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Abstract

This thesis considers the general problem of improving the imaging of bubbles

that interact with an applied ultrasonic signal. The case of a bubble being in-

sonified by an ultrasonic excitation in the form of a linear chirp is considered

first. The dynamical equation of the bubble’s motion is analysed using approx-

imation techniques and the results compared to a numerical solution of the full

problem. The problem of maximising the amplitude of the second harmonic with

respect to the various system and signal parameters is then analysed. A theoret-

ical consideration of second harmonic imaging of a bubble encapsulated with a

thin shell under chirp insonification is then presented. By deriving approximate

solutions to the encapsulated bubble’s dynamical equation, the effect that the

chirp signal parameters and the shell parameters have on the amplitude of the

second harmonic frequency are examined. This allows optimal parameter val-

ues to be identified which maximise the encapsulated bubble’s second harmonic

response. A relationship between the chirp parameters is presented that will

produce a signal which resonates an encapsulated bubble for a given set of shell

parameters. It is shown that the shell thickness, viscosity and elasticity param-

eter should be as small as realistically possible in order to maximise the second

harmonic amplitude. Finally, the dynamics of chirp insonified bubbles are ex-

amined by taking a fractional Fourier transform of a numerical solution to the

bubble’s dynamical equation. The fractional Fourier transform is represented in

time-order plots which show the flow of the energy as the order parameter cha-



nges. These time-order plots are analysed for both single bubbles and popula-

tions of bubbles. The efficacy of the fractional Fourier transform at determining

the size and spatial distribution of bubbles within a population, as well as the

potential to enumerate a population, is discussed. The two dimensional frac-

tional Fourier cross-correlation of the response from a test bubble with that of

a bubble of a different size is also investigated and the benefits of this type of

cross-correlation is also discussed.
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Chapter 1

Introduction

1.1 Background and motivation

1.1.1 Ultrasound

Ultrasound is an acoustic pressure at a higher frequency than human hearing

(approximately 20 kHz), and can be employed passively, where a wave is trans-

mitted into a medium and the effect on the medium is recorded/investigated,

or actively, where a wave is transmitted into a medium, is affected in a va-

riety of ways, and the resulting wave is recorded and analysed. Applications

in a vast array of fields have been investigated: ultrasonic foetal scanning is

probably the most widely recognised use and is now well established as a diag-

nostic tool due to the low risk, low cost and mobility of the equipment [68]; the

non-destructive testing of concrete [47], nuclear reactors [72], aeroplanes [29],

underground pipes [49] and railroad wheels [106] often employ an ultrasonic sig-

nal which is transmitted into a medium and the resulting signal, either reflected

back or transmitted through the medium, is recorded; in dentistry ultrasonog-

raphy has been investigated as an imaging method to identify enamel thickness
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on teeth and teeth composition [40]; ultrasound is used in a variety of ways

in the food industry [109], and ultrasound is used for household, industrial,

dairy and food-produce cleaning processes [88, 93, 94, 143]. Acoustic methods

which utilise ultrasound are attractive for a number of reasons; measurements

are non-invasive, they can be obtained in real-time and can be implemented in

a multi-point system, the system is relatively cheap and it is possible to recover

some physical properties of the medium [18, 38, 61].

1.1.2 Bubbles

Bubbles are found in many areas of everyday life. They can be manually intro-

duced to food-stuffs, such as carbonated soft-drinks, alcoholic beverages, choco-

late bars and loafs of bread. They can arise as a result of common activities such

as boiling a kettle, pouring a glass of water from a regular office water-cooler or

washing dishes and clothes. They can be created naturally from waves breaking

in the ocean [24], waterfalls cascading into pools and raindrops splashing into

puddles [76]. The motion of an oar or a propeller through water produces bub-

bles which can adversely affect their effectiveness.

In nature, oceanic cetaceans, such as whales and dolphins, employ bubbles

to herd their prey [67]. Working in groups, the cetaceans dive below the prey

and each individual releases bubbles from its blowhole to form a large cylinder

of bubbles. This cylinder acts as a net, and the cetaceans rise to the surface,

maintaining the walls of the cylinder as they rise. This forces the prey to school

in the centre of the cylinder near the surface of the ocean, where the cetaceans

can then lunge-feed on a focused region, maximising their intake of food. Sim-

ilar methods have been used by gannets and sharks, with alternative methods
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of bubble production [67]. Dolphins have additionally been observed producing

bubble-rings as a play-tool which they then swim through [39].

1.1.3 Bubbles and ultrasound

Mechanical stirring or release of a blowing agent can introduce bubbles to heated

polymers and metallic alloys [7, 41] which creates a lightweight foam. Careful

design of the foam can result in desired mechanical, chemical and thermal char-

acteristics. Insonifying the foam during its formation with an ultrasonic wave

can manipulate the bubble distribution within the foam, enabling increased con-

trol over the foam’s physical properties [127].

Bioprocesses are extremely complicated chemical processes which use liv-

ing cells, typically to manufacture drugs. In the bioprocess industry it is often

challenging to measure the readiness of a product due to both the complicated

nature of the process itself and the limited physical and chemical information

available [45,71]. Because of these complications processes are often not operated

to their full potential and the resulting products are not of a consistent qual-

ity. These deficiencies can be expensive, particularly for smaller companies who

cannot afford wasted batches of products. It is therefore desirable to increase

the level of understanding of these bioprocesses throughout their manufacture.

Current attempts to increase this understanding have had limited success due

to the variability of the bioprocesses, a lack of real-time information, problems

with multi-point measurements and the possibility of fouling due to invasive

measurements [5, 30, 45, 65, 71, 91]. One active area of research is to attempt to

derive the state of a bioprocess by accurately determining the size of bubbles

within the process. An ultrasonic transducer attached to the exterior of the
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vessel can generate an ultrasonic signal which interacts with the bubble, causing

it to undergo large amplitude oscillations. The energy from these oscillations is

transmitted back to the transducer and information regarding the bubble and

the fluid can be recovered from this signal [69].

Bubbles are strong resonators which produce vibrations upon interaction

with an ultrasonic wave. Depending on the centre frequency and the pressure of

the ultrasound signal, the vibrations can take on different characteristics. A low

pressure signal will induce stable cavitation where the bubble vibrates steadily

in a linear fashion and as the pressure increases the vibrations will become more

violent and nonlinear [25, 27, 66, 70, 77]. Once a certain threshold is exceeded

the oscillations are chaotic [100] and the bubble will expand and contract with

such extreme displacement that inertial cavitation occurs and the bubble im-

plodes. By designing the signal such that its centre frequency corresponds with

the resonant frequency of the bubble these vibrations are maximized for a given

pressure [27,68]. Extreme retraction of the bubble wall produces a large amount

of energy which, if harnessed correctly, can play an important part in several

key areas such as therapeutic ultrasound in medicine [9, 51] and in ultrasonic

cleaning in industry [78].

1.1.4 Contrast agents

The opportunities for applying ultrasound medically have been increased latterly

due to advances with ultrasound contrast agents (UCAs). These microbubbles,

which are injected intravenously into the bloodstream, are encapsulated in a

thin elastic lipid or polymer shell which prolongs their existence in the blood-

stream [50]. They are of the order of µm and are therefore small enough to

4



pass through capillaries. UCAs have similar physical characteristics to free bub-

bles and thus have strong resonating features [8]. There are currently several

applications of stable and inertial cavitation of UCAs in medicine. Stable cav-

itation is primarily applied in the diagnostic regime whereas inertial cavitation

is being investigated for an increasingly widespread variety of therapeutic appli-

cations. Blood cells and their surrounding tissue have relatively similar acoustic

impedances [108] and UCAs can therefore be used to improve the echogenicity

of the bloodstream and make it more prominent in ultrasound scans [50, p1–2].

This can be utilised in the imaging of bloodflow through the heart [85], lungs

and liver in identifying areas which are damaged, such as in tumours [34], as well

as to identify twin-twin transfusion syndrome in the foetus [67]. New methods

of improving ultrasound imaging are constantly being proposed. These methods

tend to utilize specific facets of the stable cavitation of UCAs [10] or promote

novel processing techniques [96]. Therapeutic applications have improved the

permeability of the blood-brain barrier by applying focused ultrasound to in-

duce the inertial cavitation of UCAs during in vivo experiments [132,136]. The

energy released by the UCA collapse creates perforations in the blood-brain

barrier which allows larger drug molecules access to the brain, improving treat-

ment rates. High intensity focused ultrasound (HIFU) is widely applied in the

treatment of tumours, and recent in vitro studies have demonstrated that UCAs

can improve the efficacy of HIFU [6, 53, 63, 137]. In vitro [28, 102, 133] and in

vivo [104,128] experiments have demonstrated that intravascular gene therapy is

possible under the inertial cavitation of UCAs. UCAs can have a liquid instead

of gas core, allowing drugs to be transported throughout the circulatory system.

This means that, for example, a drug designed to treat cancer can be encased

within a contrast agent and directed through the bloodstream to the tumour.

Once it reaches the tumour, a HIFU wave can be deployed causing the contrast

agent to cavitate. The energy released will open the pores in the tumour (a
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process called sonoporation [133, 134]) allowing the contrast agent to enter the

tumour wherein the treatment drug contained in the contrast agent is subse-

quently absorbed by the tumour. This method of localised treatment enables a

higher concentration of drug to be used than in standard chemotherapy which

increases the success rate of the treatment. Many of the above applications can

benefit from the adhesion of the UCA to the treatment area, resulting in the

investigation of mechanical [135] and chemical [35] adhesion characteristics. Re-

cent developments in molecular imaging have instigated a new trend involving

targeted micro/nano-bubbles which are directed to the area of treatment, facil-

itate improved ultrasonic imaging for diagnosis as a result of stable cavitation

and immediately begin treatment as a result of drug release due to inertial cav-

itation [37, 54, 123].

1.2 Models of bubble dynamics

The focus of this thesis will be on imaging bubbles and UCAs. Detecting these

at their first harmonic amplitude is of limited use as a large non-resonant bub-

ble can produce larger oscillations than a smaller resonant bubble [92]. The

surrounding medium and the containing vessel will also produce echoes at the

frequency of the insonifying wave [27]. When a bubble is insonified close to its

resonant frequency it also produces oscillations at its harmonic and subharmonic

frequencies [27, 64, 83, 92, 110], [66, pp413–414]. This property can be utilised

therefore to separate the bubbles from all other reflectors and resonators as only

it will transmit back a reflected wave at precisely its second harmonic frequency.

Using an imaging protocol that filters out the reflected wave components at all

other frequencies forms the basis of second harmonic imaging [66, pp446–447].
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The dynamics of a radially oscillating bubble have been studied for many

years. Rayleigh began the analysis in the early 20th century by considering

the motion of a spherical bubble undergoing cavitation in an incompressible

fluid [114]. This basic model has been extended by several authors to include

the effects of a driving external pressure field [105], the gas inside the bub-

ble [90, 95] and damping due to the viscosity of the liquid [107]. The resulting

equation, which is commonly known as the Rayleigh–Plesset or RPNNP [64]

equation after its various contributers, has been widely studied in the literature.

Despite the advances in the model since Rayleigh’s initial work, the Rayleigh–

Plesset equation still has some fundamental assumptions, for example the liquid

is still considered incompressible, only damping due to viscosity is considered

and the oscillations are assumed to be spherical. Some progress has been made

to include the effects of a compressible liquid. This leads to a finite, constant,

speed of sound within the liquid. Two of the most common models of this type

are those by Herring [48] and Keller and Miksis [55], which also include the effect

of radiation damping. It has been shown that the Rayleigh–Plesset, Herring-

type and Keller-type equations can all be expressed as members of the same

family of equations [111] and are commonly referred to as the Keller–Herring

equations. All of the above models are valid only in the case when the velocity

of the bubble wall is small compared with the speed of sound in the liquid [111].

The bubble models have since been extended and adapted in an attempt to

accurately model the dynamics of a UCA under insonification. One of the first

attempts was made by de Jong et al. [26], who took a Rayleigh–Plesset type

model and included terms that would account for the elastic shell. Church re-

formed the original Rayleigh–Plesset type model to consider a bubble encased by

a shell [22]. Morgan et al. [87] developed the modified Herring model for bubbles,

proposed by Vokurka [130], by incorporating the shell effects in a similar way to
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Church. MacDonald et al. [77] then developed the work done by Morgan et al.

and Prosperetti & Lezzi [111] in incorporating the effects of the shell into the

Keller–Herring equation. The advantage of this equation is that, analogously to

the bubble dynamics case, Macdonald’s model can be reduced to a Rayleigh–

Plesset type, Keller type or Herring type equation for the dynamics of a UCA by

a suitable parameter choice. These original mathematical models are continually

being improved, with the level of current interest in the area prompting more ac-

curate models. Marmottant et al. [79] originally demonstrated that the surface

tension at the gas-liquid interface could not be sufficiently represented by a lin-

ear term. The modified Herring model proposed by Morgan et al. was revised

by including a corrected, time-dependent, surface tension term. With small

acoustic amplitude however, Morgan’s original model and Marmottant’s revised

model were shown to behave in a similar fashion [79]. Stride [118] has recently

employed a more general examination of the surface tension and shown that the

Morgan model, adapted to include a time-dependent surface tension term, and

the Marmottant model are in fact both special cases of a more general equation

which can be modified to describe different shell properties. Recently, Doinikov

et al. [33] investigated non-linear viscous theory to demonstrate that the lipid

coatings may exhibit shear-thinning and strain-softening properties. Mleczko et

al. [86] proposed a model which accounts for the non-linear memory of a UCA,

a property which has been demonstrated experimentally [10].

As the bubble and UCA models are highly non-linear there have been very

few analytical studies. The dynamics of a bubble insonified by a single-frequency

pulse has been analysed by considering a small-amplitude perturbation of the

bubble’s volume in the governing differential equation [138]. This was extended

to investigate the effect that varying the frequency of the driving signal has on

the amplitude of oscillations at the second harmonic [139]. This analysis was
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shown to be valid only for high concentration of bubbles within a bubble layer

by considering the coherent and incoherent parts of the average intensity of the

scattered fields [117]. A similar approach, where small-amplitude perturbations

of the bubble’s radius were considered, has also been carried out [110] and the

analysis compared well with numerical results [64]. It has been experimentally

shown that oscillations generated at the bubble’s second harmonic frequency

are large enough to distinguish from background noise, and this method can dif-

ferentiate between bubbles of different sizes [83]. Another proposed method of

detection is to insonify the bubble with a double-frequency sinusoidal pulse and

then detect vibrations at the sum-difference frequencies of the driving signal [62].

This method has been used to determine the density of bubbles in water [122]

and experimental evidence supports the efficacy of this method [97]. It has been

shown that detection at the difference frequency of a double-frequency impulse

can detect and measure a range of micron-sized gas bubbles [112]. This method

has been examined analytically by again carrying out a small-perturbation anal-

ysis [138] and by numerically integrating the governing field equations [92]. Sub-

harmonic imaging has also been studied analytically [110] and numerically [64]

for insonification by a single-frequency pulse. Detection at the subharmonic

sum-difference frequencies of a double-frequency excitation has been shown to

be better than detection at the subharmonic frequency itself. The subharmonic

frequency is present only above a certain amplitude threshold of insonifying

signal [83, 103]. Leighton et al. [70] compared the effectiveness of bubble de-

tection at various harmonic, subharmonic and sum-difference frequencies and

found that although detection at the first subharmonic sum-difference frequency

is most accurate, it is difficult to implement in an experimental set-up. With

standard sinusoidal pulse signals, second harmonic generation is limited unless

the bubbles are very small, and thus spatial resolution can be very poor [92].
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An analytical solution for an encapsulated bubble insonified by a sinusoidal

pulse has been found by Church by considering small-amplitude oscillations [22].

This then facilitated a study of the effect that the encapsulating shell properties

have on various system properties including the resonant frequency, the attenu-

ation and the scattering cross-section.

1.3 Coded ultrasound

Coded ultrasound (CU) signals are designed to imitate the bio-sonar waveforms

employed by mammals such as dolphins, bats and whales to navigate and forage.

The field of ultrasonics is witnessing increasing application of coded ultrasound

waveforms in all areas. The radar community originally realised the potential of

coded ultrasound in delivering relatively low power, high energy signals which

had the capacity to maintain temporal resolution. Two examples of CU are

chirps and Golay sequences. A chirp is a signal in which the frequency increases

or decreases with time whereas a Golay sequence is a complementary pair of

sequences whose out-of-phase autocorrelation coefficients sum to zero [42]. In

medical ultrasound the application of chirps and Golay sequences are increas-

ingly common due to the benefits provided: carefully designed chirps can deliver

a large amount of energy, utilising a relatively low acoustic pressure amplitude,

which increases the amplitude of oscillations of bubbles and UCAs, and Golay

sequences are able to cancel sidelobes arising from incomplete compression, both

applications resulting in improved imaging and penetration depth while preserv-

ing temporal resolution [12, 120, 121].

The case of a UCA experiencing chirp excitation has been studied numerically

and experimentally in recent years. Sun et al. [120, 121] compared numerically
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derived theoretical results with simultaneous optical and acoustical experimen-

tal results of a UCA insonified with an increasing and decreasing frequency

chirp sequence. Zhang et al. [142] investigated the case of detecting a UCA at

subharmonic frequencies using numerical and theoretical results. Borsboom et

al. [11, 13] found, via numerical and experimental investigations, that imaging

a UCA with a linear chirp excitation produced a marked increase in the second

harmonic component compared to that obtained using a single-frequency signal,

and that this method could potentially be applied to improve the detection of

UCAs. However, no systemic theoretical investigation into this phenomenon has

been undertaken to date and this will form the central motivation for this thesis.

1.4 The fractional Fourier transform

The Fractional Fourier Transform (FrFT) is a concept first introduced by Namias

in 1980 [89]. The FrFT is a natural way to analyse signals with non-stationary

frequency content, such as chirps, where ordinary Fourier transforms are not

strictly applicable. McBride and Kerr [80] performed a rigorous mathematical

analysis of Namias’ work, modifying the early definitions and demonstrating the

true potential of the FrFT in applied mathematics. Several authors have since

extended the analysis and applicability of the FrFT [19, 20, 56–60,140, 141] and

the transform has burgeoned into a standard tool in signal analysis and pro-

cessing [43, 44, 73, 101, 124, 126], and in optics [21, 36, 74, 75, 113, 125]. Ozaktas

et al. [99] provide a comprehensive study of the FrFT, detailing its relationship

with the Wigner distribution and ambiguity function, and illustrating the many

applications of the FrFT, for example in filtering, signal recovery, detection and

pattern recognition [99].
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1.5 Outline of thesis

This thesis presents analytical and numerical studies which aim to improve the

imaging of bubbles in bioprocesses and of UCAs in blood conduits. In biopro-

cesses the ability to estimate the bubble size (or size distribution in a population

of bubbles) is of interest in controlling and monitoring the process [52]. UCAs

aid the imaging of tissue where the level and extent of the blood flow is of inter-

est. It would also be of interest in this setting to be able to measure the number

of bubbles present (or the distance between them) as this could be used to gauge

the size of the blood conduit.

Chapter 2 performs for the first time a small-perturbation analysis of a dy-

namical model governing the excitation of bubbles by a linear chirp signal. A

small parameter is utilised to permit a regular perturbation of the Rayleigh–

Plesset equation and this results in a series of linear differential equations. The

first two of these give rise to an approximate analytic expression for the ampli-

tude of the first and second harmonics of the bubble’s dynamics. By deriving

an analytical form for the harmonics rather than relying on a numerical in-

vestigation, the dependency of the second harmonic amplitude on the system

parameters, and a comparison with an equivalent gated continuous wave excita-

tion, is clearly shown. The potential of using chirp insonification for the sizing of

bubbles and the measurement of fluid viscosity in bioprocesses is also discussed.

A similar analysis is conducted for the case of a UCA insonified by a chirp

forcing signal in Chapter 3. The results support the experimental findings of

Borsboom et al. [11, 13], that the second harmonic frequency component can

be detected above background noise. By obtaining an approximate analytical

solution the amplitudes for the resonant and second harmonic frequencies can
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then be examined and optimised with respect to the chirp signal parameters and

the elasticity, viscosity and thickness of the UCA shell.

In Chapter 4 a numerical analysis of the Rayleigh–Plesset equation with a

chirp forcing signal is performed by utilising the FrFT. Algorithms will be de-

scribed which enable the application of the discrete FrFT in this setting. It will

be demonstrated that this form of investigation has the potential to determine

the size distribution of bubbles in a population. The two-dimensional FrFT

cross-correlation will be applied to identify the degree of similarity between two

different bubble responses. This chapter therefore sets out a methodology that

could readily be adopted by experimentalists to help interrogate fluids contain-

ing bubbles.

The original components of this thesis are essentially the entire contents of

Chapters 2–4:

• Chapter 2: there has been no previous analytical study of the Rayleigh–

Plesset equation subject to chirp insonification. This chapter lays out in

detail an approximation scheme that culminates in an analytic expression

for the second harmonic amplitude as a function of the system parameters.

• Chapter 3: Extension of the investigation of the previous chapter to the

case of a UCA undergoing chirp excitation is also an area that has not

been addressed using approximate analytical techniques before. Optimal

values for the insonifying signal parameters and the UCA shell parameters

to maximise a UCAs response are derived for the first time.

• Chapter 4: the FrFT has not been previously applied to the response

of a bubble in either experimental or theoretical studies for any type of

forcing function. The subsequent potential of the FrFT to identify size

13



distributions, and enumerate bubbles within a population is discussed.

The FrFT cross-correlation is also put forward as a more accurate method

of resolving a bubble’s location and size.

14



Chapter 2

Analysis of the Rayleigh-Plesset

equation with chirp excitation

2.1 Introduction

In this chapter the Rayleigh–Plesset equation for a bubble insonified by an ul-

trasonic chirp is considered. This highly non-linear differential equation is sim-

plified by considering only small-amplitude oscillations of the bubble wall. After

non-dimensionalisation, a small parameter is identified and utilised in a regular

perturbation method analysis which generates a series of linear differential equa-

tions. The first two of these describe the bubble’s dynamics at its resonant and

second harmonic frequencies and approximate analytical solutions are obtained

which, after some manipulation, can be interpreted to reveal the amplitude of

the oscillations at these frequencies.

The frequency amplitudes are investigated as the system and signal param-

eters are varied, and the conditions for which a chirp forcing signal produces

larger oscillations than a comparable gated continuous wave are identified.
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2.2 Analysis of the Rayleigh–Plesset equation

for a bubble insonified by a linear chirp sig-

nal

The Rayleigh–Plesset equation is given by [66, pp302–306],

RR̈ +
3Ṙ2

2
=

1

ρ

(

(

ph +
2σ

R0

− pv

)(

R0

R

)3κ

+pv −
2σ

R
− 4µṘ

R
− ph − F (t)

)

,

(2.1)

where R = R(t) is the bubble’s radius, R0 is the bubble’s equilibrium radius, ρ

is the density of the liquid surrounding the bubble, ph is the hydrostatic pressure

of the liquid, σ is the surface tension of the gas-liquid interface, pv is the vapour

pressure inside the bubble, κ is the non-dimensional polytropic gas constant of

the gas inside the bubble, µ is the viscosity of the liquid and F (t) is the forcing

function. The hydrostatic pressure is a combination of the ambient pressure

in the liquid, p0, and the force per unit area of the liquid above acting on the

bubble [66, pp239–240]. That is ph = p0 + ρgh, where g is the gravitational

acceleration and h is the height of the liquid above. Typically pv is small and

negligible in comparison to ph, and so ph − pv can be approximated by p0 when

h is small. The first term on the right-hand side of (2.1) describes the pressure

produced by the gas inside the bubble, following the polytropic gas law. The

third term represents the influence of surface tension on the pressure in the liq-

uid at the bubble wall and the fourth term describes the damping of the bubbles
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oscillations due to the liquid viscosity.

For small vibrations let

R(t) = R0(1 + x(t)), (2.2)

where |x(t)| � 1; then equation (2.1) becomes

ρR2
0(1 + x)ẍ +

3ρR2
0ẋ

2

2

=

(

p0 +
2σ

R0

)(

1

1 + x

)3κ

− 2σ

R0(1 + x)
− 4µẋ

(1 + x)
− p0 − F (t).

Since x � 1, then (1 + x)−a can be approximated by a Maclaurin series. Using

these approximations, and neglecting terms of O(x3) and above, the bubble’s

dynamic equation becomes

ρR2
0(1 + x)ẍ +

3

2
ρR2

0ẋ
2

=

(

p0 +
2σ

R0

)(

1 − 3κx +
3

2
κ(3κ + 1)x2

)

−
(

p0 +
2σ

R0
(1 − x + x2)

)

− 4µ(ẋ − xẋ) − F (t) + O(x3)

= p0 +
2σ

R0

− p0 −
2σ

R0

+

(

−3κ

(

p0 +
2σ

R0

)

+
2σ

R0

)

x

+

(

3

2
κ(3κ + 1)

(

p0 +
2σ

R0

)

− 2σ

R0

)

x2

−4µ(ẋ − xẋ) − F (t) + O(x3)

= −ρR2
0ω

2
0x +

(

3

2
κ(3κ + 1)

(

p0 +
2σ

R0

)

− 2σ

R0

)

x2

−4µẋ(1 − x) − F (t) + O(x3). (2.3)

Figure 2.1 compares the dynamics of the bubble radius, calculated from the

numerical solution to the differential equation (2.1), with that obtained from
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Figure 2.1: The radial dynamics of the insonified bubble (R(t)) calculated from the numerical

solution of the differential equation (2.1) (dotted line), compared with that obtained using

equation (2.2) (full line), where x(t) is calculated from the numerical solution of the differential

equation (2.3). The forcing function F (t) is given by equation (2.5) with the chirp signal

parameters given by Table 2.2 and the physical parameter values as in Table 2.1.

the numerical solution to the differential equation (2.3). The solutions are ini-

tially identical, although as time increases the approximate solution oscillates

at an increasingly slower rate and attenuates at a slightly increased rate. These

differences are due to the O(x3) terms in equation (2.3) being neglected. Fig-

ure 2.2 shows both solutions in the frequency-domain where they also compare

well. The natural frequency ω0, calculated from the auxilliary equation of the

homogeneous form of the O(x) equation

ρR2
0ẍ + 4µẋ +

(

3κ

(

p0 +
2σ

R0

)

− 2σ

R0

)

x = 0,

is given by [66, p306]

ω0 =
1

2π

(

1

ρR2
0

(

3κ

(

p0 +
2σ

R0

)

− 2σ

R0

)

− 4µ

ρ2R4
0

)
1
2

. (2.4)
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Figure 2.2: The radial dynamics of the insonified bubble (R(t)) calculated from the numerical

solution of the differential equation (2.1) (dotted line), compared with that obtained using

equation (2.2) (full line), where x(t) is calculated from the numerical solution of the differential

equation (2.3), in the frequency-domain. This power spectrum is calculated by taking a fast

Fourier transform of the time-domain data in Figure 2.1. The forcing function F (t) is given by

equation (2.5) with the chirp signal parameters given by Table 2.2 and the physical parameter

values as in Table 2.1.

The case in which the forcing function F (t) is a linear chirp signal is consid-

ered. A linear chirp is defined as [11]

F (t) = pce
−(t−a)2/2b2 cos(2πt(ct + d)). (2.5)

This signal is schematically represented in the time-frequency domain in Figure

2.3. A chirp is a specific type of ultrasound signal in which the instantaneous

frequency either increases or decreases with time and for a linear chirp this

frequency variation is linear with time. In equation (2.5) pc represents the peak
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Physical System Parameters

Symbol Description Units Value

R0 Bubbles equilibrium radius mm 0.108

ρ Density of surrounding liquid kg m−3 998

p0 Ambient pressure of liquid kPa 100

σ Surface tension of gas-liquid interface N m−1 0.073

κ Polytropic gas constant – 1

µ Viscosity of liquid mPa s 1.003

Table 2.1: System parameter values for a bubble in water at 20oC.

PSfrag replacements

Time

Frequency

ω0

d

a

b

fi = 2ct + d

Figure 2.3: A representation of a linear chirp in the time-frequency domain. The amplitude of

the signal is indicated by the Gaussian envelope (dotted line). Ideally, the resonant frequency,

ω0, corresponds to the point of maximum amplitude, at time a. The spread of the Gaussian

envelope is regulated by b, the gradient of the instantaneous frequency line is given by c and

the initial frequency is d.
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pressure of the signal and the exponential term implements a Gaussian shaping

on the signal where a gives the central peak of the Gaussian curve and b controls

the variance. The signal defined in equation (2.5) can therefore be described as

a signal which is both amplitude modulated and frequency modulated. The

instantaneous frequency, fi, at time t is given by [84]

fi = 2ct + d, (2.6)

from which it is clear that the instantaneous rate of change of the frequency of

the signal is given by 2c and the initial frequency is given by d. Equation (2.3)

can be scaled by introducing a non-dimensional parameter ϑ which satisfies the

relation ϑ = t/T , where T is the duration for which the forcing function F (t)

has an amplitude above a certain threshold. Using this definition of ϑ equation

(2.5) becomes

F (t) = pcG(ϑ), (2.7)

where G(ϑ) is the scaled forcing function defined by

G(ϑ) = e−(ϑ−ā)2/2b̄2 cos(2πϑ(c̄ϑ + d̄)) (2.8)

and

ā =
a

T
, b̄ =

b

T
, c̄ = cT 2, and d̄ = dT. (2.9)

Equation (2.3) can be non-dimensionalised as

(1 + x)x′′ +
3

2
(x′)

2

= − (3κ (C1 + 2C2) − 2C2) x

+

(

3

2
κ(3κ + 1) (C1 + 2C2) − 2C2

)

x2

−4C3(x
′ − xx′) + εG(ϑ) + O(x3), (2.10)
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where a prime denotes d/dϑ and where the non-dimensional parameters Ci are

defined as

C1 =
p0T

2

ρR2
0

, C2 =
σT 2

ρR3
0

, C3 =
µT

ρR2
0

and ε = −pcT
2

ρR2
0

.

These parameters can be interpreted as dimensionless ambient pressure, surface

tension, viscosity and forcing amplitude respectively. For the physical and signal

parameter values defined in Tables 2.1 and 2.2, the dimensionless parameters

take the following values:

C1 = 0.21, C2 = 0.0015, C3 = 0.00043, and ε = 0.017; (2.11)

in particular this shows that ε is small.

2.3 A regular perturbation analysis of the small-

amplitude model

Now let x(ϑ) take the following form

x = ε(η0 + εη1 + ε2η2 + ...), (2.12)

where the ηi are functions of ϑ. Substituting equations (2.8) and (2.12) into

(2.10) gives

3

2
(εη′

0 + ε2η′
1)

2 + (1 + εη0 + ε2η1)(εη
′′
0 + ε2η′′

1)

=

(

3

2
κ(3κ + 1)(C1 + 2C2) − 2C2

)

(εη0 + ε2η1)
2

+(2C2 − 3(C1 + 2C2)κ)(εη0 + ε2η1)

−4C3(1 − (εη0 + ε2η1))(εη
′
0 + ε′2η1) + εG(ϑ) + O(ε3).
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Expanding the brackets then gives

3

2
ε2η′2

0 + (εη′′
0 + ε2η′′

1 + ε2η0η
′′
0)

=

(

3

2
κ(3κ + 1)(C1 + 2C2) − 2C2

)

ε2η2
0

+(2C2 − 3(C1 + 2C2)κ)(εη0 + ε2η1)

−4C3(εη
′
0 + ε2η′

1 − ε2η0η
′
0) + εG(ϑ) + O(ε3).

Equating similar powers of ε gives a series of second order differential equations,

the first two being

O(ε) : η′′
0 + 4C3η

′
0 + (3κ (C1 + 2C2) − 2C2) η0 = G(ϑ) (2.13)

and

O(ε2) : η′′
1 + 4C3η

′
1 + (3κ (C1 + 2C2) − 2C2) η1

= −η0η
′′
0 −

3

2
(η′

0)
2
+ 4C3η0η

′
0

+

(

3

2
κ(3κ + 1) (C1 + 2C2) − 2C2

)

η2
0 .

(2.14)

2.3.1 Solving the O(ε) equation

The solution to the homogenous version of the O(ε) equation is

ηH
0 = A0η

H1
0 + B0η

H2
0

= A0e
αϑ cos(βϑ) + B0e

αϑ sin(βϑ),

where

α = −2C3, (2.15)

β =
(

3κC1 + 6κC2 − 2C2 − 4C2
3

)
1
2 (2.16)
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and A0 and B0 are constants of integration. The variation of parameters method

is now used to find the particular integral ηP
0 = ηP

0 (ϑ), given by

ηP
0 = v1η

H1
0 + v2η

H2
0 , (2.17)

where v1 = v1(ϑ) and v2 = v2(ϑ) are to be determined. The Wronskian deter-

minant of ηH1
0 and ηH2

0 , denoted by W (ηH1
0 , ηH2

0 ), is

W (ηH1
0 , ηH2

0 ) =

∣

∣

∣

∣

∣

∣

∣

ηH1
0 ηH2

0

ηH1
0

′
ηH2

0

′

∣

∣

∣

∣

∣

∣

∣

= ηH1
0 ηH2

0

′ − ηH1
0

′
ηH2

0

= eαϑ cos(βϑ)(αeαϑ sin(βϑ) + βeαϑ cos(βϑ))

−eαϑ sin(βϑ)(αeαϑ cos(βϑ) − βeαϑ sin(βϑ))

= βe2αϑ cos2(βϑ) + βe2αϑ sin2(βϑ)

= βe2αϑ. (2.18)

This then gives

v1 =

∫ ϑ −ηH2
0 G(ϑ′)

W (ηH1
0 , ηH2

0 )
dϑ′

=

∫ ϑ −eαϑ′

sin(βϑ′)G(ϑ′)

βe2αϑ
dϑ′

=
−1

β

∫ ϑ

e−αϑ′

sin(βϑ′)G(ϑ′) dϑ′ (2.19)

and

v2 =

∫ ϑ ηH1
0 G(ϑ′)

W (ηH1
0 , ηH2

0 )
dϑ′

=

∫ ϑ eαϑ′

cos(βϑ′)G(ϑ′)

βe2αϑ
dϑ′

=
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)G(ϑ′) dϑ′. (2.20)
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Now

v2(ϑ) =
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)G(ϑ′) dϑ′

=
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)e−(ϑ−ā)2/2b̄2 cos(2πϑ′(c̄ϑ′ + d̄)) dϑ′

=
1

2β

∫ ϑ

e(−αϑ′−(ϑ′−ā)2/2b̄2) (cos(βϑ′ + 2πϑ′(c̄ϑ′ + d̄))

+ cos(βϑ′ − 2πϑ′(c̄ϑ′ + d̄))
)

dϑ′

=
1

2β

∫ ϑ

e(−αϑ′−(ϑ′−ā)2/2b̄2)
(

<
{

ei(βϑ′+2πϑ′(c̄ϑ′+d̄))
}

+<
{

ei(βϑ′−2πϑ′(c̄ϑ′+d̄))
})

dϑ′

=
1

2β

∫ ϑ (

<
{

e(−αϑ′−(ϑ′−ā)2/2b̄2)ei(βϑ′+2πϑ′(c̄ϑ′+d̄))
}

+<
{

e(−αϑ′−(ϑ′−ā)2/2b̄2)ei(βϑ′−2πϑ′(c̄ϑ′+d̄))
})

dϑ′

=
1

2β

∫ ϑ (

<
{

ei((i2b̄2αϑ′+iϑ′2−i2āϑ′+iā2)/2b̄2+βϑ′+2πc̄ϑ′2+2πd̄ϑ′)

+ei((i2b̄2αϑ′+iϑ′2−i2āϑ′+iā2)/2b̄2+βϑ′−2πc̄ϑ′2−2πd̄ϑ′)
})

dϑ′

=
1

2β
<
{∫ ϑ (

ei((2πc̄+i/2b̄2)ϑ′2+(β+2πd̄+i(2b̄2α−2ā/2b̄2))ϑ′+iā2/2b̄2)

+ei((−2πc̄+i/2b̄2)ϑ′2+(β−2πd̄+i(2b̄2α−2ā)/2b̄2))ϑ′+iā2/2b̄2)
)

dϑ′
}

=
1

2β
<
{
∫ ϑ (

ei(χ1ϑ′2+χ2ϑ′+χ3) + ei(χ′

1ϑ′2+χ′

2ϑ′+χ3)
)

dϑ′
}

,

where

χ1 = 2πc̄ +
i

2b̄2
, χ′

1 = −2πc̄ +
i

2b̄2

χ2 = β + 2πd̄ + i

(

b̄2α − ā

b̄2

)

, χ′
2 = β − 2πd̄ + i

(

b̄2α − ā

b̄2

)

χ3 =
iā2

2b̄2
.



























(2.21)
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Completing the square for the exponential terms we obtain

v2 =
1

2β
<
{
∫ ϑ (

ei(χ1(ϑ′+χ2/2χ1)2+χ3−χ2
2/4χ1)

+e
i
“

χ′

1(ϑ′+χ′

2/2χ′

1)
2
+χ3−χ′2

2/4χ′

1

”

)

dϑ′
}

=
1

2β
<{I1 + I2} . (2.22)

Now I1 can be rewritten as

I1 = eiχ4

∫ ϑ

ei(χ1(ϑ′+χ2/2χ1)2) dϑ′ (2.23)

where

χ4 = χ3 −
χ2

2

4χ1

. (2.24)

The variation of parameters method permits the inclusion of a lower constant

limit in the integral in (2.23) as this augmentation is simply absorbed by the

two constants of integration contained in the complementary function. I1 can

therefore be written as

I1 = eiχ4

∫ ϑ

−χ2/2χ1

ei(χ1(ϑ′+χ2/2χ1)2) dϑ′

where the limit
−χ2

2χ1
is chosen for later convenience. Substituting

s =
√

iχ1

(

ϑ +
χ2

2χ1

)

= χ5ϑ + χ6,

where

χ5 =
√

iχ1, (2.25)

χ6 =

√
iχ2

2
√

χ1
=

iχ2

2χ5
, (2.26)
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gives

I1 =
eiχ4

χ5

∫ st

0

es2

ds

=
eiχ4

χ5

√
π

2
erfi(st)

=

√
πeiχ4

2χ5
erfi(χ5ϑ + χ6),

where erfi(z) is the imaginary error function defined as

erfi(z) = −ierf(iz),

where erf(z) is the error function [3, p297]

erf(z) =
2√
π

∫ z

0

e−ϑ2

dϑ.

