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Abstract

The continued advancement of image processing and machine learning techniques

opens up the opportunity for their application in the medical setting. The aim of the

work in this thesis was to apply these techniques from this broad field to lung cancer

treatment with the aim of providing tools that can improve patient outcomes. The

topics covered were; pulmonary and esophageal toxicity following radiotherapy, regis-

tration of PET/CT imaging to pathology and the automatic segmentation of tumour

regions in gross pathology images.

For the prediction of pulmonary toxicity, predictive features were extracted from

pre-treatment planning CT images using radiomic and deep learning based approaches.

When combined with dose features, these models produced a large increase in predictive

power compared to models using only dose and clinical features. For the ILD patients

receiving SABR, predictive power was also shown on several metrics such as the FACT-L

and EQ-5D-5L scales. For predicting esophageal toxicity, the data from the RTOG-

0617 clinical trial was used. Here the focus was on improving predictions from the

dose maps. It was found that using 3D-CNNs, regression based training, including

additional toxicities and ensembling models improved model performance. Tests were

also conducted to determine the robustness of boosted decision tree and artificial neural

network based models for esophageal toxicity prediction by adding noise to the test

data.

The PET/CT to pathology registration task followed on from a previous project

that built the framework for registering CT to pathology but failed to include PET due

to respiratory motion blurring. This was added to by including respiratory gating and

the OncoFreeze algorithm in the workflow to reduce the effects of respiratory motion.

A PET to pathology registration was evaluated using thresholding based registration

of the PET image. Additionally, a deep learning based method for the automatic

segmentation of gross pathology images was produced. This included training and

testing various UNet and DeeplabV3+ models with both Dice and cross entropy based

loss functions. The best performing model was an ensemble of several models with

morphological post processing steps.
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Chapter 1

Introduction

1.1 Motivations

Lung cancer is one of the most common forms of cancer in the UK with around 49,200

new lung cancer cases in the UK every year [1]. The treatment of lung cancer can

be performed by a combination of; surgical removal of a tumour, radiotherapy and

chemotherapy. The choice of treatment for any particular patient is determined by

many factors including the cancers type, size and location. Treatment decisions, which

are made by multidisciplinary teams of clinicians, are heavily influenced by medical

scans which can determine all of these factors. Advancements in the fields of image

processing and machine learning can therefore be applied to lung cancer imaging tech-

niques to increase the amount of information available to clinicians from these images

potentially improving patient outcomes. Two areas where image processing techniques

can be used to potentially improve patient outcomes are radiotherapy outcome predic-

tion and registration of PET/CT and pathology images.

1.2 Research Objectives

The aim of this work was to improve lung cancer treatment by employing medical image

analysis techniques. The main objectives were to:

• Improve radiotherapy toxicity prediction using image processing and

machine learning based methods

Radiotherapy treatment requires a balance to be struck between maximising the

control of cancerous regions while minimising the damage to healthy tissue. If
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the dose to healthy tissue is too high a patient can develop toxicities, or adverse

events, that can have serious consequences up to and including death. Currently,

the dose to healthy tissue is limited by simple dose metrics that have been derived

from statistical studies. Image processing and machine learning methods have

the potential to increase the quality of predictions for how likely a patient is

to develop these complications due to normal tissue toxicity. This would allow

for more personalised treatment plans. One of the central research objectives of

this is to assess how well pulmonary and esophageal toxicity can be predicted for

lung cancer patients receiving radiotherapy using their pre-treatment information.

This includes the use of radiomic and deep learning based approached to both

CT images and radiotherapy dose images.

• Produce a methodology for registering PET/CT images to pathology

slices for lung cancer patients

PET/CT imaging is the most common method of non-invasive in-vivo imaging

used in the diagnosis and treatment of most cancers including lung cancer. Cur-

rently, PET and CT imaging provide little information about the cellular make-up

of a tumour and its environment. Increasing the knowledge that can be gained

from these imaging modalities would aid clinicians in making treatment decisions

which would improve the treatment and survival rates. To do this PET/CT

images would need to be compared to pathological images of a tumour after it

has been surgically removed. This would involve a registration of the different

modalities of images so that they are as well aligned as possible. The research

undertaken in this project follows on from a previous EngD project completed in

2020 by G. Reines-March [2]. Reines-March produced a registration framework

for registering PET/CT images to histopathological slices of a surgically removed

lung cancer tumour. While these methods worked well for CT imaging, it was

found that due to motion induced by patients breathing during the scans that

PET tumour volumes did not correlate to pathological volumes so the images

could not be registered. One of the thesis aims was to improve on these tech-

niques by including respiratory motion reduction techniques to the PET/CT scan

and to produce a method for the segmentation of gross pathology photographs.
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1.3 Contributions

The major contributions of the thesis are:

1. Radiomic and deep learning features for radiation pulmonary toxicity

prediction (Chapter 4). Radiomic and deep learning features from CT images

were used for the prediction of radiation pneumonitis in patients receiving IMRT.

These features were additionally combined with dose and clinical features.

2. Pulmonary toxicity prediction for SABR ILD patients (Chapter 4).

The use of dose, clinical, CT radiomic and CT deep learning features for the

prediction of pulmonary toxicity in lung cancer patients with ILD receiving SABR

is investigated. The use of SABR for patients with ILD is currently an emerging

treatment option, this means that there has been no previous work on machine

learning based prediction models for this specific radiotherapy cohort.

3. 3D-CNN for Esophageal toxicity prediction from dose maps (Chapter

5). The novel application and development of a 3D-CNN for the prediction of

esophageal toxicity from RT planning dose maps is completed. This includes a

comparison to, and an ensemble with, more conventional approaches.

4. Regression based training scheme for RT induced esophageal toxicity

prediction (Chapter 5). A regression based machine learning training scheme

was applied for the prediction of esophageal toxicity from radiotherapy planning

dose maps.

5. Registration of 4D-PET/CT to pathology (Chapter 6 The novel work for

PET/CT to pathology image registration by Reines March, et al. [2] is advanced

by the inclusion of respiratory motion reduction techniques for the PET images

and by adapting the registration model to include PET tumour volumes.

6. Automatic segmentation of gross pathology images (Chapter 6). A

methodology for the novel application of tumour segmentation gross pathology

images is developed. This includes the first application of deep learning for the

automatic segmentation of lung tumour in gross pathology. Previous works have

focused on different applications and anatomical regions, such segmentation of

endoscopy video [3], or have focused on non deep learning based approaches [4].
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1.4 Thesis Structure

The outline of the thesis chapters is as follows:

• Chapter 2 covers the background science necessary for the rest of the thesis.

This includes sections on lung cancer, medical imaging and image processing.

• Chapter 3 gives an overview of the literature relevant to the rest of the thesis.

• Chapter 4 covers pulmonary toxicity prediction for lung cancer patients receiving

radiotherapy.

• Chapter 5 focuses on esophageal toxicity prediction for lung cancer patients

receiving radiotherapy.

• Chapter 6 includes the registration of 4D-PET/CT imaging to pathology for

lung cancer patients and the development of a method for the automatic segmen-

tation of gross pathology images.

• Chapter 7 provides the final conclusions of the thesis and suggests some direc-

tions for future work.
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Chapter 2

Background Science

2.1 Medicine, Anatomy and Treatment for Lung Cancer

2.1.1 The Lungs

The lungs are a pair of organs in the human body that facilitate the exchange of oxygen

and carbon dioxide between the bloodstream and the external environment. This is

essential for cells to receive the necessary oxygen for various metabolic processes while

removing the waste product carbon dioxide.

Figure 2.1: Diagram showing the anatomy and major features of the
lung. This image is taken from [5].

Inhaled air travels through a branching system of tubes called the bronchial tree,

eventually reaching tiny air sacs called alveoli. The walls of the alveoli are extremely
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thin and surrounded by a dense network of capillaries allowing for the exchange of gases

with the blood. All of the lung tissue involved in gas exchange is referred to as the

lung parenchyma [6]. Oxygen from the inhaled air diffuses across the alveolar walls

into the bloodstream, where it binds to hemoglobin in red blood cells. This oxygen-

rich blood is then transported to various parts of the body. Carbon dioxide, a waste

product produced by cells during metabolism, diffuses from the bloodstream into the

alveoli. From there, it is expelled from the body during exhalation. The inhalation

and exhalation process is controlled by the diaphragm and other respiratory muscles.

The lungs are segmented into lobes that are separated by fissures with the right lung

constituted of three lobes (superior, middle and inferior) and the left lung constituted

of two lobes (superior and inferior) as it is slightly smaller due to the space required

for the heart. The anatomy of the lung is shown in Figure 2.1.

2.1.2 Lung Cancer

Cancer is a broad term used to describe conditions where abnormal cell growth, with

the potential to invade or spread to other parts of the body, is occurring. This abnormal

cell growth results in a mass of cancer cells known as a tumour which is able to develop

its own supporting blood supply. Cancer cells form through a process involving genetic

mutations that change the normal regulation of cell growth and division. These muta-

tions may be a result of gene inheritance or due to DNA damage of cells. DNA damage

may happen naturally or be caused by external sources such as radiation, chemicals in

food, air pollution, etc.

Lung cancer is the third most common cancer in the UK with around 48,500 people

being diagnosed in the UK each year [7]. The 1-year and 5-year survival rates for

lung cancer are around 40% and 15% respectively [7]. Depending on how early the

cancer is diagnosed, the treatment options and prognosis drastically change. The level

of development of a cancer is defined by what is known as its stage which can be stage

I, II, III or IV. These stages can be split into subcategories but the general definitions

are:

• Stage 0: This represents cancer that is in-situ, meaning it is localised and has

not invaded nearby tissues. The cancer cells are present only in the layer of cells

where they first developed and haven’t invaded deeper tissues or spread to nearby

lymph nodes. It is very rare to detect cancer at this stage and almost unheard of
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in lung cancer

• Stage I: The cancer is localised and small in size. It has not invaded surrounding

tissues extensively or spread to distant sites. The specific criteria for stage I can

vary depending on the cancer type, such as tumour size and extent of invasion.

For lung cancer, the maximum size for a stage 1 cancer tumour is 4cm.

• Stage II: Cancer in stage II might be larger or more invasive than in stage I. It

may have spread to nearby tissues or lymph nodes though not extensively. Stage

II is split into the subcategories A and B. For lung cancer, stage IIA means the

tumour is less than 5cm while stage IIB means that the tumour is less than 5cm

and it has spread to the most nearby lymph nodes within the lung.

• Stage III: Stage III lung cancer signifies an advanced phase where the cancer has

extended beyond its initial site. It is divided into three subcategories: Stage IIIA,

where the tumour is up to 5cm and has invaded central chest lymph nodes or is 5-

7cm with multiple tumours, often involving nearby structures; Stage IIIB, where

the tumour has grown larger (5-7cm), invaded multiple mediastinal lymph nodes,

spread to collarbone lymph nodes, or affected vital structures; and Stage IIIC, the

most advanced, involving extensive spread to multiple mediastinal lymph nodes,

collarbone lymph nodes, or invasion of critical structures.

• Stage IV: Stage IV is the most advanced stage of cancer, indicating that it has

spread to distant parts of the body, this is known as metastasis. Metastasis means

that cancer cells have moved from the primary tumour site to other organs or

tissues through the bloodstream or lymphatic system. Stage IV cancer can be

split into the subcategories IVA and IVB. For lung cancer Stage IVA cancer has

spread within the chest and/or has spread to one area outside of the chest and

Stage IVB defines cancer that has spread outside of the chest to more than one

place in one or to more organs.

In addition to the broad staging system, the TNM system defines parameters of

the tumour, lymphatic nodes, and metastasis status using the T-stage, N-stage and

M-stage respectively. The T-stage defines increasingly larger or more invasive tumours,

often based on size, the extent of invasion, and involvement of nearby structures. The

N-stage defines increasing involvement of regional lymph nodes, often based on the
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number, size, and location of affected nodes. And the M-stage defines if metastasis is

present.

There are several different types of lung cancer which are primarily categorised

into two main groups: non-small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC). SCLC is a more aggressive form of lung cancer that is closely associated with

smoking and tends to grow rapidly and spread early. NSCLC is a grouping of cancers

which includes adenocarcinomas, squamous cell carcinomas and large cell carcinomas.

Adenocarcinoma is the most common subtype of NSCLC. It often develops in the outer

parts of the lungs and is associated with both smokers and non-smokers. It tends to

grow more slowly and is more likely to be found in an advanced stage. Squamous cell

carcinomas usually arises in the central airways of the lungs and grow quickly. It’s

often linked to smoking and will generally cause symptoms earlier meaning it is usually

picked up at an earlier stage. Large cell carcinoma is a group of cancers with large,

abnormal-looking cells. They can occur in any part of the lung and tend to grow and

spread quickly.

2.1.3 Interstitial Lung Disease (ILD)

Interstitial lung disease (ILD) is a term that defines a group of lung disorders affecting

the interstitium (connecting tissue) and the space around the alveoli (air sacs) of the

lungs. These regions can be damaged by autoimmune disorders, exposure to inhaled

substances or may present idiopathically meaning that the damage presents sponta-

neously or there is an unknown cause. ILD generally presents as fibrosis, scarring and

inflammation of the lung tissue and can often be diagnosed radiologically from com-

puted tomography (CT) or magnetic resonance imaging (MRI) images. A summary of

the different ILD subtype groupings is shown in Figure 2.2.

ILD can impact lung cancer treatment in multiple ways. Initially, the presence of

ILD may make the diagnosis of lung cancer more challenging as many of the initial

symptoms of ILD, such as coughing and shortness of breath, are the same as those

of lung cancer. Once diagnosed with lung cancer, a patient with ILD may have fewer

treatment options available due to the higher chance of treatment related complications.

This can limit clinicians’ ability to use chemotherapy and radiotherapy to treat lung

cancer in patients with ILD and often a balance has to be found between effectively

treating the lung cancer and preserving lung function.
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Figure 2.2: Flowchart showing the groupings of ILD subtypes and sub-
categories. Image is taken from [8].

2.1.4 Treatment Work Flow for Lung Cancer Patients

The choice of treatment for lung cancer depends on the cancer stage, the location

of the tumour and a patient’s general health. For patients with stage I or stage II

lung cancer, the most common treatment is surgical removal of the tumour. For more

advanced stage III and IV lung cancers, chemotherapy, radiotherapy or a combination

of the two is more common. In general, the workflow for treating a patient with lung

cancer involves the following steps:

1. Diagnosis and Staging: The treatment workflow starts with a thorough med-

ical history, physical examination, and imaging tests (such as X-rays, CT scans,

and PET scans) to diagnose and determine the stage of the cancer. Tissue samples

are usually taken, to confirm the type of lung cancer and its specific characteris-

tics.

2. Multidisciplinary Review: Once the type, location and stage of the cancer

has been determined. A team of medical professionals including oncologists, sur-
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geons, pathologists, radiologists and other specialists, review the patient’s case

and develop a personalised treatment plan from the available treatment options.

3. Treatment: The treatment plan is tailored to the patient’s specific situation.

For early-stage lung cancer, surgery may be the primary treatment option, while

more advanced cases may require a combination of treatments such as radiation

therapy, chemotherapy and immunotherapy. The order of treatment application

can vary. For example, a patient might receive chemotherapy before surgery to

shrink the tumour or after surgery to eliminate any remaining cancer cells. If the

patient receives surgery, there will be a pathological analysis of their sample which

provides more information about the cancer which may inform future treatment

options.

4. Monitoring and Followup: After treatment, patients undergo regular follow-

up appointments and scans to monitor their progress and check for any cancer

recurrence.

The treatment options that are relevant to the work in this thesis are discussed in

the following sections.

2.1.5 Radiotherapy as a Lung Cancer Treatment

Radiotherapy (RT) is a form of cancer treatment that uses ionising radiation to control

or kill cancer cells. Depending on the cancer type, location and stage, it may be used as

the primary treatment with curative intent or it may be used as an adjuvant treatment

such as its use after surgery to reduce the chance of tumour recurrence [9]. The unit

of radiation dose is the Gray (Gy) which quantifies the amount of energy deposited by

ionizing radiation in a material per unit of mass. RT dose is most commonly applied by

an external beam of particles but may also be applied by brachytherapy where a sealed

radiation source is placed inside or adjacent to a cancerous region. Only external beam

radiotherapy (EBRT) is relevant to the work in this thesis so it is the only mode of RT

that will be discussed further.

External beam RT uses a beam of high energy particles to apply a radiation dose to a

tumour. The particles used may be photons, electrons, protons or heavier nuclei such as

carbon ions. To create the particle beam used in EBRT, generally, a linear accelerator

(Linac) is used. A linac creates a particle beam by subjecting charged particles to
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oscillating electric potentials, causing acceleration of the particles along a length. The

particles used in a linac are generally electrons as heavier protons or nuclei usually

require a circular accelerator to reach the required speeds. To produce photon beams

from a linac, an x-ray target can be included before the beam output to convert the

energy in the electrons into high energy photons through the Bremsstrahlung process

[10].

The RT radiation dose is not applied in a single RT session, instead, dose fractiona-

tion is used to deliver the total prescribed radiation dose in smaller, divided doses over

multiple treatment sessions or fractions. Fractionation allows healthy tissues surround-

ing the tumour to recover and repair between treatment sessions, reducing the risk of

adverse effects. Additionally, dividing the total dose into fractions can improve the

ability of radiation to kill cancer cells. This is because tumour cells with more access

to oxygen are more sensitive to radiation so the previous fraction will kill the oxygen

rich cells and allow the oxygen starved cells to access more oxygen between fractions.

The timing of the fractionation is chosen to maximise this increased tumour sensitivity

while minimising the potential for the tumour cells to repair and repopulate between

RT sessions [11].

There are several different methods for the application of EBRT. All methods in-

volve the radiation source, usually a linear accelerator (linac), mounted on a gantry

that can rotate around the patient who is lying on a treatment table in the centre

of the gantry. The gantry rotation allows for the precise delivery of radiation beams

from various angles to target the tumour. Additionally, modern linacs are equipped

with imaging systems, such as cone-beam CT, which provides close to real-time imag-

ing of the patient’s anatomy just before treatment. This imaging capability enhances

accuracy by confirming the patient’s position and ensuring the treatment beams are

precisely aligned with the target. Some of the main EBRT methods and those relevant

to this thesis are:

• Three-dimensional conformal radiotherapy (3DCRT)

• Intensity Modulated Radiotherapy (IMRT)

• Volume Modulated Arc Therapy (VMAT)

• Stereotactic Ablative Radiotherapy (SABR)
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These are described in more detail in the following paragraphs.

Three-dimensional conformal radiotherapy (3DCRT) Three-dimensional con-

formal radiotherapy (3D-CRT) is a RT method that improves on conventional radio-

therapy by adapting the beam to more accurately irradiate the tumour area that is

defined by 3D delineation of CT or MRI scans. This is achieved by using a multi leaf

collimator to shape the beam to the tumour and multiple beam angles that will line

up on the tumour to apply a maximum dose to the tumour while sparing more healthy

tissue. This allows for a higher tumour dose than conventional RT techniques would

allow.

Intensity Modulated Radiotherapy (IMRT) Intensity modulated radiotherapy

(IMRT) advances on the techniques of 3D-CRT by introducing an intensity modulation

to the beam dose which allows for improved dose tailoring for a patients specific tumour

shape. Computational methods and simulations are used to calculate the optimal

dose to the tumour while minimising the dose to healthy tissue. Additionally, more

beams are usually applied during IMRT than 3D-CRT, minimising high dose regions

in healthy tissue. These benefits are most beneficial in complicated anatomical regions

such as head, neck and lung as there are many OaRs in these regions that require dose

minimisation.

Volume Modulated Arc Therapy (VMAT) Volume modulated arc therapy (VMAT)

was first introduced clinically in 2007 [12] and has become the gold standard method

of EBRT since then. VMAT improves on IMRT by using continuous beam angles, this

means that the dose is applied continuously while a gantry rotates the beam around the

patient essentially giving an infinite number of beam locations in a 2D plane and more

scope for shaping the applied three dimensional dose applied to the patient. While the

beam is rotated around the patient, three parameters are altered to produce the ideal

dose, these are; the shape of the beam which is altered with a multi-leaf collimator,

the speed of rotation and the rate of dose delivery. This again allows for an increase

in healthy tissue sparing and dose uniformity over the tumour volume. While reducing

regions of high dose in healthy tissue, VMAT techniques increase the volume of healthy

tissue receiving a low, but non-zero, dose.
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Stereotactic Ablative Radiotherapy (SABR) Stereotactic ablative radiotherapy

(SABR) is a RT method used to deliver a high radiation dose to smaller tumours [13].

The term ”stereotactic” refers to the use of a precisely calculated coordinate system to

ensure accurate radiation delivery. Additionally, SABR delivers a high dose of radiation

in just a few fractions as opposed to the many fractions of other RT treatments. This

means that a higher dose is delivered per fraction. Due to the high precision of SABR,

damage to healthy tissues is minimised which reduces the risk of side effects commonly

associated with RT.

2.1.5.1 Radiation Induced Toxicities in Healthy Tissue

The biological damage that RT causes is not exclusive to cancerous cells. Healthy cells

in all organs and areas of the human body are susceptible to this damage which may

lead to toxicity or adverse events. This is especially a problem in external beam RT

as the radiation beams must penetrate through healthy tissues in order to reach the

cancerous cells meaning the dose to healthy tissue will be higher than other forms of

RT. As defined in [14], normal tissue toxicity can be grouped into three categories based

on the time it takes for them to occur, these are:

• Early Effects: These generally occur within 60 days of treatment and are due

to acute cell death. This generally occurs in tissue with a quick cell turnover.

These effects can be completely healed if the damage is not too great.

• Late Effects: These generally occur at least 60 days post-treatment and are due

to mechanisms other than acute cell death such as fibrosis and vascular damage.

These effects are rarely fully repaired.

• Consequential late effects: These are caused by early effects that are severe

enough to cause permanent damage. An example of this is skin necrosis that

requires a skin graft.

Not all healthy tissue is equally sensitive to the harmful effects of radiation. Dif-

ferent organs have different radio-sensitivities and develop different conditions. One

differentiation between different organs is if they are serial or parallel organs [14]. A

serial organ will entirely cease to function if there is a loss of function in one part of

the organ. An example of a serial organ is the spinal cord. In serial organs, great care
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has to be taken not to exceed a maximum dose threshold. Parallel organs on the other

hand can lose function in part of their total volume while maintaining function in the

rest of the organ. The lungs are an example of a parallel organ. The risk of injury

in parallel organs is influenced most by the average dose as opposed to the maximum

dose.

There are many different conditions caused by radiation exposure to different or-

gans. These are exhaustively listed in the Common Terminology Criteria for Adverse

Events (CTCAE) [15] with version 5.0 being the most recent version. Each toxicity

that occurs can be given a grade to define its severity. Grades range from 1 to 5 with

grade 1 being the least severe and grade 5 indicating death due to the specific toxicity.

Additionally, grade 0 is often used to define no observed toxicity. The grade definitions

are different for each specific toxicity and are defined in CTCAE. The general grading

scheme is given in table 2.1.

Toxicity Grade Description

1 Mild; asymptomatic or mild symptoms; clinical
or diagnostic observations only; intervention not
indicated.

2 Moderate; minimal, local or noninvasive inter-
vention indicated; limiting age appropriate in-
strumental ADL.

3 Severe or medically significant but not imme-
diately life-threatening; hospitalisation or pro-
longation of hospitalisation indicated; disabling;
limiting self care ADL.

4 Life-threatening consequences; urgent interven-
tion indicated.

5 Death related to adverse event.

Table 2.1: Adverse event grade definitions from the Common Termi-
nology Criteria for Adverse Events (CTCAE) ver 5.0 [16]. A semi-colon
indicates ‘or’ within the description of the grade. ADL - activities of
daily life.

Radiation Pulmonary Toxicity For patients receiving external beam RT to target

a lung lesion, a potential side effect of the treatment caused by the dose received

by healthy lung tissue is the development of radiation pulmonary toxicity. The most

common pulmonary toxicities are radiation pneumonitis (RP) and dyspnea. RP results

from an inflammatory response within the lung tissue due to the radiation damage to

the cells that line the alveoli in the lungs. RP is a serious condition causing breathing
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issues in patients even with supportive measures for RP such as supplemental oxygen,

steroids or mechanical ventilation, RP is a potentially fatal complication [17]. RP has

also been observed in patients receiving RT treatment for other cancers in the chest

region such as breast cancer [18].

Radiation Esophageal Toxicity Radiation esophageal toxicity is another group of

radiation toxicities often experienced by lung Cancer patients due to the close proximity

of much of the esophagus to the lungs. Radiation esophagitis (RE) is the most common

radiation esophageal toxicity. RE is characterised by an inflammation and irritation

of the esophagus. The main symptoms of RE are pain and nausea, in severe cases the

symptoms will impact a patient’s ability to eat and drink and complications from the

most severe cases may be fatal [19].

2.1.5.2 Radiotherapy Planning

Before RT can be delivered an advanced treatment planning process is performed which

aims to produce a plan for the application of the radiation dose that will give the

patient the best outcome in terms of both tumour control and limiting toxicity in

healthy tissues. The treatment planning process starts with a consultation between

the patient and their radiation oncologist. The oncologist reviews the patient’s medical

history, performs a physical examination, and discusses their treatment options. Once

EBRT is chosen as a treatment option, the next step is to conduct imaging scans to

visualise the tumour and the surrounding structures. Imaging is performed using MRI

or CT scans. During this imaging, the patient is positioned on a treatment table in

the same way they will be during their actual treatment so that these pre-treatment

scans match the treatment as closely as possible. After this, the radiation oncologist,

in collaboration with other clinicians, delineates the target volume in the images, this

includes the tumour and any nearby lymph nodes or areas at risk of containing cancer

cells. Organs at risk are also identified to minimise radiation exposure to these areas.

The radiation dose map is then calculated by treatment planning software in a semi-

automatic approach using dose constraints for the target volume and organs at risk

[20].
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2.1.6 Surgery as a Lung Cancer Treatment

Surgical removal of a lung tumour is the most common form of treatment for patients

with stage I and II lung cancers as these early stages indicate that it is unlikely that

the cancer will have spread outside of the lung meaning the aim of surgery is often

to remove all of the cancerous material [21]. It is also generally a goal of lung cancer

surgery to remove any nearby lymph nodes that might be affected. There are several

types of surgery that may be performed depending on factors such as the stage and

location of the cancer, the patient’s overall health and their lung function.

A lobectomy is the most common type of surgery for lung cancer. A lobectomy

involves removing the entire lobe of the lung where the cancer is located. A segmen-

tectomy removes a portion of the lung that is smaller than a whole lobe, this can be

done in cases where the tumour is small and located in a peripheral area of the lung.

This approach can preserve more lung function than a lobectomy while still removing

the cancerous tissue. In some cases, when the cancer is located in the central part of

the lung or involves a larger portion of the lung, a pneumonectomy might be neces-

sary. This procedure involves removing the entire lung on one side. There are also

some minimally invasive techniques available to surgeons such as video-assisted thora-

coscopic surgery or robotic-assisted surgery. These approaches involve smaller incisions

where a camera and surgical instruments are inserted for the surgery.

2.1.7 Quantifying Patient Health

During a patient’s treatment, it can be beneficial to quantify features of their health

in some way to aid with monitoring their treatment progression. This is particularly

important during clinical trials where extra detail is usually required for patient mon-

itoring and health based metrics may be the final outcome. Most of these patient

monitoring methods involve getting the patients to fill out questionnaires that have

been designed to produce health monitoring metrics. Two of the most commonly used

health forms for lung cancer patients are the EuroQol 5-Dimension 5-Level (EQ-5D-5L)

and Functional Assessment of Cancer Therapy (FACT) which are detailed below.

• EuroQol 5-Dimension 5-Level (EQ-5D-5L): The EQ-5D-5L is a standardised

questionnaire used to measure the health-related quality of life of patients [22]. It

involves getting patients to rate five separate aspects of their health with a rating
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of 1 to 5 where a rating of 1 signifies ”no problems” or ”no difficulty” in the

assessed dimension and a rating of 5 indicates ”extreme problems” or ”extreme

difficulty”. The five assessed health aspects are; mobility, self-care, disruption of

usual activities, pain/discomfort and anxiety/depression. These dimensions are

often combined into a single metric with a range from 0 to 1 to summarise the

patient’s health.

• Functional Assessment of Cancer Therapy (FACT) The FACT scale is a

collection of questionnaire based assessments that aim to quantify health-related

quality of life in patients with cancer [23]. FACT-General (or FACT-G) is the

general questionnaire and contains 27 questions relating to the patient’s physical

well-being, social/family well-being, emotional well-being, and functional well-

being. In addition to this general form, there are several forms for specific cancer

types. FACT-Lung (or FACT-L) is the FACT form specifically designed for lung

cancer patients which includes 35 questions addressing lung cancer symptoms,

respiratory issues, and concerns about breathing difficulties. The FACT forms

are used to generate a single metric, with a range of 0 to 100, to describe the

patient’s health.

2.1.8 Histopathological Processing for Lung Cancer

Histological analysis of cancer specimens provides cellular information about a tumour

which is the ground truth for a diagnosis to determine if a tumour is cancerous and what

type of cancer it is. To perform a pathological analysis, a specimen has to be removed

from the patient and examined ex-vivo. The removal of a tissue sample for pathological

analysis is called a biopsy. Biopsies are usually taken early on in the patient’s treatment

process to confirm if a tumour is cancerous. For this purpose only a small sample is

required and can be obtained through various methods such as bronchoscopy or a needle

biopsy. In addition to the main tumour, the nearby lymph nodes are often biopsied

to assess the spread of the cancer. The removal of a tumour by surgery for curative

intent, as described in section 2.1.6, creates a large biopsy for analysis. The standard

practice is to perform a pathological analysis of any surgically resected lung tumours.

Once a tissue sample is obtained, it is preserved in a formalin solution in a pro-

cess called fixation. Fixation prevents tissue decay and prepares the sample for further

processing. If the sample is large, such as one produced by curative surgical resection
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(lobectomy, segmentectomy, etc.), it may then need to be sliced by a pathologist to ex-

pose the tumour and create multiple smaller samples instead of a single large sample.

After this, the fixed tissue is dehydrated and embedded in paraffin wax which allows

for thin tissue sections to be cut and placed on glass slides for microscopic imaging.

The tissue sections are then stained with dyes that highlight different cell structures.

There are many types of dyes with the most commonly used dye combination being

hematoxylin and eosin. Hematoxylin stains cell nuclei blue-purple, providing informa-

tion about cell density and arrangement, while eosin stains cytoplasm and extracellular

structures pink, making them easier to differentiate.

Figure 2.3: A histology whole slide image (WSI).

A pathologist would historically examine the stained slides under a microscope to

assess the tissue’s cellular characteristics and identify any abnormal or cancerous cells.

Digital pathology is the modern approach where the samples are microscopically imaged

as whole slide images (WSI) so that the pathologist can view the image on a screen, an

example of a WSI is shown in Figure 2.3. When examining the sample, a pathologist will

give the cancer a grade from well-differentiated to poorly-differentiated which describes

18



how closely cancer cells resemble normal cells. This is important as the more abnormal

the cancer cells are, the more aggressive the cancer will be. In addition to microscopic

image examination, the pathologist may also conduct molecular testing to look for

specific genetic mutations or biomarkers that can influence treatment decisions.

2.2 Medical Imaging

Medical imaging is a broad field that includes imaging from any modality that is applied

for a medical purpose. Medical imaging can be used to highlight anatomy or physiology

(the function of organs). Medical images can be 2D, giving a planar image, 3D, giving

a volume, or 4D which refers to a 3D image with an additional time dimension. Figure

2.4 shows the medical imaging planes, the horizontal, or transverse, plane is the most

common plane for viewing 3D medical images.

2D medical imaging has some application when exposed surfaces are to be viewed

such as during an endoscopy or through digital photography for skin lesions. Most

medical imaging is generally 3D where the interior of the body can be imaged by non-

invasive means. Examples of 3D imaging include computed tomography (CT), magnetic

resonance imaging (MRI) and positron emission tomography (PET). 4D imaging is

generally only used in specific cases for the removal of motion blurring effects over the

duration of a scan that can be caused by a patients breathing or heartbeat among

other sources. Medical imaging is almost always performed in-vivo. The main ex-vivo

application in medical imaging is in digital pathology as discussed in Section 2.1.8.

The imaging modalities that have been used in the work detailed in this thesis are

CT, PET and pathology. These are discussed further in the following sections.

2.2.1 Computed Tomography (CT)

Computed tomography (CT) imaging is a form of medical imaging that is able to create

high-resolution 3D images of any part of the human anatomy. For this reason, it is one

of the most widely used forms of medical imaging for diagnosis. CT imaging uses the

attenuation of radiation, generally X-ray photons, through the human body to build an

image. Areas of different levels of attenuation will correspond to different tissue types

and can therefore be used to build a map of the human body. An example of a CT image

of a lung cancer patient is shown in Figure 2.5. The radiation used for the imaging
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Figure 2.4: The anatomical imaging planes used in medical imaging.
Figure is taken from Wikipedia (wikipedia. org/ wiki/ Anatomical_
plane ).

does produce an increased cancer risk when applied to the human body though the dose

is never strong enough for acute effects such as those that occur during radiotherapy.

There is, therefore, a trade-off between image quality and the radiation dose to the

patient with a higher dose producing a higher SNR and allowing for increased spatial

resolution.

An X-ray tube is generally used to produce the radiation which is detected by a row

of detectors which will be on the other side of the patients body to the X-ray tube. The

x-ray tube and detectors are held in a gantry that rotates around the patient during

the scanning process allowing for a 3D image to be formed. The rotational imaging

forms a sinogram which is the image in the gantry angle and time coordinate space. To

convert the sinogram into cartesian coordinates, a reconstruction algorithm is applied,

the most commonly applied currently are iterative reconstruction algorithms [24].

CT images are greyscale images where voxel intensity is displayed in terms of relative

radiodensity, the unit of which is the Houndsfield unit. The Houndsfield unit is defined

so that distilled water at standard pressure and temperature has HU value of 0 and

air at standard pressure and temperature has an HU value of -1000. This means that

the intensity of a voxel in a CT image with average linear attenuation coefficient µ will
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Figure 2.5: An example CT image slice, imaged in the transverse
plane, of the chest of a patient with lung cancer. The primary lung
tumour is indicated by a red arrow.

have a HU value defined by equation 2.2.1.

HU = 1000× µ− µwater
µwater − µair

(2.1)

Here µwater and µair are the linear attenuation coefficients of water and air respec-

tively. The HU values for some common tissues are shown in table 2.2 [25].

Tissue Houndsfield Units (HU)

Air 0
Lung -900 to -500
Fat -100 to -50

Water 0
Muscle 10 to 40
Bone 700 to 3000

Table 2.2: The HU values for some common tissues [25].

As CT images can be high-quality images they are the most commonly used for

diagnostic imaging. In the context of lung cancer, and generally in oncology, CT

images are often used as the first diagnostic tool which may identify lesions and rule

out other diagnoses. As CT images are maps of the attenuation of radiation of the
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human body, they can provide useful information for other imaging modalities and

treatment options. In nuclear medicine based imaging, such as PET imaging, a CT

scan is often taken alongside the nuclear medicine modality to provide an attenuation

map that can be used during the image reconstruction process. Additionally, during

external beam radiotherapy, CT images are acquired before the patient receives their

treatment so that anatomy can be identified and the radiation dose to all body parts

can be calculated.

2.2.2 Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a 3D functional imaging modality that uses

the radiation emitted by radionuclides to image regions of metabolic activity in the

body. PET is a form of nuclear imaging which generally works by attaching a ra-

dionuclide to a drug, to form what is known as a radiotracer, and injecting it into the

body. The body then processes the tracer which sends it to different parts of the body

depending on which tracer is used. The concentration of the tracer at different anatom-

ical locations can highlight the level to which a physiological process is occurring. The

concentration of the radiotracer can be imaged by detecting the radiation produced by

the radioactive decay of the radionuclide [26].

PET imaging relies specifically on β+ decay which is a form of radioactive decay

involving the conversion of a proton to a neutron resulting in the release of a positron.

The released positron will travel until it collides with an electron at which point they

annihilate and produce two identical gamma ray photons that are emitted in opposite

directions. To detect these photons, a ring of detectors is placed around the patient.

The β+ decay process has some special properties that can be taken advantage of

during PET imaging. The production of two gamma rays at the same time allows for

the source of the annihilation to be located within a 2D plane. This is done by timing

the photon detections which can be matched to the other photon produced by the same

annihilation. The detector location and detection times for the two photons can then

be used to determine the location of the annihilation event. A diagram of the detection

of an annihilation event is shown in Figure 2.6.

