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Abstract 

 

Beam-plasma interactions can produce highly non-linear effects that can influence the 

dynamics of a system. Two-such systems have been investigated: Plasma moderated 

cyclotron instabilities relevant to the mechanisms of Auroral Kilometric Radiation 

(AKR) and the non-linear behaviour of the two-stream beam-plasma instability. In the 

first case numerical simulations were undertaken and compared to the measurements 

of a laboratory experiment conducted previously. 

 

Radio emissions from the Earth's polar regions, known as Auroral Kilometric 

Radiation (AKR) have been measured at a frequency of ~300kHz with an efficiency 

of ~1%.This emission is generated when particles are accelerated downwards along 

the Earth's increasing magnetic field. As they propagate they undergo magnetic 

compression and form a horseshoe distribution in velocity space. As these particles 

travel through an area of plasma depletion known as the auroral density cavity, it is 

believed that a form of cyclotron resonance maser (CRM) instability causes them to 

emit the radio waves detected by a range of satellites. The University of Strathclyde 

has previously undertaken laboratory experiments to investigate this behaviour. This 

work numerically simulated the previous experimental setup with and without a 

background plasma. The simulated electron beam distribution was matched 

analytically to the measured beam in the previous laboratory experiment. This beam 

was then injected into a simulation of the laboratory geometry and predicted wave 

generation efficiency of ~1% which closely matched the previous measurements. The 

impact of adding a background plasma to the simulation was also investigated and 

successfully showed that the efficiency of the CRM instability falls off as the plasma 

frequency approaches a tenth of the cyclotron frequency (400MHz in these 

simulations). This again was in good agreement to the previous experimental 

measurements. 

 

Further work was undertaken to investigate the instabilities that form when a 

rectilinear electron beam is propagated through a plasma column. This is of potential 

relevance to fast-ignition inertial confinement fusion as in this form of fusion, a 
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deuterium-tritium fuel pellet is compressed using uniform laser irradiation while a 

secondary laser pulse is then utilised to accelerate a highly relativistic electron beam 

into the core of the pellet to provide the heating necessary to initiate fusion. As the 

beam propagates it can potentially undergo the beam-plasma instability. This work 

presents a numerical study of the beam-plasma instability in a low-density 

environment using a 2.5D particle-in-cell code. This numerical model is then used to 

as a basis around which to construct a similar laboratory apparatus to ultimately 

benchmark the code. This will enhance confidence in the use of PiC codes in the 

simulation of these instabilities. The simulated beam-plasma instability correlated well 

to the predicted analytic growth rates in the linear regime. Typically after ~20-80ns of 

beam propagation, when the beam-plasma instability is saturated, periodic plasma 

cavities are formed. The spacing between these cavities increased linearly from ~2 to 

6cm as the voltage of a 10A electron beam was increased from 10kV to 100kV, in a 

background hydrogen plasma of density 9x1016m-3. Ion density perturbations were 

found to propagate from these cavities in both the positive and negative axial 

directions, at speeds close to the local ion sound speed observed inside the cavity but 

faster than the mean ion sound speed (averaged across the plasma column). Spectra of 

the longitudinal electric field shows oscillations close to the electron plasma and ion 

acoustic frequencies close to these cavity structures suggesting that this behaviour 

relates to the modulational instability. 

 

An experimental apparatus was developed to reproduce major features of the 

numerical simulations. A low pressure (7x10-4mB) helium gas discharge was formed 

in a Penning like configuration in a 50mm diameter anode, 1m in length, featuring 

specially designed insulators. This proved capable of supporting a 40mA discharge 

with a plasma density estimated at 1.2x1016m-3 at 20mA. An electron gun was 

developed (supported by numerical modelling) which was able to deliver an electron 

beam of 4-12A through the central 15mm section of the plasma column at an energy 

of some 60kV. Initial experiments have been undertaken passing this electron beam 

through the plasma column, leading to recommendations for further development of 

the apparatus. 
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1  Introduction and background 

 

Beam-plasma interactions can have an important impact on any plasma system where 

there is a distribution of particles propagating through one or more other particle 

distributions. This work focuses on three specific areas of beam-plasma interactions:  

 

 Modelling computationally the dynamics of the laboratory experiments 

investigating the mechanisms for auroral kilometric radiation conducted 

previously at the University of Strathclyde. 