Similarly

I2 =

√
πeiχ′

4

2χ′
5

erfi(χ′
5ϑ + χ′

6),

where

χ′
4 = χ3 −

χ′2
2

4χ′
1

,

χ′
5 =

√

iχ′
1,

χ′
6 =

√
iχ′

2

2
√

χ′
1

=
iχ′

2

2χ′
5

. (2.27)

Thus v2 can be written as

v2 =

√
π

4β
<
{

eiχ4

χ5

erfi(χ5ϑ + χ6) +
eiχ′

4

χ′
5

erfi(χ′
5ϑ + χ′

6)

}

.
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Treating v1 in a similar fashion gives

v1(ϑ) = − 1

β

∫ ϑ

e−αϑ′

sin(βϑ′)G(ϑ′) dϑ′

=
1

β

∫ ϑ

e−αϑ′

sin(βϑ′)e−(ϑ−ā)2/2b̄2 cos(2πϑ′(c̄ϑ′ + d̄)) dϑ′

= − 1

2β

∫ ϑ

e(−αϑ′−(ϑ′−ā)2/2b̄2) (sin(βϑ′ + 2πϑ′(c̄ϑ′ + d̄))

+ sin(βϑ′ − 2πϑ′(c̄ϑ′ + d̄))
)

dϑ′

= − 1

2β

∫ ϑ

e(−αϑ′−(ϑ′−ā)2/2b̄2)
(

=
{

ei(βϑ′+2πϑ′(c̄ϑ′+d̄))
}

+=
{

ei(βϑ′−2πϑ′(c̄ϑ′+d̄))
})

dϑ′

= − 1

2β

∫ ϑ (

=
{

e(−αϑ′−(ϑ′−ā)2/2b̄2)ei(βϑ′+2πϑ′(c̄ϑ′+d̄))
}

+=
{

e(−αϑ′−(ϑ′−ā)2/2b̄2)ei(βϑ′−2πϑ′(c̄ϑ′+d̄))
})

dϑ′

= − 1

2β

∫ ϑ (

=
{

ei((i2b̄2αϑ′+iϑ′2−i2āϑ′+iā2)/2b̄2+βϑ′+2πc̄ϑ′2+2πd̄ϑ′)

+ei((i2b̄2αϑ′+iϑ′2−i2āϑ′+iā2)/2b̄2+βϑ′−2πc̄ϑ′2−2πd̄ϑ′)
})

dϑ′

= − 1

2β
=
{∫ ϑ (

ei((2πc̄+i/2b̄2)ϑ′2+(β+2πd̄+i(2b̄2α−2ā/2b̄2))ϑ′+iā2/2b̄2)

+ei((−2πc̄+i/2b̄2)ϑ′2+(β−2πd̄+i(2b̄2α−2ā)/2b̄2))ϑ′+iā2/2b̄2)
)

dϑ′
}

= − 1

2β
=
{
∫ ϑ (

ei(χ1ϑ′2+χ2ϑ′+χ3) + ei(χ′

1ϑ′2+χ′

2ϑ′+χ3)
)

dϑ′
}

.

From (2.22)

v1(t) =
−1

2β
={I1 + I2}

and so

v1(ϑ) = −
√

π

4β
=
{

eiχ4

χ5
erfi(χ5ϑ + χ6) +

eiχ′

4

χ′
5

erfi(χ′
5ϑ + χ′

6)

}

.

Defining v(ϑ) by

v =

√
π

4β

(

eiχ4

χ5

erfi(χ5ϑ + χ6) +
eiχ′

4

χ′
5

erfi(χ′
5ϑ + χ′

6)

)

(2.28)
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then

v1 = −={v(ϑ)} and v2 = <{v(ϑ)}. (2.29)

Thus (2.17) is now

ηP
0 = v1η

H1
0 + v2η

H2
0

= −={v(ϑ)}eαϑ cos(βϑ) + <{v(ϑ)}eαϑ sin(βϑ)

= eαϑ(<{v} sin(βϑ) −={v} cos(βϑ))

and the general solution to (2.13) is given by

η0(ϑ) = ηH
0 + ηP

0

= A0e
αϑ cos(βϑ) + B0e

αϑ sin(βϑ) + eαϑ(<{v} sin(βϑ) − ={v} cos(βϑ))

= eαϑ ((B0 + <{v}) sin(βϑ) + (A0 −={v}) cos(βϑ)) . (2.30)

The constants A0 and B0 can now be determined from the initial conditions

η0(0) = K1, η′
0(0) = K2,

for some constants K1, K2. Let v0 = v(0), that is

v0 =

√
π

4β

(

eiχ4

χ5
erfi(χ6) +

eiχ′

4

χ′
5

erfi(χ′
6)

)

;

then

A0 = K1 + ={v0}.

Differentiating (2.30) with respect to ϑ gives

η′
0(ϑ) = αeαϑ ((B0 + <{v}) sin(βϑ) + (A0 − ={v}) cos(βϑ))

+eαϑ

(

β (B0 + <{v}) cos(βϑ) + sin(βϑ)
d

dϑ
(<{v})

−β (A0 − ={v}) sin(βϑ) − cos(βϑ)
d

dϑ
(={v})

)

.

(2.31)

29



From (2.29) and (2.19)

={v} =
1

β

∫ ϑ

e−αϑ′

sin(βϑ′)G(ϑ′) dϑ′

and so

d

dϑ
(={v}) =

1

β
e−αϑ sin(βϑ)G(ϑ).

From (2.20)

<{v} =
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)G(ϑ′) dϑ′

and so

d

dϑ
(<{v}) =

1

β
e−αϑ cos(βϑ)G(ϑ).

Hence (2.31) is

η′
0 = αeαϑ ((B0 + <{v}) sin(βϑ) + (A0 − ={v}) cos(βϑ))

+eαϑ

(

β (B0 + <{v}) cos(βϑ) +
1

β
sin(βϑ)e−αϑ cos(βϑ)G0(ϑ)

−β (A0 − ={v}) sin(βϑ) − 1

β
cos(βϑ)e−αϑ sin(βϑ)G0(ϑ)

)

= eαϑ ((α (A0 − ={v}) + β (B0 + <{v})) cos(βϑ)

+ (α (B0 + <{v}) − β (A0 −={v})) sin(βϑ)) .

Therefore

B0 =
1

β
(K2 − αA0 + α={v0}) −<{v0}

=
1

β
(K2 − αK1) − <{v0}.

In the simplest case, when the system is initially at equilibrium, K1 = K2 ≡ 0

then

A0 = ={v0} and B0 = −<{v0}.
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So the general solution to the O(ε) equation (2.13) in that case is

η0(ϑ) = eαϑ ((−<{v0} + <{v}) sin(βϑ) + (={v0} − ={v}) cos(βϑ))

= eαϑ ((<{v − v0}) sin(βϑ) − (={v − v0}) cos(βϑ)) . (2.32)

The derivative

η′
0(ϑ) = eαϑ ((α (<{v − v0}) + β (={v − v0})) sin(βϑ)

+ (β (<{v − v0}) − α (={v − v0})) cos(βϑ)) (2.33)

will be required later.

2.3.2 Approximations to the leading order solution

To make further analytical headway with this solution, v(ϑ) is rewritten in terms

of its real and imaginary parts. To begin this process the real and imaginary

parts of the χj terms are determined. From (2.25)

χ5 = (iχ1)
1
2

= r
1
2

(

cos

(

θ + 2kπ

2

)

+ i sin

(

θ + 2kπ

2

))

, for k = 0, 1,

where from (2.21)

r = |iχ1| =

(

(−1

2b̄2

)2

+ (2πc̄)2

)
1
2

=

(

1

4b̄4
+ 4π2c̄2

)
1
2

and

θ = arg(iχ1) = tan−1

(

2πc̄

−1/2b̄2

)

= − tan−1
(

4πb̄2c̄
)

.

Thus χ5 can take two possible values, χ5a and χ5b say, where

χ5a =

(

1

4b̄4
+ 4π2c̄2

)
1
4
(

cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

− i sin

(

1

2
tan−1

(

4πb̄2c̄
)

))
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and

χ5b =

(

1

4b̄4
+ 4π2c̄2

)
1
4
(

cos

(

1

2
tan−1

(

4πb̄2c̄
)

+ π

)

−i sin

(

1

2
tan−1

(

4πb̄2c̄
)

+ π

))

=

(

1

4b̄4
+ 4π2c̄2

)
1
4
(

− cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

+i sin

(

1

2
tan−1

(

4πb̄2c̄
)

))

= −χ5a.

In a similar way χ′
5a = −χ′

5b. From (2.26), (2.27) and since the imaginary error

function is an odd function, the negative signs in the second branch (χ5b) will

cancel in (2.28). Hence only the first branch needs to be considered and so let

χ5 = χ5R + iχ5I

=

(

1

4b̄4
+ 4π2c̄2

) 1
4
(

cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

− i sin

(

1

2
tan−1

(

4πb̄2c̄
)

))

,

and

χ′
5 = χ′

5R + iχ′
5I

=

(

1

4b̄4
+ 4π2c̄2

)
1
4
(

cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

+ i sin

(

1

2
tan−1

(

4πb̄2c̄
)

))

.

Now from (2.26) and (2.21)

χ6 =
iχ2

2χ5

=
iχ2χ5

2χ5χ5

=

(

i(β + 2πd̄) −
(

b̄2α−ā
b̄2

))

(

1
4b̄4

+ 4π2c̄2
)

1
4

2
(

1
4b̄4

+ 4π2c̄2
)

1
2
(

cos2
(

1
2
tan−1

(

4πb̄2c̄
))

+ sin2
(

1
2
tan−1

(

4πb̄2c̄
)))

×
(

cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

+ i sin

(

1

2
tan−1

(

4πb̄2c̄
)

))
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=
1

2
(

1
4b̄4

+ 4π2c̄2
)

1
4

(

−(β + 2πd̄) sin

(

1

2
tan−1

(

4πb̄2c̄
)

)

−
(

b̄2α − ā

b̄2

)

cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

+i

(

(β + 2πd̄) cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

−
(

b̄2α − ā

b̄2

)

sin

(

1

2
tan−1

(

4πb̄2c̄
)

)))

= χ6R + iχ6I ,

where the bar denotes the complex conjugate. Similarly

χ′
6 =

1

2
(

1
4b̄4

+ 4π2c̄2
)

1
4

(

(β − 2πd̄) sin

(

1

2
tan−1

(

4πb̄2c̄
)

)

−
(

b̄2α − ā

b̄2

)

cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

+i

(

(β − 2πd̄) cos

(

1

2
tan−1

(

4πb̄2c̄
)

)

+

(

b̄2α − ā

b̄2

)

sin

(

1

2
tan−1

(

4πb̄2c̄
)

)))

= χ′
6R + iχ′

6I .

From (2.21)

χ2
2

4χ1
=

χ2
2χ1

4χ1χ1

=

(

β + 2πd̄ + i

(

b̄2α − ā

b̄2

))2(

2πc̄ − i

2b̄2

)

4

(

2πc̄ +
i

2b̄2

)(

2πc̄ − i

2b̄2

)
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=
1

4
(

1
4b̄4

+ 4π2c̄2
)

(

(β + 2πd̄)22πc̄ + 2(β + 2πd̄)

(

b̄2α − ā

b̄2

)

1

2b̄2

−
(

b̄2α − ā

b̄2

)2

2πc̄ + i

(

1

2b̄2

(

b̄2α − ā

b̄2

)

+2(β + 2πd̄)

(

b̄2α − ā

b̄2

)

2πc̄ − (β + 2πd̄)2

2b̄2

))

=
1

16π2b̄4c̄2 + 1

(

2πc̄
(

b̄4(β + 2πd̄)2 − (b̄2α − ā)2
)

+(β + 2πd̄)(b̄2α − ā) + i
(

4πb̄2c̄(β + 2πd̄)(b̄2α − ā)

+
1

2b̄2
(b̄2α − ā)2 − b̄2

2
(β + 2πd̄)2

))

,

and so from (2.24) and (2.21)

χ4 = χ3 −
χ2

2

4χ1

=
1

16π2b̄4c̄2 + 1

(

−2πc̄
(

b̄4(β + 2πd̄)2 − (b̄2α − ā)2
)

− (β + 2πd̄)(b̄2α − ā)

+i

(

8π2ā2b̄2c̄2 +
ā2

2b̄2
− 4πb̄2c̄(β + 2πd̄)(b̄2α − ā)

− 1

2b̄2
(b̄2α − ā)2 +

b̄2

2
(β + 2πd̄)2

))

= χ4R + iχ4I .

Similarly

χ′
4 = χ3 −

χ′2
2

4χ′
1

=
1

16π2b̄4c̄2 + 1

(

2πc̄
(

b̄4(β − 2πd̄)2 − (b̄2α − ā)2
)

− (β − 2πd̄)(b̄2α − ā)

+i

(

8π2ā2b̄2c̄2 +
ā2

2b̄2
+ 4πb̄2c̄(β − 2πd̄)(b̄2α − ā)

− 1

2b̄2
(b̄2α − ā)2 +

b̄2

2
(β − 2πd̄)2

))

= χ′
4R + iχ′

4I .
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In (2.28) let erfi(χ5ϑ+χ6) = f1R(ϑ)+if1I(ϑ) and erfi(χ′
5ϑ+χ′

6) = f2R(ϑ)+if2I(ϑ);

then

v =

√
π

4β

(

ei(χ4R+iχ4I)

(χ5R + iχ5I)
(f1R + if1I) +

ei(χ′

4R+iχ′

4I )

(χ′
5R + iχ′

5I)
(f2R + if2I)

)

=

√
π

4β

(

eiχ4R−χ4I (χ5R − iχ5I)

(χ2
5R + χ2

5I)
(f1R + if1I)

+
eiχ′

4R−χ′

4I (χ′
5R − iχ′

5I)

(χ′2
5R + χ′2

5I)
(f2R + if2I)

)

=

√
π

4β(χ2
5R + χ2

5I)

(

e−χ4I (cos χ4R + i sin χ4R)(χ5R − iχ5I)(f1R + if1I)

+e−χ′

4I (cos χ′
4R + i sin χ′

4R)(χ′
5R − iχ′

5I)(f2R + if2I)
)

=

√
π

4β(χ2
5R + χ2

5I)

(

e−χ4I ((χ5R cos χ4R + χ5I sin χ4R)f1R

+(χ5I cos χ4R − χ5R sin χ4R)f1I

+i ((χ5R sin χ4R − χ5I cos χ4R)f1R

+(χ5R cos χ4R + χ5I sin χ4R)f1I))

+e−χ′

4I ((−χ5R cos χ′
4R + χ5I sin χ′

4R)f2R

+(χ5I cos χ′
4R + χ5R sin χ′

4R)f2I

+i ((−χ5R sin χ′
4R − χ5I cos χ′

4R)f2R

+(−χ5R cos χ′
4R + χ5I sin χ′

4R)f2I))) .

(2.34)

Equation (2.34) is extremely complex, and a simplified expression for v is desir-

able in order to progress with this analyisis. To achieve this simplification the

Maclaurin series expansion for erfi(z) is considered, that is [3, p297]

erfi(z) =
1√
π

(

2z +
2

3
z3 +

1

5
z5 +

1

21
z7 + ...

)

.

This is very similar to the Maclaurin series expansion for tan(z), given by [3, p75]

tan(z) = z +
1

3
z3 +

2

15
z5 +

17

315
z7 + ... ,

35



-0.3 -0.2 -0.1 0.1 0.2 0.3

-1.0

-0.5

0.5

1.0

PSfrag replacements

<{z}

={z}

Figure 2.4: The imaginary error function erfi(z) (full line) and tan(z) (dotted line) (z =

(2 + 3i)t, t ∈ [−4, 4]).

with the differences arising in the coefficients of z. For small z, this would

suggest that multiplying the tan approximation by a factor of 2√
π

would be the

best match of the two series. However, for larger values of z the larger powers

are dominant and the unscaled tan function acts as a suitable approximation

to the erfi function. In Figure 2.4 the imaginary error function is compared to

the tangent function. The functions are virtually identical as they move away

from the origin in each direction and, after separating for some time, they curve

back towards the imaginary axis. The tangent function moves directly to a

constant value ±i, while erfi spirals around before settling on the same constant

value. This constant value is of course the limit of each function as z → ∞ and
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multiplying tan z by 2√
π

would result in a different limit. Now, since

tan(a + ib) =
sin(a + ib)

cos(a + ib)

=
i
2
(e−i(a+ib) − ei(a+ib))

1
2
(e−i(a+ib) + ei(a+ib))

=
i((cos a − i sin a)eb − (cos a + i sin a)e−b)

(cos a − i sin a)eb + (cos a + i sin a)e−b

=
sin(a)(eb + e−b) + i cos(a)(eb − e−b)

cos(a)(eb + e−b) − i sin(a)(eb − e−b)

=
(sin(a)(eb + e−b) + i cos(a)(eb − e−b))

cos2(a)(eb + e−b)2 + sin2(a)(eb − e−b)2

× (cos(a)(eb + e−b) + i sin(a)(eb − e−b))

cos2(a)(eb + e−b)2 + sin2(a)(eb − e−b)2

=
(eb + e−b)2 sin a cos a − (eb − e−b)2 sin a cos a

2(cos2 a − sin2 a) + e2b + e−2b

+
i((eb + e−b)(eb − e−b)

2(cos2 a − sin2 a) + e2b + e−2b

=
(e2b + e−2b + 2 − (e2b + e−2b − 2))1

2
sin 2a + i((e2b − e−2b))

2(cos2 a − sin2 a) + e2b + e−2b

=
2 sin 2a + i((e2b − e−2b))

2 cos 2a + e2b + e−2b
,

then

tan(χ5ϑ + χ6) = tan(χ5Rϑ + χ6R + i(χ5Iϑ + χ6I)

=
2 sin 2(χ5Rϑ + χ6R) + i((e2(χ5Iϑ+χ6I ) − e−2(χ5Iϑ+χ6I )))

2 cos 2(χ5Rϑ + χ6R) + e2(χ5I ϑ+χ6I) + e−2(χ5Iϑ+χ6I )

and

tan(χ′
5ϑ + χ′

6) =
2 sin 2(χ′

5Rϑ + χ′
6R) + i((e2(χ′

5Iϑ+χ′

6I ) − e−2(χ′

5Iϑ+χ′

6I )))

2 cos 2(χ′
5Rϑ + χ′

6R) + e2(χ′

5I ϑ+χ′

6I) + e−2(χ′

5Iϑ+χ′

6I )
.

Using the approximations f̄1 = tan(χ5ϑ + χ6) and f̄2 = tan(χ′
5ϑ + χ′

6) will

therefore provide expressions for the real and imaginary parts of v. Since

|2 sin 2(χ5Rϑ + χ6R)| ≤ 2 and |2 cos 2(χ5Rϑ + χ6R)| ≤ 2
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then

f̄1R ≤ 2

2 + e2(χ5Iϑ+χ6I ) + e−2(χ5I ϑ+χ6I)

and so

f̄1R → 0 as ϑ → ∞.

Similarly

f̄2R → 0 as ϑ → ∞.
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Figure 2.5: The real parts of (i) 100f̄1(ϑ) (dotted line) and (ii) f̄2(ϑ) (full line). Note that the

amplitude of f̄1 has been exaggerated to emphasise the form of the function. The physical

parameters are as in Table 2.1 and the chirp signal as defined in Table 2.2.

The form of the real parts of f̄1 and f̄2 is shown in Figure 2.5. The real part

of f̄1 tends to zero very quickly and the real part of f̄2 tends to zero shortly
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afterwards, agreeing with the above limiting values. The imaginary components

can be considered in a similar way to show that

f̄1I → 1 as ϑ → ∞

and

f̄2I → 1 as ϑ → ∞,

as shown in Figure 2.6. Similar to the real case, the imaginary part of f̄1

approaches one almost immediately and the imaginary part of f̄2 then tends to

one shortly afterwards.
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Figure 2.6: The imaginary parts of (i) 150f̄1(ϑ) (dotted line) and (ii) f̄2(ϑ) (full line). Note

that the amplitude of f̄1 has been exaggerated to emphasise the form of the function. The

physical parameters are as in Table 2.1 and the chirp signal as defined in Table 2.2.

From (2.34) an approximation for v(ϑ) at large ϑ is therefore given by the
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time-independent quantity

v̄ =

√
π

4β(χ2
5R + χ2

5I)

(

e−χ4I (χ5I cos χ4R − χ5R sin χ4R)

+e−χ′

4I (χ5I cos χ′
4R + χ5R sin χ′

4R)

+i(e−χ4I (χ5R cos χ4R + χ5I sin χ4R)

+e−χ′

4I (−χ5R cos χ′
4R + χ5I sin χ′

4R))
)

,

From (2.32) then

η̄0(ϑ) = eαϑ ((<{v̄ − v0}) sin(βϑ) − (={v̄ − v0}) cos(βϑ)) (2.35)

and so

η̄′
0(ϑ) = eαϑ ((α (<{v̄ − v0}) + β (={v̄ − v0})) sin(βϑ)

+ (β (<{v̄ − v0}) − α (={v̄ − v0})) cos(βϑ)) . (2.36)

Figure 2.7 compares the numerical solution to (2.13), the approximate solution

given by (2.35) and the numerical solution to (2.10).

After an initial period the approximate solution (2.35) is almost identical to

the numerical solution of equation (2.13). The solutions are also comparable to

the numerical solution of (2.10), although as time increases the phase difference

becomes more marked. The solutions also compare well in the frequency-domain,

as shown in Figure 2.8.

2.3.3 Solving the O(ε2) equation

Now consider the O(ε2) approximation η1(ϑ) given by the differential equation

(2.14). Multiplying (2.13) by η0 gives

−η0η
′′
0 = 4C3η0η

′
0 + (3κ (C1 + 2C2) − 2C2) η2

0 − η0G(ϑ),
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Figure 2.7: The numerical solution to (i) the O(ε) differential equation for η0(ϑ) as given

by (2.13) (full line), (ii) the approximate solution given by (2.35) (dotted line) and (iii) the

numerical solution to (2.10) (dashed line). (The physical parameter values are given in Table

2.1, the chirp signal parameters are given in Table 2.2 and ε = 10−6.)

and substituting this into (2.14) then gives

η′′
1 + 4C3η

′
1 + (3κ (C1 + 2C2) − 2C2) η1

= 4C3η0η
′
0 + (3κ (C1 + 2C2) − 2C2) η2

0 − η0G(ϑ) − 3

2
(η′

0)
2

+4C3η0η
′
0 +

(

3

2
κ(3κ + 1) (C1 + 2C2) − 2C2

)

η2
0

= 8C3η0η
′
0 − η0G − 3

2
(η′

0)
2

+

(

9

2
κ(κ + 1) (C1 + 2C2) − 4C2

)

η2
0. (2.37)

Equation (2.37) can be rewritten as

η′′
1 + 4C3η

′
1 + (3κ (C1 + 2C2) − 2C2) η1

= wa + wb + wc + wd, (2.38)
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Figure 2.8: The numerical solution to (i) the O(ε) differential equation for η0(ϑ) as given

by (2.13) (full line), (ii) the approximate solution given by (2.35) (dotted line) and (iii) the

numerical solution to (2.10) (dashed line), plotted in the frequency-domain. This power spec-

trum is calculated by taking a fast Fourier transform of the time-domain data in Figure 2.7.

(The physical parameter values are given in Table 2.1 and the chirp signal parameters are

given in Table 2.2.)

where the terms on the right-hand side are given by

wa(ϑ) = 8C3η0η
′
0,

wb(ϑ) = −η0G,

wc(ϑ) = −3
2
(η′

0)
2 ,

wd(ϑ) =
(

9
2
κ(κ + 1) (C1 + 2C2) − 4C2

)

η2
0.



































(2.39)

Each of the above terms is plotted in Figure 2.9, where the lines (i) to (iv)

represent the first to fourth terms on the right hand side of (2.38) respectively.

It is clear that the wa and wb terms are negligible in comparison to wc and wd.
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Figure 2.9: The relative magnitudes of the four terms on the right hand side of equation (2.37)

(labelled in the order they appear in the equation) with (i) (dotted line), (ii) (full line), (iii)

(short dashes) and (iv) (long dashes). These terms are given by definitions (2.39).

The reduced form of the O(ε2) equation is now

η′′
1 + 4C3η

′
1 + (3κ(C1 + 2C2) − 2C2)η1

= −3

2
(η′

0)
2 +

(

9

2
κ(κ + 1)(C1 + 2C2) − 4C3

)

η2
0

= G1(ϑ). (2.40)

Figures 2.10 and 2.11 compare the solution to equation (2.37) with the solution

to its approximation (2.40), and the two solutions match very well. G1 can be

approximated by Ḡ1 where the substitution v = v̄ is used so that, from (2.35)

and (2.36)

Ḡ1 = −3e2αϑ

2
((α (<{v̄ − v0}) + β (={v̄ − v0})) sin(βϑ)

+ (β (<{v̄ − v0}) − α (={v̄ − v0})) cos(βϑ))2
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Figure 2.10: The numerical solution to the equation (2.37) (dashed line) and equation (2.40)

(dotted line) in the time-domain where the physical parameter values are given in Table 2.1

and the chirp signal parameters are given in Table 2.2.

+

(

9

2
κ(κ + 1)(C1 + 2C2) − 4C2

)

×e2αϑ ((<{v̄ − v0}) sin(βϑ) − (={v̄ − v0}) cos(βϑ))2

= βΩ1e
2αϑ ((αΩ3 + βΩ4) sin(βϑ)

+ (βΩ3 − αΩ4) cos(βϑ))2

+βΩ2e
2αϑ (Ω3 sin(βϑ) − Ω4 cos(βϑ))2

= βΩ1e
2αϑ((αΩ3 + βΩ4)

2 sin2(βϑ) + (βΩ3 − αΩ4)
2 cos2(βϑ)

+2(αΩ3 + βΩ4)(βΩ3 − αΩ4) cos(βϑ) sin(βϑ))

+βΩ2e
2αϑ(Ω2

3 sin2(βϑ) + Ω2
4 cos2(βϑ) − 2Ω3Ω4 cos(βϑ) sin(βϑ))

= βe2αϑ((Ω1(αΩ3 + βΩ4)
2 + Ω2Ω

2
3) sin2(βϑ)

+(Ω1(βΩ3 − αΩ4)
2 + Ω2Ω

2
4) cos2(βϑ)

+(2Ω1(αΩ3 + βΩ4)(βΩ3 − αΩ4) − 2Ω2Ω3Ω4) cos(βϑ) sin(βϑ))

= βe2αϑ(Φ1 cos2(βϑ) + Φ2 cos(βϑ) sin(βϑ) + Φ3 sin2(βϑ))
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Figure 2.11: The numerical solution to the equation (2.37) (dashed line) and equation (2.40)

(dotted line) in the frequency-domain. This power spectrum is calculated via a fast Fourier

transform of the data in Figure 2.7 (the physical parameter values are given in Table 2.1 and

the chirp signal parameters are given in Table 2.2).

where the constants Ω1, Ω2, Ω3, Ω4, Φ1, Φ2, Φ3 are defined by

Ω1 = − 3

2β
, Ω2 =

1

β

(

9

2
κ(κ + 1)(C1 + 2C2) − 4C2

)

,

Ω3 = <{v̄ − v0}, Ω4 = ={v̄ − v0},

Φ1 = Ω1(βΩ3 − αΩ4)
2 + Ω2Ω

2
4,

Φ2 = 2Ω1(αΩ3 + βΩ4)(βΩ3 − αΩ4) − 2Ω2Ω3Ω4,

Φ3 = Ω1(αΩ3 + βΩ4)
2 + Ω2Ω

2
3.

The homogeneous form of (2.40) is the same as that for (2.13). Therefore

ηH
1 = A1η

H1
1 + B1η

H2
1

= A1e
αϑ cos(βϑ) + B1e

αϑ sin(βϑ) (2.41)
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for some constants A1, B1. The particular integral ηP
1 = ηP

1 (ϑ) is

ηP
1 = v3η

H1
1 + v4η

H2
1 , (2.42)

and the Wronskian determinant is given by (2.18) as

W (ηH1
1 , ηH2

1 ) = βe2αϑ

so that

v̄3 =
−1

β

∫ ϑ

e−αϑ′

sin(βϑ′)Ḡ1(ϑ
′) dϑ′

and

v̄4 =
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)Ḡ1(ϑ
′) dϑ′.

Looking at v̄4 first we have

v̄4 =

∫ ϑ

e−αϑ′

cos(βϑ′)e2αϑ′

(Φ1 cos2(βϑ′)

+Φ2 cos(βϑ′) sin(βϑ′) + Φ3 sin2(βϑ′)) dϑ′

=

∫ ϑ

eαϑ′

(Φ1 cos3(βϑ′) + Φ2 cos2(βϑ′) sin(βϑ′) + Φ3 cos(βϑ′) sin2(βϑ′)) dϑ′

=
1

2

∫ ϑ

eαϑ′

(Φ1 cos(βϑ′)(1 + cos(2βϑ′))

+Φ2(1 + cos(2βϑ′)) sin(βϑ′) + Φ3(1 − cos(2βϑ′)) cos(βϑ′)) dϑ′

=
1

2

∫ ϑ

eαϑ′

((Φ1 + Φ3) cos(βϑ′) + Φ2 sin(βϑ′)

+(Φ1 − Φ3) cos(βϑ′) cos(2βϑ′) + Φ2 sin(βϑ′) cos 2βϑ′) dϑ′

=
1

2

∫ ϑ

eαϑ′

((Φ1 + Φ3) cos(βϑ′) + Φ2 sin(βϑ′)

+
1

2
(Φ1 − Φ3)(cos(βϑ′) + cos(3βϑ′))

+
1

2
Φ2(− sin(βϑ′) + sin(3βϑ′))

)

dϑ′
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=
1

4

∫ ϑ

eαϑ′

((3Φ1 + Φ3) cos(βϑ′) + Φ2 sin(βϑ′)

+(Φ1 − Φ3) cos(3βϑ′) + Φ2 sin(3βϑ′)) dϑ′

=
(3Φ1 + Φ3)e

αϑ′

4(α2 + β2)
(α cos(βϑ) + β sin(βϑ))

+
Φ2e

αϑ′

4(α2 + β2)
(α sin(βϑ) − β cos(βϑ))

+
(Φ1 − Φ3)e

αϑ′

4(α2 + 9β2)
(α cos(3βϑ) + 3β sin(3βϑ))

+
Φ2e

αϑ′

4(α2 + 9β2)
(α sin(3βϑ) − 3β cos(3βϑ))

= eαϑ

(

((3Φ1 + Φ3)α − Φ2β) cos(βϑ) + ((3Φ1 + Φ3)β + Φ2α) sin(βϑ)

4(α2 + β2)

+
((Φ1 − Φ3)α − 3Φ2β) cos(3βϑ) + (3(Φ1 − Φ3)β + Φ2α) sin(3βϑ)

4(α2 + 9β2)

)

= eαϑ

([

(−1)m1(ξ2
1 + ξ′21)

1
2

4(α2 + β2)
cos

(

βϑ − tan−1

(

ξ′1
ξ1

))

]

+

(

(−1)m2(ξ2
2 + ξ′22)

1
2

4(α2 + 9β2)
cos

(

3βϑ − tan−1

(

ξ2

ξ′2

))

))

where

ξ1 = (3Φ1 + Φ3)α − Φ2β, ξ′1 = (3Φ1 + Φ3)β + Φ2α,

ξ2 = (Φ1 − Φ3)α − 3Φ2β and ξ′2 = 3(Φ1 − Φ3)β + Φ2α,

and mi ∈ Z is even only if ξi ≥ 0. Defining

δ1 =
(−1)m1(ξ2

1 + ξ′21)
1
2

4(α2 + β2)
, φ1 = tan−1

(

ξ′1
ξ1

)

,

δ2 =
(−1)m2(ξ2

2 + ξ′22)
1
2

4(α2 + 9β2)
and φ2 = tan−1

(

ξ′2
ξ2

)

(2.43)

gives

v̄4 = eαϑ(δ1 cos(βϑ − φ1) + δ2 cos(3βϑ − φ2)).

47



A similar calculation for v̄3 can be performed:

v̄3 = −
∫ ϑ

e−αϑ′

sin(βϑ′)e2αϑ(Φ1 cos2(βϑ′)

+Φ2 cos(βϑ′) sin(βϑ′) + Φ3 sin2(βϑ′)) dϑ′

= −
∫ ϑ

eαϑ′

(Φ1 cos2(βϑ′) sin(βϑ′) + Φ2 cos(βϑ′) sin2(βϑ′) + Φ3 sin3(βϑ′)) dϑ′

= −1

2

∫ ϑ

eαϑ′

(Φ1(1 + cos(2βϑ′)) sin(βϑ′)

+Φ2 cos(βϑ′)(1 − cos(2βϑ′)) + Φ3 sin(βϑ′)(1 − cos(2βϑ′))) dϑ′

= −1

2

∫ ϑ

eαϑ′

(Φ2 cos(βϑ′) + (Φ1 + Φ3) sin(βϑ′)

+(Φ1 − Φ3) sin(βϑ′) cos(2βϑ′) − Φ2 cos(βϑ′) cos(2βϑ′)) dϑ′

= −1

2

∫ ϑ

eαϑ′

(Φ2 cos(βϑ′) + (Φ1 + Φ3) sin(βϑ′)

+
1

2
(Φ1 − Φ3)(− sin(βϑ′) + sin(3βϑ′))

−Φ2

2
(cos(βϑ′) + cos(3βϑ′))) dϑ′

=
1

4

∫ ϑ

eαϑ′

(−Φ2 cos(βϑ′) − (Φ1 + 3Φ3) sin(βϑ′)

+Φ2 cos(3βϑ′) − (Φ1 − Φ3) sin(3βϑ′)) dϑ′

= − Φ2e
αϑ

4(α2 + β2)
(α cos(βϑ) + β sin(βϑ))

−(Φ1 + 3Φ3)e
αϑ

4(α2 + β2)
(α sin(βϑ) − β cos(βϑ))

+
Φ2e

αϑ

4(α2 + 9β2)
(α cos(3βϑ) + 3β sin(3βϑ))

−(Φ1 − Φ3)e
αϑ

4(α2 + 9β2)
(α sin(3βϑ) − 3β cos(3βϑ))

= eαϑ

(

(−Φ2α + (Φ1 + 3Φ3)β) cos(βϑ) + (−(Φ1 + 3Φ3)α − Φ2β) sin(βϑ)

4(α2 + β2)

+
(Φ2α + 3(Φ1 − Φ3)β) cos(3βϑ) + (3Φ2β − (Φ1 − Φ3)α) sin(3βϑ)

4(α2 + 9β2)

)

= eαϑ

((

(−1)m3(ξ2
3 + ξ′23)

1
2

4(α2 + β2)
cos

(

βϑ − tan−1

(

ξ′3
ξ3

))

)

+

(

(−1)m4(ξ2
4 + ξ′24)

1
2

4(α2 + 9β2)
cos

(

3βϑ − tan−1

(

ξ4

ξ′4

))

))

,
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where

ξ3 = −Φ2α + (Φ1 + 3Φ3)β, ξ′3 = −(Φ1 + 3Φ3)α − Φ2β,

ξ4 = Φ2α + 3(Φ1 − Φ3)β and ξ′4 = 3Φ2β − (Φ1 − Φ3)α.

As before, mi ∈ Z is even only if ξi ≥ 0, and by defining

δ3 =
(−1)m3(ξ2

3 + ξ′23)
1
2

4(α2 + β2)
, φ3 = tan−1

(

ξ′3
ξ3

)

δ4 =
(−1)m4(ξ2

4 + ξ′24)
1
2

4(α2 + 9β2)
and φ4 = tan−1

(

ξ′4
ξ4

)

.

(2.44)

then v̄3 can be written as

v̄3 = eαϑ(δ3 cos(βϑ − φ3) + δ4 cos(3βϑ − φ4)).

