 4.12: CAD assembly representing the designed model (Version 2).

which can be set with different holes in the parallel beams. The CAD demonstrates

that practical requirements in terms of space and occupancy of the model are satisfied,

thus confirming that the model is suitable for the experimental analysis.

4.3.2 Initial Design: Model Version 3

Although the proposed designs (Version 1 and Version 2 of the model) satisfy the prod-

uct specification in terms of research objective, data format, functional requirements,

nonlinear dynamics features, and practical constraints they are not compatible with the

available budget and time constraints. Therefore, to reduce the time and the cost of

manufacturing, the presence of metallic components is reduced as much as possible and,

where possible, 3D-printed components are used. Two metallic stainless steel rulers are

used as parallel support beams. They provide (1) low damping, (2) the desired stiffness

and hardening effect in the parallel configurations, and (3) they are particularly helpful

in accurately measuring the distance between the masses and the supports. After a

preliminary design, a new configuration (version 3) is achieved, whose dimensions are

reported in Tab. 4.4. The dimensions of the model are similar to the ones of the
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Figure 4.13: FE model representing the version 3 of the designed system.

Table 4.4: Dimensions and material properties for third version of the experimental
model.

Parameter Version 3
Ysteel 210.0GPa
YPLA 3.3GPa
ρsteel 7800 kg/m3

ρPLA 1240 kg/m3

ζ 1%
am 80mm
bm 170mm
cm 50mm
dm 35mm
hm 20mm
hm,1 50mm
sm,1 0.5mm
sm,2 0.5mm
sm,c 10mm

previous designs but now two different materials, i.e. PLA (Polylactic acid) and steel,

are used to build the structure. Using the scheme previously outlined, numerical sim-

ulations and comparisons between FE and reduced order models are performed once

again. To this end, an FE model representing the third version of the model is created,

as shown by Fig. 4.13. In the new configuration, all the components of the system,

except the beams, are made in PLA, leading to a substantial mass reduction in the
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Figure 4.14: Frequency response of the model (Version 3) under harmonic excitation.
The linear FRFs are reported in terms amplitude of the first (a) and second (b) mass.
The FRFs are computed using the linear parameters and the forcing amplitudes re-
ported in Tab. 4.5 for the ROM and the material properties and dimensions reported
in Tab. 4.4 for the FE model.

Table 4.5: Parameters of the ROM for linear and nonlinear analyses (Version 3)

Parameter Version 3
m 0.244 87Kg
k 1.9934× 103 N/m
c 0.4419Ns/m
kd 2.3651× 102 N/m
cd 0.0248Ns/m
Q1 0.0N
Q2 4.0N

two blocks that represent the two masses of the system. This, in combination with the

presence of metallic support beams, increases the first two natural frequencies of the

system by orders of magnitude, leading to frequency ranges completely different from

the previous analyses which might be difficult to manage experimentally. To avoid this

problem, the model implements metallic components inside the two blocks, i.e. inside

the first and second mass of the system, for a total mass of 159.6 g each. To model the

presence of metallic components inside the two blocks, point masses are added to the

FE model using the element MASS21: rigid body elements (CERIG) are then used to

connect the nodes of the solid elements (representing the PLA components) with the

point mass. The PLA components are printed using a 50% infill to reduce the amount

of material consumed and to speed up the printing process. To account for the 50%
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Figure 4.15: CAD assembly representing the designed model (Version 3).

infill, the density of the PLA is reduced by a factor of 2 in the FE model.

Linear Analysis and Reduced Order Model Identification

FE simulations under the linear approximation are performed. Static and modal anal-

yses are carried out to check that the functional requirements of the experimental test

rig are satisfied: the results show that the deflection under the weight is limited and

the first two natural frequencies are found in a close range of frequencies, precisely at

14.4 Hz and 16.0 Hz (see Appendix B.1). The modal analysis demonstrates that the

higher modes are located at frequencies about one order of magnitude higher than the

second natural frequency, satisfying the requirement of minimal interaction between

the first two modes and the higher modes. The same procedure used before to obtain a

ROM is now implemented: the first two natural frequencies of the system, the imposed

damping ratio, and the mass of the two blocks are used to identify a linear ROM and

its parameters (reported in Tab. 4.5). Once again, the FRFs obtained with FEA and

the associated ROM are remarkably similar, as shown in Fig. 4.14. This demonstrates
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Figure 4.16: Numerical continuation of the ROM, representing model Version 3: back-
bone curves with different piecewise stiffness kp (a) and forced response for kp = 2e4
N/m (b). Linear parameters are reported in Tab. 4.5 while the following nonlinear
parameters and amplitudes of excitation (where applicable) are considered: a = 0.4
mm, kp = {1.25e4, 1.50e4, 1.75e4, 2.00e4, 2.15e4} N/m, µ = 3e7 N/m3, µd = 1e7 N/m3,
δ = 190000, Q1 = 0 N, and Q2 = 0.4 N.

the suitability of the identified ROM in representing the dynamics of the system under

the hypothesis of linear behaviour.

Nonlinear Linear Analysis and Final CAD Assembly

The CAD assembly of the third version of the test rig is shown in Fig. 4.15: as demon-

strated the model satisfies the practical constraints, allowing the presence of the shaker

and the adjustable motion limiting constraints. It is worth noticing that the compo-

nents representing the masses are re-designed: now their position can be adjusted along

the parallel beams by simply shifting and clamping the squared blocks, allowing for the

creation of different configurations of the system.

Finally, nonlinear analyses are performed via numerical continuation to understand

if the proposed configuration possesses the required nonlinear features, i.e. the bi-

furcation of the backbone curves and the presence of isolas in the forced response.

The numerical continuation analyses are performed using the identified parameters of

Tab. 4.5 and the following ones: Q1 = 0 N, Q2 = 0.4 N, µ = 3e7 N/m3, µd = 1e7

N/m3, kp = 2e4 N/m, and a = 0.4 mm. Once again the non-smooth characteristic is

approximated with a sigmoid function, and the distortion error is limited to 3.5 % of
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the non-contact gap. This results into a parameter δ = 190000. The backbone curves

are now computed by varying the stiffness of the piecewise characteristic rather than

the non-contact gap. In particular, the backbones curves of the first mode are com-

puted using kp equal to 1.25e4, 1.50e4, 1.75e4, 2.00e4, and 2.15e4 N/m. Fig. 4.16(a)

shows the results of the parametric study: the figure demonstrates that the backbone

curve generates a bifurcation branch when the piecewise stiffness kp is large enough.

In the specific case, kp = 1.50e4 N/m is sufficient to generate the bifurcation of the

backbone curve. These results, along with the previous nonlinear analyses of Fig. 4.8

and Fig. 4.9, demonstrate that the bifurcation of the backbone curve can be induced by

either increasing the piecewise stiffness or reducing the non-contact gap. The presence

of period-doubling isolas in the frequency response of the system, instead, is demon-

strated by computing the forced response of the system. To this end kp is set equal

to 2e4 N/m and the FRC is computed. The results are reported in Fig. 4.16(b): the

figure shows the presence of a period-tripling isola I10 completely detached from the

main branch B1. The isola is found after the first grazing bifurcation (around 13 Hz)

and produces large amplitude steady-state responses that persist for about 2 Hz. In

this case, the force is large enough to trigger the bifurcation of the main branch B1

which becomes unstable.

From a preliminary design point of view, the proposed model (Version 3) has demon-

strated to satisfy the product design specification in terms of research objective, func-

tional requirements, nonlinear dynamic features, and data format. Practical constraints

are also satisfied as the experimental model can be analysed using the available sensors

and instruments, i.e. three unidirectional accelerometers, a single-point laser vibrom-

eter, and a dynamic load cell. In addition, the 3D CAD has demonstrated that the

proposed configuration respects the volume constraints imposed by the dimension of

the table and the shaker. Finally, the usage of fast prototyping techniques like addi-

tive manufacturing and cost-effective materials like PLA, allows the proposed model to

satisfy the resource constraints in terms of budget and time.
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4.4 Test Rig Design: Experimental Adjustments

The model obtained from the preliminary design (model Version 3) is manufactured

and assembled in the Space and Exploration Technology Laboratory of the University

of Glasgow. Although the numerical model shows the required dynamic features, prac-

tical experimental tests and adjustments are necessary to prove their existence in an

experimental setup. To this end, the dynamic behaviour of the test rig is investigated

experimentally by performing frequency sweeps. One of the main problems encoun-

tered during these tests is associated with the excitation mode. During the numerical

analyses, the system is excited by a perfect sinusoidal force that is applied to one mass

of the system. This excitation mode is particularly difficult to replicate experimentally

using the available shakers, as they necessitate direct connection with the structure.

This connection, indeed, influences the dynamics of the test rig, limiting the maxi-

mum amplitude of response of the excited mass and reducing the nonlinear dynamic

behaviour of the system. Therefore, different excitation conditions are experimentally

tested to prove the presence of the required dynamic features, including a sufficiently

large amplitude of response on both masses, capable of triggering nonlinear dynamic

phenomena like jumps.

4.4.1 Directly Forced System

As an initial experimental trial, the model is manufactured and excited following the

product design specifications. The components are manufactured and engineered so

that these specifications are respected. Fig. 4.17 shows the assembled two-mass model

in two configurations: fixed shaker and suspended shaker. The model shows the pres-

ence of the two masses, the motion limiting constraints , and the adjustable supports.

The motion limiting constraints are designed so that they can be adjusted to repro-

duce different piecewise characteristics: the piecewise stiffness can be changed by using

different contact springs and symmetrical and unsymmetrical gaps can be achieved by

adjusting the position of the motion limiting constraints . The blocks, instead, can

regulate their masses by housing internally metallic components (see Fig. B.3). In ad-
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Figure 4.17: Experimental test-rig with fixed (a) and suspended (b) shaker.

dition, they allow the correct contact with the external springs and present attachments

for the connection to the shaker. In both the shaker configurations, a stinger is used

to minimise the misalignment forces produced by the shaker. The suspended configu-

ration transmits less reaction forced to the excited mass therefore it is chosen to carry

out the initial experimental test to verify the dynamic behaviour of the experimental

test rig. The test consists of verifying that given a certain excitation condition, the

system behaves as a two-DOF system and shows nonlinear dynamic behaviours. To

facilitate the analysis, the experiments are conducted in the absence of motion limiting

constraints and the nonlinear FRC is obtained by imposing large amplitude excitation

so that nonlinear dynamic phenomena, like jumps between stable dynamics responses,

are achieved. Before the measurement of the FRC, the underlying linear behaviour

of the system is analysed by applying a low-amplitude random excitation. The trans-

fer functions from load input to the output displacement are acquired with the unit

DataPhysics Abacus 901 (DP-901) and with the aid of the commercial software Signal-

Calc 900 Series. To this end, two unidirectional accelerometers (PCB Piezotronics,

model: 352C22) are used to measure the output acceleration of the masses and a load

cell is used to measure the excitation force, as shown in Fig. 4.17. The results are

reported in Fig. 4.18 where the amplitude and the phase of the system at the position

of the first and second mass are shown in terms of mobility (Transfer Function (TF)

between velocity and excitation force). The figure shows the presence of two peaks
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Figure 4.18: Bode diagram of the experimental TF. Panels (a,b) show the amplitude
of the first and second mass while panels (c,d) show the associated phase.

in the frequency range of investigation, i.e. 11-16 Hz, with the natural frequencies of

the experimental test rig (12.6 Hz and 14.7 Hz) close to the ones predicted by the

numerical simulations of the preliminary design (14.3 Hz and 16.0 Hz). The FRC is

obtained by performing forward/backward frequency sweeps using a sinusoidal excita-

tion. During the experiments, the frequency sweeps are obtained by changing discretely

the excitation frequency and, after every change, the excitation is kept constant for a

certain amount of time to let the transient dynamics die. This allows the measurement

of the steady-state response from which it is possible to compute the amplitude of

the response. Then, the frequency is changed again and the process is repeated until

the desired frequency range is not completely covered. To simplify the experimental

procedure, the time history of the two masses is measured for the entire frequency

sweep. Then, to obtain the FRC, the signal is divided into chunks. In each chunk

the frequency of excitation is constant and the amplitude of the response is computed

from the steady-state portion of the signal, averaging its amplitude. An example of

the averaging procedure is provided by Fig. 4.19: the maxima and the minima over Np

periods of the steady-state signal are recorded. Then maximum and minimum values

are averaged and they are used to compute a robust estimation of the system amplitude
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Figure 4.19: Averaging process: time history of the second mass at Ω = 11 Hz. The
blue and red dots indicate the identified maxima and minima of the signal that are
then averaged to obtain the amplitude of the signal.

Figure 4.20: FRC for the experimental model with suspended shaker.

of response. During the averaging process, it is important to select a suitable number

of periods Np. This must be equal or larger than the number of periods required to

complete an entire limit cycle. In this way, subtle bifurcations such as period-doubling

bifurcations are not missed. In the case of Fig. 4.19, the periodic steady-state response

is completed after one excitation period, therefore Np ≥ 1 allows to correctly average

the amplitude of the system. Numerical integration is used to obtain displacement

and the velocity of the two masses, from the measured accelerations. The described

procedure is used to compute the FRC of the experimental test rig with the suspended

shaker. The resulting FRCs in terms of the amplitude of the first and second mass are

reported in Fig. 4.20. The FRC is reported on the same scale to emphasise the differ-
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ence in amplitude between the two masses. Two different aspects should be noted: the

FRC of the first mass shows the presence of a single peak and the amplitude of the FRC

of the second mass is practically constant. This behaviour is caused by the presence

of the shaker which constrains the excited mass and does not allow it to reach a large

amplitude of response, capable of triggering nonlinear dynamic behaviour. This results

in the presence of a single peak in the FRC, and in the impossibility of evaluating the

behaviour of both the system modes in the nonlinear regime.

The presented preliminary experimental analyses provided important information

about the dynamics and the problems of the experimental test rigs. Firstly, the system

behaves as expected in the linear regime, showing two peaks in the frequency range of

interest and experimental resonant frequencies close to the ones predicted by the FE

model. This is demonstrated by the analyses of the underlying linear system reported in

Fig. 4.18. On the other hand, the preliminary nonlinear analysis showed the presence

of desired and unwanted dynamic behaviours. Fig. 4.20 (a) shows the presence of

the desired nonlinear hardening response in the FRCs. This is demonstrated by the

presence of jumps and bending of the first resonant peak towards higher frequencies

of excitation. Nonetheless, unwanted behaviours are also present in the FRCs and are

mainly associated with the over-constrained motion of the excited mass: the selected

excitation mode, indeed, requires a direct connection between the mass and the shaker,

causing the shaker to influence the dynamics of the system. Although a certain degree

of dynamic interference from the shaker is expected, especially when no dedicated

controllers are implemented, the effect of the shaker on the experimental test rig is so

strong that the second resonant peak is practically removed from the considered FRC.

This is especially true if only the amplitude of response of the masses is considered.

The presence of a second mode can only be revealed by analysing the amplitude of the

force (see Fig. B.4) during the frequency sweep. The amplitude of force is substantially

reduced at the two linear natural frequencies of the test rig, indicating the presence

of the resonance condition. Although this is sufficient to obtain a TF with two peaks

in the linear regime, this condition can not be extended to the nonlinear regime of

the structure as the response of the system changes with the excitation amplitude,
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Figure 4.21: Experimental Test Rig #1. The figure represents the version of the ex-
perimental model without (a) and with the motion limiting constraints (b). Panel (c)
shows the experimental setup [2].

leading to a distorted equivalent nonlinear TF. Therefore, it is necessary to change

the excitation mode, so that the excited mass is not over-constrained by the shaker

and can reach large amplitudes of response, capable of triggering nonlinear dynamic

phenomena.

4.4.2 Base Excited System

To solve these problems, the experimental test rig is modified so that the excitation

of the shaker does not directly interfere with the motion of the mass. To this end,

the base excitation is chosen as a possible candidate to solve this problem. One of the

supports is modified and the new configuration of the experimental test rig, named

Test Rig #1 is shown in Fig. 4.21. The figure shows the experimental model with

and without motion limiting constraints (Fig. 4.21(a,b)), and the experimental set-

up which consists of two unidirectional accelerometers, a point laser vibrometer, and

National Instrument (NI) Data Acquisition System (DAQ). The shaker (LDS-V403) is

now used to support the loads and the weight of the experimental model. The new

support excites the system from one end: this avoids constraining the natural motion

of the second mass at large amplitudes of response and, at the same time, it allows
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Figure 4.22: FRC of Test Rig #1 in terms of displacement of (a) first and (b) second
mass for forward and backward frequency sweeps. The FRCs are obtained by applying
a constant voltage amplitude equal to 0.4 V.

preserving the general design of the structure. The nonlinear experimental analysis

with forward/backward frequency sweeps is now repeated with the new experimental

model. This experimental test rig has the same dimensions as the previous one (see

Tab 4.4), except for am and bm which are set, respectively, equal to 90 mm and 160 mm.

Finally, the mass of the block has changed and is set equal to 113.0 g. The resulting

FRC is reported in Fig. 4.22; the FRC curve is obtained by applying a sinusoidal

voltage with an amplitude equal to 0.4 V, and in the new excitation configuration,

shows the presence of two peaks. The nonlinear hardening behaviour is testified by the

jumps experienced by the system in both forward and backward analyses. In addition,

the system responds as a two DOF nonlinear system showing comparable amplitude

of response on both masses. At this stage all the product design specifications are

satisfied, therefore the proposed configuration is used to carry out a full experimental

analysis whose results are discussed in Chapter 5.

4.5 Summary

This chapter discusses the numerical design and experimental adjustment of an exper-

imental test rig. Firstly the product design specifications are described and then a

preliminary design of the system is proposed, using numerical simulations. The design
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exploits common tools for the analysis of mechanical systems like FEA and CAD, as well

as more advanced ones like numerical continuation. FEA is used to obtain the required

system dimensions, paying attention to the functional requirements. Nonetheless, to

reduce the computational effort of simulations, FEAs are limited to investigating the

linear behaviour of the system in the frequency domain. CAD is used in parallel to

check that the designed system is compliant with practical requirements, such as com-

patibility in terms of space for shakers, motion limiting constraints, sensors, etc. The

nonlinear behaviour of the system in the frequency domain is analysed with a ROM.

This model is derived and its parameters are identified by using the analyses of the FE

model and the knowledge of the geometry and inertia properties of the system. The

ROM is then used to conduct the design of the experimental test rig from a nonlinear

perspective: to this end, the numerical continuation is employed and the sought nonlin-

ear features, i.e. isolas and bifurcation of the backbone curves, are investigated through

parametric analyses for three different versions of the initial design. The results show

that the bifurcation of the backbone curve is affected by the cubic nonlinearities (µ

and µd), the stiffness of the piecewise characteristics (kp), and the non-contact gap (a).

In addition, the parametric study reveals that large smooth hardening stiffness does

not lead to the generation of a bifurcation on the backbone curve. On the other hand,

the piecewise stiffness characteristic is shown to have an opposite effect on the bifur-

cation of the backbone curve, inducing the bifurcation when its effect is predominant

in the dynamics of the system, e.g. when small non-contact gaps and large contact

stiffness are present. After accurate dynamics analyses and engineering evaluations,

the final version (model Version 3) of the test rig is obtained from the preliminary de-

sign. This version of the system satisfies all the product design specifications, including

the constraint in terms of resources (time and budget) available. This model is then

manufactured and tested experimentally in different experimental conditions, to check

that all the product design specifications are satisfied. Firstly, the shaker is placed in

contact with the excited mass using two possible configurations: fixed or suspended. In

these conditions, the second mass is not able to generate a large amplitude of response,

as it is constrained in its motion by the shaker. To solve this problem, a re-design of
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the excitation conditions is taken into account: the excitation point is moved from the

second mass to one of the supports to simulate a based-excited system. The required

dynamic behaviour of the system is proven by the experimental FRC which is measured

again in the new configuration. The test demonstrates that both the masses are free

to reach amplitudes of response capable of triggering nonlinear dynamic behaviours,

satisfying the product design specifications in actual experiments.
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Chapter 5

Experimental Dynamic

Behaviour of

Multi-Degree-of-Freedom

Non-Smooth Systems

5.1 Introduction

This chapter introduces the experimental analysis of the previously designed and tested

nonlinear test rig. The following points are discussed:

• Section 5.2 shows the results of the experimental Test Rig #1 with and with-

out motion limiting constraints. The experimental analyses demonstrated the

presence of complex dynamic behaviours with quasi-periodic, chaotic, and multi-

periodic steady-state responses when the motion limiting constraints are used.

Evidence about the presence of detached isolas and bifurcation of the backbone

curve is highlighted by comparing experimental features with the previous nu-

merical analyses.

• Section 5.3 introduces the problems and the limitations of Test Rig #1, in par-

ticular regarding the amplitude of excitation of the base. To this end, a vibrating
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table is built and added to the experimental setup, and a control algorithm is

implemented to control the amplitude of excitation when frequency sweep tests

are performed. The resulting test rig, named Test Rig #2, is experimentally stud-

ied. The section terminates by discussing the results of the experimental analysis

when the amplitude of displacement is controlled.

5.2 Experimental Results: Test Rig #1

In this section, the experimental analysis of Test Rig #1 is described and analysed to

obtain more insights into the dynamics of the system. The test rig is obtained from the

design study conducted in the previous chapter, and it is shown in two configurations

in Fig 4.21. During the experimental analyses, the model is mounted on a vibration

isolation table to avoid interference from external sources.

5.2.1 Underlying Linear Behaviour of Test Rig #1

Figure 5.1: Experimental averaged mobility of the two masses in terms of amplitude
(a,b) and phase (c,d). Panels are associated with the first (a,c) and second (b,d) degree
of freedom.

The underlying linear behaviour of the system is obtained by applying random exci-

tation with low amplitude, as it allows reducing the effect of the nonlinearities, resulting

in an averaged linear FRF [7,74]. As described in the previous section, the underlying
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Table 5.1: Sensors configurations in the experimental analyses of the test-rig #1.

Experimental Set-up Mass 1 Mass 2 Base
Without Motion Constraints Acc. n.44 Acc. n.46. Laser Vib.
With Motion Constraints Laser Vib. Acc. n.46. Acc. n.44

linear behaviour is experimentally measured using the commercial software SignalCalc

900 Series along with the unit DataPhysics Abacus 901 (DP-901). This allows obtain-

ing an averaged TF which is measured multiple times during the experimental test.

The linear TFs are evaluated with the estimator H2, considering the acceleration of the

excited extremity as input and the velocity of the masses as output. A laser-vibrometer

(Polytec PVD 100) and two accelerometers (PCB Piezotronics Model: 352C22, n.44

and n.46) are utilised to measure the velocity and the acceleration of the masses and

the exciting support in different configurations, as described by Tab 5.1. During the

measurement of the underlying linear behaviour, the motion limiting constraints are

removed to facilitate the experimental analysis. The resulting linear TFs are shown

in Fig. 5.1 in terms of amplitude and phase. As expected, two peaks are found in the

TFs testifying to the presence of multiple excited modes in the considered frequency

range. The coherence of the TFs is steady and close to one in the frequency range of

investigation with minimum values of 0.97 and 0.87 for the TF associated with the first

and second mass (see Fig. B.5). This guarantees that the noise is low, the effect of

the nonlinearities is limited, and the obtained TFs are representative of the underlying

linear system.

5.2.2 Smooth Nonlinear Behaviour of Test Rig #1

To understand the nonlinear behaviour of Test Rig #1, forward/backward sinusoidal

frequency sweeps are applied to the structure. The analysis is carried out at diverse

excitation amplitudes: these amplitudes are used to obtain the FRCs of the two-mass

system at different excitation conditions. During the experiments, the physical ampli-

tude of the shaker (LDS-V403) is not directly controlled, therefore, the input voltage
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Figure 5.2: Comparison between the underlying linear FRF (dashed black line) and
the nonlinear FRC (square and circular markers). To compare the two frequency re-
sponses, the TF obtained with low-amplitude and random excitation is multiplied by
an amplitude of 0.1 V, the same utilised to obtain the associated FRC. The frequency
responses are reported in terms of displacement of the first (a) and second (b) mass.

of the shaker is considered as the excitation control parameter 1. For each experiment,

the frequency range of 11 - 16 Hz is investigated, applying a frequency variation of 0.1

Hz. To reach the steady-state condition, the input signal is maintained for 30 seconds.

The experiments consist of recording the time histories of the two masses and the base.

The FRCs are obtained via time-history post-processing which involves operations of

integration, time cropping, filtering, and averaging, as as previously outlined in Chap-

ter 4. The National Instrument data acquisition system (NI cDAQ-9174, NI 9234)

and the analogue output module (NI 9263) are used to produce the voltage signal and

to record the system responses. Differently from the linear TFs, the dynamics of the

shaker are not removed in this case, but they are included in the experimental mea-

surements of the FRC. Therefore, subsequent numerical analyses should consider this

problem and utilise the experimental motion of the exciting constraint as input signals

for the simulations. The experimental measurements are performed in two stages: in

the first one, the FRCs of the test rig are measured without motion limiting constraints

at different levels of excitation amplitude, namely 0.1 V, 0.2 V, 0.3 V, and 0.4 V, for

1As shown in Fig 4.21, the experimental set-up utilises an amplifier. To know the exact voltage
input the amplified value is kept constant and equal to one during the experimental tests.
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forward and backward frequency sweeps. This permits the analysis of the nonlinear

behaviour of the system in the presence of only smooth nonlinear characteristics. The

resulting FRCs are reported in Fig. 5.2 and Fig. 5.3. Fig. 5.2 shows the comparison

between experimental frequency responses when an amplitude of excitation of 0.1 V

is considered: the dashed line indicates the underlying linear FRF while the markers

denote the FRC, obtained from forward and backward frequency sweeps. The FRF is

derived from the TF between the voltage input and the displacement output of the two

masses. To obtain an amplitude of response in meters, the TF is multiplied by 0.1 V.