The choice of radionuclide in PET imaging depends on its decay mode, positron

energy and half-life. The half-life is perhaps the most important factor as too short

of a half-life will make the imaging process more difficult but too long of a half life
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Figure 2.6: Diagram of the patient position within a PET detector ring
and the detection process for positron annihilation events.

will expose the patient to an additional radiation dose. The choice of tracer depends

on what physiological process is to be imaged. One of the most common tracers is

a fluorine labelled glucose molecule called fluorodeoxyglucose (18F-FDG). 18F-FDG

highlights regions of metabolic activity making it useful in detecting and localising

cancerous tumours which are highly metabolically active. 18F-FDG PET is the only

radiotracer used in any of the PET imaging in this thesis. An example of an 18F-FDG

PET image is shown in Figure 2.7 (a) which highlights an area of high uptake in the

lungs, indicating a tumour.

To acquire a 3D PET image, the patient is moved through the detector ring over

a length of time. This is achieved by having the patient lie on a bed that moves as is

done with CT imaging. The time it takes for a PET scan is in the order of minutes and

depends on the anatomy being imaged and the resolution required with slower scanning

speeds producing a higher SNR as more counts will be detected. Scans will generally

be under 20 minutes to reduce the clinical demand and to limit the length of time the

patient will have to remain motionless.

2.2.2.1 The Standard Uptake Value (SUV)

The voxel intensity in a PET image is directly proportional to the radioactivity con-

centration within the body at that voxel location. This concentration is commonly

expressed in terms of the standard uptake value (SUV). The SUV is a quantitative

measure of the radiotracer uptake in a region of a PET image that aims to reduce
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variability between different patients due to differences in their weight. The SUV is

defined by equation 2.2 [27].

SUV =
r

a′/w
(2.2)

Here, r is the radioactive activity concentration (kBq/ml) that the PET scanner

measures, a′ is the decay corrected activity (kBq) of the injected radiotracer and w is

the patient’s weight (kg) which is used to create an estimate of the distribution volume

of the tracer.

While the SUV remains a popular quantification tool, it has many sources of error

that are mostly unavoidable in PET imaging. Firstly, there can be a large variation in

patient-based variables aside from weight. This includes patient anatomy, the natural

glucose levels of the patient at the time of imaging and a patient’s renal function. The

imaging physics of the PET scanner also contributes to the error in the SUV. The

usual sources of noise such as background and scatter noise, as well as properties of

the detector such as the dead time of the detectors, increase the uncertainty of any

individual voxel’s SUV.

2.2.2.2 PET/CT Imaging

A PET scan is often acquired in conjunction with a CT scan in a PET/CT combined

scan. This allows for the functional information available in the PET image to be

mapped to the anatomical information available in the CT image [28]. Additionally,

the CT scan provides an attenuation map that can be used to create an attenuation

corrected PET image producing a more accurate map of the concentration of the ra-

diotracer. An example of a fused PET/CT image is shown in Figure 2.7 (c) where a

lung tumour is highlighted by the PET image.

2.2.3 PET Respiratory Motion Reduction

Generally, the largest source of error in PET and CT imaging is patient movement [29].

Patient movement can cause misregistration artefacts such as blurring or streaking

to occur in the final image as part of the anatomy has moved during the imaging

process. This is an issue for imaging any part of the human body though this problem

is especially significant in imaging of the chest or abdomen due to movements arising
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Figure 2.7: Example of (a) a PET scan, (b) a CT scan and (c)
a fused PET/CT image of the chest and torso region of a lung cancer
patient. A cancerous lung tumour is highlighted by the PET image as an
area of high uptake. All images are displayed in the coronal plane and
were acquired on a joint PET/CT scanner during the same scanning
process for a single patient.

from a patient’s breathing cycle. This is usually not an issue in CT imaging as the

images are taken over a few seconds but for PET imaging, where each field of view is

imaged over several minutes, many breathing cycles will have occurred over the time

taken to produce a full image. This can be counteracted in some imaging modalities

by making use of quick scan times or by implementing breath-hold instructions for

the patient to follow at certain times during a scan. Neither of these options are

implementable with a standard PET chest scan as the scan length is too long and can

not be reduced as this would reduce the SNR and breath-hold methods have been found

to be ineffective over long scans due to patient error.

Respiratory motion reduction is a group of techniques developed to reduce the

image blurring due to patient breathing by tracking the patient’s breathing cycle over

the length of the scan. The image is generally then reconstructed using only data from

one repeating section of the breathing cycle for the final image. A review of respiratory

gating methods can be found in [29]. To apply respiratory gating a method of tracking

a patient’s breathing cycle during a scan must first be used.

2.2.3.1 Device Based Tracking Methods

Many methods of tracking respiratory motion during a scan have been developed. Some

of these methods involve using an additional device during the scan to produce a respi-

ratory signal, systems have been designed to do this by measuring pressure changes on a

belt wrapped around a patient’s chest, the volume of air inhaled and exhaled or changes

in temperature of the patients inhaled and exhaled air [29]. An example of a deviceless
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method is the revolutionary gating for scanners (RGSC) system, developed by Varian

Medical Systems (Varian Medical Systems, Palo Alto, California, USA) which involves

tracking the movement of markers placed on a box on the patient’s chest. No device

based gating methods have been used in this thesis so there is no more detail given

here.

2.2.3.2 Deviceless Tracking Methods

Deviceless tracking methods, sometimes called data-driven tracking, estimate a res-

piratory motion signal directly from the imaging data. These methods remove the

requirement for hardware in respiratory tracking which has the advantage of reducing

the setup time of the patient before imaging. Another disadvantage of device-based

tracking methods that deviceless methods can solve is that they record a single signal

for the respiratory motion of the patient which is taken to correspond to the respiratory

motion at every anatomical location. This is an inherent limitation of most device-based

tracking systems as they usually rely upon the physical location of a device which can

only be placed at a single anatomical location. It has been shown that respiratory

motion is highly dependent on anatomical location and that there can be time-varying

phase differences in the respiratory motion at different locations [30]. Deviceless meth-

ods that measure the respiratory motion of a region from the data acquired in only

that region can therefore produce more accurate estimations of localised motion.

Many deviceless methods for PET imaging rely upon a PET specific spectral anal-

ysis method detailed in [31]. This spectral analysis involves taking the fast Fourier

transform (FFT) of the PET data in 4D sinogram space to produce a peak at the

frequency of respiratory motion. Areas that are subject to respiratory motion can be

defined by the presence of a peak within a frequency range that could correspond to

human breathing. A respiratory signal is then produced for the areas where motion is

present by recording the variation of the integrated counts within a region. To remove

contributions from motion that does not correspond to the respiratory signal, a weight-

ing based upon the phase of the motion is added to only include motion in phase with

the main frequency component found by the FFT.

Deviceless methods for PET imaging have an inherent problem where the relation-

ship between the polarity of the signal and the change in intensity at a given location

is ambiguous. This is because exhalation and inhalation could cause an increase in in-
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tensity at one location and a decrease at another location as an inhalation could move

an anatomical point of high intensity both closer to or further from an image voxel lo-

cation depending on the position of the point. P. Schleyer et al. propose a solution for

this in their 2018 paper describing a method called continuous bed motion automated

spectral analysis (CASA) [32]. This method is the only gating method applied in this

thesis so it is reviewed in detail here.

CASA uses continuous bed motion during the imaging to introduce a motion with

known speed and direction into the imaging process that can be used to remove the

ambiguity in the signal for regions of inhalation and exhalation. This is different from

the usual acquisition process for PET imaging where the bed moves in a step-and-shoot

manner, although newer scanners are more likely to use continuous bed motion. For

CASA, a signal generated by spectral analysis, referred to as signal B, is compared to

an initial global signal estimate generated by observing the standard deviation of the

activity distribution variation in the anterior-posterior direction over time, referred to

as signal A. This standard deviation (signal A) can generate a global respiratory signal

estimate because an increasing standard deviation will correspond to inhalation as the

total anatomical area being imaged will increase, spatially spreading out the areas of

intensity. Signal B then has a phase shift of either 0◦ or 180◦ applied to it so that

it most closely matches signal A. This defines the global phase for signal B and the

timing of inhalation and exhalation is known. At this point signal B is an accurate local

estimate of the respiratory motion. The CASA method has been clinically evaluated

in [33] and found to give results at least as good as hardware based methods. Figure

2.8 shows an example from [32] of the results from both hardware and deviceless based

gating methods for a PET scan of a lung tumour.

Figure 2.8: A sagital slice of a respiratory gated PET scan of a lung
tumour using (a) an Anzai respiratory gating belt device and (b) CASA
data driven gating. Image taken from [32].
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2.2.3.3 Respiratory Gating

The general method to process the respiratory signal along with the image data to

produce a motion corrected image is to gate (or group) the data collected into separate

bins that correspond to different sections of the respiratory cycle. The number of bins

defined produces a trade-off between the deblurring and the signal-to-noise ratio of

the image data in each bin. A higher number of bins reduces the blurring associated

with breathing but reduces the signal-to-noise ratio of each bin. A reduction in the

blurring results in more accurate lesion volumes while a reduction in the SNR results

in a decrease in lesion detectability. It has been reported that six bins per respiratory

cycle is optimal for cardiac scans [34].

The different parts of the respiratory cycle can be grouped as amplitude-based or

time-based methods. For time-based approaches, there are many methods to separate

the different phases of the respiratory cycle. The simplest method is to create bins

of a fixed time for all repetitions of the respiratory cycle [35]. Due to the irregular

frequency of the respiratory cycle, this method causes some of the data to be discarded.

Alternatively, the timing length of the bins can vary from each respiratory cycle so that

each cycle contains the same number of bins [36], this is shown in Figure 2.9 (a). For

this method, data from respiratory cycles outside of a user-defined frequency range

would be discarded to remove irregular data.

Figure 2.9: Respiratory gating of an example respiratory signal using
four bins per cycle with (a) a time-based method where bin timings vary
between respiratory cycles and (b) an amplitude based method where the
bins contain equal ranges of amplitudes. Figure taken from [29].

It has been shown that amplitude-based gating methods generally produce better

results than time-based methods [35]. The simplest method of amplitude-based gating

is when all the bins contain an equal range of amplitudes, this is shown in Figure 2.9 (b).

An issue with this method is that the bins are unlikely to contain similar coincidence
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numbers so the SNR will vary across the bins. Variable bin processing can be used to

keep the SNR constant across the bins at the cost of varying the motion amplitude in

each bin [35]. There is no ideal number of bins to use in amplitude-based methods as

Bettinardi et al. [37] suggest that the ideal number of bins is related to the size and

displacement of a lesion.

Once the PET data has been grouped into bins using the timing information

recorded during the scan, an image can be produced for each bin. Each image cor-

responds to a different part of the respiratory cycle so any lesions will have a different

location in each image. The gated images can be analysed on their own or some ad-

ditional processing may be applied to combine the gated images into a single image.

One method to combine the gated images is to deformably register all of the images

to one particular image. This method uses all of the collected data which ensures the

best possible SNR at the cost of reducing the resolution due to the uncertainties in

location introduced by the deformable registration. Another method is simply to use

only one of the gated images, generally the image with the lowest level of motion blur.

This method produces a high spatial resolution due to a low spatial uncertainty but

produces a low SNR as a large portion of the data collected has not been used in the

final image. This method may require increased scan times to improve the SNR.

2.2.4 Digital Imaging and Communications in Medicine (DICOM)

Digital Imaging and Communications in Medicine (DICOM) is the international stan-

dard for the communication, management and storage of medical images and related

data [38]. DICOM encompasses both the format of the medical images themselves and

the communication protocols used to exchange these images and related information

between different systems. DICOM includes a full set of metadata that accompanies

each image, providing details about the patient, imaging device, acquisition settings,

image orientation, etc. This metadata is required for accurate interpretation and di-

agnosis in the clinical setting as well as in the research setting for image processing.

Additionally, DICOM ensures interoperability between different imaging equipment

and systems from various manufacturers. DICOM also covers many security concerns

with implemented encryption, authorisation and access control.
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2.3 Image Processing and Machine Learning for Medical

Computer Vision

Medical computer vision is a large field with a diverse set of techniques and applications

that are based on clinical and technical endpoints. The specific task and endpoint will

impact the workflow and methods that should be implemented. One of the main char-

acterisations of computer vision techniques is whether a technique is learning-based or

not. Non-learning-based approaches are generally more traditional and use mathemat-

ical models or algorithms where data is only required to validate the performance of

the model. Learning-based techniques are usually more computationally intensive and

require a separate dataset to train a model for a specific task. The choice of whether to

use learning or traditional techniques often comes down to the size of the dataset avail-

able as learning-based techniques perform poorly when the training dataset is small.

Applications of medical computer vision include image enhancement, segmentation,

classification and registration. Image enhancement aims to improve the quality of an

image through various methods such as reducing noise or removing artefacts. Segmen-

tation aims to automatically delineate particular structures of regions of anatomy in

a medical image. Classification tasks aim to diagnose or predict clinical outcomes of

patients from their medical images. Registration tasks aim to spatially align medical

images from different modalities or taken at different times so that the information in

each image can be viewed in the same coordinate system.

Many medical computer vision tasks can be considered to have two stages, which are

feature extraction and model development. Feature extraction describes the process of

converting an image or a region of interest (RoI) within an image into a set of numeric

features that describe various qualities of the image. The extracted features detail

information about the image’s texture, colour distribution, edges, and other distinct

attributes that contribute to the images visual content. The aim of feature extraction

is to find the most relevant information from the original image and represent that

information in a lower dimensionality space [39]. The process of extracting these fea-

tures depends on the specific requirements of the task and involves selecting relevant

techniques for feature detection. Once these numeric features are derived, they provide

a structured representation of the visual data that machine learning algorithms and

computational models can use to make informed decisions. This transformation from
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raw visual input to a meaningful feature representation allows computer vision systems

to interpret images in a way that aligns with the desired task. There are many tech-

niques for feature extraction from images such as image texture analysis or the use of

convolutional neural networks (CNNs).

Once an image has been converted to a format that is interpretable by compu-

tational methods, the model or algorithm for a specific task can be applied. There

are many choices of methods available, with deep learning techniques often achieving

state-of-the-art performance, especially when there is a sufficient amount of data avail-

able. Deep learning models usually combine the feature extraction and classification

tasks in a single model. The choice of method depends on factors such as the size

of the dataset, the computational resources available and the specific requirements of

the medical application. In addition to deep learning, traditional non-learning image

processing techniques continue to be valuable tools in medical computer vision. These

non-learning methods are particularly useful when data availability is limited or when

the interpretability and explainability of the model’s decisions are crucial.

This section aims to give an overview of the image processing and machine learning

techniques that are relevant to this thesis.

2.3.1 General Image Processing Techniques

There are several general image processing techniques used in this thesis that do not

fit well in any other section, these are discussed here.

2.3.1.1 Image Interpolation

Image interpolation is a technique used in image processing to estimate pixel values

at geometrical locations that do not lie on the grid of the original image. This is

done to increase the resolution of an image, often for the purpose of matching the

resolution to the resolution of another image. Image interpolation involves generating

new pixel values based on the existing pixel values in the image. The main application

of interpolation is to resize or transform an image. The accuracy of the interpolation

depends on the quality of the original image and the length of consecutive missing

data samples. There are several approaches to image interpolation, some of which are

detailed below and also included in the review paper [40].
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Nearest Neighbour Interpolation Nearest neighbour interpolation is the simplest

form of image interpolation. The pixel intensity value for the target pixel is taken as the

intensity value of the closest pixel of the original image. This leads to an interpolated

image that has a blocky, or pixelated, appearance.

Linear Interpolation Linear interpolation methods rely on linear polynomials to

calculate the intensity values for new pixels. When applied to a 2D or 3D image, this

is referred to as bilinear and trilinear interpolation respectively. Linear interpolation

works by first identifying the nearest pixels to the off-grid location of the new pixel

to be produced. The distances from neighbouring pixels to the new pixel location are

found and weights are calculated based on these distances which determine how much

each neighbouring pixel will contribute to the new pixel’s intensity value. A weighted

mean of the neighbouring pixels is then taken to determine the value of the new pixel.

This is repeated at all off-grid points where a new pixel is to be created. This results

in a smoother image than nearest neighbour quantisation though this can cause edges

to be poorly reconstructed.

Cubic interpolation Bicubic interpolation uses a larger number of neighbouring

pixels and more complex cubic polynomials than bilinear interpolation to calculate

new pixel values. The nearest 2 pixels in all directions are used to calculate the new

pixel value which in 2D is a 4 by 4 grid. Weights are generated from these neighbouring

pixels based on the distance of the pixels to the location of the new pixel using cubic

polynomials. Several methods are available for the calculation of these weights such

as the use of Lagrange polynomials, cubic splines or cubic convolution algorithms [41].

Once the weights are found, a weighted average is again taken. An example of how

nearest neighbour, bilinear and bicubic interpolation work is shown in Figure 2.10.

2.3.1.2 Mathematical Morphology

Mathematical morphology is a branch of image processing that deals with the analysis

and manipulation of geometric structures in images. Mathematical morphology opera-

tions are widely used for tasks like image filtering, noise reduction, feature extraction,

and object segmentation [42]. Often these operations will require using a structuring

element which is a small binary or grayscale pattern that defines the neighbourhood

around a pixel, this is essentially a shape that can be used to interact with an image.
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Figure 2.10: Diagram detailing the process of nearest-neighbour, bi-
linear and bicubic interpolation. This figure is taken from Wikipedia
(https: // en. wikipedia. org/ wiki/ Bilinear_ interpolation ).

The choice of structuring element depends on the task but a common choice would be

a disk.

Some of the main operations in mathematical morphology for binary image process-

ing are the erode, dilate, close and open functions. The erode function shrinks regions

in an image. It works by placing a structuring element at each pixel and checking if all

corresponding pixels are positive in the image. If they are, the central pixel remains

positive otherwise, it is set to zero. This works to remove pixels in an object at its

boundaries. A dilate operation works entirely opposite to the erode function and will

set all pixels to be active if a single pixel within the structuring element is positive,

expanding any structures from their borders. The opening operation is a sequence of

erosion followed by dilation and it is used for tasks like noise reduction and removing

small objects or structures. Closing is a sequence of dilation followed by erosion and is

used for filling small gaps and connecting broken structures. An example of an erosion

followed by a dilation operation applied to a binary 2D image is shown in Figure 2.11.

2.3.1.3 Thresholding

Thresholding is the simplest method of segmenting an image. The most basic form of

thresholding creates a binary mask over an image where a mask pixel will equal 1 if the

intensity of the pixel in the original image is above a fixed threshold and 0 if it is below.

This can be reversed to threshold below a fixed value. For CT images, as the voxel

intensity corresponds to different tissue types thresholding can be a useful segmentation

technique. In PET imaging, thresholding is often used to isolate a tumour which can
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Figure 2.11: Example of an erosion and dilation of a binary 2D image
using a circular structuring element (SE). Figure is taken from [43]

be delineated by selecting a percentage of the maximum tumour SUV to threshold [44].

In addition to these global methods of thresholding where the thresholding value stays

constant over the full image, there are many methods of adaptive thresholding where

the threshold value at a particular location is informed by image features [45].

2.3.1.4 K-Means Clustering

K-means clustering is an unsupervised method used to segment an area of interest in

an image [46]. The standard algorithm (naive K-means clustering) works by initially

selecting the number of clusters, K, for the image to be segmented into, this is a user-

defined variable. Each cluster will represent a distinct segment. Initial centroids for

these clusters are then randomly chosen across the image. Next, each pixel in the

image is assigned to the nearest cluster centroid based on a distance metric, usually the

Euclidean distance in the colour space. Pixels that are closer in colour to a particular

centroid are grouped into the same cluster. The centroid for each cluster is then re-

selected as the centre of mass of each cluster. The pixels are then re-assigned to the

new cluster centroids and the process iterates until it converges on a solution. K-means

clustering can be performed on greyscale or colour images. In addition to naive k-means,

there are several adaptations to the algorithm such as Fuzzy C-Means Clustering [47]

and K-means++ [48].
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2.3.2 Radiomics (Image Texture Analysis)

Radiomics involves the extraction of quantitative features from medical images using

data characterisation algorithms. These features can then be used to develop predictive

models for diagnosis, prognosis, and treatment. In recent years, the field of radiomics

has received increasing attention for medical image research. This has been partially

prompted by the development of software packages such as PyRadiomic [49], LifeX [50]

and MATLAB [51] (as of the R2023b update) that improve the ease of the calculation

of IBSI radiomic features and the application of full radiomics workflows. Much of the

more recent literature aims to use radiomics for computer-aided diagnosis as well as

using it as a tool for predicting patient outcomes.

A large portion of radiomic features are image texture features. Image texture is

commonly defined as the spatial variation of pixel intensities in an image [52]. Image

texture can be used to segment or classify different regions of an image, an example of

this is shown in Figure 2.12.

Figure 2.12: Example of how image texture can be used to segment an
image. The left image is a mosaic of eight different image textures. The
right image is a grey-level texture map detailing an ideal segmentation
of the texture image. Figure taken from [52].

Image texture analysis can be applied in either 2D or 3D with the methods and

measures being extended to accommodate the extra directions available in 3D. In 2D

there are 8 pixels neighbouring any pixel, and four direction vectors with a Chebyshev

distance [53] of 1, these direction vectors are (1,0), (0,1), (1,1) and (-1,1). In 3D there

are 26 neighbouring voxels to any voxel, this gives 13 direction vectors with a Chebyshev
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distance of 1, these are; (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1), (1,-1,0), (0,1,-1),

(1,0,-1), (1,1,1), (1,1,-1), (1,-1,1) and (1,-1,-1) [54]. Variations of image textures may

be imperceivable to human vision but are still easily detected by image texture analysis

methods. This means that for certain textures, image processing methods may be able

to highlight image features that would be missed by a simple visual inspection of the

image. For medical imaging, this has applications in discerning changes in anatomy or

types of tissue in an image that would not normally be perceivable.

Radiomic features have been standardised by the collaborative initiative ”the image

biomarker standardisation initiative” (IBSI). Details of most image textures, including

those discussed in the following subsections, can be found in the IBSI manual [54] which

is currently the best source for detailed information on radiomic features.

2.3.2.1 General Radiomic Workflow

The workflow for radiomic analysis of medical imaging often follows a similar workflow.

The main aspects of this are summarised below.

1. Image pre-processing - The first stage of a radiomic workflow is any image pre-

processing that is to be applied. There is often nothing to be done at this stage

but, depending on the task, it may be beneficial to apply denoising or artefact

removal algorithms.

2. RoI segmentation - The RoI that is to be analysed must be segmented so that

the radiomic methods can be applied to only the pixels of that region. In some

situations, segmentations may be available from the clinical process such as the

delineations of organs at risk produced during radiotherapy planning, that may

be used.

3. Image interpolation - There is no standard imaging resolution in most med-

ical imaging modalities including CT, MRI and PET. Therefore, to make sure

radiomic features are equivalent over a dataset that is being analysed, image in-

terpolation must be applied to match the resolutions of all images that are being

analysed. This can involve both downsampling and upsampling of images. Ad-

ditionally, it is important to match image resolutions in all planes of an image

so that image texture features calculated in different directions are directly com-

parable. For 3D imaging modalities, it is generally the z-axis (head to toe) that
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will have a lower resolution. A downside of interpolation here is that the image

resolution will be reduced in some directions. It is therefore sometimes more ben-

eficial to keep the higher resolution and perform a 2D analysis instead of a 3D

analysis.

4. Image quantisation - Before radiomic features are calculated from a RoI, image

quantisation is usually applied to reduce the number of grey levels in the image.

This is necessary to reduce the dimensionality of the feature space.

5. Radiomic Feature Calculation - Finally, radiomic features are calculated.

There are many methods for this with the relevant methods to this thesis sum-

marised in the following sections.

For a visual representation of this, the IBSI recommended flowchart for radiomic-

based projects is shown in Figure 2.13. Part of the purpose of this pipeline is to increase

the reproducibility of any results [55].

2.3.2.2 Statistical Features

Statistical texture analysis methods use the spatial distribution of pixel values to find a

set of statistics from the pixel locations and values. Statistical approaches are defined

as first-order if a single pixel is used to define a local feature, second-order if two pixels

are used and so on [56]. The most common texture methods are:

• First-Order Texture Features

• Grey Level Co-occurrence Matrix

• Grey Level Run Length Matrix

• Grey Level Size Zone Matrix

• The Neighbourhood Grey Tone Difference Matrix

These are described in the following paragraphs.

First-Order Texture Features The difference between first-order and higher order

statistics is that first-order statistics ignore the spatial interaction between pixels. This

means they can be calculated from the grey-level histogram of a region of interest.
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Figure 2.13: IBSI Standard workflow for radiomic projects, figure
taken from [54]

The most common first-order texture measures are intensity-based statistical features,

examples include the mean, variance, entropy, energy, skewness, coarseness and kurtosis

of an image [52]. The advantage of first-order measures is their simplicity allowing for

faster computational times as well as an increased ease in interpreting any results.

Grey Level Co-occurrence Matrix There are many methods for statistical image

texture analysis that involve the conversion of an image into a matrix that highlights

certain aspects of the image texture. From these matrices, statistical features can be

calculated that describe specific texture qualities. The grey level co-occurrence matrix

(GLCM) is one of these matrix based methods. It is a second-order texture analysis

method meaning that it relies on immediately adjacent voxels to calculate texture

information. A GLCM shows how often each grey level occurs at a fixed distance from
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a voxel. Element (i, j) in a GLCM describes how often voxel grey-level value i is located

immediately before voxel grey-level value j in the discretised original ROI. GLCMs have

to be calculated for each individual direction vectors, giving 13 separate GLCMs. To

combine the GLCMs they are commonly averaged to produce a single GLCM.

Once a GLCM has been ccreated it can be used to calculate image features. Harelick

et al. proposed fourteen different texture measures based upon GLCM that are com-

monly used today, these features are known as the Haralick texture features [57]. These

features include contrast, correlation and angular second momentum among others.

Grey Level Run Length Matrix The grey-level run length matrix (GLRLM) is

a common higher-order texture analysis method first developed by M. Galloway [58].

A GLRLM contains information corresponding to the number of consecutive voxels

along a direction vector that are a particular grey level. Element (i, j) in a GLRLM

corresponds to the number of times a run length, j, occurs for a certain grey level, i, in

a particular direction vector. Just like the GLCM, a separate GLRLM is produced for

all 13 vector directions in 3D which can be combined by averaging the values. GLRLM

can differentiate between course and fine textures as course textures will have longer

run lengths for any grey level than fine textures. Various metrics can be produced from

GLRMs such as the short-run emphasis, long-run emphasis and grey-level distribution

[52].

Grey Level Size Zone Matrix The grey-level size zone matrix (GLSZM) is a high-

order texture analysis method similar in function to GLRLM. A GLSZM counts the

number of linked voxels that have the same grey level. For a voxel to be linked to

another voxel it must have the same grey level and be one of the 26 neighbouring

voxels (in 3D). Element (i, j) of a GLSZM corresponds to the number of zones with

a grey level of i and size of j. Unlike the GLCM and GLRLM, this technique will

produce only one GLSZM from a 3D ROI so no averaging has to be performed. Metrics

calculated from the GLSZM include small zone emphasis, large zone emphasis and grey

level non-uniformity.

The Neighbourhood Grey Tone Difference Matrix The neighbourhood grey

tone difference matrix (NGTDM) is a grey level based texture matrix that quantifies

the relationship between the grey level of a voxel and the difference between that voxel
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and its neighbouring voxels. A NGTDM has more parameters than some other grey

level based matrices. A NGTDM will consist of three variables per grey level, i. These

variables are the total number of grey levels in the ROI, ni, the probability of a voxel

having grey-level i, pi and the neighbourhood greytone difference, si. si is defined by

equation 2.3 where X̄k is the average grey level in the neighbouring voxel of a particular

voxel and Nv is the number of voxels in the ROI. ni, pi and si are used to calculate

various image metrics such as busyness, contrast and coarseness.

si =

Nv∑
k

∣∣i− X̄k

∣∣ (2.3)

2.3.2.3 Deep Learning in the Context of Texture Analysis

Deep learning methods, for computer vision, may also be considered to be performing a

form of image texture analysis. Deep-learning based methods work by learning features

from a dataset used to train the layers of a network. Some of the features learned by the

deep-network are analogous to classic image texture features as they will be detecting

changes in textures in regions of the image. Unlike classic texture analysis, these

features cannot be easily represented mathematically and are unique to a network that

has been trained on a particular dataset.

2.3.3 Convolutional Neural Networks (CNN)

Increases in computational power in the past 15 years have allowed for the applica-

tion of deep learning methods for image feature extraction. These techniques have

revolutionised image feature extraction by leveraging complex neural network architec-

tures, such as convolutional neural networks (CNNs). CNNs can automatically learn

intricate features from raw image data. As opposed to many traditional methods for

feature extraction, CNNs must learn image features from a dataset using a training-

based approach. This allows for the CNN to learn abstracted features. The successful

application of AlexNet [59] in 2012 to the ImageNet [60] classification challenge saw

the start of a shift towards the use of deep learning and CNNs as the standard method

for image processing applications.

A Convolutional Neural Network is structured with multiple trainable stages that

are stacked on top of each other. These successive stages are subsequently followed

by a supervised classifier. Throughout the network’s architecture, feature maps are
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utilised as arrays to depict the input and output at each stage of computation. This

arrangement enables a CNN to progressively learn hierarchical features from raw data,

making it a powerful tool for tasks such as image recognition, object detection, and

various other forms of pattern analysis. CNNs are specifically designed to process and

analyse images (or other grid-like data). The information in the following sections on

CNNs can be found in greater detail in the books [61] and [62]. A CNN consists of

multiple layers that are detailed in this subsection, these are:

• Convolutional Layer

• Pooling Layer

• Fully Connected (Dense) Layer

• Activation Function

• Dropout

Convolutional Layer The convolutional layer is the main feature of CNNs that make

them well-adapted to process images. A convolution involves sliding kernels across the

input data, the weights of these kernels are learned during training, allowing the network

to learn features that are relevant to a particular task. The output of the convolution

operation is a set of feature maps representing the response of a particular kernel across

the input. CNNs stack convolutional layers so that a subsequent convolutional layer

is applied to the feature map output of a previous layer allowing for more abstracted

and detailed features to be learnt as the depth of the network increases. This causes

earlier convolutional layers in a CNN to capture simple features like edges while deeper

layers will capture more complex features. There are several parameters that can be

changed in a convolutional layer depending on the application with the kernel size,

stride and padding being commonly applied parameters. The kernel size determines

the dimensions of the receptive field used to extract features from the input image (or

feature map). The stride of a convolutional layer dictates how the kernel moves during

convolution by making the kernel move in steps equal to the stride, essentially skipping

pixels. Padding can be added to control the size of the feature maps by adding pixels

to the edge of an image allowing for the kernel to be applied to the edge pixels which

allows the input dimensions to be maintained after convolutions.
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Pooling Layer A pooling layer is a component used in CNNs to reduce the spatial

dimensions of feature maps while retaining important information. Pooling layers help

simplify the networks computations, reduce overfitting, and improve translation invari-

ance. A pooling layer performs spatial downsampling by partitioning the input feature

map regions (pools) and selecting a representative value from each pool. Max pooling

and average pooling are two popular choices for this. As pooling downsamples the spa-

tial dimensions, successive convolutional layers essentially gain an increased receptive

field as the convolution kernels will cover a larger area in the original image dimen-

sions. A global average pooling layer, that averages feature maps over the entirety of

their spatial dimensions, is often applied for classification problems to generate global

features that can be used for classification.

Fully Connected (Dense) Layer Fully connected layers connect each neuron from

the previous layer to every neuron in the current layer so that each neuron in a dense

layer receives input from all the neurons in the preceding layer. To process the infor-

mation from a feature map to a fully connected layer, the feature map must first be

flattened to a one dimensional vector. The purpose of a fully connected layer is to

allow the network to learn relationships between all of the features. In an artificial

neural network (ANN), also known as a multilayer perceptron (MLP), fully connected

layers are the main layers used to process the features. In a CNN for a classification or

segmentation task, fully connected layers are generally only used prior to the output

layer to establish relationships between all of the features to the output classes. When

used as the output layer of a neural network, a fully connected layer will have the same

number of neurons as the number of classes in a classification problem.

Activation Function An activation function introduces non-linearity to a neural

network, enabling it to capture complex relationships between inputs and outputs.

Additionally, activation functions limit the output size of each neuron which is benefi-

cial especially when dealing with vanishing gradients. In a CNN, activation functions

are applied element-wise to the output of each neuron in the convolutional layer, shap-

ing the network’s ability to model intricate patterns and features. It is desirable for an

activation function to be zero-centred, computationally cheap and it must be differen-

tiable.

The most used activation function is the rectified linear unit (ReLU) activation
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function which is defined by equation 2.4 [63]. This function is also displayed in Figure

2.4.

ReLU(x) = max(0, x) =
x+ |x|

2
=


x if x > 0,

0 otherwise.

(2.4)

Figure 2.14: The ReLU activation function

In addition to the ReLu function, there are several other activation functions avail-

able such as the sigmoid, hyperbolic tangent, leaky ReLU and softmax functions. The

softmax activation function has a particular use in the output layers of a CNN as it is

used to convert a vector of numbers into a probability distribution which can be used

as a classification with the input producing the highest probability being the defined

class. The softmax function is defined in equation 2.5.

S(x)i =
exi∑K
j=1 e

xj
(2.5)

Dropout A dropout layer is a regularisation technique used in neural networks, the

purpose of which is to prevent overfitting by randomly deactivating a portion of neurons

during each training iteration. This stops the neural network from relying too heavily

on a single feature for whatever task it is being applied to which reduces overfitting

and makes the network more robust. In a CNN, a dropout layer will be applied after
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most convolutional and fully connected layers [64].

2.3.3.1 CNN Training

To train a CNN to function for a specific task, a training scheme will have to be used.

This usually involves splitting the data into a training, validation and test set. The

training set is used to train the model and is the data from which the CNN will learn

features. The validation set is used to select the point in training that the CNN is

performing best and to tune the hyperparameters of the model. Using a validation

dataset is an optional step in the training process though if the dataset is large enough,

it will always provide a benefit to the model. If the dataset is not large enough, a

validation dataset may require a reduction in the test and training datasets that is

too large to be worthwhile. Additionally, a small validation dataset may bias any

hyperparameter tuning. The test dataset is a dataset that is held back during the

training process and is used to blindly test the performance of the final model. It is

important here that the model has not been trained on any of the testing data as this

would bias the final results. It is also important in the medical imaging domain to hold

back entire patients in the test dataset so as to not bias the results. The main features

of CNN training are detailed in the following paragraphs, these are:

• Loss function

• Training Loop

• Optimiser

• Data augmentation

• Hyperparameter tuning

Loss Function The loss function is a metric that is calculated after every mini-batch,

which is a subset of the training data, to determine the performance of the network.

The goal of the network training process is to minimise (or, depending on the loss

function, maximise) the loss function by learning the best features and relationships

between the features from the test dataset. The choice of loss function depends on

the task as tasks such as classification, regression or segmentation will require different

loss functions. For classification tasks, the most common loss functions are based on

44



cross entropy. There are several variations of cross entropy based loss functions but the

weighted cross entropy (WCE) loss function is the most popular. This adds a weighting

to the loss from different classes and is usually applied to unbalanced datasets so that

the network is not biased towards correctly predicting cases of the most sampled class.

The WCE loss is described by equation 2.6.

WCE = − 1

N

N∑
n=1

wi ln ŷni (2.6)

Here, N is the mini-batch size wi is the weighting applied to cases of class i and ŷni

is the probability that the network associates the nth input sample with class i.

For regression based problems, where the output is a continuous variable, the mean

square error (MSE) is the most common loss function which is described in equation

2.7 where yn is the ground truth and ŷn is the predicted output.

MSE =
1

N

N∑
n=1

(yn − ŷn)2 (2.7)

For segmentation problems, cross entropy can be applied as a loss function on

a pixel-wise basis or metrics such as the DICE metric [65] can be applied which is

described by equation 2.8.

Dice =
N∑
n=1

(
1−

∑P
p=1 2ypŷp∑P

p=1 yp +
∑P

p=1 ŷp

)
(2.8)

Here yp is the ground truth pixel label and ŷp is the predicted pixel label where p

is a specific pixel. For further reading, a review of many common loss functions used

in deep learning applications is available in [66].

Training Loop The process of training a CNN involves looping through the training

data over many iterations to minimise a loss function. To apply this training loop,

the training data is usually split into mini-batches. A training iteration begins with a

forward propagation where a mini-batch is passed through the network to calculate

predictions. The loss is then computed by comparing the predicted values to the

ground truth labels using the chosen loss function. Backpropagation is then performed

where the gradients of the loss with respect to the model’s parameters are calculated.

Finally, the model’s parameters are updated using an optimiser to minimise the loss.