The particular solution ηP
1 is from (2.42)

ηP
1 = eαϑ(δ3 cos(βϑ − φ3) + δ4 cos(3βϑ − φ4))e

αϑ cos(βϑ)

+eαϑ(δ1 cos(βϑ − φ1) + δ2 cos(3βϑ − φ2))e
αϑ sin(βϑ)

= e2αϑ(δ1 sin(βϑ) cos(βϑ − φ1) + δ2 sin(βϑ) cos(3βϑ − φ2)

+δ3 cos(βϑ) cos(βϑ − φ3) + δ4 cos(βϑ) cos(3βϑ − φ4)) (2.45)

and the general solution to (2.40) is, from (2.41) and (2.45)

η1(ϑ) = ηH
1 + ηP

1

= A1e
αϑ cos(βϑ) + B1e

αϑ sin(βϑ)

+e2αϑ(δ1 sin(βϑ) cos(βϑ − φ1) + δ2 sin(βϑ) cos(3βϑ − φ2)

+δ3 cos(βϑ) cos(βϑ − φ3) + δ4 cos(βϑ) cos(3βϑ − φ4)).
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This can be written more succinctly via

η1(ϑ) = eαϑ(A1 cos(βϑ) + B1 sin(βϑ))

+
e2αϑ

2
(δ1(cos φ1 sin(2βϑ) + sin φ1(1 − cos(2βϑ)))

+δ2(cos φ2(− sin(2βϑ) + sin(4βϑ)) + sin φ2(cos(2βϑ) − cos(4βϑ)))

+δ3(cos φ3(1 + cos(2βϑ)) + sin φ3 sin(2βϑ))

+δ4(cos φ4(cos(2βϑ) + cos(4βϑ))

+ sin φ4(sin(2βϑ) + sin(4βϑ))))

= eαϑ(A1 cos(βϑ) + B1 sin(βϑ)) +
e2αϑ

2
(δ1 sin φ1 + δ3 cos φ3

+(−δ1 sin φ1 + δ2 sin φ2 + δ3 cos φ3 + δ4 cos φ4) cos(2βϑ)

+(δ1 cos φ1 − δ2 cos φ2 + δ3 sin φ3 + δ4 sin φ4) sin(2βϑ)

+(−δ2 sin φ2 + δ4 cos φ4) cos(4βϑ)

+(δ2 cos φ2 + δ4 sin φ4) sin(4βϑ))

= eαϑ(A1 cos(βϑ) + B1 sin(βϑ)) +
e2αϑ

2
(λ1 + λ2 cos(2βϑ) + λ′

2 sin(2βϑ)

+λ3 cos(4βϑ) + λ′
3 sin(4βϑ)), (2.46)

where

λ1 = δ1 sin φ1 + δ3 cos φ3,

λ2 = −δ1 sin φ1 + δ2 sin φ2 + δ3 cos φ3 + δ4 cos φ4,

λ′
2 = δ1 cos φ1 − δ2 cos φ2 + δ3 sin φ3 + δ4 sin φ4,

λ3 = −δ2 sin φ2 + δ4 cos φ4,

λ′
3 = δ2 cos φ2 + δ4 sin φ4.

(2.47)

From (2.43) and (2.44)

δi =
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)
, φi = tan−1

(

ξ′i
ξi

)
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where fi(α, β) is defined by

fi(α, β) =











α2 + β2 for i = 1 or 3,

α2 + 9β2 for i = 2 or 4.

Since

sin(tan−1 x) =
x√

1 + x2

then

δi sin φi =
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)
sin

(

tan−1

(

ξ′i
ξi

))

=
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)

ξ′i
ξi

(

1 +

(

ξ′i
ξi

)2
)

1
2

=
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)

ξ′i
ξi

(ξ2
i + ξ′2i )

1
2

|ξi|

=
(−1)miξ′i|ξi|
4fi(α, β)ξi

.

Recall that mi is even iff ξi ≥ 0. In this case (−1)mi |ξi| = ξi and the above

reduces to

δi sin φi =
ξ′i

4fi(α, β)
.

When mi is odd, ξi < 0 and so (−1)mi |ξi| = ξi and the above again reduces to

δi sin φi =
ξ′i

4fi(α, β)
.

Making similar use of the identity

cos(tan−1 x) =
1√

1 + x2
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gives

δi cos φi =
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)
cos

(

tan−1

(

ξ′i
ξi

))

=
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)

1
(

1 +

(

ξ′i
ξi

)2
)

1
2

=
(−1)mi(ξ2

i + ξ′2i )
1
2

4fi(α, β)

1

(ξ2
i + ξ′2i )

1
2

|ξi|

=
(−1)mi |ξi|
4fi(α, β)

=
ξi

4(f(α, β))
,

where the last line is a consequence of the argument outlined above. Substituting

these into equations (2.47) gives

λ1 = δ1 sin φ1 + δ3 cos φ3

=
ξ′1

4(α2 + β2)
+

ξ3

4(α2 + β2)

=
(3Φ1 + Φ3)β + (Φ1 + 3Φ3)β

4(α2 + β2)

=
(Φ1 + Φ3)β

α2 + β2
,

λ2 = −δ1 sin φ1 + δ2 sin φ2 + δ3 cos φ3 + δ4 cos φ4

= − ξ′1
4(α2 + β2)

+
ξ′2

4(α2 + 9β2)
+

ξ3

4(α2 + β2)
+

ξ4

4(α2 + 9β2)

=
−Φ2α + (Φ1 + 3Φ3)β − (3Φ1 + Φ3)β − Φ2α

4(α2 + β2)

+
3(Φ1 − Φ3)β + Φ2α + Φ2α + 3(Φ1 − Φ3)β

4(α2 + 9β2)

=
(−2Φ2α − (Φ1 − 3Φ3)β)(α2 + 9β2) + (6(Φ1 − 3Φ3)β + 2Φ2α)(α2 + β2)

4(α2 + β2)(α2 + 9β2)

=
Φ2(−α3 − 9αβ2 + α3 + αβ2) + (Φ1 − 3Φ3)(−α2β − 9β3 + 3α2β + 3β3)

4(α2 + β2)(α2 + 9β2)

=
(Φ1 − Φ3)(α

2β − 3β3) − 4Φ2αβ2

(α2 + β2)(α2 + 9β2)
,
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λ′
2 = δ1 cos φ1 − δ2 cos φ2 + δ3 sin φ3 + δ4 sin φ4

=
ξ1

4(α2 + β2)
− ξ2

4(α2 + 9β2)
+

ξ′3
4(α2 + β2)

+
ξ′4

4(α2 + 9β2)

=
(3Φ1 + Φ3)α − Φ2β − (Φ1 + 3Φ3)α − Φ2β

4(α2 + β2)

+
3Φ2β − (Φ1 − Φ3)α − (Φ1 − Φ3)α + 3Φ2β

4(α2 + 9β2)

=
(2(Φ1 − 3Φ3) − 2Φ2β)(α2 + 9β2) + (6Φ2β − 2(Φ1 − 3Φ3))(α

2 + β2)

4(α2 + β2)(α2 + 9β2)

=
(Φ1 − 3Φ3)(α

3 + 9αβ2 − α3 − αβ2) + Φ2(−α2β − 9β3 + 3α2β + 3β3)

4(α2 + β2)(α2 + 9β2)

=
4(Φ1 − Φ3)αβ2 + Φ2(α

2β − 3β3)

(α2 + β2)(α2 + 9β2)
,

λ3 = −δ2 sin φ2 + δ4 cos φ4

= − ξ′2
4(α2 + 9β2)

+
ξ4

4(α2 + 9β2)

= − ξ′2
4(α2 + 9β2)

+
ξ′2

4(α2 + 9β2)

= 0

and

λ′
3 = δ2 cos φ2 + δ4 sin φ4

=
ξ2

4(α2 + 9β2)
+

ξ′4
4(α2 + 9β2)

=
ξ2

4(α2 + 9β2)
− ξ2

4(α2 + 9β2)

= 0.

Thus equation can be rewritten as (2.46) as

η1(ϑ) = eαϑ(A1 cos(βϑ) + B1 sin(βϑ)) +
e2αϑ

2
(λ1 + λ2 cos(2βϑ) + λ′

2 sin(2βϑ)).

(2.48)

To determine the constants A1 and B1 let

η1(0) = K1 and η′
1(0) = K2,
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for some constants K1 and K2; then from (2.48)

K1 = A1 +
1

2
(λ1 + λ2).

Hence

A1 = K1 −
1

2

(

(Φ1 + Φ3)β

α2 + β2
+

(Φ1 − 3Φ3)(α
2β − 3β3) − 4Φ2αβ2

2(α2 + β2)(α2 + 9β2)

)

= K1 −
1

2

(

(Φ1 + Φ3)(α
2β + 9β3) + (Φ1 − 3Φ3)(α

2β − 3β3) − 4Φ2αβ2

2(α2 + β2)(α2 + 9β2)

)

= K1 −
(

Φ1(α
2β + 3β3) − 2Φ2αβ2 + 6Φ3β

3

(α2 + β2)(α2 + 9β2)

)

.

Now differentiating (2.48) with respect to time we have

η′
1(ϑ) = αeαϑ(A1 cos(βϑ) + B1 sin(βϑ))

+βeαϑ(−A1 sin(βϑ) + B1 cos(βϑ))

+αe2αϑ(λ1 + λ2 cos(2βϑ) + λ′
2 sin(2βϑ))

+βe2αϑ(−λ2 sin(2βϑ) + λ′
2 cos(2βϑ))

= eαϑ((A1α + B1β) cos(βϑ) + (B1α − A1β) sin(βϑ))

+e2αϑ(αλ1 + (αλ2 + βλ′
2) cos(2βϑ) + (αλ′

2 − βλ2) sin(2βϑ)).

Thus

K2 = A1α + B1β + αλ1 + αλ2 + βλ′
2

= αK1 − α

(

Φ1(α
2β + 3β3) − 2Φ2αβ2 + 6Φ3β

3

(α2 + β2)(α2 + 9β2)

)

+B1β + α

(

(Φ1 + Φ3)β

α2 + β2

)

+α

(

(Φ1 − Φ3)(α
2β − 3β3) − 4Φ2αβ2

2(α2 + β2)(α2 + 9β2)

)

+β

(

4(Φ1 − Φ3)αβ2 + Φ2(α
2β − 3β3)

2(α2 + β2)(α2 + 9β2)

)

= αK1 + B1β +

(

Φ1(α
3β + 7αβ3) + Φ2(−α2β2 − 3β4) + 2Φ3αβ3

4(α2 + β2)(α2 + 9β2)

)

.
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Therefore

B1 =
1

β
(K2 − αK1) −

(

Φ1(α
3 + 7αβ2) + Φ2(−α2β − 3β3) + 2Φ3αβ2

4(α2 + β2)(α2 + 9β2)

)

.

Assuming that the system is initially at equilibrium then K1 = K2 ≡ 0 and then

A1 = −
(

Φ1(α
2β + 3β3) − 2Φ2αβ2 + 6Φ3β

3

(α2 + β2)(α2 + 9β2)

)

and

B1 = −
(

Φ1(α
3 + 7αβ2) + Φ2(−α2β − 3β3) + 2Φ3αβ2

4(α2 + β2)(α2 + 9β2)

)

.

In Figures 2.12 and 2.13 the analytical solution (2.48) is compared with the

numerical solution to the differential equation (2.37), in the time and frequency

domains, where η0 and η′
0 are replaced with η̄0 and η̄′

0 respectively. Notice that

despite neglecting two terms on the right hand side of (2.37) the two solutions

match almost exactly.

Figures 2.14 and 2.15 compare the analytical solution (2.48) with the numer-

ical solution to (2.37) where η0 and η′
0 are unaltered. Notice that the magnitudes

of the analytical and numerical solutions no longer match up. Also, in Figure

2.15 the analytical solution is picking up vibrations at the first and second har-

monics whereas the numerical solution has a dominant vibration at the second

harmonic. These differences are because solution (2.48) is calculated using the

reduced v term, v̄. Despite this however, the analytical solution does pick up

the correct frequency of the second harmonic.
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Figure 2.12: The analytical solution (2.48) (dashed line) is compared with the numerical

solution to the differential equation (2.37) (dotted line), where η0 and η′

0 are replaced with η̄0

and η̄′

0
respectively, plotted in the time-domain (the physical parameter values are given in

Table 2.1 and the chirp signal parameters are given in Table 2.2).

2.3.4 An approximate analytical solution to the chirp in-

sonified bubble’s dynamics

Substituting (2.48) and (2.35) into (2.12) gives

x = ε
(

eαϑ (Ω3 sin(βϑ) − Ω4 cos(βϑ))
)

+ε2(eαϑ(A1 cos(βϑ) + B1 sin(βϑ)) +

e2αϑ

2
(λ1 + λ2 cos(2βϑ) + λ′

2 sin(2βϑ))) + O(ε3)
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Figure 2.13: The analytical solution (2.48) (dashed line) is compared with the numerical

solution to the differential equation (2.37) (dotted line), where η0 and η′

0
are replaced with η̄0

and η̄′

0 respectively, plotted in the frequency-domain (the physical parameter values are given

in Table 2.1 and the chirp signal parameters are given in Table 2.2). The power spectrum is

calculated via a fast Fourier transform of the data presented in Figure 2.12.

= ε2 e2αϑ

2
λ1 + eαϑ(λ4 cos(βϑ) + λ′

4 sin(βϑ))

+ε2 e2αϑ

2
(λ2 cos(2βϑ) + λ′

2 sin(2βϑ)) + O(ε3)

= ε2 e2αϑ

2
λ1 + eαϑ(−1)n4(λ2

4 + λ′2
4)

1
2 cos

(

βϑ − tan−1

(

λ′
4

λ4

))

+ε2 e2αϑ(−1)n2

2
(λ2

2 + λ′2
2)

1
2 cos

(

2βϑ − tan−1

(

λ′
2

λ2

))

+ O(ε3)

= τ0e
2αϑ + τ1e

αϑ cos(βϑ − θ1) + τ2e
2αϑ cos(2βϑ − θ2) + O(ε3), (2.49)

where ni ∈ Z are even if λi ≥ 0 and odd otherwise, and where

λ4 = ε2A1 − εΩ4,

λ′
4 = ε2B1 + εΩ3
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Figure 2.14: The analytical solution (2.48) (dotted line) is compared with the numerical

solution to the differential equation (2.37) (dashed line) in the time-domain (the physical

parameter values are given in Table 2.1 and the chirp signal parameters are given in Table

2.2).

and

τ0 = ε2

2
λ1,

τ1 = (−1)n4(λ2
4 + λ′2

4)
1
2 , θ1 = tan−1

(

λ′

4

λ4

)

,

τ2 = ε2(−1)n2

2
(λ2

2 + λ′2
2)

1
2 , θ2 = tan−1

(

λ′

2

λ2

)

.

Since the timescale is very small (the duration of a chirp is typically O(10−4)s)

and by (2.15) α is O(10−3), then the exponential terms in equation (2.49) can

be approximated by unity to give an analytic Fourier series solution

x̄ = τ0 + τ1 cos(βϑ − θ1) + τ2 cos(2βϑ − θ2) + O(ε3). (2.50)
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Figure 2.15: The analytical solution (2.48) (dotted line) is compared with the numerical

solution to the differential equation (2.37) (dashed line) in the frequency-domain (the physical

parameter values are given in Table 2.1 and the chirp signal parameters are given in Table

2.2). The power spectrum is calculated via a fast Fourier transform of the data presented in

Figure 2.14.

Note that solutions (2.50) and (2.49) can be written in terms of t as

x(t) = τ0e
2αt/T + τ1e

αt/T cos(βt/T − θ1) + τ2e
2αt/T cos(2βt/T − θ2) + O(ε3)

(2.51)

and

x̄(t) = τ0 + τ1 cos(βt/T − θ1) + τ2 cos(2βt/T − θ2) + O(ε3) (2.52)

respectively. Expressing x and x̄ in this way facilitates a comparison with a nu-

merical solution to the Rayleigh–Plesset equation (2.1) through the application

of equation (2.2), confirming the accuracy of solutions (2.51) and (2.52). Fig-

ures 2.16 and 2.17 compare the numerical (transient) solution to the differential
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Figure 2.16: Comparison of the steady state approximation (2.50) (dotted line), the transient

approximation (2.49) (short dashes) and the (transient) numerical solution to (2.3) (full line)

in the time-domain (the physical parameter values are given in Table 2.1 and the chirp signal

parameters are given in Table 2.2).

equation (2.1) to the steady-state numerical solution to (2.1), the approximate

steady-state solution (2.2) when x is given by (2.52) and the transient analytical

solution (2.2) when x̄ is given by equation (2.51). The steady-state numerical so-

lution was obtained by calculating the time-domain signal over a time “window”

that excludes the transient stage. The duration of the signals was kept constant.

In Figure 2.16 we can see that the analytical solution, with and without

damping (equation (2.2) with solutions (2.51) and (2.52) respectively), shows

immediate oscillations at a high magnitude, whereas the numerical solution has

a transient stage before increasing to a similar amplitude. The vibrations gradu-

ally attenuate in this numerical solution but not in the approximate cases since

the exponential terms have been neglected. Equation (2.2) where x is given

by (2.51) oscillates in harmony with equation (2.2) where x̄ is given by (2.52),
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Figure 2.17: Comparison of the steady state approximation (2.50) (dotted line), the transient

approximation (2.49) (short dashes), the (transient) numerical solution to (2.3) (full line)

and the (windowed) steady-state numerical solution to (2.3) (long dashes) in the frequency-

domain (the physical parameter values are given in Table 2.1 and the chirp signal parameters

are given in Table 2.2). The power spectrum is calculated via a fast Fourier transform of the

data presented in Figure 2.16.

but the amplitude gradually decreases in the former case in a similar fashion

to the numerical case. Figure 2.17 shows the corresponding frequency-domain

plots. Energy in the transient component of the numerical solution is a small

percentage of the total energy in the solution. As such the difference between

the (steady state) analytic solution spectrum and the numerical (transient) so-

lution spectrum is relatively small, as is shown in Figure 2.17. The (transient)

numerical solution has increased noise around the resonating frequency although

all solutions exhibit a similar shape with varying amplitudes of oscillations. Of

paramount importance is that all solutions retain a similar ratio between the

first and second harmonic amplitudes. The advantage of the solution given by
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(2.2) and (2.52) is that it can be interpreted as a Fourier cosine series for x(t).

Hence analytical expressions for the amplitudes of the bubble oscillations at the

first and second harmonics are given by τ1 and τ2. Of practical importance is an

understanding of the dependency of these amplitudes on the underlying param-

eters. This can help in designing optimal chirp signals for enhancing the second

harmonic amplitude and in formulating the inverse problems of recovering the

bubble size or fluid viscosity.

2.4 Comparison of a chirp and a gated contin-

uous wave forcing functions

In ultrasonic imaging there are two important considerations: detection and

axial resolution. Detection is optimised by maximising the signal to noise ra-

tio (SNR) of the received signal, which is dependent on the bandwidth of the

transmitted signal. Axial resolution is directly proportional to the bandwidth,

so that a signal with a larger bandwidth will allow for more accurate ranging. In

practice the ultrasound signal is produced by an ultrasonic transducer which will

have limitations on the potential bandwidth and on the potential peak pressure

produced by a signal. In order to use the transducer optimally it is therefore

desirable to produce a signal that covers all of the transducer’s available fre-

quency spectrum. A comparison between two excitation signals is therefore best

performed by ensuring that both signals have the same bandwidth so that in

a practical set-up they will both be optimising the given transducer. A gated

continuous wave forcing function with a Gaussian envelope is given by

S(ϑ) = p′ce
−(ϑ−a′)2/2b′2 cos(2πϑd′) (2.53)
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for some parameters a′, b′, d′ and p′c. For a signal of this form to produce a large

bandwidth it is necessary that the duration of the signal is very small, resulting

in a low production of energy. One advantage of using a chirp signal over a gated

continuous wave is that the second harmonic amplitude is relatively increased

for identical centre frequencies and −6 dB bandwidths. Figures 2.18 and 2.19

compare these two insonifying signals in the time and frequency domains. In

Figure 2.18, the gated continuous wave is shown to last for a much shorter time

than the chirp signal and so, for equal peak pressure pc, the chirp signal will

produce more energy (as shown in Figure 2.19).
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Figure 2.18: A standard sinusoidal forcing function (full line) compared with a chirp forcing

function (dotted line) in the time-domain. The physical parameter values are as in Table 2.2

and the forcing functions as defined in Table 2.2.

Figure 2.20 compares the approximate solution (2.50) calculated for the chirp

and gated continuous wave parameters given in Table 2.2. The bubble oscilla-

tions when forced by a chirp function have an increased amplitude of oscillation

at both the resonant and the second harmonic frequencies but importantly they
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Figure 2.19: A standard sinusoidal forcing function (full line) compared with a chirp forcing

function (dotted line) in the frequency-domain. The physical parameter values are as in Table

2.2 and the forcing functions as defined in Table 2.2. The power spectrum is calculated by

taking fast Fourier transforms of the time data set in Figure 2.18

have a smaller ratio of resonant frequency amplitude to second harmonic am-

plitude than the equivalent ratio arising from forcing by a standard sinusoidal

forcing function. This difference can be quantified by defining a quality factor

by

Q =

(

τc2

τp2

− τc1

τp1

)

τp2 ,

where the subscripts c and p correspond to the chirp and gated continuous wave

amplitudes respectively. Note that Q is a measure of the effectiveness of the

respective signals in resonating the bubble at its resonant and second harmonic

frequencies and is not a measure of the resonating quality of the bubble itself

or the gas contained inside it. Q gives the difference between the ratio of the

amplitude of oscillation at the second harmonic frequency for chirp insonifica-

tion to that for gated continuous wave insonification, and a similar ratio at
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Forcing Function Parameter Values

Chirp Parameters Pulse Parameters Units

a 0.18 a′ 0.18 ms

b 0.08 b′ 0.02 ms

c 50 c′ 0 kHz ms−1

d 8 d′ 26 kHz

pc 8 p′c 8 kPa

Table 2.2: Parameter values for a chirp forcing function and a gated continuous wave forcing

function with equal centre frequency and −6 dB bandwidth.
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Figure 2.20: The approximate solution (2.50) calculated when G(ϑ) is a chirp function (dotted

line) and when G(ϑ) is a sinusoidal function (full line). The physical parameter values are

as in Table 2.2 and the forcing functions as defined in Table 2.2. The power spectrum is

calculated by taking fast Fourier transforms of data sets obtained by solving equation (2.50)

in the time-domain.
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the fundamental frequency. This difference is then scaled by τp2 so that Q is

sensitive to differences between the chirp and gated continuous wave responses

at the resonant frequencies but is less sensitive to differences between the two

responses at intermediate frequencies. The additional energy required for the

chirp insonification ensures that the ratios τc2/τp2 and τc1/τp1 are always greater

than one. In the situation when the chirp is only as effective as the gated con-

tinuous wave then the ratios at the two frequencies will be equal and so Q will

be zero. However, when the chirp outperforms the gated continuous wave, and

produces a relatively higher second harmonic response, the ratio at the second

harmonic frequency will be greater than that at the fundamental frequency and

so the larger the Q value the greater the chirp response outperforms the con-

tinuous wave response. Hence an optimised experimental setup can be achieved

by finding the maximum of Q as a function of the system parameters, since

Q = Q(ρ, R0, p0, σ, κ, µ, a, b, c, d). The graphs below show how Q varies with the

various system parameters. Since Q is calculated without the need for a FFT

this process is very fast.

In Figure 2.21(a), Q increases gradually with the viscosity µ and for larger

values, Q begins to increase exponentially. Thus, for larger values of µ, Q is very

sensitive to small changes in viscosity so the inverse problem of recovering the

viscosity from measured values of τ1 and τ2 would be easier with a more viscous

liquid than water. Figure 2.21(b) shows the effect of varying the viscosity by

5% from the value given in Table 2.1 (1.003 mPa s). In Figure 2.21(c), the

bubble radius R0 is varied by up to three times the value given in Table 2.1.

The chirp signal used to produce this data is designed to resonate a bubble

of radius R0 = 1.08 × 10−4 m and so varying R0 leads to a non-resonant (sub-

optimal) forcing function. The chirp still outperforms the gated continuous wave

but there are rapid oscillations around the resonant value of R0. These ripples
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Figure 2.21: The quality factor Q versus (a,b) the fluid viscosity, µ, (c) the equilibrium bubble

radius, R0, and (d,e) the fluid density, ρ, with other physical parameter values as in Table 2.1

and the forcing functions as given by Table 2.2.
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come from the sinusoidal nature of Ω3 and Ω4. In τc2 and τp2 this rippling is

smoothed out since the λ2
2 and λ′2

2 terms have similar magnitude although in

opposite phases. However, the τc1 and τp1 terms are calculated from λ2
4 and

λ′2
4, which do not have these similarity properties due to the differences in A1

and B1. The ripples therefore do not cancel each other out and are carried

through in the evaluation of Q. The ripples are also evident in Figures 2.21(d),

2.22(a) and 2.22(e). It can be seen however that Q achieves a maximum value at

around R0 = 10−4 m as expected. From equation (2.4) the resonant frequency

of the bubble is dependent not only on the bubble’s equilibrium radius but also

on the parameters ρ, p0, σ and κ. Therefore if these are varied by too much

the chirp signal as defined in Table 2.2 will no longer insonify at the resonant

frequency. In Figure 2.21(d) the fluid density is varied from 0 to 5000 kg m−3,

roughly the density of iodine at 25oC. Figure 2.21(e) shows the sensitivity of Q

to a 5% variation in the density. Similar to the case for the bubble radius, the

optimum value of Q is found around the density value given in Table 2.1 (998

kg m−3). Q varies by roughly 40%, indicating that it is very sensitive to small

perturbations in the fluid density. In Figures 2.22(a) and 2.22(b), Q is varied

against the ambient pressure, p0. Figure 2.22(a) shows p0 varied from 0 to 200

kPa. This would be the pressure at sea-level with a depth of 10 m of water

above the bubble. If the rippling effect on Figure 2.22(a) were smoothed out,

the maximum Q values would again occur around the value of p0 given in Table

2.1 (p0 =100 kPa). In Figure 2.22(b) p0 is varied by 5% and in this case Q varies

by approximately 30%, indicating that it is also quite sensitive to small changes

in pressure. There appear to be no rippling effects present in Figures 2.22(c)

and in Figure 2.22(d), where the surface tension σ is varied from 0 to 500 mN

m−1 (the surface tension of mercury-air), Q appears to increase gently with σ.

This is highlighted in Figure 2.22(d) where a 10% change in the surface tension

σ corresponds to a 0.4% change in Q and so Q is far less sensitive to changes
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in the surface tension. In Figures 2.22(e) and 2.22(f) Q is plotted against the

polytropic gas constant κ. In Figure 2.22(e) κ is varied from 1 to 2 (κ is only

increased since it cannot have a value less than unity). If the rippling were

smoothed out the maximum value would occur around κ = 1, the value used in

Table 2.1. Globally Q seems to decrease with increasing κ. In Figure 2.22(f)

κ is varied by 10%, and a 30% change in Q results, indicating that Q is also

sensitive to changes in κ.

2.5 Identifying the optimal chirp parameter

values

Figures 2.21(a) to 2.22(f) highlight the benefits of using the chirp signal over

a standard sinusoidal signal since Q is always positive. A further use of this

analysis is the determination of the chirp parameters that optimise the relative

magnitude of the second harmonic. By defining

Q̄ =
1

2
(τ1 + τ2) , (2.54)

the effect of varying the chirp parameters a, b, c, d and pc on Q̄ can be ex-

amined. With this definition, Q̄ is therefore defined as the average value of the

amplitudes τ1 and τ2. This definition is preferred to a ratio of the amlpitudes, as

such a ratio would be overly sensitive to very large or small amplitudes. Figure

2.23(a) shows the dependency of Q̄ on a. It is expected that the graph of Q̄ will

be roughly parabolic while a varies, since the value of a determines where the

peak pressure of the chirp will occur. The instantaneous frequency of the chirp,

given by (2.6) as 2ct + d, increases linearly with time. The optimal situation

therefore is one where the chirp reaches the resonant frequency of the bubble

at the same time as it reaches its peak pressure, thus producing the greatest
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Figure 2.22: The quality factor Q versus (a,b) the ambient pressure, p0, (c,d) the surface

tension, σ, and (e,f) the polytropic gas constant, κ, with other physical parameter values as

in Table 2.1, the forcing functions as given by Table 2.2 and ε = 10−6.
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Figure 2.23: The quality factor Q̄ versus the chirp parameter (a) a × 105, (b) b × 105, (c)

c × 10−7, (d) d × 10−3 and (e) the peak chirp pressure, pc, with physical parameter values as

in Table 2.1, other chirp parameters as given by Table 2.2 and ε = 10−6.
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amplitude of oscillation at the second harmonic frequency (a is recovered as

approximately 18 × 10−5 in Figure 2.23(a) and this agrees with the value in

Table 2.2). If the peak pressure does not coincide with the resonant frequency

of the bubble, the chirp will produce less pressure at the resonant frequency

and so will become increasingly non-resonant, producing reduced vibrations at

the second harmonic frequency. In Figure 2.23(b) the parameter b is varied and

the effect on Q̄ is shown. Here Q̄ increases monotonically to an asymptotic

value as b increases. Again, this is to be expected since increasing b increases

the variance of the Gaussian envelope thus increasing the pressure at a given

frequency. Once b is large enough to produce a sufficient pressure over an in-

terval containing the fundamental frequency of the bubble the benefit of further

increasing b is minimal. The effect that varying the parameter c has on Q̄ is

shown in Figure 2.23(c). Once again Q̄ behaves in a roughly parabolic manner.

This is because the instantaneous frequency of the chirp is given by 2ct+ d [84];

thus increasing (decreasing) c increases (decreases) the growth rate of the fre-

quency. Again the optimal situation is one where the peak pressure of the chirp

occurs at a frequency coinciding with the resonant frequency of the bubble to

produce the maximum amplitude of oscillation at the bubble’s second harmonic

frequency. When the resonant frequency occurs either side of the peak pressure

the amplitude of the oscillations will diminish. In Figure 2.23(c) the optimal

value of c occurs at approximately 5.22×107 (compare this with the value stated

in Table 2.2). A similar pattern is observed in Figure 2.23(d) where the chirp

parameter d is varied and the effect that this has on Q̄ is shown. Similar to

the case stated above, as d increases, the frequency increases. Therefore there

exists an optimal value of d for which the resonant frequency of the bubble is

reached at the same time as the chirp produces its maximum pressure value.

As d varies from this optimal value, approximately 8 × 103 in Figure 2.23(d),

the pressure at the resonant frequency will decrease and thus the oscillations
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at the second harmonic frequency will be reduced. In Figure 2.23(e) the peak

pressure of the chirp pc is plotted against Q̄. As expected, as pc increases the

pressure of the signal increases and so the relative amplitude of vibrations at the

second harmonic frequency increases. Figure 2.23(e) therefore indicates that it

is desirable to have pc as large as possible; however, this is limited for several

reasons. From a modelling perspective if pc is very large then the oscillations

will be very large and thus x will no longer satisfy the requirement |x| � 1

and the approximation scheme presented here will no longer be valid. The large

amplitude oscillations may also give rise to non-spherical deformations which

would violate one of the key assumptions used to derive the Rayleigh–Plesset

equation. Also, large values of pc can lead to violent cavitation [25] that could

be detrimental to the functioning of the bioprocess or damaging to surrounding

tissue in the medical context [13].

2.6 Conclusions

A regular perturbation analysis of the Rayleigh–Plesset equation with chirp ex-

citation has been performed. This approximate solution was compared with a

numerical solution and was found to be in good agreement. Further approxi-

mations allowed the analytic solution to be considered as a Fourier cosine series

with the coefficients τ1 and τ2 corresponding to the amplitudes of the resonant

and second harmonic frequencies. These amplitudes were then examined to de-

termine the conditions which produced the greatest benefit from a chirp forcing

signal, as compared to a gated continuous wave forcing signal, where each sig-

nal had equal peak amplitude and −6 dB bandwidth. The results showed that

the chirp consistently outperformed the gated continuous wave and the optimal

values agreed with the resonant characteristics of the bubble.
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In Chapter 3, a similar analysis to that presented here will investigate the

case of the chirp excitation of an ultrasound contrast agent by analysing a modi-

fied mathematical model which takes into account the effects of the bubble shell.
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Chapter 3

A Theoretical Investigation of

Chirp Insonification of

Ultrasound Contrast Agents

3.1 Introduction

In Chapter 2 the dynamical equation for a bubble under chirp excitation was in-

vestigated to obtain an approximate analytical solution, and a similar approach

is taken in this chapter to the dynamical equation of an ultrasound contrast

agent (UCA) under chirp excitation. The Keller–Herring equation, modified to

include the effects of the elastic shell and with a non-stationary surface tension

term, is simplified by considering only small-amplitude oscillations. A regular

perturbation analysis is performed upon identification of a small parameter, and

a series of linear differential equations is produced. Approximate analytical solu-

tions to the first two of these are expressed in a form that reveals the amplitude

of the UCA’s oscillations at its resonant and second harmonic frequencies. The

optimal signal and shell parameters which maximise the UCA’s oscillations are
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investigated. A heuristic series of definitions for the signal parameters are found

which ensure that a signal can be designed to resonate a UCA with given shell

parameter values.

3.2 Analysis of the Keller–Herring equation for

an ultrasound contrast agent insonified by

a linear chirp signal

The Keller–Herring equation for an ultrasound contrast agent (UCA) with a

thin elastic shell is given, in terms of the pressure, by [111]

(

1 − (Λ + 1)
Ṙ

cL

)

R̈R +
3

2

(

1 − (3Λ + 1)
Ṙ

3cL

)

Ṙ2

=
1

ρ

((

1 + (1 − Λ)
Ṙ

cL

)

P +
R

cL

dP

dt

)

, (3.1)

where R = R(t) is the UCA’s radius, cL is the velocity of sound in the liquid,

ρ is the density of the liquid surrounding the UCA and P is the pressure act-

ing on the UCA wall. Equation (3.1) is known as a Keller–Herring equation

because it can take the characteristics of either Keller or Herring models, de-

pending on the value assigned to the dimensionless parameter Λ. By setting

Λ = 0 equation (3.1) reduces to the form of a Keller equation and by setting

Λ = 1 the equation reduces to the form of a Herring equation [111]. These

models exhibit similar characteristics [130]. In this paper Λ will be set to one

for computations, as the Herring model, in particular, is widely used in the lit-

erature [4, 14, 87, 119–121, 129, 131, 144]. It is also worth noting that by letting

cL → ∞ the liquid can be considered as incompressible and equation (3.1) re-

duces to the form of a Rayleigh–Plesset equation [111].
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The pressure P is induced by the difference between the pressure at the UCA

wall, pw and the pressure far from the UCA, p∞ and is thus given by

P = pw − p∞. (3.2)

The pressure at the UCA wall, which includes the effect of the encapsulating

shell, is given by [79, 118]

pw =

(

p0 +
2σ(R0)

R0

)(

R0

R

)3κ

− 4µṘ

R

−2σ(R)

R
− 12µshεṘ

R(R − ε)
,

where R0 is the UCA’s equilibrium radius, κ is the non-dimensional polytropic

gas constant of the gas inside the UCA, µ is the viscosity of the liquid, µsh is the

viscosity of the shell and ε is the thickness of the shell. By assuming that the

depth of the liquid is small, the hydrostatic liquid pressure is approximated by

p0, the ambient pressure in the liquid, and vapour pressure is neglected as this

is small in comparison to p0 [66]. The interfacial tension, σ, is derived in terms

of the initial interfacial tension at the UCA wall, σ0, and the shell elasticity

parameter, χ, and is given by [79, 118]

σ(R) = σ0 + χ

(

(

R

R0

)2

− 1

)

.

The pressure pw can therefore be written as

pw =

(

p0 +
2σ0

R0

)(

R0

R

)3κ

− 4µṘ

R

− 2

R

(

σ0 + χ

(

(

R

R0

)2

− 1

))

− 12µshεṘ

R(R − ε)
. (3.3)

The first term in equation (3.3) describes the effect of the pressure of the gas

inside the shell, according to an ideal polytropic gas law. The second term is

the damping due to the viscosity of the liquid and the last term is the damping

due to the viscosity of the elastic shell [79]. The pressure far from the UCA is
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a combination of the hydrostatic liquid pressure and F (t), the external forcing

function and can therefore be approximated by

p∞ = p0 + F. (3.4)

As in Chapter 2, the UCA’s radius R is expressed in terms of the equilibrium

radius R0 and the displacement from this, x(t), by

R(t) = R0(x(t) + 1), (3.5)

where the UCA’s oscillations are assumed to be small so that |x| � 1. Substi-

tuting this into equation (3.3) leads to

pw =

(

p0 +
2σ0

R0

)(

1

x + 1

)3κ

− 4µẋ

x + 1

− 2

R0(x + 1)

(

σ0 + χ
(

(x + 1)2 − 1
))

− 12µshεẋ

(x + 1)(R0(x + 1) − ε)
.

Since |x| � 1, the denominator terms involving x can be approximated by a

Maclaurin series to give

pw =

(

p0 +
2σ0

R0

)(

1 − 3κx +
1

2
(3κ + 9κ2)x2

)

− 4µẋ(1 − x + x2)

− 2

R0

(1 − x + x2)
(

σ0 + χ(x2 + 2x)
)

−12µshεẋ(1 − x + x2)

×
(

1

(R0 − ε)
− R0x

(R0 − ε)2
+

R2
0x

2

(R0 − ε)3

)

+ O(x3),
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and so from definitions (3.2) and (3.4) the pressure difference in the liquid is

P =

(

p0 +
2σ0

R0

)(

−3κx +
1

2
(3κ + 9κ2)x2

)

− 4µ(ẋ − ẋx)

+
2σ0

R0
(x − x2) +

2χ

R0
(−2x + x2)

−12µshε

(

(ẋ − ẋx)

(R0 − ε)
− R0ẋx

(R0 − ε)2

)

− F + O(x3)

= −F −
(

4µ +
12µshε

R0 − ε

)

ẋ +

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

x

+

(

4µ + 12µshε

(

1

R0 − ε
+

R0

(R0 − ε)2

))

ẋx

+

(

1

2

(

3κ + 9κ2
)

(

p0 +
2σ0

R0

)

− 2σ0

R0

+
2χ

R0

)

x2 + O(x3).