In this way, the obtained FRF represents the linear dynamic behaviour of the system

at the amplitude of 0.1 V. The FRC, instead, shows the full nonlinear response of the

system at 0.1 V, as it is obtained with sinusoidal excitation. Fig. 5.2 shows that the

amplitude of the FRC is very close to the amplitude of the linear FRF in the whole

investigated frequency domain, except at the resonance peaks, where the amplitude of

the response is large enough to develop the nonlinear response of the structure. The

good match between the two independent experimental measurements, i.e. the FRF

and the FRC at 0.1 V, in terms of qualitative and quantitative behaviour highlights the

robustness of the experimental study and shows the high quality of the experimental re-

sults. To have a clear understanding of the system dynamics, the FRCs are measured at

higher excitation amplitudes, namely 0.2 V, 0.3 V, and 0.4 V. The results are reported

in Fig. 5.3: by increasing the amplitude of excitation the system shows the presence

of jumps and regions of frequency where high- and low-amplitude responses co-exist.

The presence of hardening stiffness limits the amplitude of the response, bending the

peaks towards higher frequencies. The backward frequency sweep measurements allow

measuring the low-amplitude responses which did not emerge with forward-frequency

sweep experiments.

5.2.3 Non-Smooth Nonlinear Behaviour of Test Rig #1

In the second phase of the experimental analysis, the dynamic response of the test rig

is measured when a piecewise stiffness characteristic is present. To this end, the motion

limiting constraints are mounted on the experimental test rig so that the contact be-
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Figure 5.3: Nonlinear frequency response curves for different excitation amplitude
(smooth system - Test Rig #1). The frequency responses are reported in terms of
amplitude of displacement of the first (a) and second (b) mass.

tween the mass and impact springs occurs at an amplitude of response equal to 0.4 mm.

This amplitude represents the non-contact gap, which is set symmetrically on both sides

of the impact mass. Two elastic linear springs, with a stiffness of 11.96 N/mm, are

mounted on the external supports to simulate the presence of a medium/hard contact.

The FRC of the experimental test rig, under harmonic excitation, is measured again

using the procedure outlined before and imposing three different levels of excitation

amplitude: 0.2 V, 0.3 V, and 0.35 V. Fig. 5.4(a) shows the resulting nonlinear FRCs

of the impacting mass (mass 1) for the three considered levels of excitation amplitude.

The amplitude of excitation is limited to 0.35 V to avoid damaging the experimental

test rig. The three FRCs of Fig. 5.4(a) show that the presence of the piecewise stiff-

ness characteristics deeply affects the dynamics of the experimental test rig, limiting

the amplitude of response of the impacting mass and introducing complex dynamics.

To better understand the dynamics of the system, the orbits of the impacting mass

are shown at different frequencies of excitation Ω, for the three considered levels of

excitation. For the sake of simplicity, only the orbits associated with the forward fre-

quency sweep experiments are shown. The orbits are reported in the bottom part of

Fig. 5.4: each column shows the phase-portraits of the first mass for four different
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Figure 5.4: Experimental FRCs of the Test Rig #1 with motion limiting constraints .
The amplitude of the first mass for forward/backward frequency sweeps is reported in
panel (a). The remaining panels (b1-e1) show the orbits of the first mass for forward
frequency sweeps [2].

excitation frequencies, namely 11.8 Hz, 12.2 Hz, 13.4 Hz, and 14.9 Hz, while each row

illustrates the orbits for a certain excitation amplitude, i.e 0.2 V (grey), 0.3 V (black),

and 0.35 V (orange). When the excitation frequency Ω is set equal to 11.8 Hz, the

119



Chapter 5. Experimental Dynamic Behaviour of MDOF Non-Smooth Systems

system responds with circular (deformed) single-period orbits for the three excitation

levels, as shown in Fig. 5.4 (b1, b2, b3). At Ω = 12.2 Hz, the single-period circular

orbit is found only for the first excitation level (0.2 V). The associated phase portrait

(Fig. 5.4 (c1)) shows a particularly deformed orbit which is limited in displacement by

the presence of the motion constraints. When higher excitation amplitudes are applied

to the system, multi-periodic dynamic responses appear, as shown by phase portraits of

Fig. 5.4 (c2,c3). The new multi-periodic orbits are associated with an increased ampli-

tude of response of the system in the FRCs, between 12-12.4 Hz. In that region of the

frequency domain, the FRCs of Fig. 5.4 (a) shows the presence of co-existing steady-

state responses. The low-amplitude branch represents the evolution in frequency of the

single-period dynamic response as suggested by phase portraits in panels (b1) and (c1).

The high-amplitude branch, instead, is associated with the multi-periodic dynamic re-

sponses and it might be due to the presence of a detached isola or bifurcating branch

of the FRC. At further higher frequencies of excitation, the experimental test rig shows

different dynamics. When the excitation frequency Ω is equal to 13.4 Hz, the low ampli-

tudes of excitation induce quasi-periodic/chaotic responses in the experimental system,

as shown by panels (d1) and (d2). This behaviour is triggered by the interaction of

the second mode of the system and the contact stiffness. At the highest excitation am-

plitude (0.35 V), instead, the system responds with a severely deformed single-period

response (named degenerate orbit) as depicted in Fig. 5.4 (d3). This dynamic response

is associated with the first resonance peak of the FRC and it is very similar to certain

dynamic features encountered during the numerical analysis of Chapter 3. Specifically,

the phase portrait of panel (d3) shows an experimental dynamic orbit that is very close

to the numerical one named PO2 (see Fig. 3.10). As demonstrated in Chapter 3, PO2

belongs to the branch B2 which originates from branch B1 and exists only when the

backbone curve presents a bifurcation point. In addition, the change of shape of the

experimental orbit suggests the presence of a bifurcation in the stable branch described

by single-period impacting orbits. Once again, this behaviour is very similar to the one

encountered in Chapter 3, and underlines the presence of a bifurcation of the back-

bone curve (see also [1]). Therefore, the presence of the degenerate orbit is considered
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Figure 5.5: Poincaré sections of the steady-state dynamic orbits described in Fig. 5.4
(b1-e3). The sections are obtained by considering the plane x2 = 0 [2].

strong evidence of the presence of a bifurcation of the backbone curve in the investi-

gated experimental test rig. Finally, when Ω = 14.9 Hz, the FRCs show the presence

of multi-periodic and torus co-existing attractors, as revealed by panels (e1), (e2), and

(e3) of Fig. 5.4. In this case, the analysis of the phase portraits does not provide a clear

understanding of the dynamics of the system. Therefore, the Poincaré sections of the

previously analysed orbits are computed and reported in Fig. 5.5. The figure shows 12

panels whose organisation in rows and columns is equivalent to the panels (b1-e3) of

Fig. 5.4.

In the Poincaré diagrams, single-period orbits generate a single point, as shown in

Fig. 5.5 (a1, a2, a3, b1, c3). Differently, multi-periodic responses result in multiple

points in the Poincaré sections, as demonstrated by panels (b2, b3) of Fig. 5.5. The

remaining dynamic orbits are associated with the second resonance peak of the FRC

and can be found in the range between 13 Hz and 16 Hz. In that portion of the frequency
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domain, the second mode of the system is mainly excited and leads to quasi-periodic

and chaotic regimes when contact occurs. This dynamic behaviour is aligned with

the numerical analyses conducted in Chapter 3 which demonstrated the presence of a

Neimark-Sacker bifurcation in the second resonant peak. In particular, panels (c1) and

(c2) of Fig. 5.5 show the presence of distorted invariant circles in the Poincaré sections:

this suggests the presence of quasi-periodic dynamics in the experimental system when

the second mode is excited. Furthermore, Fig. 5.5 (d1), illustrates a phase-locked

condition [127] for which the invariant circle degenerates in multi-periodic orbits. This

phenomenon typically happens in structures that exhibit quasi-periodic oscillations

due to contact [127] and consists of the formation of multi-periodic responses that

live on a torus. Interestingly, these multi-periodic dynamics may generate a complex

network of detached isolas in an MDOF piecewise system, as demonstrated in [1] and

in the previous chapters. Finally, panels (d2) and (d3) of Fig. 5.5 show experimental

Poincaré sections that represent the phase-locked condition. In this case, differently

from before, the phase-lock condition is not fully developed but rather the dynamic of

the system is stuck into an intermediate state between quasi-periodic/chaotic behaviour

and multi-periodic response. To investigate the route to chaos and the phase-locking

phenomena [127], other steady-state dynamic responses of the experimental test rig

are analysed via Poincaré sections. Specifically, the experimental dynamic responses

obtained with an excitation amplitude equal to 0.2 V and an excitation frequency

comprised between 13.3 - 13.6 Hz and 14.7- 15.0 Hz are considered. The results are

reported in Fig. 5.6 where phase-portraits and the Poincaré sections are shown for the

first mass. The route to chaos is represented in the panels (a, b, c, d) of Fig. 5.6: at

Ω = 13.6 Hz the system shows the presence of an invariant circle; then reducing the

frequency of excitation a torus-doubling (panel (c)) is found at 13.5 Hz. A further

decrement in the excitation frequency leads to the generation of chaos in the system

as shown by Fig. 5.6 (a) and (b). The phase-locking mechanism is instead described

by panels (e, f, g, h) of Fig. 5.6: moving from low to high frequency of excitation, the

experimental system transitions from quasi-periodic dynamics (panels (e) and (f)) to

a multi-periodic attractor (panel (g)) to a quasi-periodic dynamics (panel (h)) again.
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Figure 5.6: Poincaré sections (gray dots) and periodic orbits (black line) of the ex-
perimental test rig (first mass) at different frequencies of excitation. All sections are
obtained by considering the plane x2 = 0 [2].

When the system is ’locked’ into the multi-periodic dynamics, the associated Poincaré

section is characterised by the presence of multiple points and the invariant circle

disappears as shown in Fig. 5.6 (g).

The experimental analysis of the system revealed the presence of a complex and

rich dynamic scenario with multi-periodic, chaotic, and quasi-periodic responses. More

importantly, experimental evidence about the presence of detached multi-periodic iso-

las and bifurcation of the backbone curves are found. Nonetheless, only through the

identification, validation, and analysis of an equivalent mathematical model is possible

to demonstrate the presence of these phenomena.

5.3 Experimental Results: Test Rig #2

Although the previous experimental analysis provided useful insights into the dynam-

ics of the system, the dynamics of the shaker cannot be removed from the nonlinear

response of the system. This makes particularly challenging the comparison between

experimental data and numerical simulations, especially when numerical continuation

techniques are employed. The presence of the shaker dynamics affects the physical
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excitation amplitude of the system, making the amplitude of motion of the base non-

constant (see Fig B.6) [2, 4].

To solve this problem a control system is developed and implemented in the designed

test rig. To distinguish the experimental results, the modified test rig is called Test

Rig #2. Fig. 5.7 shows the modified test rig: different dimensions of the system are

used to accommodate the presence of a vibrating table, which is used to provide the

excitation to the system. The vibrating table is constituted of a metallic structure

Vibrating Table

Laser Vibrometer

Shaker

Optical Laser

Mass 1

Accelerometer

Support Mass 2

Stopper

Figure 5.7: Experimental Test Rig #2.

and is supported by bearings which allow the transversal motion of the system. This

motion is close to a modal excitation for the considered system, thus it is expected that

it mainly excites the first motion of the structure. In the new configuration, each block

(mass 1 and mass 2) has a mass of 136.5 g. The blocks are separated by 165.0 mm

while the distance between the support and each block is equal to 85.0 mm (symmetric

configuration). This leads to a slight change in the natural frequencies of the system

which need to be identified once again.
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Figure 5.8: Control architecture for Test Rig #2 [3].

5.3.1 Control System Architecture of Test Rig #2

The experimental measurements are performed using an accelerometer (PCB Piezotron-

ics Model: 352C22) and two lasers: a single-point vibrometer (Polytec PVD 100) and a

single-point optical laser (Micro-Epsilon optoNCDT 1402). The accelerometer is used

to measure the response of the second mass (not subjected to impact), the laser vi-

brometer is used to measure the velocity of the first mass (subjected to impact in the

non-smooth configuration of the test rig), and the optical laser is used to measure the

displacement of the vibrating table. The latter sensor is also used as a feedback sensor

for controlling the amplitude of the displacement of the vibration table. The closed-

loop control system is implemented in the experimental setup by using the control

unit dSPACE (CP1104). The designed control system is schematically represented in

Fig. 5.8 where dashed boxes indicate inputs/outputs of the control unit. As a first step,

the unit reads the displacement of the vibrating table (dbase), the velocity of the first

mass (vM1), and the acceleration of the second mass (aM2) and display them for user

inspection. The displacement of the vibrating table is then filtered and a Root Mean

Square (RMS) online function is used to estimate its amplitude. The online function

estimates the amplitude of the fundamental sinusoidal component of the signal, using

the RMS operator. The control system tries to control the measured amplitude by com-

125



Chapter 5. Experimental Dynamic Behaviour of MDOF Non-Smooth Systems

Table 5.2: Experimental displacement amplitudes of the vibrating table in closed-loop
control mode.

Experiment Mean Standard dev.
Forward Sweep (0.03 mm) 3.02× 10−5 m 1.47× 10−6 m
Backward Sweep (0.03 mm) 3.01× 10−5 m 2.48× 10−8 m
Forward Sweep (0.04 mm) 4.00× 10−5 m 1.03× 10−6 m
Backward Sweep (0.04 mm) 4.02× 10−5 m 3.11× 10−8 m
Forward Sweep (0.05 mm) 5.01× 10−5 m 6.41× 10−7 m
Backward Sweep (0.05 mm) 5.02× 10−5 m 3.81× 10−8 m

paring it with the imposed one (d̃amp). To this end, a Proportional-Integral-Derivative

(PID) controller is utilised. The control of the RMS-based amplitude requires signif-

icantly lower control effort than controlling the actual sinusoidal signal. In addition,

as demonstrated by previous studies [6, 128], the control of the RMS-based amplitude

produces good results and enables the comparison between experimental data and nu-

merical simulations obtained from perfect sinusoidal excitation. The output of the PID

controller represents the amplitude of the voltage signal that is passed to the shaker: in

order to prevent excessively large amplitudes of excitation, the amplitude is limited by

a saturation function. Finally, a signal generator is used to create a sinusoidal signal

with the required frequency (d̃frq) which is passed to the shaker as voltage input.

To evaluate the capabilities of the controller, the amplitude of the vibrating table

during sinuoidal frequency sweep tests is computed from experimental data for three

excitation conditions, namely when the base amplitude is imposed equal to 0.03 mm,

0.04 mm, and 0.05 mm. At each frequency of excitation, the amplitude of the vibrating

table is computed using the following expression:

Avt(Ω) =
√
2

√√√√ 1

n

P∑
i=1

xvt(ti)2, (5.1)

where xvt(ti) represents the i-th component of the time history of the displacement,

Avt(Ω) is the amplitude of the vibrating table at the frequency Ω, and P is the number

of elements of the considered time history. Following the definition of amplitude used

in the control system, Eq. 5.1 estimates the amplitude of the signal, assuming that
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the signal is perfectly sinusoidal. This allows obtaining the actual amplitude that is

controlled by the proposed control system. Eq. 5.1 is used to compute the amplitude

of the vibrating table at each frequency of excitation. These amplitudes are then used

to compute the mean and standard deviations for an entire frequency sweep. Tab. 5.2

shows the mean and standard deviation of the base amplitude for forward and backward

frequency sweeps experiments for three different imposed excitation amplitude. For

the sake of simplicity, only the experiments without the motion limiting constraints

are considered. The results demonstrate that the proposed control system controls

accurately the amplitude of displacement of the vibrating table as the measured mean

input amplitudes are very close to the imposed ones (reported in brackets) for the

three considered excitation levels. Furthermore, the very small standard deviation

proves that the amplitude has a very low fluctuation during the frequency sweep.

5.3.2 Dynamic Behaviour of Test Rig #2

At this stage, it is possible to perform the experimental analysis of Test Rig #2. As

usual, the underlying linear behaviour is first measured. The linear TFs are obtained

by using the displacement of the masses as the output signal and the acceleration of the

base as the input signal. The measured TFs are obtained through the same procedure

outlined before for Test Rig #1 and the results are shown in Fig. 5.9. The figure shows

the amplitude, phase, and coherence of the measured signal. From Fig. 5.9 (a,b) it is

clear that, in the investigated frequency range (12-20 Hz), two resonances are present

with the first one producing the largest response. This is due to the vibrating table

motion which mostly excites the in-phase motion of the two masses, i.e. the first mode,

generating a larger response around the first natural frequency (15.2 Hz). The change

of natural frequencies, with respect to test #1, is justified by the change in dimensions

and mass of the system. Fig. 5.9 (e) and (f) show the coherence of the measured signals:

this measure is typically used in industrial procedures to estimate and understand the

repeatability of a signal along the considered frequency span. It is worth noting that

the minimum value of the coherence for both resonances is higher than 0.87: this

demonstrates that the system is behaving linearly at the considered level of excitation,
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Figure 5.9: Transfer functions of the underlying linear system (Test Rig #2). The
measured transfer function is reported in terms of amplitude (a,b), phase (c,d), and
coherence (e,f). Panels on the left and right represent the measured quantities for,
respectively, first and second mass.

demonstrating that the identified TFs are a good and robust representation of the

underlying linear behaviour of Test Rig #2.

To trigger the nonlinear behaviour, sinusoidal frequency sweeps are applied to the

experimental system. The nonlinear analysis of the system is initially performed with-

out motion limiting constraints , i.e. using the smooth version of the system, by control-

ling the amplitude of the displacement of the vibrating table. Three different excitation

levels, namely, 0.03 mm, 0.04 mm, and 0.05 mm are used to generate the FRCs of the

system. The system is investigated in the frequency range between 14.5 Hz to 19.5 Hz

where the first two resonant peaks of the underlying linear system are found from the

previous linear analysis. The system is excited with a discrete frequency sweep whose

frequency of excitation is incremented/decremented by 0.1 Hz. For each frequency, the

excitation signal is maintained for 45 seconds to let the transient response die. The
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Figure 5.10: Experimental frequency response curve of Test Rig #2 in the nonlinear
regime without motion limiting constraints . The FRCs are reported in terms of abso-
lute displacement of the first (a) and the second mass (b) [3].

same post-processing used for Test Rig #1 is now applied: the time signal is filtered

with a low pass (150 Hz) and a high pass (2 Hz) filter and then it is divided into blocks

of 45 seconds where the excitation has a constant frequency. Then, averaging and nu-

merical integration/derivation procedures are used to obtain the FRCs. Fig. 5.10 shows

the FRC of the nonlinear system for the three excitation conditions in terms of absolute

displacement of the first and second mass. Once again, the parallel beams induce a

hardening effect on the stiffness of the system which results in the typical hysteresis

loops with resonance peaks bent towards higher frequencies. Differently from Test Rig

#1, the system is controlled in amplitude via a feedback sensor; this might slow down

this transition from high- to low- amplitude of response in the hysteresis loop, therefore

it is important to check that appropriate PID gains are applied before conducting any

experimental tests. During the experiments the transition from high- to low- amplitude

of response is shown to be fast enough to guarantee the recording of the whole FRC. In

addition, the forward and backward amplitude of responses, away from the hysteresis

loop, are very similar, demonstrating the robustness of the experimental analysis and

the obtained FRCs.

The Test Rig #2 is also tested in its non-smooth version using the motion limiting
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Figure 5.11: Experimental frequency response curves of Test Rig #2 when contact
springs with stiffness of 7.87 N/mm and a non-contact gap equal to 0.83 mm are used
in the experimental set-up. The FRC of the first mass is reported in panel (a) in terms
of relative displacement while panel (b1-d2) show different steady-state orbits of the
system in terms of relative coordinates.

constraints reported illustrated in Fig. 5.7. Differently from Test Rig #1, the motion

limiting constraints are moving with the vibrating table, imposing a piecewise stiffness

characteristic on the relative displacement of the masses. Two different conditions

are tested: in the first case, the impacting spring is chosen with a nominal stiffness

of 7.87 N/mm while the second experiment adopts a spring with a nominal stiffness

equal to 11.97 N/mm. The symmetric non-contact gap is set equal to 0.83 mm in the
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first case and to 0.82 mm in the second case. Similar results are obtained in the two

analyses: the two-DOF system response is driven by the first mode therefore only the

first peak of the frequency response reaches an amplitude large enough to trigger the

contact condition. However, when the contact occurs both the modes contribute to

the steady-state response of the system and evidence of the presence of a bifurcation

of the first peak is found in both the analysed configurations. Fig. 5.11 shows the

dynamic steady-state response of the first non-smooth configuration (the same analysis

can be found in Appendix B.1 for the second configuration (Fig B.7)). After the

grazing bifurcation, the system experiences a sudden increase in stiffness which leads

to a reduction in the steepness of the FRC (Fig. 5.11(a)), clearly visible in the forward

frequency sweep analyses. The classical deformed single-period orbit appears in the

experimental test rig, as shown by panels (b2), (d1), and (d2) of Fig. 5.11. In addition,

the system shows the presence of orbits typically found on the bifurcating branch of

the first peak, i.e. branch B2 according to the numerical analysis of Chapter 3. They

are illustrated in Fig. 5.11 (c1,c2) for the amplitude of excitation equal to 0.04 and 0.03

mm. At this low amplitude of excitation, this condition appears only at the highest

frequencies of excitation of the first resonance peak. Nonetheless, the presence of a

fully developed bifurcating branch is not visible. To solve this problem the analysis

is repeated at a higher excitation amplitude, equal to 0.27 mm: at this amplitude,

the grazing condition occurs at lower frequencies thus the analysis is conducted in the

frequency range between 12.5 Hz and 14.5 Hz. The analysis is interrupted at 14.5 Hz

to not damage the experimental model. In particular, the experimental tests at high

amplitude are performed so that the forces and the deformations in the experimental

test rig do not induce structural changes in the system, e.g. movement of the masses or

the motion limiting constraints . This is fundamental to guaranteeing the comparison

between different experiments.

The analysis at high amplitude of excitation shows the presence of a visible bifurca-

tion whose amplitude of response is significantly different from the main branch. The

associated orbits at Ω = 13.9 Hz are reported in panels (b1) and (b2) of Fig. 5.11,

showing the co-existence of different attractors. The first one, reported in panel (b1),
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demonstrates the presence of a degenerate orbit similar to the one associated with the

bifurcation of the first peak (branch B2 in Fig 3.10). The second orbit, instead, has

the typical shape of a single-period orbit subjected to symmetric piecewise stiffness

and it is associated with the main branch of the first peak. Although the numerical

analyses of Chapter 3 showed the presence of these steady-state orbits in the system,

they appeared with different stability. Specifically, in the numerical analysis, the bifur-

cation of the first peak branch induces the main single-period orbit to become unstable,

while the degenerate one is gaining stability. Further analysis should be performed to

demonstrate if the experimental degenerate orbit of Fig. 5.11 (b1) is associated with a

bifurcating branch or a detached isola.

5.4 Summary

This chapter describes the experimental analysis of the designed test rig (Test Rig

#1) and its controlled version (Test Rig #2). Firstly, the dynamics of Test Rig #1

are investigated in terms of underlying linear behaviour, nonlinear frequency response,

limit cycle oscillations, and Poincaré sections. The analysis of the smooth version

of the system shows the presence of a hardening stiffness behaviour in the system,

characterised by the presence of jumps in the FRCs near the system resonances. The

test rig is also analysed in the presence of non-smooth characteristics. To this end, the

external motion limiting constraints are mounted on the table and the experimental

analyses are repeated for different levels of excitation amplitudes. In this case, the test

rig shows the presence of a rich dynamic behaviour, dominated by nonlinear features

like multi-periodic, quasi-periodic, and chaotic responses. The obtained FRCs show the

presence of steady-state multi-periodic orbits which might be associated with isolas or

bifurcating branches. Degenerate single-period impacting orbits are also experimentally

encountered: this orbit was found in previous numerical analyses of Chapter 3 and thus

represents evidence of the possible presence of a bifurcation of the backbone curve. The

analysis of the Poincaré sections confirms the presence of quasi-periodic and chaotic

behaviour, demonstrating that the system reaches chaos via period-doubling tori. In

addition, it is shown that the multi-periodic responses in the second resonant peak are
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generated by lock-in conditions of the quasi-periodic behaviour of the system.

The experimental analyses are repeated using the second test rig: the experimen-

tal model is practically equivalent to the previous one but it is excited by a vibrating

table whose motion is controlled in displacement. This allows to overcome some of the

limitations of the previous test rig. The new test rig, named Test Rig #2, demon-

strates the presence of degenerate orbits and multi-periodic responses similar to the

previous test rig. Once more, these orbits provide further evidence of the presence of

induced bifurcation in the backbone curves and detached isolas in piecewise nonlinear

mechanical systems. Nonetheless, these promising experimental results represent only

evidence of the presence of the above-mentioned nonlinear phenomena in the system

and further analyses are necessary to formally prove their existence. To this end in

the next chapters, the experimental data are used to identify and validate equivalent

nonlinear systems which are then used to conduct detailed numerical analyses.
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Chapter 6

Identification of Multi Degree of

Freedom Systems: The Nonlinear

Restoring Force Approach

6.1 Introduction

This chapter discusses the identification of equivalent mathematical models representing

the dynamics of the experimental test rigs previously introduced. In particular, the

following points are discussed in the sections:

• In Section 6.2, Test Rigs #1 and #2 are experimentally identified when the mo-

tion limiting constraints are removed. The separate identification of linear and

nonlinear contributions in mechanical systems is presented and discussed. Specif-

ically, the identification of the nonlinear contributions is performed by exploiting

meta-heuristic optimisation methods and the knowledge of the experimental fre-

quency response curve. The section provides a discussion about the efficacy of

two meta-heuristic optimisation techniques, i.e. the particle swarm optimisation

(PSO) and the genetic algorithm (GA), in identifying nonlinear systems, using

the experimental data. At the end of the section, the limits of the proposed

identification approach are discussed by assessing the capabilities of the identi-

fied model in capturing the the qualitative and quantitative nonlinear dynamic
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behaviour of Test Rig #2.