This process then iterates on a new mini-batch. Once all the mini-batches have been
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processed an epoch has been completed. The process generally then repeats multiple

times with training schemes sometimes reaching over 1000 epochs. At set multiples of

epochs, certain training parameters such as the learning rate may be updated which

can provide a more efficient learning process. The model may also be tested over the

validation dataset to monitor its performance performance at set intervals. This can

be an important step as models can overfit to the training data if trained for too many

epochs. This means the model will learn features specific to examples in the training

set that do not generalise well causing a reduction in performance on unseen data.

The version of the model with the best performance on the validation dataset during

training is generally used as the final model.

Optimiser An optimiser is an algorithm that adjusts a model’s parameters during

training to minimise the loss function. Different optimisers use various strategies to

update the model’s parameters, and the choice of optimiser can impact the convergence

speed and final performance of the model. Optimisers work by calculating gradients of

the loss surface and adjusting the parameters to move in the direction of the steepest

gradient. This means that all optimisers are gradient descent algorithms. One of the

main hyperparameters of any optimiser is the learning rate. This determines the step

size taken along the gradient direction in each iteration. A higher learning rate can

lead to faster convergence but risks overshooting the minimum. A lower learning rate

can lead to more stable convergence but slower progress.

Stochastic gradient descent (SGD) is one of the most common optimisation algo-

rithms in deep learning. The general gradient descent algorithm is summarised by

equation 2.9 [67].

wt+1 = wt − η · ∇wtL(wt) (2.9)

Where w is the model parameters, t is the iteration step, η is the learning rate, L is

the loss function and ∇wtL(wt) is the gradient of the loss function with respect to the

model parameters. Here the parameters are shifted in the direction of fastest decrease

in the loss function. Stochastic gradient descent is the version of the gradient descent

algorithm that is applied after every sample of the training process as opposed to after

every epoch. This allows for faster convergence times and allows for local minima in the

loss function to be escaped more easily by the algorithm. Additionally, a momentum
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term can be applied to the SGD model to improve the speed of convergence.

The adaptive moment estimation (Adam) optimiser is another popular optimisation

algorithm used to train machine learning models. It combines an adaptive learning rate

method with momentum to achieve efficient updates to the model parameters during

training. The Adam optimiser adapts the learning rate for each parameter based on

the first and second moments of the gradients. This means that the learning rate for

each parameter can be different. The first and second moments of the gradient are mw

and vw as defined by equations 2.10 and 2.11 [68].

m(t+1)
w = β1m

(t)
w + (1− β1)∇wL(t) (2.10)

v(t+1)
w = β2v

(t)
w + (1− β2)

(
∇wL(t)

)2
(2.11)

β1 and β2 are the exponential decay rates for the moment estimates with initial

values of 0.9 and 0.999 respectively being reported to produce good results in the

original Adam paper [68]. To stop mw and vw from being biased towards 0 as β1 and

β2 are close to 1, the biased corrected values m̂w and v̂w can be calculated by the

equations below.

m̂w =
m

(t+1)
w

1− βt1
(2.12)

v̂w =
v
(t+1)
w

1− βt2
(2.13)

From these, the parameter update calculation is

w(t+1) = w(t) − η m̂w√
v̂w + ε

(2.14)

Here ε is a small scalar used to prevent division by zero, suggested to be 10−8 in

the original Adam paper [68].

Data Augmentation Data augmentation is any method used to increase the effec-

tiveness of model training by manipulating the data before presenting it to the model.

The aim of this is usually to reduce overfitting and increase the robustness of the model

by artificially increasing the diversity of the training data. For CNNs, data augmenta-
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tion is a necessary step in any training pipeline. The most well-used data augmentation

techniques involve simple transformations to the training images. Images can be ran-

domly rotated, translated and flipped so that the CNN will learn features at all angles

and image locations. This is important as CNNs are not rotationally invariant so a

feature that is learned from a training image will not be recognised if it is rotated by

90 degrees (assuming there are no other examples in the training dataset). Additional

image augmentation techniques include cropping, resizing, adding random Gaussian

noise, applying an elastic transform, brightness and contrast shifts. An example of

some of these techniques is shown in Figure 2.15.

Figure 2.15: Examples of some different image augmentation tech-
niques applied to a CT image of a lung tumour. Image is taken from
[69].

The choice of augmentation techniques applied is dependent on the dataset and

the task as some augmentation techniques may be detrimental in some situations.

For example, for a task based on the CT or PET modalities it would generally be

detrimental to apply random brightness (or intensity) shifts to the images as the voxel

intensity values have been calibrated and are expressed in known units. These simple

image augmentation techniques are usually applied to the data after every epoch of

training. In addition to these simple techniques, image generation is currently a large

field in data augmentation with techniques such as generative adversarial networks

being used to generate synthetic images that can be then used to train a CNN. For

further detail on image augmentation techniques for deep learning applications the
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2023 survey on image augmentation [70] and the 2021 review of image augmentation

for medical images [69] are valuable sources of information.

Hyperparameter Tuning Hyperparameters are parameters that are set before the

training process begins. These parameters can have a large impact on the model train-

ing and final performance. Examples of common hyperparameters to be tuned are the

learning rate, batch size, number of layers, dropout rate and the optimiser type. To

find the best hyperparameters for a given task, hyperparameter tuning can be per-

formed. This involves training the model many times with different hyperparameters

and selecting the hyperparameters that produce the best model performance.

The first step of hyperparameter tuning is to define the search space by choosing

which hyperparameters to optimise and to define the range of values that these hyper-

parameters can take. A validation dataset then has to be created which will be used

to calculate the model performance. A hyperpameter search method must then be

used to test different hyperparameter combinations. A grid search exhaustively tries

all combinations of hyperparameters from the search space. This can be computa-

tionally expensive especially as the number of hyperparameters increases. A random

search randomly samples combinations of hyperparameters from the search space. A

Bayesian optimisation approach uses probabilistic models to predict the performance of

different hyperparameter values and then selects the next values to try based on these

predictions. These searches are an iterative process that will repeat until a stopping

criterion is met. Once the optimal set of hyperparameters are selected, the final model

can be trained using those hyperparameters and tested using the test dataset that the

training or hyperparameter tuning process has not seen. For further reading a detailed

review of hyperparameter tuning can be found in [71].

k-fold cross-validation can be applied during the hyperparameter tuning process.

The training data is split into k-folds where one of the folds will be used as the vali-

dation dataset and the rest of the folds are used to train the model. A set of optimal

hyperparameters are found using the validation fold and the process is repeated while

taking a different fold as the validation dataset. This means the entire training dataset

can be used as the validation dataset, increasing the size of the validation dataset and

reducing the overfitting of the hyperparameters.

49



2.3.3.2 Specific CNN Architectures

There are many specific CNN model architectures that have been designed to improve

performance at specific tasks. The model architectures used in this thesis are detailed

in this subsection, these are:

• ResNet

• UNet

• DeepLab

ResNet ResNet (Residual Network) is a CNN architecture first introduced by Ka.

H, et al in their 2015 paper ”Deep Residual Learning for Image Recognition” [72]. This

paper introduced residual blocks, which use skip connections to bypasses one or more

layers in the network. The skip connection in a residual block works by simply passing

the input directly to the output, this is often referred to as identity mapping. The

layout of a residual block is shown in Figure 2.16. ResNet models stack many residual

blocks to create deep neural networks with many skip connections. The number of

residual blocks in the model is usually included in the model naming scheme with

ResNet-18 and ResNet-50 having 18 and 50 residual blocks respectively.

Figure 2.16: The residual block. Image taken from [72].

The purpose of the skip connection is to reduce the effects of vanishing gradients

during training. Vanishing gradients occur when the derivative of the loss function with

respect to the model’s parameters becomes extremely small as they are propagated

backwards through the layers of the network. This slows down training and leads

to sub-optimal model performance which becomes more of an issue as network depth

increases. The residual blocks introduced in ResNet allow for the gradient to pass

directly through the network without diminishing.
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UNet UNet is a CNN architecture designed for semantic segmentation. It was origi-

nally introduced by Olaf R, et al, in their 2015 paper ”U-Net: Convolutional Networks

for Biomedical Image Segmentation” [73]. Since then, UNet has become one of the most

popular CNN architectures for image segmentation, especially in the biomedical image

domain. UNet uses an encoder-decoder architecture where the encoder compresses the

input image into a lower dimensional feature representation and the decoder expands

this feature representation to produce a pixel-wise segmentation map. The encoder

consists of multiple convolutional and pooling layers that progressively reduce the spa-

tial dimensions of the input image while increasing the number of feature channels.

The encoder is the part of the network that extracts features from the input image.

The decoder uses transposed convolutional layers to upsample the feature maps to their

original resolution so that pixel-wise features are available to perform a pixel-wise clas-

sification. UNet additionally uses skip connections between corresponding layers of the

encoder and decoder. This is done to conserve the features from the earlier layers of

the encoder, allowing them to be used in the final segmentation. An example UNet

architecture with an encoder depth of 4 is shown in Figure 2.17.

Figure 2.17: The UNet architecture with an encoder depth
of 4. Image taken from https: // towardsdatascience. com/

unet-line-by-line-explanation-9b191c76baf5 .
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DeepLab DeepLab is a CNN used for semantic image segmentation of which there

have been several versions that have added features to improve the performance of

the network. The first version of DeepLab introduced Conditional Random Fields or

CRFs for segmentation CNN to include the relationships between nearby pixels in the

segmentation [74]. DeepLabV2 introduced atrous convolutions (dilated convolution)

for semantic segmentation [75]. Atrous convolutions include gaps in the filters so that

they skip over pixels. The size of the gaps is known as the dilation rate. This allows

the network to capture information from a larger receptive field without increasing the

number of parameters. An example of a dilated convolution compared to a standard

convolution can be seen in Figure 2.18.

Figure 2.18: Example of a normal and dilated (atrous) convolution
kernal. Image is taken from Hasty.ai (https: // hasty. ai/ docs/
mp-wiki/ model-architectures/ deeplabv3 ).

DeepLabV3 advanced this by applying cascades of atrous convolutions to progres-

sively extract features from an image [76]. Additionally, atrous spatial pyramid pool-

ing (ASPP) was used where multiple parallel atrous convolutions with different dila-

tion rates were applied allowing the network to gather information at multiple scales.

DeepLabV3+ then improved upon DeepLabV3+ by introducing an encoder-decoder

architecture with skip connections, similar to UNet [77].

2.3.4 Decision Trees

Decision trees are a supervised method for classification or regression that can be used

in medical image problems. Decision trees take a set of features, which are generally
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expressed as numeric values, and apply a set of consecutive rules based on these features

in a flowchart-like design to reach a final prediction. A decision tree is constructed

of nodes which represent a decision point after which the data is split into subsets.

The first node in the decision tree is called the root node, subsequent nodes are called

intermediate nodes and the nodes at the end of the tree that provide the final prediction

or decision are called leaf nodes. Branches are defined as subsections of the decision

tree consisting of multiple nodes. At each internal node, the decision tree selects a

feature and a threshold value to split the data into subsets based on the values of that

feature in a process known as splitting. The splitting is defined by decision rules that

determine which subsequent node to proceed to. At the end of a chain of nodes, the

leaf node defines the prediction.

The process of constructing a decision tree starts with a root node that contains all of

the training data. The algorithm then recursively selects the best feature and threshold

to split the data into subsets at the root and all internal nodes. The tree-growing process

stops when certain criteria are met. These can be a predefined maximum depth of

the tree, a minimum number of samples at a node or when splitting stops increasing

accuracy. During the construction process, it is often beneficial to limit the tree depth

as deeper trees are more likely to overfit to the training data. This process is described

by the classification and regression trees (CART) algorithm [78]. Adaptations to the

tree construction process are available such as the ID3 [79] and CHAID [80] algorithms.

Optimisation Criterion For Decision Trees Ginis impurity is a common opti-

misation metric for classification tasks that quantifies the likelihood that a randomly

selected element from the set would be incorrectly labelled if it were labelled randomly

and independently according to the distribution of labels in the set. Ginis impurity

index is expressed by equation 2.15.

IGini = 1−
J∑
i=1

p2i (2.15)

Here IGini is Ginis impurity, J is the number of classes and pi is the probability of

correctly randomly selecting a sample from class i. Gini impurity is used in decision

tree algorithms to evaluate potential splits in the data that will create the nodes of the

tree. When a decision tree is constructed, it selects the split that minimises the Gini

impurity in the resulting child nodes [78].
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For regression trees, the mean square error (MSE) is a commonly used metric for

constructing decision trees. To do this, the MSE is calculated for each potential split

by comparing the predicted values within each child node to the actual target values.

The feature and threshold for a node split are selected by choosing the values that

minimise the MSE.

Boosted Decision Trees and AdaBoost The performance of decision trees can

often be improved by applying gradient boosting. Gradient boosting is a method in

machine learning that creates an ensemble of weak learners to make a final prediction

[81]. Here, weak learners are simple models that do not perform substantially better

than random chance. For boosted decision trees, these weak learners are trees with

a small depth. By including these weak classifiers in the training process and then

combining their predictions to make a final prediction, improved accuracy is generally

observed over a single complex decision tree.

There are many methods for gradient boosting decision trees. One of the most

popular methods is the AdaBoost (Adaptive Boosting) algorithm [82]. AdaBoost is an

iterative algorithm that trains a weak classifier every iteration. AdaBoost initialises by

assigning uniform weights, w
(m)
i , to all of the samples. A weak classifier is then created

which minimises the error, Wm, defined by equation 2.16.

Wm =
∑

yi 6=km(xi)

w
(m)
i (2.16)

Here, m is the iteration number, i is the sample, yi is the ground truth and km is

the model output. Wm is therefore the sum of the weights, which are uniform in the

first instance, of the cases that were misclassified. The error rate is then the sum of the

misclassified sample weights over the sum of all the sample weights which is defined by

equation 2.17.

εm =

∑
yi 6=km(xi)

w
(m)
i∑N

i=1w
(m)
i

(2.17)

After each iteration, a weight, α, is assigned to the weak classifier based on how

well it performed on the training dataset. εm is used to calculate α by equation 2.18.

αm =
1

2
ln

(
1− εm
εm

)
(2.18)
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The weak learner is then added to the final classifier with its contribution defined

by its weighting as defined in equation 2.19 where Cm is the ensemble of weak learners.

Cm−1 to Cm = C(m−1) + αmkm (2.19)

The sample weights are then updated based on whether they were misclassified

or not so that the misclassified samples are given more importance in the subsequent

iterations. If the sample was misclassified the updated sample weight, w
(m+1)
i , is

w
(m+1)
i = w

(m)
i eαm = w

(m)
i

√
1− em
em

(2.20)

otherwise,

w
(m+1)
i = w

(m)
i e−αm = w

(m)
i

√
em

1− em
(2.21)

This whole process is repeated until a maximum user-defined number of iterations

is reached at which point the final classifier is taken as a weighted ensemble of the

weak learners that were created over the iterative process. While boosted decision

trees generally produce more accurate models than non-employee-based methods, they

are less explainable as following the path that a single decision tree takes to make its

decision is simple and following the paths of many trees is more complex.

2.3.5 Image Registration

Registration of medical images is the alignment of two or more images so that the

features of the images are as spatially aligned in the same coordinate system. This is

a complex problem with applications in image-guided surgery and disease diagnosis.

Registration can be between images from one image modality, taken at different times

or positions, or between images from different imaging modalities. Registration may

be performed in 2D or 3D depending on the specific application. Registration methods

involve taking one image as the target or fixed image and the image, or images, to be

aligned with the target as the moving image. The target image is not altered during

the registration process and a geometrical transform is applied to the moving image so

that it aligns with the target image as closely as possible.

The goal of any registration algorithm or model is to find the transformation func-

tion (Ŵ ) that optimises the following functional [83]:
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Ŵ = argmax
W

M(T, S ◦W ) +R(W ) (2.22)

Where T is the target image, S is the moving image and W is the transformation

applied to S.M defines the level of alignment between T and S andR is a regularisation

term that enforces any user-defined properties of the solution. From this, it can be seen

that a registration algorithm is composed of three main components which are (i) a

transformation model, (ii) a similarity measure and (iii) an optimisation method. There

are many methods available for solving this function from classic image-processing

methods to deep learning based methods. Deep learning registration based methods

were not applied in this thesis so they are not summarised here, for further reading on

deep learning based medical image registration, [84] and [85] may be referred to.

2.3.5.1 Transformation Model

The transformation model defines the deformation applied to the moving image. The

most basic transformations that can be applied are linear transformations such as rota-

tion, scaling and translation. These are global transformations that deform the whole

image and cannot resolve local discrepancies between the fixed and moving images.

Elastic transformations are defined as transformations that can change the local struc-

ture of the moving image. The transformation model dictates the number of parameters

that need to be estimated.

A similar distinction in registration algorithms is whether they use a rigid or non-

rigid transformation. Rigid registration involves no deformation of the features of the

images during the registration process so it is generally best suited to the registration

of hard structures such as bones or problems where the original structures contained

within the images are required to be unaltered. Rigid registration involves only a

rotation and translation of the moving image to fit the fixed image so it can be simply

defined by equation 2.23 [86].

T = R ∗ S + l (2.23)

Here R and l represent the rotation and translation parameters respectively.

Non-rigid registration, on the other hand, allows for the deformation of features

making it most suited to the registration of soft tissues, especially in areas where defor-
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mations of the tissue are known to take place such as in the lungs due to the breathing

cycle. Non-rigid registration methods involve many more parameters than rigid reg-

istration. Due to the simplicity of rigid transformation models compared to non-rigid

methods, they are often used as a pre-registration step in a non-rigid registration to

reduce the computation time of the non-rigid registration.

2.3.5.2 Similarity measures

The similarity measure, or cost function, is a measure used to quantitatively compare

the alignment of two images. Similarity measures can be grouped into two categories

which are intensity based and feature based methods. Intensity based methods rely

upon the pixel intensities of the images to produce a measure of the difference in

alignment. Feature based methods rely upon extracting common features between the

images and constructing a measure based on the distances between the common features

of each image.

Intensity Based Measures The mean squared error (MSE) or the sum of squared

differences is one of the most common intensity based measures. Here the average

difference in pixel intensity values of the fixed and moving images are found. This is

described by equation 2.24.

MSE =
1

N

n∑
i=1

(IT,i − IS,i)2 (2.24)

Here IT,i and IS,i are the intensity values of the fixed and moving image respectively

with pixel number i. A low value of the MSE error corresponds to a well registered

image. The assumption with the MSE measure is that corresponding structures in

the images should have identical intensities. This means that, for medical images, the

MSE measure is usually only suited to mono-modality registration or the registration of

binary image masks as the intensity values of structures within both images should be

close to matching. Further intensity-based similarity measures include cross-correlation

and mutual information [87].

Feature Based Measures Feature based methods of registration aim to minimise

the distance between common features of the images to be registered. These features

can be defined as points, curves or surfaces. The reduced number of image elements
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used in a feature based measure compared to an intensity based measure means the

computational complexity is also reduced. In their 2018 review paper, C Y Guan et al.

describe in detail many methods of feature based medical image registration [86].

Feature based registration methods have an additional component compared to

intensity based methods which is the acquisition of the features. The simplest method

of feature acquisition is for clinicians to manually define features. This approach has a

good accuracy but the time taken to define the features is too long for most applications

so automatic feature acquisition is usually required. Automatic methods for feature

selection include the Laplacian of Gaussian (LoG) [88] and the scale invariant feature

transform (SIFT) [89] algorithms.

Once features have been extracted for the images to be registered, corresponding

features need to be found. This is done by matching features with similar descriptors

where the spatial location of the features can also be taken into account to improve

the robustness of the feature matching. One of the most common feature matching

methods is the iterative closest points (ICP) algorithm, first introduced by Besl and

McKay [90]. The similarity measure of the algorithm can be described by equation 2.25

[86].

d(R, t) =
1

N

n∑
i=1

(Rti + l − si)2 (2.25)

Here a rigid registration of the point set of S to the point set of T is computed,

with si ∈ S and ti ∈ T , where R and l are the rotation and translation parameters and

d is a Euclidean distance similarity measure to be minimised. Due to the popularity of

the ICP algorithm, many adapted versions exist such as the EM-ICP [91] and LM-ICP

algorithms [92].

2.3.5.3 Optimisation Algorithms For Image Registration

Once a similarity measure has been defined it is necessary to perform an iterative op-

timisation of this measure to reach a maximum or minimum so that the images are

as closely registered as the algorithm will allow. Optimisation algorithms can be split

into two categories which are continuous and discreet [83]. Continuous optimisation

algorithms involve real-valued variables with differentiable cost functions and discreet

algorithms involve variables that are discreet and have a non-differentiable cost func-
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tion.

One of the most widely used continuous optimisation algorithms is the gradient

descent method. This algorithm iteratively changes the parameters of the similarity

measure to move the measure in the direction opposite to its steepest gradient. This is

described by equation 2.26 [67].

xn+1 = xn − γ∇(F (xn)) (2.26)

Here x is a vector of the deformation parameters, n is the iteration number, γ

is the step size and ∇ is the first order differential applied to the similarity measure

F . The step size determines how far along the direction opposite to the gradient

the similarity measure is moved. An appropriate step size should be large enough to

reduce computation time by lowering the number of iterations and low enough so that

the solution is not overshot which would cause oscillations. The number of iterations is

capped, often by defining a minimum distance between steps, as the algorithm will not

produce a final value for the similarity measure without this. Variations in applying

the step size are available such as reducing the step size with the iteration number to

improve the accuracy of the result and reduce computation time [93]. Depending upon

the similarity measure and transform model, there may be multiple local minima that

the gradient descent algorithm can reach which would cause a non optimal solution

to be produced. To solve this, a pre-registration step may be included that roughly

registers the images so that when the gradient descent starts, it converges to the correct

local minimum. The gradient descent algorithm can become computationally intensive

if the parameters to be estimated have high dimensionality. To overcome this problem

stochastic gradient descent methods may be used where only a random subset of the

parameters are used to find a solution. A review of the many adaptations of the gradient

descent algorithm can be found in [67].

2.3.6 Performance Metrics

To assess the performance of a computer vision model or algorithm, it is usually neces-

sary to generate metrics that describe how well it is accomplishing a given task. These

metrics are calculated on a test dataset which, in the case of learning-based models, has

been held back from the training process. The choice of performance metric depends
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on the task and what aspect of the performance is to be highlighted. Classification,

regression, segmentation and registration tasks require mostly different performance

metrics, some of these metrics are discussed in the following sections.

2.3.6.1 Classification Performance Metrics

Confusion Matrix The confusion matrix is a popular method for assessing the per-

formance of a classification model on a test dataset by clearly displaying the number of

true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).

This is most useful in the simplest case of binary classification. A confusion matrix for

a binary classification problem is shown in Figure 2.19.

Figure 2.19: A confusion matrix for a binary classification problem.

Accuracy, Sensitivity and Specificity Accuracy is the most simple metric for

classification tasks and is simply the proportion of correct predictions to the total

number of samples. This can be expressed by equation 2.27

Accuracy =
TP + TN

TP + TN + FP + FN
(2.27)

Issues arise when using the accuracy for unbalanced classification problems where a

high accuracy can be reported for a model that fails to correctly predict every example

from the underrepresented class. In this case, and generally, for more information on

model performance, it is beneficial to look at the sensitivity and specificity which is

the accuracy when only considering the positive and negative cases respectively. Note

that sensitivity is also often referred to as recall. The sensitivity and specificity can be

calculated by equations 2.28 and 2.29 respectively.
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Sensitivity =
TP

TP + FN
(2.28)

Specificity =
TN

TN + FP
(2.29)

Precision and F1-score Precision, also known as positive predictive value, measures

the proportion of true positive predictions among all positive predictions made by the

model. This is a useful metric when minimising false positives is important. Precision

is defined by equation 2.30.

Precision =
TP

TP + FP
(2.30)

The F1-Score is a metric that combines precision and recall (sensitivity) into one

value. It is the harmonic mean of precision and recall that provides a measure of a

model’s performance. The F1-Score is defined by Equation 2.31.

F1Score =
2 ∗ Precision ∗Recall
Precision+Recall

(2.31)

Receiver Operator Characteristics (ROC) The receiver operator characteristic

(ROC) curve is a graphical representation used to assess the predictive power of a

binary classifier and the trade-off between the true positive and false positive rates. A

ROC curve is constructed by varying the probability threshold for predicted cases to

be considered positive from 0 to 1 and recording the true and false positive rates. A

plot is then made of the true positive rate vs the false positive rate at the threshold

values from 0 to 1. Usually a diagonal line from (0,0) to (1,1) in the ROC plot is also

included which represents the performance of a random classifier i.e. a classifier with

no predictive power. A ROC curve that is closer to the upper-left corner of the plot

is indicative of a well-performing model as it achieves a higher TPR while keeping a

lower FPR. An example of a ROC curve is shown in Figure 2.20.

To summarise the ROC Curve and the predictive power of the model in a single

metric, the area under the curve (AUC) of the ROC can be calculated. An AUC ROC

of 1 indicates a perfect classifier and an AUC ROC of 0.5 indicates a classifier with the

same predictive power as a random guess. The AUC ROC is a very popular tool for

binary classifier performance evaluation as it summarises the predictive power of the
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Figure 2.20: Example ROC curves. Image taken from Wikipedia
(https: // en. wikipedia. org/ wiki/ Receiver_ operating_
characteristic )

model in a single metric and is not biased by imbalanced datasets.

2.3.6.2 Regression Performance Metrics

In regression-based problems it cannot be defined if a prediction is correct or incorrect

as with classification problems, instead, the size of the error of a prediction has to be

found. This error is a measure of how far from the ground truth the predicted value is.

Mean Square Error and Mean Absolute Error The most simple and commonly

applied regression error metrics are the mean square error (MSE) and mean absolute

error (MAE) which are defined by equations 2.32 and 2.33 respectively.

MSE =
1

N

N∑
n=1

(yn − ŷn)2 (2.32)

MAE =
1

N

N∑
n=1

|yn − ŷn| (2.33)

The main difference between the MSE and the MAE is that the MSE more harshly

punishes predictions that are far from the ground truth value due to its square rela-

tionship.
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2.3.6.3 Segmentation Performance Metrics

Semantic segmentation is a pixel-wise classification task, this means that all classification-

based performance metrics are still relevant when considered in a pixel-wise context.

For example, to calculate sensitivity for a segmentation task with two classes, the num-

ber of pixels of the positive class in the image that are correctly labelled when compared

to the ground truth mask is used. Metrics such as accuracy, sensitivity and specificity

are commonly used in segmentation tasks. In addition to these classification metrics,

there are some segmentation-specific metrics.

Dice and Intersection Over Union (IoU) The Dice coefficient (also known as

the Sørensen-Dice coefficient) and Intersection over Union (IoU) (also known as the

Jaccard Index) are common metrics for assessing the performance of a segmentation

model. The IoU measures the intersection of the predicted segmentation mask and the

ground truth mask relative to their union. The IoU is defined by equation 2.34.

IoU(A,B) =
|A ∩B|
|A ∪B|

(2.34)

Here, A represents the predicted segmentation mask, B represents the ground truth

mask, |A∩B| represents the number of pixels common to both A and B while |A∪B|

represents the number of pixels in either or both A and B. The IoU therefore emphasises

how much the predicted and ground truth masks overlap.

The Dice coefficient is a similar metric that measures the overlap between the

predicted segmentation mask and the ground truth mask. The Dice coefficient is defined

by equation 2.35 [94].

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(2.35)

For both the Dice and IoU metrics, the maximum value is 1 which represents a

complete overlap of the two image masks, while the minimum value of 0 represents

no overlap between the two sets. For tasks with multiple classes, a dice score can be

calculated for each class or a global average can be taken.
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2.3.6.4 Registration Performance Metrics

To analyse the performance of a registration model, the alignment of the areas or

volumes to be registered in the test dataset must be compared. Most registration

metrics are applicable to either segmentation or regression problems so they have been

defined in previous sections. The metrics used depend on what aspect of the registration

is to be highlighted and on what information is available. When the area or volume

masks are available, the overlap of the masks can be used as a performance metric

in the same way as for segmentation metrics. This means that the Dice and IoU

metrics, defined by equations 2.35 and 2.34 respectively, can be directly applied to

these registration problems.

As well as overlap based metrics, distance based metrics can be applied to calculate

performance based on the average error in terms of distance between equivalent points.

distance based metrics are generally used when feature points or landmarks are avail-

able. The target registration error (TRE) is a metric that can be used to quantify the

alignment of feature points. To calculate the TRE, only points that were not used to

register the two sets can be used so that any bias is avoided. The TRE of a point set

is defined by equation 2.36 [95].

TRE =
1

N

N∑
i=1

|mi − ri| (2.36)

Here, N is the total number of feature points, mi and ri are the ith feature points

of the moving and reference images respectively. This is equivalent to the MAE for

regression tasks, defined by equation 2.33.

Finally, a qualitative assessment of registration performance by expert clinicians is

a valuable tool for assessing performance. This can help to highlight features that are

not well aligned or any potential issues with a registration model.
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Chapter 3

Literature Review

This chapter gives a summary of the published literature that is relevant to the research

topics of this thesis, detailed later in chapters 4 to 6. The research topics covered

are mostly self-contained and isolated pieces of work with in the lung cancer image

processing space as as such, require their own separate literature reviews. These are

detailed in their own sections which are:

• Section3.1 Radiotherapy outcome prediction (relevant to chapters 5 and 4.

• Section 3.3 Registration of pathology slides to PET/CT images (relevant to

chapter 6).

• Section 3.4 Gross pathology image segmentation (relevant to chapter 6).

3.1 Radiotherapy Outcome Prediction

Radiation therapy has seen ongoing advancements since its inception. While much of

this work has been focused on developing the radiation delivery method, such as through

the implementation of IMRT and VMAT devices, another active area of research, which

has seen increased attention due to advances in AI and machine learning techniques in

the past 15 years, is in the prediction of radiotherapy outcomes including the prediction

of toxicities in healthy tissues.

Currently, the dose to organs at risk during RT is limited by simple dose metrics that

have been determined from studies such as the seminal 2010 study titled “quantitative

analysis of normal tissue effects in the clinic” (QUANTIC) [96]. The primary goal of the

QUANTIC study was to establish dose-volume effects in all regions of human anatomy.
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This study produced dose limits for OaRs, such as the lungs and the esophagus, using

statistical methods to predict the maximum values of various dose metrics that should

be adhered to so that the prevalence of toxicity in these OaRs is kept below a set

threshold.

There have been many studies aiming to predict toxicities with different aims. Ear-

lier studies from around the mid-1990s to the early 2010s generally aimed to investigate

dose metrics such as the percentage of an OaRs volume receiving a dose above 20 Greys

and clinical metrics such as a patients age for the prediction of various toxicities. These

studies usually calculate dose volume histogram (DVH) metrics from the OaR being

studied and then apply statistical models to find the metrics with the most predictive

power.

More recent studies generally aim to produce a model that predicts if a patient will

or will not develop a particular toxicity above a certain CTCAE grade, usually grade 2

or 3, with the AUC ROC being the standard metric that is used to determine a models

performance. Often, additional information beyond dose and clinical metrics such as

radiomic features calculated from CT or MRI scans are included. A differentiator in

these studies is whether they use pre-treatment information or both pre and post-

treatment information. Studies that use post-treatment information could only be

applied clinically for monitoring and early detection of OaR toxicity. Studies that use

pre-treatment information are potentially more beneficial as they could be applied in

all the same ways as post-treatment information based methods but even earlier in

treatment as well as for the prevention of toxicity through altering dose plans. The

work presented in Chapters 4 and 5 use only pre-treatment information for the outcome

predictions.

A challenge when reviewing the literature on radiotherapy toxicity prediction is that

there is a lack of gold-standard datasets that can used across studies. Most studies,

therefore, use data that is not publically accessible making the comparison of methods

challenging. This is further complicated by the fact that many studies use data from

clinical trials which often have patient populations that are not statistically equal to

the general clinical setting due to the protocols of the clinical trial. These clinical

trials often investigate multiple parameters such as changing radiation dose or using

concurrent chemotherapy at the same time further adding to the challenge of comparing

prediction studies. For this reason, it is not possible to directly compare the results
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of any two RT outcome prediction studies unless they use the same dataset. An aim

of this thesis is to improve the comparison of different RT toxicity prediction methods

by using the largest publicly available dataset for esophageal toxicity prediction to

test several prediction models. With these challenges in mind, previous works on RT

outcome prediction are reviewed in the following subsections.

3.1.1 The Lyman-Kutcher-Burman Model

The first radiotherapy prediction models to be developed are mathematical models

designed to relate the dose an organ receives during RT to the probability that a certain

toxicity outcome is observed. One of the most popular normal tissue complication

probability (NTCP) models is the Lyman Kutcher Burman (LKB) NTCP model [97]

[98] [99] [100] which was used in the QUANTEC study for estimating the likelihood

of toxicity endpoints. The LKB NTCP model assumes that the likelihood of an organ

developing a particular toxicity is dependent on the total dose received by that organ as

well as the volume of the organ irradiated by specific dose levels. The LKB model has

three parameters that must be determined empirically from clinical data with known

patient outcomes. These parameters are the TD50, m and n. The TD50 represents

the dose that would cause 50% of patients to develop a specific toxicity within 5 years,

this assumes a homogeneous dose applied to the OaR. The variable m determines how

steep the dose response curve is and n determines the volume effect of the organ being

studied. The LKB NTCP model is described by equation 3.1.

NTCP =
1√
2π

∫ t

−∞
e−

x2

2 dx (3.1)

t =
EUD− TD50

m∗TD50
(3.2)

EUD =

(∑
i

viD
1
n
i

)n
(3.3)

Here vi and Di are linked volume and dose values respectively where vi is the volume

receiving a dose above Di.
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3.1.2 Dosimetric Features

For the prediction of toxicity occurrence post-RT, all models will include information

regarding the dose to the organ or organs relevant to that particular toxicity. To include

this dose information, dose features need to be extracted from the planning dose image

which is the most accurate representation of the applied dose. This becomes an image

feature extraction task where the methods described in section 2.3 can be applied. The

most commonly applied dose based features are handcrafted metrics which are popular

due to their ease of calculation and, most notably, their high level of explainability which

is favoured by clinicians. These features are usually calculated from teh dose volume

histogram of a particular organ at risk, an example of the dose vilume histogram for

the lung region of a RT patient with NSCLC is given in figure 3.1. Some of the most

standard dose metrics are given below:

• Dmean: The mean dose to an organ at risk.

• Dmax: The max dose to an organ at risk.

• Vx: The total volume of an OaR that is receiving a dose of x Grays or more.

This is generally reported in steps of 5 Gy and can be calculated in terms of an

absolute volume as well as a percentage.

• D2cm: The maximum dose at 2 cm from the PTV as percentage of the prescribed

dose.

• R50 & R100: The R100 metric is defined as the volume of region receiving 100%

of the prescribed dose divided by the PTV volume, R50 is the same measure but

using the volume of region receiving 50% of the prescribed dose. These are used

as a measure of conformality of the dose plan

• D2cc: The minimum dose to the 2cm3 highest dose region of an OaR.

In addition to these common metrics, there are many more dose based metrics

that have been applied for outcome prediction, some of which are specific to individual

OaRs. It has been shown that dose features are highly correlated [101], meaning it is

usually unnecessary to exhaustively calculate every potential dose metric for a specific

problem.
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Figure 3.1: (a) a CT image segmented to only include the lungs, (b)
the corresponding dose map, segmented to only include the lungs and (c)
the corresponding lung dose volume histogram with the V20 highlighted.

3.1.3 Pulmonary Radiation Toxicity Prediction

In this subsection, papers relating to the prediction of pulmonary toxicity are discussed.

The approaches for toxicity prediction can be grouped into three categories:

• Dose feature based

• Clinical feature based

• Radiomic feature based

These approaches directly relate to the work in chapter 4. Much of the previous

work has been focused on the prediction of radiation pneumonitis specifically.

Dose Feature Approaches Prediction of pulmonary toxicity from pre-RT data has

previously been shown to be possible in the literature. Much of the focus has been on

dosimetric and dosiomic approaches. Dose volume histogram features calculated for

the lung including, the mean lung dose (MLD), V5 ,V10 and V20. have been shown to

act as a predictor for radiation pneumonitis [102], [103]. The lung specific portion of

the QUANTEC study [104] recommended limiting the V20 to ≤30–35% and the mean

lung dose (MLD) to ≤20–23 Gy, if conventional fractionation is used, to limit the risk
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of radiation pneumonitis to ≤20% in patients with NSCLC. This was based on a review

of the data available from clinical trials at the time. There is some evidence that the

predictive power of certain dose metrics is dependent on whether they are calculated

for contralateral or ipsilateral lung [105]. The LKB NTCP model has been applied for

the prediction of pulmonary toxicity in [106].

More recently, spatial features extracted from the RT dose distribution, known as

dosiomics, have been included in predictive models. Image texture methods have been

applied to predict radiation pneumonitis from RT planning dose maps [107], [108]. As

well as classic texture approaches, deep learning-based approaches have been applied

to extract features from dose images for pneumonitis prediction [109], [110].