(3.6)

Differentiating this expression with respect to time gives

Ṗ = −Ḟ −
(

4µ +
12µshε

R0 − ε

)

ẍ +

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

ẋ

+

(

4µ + 12µshε

(

1

R0 − ε
+

R0

(R0 − ε)2

))

(

ẍx + ẋ2
)

+2

(

1

2

(

3κ + 9κ2
)

(

p0 +
2σ0

R0

)

− 2σ0

R0

+
2χ

R0

)

ẋx + O(x3),

(3.7)

and substituting it into equation (3.1) along with equations (3.5) and (3.6) gives

ρ

(

1 − (Λ + 1)
R0

cL
ẋ

)

R2
0ẍ(x + 1) +

3

2
ρ

(

1 − (3Λ + 1)
R0

3cL
ẋ

)

R2
0ẋ

2

=

(

(1 − Λ)
R0

cL
ẋ + 1

)(

−F −
(

4µ +
12µshε

R0 − ε

)

ẋ

+

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

x

+

(

4µ + 12µshε

(

1

R0 − ε
+

R0

(R0 − ε)2

))

ẋx

+

(

1

2

(

3κ + 9κ2
)

(

p0 +
2σ0

R0

)

− 2σ0

R0
+

2χ

R0

)

x2

)

+
R0

cL
(x + 1)

(

−Ḟ −
(

4µ +
12µshε

R0 − ε

)

ẍ
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+

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

ẋ

+

(

4µ + 12µshε

(

1

R0 − ε
+

R0

(R0 − ε)2

))

(

ẍx + ẋ2
)

+2

(

1

2

(

3κ + 9κ2
)

(

p0 +
2σ0

R0

)

− 2σ0

R0
+

2χ

R0

)

ẋx

)

+ O(x3).

This can be rewritten as

ρR2
0ẍx + ρR2

0ẍ − (Λ + 1)ρ
R3

0

cL

ẍẋ +
3

2
ρR2

0ẋ
2

= −F −
(

4µ +
12µshε

R0 − ε

)

ẋ +

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0

− 4χ

R0

)

x

+

(

4µ + 12µshε

(

1
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+

R0

(R0 − ε)2
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ẋx

+

(

1

2

(

3κ + 9κ2
)

(
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2σ0

R0

)
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+

2χ

R0

)

x2
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R0

cL

(

−F ẋ −
(

4µ +
12µshε

R0 − ε

)

ẋ2

+

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0

− 4χ

R0

)

ẋx

)

+
R0

cL

(

−Ḟ −
(

4µ +
12µshε

R0 − ε

)

ẍ +

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

ẋ

+

(

4µ + 12µshε

(

1

R0 − ε
+

R0

(R0 − ε)2
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(

ẍx + ẋ2
)

+2

(

1

2

(

3κ + 9κ2
)

(

p0 +
2σ0
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ẋx
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(
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(

4µ +
12µshε
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)

ẍx

+

(
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(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

ẋx

)

+ O(x3),
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which is equivalent to

(

ρR2
0 +

R0

cL

(

4µ +
12µshε

R0 − ε

))

ẍ

+

(

4µ +
12µshε

R0 − ε
− R0

cL

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0
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ẋ

+

(
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+
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)

x − (Λ + 1)ρ
R3

0

cL
ẍẋ

+

(

ρR2
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0
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+
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3

2
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0
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− ΛR0
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(
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12µshε
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4µ + 12µshε

(

1
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+
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+(2 − Λ)
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(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0
− 4χ

R0

)

+
R0

cL

(

(

3κ + 9κ2
)

(

p0 +
2σ0

R0

)

− 4σ0

R0

+
4χ

R0
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ẋx

+
R0

cL
Ḟ x −

(

1

2

(

3κ + 9κ2
)

(

p0 +
2σ0

R0

)

− 2σ0

R0
+

2χ

R0

)

x2

= −F − R0

cL
Ḟ , (3.8)

where higher order terms have been neglected. The case where the forcing

function is a chirp is examined (see equation (2.5)). Figures 3.1 and 3.2 compare

the numerical solutions to equations (3.1) and (3.8) in the time and frequency

domains. It is clear that in the simplified form of (3.8), the dynamics of the

UCA are still accurately described. The resonant frequency is calculated from
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the homogeneous solution to the linearised version of (3.8) and is found to be

ω0 =
1

2π









(

3κ

(

p0 +
2σ0

R0

)

− 2σ0
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+

4χ

R0

)

(

ρR2
0 +
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(

4µ +
12µshε

R0 − ε

))

−
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cL

(

−3κ

(

p0 +
2σ0

R0

)

+
2σ0

R0

− 4χ

R0

))2

4

(

ρR2
0 +

R0

cL

(

4µ +
12µshε

R0 − ε

))2











1
2

.

(3.9)

Note that this definition can be approximated by assuming that the liquid is

incompressible then [15, 87].
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Figure 3.1: The radial dynamics of the insonified UCA calculated from the numerical solution

of equation (3.1) (dotted line) and equation (3.5), where x is found by the numerical solution

of equation (3.8) (full line). The forcing function F (t) is given by equation (2.5) with the

chirp signal parameters given in Table 3.2 and the physical parameter values in Table 3.1. Λ

has been set to 1 to give a Herring-type equation.
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Physical System & UCA Parameters

Symbol Description Units Value

R0 UCAs equilibrium radius µm 1

ρ Density of surrounding liquid kg m−3 998

p0 Ambient pressure of liquid Pa 1 × 105

σ0 Surface tension of gas-liquid interface N m−1 0.051

κ Polytropic gas constant dimensionless 1.095

µ Viscosity of liquid Pa s 1 × 10−3

cL Speed of sound in the liquid m s−1 1480

ε Thickness of elastic shell nm 1

χ Elasticity of the shell N m−1 1

µsh Viscosity of the shell Pa s 1

T Temporal scaling parameter µs 0.03

Table 3.1: System and UCA parameter values in water at 20oC

Chirp Forcing Function Parameter Values

Parameter Units Value

a µs 1.42

b µs 0.24

c MHz µs−1 0.37

d MHz 9.54

pc kPa 100.0

Table 3.2: Parameter values for a chirp forcing function designed to resonate a UCA with

resonant frequency calculated from equation (3.9) with parameter values given in Table 3.1.
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Figure 3.2: The radial dynamics of the insonified UCA calculated from the numerical solution

of equation (3.1) (dotted line) and equation (3.5), where x is found by the numerical solution

of equation (3.8) (full line). This power spectrum was calculated by taking a fast Fourier

transform of the corresponding time-domain solution. The forcing function F (t) is given by

equation (2.5) with the chirp signal parameters given in Table 3.2 and the physical parameter

values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

An identical set of non-dimensionalised parameters to those in equations (2.7)

and (2.9) are utilised to allow equations (3.8) and (2.5) to be non-dimensionalised
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to

(

ρR2
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R0
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+
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(
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(
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+
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where a prime denotes d/dϑ. Normalising this with the x′′ coefficient we can

thus write

x′′ + C1x
′ + C2x + C3x

′′x′ + C4x
′′x

+εC5Gx′ + C6x
′2 + C7x

′x + εC8G
′x + C9x

2

= εG0, (3.10)
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where the revised lumped parameters are
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(

p0 +
2σ0
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(
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2σ0

R0

)

− 4σ0

R0

+
4χ

R0

))

,

C8 = − R0

TcL
,

C9 = −T 2

C0

(

1

2

(

9κ2 + 3κ
)

(

p0 +
2σ0

R0

)

− 2σ0

R0

+
2χ

R0

)

,

ε = −T 2pc

C0

and

G0(ϑ) = G − C8G
′.

From definition (2.8)

G′ =

(

−(ϑ − ā)

b̄2
e−(ϑ−ā)2/2b̄2 cos(2πϑ(c̄ϑ + d̄))

−(2π(c̄ϑ + d̄) + 2πc̄ϑ)e−(ϑ−ā)2/2b̄2 sin(2πϑ(c̄ϑ + d̄))
)
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and so G0 can be written as

G0 = e−(ϑ−ā)2/2b̄2 cos(2πϑ(c̄ϑ + d̄))

−C8

(

−(ϑ − ā)

b̄2
e−(ϑ−ā)2/2b̄2 cos(2πϑ(c̄ϑ + d̄))

−(2π(c̄ϑ + d̄) + 2πc̄ϑ)e−(ϑ−ā)2/2b̄2 sin(2πϑ(c̄ϑ + d̄))
)

= e−(ϑ−ā)2/2b̄2
((

1 +
C8

b̄2
(ϑ − ā)

)

cos(2πϑ(c̄ϑ + d̄))

+2πC8(2c̄ϑ + d̄) sin(2πϑ(c̄ϑ + d̄))
)

. (3.11)

3.3 Regular perturbation analysis of the small-

amplitude model

For typical parameter values associated with this problem the non-dimensional

parameter ε is small. This can be utilised once again by expanding x in the form

x(ϑ) = εη0(ϑ) + ε2η1(ϑ) + ... . (3.12)

Substituting this into equation (3.10) gives

(εη0
′′ + ε2η1

′′) + C1(εη0
′ + ε2η1

′) + C2(εη0 + ε2η1)

+C3(εη0
′′ + ε2η1

′′)(εη0
′ + ε2η1

′) + C4(εη0
′′ + ε2η1

′′)(εη0 + ε2η1)

+C5εG(εη0
′ + ε2η1

′) + C6(εη0
′ + ε2η1

′)2

+C7(εη0
′ + ε2η1

′)(εη0 + ε2η1) + C8εG
′(εη0 + ε2η1)

+C9(εη0 + ε2η1)
2 + O(ε3)

= εG0,
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which can be reduced to

(εη0
′′ + ε2η1

′′) + C1(εη0
′ + ε2η1

′) + C2(εη0 + ε2η1) + ε2C3η0
′′η0

′ + ε2C4η0
′′η0

+ε2C5Gη0
′ + ε2C6η0

′2 + ε2C7η0
′η0 + ε2C8G

′η0 + ε2C9η
2
0 + O(ε3)

= εG0. (3.13)

By equating similar powers of ε, the differential equation (3.13) produces a series

of differential equations. The first two of these are

η0
′′ + C1η0

′ + C2η0 = G0 (3.14)

and

η1
′′ + C1η1

′ + C2η1 = G1, (3.15)

where

G1 = −C3η0
′′η0

′ − C4η0
′′η0 − C5Gη0

′ − C6η0
′2 − C7η0

′η0 − C8G
′η0 − C9η

2
0.

(3.16)

Figures 3.3 and 3.4 compare the numerical solution to differential equation (3.10)

and equation (3.12), with η0 given by the numerical solution to (3.14) and η1

given by the numerical solution to (3.15), in the time and frequency domains.

In Figure 3.3 the numerical solution to (3.10) compares well with the solution

to (3.12) in the time-domain. The solutions also compare well in the frequency-

domain as seen in Figure 3.4.

To obtain an analytical solution to (3.10), equations (3.14) and (3.15) must

first be solved. Solving the auxiliary equation from (3.14) produces the homo-

geneous solution

ηH
0 = A0η

H1
0 + B0η

H2
0

= A0e
αϑ cos(βϑ) + B0e

αϑ sin(βϑ), (3.17)
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Figure 3.3: The numerical solution of the differential equation (3.10) (full line), compared

with that obtained using equation (3.12) (dotted line), where η0(t) and η1(t) are calculated

from the numerical solutions of the differential equations (3.14) and (3.15) respectively. The

forcing function G(t) is given by equation (2.8) with the chirp signal parameters given in Table

3.2 and the physical parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type

equation.

where

β =

√

C2 −
C2

1

4

and

α = −C1

2
.

The particular integral, ηP
0 , is determined by the variation of parameters method

as laid out in equations (2.17) to (2.20) to give

ηP
0 = v1η

H1
0 + v2η

H2
0 , (3.18)

where

v1 =
−1

β

∫ ϑ

e−αϑ′

sin(βϑ′)G0(ϑ
′) dϑ′ (3.19)
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Figure 3.4: The numerical solution of the differential equation (3.10) (full line), compared with

that obtained using equation (3.12) (dotted line), where η0(t) and η1(t) are calculated from

the numerical solutions of the differential equations (3.14) and (3.15) respectively, in the scaled

frequency-domain. This power spectrum was calculated by taking a fast Fourier transform of

the time-domain data in Figure 3.3. The forcing function G(t) is given by equation (2.8) with

the chirp signal parameters given in Table 3.2 and the physical parameter values in Table 3.1.

Λ has been set to 1 to give a Herring-type equation.

and

v2 =
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)G0(ϑ
′) dϑ′. (3.20)
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Using equation (3.11) the integrand of equation (3.19), Iv1 , is given by

Iv1 =
−1

β
e−αϑ sin(βϑ)e−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

cos(2πϑ(c̄ϑ + d̄))

+2πC8(2c̄ϑ + d̄) sin(2πϑ(c̄ϑ + d̄))
)

=
−1

β
e−αϑ−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

sin(βϑ) cos(2πϑ(c̄ϑ + d̄))

+2πC8(2c̄ϑ + d̄) sin(βϑ) sin(2πϑ(c̄ϑ + d̄))
)

=
−1

2β
e−αϑ−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

(sin(βϑ − 2πϑ(c̄ϑ + d̄))

+ sin(βϑ + 2πϑ(c̄ϑ + d̄)))

+2πC8(2c̄ϑ + d̄)(cos(βϑ − 2πϑ(c̄ϑ + d̄))

+ cos(βϑ + 2πϑ(c̄ϑ + d̄)))
)

=
−1

2β
e−αϑ−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

×=
{

ei(βϑ−2πϑ(c̄ϑ+d̄)) + ei(βϑ+2πϑ(c̄ϑ+d̄))
}

+2πC8(2c̄ϑ + d̄)<
{

ei(βϑ−2πϑ(c̄ϑ+d̄)) − ei(βϑ+2πϑ(c̄ϑ+d̄))
})

=
−1

2β

(

=
{

(

1 + C8(ϑ − ā)/b̄2
)

(

e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ−2πϑ(c̄ϑ+d̄))

+e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ+2πϑ(c̄ϑ+d̄))
)}

+<
{

2πC8(2c̄ϑ + d̄)
(

e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ−2πϑ(c̄ϑ+d̄))

−e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ+2πϑ(c̄ϑ+d̄))
)})

=
−1

2β

(

=
{

(

1 + C8(ϑ − ā)/b̄2
)

(

ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ−2πc̄ϑ2−2πd̄ϑ)

+ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ+2πc̄ϑ2+2πd̄ϑ)
)}

+<
{

2πC8(2c̄ϑ + d̄)
(

ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ−2πc̄ϑ2−2πd̄ϑ)

−ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ+2πc̄ϑ2+2πd̄ϑ)
)})
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=
−1

2β

(

=
{(

1 + C8(ϑ − ā)/b̄2
)

×
(

ei((−2πc̄+i/2b̄2)ϑ2+(β−2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)

+ei((2πc̄+i/2b̄2)ϑ2+(β+2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)
)}

+<
{

2πC8(2c̄ϑ + d̄)

×
(

ei((−2πc̄+i/2b̄2)ϑ2+(β−2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)

−ei((2πc̄+i/2b̄2)ϑ2+(β+2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)
)})

=
−1

2β

(

=
{

(

1 + C8(ϑ − ā)/b̄2
)

(

ei(χ̆1ϑ2+χ̆2ϑ+χ3) + ei(χ1ϑ2+χ2ϑ+χ3)
)}

+<
{

2πC8(2c̄ϑ + d̄)
(

ei(χ̆1ϑ2+χ̆2ϑ+χ3) − ei(χ1ϑ2+χ2ϑ+χ3)
)})

= =
{−1

2β

(

1 + C8(ϑ − ā)/b̄2
)

(

ei(χ̆1(ϑ+χ̆2/2χ̆1)2+χ̆3−χ̆2
2/4χ̆1)

+ei(χ1(ϑ+χ2/2χ1)2+χ3−χ2
2/4χ1)

)}

+<
{−1

β
πC8(2c̄ϑ + d̄)

(

ei(χ̆1(ϑ+χ̆2/2χ̆1)2+χ̆3−χ̆2
2/4χ̆1)

−ei(χ1(ϑ+χ2/2χ1)2+χ3−χ2
2/4χ1)

)}

= =
{−1

2β

(

1 − āC8

b̄2
+

C8ϑ

b̄2

)

(

ei(χ̆3−χ̆2
2/4χ̆1)eiχ̆1(ϑ+χ̆2/2χ̆1)2

+ei(χ3−χ2
2/4χ1)eiχ1(ϑ+χ2/2χ1)2

)}

+<
{−πC8

β
(2c̄ϑ + d̄)

(

ei(χ̆3−χ̆2
2/4χ̆1)eiχ̆1(ϑ+χ̆2/2χ̆1)2

−ei(χ3−χ2
2/4χ1)eiχ1(ϑ+χ2/2χ1)2

)}

, (3.21)

where < and = denote real and imaginary parts respectively and

χ1 = 2πc̄ +
i

2b̄2
, χ̆1 = −2πc̄ +

i

2b̄2
,

χ2 = β + 2πd̄ + i

(

b̄2α − ā

b̄2

)

, χ̆2 = β − 2πd̄ + i

(

b̄2α − ā

b̄2

)

,

χ3 =
iā2

2b̄2
.



























(3.22)

To integrate (3.21), first note that [115]
∫ ϑ

eiχ̆1(ϑ′+χ̆2/2χ̆1)2 dϑ′ =

√
π

2
√

iχ̆1

erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

(3.23)
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and [115]

∫ ϑ

erfi
(

√

iχ̆1 (ϑ′ + χ̆2/2χ̆1)
)

dϑ′

= (ϑ + χ̆2/2χ̆1) erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

− eiχ̆1(ϑ+χ̆2/2χ̆1)2

√
iπχ̆1

.

Using these definitions the following integral can be evaluated using integration

by parts to give

∫ ϑ

ϑ′eiχ̆1(ϑ+χ̆2/2χ̆1)2 dϑ′

=

√
πϑ

2
√

iχ̆1

erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

−
∫ ϑ √

π

2
√

iχ̆1

erfi
(

√

iχ̆1 (ϑ′ + χ̆2/2χ̆1)
)

dϑ′

=

√
πϑ

2
√

iχ̆1

erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

−
√

π

2
√

iχ̆1

(

(ϑ + χ̆2/2χ̆1) erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

−eiχ̆1(ϑ+χ̆2/2χ̆1)2

√
iπχ̆1

)

.

(3.24)

Hence, in equation (3.21), the first term becomes

−
∫ ϑ 1

2β

(

1 − āC8

b̄2
+

C8ϑ
′

b̄2

)

ei(χ̆3−χ̆2
2/4χ̆1)eiχ̆1(ϑ′+χ̆2/2χ̆1)2 dϑ′

= − 1

2β

(

1 − āC8

b̄2

)

ei(χ̆3−χ̆2
2/4χ̆1)

∫ ϑ

eiχ̆1(ϑ′+χ̆2/2χ̆1)2 dϑ′

− C8

2b̄2β
ei(χ̆3−χ̆2

2/4χ̆1)
∫ ϑ

ϑ′eiχ̆1(ϑ′+χ̆2/2χ̆1)2 dϑ′.
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This is equivalent to

− 1

2β

(

1 − āC8

b̄2

)

ei(χ̆3−χ̆2
2/4χ̆1)

√
π

2
√

iχ̆1

erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

− C8

2b̄2β
ei(χ̆3−χ̆2

2/4χ̆1)
( √

πϑ

2
√

iχ̆1

erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

−
√

π

2
√

iχ̆1

(

(ϑ + χ̆2/2χ̆1) erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

−eiχ̆1(ϑ+χ̆2/2χ̆1)2

√
iπχ̆1

))

= −
√

π

4β

(

(

1 +
C8

b̄2
(ϑ − ā)

)

ei(χ̆3−χ̆2
2/4χ̆1)

√
iχ̆1

erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

−C8

b̄2

ei(χ̆3−χ̆2
2/4χ̆1)

√
iχ̆1

(

√

iπχ̆1 (ϑ + χ̆2/2χ̆1)

×erfi
(

√

iχ̆1 (ϑ + χ̆2/2χ̆1)
)

− eiχ̆1(ϑ+χ̆2/2χ̆1)2
))

= −
√

π

4β

(

1 +
C8

b̄2
(ϑ − ā)

)

eiχ̆4

χ̆5
erfi (χ̆5ϑ + χ̆6)

+
C8e

iχ̆4

4b̄2βχ̆2
5

(√
π (χ̆5ϑ + χ̆6) erfi (χ̆5ϑ + χ̆6) − e(χ̆5ϑ+χ̆6)2

)

, (3.25)

where definitions (3.23) and (3.24) have been applied and

χ̆4 = χ3 −
χ̆2

2

4χ̆1
,

χ̆5 =
√

iχ̆1,

χ̆6 =

√
iχ̆2

2
√

χ̆1

=
iχ̆2

2χ̆5
.



























(3.26)

In a similar way, the second term in equation (3.21) becomes

−
∫ ϑ 1

2β

(

1 +
C8

b̄2
(ϑ − ā)

)

ei(χ3−χ2
2/4χ1)eiχ1(ϑ+χ2/2χ1)2 dϑ′

= −
√

π

4β

(

1 +
C8

b̄2
(ϑ − ā)

)

eiχ4

χ5
erfi (χ5ϑ + χ6)

+
C8e

iχ4

4b̄2βχ2
5

(√
π (χ5ϑ + χ6) erfi (χ5ϑ + χ6) − e(χ5ϑ+χ6)

2
)

,

(3.27)
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where

χ4 = χ3 −
χ2

2

4χ1
,

χ5 =
√

iχ1,

χ6 =

√
iχ2

2
√

χ1
=

iχ2

2χ5
.



























(3.28)

The integrals
∫ ϑ −πC8

β
(2c̄ϑ + d̄)ei(χ̆3−χ̆2

2/4χ̆1)eiχ̆1(ϑ+χ̆2/2χ̆1)2 dϑ′

= −π
√

πC8

2β
(2c̄ϑ + d̄)

eiχ̆4

χ̆5

erfi (χ̆5ϑ + χ̆6)

+
πc̄C8e

iχ̆4

βχ̆2
5

(√
π (χ̆5ϑ + χ̆6) erfi (χ̆5ϑ + χ̆6) − e(χ̆5ϑ+χ̆6)

2
)

(3.29)

and
∫ ϑ πC8

β
(2c̄ϑ + d̄)ei(χ3−χ2

2/4χ1)eiχ1(ϑ+χ2/2χ1)2 dϑ′

=
π
√

πC8

2β
(2c̄ϑ + d̄)

eiχ4

χ5
erfi (χ5ϑ + χ6)

−πc̄C8e
iχ̆4

βχ̆2
5

(√
π (χ5ϑ + χ6) erfi (χ5ϑ + χ6) − e(χ5ϑ+χ6)

2
)

(3.30)

are obtained with the same method. Now equation (3.19) can be solved from

equation (3.21) combined with (3.25), (3.27), (3.29) and (3.30) to yield

v1 = −={u1} − <{u2} (3.31)

where

u1(ϑ) =

√
π

4β

(

1 +
C8

b̄2
(ϑ − ā)

)(

eiχ̆4

χ̆5

erfi(χ̆5ϑ + χ̆6) +
eiχ4

χ5

erfi(χ5ϑ + χ6)

)

− C8

4b̄2β

(

eiχ̆4

χ̆2
5

(√
π(χ̆5ϑ + χ̆6)erfi(χ̆5ϑ + χ̆6) − e(χ̆5ϑ+χ̆6)2

)

+
eiχ4

χ2
5

(√
π(χ5ϑ + χ6)erfi(χ5ϑ + χ6) − e(χ5ϑ+χ6)2

)

)

(3.32)
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and

u2(ϑ) =
π
√

πC8

2β
(2c̄ϑ + d̄)

(

eiχ̆4

χ̆5
erfi (χ̆5ϑ + χ̆6) −

eiχ4

χ5
erfi(χ5ϑ + χ6)

)

−πc̄C8

β

(

eiχ̆4

χ̆2
5

(√
π (χ̆5ϑ + χ̆6) erfi (χ̆5ϑ + χ̆6) − e(χ̆5ϑ+χ̆6)

2
)

−eiχ4

χ2
5

(√
π(χ5ϑ + χ6)erfi(χ5ϑ + χ6) − e(χ5ϑ+χ6)2

)

)

.

(3.33)

This process is now repeated to evaluate equation (3.20). The integrand is

Iv2 =
1

β
e−αϑ cos(βϑ)e−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

cos(2πϑ(c̄ϑ + d̄))

+2πC8(2c̄ϑ + d̄) sin(2πϑ(c̄ϑ + d̄))
)

=
1

β
e−αϑ−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

cos(βϑ) cos(2πϑ(c̄ϑ + d̄))

+2πC8(2c̄ϑ + d̄) cos(βϑ) sin(2πϑ(c̄ϑ + d̄))
)

=
1

2β
e−αϑ−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

(cos(βϑ − 2πϑ(c̄ϑ + d̄))

+ cos(βϑ + 2πϑ(c̄ϑ + d̄)))

+2πC8(2c̄ϑ + d̄)(sin(−βϑ + 2πϑ(c̄ϑ + d̄))

+ sin(βϑ + 2πϑ(c̄ϑ + d̄)))
)

=
1

2β
e−αϑ−(ϑ−ā)2/2b̄2

((

1 + C8(ϑ − ā)/b̄2
)

×<
{

ei(βϑ−2πϑ(c̄ϑ+d̄)) + ei(βϑ+2πϑ(c̄ϑ+d̄))
}

−2πC8(2c̄ϑ + d̄)=
{

ei(βϑ−2πϑ(c̄ϑ+d̄)) − ei(βϑ+2πϑ(c̄ϑ+d̄))
})
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=
1

2β

(

<
{

(

1 + C8(ϑ − ā)/b̄2
)

(

e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ−2πϑ(c̄ϑ+d̄))

+e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ+2πϑ(c̄ϑ+d̄))
)}

−=
{

2πC8(2c̄ϑ + d̄)
(

e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ−2πϑ(c̄ϑ+d̄))

−e−αϑ−(ϑ−ā)2/2b̄2+i(βϑ+2πϑ(c̄ϑ+d̄))
)})

=
1

2β

(

<
{

(

1 + C8(ϑ − ā)/b̄2
)

(

ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ−2πc̄ϑ2−2πd̄ϑ)

+ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ+2πc̄ϑ2+2πd̄ϑ)
)}

−=
{

2πC8(2c̄ϑ + d̄)
(

ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ−2πc̄ϑ2−2πd̄ϑ)

−ei((i2b̄2αϑ+iϑ2−i2āϑ+iā2)/2b̄2+βϑ+2πc̄ϑ2+2πd̄ϑ)
)})

=
1

2β

(

<
{(

1 + C8(ϑ − ā)/b̄2
)

×
(

ei((−2πc̄+i/2b̄2)ϑ2+(β−2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)

+ei((2πc̄+i/2b̄2)ϑ2+(β+2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)
)}

−=
{

2πC8(2c̄ϑ + d̄)

×
(

ei((−2πc̄+i/2b̄2)ϑ2+(β−2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)

−ei((2πc̄+i/2b̄2)ϑ2+(β+2πd̄+i(2b̄2α−2ā/2b̄2))ϑ+iā2/2b̄2)
)})

=
1

2β

(

<
{

(

1 + C8(ϑ − ā)/b̄2
)

(

ei(χ̆1ϑ2+χ̆2ϑ+χ3) + ei(χ1ϑ2+χ2ϑ+χ3)
)}

−=
{

2πC8(2c̄ϑ + d̄)
(

ei(χ̆1ϑ2+χ̆2ϑ+χ3) − ei(χ1ϑ2+χ2ϑ+χ3)
)})

= <
{

1

2β

(

1 + C8(ϑ − ā)/b̄2
)

(

ei(χ̆1(ϑ+χ̆2/2χ̆1)2+χ̆3−χ̆2
2/4χ̆1)

+ei(χ1(ϑ+χ2/2χ1)2+χ3−χ22/4χ1)
)}

−=
{

1

β
πC8(2c̄ϑ + d̄)

(

ei(χ̆1(ϑ+χ̆2/2χ̆1)2+χ̆3−χ̆2
2/4χ̆1)

−ei(χ1(ϑ+χ2/2χ1)2+χ3−χ22/4χ1)
)}
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= <
{

1

2β

(

1 − āC8

b̄2
+

C8ϑ

b̄2

)

(

ei(χ̆3−χ̆2
2/4χ̆1)

eiχ̆1(ϑ+χ̆2/2χ̆1)2 + ei(χ3−χ22/4χ1)eiχ1(ϑ+χ2/2χ1)2
)}

−=
{

πC8

β
(2c̄ϑ + d̄)

(

ei(χ̆3−χ̆2
2/4χ̆1)eiχ̆1(ϑ+χ̆2/2χ̆1)2

−ei(χ3−χ22/4χ1)eiχ1(ϑ+χ2/2χ1)2
)}

and (3.20) can now be evaluated to show that

v2 = <{u1} − ={u2} . (3.34)

Using equations (3.17), (3.18), (3.31) and (3.34), the particular integral is there-

fore

ηP
0 = (−={u1} − <{u2}) eαϑ cos(βϑ) + (<{u1} − ={u2}) eαϑ sin(βϑ)

= eαϑ ((−={u1} − <{u2}) cos(βϑ) + (<{u1} − ={u2}) sin(βϑ))

(3.35)

and combining this with (3.17) the solution to the O(ε) differential equation

(3.14) is

η0(ϑ) = ηH
0 + ηP

0

= eαϑ (A0 cos(βϑ) + B0 sin(βϑ))

+eαϑ ((−={u1} − <{u2}) cos(βϑ)

+ (<{u1} − ={u2}) sin(βϑ))

= eαϑ ((A0 − ={u1} − <{u2}) cos(βϑ)

+ (B0 + <{u1} − ={u2}) sin(βϑ)) . (3.36)

The constants A0 and B0 can now be determined from the initial conditions

η0(0) = K1, η′
0(0) = K2,
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for some constants K1, K2. From (3.36)

K1 = A0 − ={u1(0)} − <{u2(0)}

and so rearranging gives

A0 = K1 + ={u1(0)} + <{u2(0)} .

Now, differentiating (3.36) with respect to ϑ gives

η0
′(ϑ) = αeαϑ ((A0 − ={u1} − <{u2}) cos(βϑ)

+ (B0 + <{u1} − ={u2}) sin(βϑ))

+βeαϑ (− (A0 − ={u1} − <{u2}) sin(βϑ)

+ (B0 + <{u1} − ={u2}) cos(βϑ))

+eαϑ

(

cos(βϑ)
d

dϑ
(−={u1} − <{u2})

+ sin(βϑ)
d

dϑ
(<{u1} − ={u2})

)

.

(3.37)

From (3.19) and (3.31)

−={u1} − <{u2} =
−1

β

∫ ϑ

e−αϑ′

sin(βϑ′)G0(ϑ
′) dϑ′,

and so differentiating both sides gives

d

dϑ
(−={u1} − <{u2}) =

−1

β
e−αϑ sin(βϑ)G0(ϑ).

Also, from (3.20) and (3.34)

<{u1} − ={u2} =
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)G0(ϑ
′) dϑ′,

and so

d

dϑ
(<{u1} − ={u2}) =

1

β
e−αϑ cos(βϑ)G0(ϑ).
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Hence equation (3.37) can be simplified to

η0
′(ϑ) = αeαϑ ((A0 −={u1} − <{u2}) cos(βϑ)

+ (B0 + <{u1} − ={u2}) sin(βϑ))

+βeαϑ (− (A0 − ={u1} − <{u2}) sin(βϑ)

+ (B0 + <{u1} − ={u2}) cos(βϑ)) ,

and therefore

B0 =
1

β
(K2 − α (A0 −={u1(0)} − <{u2(0)})) −<{u1(0)} + ={u2(0)}

=
1

β
(K2 − αK1) − <{u1(0)} + ={u2(0)} .

In the simplest case, when the system is initially at equilibrium, K1 = K2 ≡ 0;

then

A0 = ={u1(0)} + <{u2(0)} and B0 = −<{u1(0)} + ={u2(0)} .

Substituting these into (3.36), the solution to (3.14) is

η0(ϑ) = eαϑ ((={u1(0) − u1(ϑ)} + <{u2(0) − u2(ϑ)}) cos(βϑ)

+(={u2(0) − u2(ϑ)} − <{u1(0) − u1(ϑ)}) sin(βϑ)) .

(3.38)

In Figures 3.5 and 3.6 the analytical solution (3.38) is used to calculate the O(ε)

term of equation (3.12) which is then compared with the numerical solution to

differential equation (3.10); it is evident that they match well.

3.3.1 Approximations of the leading order solution

To further analyse this solution the real and imaginary parts of u1 and u2 must be

found. This requires finding the real and imaginary parts of erfi(z) for complex
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Figure 3.5: The numerical solution of the differential equation (3.10) (full line) compared with

that obtained using the first term of equation (3.12) (dotted line), where η0(t) given by the

analytical solution (3.38). The chirp signal parameters are given in Table 3.2 and the physical

parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

z. For large z, erfi(z) has the series approximation [1]

erfi(z) =
1√
π

ez2

(

1

z
+

1

2z3
+

3

4z5
+

15

8z7
+ ...

)

. (3.39)

Retaining just the first term in this approximation, equation (3.32) can be ex-

pressed as

ū1(ϑ) =

√
π

4β

(

1 +
C8

b̄2
(ϑ − ā)

)

(

eiχ̆4

χ̆5

e(χ̆5ϑ+χ̆6)2

√
π(χ̆5ϑ + χ̆6)

+
eiχ4

χ5

e(χ5ϑ+χ6)2

√
π(χ5ϑ + χ6)

)

− C8

4b̄2β

(

eiχ̆4

χ̆2
5

(

√
π(χ̆5ϑ + χ̆6)

e(χ̆5ϑ+χ̆6)2

√
π(χ̆5ϑ + χ̆6)

− e(χ̆5ϑ+χ̆6)2

)

+
eiχ4

χ2
5

(

√
π(χ5ϑ + χ6)

e(χ5ϑ+χ6)2

√
π(χ5ϑ + χ6)

− e(χ5ϑ+χ6)2

))

=
1

4β

(

1 +
C8

b̄2
(ϑ − ā)

)

(

eiχ̆4+(χ̆5ϑ+χ̆6)2

(χ̆2
5ϑ + χ̆5χ̆6)

+
eiχ4+(χ5ϑ+χ6)2

(χ2
5ϑ + χ5χ6)

)

. (3.40)
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Figure 3.6: The numerical solution of the differential equation (3.10) (full line) compared

with that obtained using the first term of equation (3.12) (dotted line), where η0(t) given

by the analytical solution (3.38), in the scaled frequency-domain. This power spectrum was

calculated by taking a fast Fourier transform of the time-domain data in Figure 3.5. The chirp

signal parameters are given in Table 3.2 and the physical parameter values in Table 3.1. Λ

has been set to 1 to give a Herring-type equation.

Taking a similar approach to equation (3.33), u2 can be approximated by

ū2(ϑ) =
π
√

πC8

2β
(2c̄ϑ + d̄)

(

eiχ̆4+(χ̆5ϑ+χ̆6)2

(χ̆2
5ϑ + χ̆5χ̆6)

− eiχ4+(χ5ϑ+χ6)2

(χ2
5ϑ + χ5χ6)

)

. (3.41)

Employing these approximations η0 can be rewritten as

η0 ≈ ha + hb + hc, (3.42)

where

ha(ϑ) = −eαϑ={ū1(ϑ)} cos(βϑ),

hb(ϑ) = eαϑ<{ū1(ϑ)} sin(βϑ),

hc(ϑ) = eαϑ ((={ū1(0)} + <{ū2(0) − ū2(ϑ)}) cos(βϑ)

+(={ū2(0) − ū2(ϑ)} − <{ū1(0)}) sin(βϑ)) .



































(3.43)
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The contribution of each of these components to solution (3.42) is portrayed in

Figure 3.7. It is clear that ha is the dominant term and that this term alone is a

close approximation to (3.42). However, for improved accuracy under parameter

perturbation, hb will be retained in the subsequent analysis. This leads to the

reduced η0 solution

η0(ϑ) ≈ eαϑ (−={ū1(ϑ)} cos(βϑ) + <{ū1(ϑ)} sin(βϑ)) . (3.44)
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Figure 3.7: Solution (3.42) (short dashes) compared with the inner components of the solution,

ha (dotted line), hb (full line) and hc (long dashes), given by definitions (3.43). The chirp

signal parameters are given in Table 3.2 and the physical parameter values in Table 3.1. Λ

has been set to 1 to give a Herring-type equation.

Consider the exponent from definition (3.32)

iχ̆4 + (χ̆5ϑ + χ̆6)
2.