• Section 6.3 introduces the Nonlinear Restoring Force (NLRF) method: the method

is developed to overcome some of the difficulties encountered when meta-heuristic

optimisation methods are used. Firstly the mathematical structure of the method

is presented and then numerical examples are provided. Particular attention is

paid to the graphical representation of the nonlinear restoring force surfaces of

the MDOF system, highlighting the advantages and implications in the subse-

quent identification process. Finally, the NLRF method is utilised to identify

the nonlinear characteristics of the two test rigs in different configurations using

experimental data: firstly the method is used to identify a reduced order model

representing the smooth version of Test Rig #2 and then the method is used to

identify the piecewise nonlinear characteristic of the Test Rig #1.

6.2 Experimental Identification via Meta-Heuristic Opti-

misation Methods

In this section, the models representing the linear and nonlinear behaviour of Test Rigs

#1 and #2 are identified. The experimental models are graphically shown in Fig. 4.21

and Fig. 5.7 in two configurations: with and without the motion limiting constraints .

This section focuses on the identification of the experimental test rigs when the motion

limiting constraints are removed. The smooth behaviour of the two-mass system is

identified and the associated nonlinearities are characterised, following the procedure

outlined in [4].

6.2.1 Identification of the Underlying Linear System - Test Rig #1

In Chapter 4, a ROM representing the investigated two-mass system was developed

and validated against the numerical results of a 3D finite element model. Building on

this knowledge, a modified ROM is used to identify the experimental Test Rig #1. The

ROM aims to identify the nonlinear behaviour of the test rig when the motion limiting

constraints are not present, thus it can be represented with a lumped parameter model
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Figure 6.1: Reduced order model representing experimental Test Rig #1 [4].

with cubic stiffness coefficients, as shown in Fig. 6.1. To replicate the experimental

excitation conditions, the model is base excited on one single side. Fig. 6.1 shows

also the locations of the connection elements where µ1, µ2, µ2,b, and µ3 are the cubic

stiffness coefficients, k1, k2, and k3 indicate the linear stiffness coefficients, c1, c2,

and c3 denote the viscous damping coefficients, m is the mass of the system, and y

is the displacement of the moving constraint. The associated equation of motion is

represented by the following expression:

mẍ1 + c1ẋ1 + k1x1 + µ1x
3
1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) + µ2x

3
1 − µ2,bx

2
1x2+

+ µ2,bx1x
2
2 − µ2x

3
2 = 0

(6.1a)

mẍ2 + c3(ẋ2 − ẏ) + k3(x2 − y) + µ3(x2 − y)3 − c2(ẋ1 − ẋ2)− k2(x1 − x2)+

− µ2x
3
1 + µ2,bx

2
1x2 − µ2,bx1x

2
2 + µ2x

3
2 = 0

(6.1b)

The equation of motion representing the system presents unsymmetrical cubic nonlin-

earities. These are introduced to account for the hardening behaviour, demonstrated

by the experimental test rig in the previous experimental analyses, and for facilitating

the identification of the nonlinear characteristics.

The linear behaviour of the system is defined by the linear part of Eq. 6.1; by

considering a sinusoidal input signal y with constant acceleration amplitude, the linear
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receptance H can be expressed as follows:

HA,1 =
X1

Ÿ
=

X2k2 + iΩX2c2

Ÿ (k1 + k2 − Ω2m+Ωi(c2 + c1))
(6.2a)

HA,1 =
X2

Ÿ
=

X1k2 − Ÿ k3
Ω2 + iΩX1c2 − iŸ c3

Ω

Ÿ (k2 + k3 − Ω2m+Ωi(c2 + c3))
(6.2b)

where Ÿ is the complex amplitude of the acceleration input, X1 and X2 denote the

complex amplitudes of the masses displacement, and Ω indicates the forcing frequency

of the excitation. The linear transfer functions, HA,1 and HA,2, represent the numerical

counterpart of the receptance experimentally obtained in Chapter 5 for the Test Rig #1

and graphically described in Fig. 5.1. To identify the linear coefficients of the system,

the experimental linear receptances are utilised; the circle-fit and half power methods [7]

are a straightforward and effective tool to estimate the natural frequencies ωn, modal

damping ratios ζ, and the modal matrix Ψ of an MDOF mechanical system. It is worth

noting, that this method can be applied for the extraction of modal parameters because

the FRF shows that there are two well-separated resonant peaks in the frequency

range of interest. Following this approach, the modal damping ratios and the natural

frequencies can be organised in matrix form:

Z =

2ζ1ω1 0

0 2ζ2ω2

 (6.3a)

Wn =

ω2
1 0

0 ω2
2

 (6.3b)

The modal matrices of Eq. 6.3 are then used to estimate the actual stiffness and damping

137



Chapter 6. Identification of MDOF Systems: Nonlinear Restoring Force Approach

linear coefficients, using the following approach:

M =

m 0

0 m

 (6.4a)

C =

c1 + c2 −c2

−c2 c2 + c3

 = (ΨT )−1(ΨTMΨZ)(Ψ)−1 (6.4b)

K =

k1 + k2 −k2

−k2 k2 + k3

 = (ΨT )−1(ΨTMΨWn)(Ψ)−1 (6.4c)

where M represents the diagonal mass matrix, C is the linear damping matrix, and

K denotes the linear stiffness matrix. The mass matrix M is estimated by measuring

the weight of the two blocks. Each block has a mass of 0.113 kg which is much larger

than the mass of the supporting beams. Following this observation, the system mass

matrix M is estimated on the base of the mass of the two blocks, neglecting the inertia

contribution of the beams. The simple geometry of the investigated test rig allows us

to directly measure the mass of the system. Nonetheless, more sophisticated methods

for the identification of the modal mass are available in the literature [7, 129]. Such

methods can be applied to obtain an estimation of the mass when the approach here

proposed is not feasible. The remaining unknown coefficients are evaluated using the

above-mentioned linear identification methods. Specifically, the circle fit and half-power

methods are used to estimate the natural frequencies ω1, ω2, the damping ratio ζ1, ζ2,

and the modal matrix Ψ of Test Rig #1. Then, Eq. 6.4 are used to estimate the

stiffness K and damping C matrices of the system, from which the linear coefficient of

the system are retrieved.

The obtained set of coefficients represents a preliminary estimation of the linear

dynamics of the system. To further improve the identification of the underlying linear

system, the identified linear coefficients are used as an initial guess for an optimisation

procedure which aims to minimise the difference between the experimental and analyt-

ical transfer functions. Specifically, the amplitude and phase of the analytical transfer

functions are obtained by solving Eq. 6.2a and 6.2b. Then the numerical results are

compared against the experimental counterparts and their difference is minimised to
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Table 6.1: Identified linear coefficients representing the underlying linear system of Test
Rig #1: the estimated coefficients are obtained using well-established linear identifi-
cation methods while the optimised coefficients are obtained through a minimisation
procedure.

Coeff. c1 [Ns/m] c2 [Ns/m] c3 [Ns/m] k1 [N/m] k2 [N/m] k3 [N/m]
Estimated 0.0454 0.0069 0.0370 726.3 85.5 621.5
Optimised 0.0454 0.0075 0.0366 714.9 89.6 624.9

Figure 6.2: Comparison between the experimental and analytical linear transfer func-
tion for Test Rig #1. The amplitude of the TFs associated with the first and second
DOF are reported, respectively, in the left and right panels [4].

reach a more accurate definition of the linear coefficients of the system. The min-

imisation procedure is performed with the aid of the MATLAB function lsqnonlin;

this function implements the Levenberg–Marquardt algorithm, which is suitable for

the optimisation of similar problems. The final results of the optimisation process are

reported in Tab. 6.1. As shown by Tab. 6.1, only the linear stiffness and damping co-

efficients are optimised in the proposed optimisation process. The mass m can be also

considered in the proposed optimisation nonetheless, to reduce the search space of the

optimisation procedure, the mass has not been included. The table demonstrates that

the optimisation process does not induce significant changes in the numerical values

of the linear coefficients, proving the accuracy of well-established linear identification

methods. Fig. 6.2 shows the experimental and analytical receptances for the two sets

of coefficients: the figure demonstrates that the initial estimation with the circle-fit

method is very close to the optimal configuration. Nonetheless, small differences be-
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tween the analytical and the experimental TFs are found in the anti-resonance of the

second FRF. The optimised TFs, instead, provide a slightly better fit of the experi-

mental data. The comparison between experimental and optimised transfer functions

demonstrated that the chosen ROM and the identified linear coefficients provide a good

prediction of the linear behaviour of the test rig. Based on these results, the identified

linear ROM is considered sufficiently accurate and it is used in the next steps of the

identification process.

6.2.2 Identification of the Nonlinear Parameters - Test Rig #1

The identification of a nonlinear model representing Test Rig #1 is based on the previ-

ous linear identification procedure. The idea is to exploit all the available experimental

data, i.e. the linear TFs and nonlinear FRCs, to identify a nonlinear system capable

of capturing the full dynamics of the test rig. The literature offers a plethora of identi-

fication methods for nonlinear systems [70, 71]: between them, identification methods

based on optimisation procedures are particularly useful when multiple experimental

data are available, like in the considered case. These methods can be used to optimise

an user-defined objective function, reducing the identification procedure to a minimi-

sation problem. Meta-heuristics methods, such as the Particles Swarm Optimisation

(PSO) and the Genetic Algorithm (GA), try to exploit and explore the search space op-

timally and are often used to solve similar identification problems [130]. In this work,

the aforementioned meta-heuristic optimisation methods, PSO and GA, are used to

identify the nonlinear parameters of the ROM representing Test Rig #1. The GA and

PSO algorithms belong to the population-based methods and try to emulate natural

processes :

• GA: The genetic algorithm [131] initialises the domain with a random initial pop-

ulation, whose size is defined by the user. Following the analogy with nature, the

population is represented by individuals who try to survive at each evaluation of

the objective function. Each individual, indeed, represents a possible configura-

tion of the system parameters which is used to evaluate the objective function. At

each step, the algorithm creates the next generation of individuals starting from
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the current available population. Some individuals, the ones associated with low

objective function values, are selected as parents according to the selection cri-

teria and used to create new individuals. The children, i.e. individuals created

from the parents, are generated in three different ways: elite individuals survive

the generational change as they have the lowest values of the objective function,

crossover children are obtained by combining the genes of the parents according

to the selected crossover function, and mutated children are generated by intro-

ducing random mutation to a single parent. The algorithm stops when the change

in the objective function is less than the prescribed tolerance.

• PSO: The particle swarm optimisation method [132, 133], instead, is based on

swarm intelligence. Similarly to the GA, the PSO begins uniformly populating

the entire search domain with a certain number of particles. The number of

particles, generally called swarm size, is selected by the user and each particle,

similarly to the individuals, represents a possible configuration of the system

parameters. Each particle possesses a position xPSO and a velocity vPSO. The

algorithm randomly assigns the initial position and velocity to the particles and

computes the value of the objective function for each particle. Then, the most

performing particle, i.e. the particle with the best position d and the best function

value b, is identified, and all the particle positions are stored in a matrix. After

these preliminary steps, the iteration process starts: for each particle i, a random

subset S of particles is chosen. This set does not include the i-th particle. The

best position g and the best function value f are identified in the subset S. Using

this information, the algorithm can compute the new velocity and position of the

i-th particle, utilising the following expressions:

vPSO(i) = WvPSO(i) + y1u1(p(i)− xPSO(i)) + y2u2(g − xPSO(i)) (6.5a)

xPSO(i) = xPSO(i) + vPSO(i) (6.5b)

where xPSO(i) and vPSO(i) are the position and the velocity of the i-th particle,

y1, y2, u1, and u2 denote the PSO tuning coefficients, and W indicates the inertia
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Table 6.2: Identified nonlinear coefficients using the PSO algorithm (Test Rig #1). A
swarm size of 40 particles is used to carry out the identification.

PSO Time [min] Iterations Func. Counts µ1 [N/m3] µ2 [N/m3] µ2,b [N/m3] µ3 [N/m3] Func. Value
Test 1 566.1 77 3120 2.653e6 1.314e6 8.889e6 7.071e6 2.461e-3
Test 2 524.7 74 3000 2.732e6 1.324e6 8.850e6 7.069e6 2.458e-3
Test 3 591.8 87 3520 2.651e6 1.312e6 8.891e6 7.074e6 2.461e-3

coefficient. At this stage another iteration is performed: the updated position

xPSO(i) is utilised to re-evaluate the objective function F (xPSO). If the objective

function value is lower than F (p) the optimal position p is updated with the newly

identified position xPSO(i). Finally, if F (xPSO(i)) < b then the optimal value b is

updated. At each iteration, the bounds are enforced, and the process is repeated

until the change in the objective function is less than the prescribed tolerance.

The identification procedure with meta-heuristic optimisation methods is performed

using the following objective function:

F (s) =
P∑

j=1

R∑
i=1

(|FRCnum(s)− FRCexp|) (6.6)

where s is the design variables vector, constituted of the nonlinear unknown coeffi-

cients µ1, µ2, µ2,b, and µ3 (see Eq. 6.1), R is the number of discrete frequencies at

which the function is evaluated, P is the number of degrees of freedom of the prob-

lem, and FRCexp and FRCnum represent, respectively, the experimental and numerical

frequency response curves associated with the masses displacement, when a constant

voltage amplitude is applied to the shaker. The numerical frequency response curve

FRCnum is obtained by numerically integrating Eq. 6.1, using the MATLAB built-in

function ode45, a Runge-Kutta scheme. In the experimental measurements, the motion

of the shaker is not controlled and it affects the output signals of the system. Specif-

ically, the amplitude of excitation of the shaker might vary in amplitude along the

frequency sweeps. To overcome this problem the measured displacement and velocity

of the moving constraint are used as forcing input in the numerical integration proce-

dures. The optimisation process is carried out with the aid of the MATLAB built-in

functions ga and particleswarm using the default options. The functions utilised the
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Figure 6.3: Experimental and numerical optimised frequency response curves, repre-
senting Test Rig #1. Panels (a-b) show the results obtained with PSO while panels (c)
and (d) illustrate the results achieved using the GA [4].

GA and the PSO algorithm previously discussed. For both the optimisation methods,

the identification is repeated three times to obtain more robust results, and a multi-core

computer (32 cores - Intel(R) Xeon(R) Silver 4214 CPU @ 2.10 GHz, RAM 129 Gb)

is utilised to perform the analyses with parallel computing. The objective function is

computed considering the experimental FRC with the largest amplitudes of excitation,

i.e. 0.4 V. In addition, the computation of the objective function is limited to the

following frequency ranges: 11.6 Hz to 12.7 Hz and 13.6 Hz to 15.0 Hz. This allows the

optimisation procedure to evaluate the objective function near the resonances, where

the density of information about the nonlinear characteristic is higher. The lower and

upper boundaries of the optimisation are set, respectively, at µ = 103 N/m3 and µ = 108

N/m3, for all the design variables. The results of the identification procedures are re-
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Table 6.3: Identified nonlinear coefficients using the GA algorithm (Test Rig #1). A
population of 50 individuals is used to carry out the identification.

GA Time [min] Iterations Func. Counts µ1 [N/m3] µ2 [N/m3] µ2,b [N/m3] µ3 [N/m3] Func. Value
Test 1 471.8 55 2638 1.259e7 1.685e7 9.162e6 3.104e6 40.705e-3
Test 2 489.3 54 2591 8.093e6 1.785e7 1.446e6 3.363e6 38.705e-3
Test 3 497.5 57 2732 1.002e3 8.612e6 3.537e5 1.296e7 22.668e-3

ported in Tab. 6.2 and 6.3: the tables demonstrate that the PSO have a higher accuracy

and tends to converge to the same optimal combination of nonlinear coefficients for the

three tests. The associated lowest value of the objective function is 2.458e-3 which

represents the best-optimal identified condition. The PSO requires around 550 minutes

(9.2 hours) to complete the optimisation procedure. The GA, instead, is faster and

converges to an optimal solution in about 490 minutes (8.2 hours). Nonetheless, the

algorithm struggles to find an optimal solution and tends to converge to very different

combinations of optimal nonlinear coefficients µ. In addition, the optimal solutions are

associated with higher values of the objective function. Fig. 6.3 provides a graphical

interpretation of the optimisation results of Tab. 6.2 and 6.3, showing the comparison

between numerical and experimental FRCs. The numerical FRCs are computed using

the linear coefficients previously identified (see Tab. 6.1) and the nonlinear coefficients

associated with the best results of PSO and GA. When the nonlinear coefficients ob-

tained with the PSO are used to compute the FRCs, the numerical and experimental

frequency responses are in good agreement, as shown by Fig. 6.3 (a) and (b). In this

case, the numerical model captures the qualitative and quantitative dynamic behaviour

of the experimental test rig, i.e. the model can predict where jumps occur and the

amplitude of response of the experimental system along the entire frequency domain.

Conversely, the numerical FRCs associated to GA optimal coefficients poorly capture

the nonlinear dynamics of the experimental test rig, as shown in Fig. 6.3 (c) and (d),

especially in terms of the amplitude of response. The results of Tab. 6.2, Tab. 6.3, and

Fig. 6.3 demonstrate the robustness of the PSO and its ability to solve identification

problems of nonlinear systems. In addition, it is shown that GA struggles to identify

optimal nonlinear coefficients. This suggests that the PSO perform slightly better than

the GA when common default options are used in the identification procedure. This
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𝑐1, 𝛾1 𝑐2, 𝛾2 𝑐3, 𝛾3

Figure 6.4: Reduced order model with two degrees of freedom and base excitation,
representing Test Rig #2. The presence of the arrow indicates a nonlinear behaviour in
the connecting element. The letters µ and γ indicate nonlinear stiffness and damping
coefficients [3].

result is also in agreement with previous studies [134–136] which, differently from this

case, utilised time data to identify the system parameters.

Despite the complexity and the computational cost of the optimisation process, the

identification procedure with PSO has been successful, requiring relatively few itera-

tions and particles. This is due to the low number of design variables in the optimisation

procedure which simplified the problem. In fact, the linear parameters of the system

are identified in a separate way using linear identification methods which are faster and

simpler to implement. This improves the capability of the nonlinear identification pro-

cess, reducing its complexity, and simplifying the overall procedure. This approach is

based on the good performance of linear models and identification procedures of linear

systems and requires that the investigated nonlinear system possesses an underlying

linear system. Despite this limitation, this approach seems to be particularly effective

in identifying the parameters associated with strongly nonlinear systems, thus it is

better investigated in the following sections.

6.2.3 Identification of a Nonlinear Model - Test Rig #2

In this section, a nonlinear mathematical model representing the nonlinear dynamic

behaviour Test Rig #2 is identified. The same procedure utilised in Sections 6.2.1

and 6.2.2 are utilised to identify a model that represents the linear and nonlinear

behaviour of the test rig. As for the previous case, a ROM model is selected based on
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the available experimental data. The Test Rig #2 utilises the two-mass system designed

in Chapter 4 for which a two-DOF model has been demonstrated to be sufficiently

accurate to capture the underlying linear behaviour of Test Rig #1. Nonetheless, Test

Rig #2 is excited differently, as the vibrating table moves both supports. To take into

account this change, the ROM represented by Fig. 6.4 is utilised in the identification

procedure whose equation of motion is represented by the following expression:

mz̈1 + c1ż1 + c2(ż1 − ż2) + k1z1 + k2(z1 − z2) + µ1z
3
1 + (µ2z

3
1 − µ2bz

2
1z2+

+ µ2bz1z
2
2 − µ2z

3
2) = −mÿ

(6.7a)

mz̈2 + c3ż2 − c2(ż1 − ż2) + k3z2 − k2(z1 − z2) + µ3z
3
2 − (µ2z

3
1 − µ2bz

2
1z2+

+ µ2bz1z
2
2 − µ2z

3
2) = −mÿ

(6.7b)

To create a parallelism with the previous section the same cubic nonlinear charac-

teristic is utilised and no nonlinear damping contributions (γ) are considered at this

stage. Linear stiffness, damping, and mass matrices are identified again. The estimated

Figure 6.5: Experimental (black line) and the analytical optimised (orange line) transfer
functions representing Test Rig #2. The transfer functions are shown in terms of
amplitude (a,b) and phase (c,d) of the two degrees of freedom [3].
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coefficients are then improved via an optimisation procedure, minimising the difference

between the experimental and the analytical transfer functions in terms of amplitude

and phase. Once again, the MATLAB function lsqnonlin is used and the receptance is

adopted as a reference transfer function for the minimisation procedure. The analyti-

cal formulation of the receptance (linear transfer function) for the considered ROM is

represented by the following expressions:

HB,1 =
X1

Ÿ
=

X2 k2 − Ÿ k1
Ω2 +ΩX2 c2 i− Ÿ c1 i

Ω

Ÿ (k1 + k2 − Ω2m+Ω(c1 + c2) i)
(6.8a)

HB,2 =
X2

Ÿ
=

X1 k2 − Ÿ k3
Ω2 +ΩX1 c2 i− Ÿ c3 i

Ω

Ÿ (k2 + k3 − Ω2m+Ω(c2 + c3) i)
(6.8b)

where, X1 and X2 are the complex amplitudes of the absolute displacements of the

two degrees of freedom, Ÿ represents the complex amplitude of the acceleration input,

Ω denotes the forcing frequency of the excitation, and HB is the transfer function

(receptance) of the Test Rig #2. The estimated and optimised linear coefficients are

reported in Tab. 6.4. The mass matrix, as discussed in Section 6.2.1, is estimated via

direct measurement of the mass of each block which is found equal to 0.1365 Kg. Fig. 6.5

Table 6.4: Linear coefficients representing Test Rig #2. The coefficients are identified
using the procedure outlined in Section 6.2.1.

Coefficients c1 [Ns/m] c2 [Ns/m] c3 [Ns/m] k1 [N/m] k2 [N/m] k3 [N/m]
Estimated 0.0727 0.0256 0.0750 1235.8 225.3 1256.3
Optimised 0.0582 0.0205 0.0600 1232.9 225.1 1261.9

shows the comparison between the experimental and optimised transfer functions in

terms of amplitude (panel (a) and (b)) and phase (panels (c) and (d)) for the two

considered degrees of freedom. The figure highlights the good match between the

analytical and experimental TFs, demonstrating that the chosen ROM captures the

dynamics of the experimental test rig in the linear regime.

The nonlinear parameters of the system are identified using meta-heuristic opti-

misation. The frequency range where there is the largest experimental amplitude of

response, i.e. 14.5 - 16.2 Hz, is used in the minimisation process. Given its good perfor-

mance, only the PSO algorithm is used in the identification process. The identification
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Table 6.5: Identified nonlinear coefficients using the PSO algorithm (Test Rig #2). A
population of 40 individuals is used to carry out the identification.

PSO Time [min] Iterations Func. Counts µ1 [N/m3] µ2 [N/m3] µ2,b [N/m3] µ3 [N/m3] Func. Value
Test 1 138.3 144 5800 3.298e+07 4.281e+07 8.882e+07 1.000e+03 37.758e-3
Test 2 79.7 49 2000 3.303e+07 2.797e+07 4.554e+07 1.000e+03 37.581e-3
Test 3 77.1 41 1680 3.310e+07 2.770e+07 4.687e+07 1.000e+03 37.581e-3
Test 4 89.7 46 1880 3.263e+07 4.992e+07 9.999e+07 3.136e+04 37.580e-3
Test 5 76.2 68 2760 2.823e+07 1.075e+07 1.123e+07 3.262e+06 37.646e-3
Test 6 47.8 68 2760 2.823e+07 1.075e+07 1.123e+07 3.262e+06 37.646e-3
Test 7 55.2 68 2760 2.823e+07 1.075e+07 1.123e+07 3.262e+06 37.646e-3
Test 8 35.3 44 1800 4.997e+06 3.319e+07 1.435e+06 1.444e+07 38.428e-3
-

is repeated 8 times to obtain robust results which are reported in Tab. 6.5. Using perfect

sinusoidal excitation loads, the identification process becomes much faster than the case

of Test Rig #1 1. However, this results in passing less information to the PSO which

in turn affects the identification procedure, increasing the obtained minimum function

values (see Tab. 6.5). The best nonlinear coefficients, i.e. the coefficients associated

Figure 6.6: Comparison between numerical and experimental FRC representing Test
Rig #2: the numerical FRC is computed resetting (a) and non-resetting (b) the initial
conditions.

with the minimum objective function value in Tab. 6.5, are then used to perform a

comparison between numerical and experimental FRCs. The numerical FRCs are com-

puted with a forward frequency sweep with and without resetting the initial conditions

at each frequency of excitation. In the first case, the initial conditions are imposed

equal to zero for each frequency of excitation. Instead, when the initial conditions are

1For practical reasons, the simulations were performed using a different multi-core computer (10
cores - 12th Gen Intel(R) Core(TM) i7-12700H @ 2.30 GHz, RAM 16 Gb)
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not reset, the last state of the numerical simulation at the previous frequency of exci-

tation is used as initial conditions for the next simulation. The comparison between

numerical and experimental FRCs of the first mass is shown in Fig. 6.6.

Although the hardening nonlinear behaviour is caught, the identified nonlinear

model is not able to predict the qualitative dynamic behaviour of the experimental

test rig, i.e. the model does not identify the frequency at which the experimental

system shows jumps from high-amplitude to low-amplitude response. When the ini-

tial conditions are reset (Fig. 6.6(a)) jumps occur prematurely in the numerical FRC.

When the numerical FRC is ’continued’, (Fig. 6.6(b)), the jump occurs at a very high

frequency. This indicates that the identification of the system has not been successful

as the identified nonlinear model is not able to capture the qualitative dynamic be-

haviour of the experimental test rig. To solve this problem, a novel method for the

identification of the MDOF nonlinear system is proposed and applied to Test Rig #2

in the following section.