Clinical Feature Approaches After dose features, the most well researched features

for the prediction of pulmonary toxicity are clinical features. Clinical features such as

age [111], gender [112, 113], the presence of chronic lung disease [114, 113] and the

use of concurrent chemotherapy [112, 111] have been reported to be predictive features

for the task of radiation pneumonitis prediction. Núñez-Benjumea, et al. applied 300

predictive models for the task of predicting acute cough, dyspnea and pneumonitis as

well as chronic dyspnea and pneumonitis in an attempt to benchmark these models for

this task [115]. A total of 875 patients datasets were used, though not every patient was

used for each endpoint prediction. For the prediction, dose and clinical features were

used. Different models and features were chosen to be optimal for different endpoints

with the ANN model combined with the minimum redundancy maximum relevance

(mRMR) method for feature reduction being selected for the prediction of chronic

pneumonitis, achieving an AUC of 0.77 on the external validation set which contained

only 7 positive cases.

Radiomic Approaches Radiomic approaches often have been applied to determine

if a patient has developed pneumonitis from their post-RT CT scans. It has been shown

that changes in radiomic features between pre-and post operative lung CT images can

be used to determine if a patient has radiation pneumonitis [116]. An increase in CT

image density post-RT has been shown to correlate with regions of higher dose and

PTV size [117]. CT image markers extracted at different fictionalisation time points

were shown to predict lung density changes [118]. A strong correlation has also been

observed between RT dose and post-RT changes in CT image density of normal lung
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tissue [119].

Less commonly, radiomic approaches have been applied to the pre-RT CT images to

predict radiation pulmonary toxicity. S. Krafft, et al. [120] calculated radiomic features

from the lung volume of pre-treatment CT scans of 192 patients that had received RT

for NSCLC. Of these 192 patients, 30 had presented a radiation pneumonitis of grade

≥ 3. These radiomic features were combined clinical and dosimetric features to produce

a total of 6851 features. A least absolute shrinkage and selection operator (LASSO)

based logistic regression model was trained on the patient features using 10-fold cross

validation to split the data. This produced an average AUC of 0.68.

C. Puttanawarut et al. extracted radiomic and dosiomic features from the lung

RoI of CT and Dose images respectively for 101 patients with esophageal cancer and

93 patients with NSCLC for the prediction of grade ≥ 2 radiation pneumonitis [121].

Multivariate logistic regression models were trained on different subsets of these features

with the esophageal cancer dataset being used as the training dataset and the lung

cancer cohort being used as the test dataset. The best performing model achieved

an AUC of 0.77 though there were only 16 cases in the positive group. Z. Zhang

et al. Follow a similar approach for the classification of radiation pneumonitis from

pre-RT data by calculating radiomics, dosimetric and dosiomics and classifying these

features using a multivariate logistic regression model. A training dataset with a size

of 314 patients was used with a test dataset of 35 patients where only 9 patients

developed grade ≥ 2 pneumonitis) [122]. The best performing model here produced

an AUC of 0.85. Zhang et al. Then added to this by applying a deep learning model

instead of a radiomic and dosiomic approach [123]. A 3D-ResNet model used for feature

extraction and classification was trained on a dataset contaning 314 patients and tested

on a dataset containing 352 patients from the RTOG-0617 trial dataset [124]. Their

model achieved an AUCs between 0.55 and 0.83 for separately defined test sets which

highlights the variability of results in this field due to the lack of large standardised

datasets.

CT radiomic analysis of the lung volume has also been applied to predict the occur-

rence of pneumonitis for patients recieving immunotherapy. R. Colen et al. presented a

pilot study where they predicted the pneumonitis outcome in 32 patients with advanced

cancer, only two of which went on to develop pneumonitis, as a binary classification

based on their pre-treatment CT scans to [125]. In this study they achieved a 100%
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accuracy with the caveat that the dataset only contained two pneumonitis cases.

K. Tsujino, et al. [126] used the pulmonary fibrosis score and pulmonary emphysema

score from a patients pre-RT CT scan combined with dose volume histogram metrics to

produce a radiation pneumonitis prediction model. The pulmonary fibrosis score and

pulmonary emphysema score were defined by a single experienced diagnostic radiologist

independently. The dataset used contained 122 patients, 14 of which went on to develop

radiation pneumonitis of grade ≥ 2. The maximum AUC ROC achieved with this

dataset was 0.88.

3.1.4 Esophageal Radiation Toxicity Prediction

In this subsection, papers relating to the prediction of radiation induced esophageal

toxicity are discussed. This directly relates to the work in chapter 5. A number

of esophageal toxicities may occur in lung cancer patients treated with radiotherapy

(RT) [127], for example, radiation esophagitis (RE), which is an inflammation of the

esophagus, dysphagia and stenosism [19]. Most of these present as acute toxicities

generally peaking in severity between 4 and 8 weeks from the start of treatment [128].

Late toxicity of the esophagus following RT is less common but can also be observed

[129] and generally presents as stricture and associated dysphagia which would typically

develop after 3 to 8 months following RT [130]. Of all these toxicities, RE is the most

common acute toxicity [131, 132] and furthermore, as reported in the long-term follow-

up result of the Radiation Therapy Oncology Group (RTOG) 0617 study [133], grade 3

or above RE is one of the factors with the highest overall predictive power for a patients

overall survival.

As discussed previously, the prevalence of these toxicities is reduced by limiting cer-

tain dose based metrics which have been determined from studies such as the QUANTIC

study [96]. The esophagus specific portion of the QUANTEC study determined that a

mean esophagus dose of < 34 Gy would result in a 5–20% chance of grade 3 or above

esophagitis and keeping the constraints V35 <50%, V50 <40% and V70 <20% would

result in a <30% chance of grade 2 or above esophagitis [134].

Dose volume histogram (DVH) and clinical factors, such as a patient’s age, have

been shown to be predictive of esophageal toxicities. Studies have found that the mean

esophageal dose (MED) [135, 136, 137, 138, 139, 140], V20, V30, V40, V50, V60 [136, 137,

141, 142, 143] the maximum dose to 2cc [136] and concurrent chemotherapy [138, 139,
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140, 143] are the strongest predictors of esophageal toxicity. Some of these studies are

discussed below.

S.J. Ahn, et al. analysed DVH and clinical factors of 254 patients receiving RT

for lung cancer by logistic regression analysis, contingency table analyses, and Fisher’s

exact tests to determine which factors were the most statistically significant for the

occurrence of RE [130]. It was found that most dosimetric parameters were predictive

with the maximal esophageal dose being the most predictive of acute toxicity. In a

similar study, A. Ozgen, et al. applied the Kruskal-Wallis test of statistical significance

to dose volume histogram parameters from a dataset of 72 patients to find which factors

produced the highest predictive power for developing RE [135]. It was found that the

risk of grade 2 esophagitis was significantly correlated with the mean esophageal dose

(MED) with a MED of ≥ 28 Gy being the most statistically significant predictor of

grade ≥ 2 esophagitis. No correlation was found between variables describing the vol-

ume of esophagus irradiated and esophagitis. Furthermore, the mean esophageal dose

irradiated was the most statistically significant factor associated with acute esophagitis

Grade 2 or worse. P. Paximadis, et al. performed a similar study on a dataset of

533 patients and showed using logistic regression that the DVH features with the most

predictive power for grade ≥ 3 esophagitis are the V20, V30, V40, V50, V60, mean

dose, the maximum dose to 2cc and the generalised equivalent uniform dose [136].

The literature regarding RE prediction published before 2009 has been reviewed

in the systematic review paper [137]. This paper determined the following six factors

as being highly predictive of RE; mean esophagus dose (MED), V20Gy, V30Gy, V40Gy,

V45Gy, V50Gy where VxGy is the percentage of the total esophagus volume receiving over

x Grays of dose.

More recent studies generally aim to produce a predictive model for esophageal tox-

icity based on both the DVH and additional features. These studies generally construct

a binary classification model to group patients who developed esophageal toxicity less

than or greater than or equal to certain grade threshold which is always either grade 2

or 3. In these studies the AUC ROC is the most commonly used metric for determin-

ing the predictive power of a model. These studies that have been identified from the

literature are discussed below.

P. Hawkins et al. investigated the predictive power of pre-treatment cytokine levels

as well as dose metrics on the occurrence of grade 3 or above esophagitis in patients for
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NSCLC with external beam-RT [144]. The incidence of grade 3 esophagitis in the 126

analysed patients was 13 (13/126). A binary classification was performed using logistic

regression with “elastic net” penalisation. Using only dose metrics produced an AUC

of 0.75 and the best model used dose and clinical features which achieved an AUC of

0.78. This was not improved by the inclusion of the pre-treatment cytokine levels.

X Zheng et al. took a multi-omics approach to predict RE in patients with NSCLC

receiving RT [145]. This approach combined radiomic and dosiomic features calculated

from the esophagus VoI in the patients planning CT image and dose maps respectively

as well as clinical features. The dataset used was from a single centre and contained

RT sets from 162 patients, 51 of which developed grade 2 or over RE. Using a cross-

validation approach so that the models could be tested on the full dataset, a logistic

regression classifier was applied, this led to an average AUC of 0.75 on the test images.

In this study it was observed that the radiomic features were producing most of the

predictive power where the radiomics only model produced an AUC of 0.74 and the

dosiomics only model produced an AUC of 0.60.

S. Wang et al. produced a study to retrospectively predict the occurrence of grade

≥ 2 RE by combining predictions from the esophagus generalized equivalent uniform

dose, the patients IL-8 chemokine factor and their age [146]. Their dataset consisted

of 129 patients with NSCLC treated by RT, 49 of which developed grade ≥2 RE. On

its own, the esophagus dose model achieved an AUC of 0.70 and the combined model

with the dose, IL-8 and age produced an AUC of 0.78.

A study by J. S. Niedzielski et al. [147] has shown that esophageal expansion as

measured by changes in CT images can be used to predict the occurrence of RE with

prediction, in this case, occurring after the RT treatment has been applied. In addition

to the esophageal expansion features calculated, clinical and dose features were also

used for classification. K-means clustering was applied to classify patients that would

or would not develop grade 2 or above esophagitis with a training set of 94 patients

and a test set of 32 patients. Cross-validation was applied so that the model could be

tested on the full set of 126 patients. The maximum AUC achieved on the test set,

averaged over all cross-validation repetitions, was 0.75.

Esophageal toxicity prediction with the RTOG-0617 dataset is has been applied

in the study [148]. Here, different machine learning methods and data augmentation

approaches to classify grade 3 esophagitis from dose and clinical features were applied,
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achieving a maximum AUC of 0.706.

3.1.5 Radiation Toxicity Prediction in Other Anatomical Regions

As well as predicting pulmonary and esophageal toxicity, there have been studies aiming

to predict radiation induced toxicities in other parts of the body such as the prostate

[149, 150], the head and neck [151] and rectum [152]. These studies generally follow

the same methodologies as the studies for pulmonary or esophageal toxicity prediction

where dose features are calculated for a specific OaR which are then combined with

clinical features and sometimes an additional feature source for the prediction. Deep

learning methods such as CNNs are occasionally applied but this limited due to a lack

of large datasets.

3.2 CNNs for Feature Extraction

In Chapter 4 a CNN is used for the extraction of image features from CT scans for the

purpose of radiotherapy outcome prediction. A brief review of the use of CNNs for the

extraction of features from medical images is presented here.

CNNs have been shown to generate features that are generalisable to tasks separate

to those they were trained on [153]. This allows for their application in few or zero-

shot approach for medical imaging even when they were trained on a dataset from

a different imaging domain. The hierarchical feature representations of CNNs, where

increasingly deep layers represent increasingly complex and abstract features, increase

there generalisability across imaging domains.

Varshni, et al. applied several different CNN models including DenseNet-169,

ResNet-50 and VGG-19 for the task of feature extraction from chest x-ray images for

pneumonitis prediction [154]. The networks had all been pre-trained on ImageNet and

features were extracted from all convolutional layers of the network with no additional

model training. Separate classification models were applied for the binary pneumonitis

classification including SVM [155], random forest [156] and Naive Bayes [157] models.

The best performing model used the ResNet-500 CNN as a feature extractor with a

SVM based classifier and achieved an AUC of 0.775. The segment anything model

[158], which was trained on natural images, has been applied with model fine-tuning

and in a zero-shot approach by Peilun, et al.[159] for the purpose of medical image

75



segmentation across several modalities. They found that when applied in a zero-shot

manner, the results were satisfactory for most domains but worse than domain specific

models. By fine-tuning they managed to improve the model performance across all

modalities. Zero-shot learning has additionally been applied for histopathology image

classification [160]. Outside of the medical field, zero-shot transfer learning has been

applied for many tasks such as super-resolution imaging [161].

3.3 Registration of Pathology Slides to PET/CT images

Chapter 6 details the work developing a method for the automatic registration for the

registration of PET/CT to pathology imaging. This follows on from the work by Reines

March, et al. [2], as such, Reines March et al. is discussed here in detail.

PET-CT is currently the standard method for imaging most cancers as the tumour

detection from the functional imaging of the PET scan combined with the anatomical

imaging of the CT scan provides the information necessary for treatment and diagnosis

decisions to be made. The accuracy of this information is limited by the spatial reso-

lution of the images as well as errors in the imaging techniques such as the movement

introduced by breathing. Additionally, it is not currently possible to confidently deter-

mine the microenvironment of the tumour from features in PET and CT images. To

remove these uncertainties and allow more information regarding the cellular make-up

of the tumour to be determined from PET-CT scans, the PET-CT scan needs to be

validated against tumour pathology images which provide microscopic ground truth

information [162]. There have been several previous studies aiming to relate the infor-

mation in histopathology images to both PET/CT scans of the lung and other areas

of anatomy as well as the inclusion of different imaging modalities such as MRI. These

studies aim to do this by registering the tumour volume in pathology and PET/CT

images so that the microscopic tumour details can be viewed in the same coordinate

system as the PET/CT.

Studies that aim to register in vivo modalities with histopathology slides generally

follow similar methodologies. The main aspects these methodologies are:

1. Pathological processing of the surgically removed specimen.

2. Reconstruction of the tumour from the pathology modality.
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3. Registration of the pathology tumour volume to the PET/CT tumour volume.

Standard pathological processing of surgically resected specimens involves slicing

the specimen free hand to expose the tumour for imaging. For registration tasks, this

makes it impossible to reconstruct the geometric shape of the tumour. Therefore,

the pathological processing methods in these registration studies have to involve some

additional methodology to conserve the tumours geometrical information as accurately

as possible. This usually involves inflating the lung with agar to match the geometry

in-vivo before slicing.

The methods for reconstructing the tumour from the pathology modality depend on

the specific aims and outcomes of any particular study. For studies aiming for volume-

to-volume registration, it is necessary to reconstruct the 3D tumour volume. Other

studies may only aim to compare the total tumour volumes in each modality in which

case an accurate surface is not required and the tumour can be segmented in the 2D

slices individually to infer the total volume. In both cases, tumour segmentations are

acquired through manual segmentations by experienced clinicians.

The final stage in any pathology to in vivo modality registration study is the regis-

tration methods that are used. A 3D to 3D volume registration can be applied or 2D

to 3D where the pathology images are matched to the closest slice in the CT volume.

The registrations are applied in most studies manually by clinicians using rotations

and translations only. While tumour volumes are comprised of soft tissue that would

usually be registered by non-rigid methods, for registering PET-CT to histopathology

slices, rigid registrations are usually used. This is because the aim of registering PET

and CT images with histopathology slices is to understand what can be learned from

the PET and CT images so distortions of the PET and CT images should be avoided.

In this section, the published works that are relevant to our work on the registration

of PET/CT images to histopathology slides are reviewed. Section 3.3.1 details works

on in-vivo to ex-vivo registrations for regions of anatomy other than the lung and in-

vivo modalities other than PET/CT while section 3.3.1.1 reviews papers focused on

PET/CT and the lung.

3.3.1 Registration of pathology and in-vivo imaging modalities

Puri et al. [163] describe their method of registering PET images and histopathology

slices acquired from patients with laryngeal cancer. A PET-CT scan was performed
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followed by a total laryngectomy to remove the tumour and surrounding tissue. The

resected specimen was fixed in formalin, which is standard practice when processing

histopathology samples, and sea urchin spines were inserted into the specimen to act

as fiducials to aid the registration process. The resected specimen was then CT imaged

again to produce an ex vivo CT image and the specimen was sliced and histopathology

slides were produced. The ex-vivo CT scan was taken to understand what deformations

have occurred in the tumour volume due to its surgical removal. This additional ex-vivo

scan is also applied in other papers [164, 165, 166].The in-vivo PET and CT images

were registered by a rigid mutual information based registration method then the in-

vivo CT image was registered to the ex-vivo image by the same method. The transform

applied to the in-vivo CT image was then applied to the PET image so that it was also

registered to the ex-vivo CT image. The corresponding pathology slice for the 2D PET

and CT images was found by finding the lowest RMS error between the fiducials in the

pathology image and the ex-vivo CT image. This resulted in an average error in the

registration between the PET images and histopathology slices of 3.0mm.

Garcia-Parra et al. [164] register 18F-FAZA PET/CT images with histopathology

slices using an ex-vivo MRI scan as an intermediate step for prostate cancer patients.

They aimed to test the potential of 18F-FAZA PET for the identification of areas

of tumour hypoxia. The registration was achieved using mutual information based

methods with a thin-plate spline deformation.

Meyer et al. [166] provide an overview of the challenges of 3D image registration of

PET/CT images with pathology slices for prostate cancer. Here they describe how the

3D multi-modality registration problem has to be treated as fully 3D to avoid errors in

the registration. What this means is that alignment of 3D organ or tumour surfaces will

produce errors within the organ or tumour volume and to achieve the most accurate

results the whole 3D volume has to be considered in the registration process. Due to

the vastly different nature of the information contained within PET-CT and pathology

images, this is a challenging problem to solve as there are generally no landmarks

contained within a pathology tumour volume that can be seen in a PET-CT image.

For this reason, the addition of an ex-vivo scan described above and in [163] is the only

current solution to this problem. Another problem highlighted by Meyer et al. is that

the mechanical cutting of a tumour volume into slices for 2D pathology imaging will

introduce deformations to the tumour volume. There is again no standard solution to
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this problem and the choice of registration model should take this into account. The

prostate cancer registration problem shares many of the same challenges as those found

in lung cancer so the problems highlighted are relevant to the research project.

Shao et al. present ProsRegNet [167], a deep learning based network for the reg-

istration of histopathology and MRI images of the prostate. This is a CNN based

network trained using MRI and histopathology images of 99 patients. Testing of the

network generated an average error of 2.7mm in the registration. The main advantage of

this network compared to the state-of-the-art is the drastically reduced computational

complexity required to perform a registration once the network has been trained.

3.3.1.1 Registration of Pathology and PET/CT Lung Images

The registration of in-vivo modalities to ex-vivo histopathology images of a surgically

removed lung specimen presents additional challenges compared to other regions of

anatomy due to the collapse of lung tissue that usually to occurs after it is extracted

from a patient due to the mechanical properties of lung tissue. This introduces large de-

formations in the volume of a lung tumour between in-vivo modalities and histopathol-

ogy slides. In registration studies, this deformation is generally counteracted by inflat-

ing the surgically removed specimen with formalin or agar so that the specimen more

closely matches its in-vivo shape.

Stroom et al. [168] developed a method for pathology-correlated imaging for lung

tumours with the aim to more accurately define the gross tumour volume and gross clin-

ical volume for radiotherapy. PET-CT scans were taken of 5 patients with non–small-

cell lung cancer (NSCLC) before a lobectomy was performed. The resected lung lobes

were inflated with formalin before they were sliced, photographed and histopatholog-

ically imaged. The registration was performed by first matching the CT slices to the

corresponding pathology slices then the PET/CT slices were deformed to match the

corresponding block face photographs. A similar study was completed by Loon et al.

[169] who investigated the extent of microscopic disease within the clinical target vol-

ume used in radiotherapy treatment planning. 34 patients with NSCLC were PET-CT

imaged before undergoing a lobectomy. The resected lobes were inflated with formalin

before they were sliced and histopathology images were taken. No registration was

performed in this study, only the reconstructed tumour volumes were compared.

Yu et al. [170] aimed to determine the cut-off standard uptake (SUV) in 18F-FDG

79



PET/CT that creates the best volume match to pathological tumour volume. Fif-

teen patients with NSCLC were PET/CT imaged before undergoing a lobectomy to

remove the tumour volume. The removed specimen was fixed in formalin, sliced and

histopathology slices were produced. The tumour boundary in the slices was delineated

by a pathologist. Reconstructed pathological tumour volumes were compared to recon-

structed PET tumour volumes at different SUV cut-off values to determine the SUV

cut-off value that results in the best match between the volumes of the two modalities.

Wanet et al. [171] aimed to validate a gradient-based segmentation method for

gross tumour volume delineation in FDG-PET for NSCLC. Ten patients with NSCLC

were PET/CT imaged before undergoing a lobectomy. The removed surgical specimen

was inflated with agar, frozen and sliced. The sliced specimen was reconstructed to a

3D volume. The PET/CT images were manually registered to the histopathology slices

using a rigid registration.

3.3.2 Previous EngD Work

The work in Chapter 6 of this thesis directly follows on from work detailed in the thesis

titled “Registration of Pre-Operative Lung Cancer PET/CT Scans with Post-Operative

Histopathology Images” by Gabriel Reines March completed in 2020 [2]. Chapter 6 of

this thesis applies and advances many of these methods so the work by Reines March

is covered in this subsection in detail. The goal of the work by Reines March was

to create an imaging framework for registering in-vivo PET/CT scans with ex-vivo

histopathology slices for patients with NSCLC to create a multi-modality map of the

tumour environment.

3.3.2.1 Phantom Study, Simulations and Tumour Reconstruction

The first component of the work involved developing a registration algorithm and test-

ing it on a tissue-mimicking phantom. A phantom was used as it provided a repro-

ducible ground truth and avoided ethical constraints of using human participants in the

early stages of the work. It also allowed computational experiments to be conducted

on the phantom model which could then be verified experimentally. The phantom

was designed to mimic anatomical features that may be seen in lung tumours in-vivo

by having extruding lobes and depressions, these features were aimed to ensure the

robustness of any registration tests.
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A computer model of the phantom was virtually sliced at different thicknesses to

test the effect that different slice thickness would have on volume reconstruction and

to test different volume reconstruction techniques. Volume reconstruction involved

an interpolation to generate pixel values for coordinates between the slices. Nearest-

neighbour, linear and cubic-spline interpolation were all used to determine which one

would provide the most accurate volume reconstruction. The reconstructed volume was

compared to the known volume of the phantom using these different interpolation tech-

niques for different slice thicknesses. It was found that larger slice thicknesses reduced

the reconstructed volume as extrusions were omitted from the reconstructed volume,

this decreased the alignment with the known volume of the phantom. It was also found

that while nearest-neighbour interpolation provided the closest volume match to the

known volume of the phantom, it also provided the largest shape distortion of the phan-

tom so cubic-spline interpolation was chosen as the best interpolation method. An issue

with these interpolation methods was that extrema region were poorly reconstructed

due. This was overcome by applying methods for both linear and curvature-based

extrapolation methods. The curvature-based method was found to produce more accu-

rate reconstructions in the simulations. This curvature based method uses second-order

differences from the previous two slices to extrapolate the end region of the tumour

shape following the same curvature trend.

3.3.2.2 Pathology Slicing Process

A custom slicing rig was designed so that slices taken of both the phantom and later

any surgical samples, would be of the same thickness and so that the thickness of a

single slice would not change over that slice. This was not done in the literature as most

similar studies performed a free hand slicing of the specimen, which is the standard

pathology processing procedure. The slicing rig was comprised of a cylindrical tissue

container mounted within an acrylic frame, featuring a threaded plunger and slot for

the travel of a surgical blade. The plunger lifts the tissue, which was embedded in

agar, to the desired slicing level, while the blade performs clean, flat cuts. The slice

thickness is adjustable based on the plungers known pitch of 2.5 mm meaning two full

turns of the plunger would raise the sample by 5mm. Each exposed cross-section was

photographed by a camera in a fixed tripod mount before subsequent slicing iterations

with care to remove any excess moisture from the pathology sample prior to imaging.
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The pathology slicing workflow is summarised in Figure 3.2.

Figure 3.2: The workflow used for the slicing rig developed and applied
by Reines March et al. [2]. A the sample is imaged, B the sample is
raised by 5mm, C the sample is sliced. This figure was taken from the
thesis [2].

3.3.2.3 Lung Tumour Image Registration

The registration methodology to align PET/CT images with histopathology slides can

be broken down into individual steps. First, the microscopic histology slides were regis-

tered to gross photographs of the specimen. This was done using feature-based moving

least squares with an affine deformation registration where anatomical landmarks such

as blood vessels were manually selected by clinicians in both pathology images and

used as control points for the algorithm. Next, the 3D volume reconstruction of the

tumour volume in the CT and pathology modalities was performed by first manually

segmenting the volumes and then performing a volume reconstruction as described in

Section 3.3.2.1.

The third step was a registration of the reconstructed 3D volume from the PET/CT

images to the reconstructed 3D volume from the pathology photographs. The registra-

tion was performed with a rigid transformation using the sum of squared differences of

the surface points of the CT and pathology volumes as the similarity measure and a

gradient descent algorithm as the optimiser. The final step was to apply this transfor-
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mation to the PET and CT images so that they were aligned with the pathology slices.

A flowchart of these steps can be seen in figure 3.3.

This registration algorithm was applied to full imaging datasets from 9 patients.

It was found that while CT volumes closely matched pathology volumes, allowing for

accurate registrations, the reconstructed PET volumes were on average around twice

the size of the pathology volumes. This was because of the blurring of the PET images

due to patient breathing though the only method applied for PET segmentation was a

0.5SUVmax threshold. Due to this, no results were produced for the PET images.

Figure 3.3: Flowchart depicting the steps taken for registration of
PET/CT images to histopathology slides in [2]. Figure taken from [2].

The results were then compared to a manual registration performed by both a

pathology consultant and a clinical oncology consultant individually to test the robust-

ness of the proposed framework. This showed that for the CT data there was a good

alignment with the manually registered data and in a qualitative analysis the devel-

oped automatic registration framework was equivalent to or out-performed the manual

registrations for every assessed patient.
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3.4 Gross Pathology Segmentation

The second half of Chapter 6 details the work on a study aiming to produce a deep

learning based methodology for the automatic segmentation of gross pathology pho-

tographs of lung cancer specimens. The literature relevant to this is covered in this

section.

Figure 3.4: Example of a gross pathology photograph of a surgically
resected lung lobe that has been sliced to reveal a lung tumour.

Before any image processing of gross pathological specimens, the image capture

process for gross pathology must be undertaken. The procedures and best practices

generally used to capture gross pathology photographs have been described in [172].

Best practices include placing the pathology specimens on a background that provides a

good contrast between the specimen and background. The specimen should be well-lit

with lighting located to the sides of the specimen as overhead lighting is more likely to

cause reflections that may obscure anatomy. Excess moisture should also be removed

from the surface of the specimen as this may obscure the underlying anatomy through

the liquids opacity or the increased reflections this may cause. The specimen should also

be well framed, in focus and the imaging plane should be the same as the slicing plane.

An example of a gross pathological photograph of a surgically resected lung specimen,

sliced to reveal a lung tumour, is given in Figure 3.4. The International Association for
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the Study of Lung Cancer (IASLC) recommends pathology photography as a standard

part of pathology processing for NSCLC specimen processing after neoadjuvant therapy

[173].

Gross pathology photography has been applied in some studies to provide the in-

formation necessary to transform WSI so that the geometry of the images more accu-

rately represents what would have been observed in-vivo. This has often been for the

application of registering images from the PET and pathology modalities [166, 165]

as detailed in Section 3.3. Gross pathology photography has been used as an impor-

tant feature in many studies where regions are generally segmented by experienced

pathologists. These studies include investigations into the mechanical properties of

tissues[174], ablation treatment monitoring [175] and histologically diagnosed cardiac

sarcoidosis [176]. A semi-automatic vector quantisation based pathology segmentation

approach has been applied to segment regions of fibrosis in gross photographs to deter-

mine the overall prevalence of fibrotic tissue in lymph nodes [4]. Hyperspectral image

based tumour segmentation has also been applied for application in real-time tissue

classification during laparoscopic surgery [177].

An area where gross pathology photography has been applied more extensively than

the lung cancer domain is skin lesion photography. There are similarities between lung

lesion photography and skin lesion photography that make the greater catalogue of

previous work on skin lesion segmentation relevant here. One such example is the work

by Y. Yuan et al. who produced a fully connected (FC) convolutional neural network

(CNN) based approach for skin lesion segmentation with a Jaccard distance-based loss

function with their highest performing method consisting of an ensemble of six separate

FC CNNs [178]. Q. Ha et. al detail their work on skin lesion segmentation that achieved

1st place in the 2020 SIIM-ISIC melanoma classification challenge [179]. Their method

involved using an ensemble-based model that averages the pixel prediction scores of

multiple models using various versions of EfficientNet, SE-ResNeXt and ResNeSt as

the network backbone. Also included was a thorough image augmentation pipeline.

Additionally, the ISIC skin lesion segmentation challenge [180] has run every year from

2016 until 2020 so there is a large back-catalogue of skin lesion segmentation methods

all trained and tested on a standardised dataset. A detailed review of the skin lesion

segmentation literature can be found in [181] which summarises 356 publications on

skin lesion segmentation and 238 on skin lesion classification published between 2011
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and 2022.
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Chapter 4

Predicting Lung Toxicity After

Radiotherapy From

Pre-Treatment CT scans and

Dose Maps

This chapter is focused on improving methods for radiation pulmonary toxicity predic-

tion using radiotherapy planning pre-treatment information with a focus on CT image

information. Section 4.1 discusses the motivations for this work, Section 4.2 defines the

datasets and methods, Section 4.3 contains the results and Sections 4.4 and 4.5 give

the discussions and conclusions. The methods were applied to two separate datasets,

one containing standard lung cancer patients receiving IMRT and one containing lung

cancer patients with ILD receiving SABR.

4.1 Introduction

Radiation-induced pulmonary toxicity such as radiation pneumonitis, an inflammation

of the lung tissue, is a common and potentially life-threatening group of toxicity experi-

enced by patients receiving a lung dose during their treatment. The ability to predict if

a patient will develop pulmonary toxicity after receiving radiation therapy would help

the production of more personalised treatment plans and allow clinicians to monitor

high-risk patients. As discussed in Section 3.1, prediction can be partially achieved
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through the use of dose and clinical features which is the most advanced information

that is currently used clinically. The main focus of this chapter is to include CT image

information in the predictive models. Current standard clinical RT practice includes

capturing a CT image to localise anatomy and calculate the attenuation maps nec-

essary for RT planning. This planning CT image is currently not used beyond these

purposes. The work in this chapter applies methods for the extraction of features from

the lung region of RT planning CT scans using both standard radiomic approaches and

the utilisation of a CNN pre-trained for lung segmentation. These CT features were

also combined with dose and clinical features to gain a large improvement to pulmonary

toxicity prediction performance when compared to the clinical baseline method. Ad-

ditionally, the value of combining both radiomic and the pre-trained CNN method for

feature extraction is investigated. Besides predicting pulmonary toxicity, the analysis

of the SABR ILD dataset also explored additional outcomes for prediction, such as the

FACT-L and EQ-5D-5L scores.

4.1.0.1 Contributions of this Chapter

In the work detailed in this chapter, methods for pulmonary toxicity prediction from

RT dose maps are further developed using data from the ASPIRE-ILD clinical trial

[182] and data from the Edinburgh Cancer Centre. The technical contributions are:

• Development of a radiomic workflow for radiation pulmonary toxicity prediction.

• The first use of a pre-trained UNet segmentation model for the extraction of CT

Image features for the purpose of toxicity prediction.

• The first prediction models for ILD patients receiving SABR using dose, clinical

and CT image features for the prediction of pulmonary toxicity, FACT-L and

EQ-5D-5L.

4.2 Method

4.2.1 Datasets

Two datasets were used in this chapter for the prediction of pulmonary toxicity which

were the Edinburgh Pneumonitis dataset and the ASPIRE-ILD dataset. Both of these

datasets use separate RT methods and the ASPIRE-ILD dataset specifically contains
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only patients with ILD. As a result, these two datasets cannot be merged into one larger

dataset and must be studied separately, as was done in this chapter. The ASPIRE-ILD

dataset also includes additional patient outcomes, such as their FACT-L scores, which

were used to train further prediction models.

4.2.1.1 Edinburgh Pneumonitis Dataset

The Edinburgh Pneumonitis dataset consists of retrospectively collected data from

patients with NSCLC that were treated with IMRT at the Edinburgh Cancer Centre,

Western General Hospital, Edinburgh between 01/01/2009 and 01/10/2010. During

data collection, the occurrence of pneumonitis in each patient was determined from

that patient’s medical records by experienced clinicians. Any patients with unclear

medical notes regarding pneumonitis were not included. This generated a dataset

of 66 patients, 12 of whom developed clinically validated grade 2 or above radiation

pneumonitis after their RT treatment where grade 2 radiation pneumonitis corresponds

to pneumonitis presenting symptoms where some form of clinical intervention has been

performed as defined by the Common Criteria for Adverse Events (CTCAE) (v5.0)

[183]. The RT data available included the patients’ RT planning CT scans, the RT

planning dose distribution maps and the anatomical segmentations produced during

the RT planning. Examples of a planning CT and dose map segmented to the lung

volume, defined during RT planning, are shown in Figure 4.1. The CT scans all had

voxel dimensions of 1.0x1.0x3.0mm and slices in the transverse plane had a resolution

of 512x512. Also available were some of the patients’ clinical parameters such as their

age. Of the 66 patients in the study, IMRT was applied to; 52 patients on a Varian

Clinac 600C/D, 3 patients on a Varian Clinac iX and 9 patients on a Varian Clinac

21EX. All radiotherapy plans were calculated using the Varian Pencil Beam Convolution

algorithm (v8.1.2).

4.2.1.2 ASPIRE-ILD Dataset

ASPIRE-ILD is a completed phase 2 clinical trial that investigated the use of SABR as

a treatment for lung cancer in patients with ILD that are not able to undergo surgery

[182]. The ASPIRE-ILD study recruited a total of 42 patients from 5 institutions in

Canada and 1 in Scotland. Of these 42 patients, 39 underwent treatment with SABR

and their progression was followed up for at least two years.
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Figure 4.1: Examples of (a) a 3D planning CT image stack and (b)
a 3D dose map of only the lung volume.

The data available from the ASPIRE-ILD study includes baseline CT scans, plan-

ning CT scans, RT dose maps, RT structure sets, patient clinical information and

patient outcomes. The CT baseline scans are high quality diagnostic CT scans that

were used to determine if a patient was appropriate for enrolment in the ASPIRE-ILD

study. These are breath-hold CT scans with a high resolution making them ideal for

radiomic analysis. The planning CT scans, however, are of lower quality and have

inconsistent reconstructions; some are depicted as maximum intensity projections of

multiple gated images, rendering them less suitable for radiomic analysis. For this

reason, only the diagnostic CT scans from the ASPIRE-ILD dataset were investigated

for radiomic analysis. The range of voxel resolutions of the baseline CT scans for the

ASPIRE-ILD study are displayed in the box plot shown in Figure 4.2.

The ASPIRE-ILD study recorded multiple patient outcome metrics at intervals of

3, 6, 9, 12, 18 and 24 months post-RT to monitor the patients’ progression. The

outcomes relevant to this outcome prediction study are displayed in Table 4.1. The

FACT-Lung B1 dyspnea outcome here is a sub outcome of the FACT-L index relating

to only question B1 of the FACT-L questionnaire which quantifies patient dyspnea.

The outcomes at the 3-month mark were utilised, as the number of patient outcomes

available decreased with time post-RT.

For the CTCAE toxicity outcome, any toxicity, as defined by CTCAE v5 [183], that

the patient developed during or after their radiotherapy treatment was recorded with
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Figure 4.2: The range of image dimensions of the baseline CT images
for the ASPIRE-ILS dataset.

Outcome
Number of Patients

(at 3 months)

CTCAE Toxicity Grades 39
FACT-Lung 34
EQ-5D-5L 35
Overall Survival 39
Cough Severity 35
FACT-Lung B1 Dyspnea 34

Table 4.1: The ASPIRE-ILD outcomes used in this prediction study.

the exact CTCAE grade. It was also recorded if these toxicities were RT treatment-

related or unrelated. For this outcome prediction study, only the RT-related pulmonary

toxicities were considered. The RT-related pulmonary toxicities and the number of

patients developing each toxicity are given in Table 4.2.