 

 Studying the non-linear behaviour of the two-stream/beam-plasma instability 

that may be of relevance to fast-ignition inertial confinement fusion through 

the use of numerical codes. 

 

 Designing, constructing and initial testing of a laboratory experiment to create 

the conditions for the two-stream/beam-plasma instability to eventually 

provide a benchmark for the numerical codes. 

 

1.1  Auroral kilometric radiation 

 

Emissions from the polar regions of the Earth’s magnetosphere, known as auroral 

kilometric radiation (AKR) [Delory, et al., 1998; Ergun, et al., 1998b; 2000], have 

been detected by multiple satellite observations from approximately 1974. This 

process as the name suggests is a strong radio emission with a wavelength on the order 

of a kilometre. AKR has a narrow bandwidth and occurs at frequencies of between 

50kHz and 800kHz [Mutel, et al., 2004]. The emission occurs in short duration bursts 

and can occur between 0.5 and 3 earth radii above the Earth’s surface. From the 

measurements of the emitted radiation it was found that the frequency corresponds 

closely to the local cyclotron frequency with a peak in emission intensity at ~300kHz. 

The wave polarisation and propagation was also observed to be perpendicular to the 

Earth’s magnetic field lines which would indicate the excitation of the plasma X-mode 
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[Benson, 1985]. The peak power of the emission has been suggested to be in the region 

of 1GW which would correspond to a radiation efficiency of ~1% from the kinetic 

energy of the electrons [Gurnett, 1974; Pritchett and Strangeway, 1985]. As this 

efficiency is considered large for a naturally occurring phenomenon, it has led to 

considerable research in the field to understand the process [Bingham, et al., 1999; 

2004; Vorgul, et al., 2004; 2005; Burinskaya and Rauch, 2007]. 

 

 
 

Figure 1.1 (i) Schematic of the AKR process (ii) Example horseshoe velocity distribution 

 

The mechanism behind the AKR emission occurs in a region of plasma depletion 

above the polar regions of the Earth’s magnetosphere, known as the auroral density 

cavity. This region spans approximately 9000km with peak emissions at an altitude of 

about 3200km and has a plasma frequency that is roughly 30 times less than that of 

the cyclotron resonance frequency of the electrons in the Earth’s magnetic field. As 

particles enter this region, they are accelerated by electric fields above the auroral 

density cavity into the increasing magnetic field region. Due to the adiabatic 

conservation of the magnetic moment, the pitch angle (
||

tan
v

v ) of the electron is 

increased. As there will be an initial spread of velocity where the electrons enter the 
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convergent magnetic field region, the electrons with a velocity component 

perpendicular to the magnetic field lines will experience an increase in rotational 

velocity. This forms the velocity of the incoming stream of electrons into what is 

known as a horseshoe distribution, shown in figure 1.1. This particular type of velocity 

distribution has been shown to be unstable to a cyclotron resonance maser type 

interaction [Bingham and Cairns, 2000; 2002] and it has therefore been proposed that 

this is the mechanism that generates the AKR emissions in this region. 

 

As well as the Earth, other astrophysical bodies may also produce radio emissions due 

to the cyclotron resonance maser interaction. There have been investigations into other 

magnetised planets in the solar system which show similar behaviour in their polar 

regions, for example Jupiter (including its moon Io), Saturn, Uranus and Neptune 

[Ergun, et al., 2000; Pritchett, et al., 2002; Zarka, 2001]. Outwith the solar system, it 

has been suggested that microwave emission from certain stars, including CU Viginis 

[Kellett, et al., 2007] and UV Ceti [Bingham, Cairns and Kellett, 2001] may also be 

explained by the cyclotron maser instability. 