Using definitions (3.22) and (3.26) this can be rewritten in terms of real and
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imaginary parts as

iχ̆4 + χ̆2
5ϑ

2 + 2χ̆5χ̆6ϑ + χ̆2
6

= i

(

χ̆3 −
χ̆2

2

4χ̆1

)

+ iχ̆1ϑ
2 + 2χ̆5

iχ̆2

2χ̆5
ϑ − χ̆2

2

4χ̆2
5

= i

(

χ̆3 −
χ̆2

2

4χ̆1

)

+ iχ̆1ϑ
2 + iχ̆2ϑ +

iχ̆2
2

4χ̆1

= i
(

χ̆1ϑ
2 + χ̆2ϑ + χ̆3

)

= i

((

−2πc̄ +
i

2b̄2

)

ϑ2 +

(

β − 2πd̄ + i

(

b̄2α − ā

b̄2

))

ϑ +
iā2

2b̄2

)

=
−ϑ2

2b̄2
− αϑ +

2āϑ

2b̄2
− ā

2b̄2
+ i
(

−2πc̄ϑ2 +
(

β − 2πd̄
)

ϑ
)

= −αϑ − (ϑ − ā)2

2b̄2
+ i
(

βϑ − 2πϑ(c̄ϑ + d̄)
)

= z̆1 + iz̆2,

where

z̆1(ϑ) = −αϑ − (ϑ − ā)2

2b̄2
and z̆2(ϑ) =

(

βϑ − 2πϑ(c̄ϑ + d̄)
)

. (3.45)

Likewise

χ̆2
5ϑ + χ̆5χ̆6

= iχ̆1ϑ +
i

2
χ̆2

=
−α

2
− (ϑ − ā)

2b̄2
+

i

2

(

β − 2π(2c̄ϑ + d̄)
)

=
1

2
(z̆1 + iz̆2

′) ,

and the denominator from (3.40) can thus be expressed in its real and imaginary

parts as

1

(χ̆2
5ϑ + χ̆5χ̆6)

=
2

(z̆′1 + iz̆2
′)

=
2 (z̆′1 − iz̆2

′)
(

z̆′1
2
+ z̆′2

2
)

=
2

z̆3
(z̆′1 − iz̆2

′) ,
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where

z̆3(ϑ) = z̆′1
2
+ z̆′2

2
. (3.46)

Reiterating the above steps with definitions (3.22) and (3.28) it can be shown

that

iχ4 + (χ5ϑ + χ6)
2

= −αϑ − (ϑ − ā)2

2b̄2
+ i
(

βϑ + 2πϑ(c̄ϑ + d̄)
)

= z̆1 + iz2,

where

z2(ϑ) =
(

βϑ + 2πϑ(c̄ϑ + d̄)
)

, (3.47)

and

1

(χ2
5ϑ + χ5χ6)

=
2

z3
(z̆′1 − iz′2) ,

where

z3(ϑ) = z̆′1
2
+ z′2

2
. (3.48)

To simplify calculations

z0 =
1

2β

(

1 +
C8

b̄2
(ϑ − ā)

)

is inserted into equation (3.40) along with (3.45), (3.46), (3.47) and (3.48) to
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give

ū1(ϑ) = z0

(

1

z̆3
ez̆1+iz̆2 (z̆′1 − iz̆2

′) +
1

z3
ez̆1+iz2 (z̆′1 − iz′2)

)

= z0

(

ez̆1

z̆3
(cos(z̆2) + i sin(z̆2)) (z̆′1 − iz̆2

′)

+
ez̆1

z3
(cos(z2) + i sin(z2)) (z̆′1 − iz′2)

)

= z0

(

ez̆1

z̆3
(z̆′1 cos(z̆2) + z̆2

′ sin(z̆2)) +
ez̆1

z3
(z̆′1 cos(z2) + z2

′ sin(z2))

+i

(

ez̆1

z̆3
(z̆′1 sin(z̆2) − z̆2

′ cos(z̆2))

+
ez̆1

z3

(z̆′1 sin(z2) − z2
′ cos(z2))

))

.

(3.49)

This can now be substituted into equation (3.44) to approximate η0 further by

η0(ϑ) ≈ eαϑz0

(

−
(

ez̆1

z3

(z̆′1 sin(z2) − z2
′ cos(z2))

+
ez̆1

z̆3
(z̆′1 sin(z̆2) − z̆2

′ cos(z̆2))

)

cos(βϑ)

+

(

ez̆1

z3

(z̆′1 cos(z2) + z2
′ sin(z2))

+
ez̆1

z̆3
(z̆′1 cos(z̆2) + z̆2

′ sin(z̆2))

)

sin(βϑ)

)
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= eαϑ+z̆1z0

(

−
(

1

z3
(z̆′1 sin(z2) cos(βϑ) − z2

′ cos(z2) cos(βϑ))

+
1

z̆3

(z̆′1 sin(z̆2) cos(βϑ) − z̆2
′ cos(z̆2) cos(βϑ))

)

+

(

1

z3
(z̆′1 cos(z2) sin(βϑ) + z2

′ sin(z2) sin(βϑ))

+
1

z̆3
(z̆′1 cos(z̆2) sin(βϑ) + z̆2

′ sin(z̆2) sin(βϑ))

))

= eαϑ+z̆1z0

(

z̆′1
z3

(cos(z2) sin(βϑ) − sin(z2) cos(βϑ))

+
z2

′

z3
(cos(z2) cos(βϑ) + sin(z2) sin(βϑ))

+
z̆′1
z̆3

(cos(z̆2) sin(βϑ) − sin(z̆2) cos(βϑ))

+
z̆2

′

z̆3

(cos(z̆2) cos(βϑ) + sin(z̆2) sin(βϑ))

)

= eαϑ+z̆1z0

(

z̆′1
z3

sin(βϑ − z2) +
z2

′

z3
cos(βϑ − z̆2)

+
z̆′1
z̆3

sin(βϑ − z̆2) +
z̆2

′

z̆3
cos(βϑ − z̆2)

)

= e−
(ϑ−ā)2

2b̄2 z0

(

− z̆′1
z3

sin(2πϑ(c̄ϑ + d̄)) +
z2

′

z3
cos(2πϑ(c̄ϑ + d̄))

+
z̆′1
z̆3

sin(2πϑ(c̄ϑ + d̄)) +
z̆2

′

z̆3
cos(2πϑ(c̄ϑ + d̄))

)

= e−(ϑ−ā)2/2b̄2z0

((

− z̆′1
z3

+
z̆′1
z̆3

)

sin(2πϑ(c̄ϑ + d̄))

+

(

z2
′

z3

+
z̆2

′

z̆3

)

cos(2πϑ(c̄ϑ + d̄))

)

(3.50)

which reduces to

η̄0(ϑ) = e−(ϑ−ā)2/2b̄2
(

y1 sin(2πϑ(c̄ϑ + d̄)) + y2 cos(2πϑ(c̄ϑ + d̄))
)

, (3.51)

where

y1 = z0

(

− z̆′1
z3

+
z̆′1
z̆3

)

and y2 = z0

(

z2
′

z3

+
z̆′2
z̆3

)

To obtain a more reduced approximation to η0, solution (3.51) can be expressed

107



as

η̄0(ϑ) = hd + he + hf ,

where

hd(ϑ) = e−(ϑ−ā)2/2b̄2 z0(ϑ)z̆′1(ϑ)

z̆3(ϑ)
sin(2πϑ(c̄ϑ + d̄)),

he(ϑ) = e−(ϑ−ā)2/2b̄2 z0(ϑ)z̆′2(ϑ)

z̆3(ϑ)
cos(2πϑ(c̄ϑ + d̄)),

hf(ϑ) = e−(ϑ−ā)2/2b̄2
(

−z0(ϑ)z̆′1(ϑ)

z3(ϑ)
sin(2πϑ(c̄ϑ + d̄))

+
z0(ϑ)z′2(ϑ)

z3(ϑ)
cos(2πϑ(c̄ϑ + d̄))

)

.






















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




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(3.52)

Figure 3.8 depicts the contribution that each term in definition (3.52) makes to
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Figure 3.8: Solution (3.51) (short dashes) compared with the inner components of the solution,

hd (dotted line), he (full line) and hf (long dashes), given by definitions (3.52). The chirp

signal parameters are given in Table 3.2 and the physical parameter values in Table 3.1. Λ

has been set to 1 to give a Herring-type equation.

solution (3.51). The function hd is clearly the governing component and he is

preserved for improved accuracy. The coefficients of sine and cosine in hd and

he are approximated by their leading order term in a Taylor series expansion
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around ϑ = ā. That is,

z0(ā)

(

z̆′1(ā)

z̆3(ā)

)

=
−α

2β
(

α2 +
(

β − 2π(2āc̄ + d̄)
)2
) = ȳ1 (3.53)

and

z0(ā)

(

z̆′2(ā)

z̆3(ā)

)

=

(

β − 2π(2āc̄ + d̄
)

2β
(

α2 +
(

β − 2π(2āc̄ + d̄)
)2
) = ȳ2, (3.54)

which can be substituted into (3.51) to obtain the final approximate solution to

(3.14),

η̄0(ϑ) ≈ e−(ϑ−ā)2/2b̄2
(

ȳ1 sin(2πϑ(c̄ϑ + d̄)) + ȳ2 cos(2πϑ(c̄ϑ + d̄))
)

. (3.55)

Having the solution in this form with constant coefficients to the trigonometric

terms shows the explicit dependency of the first harmonic amplitude on the

system parameters. Figures 3.9 and 3.10 compare the numerical solution to the

differential equation (3.10) with the analytical solution (3.55) in the time and

frequency domains respectively. As a result of the approximations there are

minor differences in amplitude and spread between the two solutions in Figure

3.9. Importantly, both solutions have a similar amplitude of oscillation at the

resonant frequency.

3.3.2 Solving the O(ε2) equation to describe the second

harmonic component

Now consider the O(ε2) equation, (3.15), which is a linear ordinary differential

equation in η1. This has the same auxiliary equation as (3.14) and thus produces

the homogeneous solution

ηH
1 = A1η

H1
1 + B1η

H2
1

= A1e
αϑ cos(βϑ) + B1e

αϑ sin(βϑ), (3.56)
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Figure 3.9: The numerical solution of the differential equation (3.10) (full line), compared

with η0(t) as given by the analytical solution (3.55) (dotted line) in the non-dimensionalised

time-domain. The chirp signal parameters are given in Table 3.2 and the physical parameter

values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

for some constants A1 and B1. Once more the variation of parameters is used

to obtain the particular integral

ηP
1 = v3η

H1
1 + v4η

H2
1 , (3.57)

where

v3 =

∫ ϑ −ηH2
1 G1(ϑ

′)

W (ηH1
1 , ηH2

1 )
dϑ′

=
−1

β

∫ ϑ

e−αϑ′

sin(βϑ′)Ḡ1(ϑ
′) dϑ′ (3.58)

and

v4 =

∫ ϑ ηH1
1 G1(ϑ

′)

W (ηH1
1 , ηH2

1 )
dϑ′

=
1

β

∫ ϑ

e−αϑ′

cos(βϑ′)Ḡ1(ϑ
′) dϑ′. (3.59)
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Figure 3.10: The numerical solution of the differential equation (3.10) (full line), compared

with η0(t) as given by the analytical solution (3.55) (dotted line) in the non-dimensionalised

frequency-domain. This power spectrum was calculated by taking a fast Fourier transform

of the time-domain data in Figure 3.9. The chirp signal parameters are given in Table 3.2

and the physical parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type

equation.

Equation (3.14) states that

η0 (η0
′′ + C1η0

′ + C2η0) = η0G0,

= Gη0 − C8G
′η0,

which is equivalent to

η0
′′η0 = −C1η0

′η0 − C8G
′η0 − C2η

2
0 + Gη0. (3.60)

Similarly, equation (3.14) states that

η0
′ (η0

′′ + C1η0
′ + C2η0) = η0

′G0

= Gη0
′ − C8G

′η0
′,
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which is equivalent to

η0
′′η0

′ = −C1η0
′2 − C8G

′η0
′ − C2η0

′η0 + Gη0
′. (3.61)

Using (3.60) and (3.61) equation (3.16) can be expressed as

G1 = −C3

(

−C1η0
′2 − C8G

′η0
′ − C2η0

′η0 + Gη0
′)− C4 (−C1η0

′η0 − C8G
′η0

−C2η
2
0 + Gη0

)

− C5Gη0
′ − C6η0

′2 − C7η0
′η0 − C8G

′η0 − C9η
2
0

= (C1C3 − C6)η0
′2 + (C3C2 + C4C1 − C7)η0

′η0

+(−C3 − C5)Gη0
′ + C3C8G

′η0
′ + (C2C4 − C9)η

2
0

+(C4C8 − C8)G
′η0 − C4Gη0

= hg + hh + hi,

where

hg(ϑ) = (C1C3 − C6)η0
′2,

hh(ϑ) = (C2C4 − C9)η
2
0,

hi(ϑ) = (C3C2 + C4C1 − C7)η0
′η0 + C3C8G

′η0
′ − C4Gη0

+(−C3 − C5)Gη0
′ + (C4C8 − C8)G

′η0.
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
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
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


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(3.62)

In Figure 3.11 each of the above terms is plotted and it is clear that the hi term

is negligible in comparison to hg and hh. The forcing term G1 can therefore be

approximated by

Ḡ1 = (C1C3 − C6)η̄
′2
0 + (C2C4 − C9)η̄

2
0. (3.63)

Approximation (3.63) includes η̄2
0 and η̄′2

0 terms which, from solution (3.51)

will produce terms involving y2
1, y2

2 and y1y2. For improved accuracy the com-

plete yi terms should therefore be used in place of the reduced ȳi terms and

112



20 40 60 80 100

-4

-2

2

4

PSfrag replacements

ϑ

Figure 3.11: The amplitudes of the components of G1, hg (dotted line), hh (full line) and hi

(dashed line), given by definitions (3.62). The chirp signal parameters are given in Table 3.2

and the physical parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type

equation.

solution (3.51) should thus be used instead of (3.55) for the evaluation of (3.63).

Squaring equation (3.51) leads to

η̄2
0 = e−(ϑ−ā)2/b̄2

(

y2
1 sin2(2πϑ(c̄ϑ + d̄))

+y1y2 sin(2πϑ(c̄ϑ + d̄)) cos(2πϑ(c̄ϑ + d̄)) + y2
2 cos2(2πϑ(c̄ϑ + d̄))

)

,

and differentiating (3.51) with respect to ϑ gives

η̄′
0(ϑ) =

−(ϑ − ā)

b̄2
e−(ϑ−ā)2/2b̄2

(

y1 sin(2πϑ(c̄ϑ + d̄)) + y2 cos(2πϑ(c̄ϑ + d̄))
)

+e−(ϑ−ā)2/2b̄2
(

y1
′ sin(2πϑ(c̄ϑ + d̄)) + y2

′ cos(2πϑ(c̄ϑ + d̄))
)

+2π(2c̄ϑ + d̄)e−(ϑ−ā)2/2b̄2
(

y1 cos(2πϑ(c̄ϑ + d̄))

−y2 sin(2πϑ(c̄ϑ + d̄))
)

= hj + hk, (3.64)
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where

hj(ϑ) = 2π(2c̄ϑ + d̄)e−(ϑ−ā)2/2b̄2
(

y1 cos(2πϑ(c̄ϑ + d̄))

−y2 sin(2πϑ(c̄ϑ + d̄))
)

,

hk(ϑ) =
−(ϑ − ā)

b̄2
e−(ϑ−ā)2/2b̄2

(

y1 sin(2πϑ(c̄ϑ + d̄))

+y2 cos(2πϑ(c̄ϑ + d̄))
)

+e−(ϑ−ā)2/2b̄2
(

y1
′ sin(2πϑ(c̄ϑ + d̄))

+y2
′ cos(2πϑ(c̄ϑ + d̄))

)

.
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(3.65)

The contribution each of these components makes towards η̄ ′
0 is portrayed in

Figure 3.12. hj is clearly a good approximation to η̄′
0 and the hk term can be

neglected. The derivative η̄′
0 is thus given by

η̄′
0(ϑ) ≈ 2π(2c̄ϑ + d̄)e−(ϑ−ā)2/2b̄2

(

y1 cos(2πϑ(c̄ϑ + d̄)) − y2 sin(2πϑ(c̄ϑ + d̄))
)

,

(3.66)

and so

(η̄′
0)

2 ≈ e−(ϑ−ā)2/b̄2
(

4π2(2c̄ϑ + d̄)2y2
1 cos2(2πϑ(c̄ϑ + d̄))

−4π2(2c̄ϑ + d̄)2y1y2 cos(2πϑ(c̄ϑ + d̄)) sin(2πϑ(c̄ϑ + d̄))

+4π2(2c̄ϑ + d̄)2y2
2 sin2(2πϑ(c̄ϑ + d̄))

)

.
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Figure 3.12: The derivative (3.64) (dashed line) compared with its components, hj (dotted

line) and hk (full line), given by definitions (3.65). The chirp signal parameters are given

in Table 3.2 and the physical parameter values in Table 3.1. Λ has been set to 1 to give a

Herring-type equation.

Equation (3.63) can therefore be written as

Ḡ1 ≈ (C1C3 − C6)e
−(ϑ−ā)2/b̄2

(

4π2(2c̄ϑ + d̄)2y2
1 cos2(2πϑ(c̄ϑ + d̄))

−8π2(2c̄ϑ + d̄)2y1y2 cos(2πϑ(c̄ϑ + d̄)) sin(2πϑ(c̄ϑ + d̄))

+4π2(2c̄ϑ + d̄)2y2
2 sin2(2πϑ(c̄ϑ + d̄))

)

+(C2C4 − C9)e
−(ϑ−ā)2/b̄2

(

y2
1 sin2(2πϑ(c̄ϑ + d̄))

+2y1y2 sin(2πϑ(c̄ϑ + d̄)) cos(2πϑ(c̄ϑ + d̄))

+y2
2 cos2(2πϑ(c̄ϑ + d̄))

)
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= e−(ϑ−ā)2/b̄2
((

4π2(C1C3 − C6)(2c̄ϑ + d̄)2y2
1

+(C2C4 − C9)y
2
2

)

cos2(2πϑ(c̄ϑ + d̄))

+
(

−8π2(C1C3 − C6)(2c̄ϑ + d̄)2y1y2

+2(C2C4 − C9)y1y2) sin(2πϑ(c̄ϑ + d̄)) cos(2πϑ(c̄ϑ + d̄))
)

+
(

4π2(C1C3 − C6)(2c̄ϑ + d̄)2y2
2

+(C2C4 − C9)y
2
1

)

sin2(2πϑ(c̄ϑ + d̄))

=
1

2
e−(ϑ−ā)2/b̄2

((

4π2(C1C3 − C6)(2c̄ϑ + d̄)2y2
1

+(C2C4 − C9)y
2
2

)

(1 + cos(4πϑ(c̄ϑ + d̄)))

+
(

−8π2(C1C3 − C6)(2c̄ϑ + d̄)2y1y2

+2(C2C4 − C9)y1y2) sin(4πϑ(c̄ϑ + d̄))
)

+
(

4π2(C1C3 − C6)(2c̄ϑ + d̄)2y2
2

+(C2C4 − C9)y
2
1

)

(1 − cos(4πϑ(c̄ϑ + d̄)))

=
1

2
e−(ϑ−ā)2/b̄2

(

4π2(C1C3 − C6)(2c̄ϑ + d̄)2(y2
1 + y2

2)

+(C2C4 − C9)(y
2
1 + y2

2)

+
(

4π2(C1C3 − C6)(2c̄ϑ + d̄)2(y2
1 − y2

2)

−(C2C4 − C9)(y
2
1 − y2

2)
)

cos(4πϑ(c̄ϑ + d̄))

+
(

−8π2(C1C3 − C6)(2c̄ϑ + d̄)2y1y2

+2(C2C4 − C9)y1y2) sin(4πϑ(c̄ϑ + d̄))
)

=
1

2
e−(ϑ−ā)2/b̄2

(

4π2(C1C3 − C6)(2c̄ϑ + d̄)2y3 + (C2C4 − C9)y3

+
(

4π2(C1C3 − C6)(2c̄ϑ + d̄)2y4

−(C2C4 − C9)y4) cos(4πϑ(c̄ϑ + d̄))

+
(

−8π2(C1C3 − C6)(2c̄ϑ + d̄)2y5

+2(C2C4 − C9)y5) sin(4πϑ(c̄ϑ + d̄))
)
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where

y3 = y2
1 + y2

2

= z2
0

(

− z̆′1
z3

+
z̆′1
z̆3

)2

+ z2
0

(

z2
′

z3
+

z̆′2
z̆3

)2

= z2
0

(

(z̆′1)
2

(

1

z2
3

− 2

z̆3z3
+

1

z̆2
3

)

+

(

(z′2)
2

z2
3

+
2z′2z̆

′
2

z3z̆3
+

(z̆′2)
2

z̆2
3

))

≈ z2
0

(

(z̆′1)
2

z̆2
3

+
2z′2z̆

′
2

z3z̆3
+

(z̆′2)
2

z̆2
3

)

≈ z0(ā)2

(

(z̆′1(ā))2

z̆3(ā)2
+

2z′2(ā)z̆′2(ā)

z3(ā)z̆3(ā)
+

(z̆′2(ā))2

z̆3(ā)2

)

,

y4 = y2
1 − y2

2

= z2
0

(

− z̆′1
z3

+
z̆′1
z̆3

)2

− z2
0

(

z2
′

z3
+

z̆′2
z̆3

)2

= z2
0

(

(z̆′1)
2

(

1

z2
3

− 2

z̆3z3
+

1

z̆2
3

)

−
(

(z′2)
2

z2
3

+
2z′2z̆

′
2

z3z̆3
+

(z̆′2)
2

z̆2
3

))

≈ z2
0

(

(z̆′1)
2

z̆2
3

− 2z′2z̆
′
2

z3z̆3
+

(z̆′2)
2

z̆2
3

)

≈ z0(ā)2

(

(z̆′1(ā))2

z̆3(ā)2
− 2z′2(ā)z̆′2(ā)

z3(ā)z̆3(ā)
− (z̆′2(ā))2

z̆3(ā)2

)

and

y5 = y1y2

= z0

(

− z̆′1
z3

+
z̆′1
z̆3

)

z0

(

z2
′

z3

+
z̆′2
z̆3

)

= z2
0

(

− z̆′1z
′
2

z2
3

− z̆′1z̆
′
2

z3z̆3
+

z̆′1z
′
2

z3z̆3
+

z̆′1z̆
′
2

z̆2
3

)

≈ z2
0

(

z̆′1z
′
2

z3z̆3
+

z̆′1z̆
′
2

z̆2
3

)

≈ z0(ā)2

(

z̆′1(ā)z′2(ā)

z3(ā)z̆3(ā)
+

z̆′1(ā)z̆′2(ā)

z̆3(ā)2

)

.

By reducing the yi terms in this way and then taking Taylor series approxi-

mations at ϑ = ā, the time-dependence is completely removed and thus Ḡ1 is
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significantly more integrable and can be written as

Ḡ1 ≈ e−(ϑ−ā)2/b̄2
(

δ1 + δ2 cos(4πϑ(c̄ϑ + d̄)) + δ3 sin(4πϑ(c̄ϑ + d̄))
)

,

(3.67)

where

δ1 =
1

2

((

4π2(C1C3 − C6)(2āc̄ + d̄)2 + (C2C4 − C9)
)

ȳ3

)

,

δ2 =
1

2

((

4π2(C1C3 − C6)(2āc̄ + d̄)2 − (C2C4 − C9)
)

ȳ4

)

and

δ3 =
1

2

((

−8π2(C1C3 − C6)(2āc̄ + d̄)2 + 2(C2C4 − C9)
)

ȳ5

)

.

In Figures 3.13 and 3.14 the numerical solution to the differential equation (3.15)

with G1 given by definition (3.16), and η0 given by the numerical solution to

the differential equation (3.14), is compared with the similar solution when G1

is given by definition (3.67). The form of G1 given in (3.67) produces a slightly

different response in the time-domain as shown in Figure 3.13. However, since

the above Taylor approximations have been taken at ϑ = ā, the solutions are

similar here. As previously described, this coincides with the insonifying signal

attaining the UCA’s resonant frequency, which gives rise to the second harmonic

oscillations. Thus the solutions are similar here, and Figure 3.14 confirms that

the simplified form of (3.67) is efficacious in retaining the second harmonic fre-

quency response with a similar amplitude.
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Figure 3.13: The numerical solution of the differential equation (3.15) with G1 given by (3.16)

(full line), compared with the numerical solution of (3.15) with G1 approximated by equation

(3.67) (dotted line). The chirp signal parameters are given in Table 3.2 and the physical

parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

By employing (3.67) Iv3 , the integrand in (3.58), becomes

Iv3 ≈ − 1

β
e−αϑ sin(βϑ)e−(ϑ−ā)2/b̄2

(

δ1 + δ2 cos(4πϑ(c̄ϑ + d̄))

+δ3 sin(4πϑ(c̄ϑ + d̄))
)

= − 1

β
e−αϑ−(ϑ−ā)2/b̄2

(

δ1 sin(βϑ) + δ2 sin(βϑ) cos(4πϑ(c̄ϑ + d̄))

+δ3 sin(βϑ) sin(4πϑ(c̄ϑ + d̄))
)

= − 1

2β
e−αϑ−(ϑ−ā)2/b̄2 (2δ1 sin(βϑ)

+δ2(sin(βϑ − 4πϑ(c̄ϑ + d̄)) + sin(βϑ + 4πϑ(c̄ϑ + d̄)))

+δ3(cos(βϑ − 4πϑ(c̄ϑ + d̄)) − cos(βϑ + 4πϑ(c̄ϑ + d̄))
)

= − 1

2β
e−αϑ−(ϑ−ā)2/b̄2

(

2δ1=
{

eiβϑ
}

+δ2

(

=
{

ei(βϑ−4πϑ(c̄ϑ+d̄)) + ei(βϑ+4πϑ(c̄ϑ+d̄))
})

+δ3

(

<
{

ei(βϑ−4πϑ(c̄ϑ+d̄)) − ei(βϑ+4πϑ(c̄ϑ+d̄))
}))
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Figure 3.14: The numerical solution of the differential equation (3.15) with G1 given by

(3.16) (full line), compared with the numerical solution of (3.15) with G1 approximated by

equation (3.67) (dotted line), in the scaled frequency-domain, highlighting the second harmonic

frequency. This power spectrum was calculated by taking a fast Fourier transform of the time-

domain data in Figure 3.13. The chirp signal parameters are given in Table 3.2 and the physical

parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

= − 1

2β

(

2δ1=
{

e−αϑ−(ϑ−ā)2/b̄2+iβϑ
}

+δ2

(

=
{

e−αϑ−(ϑ−ā)2/b̄2+i(βϑ−4πϑ(c̄ϑ+d̄))

+e−αϑ−(ϑ−ā)2/b̄2+i(βϑ+4πϑ(c̄ϑ+d̄))
})

+δ3

(

<
{

e−αϑ−(ϑ−ā)2/b̄2+i(βϑ−4πϑ(c̄ϑ+d̄))

−e−αϑ−(ϑ−ā)2/b̄2+i(βϑ+4πϑ(c̄ϑ+d̄))
}))

. (3.68)
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To proceed with the integration the first exponent in (3.68) is written as

−αϑ − (ϑ − ā)2

b̄2
+ iβϑ

= −ϑ2

b̄2
+

(

−α +
2ā

b̄2
+ iβ

)

ϑ − ā2

b̄2

= − 1

b̄2

(

ϑ − b̄2

2

(

−α +
2ā

b̄2
+ iβ

))2

+
b̄2

4

(

−α +
2ā

b̄2
+ iβ

)2

− ā2

b̄2

= λ1 −
1

b̄2
(ϑ + λ0)

2, (3.69)

where

λ0 =
b̄2

2

(

α − 2ā

b̄2
− iβ

)

=
1

2

(

b̄2α − 2ā − ib̄2β
)

λ1 =
b̄2

4

(

−α +
2ā

b̄2
+ iβ

)2

− ā2

b̄2

=
b̄2

4

(

α2 +
4ā2

b̄4
− β2 − i2αβ − 4āα

b̄2
+ i

4āβ

b̄2

)

− ā2

b̄2

=
1

4

(

b̄2(α2 − β2) − 4āα + i(4āβ − 2b̄2αβ)
)

(3.70)

The second exponent from (3.68) can be rewritten in a similar way as follows:

−αϑ − (ϑ − ā)2

b̄2
+ i(βϑ − 4πϑ(c̄ϑ + d̄))

=

(

− 1

b̄2
− i4πc̄

)

ϑ2 +

(

−α +
2ā

b̄2
+ i(β − 4πd̄)

)

ϑ − ā2

b̄2

=

(

− 1

b̄2
− i4πc̄

)

(

ϑ +

(

−α + 2ā
b̄2

+ i(β − 4πd̄)
)

2
(

− 1
b̄2
− i4πc̄

)

)2

−
(

−α + 2ā
b̄2

+ i(β − 4πd̄)
)2

4
(

− 1
b̄2
− i4πc̄

) − ā2

b̄2

= λ̆4 − λ̆2(ϑ + λ̆3)
2, (3.71)
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where

λ̆2 =

(

1

b̄2
+ i4πc̄

)

λ̆3 =

(

−α + 2ā
b̄2

+ i(β − 4πd̄)
)

2
(

− 1
b̄2
− i4πc̄

)

=

(

−α + 2ā
b̄2

+ i(β − 4πd̄)
) (

− 1
b̄2

+ i4πc̄
)

2
(

1
b̄4

+ 16π2c̄2
)

=

(

− 1
b̄2

(

−α + 2ā
b̄2

)

− 4πc̄(β − 4πd̄)
)

2
(

1
b̄4

+ 16π2c̄2
) +

i
(

4πc̄
(

−α + 2ā
b̄2

)

− 1
b̄2

(β − 4πd̄)
)

2
(

1
b̄4

+ 16π2c̄2
)

=

(

−
(

2ā − b̄2α
)

− 4πb̄4c̄(β − 4πd̄)
)

2
(

1 + 16π2b̄4c̄2
)

+
i
(

4πb̄2c̄
(

2ā − b̄2α
)

− b̄2(β − 4πd̄)
)

2
(

1 + 16π2b̄4c̄2
)

λ̆4 = − ā2

b̄2
−
(

−α + 2ā
b̄2

+ i(β − 4πd̄)
)2

4
(

− 1
b̄2
− i4πc̄

)

= − ā2

b̄2
−
(

(

−α + 2ā
b̄2

)2 − (β − 4πd̄)2

4
(

1
b̄4

+ 16π2c̄2
)

+i

(

2
(

−α + 2ā
b̄2

)

(β − 4πd̄)

4
(

1
b̄4

+ 16π2c̄2
)

))

(

− 1

b̄2
+ i4πc̄

)

= − ā2

b̄2
+

1
b̄2

(

(

−α + 2ā
b̄2

)2 − (β − 4πd̄)2
)

4
(

1
b̄4

+ 16π2c̄2
)

+
8πc̄

(

−α + 2ā
b̄2

)

(β − 4πd̄)

4
(

1
b̄4

+ 16π2c̄2
)

+i





−4πc̄
(

(

−α + 2ā
b̄2

)2 − (β − 4πd̄)2
)

4
(

1
b̄4

+ 16π2c̄2
)

+
2
b̄2

(

−α + 2ā
b̄2

)

(β − 4πd̄)

4
(

1
b̄4

+ 16π2c̄2
)

)
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= − ā2

b̄2
+

(

(

2ā − b̄2α
)2 − b̄4(β − 4πd̄)2

)

4b̄2
(

1 + 16π2b̄4c̄2
)

+
8πb̄4c̄

(

2ā − b̄2α
)

(β − 4πd̄)

4b̄2
(

1 + 16π2b̄4c̄2
)

+i





−4πb̄2c̄
(

(

2ā − b̄2α
)2 − b̄4(β − 4πd̄)2

)

4b̄2
(

1 + 16π2b̄4c̄2
)

+
2b̄2
(

2ā − b̄2α
)

(β − 4πd̄)

4b̄2
(

1 + 16π2b̄4c̄2
)

)

.

(3.72)

Likewise the remaining exponent from (3.68) can be expressed as

−αϑ − (ϑ − ā)2

b̄2
+ i(βϑ + 4πϑ(c̄ϑ + d̄))

= λ4 − λ2(ϑ + λ3)
2, (3.73)

where

λ2 =

(

1

b̄2
− i4πc̄

)

λ3 =

(

−
(

2ā − b̄2α
)

+ 4πb̄4c̄(β + 4πd̄)
)

2
(

1 + 16π2b̄4c̄2
)

− i
(

4πb̄2c̄
(

2ā − b̄2α
)

+ b̄2(β + 4πd̄)
)

2
(

1 + 16π2b̄4c̄2
)

λ4 = − ā2

b̄2
+

(

(

2ā − b̄2α
)2 − b̄4(β + 4πd̄)2

)

4b̄2
(

1 + 16π2b̄4c̄2
)

−8πb̄4c̄
(

2ā − b̄2α
)

(β + 4πd̄)

4b̄2
(

1 + 16π2b̄4c̄2
)

+i





4πb̄2c̄
(

(

2ā − b̄2α
)2 − b̄4(β + 4πd̄)2

)

4b̄2
(

1 + 16π2b̄4c̄2
)

+
2b̄2
(

2ā − b̄2α
)

(β + 4πd̄)

4b̄2
(

1 + 16π2b̄4c̄2
)

)

.

(3.74)
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Inserting (3.69), (3.71) and (3.73) into (3.68) leads to

Iv3 ≈ − 1

2β

(

2δ1=
{

eλ1− 1
b̄2

(ϑ+λ0)2
}

+ δ2=
{

eλ̆4−λ̆2(ϑ+λ̆3)2 + eλ4−λ2(ϑ+λ3)2
}

+δ3<
{

eλ̆4−λ̆2(ϑ+λ̆3)2 − eλ4−λ2(ϑ+λ3)2
})

= − 1

2β

(

2δ1=
{

eλ1e−
1
b̄2

(ϑ+λ0)2
}

+ δ2=
{

eλ̆4e−λ̆2(ϑ+λ̆3)2 + eλ4e−λ2(ϑ+λ3)2
}

+δ3<
{

eλ̆4e−λ̆2(ϑ+λ̆3)2 − eλ4e−λ2(ϑ+λ3)2
})

,

and applying (3.23) this integrates to give

v3(ϑ) ≈ 1

2β

(

=
{

i
√

πb̄δ1e
λ1erfi

(

i

b̄
(ϑ + λ0)

)

+i
√

πδ2

(

eλ̆4

2
√

λ̆2

erfi

(

i

√

λ̆2(ϑ + λ̆3)

)

+
eλ4

2
√

λ2

erfi
(

i
√

λ2(ϑ + λ4)
)

)}

+<
{

i
√

πδ3

(

eλ̆4

2
√

λ̆2

erfi

(

i

√

λ̆2(ϑ + λ̆3)

)

− eλ4

2
√

λ2

erfi
(

i
√

λ2(ϑ + λ4)
)

)})

. (3.75)

Recall that the solution to (3.15) must describe the behaviour of the second

harmonic frequency component of the solution to (3.10). Equations (3.56) and

(3.57) imply that v3 and v4 must contribute towards this component; however, in

the above form of v3 it is not obvious how this is achieved. By utilising the first

term approximation to erfi(z) from (3.39), definition (3.75) can be approximated
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by

v̄3(ϑ) =
1

2β

(

=
{

b̄2δ1e
λ1e(

i
b̄
(ϑ+λ0))

2

(ϑ + λ0)

+δ2







eλ̆4e

„

i
√

λ̆2(ϑ+λ̆3)

«2

2λ̆2(ϑ + λ̆3)
+

eλ4e(i
√

λ2(ϑ+λ2))
2

2λ2(ϑ + λ2)

















+<











δ3







eλ̆4e

„

i
√

λ̆2(ϑ+λ̆3)

«2

2λ̆2(ϑ + λ̆3)
− eλ4e(i

√
λ2(ϑ+λ2))

2

2λ2(ϑ + λ2)























=
1

4β

(

=
{

2b̄2δ1e
λ1− 1

b̄2
(ϑ+λ0)2

(ϑ + λ0)
+ δ2

(

eλ̆4−λ̆2(ϑ+λ̆3)2

λ̆2(ϑ + λ̆3)
+

eλ4−λ2(ϑ+λ2)2

λ2(ϑ + λ2)

)}

+<
{

δ3

(

eλ̆4−λ̆2(ϑ+λ̆3)2

λ̆2(ϑ + λ̆3)
− eλ4−λ2(ϑ+λ2)2

λ2(ϑ + λ2)

)})

. (3.76)

Consider the term

2b̄2eλ1−(ϑ+λ0)2/b̄2

(ϑ + λ0)
.