4.2.2 Dose and Clinical Features

Dose and clinical features have previously been shown to have predictive power for

pulmonary toxicity prediction post-RT both on their own as well as to improve the

performance of models based on additional features from separate sources [96, 103,

107, 108, 116, 117, 118, 119, 120, 121, 122]. For these reasons, as well as the fact

that dose and clinical features will always be available pre-RT, they should always be
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Adverse Event
Number of Patents
with AE Grade ≥2

Bronchopulmonar Hemorage 1
Cough 0
Dyspnea 7
Lung Infection 1
Pleural Effussion 1
Pneumonitis 3
Pulmonary Edema 0
Pulmonary Fibrosis 0
Respiratory Failure 1

All Pulmonary
(max grade per patient)

11

Table 4.2: The number of RT related pulmonary adverse events
recorded in the ASPIRE-ILD study.

included in radiation toxicity prediction studies as has been done here.

4.2.2.1 Clinical Features

The clinical features available in both datasets differ and are outlined here. For the

Edinburgh Pneumonitis dataset, clinical features were retrospectively extracted from

the patient’s medical information based on data that was deemed to be relevant to the

classification task. The clinical features that were included were chosen based on their

availability for all of the patients in the dataset as well as the ability to present these

features numerically. For the ASPIRE-ILD dataset, clinical features were prospectively

collected during the course of the original trial. The clinical features available for both

datasets are displayed in Table 4.3.

4.2.2.2 Dose Features

Dose volume histogram features were calculated from the RT planning dose map, seg-

mented to only include the whole lung volume, excluding the tumour region defined by

the gross tumour volume (GTV). The lung volume and GTV were available from the

RT planning data. An example of a dose map thresholded to only the lung region is

given The calculated dose features were the same for both datasets. The dose volume

histogram features calculated were; the mean lung dose (MLD), R50, D2cm and the Vx

from V5 to V70 in steps of 5 Gy presented as a percentage and an absolute volume. The

features and methods here were the same for both datasets.
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Edinburgh Pneumonitis ASPIRE-ILD

Age Age
Smoking status Symptoms
COPD status Smoking status
Chemotherapy status Smoking pack years
T-stage Forced vital capacity (FVC) test
N-stage Lung diffusion test (DLCO)
Primary tumour volume Clinically observed radiological lung pattern
RT fractions Clinical consensus diagnosis
Prescribed maximum dose ILD subtype

Gender
ILD-GAP index
PET SUV max
T-stage
ECOG Performance Status
Forced Expiratory Volume (FEV) score
Prescribed maximum dose.

Table 4.3: The clinical features available for the Edinburgh Pneumoni-
tis dataset and the ASPIRE-ILD dataset.

4.2.3 Radiomic CT Features

Prior to radiomic feature calculation, CT image pre-processing steps were applied and

the volume of interest, which defined the voxels that radiomic features were calculated

for, must be established. The lung volume, segmented using the contours available

from the RT planning process, was used as the initial volume of interest. This was then

thresholded to only include voxels with Hounsfield unit (HU) values ranging from -1000

HU to -400 HU to specifically target the soft lung tissue by removing any vessels and

the tumour volume. Note that the CT image was not thresholded, the thresholding was

only used to define the volume of interest. Before the radiomic features were calculated,

the CT images were isotropically resampled to have voxel dimensions of 1.5x1.5x1.5mm.

Quantisation was applied to the image to reduce the number of grey levels with a bin

width of 25 HU being used producing 16 grey levels in the defined volume of inter-

est. This is the standard quantisation bin width used in the PyRadiomics package

[49] and has been successfully applied in other studies investigating prediction models

from lung radiomic features [184, 185]. Radiomic features were computed from the

defined volume of interest within CT images in Python using the PyRadiomics package

(v3.1.0) [49]. All features from the following classes were included; first-order, GLCM,

GLRLM, GLSZM, NGTDM and GLDM. These feature classes were discussed previ-
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Figure 4.3: (a) A dose image from the original dataset without any
preprocessing steps, (b) the same dose slice as (a) that has been pre-
processed so that it is aligned with its complementary CT image and all
the non-lung anatomy has had its dose values set to 0. Dose values are
given in Gy.

ously in Section 2.3.2. The features calculated by PyRadiomics conform to the Image

Biomarker Standardisation Initiative (IBSI) recommendations [54] and, where possible,

the radiomic features were calculated in 3D. Further information on these metrics can be

found in the PyRadiomics documentation (https://pyradiomics.readthedocs.io/).

This process produced a feature table comprising 94 distinct radiomic features, each

calculated from the CT lung region for every patient.

4.2.3.1 Dose Thresholding the CT Image

Up to this point, the image texture features have been calculated for the entire lung

volume of each patient with no regard as to where the dose has been applied. As a

patient who goes on to develop RP will generally develop the condition within the

volume of the lung that has received a higher dose, it may be beneficial to calculate

the image texture just within these regions of higher dose. This is investigated in this

section only on the Edinburgh Pneumonitis dataset as the ASPIRE-ILD diagnostic CT

images that are used for radiomic analysis are not registered to the dose maps.

The dose images that have been pre-processed as described in Section 4.2.2.2 were

thresholded to only include pixels with an intensity value over a set threshold meaning

only regions corresponding to a dose over a set level of Grays are kept. The thresh-

old value can be changed depending on what Gray level is being investigated for the
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thresholding. From this thresholded dose image, a binary mask is produced by setting

all non-zero pixels in this thresholded dose image to a pixel intensity value of 1. This

binary mask was used to define the region of interest in the 3D CT image to be used

for the calculation of radiomic features. This produces radiomic features that are cal-

culated only from regions of the lung above a set dose level. This process is shown

in Figure 4.4. The same methods described at the start of Section 4.2.3 are used to

calculate the image texture features. Radiomic features were calculated for the 3D CT

images using dose thresholding levels of 5, 10, 15, 20 and 25 Gy producing 5 sets of

radiomic features for the whole patient cohort.

Figure 4.4: The CT dose thresholding workflow. (a) An original dose
image (b) the dose image thresholded to only include dose areas above
20Gy, (c) dose image further thresholded to only include dose areas that
lie within the lung volume, (d) the binary mask calculated from the dose
that is applied to threshold the CT image, (e) the CT slice corresponding
to dose slice (a) that has been pre processed as described in Section 4.2.3,
(f) the CT image where only the area within the lung receiving greater
than 20Gy of dose are included.

4.2.4 UNet CT Features

In addition to the PyRadiomics CT features, a publicly available pre-trained UNet seg-

mentation model was leveraged as a feature extractor. The reason that a segmentation
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model was chosen as opposed to a classification model is that the features learned by a

segmentation model, trained on a dataset containing a variety of anatomies and med-

ical conditions, are likely to be more generalisable than features from a classification

model trained for a specific medical task. Additionally, there are more publicly avail-

able medical image segmentation models available than classification models so there

is a larger pool of previous work that can be accessed.

The UNet model, used as our feature extractor, was originally trained for segment-

ing lungs in 2D CT images, this network is referred to as ”UNet (R231)” [186] and is

available from https://github.com/JoHof/lungmask. Details of the model’s architecture

and training can be found in the original paper [186]. Prior to extracting features from

the CT image, no additional training of the model was performed. This approach of

using a pre-trained model with no additional training was chosen due to the small size

of our datasets, especially when considering the low number of positive cases, and the

lack of public data available with radiation toxicity outcomes meaning training a new

supervised CNN classification model was not possible. The activations from the convo-

lutional layer before the final convolutional layer making the pixel-wise classifications

were used as the features. This layer has a size of 256x256x64 meaning 64 features were

extracted for every pixel. This output feature layer was chosen for feature extraction,

as opposed to earlier feature layers, as our classification task is similar to the original

segmentation task of the CNN as they share the same modality and anatomical focus.

This means that the dimensionality reduction in the UNet model, taking place before

the output feature layer, is likely to still be appropriate to our task. If using a model

that had been trained on an unrelated task, then earlier, and likely more generalisable

features would be a more appropriate choice. The pixel-wise features were converted

to global features for the classification by averaging them over the spatial dimensions

using a global average pooling layer added to the model so that, for each slice of the

3D CT image, 64 features were calculated. The location of this global average pooling

layer in the model architecture and the convolutional layer used for feature extraction

is shown in Figure 4.5. This feature averaging was done for every transverse slice of

the 3D CT image containing any lung area. The features were then averaged in the

z-direction producing 64 features from the 3D CT image for every patient.
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Figure 4.5: Location of the global average pooling layer, used to extract
features from the second last convolutional layer of the UNet model. Fur-
ther details of this UNet model can be found in the paper that originally
trained the model [186].

4.2.4.1 Fine Tuning with MEDGIFT-ILD Dataset for Better Feature Ex-

traction of ILD Patients

Although the UNet R231 model underwent initial training on a diverse dataset [186],

there was no deliberate effort to encompass examples representing all ILD subtypes

during this initial training phase. In an attempt to improve the performance of the

model as a feature extractor when dealing with patients with ILD, the model was

further trained for the task of segmenting the lung volume of CT scans of patients

with ILD. To do this, the MEDGIFT-ILD dataset was used [8]. The MEDGIFT-ILD

dataset includes CT scans with lung segmentations of 108 patients with ILD. These

were used to train the UNet R231 model for lung segmentation. As the end goal is

a feature extractor for the ASPIRE-ILD data, all of the MEDGIFT-ILD data can be

used in the training set. The UNet R231 model was fine-tuned for ILD patient data by

re-training it for 20 epochs with the MEDGIFT-ILD data using the adam optimiser,

an initial learning rate of 1e-3, a learning rate drop period of 5 and a learning rate drop

factor of 0.2. This re-trained version of the UNet R231 model was used for feature

extraction from the ASPIRE-ILD CT scans.

4.2.4.2 UNet Feature Extraction With Masking

In addition to the global averaging method for converting the pixel-wise features into

features for the full CT stack, region of interest (RoI) averaging can be applied to take

the features from only a specific part of the anatomy. This involves simply averaging
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the features in the spatial dimensions but only including voxels that are within a certain

RoI. It should be noted that due to the down-sampling and up-sampling involved in the

encoder-decoder based architecture of UNet, voxels further than just the adjacent few

voxels will contribute to the features of a particular voxel. This means that isolating

the voxels using the RoI in this way does not truly isolate the features to contain only

information from the voxels within the RoI.

The RoIs that were used here were the Lung RoI, the RoI of the patient’s body

excluding the lungs and the background voxels, i.e. the voxels containing no biological

tissue. The lung RoI used was the one defined during the RT treatment planning and

available in the RT structure set, an example of this is shown in Figure 4.6 (a). To

define the body excluding the lung RoI, a binary mask is defined by thresholding the CT

image to only include voxels with an intensity over -500 HU, this excludes almost all of

the background but the CT scanner bed remains. To remove the bed, a morphological

opening is performed with a disk shaped structuring element with a radius of 5 pixels.

The image is then filled to remove any holes and the lung mask is subtracted from the

body mask leaving the final body mask with the lung excluded, this is shown in Figure

4.6 (b). The background mask is simply all of the voxels not included in the lung or

body masks, this is shown in 4.6 (c).

Figure 4.6: Examples of the masks produced for (a) the lungs, (b) all
of the body excluding the lungs and (c) the background.

To show which regions of anatomy are being isolated for each mask, the masks

have been applied to the original image and displayed in Figure 4.7. Note that this is

just shown to clarify the anatomy within each RoI as the CT images were not masked

before being applied to the UNet model for feature extraction. In Figure 4.7 (a) and (b)

the lung and body regions are clearly visible and Figure 4.7 (c) shows the background

where all that is visible is the CT scanner bed and a faint outline of the body.
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Figure 4.7: Examples a CT image that has been masked to only in-
clude (a) the lungs, (b) all of the body excluding the lungs and (c) the
background.

4.2.5 Prediction Models

After processing and calculating the dose, clinical, CT PyRadiomic and CT UNet

features, models can be fit to predict the outcomes of the Edinburgh pneumonitis

and the ASPIRE-ILD dataset. The first step for all models is to normalise the by

converting them to z-scores. For the prediction of all outcomes, boosted decision tree

based algorithms were applied. For CTCAE grade predictions, which were available

for both datasets, a binary classification was performed using the AdaBoost algorithm.

For all other outcomes of the ASPIRE-ILD dataset, the LSBoost algorithm was used

as it is more appropriate than the AddBoost algorithm due to the continuous nature

of these outcomes. Details of the training of these specific algorithms are available in

the following subsections. The details in this subsection apply to all models.

In order to determine the contributions of the different features to the overall model

performance, the training and testing scheme was repeated on different combinations

of the four feature subsets; dose, clinical, PyRadiomic and UNet.

It can often benefit model performance by reducing overfitting to remove non-

important features from the input feature set. To determine the important features,

an identical model to the final model was trained using an elevated learning rate (LR

= 1.00) and a lower number of learning cycles (LC = 50). The feature importance was

estimated from this model by summing the changes in the node error due to the tree

splits for every predictor. Here the change in the node error is the difference between

the error for the parent node and the total error for the two child nodes. The ten most

important features were selected and the final models were trained, these features are

given in appendix A for each model. This is summarised in Figure 4.8.
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Figure 4.8: The workflow for the feature selection aspect of the boosted
decision tree model training.

Training and testing were applied using a leave-one-out cross-validation (LOOCV)

scheme. This involves training the model on all the data except one sample and then

testing the model on the left-out sample to get a prediction. The trained model is then

discarded and a different patient is selected as the one to be left out from training and

the process repeats until testing has been completed on all of the patients. This is the

same as k-fold cross-validation where k equals the dataset size. Figure 4.9 details this

cross-validation scheme.

Figure 4.9: Workflow for the LOOCV (k-fold cross-validation) training
strategy.

4.2.5.1 AdaBoost for CTCAE Toxicity Prediction

For the classification of CTCAE toxicity grades, boosted decision trees were used with

the AdaBoost algorithm [187] applied as a binary classifier in MATLAB (R2023a). For

the Edinburgh pneumonitis dataset, the ground truth available is a binary classification

defined by the patient’s clinical notes with the classes < grade 2 and ≥ grade 2

pneumonitis. For the ASPIRE-ILD data, exact CTCAE grades were available for all

pulmonary toxicities as given in Table 4.1. These exact grades were converted to

binary classifications with the grade cutoff as ≥ grade 2 for the high-risk group. As

both datasets are unbalanced, an increased misclassification cost was applied during

training to the underrepresented class, in both cases≥ grade 2 class, based on its

proportional size in the dataset. Due to the small size of the dataset, it was not
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possible to perform hyperparameter tuning of the model as this would require another

hold-out set to validate the parameter tuning. The parameters used during the training

of the AdaBoost model are displayed in Table 4.4.

Training Parameter Value

Learning rate 0.1
Learning cycles 200

Maximal number of decision splits 10
Minimum observations per leaf 1

Minimum observations per branch node 2

Table 4.4: The training parameters used for the AdaBoost prediction
models.

4.2.5.2 LSBoost for FACT-L and EQ-5D-5L Prediction

The FACT-L and EQ-5D-5L index, which were only available for the ASPIRE-ILD data,

are continuous scores in the range of 0 to 136 for the FACT-L overall score and −0.224

to 1 for the EQ-5D-5L score. As these are continuous variables, a regression-based

training scheme, as opposed to a binary classifier, can be applied. For this, the LSBoost

algorithm for boosted decision trees was applied to predict the exact score for the FACT-

L and EQ-5D-5L metrics. The parameters used during the training of the AdaBoost

model are displayed in Table 4.5. The recorded outcome here when considering the

prediction of these continuous variables is the mean average error (MAE) of grade

predictions.

Training Parameter Value

Learning rate 0.1
Learning cycles 200

Maximal number of decision splits 10
Minimum observations per leaf 5

Minimum observations per branch node 10

Table 4.5: The training parameters used for the LSBoost prediction
models.

In addition to predicting the exact scores, a binary classification can be made by

grouping the patient cohort into low and high-risk groups. The minimum clinically

important difference of these two was used to define the high and low risk groups. A

patient whose score changes by more than the minimum clinically important difference

for each metric will be placed in the high risk group. The minimum clinically impor-
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tant difference EQ-5D-5L has been reported to be 0.03-0.05 for diabetes [188], 0.051

for COPD [189], 0.078 to 0.095 in fibrotic ILD [190]. From this, the value 0.05 is used

to define the minimum clinically important difference for the EQ-5D-5L binary classifi-

cation. For the FACT-L scale, clinically relevant change scores have been estimated to

be two to three points for the lung cancer subscale and five to seven points for the Trial

Outcome Index aspects of the FACT-L score [191]. A minimum clinically important

difference of 6 was taken for the FACT-L binary classification. For the binary classifi-

cation, no new model was trained. The output of the LSBoost model for exact grade

prediction was simply used and compared to the baseline scores. The ground truth

for this binary classification was calculated by taking the change between the baseline

score and the score at 3 months. The AUC, sensitivity, specificity and accuracy were

calculated as the performance metrics.

4.3 Results

The metrics produced during the LOOCV testing scheme are the accuracy, sensitivity,

specificity and the AUC ROC with the AUC ROC being the most descriptive of the

overall predictive power of the models and most commonly applied metric in the recent

radiation toxicity prediction literature [107, 108, 109, 110, 120, 121, 122, 123]. For

the FACT-L and EQ-5D-5L scores, the MAE was also calculated to determine the

performance of the models as exact score predictors. For all results, feature reduction

was used so for every model the final number of features used is 10.

4.3.1 Edinburgh Pneumonitis Dataset Results

The only outcome available for the Edinburgh pneumonitis dataset was if the patients

developed grade 2 or above pneumonitis. Results for predicting this are presented here.

4.3.1.1 Dose Thresholding the CT Image

The results of the dose thresholding to determine the CT volume of interest for the

radiomic feature calculation are given in Table 4.6. The best performing model used no

dose thresholding and the predictive performance decreased at higher dose thresholds,

therefore a smaller lung sub-volume, was used. For this reason, no further dose thresh-

olding experiments were applied and only radiomic features for the whole CT images
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were considered.

Features
CT Dose
Threshold

Acc (%) Sens (%) Spec (%) AUC

PyRad 0 Gy 72.7 66.7 74.1 0.760
PyRad 5 Gy 71.2 66.7 72.2 0.713
PyRad 10 Gy 68.2 66.7 68.5 0.726
PyRad 15 Gy 69.7 58.3 72.2 0.662
PyRad 20 Gy 62.1 58.3 63.0 0.609
PyRad 25 Gy 62.1 50.0 64.8 0.617

Table 4.6: Results from the LOOCV over the whole Edinburgh pneu-
monitis dataset (N=66) for the binary prediction of grade ≥ 2 pneu-
monitis with different levels of dose thresholding to determine the PyRa-
diomics RoI.

4.3.1.2 UNet Masking Results

The results of applying masking to the UNet features are given in Figure 4.7. The

best performing model here uses no masking and averages the features from the whole

image. For this reason, in future results, when the UNet features are used, no masking

was applied.

Features RoI Acc (%) Sens (%) Spec (%) AUC

UNet Lung only 62.1 66.7 61.1 0.627
UNet Body only 63.6 66.7 63.0 0.652
UNet Background only 63.6 50 66.7 0.607
UNet Whole Image 66.7 58.3 68.5 0.717

Table 4.7: LOOCV test results for the prediction of pneumonitis on the
Edinburgh pneumonitis dataset with region of interest masking applied
to the UNet feature pooling.

4.3.1.3 Final Pneumonitis Prediction Results

The results for the binary prediction of grade ≥ 2 pneumonitis using LOOCV with the

AdaBoost algorithm applied to different feature subsets are given here in Table 4.8.

The best performing model used all of the feature subsets and achieved an AUC of

0.836 with a sensitivity and specificity of 75.0% and 81.5% respectively. This model

correctly classified 9/19 patients as high-risk and 43/47 patients as low-risk giving a

precision and negative predictive value of 47.4% and 93.6% respectively. ROC curves

for some of the models are presented in Figure 4.10.
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Features Acc (%) Sens (%) Spec (%) AUC

Dose 63.6 41.7 68.5 0.640
Clin 53.0 33.3 57.4 0.465
Dose, Clin 63.6 41.7 68.5 0.633
PyRad 72.7 66.7 74.1 0.760
UNet 66.7 58.3 68.5 0.717
Dose, Clin, PyRad 77.3 75.0 77.7 0.790
Dose, Clin, UNet 78.8 75.0 79.6 0.814
Dose, Clin, PyRad, UNet 80.3 75.0 81.5 0.836

Table 4.8: Results from the LOOCV over the whole Edinburgh pneu-
monitis dataset (N=66) for the binary prediction of grade ≥ 2 pneu-
monitis.

Figure 4.10: ROC curves for the binary prediction of grade ≥ 2 pul-
monary toxicity on the Edinburgh pneumonitis dataset using select fea-
ture subsets.

4.3.2 ASPIRE-ILD Dataset Results

The ASPIRE-ILD dataset had several different prediction outcomes available. The

results for training the prediction models using LOOCV for the CTCAE pulmonary

toxicity, FACT-L index, EQ-5D-5L score, overall survival, cough index and FACT-L

B1 dyspnea question are presented in the following subsections. Feature importance is

presented in appendix A.
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4.3.2.1 CTCAE Pulmonary Toxicity Prediction Results

The main prediction outcome of interest for the ASPIRE-ILD dataset was the occur-

rence of pulmonary toxicity. This differs partially from the Edinburgh pneumonitis

dataset as with the ASPIRE-ILD dataset we are aiming to predict all pulmonary tox-

icities as listed in Table 4.2. Of the 39 patients, 11 developed grade ≥ 2 CTCAE v5

pulmonary toxicity with dyspnea (n=7) and pneumonitis (n=3) being the predominant

toxicities. The best-performing model included dose, CT PyRadiomic and CT UNet

features to achieve an AUC of 0.841 with a sensitivity of 81.8% and a specificity of

78.6%. This model correctly classified 9/15 patients as high-risk and 22/24 patients as

low-risk giving a precision and negative predictive value of 60% and 92% respectively.

Table 4.9 displays all model results and Figure 4.11 displays the ROC curve for some

of the feature subsets.

Features Acc (%) Sens (%) Spec (%) AUC

Dose 56.4 81.8 46.4 0.687
Clinical 66.7 18.2 85.7 0.444
Dose, Clin 53.8 81.8 42.9 0.664
PyRad 51.3 45.5 53.6 0.515
UNet 51.3 36.4 64.3 0.479
Dose, PyRad 76.9 81.8 71.4 0.746
Dose, UNet 64.1 81.8 57.1 0.744
PyRad, UNet, Dose, Clin 76.9 72.7 78.6 0.834
Dose, PyRad, UNet 79.5 81.8 78.6 0.841

Table 4.9: Results from the LOOCV over the whole ASPIRE-ILD
dataset for the binary prediction of grade ≥ 2 pulmonary toxicity
(N=39).

4.3.2.2 FACT-L Prediction Results

The FACT-L prediction was analysed in terms of both a binary classification and

regression where the prediction outcome was the exact FACT-L score. The metrics

presented for the binary classification are the AUC, accuracy, sensitivity and specificity

and for the exact score prediction, the MAE was used to analyse the performance. For

the binary classification, a change in the FACT-L score of ≤ -6 from the baseline pre-

RT score was used to define the high-risk group. The ground truth placed 22 patients

into the high-risk group and 12 patients into the low-risk group out of the total N=34

patients who had 3-month follow-up information available. In terms of this binary
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Figure 4.11: ROC curves for the binary prediction of grade ≥ 2 pul-
monary toxicity on the ASPIRE-ILD data using select feature subsets.

classification, the best performing model used only dose based features and achieved

an AUC of 0.769 with a sensitivity and specificity of 63.6% and 83.3% respectively.

This model correctly classified 14/16 patients as high-risk and 10/18 patients as low-

risk giving a precision and negative predictive value of 87.5% and 55.6% respectively.

The best performing model in terms of predicting the exact FACT-L score was used

the dose, clinical, PyRadiomic and UNet features which achieved a MAE of 13.6. Table

4.10 presents all model results and Figure 4.12 presents a plot of the true vs predicted

FACT-L scores when using the dose, clin, PyRadiomic and UNet features.

Features Acc(%) Sens(%) Spec (%) AUC MAE

Dose 70.6 63.6 83.3 0.769 18.7
Clinical 50.0 40.9 66.7 0.652 19.5
Dose, Clin 70.6 63.6 83.3 0.758 17.9
PyRad 50.0 36.4 75.0 0.688 16.8
UNet 55.9 45.5 75.0 0.652 20.3
Dose, Clin, PyRad 55.9 45.5 75.0 0.686 18.2
Dose, Clin, UNet 58.8 50.0 75.0 0.705 18.5
Dose, Clin, PyRad, UNet 61.8 54.5 75.0 0.667 13.6

Table 4.10: Results from the LOOCV over the whole ASPIRE-ILD
dataset for the binary prediction of a change of -6 or less to the FACT-
L score as well as the exact FACT-L score (N=34).

A possible clinical scenario could occur where a patients FACT-L score is known
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Figure 4.12: Plot of the predicted versus true values for the FACT-L
scores when using Dose, Clin, PyRad, UNet. The line of ideal prediction
is displayed as a dashed line. MAE = 13.6.

before applying RT. In this case, the baseline FACT-L score could be used as a feature

of the model that is predicting the FACT-L score 3 months post-RT. The results for

some of the feature subsets when including the baseline FACT-L as a predictive feature

are given in Table 4.11. The best performing model for both binary classification and

exact FACT-L score prediction is the model using only dose features which achieved

an AUC of 0.821 with a sensitivity and specificity of 68.2% and 83.3% and a MAE of

10.9.

Features Acc (%) Sens (%) Spec (%) AUC MAE

Dose 73.5 68.2 83.3 0.821 10.9
Clin 61.8 54.5 75.0 0.694 13.2
PyRad 64.7 59.1 75.0 0.679 13.0
UNet 61.8 54.5 75.0 0.671 13.2
Dose, Clin, PyRad, UNet 67.6 63.6 75.0 0.726 13.2

Table 4.11: Results from the LOOCV over the whole ASPIRE-ILD
dataset for the binary prediction of a change of -6 or more to the FACT-
L score as well as the exact FACT-L score when the baseline FACT-L
score is included as a predictive feature (N=34).
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Figure 4.13: Plot of the predicted versus true values for the FACT-L
scores using only dose features and when the baseline FACT-L score is
included as a predictive feature, the line of ideal prediction is displayed
as a dashed line. MAE = 10.9.

4.3.2.3 EQ-5D-5L Prediction Results

In the same manner as for the FACT-L prediction, the EQ-5D-5L prediction was anal-

ysed in terms of both a binary classification and a regression. For the binary classifi-

cation, a change in the EQ-5D-5L score of ≤ -0.05 from the baseline pre-RT score was

used to define the high risk group. For the ground truth, this placed 24 patients into the

high-risk group and 11 patients into the low-risk group from the total N=35 patients

who had 3-month follow-up information available. In terms of this binary classification,

the best performing model used only PyRadiomic based features and achieved an AUC

of 0.784 with a sensitivity and specificity of 53.3% and 85.0% respectively. This model

correctly classified 13/15 patients as high-risk and 9/20 patients as low-risk giving a

precision and negative predictive value of 86.7% and 45.0% respectively. The best per-

forming model in terms of predicting the exact FACT-L score used the dose, clinical

and PyRadiomic features which achieved a MAE of 0.139 but this only improved from

PyRadiomics only model by 0.001. Table 4.12 presents all model results.

Again, in the same manner as for the FACT-L prediction, there exists a possible

clinical scenario in which a patients EQ-5D-5L score is known before applying RT. The
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Features Acc (%) Sens (%) Spec (%) AUC MAE

Dose 51.4 41.7 72.7 0.633 0.228
Clin 57.1 45.8 81.8 0.663 0.260
Dose, Clin 51.4 41.7 72.7 0.644 0.259
PyRad 62.9 54.2 81.8 0.784 0.140
UNet 51.4 41.7 72.7 0.720 0.175
Dose, Clin, PyRad 57.1 45.8 81.8 0.765 0.139
Dose, Clin, UNet 48.6 37.5 72.7 0.629 0.193
Dose, Clin, PyRad, UNet 51.4 41.7 72.7 0.678 0.224

Table 4.12: Results from the LOOCV over the whole ASPIRE-ILD
dataset for the binary prediction of a change of -0.05 or more to the
EQ-5D-5L score as well as the exact EQ-5D-5L score (N=35).

baseline EQ-5D-5L score could then be used as a feature of the model that is predicting

the EQ-5D-5L score 3 months post-RT. The results for some of the feature subsets when

including the baseline EQ-5D-5L as a predictive feature are given in Table 4.13. For

the EQ-5D-5L score prediction, all models perform worse when the baseline value is

included.

Features Acc (%) Sens (%) Spec (%) AUC MAE

Dose 42.9 33.3 63.6 0.572 0.214
Clin 54.3 45.8 72.7 0.686 0.197
PyRad 60.0 54.2 72.7 0.696 0.171
UNet 48.6 41.7 63.6 0.637 0.187
Dose, Clin, PyRad, UNet 60.0 50.0 81.8 0.700 0.204

Table 4.13: Results from the LOOCV over the whole ASPIRE-ILD
dataset for the binary prediction of a change of -6 or more to the EQ-
5D-5L score as well as the exact EQ-5D-5L score when the baseline
EQ-5D-5L score is included as a predictive feature (N=34).

4.3.2.4 Overall Survival Prediction Results

Patients overall survival was available for all 39 patients of the ASPIRE-ILD trial. This

was presented as months post-RT for survival (to one decimal place). For the binary

classification, both 1-year and 2-year survival were taken as endpoints and the model

was tested for both of these. This involved no retraining between models using the

same features, the threshold that defined the binary classification was simply changed

from 12 months to 24 months. For the regression, the MAE is presented in terms of

months. The results for the overall survival prediction are presented in Table 4.14. A

plot of the predicted overall survival against the true overall survival for the model
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Figure 4.14: Plot of the predicted versus true values for the EQ-5D-5L
score when using Dose, Clinical and PyRadiomic features only. The line
of ideal prediction is displayed as a dashed line. MAE = 0.139.

using Dose, Clinical and UNet features is presented in Figure 4.15.

4.3.2.5 Cough Severity Prediction Results

The patient’s cough severity was documented using the cough severity visual analogue

scale (VAS) [192] prior to RT and after RT was applied at set time intervals. This

severity scale ranges from 0 to 100 where 0 is no cough and 100 is the worst possible

cough. The cough severity 3 months post-RT was predicted and the results are pre-

sented in Table 4.15. For the binary classification, any change > 5 in the cough severity

scale was used as the classification threshold.

4.3.2.6 FACT-L B1 Dyspnea Prediction Results

Question B1 on the FACT-L questionnaire is directly related to the condition dyspnea

and is a more specific outcome of the FACT-L scale. The question requires patients

to respond to the phrase ”I have been short of breath” with a score from 0 to 5 with

0 indicating ”not at all” and 5 indicating ”very much”. The results for training the

LSBoost model for the prediction of the FACT-L B1 question are given in Table 4.16.
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1 Year Survival

Features Acc(%) Sens(%) Spec (%) AUC MAE

Dose 66.7 73.3 44.4 0.498 8.3
Clinical 74.4 76.7 66.7 0.844 8.1
Dose, Clin 66.7 73.3 44.4 0.633 8.3
PyRad 61.5 73.3 22.2 0.393 9.4
UNet 59.0 70.0 22.2 0.507 8.7
Dose, Clin, PyRad 71.8 76.7 55.6 0.659 9.7
Dose, Clin, UNet 71.8 80.0 44.4 0.774 7.0
Dose, Clin, PyRad, UNet 66.7 76.7 33.3 0.652 8.1

2 Year Survival

Features Acc (%) Sens (%) Spec (%) AUC MAE

Dose 64.1 0.0 80.6 0.498 8.3
Clinical 66.7 25.0 77.4 0.645 8.1
Dose, Clin 64.1 0.0 80.6 0.573 8.3
PyRad 61.5 0.0 77.4 0.407 9.4
UNet 64.1 0.0 80.6 0.407 8.7
PyRad, Dose, Clin 61.5 0.0 77.4 0.399 9.7
Dose, Clin, UNet 74.4 12.5 90.3 0.706 7.0
Dose, Clin, PyRad, UNet 74.4 25.0 87.1 0.520 8.1

Table 4.14: Results from the LOOCV over the whole ASPIRE-ILD
dataset for the overall survival prediction (N=39). Both one and two
year survival were used as binary endpoints, the units of the MAE are
months

Figure 4.15: Plot of the predicted versus true values for the overall
survival score when using dose, clinical and UNet features only. The
line of ideal prediction is displayed as a dashed line. MAE = 7.0.
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Features Acc(%) Sens(%) Spec (%) AUC MAE

Dose 58.8 66.7 52.6 0.539 31.0
Clinical 58.8 63.2 53.3 0.711 22.8
Dose, Clin 58.8 63.2 53.3 0.575 27.7
PyRad 41.2 47.1 35.3 0.461 32.4
UNet 67.6 72.2 62.5 0.639 26.7
Dose, Clin, PyRad 61.8 68.8 55.6 0.564 33.3
Dose, Clin, UNet 55.9 62.5 50.0 0.579 31.9
Dose, Clin, PyRad, UNet 47.1 52.9 41.2 0.461 36.4

Table 4.15: Results for the prediction of cough severity for the
ASPIRE-ILD dataset (N=35). The binary classification was for any
change > 5.

Features Acc (%) Sens (%) Spec (%) AUC MAE

Dose 42.9 57.1 21.4 0.446 1.61
Clinical 51.4 68.8 36.8 0.475 1.75
Dose, Clin 48.6 31.6 68.8 0.408 1.64
PyRad 62.9 75.0 46.7 0.656 1.22
UNet 57.1 75.0 42.1 0.667 1.26
Dose, Clin, PyRad 54.3 38.1 78.6 0.591 1.33
Dose, Clin, UNet 42.9 28.6 64.3 0.498 1.43
Dose, Clin, PyRad, UNet 65.7 76.2 50.0 0.612 1.18
Dose, PyRad, UNet 65.7 78.9 50.0 0.670 1.30

Table 4.16: Results for the prediction of FACT-L B1 question relating
to dyspnea for the ASPIRE-ILD dataset (N=34). The binary classifica-
tion was for any change > 0.
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4.4 Discussion

4.4.1 Edinburgh Pneumonitis Prediction

4.4.1.1 Dose thresholding the CT image

The best-performing radiomic feature-based prediction model when applying dose thresh-

olding to the CT image was the model that used no dose thresholding. The performance

of the model generally decreased as the thresholding value in terms of Grays increased.

The decreasing performance may be due to the thresholding causing important features

of the lung to be missed or due to a decrease in the signal-to-noise ratio of the features

due to a smaller volume being used for the radiomic calculations. This suggests that

the CT radiomic features calculated from the lung are global features indicative of a

patients individual susceptibility to radiation toxicity effects or overall health and can

not be used to highlight regions of the lung where radiation dose should be avoided.

4.4.1.2 UNet Masking

The best-performing model used no masking and simply took a global average pooling

of the spatial features of the UNet model with an AUC of 0.717. The performance

decreased with any form of masking. Here, masking everything but the body, lungs

and background regions achieved AUC scores of 0.652, 0.627 and 0.607 respectively.

This suggests that features from the patient’s body in addition to the lungs, which

was shown by the PyRadiomics approach, may provide predictive information about

the patient’s susceptibility to RT toxicity. The architecture of the UNet model, where

convolution kernels are applied to downsampled versions of the image, creates an in-

creasing receptive field size meaning that features of one pixel can be calculated based

on pixels from a distant region. This means that the masking applied in this way

can only partially separate the different regions of anatomy and the background. This

may explain why the background pixels still contain useful information as they may

still contain information about the features of the body or lungs. These methods for

separating the features of the image from the extracted UNet features require further

investigation as it may still be beneficial to keep the spatial information of the UNet

features.
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4.4.1.3 Final Pneumonitis Predictions

For the prediction of pneumonitis on the Edinburgh dataset, the model using only the

dose and clinical features achieved an AUC of 0.633. The dose feature only model

achieved an AUC of 0.640 and the clinical feature only model achieved an AUC of

0.465. This shows that for this dataset the clinical features provide no predictive power

and may reduce model performance by increasing the noise in the features input to the

model. The models using only PyRadiomics and only UNet-based CT features produced

an AUC of 0.760 and 0.717 respectively, both an improvement on the model using only

dose and clinical features. While it performed lower than the radiomic method, the

technique of extracting features from the UNet model has achieved comparable results.

Combining the CT features with the dose and clinical features achieved an AUC of

0.790 and 0.814 when using the PyRadiomics and UNet features respectively. This

shows a large improvement in the AUC of over 0.15 for both CT feature sources when

combined with dose and clinical features compared to only using dose and clinical

features. There is a large clinical relevance here as this shows that CT image features

could improve the treatment planning process by allowing for the production of more

personalised treatment plans. Finally, the model achieving the highest AUC used the

dose, clinical, PyRadiomic and UNet features. This shows that combining CNN-based

features with radiomic features can further improve radiation pneumonitis prediction

model performance.