 

1.2  Two-stream/beam-plasma instability 

 

The two-stream instability is a very common plasma instability and was first studied 

using a cold plasma theory in 1948-1949 [Pierce, 1948; Nergaard, 1948; Haeff, 1949]. 

The theory was then extended to warm plasmas in 1959-1960 [Buneman, 1959; 

Jackson, 1960]. The two-stream instability occurs when there is an interpenetration of 

two or more moving particle distributions, for example an electron beam flowing 

through another electron beam or a background plasma [Davidson, 2002]. The cause 

of this instability can be thought of as originating from a point source disturbance 

within a two-beam plasma [Stix, 1992]. If a density fluctuation arises from this 

disturbance in one stream of particles, then the electric field will initiate a plasma 

oscillation at that location. However, these fields can modulate the electron densities 

of the second stream and the drift of these density modulations through each other can 

result in energy exchange. This leads to growth of the energy associated with the 

electric fields feeding from the energy of the initial particle streams. 
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The initial rationale behind investigating this well understood instability was in the 

potential impact the non-linear behaviour of this instability may have on fast-ignition 

inertial confinement fusion (ICF). This particular type of fusion is an alternate method 

to the more conventional direct or indirect-drive ICF. The concept of conventional 

direct-drive ICF [McCrory, et al., 2008], shown in figure 1.2, is that a small, frozen, 

pellet formed of a mixture of deuterium and tritium is uniformly irradiated with high 

intensity laser radiation. This laser radiation would cause ablation of the outer layer of 

the frozen pellet. As the material is ablated off of the surface, this produces a force on 

the inner material causing it to compress to extreme densities (up to ~1000g/cm-3, 

approximately 100 times the density of lead). As the material compresses, shockwaves 

also propagate towards the core of the pellet, inducing heating in the now dense 

plasma. If both the density and the temperature of the plasma ions satisfy the Lawson 

criterion [Lawson, 1957] then there will be a self-sustaining fusion reaction that will 

propagate out from the centre of the pellet as a ‘burn’ wave. 

 

 
  

Laser irradiation of  the frozen 

D-T pellet 

Ablation from the surface of 

the pellet 

Fusion ‘burn’ wave 

Figure 1.2 Schematic of direct-drive inertial confinement fusion 

 

Indirect-drive ICF functions in much the same way, except that the deuterium-tritium 

pellet is placed in the centre of a gold cylinder known as a hohlraum [Lindl, 1995]. 

The laser radiation is used to irradiate the interior of the hohlraum to generate X-rays. 

It is the X-rays that then produce the ablation pressure on the pellet to cause the 

compression and heating. The benefit of this method over direct-drive ICF is that it 

may produce a more uniform compression that inhibits potential geometric 

instabilities. 

 

D-T 
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Figure 1.3 Schematic of fast-ignition inertial confinement fusion 

 

Fast-ignition ICF has similarities with direct-drive ICF [Key, 2007], and is illustrated 

in figure 1.3. High intensity laser pressure is again used to compress the deuterium-

tritium pellet. However, the heating mechanism is not provided by the compression 

but by a secondary ‘ignition’ laser pulse that generates a highly relativistic electron 

beam that propagates through the compressed plasma, providing heat to the ions by 

way of electron-ion collisions. In most fast-ignition experiments the ‘ignition’ laser is 

focussed into a gold cone that is initially inserted into the deuterium-tritium pellet, 

with the tip close to the core. The electron beam is then produced at the cone tip and 

can transfer its energy more efficiently to the core of the compressed pellet. 

 

In laser-plasma interaction experiments, measured laser energy transfer to the 

deuterium-tritium ions was found to be much higher than that expected for purely 

collisional electron-ion heating [Kodama, et al., 2001; 2002]. It was proposed that as 

the electron beam propagates into the highly compressed plasma, the two-stream 

instability can occur, producing very large electrostatic fields [Sircombe, et al., 2008]. 