6.3 Experimental Identification via Nonlinear Restoring

Force Method

The previous section demonstrated that the separation of linear and nonlinear contribu-

tions is particularly effective for the identification of equivalent mathematical models

that represent strongly nonlinear systems. Nonetheless, direct optimisation of pre-

determined nonlinear systems might lead to inaccurate models. Building upon this

knowledge, this section introduces a novel methodology for the identification of nonlin-

ear systems with strong nonlinear characteristics, named the Nonlinear Restoring Force

(NLRF) Method. This method is based on the well-established Restoring Force Sur-

face (RFS) method [137–139] and exploits the separation between linear and nonlinear

behaviour of the system. The method applies to any mechanical system which shows

an underlying linear behaviour, it allows the nonlinear properties of MDOF mechanical

systems to be characterised, and it does not require the selection of the form of nonlin-

ear characteristics, before the identification. In this section, the method is introduced
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and applied to a numerical example. Then the technique is applied to identify the

smooth nonlinear characteristics of the Test Rig #2. Finally, using the successful iden-

tification of Test Rig #1, the non-smooth characteristics of Test Rig #1 are graphically

reconstructed and identified using the proposed method.

6.3.1 Nonlinear Restoring Force Method: Introduction

Since the 60s, different identification methods for nonlinear systems have been proposed

in the literature. Kerschen at al. [70,71] reviewed the various identification methods and

provided guidelines for their usage. Among the different methods, the Restoring Force

Surface (RFS) method is considered one of the most suitable and effective methods for

the identification of nonlinear systems [138]. Thanks to its simplicity, the RFS has been

used for the identification of very different mechanical systems: Bonisoli et al. [140] uti-

lized the RFS method to identify the nonlinear parameters of a passive magneto-elastic

suspension. Cammarano et al. [6] effectively employed the RFS method to extract

the nonlinear characteristics of a vibration energy harvester with two potential wells,

whereas Rizos et al. [141] applied the method to a leaf-spring-based tuned mass damper.

Considering a real-life scenario, Noël et al. [12] employed the RFS method to identify

trilinear characteristics of a small real satellite. They demonstrated that the identified

system accurately reproduced the nonlinear behaviour of the satellite with high preci-

sion, even within such a complex structure. In another practical scenario, Kerschen et

al. [11] utilised the RFS method to identify the nonlinear properties associated with

a wing of an aircraft. The authors successfully identified the nonlinear properties and

applied them to conduct a numerical analysis of the NNMs associated with a ROM.

In a recent work, Anastasio et al. [142] employed the RFS method to determine the

nonlinear stiffness properties of a Duffing-like negative stiffness oscillator. These ex-

amples collectively demonstrate the robust capabilities and reliability of the method in

identifying nonlinear characteristics of mechanical systems.

A modified version of the RFS method for the identification of MDOF-ROM systems

is here presented: the method, named the Nonlinear Restoring Force (NLRF) method,

builds on the work of Masri et al. [139,143] and it is based on the assumption that the
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restoring force is composed of linear and nonlinear components. Taking into account a

previous linear identification, the method is able to identify the nonlinear characteristics

of a chosen ROM. The separation in linear and nonlinear restoring forces components

is not new to literature; e.g., in the Condition Reversed Path (CRP) method proposed

by Richard and Singh [144], the linear and nonlinear parts of the system are identified

separately in the frequency domain. Likewise, in [145, 146], authors resorted to the

same concept, separating the linear and the nonlinear contributions to apply different

identification methods. Nonetheless, unlike the previously listed methods, the proposed

NLRF method allows one to obtain a graphical representation of the nonlinear restoring

force in the form of a surface. This is then used to identify the nonlinear characteristic

of the system. The graphical representation has the intrinsic advantage of showing the

minimal dimensional space that fully describes the surface, i.e., it shows the dependence

of the nonlinear restoring force on the different DOFs. This allows for establishing

engineering considerations which can simplify and improve the identification of the

unknown nonlinear function.

The proposed NLRF method is schematically reported in Fig. 6.7. The method

End
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Phase II: Nonlinear linear system identification 
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Figure 6.7: Flowchart of the identification procedure. The main phases (linear identi-
fication and nonlinear identification) are described in different blocks.
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is constituted of two phases: in the first phase an underlying linear system is identi-

fied using the procedure outlined in Section 6.2. The second phase, instead, tries to

identify nonlinear characteristics of the investigated nonlinear system. To this end, an

experimental nonlinear analysis with sinusoidal frequency sweeps is performed and the

NLRF surfaces are created. The obtained surfaces are then used to perform engineering

considerations, identifying a suitable polynomial function capable of representing the

nonlinear contributions of the system. The degree of the polynomial is chosen through

an iterative procedure. Specifically, a polynomial is assumed and then the associated

coefficients are identified via a Least Mean Square (LMS) process. This results in a

first estimation of the nonlinear coefficients which are then used as a starting point

for a minimisation process. The optimised coefficients are then utilised, along with

the identified linear ROM, to perform numerical predictions of the identified model

and are compared against sets of experimental data. The reference experimental data

must be different from the one adopted in the identification process, i.e. the one used

to generate the NLRF. If the validation is successful, then the linear and nonlinear

contributions are considered to be identified.

Mathematically, the NLRF method is applied by manipulating the general equation

of motion of an n-DOF reduced-order mechanical system in matrix form, resulting in

the following equation:

NRF = N(ẋ,x) = F−Mẍ−Cẋ−Kx (6.9)

where x ∈ Rn×1 is the displacement vector, M, C, and K ∈ Rn×n, represent the

mass, damping, and stiffness matrices of the linear system, while N(ẋ,x) and F ∈

Rn×1 are the nonlinear contribution and forcing function. Eq. 6.9 allows to obtain the

nonlinear restoring force NRF . This term contains all the nonlinear contributions of the

system and the NLRF method aims to identify a nonlinear function which correctly

describes this term. Building on the previous identification of the underlying linear

system (see Section 6.2.3), the left-hand side of Eq. 6.9 is known for any time instant

experimentally measured. This permits to plot the experimental nonlinear restoring

force surface for each degree of freedom of the ROM. It is worth mentioning that: (1)
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the method needs a ROM for its application and (2) utilises physical coordinates. The

usage of a ROM is fundamental to limiting the number of NLRF surfaces and the

complexity of the subsequent identification process. Real coordinates are selected for

their straightforward nature, which enables easy integration with experimental sensors

and facilitates a clear understanding of the resulting surfaces in a physical context.

The original version of the RFS method utilises Chebyshev series [138] for the

identification procedure, but simple polynomial expansions have been demonstrated

to be superior in terms of simplicity, accuracy, and speed in the estimation of the

nonlinear contributions [70]. Nevertheless, the utilisation of such polynomials without

prior knowledge of the system might lead to erroneous results, as the restoring force may

not be governed by integer-power polynomials. In this work, the attention is focused

on mechanical structures with geometric nonlinearities subjected to large deformations

for which integer-order polynomials are found to be a good approximation, as shown

in [4, 27–29]. Based on the above considerations, a least mean square problem can

be formulated for each degree of freedom when a time series is available, using the

following linear system of equations:

NRF,n = p(x, ẋ, a1, ..., ak) = A(x, ẋ)b (6.10)

where n represents the number of reduced-DOF, v indicates the time instant, NRF,n is a

vector which varies in time and represents the nonlinear restoring force of a single DOF,

p is a vector representing the values of a polynomial which depends on the coefficients

ak and the displacement/velocities of each DOF, A is a matrix with dimensions v × k,

and b = [a1, ..., ak] is a vector k × 1. By solving Eq. 6.10, it is possible to obtain

an estimation of the polynomial coefficients which are then used as a starting point

for a minimisation procedure. During the minimisation process the following objective

function G is used :

G(b) = NRF,n − p(x, ẋ,b) (6.11)

Eq. 6.10 and 6.11 are adopted in the iterative procedure illustrated in Fig. 6.7. The

procedure is repeated until the validation conditions are not satisfied.
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6.3.2 Nonlinear Restoring Force Method: Numerical Example

In order to show how the method works, a numerical example is described in this

section. The example serves to explain how the NLRF surfaces can help and improve

the identification of the nonlinear ROM: the idea is to exploit the generated NLRF

surfaces to obtain additional information on the nonlinear dynamics of the system.

Such information enables engineering considerations that can simplify the polynomial

representation of the nonlinear restoring force.

To provide parallelism with the investigated test rig, the numerical example con-

siders a two-DOF ROM with generic smooth nonlinear characteristics. Specifically, the

considered model is schematically represented in Fig. 6.4 where the mass is indicates

by m, the linear stiffness/damping coefficients are denoted by k1, k2, k3 and c1, c2,

c3, while the nonlinear stiffness and damping characteristics are symbolised by µ1, µ2,

µ3 and γ1, γ2, γ3. This system is mathematically represented by the following set of

ODEs:

mz̈1 + c1ż1 + c2(ż1 − ż2) + k1z1 + k2(z1 − z2) +NRF,1(z1, z2, ż1, ż2) = −mÿ (6.12a)

mz̈2 + c3ż2 − c2(ż1 − ż2) + k3z2 − k2(z1 − z2) +NRF,2(z1, z2, ż1, ż2) = −mÿ (6.12b)

where ÿ indicate the base acceleration, z = x − y is the relative displacement, and

NRF,1 and NRF,2, instead, define the nonlinear restoring terms associated with the first

and second DOF. Considering the absolute acceleration ẍ, the nonlinear restoring force

NRF is expressed by:

NRF =


NRF,1(z1, z2, ż1, ż2) = −mẍ1 − c1ż1 − c2(ż1 − ż2)− k1z1 − k2(z1 − z2)

NRF,2(z1, z2, ż1, ż2) = −mẍ2 − c3ż2 + c2(ż1 − ż2)− k3z2 + k2(z1 − z2)

(6.13)

The general form of the sought polynomial is represented by the following equation:

p(z1, z2, ż1, ż2, a1, ..., aj) = a1z
2
1 + a2z

2
2 + a3ż

2
1 + ...+ a11z

3
1 + a12z

3
2 + a13ż

3
1 + ... (6.14)

where j represents the number of coefficients. Because the method wants to identify
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the restoring forced purified by the linear components, the polynomial starts from the

second degree. The nonlinear MDOF-ROM is considered in two different configurations:

in the first version (configuration-A) the nonlinearities are applied only to the external

elements. In the second version (configuration-B), the nonlinearities are applied to

every connecting element of the system. Tab. 6.6 and Tab. 6.7 resume the property

utilised in the two numerical examples: for the sake of simplicity, only nonlinear stiffness

elements are applied to the model. Thus, the equation of motion can be rewritten as

follows:

mz̈1 + c1ż1 + c2(ż1 − ż2) + k1z1 + k2(z1 − z2) + µ1z
3
1 + µ2(z1 − z2)

3 = −mÿ (6.15a)

mz̈2 + c3ż2 − c2(ż1 − ż2) + k3z2 − k2(z1 − z2) + µ3z
3
2 − µ2(z1 − z2)

3 = −mÿ (6.15b)

The numerical data are generated by numerically integrating Eq. 6.15. To this end,

the MATLAB built-in function ode45, a classical Runge-Kutta integration scheme, is

utilised. The numerical results are collected similarly to the experimental data by

performing forward frequency sweeps from 15.5 to 23.5 Hz and recording the entire

time history for the two DOFs. The discrete increase of excitation frequency is set to

0.16 Hz so that the FRC is evaluated on 51 excitation frequencies. Fig. 6.8 shows the

absolute displacements of the two DOFs for configuration A. The figure shows the

Table 6.6: Linear parameters adopted in the numerical example.

Config. m [kg] k1 [N/m] k2 [N/m] k3 [N/m] c1 [Ns/m] c2 [Ns/m] c3 [Ns/m]
A 1.0× 10−1 1.5× 103 2.5× 102 1.0× 103 3.0× 10−2 2.5× 10−2 6.5× 10−2

B 1.0× 10−1 1.5× 103 2.5× 102 1.0× 103 3.0× 10−2 2.5× 10−2 6.5× 10−2

Table 6.7: Nonlinear parameters and excitation amplitude utilised in the numerical
example.

Config. µ1 [N/m3] µ2 [N/m3] µ3 [N/m3] Y [mm]
A 5.0× 106 0.0 2.8× 106 5× 10−2

B 5.0× 106 1.0× 106 2.8× 106 5× 10−2

presence of two bent resonance peaks just after the linear resonance of the system, which

leads to the typical jumping phenomena of nonlinear hardening structures. Despite

the nonlinearities being applied only between the masses and the supports (external
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Figure 6.8: Numerical time history of the first (a) and second (b) DOF. The numerical
results are obtained with the reduced order model described by Eq. 6.15 and the pa-
rameters reported in Tab. 6.6 and Tab. 6.7 for only configuration A [3].

elements), the time histories and the associated FRCs of the two DOFs are not able to

provide any information about the location of the nonlinearities of the system, as the

jumps are found on both peaks for both the DOFs. On the contrary, using the NLRF

surfaces, it is possible to obtain additional information on the system dynamics. The

obtained NLRF surfaces (configuration A and B) are reported in Fig. 6.9 considering

two different reduced nonlinear spaces, i.e. z1 and ż1 for NRF,1 and z2 and ż2 for

NRF,2. When the full nonlinear system (configuration B) is taken into account, the

NLRF surfaces appear as illustrated by panels (g-h) of Fig. 6.9. The surfaces are not

a function in the considered 3D space, i.e., they are hyper-surfaces 2 as the nonlinear

contribution on each DOF depends on more than one mechanical DOF and thus it

cannot be fully represented in the reduced subspace. This is clearly illustrated by

the lateral views in the panels (e,f), where it is shown that for some elements of the

nonlinear domain, there exists more than one value of the NLRF. The NLRF surfaces

associated with configuration A are reported in panels (c) and (d), with the lateral

view shown in panels (a) and (b) of Fig. 6.9. In this case, the entire recorded time

history lies on a single surface that is graphically representable as a function in the

considered 3D space, i.e. in the reduced subspace. This can be achieved because the

2For hyper-surface it is intended a surface function that depends on a number of parameters larger
than two, hence that is not representable as a function in a 3D space. On the contrary, surfaces are a
function of two parameters which enables the representation in a 3D space.
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Figure 6.9: Numerical nonlinear restoring force surfaces of the first and second DOF for
case A (a,b,c,d) and case B (e,f,g,h). Zooms in the plane relative displacement-restoring
force are reported for each diagram in panels (a), (b), (e), and (f) [3].
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Table 6.8: Nonlinear coefficients identified in the numerical test (configuration A). The
numerical zeros values are represented with the symbol ∅. For each restoring force
surface, a different polynomial is used.

Monom. (M1) Coeff. Value Monom. (M2) Coeff. Value
z21 a1 ∅ z22 b1 ∅
z1ż1 a2 ∅ z2ż2 b2 ∅
ż21 a3 ∅ ż22 b3 ∅
z31 a4 5.00× 106 N/m3 z32 b4 2.80× 106 N/m3

ż31 a5 ∅ ż32 b5 ∅
z1ż

2
1 a6 ∅ z2ż

2
2 b6 ∅

z21 ż1 a7 ∅ z22 ż2 b7 ∅

linear contribution of the restoring force has been removed and the nonlinearities are

localised, i.e. they only depend on the local degree of freedom. It is worth noticing that,

given a general mechanical MDOF system, the classical definition of the restoring force

surface, with linear and nonlinear contributions, always leads to a hyper-surface. This

is a consequence of the definition of the system, as the minimal dimensional space for

mechanical MDOF is composed of two displacements and two velocities. Nonetheless,

moving to a space dominated only by the nonlinear contributions of the restoring force,

it is possible to represent the restoring force surfaces as a function in a 3D space if

the nonlinearities are localised in the mechanical system. This fact has important

consequences for the identification of nonlinear characteristics. Indeed, considering the

obtained NLRF surfaces, the sought polynomial for the system in configuration A can

be simplified by accounting for only a local mechanical DOF. Eq. 6.14 is thus modified

as follows:

NRF =


NRF,1(z1, ż1) = a1z

2
1 + a2ż

2
1 + a3z1ż1 + a4z

3
1 + a5ż

3
1 + a6z

2
1 ż1 + ...

NRF,2(z2, ż2) = b1z
2
2 + b2ż

2
2 + b3z2ż2 + b4z

3
2 + b5ż

3
2 + b6z

2
2 ż2 + ...

(6.16)

Assuming that the linear properties are known, the nonlinear contribution is iden-

tified using Eq. 6.10 and 6.11. The identification is performed only for configuration A

and the obtained nonlinear parameters are reported in Tab. 6.8 for a full third-order

polynomial. The table demonstrates that the nonlinear coefficients are correctly iden-

tified and, thanks to the absence of noise, a very close match between the assumed
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polynomials and the numerical data is achieved.

6.3.3 Nonlinear Restoring Force Method: Experimental Identifica-

tion of Smooth Nonlinear Characteristics

The NLRF is now utilised to identify smooth nonlinear characteristics from experimen-

tal data. To this end, the experimental data associated with Test Rig #2 (without

the motion limiting constraints ) are used in the identification procedure. Although

it would be ideal to directly measure the acceleration, velocity, and displacement of

each measurement point [147], numerical integration/derivation procedures have been

demonstrated to generate sufficiently accurate RFS [6]. In the considered experimental

setup, the velocity and displacement of the two main blocks are obtained via numeri-

cal integration of the accelerometer and laser vibrometer signals. The velocity of the

vibrating table, instead, is obtained via numerical differentiation of the displacement

signal. The time data are then filtered with a high-pass filter (5 Hz) and a low-pass filter

(75 Hz) to remove high-frequency components and the drifting introduced by the nu-

merical integration/derivation procedure. In addition, the band filter allows obtaining

smooth NLRF surfaces which facilitate the identification of the unknown polynomial

coefficients.

The linear coefficients representing the underlying linear behaviour of the system

can be retrieved from Tab. 6.4 and Eq. 6.13 can be used to compute the experimental

nonlinear restoring force. The experimental NLRF surfaces are graphically represented

in a reduced nonlinear space constituted of the displacement of the velocity of each

DOF. The experimental NLRF surfaces are reported in Fig. 6.10. The figure shows

that, in the reduced nonlinear space, the restoring force surfaces are representable as

a 3D surface. This indicates that the nonlinear behaviour of each DOF can be fully

described by a single local mechanical DOF, e.g., NRF,1 is a function of z1 and ż1.

In other words, the majority of the nonlinear contributions of the experimental test

rig are provided by the parallel beams that connect the two blocks to the supports.

This does not mean that parallel beams in between the two blocks behave linearly, but

that their nonlinear contribution is negligible in the considered dynamic configuration.
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Figure 6.10: Identified (orange) and the experimental (black) nonlinear restoring force
surfaces of Test Rig #2 (without motion limiting constraints ). Forward frequency
sweeps with 0.05 mm excitation amplitude are utilised to generate the data. The left
and right panels show the NLRF surfaces associated with the first and second DOF,
respectively [3].

The experimental data generated from forward frequency sweep at an amplitude equal

to 0.05 mm are used to generate the NLRF surfaces and to identify the nonlinear

characteristics. The prediction capabilities of the identified model, instead, are tested

against different sets of experimental data, namely against the FRCs obtained with

base amplitude equal to 0.04 and 0.03 mm.

In order to identify the experimental nonlinear contributions of the test rig, dif-

ferent polynomials are tested: by increasing the complexity of the chosen polynomial,
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Table 6.9: Nonlinear characteristics identified from the experimental data (smooth
version of Test Rig #2). For each degree of freedom, a different polynomial is utilised
(as prescribed in the table).

Monom. (M1) Coeff. Value Monom. (M2) Coeff. Value
z21 a1 −8.4608× 103 N/m2 z22 b1 −8.3989× 103 N/m2

z1ż1 a2 5.3189Ns/m2 z2ż2 b2 −4.8546Ns/m2

ż21 a3 0.9055Ns2/m2 ż22 b3 0.904 66Ns2/m2

z31 a4 1.1237× 107 N/m3 z32 b4 1.1231× 107 N/m3

ż31 a5 1.9777Ns3/m3 ż52 b5 −8.0214Ns5/m5

z1ż
2
1 a6 −1.3876× 102 Ns2/m3 − − −

z21 ż1 a7 1.0495× 104 Ns/m3 − − −

i.e., the number of monomials that compose the polynomial and the associated order,

the number of unknowns increases exponentially, leading to high computation burden

and expensive calculations. Nonetheless, exploiting the information of localised nonlin-

earities provided by the NLRF surfaces, the number of variables for each polynomial

can be considerably reduced because the polynomial for each degree of freedom can be

written using local coordinates, i.e. z1, ż1 for the first surface and z2, and ż2 for the

second one. This enables the usage of Eq. 6.16 to represent the nonlinear polynomials.

The polynomial order, instead, is selected by applying the iterative procedure re-

ported in Fig. 6.7: initially, a polynomial is chosen and the associated coefficients are

identified using the LMS and optimisation procedures previously described. Finally, the

numerical predictions of the identified model are compared against sets of experimental

data that have not been used in the identification process. The numerical time histo-

ries are computed by exciting the system with perfect sinusoidal excitation and using

the same discrete frequency sweep adopted in the experimental measurements. Such

simulations provide important insights into the dynamics of the system: firstly they

tell us the amplitude of response of the system along the frequency sweep, then they

show when the passage from high- to low- amplitude of response (jumps) occurs. If the

identified model captures the quantitative dynamic behaviour, i.e. the amplitude of the

response, and the qualitative dynamic behaviour, i.e. the jumps, of the experimental

test rig, the selected polynomial is considered to be validated. If the validation does not

produce satisfactory results, then the polynomial is modified by removing monomials

with a low contribution and/or increasing the order, until all the required nonlinear
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Figure 6.11: Comparison between the experimental (black line) and the numerical
(orange line) time histories at excitation amplitudes equal to 0.05 mm. Zooms in
correspondence of the first and second resonance are reported.

features are captured by the identified model. It should be noted that the usage of

ideal sinusoidal excitation and a ROM greatly reduces the computational burden of the

simulations and allows for many polynomials to be tested in a short amount of time.

The results of the identification procedure are shown in Tab. 6.9: the first polyno-

mial is correctly identified using a full polynomial of order 3. The second polynomial,

instead, requires adding/removing some monomials to achieve good accuracy in the

jump predictions, during the numerical simulations. Fig. 6.10 shows with different

views the comparison between numerical and experimental NLRF surfaces for the two

DOFs. The identified numerical NLRF surfaces match very well the experimental data,

thus the identified polynomial is considered accurate enough to describe correctly the

dynamics of the test rig.

Numerical and experimental time histories are also compared for the largest level

of excitation amplitude, i.e. 0.05 mm. The results are reported in Fig. 6.11 in terms

of displacement of the first DOF: the figure demonstrates that the identified nonlin-

ear MDOF-ROM captures the qualitative and quantitative dynamic behaviour of the

experimental Test Rig #2 for the considered amplitude of excitation. Given the very

good match between experimental and numerical results, the nonlinear MDOF-ROM

representing the Test Rig #2 (without motion limiting constraints ) is considered to

be identified. The complete validation of the identified ROM against different sets of
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experimental data is reported in Chapter 7.

6.3.4 Nonlinear Restoring Force Method: Experimental Identifica-

tion of a Localised Piecewise Characteristic

In the previous section, the NLRF method was introduced and applied to identify a

nonlinear MDOF-ROM capable of representing the dynamic behaviour of Test Rig #2

without the motion limiting constraints . In this section, instead, the NLRF method

is used to identify a piecewise characteristic. The identification process utilises the

experimental data associated with the non-smooth version of Test Rig #1 because,

as shown in Chapter 5, it presents very a rich dynamic behaviour, including chaotic,

quasi-periodic, and multi-periodic dynamic responses. The linear and smooth nonlin-

ear characteristics of an associated ROM have been already identified in Section 6.2.1

and 6.2.2, utilising linear identification methods and meta-heuristic optimisation meth-

ods. The equation of motion of the identified nonlinear ROM is shown in Eq. 6.1 whose

linear and nonlinear coefficients are reported in Tab. 6.10 for the sake of completeness.

The NLRF method is applied following a slightly modified procedure to the original

Table 6.10: Linear and nonlinear parameters of Test Rig #1 without motion limiting
constraints . The parameters are identified in Section 6.2.

Parameter Value
m 0.113 kg
k1 714.9N/m
k2 89.6N/m
k3 624.9N/m
c1 0.0454Ns/m
c2 0.0075Ns/m
c3 0.0366Ns/m
µ1 2.732× 106 N/m3

µ2 1.324× 106 N/m3

µ2,b 8.850× 106 N/m3

µ3 7.069× 106 N/m3

version. In this case, the sought characteristic cannot be correctly represented by poly-

nomial functions, but piecewise functions are necessary to perform the identification.

This simplifies the process, as there is no need for searching a suitable order of the

polynomial. The NLRF method reduces to the scheme outlined in Fig. 6.12, which
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Figure 6.12: NLRF method: simplified procedure for the identification of non-smooth
characteristics

involves the selection of an appropriate ROM, the identification of the underlying lin-

ear system, the computation of the NLRF surfaces, and the identification of nonlinear

parameters. To account for the presence of a piecewise characteristic, the following set

of ODEs is utilised:

mẍ1 + c1ẋ1 + k1x1 + c2(ẋ1 − ẋ2) + k2(x1 − x2) + µ1x
3
1 + µ2x

3
1 − µ2,bx

2
1x2+

+ µ2,bx1x
2
2 − µ2x

3
2 + Fp(x1) = 0

(6.17a)

mẍ2 + c3(ẋ2 − ẏ) + k3(x2 − y)− c2(ẋ1 − ẋ2)− k2(x1 − x2) + µ3(x2 − y)3+

− µ2x
3
1 + µ2,bx

2
1x2 − µ2,bx1x

2
2 + µ2x

3
2 = 0

(6.17b)

Eq. 6.17 is an extension of Eq. 6.1 and incorporates an extra term to explicitly represent

the influence of a piecewise stiffness restoring force, denoted by Fp. Despite efforts, a

perfectly symmetric gap is difficult to archive in a real experimental setup, thus the

sought piecewise characteristic is more general and it allows for having asymmetric

non-contact gaps. The characteristic is mathematically represented by the following
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Figure 6.13: Experimental NLRF surface of Test Rig #1 (a) in the reduced sub-space
x1− ẋ1. The section cut of the experimental NLRF surface at ẋ1 = 0 and the identified
properties are graphically shown in panel (b)

expression:

Fp =


kp(x1 − a2) if x1 > a2

0 if − a1 < x1 < a2

kp(x1 + a1) if x1 < −a1

(6.18)

where kp is the piecewise stiffness and, a1 and a2 are the lower and upper limits of the

free-play gap.