Using definitions (3.69) and (3.70) this is

2b̄2eλ1−(ϑ+λ0)2/b̄2

(ϑ + λ0)

=
2b̄2e−αϑ−(ϑ−ā)2/b̄2+iβϑ

(ϑ + λ0)

=
2b̄2e−αϑ−(ϑ−ā)2/b̄2(cos(βϑ) + i sin(βϑ))

(ϑ +
(

b̄2α − 2ā − ib̄2β
)

/2)

=
4b̄2e−αϑ−(ϑ−ā)2/b̄2(cos(βϑ) + i sin(βϑ))

(

2(ϑ − ā) + b̄2α − ib̄2β
)

=
4b̄2e−αϑ−(ϑ−ā)2/b̄2(cos(βϑ) + i sin(βϑ))

(

2(ϑ − ā) + b̄2α + iβb̄2
)

(

2(ϑ − ā) + b̄2α
)2

+ b̄4β2

(3.77)
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= 4b̄2e−αϑ−(ϑ−ā)2/b̄2

(

(cos(βϑ)(2(ϑ − ā) + b̄2α) − sin(βϑ)βb̄2)
(

2(ϑ − ā) + b̄2α
)2

+ b̄4β2

+i

(

cos(βϑ)βb̄2 + sin(βϑ)(2(ϑ − ā) + b̄2α))
(

2(ϑ − ā) + b̄2α
)2

+ b̄4β2

))

= 4b̄2e−αϑ−(ϑ−ā)2/b̄2
(

(cos(βϑ)(2(ϑ − ā) + b̄2α) − sin(βϑ)βb̄2)

4(ϑ − ā)2 + 4(ϑ − ā)b̄2α + b̄4α2 + b̄4β2

+i

(

cos(βϑ)βb̄2 + sin(βϑ)(2(ϑ − ā) + b̄2α))

4(ϑ − ā)2 + 4(ϑ − ā)b̄2α + b̄4α2 + b̄4β2

))

= 4e−αϑ−(ϑ−ā)2/b̄2
(

(cos(βϑ)(2(ϑ − ā) + b̄2α) − sin(βϑ)βb̄2)

4(ϑ − ā)2/b̄2 + 4(ϑ − ā)α + b̄2(α2 + β2)

+i

(

cos(βϑ)βb̄2 + sin(βϑ)(2(ϑ − ā) + b̄2α))

4(ϑ − ā)2/b̄2 + 4(ϑ − ā)α + b̄2(α2 + β2)

))

≈ 4e−αϑ−(ϑ−ā)2/b̄2
(

(α cos(āβ) − β sin(āβ))

(α2 + β2)

+i

(

β cos(āβ) + α sin(āβ))

(α2 + β2)

))

, (3.78)

where the last line is a consequence of taking a Taylor series approximation

around ϑ = ā. With definitions (3.71) and (3.72) used similarly,

eλ̆4−λ̆2(ϑ+λ̆3)2

λ̆2(ϑ + λ̆3)

=
e−αϑ−(ϑ−ā)2/b̄2+i(βϑ−4πt(c̄t+d̄))

λ̆2(ϑ + λ̆3)

and the denominator becomes

λ̆2(ϑ + λ̆3)

=

(

1

b̄2
+ i4πc̄

)






ϑ +

(

−
2ā
b̄2

−α

b̄2
− 4c̄π(β − 4d̄π)

)

2
(

16π2c̄2 + 1
b̄4

)

−
i
(

β−4d̄π
b̄2

− 4
(

2ā
b̄2

− α
)

c̄π
)

2
(

16π2c̄2 + 1
b̄4

)





126



=

(

1

b̄2
+ i4πc̄

)

(

ϑ +

(

−2ā + b̄2α − 4πb̄4c̄(β − 4πd̄)

2
(

16π2b̄4c̄2 + 1
)

)

−i

(

b̄2(β − 4πd̄) − 4πc̄
(

2āb̄2 − b̄4α
)

2
(

16π2b̄4c̄2 + 1
)

))

=
1

b̄2

(

ϑ +

(

−2ā + b̄2α − 4πb̄4c̄(β − 4πd̄)

2
(

16π2b̄4c̄2 + 1
)

))

+4πc̄

(

b̄2(β − 4πd̄) − 4πc̄
(

2āb̄2 − b̄4α
)

2
(

16π2b̄4c̄2 + 1
)

)

+i

(

4πc̄

(

ϑ +

(

−2ā + b̄2α − 4πb̄4c̄(β − 4πd̄)

2
(

16π2b̄4c̄2 + 1
)

))

− 1

b̄2

(

b̄2(β − 4πd̄) − 4πc̄
(

2āb̄2 − b̄4α
)

2
(

16π2b̄4c̄2 + 1
)

))

=

(

ϑ

b̄2
+

(

−2ā/b̄2 + α − 4πb̄2c̄(β − 4πd̄)

2
(

16π2b̄4c̄2 + 1
)

))

+

(

4πb̄2c̄(β − 4πd̄) − 16π2c̄2
(

2āb̄2 − b̄4α
)

2
(

16π2b̄4c̄2 + 1
)

)

+i

((

4πc̄ϑ +

(

−8πāc̄ + 4πb̄2c̄α − 16π2b̄4c̄2(β − 4πd̄)

2
(

16π2b̄4c̄2 + 1
)

))

−
(

(β − 4πd̄) − 4πc̄
(

2ā − b̄2α
)

2
(

16π2b̄4c̄2 + 1
)

))

=

(

(ϑ − ā)

b̄2
+

α

2

)

− i

2

(

β − 4π(2c̄ϑ + d̄)
)

;

thus

e−αϑ−(ϑ−ā)2/b̄2+i(βϑ−4πϑ(c̄ϑ+d̄))

λ̆2(ϑ + λ̆3)

=
e−αϑ−(ϑ−ā)2/b̄2(cos(βϑ − 4πϑ(c̄ϑ + d̄)) + i sin(βϑ − 4πϑ(c̄ϑ + d̄)))

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2

= e−αϑ−(ϑ−ā)2/b̄2(cos(βϑ − 4πϑ(c̄ϑ + d̄)) + i sin(βϑ − 4πϑ(c̄ϑ + d̄)))

×
((

(ϑ − ā)/b̄2 + α/2
)

+ i
(

β − 4π(2c̄ϑ + d̄)
)

/2
)

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2
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=
e−αϑ−(ϑ−ā)2/b̄2

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2

×
(((

(ϑ − ā)/b̄2 + α/2
)

cos(βϑ − 4πϑ(c̄ϑ + d̄))

−
(

β/2 − 2π(2c̄ϑ + d̄)
)

sin(βϑ − 4πϑ(c̄ϑ + d̄))
)

+i
((

(ϑ − ā)/b̄2 + α/2
)

sin(βϑ − 4πϑ(c̄ϑ + d̄))

+
(

β/2 − 2π(2c̄ϑ + d̄)
)

cos(βϑ − 4πϑ(c̄ϑ + d̄))
))

≈ e−αϑ−(ϑ−ā)2/b̄2

(α/2)2 +
(

β/2 − 2π(2c̄ā + d̄)
)2

×
((

α/2 cos(āβ − 4πā(āc̄ + d̄))

−
(

β/2 − 2π(2āc̄ + d̄)
)

sin(āβ − 4πā(āc̄ + d̄))
)

+i
(

α/2 sin(āβ − 4πā(āc̄ + d̄))

+
(

β/2 − 2π(2āc̄ + d̄)
)

cos(āβ − 4πā(āc̄ + d̄))
))

.

(3.79)

Applying (3.73) and (3.74) in the same way as above gives

λ2(ϑ + λ2)

=

(

(ϑ − ā)

b̄2
+

α

2

)

− i

2

(

β + 4π(2c̄ϑ + d̄)
)

which leads to

e−αϑ−(ϑ−ā)2/b̄2+i(βϑ+4πϑ(c̄ϑ+d̄))

λ2(ϑ + λ2)

=
e−αϑ−(ϑ−ā)2/b̄2

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2

×
(((

(ϑ − ā)/b̄2 + α/2
)

cos(βϑ + 4πϑ(c̄ϑ + d̄))

−
(

β/2 + 2π(2c̄ϑ + d̄)
)

sin(βϑ + 4πϑ(c̄ϑ + d̄))
)

+i
((

(ϑ − ā)/b̄2 + α/2
)

sin(βϑ + 4πϑ(c̄ϑ + d̄))

+
(

β/2 + 2π(2c̄ϑ + d̄)
)

cos(βϑ + 4πϑ(c̄ϑ + d̄))
))

.

(3.80)
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Combining (3.78), (3.79) and (3.80) allows (3.76) to be written as

v̄3(ϑ) ≈ 1

4β

(

δ14e
−αϑ−(ϑ−ā)2/b̄2

×
(

b̄2β cos(βϑ) + (2(ϑ − ā) + b̄2α) sin(βϑ))

4(ϑ − ā)2/b̄2 + 4(ϑ − ā)α + b̄2(α2 + β2)

)

+δ2

(

e−αϑ−(ϑ−ā)2/b̄2

×
(

(

(ϑ − ā)/b̄2 + α/2
)

sin(βϑ − 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2

+

(

β/2 − 2π(2c̄ϑ + d̄)
)

cos(βϑ − 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2

)

+e−αϑ−(ϑ−ā)2/b̄2

(

(

(ϑ − ā)/b̄2 + α/2
)

sin(βϑ + 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2

+

(

β/2 + 2π(2c̄ϑ + d̄)
)

cos(βϑ + 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2

))

+δ3

(

e−αϑ−(ϑ−ā)2/b̄2

×
(

(

(ϑ − ā)/b̄2 + α/2
)

cos(βϑ − 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2

−
(

β/2 − 2π(2c̄ϑ + d̄)
)

sin(βϑ − 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2

)

−e−αϑ−(ϑ−ā)2/b̄2

(

(

(ϑ − ā)/b̄2 + α/2
)

cos(βϑ + 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2

−
(

β/2 + 2π(2c̄ϑ + d̄)
)

sin(βϑ + 4πϑ(c̄ϑ + d̄))
(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2

)))

,

(3.81)
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and defining

%1 =
4b̄2βδ1

4β
(

4(ϑ − ā)2/b̄2 + 4(ϑ − ā)α + b̄2(α2 + β2)
)

≈ δ1

(α2 + β2)
,

%2 =
4(2(ϑ − ā) + b̄2α)δ1

4β
(

4(ϑ − ā)2/b̄2 + 4(ϑ − ā)α + b̄2(α2 + β2)
)

≈ αδ1

β(α2 + β2)
,

%3 =

(

(ϑ − ā)/b̄2 + α/2
)

δ2

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2
)

≈ αδ2

2β
(

α2 +
(

β − 4π(2āc̄ + d̄)
)2
) ,

%4 =

(

β/2 − 2π(2c̄ϑ + d̄)
)

δ2

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2
)

≈
(

β − 4π(2āc̄ + d̄)
)

δ2

2β
(

α2 +
(

β − 4π(2c̄ϑ + d̄)
)2
) ,

%5 =

(

(ϑ − ā)/b̄2 + α/2
)

δ2

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2
)

≈ αδ2

2β
(

α2 +
(

β + 4π(2āc̄ + d̄)
)2
) ,

%6 =

(

β/2 + 2π(2c̄ϑ + d̄)
)

δ2

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2
)

≈
(

β + 4π(2āc̄ + d̄)
)

δ2

2β
(

α2 +
(

β + 4π(2āc̄ + d̄)
)2
) ,

%7 =

(

(ϑ − ā)/b̄2 + α/2
)

δ3

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2
)

≈ αδ3

2β
(

α2 +
(

β − 4π(2āc̄ + d̄)
)2
)
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%8 =

(

β/2 − 2π(2c̄ϑ + d̄)
)

δ3

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 − 2π(2c̄ϑ + d̄)
)2
)

≈
(

β − 4π(2āc̄ + d̄)
)

δ3

2β
(

α2 +
(

β − 4π(2āc̄ + d̄)
)2
) ,

%9 =

(

(ϑ − ā)/b̄2 + α/2
)

δ3

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2
)

≈ αδ3

2β
(

α2 +
(

β + 4π(2āc̄ + d̄)
)2
)

and

%10 =

(

β/2 + 2π(2c̄ϑ + d̄)
)

δ3

4β
(

(

(ϑ − ā)/b̄2 + α/2
)2

+
(

β/2 + 2π(2c̄ϑ + d̄)
)2
)

≈
(

β + 4π(2āc̄ + d̄)
)

δ3

2β
(

α2 +
(

β + 4π(2āc̄ + d̄)
)2
) ,

equation (3.81) can be reduced to

v̄3(ϑ) ≈ e−αϑ−(ϑ−ā)2/b̄2 (%1 cos(βϑ) + %2 sin(βϑ)

+%3 sin(βϑ − 4πϑ(c̄ϑ + d̄)) + %4 cos(βϑ − 4πϑ(c̄ϑ + d̄))

+%5 sin(βϑ + 4πϑ(c̄ϑ + d̄)) + %6 cos(βϑ + 4πϑ(c̄ϑ + d̄))

+%7 cos(βϑ − 4πϑ(c̄ϑ + d̄)) − %8 sin(βϑ − 4πϑ(c̄ϑ + d̄))

−%9 cos(βϑ + 4πϑ(c̄ϑ + d̄)) + %10 sin(βϑ + 4πϑ(c̄ϑ + d̄))
)
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= e−αϑ−(ϑ−ā)2/b̄2 (%1 cos(βϑ) + %2 sin(βϑ)

+(%3 − %8) sin(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) cos(βϑ − 4πϑ(c̄ϑ + d̄))

+(%5 + %10) sin(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) cos(βϑ + 4πϑ(c̄ϑ + d̄))

= e−αϑ−(ϑ−ā)2/b̄2 (%1 cos(βϑ) + %2 sin(βϑ)

+(%3 − %8) sin(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) cos(βϑ − 4πt(c̄ϑ + d̄))

+(%5 + %10) sin(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) cos(βϑ + 4πϑ(c̄ϑ + d̄))
)

. (3.82)

Following the same procedure with v4 leads to the approximation

v̄4(ϑ) ≈ e−αϑ−(ϑ−ā)2/b̄2 (%1 sin(βϑ) − %2 cos(βϑ)

−(%3 − %8) cos(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) sin(βϑ − 4πϑ(c̄ϑ + d̄))

−(%5 + %10) cos(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) sin(βϑ + 4πϑ(c̄ϑ + d̄))
)

.

(3.83)

Inserting (3.82) and (3.83) into (3.57) allows the particular integral to be ex-

132



pressed as

ηP
1 ≈ eαϑ cos(βϑ)e−αϑ−(ϑ−ā)2/b̄2 (%1 cos(βϑ) + %2 sin(βϑ)

+(%3 − %8) sin(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) cos(βϑ − 4πϑ(c̄ϑ + d̄))

+(%5 + %10) sin(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) cos(βϑ + 4πϑ(c̄ϑ + d̄))
)

+eαϑ sin(βϑ)e−αϑ−(ϑ−ā)2/b̄2 (%1 sin(βϑ) − %2 cos(βϑ)

−(%3 − %8) cos(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) sin(βϑ − 4πϑ(c̄ϑ + d̄))

−(%5 + %10) cos(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) sin(βϑ + 4πϑ(c̄ϑ + d̄))
)

= e−(ϑ−ā)2/b̄2
(

%1 cos2(βϑ) + %2 cos(βϑ) sin(βϑ)

+(%3 − %8) cos(βϑ) sin(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) cos(βϑ) cos(βϑ − 4πϑ(c̄ϑ + d̄))

+(%5 + %10) cos(βϑ) sin(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) cos(βϑ) cos(βϑ + 4πϑ(c̄ϑ + d̄))

+%1 sin2(βϑ) − %2 sin(βϑ) cos(βϑ)

−(%3 − %8) sin(βϑ) cos(βϑ − 4πϑ(c̄ϑ + d̄))

+(%4 + %7) sin(βϑ) sin(βϑ − 4πϑ(c̄ϑ + d̄))

−(%5 + %10) sin(βϑ) cos(βϑ + 4πϑ(c̄ϑ + d̄))

+(%6 − %9) sin(βϑ) sin(βϑ + 4πϑ(c̄ϑ + d̄))
)
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=
1

2
e−(ϑ−ā)2/b̄2 (%1(1 + cos(2βϑ)) + %2 sin(2βϑ)

+(%3 − %8)(sin(−4πϑ(c̄ϑ + d̄)) + sin(2βϑ − 4πϑ(c̄ϑ + d̄)))

+(%4 + %7)(cos(−4πϑ(c̄ϑ + d̄)) + cos(2βϑ − 4πϑ(c̄ϑ + d̄)))

+(%5 + %10)(sin(4πϑ(c̄ϑ + d̄)) + sin(2βϑ + 4πϑ(c̄ϑ + d̄)))

+(%6 − %9)(cos(4πϑ(c̄ϑ + d̄)) + cos(2βϑ + 4πϑ(c̄ϑ + d̄)))

+%1(1 − cos(2βϑ)) − %2 sin(2βϑ)

−(%3 − %8)(sin(4πϑ(c̄ϑ + d̄)) + sin(2βϑ − 4πϑ(c̄ϑ + d̄)))

+(%4 + %7)(cos(4πϑ(c̄ϑ + d̄)) − cos(2βϑ − 4πϑ(c̄ϑ + d̄))

−(%5 + %10)(sin(−4πϑ(c̄ϑ + d̄)) + sin(2βϑ + 4πϑ(c̄ϑ + d̄)))

+(%6 − %9)(cos(−4πϑ(c̄ϑ + d̄)) − cos(2βϑ + 4πϑ(c̄ϑ + d̄)))
)

= e−(ϑ−ā)2/b̄2
(

%1 − (%3 − %8) sin(4πϑ(c̄ϑ + d̄)) + (%4 + %7) cos(4πϑ(c̄ϑ + d̄))

+(%5 + %10) sin(4πϑ(c̄ϑ + d̄)) + (%6 − %9) cos(4πϑ(c̄ϑ + d̄))
)

= e−(ϑ−ā)2/b̄2
(

%1 + ((%5 + %10) − (%3 − %8)) sin(4πϑ(c̄ϑ + d̄))

+((%4 + %7) + (%6 − %9)) cos(4πϑ(c̄ϑ + d̄))
)

which combines with the homogeneous solution (3.56) to provide the solution to

(3.15) as

η1 = ηH
1 + ηP

1

≈ eαϑ(A1 cos(βϑ) + B1 sin(βϑ))

+e−(ϑ−ā)2/b̄2
(

%1 + (%5 + %10 − %3 + %8) sin(4πϑ(c̄ϑ + d̄))

+(%4 + %7 + %6 − %9) cos(4πϑ(c̄ϑ + d̄))
)

. (3.84)

Assuming that

η1(0) = K1 and η′
1(0) = K2,

then

K1 = A1 + e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9)
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and so

A1 = K1 − e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9) .

Similarly

K2 = αA1 + βB1 +
2ā

b̄2
e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9)

+4πd̄e−ā2/b̄2 (%5 + %10 − %3 + %8) .

and so

B1 =
1

β

(

K2 − αA1 −
2ā

b̄2
e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9)

−4πd̄e−ā2/b̄2 (%5 + %10 − %3 + %8)
)

=
1

β

(

K2 − α
(

K1 − e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9)
)

−2ā

b̄2
e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9)

−4πd̄e−ā2/b̄2 (%5 + %10 − %3 + %8)
)

.

By considering the simplest case when the system is initially in equilibrium, the

constants K1 and K2 can be assumed to be zero. This allows A1 and B1 to be

written as

A1 = −e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9)

and

B1 =
e−ā2/b̄2

β

((

α − 2ā

b̄2

)

(%1 + %4 + %7 + %6 − %9)

−4πd̄ (%5 + %10 − %3 + %8)
)
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and solution (3.84) is thus

η1 ≈ eαϑ
(

−e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9) cos(βϑ)

+
e−ā2/b̄2

β
(α (%1 + %4 + %7 + %6 − %9)

−2ā

b̄2
(%1 − %4 − %7 − %6 + %9)

+4πd̄ (%5 + %10 − %3 + %8)
)

sin(βϑ)
)

+e−(ϑ−ā)2/b̄2
(

%1 + (%5 + %10 − %3 + %8) sin(4πϑ(c̄ϑ + d̄))

+(%4 + %7 + %6 − %9) cos(4πϑ(c̄ϑ + d̄))
)

= hl + hm, (3.85)

where

hl(ϑ) = e−(ϑ−ā)2/b̄2
(

%1 + (%5 + %10 − %3 + %8) sin(4πϑ(c̄ϑ + d̄))

+(%4 + %7 + %6 − %9) cos(4πϑ(c̄ϑ + d̄))
)

,

hm(ϑ) = eαϑ
(

−e−ā2/b̄2 (%1 + %4 + %7 + %6 − %9) cos(βϑ)

+ e−ā2/b̄2

β
(α (%1 + %4 + %7 + %6 − %9)

−2ā
b̄2

(%1 − %4 − %7 − %6 + %9)

+4πd̄ (%5 + %10 − %3 + %8)
)

sin(βϑ)
)

.































































(3.86)

Figure 3.15 demonstrates the contribution that hl and hm make towards the

solution η1. It is clear that the magnitude of hl completely overwhelms hm and

that hl is a close match to η1. This gives the approximate solution to differential

equation (3.15) as

η̄1 = e−(ϑ−ā)2/b̄2
(

%1 + (%5 + %10 − %3 + %8) sin(4πϑ(c̄ϑ + d̄))

+(%4 + %7 + %6 − %9) cos(4πϑ(c̄ϑ + d̄))
)

. (3.87)

Figures 3.16 and 3.17 compare this analytical solution with the numerical so-

lution to the differential equation (3.15). It is clear that there are differences
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Figure 3.15: Solution (3.85) (short dashes) compared with the inner components of the solu-

tion, hl (dotted line) and hm (full line), given by definitions (3.86). The chirp signal parameters

are given in Table 3.2 and the physical parameter values in Table 3.1. Λ has been set to 1 to

give a Herring-type equation.

in the time-domain response, as shown in Figure 3.16, where the significant ap-

proximations made in the derivation of (3.87) result in slight shifts in phase and

amplitude. However, by making approximations around ā both responses are a

good match at the second harmonic frequency component which is confirmed in

Figure 3.17.
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Figure 3.16: The numerical solution of the differential equation (3.15) (full line), compared

with the analytical solution (3.87) (dotted line). The chirp signal parameters are given in

Table 3.2 and the physical parameter values in Table 3.1. Λ has been set to 1 to give a

Herring-type equation.

3.3.3 Analytical approximation to the small-amplitude of

oscillation solution

An approximate solution to equation (3.10) is therefore given by

x̄ = εe−(ϑ−ā)2/2b̄2
(

ȳ1 sin(2πϑ(c̄ϑ + d̄)) + ȳ2 cos(2πϑ(c̄ϑ + d̄))
)

+ε2e−(ϑ−ā)2/b̄2
(

%1 + (%5 + %10 − %3 + %8) sin(4πϑ(c̄ϑ + d̄))

+(%4 + %7 + %6 − %9) cos(4πϑ(c̄ϑ + d̄))
)

. (3.88)

This analytical solution is compared with the numerical solution to equation

(3.10) in Figures 3.18 and 3.19. There is excellent agreement and it can be seen

that the η1 solution provides the second harmonic component.

By taking Fourier transforms of the η̄0 and η̄1 solutions the amplitudes of

the signals at the fundamental (τ1) and second harmonic (τ2) frequencies can be
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Figure 3.17: The numerical solution of the differential equation (3.15) (full line), compared

with the analytical solution (3.87) (dotted line), in the scaled frequency-domain, highlighting

the second harmonic frequency. This power spectrum was calculated by taking a fast Fourier

transform of the time-domain data in Figure 3.16. The chirp signal parameters are given

in Table 3.2 and the physical parameter values in Table 3.1. Λ has been set to 1 to give a

Herring-type equation.

extracted from this solution as follows

a1 =
1

2tch

∫ tch

0

eiω̄0tη̄0 dt

=
1

2tch

∫ tch

0

eiω̄0te−(ϑ−ā)2/2b̄2
(

ȳ1 sin(2πϑ(c̄ϑ + d̄)) + ȳ2 cos(2πϑ(c̄ϑ + d̄))
)

dt

and

a2 =
1

2tch

∫ tch

0

ei2ω̄0tη̄1 dt

=
1

2tch

∫ tch

0

(

ei2ω̄0te−(ϑ−ā)2/b̄2 (%1

+(%5 + %10 − %3 + %8) sin(4πϑ(c̄ϑ + d̄))

+(%4 + %7 + %6 − %9) cos(4πϑ(c̄ϑ + d̄))
))

dt,

where ω̄0 = ω0/T is the scaled resonant frequency and tch is the period of the
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Figure 3.18: The numerical solution of the differential equation (3.10) (full line), compared

with the analytical solution (3.88) (dotted line) in the non-dimensionalised time-domain. The

chirp signal parameters are given in Table 3.2 and the physical parameter values in Table 3.1.

Λ has been set to 1 to give a Herring-type equation.

chirp forcing function. The final approximated solution to equation (3.10) is

now

x̄ = τ1 cos(ω̄0t − φ1) + τ2 cos(2ω̄0t − φ2) (3.89)

where the trigonometric terms in (3.51) and in (3.87) have been combined and

the amplitude and phase of the first harmonic are

τ1 = −ε|a1| and φ1 = tan−1

(

−={|a1|}
< {|a1|}

)

,

respectively. Similarly for the second harmonic the amplitude and phase are

τ2 = ε2|a2| and φ2 = tan−1

(

−={|a2|}
< {|a2|}

)

.

In Figures 3.20 and 3.21 the numerical solution to differential equation (3.10)

is compared with the approximate solution (3.89). It is not surprising that

the solutions are very different but importantly the amplitudes of the first and
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Figure 3.19: The numerical solution of the differential equation (3.10) (full line), compared

with the analytical solution (3.88) (dotted line), in the non-dimensionalised frequency-domain.

This power spectrum was calculated by taking a fast Fourier transform of the time-domain

data in Figure 3.18. The chirp signal parameters are given in Table 3.2 and the physical

parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

second harmonics compare very favourably.

3.4 The dependency of the first and second har-

monic amplitudes on the model parameters

It is of interest to examine the effect that varying the model parameters has

on the first and second harmonic amplitudes, τ1 and τ2. By identifying which

parameters have the most influence, the insonifying chirp signal that excites the

UCA or the properties of the UCA itself can be designed to maximise these

amplitudes. Three sets of numerical investigations are presented below: the

chirp parameters are varied with all other parameters kept constant; each chirp
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Figure 3.20: The numerical solution of the differential equation (3.10) (full line), compared

with the analytical solution (3.89) (dotted line). The chirp signal parameters are given in

Table 3.2 and the physical parameter values in Table 3.1. Λ has been set to 1 to give a

Herring-type equation.

parameter is varied together with a UCA shell parameter and the UCA shell

parameters are varied for a particular chirp function.

3.4.1 Improving the second harmonic amplitude by

chirp parameter selection

In Section 2.5, the effect of the chirp signal parameters on the amplitudes of

the resonant and second harmonic frequencies of a UCA are discussed and op-

timal parameter values are identified. The linear chirp signal defined by (2.5),

and schematically represented in the time-frequency domain in Figure 2.3, has

instantaneous frequency, fi, at time t given by equation (2.6):

fi = 2ct + d,
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Figure 3.21: The numerical solution of the differential equation (3.10) (full line), compared

with the analytical solution (3.89) (dotted line), in the non-dimensionalised frequency-domain.

This power spectrum was calculated by taking a fast Fourier transform of the time-domain

data in Figure 3.20. The chirp signal parameters are given in Table 3.2 and the physical

parameter values in Table 3.1. Λ has been set to 1 to give a Herring-type equation.

from which it is clear that d is the initial frequency of the signal. For a chirp

with a linearly increasing frequency, d must therefore be smaller than ω0 to

ensure that the resonant frequency is attained by the signal. The maximum

amplitude of the signal occurs at a time t = a, and to ensure that this coincides

with the transmission of the resonant frequency, c is defined as c = (ω0 − d)/2a.

Additionally, b controls the spread of the Gaussian envelope around this centre

frequency and should be set at an appropriate fraction of a. A heuristic approach

to choosing these parameter values which supports the results of Section 2.5

could therefore be the following:

a =
15

ω0
, b =

a

6
,

c =
ω0 − d

2a
, d = 0.9ω0.











(3.90)
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For a given time-span of the insonifying signal, say from zero to tch, the

range of a should be bounded so that essentially all of the signal energy within

its Gaussian envelope is delivered within this time-frame. With the chirp pa-

rameters defined by (3.90) a reduction in a leads to a decrease in b and, if the

signal’s energy is fixed, this requires an increase in the peak amplitude of the

signal, pc. This is depicted in Figure 3.22. A high acoustic pressure can deform

or corrupt the UCA as well as the surrounding tissue which is unacceptable for

in vivo applications. Therefore an upper limit exists on pc, and in turn a lower

limit is imposed on a. It is also desirable to have a as small as possible in an

experimental setup as this will allow a short time-gap between the successive

signals used to average out noise. The range of b is also limited due to the

relationship between b and the bandwidth of the signal. Figure 3.23 shows how

the −6 dB bandwidth of the signal varies with b. The bandwidth of the signal

is restricted experimentally by the transducer and Figure 3.23 illustrates that

for a limited bandwidth there is a range of b values which are suitable.

Figures 3.24–3.27 show the effect that varying the chirp parameters one at a

time has on the harmonic amplitudes. In each case all other parameters are kept

constant at the values given in Tables 3.1 and 3.2. Therefore, in this setting,

the resonant frequency of the UCA remains constant. Inserting the parameter

values in Table 3.2 into equation (3.9) gives a resonant frequency of 10.6 MHz.

The insonifying chirp is also normalised by adjusting the peak pressure (pc) so

that each signal contains the same amount of energy as each parameter is varied.

This is achieved by defining

pc =
105
∫∞
−∞ Fa(t, x0) dt

∫∞
−∞ Fa(t, x) dt

,

144



1.2 1.4 1.6 1.8 2

80

100

120

140

PSfrag replacements

pc(kPa)

a(µs)

Figure 3.22: The peak pressure of the chirp signal F defined by equation (2.5) calculated for

various values of the chirp parameter a. The remaining chirp parameters are varied with a

according to the definitions given by (3.90) and (3.9). The energy of the signal is kept constant

for each value of a.

where Fa is a chirp signal with a peak pressure of one,

Fa(t, x) = e−(t−a)2/2b2 cos(2πt(ct + d)).

In this notation the variable x can represent any non-temporal parameter, and

x0 denotes the value of this parameter given in Tables 3.1 and 3.2. It will become

apparent that Fa can indeed depend on the UCA shell parameters. Defining pc

in this way makes comparisons between plots more equitable and ensures that

the peaks that appear in each plot arise from resonant behaviour only.

There is a clear optimal value of a detected in Figure 3.24, highlighting the

fact that the value of a and therefore the position of the Gaussian envelope is

paramount in achieving an optimal signal. In Figure 3.25 the amplitudes τ1 and

τ2 are shown to be optimised by having b as small as possible. Recall however
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Figure 3.23: The bandwidth of the chirp signal F defined by equation (2.5) calculated for

various values of the chirp parameter b. The bandwidth is given as a percentage of the centre

frequency, fc. The remaining chirp parameters are kept constant at the values given in Table

3.2.
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Figure 3.24: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of the chirp parameter

a(µs). All other parameters were kept constant, at values given in Tables 3.1 and 3.2.

that b has a finite lower bound since a smaller b corresponds to a larger am-

plitude and the peak amplitude has an upper bound. As anticipated a distinct

maximum is also apparent in Figures 3.26-3.27. This implies that for a given
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Figure 3.25: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of the chirp parameter

b(µs). All other parameters were kept constant, at values given in Tables 3.1 and 3.2.
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Figure 3.26: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of the chirp parameter

c(MHz µs−1). All other parameters were kept constant, at values given in Tables 3.1 and 3.2.
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Figure 3.27: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of the chirp parameter

d(MHz). All other parameters were kept constant, at values given in Tables 3.1 and 3.2.
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set of UCA parameters and a maximum pressure, the parameters of the chirp

can be set to attain an optimal signal.

In the following figures a lower bound has been placed on b which restricts the

−6 dB bandwidth to 70% of the center frequency of the signal defined by Table

3.2. An upper bound is then set by demanding that b is less than a/2 to ensure

that essentially all of the signal energy is transferred in the given time-interval.

Attention is restricted to chirps whose frequency content increases with time by

ensuring c is positive and hence, to guarantee that the signal will contain the

resonating frequency component, d is varied from zero to 95% of the resonant

frequency.

The procedure for defining the chirp parameters given by definitions (3.90)

is supported by Figures 3.28 and 3.29. In Figure 3.28 the amplitudes τ1 and τ2

are evaluated as the chirp parameters a and c are varied independently whilst

b depends on a according to definitions (3.90) and d remains constant. It can

be seen that for a particular a a corresponding c can be found which will give

a maximum amplitude. The structure of this optimal ridge suggests that c

is inversely proportional to a and that the definition of c given by (3.90) is

appropriate. There appears to be no unique value of a and c which gives a clear

global maximum; however, a combination of smaller a and larger c appears to

be conducive to larger amplitudes. τ1 and τ2 are computed as a and d are varied

in Figure 3.29. The chirp parameters b and c are varied with a and d using

definitions (3.90) and the physical parameters are kept constant at the values in

Table 3.1. It is evident that τ1 and τ2 are maximised by taking a to be as small

as possible. Additionally, taking values of d close to the resonant frequency, ω0,

appears to improve the amplitudes τ1 and τ2. Figure 3.29 thus further supports

the definitions of the chirp parameters given by equations (3.90).
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Figure 3.28: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameters

a(µs) and c(MHz µs−1). The remaining chirp parameters, b and d, are given by definitions

(3.90) and (3.9) and the physical parameters were kept constant at values given in Tables 3.1

and 3.2.
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Figure 3.29: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameters

a(µs) and d(MHz). The remaining chirp parameters, b and c, are given by definitions (3.90)

and (3.9) and the physical parameters were kept constant at values given in Tables 3.1 and

3.2.

Figure 3.30 re-examines the optimal values of a with respect to τ1 and τ2.
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However, in contrast to Figure 3.24, the chirp parameters b and c are now

defined as functions of a by equations (3.90). The optimal value of a which

was highlighted in Figure 3.24 is no longer evident and in fact the harmonic

amplitudes are now maximised by employing as small an a as possible. The

energy of the signal is kept constant for each value of a so that a smaller a

corresponds to a smaller b, larger c and larger pc in support of the preceding

analysis.
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Figure 3.30: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of the chirp parameter

a(µs). The remaining chirp parameters are given by definitions (3.90) and (3.9) for each value

of a and the physical parameters were kept constant at values given in Table 3.1.

3.4.2 The effect of the UCA properties and chirp param-

eters on second harmonic imaging

In each of the following plots one chirp parameter is varied along with one shell

parameter, and the remaining shell parameters are kept constant. By varying

a shell parameter the resonant frequency will also vary and so, to render any

comparisons and conclusions meaningful, the remaining chirp parameters are

varied according to the definitions given by equations (3.90). The amplitude of
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the insonifying signal is once again normalised to ensure that the energy in each

signal remains constant to further ensure that the comparisons are equitable.

In Figures 3.31–3.34 the first and second harmonic amplitudes (τ1 and τ2)

of the UCA’s response are calculated for varying values of the shell thickness

ε and the chirp parameters a, b, c and d. Figure 3.31 suggests that these am-

plitudes are maximised by having a as small as possible. By definitions (3.90)

this corresponds to a lower value of b, a shorter timespan for the signal, a wider

bandwidth and a higher peak pressure. Figure 3.32(b) displays similar charac-

teristics to Figure 3.31 for the reasons given above. Figure 3.33 indicates that

there is an optimal value for c for each shell thickness. This optimal value is

fairly constant and suggests that the resonant frequency is not heavily depen-

dent on the shell thickness. Figure 3.34 indicates that there is no distinctive

value of d which optimises τ1 and τ2. In addition, Figures 3.31–3.34 show that

the harmonic amplitudes increase as the shell thickness decreases. The situation

where the shell thickness, ε, reaches zero corresponds to a free bubble which is

naturally able to oscillate more freely than the encapsulated bubble. The be-

haviour seen in Figures 3.31–3.34 is therefore to be expected.

Figures 3.35–3.38 show the amplitudes τ1 and τ2 calculated when the shell

viscosity, µsh, is varied with the chirp parameters a, b, c and d. Figures 3.35 and

3.36 display similar characteristics to Figures 3.31 and 3.32, and show that a

and b should both be as small as possible in order to maximise τ2. The reasons

for this are detailed above. As in Figure 3.33 there is a clear optimal value for

c in Figure 3.37, which corresponds to the value given in Table 3.2. Figure 3.38

indicates that there is no clear optimal value for d. As in Figures 3.31–3.34 each

figure also highlights the fact that the oscillations increase in amplitude as the

shell viscosity decreases, which corresponds to the shell disappearing and the

151



1.0

1.5

2.0

0

1
2

3

5

10

PSfrag replacements

a

ε

τ1

τ2

(a)

1.0

1.5

2.0

0
1

2
3

0

750

1500

PSfrag replacements

a

ε

τ1

τ2

(b)

Figure 3.31: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

a(µs) and shell thickness, ε(nm). All other physical parameters were kept constant at values

given in Table 3.1. The remaining chirp parameters were evaluated for each pair of a and ε

values by definitions (3.90) and (3.9).
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Figure 3.32: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

b(µs) and shell thickness, ε(ns). All other physical parameters were kept constant at values

given in Table 3.1. The remaining chirp parameters were evaluated for each pair of b and ε

values by definitions (3.90) and (3.9).
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Figure 3.33: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

c(MHz µs−1) and shell thickness, ε(nm). All other physical parameters were kept constant at

values given in Table 3.1. The remaining chirp parameters were evaluated for each pair of c

and ε values by definitions (3.90) and (3.9).
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Figure 3.34: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameters

d(MHz) and shell thickness, ε(nm). All other physical parameters were kept constant at values

given in Table 3.1. The remaining chirp parameters were evaluated for each pair of d and ε

values by definitions (3.90) and (3.9).
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UCA transforming into a bubble.
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Figure 3.35: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

a(µs) and shell viscosity, µsh(Pa s). All other physical parameters were kept constant at values

given in Table 3.1. The remaining chirp parameters were evaluated for each pair of a and µsh

values by definitions (3.90) and (3.9).
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Figure 3.36: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

b(µs) and shell viscosity, µsh(Pa s). All other physical parameters were kept constant at values

given in Table 3.1. The remaining chirp parameters were evaluated for each pair of b and µsh

values by definitions (3.90) and (3.9).
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Figure 3.37: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

c(MHz µs−1) and µsh(Pa s). All other physical parameters were kept constant at values given

in Table 3.1. The remaining chirp parameters were evaluated for each pair of c and µsh values

by definitions (3.90) and (3.9).
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Figure 3.38: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameters

d(MHz) and shell viscosity, µsh(Pa s). All other physical parameters were kept constant at

values given in Table 3.1. The remaining chirp parameters were evaluated for each pair of d

and µsh values by definitions (3.90) and (3.9).
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In Figures 3.39–3.42 the shell elasticity, χ, is varied along with the chirp

parameters, a, b, c and d to calculate the amplitudes τ1 and τ2. Figure 3.39

reinforces that a should be as small as possible to maximise τ1 and τ2, although

a has only a limited effect on the harmonic amplitudes unless χ is relatively

small. The influence of b on χ is portrayed in Figure 3.40. It is clear that the

amplitude of τ1 and τ2 is maximised by reducing b, although this is distinct only

for small values of χ. In Figure 3.41 it is evident that for each value of χ, and

thus each resonant frequency of the UCA, there is an optimal value of c which

should be used to maximise the amplitudes of τ1 and τ2. There is evidence of

a greater amplitude of τ1 and τ2 for a combination of lower c with a smaller χ.