These electrostatic fields can then parametrically decay into longitudinal ion acoustic 

waves which are subsequently damped by ion-ion collisions which cause additional 

heating of the ions and would account for the increased laser energy transfer 

[Mendonça, et al., 2005]. 

 

A complication in this potential approach is that the fast electrons can be broken up 

into filaments due to transverse instabilities [Hill, et al., 2005] which would limit the 

efficiency of the energy transfer. A new technique of applying an external axial 

magnetic field across the pellet prior to the compression may aid in preventing these 

D-T 
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transverse instabilities [Gotchev, et al., 2008; Chang, et al., 2011; Hohenberger, et al., 

2012]. When compression of the pellet occurs, the applied magnetic field is itself 

compressed with the pellet due to the conductive nature of the plasma, boosting the 

field strength into the kiloTesla range (illustrated in figure 1.4). As the electrons will 

now be radially confined, due to their cyclotron motion in this compressed field, the 

transverse instabilities will be suppressed. This compressed magnetic field may 

therefore be of use during fast-ignition experiments [Yang, et al., 2011; Zhuo, et al., 

2014]. Understanding the predictive capacity of computer simulations to predict 

streaming instabilities in such magnetised plasmas motivated a significant part of this 

research. 

 

Figure 1.4 Illustration of magnetic compression in inertial confinement targets 

 

1.3  Prior relevant research at the University of Strathclyde 

 

This work was undertaken within the Atoms, Beams and Plasma (ABP) group at the 

University of Strathclyde. This group has experience in various research fields such as 

beam-wave interactions, vacuum devices, free electron physics and plasma physics 

[Cross, Sparks and Phelps, 1995; Ronald, et al., 1998]. Research in the group is 

conducted utilising a variety of methods including experiments and numerical 

simulations. 

 

Previous work has been conducted at Strathclyde into the investigation of the AKR 

mechanism by both experimental and computational means [McConville, et al., 2008; 

McConville, 2009; Gillespie, et al., 2008; Speirs, et al., 2005; 2008; and Ronald, et al., 

B B 

Before compression After compression 
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2008]. A scaled laboratory experiment was used to recreate the conditions that occur 

in the magnetosphere by proportionally increasing the plasma density, magnetic fields 

and electron current density. The streaming electrons were produced from an annular 

cathode emitter and magnetically compressed to form the required horseshoe 

distribution. These electrons were then passed through a Penning plasma discharge 

confined by the magnetic field required for electron cyclotron resonance. The 

generated RF signal was then detected and compared with the magnetospheric case. 

This experimental programme provides the basis for the numerical investigation 

presented in this work, of the effects of beam-plasma interactions as the horse-shoe 

distributed electrons transit through the plasma discharge. 

 

The experience gained through the use of a Penning discharge to generate a low density 

plasma is also used in the design and construction of the experiment to ultimately 

investigate the non-linear regime of the two-stream/beam-plasma instability. 

 

1.4  Objectives 

 

Following on from previous experiments on the laboratory demonstration of the 

auroral kilometric radiation emission mechanisms, numerical simulations were 

required to understand the dynamical behaviour of an electron beam undergoing the 

cyclotron resonance maser instability whilst in the presence of a background plasma. 

This work will therefore present simulation results of the interaction region of the 

experiment with an electron beam that has a horseshoe velocity distribution close to 

that observed in the previous experiments. The impact of the addition of a background 

plasma within the interaction region will then also be investigated with the predicted 

output from the simulations compared to that of the previous experimental 

measurements. 

 

To investigate the potential heating mechanisms proposed for utilising the beam-

plasma instability in fast-ignition inertial confinement fusion experiments, a 2D 

numerical study will be conducted with the main conclusions shown. This will involve 

simulations of a low density plasma and electron beam that can be reproduced in a 
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laboratory environment which could then be used to benchmark the code predictions. 

The study will focus upon and show the ion behaviour that is predicted during the non-

linear regime of the beam-plasma instability. 