Considering that the linear and nonlinear smooth parameters of the equation of

motion are known, the identification procedure is reduced to the identification of the

piecewise characteristic. The idea is to remove the linear and the smooth nonlinear

restoring force contributions from the global restoring force to obtain an NLRF surface

representing the piecewise stiffness characteristic. This can be used to identify the

non-smooth property of Test Rig #1. The NLRF, representing the piecewise stiffness

contribution, is obtained by manipulating the equation of motion associated with the

first DOF of the system (Eq. 6.17a) as follows:

NRF = −mẍ1−c1ẋ1−k1x1−c2(ẋ1−ẋ2)−k2(x1−x2)−µ1x
3
1−µ2x

3
1+µ2,bx

2
1x2−µ2,bx1x

2
2+µ2x

3
2 (6.19)

The experimental NLRF is then computed using the time histories obtained from for-

ward sine sweeps with an amplitude of 0.3 V. Fig. 6.13 (a) shows the experimental

NLRF surface in the reduced subspace of nonlinear coordinates associated with the
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Table 6.11: Identified piecewise function parameters.

a1 [m] a2 [m] kp [N/m]
4.091× 10−4 3.995× 10−4 5.472× 103

first DOF. The figure demonstrates that, in a reduced subspace, the restoring force

surface of a localised nonlinearity can be graphically reconstructed even in the case of

an MDOF nonlinear system. Most of the variation of the surface is concentrated along

the axis x1; this suggests that no significant nonlinear damping contribution is present

in the experimental NLRF. Following this consideration, every cutting section of the

surface along the axis x1 is suitable for identifying the sought piecewise characteristic.

Fig. 6.13 (b) shows the cutting section of the experimental NLRF surface at ẋ1 = 0,

denoted by the orange large dot. The unknown coefficients of the nonlinear property

are obtained by minimising the difference between the experimental and the analytical

piecewise characteristics. Once again, the MATLAB function lsqnonlin is utilised to

solve the optimisation problem, using the following piecewise function:

Fp = kp[(x1 + a1)/2(sign(−x1 − a1) + 1) + (x1 − a2)/2(sign(x1 − a2) + 1)] (6.20)

The results of the optimisation process are reported in Tab. 6.11. The non-contact

gaps a1 and a2 are close but not identical, as it is challenging to obtain a perfect

symmetric characteristic in the experimental setup. Fig. 6.13 (b) shows the comparison

between the experimental cutting section of the NLRF and the identified piecewise

characteristic. The identified property reproduces very well the experimental data and

therefore is considered sufficiently accurate to proceed with the validation of the model.

The validation is carried out using different sets of experimental data and is described

in detail in the Chapter 7.

6.4 Summary

In this chapter, Test Rigs #1 and #2 are identified from experimental data. Reduced

order models are derived and equivalent parameters are identified using two diverse

procedures: meta-heuristic optimisation and the NLRF method. Initially, the test rigs
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are identified in their smooth configuration, i.e. in the absence of the motion limiting

constraints. The linear and nonlinear behaviour of the system are identified separately:

the first one is identified using classical identification methods such as circle fit and half

power methods which allow obtaining an estimation of the system modal parameters.

The estimated parameters are then used as an initial guess for an optimisation proce-

dure which aims to minimise the difference between analytical and experimental transfer

functions representing the underlying linear system. Then meta-heuristic optimisation

methods, such as PSO and GA, are used to identify the nonlinear smooth characteristics

of the system. In this specific case, the knowledge of the FRC is exploited to create an

objective function and extract useful information from the experimental measurements.

Test Rig #1 is successfully identified using the meta-heuristic optimisation approach,

as demonstrated by the comparison between the experimental and numerical data. On

the contrary, using the same approach, the ROM identified from the experimental data

of Test Rig #2 does not capture the qualitative dynamic behaviour of the experimental

system, failing to locate the frequency at which jumps occur. This is caused by the

usage of a perfect sinusoidal excitation in the numerical simulations which reduces the

amount of information passed to the optimisation process.

The successful identification of Test Rig #1 is taken as inspiration to develop a novel

method for the identification of nonlinear MDOF systems. The method incorporates

the identification of the underlying linear and nonlinear behaviour of the mechanical

system in a separate way as previously done for Test Rig #1. The proposed method

is a modified version of the RFS method, named the NLRF method, which tries to

identify the nonlinear characteristics of the system in the real coordinate space using

the nonlinear components of the restoring force. The capabilities of the method are

shown numerically and experimentally. The method can extract information from the

NLRF surfaces associated with each DOF of the system; this information is then used

to develop engineering considerations which reduces the mathematical complexity of

the identification procedure. For example, knowing that the NLRF is fully represented

by only two states of the system, e.g. x1 and ẋ1, it is possible to simply the definition

of the general polynomial for the identification of the nonlinear characteristic, saving

167



Chapter 6. Identification of MDOF Systems: Nonlinear Restoring Force Approach

time and reducing the computational effort of the procedure in comparison to the

meta-heuristic optimisation approach. The method is applied to identify the smooth

and non-smooth characteristics of the experimental test rigs, introduced in the previous

chapters. The successful identification of the nonlinear characteristics is proven by the

good match between the experimental and numerical data, posing the basis for the

subsequent validation process, reported in Chapter 7.
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Chapter 7

From Identification to

Extrapolation: Validation of the

Identified Nonlinear Systems

7.1 Introduction

This chapter discusses the validation of the reduced-order models previously identified.

Particular attention is given to the extrapolation capabilities of the models, i.e. their

capability to predict dynamic behaviours of the test rig. Specifically, the sections are

organised as follows:

• Section 7.2 shows the validation process of the identified reduced-order models.

To this end, the comparison between experimental data and the numerical pre-

dictions is carried out considering experimental data sets that are different from

the ones used during the identification process. In particular, FRCs, time his-

tories, and steady-state orbits are utilised to assess the prediction capabilities of

the identified ROMs. The validation is performed for the ROMs associated with

the smooth version of Test Rig #1 and #2 and for the non-smooth version of

Test Rig #1.

• Section 7.3 discusses the differences between a full FE nonlinear model and a
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ROM. To this end, a nonlinear FE model representing Test Rig #2 is updated

using the NLRF method and validated against a different set of experimental data.

The updated model is then used to carry out the comparison with the equivalent

ROM, previously identified. The section discusses the difference between the two

models in terms of the accuracy of the solution and the computational burden

of the calculations, highlighting the advantages and disadvantages of the two

approaches.

• Section 7.4 utilises the identified non-smooth ROM of Test Rig #1 to perform

numerical predictions of the system dynamics at different levels of excitation.

Path-following continuation is utilised to obtain a clear picture of the bifurcation

scenario associated with the identified ROM. The numerical analyses are per-

formed paying attention to the similarities between the dynamic features of the

identified model and the general model investigated in Chapter 3. The section

concludes by showing the presence of isolas and bifurcation of the backbone in

the identified non-smooth ROM and suggesting a procedure for the detection of

bifurcation of the backbone curve from experimental data.

7.2 Validation of the Identified Reduced Order Models

This section discusses the validation of the nonlinear ROMs identified in Chapter 6.

The validation process is carried out by comparing the numerical predictions of the

identified models against different sets of experimental data. These sets include exper-

imental data obtained at excitation levels that are different from the one used during

the identification process. This consents to demonstrate the robustness of the iden-

tified models and their suitability in predicting the global dynamic behaviour of the

investigated structures. It should be pointed out, that this is particularly important in

industrial applications, where the identified models are used to predict the behaviour

of systems and structures in operational conditions that are generally different from

the identification ones.
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7.2.1 Validation of the Reduced Order Model representing the Smooth

Behaviour of Test Rig #1

The nonlinear ROM representing the dynamic behaviour of Test Rig #1 without motion

limiting constraints is now validated against experimental data. To this end, Eq. 6.1

and its linear and nonlinear coefficients (Tab. 6.10) are used to simulate the dynamic

response of the system via numerical integration and the predicted dynamic behaviour

is tested against a different set of experimental data. In particular, the FRCs associated

with an input voltage amplitude of 0.3 V and 0.4 V, are used to validate the identified

Figure 7.1: Validation of the identified nonlinear ROM representing the smooth be-
haviour of Test Rig #1. The arrows in the legends indicate the direction of the fre-
quency sweep [4].
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nonlinear model. The numerical simulations are carried out at the same frequency of

excitation at which the experiments are performed. To mitigate the shaker interaction

with the structure at resonance, the experimental input amplitude of excitation, i.e.

the velocity and displacement of the base, are used as input in the simulations. This is

necessary because the base motion of Test Rig #1 is not controlled via feedback control

loop. Fig. 7.1 shows the comparison between the experimental data and numerical

simulations: the identified ROM captures the dynamic behaviour of the experimental

system with good accuracy at different levels of excitation. In addition, the ROM

accurately predict the dynamic response of the experimental test rig when forward and

backward frequency sweeps are used to excite the structure, identifying high-amplitude

and low-amplitude responses in both the excitation conditions. This validates the

identified ROM and the associated smooth nonlinear characteristics and demonstrates

the good extrapolation capabilities of the identified model.

7.2.2 Validation of the Reduced Order Model representing the Smooth

Behaviour of Test Rig #2

The ROM representing Test Rig #2 (Eq. 6.12) and the identified parameters (Tab. 6.4

and Tab. 6.9) are validated against different sets of experimental results. Differently

from the previous case, the nonlinear dynamic behaviour of the system is fully tested.

In the previous case, the usage of experimental input did not allow for testing the desta-

bilisation of high-amplitude responses. In particular, it was not possible to validate the

capability of the ROM to identify the jump-up and jump-down phenomena, i.e. the

transition from low- to high-amplitude of response, as the input is partially driven this

phenomenon. This feature is particularly important to correctly represent the dynamic

behaviour of nonlinear systems and it is directly linked to their basins of attraction of

the stable dynamic solutions. Validating similar features, the identified ROM reaches

a high degree of confidence, suitable for performing extrapolation of dynamic features.

In the considered case, the control system tries to eliminate the dynamics of the shaker

from measured signals allowing for the direct comparison between numerical contin-

uation analyses and experimental results. Specifically, the numerical simulations are
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Figure 7.2: Numerically continued (continuous and dashed lines) and experimental
(markers) FRCs. The numerical backbone curves are indicated by dotted lines. Nu-
merical and experimental data are associated with the smooth version of Test Rig #2

carried out at constant amplitude displacement of the base, as imposed experimentally.

The results of the comparison between experimental and numerical FRCs are shown in

Fig. 7.2: the numerical FRCs are obtained from the identified ROM and the results are

compared with the experiments using input amplitude equal to: 0.05 mm, 0.04 mm, and

0.03 mm. The panels on the left describe the FRCs associated with the displacement of

the first DOF (panels (a), (c) and (e)), while the panels on the right illustrate the FRCs

obtained from the displacement of the second DOF (panels (b), (d) and (f)). All the

numerical simulations are in good agreement with the experimental data: in particular,
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the identified model can reproduce the qualitative and quantitative dynamic behaviour

of the test rig, at all the considered excitation levels. In addition, the model effectively

scales the amplitude of the response and the jumps following the varying levels of exci-

tation. This is particularly important because it demonstrates that the identified model

has correctly captured the nonlinear dynamics features of the experimental system like

the destabilisation of high-amplitude responses. The good match between numerical

and experimental FRCs demonstrates that the chosen ROM captures the complex non-

linear behaviour of the experimental test rig, characterised by the presence of stiffness

and damping nonlinear properties. In addition, it is shown that the ROM can ex-

trapolate information from the experimental data and predict the nonlinear dynamics

behaviour of the experimental system at different excitation conditions. Fig. 7.2 shows

the numerical backbone curve of the system. These curves represent the undamped

unforced dynamic response 1 of the system in the frequency-amplitude plot. The back-

bone curves behave as expected, showing nonlinear features that are aligned with the

previous experimental analysis and identification process. Specifically, both the back-

bone curves show the hardening effect, bending towards higher frequencies when large

amplitudes of responses are reached. In addition, no bifurcation or flipping points are

found in the backbone curves, demonstrating the absence of internal resonances in the

considered range of amplitude of the response. Nonetheless, the second backbone curve

shows an unexpected bending towards lower amplitudes of response when very large

amplitudes of response are achieved in the second mode: this is due to the extreme

difference between the amplitude of the available experimental data, utilised to identify

the model, and the predictions that are attempted. At high amplitude of response, the

ROMs probably fail to predict the dynamics of the experimental test rig: however, such

conditions are not easy to reach in a real experimental set-up, as the vibration table

of Test Rig #2 allows for exciting the first mode effectively, and therefore they do not

represent an issue for the validation process reported in this chapter.

1Differently from Chapter 3 the continuation of the conservative periodic solutions is achieved using
an unfolding parameter and numerical corrections, as proposed in [125].
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7.2.3 Validation of the Reduced Order Model representing the Non-

Smooth Behaviour of Test Rig #1

In Section 7.2.1, the ROM representing Test Rig #1 in the smooth configuration is

identified and validated. The model demonstrated to predict the experimental dynamic

behaviour of the test rig when excitation conditions, different from the one used during

the identification process, are used.. Building on these results, it is now possible to val-

idate the ROM representing the non-smooth dynamics behaviour of Test Rig #1. The

associated piecewise characteristic is identified in Chapter 6 with the NLRF method.

To this end, the mathematical model of Eq. 6.17 is used for the validation process. The

validation is carried out by comparing steady-state orbits and the time histories of the

experimental and numerical models. Firstly, the forward sweep at 0.3 V, is used in the

validation process. These data correspond to the data used in the NLRF method for

the identification of the system, nonetheless, the comparison of different orbits provides

a cross-validation of the identified model. The results of the comparison are reported in

Fig. 7.3. The panels in the first column show a comparison between experimental and

numerical time histories while the panels in the second column illustrate the comparison

between experimental and numerical dynamic orbits. The comparison is carried out

by considering three different dynamic conditions, namely, a single-period attractor,

a multi-periodic attractor, and a quasi-periodic attractor. The single-period attractor

is identified at Ω = 12.7 Hz and the comparison between numerical and experimental

data is reported in Fig. 7.3 (a1-a4) for the first and second DOF. The multi-periodic

attractor, instead, is experimentally observed at Ω = 12.2 Hz while the quasi-periodic

attractor is found at Ω = 14.8 Hz. Fig. 7.3 (b1-b4) and Fig. 7.3 (c1-c4) show the

comparison between the numerical and experimental time-histories/steady-state orbits

for the two remaining attractors. The numerical simulations are computed via numer-

ical integration with the aid of the MATLAB function ode45. As suggested in [2], the

measured base motion is used as input in the numerical simulations according to the
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Figure 7.3: Comparison between the experimental data (black line) and the numerical
solutions (light blue line) at the steady-state conditions (non-smooth version of Test
Rig #1). Experimental forward sweep data at 0.3 V amplitude are utilised for the
comparison.
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Figure 7.4: Experimental (a) and numerical (b) Poincaré sections for Ω = 14.8 Hz. The
sections are obtained using the section plane x2 = 0.

following expressions:

y(t) = Yexp(Ω) cos(Ωt) (7.1a)

˙y(t) = −Ẏexp(Ω) sin(Ωt) (7.1b)

where Yexp and Ẏexp are the experimental displacement and velocity amplitude of the

base at a specific excitation frequency Ω. The comparison between numerical and

experimental time histories/steady-state orbits demonstrates that the identified ROM

can accurately predict the dynamic response of the experimental test rig, especially

when periodic attractors are considered. This is evident from the comparison carried

out in Fig. 7.3 (a1-a4) and Fig. 7.3 (b1-b4) where the numerical solutions associated

with single-period and multi-periodic attractors are shown to be in good agreement

with the experimental data. Good results are also achieved in the presence of a quasi-

periodic attractor: in this case, numerical and experimental time-histories are not

perfectly matched in terms of amplitude, nonetheless, the general qualitative behaviour

of the experimental system is captured by the numerical model, as shown by Fig. 7.3

(c2,c4). To further prove this aspect, the Poincaré sections of the experimental and

the numerical attractors are compared: Fig. 7.4 shows that in both cases the attractors

are associated with an invariant circle. This demonstrates that the ROM can correctly

predict the presence of a quasi-periodic attractor, i.e. the qualitative dynamic behaviour
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of the experimental test rig.

Figure 7.5: Comparison between the experimental data (black line) and the numerical
solutions (coloured lines) at the steady-state conditions (non-smooth version of Test
Rig #1). Experimental forward sweep data at 0.35 V and 0.2 V amplitude are used.
The numerical solutions for amplitude equal to 0.35 V are indicated with orange lines
and for amplitude equal to 0.2 V are indicated with gray lines.
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To finalise the validation, the identified non-smooth model is used to compute dy-

namic responses at different excitation conditions. Specifically, the experimental excita-

tion measured during forward sweep with amplitude equal to 0.35V and 0.2 V are used

to carry out additional numerical simulations and the results are compared against

experimental data. The results are shown in Fig. 7.5 for a single periodic attractor

(panels (a1-a2)) at 0.35 V (Ω = 11.9Hz), a multi periodic attractor (panels (b1-b2)) at

0.35 V (Ω = 12.1Hz), an aperiodic attractor (panels (c1-c2)) at 0.35 V (Ω = 15.3Hz), a

single periodic attractor (panels (d1-d2)) at 0.2 V (Ω = 12.7Hz), and a multi-periodic

attractor (panels (e1-e2)) at 0.2 V (Ω = 14.9Hz). Once again, the predicted orbits are

very close to the experimental ones in all the considered cases. The identified model

captures very well the qualitative dynamics of all the considered experimental attrac-

tors and predicts accurately the quantitative steady-state dynamics of the test rig when

single and multi-periodic attractors are considered. This demonstrates the accuracy of

the identified model in predicting the dynamic behaviour of the experimental test rig

and validates the model.

7.3 Finite Element Model vs Reduced Order Model

The previous section presented the validation of the ROM representing the test-rig

#2. In this section, a nonlinear FE model, representing the same test rig, is updated

using the NLRF method and the resulting model is validated against experimental

data. Then the FE and reduced models are compared in terms of the accuracy of the

predicted dynamic response.

7.3.1 Nonlinear Finite Element Model: Model Updating

An FE model representing the experimental Test Rig #2 is modelled and analysed

with the FE package Abaqus (Dassault Systeḿes). The FE model is shown in Fig. 7.6:

it consists of parallel steel beams (S1, S2, and S3), modelled with shell elements, and

two blocks (B1 and B2), modelled with cubic elements. The two blocks are modelled

considering the presence of polymeric and metallic components: a core mass in the
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Figure 7.6: FE model representing the experimental Test Rig #2. Spring-dashpot
elements (kNI,1, cNI,1 and kNI,2, cNI,2 ) are applied between the extremities of the FE
model and the ground G to simulate the non-ideal boundary conditions. The arrows
show the direction of excitation.

middle of each block is used to take into account the presence of heavier components,

e.g. fastening elements. This permits us to properly tune the mass of each block with

respect to the experimental measurements. Non-ideal boundary conditions are applied

at the extremities of the FE model: such conditions are generally modelled using linear

or torsional spring/damping elements [26]. The nonlinear dynamic behaviour of the FE

model is affected by the non-ideal boundary conditions and by the deformation of the

parallel beams. To correctly estimate the deformation of the beams, the number of shell

elements is selected via a convergence study. The non-ideal boundary conditions are

modelled with spring-dashpot elements applied along the longitudinal direction. These

elements are applied at the extremities of the model, as shown by Fig. 7.6 where kNI,1,

cNI,1, kNI,2, and cNI,2 denote the linear coefficients of the aforementioned elements.

The presence of the spring-dashpot elements allows modelling the complex interaction

between different materials and the presence of friction and relative motions between

the beams and the supports.

To update the FE model, the parameters that mostly affect the dynamics of the

system must be identified and selected. These parameters are divided into two sets: the
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first one is constituted of the mechanical properties of the materials, i.e. the Poisson

coefficient (ν), the elastic modulus (E), the density (ρ), and the damping (modelled as

proportional damping, using the coefficients α and β), while the second one is consti-

tuted of the parameters that represent the non-ideal boundary conditions, i.e. kNI,1,

kNI,2, cNI,1, and cNI,2. The first set of parameters strongly influences the linear dy-

namic response of the system and the associated modes. The second one, instead,

mostly affects its nonlinear dynamic response. A linear model updating procedure

from an initial guess of the parameters is performed. During the updating procedure,

modal and linear steady-state analyses are carried out via numerical FE simulations.

The linear dynamic simulations have quite a low computational burden, thus multiple

iterations can be done until the convergence between numerical and experimental dy-

namic behaviour is not reached. In this case, two comparisons are carried out: firstly

a Modal Assurance Criterion (MAC) against experimental data is performed by con-

sidering the first two modes of the system, and then the numerical and experimental

receptances, i.e. the system transfer functions, are compared. These analyses account

for the presence of non-ideal boundary conditions, assuming an initial guess for the

parameters kNI,1, kNI,2, cNI,1, and cNI,1. The first set of parameters is then modified

to improve the match between experimental and numerical results and the process is

repeated until the difference between the experimental and numerical TFs is consid-

ered negligible. The linear model update is initialised as shown in Appendix C and is

repeated for each change of the non-ideal boundary conditions.

After the linear model update, the nonlinear response of the FE model is updated

by modifying the non-ideal boundary conditions. Direct numerical integration is per-

formed in an iterative updating procedure and the simulations are compared against

experimental results. Non-ideal spring and damping elements are updated separately.

To limit the computational burden, the updating procedure is performed by considering

only certain excitation conditions rather than an entire frequency sweep; two condi-

tions are identified, namely, the first linear resonance and the jumps from high- to low-

amplitude of response. The first condition allows tuning the stiffness kNI,1 and kNI,2

since high-amplitude responses are accessible without the need to impose complicated
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Table 7.1: Iterative procedure for tuning the non-ideal constraints (stiffness kNI,1 and
kNI,2) at an excitation frequency of 15.2 Hz (first natural frequency). The updated
properties are shown on the left side of the table, while the associated dynamic responses
are reported on the right. The top row indicates the initial guess, while the bottom
row denotes the end of the identification procedure. Experimental targets are reported
in brackets.

kNI [N/m] ES1
[GPa] ES2

[GPa] ES3
[GPa] F1 [Hz] F2 [Hz] Mode 1 (u2,1/u1,1) Mode 2 (u2,2/u1,2) AM,1 [mm] AM,2 [mm]

5000 199.6 242.0 202.6 15.21 (15.20) 17.75 (17.75) 0.960 (0.956) -1.040 (-1.046) 1.84 (2.31) 1.78 (2.20)
4500 199.6 242.0 202.6 15.21 (15.20) 17.74 (17.75) 0.960 (0.956) -1.040 (-1.046) 1.91 (2.31) 1.85 (2.20)
2390 199.3 251.0 202.6 15.21 (15.20) 17.75 (17.75) 0.957 (0.956) -1.043 (-1.046) 2.40 (2.31) 2.31 (2.20)
2450 199.3 251.0 202.6 15.21 (15.20) 17.75 (17.75) 0.957 (0.956) -1.043 (-1.046) 2.37 (2.31) 2.29 (2.20)
2510 199.3 250.0 202.6 15.21 (15.20) 17.74 (17.75) 0.958 (0.956) -1.043 (-1.046) 2.36 (2.31) 2.27 (2.20)
2560 199.3 250.0 202.6 15.21 (15.20) 17.75 (17.75) 0.957 (0.956) -1.043 (-1.046) 2.34 (2.31) 2.26 (2.20)
2610 199.3 250.0 202.6 15.21 (15.20) 17.75 (17.75) 0.957 (0.956) -1.043 (-1.046) 2.32 (2.31) 2.24 (2.20)

Table 7.2: Iterative procedure for the tuning of the non-ideal constraints (damping
cNI,1 and cNI,2). The updated properties are shown on the left side of the table, while
the associated dynamic responses are reported on the right. The top row indicates the
initial guess, while the bottom row denotes the identified properties. The experimental
targets are denoted in brackets

cNI,1 [Ns/m] cNI,2 [Ns/m] MSE 1 MSE 2 Jump [Hz]
0.0 0.0 5.6e-08 5.1e-08 18.5 (16.1)
2.0 1.58 5.7e-08 5.1e-08 16.1 (16.1)

initial conditions. The damping associated with the non-ideal boundary conditions

(cNI,1, and cNI,2) has a strong effect on the destabilisation of high-amplitude responses

and influences the occurrence of the jump phenomenon in a classical frequency sweep

excitation. Therefore, the frequencies of excitation near the jumps are the best candi-

dates for performing direct integration simulations and tuning the damping coefficients

of the boundary conditions. The identification process ends when both the damping

and stiffness coefficients of the non-ideal boundary conditions are correctly updated.

Finally, the updating process is concluded with the validation phase which compares

numerical and experimental FRCs in the frequency range of interest.

The results of the nonlinear model updating are reported in Tab. 7.1, for the non-

ideal springs and Tab. 7.2, for the non-ideal damping elements. In the first nonlinear

updating procedure, only the stiffness kNI,1 and kNI,2 of the non-ideal constraints and

the elastic moduli ES1 , ES2 , and ES3 associated with the supporting beams are up-

dated: the idea behind is to update only the parameters that have most of the effect

on the nonlinear response of the system, neglecting for the moment the effect of the

non-ideal boundary damping. The remaining parameters, i.e., the Poisson coefficients
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ν, density ρ, and proportional damping properties α and β are kept fixed during the

model updating. The nonlinear FE model is updated by minimising the difference be-

tween the numerical and experimental displacement amplitude of the two masses AM,1

and AM,2, which are respectively retrieved from the nonlinear numerical simulations

and experimental analyses. The linear behaviour, instead, is updated by adjusting

the modal characteristics of the numerical system. Fig. 7.7 shows the comparison be-

tween the numerical and experimental FRC in terms of the amplitude of response,

after the first nonlinear updating procedure, i.e. considering only the presence of non-

ideal springs; the figure demonstrates that the updated FE model captures nonlinear

hardening behaviour of the experimental system, but fails to identify when the jump

occurs.