Figure 3.42 once more illustrates that there is no clear optimal value that should

be assigned to d and that χ should be as small as possible to maximise τ1 and

τ2.
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Figure 3.39: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

a(µs) and shell elasticity, χ(N m−1). All other physical parameters were kept constant at

values given in Table 3.1. The remaining chirp parameters were evaluated for each pair of a

and χ values by definitions (3.90) and (3.9).
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Figure 3.40: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

b(µs) and shell elasticity, χ(N m−1). All other physical parameters were kept constant at

values given in Table 3.1. The remaining chirp parameters were evaluated for each pair of b

and χ values by definitions (3.90) and (3.9).
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Figure 3.41: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameter

c(MHz µs−1) and χ(N m−1). All other physical parameters were kept constant at values given

in Table 3.1. The remaining chirp parameters were evaluated for each pair of c and χ values

by definitions (3.90) and (3.9).
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Figure 3.42: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of chirp parameters

d(MHz) and shell elasticity, χ(N m−1). All other physical parameters were kept constant at

values given in Table 3.1. The remaining chirp parameters were evaluated for each pair of d

and χ values by definitions (3.90) and (3.9).

3.4.3 The effect of the UCA shell properties on the har-

monic amplitudes

In each of the following figures two shell parameters are varied and the third is

kept constant at the value given in Table 3.1. The chirp parameters are then

adjusted by calculating the resulting resonant frequency via equation (3.9) and

then using definitions (3.90). As before the peak pressure of the chirp signal is

varied so that its energy remains constant.

In Figure 3.43 it is clear that the optimal situation occurs when either, or

both of, the shell thickness, ε, and shell viscosity, µsh, approach zero. This

highlights that an unencapsulated bubble will produce larger oscillations than a

UCA. Similarly, in Figure 3.44, the harmonic amplitudes are maximised as the

shell thickness, ε, and the shell elasticity parameter, χ, approach zero. A similar

situation is seen in Figure 3.45 where the shell viscosity, µsh is varied with the
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shell elasticity, χ.

0

1

2

3 0

1

2

3

3.5

7

PSfrag replacements

ε

µsh

τ1

τ2

(a)

0

1

2

3 0

1

2

3

0

350

700

PSfrag replacements

ε

µsh

τ1

τ2

(b)

Figure 3.43: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of shell thickness,

ε(nm) and shell viscosity, µsh(Pa s). The remaining shell parameter and other system param-

eters were kept constant at values given in Table 3.1. The chirp parameters were evaluated

for each pair of ε and µsh values by definitions (3.90) and (3.9).
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Figure 3.44: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of shell thickness,

ε(nm) and shell elasticity, χ(N m−1). The remaining shell parameter and other system param-

eters were kept constant at values given in Table 3.1. The chirp parameters were evaluated

for each pair of ε and χ values by definitions (3.90) and (3.9).
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Figure 3.45: (a) τ1(×103) and (b) τ2(×106) calculated for varying values of shell elasticity,

χ(N m−1) and shell viscosity, µsh(Pa s). The remaining shell parameter and other system

parameters were kept constant at values given in Table 3.1. The chirp parameters were

evaluated for each pair of χ and µsh values by definitions (3.90) and (3.9).

The results presented here were evaluated with the dimensionless parameter

Λ set to one to give a Herring-type model. A similar set of results have been

examined for the case Λ = 0, a Keller-type model, and the results were qualita-

tively the same. Results were also analysed for a Rayleigh–Plesset-type model

by examining the limit as cL → ∞. The results were again similar although the

amplitudes τ1 and τ2 were generally increased. However, the Rayleigh–Plesset-

type model does not retain important information on the dependency of the

system on the shell elasticity parameter χ.

3.5 Conclusions

The case of an Ultrasound Contrast Agent (UCA) insonified by a linear chirp

was considered here. A Keller–Herring type non-linear, non-homogeneous, dif-

ferential equation model, modified to include the effects of the elastic shell, was

utilised. This differential equation was then simplified by considering only small-
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amplitude oscillations and normalised to identify a small-parameter. A regular

perturbation in this small-parameter was then performed to obtain a series of

linear ordinary differential equations. The first two of these were solved to ob-

tain an approximate analytical solution for the variation of the UCA’s radius

with time. By performing a Fourier transform the amplitudes of the first and

second harmonics, τ1 and τ2, were derived. These amplitudes were then stud-

ied numerically to identify optimal parameter settings that maximise their value.

A heuristic set of rules for the optimal choice of the chirp parameters (a, b, c

and d), for a particular set of shell parameters, was proposed. The evidence then

gathered from a series of numerical experiments supports this. It was also found

that, for chirp signals of constant energy, a, which controls the midpoint of the

Gaussian envelope, and b, which controls the variance of this envelope, should be

chosen to be as small as possible to maximise the second harmonic amplitude,

τ2. However these values are bounded below by bandwidth constraints related

to the transmitting transducer. It was found that an optimal value for c, which

governs the rate of frequency increase, could always be found that maximised τ2

and that d, the initial frequency of the signal, had limited influence on this sec-

ond harmonic amplitude. By examining the influence that the shell parameters

(ε, µsh and χ) had on these harmonic amplitudes it was consistently found that

they should be as small as realistically possible in order to maximise τ2. It was

also found that the resonant frequency of the UCA was particularly sensitive

to changes in the shell elasticity, χ, and hence on the choice of optimal chirp

parameters via equation (3.90).

In Chapter 4 an alternative to second harmonic imaging will be presented.

The response of an unencapsulated bubble will be analysed in the fractional

Fourier transform space. This analysis will reveal features of the bubble’s re-
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sponse which pass unnoticed in a single domain (such as time or frequency)

investigation, and these features will be employed to establish the size distribu-

tion and enumeration of bubbles within a population.
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Chapter 4

A Fractional Fourier Transform

Analysis of a Bubble Excited by

an Ultrasonic Chirp

4.1 Introduction

In Chapters 2 and 3 the dynamical equations which describe the behaviour of a

bubble and a UCA under chirp insonification were solved analytically to produce

approximate solutions. These solutions were investigated in order to reveal the

parameter values that would maximise the bubble’s (UCA’s) response at the sec-

ond harmonic frequencies in order to aid detection of the bubble (UCA) at this

frequency (second harmonic imaging). In this chapter an alternative imaging

method is proposed: the fractional Fourier transform (FrFT). The FrFTs of the

numerical responses of a variety of single bubbles and bubble systems are investi-

gated, and the potential of this technique to ascertain the size distribution and to

enumerate bubbles within a population is demonstrated. The cross-correlation of

the FrFT of two signals is shown to give improved confirmation of the similarity
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between the signals on comparison with standard time-domain cross-correlation.

In this chapter, when more than one bubble is investigated, it will be assumed

that all bubbles have a sufficient separation that their oscillations are uncoupled.

4.2 The Rayleigh–Plesset equation

The Rayleigh–Plesset equation is defined in equation (2.1) as

RR̈ +
3Ṙ2

2
=

1

ρ

(

(

p0 +
2σ

R0

)(

R0

R

)3κ

− 2σ

R
− 4µṘ

R
− p0 − F (t)

)

,

(4.1)

with the hydrostatic pressure assumed to be equal to the ambient pressure, p0,

and the vapour pressure of the gas inside the bubble assumed to be negligible

in comparison to these. The forcing function is a linear chirp signal of the form

given in equation (2.5) by

F (t) = pce
−(t−a)2/2b2 cos(2πt(ct + d)). (4.2)

The previous chapters have focused on determining the parameter regimes which

enhance the second harmonic component of the bubble’s response. Designing the

forcing signal such that its frequency range is focused around the UCA’s resonant

frequency was found to increase the amplitude of oscillation, thus enhancing the

UCA’s detectability. This prompted the development of a heuristic method

for choosing the signal parameters. The fundamental principle of this method

is that the frequency of the signal should equal the resonant frequency of the

UCA at the mid-point of the signal, when it produces its maximum amplitude.

This stipulation is guaranteed with the definition of c in equation (3.90). UCAs

display similar resonating characteristics to an unencapsulated bubble; therefore

the definition of c is maintained here to ensure that the signal resonates at a given
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resonant frequency. However, in the present study the forcing signal is desired to

excite responses from a population of bubble sizes and not just a single bubble,

necessitating a signal designed to cover a wider spread of frequencies with a high

amplitude and not just a single frequency. Reducing the duration of the bubble

response is also desirable in order to enumerate bubbles within a population, to

enable quicker processing and, as will become apparent later, to enable shorter

computation time. For this reason, the remaining chirp definitions are adapted

from those proposed in equation (3.90). The parameters a and d have been

reduced to decrease the duration of the signal and increase the frequency range

respectively. Correspondingly, b has been refined to produce a suitable spread of

high amplitudes at the central frequencies. The chirp parameters are therefore

defined here as

a =
5

ω0

, b =
a

2
,

c =
ω0 − d

2a
and d = 0.6ω0,











(4.3)

where ω0 is the undamped resonant frequency of the bubble, defined in equation

(2.4) as

ω0 =
1

2π

(

1

ρR2
0

(

3κ

(

p0 +
2σ

R0

)

− 2σ

R0

)

− 4µ2

ρ2R4
0

)
1
2

. (4.4)

As before, the introduction of the non-dimensional parameter ϑ, where ϑ

satisfies ϑ = t/T and T is a typical timescale of the forcing function F (t), allows

equations (4.1) and (4.2) to be scaled to

RR′′

T 2
+

3R′2

2T 2
=

1

ρ

(

(

p0 +
2σ

R0

)(

R0

R

)3κ

− 2σ

R
− 4µR′

TR
− p0 − pcG

)

(4.5)
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and

F (t) = pcG(ϑ)

= pce
−(ϑ−ā)2/2b̄2 cos(2πϑ(c̄ϑ + d̄)), (4.6)

where

ā =
a

T
, b̄ =

b

T
, c̄ = cT 2 and d̄ = dT.

Solving equation (4.1) with the parameter values given in Table 4.1 results in

an O(10−4) time variable and hence an O(104) frequency variable. However, by

re-scaling R, non-dimensional time and frequency variables are generated, both

of O(10). This will be vital when implementing the FrFT analysis on R. To aid

visualisation R(ϑ) is shifted, normalised and amplified to give

R̂(u) = 105 (R (u) − R0) , (4.7)

where u = ϑ + tch/2T .

4.3 The fractional Fourier transform

The ath order FrFT of a function f(u) is denoted by fa(u). When a is an integer

then fa(u) denotes the number of repeated applications of the ordinary Fourier

transform (FT). In this way f3(u) represents FT(FT(FT(f(u)))). However, a is

not restricted to the integers and can assume the value of any real number. The

ath order transform can be considered as a rotation in the time-frequency plane:

when a is zero the transform is simply the original function in the time-domain;

a equal to one is equivalent to the ordinary FT and generally, the domain of

the transform can be represented by a line radiating from the origin. This can

be visualised as in Figure 4.1. It is evident from Figure 4.1 that the FrFT is
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PSfrag replacements

Time (a = 0)

Frequency (a = 1)

a = 1/2a = 3/2

a = −3/2 a = −1/2

Figure 4.1: The domain of the FrFT, fa(u), for a sample of order parameters a. The domains

corresponding to the positive x- and y-axes are respectively the time and frequency-domains.

The domain of fa(u) can be recognised as a rotation in the time-frequency plane.

periodic in a with period four. The FrFT is defined in several ways, depending

on the proposed application [99, p117–183]. Each definition offers insight to

different aspects of the transform’s behaviour. The definition that will be used

here represents the FrFT as a linear integral transform with fa(u) given by

fa(u) ≡
∫ ∞

−∞
Ka(u, u′)f(u′) du′, a ∈ R, (4.8)

where the kernel Ka is

Ka(u, u′) ≡ Aα exp
(

iπ(cot(α)u2 − 2 csc(α)uu′ + cot(α)u′2)
)

, (4.9)

Aα =
e−i(π sgn(α)/4−α/2)

√

| sin α|
, α ≡ aπ

2
, (4.10)

for 0 < |a| < 2 or equivalently 0 < |α| < π. In Figure 4.1, α therefore rep-

resents the anti-clockwise angle that the domain of the transform makes with
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the positive time-axis. It is evident from definitions (4.8)–(4.10) that the order

parameters a and α occur only as arguments of the trigonometric terms. This

confirms that the FrFT has a period of 4 in a:

fa(u) = fa+4j(u), j ∈ Z.

Definitions (4.8)–(4.10) can be extended to include a = 0 by employing the

first term from the Laurent series for cot z and csc z around the origin. That is,

for |a| � 1, Ka reduces to

Ka(u, u′) =
e−iπ sgn(α)/4

√

|α|
exp

[

iπ(u2/α − 2uu′/α + u′2/α)
]

=
e−iπ sgn(α)/4

√

|α|
exp

[

iπ(u − u′)2/α
]

.

Considering the limit as a → 0 leads to [99, p8]

K0(u, u′) = δ(u − u′)

and, from equation (4.8),

f0(u) =

∫ ∞

−∞
δ(u − u′)f(u′) du′

= f(u), (4.11)

the original function. Taking a similar approach for a → ±2, equation (4.8)

produces [99, p119]

f±2(u) =

∫ ∞

−∞
δ(u + u′)f(u′) du′

= f(−u). (4.12)

With a = 1, definitions (4.8)–(4.10) reduce to

f1(u) =

∫ ∞

−∞
e−i2πuu′

f(u′) du′,
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the ordinary Fourier transform, and similarly

f−1(u) =

∫ ∞

−∞
ei2πuu′

f(u′) du′

gives the definition of the inverse Fourier transform. This confirms that the

definitions of the FrFT given by definitions (4.8)–(4.10) are in accordance with

standard properties of the ordinary FT.

However, when a is in the vicinity of an even integer, the delta functions

that arise in the kernels of equations (4.11) and (4.12) produce highly oscillatory

integrals and thus numerical computations of the FrFT in these regions can be

inaccurate and time-consuming [99, p218]. A fundamental property of the FrFT

is the order additivity property [80],

fb+c(u) = fb(fc(u)), b, c ∈ R, (4.13)

where a = b + c. Armed with this property the FrFT definitions (4.8)–(4.10)

can be numerically implemented for the entire range 0 ≤ |a| ≤ 2 by writing 0

and ±2 as b + c for some real valued numbers b and c. Utilising the additivity

property in the described way overcomes the computational difficulties; this is

described later in equation (4.31).

Combining definitions (4.8) and (4.9) the ath order transform can be written

as

fa(u) = Aαeiπ cot(α)u2

∫ ∞

−∞
e−i2π csc(α)uu′

(

eiπ cot(α)u′2

f(u′)
)

du′, (4.14)

for 0 < |a| < 2. Implementing this in the numerical analysis of a function

f requires definition (4.14) to be discretised. To achieve this it is essential to

restrict the period of every transform fa to some finite interval. Therefore let

fa(u) be zero outwith the region u ∈ [−∆u/2, ∆u/2] for all values of a such that
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|a| ∈ (0, 2), where ∆u is chosen to be sufficiently large that this property holds

(at least to some tolerance in practice). Each component of definition (4.14) can

then be discretised in turn.

The Nyquist–Shannon sampling theorem states that a function, g(u), with

compact support centred on the origin and bandwidth of 2∆u, where the band-

width indicates the length of the region of support, can be successfully recovered

from a series of samples taken at intervals δu = 1/(2∆u) [116]. The sampled

function, gs, can be written as

g(u) =

∞
∑

l=−∞

g(lδu) sinc
( u

δu
− l
)

=
∞
∑

l=−∞

g

(

l

2∆u

)

sinc

(

2∆u

(

u − l

2∆u

))

,

where sinc denotes the normalised sine cardinal defined as

sinc(u) =











1, for u = 0

sin(πu)

πu
, otherwise.

(4.15)

Letting

g(u′) = eiπ cot(α)u′2

f(u′),

and assuming that g(u′) has a bandwidth of 2∆u, this term can then be expressed

discretely as

eiπ cot(α)u′2

f(u′) =

∞
∑

l=−∞

eiπ cot(α)(l/2∆u)2f

(

l

2∆u

)

sinc

(

2∆u

(

u′ − l

2∆u

))

.

The function f(u) has been defined to be zero outwith the region

u ∈ [−∆u/2, ∆u/2], and the limits of the summation can therefore be restricted

to

eiπ cot(α)u′2

f(u′) =
N−1
∑

l=−N

eiπ cot(α)(l/2∆u)2f

(

l

2∆u

)

sinc

(

2∆u

(

u′ − l

2∆u

))

.

(4.16)
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Nyquist’s sampling theorem stipulates that for a function with compact sup-

port over an interval of length ∆u, the separation between sampled data points

should be at most 1/∆u. Therefore sampling f(u) over this region with 2N data

points, where N = (∆u)2, is more than adequate and ensures that no aliasing

is introduced in the sample solution [17, p81–83]; aliasing is an undesirable ef-

fect which arises when the sampling resolution is not refined enough to capture

higher frequency components of the signal. The upper limit has been restricted

further to ensure an even number of samples is obtained. Substituting (4.16)

into definition (4.14) gives

fa(u) = Aαeiπ cot(α)u2

∫ ∞

−∞
e−i2π csc(α)uu′

(

N−1
∑

l=−N

eiπ cot(α)(l/2∆u)2f

(

l

2∆u

)

× sinc

(

2∆u

(

u′ − l

2∆u

)))

du′

= Aαeiπ cot(α)u2
N−1
∑

l=−N

(

eiπ cot(α)(l/2∆u)2f

(

l

2∆u

))

×
∫ ∞

−∞
e−i2π csc(α)uu′

sinc

(

2∆u

(

u′ − l

2∆u

))

du′. (4.17)

By making the change of variable

v = 2∆u (u′ − l/(2∆u)) , (4.18)

the integrand can be rewritten as

1

2∆u

∫ ∞

−∞
e−i2π csc(α)u(v/(2∆u)+l/(2∆u)) sinc(v) dv

=
1

2∆u
e−i2π csc(α)ul/(2∆u)

∫ ∞

−∞
e−i2π csc(α)uv/(2∆u) sinc(v) dv

=
1

2∆u
e−i2π csc(α)ul/(2∆u)

∫ ∞

−∞
e−i2πwv sinc(v) dv, (4.19)

where

w = csc(α)
u

2∆u
. (4.20)
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This final integrand can now be identified as the Fourier transform of sinc(v)

with respect to the frequency variable w, which is simply rect(w) [16, p138],

where

rect(w) =



























1, for w ∈
(

−1

2
,
1

2

)

1

2
, for w = ±1

2

0, otherwise.

(4.21)

Equation (4.19) can therefore be expressed as

1

2∆u

∫ ∞

−∞
e−i2π csc(α)u(v/(2∆u)+l/(2∆u)) sinc(v) dv

=
1

2∆u
e−i2π csc(α)ul/(2∆u) rect(w)

=
1

2∆u
e−i2π csc(α)ul/(2∆u) rect(csc(α)u/(2∆u)).

The function f(u) is defined such that

−∆u

2
≤ u ≤ ∆u

2
∀a ∈ [−2, 2],

which is equivalent to

−1

4
≤ u

2∆u
≤ 1

4
∀a ∈ [−2, 2].

Now, with the order parameter a considered over the range (it will be shown

later that a need only be considered over this range, since the transform’s index

additivity property can be used)

1

2
≤ |a| ≤ 3

2
, (4.22)

or equivalently

π

4
≤ |α| ≤ 3π

4
,

the following bound can be stated:

1 ≤ | csc(α)| ≤
√

2.

172



This leads to

−
√

2

4
≤ csc(α)

u

2∆u
≤

√
2

4
,

from which it is clear that

−1

2
< csc(α)

u

2∆u
<

1

2
.

Compiling this result with definitions (4.20) and (4.21), equation (4.19) can be

simplified to

1

2∆u

∫ ∞

−∞
e−i2π csc(α)u(v/(2∆u)+l/(2∆u)) sinc(v) dv

=
1

2∆u
e−i2π csc(α)ul/(2∆u).

Equation (4.17) can now be expressed as

fa(u) =
Aα

2∆u
eiπ cot(α)u2

N−1
∑

l=−N

eiπ cot(α)(l/2∆u)2f

(

l

2∆u

)

e−i2π csc(α)ul/(2∆u).

Note that by introducing the variable v defined by (4.18), the integral in equation

(4.17) has been evaluated. This reformulates the original two-variable problem

in terms of only one variable, u. Discretising fa(u) = fa(uk), where the ath

order transform is sampled at each point uk = k/(2∆u) for k = −N, ..., N − 1,

leads to

fa(u) =

{

fa

(

k

2∆u

)}

, k = −N, ..., N − 1,

where

fa

(

k

2∆u

)

=

N−1
∑

l=−N

Aα

2∆u
eiπ cot(α)(k/2∆u)2e−i2π csc(α)kl/(2∆u)2

× eiπ cot(α)(l/2∆u)2f

(

l

2∆u

)

. (4.23)

Equation (4.23) allows the ath order transform of a function f to be evaluated

by considering samples of the function itself. Although effective, this process is
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time-consuming and takes O(N 2) calculations. However, by rewriting equation

(4.23) as

fa

(

k

2∆u

)

=

N−1
∑

l=−N

Aα

2∆u
eiπ cot(α)(k/2∆u)2eiπ csc(α)(−k2+(k−l)2−l2)/(2∆u)2

× eiπ cot(α)(l/2∆u)2f

(

l

2∆u

)

=
N−1
∑

l=−N

Aα

2∆u
eiπ(cot(α)−csc(α))(k/2∆u)2eiπ csc(α)((k−l)/(2∆u))2

× eiπ(cot(α)−csc(α))(l/2∆u)2f

(

l

2∆u

)

=
Aα

2∆u
eiπ(cot(α)−csc(α))(k/2∆u)2

N−1
∑

l=−N

(

eiπ csc(α)((k−l)/(2∆u))2
)

×
(

eiπ(cot(α)−csc(α))(l/2∆u)2f

(

l

2∆u

))

, (4.24)

the final summation can be identified as a discrete convolution between the two

bracketed terms. The kth sample of fa can therefore be written as

fa

(

k

2∆u

)

=
Aα

2∆u
eiπ(cot(α)−csc(α))(k/2∆u)2

×
(

eiπ csc(α)(k/(2∆u))2 ∗ eiπ(cot(α)−csc(α))(k/2∆u)2f

(

k

2∆u

))

.

(4.25)

By the convolution theorem, the convolution of two functions, f and g, is

equal to the inverse Fourier transform of the product of the Fourier transforms

of each function [17, p60]. That is

f ∗ g = F−1 (F(f)F(g)) ,

where F denotes the ordinary FT. Applying the convolution theorem to equation
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(4.25) leads to

fa

(

k

2∆u

)

=
Aα

2∆u
eiπ(cot(α)−csc(α))(k/2∆u)2F−1

(

F
(

eiπ csc(α)(k/(2∆u))2
)

× F
(

eiπ(cot(α)−csc(α))(k/2∆u)2f

(

k

2∆u

)))

.

(4.26)

The Fourier transforms here can be evaluated using the fast Fourier transform

and, on comparison with equation (4.24), equation (4.26) enables a significantly

faster computation time as the number of calculations has been reduced to

O(N log(N)).

4.4 Applying the FrFT to the Rayleigh–Plesset

solution

The scaled solution to the Rayleigh–Plesset equation, R̂(u), is found by first

obtaining a numerical solution, R(ϑ), to the non-dimensionalised equation (4.5).

The built-in Mathematica [2] algorithm NDSolve, with StiffnessSwitching method

selected, is implemented to find a solution in the non-dimensionalised time-

domain. This algorithm switches between explicit and implicit numerical meth-

ods to solve highly oscillatory differential equations correct to eight significant

digits, with the resulting solution expressed as an interpolating function. This

generates a smooth, continuous solution, R(ϑ) and, by applying equation (4.7),

R̂(u) is computed. This solution is then sampled at 2N data points over the

region u ∈ [−∆u/2, ∆u/2] to satisfy Nyquist’s sampling theorem.

An accurate representation of the ath order transform is compiled by pro-

ducing 2N samples of fa(uk), utilising equation (4.26) for k = −N, ..., N − 1.
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This provides an efficient method of discretely computing the ath order FrFT

of a function f , which is applied to the sampled solution R̂(uk) by means of an

algorithm constructed in Mathematica. From equation (4.26), the discrete ath

order transform can be written as

fa = gchF−1(F(g1)F(g2f)) (4.27)

where the four components on the right-hand side are vectors of length 2N and

are defined as

gch = {gchk} ,

g1 = {g1k} ,

g2 = {g2k} ,

f = {fk} ,



































(4.28)

for k = −N, ..., N − 1, where

gchk = Aα

2∆u
eiπ(cot(α)−csc(α))(k/2∆u)2 ,

g1k = eiπ csc(α)(k/(2∆u))2 ,

g2k = eiπ(cot(α)−csc(α))(k/2∆u)2 ,

fk = R̂
(

k
2∆u

)

,



































(4.29)

where R̂ is defined by equation (4.7). The algorithm requires three inputs: the

order parameter a, the interval ∆u and the vector dimension 2N . Prescribing

these input values allows the vectors defined by equations (4.28) and (4.29) to

be evaluated.

Positive and negative frequency components are inherent artifacts of the

discrete FT [23, p56] [16, p262], and power spectra generated with this technique

commonly display a symmetrical output. A regular power spectrum represents

the positive frequency components first, increasing from zero to the maximum
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frequency captured, followed by the negative frequency components, decreasing

from the maximum frequency captured to zero. In this study the transform

fa is defined on the interval [−∆u/2, ∆u/2] for all values of a. It is therefore

natural to represent the first-order transform, the ordinary FT, with the negative

frequency component first, followed by the positive component, maintaining a

smooth transition between each order a. One observation of the bubble response

defined by equation (4.7) is that its FrFT in all domains, including time and

frequency, exhibit increased amplitudes around u = 0. Interchanging the order

of the frequency components therefore has the added advantage of focusing

the most significant information around the centre of each transform as it is

portrayed over the interval [−∆u/2, ∆u/2]. Focusing the information in this

way will prove to be important in minimising the loss of data which results from

the visualisation of the FrFTs, described in Section 4.5. To implement this step

in the algorithm, the vector product from equation (4.27),

gpn = F−1(F(g1)F(g2f)

is converted to gnp, where

gnpk = gpnk, for k = 0, ..., N − 1,−N, ...,−1.

From equation (4.27) the vector of sampled ath order transforms can now be

written as

fa = gchgnp. (4.30)

Section 4.3 outlined how the order additivity property, given by equation

(4.13), could be employed in order to apply equation (4.26) for any value a ∈
[−2, 2]. However, it was found that the highly oscillatory nature of the integrals
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led to significant errors in certain cases. That is

fb(fc) 6= fb+c ∀|b|, |c|,∈
[

1

2
,
3

2

]

.

To circumvent this issue a series of heuristic rules is prescribed. Empirical

observations suggest that for some values of the order parameter the transform

should be applied twice. In these regions, if a = b + c then fa = fb(fc), where b

and c satisfy

b + c ≤ 3

2
and sgn(b) 6= sgn(c).

In some regions of the order parameter a it was necessary to apply a third

transform. In these regions, if a = b + c + d then fa = fb(fc(fd)), where

b + c + d ≤ 3

2
, sgn(b) 6= sgn(c),

and b, c and d satisfy |b| ≥ |c| ≥ |d|. Following these rules, fa can be expressed

explicitly over the various regions as

fa =



















































f−1.5(f0.7(fa+0.8)) for − 2 ≤ a < −1.5,

f−1(fa+1) for − 0.5 < a < 0,

fa for 0.5 ≤ |a| ≤ 1.5,

f1(fa−1) for 0 ≤ a < 0.5,

f1.5(f−0.7(fa−0.8)) for 1.5 < a ≤ 2.

(4.31)

4.5 Visual representation of the FrFT

Calculating fa over the entire range a ∈ [−2, 2] produces a complete picture of

the FrFT as a varies, providing a wealth of information on the characteristics of
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the function f under each transform. Two methods are used here to visualise

this broad spectrum of transforms. The first method constructs a matrix

Fa(u) = fa i(u), for ai ∈ [−2, 2], (4.32)

where the ath order transform of a function f is fa, defined by equation (4.30).

The matrix Fa(u) therefore details the FrFT of the function f(u) over the range

u ∈ [−∆u/2, ∆u/2] for order parameters satisfying a ∈ [−2, 2]. This matrix

can be considered as a function of two variables, the independent variable, u,

and the order parameter, a. The absolute value of each matrix element is found

and the results are displayed in a density plot. Transforms for every value of a

are then displayed simultaneously over the complete range of u. In this repre-

sentation each horizontal line illustrates one transform fa(u) over the interval

u ∈ [−∆u/2, ∆u/2]. The bottom edge of the plot corresponds with the −2nd

order transform and the top edge of the plot corresponds with the 2nd order

transform. Note that by the periodicity of the FrFT these are the same. The

central horizontal line corresponds to the zero order transform or the original

time-domain function. Depicting all distinct FrFTs of a function in this way

enables an observer to identify features which are not apparent when studying

a single-order transform. Plots of this nature are called rectangular time-order

plots [99].

An alternative method of displaying the FrFT for each value of a ∈ [−2, 2]

is the polar time-order plot. The rectangular time-order co-ordinates (u, a) are

expressed as polar co-ordinates, where the angular co-ordinate is the order pa-

rameter α and the radial co-ordinate is the variable u. Every ray emanating

from the origin represents an individual transform fa(u), except for the negative

x-axis which simultaneously shows f2(u) and f−2(u), which are of course equiv-

alent. Since every transform stems from the origin, it is the single undefined
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point in this representation. The positive x- and y-axes respectively correspond

to the zero order (time-domain) and the 1st order (frequency-domain) trans-

forms. In some studies [81, 82, 98] each transform fa(u) is restricted to the

interval u ∈ [0, ∆u/2]. This allows the positive x- and y-axes to be identified

as time and frequency axes, both zero at the origin and assuming increasing

positive values as they extend. The polar time-order plot can then be realised

as a time-frequency phase plot, and it is straightforward to interpret the results

physically. However, in this report, the transform fa(u) is generally not sym-

metric around u = 0, and truncating the range of u would therefore discard half

of the available information. For this reason each line radiating from the origin

can theoretically represent a transform fa(u) for u ∈ (−∆u/2, ∆u/2]. The polar

time-order plot is represented here as a square, not a circle, and in practice only

the diagonal rays are able to portray the full transform fa(u) over this range.

Thus the transforms along the diagonal rays, a = ±0.5 and ±1.5 or α = ±π/4

and ±3π/4, are length 2N and a simple calculation reveals that the transforms

along each axis, a = 0, ±1 and ±2 or α = 0, ±π/2 and ±π, will be of length
√

2N . The area examined in the polar time-order plot is evidently reduced in

comparison with the rectangular time-order plot; however, this reduction facili-

tates a more focused investigation.

To construct the polar time-order plot, the area of the plot is covered in a

fine mesh Mxy for x = −
√

2N, ...,
√

2N and y = −
√

2N, ...,
√

2N . Each node

of the mesh is assigned the co-ordinates (u, a), which describe the transform

fa(u) passing through this node. The co-ordinates u and a are calculated by a
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standard Cartesian-polar transformation. The order of a node Mxy is defined as

a =
2α

π
=



















































2

π
tan−1

(y

x

)

for x > 0,

2

π
tan−1

(y

x

)

+ π for x < 0, y ≥ 0,

2

π
tan−1

(y

x

)

− π for x < 0, y < 0,

π

2
for x = 0, y ≥ 0,

−π

2
for x = 0, y < 0,

(4.33)

which ensures that the correct quadrant is used when defining a, and the radial

component, u, is u =
√

x2 + y2. An example mesh is illustrated in Figure 4.2

and it is clear that each node will not necessarily lie directly on the ray of a

transform, fa. The co-ordinates (u, a) must therefore be rounded to the nearest

(uk, ak), where uk has been previously defined as uk = k/(2∆u) and, in a similar

way, ak = k/∆a, where 1/∆a is the interval between two successive values of a.

The node can then assume the value of the sample fak(uk).

4.6 Numerical results of the FrFT applied to

the response of single bubbles and bubble

systems

Defining the time-scaling parameter as T = 1/ω0, the scaled Rayleigh–Plesset

solution, R̂(u), is manipulated to cover the range u ∈ [−8, 8] in the 0th order

domain. The resonant frequency, ω0, is calculated from equation (4.4) with the

parameter values defined in Table 4.1. Note that the viscosity has been increased

to simulate the signal attenuation when detected by an ultrasonic receiver at

a distance from the bubble. With T and ω0 defined as such, oscillations at

the resonant and second harmonic frequencies from a bubble (with equilibrium
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Figure 4.2: A sample mesh covering the area of the polar time-order plot. The angle between

the positive x-axis and the ray of the transform is denoted by α and each node is assigned

the co-ordinates (u, a) which correspond to the value of u and the order of the transform as

it passes through this node.

radius R0 = 0.10 mm) will appear at u = 1 and u = 2 respectively in the 1st

order (frequency) domain. Figure 4.3 demonstrates this feature, with the dashed

lines through u = 1 and u = 2 intersecting the solid line through a = 1, the first

order domain, at the resonant and second harmonic frequency components of the

bubble’s response. Note that a bubble with an equilibrium radius greater than

R0 = 0.10 mm equates to a scaled resonant frequency smaller than u = 1 and

similarly a bubble with equilibrium radius less than R0 = 0.10 mm equates to

a scaled resonant frequency greater than u = 1. In Figure 4.4 an example polar

time-order plot is shown. The positive and negative components of the resonant

frequency can be seen along the 1st order domain (positive vertical axis) on

either side of u = 0. The positive second harmonic frequency component can

also be seen.
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Figure 4.3: The rectangular time-order plot of the FrFT of a bubble’s dynamics with equilib-

rium radius R0 = 0.10 mm. The solid line through a = 0 represents the time-domain and the

solid line through a = 1 represents the frequency-domain. The dashed lines are through u = 1

and u = 2 for all orders of the transform.

In the results which follow ∆u = 16, resulting in 2N = 512. The forcing

signal parameter values given in Table 4.2 are used in all simulations. This

signal is designed to resonate a bubble with equilibrium radius R0 = 0.10 mm,

and to produce large amplitude oscillations of bubbles with equilibrium radius

satisfying R0 ∈ [0.08, 0.13] mm, resulting in an identifiable second harmonic

component at each of these bubble sizes. This ensures that the response of

each bubble is enhanced. The sampling interval between order parameters is

1/∆a = 1/100.
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Physical System Parameters

Symbol Description Units Value

R0 Bubbles equilibrium radius mm 0.1

ρ Density of surrounding liquid kg m−3 998

p0 Ambient pressure of liquid Pa 1 × 105

σ Surface tension of gas-liquid interface N m−1 0.073

κ Polytropic gas constant dimensionless 1

µ Viscosity of liquid Pa s 50 × 10−3

Table 4.1: System parameter values used in the numerical simulations.

Chirp Forcing Function Parameter Values

Parameter Units Value

a ms 0.181

b ms 0.090

c kHz ms−1 30.652

d kHz 16.609

pc kPa 25.000

Table 4.2: Parameter values for a chirp forcing function designed to resonate a bubble with

resonant frequency calculated from equation (4.4) with parameter values given in Table 4.1.
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Figure 4.4: The polar time-order plot of the FrFT of a bubble’s dynamics with equilibrium

radius R0 = 0.10 mm. The circle and the triangle respectively mark the positive and negative

components of the resonant frequency along the 1st order (frequency) domain. The square

represents the positive second harmonic frequency component in the 1st order (frequency)

domain.

4.6.1 The FrFT of a solitary bubble

The FrFT is applied to the dynamic responses from a range of bubble sizes.

All other parameters values are given in Tables 4.1 and 4.2. The rectangular

time-order plots are displayed in Figure 4.5 and the corresponding polar time-

order plots are shown in Figure 4.6. The results are fascinating, with clear

differences apparent between bubble sizes. Observers could be overwhelmed,

however by the wealth of data, and deciphering any physical information is a

challenge which would require a significant amount of time to gain expertise. To
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aid investigations the data is thresholded. Let

f̄a(u) =















0, for
fa(u)

max(fa(u))
≤ 0.2

1, for
fa(u)

max(fa(u))
> 0.2,

where max(fa(u)) is the maximum value of fa(u) over all a and u values within

each bubble size. Considering f̄a(u) thus filters out the lower amplitude be-

haviour and allows the critical features to be observed. Thresholded rectangular

time-order plots are shown in Figure 4.7 with the equivalent polar time-order

plots in Figure 4.8. The 0th and 1st order transforms have been included in

Figures 4.9 and 4.10 to highlight the benefits of applying FrFTs in this setting.

In Figure 4.5, each plot portrays the smooth transition between subsequent

values of the order parameter a. The plots are symmetric along the x-axis, the

0th order transform, and the 1st order, or −1st order, transforms highlight the

negative and positive frequency components, bisected at u = 0. The resonant

frequencies appear as hot-spots of white on each plot, and the second harmonic

component is evident in each plot. The chirp signal defined by parameter values

in Table 4.2 will resonate a bubble with equilibrium radius R0 = 0.10 mm, and

plots (c) and (d) in particular highlight the resonating qualities of the chirp

with bubbles around this size, as higher harmonic components are apparent.

The contribution that each peak in the 0th order transform makes towards the

peaks in the 1st order transform can be traced, displaying the complex nature

which is intrinsic to the FrFT.