 

Confidence in the ability of numerical codes to simulate this dynamical plasma 

behaviour is required for the use of these codes at fusion relevant density regimes. To 

this end, the simulations conducted in the previously mentioned numerical study will 

be used to design and construct a laboratory apparatus in order to provide a benchmark 

for these codes. The design and performance of the components of this experimental 

apparatus, including an electron accelerator, solenoids, probes and a Penning trap, will 

be discussed with preliminary measurements presented of the interaction of the 

electron beam propagating through the background plasma. 

  



10 

 

 

 

 

 

 

 

Chapter 2 : Theory   



11 

 

2  Theory 

 

2.1  Plasma definition 

A plasma can be defined as a "quasi-neutral gas of charged and neutral particles that 

exhibit collective behaviour" [Chen, 2005]. Such a collection may also be referred to 

(somewhat more generally) as an ionised gas. For a gas in equilibrium, the degree of 

ionisation is given by the Saha equation, 
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where ne, ni and na are the number densities of electrons, ionised atoms and neutral 

atoms respectively, ge, gi and ga are statistical constants, T is the temperature, m is the 

mass of an electron, h is Planck's constant, kB is Boltzmann's constant and Vi is the 

ionisation potential. 

 

As a plasma is quasi-neutral it can be assumed that ni ≈ ne therefore the Saha equation 

can be written,   
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From this equation it can be seen that a high degree of ionisation in a gas requires a 

high temperature, a low ionisation potential and a low number density of neutral atoms. 

The majority of the plasmas in this thesis will not however be in thermal equilibrium. 

 

2.1.1  Concept of temperature 

 

It is possible to relate temperature to the mean translational energy of the particles in 

a plasma, such that the average thermal energy (for a 3-dimensional monatomic 

plasma) is given by, 

 
TkE Bav

2

3
  EQ 2.3 
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In plasma physics, it is sometimes convenient to refer to temperature in terms of eV. 

The conversion factor is given as approximately 1eV = 11,600K. Note that it is the 

energy corresponding to kBT rather than Eav that is being converted. 

 

2.1.2  Debye length 

 

To understand the principles behind the plasma maintaining charge neutrality, we 

introduce a test charge of magnitude Ze into a neutral plasma. This test charge will 

cause the electrons to be attracted to it while the ions are repelled which results in a 

neutralising 'cloud' surrounding the test charge. Assuming the number density of 

electrons in this cloud has a Boltzmann distribution )/exp( eec kTenn   and ignoring 

ion motion, the electrostatic potential (r) in the plasma can be solved by applying 

Poisson's Equation. 

 

Since  (r) → 0 as r → ∞ Poisson's Equation for large r and spherical symmetry gives, 
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From the solution of equation 2.4 for  (r) and given that, as r→0,  (r) → Ze/4πε0r 

we get, 
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where, 
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is the Debye Length. From this result, it can be seen that outwith a sphere of radius 

significantly exceeding λD centred on the test charge (the region within λD is called the 

Debye sphere), the perturbation in the potential is strongly damped by the screening 

cloud within the sphere, and the plasma remains effectively neutral. Similarly, the 

Debye Length can be considered to be a scale length for the penetration of external 

electrostatic fields. 
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In order for an ionised gas to be considered a plasma one requires the condition λD << 

L be met, where L is the dimension of the system. 

 

2.1.3  Plasma parameter 

 

In order for the result of equation 2.6 to be valid, there must be a sufficient number of 

electrons within the Debye sphere, such that neλD
3 >> 1. Taking the inverse of this, we 

can define the plasma parameter g, 

 
1

1
3

0

2


DeDeB nTk

e
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 EQ 2.7 

From this result it can be seen that increasing the number of particles within the Debye 

sphere will reduce the importance of direct interaction between any particular pair of 

particles. The plasma parameter can therefore be considered to be a measure of the 

dominance of the collective interactions over collisions, it is this condition that defines 

a weakly coupled plasma. 