4.4.2 ASPIRE Discussion

As the use of SABR for the treatment of lung cancer in patients with ILD is still an

emerging treatment option, this is the first study investigating the prediction of toxicity

for ILD patients receiving SABR. This means that the predictive performance of any

of the features has not been previously investigated adding to the clinical relevance of

the results presented.

4.4.2.1 Pulmonary toxicity prediction

For the pulmonary toxicity prediction on the ASPIRE-ILD dataset, the model using

dose features only achieved an AUC of 0.687 and the model using only clinical features

achieved an AUC of 0.444. The dose and clinical feature model achieved an AUC of

0.664. This follows the same pattern as the Edinburgh dataset where the clinical fea-
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tures provide no predictive power and can reduce the performance of the dose features

by adding noise to the feature set. Using the PyRadiomic and UNet features on their

own achieved an AUC of only 0.515 and 0.479 indicating no predictive power from these

features here. When including dose features with the CT features, the AUC improved

to 0.746 and 0.744 for the PyRadiomic and UNet features respectively. Combining dose,

PyRadiomic and UNet features achieved the highest performance in terms of AUC with

an AUC of 0.841. This shows, that while the model failed to gain any predictive power

from the CT features on their own, combining them with the dose features leads to a

substantial improvement in performance.

4.4.2.2 FACT-L Prediction

For the FACT-L prediction, the dose, clinical, PyRadiomic and UNet features all

showed some predictive power achieving AUC values of 0.769, 0.652, 0.688 and 0.652

respectively. In terms of a binary classification the best performing model was the

dose feature only model with an AUC of 0.769 and the best performing model in terms

of the exact FACT-L score prediction is the model using dose, clinical, PyRadiomic

and UNet which achieved a MAE of 13.6. This indicates that, potentially due to a

lack of information regarding patient health, the dose only model makes more extreme

guesses of the FACT-L score based which would allow the AUC to be higher. Including

additional features then allows the model to make more exact predictions as it can

somewhat predict the patients’ baseline health state before the RT is applied.

Predicting question B1 on the FACT-L questionnaire relating to dyspnea produced

a maximum AUC of 0.670 which was achieved when using dose, PyRadiomic and UNet

features. This is lower than when predicting the outcome of the FACT-L index as a

whole suggesting that it may not be beneficial to look at individual questions of the

subscale and that dypsnea is not the only outcome involved in the full FACT-L score

prediction.

When the baseline pre-RT FACT-L value is included the performance of the dose

only model increases with an AUC of 0.821 and an MAE of 10.9. The inclusion of any

other features in this case degrades the model performance. This may indicate that the

CT features act as predictors for the baseline FACT-L score meaning that when the

baseline FACT-L score is included the CT features provide no benefit.
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4.4.2.3 EQ-5D-5L Prediction

For the EQ-5D-5L prediction, the dose, clinical, PyRadiomic and UNet features all

showed some predictive power achieving AUC values of 0.633, 0.663, 0.784 and 0.720

respectively. The best performing model in terms of the binary classification was the

PyRadiomic model with an AUC of 0.784 and the best performing model in terms of an

exact EQ-5D-5L score prediction was the dose, clinical and PyRadiomic feature model

which achieved a MAE of 0.139. Here the PyRadiomic features seem to provide most

of the predictive power indicating that these radiomic lung features may be a good

indicator of a patient’s overall health state as defined by the EQ-5D-5L scale.

When the baseline EQ-5D-5L value was included as a predictive feature, the per-

formance of the model when using all of the feature sets individually decreased, the

performance only increased when using all of the features together but this still does

not beat the best performing model with no baseline features. It is not clear why this is

occurring but may be a sign that the models without the baseline are overfitting though

there is no way to evaluate if this is occurring without access to a larger dataset.

4.4.2.4 Overall Survival Prediction

For the prediction of the patients overall survival the best MAE for the is 7 months

which was observed when using the dose clinical and UNet features. For 1 year survival

the best performing model achieved an AUC of 0.844 using clinical features only and

for 2 year survival the best performing model achieved an AUC of 0.706 using the dose,

clinical and UNet features. Figure 4.15 does not show any clear correlation between

the predicted and true overall survival times. This implies that there is unlikely to

be much predictive power here though the reasonably high AUC scores suggest that

further investigation would be worthwhile.

4.4.2.5 Cough Severity Prediction

When predicting cough severity the best performing model in terms of both AUC and

MAE was the model using only clinical information. This achieved an AUC and MAE

of 0.711 and 22.8 respectively. Including any other features failed to improve on this

prediction.
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4.4.3 General Discussion

On both the Edinburgh pneumonitis and ASPIRE-ILD datasets, CT image features

calculated from both radiomic and UNet based approaches greatly improved the per-

formance of the models for the prediction of CTCAE pulmonary toxicity. This shows

that CT images are an important source of information for pulmonary toxicity post-

radiotherapy and that current clinical practice is under-utilising the CT images, taken

as standard practice but not used for this type of analysis. This is true of both a stan-

dard cohort of lung cancer patients receiving IMRT and patients with ILD receiving

SABR.

While these results are significant, it is important to highlight where future im-

provements can be made. The main limitation of this work is the dataset size. With

a larger dataset, a validation dataset could be used for model hyperparameter tuning.

Additionally, expanding this work to data from more centres would improve the robust-

ness of the methods and the confidence in the results. Establishing a large benchmark

dataset for radiotherapy outcome prediction would also allow for different methods to

be directly compared. An additional caveat for the Edinburgh pneumonitis dataset is

that due to the outcome collection methods where clinical notes were analysed retro-

spectively, the less extreme cases such as grade 1 cases may be underrepresented as

the clinical notes may not have a clear diagnosis in these cases. It is likely that these

cases are harder for a model to accurately predict as they will likely fall closer to the

decision boundary. This means that the results on this dataset may be overoptimistic

but again this would require more data to confirm or disprove.

4.5 Conclusion

In current clinical practice, only the dose and clinical features are considered during

radiotherapy planning for the prediction of toxicity to healthy tissue. The work de-

tailed in this chapter has shown that CT images, which are collected during standard

RT planning, can be a source of valuable information when predicting pulmonary tox-

icity in lung cancer patients. This was shown to be true for both standard patients

receiving IMRT and patients with ILD receiving SABR. Additionally, it was shown

that a pre-trained CNN for lung segmentation can be used as a feature extractor for

this application and can improve the performance of radiomic based prediction models
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when the two CT image feature sources are combined. For the ILD SABR cohort, it

was also shown that combinations of dose, clinical and CT image features can be used

for the prediction of changes in the FACT-L and EQ-5D-5L scores.
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Chapter 5

Predicting Esophageal Toxicity

After Radiotherapy From

Pre-Treatment Dose Maps

This chapter is focused on improving methods for radiation esophageal toxicity predic-

tion using radiotherapy planning dose maps. Section 5.1 discusses the motivations for

this work, section 5.2 defines the dataset used, sections 5.3 to 5.5 detail the first set of

methods, results and discussion, sections 5.6 to 5.8 detail the second set of methods,

results and discussion, finally the conclusions for the whole chapter are presented in

section 5.9.

5.1 Introduction

Damage to the esophagus is one of the most common sources of toxicity experienced

by lung cancer patients treated with radiotherapy. The ability to predict esophageal

toxicity prior to radiotherapy being delivered would allow the adaptation of treatment

plans to significantly reduce toxicity.

While there has been much previous work on the prediction of esophageal toxicity

from dose information in the literature as detailed in section 3.1.4 of this thesis, this

previous work has mostly been focused on including additional feature sources, such

as patients pre-treatment cytokine levels [144] or changes in a post-treatment CT scan

[147], to improve the predictive performance of dose based models. There has been

little focus on the technical details of the application of machine learning models to
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the prediction of esophageal toxicities. This is likely due to the lack of any large open-

access benchmark datasets with the necessary data required to perform this analysis.

The work presented in this chapter aims to advance the field of esophageal toxicity

prediction by applying technical adaptations to machine learning models and using

the largest currently publicly available dataset, the RTOG-0617 study dataset [193], to

validate these methods. Additionally, the techniques applied in this study are likely to

be beneficial in toxicity prediction in any region of anatomy.

5.1.0.1 Contributions of this Chapter

In the work detailed in this chapter, methods for esophageal toxicity prediction from

RT dose maps are further developed using data available from the RTOG-0617 study

[193]. The technical contributions are:

• The first use and development of convolutional neural networks (CNNs) for the

prediction of esophageal toxicity from RT using dose images.

• The inclusion of additional esophageal adverse events in the prediction model.

• The development of a novel regression based training approach.

• Application of AI on a validated multi-centre data set (RTOG-0617) with fine-

grained follow-up information.

• The testing of the robustness of ANN and LSBoost models to random noise and

methods to improve this robustness.

5.1.0.2 Format of Chapter

The methods, results and discussions in this chapter are split into two separate sections.

5.3 to 5.5 detail the first set of methods, results and discussion, sections 5.6 to 5.8 detail

the second set of methods, results and discussion. This has been done as different

training schemes were applied during each methods section and the end goals were

different.

Methods 1: CNN and Decision Tree Prediction Models This section develops

the methods for applying 3D CNNs, decision trees and normal tissue complication

models to the task of predicting esophageal toxicity from external beam RT. The aim
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here is to determine the methods that produce the best performance for predicting

esophageal toxicity.

Methods 2: ANN and LSBoost Hyperparameter Tuning and Robustness

Tests This section builds on the previous methods to test the robustness of decision

tree and ANN based methods for esophageal toxicity prediction and develop methods

to improve this robustness. Additionally, the effects of hyperparametrer tuning are

investigated.

5.2 Dataset

All patients in this study (N=397) were previously recruited to the RTOG-0617 clinical

trial. The RTOG-0617 trial was a multi-centre study set up to investigate the effects

of using standard (60 Gy) versus high (74 Gy) doses of radiation to treat lung cancer

patients [193]. The RTOG-0617 study recruited 544 patients with NSCLC who received

either IMRT or 3DCRT as well as either the chemotherapy drug cetuximab or no

concurrent chemotherapy. The patients were recruited from 185 institutions in the

USA and Canada between November 2007 and November 2011. The data from the

RTOG-0617 clinical trial is currently the largest open dataset available that contains

the necessary information for esophageal toxicity prediction from pre-RT dose maps.

For the work presented in this thesis chapter, patients with an overall survival of less

than 6 months were excluded unless they had developed grade 3 or above esophagitis.

This was done to remove patients that may not have had time to develop esophageal

toxicity before their death which removed 57 patients from the main cohort. Patients

who withdrew consent or were not eligible (N=49) and patients who had issues in their

radiotherapy data (N=41), such as missing esophagus contours or missing information

required to register the dose and CT images, were also removed. This resulted in a

final cohort of N=397. The data from the RTOG-0617 study was accessed through

The Cancer Imaging Archive (TCIA) [194], [195] after data access was provided by the

National Cancer Institute.

5.2.0.1 Esophageal Toxicity Prevalence

During the RTOG-0617 clinical trial, all radiotherapy induced toxicities, as defined

in the Common Terminology Criteria for Adverse Events (CTCAE) v3 [183], were
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recorded. While esophagitis is the most common acute toxicity from RT delivered for

the treatment of lung cancer [132], there are several esophageal toxicities that can occur

after RT. As defined by CTCAE v3, the following esophageal toxicities were identified:

1. Esophagitis

2. Acquired tracheo-esophageal fistula

3. Dysphagia

4. Dyspepsia

5. Esophageal ulcer

6. Esophageal stenosis

7. Esophageal perforation

The grade definitions for esophagitis, as defined by CTCAE v3, are shown in table

5.2. This chapter investigated models to predict if a patient would develop grade ≥3

esophagitis and grade ≥3 of any esophageal toxicity. The number of patients that

developed each grade of esophagitis and the maximum grade of any esophageal toxicity

are shown in table 5.1. The maximum grade of any esophageal toxicity was used when

looking at all toxicities as it is common for more than one toxicity to occur for a single

patient. When looking at splitting the grades into the categories < grade 3 and ≥

grade 3, an extra four grade ≥ 3 cases were available when looking at all esophageal

toxicities.

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 Grade 5
Esophagitis Only 179 51 105 60 1 1

All Esophageal Toxicities 84 99 148 62 2 2

Table 5.1: The number of patients developing each grade of esophagitis
and all esophagus toxicities. The maximum grade of any esophagus
toxicity is used in the ”all esophageal toxicities” row.
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Grade Description

1 Asymptomatic pathologic, radiographic, or en-
doscopic findings only

2 Symptomatic; altered eating/swallowing (e.g.,
altered dietary habits, oral supplements); IV flu-
ids indicated <24 hrs

3 Symptomatic and severely altered eat-
ing/swallowing (e.g., inadequate oral caloric or
fluid intake); IV fluids, tube feedings, or TPN
indicated ≥ 24 hrs

4 Life-threatening consequences

5 Death

Table 5.2: Radiation esophagitis grade definitions from the Common
Terminology Criteria for Adverse Events (CTCAE) ver 3.0 [183].

5.3 Methods 1: CNN and Decision Tree Prediction Mod-

els

5.3.1 Dose Image Pre-Processing

The RT dose maps were initially segmented using the esophagus contours that were

available from the RT planning process. To calculate dose volume features the voxel

sizes of the dose map, available in the DICOM information, were used. The VxGy, the

proportion of the total esophagus volume receiving a dose greater than xGy and the

V olxGy, the total esophagus volume receiving a dose greater than xGy given in units

of cm3, were calculated. These features were calculated over a range of x from 5 to

80 in steps of 5. Additionally, the mean and maximum dose to the esophagus were

calculated.

For use with the 3D-CNN, the dose image was isotropically resampled to produce

voxel dimensions of 2cm in the x,y and z directions. The images were then cropped to

reduce the area of the image outside of the esophagus that had been segmented and set

to a voxel intensity value of 0 Gy. The final image resolution was 100x100x120 voxels

(200x200x240 cm), which was larger than necessary to include the esophagus in the x

and y directions to allow for data augmentation by translation to be applied in the x

and y directions without losing any of the esophagus volume. An example of the final

3D esophagus dose map used with the CNN is shown in figure 5.1 (b). The full dose

image pre-processing workflow is summarised in figure 5.1.
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Figure 5.1: The dose image pre-processing workflow. The esophagus
RoI is used to segment the image, features are calculated for feature
based prediction models and the segmented image is used as the input
to CNN based models. (a) shows a slice of the original 3D dose map
(b) is the dose in the esophagus only displayed as a maximum intensity
projection in the median plane.

5.3.2 3D-CNN Based Classification Model

To generate and classify features of the 3D Dose image, a 3D implementation of ResNet-

18 [196] was applied as both a binary classification model and as a regression model

where the grades were treated as a continuous variable. The same architecture as de-

scribed in [196] was applied here with the following changes: image input normalisation

was replaced by rescaling, setting maximum and minimum dose values, 80 Gy and 0

Gy, to preserve the absolute dose values, dropout with a 0.25 probability was applied

after the final global average pooling layer to reduce overfitting and the number of

convolutional filters was halved in all convolutional layers to reduce overfitting.

All methods were applied to classify both esophagitis on its own and all esophageal

toxicities with the number of each grade defined in table 5.1. The main outcome of

all models was the binary classification of grade ≥ 3 esophageal toxicity. The training

scheme was the same in all cases which is described as follows.

5.3.2.1 ResNet18 as a Binary Classifier

The first CNN based method applied was to treat the prediction task as a binary

classification, a standard approach reported in the literature [144, 145, 146, 147, 197].

To do this, the patients were grouped by toxicity grade into the classes < grade 3 and
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≥ Grade 3. For the classification problem, the 3D-ResNet18 model was trained with a

weighted cross entropy loss function.

WCE = − 1

N

N∑
n=1

wi ln ŷni (5.1)

Here, N is the mini-batch size, wi is the weighting applied to cases of class i and is

defined in equation 5.2 and ŷni is the probability that the network associates the nth

input sample with class i.

wi =


w<grade3 if Grade < 3

w≥grade3 if Grade ≥ 3

(5.2)

The class weights, w<grade3 and w≥grade3, were defined by setting the weight for the

class with the most samples, in this case w<grade3, to 1 and setting the other weight,

w≥grade3, such that when multiplied by the number of samples in the under-sampled

class, it equals the number of samples in the over-sampled class as described in [66].

Using the number of cases of each grade in the whole dataset gives weightings w≥grade3

= 5.40 and w≥grade3 = 5.02 when looking at just esophagitis and all esophageal toxicities

respectively, note that a cross-validation scheme is used for training and testing so these

values will change for separate folds, this cross-validation is described later in Section

5.3.2.3.

5.3.2.2 ResNet18 with a Continuous Grade Output

When treating the problem as a binary classification with grade 3 as the class boundary,

all of the grade 0, 1 and 2 cases are grouped together in one class. This may not be the

ideal training scheme for the CNN to learn features relating to toxicity as the grade

2 cases likely have dose features that are more similar to grade 3 cases than grade 0

cases. To leverage more of the information available in the training of the deep learning

model, the toxicity grade classifications were treated as a continuous variable so that

they do not have to be grouped into two classes. Additionally, once discarded prior to

model training, this information can not be recovered. This means that a model trained

for binary classification can only perform binary classification at the grade boundary it

was trained for. A model trained with all the grades available can be used for binary

prediction at any grade boundary or for exact grade prediction.
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The CNN was applied as a regression model where the aim was to predict the ex-

act grade instead of a binary classification. Also, the exact grade is not limited to

being an integer value so the toxicity grade was treated as a continuous variable. A

similar approach has been applied for severity prediction in different medical imaging

applications [198, 199]. Once exact grade predictions are determined, a binary classi-

fication can be performed on these continuous grades by defining a cutoff value where

any predictions above will be classified as grade ≥ 3. In addition to the potential for an

increased accuracy of the binary classification, the continuous grade output approach

may be beneficial for estimating the expected severity of the toxicity.

To apply 3D-ResNet18 as a regression model that can treat the toxicity grades as

a continuous variable, it was adapted from use as a binary classifier by removing the

softmax layer and replacing the final fully connected layer with one with a fully con-

nected layer that has a single output, which acts as the grade prediction. Additionally,

the loss function when treating the grades as a continuous variable has to change. The

loss function used was the weighted mean square error (WMSE) [200], this is defined

in equation 5.3.

WMSE =
1

N

N∑
n=1

wi (yn − ŷn)2 (5.3)

Here, N is the number of cases in the mini-batch, yn is the true grade and ŷn is

the predicted grade of the n-th sample in the mini-batch. A weighting, wi, is again

applied to the contribution to the loss from each sample that is dependant on whether

the grade is ≥ grade 3 < grade 3 as defined in equation 5.2.

Due to the grade distribution of the training set and the discreet nature of the

ground truth toxicity grades, the grades predicted by the regression model will be

biased to be close to the mean value of the training dataset, i.e. the variance of

the model output will be lower than reality. This can be corrected for by comparing

the distribution of the training data ground truth to the distribution of the model

output with the training data input. To do this, the variance, var(Ytrain), and mean,

mean(Ytrain), of the ground truth toxicity grade distribution of the training dataset

were calculated. Then the training data was input to the model after it had been

trained and the grade predictions were calculated. The variance, var(Ŷtrain), and mean,

mean(Ŷtrain), were then calculated for these training set grade predictions. Equation
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5.4 [201] was then used to reduce the bias of the model output, ŷ, by setting the output

of the model to ŷC which, for the training dataset, will make the mean and variance of

the adjusted model output equal to the mean and variance of the ground truth toxicity

grades.

ŷC = (ŷ −mean(Ŷtrain)) ∗

√
var(Ytrain)

var(Ŷtrain)
+mean(Ytrain) (5.4)

On its own, the adjusted model output, ŷC , could be clinically used as a risk score as

discussed in [202], but to compare the results to the literature and our other methods,

this needs to be converted into a binary classification. To do this, a cutoff value has to

be defined for the model output where any value above the cutoff will be classed into

the grade ≥ 3 class and any value below the cutoff will be classed into the grade < 3

class. The AUC ROC metric is calculated by varying this cutoff value and calculating

the true positive rate and the false positive rate across the range that causes these

values to vary from 0 to 1. To calculate the sensitivity and specificity of the binary

classification, a single cutoff value has to be selected. A softmax function was used

to create a binary classifier based on the continuous grade output of the model. This

was trained by splitting the data into the classes < grade 3 and ≥ grade 3. The input

to the softmax function was the grade prediction from the CNN model. The training

data was used by applying it to the trained CNN model which produced floating-point

grade predictions for each case. The softmax layer was then trained to convert these

grades into a probability. The training was completed for 1000 epochs using the Adam

optimiser and an initial learning rate of 0.01. This was done using the MATLAB deep

learning toolbox. The full workflow for the training of the regression based CNN is

shown in figure 5.2.

5.3.2.3 CNN Training and Cross Validation

For both the binary classification and continuous grade regression based applications

of the 3D-ResNet18 model, the same training protocol was used. The dataset was

randomly split into four subsets with an equal split while keeping an equal proportion

of grades in all of the sets, note that this was not possible for grade four and five

cases as there were not enough patients receiving those grades in the dataset. A four-

fold cross-validation approach was taken so the networks were trained on three of the
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Figure 5.2: The workflow for training the regression based model for
esophagus toxicity prediction using ResNet-18 with a continuous grade
output and separate training of a softmax layer to produce a binary clas-
sification.

subsets and tested on the remaining subset of the data. This was repeated three times

using a different subset as the test set so that the models could be tested on the full

dataset. The cross-validation strategy is shown in figure 5.3. Note that a new model

was trained for each new fold so that each model was not trained on any of the data it

was being used to test as this would bias the model. The training was performed using

the parameters defined in table 5.3.

Figure 5.3: The workflow for the 4-fold cross-validation training strat-
egy and the 95% confidence interval on the AUC calculation.

Training Parameter Value

Optimisation Algorithm adam
Epochs 50

Mini-Batch Size 12
Initial Learning Rate 0.01

Learning Rate Drop Period (epochs) 10
Learning Rate Drop Factor 0.2

Table 5.3: The training parameters for the training of the 3D ResNet18
network as both a binary classifier and continuous output regression
model.

During the training of the network, data augmentation steps were applied after
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every epoch of training to reduce overfitting and increase the robustness of the features

learned by the network. These augmentation steps were a random rotation between 0

and 360 degrees around the z-axis and a random translation between -10 and 10 pixels

in both the x and y directions. The training was run on two NVIDIA GeForce GTX

1080 Ti graphics cards in parallel.

5.3.3 Dose Feature and Decision Tree Based Classification Model

As well as the CNN based approach to the classification, a dose volume histogram

feature based approach was taken with boosted decision trees used as the classifier.

Again, all methods were applied to classify both esophagitis and all esophageal toxicities

with the number of each grade defined in table 5.1. The features used here were the

VxGy and V olxGy over the range of x from 5Gy to 80Gy in steps of 5 as well as the

mean and maximum esophagus dose. The calculation of these was described in section

5.3.1.

In the same manner as with the 3D CNN approach, both a binary and continuous

grade definition approach was taken for the training of the models. For the binary grade

approach, the grades were again grouped into the classes < grade 3 and ≥ grade 3. For

the binary classification approach, the AdaBoost algorithm [187] was applied. For the

regression approach, decision trees with the LSBoost algorithm [201] was applied. Just

like with the CNN approach, the output from the LSBoost model was a continuous

grade from which an AUC ROC, sensitivity and specificity metrics could be calculated

following the same methods described in section 5.3.2. The parameters used for the

training of both the AdaBoost and LSBoost methods are shown in table 5.4. For the

AdaBoost method, class weights were again applied to the loss function to account

for the unbalanced grades. All training was completed using a 4-fold cross-validation

approach in the same manner as the 3D-CNN training which is detailed in figure 5.3.

Training Parameter Value

Learning rate 0.01
Learning cycles 200

Maximal number of decision splits 10
Minimum observations per leaf 1 (AdaBoost), 5 (LSBoost)

Minimum observations per branch node 2 (AdaBoost), 10 (LSBoost)

Table 5.4: The training parameters for the classification of the dose
features using the boosted decision tree classification methods AdaBoost
and LSBoost.
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5.3.4 LKB NTCP Model

The final model applied was the LKB NTCP model which is a mathematical model

for predicting the probability of normal tissue toxicity due to dose volume effects. The

LKB NTCP model is defined by equation 5.5, 5.6 and 5.7 [97, 98, 99, 100]. These

equations are described in more detail in section 3.1.1.

NTCP =
1√
2π

∫ t

−∞
e−

x2

2 dx (5.5)

t =
EUD− TD50

m∗TD50
(5.6)

EUD =

(∑
i

viD
1
n
i

)n
(5.7)

The LKB NTCP model was applied by fitting a non-linear function to the data to

solve for TD50, n and m through the application of the Levenberg-Marquardt nonlinear

least squares algorithm [203, 204]. The V5 to V80 in steps of 5 were used to fit the

model. In the same manner as for the previous models, this was done with a 4-fold

cross-validation approach where the model was fit using data from three folds and

tested on data from a single fold, repeating this until the full dataset had been tested

over.

5.3.5 Ensemble Model

Ensemble models combine the predictions of two or more models to make a new predic-

tion based on the predictions from all of the models and have been shown to consistently

improve performance when applied to other classification problems [205, 206]. A sim-

ple ensemble model was produced by averaging the classification probabilities of the

LKB NTCP model, dose feature decision tree based model and the CNN based model.

This was done separately for the binary classification and regression approaches as well

as the models looking at only esophagitis and all esophageal toxicities producing four

separate ensemble models that could be compared.
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5.3.6 Classification on only the more extreme cases

It is likely that the model performs better on the more extreme cases than on the

marginal cases as the extreme cases are more likely to have distinct dose features.

Marginal cases here are grade 1 and 2 cases where some form of esophageal toxicity has

been noted but it is below grade 3 so it would be grouped in the grade < 3 group. To

determine if there is a difference in the predictive power on the more extreme cases, the

testing of the model with the highest performance was repeated on only the grade 0,

3, 4 and 5 cases. This was applied with the same 4-fold cross-validation testing scheme

that was previously applied.

5.3.7 Grade ≥2 Classification

While in the literature, grade ≥ 3 is usually considered the most clinically relevant

boundary to define for a binary classification of esophageal toxicity, there is still a

benefit in reporting model performance at other grade boundaries. The next most

relevant grade boundary is to predict if a patient develops grade ≥ 2 esophageal toxicity.

The methods described in sections 5.3.1 to 5.3.5 were repeated using grade ≥ 2 as the

boundary for positive cases.

5.3.8 Exact Grade Classification and Risk Score

Instead of creating a binary classification model, which is the standard approach in

the literature, it may be more clinically relevant to create a model that outputs a

continuous risk score or predicts an exact toxicity grade. With the regression based

models, the output is an estimate of the patient’s toxicity grade. This was converted to

an integer grade by simply rounding to the nearest integer. Here grades 3, 4 and 5 are

grouped together as there are not enough grade 4 and 5 cases to draw any meaningful

conclusions on their own. Additionally, the model’s direct output was recorded which

represents a risk score. This was all done for a single iteration of the CNN-LSBoost

ensemble.
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5.4 Results 1: CNN and Decision Tree Prediction Models

5.4.1 Grade ≥3 Binary Classification

For all model implementations, the performance metrics calculated were the AUC ROC,

sensitivity and specificity for grade ≥3 classification these are shown in table 5.5. 95%

confidence intervals of the AUC were calculated by repeating the 4-fold cross-validation

training and testing of each model on new random subsets of the data 40 times. The

model achieving the highest AUC is model 12 which is the CNN-LSBoost ensemble

model using regression models applied to all of the esophageal toxicities.

Model
Model
Type

Adverse
Events

Sens
(%)

Spec
(%)

AUC
95% CI
(AUC)

1. LKB NTCP Classification Esophagitis 59.9 65.7 0.646 0.639, 0.652
2. AdaBoost Classification Esophagitis 46.3 76.2 0.652 0.640, 0.662
3. 3D ResNet-18 Classification Esophagitis 70.0 53.8 0.662 0.653, 0.675
4. Ensemble Classification Esophagitis 64.1 62.5 0.671 0.663, 0.678
5. LKB NTCP Classification All Esophageal 62.4 64.8 0.653 0.640, 0.664
6. AdaBoost Classification All Esophageal 56.4 66.4 0.652 0.647, 0.658
7. 3D ResNet-18 Classification All Esophageal 69.1 56.4 0.678 0.669, 0.687
8. Ensemble Classification All Esophageal 65.2 60.4 0.682 0.675, 0.689
9. LSBoost Regression Esophagitis 50.6 78.6 0.682 0.677, 0.687
10. 3D ResNet-18 Regression Esophagitis 72.4 51.3 0.676 0.669, 0.681
11. Ensemble Regression Esophagitis 61.3 66.8 0.680 0.673, 0.686
12. LSBoost Regression All Esophageal 58.1 71.1 0.686 0.683, 0.690
13. 3D ResNet-18 Regression All Esophageal 72.4 54.6 0.702 0.694, 0.707
14. Ensemble Regression All Esophageal 65.2 65.3 0.705 0.699, 0.711

Table 5.5: The sensitivity, specificity and AUC metrics for all models
tested over the whole dataset using 4-fold cross-validation. 95% confi-
dence intervals are also included for the AUC metric. “Ensemble” is an
ensemble of the LKB NTCP, decision tree and CNN models.

5.4.1.1 Testing on only the more extreme cases

The results of testing the ensemble models, which are models 3, 6, 9 and 12 in table 5.5,

on only the grade 0 and grade ≥ 3 cases are shown in table 5.6. It should be noted here

that when looking at all esophageal toxicities rather than just esophagitis produces a

different number of test cases as there are more grade 1 and 2 cases when considering

all esophageal toxicities. When considering only esophagitis there are 179 grade 0 and

62 grade ≥ 3 cases, when considering all esophageal toxicities there are 84 grade 0 and

66 grade ≥ 3 cases.
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Model
Model
Type

Adverse
Events

Sens
(%)

Spec
(%)

AUC
95% CI
(AUC)

4. Ensemble Classification Esophagitis 64.1 65.3 0.697 0.692, 0.702
8. Ensemble Classification All Esophageal 65.3 71.8 0.743 0.738, 0.748
11. Ensemble Regression Esophagitis 61.3 70.7 0.710 0.706, 0.714
14. Ensemble Regression All Esophageal 65.2 75.3 0.768 0.765, 0.772

Table 5.6: The accuracy, sensitivity, specificity and AUC metrics for
all models tested on only grade 0 and grade ≥ 3 cases. 95% confidence
intervals are also included for the AUC metric.

Model
Model
Type

Adverse
Events

Sens
(%)

Spec
(%)

AUC
95% CI
(AUC)

1. LKB NTCP Classification Esophagitis 62.2 55 0.628 0.619, 0.637
5. LKB NTCP Classification All Esophageal 61.6 59.6 0.651 0.641, 0.660
9. LSBoost Regression Esophagitis 49.0 65.2 0.628 0.621, 0.635
10. 3D-ResNet Regression Esophagitis 72.1 48.4 0.646 0.637, 0.653
11. Ensemble Regression Esophagitis 60.8 58.5 0.651 0.645, 0.657
12. LSBoost Regression All Esophageal 65.6 61.1 0.670 0.662, 0.677
13. 3D-ResNet Regression All Esophageal 73.4 53.6 0.673 0.665, 0.679
14. Ensemble Regression All Esophageal 68.6 59.3 0.676 0.669, 0.682

Table 5.7: The accuracy, sensitivity, specificity and AUC metrics for
all regression models when predicting grade ≥ 2 cases. 95% confidence
intervals are also included for the AUC metric.

5.4.2 Grade ≥ 2 Binary Classification

The results for the grade ≥ 2 classification are displayed in table 5.7. Here only the

regression models are presented as the models do not need to be retrained, only the

grade cutoff for binary classification needs to be recalculated. The LKB NTCP models

were also retrained for grade ≥ 2 classification for the purpose of comparison and use in

the ensemble models. The best performing model here is again the ensemble regression

model for classifying all esophageal toxicities which achieved an AUC of 0.676. A similar

performance increase is observed here for grade ≥ 3 classification when classifying all

esophageal toxicities as opposed to only using the esophagitis grades.

5.4.3 Exact Grade Classification and Risk Score

The exact grade prediction is presented in the confusion matrix in Figure 5.4. While the

accuracy is low when predicting exact grades, this is expected due to both the higher

level of granularity when looking at exact CTCAE toxicity grades and the large varia-

tion in dose response of patients due to currently poorly understood factors. Analysing

the model’s performance with this level of granularity can help shed light on the limits

of toxicity prediction models. It can be seen in Figure 5.4 that the predicted grade for
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each true grade appears to follow a distribution that peaks on the correct grade and

reduces further away from that grade. This distribution can be highlighted further by

displaying a box plot of the predicted grades for each ground truth grade, this box plot

is displayed in figure 5.5.

Figure 5.4: Confusion matrix produced by rounding the output of the
regression based model to the nearest integer.

In figure 5.5 it can be seen that the model has a poor differentiation between grade

0 and grade 1 cases. This aligns with the understanding of CTCAE grades as grade 1

cases are mild, potentially asymptomatic cases, with clinical observations only which

causes challenges for clinicians when differentiating between grade 1 and grade 0 cases

which introduces a large interobserver error when reporting these cases. Additionally,

if a patient’s symptoms are mild they may not report these to a clinician. The clearest

split in the model predictions presented in figure 5.5 is between the grade 1 and grade

2 cases. This again can be explained through the CTCAE grade definitions as grade

2 cases are symptomatic cases that generally have some, although minimal, clinical

intervention. This definition is more clear and allows clinicians to more accurately

define cases as grade 2. There is again a poor prediction split between grade 2 and

grade 3 cases. This is potentially again due to an unclear point at which a grade 2 case

becomes a grade 3 case again creating the potential for a large interobserver error.

It can also be seen that while the variability of the model output has been corrected

using equation 5.4, there is still some bias towards the average predicted grade which
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Figure 5.5: Box plot showing the predicted toxicity grades for all ground
truth grade sets.

is hard to remove due to dataset size limitations and the difficulty converting the

quantised grades into a continuous output. To highlight the importance of applying

equation 5.4, the same box plot is shown without including this correction in figure 5.6.
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Figure 5.6: Box plot showing the predicted toxicity grades for all ground
truth grade sets without applying equation 5.4 to adjust the models vari-
ance.

5.5 Discussion 1: CNN and Decision Tree Prediction Mod-

els

In the literature, when predicting grade ≥ 3 esophageal toxicity using only dose data,

AUC values of 0.75 (N=15/147) [144] and 0.70 (N=21/177) [148] have previously been

reported with Luna et al. [207] reporting no statistically significant predictive power

(N=23/202). Here N=23/202 means 23 positive cases out of 202 total cases. For grade

≥ 2 esophageal toxicity, AUC values of 0.60 (N=51/161) [145], 0.70 (N=49/129) [146]

and 0.76 (N=36/79) [197] have been reported. As all of these studies use separate

datasets, little information can be gained from comparing these AUC metrics directly

to the work in this chapter work. The small size of the datasets used in this field, with

the largest test set containing only 23 grade ≥ 3 cases [207], creates much uncertainty

when comparing separate works. This is highlighted by Luna et al. [207] reporting

no predictive power from dose and clinical features that were included in other works.

For this reason, only direct comparisons between the separate methods trained in this

study can be used to draw conclusions.
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The standard method in the literature for the prediction of toxicity to the esophagus

using dose information is to calculate dose features from the dose map and use machine

learning techniques such as decision trees as a binary classifier to create a prediction

model for esophagitis only [144, 145, 146, 147]. The model applied here that is most

similar to this is model 2 in table 5.5 which achieved an AUC of 0.652. An older

but more established method in the literature is to use NTCP models such as the

LKB model [99, 96]. The implementation of the LKB NTCP model here achieved a

similar performance to the decision tree based methods with an AUC of 0.646 when

predicting esophagitis. The best performing model was model 14 in table 5.5 which

achieved an AUC of 0.705. This gives an increase of the AUC of around 0.05 from

applying the methods discussed in this study. By comparing the different models in

table 5.5, it can be seen that this increase in predictive power arises from a combination

of the regression based training scheme, including additional esophageal toxicities and

combining the 3D-CNN, boosted decision tree and LKB NTCP models as an ensemble.

Combining the models in an ensemble is also likely to improve the models robustness

as if one method fails due to errors in data then there is a chance the other methods

will not fail and maintain a more accurate prediction.

While many studies have achieved a higher AUC by using additional features that

were not available in the RTOG-0617 dataset, such as patients pre-treatment cytokine

levels [144] or changes in a post-treatment CT scan [147], these studies all include dose

features in their final models. Therefore, the advancement in the predictive power of

dose features reported here may be of benefit to all of these models. Further, the

methods described in this study are not exclusive to either dose based prediction or to

the esophagus, therefore, they may be of benefit to all toxicity prediction studies and

AI-guided RT.