To solve this problem, a second iterative procedure for updating the non-ideal

boundary damping is carried out. The idea is to increase the value of the two boundary

dampers until the jump occurs at the correct frequency of excitation. Nevertheless, this

time, instead of updating the coefficients with an iterative procedure, the knowledge

of the Nonlinear Restoring Force (NLRF) surface is leveraged to obtain optimal val-

ues and reduce the number of iterations. Since the experimental and the FE models

showed the presence of only two modes in the investigated frequency range, a good

analytical approximation of the system dynamics is provided by Eq. 6.12. This equa-

tion represents the ROM that was identified and validated in the previous chapters

and sections. Eq. 6.12 and the knowledge of the underlying linear parameters, reported

in Tab. 6.4 are then exploited to compute the experimental and numerical NLRF sur-

faces. Thus, the NRF,1 and NRF,2 are computed using the experimental and numerical

displacement, velocity, and accelerations. The numerical and experimental NLRF

surfaces are shown in Fig. 7.8 (a,b). Two important aspects must be noted: first, the

experimental and numerical NLRF surfaces are representable with a 3D function in

considered reduced sub-spaces; this consents to assume that the nonlinear restoring

force contribution on each mass depends only on the local coordinate, e.g. the first

surface depends only on the states z1 and ż1. Secondly, the numerical NLRF surfaces

are tilted with respect to the experimental one; this second aspect provides information
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Figure 7.7: Comparison between the experimental and numerical FRCs, after the first
nonlinear updating procedure, i.e. considering the presence of only the non-ideal springs
and the properties shown in the bottom row of Tab. 7.1. The comparison is performed
in terms of amplitudes of the response for the first (a) and second (b) mass.

about the missing contribution to match the experimental conditions. By adding a lin-

ear damping contribution in the non-ideal boundary conditions, the numerical NLRF

surface can be rotated around the displacement axes (i.e. z1 and z2), matching the

experimental conditions. Fig. 7.8 (c,d) shows the difference between the numerical and

experimental NLRF surfaces which results in a straight inclined plane for both the

masses. These surfaces are cut along the plane passing for z = 0 to obtain a line which

is used to estimate the value of the damping to be added to the non-ideal boundary

conditions. Tab. 7.2 shows the results of the proposed procedure which reaches the

convergence with just one step.

At this point, it is possible to verify the dynamic behaviour of the FE model by

comparing its amplitude and phase of response with the experimental data. Fig. 7.9

reveals a good agreement between the experimental data and the numerical results, not

only in terms of the curvature of amplitude and phase at the first resonance but also

in terms of jumps, demonstrating that the identified FE model capture the qualitative

and quantitative dynamics of the test-rig. The comparison is performed against the

forward/backward frequency sweep experimental data that were used in the identifi-

cation process. In particular, the experimental data and the numerical results were

obtained by imposing a constant amplitude of excitation equal to 0.05 mm. To further
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Figure 7.8: Graphical representation of the NLRF surfaces. The comparison between
the numerical and experimental NLRF surfaces is reported in panels (a) for the first
mass and (b) for the second mass. The difference between the surfaces is shown in
panels (c,d) where symbol · denotes the cutting sections at z = 0.

demonstrate the capabilities of the proposed updating procedure, the identified nonlin-

ear FE model is validated against a different experimental data set, obtained with an

amplitude of excitation equal to 0.04 mm. Fig. 7.10 describes the validation process

and demonstrates the excellent match between the experimental data and the numeri-

cal simulations in terms of nonlinear hardening behaviour and jumps. This shows that

the identified FE model is capable of predicting with good accuracy the dynamics of

the experimental test rig at diverse excitation conditions, demonstrating the efficacy of

the proposed model updating procedure.

Fig. 7.11 shows the comparison between experimental and numerical FRCs in terms

of displacement of the first mass. Specifically, the comparison accounts for FRCs ob-

tained from the updated nonlinear FE model and the previously identified ROM (see
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Figure 7.9: Comparison between the experimental and numerical (FE model) FRCs
with excitation amplitude equal to 0.05 mm (smooth version of Test Rig #2). Upper
panels (a,b) represent the absolute amplitudes while lower panels (c,d) illustrate the
phase between the displacement of the vibrating table and the displacement of the
masses. The left and right panels denote the quantities associated with, respectively,
the first and second mass.

Section 7.2.2). The figure shows that both models provide a very good representation

of the dynamic response of Test Rig #2. The FE model is slightly more accurate in

capturing the amplitude of response of the experimental model, especially near the

jump. This is justified by the higher degree of complexities of the FE model which

not only utilises distributed elements to compute the nonlinear stiffening effect of the

parallel beams but also introduces non-ideal boundary conditions to correctly catch

the interaction between the supports and the system dynamics. Nonetheless, this small

increase in accuracy does not justify the more complicated iterative procedure for up-

dating the FE model and the large increment of computational burden to perform
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Figure 7.10: Comparison between the experimental and numerical (FE model) FRCs
with excitation amplitude equal to 0.04 mm (smooth version of Test Rig #2). Upper
panels (a,b) represent the absolute amplitudes while lower panels (c,d) illustrate the
phase between the displacement of the vibrating table and the displacement of the
masses. The left and right panels denote the quantities associated with, respectively,
the first and second mass

the analysis. Using direct numerical integration, the computation of the FRCs with

the FE models is extremely long and computationally demanding as demonstrated by

Tab. 7.3 2. This represents the most critical aspect in practical industrial applications

as it does not allow for achieving a solution in reasonable times. The proposed compar-

ison demonstrated that the identified ROM captures the dynamics of the experimental

rig, requiring relatively low computational efforts, performing the analysis in a few min-

utes, and allowing the calculation of stable and unstable solutions via path-following

continuation techniques. For all these reasons, the ROMs are strongly preferred to FE

2Direct integrations of FE model are performed with maximum time step equal to 0.0025 sec, while
numerical continuation is performed with NCOL = 4, NTST = 80, and maximum step equal to 0.05.
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Figure 7.11: Comparison between the experimental and numerical FRCs with excitation
amplitude equal to 0.05 mm (a) and 0.04 mm (b). The numerical FRCs are obtained
with the nonlinear FE model (marker ♢) and with the ROM (line −).

Table 7.3: Duration of the forward sweep numerical simulations.

Amplitude 0.04 mm 0.05 mm
Reduced Order Model 1456 (24.3 mins) 1638 (27.0 mins)
Finite Element Model 501124 s (5.8 days) 539668 (6.2 days)

models to perform the analysis of strongly nonlinear systems.

7.4 Extrapolation of Dynamic Features

The validated ROM representing the Test Rig #1 is utilised to extrapolate additional

dynamic features and obtain more information about the dynamic behaviour of the

investigated system. To this end, numerical continuation is used to assess the dynamic

response of the system focusing on the investigation of isolas and bifurcation of back-

bone curves. The idea is to unveil the nature of the multi-periodic stable attractors

found in the experimental analysis (see Fig. 5.4), understanding if this dynamic condi-

tion is associated with a branch or a detached isola. In addition, the numerical analysis

aims to demonstrate that it is possible to identify the presence of bifurcation of the

backbone curve using only forced responses. It is worth noting that the base excitation

of Test Rig #1 is not controlled via feedback control loop, thus the experimental re-

sults are not directly comparable with the numerical simulation based on path-following
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Figure 7.12: Numerical FRC of the validated model in terms of first mass amplitude.
The considered ROM represents the non-smooth behaviour of Test Rig #1. The system
is excited with a sinusoidal base displacement (amplitude A = 4.22e − 05 m) and a
smoothing parameter δ = 2e5 is utilised to approximate the piecewise characteristic.
The remaining properties can be found in Tab. 6.10 and Tab. 6.11.

methods as they utilise an ideal sinusoidal excitation. To be consistent with the experi-

mental measurements, averaged experimental amplitudes of the base motion are used in

the numerical analysis. The model is excited with a constant amplitude displacement,

equal to 4.22e-05 m; this amplitude represents the mean experimental amplitude of

displacement of the base during the forward frequency sweep at 0.1 V without motion

limiting constraints. This amplitude is chosen as it represents the lowest experimental

excitation amplitude applied to the test rig. The piecewise stiffness is approximated

with a sigmoid function whose approximation parameter is chosen imposing an error

of 3.24 % (parameter δ = 2e5). The results of numerical analysis are reported in
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Figure 7.13: Orbits of the first mass associated with the stable branches/isolas identified
during the numerical analysis, i.e. branches/isolas B1 (a), B2 (b), P1 (c), P2 (d), P3 (e)
of Fig. 7.12. The same colours are used to indicate periodic orbits and the associated
branches/isolas.

Fig. 7.12: the analysis of the identified non-smooth model shows the presence of iso-

las and bifurcation of the backbone curve, demonstrating the presence of a dynamic

behaviour qualitatively similar to the one obtained in Chapter 3. Despite the low exci-

tation amplitude, the main branch B1 presents a bifurcating branch, named B2. Once

again, the bifurcation of the forced response is generated by the bifurcation of the first

backbone curve as shown in the detail of Fig. 7.12 (d). The bifurcating branch of the

backbone reconnects to the main branch at high amplitudes of response as illustrated

in Fig. 7.12 (c). The analysis of the frequency response unveils the presence of period-

doubling bifurcations of the main branch B1: this induces the destabilisation of B1 and

the generation of a closed branches P1, as shown in the zoom of Fig. 7.12 (a). This

branch is associated with period-doubling stable orbits which persist at amplitudes of

response that are sensible larger than the one of B1, representing a potential problem
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Figure 7.14: FRCs computed at different excitation amplitudes, i.e. 3.52e-4 m, 4.73e-04
m, and 7.03e-04 m. Simulations are carried out using the parameters of Tab. 6.10 and
Tab. 6.11 and δ = 2e5. The vertical dashed line indicates the frequency at which the
degenerate orbits of panels (b-d) are found. The large dots indicated the associated
amplitude.

in the design of similar mechanical structures. Finally, the presence of detached iso-

las is demonstrated by Fig. 7.12 (b): the figure shows that branches P2 and P3 are

completely detached from the main branch B1. Interestingly these isolas have stable

solutions in the region where the experimental analysis identified multi-periodic high-

amplitude responses (see Fig. 5.4). The periodic orbits of the first mass associated with

the stable branches and isolas are shown in Fig. 7.13: branch B1 presents the single

period response which is limited in displacement amplitude by the piecewise stiffness,

branch B2 shows the presence of the degenerate single period orbit, while P1, P2, and

P3 show multi-periodic orbits with period 2, 3 and 5. According to the results of [1], it

is expected that many other multi-periodic isolas are present in the FRC of the system;
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for the sake of brevity the current numerical analysis is limited to the most important

features, i.e. bifurcation of backbone curves and multi-periodic detached isolas around

the first peak. From inspection of Fig. 7.12 and Fig. 7.13 it is possible to see that steady

state responses with period-3 and period-5 generate detached isolas whose shape and

orbits are very close to the one found experimentally in the Test Rig #1. Therefore it is

possible to conclude that the experimental ’branch’ of Fig. 5.4 and the associated orbits

depicted in Fig. 5.4(c2,c3) belongs to an isola in the FRC. More importantly, during

the experimental analysis, the system spontaneously ended in those conditions, indi-

cating that the associated basin of attraction is potentially large. In similar systems,

this phenomenon can easily lead to unwanted large-amplitude responses.

The numerical analysis also revealed the presence of the bifurcation of backbone

curves in the identified ROM: in forced conditions, the bifurcation is reached with a

relatively small amplitude of response, as testified by the presence of a fully devel-

oped branch B2 in the FRC. This provide further evidences that the experimental test

rig possesses a bifurcation of the backbone curve and shows how easily the system

develops the associated degenerate orbits (Fig. 7.13(b)). To further demonstrate the

presence of the bifurcation of the backbone curve, the numerical continuation analy-

sis is repeated in the frequency range 12-15 Hz with different excitation amplitudes:

these are obtained from the experimental data associated with the degenerate orbits,

i.e. the orbit shown in Fig. 5.4 (d3)). Namely the considered excitation amplitudes

are: (1) the measured experimental displacement amplitude (3.52e-4 m), an equivalent

displacement amplitude (4.73e-04 m) derived from the measured velocity amplitude

by considering constant displacement amplitude, and twice the measured displacement

amplitude (7.03e-04 m). Branches B1 and B2 are shown in Fig. 7.14 (a) with the

associated orbits reported in Fig. 7.14 (b-d). The analysis demonstrates that at the

same frequency of excitation at which the degenerate orbit is found experimentally, i.e.

Ω = 13.4 Hz, a very similar numerical orbit is found using numerical continuation, es-

pecially when the amplitude of excitation is large enough. The figure also demonstrates

that the identified model captures the general dynamic response found experimentally.

Finally, the analysis shows that the presence of bifurcation of the backbone curve can
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be demonstrated by the analysis of the forced response of the system and the associated

orbits in impacting systems with multiple degrees of freedom.

7.5 Summary

In this chapter, the ROMs identified in Chapter 6 are validated and utilised to make pre-

dictions at different excitation conditions. Firstly, the ROMs representing the smooth

behaviour of Test Rigs #1 and #2 are validated. Then the ROM representing the

non-smooth behaviour of Test Rig #1 is validated. FRCs, time histories, and orbits

are compared to demonstrate the ability of the identified nonlinear ROMs to capture

the dynamics of the experimental test rigs. The identified ROMs demonstrated their

accuracy in predicting not only the dynamic response utilised in the identification pro-

cess, but also the dynamics of the experimental test rig associated with other excitation

conditions, showing their capability to capture the global dynamic features of the sys-

tem. The cross-validation, often neglected in industrial practice for time and resource

constraints, is particularly important to validate the identified model and improve the

degree of confidence of the associated numerical predictions. This chapter demonstrated

that this practice is effective and that is relatively simple to implement with numerical

continuation and integration schemes, once a ROM has been identified. A nonlinear

FE model representing Test Rig #2 is updated and validated, using the NLRF method.

The responses of the FE and the ROM are then compared: the analysis shows that the

differences in terms of ability to capture the qualitative and quantitative dynamics of

the experimental test rig are practically negligible. Thus the huge computational effort

demanded to perform nonlinear dynamics FEA cannot be justified and the usage of a

ROM, when possible, is highly recommended.

Finally, the identified non-smooth ROM of Test Rig #1 is used to extrapolate

information about the dynamic behaviour of the system. This is possible thanks to

the previous identification and validation procedure. The analysis demonstrated the

presence of bifurcation of the backbone curve and detached isolas in the ROM. In

addition, it is shown that it is possible to identify the presence of bifurcation of backbone

curves by inspection of forced responses of the system. Specifically, this can be proved
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by identifying degenerate orbits. This interesting result is important as it increases

the fundamental knowledge of the piecewise nonlinear system with multiple degrees of

freedom and shows that it is possible to use forced responses to simplify the detection

of complex phenomena like the bifurcation of the backbone curve in strongly nonlinear

systems.
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Chapter 8

Dynamic Behaviour of Linear

and Nonlinear Structures: Two

Case Studies

8.1 Introduction

The previous chapters demonstrated the importance of accounting for nonlinear dy-

namic phenomena and their effects on mechanical structures. This conclusive chapter

discusses some engineering applications where nonlinearities, if correctly implemented,

may have beneficial effects on the dynamics of the system. To this end, mechanical

structures that require high performance are taken into account; specifically, Vibra-

tion Energy Harvesters (VEH) are used to develop two case studies because of their

intrinsic necessity of high performance, such as high-power output and large frequency

bandwidth. The chapter aims to highlight the inadequacy of linear dynamic models in

describing the dynamics of high-performance nonlinear structures and conversely the

capability of nonlinear systems to facilitate the achievement of exceptional performance.

Specifically, the chapter discusses the following points:

• Section 8.2 proposes a short overview of how smooth and non-smooth nonlin-

ear characteristics are used to enhance the performance of different mechanical

systems such as VEHs, aeroelastic structures, Micro-Electro-Mechanical-System

195



Chapter 8. Dynamic Behaviour of Linear and Nonlinear Structures

(MEMS), and cutting-edge technologies such as Atomic Force Microscopy (AFM).

• Section 8.3 introduces the case study of an SDOF electromagnetic energy har-

vester with a bistable softening/hardening behaviour. The inadequacy of linear

models in describing the system dynamics is demonstrated through numerical

simulations. Employing numerical continuation and integration techniques, the

analysis focuses on the nonlinear dynamic response of the system. The discussion

concludes with considerations about the advantages, in terms of frequency band-

width, resulting from the correct implementation of nonlinear characteristics into

the system.

• Section 8.4 discusses dynamics and the performance of a linear planar-shaped

piezoelectric energy harvester. Using finite element modelling and meta-heuristic

optimisation, a scheme for the simultaneous optimisation of power output, fre-

quency bandwidth, and efficiency is proposed. Despite the optimisation, the

optimal configuration derived from a linear model reveals that the energy har-

vester lacks in frequency bandwidth and attains a maximum power output that

is not suitable for practical applications. The discussion concludes by highlight-

ing the potential nonlinearities that might be present in the structure and their

implications on the system dynamics.

8.2 Enhancing Mechanical Systems Using Nonlinearities:

overview and contextualisation

This section provides an overview of how nonlinear characteristics and nonlinear sys-

tems have been used in the literature to improve the performance of different mechanical

systems and structures. Considering the breadth of the topic, the proposed overview

is certainly not exhaustive and a complete description of all the possible improvements

in mechanical systems falls outside of the scope of this thesis. Nonetheless, this in-

troduction provides contextualisation for the following case studies and highlights the

importance of nonlinear characteristics in high-performance mechanical structures.
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8.2.1 Nonlinear Models of High-Performance Structures

Improving the performance of mechanical systems and structures is fundamental to

enhance our technologies and progress in the field of engineering. Nonlinear structures

have been proposed as a possible way to improve the performance of different mechan-

ical systems. Nonetheless, depending on the application, the sought characteristics

and the definition of high-performance structures may change considerably. For exam-

ple, if we consider a VEH the power output and the frequency bandwidth represent

important performance indicators. The literature offers many examples of vibration

energy harvesters whose performance has been improved by implementing nonlinear

characteristics. Cammarano et al. [6] proposed an SDOF bistable electromagnetic en-

ergy harvester. The authors proposed to exploit the bistability of the oscillator to

favour the onset of high-amplitude responses at frequencies of excitation different from

the natural frequency of the system. This approach aims to broaden the frequency

bandwidth at which the harvester produces a sensible amount of energy. The authors

demonstrated, through experiments and numerical simulations, that the nonlinear en-

ergy harvester possesses a quite large frequency bandwidth when sinusoidal excitation

is applied. Zhou et al. [62] proposed to implement stoppers, i.e. non-smooth character-

istics, to a cantilever piezoelectric energy harvester to improve the frequency bandwidth

and the power output of the system. The idea is to exploit the hardening characteris-

tics of the stoppers, modelled as piecewise stiffness, to increase the performance of the

harvester. Wang et al. [57] proposed to use a quin-stable piezoelectric energy harvester

with impact beams to harvest energy from low-frequency sources. The system works as

a frequency-up conversion mechanism thanks to the presence of impacting beams that

vibrate at their natural frequency when impact occurs. This frequency is much higher

than the external excitation frequency, making the system highly performant and ca-

pable of harnessing energy at frequencies of excitation much lower than its natural

frequency. In another example, Fasihi et al. [49] proposed to use nonlinear piezoelectric

energy harvesters to suppress flutter in a two-DOF aeroelastic system. The authors

investigated the effect of different parameters, such as the position, the mass, and the

stiffness of the harvester, demonstrating that it is possible to improve the stability of

197



Chapter 8. Dynamic Behaviour of Linear and Nonlinear Structures

the aeroelastic systems and at the same time extract energy from vibration.

Similarly to vibration energy harvesters, Micro/Nano-Electro-Mechanical Systems

(MEMS/NEMS) can achieve higher performance by exploiting the inherited nonlin-

earities that are present in nano/micro-scale systems. In fact, at the nano-scale, in-

teractions such as Van der Waals, internal material, and electrostatic forces become

comparable with those experienced by the dynamic systems (e.g. inertia forces) mak-

ing the overall system nonlinear. In certain cases, nonlinear properties are considered

detrimental in MEMS/NEMS and compensation mechanisms are used to make the

system as linear as possible [148,149], nonetheless researchers have demonstrated that

certain nonlinear dynamic phenomena, like the internal resonances, have the poten-

tial to enhance the system performance rather than limit them. Nonlinear phenom-

ena result in useful dynamics effects that can be used to enhance the sensitivity of

MEMS/NEMS sensors [150, 151], improve the resolution of AFM [152, 153], suppress

noise in MEMS/NEMS signals [154], improve energy dissipation [155] and energy ex-

change in MEMS/NEMS [156,157], and generate frequency locking [158] and synchro-

nisation in MEMS [159]. Following this perspective, researchers [160] have suggested

using non-smooth characteristics such as impact and contact to facilitate the generation

of internal resonances in MEMS/NEMS, to further improve their capabilities.

On the other hand, some mechanical structures do not require nonlinear properties

to access dynamic features that are beneficial for their performance, but rather their

design induces the generation of nonlinear phenomena that can not be neglected. In

these cases, dynamic models must be able to capture the nonlinear dynamics of the in-

vestigated structure. This typically happens in lightweight aeroelastic structures; these

structures are often used in the aerospace industry to reduce the weight of aircraft and

rotorcraft. This, in turn, allows to reduce the fuel consumption, improving the per-

formance of the system. For example, the introduction of hinges on high-aspect-ratio

wing [22] would allow the aircraft to access the currently available airports during oper-

ations like boarding/disembarking of passengers. Nonetheless, the presence of hinges in

the wings may generate friction and contact, deeply affecting the dynamics of the sys-

tem. In this context, nonlinear dynamic models become fundamental for investigating
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and designing similar systems and therefore contribute to improving the performance

of mechanical aeroelastic structures.

Although not exhaustive, the proposed examples demonstrate that the nonlineari-

ties, if correctly implemented, can improve the performance of mechanical systems and

structures.

8.3 Case Study 1: A Bistable Electromagnetic Single-

Degree-of-Freedom Energy Harvester

This section aims to demonstrate that, when correctly implemented, nonlinear charac-

teristics may enhance the performance of mechanical structures, allowing the system

to reach dynamic conditions that are not achievable otherwise. To this end, the dy-

namics of a bistable electromagnetic energy harvester are investigated via numerical

simulations. Specifically, the system exploits the inherent nonlinear characteristic to

enhance its energy-harvesting performance, broadening the frequency bandwidth in

which high-amplitude oscillations can be achieved. To refer to a real structure, the

energy harvester studied by Cammarano et al. [6] is considered in this numerical study.

The harvester was fabricated, experimentally investigated, and identified by the au-

thors and a mathematical model was validated against experimental results in different

excitation conditions; this provides an excellent set of real data for the analysis of

high-performance nonlinear structures.

8.3.1 Mathematical Model of an Electromagnetic Energy Harverster

The high-performance energy harvester is schematically reported in Fig. 8.1; as shown

in the figure, the harvester exploits the electromagnetic coupling between the magnets

and the coil to convert mechanical energy into electrical energy. The energy conversion

mechanism is based on Faraday’s law: the beam is excited by the base motion and

vibrates. Since the magnets are positioned on the tip of the beam, the relative motion

between the magnet/armature and the stator generates a variation of magnetic flux

across the coils; this induces a voltage in the coils, resulting in a current when the coil
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Figure 8.1: Schematic of the considered bistable energy harvester.

is a closed-circuit configuration. This current generates an opposite magnetic flux which

opposes to the change of magnetic flux, resulting in an electric force which counteracts

the beam movement. The electromagnetic induction phenomena can be described by

the following equation [161]:

V = −dΦ(t)

dt
= −N

dϕ(t)

dt
(8.1)

where Φ is the total magnetic flux across the coils, ϕ is the average magnetic flux

across a single coil, and N is the number of coils. In general, the magnetic flux can be

represented by the following equation:

Φ =
N∑
i=1

∫
Ai

BdA (8.2)

where B is the magnetic flux density over the area Ai of a single turn. If the magnetic

flux density is uniform across the coil area, it is possible to write the magnetic flux as

Φ = NBAsin(α) where α is the angle between the direction of magnetic flux density

and the area, which leads to:

V = −NA
dB

dt
sin(α) (8.3)

Now, by considering that the motion between the magnets and the stator occurs in

a single direction and that B does not change in time as it is generated by a per-

manent magnet, the voltage output equation can be approximated with the following

200



Chapter 8. Dynamic Behaviour of Linear and Nonlinear Structures

expression [6, 161,162]:

V = −dΦ(t)

dt
= −N

dϕ(t)

dz

dz

dt
= ktż (8.4)

where z is the relative displacement between the stator and the magnets and kt is the

electromagnetic coupling factor which represents the relationship between the voltage

and relative velocity ż. Neglecting the effect of inductance in the equivalent electro-

magnetic circuit [163] (see Fig. 8.2) the voltage across the coils becomes V = Ri, where

i is the current. In addition, the electromagnetic force can be represented as a damp-

ing force [161], using the following expression: Felec = celecż, or as an electromagnetic

coupling, with the following equation: Felec = kti. Considering the above-mentioned

expressions, it is possible to obtain the final model representing electromagnetic force

acting on the harvester:

celec =
k2t

Rload +Rcoil
(8.5)

It should be noted that, on a general basis, the electromagnetic coupling is represented

by a nonlinear coefficient. Nonetheless, most of the time it reduces to a linear factor.