 

2.2  Fundamental plasma concepts 

 

2.2.1  Plasma Frequency 

 

The current density of the plasma can be given by [Lorrain, Corson and Lorrain, 1988], 

 
E

t

E
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where E is the electric field associated with the an electromagnetic wave and σ is the 

conductivity. It is possible to define 
t

E




0  as the displacement current density, 

associated with the usual polarisation of the vacuum and E as the conduction current 

density. Assuming the electric field varies with )( tie  , the conductivity can be rewritten 

as 
e
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  (ignoring any ionic currents), giving a current density, 
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The displacement current density leads the electric field by 90° while the conduction 

current density lags 90°. When there is no net current density (J = 0), the displacement 

and conduction current densities balance and the electric field oscillates at a frequency 

known as the plasma frequency ωp, given by, 
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Physically, the electrons in the plasma are moved by the electric field to restore charge 

neutrality. This results in the electrons oscillating in the plasma at the plasma 

frequency ωp around an equilibrium position. 

 

2.2.2  Collision processes in plasmas 

 

Through the application of an external electric field E to an unmagnetised plasma and 

ignoring the displacement current, a current density of J flows, given by, 

 




E
EJ   EQ 2.11 

where η is the electrical resistivity. 

 

The current density J can be related to both the drift velocity of the electrons ue and 

the drift velocity of the ions ui in the following form, 

 
eeiiee uenuenuenJ   EQ 2.12 

As the current density of the ion term is typically negligible due to the relative mass 

of the ions compared to that of the electrons (combined with the greater propensity for 

collisions associated with the larger ions) it is common to assume that ue >> ui. If the 

electric field is removed at a particular time t = 0, then the drifting electrons will 

decrease in velocity due to collisions and the lack of driving electric field. The electron 

drift velocity will decrease with a characteristic time constant τc. Therefore the electron 

drift velocity can be assumed to be, 

 ct

ee euu
/

0


  EQ 2.13 

where ue0 is the electron drift velocity at time t = 0. 
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From this, the collision frequency υc is given by 1/ τc and we can define the mean free 

path λmfp as, 

 
crmsmfp v    EQ 2.14 

where vrms is the root mean squared velocity of the electrons, i.e. their thermal velocity, 

typically greater than the drift velocity in most cases. 

 

It is now possible to describe a plasma as "collisionless" if the mean free path is greater 

than that of the linear size of the plasma and "collisional" if the mean free path is less 

than the linear size of the plasma. 

 

2.2.3  Plasma sheath 

 

In a plasma that is bounded by a solid surface, there exists a region between the plasma 

and the solid, known as the boundary sheath region. The electrons in the plasma 

typically have a much higher speed than that of the ions, therefore there is initially 

greater flux of electrons on the boundaries. 

 

The result of this is that the solid surface acquires a negative electric potential in 

comparison to the plasma. This electric potential reflects enough of the electrons back 

into the plasma, thus equalising the flux of the negative and positive charges on to the 

solid surface, resulting in a steady electrostatic potential. The ions in this sheath region 

are accelerated through the potential difference and impact with significant directed 

energy on the solid surface. In general, the thickness of this sheath region is of the 

order of a few Debye lengths. 

 

Figure 2.1 Plasmas regions close to a solid boudary 

 

Between the sheath region and the plasma there is a pre-sheath region, as shown in 

figure 2.1. In this region there is a small electric field caused by a small charge 

imbalance. This leads to a potential difference, V0, between the boundaries of the pre-

SOLID SHEATH PRE-SHEATH PLASMA 

V 
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sheath and the sheath where the Bohm sheath criterion gives the minimum value of V0 

(assuming the pre-sheath and sheath to be collisionless) as, 

 
eBTkeV

2

1
0   EQ 2.15 

At the boundary of the pre-sheath and sheath regions, the ions have this amount of 

directed energy and will continue to be accelerated through the sheath region towards 

the solid. 