5.6 Methods 2: ANN and LSBoost Hyperparameter Tun-

ing and Robustness Tests

The use of the CNN model in the previous training scheme made it impractical to em-

ploy validation for hyperparameter tuning in addition to the cross-validation approach

for testing due to the training times of the CNN. It was observed that the use of a

CNN on its own provided little benefit to the AUC performance metric compared to
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the LSBoost, these results are given in section 5.4.1. For these reasons, an ANN (or

MLP) using the same dose features as the boosted decision tree model was used in place

of the CNN for investigating how the performance metrics can be improved through

hyperparameter tuning in addition to some robustness tests which also required many

iterations of the training cycle. Only the regression models were tested here with all

esophageal toxicities used.

5.6.1 Hyperparameter Tuning of the ANN and LSBoost Regression

Model

The models applied here were a simple ANN and the LSBoost algorithm for boosted

decision trees, both using the dose features calculated in section 5.3.3 as the model

input. The ANN consists of an input layer, a fully connected layer, an activation layer,

a fully connected layer and an output layer connected in order. The models were trained

as regression models with a continuous output. This output was adjusted for variance

bias using equation 5.4 as described in section 5.3.2.2. The models were evaluated as

exact grade prediction models and as binary classifiers by defining a cutoff value, 1.5

for grade ≥ 2 and 2.5 for grade ≥ 3 classification. The models were evaluated using the

AUC for both grade ≥ 2 and grade ≥ 3 binary classification and the mean average error

(MAE) for the exact grade output. Additionally, the ANN and LSBoost models were

combined as an ensemble model by taking a weighted average of the two model outputs

where the weighting was a tunable parameter. A nested cross-validation approach was

taken for hyperparameter tuning and testing.

Test Data Split A 4-fold data split was taken where one fold was held back for

testing and the other three folds were used for training and hyperparameter tuning. The

training and hyperparameter tuning were repeated four times, leaving out a separate

fold for testing each time so that testing could be repeated for the full dataset.

Training and Hyperparameter Tuning The data in the three folds left out

for training and hyperparameter tuning were again split into four folds. One of these

folds was used for hyperparameter tuning and the others were used for training. Cross-

validation was performed so the hyperparameter tuning was repeated on each fold

and the average hyperparameters were used to train the final model on all of the

folds (not including the test data). Hyperparameter tuning was applied by Bayesian

optimisation to minimise the MSE on the validation set with 40 iterations of Bayesian
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optimisation run for every fold. The loss function used during training for both models

was the mean square error (MSE). The hyperparameters tuned and their average values

across the training repetitions are: ANN Hyperparameters: L2 regularisation term

λ, fully connected layer size, activation function, loss gradient tolerance. LSBoost

Hyperparameters: Maximum number of splits, minimum leaf size, minimum parent

size, number of learning cycles, learning rate. Ensemble Hyperparameters: The

weighting proportion for the LSBoost and ANN models.

5.6.2 Testing the Model Robustness

An often overlooked aspect of model performance in RT toxicity prediction is the model

robustness. A robust model will perform well on the dataset it is trained and tested on

as well as data from other datasets which may have dataset specific biases. The best

way test the robustness of a model is to apply it to a large variety of test data from

different sources. This would allow the performance of the model to be observed under

the presence of additional random and systematic variance in the features. In the RT

toxicity prediction domain, sources of this variance include OaR contouring differences,

scanner and treatment linac differences, scanner and linac calibration errors, patient

movement and unrelated patient health changes. Additional large sources of systematic

variation include using a different RT method such as VMAT, treatment of a different

type of cancer, different fractionation and the use of concurrent treatment options such

as chemotherapy. The RTOG-0617 study was a multi-centre study using both IMRT

and 3D-CRT as well as a mix of concurrent chemotherapy or no chemotherapy so there

will is already reasonable variance in the data meaning the previous test results have

evidence for having a good level of robustness. A negative of using this data is that

the patient recruitment and RT application will have followed the study protocol [193]

which contains constraints on patient eligibility depending on their tumour stage and

overall health as well strict definitions for the OaR contouring and RT application

meaning the variability in terms of patient health and RT application will be reduced

compared to a general clinical setting.

With this all in mind, this section aims to test the robustness of the ANN and LS-

Boost models for both grade ≥ 3 toxicity prediction and exact toxicity grade prediction.

As there is a lack of public data in the toxicity prediction domain, these robustness

tests are performed by adding random noise to the test data features and testing the
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performance of the models as the level of noise increases. Before training and testing,

the dose features were converted to z-score values by setting the mean of each feature

to zero and the feature values such that a value of 1.0 would indicate a value that is

one standard deviation from the mean. This was done simply so that the level of noise

can be interpreted easily in terms of feature standard deviations. Noise can then be

added to feature F converting it to feature FN through equation 5.8.

FN = F +X (5.8)

Where X ∼ U(−α, α) and U(−α, α) is a uniform distribution with maximum and

minimum values α and −α. This distribution is represented by figure 5.7.

Figure 5.7: Probability distribution for the noise added to the dose
features.

A training and testing scheme was set up to add noise to the test set with increasing

values of α and record the effect on the AUC ROC and MAE test metrics.

To do this, the 4-fold cross-validation training and testing scheme was repeated

for the ANN and LSBoost models without the added hyperparameter tuning aspect of

cross-validation. Noise was added to the test set prior to model predictions. This was

repeated 5 times to get an average for the AUC and MAE. This was all repeated for

noise with values of α in the range of 0 to 5 increasing by 0.1 each iteration. Plots

of the MAE and AUC ROC were produced for the ANN and LSBoost models for the

increasing values of noise.
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5.6.3 Improving Model Robustness

After the baseline results for model robustness under increasing noise added to the

features were produced, methods to improve the model robustness were applied.

5.6.3.1 Ensemble Model

The first method to improve model robustness investigated was combining the ANN

and the LSBoost model as a weighted ensemble. The most commonly selected weighting

from the hyperparameter tuning was used.

5.6.3.2 ANN L2 Regularisation

L2 regularisation is known to increase model robustness by forcing the model to rely

on features more evenly which reduces scale of overfitting [208]. The hyperparameter

tuning showed that a high level of L2 regularisation is required for optimum performance

of the ANN model. The robustness test was repeated for the ANN with different values

of λ, the L2 regularisation term. L2 regularisation was not available for the LSBoost

implementation used.

5.6.3.3 SMOTE

Synthetic minority oversampling technique (SMOTE) [209] is commonly applied in

radiotherapy prediction models [210] to improve model performance by generating syn-

thetic training data. SMOTE was applied to the training data to oversample the

underrepresented grades, grade 2 was the most common grade for esophageal toxicity

so SMOTE was applied to oversample grade 0, 1 and 3 cases. SMOTE was not applied

to the grade 4 and 5 cases as there were only two of each case in the full dataset so it

is not possible to oversample these cases. The performance of the ANN and LSBoost

model was recorded as noise was applied to the model with SMOTE applied.

5.6.3.4 Adding Noise to the Training Data

The training dataset was expanded by adding random noise to the training data fea-

tures. This was applied following equation 5.8 using a α value of 0.2. The training

dataset was expanded to 5 times its original size using this technique. This was done

for both the ANN and LSBoost models both on its own and with SMOTE.
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5.7 Results 2:

5.7.1 ANN and LSBoost Hyperparameter Tuning

The results of the model training with hyperparameter tuning are displayed in figure

5.8.

Model
AUC

(Grade ≥ 3)
AUC

(Grade ≥ 2)
MAE

ANN 0.709 0.690 0.894
LSBoost 0.682 0.669 0.925
Ensemble 0.707 0.691 0.884

Table 5.8: Results for the hyperparameter tuning of the ANN and
LSBoost models.

The hyperparameter values most commonly selected by the Bayesian hyperparam-

eter tuning for both the ANN and LSBoost models are given here. ANN Hyper-

parameters: L2 regularisation λ = 0.1, fully connected layer size = 20, activation

function = sigmoid, loss gradient tolerance = 1e−4. LSBoost Hyperparameters:

Maximum number of splits = 2, minimum leaf size = 2, minimum parent size = 5,

number of leaning cycles = 400, learning rate = 0.01. The average weighted aver-

age ensemble weighted the ANN 4 times higher than the LSBoost model on average.

Further details regarding the hyperparameters can be found in the MATLAB R2022b

files for the functions ’fitensemble()’ and ’fitrnet()’ for the LSBoost and ANN models

respectively.

5.7.2 Baseline and Ensemble Model Robustness

The noise response of the AUC for the ANN, LSBoost and ensemble models are shown

in figure 5.8. From this, it can clearly be seen that the ANN is much more robust to

noise than the LSBoost model when considering the AUC as the AUC drops off much

more slowly for the ANN than the LSBoost model. The AUC for the LSBoost model

drops off sharpy as noise is added to the test data suggesting that it is a less robust

model than the ANN. The ensemble model here achieves almost identical performance

to the ANN.

The noise response of the MAE for the ANN, LSBoost and ensemble models are

shown in figure 5.9. This follows a similar pattern to the AUC where the LSBoost

model’s performance sharply drops off and the performance of the ANN remains close
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Figure 5.8: AUC for the ANN, LSBoost and Ensemble baseline models
with increasing noise.

Figure 5.9: MAE for the ANN, LSBoost and Ensemble baseline models
with increasing noise.

to optimum under the presence of a large level of noise. In this case, the ensemble

model has a slightly improved performance compared to the ANN showing that there

is still a benefit to choosing a weighted ensemble model over a single model even when

one model is outperforming the other.
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5.7.3 L2 Regularisation

The results for testing the response of the ANN to noise added to the test set for different

L2 regularisation strengths is presented here. Figure 5.10 shows the ANN response in

terms of the AUC where it can be clearly seen that the lower λ values produce models

that are less robust to noise in terms of the AUC. There is no discernible difference

between the models with λ from 0.25 to 0.95.

Figure 5.10: ANN AUC with increasing noise with different L2 reg-
ularisation terms, λ.

Figure 5.11: ANN MAE with increasing noise with different L2
regularisation terms, λ.
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Figure 5.11 shows the ANN response to added noise in terms of the MAE. It is

again observed that the lower values of λ have a sharper increase in the MAE as the

5.7.4 SMOTE and Adding Noise

The results of testing the response of the LSBoost and ANN models to increasing noise

in the test set with both SMOTE and random noise used to augment the training data

is presented here.

5.7.4.1 LSBoost

The AUC response of the LSBoost model is displayed in figure 5.12. There is no

observed difference in the robustness of the LSBoost model in terms of the AUC when

applying SMOTE, random noise or both during the training of the model.

The MAE response of the LSBoost model is displayed in figure 5.13. Here it can

be seen that at higher levels of random noise added to the test set, all the methods

of data augmentation improve the MAE of the model. This effect is stronger with

SMOTE than augmentation by random noise. The SMOTE method changes the grade

distribution of the training dataset which may bias the model to predict grades more

uniformly, altering the MAE response. The lack of divergence at low levels of noise

suggests that this is not the case so most of the improved response should be from a

reduction of overfitting. The added noise method of data augmentation does not alter

the grade distribution so the improvements seen here are again likely entirely due to a

reduction in overfitting.

5.7.4.2 ANN

The AUC response of the ANN is displayed in figure 5.14. It can be seen from this

that there is again no discernible change to the robustness in terms of the AUC when

applying SMOTE or noise during training.

The MAE response of the ANN is displayed in figure 5.15. From this, it can be seen

that the model trained on only the original data scores a better MAE at every level of

added noise.
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Figure 5.12: LSBoost AUC response to added noise with the orig-
inal data only and data augmentation with SMOTE, added noise and
SMOTE with added noise.

Figure 5.13: LSBoost MAE response to added noise with the orig-
inal data only and data augmentation with SMOTE, added noise and
SMOTE with added noise.

5.7.5 Final Models

As the LSBoost model and the ANN did not respond in the same manner to the

added data augmentation steps, separate training schemes should be applied. The final
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Figure 5.14: ANN AUC response to added noise with the origi-
nal data only and data augmentation with SMOTE, added noise and
SMOTE with added noise.

Figure 5.15: ANN MAE response to added noise with the origi-
nal data only and data augmentation with SMOTE, added noise and
SMOTE with added noise.

LSBoost model used SMOTE and additional noise added to the training dataset. The

final ANN model used only the original data and a high L2 regularisation of λ = 0.95.

An ensemble model was again produced by taking a weighted average of the LSBoost

and ANN models. The AUC and MAE response of these final models is shown in

figures 5.16 and 5.17 respectively.
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Figure 5.16: Final Model AUC, the AUC for the LSBoost with
smote and noise, the ANN with high L2 regularisation and the ensemble
combination of the two models.

Figure 5.17: Final Model MAE, the MAE for the LSBoost with
SMOTE and noise, the ANN with high L2 regularisation and the en-
semble combination of the two models.

5.8 Discussion 2

The work in this section has shown that when using hyperparameter tuning, a model

for the prediction of esophageal toxicity from dose map features can be produced to

achieve an AUC of 0.707 and 0.691 for the classification of grade ≥ 3 and grade ≥ 2 re-

148



spectively with a MAE of 0.884 when trying to predict exact toxicity grade. The ANN

outperformed the LSBoost model on all metrics when no test set noise was added. Ad-

ditionally, the ANN outperformed the LSBoost model for all robustness tests provided

there is a high level of L2 regularisation present. However, using a weighted ensemble

of the two models provides benefit from the LSBoost model by increasing the model

robustness to noise in terms of the MAE while not impacting the AUC. To improve

the robustness of the models it was observed that a high level of L2 regularisation

was beneficial for the ANN and using SMOTE and adding noise during training was

beneficial for the LSBoost model. L2 regularisation was not available for the LSBoost

model but may also be beneficial if implemented.

Many of the improvements to the robustness of the models would not be apparent

if the tests to add noise were not applied. For example, in figure 5.11, when α = 0

and no noise is added, all of the models perform equally. A sharp divergence is then

observed for lower values of λ with added noise. This highlights the benefit of these

robustness tests for reducing overfitting and building robust models.

Future work may investigate the application of systematic errors to the test data to

study robustness by altering the esophagus volume to simulate contouring errors or by

randomly translating the esophagus volume to simulate positioning errors. Additional

data augmentation techniques, such as the use of GANs to generate data, and testing

their effect on robustness may also be an interesting avenue of further research.

5.9 Conclusions

While there has been much work on the prediction of adverse events from pre and post

RT information, most of this has been focused on the specific imaging modalities and

features used for the classification as opposed to focusing on advancing the technical de-

tails of the machine learning methods. This is likely due to the lack of large benchmark

datasets applicable to the toxicity prediction domain that are necessary to determine

if an increase in a prediction metric is due to a change in method or due to uncertainty

due to the dataset size. In this chapter, the RTOG-0617 dataset has been applied as

the largest publicly available dataset with the necessary data to investigate technical

improvements in prediction models for RT esophageal toxicity from dose features.

The initial tests investigated the use of 3D-CNNs, boosted decision trees and the
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LKB NTCP model. Applying a 3D-CNN to the dose map produced a marginal im-

provement when compared to classifying DVH features using decision trees or the LKB

NTCP model, the ensemble model using the predictions from both methods did pro-

duce a further marginal improvement to the AUC. Treating the grade definitions as a

continuous variable for training purposes and using regression based techniques again

produced a further marginal increase to the AUC. Finally, grouping all esophageal

based adverse events instead of trying to isolate esophagitis provided another increase

to the AUC. Combining these three increases lead to a larger increase in the predictive

power of the final model. The best performing model achieved an AUC of 0.705.

Further experiments focused on an ANN and LSBoost model, both with feature in-

puts, to improve model training time and allow for hyperparameter tuning and model

robustness tests to be applied. The hyperparameter tuning allowed for the final model

to achieve an AUC of 0.707 and 0.691 for grade ≥ 3 and grade ≥ 2 prediction re-

spectively with a MAE of 0.884 for exact grade prediction. The AUC here is a small

improvement on the initial tests without hyperparameter tuning using the CNN and

LSBoost model. The robustness of the ANN and LSBoost models was then evaluated by

applying random noise to the test sets and observing the degradation of performance.

Methods to improve the robustness were tested which found that L2 regularisation was

beneficial for the ANNs robustness and SMOTE and random noise-based data augmen-

tation were beneficial for the LSBoost models robustness. Combining both models as

an ensemble model was also shown to be effective.

Future work and Direction of the Field

The major limitation currently in the field of radiotherapy outcome prediction is the

lack of large benchmark datasets that can be used to test methods with a high level

of certainty regarding model performance and to directly compare separate methods

easily. This data scarcity is mainly due to data privacy and ethical concerns as, in

the UK, over 100,000 patients are treated with RT annually [211] but only a small

proportion of these patient’s data will be accessible to researchers, usually for specific

clinical trials. Additionally, there is an increased workload for clinicians to report

RT toxicity outcomes using the CTCAE grading scale, necessary to conduct these

prediction studies as these are not recorded during standard care.

Future studies will be focused on applying machine learning methods to larger
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datasets in a manner that would be clinically implementable. An example of such a

study is the PROSECCA trial which is currently in progress and aims to analyse the

data from over 10,000 prostate cancer patients [212]. Additionally, recent advancement

in natural language processing means it is now becoming feasible to automatically

generate CTCAE, or other, toxicity metrics from clinical notes that are collected during

standard care [213, 214] which has been shown to be possible for esophageal toxicity

[215].
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conclusions in this thesis are the sole responsibility of the author and do not necessarily

reflect the opinions or views of the clinical trial investigators, the NCTN, or the NCI.

All clinical and imaging data, including dose maps and RT planning structures, are

available from the NCTN/NCORP data archive upon request.
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Chapter 6

Registering 4D-PET/CT to

Pathology Images and the

Automatic Segmentation of

Gross Pathology Images

This chapter is focused on methods for the registration of PET/CT and pathology

imaging modalities as well as the automatic segmentation of tumour volumes in gross

pathology images for NSCLC. Section 6.1 discusses the motivations for this work, sec-

tions 6.2 to 6.4 detail the first set of methods, results and discussion relating to the

registration task and sections 6.5 to 6.7 detail the second set of methods, results and

discussion related to the segmentation task. Finally, the conclusions for the whole

chapter are presented in section 6.8.

6.1 Introduction

The work in this chapter is split into two distinct tasks which are; the registration of

PET/CT to pathology images and the segmentation of gross pathology image. The

motivations for these tasks are discussed in the following subsections.
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6.1.1 PET/CT to Pathology Registration

18F-FDG PET/CT is a specialised method of non-invasive in-vivo imaging used in

the diagnosis and treatment of most cancers including lung cancer. Currently, PET

and CT imaging provide little information about the cellular makeup of a tumour and

its environment. Increasing the knowledge that can be gained from these imaging

modalities would aid clinicians in making treatment decisions which would improve the

treatment and survival rates. To do this, PET/CT images would need to be compared

to pathological images of a tumour after it has been surgically removed which would

provide cellular information. This would involve a registration of the different imaging

modalities so that they are as well aligned as possible. The research undertaken in

the first half of this chapter follows on from a previous EngD project completed in

2020 by G. R. March [2]. March produced a registration framework for registering

PET/CT images to histopathological slices of a surgically removed lung cancer tumour.

While these methods worked well for CT imaging, the motion induced by patients

breathing during the scans caused the PET tumour volumes to not correlate with

the pathological volumes meaning the images could not be registered. The work here

introduces respiratory motion reduction techniques into the PET/CT imaging protocol

to improve the PET image quality and allow for its inclusion in the registration to

pathology. Additionally, a separate method for the registration of PET to pathology

images was developed based on SUV thresholding the PET image.

6.1.2 Gross Pathology Segmentation

Pathology photography can be a useful tool for documenting ground truth anatomy

before it has been distorted by the slicing processes that are used for whole slide imag-

ing (WSI). Segmentation of regions in pathology photographs can therefore provide

ground truth for the shape of an area, or volume if three dimensions are considered,

of a particular anatomical region. Additionally, the current pathological assessment of

tumour size, which is a strong predictor of patient outcomes [216], is generally made

by measuring the gross length of the tumour across its largest dimension by hand with

a ruler which often has to be reevaluated at the time of microscopic assessment [217].

Automatic segmentation of gross tumour area would provide a more reliable method of

estimating the tumour volume and cellular load which are the metrics that are being

estimated by gross measurements with a ruler. Additionally, if a method of automatic

153



segmentation of singular tumours is successful it could then be expanded to identify

other more subtle nodules that could be easily missed by the naked eye but may have

been seen in radiology images and, if used in real-time, this would allow the pathologist

to sample these nodules at the time of dissection. An automatic segmentation method

for non-small cell lung cancer (NSCLC) tumours in gross pathology photographs, there-

fore, has both clinical and research applications. The work in this study aims to produce

and test a methodology for the automatic semantic segmentation of lung tumours in

pathology photographs of specimens that have been surgically removed from patients

with NSCLC.

6.1.3 Contributions of This Chapter

In the work detailed in this chapter, methods for image registration between histopathol-

ogy and PET/CT imaging as well as a method for automatically segmenting gross

pathology images are produced. The technical contributions are:

• The application of PET respiratory gating techniques to the registration of histopathol-

ogy and PET/CT images.

• The development of a method for improving histopathology to PET/CT image

registration using a PET volume based registration.

• The first application of deep learning and CNNs to the task of automatic seg-

mentation of tumour regions in gross pathology photographs.

6.2 PET/CT to Pathology Registration: Methods

6.2.1 Patient Recruitment

In order to include respiratory gating for the further advancement of the work by

Reines March et al. [2], additional patients had to be recruited to the study to receive

a 4D PET/CT scan before the surgical resection of their lung tumour. These patients

were to receive an additional PET/CT scan at the West of Scotland PET Centre that

included deviceless respiratory gating. They would then undergo a lobectomy operation

to remove the lung lobe containing their tumour, which was part of their standard

care, at the Golden Jubilee University National Hospital. The specialised pathology

processing for the trial was then applied at the Queen Elizabeth University Hospital.
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Nine patients were initially enrolled in the trial, although two did not contribute

complete datasets. One trial patient was excluded upon reevaluation of their previous

CT scan, which revealed that their tumour did not meet the inclusion criteria. The

other trial patient with incomplete data experienced a progression of their cancer be-

tween the initial PET-CT scan and the trial 4D PET-CT scan which resulted in a

cancellation of their scheduled surgery. A table of all the recruited patients’ trial IDs is

given in Table 6.1. Patients PETPATH-006 and PETPATH-007 were not included in

any of the analyses as full datasets were not collected for these patients. The following

sections contain the details of the patient recruitment.

Patient ID Full Dataset? Notes

PETPATH-001 Yes
PETPATH-002 Yes
PETPATH-003 Yes
PETPATH-004 Yes
PETPATH-005 Yes

PETPATH-006 No
Cancer advanced between
standard and trial PET scans

PETPATH-007 No
Tumour was not large
enough for inclusion

PETPATH-008 Yes
PETPATH-009 Yes

Table 6.1: Trial IDs of all the patients recruited to the trial.

6.2.1.1 Patient Eligibility Criteria

To be recruited to the study, the patients had to have NSCLC, be age 18 or over

and be booked to undergo a curative surgical lobectomy for removal of the tumour.

Additionally, the patient eligibility criteria for inclusion in the study in regard to their

tumour were:

1. The tumour is identified primarily as a single mass lesion.

2. The main volume of the tumour is located within the lung tissue (i.e. not con-

centrated in the pulmonary pleura).

3. At least one of the tumour’s major axes is larger than 30mm.
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6.2.1.2 Patient Recruitment Workflow

Eligible patients were initially identified through a multi-disciplinary team (MDT)

which included the pathologist and surgeon who were involved in the trial. The surgeon

would then inform eligible patients about the trial in their one-on-one pre-surgery meet-

ing with the patients where they were given the participant information sheet (PIS),

the patient would confirm if they are happy to be contacted by phone at a later date

by staff at the PET centre to confirm their inclusion in the trial. This phone call would

occur at least 24 hours after the meeting with the surgeon to give the patient enough

time to make an informed decision.

If patients agreed to participate in the trial, their informed consent was obtained

and they underwent an additional 4D PET-CT scan at the West of Scotland PET Cen-

tre. Subsequently, patients proceeded with their scheduled surgery, which remained

unchanged from their standard care regimen, regardless of their participation in the

trial. Following surgery, pathology samples were transported to the Pathology De-

partment at the Queen Elizabeth University Hospital and the trial-specific specialised

processing and imaging techniques were employed. These pathology samples were then

processed, analysed and reported using the standard procedures of the NHS. This whole

workflow is summarised in Figure 6.1.

6.2.1.3 Research Ethics

In order to proceed with patient recruitment, ethical approval was required. An appli-

cation was made to the Integrated Research Application System (IRAS) with an IRAS

ID 287316 and short title “Correlation of pre- and post-operative cancer imaging tech-

niques”. This included developing a study protocol and a participant information sheet

(PIS), which were adapted from the work by Reines March, et al. [2], among the other

required IRAS documents. All clinical trials involving trial patients must be approved

by a research ethics committee (REC). The trial was approved by the REC “North

West - Preston” on 09/06/2021 and given the REC reference 21/NW/0088. As the

trial involves the administration of a radioactive substance to the trial patients beyond

their standard care procedures, approval was required from the Administration of Ra-

dioactive Substances Advisory Committee (ARSAC). ARSAC approval was given on

07/01/2022 with the ARSAC reference number AA-3260. The trial was registered on

clinicaltrials.gov with the identifier NCT04776291.

156



Figure 6.1: Flowchart depicting the different stages of the patient re-
cruitment, imaging and pathology processing. Locations for each activity
is given by the colour scheme.

6.2.2 4D PET-CT Scan

The trial patients underwent an additional PET-CT scan at the West of Scotland PET

Centre. The Siemens Biograph Vision∗ PET-CT scanner [218] was used for the 4D-

PET-CT scans of all trial patients. The 4D-PET-CT scan was taken at a slower speed

of bed motion to allow for a higher SNR in the resulting PET images, this allowed for

the PET image to be gated without reducing the SNR of the image below a reasonable

level. The standard speed of bed motion used for a chest scan of a lung cancer patient

at the West of Scotland PET Centre is 1mm/s, for the trial 4D-PET-CT scan, a

bed speed of 0.3mm/s was used. The scanned region of anatomy was different in the

standard and trial PET-CT scans meaning the increase in the length of time of the scan

∗Siemens Healthineers, Siemens AG, Erlangen (Germany)
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was not uniform but in general, the standard PET scan took around 8 minutes and

the trial scan took around 20 minutes. The Siemens scanner uses deviceless respiratory

tracking where the respiratory motion reduction is applied during image reconstruction.

This means that multiple methods of respiratory motion reduction can be investigated

by applying several image reconstructions with different reconstruction settings. The

methods investigated were the Siemens∗ OncoFreeze and time-based gating with 4 gates

algorithms. Additionally, all analysis was also applied to a reconstructed version of the

image with no respiratory motion reduction i.e. the standard PET image.

6.2.3 Pathology Specimen Processing

The pathology specimen processing and imaging methods were the same as described

in the work by Reines March, et al. [2] which was detailed in the literature review

Section 3.3.2. This involved suspending the lung specimen in agar prior to slicing and

imaging with a digital camera† in a specialised slicing rig. This process produced a gross

pathology photograph stack with a resolution of 5mm in the z-axis. After imaging, the

gross pathology photographs were manually segmented using the ImageJ software [219]

by a consultant pathologist to provide the pathology tumour volume.

6.2.4 Pathology and CT Image Interpolation and Registration

To align the pathology and CT images in the same coordinate system, the pixel dimen-

sions of the tumour segmentation in each modality had to be matched. The CT images

had an original image resolution of 0.97×0.97×1.5mm. The original resolution of the

pathology image stack was 5mm in the z axis and around 0.075mm in the x-y plane

which depended on the camera set up on each specific sample. Following the results of

the work by Reines March et al.[2], the interpolation was applied with a cubic spline

based interpolation with a curvature based extrapolation for extrema region estimation.

The CT to pathology registration developed by Reines March et al. was applied, again

none of the methodology was altered here so it has already been discussed in Section

3.3.2 and will not be discussed in detail here. This registration process involved an

initial alignment of the minimum bounding box of the tumour and main airway of the

lung lobe in both modalities followed by an iterative closest points registration of the

∗Siemens Healthineers, Siemens AG, Erlangen (Germany)
†Canon EOS M3 digital camera, Canon Inc., Tokyo (Japan)
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surface points of the tumour volume in both modalities.

6.2.5 PET Image Analysis

To quantify the effects of the respiratory gating, several approaches to image analysis

were taken. For all analysis, the tumour volume in the PET images was segmented by

initially isolating the tumour region manually with a bounding box and then thresh-

olding the tumour based on a percentage of the tumours SUVMax. To make sure any

necrotic tumour regions, which have low metabolic activity and therefore a low 18F-

FDG uptake, were included in the segmentation, morphological operations were applied

to this thresholded segmentation. A morphological dilation operation was applied with

a 3D spherical structuring element of radius 3mm. This was followed by filling any holes

in the 3D volume and finally an erosion operation by the same structuring element.

Comparison of the Tumour Volume in Different Modalities The absolute

tumour volume, expressed in mm3, was calculated for the gross pathology, CT and

standard PET tumour segmentations. The PET tumour segmentations investigated

were 0.5 SUVMax and 0.3 SUVMax. Tumour volumes were calculated by summing the

number of pixels in the masks and multiplying by the voxel volume for each modality.

For the PET modality, this was repeated for the separate respiratory motion reduction

methods with 0.3 SUVMax thresholding.

Matching the PET volume to Pathology Segmenting the PET tumour based on

an SUV threshold as opposed to using a manual segmentation allows for this threshold

to be chosen such that the total PET volume matches the total pathology volume.

This was applied by initially segmenting the PET tumour using 0.3 SUVMax and then

calculating the difference between the total PET volume produced by this and the

pathology volume. The SUV threshold was multiplied by 0.99 if the PET volume was

larger than the pathology volume and 1.01 if it was smaller. The process iteratively

repeated until the PET and pathology volumes were equal at which point the optimum

SUV threshold was recorded.
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Figure 6.2: Example minimum bounding box pre-registration registra-
tion between the pathology (blue) and PET (red) tumour and airway
joint volumes.

6.2.6 PET to Pathology Registration

As the absolute volume of the tumours in the CT images poorly matches the pathology

tumour volumes, presented in the results in section 6.3.3, it may be beneficial to replace

the CT volume in the rigid registration between the CT and pathology with the PET

volume. As the PET segmentation is based on a threshold, the PET volume can be

set to match the pathology volume by taking the optimum threshold value to match

the absolute pathology volume defined from the manual segmentations. An issue with

this compared to manual segmentations by clinicians is that this will be a segmenta-

tion of regions with a high 18F-FDG uptake which may not exactly correspond to a

tumour regions. This may very closely match a tumour segmentation for some patients

depending on the level of inflammation surrounding the tumour which may also have

a high uptake of 18F-FDG. Considering the mismatch between the volumes of the CT

and pathology segmentations, the manual CT segmentation cannot be considered to

consist purely of tumour volume either.

To align the PET volume with the pathology volume the same registration process

as for the CT to pathology registration was used. The pre-registration step involving

the alignment of the minimum bounding box of the tumour and main airway in the lobe

presents an additional challenge for the PET modality as the airways are not visible
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in the PET image. This is easily overcome by simply taking the airway segmentation

from the CT image and placing it in the PET coordinate space as the PET and CT

images are registered by the co-imaging of these two modalities. An example of the

registered pathology and PET minimum bounding boxes is given in Figure 6.2 where

the PET surface points and bounding box are presented in red and the pathology is

presented in blue. After this pre-registration step, the registration process is identical

to the CT to pathology registration.

6.3 PET/CT to Pathology Registration: Results

6.3.1 Qualitative Comments on Individual Patients

In this section, any notable details for specific trial patients’ imaging are given.

6.3.1.1 PETPATH-001

Trial patient PETPATH-001 displayed two features visible in their imaging that are

worth noting, these are; a highly necrotic tumour causing a completely hollow tumour

core and a high level of respiratory motion visible in the static. These can both be seen

in Figure 6.3 which displays the tumour region in the frontal plane from the standard

PET and gated PET images. A high level of blurring is visible in the standard image

which is greatly reduced in the gated image. The necrotic core of the tumour is most

easily seen in Figure 6.3 (b) as a region of low image intensity surrounded by a ring

of high intensity. The necrotic tumour core for this patient presents challenges for the

registration as the assumption that the tumour volume will remain rigid between all

separate modalities is less likely to be true. The high level of respiratory motion present

in the standard PET image allows for a purely qualitative justification for the use of

the respiratory motion reduction methods as there is clearly an improvement in Figure

6.3 (b) compared to Figure 6.3 (a).

6.3.1.2 All Other Patients

For all other patients aside from PETPATH-001, there were no notable features of their

tumours or large levels of respiratory motion observed. Even without a large level of

respiratory motion, there can still be some qualitatively observable improvements to the

PET image quality by using respiratory motion reduction techniques. As an example,

161



Figure 6.3: PET images using (a) standard PET and (b) gated PET
of the lung tumour of patient PETPATH-001 displayed in the frontal
plane.

the same slice of the standard and gated PET images for patient PETPATH-002 are

displayed in Figure 6.4 (a) and (b) respectively. Subtle differences can be observed

between these images, in the gated image it appears that there is more texture within

the tumour. This can be highlighted by taking the difference of the two images which

is displayed in Figure 6.4 (c).

Figure 6.4: (a) The standard PET image, (b) gated PET image and
(c) the difference between the standard and gated PET images for pa-
tient PETPATH-002.

6.3.2 PET Image Metrics

6.3.2.1 PET SUV Max

The SUVmax values for each patient’s tumour in the PET image for each different res-

piratory motion reduction method are presented in Table 6.2. For both the OncoFreeze

and gated methods of thresholding, the tumour SUVmax is observed to be higher than
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the standard PET tumour SUVmax for all patients except patient PETPATH-004 for

the OncoFreeze reconstruction. This is an expected outcome as, when there is no

motion reduction included in the PET reconstruction, regions within the tumour will

be blurred which reduces the maximum intensity of the PET image by reducing the

sharpness of the highest intensity points.

SUVmax

Patient ID Standard OncoFreeze Gated

001 6.07 7.35 (21.18%) 6.58 (8.52%)
002 13.98 14.45 (3.36%) 14.94 (6.89%)
003 17.35 17.8 (2.73%) 18.34 (5.78%)
004 10.22 10.16 (-0.51%) 10.63 (4.09%)
005 5.76 6.25 (8.49%) 6.44 (11.85 %)
008 4.68 4.92 (5.20%) 4.98 (6.49%)
009 18.38 18.78 (2.16%) 19.25 (4.71%)

Table 6.2: SUVmax of the tumour for each method of PET respiratory
motion reduction for all trial patients.

6.3.2.2 PET and CT Tumour Center of Mass Differences

One benefit of using respiratory motion reduction in the PET image is the potential

to improve the alignment between the PET and CT images by reconstructing the PET

image at the point in the breathing cycle that best matches the CT image. For the

gated reconstructions, the gate that most closely matched the CT image in terms of the

tumour location was manually selected. For the OncoFreeze algorithm, there is no way

to specify which point in the breathing cycle is chosen as the fixed point to align the

rest of the PET counts to as this is automatically selected as part of the algorithm and

as it is proprietary technology there is no way to alter this algorithm. To quantify the

alignment of the PET and CT tumours, the centre of mass of the tumour segmentation

in both modalities was found and the difference between the two was calculated. For

the PET modality, the 0.3 SUVMax thresholded segmentation was used. The difference

between the centre of mass of the two modalities is presented in Table 6.3. Here it can

be seen that for every patient the gated method produces a better alignment in terms of

the centre of mass than the standard PET image. For the OncoFreeze method, as the

point in the breathing cycle cannot be chosen to match the CT image, the alignment

of the centre of mass is often worse than the standard PET reconstruction.
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Center of Mass Difference (mm)

Patient ID Standard OncoFreeze Gated

001 9.9 12.6 3.7
002 1.4 3.1 1.4
003 1.8 1.5 1.2
004 8.4 8.1 7.9
005 12.2 11.2 7.7
008 6.5 6.1 5.9
009 4.4 5.5 3.0

Table 6.3: The difference between the PET and CT tumour segmenta-
tion center of mass in mm for all PET reconstructions. A 0.3 SUVMax

threshold was used for all PET segmentations.

6.3.3 Segmentations

The absolute volume of tumour in the pathology, CT and standard PET modalities

are given in Table 6.4 where the percentage of the pathology tumour size is given

for the CT and PET modalities. It can be seen here that, aside from patient 001,

which is a special case due to their necrotic tumour, the manual segmentation of the

tumour in the CT modality overestimates the tumour size compared to the pathology,

this was also observed by Reines March et al. [2]. This may partially be due to

the way in which radiation oncologists are trained for manual segmentation where

it is generally preferable to encompass healthy tissue within the delineated tumour

boundaries rather than risk omitting actual tumour tissue. As a consequence, this

often leads to an overestimation of tumour volume during segmentation procedures.