From a mechanical point of view, the considered electromagnetic energy harvester

can be approximated with a beam, with the first mode generating the highest relative

velocities between the stator and the beam tip. Under this condition, the harvester can

be approximated with the mechanical SDOF model, whose general equation of motion

is:

mz̈ + celecż + cmag ż + kmagz = −mÿ (8.6)

where y is the base displacement, z is the relative displacement of the oscillator, m

is mass, cmag and kmag are, respectively, the induced magnetic/structural damping

and stiffness. The complete electro-mechanical model is schematically represented in

Fig. 8.2. Using the Restoring Force Surface (RFS) method [137, 138] and performing

dynamic tests in open- and close-circuit, a mathematical model representing the energy

harvester was obtained by Cammarano et al. [6]. The final parameters are reported in

Tab. 8.1. As shown in the table, the resulting structural/magnetic stiffness is nonlinear

and a 5th-order polynomial is found to approximate the relationship between the elastic
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Figure 8.2: Mathematical dynamic model representing the considered base excited
electromagnetic energy harverster.

Table 8.1: Energy harvester parameters identified by Cammarano et al. [6].

Parameter Numerical Value Units
m 0.080 Kg

cmag 0.240 Ns/m
k1,m -9.992e2 N/m
k2,m -8.112e4 N/m2

k3,m 8.816e8 N/m3

k4,m 2.436e10 N/m4

k5,m -5.176e13 N/m5

kt 10 Vs/m

restoring force and the displacement of the mass. In particular, the air gap (1.5 mm)

between the stator and armature, adopted in the identified configuration, induced a

softening-hardening characteristic typical of bistable systems. The identified restoring

characteristic is shown Fig. 8.3. From Fig. 8.3 (a), it is clear that the identified charac-

teristic does not behave correctly outside the experimentally validated limits (approx.

± 3 mm) as the stiffness characteristic tends to diverge to opposite sign values. On the

contrary, the identified characteristic shows the expected behaviour when considered

inside the experimental limits, as shown by Fig. 8.3 (b).

8.3.2 Dynamic Response of a Bistable Energy Harvester

To understand the dynamic response of the system, the bifurcation diagram is com-

puted considering open circuit configuration and forward/backward frequency sweeps

at different excitation amplitudes, namely 125 µm, 150 µm, 175 µm, and 200 µm. The

results are reported in Fig. 8.4 in terms of maximum absolute accelerations: from the
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Figure 8.3: Nonlinear restoring force of the electromagnetic energy harvester. Extrap-
olation outside (a) and inside (b) the experimental limits.

figure, it is clear that jumps, co-existent solutions and chaotic responses appear in the

dynamics of the system. The figure shows that by increasing the excitation amplitude

chaos appears around the frequency bandwidths 20-25 Hz and 35-45 Hz. The bistable

harvester is characterised by the presence of two potential wells and three equilibrium

points in static conditions (fixed points) [6]: one equilibrium point is unstable and cor-

responds to a relative displacement z = 0 mm. The remaining two equilibrium points

are stable and generate the two potential wells whose zero energy corresponds to the

equilibrium conditions (one at positive displacement and one at negative displacement).

These stable equilibrium points correspond to the static deflection of the beam caused

by the presence of the magnetic force. In the dynamic steady state conditions ,when the

energy is large enough, the harvester can escape from one well and reach the other one,

generating oscillations between the wells, named interwell oscillations. Chaos occurs

through the typical period-doubling cascade [75] which transforms the single-period

oscillations into multi-periodic oscillations increasing their period until chaos is not

reached. In particular, during chaotic oscillations, the harvester oscillates for a certain

amount of time in one well and then, when enough energy is accumulated, jumps into

the other well. This process is repeated over and over again, leading to aperiodic dy-

namic responses. The route to chaos mechanism is confirmed by Fig. 8.5 (a) where

the bifurcation diagram of the harvester is reported. The diagram is computed moving
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Figure 8.4: Numerical bifurcation diagram in open circuit conditions. The excitation
frequency Ω represents the bifurcation parameter while the maximum absolute acceler-
ation |ẍ| is the considered output. Different base amplitudes excitation are considered:
125 µm (a), 150 µm (b), 175 µm (c), and 200 µm (d)

from low to high amplitudes of excitation and Poincaré sections are used to plot the

relative displacement of the harvester when the plane ẋ = 0 is intersected. The diagram

shows the period-doubling phenomenon, which starts generating many branches near

chaos. This is highlighted by the panels (1-3) of Fig. 8.5 (a) where the presence of

multiple bifurcating branches in a very small range of excitation amplitude are shown.

The figure also shows that chaos appears at an excitation amplitude of about Y = 145

µm. In addition, it should be noted that only the period-doubling cascade associated

with the potential well at negative displacement ends in chaos. The figure shows that

period-doubling bifurcations are present also in the other potential well at positive dis-

placement. Nonetheless, the period-doubling cascade does not end in chaos but rather

the dynamics of the system is attracted and remain trapped in the other potential

well. This result agrees with the findings of Cammarano et al. [6] which demonstrate
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Figure 8.5: Bifurcation diagram and strange attractors of the bistable energy harvester.
The bifurcation diagram (a) is computed at 20 Hz moving from low to high amplitude
of excitation. Details of the period-doubling cascade are reported in panels (1-3).
Poincaré maps of strange attractors are reported in panels (b,c). The red and black
dots denote the Poincaré points obtained by sampling the signal every half period of
excitation, using a base amplitude of 200 µm and a frequency of excitation equal to 20
Hz (a) and 38 Hz (b). Open circuit conditions are applied for all the simulations.

that the system slightly favours the potential well with a negative displacement due to

its lower-energy states. To better investigate the chaotic behaviour of the harvester,

the largest excitation amplitude (200 µm) is used to compute the chaotic response of

the system for 30000 periods. The associated Poincaré map is then reconstructed at
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Figure 8.6: Steady-state orbits obtained at Y = 150µm. The dotted line indicates
interwell oscillations while the continuous line defines single and period-doubling in-
trawell oscillations.

two different frequencies of excitation, 20 Hz and 38 Hz, and the results are shown

in Fig. 8.5 (b,c). Two strange attractors are identified which confirm the presence of

chaos.

As explained in Chapter 2 bifurcation diagram and Poincaré maps provide useful

insight into the dynamics of the system; nonetheless, they are based on a numerical

integration scheme which computes only stable dynamic responses. In addition, it is

not easy to identify all the possible dynamics of the harvester via numerical integration

as a large number of initial conditions should be considered. To better understand the

intricate dynamics of the system some of the steady-state periodic solutions are con-

tinued via numerical continuation. The steady-state orbits of the considered dynamic
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conditions are represented in Fig. 8.6: the dotted line denotes the orbits of an inter-

well oscillation which is found to have a period 3:1, i.e. three times longer than the

excitation period. The other orbits illustrate the single- and multi-period dynamics of

the system in the two potential wells (intrawell oscillations). The figure also shows the

frequency (in brackets) at which the dynamic conditions are identified using an excita-

tion amplitude of 150 µm. The toolbox COCO [97] is used to perform the numerical

calculations. The same procedure implemented in Chapter 2 for the Duffing oscillator

is used here to track the orbits described by Fig. 8.6. The results of the continuation

procedure are reported in Fig. 8.7 where panels (a,b) describe period 1:1 intrawell os-

cillators in the potential well at negative (a) and positive (b) displacement, panels (c,d)

show the continuation of period 2:1 orbits in negative (c) and positive (d) displace-

ment, and panels (e-f) illustrate the continued period 3:1 intrawell (e) and interwell

(f) oscillations. Fig. 8.7 demonstrates the existence of the softening behaviour of the

single-period intrawell oscillations as well as an intricate network of bifurcations with

period-doubling (PD), fold (FP), and branch (BP) bifurcations. Panels (c-e) show that

intrawell period 2:1 oscillations originate from stable single-period ones, while intrawell

period 3:1 oscillations are generated from unstable single-period orbits. Finally, panel

(f) shows the interwell period-tripling oscillations: these orbits belong to a separated

branch that is not connected to the other ones, i.e. it represents an isola. The details

of the isola are reported in Fig. 8.7 (g) which shows that the isola closes around 80 Hz,

passing from stable to unstable dynamic behaviour.

Although simple in its design, the harvester showed quite intricate dynamic be-

haviour which can not certainly be described with a linear dynamic model but instead

requires the definition of a more sophisticated model which incorporates nonlinear

characteristics. The presence of broadband high-amplitude interwell oscillations is

demonstrated through numerical simulations, using a mathematical model that was

experimentally validated by Cammarano et al. [6]. The interwell oscillations gener-

ate an isola that persists at high frequencies of excitation; this feature is particularly

attractive from the energy harvesting point of view. In fact, this dynamic behaviour

is associated with a broadband frequency and large amplitude of response which can
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Figure 8.7: Numerical continuation of periodic orbits. Different continued solutions are
highlighted in each panel: period 1:1 (a,b), period 2:1 (c,d), and period 3:1 (e,f,g).
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boost the performance of the harvester in terms of frequency bandwidth and power out-

put, solving the problem of small resonance regions in SDOF linear energy harvesters

when sinusoidal excitation and steady-state conditions are considered. This example

demonstrates that, if correctly implemented, nonlinearities can improve the dynamics

of mechanical systems, boosting their performance.

8.4 Case Study 2: Optimisation of a Piezoelectric Planar-

Shaped Energy Harvester

This section introduces a second case study: the optimisation and analysis of a planar-

shaped piezoelectric energy harvester. The assumption of linear behaviour is made to

simplify the dynamic analysis, enabling iterative optimization of the structure. Al-

though optimal configurations are achieved, the performance of the energy harvester

remains poor, especially from the power output point of view. In contrast with the pre-

vious analysis, the dynamics of the system do not show particularly useful features for

enhancing the energy harvesting performance, highlighting the limits of SDOF/Single-

mode linear energy harvesters.

8.4.1 Finite Element Model of the Piezoelectric Energy Harvester

The considered Piezoelectric Energy Harvester (PEH) is depicted in Fig 8.8 (a) and it

is constituted of three elements: structural material (bronze), a piezoelectric layer in

uni-morph configuration, and an electrical circuit to harvest energy from vibrations.

The PEH is constrained at the bottom and it is subjected to transversal excitation.

The geometry is characterised by the following design variables: width b, length h,

thickness of the structural material t and piezoelectric patch tp, angle of inclination θ,

and the trapezoid base angle φ. Tab. 8.2 shows the lower/upper bounds of parameters

considered in the optimisation procedure as well as their original configuration (P0).

Fig. 8.8 show additional parameters, namely f and g whose values are determined at ev-

ery step of the optimisation procedure using the following expressions: f = 1/6h sin(θ)

and g = 2/3h sin(θ).
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(a) (b)
Structural
Material

Piezoelectric
Material

Base excitement

Piezoelectric
Elements
(SOLID5)

Structural Elem.
(SOLID45)

Circuit Elements (CIRCU94)

Voltage Node
Coupling

Figure 8.8: Schematic of the piezoelectric energy harvester and its main dimensions (a)
and equivalent finite element model (b) [5].

Table 8.2: Lower and upper bounds, and original configuration (P0) of the harvester
parameters.

Parameter Lower Bound Upper Bound P0 Unit
h 30.0 120.0 65.3 mm
b 90.0 200.0 114.0 mm
t 0.5 2.0 0.5 mm
tp 0.3 1.0 0.3 mm
θ 30.0 90.0 67.0 deg
φ 50.0 130.0 60.0 deg
R 1.0 106 1000 Ω

The PEH exploits the piezoelectric effect to harvest energy from induced vibrations,

transforming mechanical energy into electrical energy. This effect refers to the capa-

bility of piezoelectric material to accumulate opposite sign charges when mechanical

loads are applied and conversely to deform when electric voltages are applied to the

material. To distinguish the two behaviours, the phenomenon takes the name of direct

piezoelectric effect (in the first case) and inverse piezoelectric effect (in the second case).

The constitutive equations of piezoelectric material describe this phenomenon, creating

relationships between strain and charges of the piezoelectric material as follows: S

D

 =

 sEc dT

d ϵTc

 T

E

 (8.7)

where S is the strain vector, D is the electric displacement vector, and E is the electric

field vector, T is the stress vector. The matrices sEc ,d, and ϵTc are the constitu-
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tive matrices, namely, the compliant matrix, the piezoelectric strain matrix, and the

dielectric matrix. The exponents Ec and Tc denote that the respective constants are

evaluated at constant electric field and constant stress. The piezoelectric, dielectric,

and elastic matrices of piezoelectric materials are influenced by the crystal structure or

crystal class of the material [164]. Different crystal classes exhibit different symmetries,

and this symmetry affects the number and arrangement of the material constants in

the matrices. In the considered case-study, PZT-5H is used as piezoelectric material for

the PEH and it is characterised by the following transversely isotropic behaviour [165]:

S1

S2

S3

S4

S5

S6

D1

D2

D3



=



sEc
11 sEc

12 sEc
13 0 0 0 0 0 d31

sEc
12 sEc

11 sEc
13 0 0 0 0 0 d31

sEc
13 sEc

13 sEc
33 0 0 0 0 0 d33

0 0 0 sEc
55 0 0 0 d15 0

0 0 0 0 sEc
55 0 d15 0 0

0 0 0 0 0 2(sEc
11 − sEc

12 ) 0 0 0

0 0 0 0 d15 0 ϵTc
11 0 0

0 0 0 d15 0 0 0 ϵTc
11 0

d31 d31 d33 0 0 0 0 0 ϵTc
33





T1

T2

T3

T4

T5

T6

E1

E2

E3


(8.8)

The matrix of Eq. 8.8 comprises 5 elastic independent constants, 3 piezoelectric inde-

pendent constants, and 3 dielectric independent constants which populate the matrices

thanks to symmetry properties. The numerical value of these parameters is obtained

from [166] and it is implemented in ANSYS to perform the FE simulations, along with

the following mechanical properties: Young modulus E = 100 GPa, Poisson coefficient

ν = 0.34, density ρ = 8000 kg/m3, and global structural damping of 2%. To guarantee

the adequate quality of the mesh [167], a converge analysis is performed and revealed

that 4000 elements with two layers of elements per material represents a good balance

between computational effort and the quality of the results.

A FE model of the harvester is created in ANSYS: 3D structural elements (SOLID45)

and 3D piezoelectric elements (SOLID5) with 8 nodes are used to model the structural

part of the harvester and the piezoelectric layer. To simulate the presence of two elec-
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trodes, the voltage output of some nodes of the piezoelectric material is constrained.

Specifically, all the nodes in the upper surface of the piezoelectric material are con-

nected to a single additional node, representing an electrode, and their voltage output

is forced to be same 1. The same procedure is applied to the nodes in the lower surface,

which are connected to a different node, i.e. the second electrode. The final results

are shown in Fig. 8.8 (b), where the two electrodes are indicated by blue dots. An

electric element (CIRCU94) is used to model an ideal resistor (the electric load) and it

is connected to the two electrodes of the piezoelectric material to evaluate the produced

output power under vibratory loads.

8.4.2 Optimisation of the Piezoelectric Energy Harvester

The PEH is optimised using meta-heuristic optimisation methods: unlike to gradient-

based optimisation schemes, these methods can explore and exploit the search space

which makes them suitable for global optimisation of non-convex problems with non-

smooth constraints [169–171]. Although there is a lack of theoretical demonstration,

meta-heuristic methods have been shown to be suitable for the optimisation of many

engineering problems [170, 171]. Many meta-heuristic methods are available in the

literature; among them, the most used are the Genetic Algorithm (GA) [131], Particle

Swarm Optimisation(PSO) [132], and Differential Evolution (DE) [172].

The optimisation framework proposed in this section is based on the PSO (see

Section 6.2.2 for more information about the PSO and GA): this method is chosen

because it is particularly effective in solving nonlinear problems [133, 173] and allows

reaching a suitable solution of the optimisation problem with relatively few iterations.

In the proposed framework the method is implemented using the MATLAB function

particleswarm which considers the modifications suggested by Mezura et al. [174] and

Pedersen [175]. The proposed optimisation framework is schematically illustrated in

Fig. 8.9: firstly, the particles composing the swarm are initialised randomly to cover uni-

formly the investigated design domain. For each particle, design variables are assigned;

this includes defining the parameters presented in Tab. 8.2. Then, the constraints are

1SOLID5 elements have 4 DOFs, i.e. the spatial displacements in the three directions and the
voltage, when the element key-option is set equal to 3 [168]
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ANSYS – Post-processing

MATLAB – First objective
function 𝐹1(𝒙) (Max

Power)

MATLAB – Second
objective function
𝐹2(𝒙)(F. Bandwidth)

MATLAB – First objective
function 𝐹3(𝒙) (Efficiency)

ANSYS – Harmonic
Analysis

Initialisation of
particles

MATLAB – Variable
initialisations for FEA

ANSYS – Pre-processing
and model definition

ANSYS – Modal analysis

PSO Algorithm

Is the constraint
satisfied? no

yes

Multi-objective function
𝐹4 𝒙 = 𝑓 𝐹1 ,𝐹2 ,𝐹3 𝒙

Figure 8.9: Schematic of the proposed optimisation framework [5].

checked for the selected parameters; in the specific case, a penalty function is intro-

duced to avoid the generation of broken mesh in the FE environment. The penalty

function is described by the following equation:

Fval =


F (x) φ ≥ π

2

F (x) h ≤ 19
40b tan(φ) & φ < π

2

0 h > 19
40b tan(φ) & φ < π

2

(8.9)

where F (x) represents a generic objective function and x denotes the design variables

vector. If the constraint is satisfied, then the selected parameters are used to initialise
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the variables that are necessary to perform the FE analyses. The FEA is composed

of three steps: pre-processing and model definition, modal analysis, and harmonic

analysis. During the first step, the model is created in ANSYS and all the necessary

properties, including the material, are assigned. Once a model is built, a modal analysis

is performed to evaluate the mode shapes and the natural frequencies of the system.

The last step consists of performing a harmonic analysis to obtain the FRF of the system

in terms of power output. For this task, a constant acceleration of the base equal to

0.2 g is considered. To reduce the computational burden, due to multiple iterations,

the FRF is computed in a well-defined ’frequency window’: this frequency range is

selected using the first natural frequency of the system, previously obtained during the

modal analysis. Once the numerical analyses are completed, the post-processing of the

results starts and the four objective functions are computed: specifically, three single-

objective functions (F1(x), F2(x), and F3(x)) and one multi-objective function (F4(x)).

The first two objective functions compute the maximum power output (F1(x)) and the

frequency bandwidth at half power (F2(x)). They can be calculated using the output

of the harmonic analysis in terms of voltage FRF by applying the following expression:

P = |V |2
2R . The third single-objective function (F3(x)) utilises a different expression

to compute the efficiency of the harvester. To this end, a novel matrix formulation,

based on the energy balance principle, is proposed in [5]. The proposed definition of

efficiency is derived starting from the equations of motion of the electro-mechanical FE

model [168]:

Mü+Cu̇+Ku = Q (8.10)

Considering the assumption of harmonic loading and steady-state conditions, the steady-

214



Chapter 8. Dynamic Behaviour of Linear and Nonlinear Structures

state energy contributions per cycle can be calculated as follows:

∫ Tp

0
u̇TMü dt = − iΩ2π

2
[UTMŪ− ŪTMU] (8.11a)∫ Tp

0
u̇TKu dt =

iπ

2
[UTKŪ− ŪTKU] (8.11b)∫ Tp

0
u̇TCu̇ dt =

Ωπ

2
[UTCŪ+ ŪTCU] (8.11c)∫ Tp

0
u̇TQ dt =

iπ

2
[UT Q̄− ŪTQ] (8.11d)

where Tp =
2π
Ω denotes the period, M, C, K, and Q are the generalised mass, damping,

stiffness, and force matrices, U indicates the complex amplitude of the response u, and

•̄ defines the complex conjugated operator. Once an FE model is created in ANSYS, it

is possible to export the associated global matrices M, C, K, and Q. These matrices,

in turn, can be used to compute the steady-state energy contributions per cycle of the

system, using the expressions reported in Eq. 8.11. It should be noted the obtained

matrices are global, thus they might present contributions associated with different

physical mechanisms, especially when multi-physics simulations are performed. For

example in the considered case, the stiffness matrix K contain contributions coming

from the piezoelectric and mechanical stiffness.

In the case of the considered PEH, the energy contributions from viscous and elec-

trical damping must be separated to correctly compute the efficiency of the system:

the first one denotes the energy dissipated during the harvesting process, while the

second one indicates the system energy output. Dividing the structural and electrical

contributions, the generalized damping matrix and load vector [168] of the harvester

take the following form:

C =

Cv 0

0 0

+

0 0

0 −Cvh

+
1

Ω2

0 0

0 Cr

 (8.12a)

Q =

 0

La

+

Qa

0

 (8.12b)

where Cv, Cvh, and Cr are the viscous, dielectric, and electric damping matrices, Qa is
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the structural load vector, and La represent electrical load vector. The efficiency of the

harvester can be calculated by analysing the input and output energy components: the

first one, denoted by the energy dissipated by the resistor, corresponds to the energy

contribution of Cr, while the second one is identified by the energy associated with

external structural loads Qa. Using Eq. 8.11 and Eq. 8.12, it is possible to achieve the

final formulation of the efficiency:

η =
1

iΩ

[UTC∗
rŪ+ ŪTC∗

rU]

[UT Q̄∗
a − ŪTQ∗

a]
(8.13)

where C∗
r and Q∗

a are represented by:

C∗
r =

0 0

0 Cr

 (8.14a)

Q∗
a =

Qa

0

 (8.14b)

The efficiency formulation of Eq. 8.13 can be applied to lumped parameters MDOF

and FE models of PEHs and thus represents an extension of previous formulations of

efficiency for PEHs which are valid only for SDOF models 2. Finally, the multi-objective

function F4(x) is defined by the following equation:

F4(x) = w1
F1(x)

Popt
+ w2

F2(x)

δopt
+ w3

F3(x)

ηopt
(8.15)

where w indicates the weighting factor (imposed as w1 = 1/3, w2 = 1/3, and w3 = 1/3,

so that the sum equals 1), Popt is the optimum power, δopt represents the optimum

frequency bandwidth, and ηopt denotes the maximum possible efficiency of the har-

vester. The first two optimal quantities are obtained by using the proposed optimisation

framework to optimise the single-objective functions F1(x) and F2(x). The maximum

efficiency ηopt, instead, is considered to be equal to 1.

Tab. 8.3 represents the results of the optimisation process for the four objective

2A formal comparison with a previous definition of efficiency, introduced by Yang et al. [176] for of
a lumped SDOF model of PEH, is reported in [5].
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Table 8.3: Optimal design variables and function value for the objective functions
F1(x), F2(x), F3(x), and F4(x).

Par./Fun Max Power F1(x) Freq. Band. F2(x) Efficiency F3(x) Multi-Obj. F4(x)
h 120.0mm 30.0mm 30.0mm 30.0mm
b 200.0mm 90.0mm 200.0mm 200.0mm
t 2.0mm 2.0mm 0.5mm 2.0mm
tp 0.3mm 1.0mm 0.3mm 1.0mm
θ 90.0 deg 30.0 deg 30.0 deg 30.0 deg
φ 130.0 deg 50.0 deg 91.5 deg 89.0 deg
R 2323.0Ω 2148.0Ω 1078.2Ω 941.0Ω

Fmax 51.5Hz 2.2684× 103 Hz 515.8Hz 1.9892× 103 Hz
Pmax 18.0mW 4.3× 10−3 mW 1.8× 10−2 mW 1.8× 10−2 mW
∆frq 3.8Hz 200.1Hz 55.0Hz 203.9Hz
η 46.42% 55.25% 63.87% 61.66%

functions. The first seven rows represent the optimal values of the design variables while

the last four rows denote the associated maximum power output Pmax and frequency

Fmax, the frequency bandwidth at half power ∆frq, and the efficiency η. Although the

optimisation of the single- and multi-objective functions is achieved in all the considered

cases, the optimised model does not show high energy harvesting performance. The

maximum power output is very low and, in most cases unsuitable to power any device.

When only the power output is optimised, a reasonable amount of power is achieved,

i.e. 18 mW, nonetheless the associated frequency bandwidth is particularly small (only

3.8 Hz). Conversely, when the frequency bandwidth is optimised, the maximum power

output decreases to particularly low values. The optimisation study suggests that the

performance of the considered linear energy harvester are poor and no optimal solution

can guarantee large power output for a wide range of frequency bandwidth. In contrast,

the nonlinear energy harvester of previous case study was able to achieve high energy

harvesting performance exploiting large-amplitude interwell oscillations. Therefore the

analysis of the two case studies suggest that the absence of nonlinear characteristic

might lead to poorer performance in mechanical structures.

In practical scenarios, the system might exhibit nonlinear dynamic behaviour, even

under low excitation amplitudes. This could be attributed to factors such as structural

and electrical nonlinearities, arising from constraints leading to friction, boundary con-

ditions resulting in contact, or rectifiers generating electrical loading with thresholds.
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The presence of similar nonlinearities, as demonstrated in the previous chapters, could

change completely the dynamics of the system leading to very different dynamic be-

haviours and energy harvesting performance. Despite this, a detailed and complete

nonlinear analysis of the dynamics of the harvester should be performed to evaluate

the performance of the energy harvester when nonlinear effects are considered.

8.5 Summary

This chapter discussed some engineering applications of high-performance mechanical

systems and structures. Firstly the definition of performance for different mechanical

systems is discussed, showing that, when nonlinearities are correctly implemented, it is

possible to obtain the enhancement of the performance. To better explain this concept,

two case studies related to vibration energy harvesting are presented: in the first one,

an SDOF electromagnetic energy harvester is introduced and its dynamics are anal-

ysed. In the second case study, the dynamic behaviour of planar-shaped piezoelectric

energy harvester is studied and the structural and electrical parameters are optimised.

The electromagnetic energy harvester is characterised by a nonlinear stiffness charac-

teristic. Such a characteristic is induced by the presence of magnetic attracting forces

which makes the system bistable. This results in multi-periodic and chaotic behaviours

with the presence of co-existing solutions. The bifurcation diagram and the numerical

continuation analyses show the presence of jumps and isolas with stable steady-state

solutions at large amplitude of response for a wide range of frequencies of excitation.