The polar time-order representations of these plots, Figure 4.6, are equally

fascinating. Section 4.5 explained why the range of u is curtailed in these plots.

Indeed, examining each plot along the positive y-axis, the 1st order transform,

reveals that the fundamental and second harmonic frequency components are

186



PSfrag replacements

u

a

PSfrag replacements

u

a

(a) R0 = 0.08mm (b) R0 = 0.09mm

PSfrag replacements

u

a

PSfrag replacements

u

a

(c) R0 = 0.10mm (d) R0 = 0.11mm

PSfrag replacements

u

a

PSfrag replacements

u

a

(e) R0 = 0.12mm (f) R0 = 0.13mm

Figure 4.5: Rectangular time-order plot of the FrFT of the response from single bubbles with

various equilibrium radius, R0. The response R̂(u) is calculated by the method described in

Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.6: Polar time-order plot of the FrFT of the response from single bubbles with various

equilibrium radius, R0. The response R̂(u) is calculated by the method described in Section

4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.7: Thresholded rectangular time-order plot of the FrFT of the response from single

bubbles with various equilibrium radius, R0. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.8: Thresholded polar time-order plot of the FrFT of the response from single bubbles

with various equilibrium radius, R0. The response R̂(u) is calculated by the method described

in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.9: 0th order (time-domain) FrFT of the response from single bubbles with various

equilibrium radius, R0. The response R̂(u) is calculated by the method described in Section

4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.10: 1st order (frequency-domain) FrFT of the response from single bubbles with

equilibrium radius, R0, equal to (a) 0.08mm, (b) 0.09 mm, (c) 0.1 mm, (d) 0.11 mm, (e) 0.12

mm, (f) 0.13 mm. The response R̂(u) is calculated by the method described in Section 4.4.

All other parameters are given in Tables 4.1 and 4.2.

192



captured, but the higher harmonics are neglected. These plots again feature a

symmetry along the x-axis, which corresponds to the 0th order and ±2nd order

transforms in this instance. The energy at these transforms is produced over a

relatively large span of u, and as it flows into the domain of the ±1 transforms,

this energy is focused on what appears to be single points. These singular points

correspond to the positive, negative and zero frequency components. Interest-

ingly, however, these focal points do not lie exclusively along the ±1 transforms.

An imaginary line which links the focal points corresponding to the positive and

negative components of the resonant frequency would make a unique angle with

the positive x-axis in each plot. This angle gradually shifts from an obtuse angle

in plot (a), displaying the FrFT of a bubble with R0 = 0.08 mm, to approxi-

mately 90o in plot (f) which shows the FrFT of a bubble with R0 = 0.13 mm.

The thresholded time-order plots, Figures 4.7 and 4.8, highlight the fea-

tures of the FrFT of these bubble sizes. Figure 4.7 demonstrates that the high-

amplitude behaviour of each FrFT is located around the origin and that the

behaviour of each bubble size is portrayed differently. Plot (a) illustrates the

characteristics of a bubble with R0 = 0.08 mm. A relatively thick area is high-

lighted stretching along the direction of the y-axis. This highlighted area is

slightly curved: the high-amplitude behaviour at the 0th order transform occurs

for more negative values of u than the corresponding behaviour at the ±2nd

order transforms. On comparison with plot (f), this region of high-amplitude

behaviour has significantly reduced in width and the slight curve has evolved

into a substantial kink. The intermediate plots exhibit a smooth progression

between the two contrasting displays.

In Figure 4.8 the high-amplitude behaviour is represented as rings. The va-

riety in thickness and curvature of the region of interest which is depicted in
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Figure 4.7 is manifested here in rings of varying thicknesses and origins. Circu-

lar, as opposed to elliptic, regions of high-amplitude behaviour are attributable

to the steady transition of these regions between each order for a given bubble

size.

Figures 4.9 and 4.10 display the 0th order, or time-domain, and 1st order, or

frequency-domain, representations of each bubble size. The time-domain rep-

resentations in Figure 4.9 demonstrate how the chirp induces larger amplitude

behaviour around R0 = 0.10 mm, and the differences between the thickness of

the regions of high-amplitude behaviour are confirmed to be true for a = 0. In

Figure 4.10 the frequency-domain representations clearly show negative and pos-

itive components for the fundamental and second harmonic frequencies. Each

plot has evidence of higher harmonic components, with plot (c) in particular,

for bubble size R0 = 0.10 mm, evincing significant amplitude of the higher har-

monics.

4.6.2 FrFTs of two bubbles of the same size

A similar investigation is carried out for two independent bubbles, where both

bubbles have identical equilibrium radius, R0 but are shifted in space. This

investigation is performed for three bubble sizes: R0 = 0.08 mm, R0 = 0.10 mm

and R0 = 0.12 mm. The response of the first bubble is fixed throughout each

investigation and the response of the second bubble is shifted. To obtain a

clear picture of the two separate responses, the response of the first bubble is

advanced, so that it appears as far left as possible in the reduced range of the

polar time-order plots. Investigations of this type simulate the response obtained

from two bubbles of equal size separated spatially. The bubbles are assumed to
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be sufficiently separated in space that their responses do not interfere with each

other. In this way the response from the population is expressed as a linear

combination of the individual responses. That is,

R̂c1(u) = R̂(u + 50δu) + R̂(u − kδu), (4.34)

where δu = 1/(2∆u) and k is varied to give a range of shifted responses. The

results are displayed in Figures 4.11 to 4.28.

In Figure 4.11 the rectangular time-order plot of the FrFT from two indepen-

dent bubbles of the same size, with R0 = 0.08m and one bubble response shifted

in time, are displayed. In plot (a) both bubble responses occur simultaneously

and the result appears identical to that of a single bubble with R0 = 0.08 mm.

However, as the shift between responses increases, the contribution of the shifted

bubble becomes increasingly prevalent and the spread of the 0th order transform

has approximately doubled between plots (a) and (f). Similar observations can

be made in the corresponding polar time-order plots, shown in Figure 4.12, al-

though in both Figures the characteristics of the FrFT are flourished with such

intricate detail that any meaningful investigation is difficult. Each plot in Figure

4.12 evinces a series of beautifully symmetric and elegant swirls but quantifying

the differences between each plot would be an arduous task. The advantage of

the thresholded plots in Figures 4.13 and 4.14 is that only the dominant be-

haviour is retained. This concisely displays the behaviour of the FrFT and in

Figure 4.13 the response of the shifted bubble becomes increasingly apparent as

the separation increases. Plots (e) and (f) clearly depict two distinct responses,

and comparison with plot (a) reveals that the influence of the fixed bubble is

fully retained, with the shifted bubble adding to the overall response. Upon in-

vestigation, the maximum separation in each plot between the two responses is

approximately equivalent to the difference in terms of u between each response
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which are apparent from equation (4.34). Figure 4.14 displays similar features,

although due to the restricted range the maximum separation between responses

cannot be so readily identified.

In Figures 4.15 and 4.16 the corresponding time and frequency-domain rep-

resentations are given. The time-domain signals do not provide any discernable

insight towards the existence of two bubbles, or towards the separation between

these bubbles. Similarly the frequency-domain signals offer limited information.

The increased amplitude on comparison with Figure 4.9(a) could be interpreted

as a second bubble; however, this is by no means conclusive, and there is no

means of extracting information as to the separation between bubbles.

Figures 4.17–4.22 and Figures 4.23–4.28 show equivalent studies when both

bubbles are of size R0 = 0.10 mm and R0 = 0.12 mm respectively. The results

throughout each of these investigations complements the results found above.

The case where R0 = 0.10 mm increases the complexity of Figures 4.17 and 4.18,

due to the enhanced harmonic contribution from the higher harmonic compo-

nents. However this behaviour is naturally low-amplitude, even utilising chirp

insonification, and thus is not retained in the thresholded plots.

For R0 = 0.12 mm, the bubble’s response occurs over a comparatively small

interval of u. This improves the distinction between the response from each

bubble, particularly in Figures 4.25 and 4.26 where the two responses are easily

distinguishable in the majority of plots. This enhanced clarity in thresholded

plots is extremely advantageous.
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Figure 4.11: Rectangular time-order plots of the FrFT of the response from two independent

bubbles. Each bubble has equilibrium radius, R0 = 0.08mm and the combined response is

calculated from equation (4.34) for various values of k. The response R̂(u) is calculated by

the method described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.12: Polar time-order plots of the FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.08mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.13: Thresholded rectangular time-order plots of the FrFT of the response from two

independent bubbles. Each bubble has equilibrium radius, R0 = 0.08mm and the combined

response is calculated from equation (4.34) for various values of k. The response R̂(u) is

calculated by the method described in Section 4.4. All other parameters are given in Tables

4.1 and 4.2.
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Figure 4.14: Thresholded polar time-order plots of the FrFT of the response from two indepen-

dent bubbles. Each bubble has equilibrium radius, R0 = 0.08mm and the combined response

is calculated from equation (4.34) for various values of k. The response R̂(u) is calculated by

the method described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.15: 0th order (time-domain) FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.08mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.16: 1st order (frequency-domain) FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.08mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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4.6.3 FrFTs of two bubbles of different sizes

This study involves applying the FrFT to the response from two independent

bubbles, where the bubbles have different equilibrium radius R0a and R0b. Re-

sults indicate that the response from a bubble with an equilibrium radius of

R0 = 0.12 mm has a short interval of u while retaining strong resonating prop-

erties. Therefore in this study the equilibrium radius of the first bubble, R0a,

is fixed throughout at R0a = 0.12 mm and the radius of the second bubble,

R0b, is varied. The combined response from the system is calculated from an

adaptation of equation (4.34), namely

R̂c2(u) = R̂a(u + 50δu) + R̂b(u − 125δu), (4.35)

where R̂a denotes the response from a bubble with equilibrium radius R0a, and

R̂b is similarly defined. The delay between the responses is fixed for each bubble

size. Figures 4.29–4.34 show the associated plots.

Figure 4.29 displays the rectangular time-order plots of the corresponding

FrFTs. The separation between bubbles is substantial enough that both re-

sponses can be identified here. The amplitude and characteristics of the peaks

are subtly different for each size of bubble, although all plots exhibit similar char-

acteristics. A similar situation is evident in the polar time-order plots in Figure

4.30. Each individual response can be identified, since the complex interaction

between different orders of a is slightly reduced by prescribing a sufficient sep-

aration between the bubble responses. Thresholding is again applied in Figures

4.31 and 4.32 where these characteristics of the bubbles’ response are highlighted.

Figure 4.31 portrays the responses weaving around each other, intersecting at

the ±1st order transforms and completely separating in-between. The response

of the second bubble is shifted by the same amount in each plot; however, Figure

4.31 indicates that the separation between bubbles is not consistent. This may
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Figure 4.17: Rectangular time-order plots of the FrFT of the response from two independent

bubbles. Each bubble has equilibrium radius, R0 = 0.10mm and the combined response is

calculated from equation (4.34) for various values of k. The response R̂(u) is calculated by

the method described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.18: Polar time-order plots of the FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.10mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.19: Thresholded rectangular time-order plots of the FrFT of the response from two

independent bubbles. Each bubble has equilibrium radius, R0 = 0.10mm and the combined

response is calculated from equation (4.34) for various values of k. The response R̂(u) is

calculated by the method described in Section 4.4. All other parameters are given in Tables

4.1 and 4.2.

206



PSfrag replacements

u

PSfrag replacements

u

(a) k = 250 (b) k = 250

PSfrag replacements

u

PSfrag replacements

u

(c) k = 250 (d) k = 250

PSfrag replacements

u

PSfrag replacements

u

(e) k = 250 (f) k = 250

Figure 4.20: Thresholded polar time-order plots of the FrFT of the response from two indepen-

dent bubbles. Each bubble has equilibrium radius, R0 = 0.10mm and the combined response

is calculated from equation (4.34) for various values of k. The response R̂(u) is calculated by

the method described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.21: 0th order (time-domain) FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.10mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.22: 1st order (frequency-domain) FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.10mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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require further investigation. This behaviour is captured in Figure 4.32, where

two distinct sets of rings are apparent in each plot. Evidently, the size of the

rings produced by the second bubble decreases and translates to the left as the

bubble’s equilibrium radius increases. However, this may be an artefact of the

apparently reduced separation between the bubbles as the size of the second

bubble increases.

In Figure 4.34 the corresponding ordinary frequency-domain plots are dis-

played, and comparison with Figures 4.29 and 4.30 emphasises the advantages

of FrFT analysis. Each plot in Figure 4.34 shows the frequency response from

two bubbles; however, this is not clear. Two bubbles of different sizes can be an-

ticipated to display two distinct peaks at different resonant frequencies (around

u = 1), and second harmonic frequencies (around u = 2); however, this feature

is not prominent in any plot. The advantage of FrFT analysis in this case is that

the bubbles’ responses are investigated under a range of order parameters, so

that the features exhibited by a bubble’s response can clearly be distinguished

from noise arising within an individual order parameter, and two bubbles’ re-

sponses can therefore clearly be identified.

4.6.4 FrFT of a population of five bubbles of the same

size

Naturally progressing the previous results, the FrFT of a five-bubble popula-

tion is investigated, where each bubble has identical equilibrium radius R0 =

0.12 mm. The response of the population is evaluated by extending the linear
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response combination given by equation (4.34) to

R̂c3(u) = R̂(u + 175δu) + R̂(u + 50δu) + R̂(u − 75δu)

+R̂(u − 200δu) + R̂(u − 325δu). (4.36)

The delay between successive responses is chosen to highlight each separate re-

sponse. The response of the entire population ranges over a large interval of u,

covering the window of investigation for the rectangular time-order plot. The

polar time-order plots are therefore omitted in this study, since their reduced

range will not include the complete population response. The results are dis-

played in Figures 4.35–4.38, where the FrFT of the response of each bubble

within the population is additionally included for reference.

Plots (a)–(e) in Figure 4.35 show the rectangular time-order plots of the

five individual bubbles which make up the population under investigation. In

order to obtain an adequate range of bubble responses for investigation, it is

necessary to shift the responses, resulting in extremely delayed or extremely

advanced bubble responses. This leads to extremely low amplitude behaviour

around u = 0 for plots (a) and (e), and the definitions given in equation (4.31)

are not sufficient to provide a smooth transition between the separate regions

of the order parameter. However, the essential behaviour is captured, and the

bubbles’ responses are clearly different in each instance. Plot (f) illustrates the

combination of these responses. The result is more complex than any of the

individual components; however, it is not clear that this is a representation of

five distinct bubbles. Examination of Figure 4.36 achieves this goal. The high-

amplitude behaviour of each individual response is portrayed in plots (a)–(e)

and the resulting combination is given in plot (f). The full detail of each in-

dividual response is not retained in plot (f) but it is clear that there are five

distinct responses, each of which is characteristic of the single bubble response
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evident in plots (a)–(e).

Figures 4.37 and 4.38 show the corresponding responses in the time and

frequency domains respectively. Plot (f) in each of these Figures once again rep-

resents the combined response from the entire population. In each case there is

no indication that this is the response from a population, as there are no distinct

signals evident in the time-domain and there is not a significantly increased sig-

nal amplitude in the frequency-domain from which the number of bubbles could

be extracted. This investigation therefore highlights the potential of the FrFT

in enumerating populations of bubbles, a feat which is extremely difficult using

standard time and frequency-domain analysis.

4.7 Cross-correlation of two signals

The results from Section 4.6 indicate that an experimentalist could examine the

FrFT of the response from a chirp insonified bubble population, and would be

capable of inferring from the time-order plots of this transform the number and

size of the bubbles which constitute the population. In practice, the response

from a bubble population will not be as idealistic as the responses presented in

Section 4.6. There will undoubtedly be an element of noise introduced from the

experimental apparatus, and the bubbles could be tightly packed which would

make the identification of an individual response difficult. Therefore simply de-

ciphering the FrFT of an experimentally obtained population response may have

limitations in identifying the specifications of the individual bubbles within the

population.

An alternative approach is to measure the degree of similarity between the

experimental response and the theoretical responses. Optimisation of the theo-
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Figure 4.23: Rectangular time-order plots of the FrFT of the response from two independent

bubbles. Each bubble has equilibrium radius, R0 = 0.12mm and the combined response is

calculated from equation (4.34) for various values of k. The response R̂(u) is calculated by

the method described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.

213



PSfrag replacements

u

PSfrag replacements

u

(a) k = −50 (b) k = 25

PSfrag replacements

u

PSfrag replacements

u

(c) k = 100 (d) k = 175

PSfrag replacements

u

PSfrag replacements

u

(e) k = 250 (f) k = 325

Figure 4.24: Polar time-order plots of the FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.12mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.25: Thresholded rectangular time-order plots of the FrFT of the response from two

independent bubbles. Each bubble has equilibrium radius, R0 = 0.12mm and the combined

response is calculated from equation (4.34) for various values of k. The response R̂(u) is

calculated by the method described in Section 4.4. All other parameters are given in Tables

4.1 and 4.2.
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Figure 4.26: Thresholded polar time-order plots of the FrFT of the response from two indepen-

dent bubbles. Each bubble has equilibrium radius, R0 = 0.12mm and the combined response

is calculated from equation (4.34) for various values of k. The response R̂(u) is calculated by

the method described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.27: 0th order (time-domain) FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.12mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.28: 1st order (frequency-domain) FrFT of the response from two independent bubbles.

Each bubble has equilibrium radius, R0 = 0.12mm and the combined response is calculated

from equation (4.34) for various values of k. The response R̂(u) is calculated by the method

described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.29: Rectangular time-order plots of the FrFT of the response from two independent

bubbles. One bubble has equilibrium radius R0a = 0.12 mm, and the equilibrium radius of

the second bubble, R0b is varied. The combined response is given by equation (4.35). The

response R̂(u) is calculated by the method described in Section 4.4. All other parameters are

given in Tables 4.1 and 4.2.
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Figure 4.30: Polar time-order plots of the FrFT of the response from two independent bubbles.

One bubble has equilibrium radius R0a = 0.12 mm, and the equilibrium radius of the second

bubble, R0b is varied. The combined response is given by equation (4.35). The response R̂(u)

is calculated by the method described in Section 4.4. All other parameters are given in Tables

4.1 and 4.2.
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Figure 4.31: Thresholded rectangular time-order plots of the FrFT of the response from two

independent bubbles. One bubble has equilibrium radius R0a = 0.12 mm, and the equilibrium

radius of the second bubble, R0b is varied. The combined response is given by equation (4.35).

The response R̂(u) is calculated by the method described in Section 4.4. All other parameters

are given in Tables 4.1 and 4.2.
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Figure 4.32: Thresholded polar time-order plots of the FrFT of the response from two inde-

pendent bubbles. One bubble has equilibrium radius R0a = 0.12 mm, and the equilibrium

radius of the second bubble, R0b is varied. The combined response is given by equation (4.35).

The response R̂(u) is calculated by the method described in Section 4.4. All other parameters

are given in Tables 4.1 and 4.2.
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Figure 4.33: 0th order (time-domain) FrFT of the response from two independent bubbles.

One bubble has equilibrium radius R0a = 0.12 mm, and the equilibrium radius of the second

bubble, R0b is varied. The combined response is given by equation (4.35). The response R̂(u)

is calculated by the method described in Section 4.4. All other parameters are given in Tables

4.1 and 4.2.
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Figure 4.34: 1st order (frequency-domain) FrFT of the response from two independent bubbles.

One bubble has equilibrium radius R0a = 0.12 mm, and the equilibrium radius of the second

bubble, R0b is varied. The combined response is given by equation (4.35). The response R̂(u)

is calculated by the method described in Section 4.4. All other parameters are given in Tables

4.1 and 4.2.
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Figure 4.35: The rectangular time-order plot of the FrFT of the response from five single

bubbles within a population, with equilibrium radius R0a = 0.12 mm and with various shifts,

(a)–(e), and the FrFT of the combined response of the population, given by equation (4.36),

(f). The response R̂(u) is calculated by the method described in Section 4.4. All other

parameters are given in Tables 4.1 and 4.2.
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Figure 4.36: (a) The thresholded rectangular time-order plot of the FrFT of the response from

five single bubbles within a population, with equilibrium radius R0a = 0.12 mm and with

various shifts, (a)–(e), and the FrFT of the combined response of the population, given by

equation (4.36), (f). The response R̂(u) is calculated by the method described in Section 4.4.

All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.37: (a) The 0th order (time-domain) FrFT of the response from five single bubbles

within a population, with equilibrium radius R0a = 0.12 mm and with various shifts, (a)–(e),

and the FrFT of the combined response of the population, given by equation (4.36), (f). The

response R̂(u) is calculated by the method described in Section 4.4. All other parameters are

given in Tables 4.1 and 4.2.
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Figure 4.38: The 1st order (frequency-domain) FrFT of the response from five single bubbles

within a population, with equilibrium radius R0a = 0.12 mm and with various shifts, (a)–(e),

and the FrFT of the combined response of the population, given by equation (4.36), (f). The

response R̂(u) is calculated by the method described in Section 4.4. All other parameters are

given in Tables 4.1 and 4.2.
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retical response which is the closest match to the experimental response would

suggest the most likely population composition. One method of examining the

similarity between two signals is cross-correlation. Ozaktas et al. have demon-

strated that the two-dimensional cross-correlation of the FrFTs of a pair of

signals, where the integration variables represent the order parameter a and

the independent variable u, is capable of superior discrimination than standard

time-domain cross-correlation [99].

The two-dimensional cross-correlation of the FrFT of two signals, f(u) and

g(u), is defined as

Fa ? Ga =

∫ ∫

Fa′(u′)G(a′−a)(u
′ − u) du′ da′, (4.37)

where the bar denotes the complex conjugate and ? denotes the cross-correlation

operation. Each matrix Fa(u) and Ga(u) is calculated through definition (4.32).

The two-dimensional cross-correlation operation essentially fixes one matrix,

Fa(u), and slides the second matrix, Ga(u), along the u and a axes, calcu-

lating the product of the matrices at each shifted position. The maximum value

of this product indicates where the matrices are best-matched. Zero-padding

is included in both matrices to facilitate sliding Ga(u) to the extreme u and

a values along each axis. Consequentially, the matrices Fa(u) and Ga(u) pre-

sented here are of dimensions R
(3×2N)×(3×4∆a), where only the central 2N × 4∆a

elements are non-zero.

Computing the integral (4.37) over the complete range of u and a values

would be a computationally expensive process; however, the cross-correlation

theorem states that this operation can be defined in terms of Fourier transforms.

That is [17, p65–69]

Ha = Fa ? Ga = F−1
(

F (Fa)F (Ga)
)

. (4.38)
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The use of FFTs allows the cross-correlation to be calculated efficiently and

quickly. An algorithm is constructed in Mathematica to perform this calcula-

tion. The resulting matrix Ha is rearranged to correctly position the positive

and negative frequency components. This is necessary for both variables, along

the u- and a-axes. Zeroes arising from the zero-padding are also removed. The

entire process is extremely efficient and does not require much computation time.

4.7.1 Results

In this Chapter the theoretical response of a particular bubble of equilibrium

radius R0a is employed to simulate the experimental data and the matrix Fa(u)

is then formed using equation (4.32). The theoretical response from a differ-

ent bubble is used to form the matrix Ga(u), and the cross-correlation of the

two matrices is performed using equation (4.38). A series of matrices Ga(u) is

formed from the response of a second bubble of equilibrium radius R0b, where

R0b is varied over the set {0.08, 0.09, 0.10, 0.11, 0.12, 0.13} mm. This scenario

is investigated for three separate bubble sizes, R0a = 0.08, 0.10, 0.12 mm. In

each case the output Ha is represented as a three-dimensional surface, a density

plot of this surface and a cross-section of the surface at a = 0. The cross-section

is compared with an ordinary time-domain cross-correlation of the two responses.

In Figure 4.39 the three-dimensional surfaces of Ha, the cross-correlation,

between the (simulated) experimental response and the theoretical bubble re-

sponse are displayed. The response from a bubble with equilibrium radius

R0a = 0.08 mm is used as the test response, and a second bubble of varying

equilibrium radius is used as the theoretical response. Plot (a), which is the

auto-correlation of the test response with itself, clearly shows a sharp spike at
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the origin, with little evidence of energy dissipating to other regions. This spike

dissipates slightly in Plot (b), with a decreased amplitude and more diffused

surface, and in Plots (c)–(f) it is hard to distinguish any spike at the origin.

This behaviour is of course expected, as the correlation of the test response

with itself will obviously produce the largest degree of similarity. Figure 4.40

shows the corresponding density plots which exhibit the intricate and complex

interaction between the two signals. It is possible that information gleaned from

the investigation of these density plots could provide insight as to the quality

of the cross-correlation between two signals. The largest amplitude behaviour

does appear to be focused around the origin in Plot (a), and in contrast the

high-amplitude behaviour is spread over a larger area in Plots (b)–(f). In Fig-

ures 4.41 and 4.42 the benefit of cross-correlating the FrFT of two signals, in

comparison with standard time-domain cross-correlation is shown; the former

shows a very clear spike at the origin. The plots in Figure 4.41 show a cross-

section of the surface of the FrFT cross-correlation, taken at a = 0. These plots

give an elementary portrayal of the similarity between the two signals, with Plot

(a) exhibiting a clear spike centred on the origin, with relatively low side-lobes

and of greater amplitude than is evident in Plots (b)–(f). Comparison with

the corresponding plots in Figure 4.42 reveals that the standard time-domain

cross-correlation struggles to identify the auto-correlation of the test response

with itself; the auto-correlation does not exhibit the largest amplitude, and the

peaks in each plot are not distinct.

Figures 4.43–4.50 display the three-dimensional, density, cross-sectioned and

standard (time-domain) cross-correlation plots when the test response is from

a bubble with equilibrium radius R0a = 0.10 mm and R0a = 0.12 mm. These

plots agree with the findings above, and confirm that by employing the FrFT and

two-dimensional cross-correlation, a superior discrimination between the auto-
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correlation of a signal with itself and the cross-correlation of the signal with a

different signal can be obtained.

4.8 Conclusions

The dynamics of a bubble insonified by an ultrasonic chirp has been analysed

by taking fractional Fourier transforms of the bubble’s response. Two methods

of visualising the transformed signal over the full range of the order parameter

a are presented; namely the rectangular and polar time-order plots. These plots

have the capability of revealing the phenomenological behaviour which are in-

trinsic characteristics of a bubble’s dynamics, behaviour which would be very

difficult to detect under a particular order parameter analysis, such as standard

time or frequency-domain analysis.

A study of the efficacy of the FrFT in enumerating and identifying the size

and spatial distribution of bubbles within a population was conducted. It was

found that by thresholding the time-order plots in order to highlight the high-

amplitude behaviour of the response, the FrFT could enumerate bubbles within

a population. This was demonstrated with up to five bubbles. It was found that

the FrFT could potentially reproduce the separation between two responses, a

technique which could be used to infer the distance between two bubbles within

a population. In the investigation of two bubbles with different equilibrium ra-

dius, the results suggest that the FrFT is capable of quantitatively identifying

the different sizes present. However, the apparent difference between sizes was

only identifiable due to the separation between the signals. It is therefore un-

clear how effective the current results are at discerning spatial separation and/or

size distribution, and more investigation is necessary.
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Figure 4.39: A three-dimensional plot of the cross-correlation surface of the FrFT of the

response from a single bubble of equilibrium radius R0a = 0.08 mm with various single bubbles

of equilibrium radius R0b. The method used to calculate each bubble’s response and its FrFT

is described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.40: A density plot of the cross-correlation surface of the FrFT of the response from a

single bubble of equilibrium radius R0a = 0.08 mm with various single bubbles of equilibrium

radius R0b. The method used to calculate each bubble’s response and its FrFT is described

in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.

234



-8 -4 0 4 8

20

40

60

80

PSfrag replacements

u

H0(u)

(a) R0b = 0.08 mm

-8 -4 0 4 8

20

40

60

80

PSfrag replacements

u

H0(u)

(b) R0b = 0.09 mm

-8 -4 0 4 8

20

40

60

80

PSfrag replacements

u

H0(u)

(c) R0b = 0.10 mm

-8 -4 0 4 8

20

40

60

80

PSfrag replacements

u

H0(u)

(d) R0b = 0.11 mm

-8 -4 0 4 8

20

40

60

80

PSfrag replacements

u

H0(u)

(e) R0b = 0.12 mm

-8 -4 0 4 8

20

40

60

80

PSfrag replacements

u

H0(u)

(f) R0b = 0.13 mm

Figure 4.41: A cross-section, taken at a = 0, of the cross-correlation surface of the FrFT of

the response from a single bubble of equilibrium radius R0a = 0.08 mm with various single

bubbles of equilibrium radius R0b. The method used to calculate each bubble’s response and

its FrFT is described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.42: A standard time-domain cross-correlation of the response from a single bubble

of equilibrium radius R0a = 0.08 mm with various single bubbles of equilibrium radius R0b.

The method used to calculate each bubble’s response is described in Section 4.4. All other

parameters are given in Tables 4.1 and 4.2.
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Figure 4.43: A three-dimensional plot of the cross-correlation surface of the FrFT of the

response from a single bubble of equilibrium radius R0a = 0.10 mm with various single bubbles

of equilibrium radius R0b. The method used to calculate each bubble’s response and its FrFT

is described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.44: A density plot of the cross-correlation surface of the FrFT of the response from a

single bubble of equilibrium radius R0a = 0.10 mm with various single bubbles of equilibrium

radius R0b. The method used to calculate each bubble’s response and its FrFT is described

in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.45: A cross-section, taken at a = 0, of the cross-correlation surface of the FrFT of

the response from a single bubble of equilibrium radius R0a = 0.10 mm with various single

bubbles of equilibrium radius R0b. The method used to calculate each bubble’s response and

its FrFT is described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.46: A standard time-domain cross-correlation of the response from a single bubble

of equilibrium radius R0a = 0.10 mm with various single bubbles of equilibrium radius R0b.

The method used to calculate each bubble’s response is described in Section 4.4. All other

parameters are given in Tables 4.1 and 4.2.
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Figure 4.47: A three-dimensional plot of the cross-correlation surface of the FrFT of the

response from a single bubble of equilibrium radius R0a = 0.12 mm with various single bubbles

of equilibrium radius R0b. The method used to calculate each bubble’s response and its FrFT

is described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.48: A density plot of the cross-correlation surface of the FrFT of the response from a

single bubble of equilibrium radius R0a = 0.12 mm with various single bubbles of equilibrium

radius R0b. The method used to calculate each bubble’s response and its FrFT is described

in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.49: A cross-section, taken at a = 0, of the cross-correlation surface of the FrFT of

the response from a single bubble of equilibrium radius R0a = 0.12 mm with various single

bubbles of equilibrium radius R0b. The method used to calculate each bubble’s response and

its FrFT is described in Section 4.4. All other parameters are given in Tables 4.1 and 4.2.
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Figure 4.50: A standard time-domain cross-correlation of the response from a single bubble

of equilibrium radius R0a = 0.12 mm with various single bubbles of equilibrium radius R0b.

The method used to calculate each bubble’s response is described in Section 4.4. All other

parameters are given in Tables 4.1 and 4.2.
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The cross-correlation of the FrFTs of two single bubble responses was pre-

sented as a second method of determining bubble parameters from experimental

data. Evolving this method to accurately identify the similarities between two

bubble systems and populations requires further work, but the potential has

been demonstrated for the case of a single bubble. This could be applied in an

industrial setting, where the signal received from a population is cross-correlated

with a sequence of theoretical responses, and the composition of bubbles within

the population ascertained in-situ.
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Chapter 5

Conclusions

5.1 Introduction

This thesis has been concerned with improving the imaging of bubbles and ul-

trasound contrast agents (UCAs). Improved imaging of bubbles is beneficial to

several industries, such as the bioprocess industry. Bubbles, either naturally

occurring or induced by mixing or interaction with an ultrasonic field, are found

in many bioprocesses. The ability to measure the size and concentration of these

bubbles would provide experimentalists with information regarding the evolu-

tionary state of the process and the readiness of the product. Improved imaging

of UCAs has the ability to improve numerous cutting-edge medical treatments

such as reducing the risk of heart disease and strokes, improving cancer treat-

ments and reducing organ transplant rejection, to name but a few. The beneficial

effects of chirp insonification are demonstrated for bubbles, and these effects are

utilised in the investigations of bubbles and UCAs.

This thesis has laid out the first approximate analytical solutions to the dy-

namical equations which govern a bubble and a UCA under chirp insonification.
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These analytical solutions are investigated and optimal parameter regimes are

identified for a bubble and a UCA which will maximise their respective second

harmonic amplitudes. The fractional Fourier transform (FrFT) is employed as

an alternative imaging method and the efficacy of this method is demonstrated

as a means of identifying the size distribution and enumeration of bubbles within

a population.

5.2 Results

In Chapter 2 the Rayleigh–Plesset equation with chirp excitation was consid-

ered, by identifying a small non-dimensionalised parameter and performing a

regular perturbation analysis. This led to a series of linear ordinary differential

equations for which approximate analytical solutions were obtained. These ap-

proximations enabled the solutions to be considered as a Fourier cosine series,

providing analytical expressions for the amplitude of the bubble’s oscillations at

its resonant and second harmonic frequencies. Investigating these amplitudes

under parameter variations revealed the conditions under which a chirp was

preferable to a gated continuous wave as the forcing function. It was found that

the chirp consistently outperformed the continuous wave, and the sensitivity of

the bubble’s response to variations in the fluid viscosity and the bubble’s initial

equilibrium radius suggest that interpretation of the bubbles response could ac-

curately identify these parameter values.

A similar approach was taken in Chapter 3, where the case of an ultrasound

contrast agent (UCA) insonified by an ultrasonic chirp signal was considered.

The UCA’s dynamics were described by a Keller–Herring type equation, modi-

fied to include the effects of the elastic shell and incorporating a time-dependent
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viscosity term. The complexity of this model was reduced by considering only

small-amplitude oscillations before non-dimensionalising and identifying a small

parameter. This small parameter was utilised in a regular perturbation analysis

which yielded a series of linear differential equations. Fourier transforms were

taken of approximated analytical solutions to the first two of these differential

equations, and the resulting solution provided analytic expressions for the ampli-

tude of the UCA’s oscillations at its resonant and second harmonic frequencies.

In order to maximise these amplitudes, optimal values were identified for the

chirp signal parameters and the elastic shell parameters. A series of heuristic

rules were proposed to optimise the signal parameters, which were confirmed by

numerical investigations.

Chapter 4 presented an alternative approach to imaging bubbles by taking

fractional Fourier transforms (FrFTs) of numerical solutions to the Rayleigh–

Plesset equation with chirp excitation. The bubble’s dynamics were presented

simultaneously for each order parameter of the FrFT, revealing the transfer

of energy between each domain. This method of investigation was found to

accurately identify the number of bubbles within a population and the potential

to recover bubble size and separation was demonstrated. The cross-correlation of

the FrFT of two bubble’s responses was shown to be an effective tool in matching

an artificially produced experimental response with a theoretical response. The

significant benefits in comparison with ordinary time-domain cross-correlation

were presented.

5.3 Future work

The sensitivity of the second harmonic to the bubble size and fluid viscosity

demonstrated in Chapter 2 indicate that the inverse problem of recovering these
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parameters from experimental data is feasible. The next stage will therefore be

to construct an experiment to test this theory.

To produce the results in Chapter 4 the discretised integration step (∆u)

was defined as 16. Ideally, ∆u would have been defined as 32 or even 64. This

would allow larger time-spans for the bubble response, providing more detailed

information. Additionally, a larger sampling window would allow more bubble

responses to be simultaneously examined, particularly in the restricted polar

time-order plots. A study of larger bubble populations would then be feasible.

However, with the number of samples for a given transform, 2N , inextricably

linked to ∆u, this was not feasible as computation times became prohibitive.

A lower level programming language, for example Fortran, would be faster at

performing the evaluations, and future work could involve rewriting the relevant

algorithms in such a programme. This would enable validation of the results

in Section 4.6, and could reveal the true efficacy of the FrFT in identifying size

distributions and spatial separations within a bubble population.

It has been shown by several theoretical and experimental investigations that

the size of a bubble can be successfully recovered from an appropriate interpre-

tation of its second harmonic frequency component. The thresholding applied

here was useful in highlighting the largest amplitude behaviour, but a conse-

quence of this is that the second harmonic component is lost. Amplification

of the second harmonic component or filtering would allow the inclusion of the

related behaviour in the thresholded plots and could be a useful tool to ascertain

the size distribution of bubbles within the population.

Similar investigations to those described in Chapter 4 could be applied to

the dynamical equation governing an ultrasound contrast agent (UCA). The
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medical ultrasound community has witnessed a dramatic increase in the use of

UCAs due to the range of medical applications which it could contribute to.

UCAs are currently employed for delivering cancer fighting treatments and for

transfecting genes which reduce organ transplant rejection, as well as for several

other cutting-edge medical applications. The process by which several of these

techniques delivers the treatment to the desired area is dependent on accurate

imaging of the UCAs. The application of FrFTs on a diagnostic ultrasound

signal has the potential to reveal the number of UCAs which have reached the

treatment zone, therefore enhancing the performance of the treatment itself. Ac-

curately discerning the separation between two UCAs has the potential to reveal

how wide an artery or blood vessel is — valuable information in the treatment

and assessment of heart disease and strokes.

In Chapter 4 the responses from more than one bubble are considered to

be uncoupled, with each response entirely separate from each other response.

Coupled oscillating bubbles have been examined by several authors [31, 32, 46].

Future research could investigate the FrFTs of the coupled responses from sys-

tems of bubbles in close proximity. Coupled oscillation models are more accurate

representations of bubbles within a population and the intricate detail provided

by the FrFT investigations could reveal new dynamical features which are cur-

rently unknown.
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