The PET thresholding based on a percentage of SUVMax also generally does not line

up well with the pathology volumes which was also observed by Reines March et al.

[2].

The PET tumour volumes when thresholding based on 0.3 SUVMax for all the

different methods of respiratory motion reduction are presented in Table 6.5. The

percentage change from the standard PET image is also presented for the OncoFreeze

and gated PET images. Here it can be seen that for both the OncoFreeze and gated

PET images, the estimated tumour volume is reduced. This is what would be expected

from a reduction in the respiratory motion as the larger size of the standard PET

tumour volume is likely due to respiratory blurring of the image.
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Volume (mm3)

Patient
ID

Pathology CT
PET

(0.5 SUVMax)
PET

(0.3 SUVMax)

001 25258 16806 (66.5%) 7873 (31.1%) 29296 (116.0%)
002 37454 47925 (128.0% 20181 (53.9%) 35520 (94.8%)
003 19101 28873 (151.2%) 13607 (71.2%) 22240 (116.4%)
004 5428 18371 (338.4%) 3879 (71.4%) 10544 (194.3%)
005 8599 13276 (154.4%) 12814 (149.0%) 39661 (461.2%)
008 14273 21444 (150.3%) 6975 (48.9%) 18507 (129.7%)
009 32110 61948 (192.9%) 26715 (83.2%) 37382 (116.4%)

Table 6.4: The volume of the tumour for each patient in each of the
different modalities. The pathology and CT modalities are manual seg-
mentations and PET volumes are based on thresholding as a percentage
of SUVMax. For the CT and PET modalities the volume is also ex-
pressed as a percentage of the pathology volume.

0.3 SUVMax Thresholded Volume (mm3)

Patient Standard OncoFreeze Gated

001 29297 22155 (-24.4%) 26862 (-8.3%)
002 35520 33895 (-4.6%) 34221 (-3.7%)
003 22240 21521 (-3.2%) 21251 (-4.4%)
004 10544 10340 (-1.9%) 10013 (-5.0%)
005 39661 32522 (-18.0%) 34001 (-14.3%)
008 18508 17200 (-7.1%) 17372 (-6.1%)
009 37383 36173 (-3.2%) 36492 (-2.4%)

Table 6.5: The tumour volume for each patient in both the standard,
OncoFreeze and gated PET images based on a 0.3 SUVmax threshold.
The percentage change from standard when using motion reduction is
also presented.

6.3.4 Pathology to PET and CT Image Registration

The results of both the pathology to CT and pathology to PET registrations are pre-

sented in this section. Dice scores for the registrations are presented in Table 6.6 using

both the CT volume and the PET volume from all different reconstructions. It should

be noted that the PET image was thresholded to match the pathology volume which

would allow for higher Dice scores to be achieved in general. For all patients, it is

observed that matching the pathology to the PET volume achieves a better registra-

tion in terms of the dice score than matching to the CT volume. There is no way

to know if the PET volumes truly match the pathology in terms of the anatomy, all

that can be relied upon is the fact that regions of high uptake in the PET image are

more likely to be tumour tissue. This is likely to provide a more accurate registration
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than the CT registration due to the large mismatch between the CT and pathology

volumes as shown in Table 6.4. Interestingly, comparing the SUVmax values in Table

6.2 to the DICE scores of the pathology to PET registration in Table 6.6 it is observed

that the DICE score increases as the tumour SUVmax increases. This observation im-

plies that tumours with high uptake levels are more likely to yield segmented volumes

that closely align with the ground truth pathology volume when segmented utilising a

threshold derived from the SUV in PET images. This correlation can be explained by

the higher tumour-to-background uptake ratio present in such tumours, reducing the

probability of non-cancerous tissue regions being erroneously included within the PET

tumour threshold.

Dice Score
Patient ID CT PET

Standard OncoFreeze 4 Gates

001 0.678 0.736 0.724 0.743
002 0.770 0.798 0.800 0.796
003 0.717 0.814 0.821 0.824
004 0.453 0.761 0.754 0.759
005 0.608 0.756 0.736 0.768
008 0.758 0.748 0.757 0.779
009 0.667 0.830 0.807 0.829

Table 6.6: Dice scores for the pathology to CT and pathology to PET
tumour volume registration. The CT volume was based on the manual
segmentation and The PET volume was thresholded such that it matched
the pathology volume.

While it is challenging to display the registered volumes in a meaningful way in the

2D medium of this thesis, Figures 6.6 and 6.5 display images of the registered point

clouds when using the PET and CT volumes respectively for all patients. Only the

points of the volume surfaces are displayed with the pathology points displayed in blue

and the PET or CT points displayed in red. In Figure 6.5 the effects of the mismatched

CT and pathology volumes can clearly be seen, for trial patients PETPATH-004 and

PETPATH-005 in particular the mismatch is most apparent giving little confidence

in the alignment beyond the initial alignment of the minimum bounding box. When

looking at Figure 6.6 the PET tumour shape does appear to more closely align with

the pathology in terms of shape.
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Figure 6.5: The surface points of the registered CT and pathology
point clouds. Pathology points are displayed as blue and CT points are
displayed as red.
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Figure 6.6: The surface points of the registered PET and pathology
point clouds when using the gated PET image. Pathology points are
displayed as blue and PET points are displayed as red.
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6.4 PET/CT to Pathology Registration: Discussion

The main focus of this work has been to add respiratory motion reduction techniques to

the registration workflow introduced by Reines March et al.[2]. This has been achieved

by using the deviceless respiratory motion reduction methods available on the Siemens

Biograph Vision PET-CT scanner. These methods are the OncoFreeze algorithm and

a time-based gating algorithm. As there is no ground truth to determine if the mo-

tion reduction methods have improved the accuracy of the PET image, the evidence

justifying its use must come from several sources. Qualitatively, when there is a large

level of motion, such as for patient PETPATH-001, the only justification required is

to visually compare the standard and gated PET images to observe the reduction in

motion blurring. In most cases, this is not observed. Comparing the standard and

respiratory motion reduced PET metrics of the tumour volume such as the SUVMax,

the size of the thresholded tumour volume and the difference in the tumour centre of

mass between the PET and CT images provides evidence in these cases that the motion

reduction techniques are still beneficial.

A problem with the OncoFreeze method is that the point in the breathing cycle

that is used for image reconstruction is not matched to the point in the breathing cy-

cle captured in the CT scan, this was quantitatively observed in section 6.3.2.2 where

the difference of the tumour centre of mass between the PET and CT modalities was

calculated. This means that the alignment between the PET and CT modalities will

be poorer and may require an additional registration step. Additionally, the different

points in the breathing cycle may cause the tumour shape to change, again decreasing

the alignment, this will be a particular concern for patients with highly necrotic tu-

mours such as patient PETPATH-001. Using the time-gated method allows for a closer

alignment to the CT image by manually selecting the gate that has the best match to

the point in the breathing cycle that the CT image was taken. Here, comparing the

centre of mass between the PET and CT shows a closer alignment for all patients than

for the standard PET image.

The work by Reines March et al. [2] only used a PET threshold of 0.5 SUVMax to

segment the PET image. The effectiveness of this method in achieving accurate tumour

segmentation is uncertain, primarily due to the interpatient variability in SUV-based

tumour delineation which has been documented in previous studies [220, 221]. As this
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study is focused purely on the registration of pathology and PET/CT for the purpose

of comparing the information in all modalities in a common coordinate system, the

PET segmentation can be informed by the manual pathology segmentation which is

the best approximation for the ground truth. This has allowed for the advancement

of the registration workflow by including a registration based on the PET volume that

has been SUV thresholded to match the pathology volume. This is likely to improve

the registration performance when the CT segmentation poorly matches the pathology.

There are some issues with using the PET image to define the tumour volume for the

registration. One issue is that due to the nature of PET imaging, the PET volumes

will have smooth edges which may hinder the registration by reducing the number and

quality of surface features that can be used to guide the registration. Also, as discussed

previously, the thresholding technique may erroneously include regions of non-cancerous

tissue in the PET image if they have high enough uptake which can be possible due

to inflammation or proximity to metabolically active organs which would again reduce

the accuracy of the registration. Additionally, while this approach works when using

the 18F-FDG radiotracer, this PET based segmentation would be less applicable when

using more specialised radiotracers such as 18F-FMISO [222] which highlights hypoxic

tumour regions. Even with these sources of error, establishing the PET volume as a

viable volume for this registration provides an alternative option for registration when

there is poor agreement between the CT and pathology modalities.

6.5 Gross Pathology Segmentation: Methods

The methods here detail the application of deep learning for the automatic segmentation

of tumour regions in gross pathology photographs.

6.5.1 Datasets

In addition to the gross pathology data collected in section 6.2.3 there was additional

data available for the automatic pathology segmentation task. All of the data consists

of photographs of lung specimens that have been surgically resected from patients with

NSCLC and the manual segmentations of the tumour regions. Some of this additional

data comes from the work by Reines March et al. [2] which processed and imaged the

pathology in the same way as earlier in this chapter. This data was combined with
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Figure 6.7: An example of (a) a gross pathology photograph and (b)
its corresponding manual tumour segmentation from dataset-A.

Table 6.7: Pathology photograph dataset information.

Dataset
Number of

Patients
Number of

Images

Dataset-A 16 116
Dataset-B 6 52

Total 22 168

the data collected in this chapter into one larger dataset which will be referred to from

now on as dataset-A. Dataset-A contains gross pathology photographs of the entire

lung lobes that were inflated with agar and suspended in agar before being sliced at

5mm intervals with photographs being taken after every slice was removed. During the

collection of this dataset, care was taken in the lighting of the samples as well as partially

drying the samples so that minimal reflection and maximum tissue contrast could be

produced. An example of a photograph and its corresponding manual segmentation

can be seen in Figure 6.7.

Additionally, a second dataset, which will be referred to as dataset-B, was available.

This consists of pathology specimens that were sliced and photographed freehand with

only the standard pathology lab lighting used to light the specimens. In this dataset,

less care was taken to remove excessive moisture and reflections on the samples meaning

these photographs are of poorer quality than dataset-A. The number of patients and

images in each dataset is summarised in table 6.7.

Examples of gross pathology photographs from four separate patients are shown in

figure 6.8. This shows the variability in the tumours and some of the different features

that can be seen. For example figure 6.8 (b) shows a tumour with a large necrotic core

whereas figure 6.8 (d) shows a tumour with no necrotic regions. Figures 6.8 (a),(b)
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Figure 6.8: Examples of tumour regions in gross photographs for four
separate patients.

and (d) all display regions with increased red or pink colour, this is due to the tumour

reducing the quality of fixation in these regions. Figure 6.8 (c) shows an example where

the tumour is displaying poorer contrast to the healthy tissue than the other examples,

likely due to this example being an adenocarcinoma tumour.

6.5.2 Image Pre-processing and Data Augmentation

Before the pathology images and labels were used in training some pre-processing steps

were applied.
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Parameter Value

k 2
Number of clustering repetitions 3

Max Iterations 100
Accuracy Threshold 1.00e-04

Table 6.8: K-means segmentation parameters for the background seg-
mentation of Dataset-B.

6.5.2.1 Non-Tissue Background Removal

Many of the images contain a large amount of background area compared to the area

of lung tissue. This was reduced by manually cropping the images down to a rectan-

gular shape closely bounding the lung tissue. The aim of this step was to reduce the

computational load of training the models by decreasing the image sizes and to get the

CNN used for segmentation to focus more on areas of the lung specimen.

In all of the pathology photographs, the non-tissue background is well distinguished

from the tissue regions of the image. This allows for the application of non-learning

based segmentation techniques to create a mask that removes the background regions.

As the pathology samples in dataset-A and dataset-B were prepared using different

methodologies, the background regions in both datasets are reasonably different. Only

Dataset-A contains regions of agar, these regions are of a similar colour to much of

the tissue regions. The tissue has also been inflated with agar causing there to be

regions of agar within the outer tissue boundary. This means a colour-based approach

to background segmentation is not appropriate. Here the spectral residual saliency

detection approach, as described in [223], was used. This was applied in MATLAB

using methods adapted from [224].

Dataset-B contains samples imaged either on a pathology slicing board or a perfo-

rated metal pathology workstation. There are also often separate objects such as rulers

contained within the images. These images are less suited to the spectral residual ap-

proach used for dataset-A but work well with a colour-based approach due to the clear

colour contrast between the tissue and non-tissue regions of the image. For dataset-B

a k-means clustering approach [225] was applied for colour segmentation where in this

case k = 2. The parameters used in the k-means clustering algorithm are shown in

table 6.8.

Once a mask of the non-tissue background was produced it was used to set the
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pixels of the non-tissue background to intensity values of zero.

6.5.2.2 Data Augmentation

The images were then converted to patches of size 224×224 for use with the CNN.

When converting the images to patches, an overlap of 50% was introduced in both the

x and y image directions to conserve spatial information occurring at the borders of

the patches [226]. This resulted in a quadrupled patch count compared to the scenario

where overlap is not accounted for. It is important to note that, during one epoch of

training on the patches, the network will therefore encounter the same data four times

due to this augmentation. A random rotation of the images between 0 and 360 degrees

and a random zoom between 0.8 and 1.5 times was applied to the images after every

epoch of training.

6.5.3 Loss Functions

The choice of loss function when training a deep learning based semantic segmentation

model can have a large impact on the performance of the model. This is especially

true for problems with unbalanced datasets where a model may greatly focus on in-

creasing the accuracy of the class with the most instances causing the accuracy of

segmentation of the underrepresented class to be low. For this particular application

and more generally in many oncology based segmentation problems, the tumour class is

underrepresented compared to the background class but would be considered the more

important class to accurately segment. Both balanced cross-entropy (BCE) loss and

dice loss were applied. For binary segmentation problems, the balanced cross-entropy

loss is expressed by equation 6.1 [227].

LBCE(y, ŷ) = − 1

N

N∑
n=1

(βynlog(pn) + (1− β)(1− yn)log(1− pn)) (6.1)

Where LBCE is the balanced cross-entropy loss, N is the total number of individual

pixels n. yn is a ground truth pixel value, pn is a predicted pixel probability outcome

and β is a factor used to apply a weighting to the classes.

As the problem presented in this study is a two-class classification problem, only

the Dice loss function can be used. This is described in equation 6.2 where LDice is the

Dice loss [227].
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LDice(yn, pn) = 1−
∑N

n=1 2ynpn∑N
n=1 yn +

∑N
n=1 pn

(6.2)

6.5.4 Segmentation Model

For the semantic segmentation task, an ensemble-based deep learning approach was

applied. This involved training multiple separate deep-learning models and combining

the output segmentations into a single averaged segmentation. This was followed by

post-processing of the ensemble model output through background masking and mor-

phological steps to improve the output segmentation. The full workflow of the final

model is shown in figure 6.9 and described in the following sections.

Figure 6.9: The full ensemble model workflow.

Several different network architectures were applied to the problem. Deeplabv3+

[77] was applied with both a ResNet50 [72] and MobileNetv2 [228] backbone as well as

UNet [73] with an encoder depth of 4. All of these networks were applied with a binary

pixel classification output with the pixel classifications as ”tumour” or ”background”.
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This means that both healthy lung tissue and the non-biological content (slicing table

etc.) of the image were included in the background class. All of the network architec-

tures were trained with both weighted cross entropy and DICE loss functions. All of

the models used pre-trained weights from training on ImageNet [229]. As the ImageNet

dataset contains no medical images the choice was taken to retrain all of the layers of

the network. All of the trained networks are listed in Table 6.9

Model
Network

Architecture
Loss

Function

1 DeepLabV3+ ResNet50 BCE
2 DeepLabV3+ ResNet50 DICE
3 DeepLabV3+ MobileNetv2 BCE
4 DeepLabV3+ MobileNetv2 DICE
5 Unet (Encoder Depth: 4) BCE
6 Unet (Encoder Depth: 4) DICE

Table 6.9: All networks trained for the gross pathology segmentation
task.

The dataset was split into training and test sets by patient so that images from

one patient were only used for either training or testing. This is important as the

different slices from the same patient contain similar features, such as the colour of

the tumour and healthy tissue, that would bias the results if they were included in

both training and test sets. Using this approach, the data was split into a training

set containing 18 patients images and a test set containing 4 patients images. Using

this approach causes the number of images in both the training and test sets to change

depending on which patients images were used as there were more images available

for some patients than others. This method generally created a split of around 96/20

images in the training/test sets. A 5-fold cross-validation approach was applied where

all of the models were trained separately on different sets of 17 or 18 patients and tested

on the 4 or 5 that were not included in the training set with the test patients changing

every fold. This allows for the model to be tested on the full dataset. The training

parameters are shown in table 6.10. All of the network training was performed on a

two NVDIA GeForce GTX 1080 Ti graphics cards running in parallel.

In addition to applying the models individually, an ensemble-based approach was

taken. To achieve this the individual pixel prediction probability outputs of each indi-

vidual network in table 6.9 were simply averaged.
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Parameter Value

Optimisation Method adam
Initial LR 0.001
LR Drop Rate 5
Drop Factor 0.2
Training Epochs 20

Table 6.10: CNN training parameters.

6.5.5 Image Post-Processing

The deep learning models often correctly segment the region of tumour in the input

image but also labels some separate erroneous regions as tumour. These incorrect

regions can usually be removed through some morphological operations that can be

applied based on what is known about the task to improve the segmentation results.

The morphology steps are detailed in the list below:

1. Small objects with a size of fewer than 5000 pixels are removed from the image

(for reference, pixels are generally around 0.1x0.1mm).

2. A morphological closing operation is applied using a circular structuring element

with a radius of 20 pixels.

3. Any holes in the remaining objects are filled.

4. The total number of pixels in each remaining object is calculated. Only the object

consisting of the highest number of pixels is kept as the final tumour segmentation.

Step 1 is applied to remove small isolated regions that were classified as tumour as

these are almost always incorrect classifications, this step also improves the performance

of all of the following steps. Steps 2 and 3 in the list above are required because many

NSCLC tumours contain necrotic cores. These regions are pathologically and visually

different from non-necrotic areas of tumour which, combined with the fact that there are

few different patient examples in the datasets, causes them to be often misclassified as

non-tumour. Simply closing and filling the tumour region generally fixes this problem.

Step 4 can be applied as it is known that the images in our dataset are from patients

with one large NSCLC tumour.
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6.6 Gross Pathology Segmentation: Results

6.6.1 Segmentation Metrics

The results of the 5-fold cross-validation are shown in tables 6.11 and 6.12 for datasets

A and B respectively. For both datasets the ensemble model outperforms the individual

models. Including the morphology steps improves the ensemble results across all of the

metrics showing that for this particular application, they are worthwhile to include. The

results on dataset-B are considerably lower than those in dataset-A. This is expected

due to the lower quality of the images in dataset-B and highlights the importance of

good pathology photography practice as is described in [172].

Model
Accuracy

(%)
Sensitivity

(%)
Tumour

IoU
Background

IoU

1 94.3 70.7 0.506 0.913
2 92.3 63.1 0.395 0.872
3 93.2 59.8 0.418 0.892
4 91.1 55.1 0.317 0.850
5 91.9 59.4 0.392 0.898
6 88.9 55.4 0.314 0.835

Ens 96.3 65.9 0.552 0.931
Ens + Morph 97.3 70.8 0.632 0.949

Table 6.11: Results for Dataset-A from the 5-fold cross-validation test-
ing scheme.

Model
Accuracy

(%)
Sensitivity

(%)
Tumour

IoU
Background

IoU

1 82.2 69.8 0.398 0.754
2 85.6 52.1 0.357 0.776
3 87.3 67.3 0.521 0.799
4 87.6 62.1 0.448 0.798
5 83.6 62.2 0.345 0.753
6 82.3 59.8 0.371 0.762

Ens 89.7 68.9 0.503 0.837
Ens + Morph 91.2 70.1 0.529 0.853

Table 6.12: Results for Dataset-B from the 5-fold cross-validation test-
ing scheme.

6.6.2 Segmentation Examples

There is a large variety in the quality of the segmentation output of the ensemble model

depending on the input images, some examples of this are shown in figure 6.10. Figure
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6.10 (a.i) shows an example of a correct segmentation result on a tumour with good

contrast between the healthy tissue and tumour tissue. The tumour boundary in image

6.10 (a.ii) aligns very closely with the ground truth mask producing a tumour IoU of

0.956 for this image.

Figure 6.10 (b.i) shows an example of a partially correct segmentation where an

area of necrosis has not been included in the segmentation. This example has an IoU of

0.439 for the tumour class. The segmentation contour in this image outlines the region

of lighter tissue which corresponds to the living tumour area. The necrotic area is not

included in the segmentation output but is part of the ground truth tumour area as seen

in image 6.10 (b.ii). The model tends to misclassify necrotic regions as non-tumour as

there are not many examples of heavily necrotic tumours in the training datasets and

the coagulated blood that appears in this region also often appears in areas of healthy

tissue. In other necrotic examples, this can be fixed by the post-processing morphology

steps but in this case, as the living tumour area does not fully enclose the necrotic

region, these steps do not solve this problem.

Figure 6.10 (c.i) shows an example of a failed segmentation with a tumour IoU of

only 0.035. Upon analysing this image within the context of the dataset it is seen that

the image is from one of only two patients in the datasets who had an adenocarcinoma

tumour. Adenocarcinoma has a lepidic pattern of growth causing it to be less contrasted

against healthy tissue in gross images than other types of NSCLC. All other images

from this patient and the other patient with adenocarcinoma have a similarly failed

segmentation. It is clear from this that the dataset would need to be expanded to

include more adenocarcinoma examples.
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Figure 6.10: Three segmentation examples from separate patients are
displayed. (a) shows a good segmentation example, (b) shows a partially
failed example due to a necrotic region and (c) shows a fully failed seg-
mentation due to the tumour being an adenocarcinoma. Images denoted
with (i) are the original test images zoomed in on the tumour area and
images denoted with (ii) are the ground truth tumour segmentations.
All images have the automatic segmentation contour overlayed (green
line).
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6.7 Gross Pathology Segmentation: Discussion

The classification of the entire pathology of the lung into the two categories of tumour

and non-tumour is an oversimplification that presents some problems for the segmen-

tation model. This is most notable with adenocarcinoma tumours that are generally

not recognised as tumours. Additionally, necrotic regions within the tumour are often

misclassified as non-tumour regions. This can generally be fixed through the use of

morphological image processing steps but it still highlights a problem with the ground

truth data. This would be improved by increasing the dataset size to include more

patients as the small dataset used in this study, with only 22 separate patients, in-

cluded only a few examples of different pathological features such as adenocarcinomas

and necrotic regions. A dataset containing a similar number of images that were all

from unique patients would likely increase the performance of the trained models as

this would allow the model to learn a more comprehensive array of pathological fea-

tures. In the skin lesion photograph segmentation domain, large datasets such as the

HAM10000 dataset [230], which contains 10000 images and ground truth segmentations

of skin cancer lesions, allow for highly accurate models to be produced. In addition to

increasing the dataset size, it may be beneficial to increase the number of classes used

for the segmentation to include different types of tissue though this would require a

time-intensive process of manual segmentation to produce the ground truth labels.

The final results for dataset-A produced better scoring metrics than those produced

from dataset-B. This is unsurprising as, for the reasons described in section 6.5.1, the

images in dataset-B are of poorer quality than those in dataset-A. This reduced image

quality will increase the difficulty of segmentation first due to the image features being

obscured and secondly due to there being fewer of these images of low quality in the

overall training datasets. For further development and application of a system for the

automatic segmentation of gross pathology photographs, care should be taken to ensure

a high image quality by following the photography steps outlined in [172], though the

inclusion of lower quality images in the training set may be beneficial to increase the

robustness of the model.

For applications in clinical use, it may be beneficial to include some user input to

produce a semi-automatic segmentation to decrease the chance of errors and improve

overall accuracy. This could involve simply selecting the correct region from the output
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of the model to remove some of the morphology steps or marking some tumour or

background pixels to be input to the network. The decision to choose a fully or semi-

automatic approach would depend on the specific application and pathology workflow

that the model is to be included in.

6.8 Conclusions

This chapter has detailed work on the development of a system for the registration

PET/CT to pathology images as well as producing a methodology for the automatic

semantic segmentation of gross pathology photography. Conclusions for both of these

tasks is detailed in the following subsections.

6.8.1 PET/CT to Pathology Image Registration

The previous work by Reines March et al. [2] established a methodology for the regis-

tration of CT and pathology images for NSCLC patients. This work was advanced in

this chapter by the inclusion of the PET aspect of the PET/CT images. This included

the use of respiratory motion reduction methods. The respiratory motion reduction

methods evaluated were the Siemens OncoFreeze and time based gating algorithms.

Both methods produced an improvement to the PET image quality based on the met-

rics evaluated with the gated method being the best fit for this project as the gate can

be selected to best match the CT image. Additionally, registration methods based on

SUV thresholding the PET image to obtain the PET tumour volume were produced for

cases where there is a poor match between the pathology and the CT tumour volumes.

6.8.2 Gross Pathology Segmentation

Deep learning-based methods for semantic segmentation have been applied to the novel

application of automatic segmentation of tumour areas in gross pathology photographs

of specimens from patients with NSCLC. A pipeline for image pre-processing, model

training and post-processing of the segmentation output has been detailed and vali-

dated. This work has demonstrated the possibility of achieving this goal as well as

highlighting some challenges for producing a fully robust system. The main barrier

to improving the performance is a lack of data. Increasing the size and diversity of

the dataset would improve the model performance, especially for tumours with less
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common features.
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Chapter 7

Conclusions

7.1 Summary

The overall aim of this thesis was to apply image processing and machine learning tech-

niques to lung cancer treatment with the aim of improving treatment outcomes. This

was achieved in the more specific topics of radiotherapy induced pulmonary toxicity

prediction (Chapters 4), radiotherapy induced esophageal toxicity prediction (Chapter

5), PET/CT to pathology image registration (Chapter 6) and gross pathology tumour

segmentation (Chapter 6).

7.1.1 Radiotherapy induced pulmonary toxicity prediction

Chapter 4 covered the work on pulmonary toxicity prediction. Two separate datasets

were used for this, one set, the Edinburgh Pneumonitis dataset, was for the prediction

of pneumonitis on standard NSCLC patients receiving IMRT and the other dataset,

the ASPIRE-ILD dataset, was for predicting pulmonary toxicity and other outcomes

such as the FACT-L score for NSCLC patients with ILD receiving SABR treatment.

Dose features, such as the V20, were extracted from the lung region of the patient’s dose

images and available clinical features were converted to numeric representations. CT

image features were extracted using radiomic approaches applied to the lung volume and

through the use of a pre-trained UNet CNN model. It was shown on both datasets that

both radiomic and deep learning based features extracted from CT images could provide

a valuable source of information to greatly improve the accuracy of pulmonary toxicity

prediction. For the ASPIRE-ILD dataset, it was additionally shown that different

subsets of these features could provide information for the prediction of the FACT-L

184



score, EQ-5D-5L score, Cough Index and Overall Survival.

7.1.2 Radiotherapy induced esophageal toxicity prediction

Chapter 5 covered the work on the prediction of radiotherapy induced esophageal toxi-

city using data from the RTOG-0617 study which is currently the largest public dataset

with the information required for this analysis and includes both IMRT and 3D-CRT

data. A 4D-CNN was used for feature extraction and classification from dose maps.

This was compared to more standard approaches of classifying dose volume histogram

features using the LKB NTCP model and boosted decision trees. All models were

trained as both binary classifiers and regression models. It was found that using the

4D-CNN, regression based training, combining the models as an ensemble and including

all esophageal toxicities as opposed to just esophagitis provided marginal improvements

to the performance which, when combined, produced a larger performance increase.

Additionally, an investigation was carried out to study the robustness of boosted de-

cision tree and ANN based models under the influence of random noise added to dose

features. It was found that while often the choice of hyperparameter or data augmenta-

tion method has little effect when there is no feature noise, as noise increases, changing

these variables has a large effect on the model performance.

7.1.3 PET/CT to pathology image registration

The first half of Chapter 6 details the work on advancing the methods for registering

PET/CT with pathology images. This work followed on from the work by Reines

March, et al. [2]. To advance this work, respiratory motion reduction techniques were

included for the PET portion of the PET/CT scan. Comparisons between time based

respiratory gating, the OncoFreeze algorithm and a standard reconstruction were made.

It was observed that SUV thresholding the PET image with a set SUVmax produced an

inconsistent match to the pathology volume. The registration algorithm was advanced

by adding a PET to pathology registration which used the PET volume thresholded

to match the pathology volume, in many cases this provided a better match to the

pathology than the CT based method.
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7.1.4 Gross pathology tumour segmentation

The second half of Chapter 6 details the work developing a deep learning based method

for the automatic segmentation of tumour regions in gross pathology images. pre-

processing included masking of background areas using either a colour based k-means

clustering or a visual saliency segmentation. Versions of DeeplabV3+ and UNet were

then trained with both balanced cross entropy and dice loss functions. The best per-

forming model was an ensemble of all of the models. Post-processing using morphologi-

cal methods to remove erroneous regions and include necrotic regions proved to further

increase performance. The models showed good performance on tumour types that

were well represented in the dataset but performed poorly on less represented examples

such as those of adenocarcinoma and highly necrotic tumours.

7.2 Challenges for clinical implementation

For all of the methods developed in this thesis, there are several challenges for clinical

implementation. These are discussed in the following subsections.

7.2.1 Radiotherapy Toxicity Prediction

For all predictive models intended for clinical application, a significant challenge lies in

establishing appropriate accountability in the event of model errors. This is a larger

issue if the models output was solely relied upon. The best balance can be struck

by implementing predictive models to provide additional information to clinicians who

would then make the final treatment decisions.

Another issue for the clinical implementation of these predictive models is maintain-

ing reliability over the constantly evolving imaging and therapy landscape. Emerging

radiotherapy treatment methods, such as FLASH, will alter patient responses to treat-

ment. This means that models trained on data from older radiotherapy techniques,

such as IMRT, may fail to accurately predict outcomes when applied to newer RT

techniques. This presents a large challenge due to the large volume of data required to

validate these techniques for clinical settings as more data would have to be collected

to validate any machine learning techniques applied to new radiotherapy methods.

For the clinical implementation of the pulmonary toxicity prediction work and use

of predictive CT features, it is likely to be beneficial to impose strict guidelines on CT
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imaging and reconstruction to ensure that either radiomic or deep learning methods

produce high quality image features that are similar to what the model was trained on.

This is especially true for RT planning CT images which are generally lower quality

than diagnostic CT images so more care would have to be taken here. Additionally,

changes in imaging across different centres arising from different scanning protocols

and the use of different scanners can also add to these problems.

7.2.2 Automatic Gross Pathology Tumour Segmentation

The methods for automatic segmentation of tumour areas in gross pathology share some

of the problems as the radiotherapy predictive models. If the segmentation models were

used to automate parts of the pathology reporting process there would be issues arising

if the model failed to accurately segment the tumour region. When initially applied in

the clinical setting it would be beneficial to apply the methods in parallel to the current

clinical standard for pathology reporting to observe if any issues or benefits would arise

when compared to the current standard practices. If the models were used in real time

to highlight to clinicians regions of anatomy to sample for further imaging then this

again could be applied as an assistive tool as opposed to defining the final regions to

sample.

7.2.3 PET/CT to Pathology Image Registration

The PET/CT to pathology registration algorithm is not intended to be directly ap-

plied to make any patient specific treatment decisions meaning there is less to discuss

regarding clinical implementation. The system is intended to be used to validate PET

imaging for the purpose of informing clinicians regarding what can be determined from

these images. To get to this stage, further patient data would be required to be col-

lected to both further validate the registration system and provide the data required

to validate the PET imaging in relation to the histopathology.

7.3 Future Work

The largest area of future work for the topics covered by this thesis as well as the

wider field of image processing and machine learning applied to medical imaging is the

validation of models on large diverse datasets. The challenge here is based on data
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collection and dissemination where the data collection process for medical imaging is

time consuming and expensive and ethical constraints limit the open dissemination of

data. The radiotherapy toxicity prediction and gross pathology segmentation would

benefit greatly from a large, open, benchmark dataset allowing for the direct compari-

son of techniques. The PET/CT to pathology registration algorithm could be applied

to investigate regions of inflammation by applying specific stains to the histopathology

slides to highlight these regions. Additionally, other PET tracers could be investigated

and validated using the registration workflow. Tracers such as 18F-FMISO, which high-

lights necrotic regions of a tumour, would be a good candidate for this histopathology

based validation. One of the main challenges for all methods in this thesis is the re-

liability and implementation within the clinical workflow. This should be tackled by

using a human-in-the-loop approach where the output of the methods are only used to

inform a clinician who would make a final treatment decision. The level of trust in a

specific method would have to be backed up by testing in prospective clinical settings.
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Appendix A

ASPIRE-ILD Feature

Importance

During the training of the models for the prediction of the ASPIRE -ILD outcomes, the

feature importance was calculated for the purpose of reducing number of features input

to the final model. This process is described in section 4.2.5. This feature importance

estimation produces a numerical metric indicating how strongly each feature effects

the final prediction. It should be noted that although this feature importance value

correlates with the weighting of the features in the boosted decision trees, this is not

an exact measure of importance. Additionally, many dose, radiomic and UNet features

will be highly correlated with different features from the same feature class. This means

that, for many features, a low importance score may only be due to the predictive power

of that feature already being included in the model from another, or a combination of

other, features. A univariate method for feature importance estimation would be better

for isolated feature importance. The ten features used in each outcome prediction

model for the best performing feature subsets are displayed in tables A.1 to A.6. The

feature importance here has been normalised so that the most important feature has

an importance value of 1.
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Feature Importance

Dose - Vol55 1.000

PyRadiomic - original glszm SizeZoneNonUniformity 0.153

PyRadiomic - original glcm Correlation 0.134

UNet49 0.108

PyRadiomic - original glcm Imc2 0.026

PyRadiomic - original gldm DependenceNonUniformity 0.015

UNet18 0.013

PyRadiomic - original firstorder Energy 0.009

UNet19 0.006

UNet4 0.003

Table A.1: CTCAE pulmonary toxicity feature importance for the LS-
Boost model with only Dose, Pyradiomic and UNet features.

Feature Importance

PyRadiomic - original glcm ClusterShade 1.000

UNet40 0.335

PyRadiomic - original glszm SZNonUniformityNormalized 0.276

UNet41 0.195

PyRadiomic - original glcm Id 0.118

PyRadiomic - original glszm LAHighGrayLevelEmphasis 0.095

PyRadiomic - original firstorder 90Percentile 0.078

PyRadiomic - original glszm ZoneEntropy 0.073

UNet45 0.049

PyRadiomic - original gldm SDLowGrayLevelEmphasis 0.048

Table A.2: FACT-L feature importance for the LSBoost model with
only Dose, Pyradiomic and UNet features.

Feature Importance

PyRadiomic - original glszm GLNonUniformityNormalized 1.000

Clinical - L packyrs 0.535

PyRadiomic - original firstorder Energy 0.432

Dose - MaxLD 0.129

PyRadiomic - original firstorder Minimum 0.113

PyRadiomic - original firstorder 90Percentile 0.111

PyRadiomic - original firstorder RootMeanSquared 0.090

PyRadiomic - original glcm ClusterTendency 0.088

PyRadiomic - original glcm Idn 0.082

PyRadiomic - original firstorder Mean 0.077

Table A.3: EQ-5D-5L feature importance for the LSBoost model with
only Dose, clinial and Pyradiomic features.
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Feature Importance

Clinical - dlco base 1.000

Clinical - fvc cr1 0.421

Clinical - L packyrs 0.211

Clinical - t stage 0.085

Clinical - CurrentSmoker 0.040

Clinical - dose 0.013

Clinical - consdiag 0.012

Clinical - gender 0.011

Clinical - radpattern 0.009

Clinical - nsclc 0.001

Table A.4: Overall survival feature importance for the LSBoost model
with only clinical features.

Feature Importance

Clinical - radpattern 1.000

Clinical - fvc cr1 0.476

Clinical - dlco base 0.463

Clinical - dose 0.371

Clinical - nsclc 0.320

Clinical - L packyrs 0.056

Clinical - consdiag 0.049

Clinical - t stage 0.029

Clinical - CurrentSmoker 0.019

Clinical - ild subtype 0.015

Table A.5: Cough index prediction feature importance for the LSBoost
model with clinical features only.

Feature Importance

PyRadiomic - original firstorder 10Percentile 1.000

UNet10 0.749

PyRadiomic - original glcm DifferenceVariance 0.481

UNet6 0.225

PyRadiomic - original glrlm RunLengthNonUniformity 0.211

Dose - V5 0.176

Dose - V60 0.121

UNet16 0.120

UNet30 0.119

PyRadiomic - original glcm ClusterProminence 0.101

Table A.6: FACT-L B1 dyspnea question prediction feature importance
for the LSBoost model with Dose, Pyradiomic and UNet features.
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