This makes the harvester a promising high-performance structure. These phenomena

cannot be described or analysed with linear dynamic models, and thus, they high-

light the necessity of nonlinear models for their study. On the other hand, an FE

model is employed to investigate the dynamics and the performance of a planar-shaped

piezoelectric energy harvester. The model is developed under the assumption of linear

behaviour, and a low excitation amplitude is applied to uphold this condition. This

choice is motivated by the necessity of providing a linear counterpart to the previous

case study. In this way, the performance of linear and nonlinear energy harvester can

be evaluated. Using the proposed optimisation framework, the system is optimised in
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terms of power output, frequency bandwidth, and efficiency. The results show that the

harvester has poor energy harvesting performance, even when ideal conditions are met,

i.e. when perfect constraints, sinusoidal excitation, and excitation near the first natural

frequency, are applied. The optimised harvesters, indeed, are characterised by either a

small frequency bandwidth with significant power output or insignificant power output

for a large frequency bandwidth. This suggests that linear energy harvesters struggle

to reach high performance and might not be suitable for improving the current energy

harvesting technology, especially when only one mode is considered in the design. On

the contrary, when correctly implemented, nonlinear characteristics allow the genera-

tion of dynamics conditions that are favourable for the performance of the structure, as

shown in the first case study. This suggests that nonlinear systems may represent the

correct way to improve the performance of mechanical structures and the capabilities

of the associated technologies.
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Conclusions and Future Works

9.1 Conclusions and Contributions to the Fields

This thesis investigates the behaviour of strongly nonlinear systems, focusing on the

dynamics of MDOF systems featuring hardening and piecewise stiffness characteristics.

The thesis aims to improve the fundamental knowledge of the investigated class of

systems, prove that nonlinear Reduced-Order Models (ROMs) can produce reliable

predictions of the dynamics of the system outside the identification conditions, and

develop tools/procedures for the analysis and identification of nonlinear systems in the

current industrial practices. The key contributions of the thesis are summarised as

follows:

• Demonstration that smoothing functions do not alter the overall qualitative and

quantitative dynamic behaviour and bifurcations scenario of MDOF piecewise-

smooth continuous systems characterised by soft contacts.

• Demonstration, via numerical and experimental analyses, of the existence of bi-

furcations of the backbone curve and detached isolas in the frequency response

of MDOF nonlinear systems characterised by soft contacts

• Development of a novel method, named the Nonlinear Restoring Force (NLRF)

method, for identification and the visualisation of the nonlinear restoring force

surfaces of MDOF strongly nonlinear systems.
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• Demonstration, via experimental validation, of the prediction capabilities of re-

duced orders models representing MDOF strongly nonlinear systems. In partic-

ular, the robustness of the identified models, in capturing the qualitative and

quantitative behaviour of the investigated systems, has been demonstrated using

several levels of excitation.

The first key contribution is discussed in Chapter 3, where, the dynamic behaviour

of a two-DOF system with soft piecewise constraints is analysed via numerical continu-

ation and integration procedures. The results are published in [1] and demonstrate the

presence of a rich bifurcation scenario in the considered system. Many isolas are found

in the FRC, and the presence of a bifurcation of the first backbone curve is proven via

numerical analyses. In these conditions, high amplitudes of response might persist in

the system; these phenomena are critical in the engineering context as they may lead to

unforeseen large responses and unwanted vibrations/stress levels in the structure. Such

dynamics are driven by nonlinear characteristics and cannot be correctly described by

linear models; instead, they require the usage of dedicated techniques, e.g. the Henon

method in the numerical integration or multi-segment continuation in path-following

analyses, to identify the beginning/end of the contact and compute the numerical solu-

tion. These methods are computationally expensive and often difficult to implement in

industrial practices, where the robustness and the simplicity of the mathematical mod-

els are fundamental requirements. To limit these problems, smoothing functions, such

as sigmoids, are used to approximate piecewise characteristics and a tool for selecting

the associated approximation parameter δ is proposed. It is demonstrated that the

sigmoid functions do not alter significantly the dynamics of the investigated system,

especially when periodic solutions are considered. The approximation allows reducing

the complexity of the numerical simulations and thus it represents an attractive tool

for industrial and practical implementations. The second key contribution is discussed

in Chapter 4 and Chapter 5, where the existence of the intricate nonlinear dynamics

discovered during the numerical analyses is proved via experimental tests. Two test

rigs representing the two-DOF system (Test Rigs #1 and #2) are designed and exper-

imentally investigated. During the design stage, a ROM is derived and utilised, along
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with numerical continuation analyses, to check that the desired nonlinear features are

presented in the designed mechanical system. Parametric analyses are performed to

understand the effect of the cubic stiffness, the piecewise stiffness, and the non-contact

gap on the bifurcation of the backbone curve, demonstrating that the phenomenon oc-

curs when the system dynamics is dominated by the piecewise stiffness restoring force.

The two test rigs are experimentally analysed with forward/backward frequency sweeps

at different excitation levels. The experimental results, partially published in [2–4],

demonstrate the presence of the same dynamics features encountered during the nu-

merical analysis. In particular, the same degenerate and multi-periodic orbits are found

after the grazing bifurcation of the first resonance peak. This represents an evidence

of the presence of isolas and bifurcation of the backbone curve in the experimental

test rigs. In addition, the analysis of the Poincaré sections confirms the presence of

quasi-periodic and chaotic behaviour, demonstrating that Test Rig #1 reaches chaos

via period-doubling tori.

The third key contribution is introduced in Chapter 6, where reduced order models

representing the two experimental test rigs are derived and equivalent parameters are

identified using a novel methodology, called the NLRF method [3]. The procedure is

based on the separation of the linear and nonlinear contributions of the restoring force

and aims to identify the nonlinear characteristics of the system using a modified version

of the RFS method. This approach can be implemented within the current industrial

procedures, interfacing linear identification methods, e.g. circle fit method, with the

proposed NLRF method. In this way, the identification of the nonlinear contributions

is just an additional step in the identification process. The efficacy of the method is

demonstrated experimentally, identifying the smooth characteristics of Test Rig #2

and the non-smooth properties of Test Rig #1. The knowledge of the NLRF surfaces

is used to develop engineering considerations and reduce the mathematical complexity

of the identification procedure, saving time and improving the computational effort.

The last key contribution of the thesis is discussed in Chapter 7, where it is demon-

strated that the identified ROMs, with and without non-smooth characteristics, can

predict the qualitative and quantitative dynamic behaviour of the experimental test

222



Chapter 9. Conclusions and Future Works

rigs, not only when the excitation conditions correspond to the ones utilised in the

identification process, but also when different excitation levels are considered. This

confirms the robustness of ROMs in modelling strongly nonlinear systems and un-

derscores their aptness for dynamic features extrapolation. The capabilities and the

performance of the ROMs are also tested against nonlinear FEA: to this end an FE

model representing Test Rig #2 is updated and validated, using the NLRF method.

The responses of the FE and reduced-order models are then compared: it is shown that

the steady-state dynamic responses of the FE model and the ROM are comparable and

very close to the experimental data. Therefore, the high computational effort demanded

to perform nonlinear dynamic FEA cannot be justified in similar systems and the usage

of a ROM, when possible, is highly recommended. The identified non-smooth ROM,

representing Test Rig #1, is also used to extrapolate dynamic features and obtain more

insight into the dynamics of the investigated test rig. The presence of a bifurcation

of the backbone curve and detached isolas is demonstrated via numerical continuation

analyses of the forced responses using the identified ROM. Via numerical analyses, it

is also demonstrated that the bifurcation of the backbone curve can be detected by

inspection of the steady-state forced response: indeed, the considered class of system

shows the presence of degenerate orbits in the stable branch of forced response when

the bifurcation of the backbone curse occurs. This feature can be exploited to detect

the presence of sought bifurcation without the need to directly obtain the undamped-

unforced response of the system. This interesting result is an important contribution

to the fundamental knowledge of the piecewise nonlinear systems with multiple degrees

of freedom and represents the conclusive analysis of the designed two-DOF model.

Building on the results of the previous chapters, the project concludes by analysing

two case studies of mechanical structures demanding exceptional performance. To this

end, two vibration energy harvesters are numerically investigated. The two VEHs utilise

a single mode for extracting energy from vibration; the first harvester is a nonlinear

electromagnetic energy harvester characterised by the presence of a softening/hardening

characteristic. The second one is a linear piezoelectric energy harvester with a planar

shape. Numerical analyses are carried out to show that, when correctly implemented,
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nonlinearities can actually improve the performance of the harvester, allowing the struc-

ture to reach high amplitudes of vibration (i.e. large power output) for wider frequency

bandwidth. On the other hand, the linear harvester does not show interesting dynamic

features that can be utilised to improve the performance of the system. These results

are partially published in [5] and, once again, suggest that nonlinearities might lead to

higher performance in mechanical structures.

9.2 Future Work

The contributions of this thesis have posed the basis for a better understanding of non-

linear MDOF mechanical systems featuring strong nonlinearities and contacts. Future

studies may investigate the remaining open questions that should be carefully addressed

by additional research. Firstly, the nature of the bifurcation of the backbone curve in

this class of systems should be studied in detail, performing parametric rigorous studies

with numerical continuation techniques or deriving accurate analytical approximations,

for example using the method of multiple scales. This would unveil more details about

the dynamics of the systems and the interaction between modes. In particular, addi-

tional research is needed to understand how the distance in frequency between the two

modes influences the bifurcation of the backbone curve and how the modal interaction

of two modes affects this phenomenon. On the other side, the tools proposed in this

project could be applied to larger structures. In this thesis, the proposed radius of

influence was applied only to a simple mechanical system with a piecewise stiffness.

Future research may test the robustness of the tool on more complicated systems,

such as large structures featuring multiple contacts, specifically addressing the point

of the limit threshold error that in this thesis was fixed at about 3.5% of the non-

contact gap. The radius of influence was only tested on sigmoid smoothing functions

but could be also extended to other smoothing approximations, comparing their per-

formance in terms of the accuracy of the solution and computational efforts. Finally,

some mathematical features identified during the development of the proposed NLRF

method should be better investigated. In particular, a formal demonstration of the

minimal space of coordinates which fully describes the nonlinear dynamics of mechan-
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ical systems using the NLRF surfaces should be developed. This could be linked to

the Principal Component Analysis (PCA) or Machine Learning (ML) algorithms which

could be exploited to identify the minimal number of degrees of freedom that fully

describe the nonlinear dynamics of the system. This would allow us to directly obtain

reduced-order models from experimental data, improving the current nonlinear system

identification procedures. On the other hand, the NLRF method could be interfaced

with ROMs [21, 93, 177, 178] obtained with different theories and methodologies. In

that context, additional research is needed to understand the link between NLRF sur-

faces and other theories for the development of nonlinear ROMs, such as the invariant

manifold theory.

9.3 Other Considerations

This thesis represents the starting point for the integration of nonlinear dynamic models

in standard industrial practices for the design and certification of mechanical systems

and structures. Several challenges need to be addressed before full uptake from practi-

tioners becomes possible. Linear models have great success because of their robustness;

on the contrary, nonlinear models are susceptible to slight changes in the system prop-

erties which can lead to complete changes in the dynamic response. This affects their

robustness and often undermines the possibility of being used in industrial applica-

tions. This work investigated this problem demonstrating that the nonlinear ROMs

are quite robust and capable of predicting the dynamics of strongly nonlinear systems

at different excitation conditions. In the thesis, two experimental test rigs, representing

a nonlinear two-DOF system with piecewise stiffness, have been developed/tested and

the associated nonlinear ROMs have been successfully identified and validated against

experimental results. Nonetheless, the investigated systems are simple and only few

modes dominate their dynamic behaviour. Larger structures and their ROMs should

be investigated using the approach proposed in this work, before their actual imple-

mentation in industrial procedures. Similarly, the proposed tools such as the radius of

influence and the NLRF method should be investigated in more detail, testing them on

large-scale systems and structures, before their usage in standard industrial practices.
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Mathematical Definitions

A.1 Multi-Segment Continuation

The system of second order equations of motion (Eq. 3.3) can be transformed into a

system of first order autonomous equations, represented by the following expressions:

ẋ1 = y1 (A.1a)

ẏ1 = − c

m
y1 −

k

m
x1 −

µ

m
x3
1 +

kd
m

(x2 − x1) +
µd

m
(x2 − x1)

3 +
cd
m

(y2 − y1)−
Fp

m
+

Q1

m
u (A.1b)

ẋ2 = y2 (A.1c)

ẏ2 = − c

m
y2 −

k

m
x2 −

µ

m
x3
2 −

kd
m

(x2 − x1)−
µd

m
(x2 − x1)

3 − cd
m

(y2 − y1) +
Q2

m
u (A.1d)

u̇ = −Ωv + u(1− u2 − v2) (A.1e)

v̇ = Ωu+ v(1− u2 − v2) (A.1f)

The term Fp depends on the configuration adopted: the smoothed version of the

system utilises Eq. 3.2, specifically the sigmoid approximation Fp,3 with n = 1, while

the non-approximate version adopts the definition of Eq. 3.1 to perform the numerical

continuation. To remove the dependence from time, the states u and v are implemented

to make the system autonomous. The vector field equations, necessary to perform the

multi-segment continuation, are represented by Eq. A.1 with the following expression

of Fp:

No Contact - the first mass does not experience contact:

Fp = 0
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Contact up - the first mass is in contact (positive displacements) with the piecewise

stiffness. The following restoring force is imposed:

Fp = kp(x1 − a)

Contact down - the first mass is in contact (negative displacements) with the piecewise

stiffness. The following restoring force is imposed:

Fp = kp(x1 + a)

The event function identifies three possible conditions:

Impact up - the segment ends when the first mass is in contact with piecewise

stiffness (positive displacement). In this case, the event condition rev is identified by:

rev = x1 − a

Impact down - the segment ends when the first mass is in contact with piecewise stiffness

(negative displacement). In this case, the event condition rev is identified by:

rev = x1 + a

Velocity change - the segment ends when the first mass changes sign in its velocity.

This is especially beneficial for identifying grazing bifurcation points. It can be defined

by the following criteria:

rev = y1

Lastly, the reset function establishes the criteria for restarting the next segment

continuation, setting xnew = x, where xnew denotes the new set of initial values for the

continuation of the next segment.

Eq. A.1a along with the definition of the vector field equations, and the event and
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reset function is used in Chapter 3 to perform the multi-segment continuation of the

non-approximate system. In the same chapter, when Fp is approximate with a sigmoid

function, Eq. A.1a is used to analyse the dynamic behaviour of the approximate system

with path-following continuation procedures.
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Design of an Experimental Model

B.1 Numerical Considerations

Additional analyses for the design of the experimental test rig are reported in this ap-

pendix. The results of static analyses reported in Tab. 4.2 are obtained from Ansys

APDL and are described by the Fig. B.1: the analyses have been performed by con-

straining the system at the extremities and applying a constant gravitational field in

the vertical (Z) direction. The results are graphically shown in Fig. B.1 for versions

1 and 2 of the system. Fig. B.2 instead, shows the results of the modal and static

analyses of the last version of the model (Version 3).

(a) (b)

Figure B.1: Static analysis of model Version 1 (a) and Version 2 (b) of the initial stage
design. Maximum displacement: 0.34 µm (a) and 13.3 µm (b)
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(a) (b)

(c) (d)

Figure B.2: First (a), second (b) and third mode (c) of model Version 3. Panel (d)
shows the static deformation for the same version of the model. The modal analyses
returned the following natural frequencies: 14.4 Hz (a), 16.0 Hz (b), 93.6 Hz (c) while
the static analysis provided a maximum deflection of 7.7 µm

Eq. 4.3 are derived using the following modal analysis procedure: the unforced

undamped version of the linear reduced order model is represented by:

m 0

0 m

ẍ1

ẍ2

+

k + kd −kd

−kd k + kd

x1

x2

 =

0

0

 (B.1)

and in compact matrix forms:

Mẍ+Kx = 0 (B.2)

The modal analysis can be performed by solving the following eigenproblem:

(K− ω2M)Ψ = 0 (B.3)
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where ω is natural frequency of the system and Ψ is the modal matrix. The natural

frequencies can be obtained by solving the following equation:

det(K− ω2M) = 0 (B.4)

which returns the following solution:

ω2
n,1 =

k

m
(B.5a)

ω2
n,2 =

k + 2kd
m

(B.5b)

At this point, it is possible to utilise Eq. B.3 to obtain the mode shapes and the modal

matrix which results in the following expression:

Ψ =

1 1

1 −1

 (B.6)

Now, it is possible to transform the equation of motion of the system in modal coordi-

nates (η) by modifiying Eq. 4.2 as follows:

ΨTMΨη̈ +ΨTCΨη̇ +ΨTKΨη = ΨTQ (B.7)

which becomes:2m 0

0 2m

η̈1

η̈2
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2c 0

0 2c+ 4cd
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+

2k 0
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η2

 =

Q1 +Q2

Q1 −Q2


(B.8)

Eq. B.8 represents the equation of motion in modal coordinates and consists of

two decoupled oscillators. The equation can be further simplified by adding the modal

parameters which are obtained diving Eq. B.8 by the modal mass:

1 0

0 1

η̈1

η̈2

+

2ωn,1ζ1 0

0 2ωn,2ζ2

η̇1

η̇2

+

ω2
n,1 0

0 ω2
n,2

η1

η2

 =

Q̃1 + Q̃2

Q̃1 − Q̃2


(B.9)
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where Q̃ = Q/m.

At this stage is simple to establish a relationship between modal (ωn and ζ) and real

parameters (k and c) using Eq. B.8 and B.9 which results in the expressions described

in Eq 4.3. The mass parameter, instead, is obtained by considering the volume of the

masses and the density of the material (δs = 7800 kg/m3) and it can be calculated with

the following expression:

m = Ys((dm + 2sm,c)hmcm) (B.10)

B.2 Experimental Considerations

B.2.1 Directly Forced System

Figure B.3: Detailed views of the two mass blocks used in the directly forced version
of the experimental test rig.

The two blocks are realised as illustrated in Fig. B.3. The blocks consist of PLA

components containing metallic bolts, enabling the adjustment of their mass. This

design feature is particularly effective in controlling the dynamics of the system and

its inertia forces. The figure also depicts two variants of the blocks: one representing

the excited mass (mass 2) includes an attachment for connection to the shaker, while
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Figure B.4: Force amplitude response in forward and backward frequency sweep anal-
ysis of the experimental test rig with suspended shaker.

the other block (mass 1) is a plain squared block with flat surfaces designed for having

contact with the external motion limiting constraints . The experimental analyses of

test-rig represented in Fig. 4.17 show that the system does not allow large displacement

of the excited mass, inhibiting some of its nonlinear effects. Nonetheless, the experi-

mental linear TF (Fig 4.18) reveal the presence of two peaks. In the linear regime, the

peaks are obtained by measuring the reduction of forces in the load cell. This occurs

also in the nonlinear regime, as shown by the amplitude of force experienced by the

load cell during the nonlinear analysis, reported in Fig B.4. The load cell experiences

the same jumps as the FRC but also shows the presence of two ’sinks’ with low values.

These minimum force conditions correspond to the resonances of the system. When

linear transfer functions are computed, the minimum values of force allow to obtain

a second peak in the frequency representation. In the nonlinear regime, this is not

possible anymore as the system behaviour depends on the excitation force and the

computation of an equivalent linear TF would lead to distorted transfer function.

B.2.2 Base Excited System - Test Rig #1

During the experimental analysis of Test Rig #1, random low amplitude excitation is

used to limit the effect of the nonlinearities on the dynamic response of the system. To

measure the effect of the nonlinearities on the linear TF, the coherence is exploited.
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Figure B.5: Coherence of the sensors applied to mass 1 (a) and mass 2 (b).

Figure B.6: Amplitude of displacement of the base for backward frequency sweep when
0.1 V (a) and 0.2 V (b) are used as excitation amplitude for the shaker.

The coherence, indeed, allows the practitioner to measure the repeatability of a signal,

identifying in the random excitation, the presence of nonlinearities. If one neglects

the presence of noise, a perfectly flat coherence in the frequency range of investigation

indicates that the system is behaving linearly. Under this perspective, coherence is a

good indicator of the quality of the measured linear TF representing the underlying

linear system. Fig. B.5 shows the coherence of the two sensors applied to mass 1 and

mass 2: the very low value of coherence indicates that the noise of the signal is low

and that the system is behaving linearly for most of the frequency domain. Therefore

the associated TFs can be considered a good approximation of the underlying linear

system. The experimental analysis of the Test Rig #1 considers also forward and
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Figure B.7: Experimental frequency response curve of Test Rig #2 when contact springs
with stiffness of 11.96 N/mm and a non-contact gap equal to 0.82 mm. The FRC is
reported in panel (a) in terms of relative displacement of the first DOF while panel
(b1-d2) show different orbits of the system in terms of relative coordinates.

backward sinusoidal frequency sweeps excitation to evaluate the nonlinear response of

the system. Nonetheless, during the experimental analysis of the first test rig, only the

voltage amplitude of the input signal to the shaker can be controlled. As a result, the

displacement, as well as the velocity, of the base is not constant during the frequency

sweep but it is affected by the shaker dynamics. Fig. B.6 shows the displacement

amplitude of the base during the backward frequency sweeps with imposed voltage

amplitude (0.1 V and 0.2 V). The figure shows that the amplitude of the base is
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not constant but instead is influenced by the dynamics of the system and the shaker.

This may represent a problem during the validation process, where the dynamics of

the shaker are not taken into account and the numerical simulations are carried out

imposing a constant amplitude of motion to the base.

B.2.3 Base Excited System - Test Rig #2

The dynamics of Test Rig #2 are analysed with different impact spring characteristics.

Fig B.7 shows the frequency response of the experimental model when a spring with

nominal stiffness equal to 11.96 N/mm and a non-contact gap of 0.82 mm is used. The

results are very similar to the previous analysis of the same test rig with a softer spring

(Fig 5.11). After the grazing bifurcation, the FRC (Fig B.7 (a)) appears to be more

inclined than the previous analysis due to the presence of a stronger piecewise stiffness,

but overall the same dynamic features are found. In particular, limit cycles typically

attributed to the bifurcating branch of the first resonant peak or multi-periodic isolas

are present when a large amplitude of excitation is used, i.e. 0.23 mm, as shown in

Fig B.7(b1).
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Model Updating

C.1 Finite Element Model - Linear Model Updating

Table C.1: Material properties obtained with the linear model updating procedure. The
non-ideal boundary stiffness (kNI,1 kNI,2) is set equal to 5000 N/m while the non-ideal
boundary damping (cNI,1 cNI,2) is set equal to zero.

Stiffness E [GPa] ν [-] ρ [Kg/m3] α [-] β [-]
PLA 3.31 0.35 372 0.0 0.0

Beam S1 199.6 0.28 7800 0.0 4.8e-5
Beam S2 242.0 0.28 7800 0.0 1e-8
Beam S3 202.6 0.28 7800 0.0 6.8e-5
Core 3.31 0.35 3000 0.0 0.0

The identification of the linear behaviour of the system is obtained with an iterative

manual procedure, but it could be substituted with an automatic minimisation process.

Engineering considerations are first utilised to obtain a meaningful starting point for

the linear model updating process. The density of the polymeric material, mostly

PLA, is estimated at 1240 kg/m3, but considering a 30% infill due to the 3D printing

process, the actual assumed density becomes 372 kg/m3. The density of the beam

is considered to be 7800 kg/m3 as standardly used in engineering for steel while the

core material density is tuned so that the actual mass of each block corresponds to the

mass experimentally measured, i.e. 0.1365 kg, and results in a density of 3000 kg/m3.

At this point, the inertia properties of the FE model are considered to be correctly

updated. A similar discussion is done on the Poisson coefficients which are estimated
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Figure C.1: Comparison between the numerical and experimental linear transfer func-
tion for the identified condition (bottom row of Tab 7.1). The transfer functions con-
sider the acceleration of the base as input and the displacement of the masses as output.
Panels (a,b) illustrate the amplitude of response while panels (c,d) show the phase.

from typical material properties and are kept fixed during the updating procedure.

The elastic moduli, instead, are updated iteratively until the numerical receptances

converge to the experimental ones. It is worth noticing that most of the elastic forces

are produced by the beams while most of the inertial forces are generated by the two

blocks; since the inertia properties are considered to be tuned, most of the updating

procedure consists of tuning the elastic moduli of the beams. Finally, the definition of

Rayleigh proportional damping is used to model the dissipation of energy in the beams

and the parameters α and β are updated similarly to the elastic moduli. The final

results, reported in Tab. C.1, are obtained by considering only a non-ideal boundary

stiffness equal to kNI,1 = kNI,2 = 5000 N/m, and they serve as a starting point for the

more complicated non-linear model updating process outlined in Section 7.3.

During the nonlinear model updating procedure, the linear properties are contin-

uously updated. The TF of the final linear model (after the nonlinear model update)

is shown in Fig. C.1 where the amplitude and phase of the FE model are compared
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against the experimental results. The good match between experimental and numerical

data demonstrates that the linear FE model is correctly updated.

C.2 Finite Element Model - Nonlinear Model Updating

The model updating procedure is verified and validated using the amplitude and phase

of the nonlinear FRC. In particular, the amplitude is computed by averaging the peaks

of the steady-state response while the phase is obtained by implementing an offline

phase detector, as the one proposed in [28]. The phase detector is implemented as

follows: the considered signal s(t) is multiplied by sine and cosine signals at the same

excitation frequency but with no phase. Two different signals are obtained:

sRe(t) = s(t) · cos(Ωt) (C.1a)

sim(t) = s(t) · sin(Ωt) (C.1b)

where · means scalar product between vectors. These two signals are then filtered with

a lowpass filter to eliminate the oscillations and the resulting steady-state values can

be used to estimate the phase ϕ with the expression ϕ = atan(sIm/sRe). This process

is used to compute the phase between the two blocks and the base as shown in Fig. 7.9

and Fig. 7.10
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