 

2.3  Plasma models 

 

2.3.1  Particle orbit model 

 

One of the simplest methods for understanding particle behaviour in plasmas is to 

consider the orbit of a single particle in a given electric and magnetic field. Whilst this 

model does not describe any collective particle behaviour in the plasma, it does 

describe the some of the important effects of an externally applied magnetic field on a 

plasma.  

 

In the simple case of non-relativistic motion of the charged particle in a constant 

spatially uniform magnetic field, with no applied electric field, the electrons and ions 

both perform helical orbits which, when projected on to a plane transverse to the axis 

of the magnetic field, form circles. The centre of each projected circle is known as the 

guiding centre for that particular particle's motion. This motion arises simply from the 

Lorentz force equation, 

 )( BvEqF   EQ 2.16 

For a charged particle of charge q and mass m moving in a circle, from force balance 

between the expressions for the central force and the Lorentz force we get, 

 
Bvq

r

mv

L



 

2

 EQ 2.17 

where v  is the magnitude of the perpendicular component of the particle's velocity 

and rL is the Larmor radius of the particle's orbit. Therefore, 
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Bq

mv
rL

  EQ 2.18 

It can therefore be seen that for ions with a larger mass, their Larmor radii will be 

larger than that of electrons for comparable velocities. Following from this we may 

define the electron cyclotron frequency ωce and the ion cyclotron frequency ωci 

(corrected for relativity), 

 

e

ce
m

eB


   EQ 2.19 

 

i

ci
m

eB


   EQ 2.20 

where 

2/1

2

2

1













c

v
 is the Lorentz correction factor. 

 

This model also allows the description of the trapping of particles due to 

inhomogeneous magnetic fields. Equation 2.21 below defines the magnetic moment 

of a gyrating particle, 

 
z

B

mv
zIr

m 2

2
2    EQ 2.21 

where 
m

 is the magnetic dipole moment of an electron orbit, I is the current 

associated with the electron rotational orbit and r is the radius of the electron orbit. The 

magnetic moment is an invariant quantity over the scale of the thermal particle motion 

and therefore must remain constant (assuming B changes relatively slowly). If a 

particle moves from a weak magnetic field to a strong magnetic field region it must 

increase its perpendicular velocity to ensure the magnetic moment remains constant. 

Due to the conservation of energy the parallel momentum must therefore decrease. 

This result is effectively the conservation of angular momentum. The minimum pitch 

angle of a confined particle is given by, 

 

mm

m
rB

B 1
sin 02   EQ 2.22 



18 

 

where the pitch angle is defined as   

||

tan
v

v
, and rm is the magnetic mirror ratio. 

At the initial condition in the weak magnetic field region, if a particle has a pitch angle 

between 90° and θm it will be reflected back into the weak magnetic field region. 

 

2.3.2  Fluid description of a plasma 

 

In order to understand a plasma that has a significant amount of electric and magnetic 

fields produced through the motion of the particles, describing the behaviour of the 

plasma with each individual particle rapidly becomes analytically difficult. To mitigate 

this, it is possible to describe the plasma in terms of a continuous fluid. This method 

allows the individual particles to be ignored and the motion of fluid elements can be 

considered instead. Unlike conventional hydrodynamics however, describing a plasma 

in this way is complicated by the fluid elements containing electrical charges. This has 

led to the development of magneto-hydrodynamics model which considers Maxwell’s 

equations, the continuity equation and the conservation of momentum together to 

describe the plasma behaviour. 

  

Maxwell’s 

equations 
0


 E  EQ 2.23 

 0 B  EQ 2.24 

 

t

B
E




  EQ 2.25 

 
J

t

E
B 000  




  EQ 2.26 

Where  E is the electric field  ρ is the charge density 

  B is the magnetic field ε0 is the permittivity of free space 

  J is the current density μ0 is the permeability of free space 

 

Maxwell’s equations determine the electric and magnetic fields produced due to 

moving charged fluid elements as well as any externally applied fields. 
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Continuity 

equation 0)( 





 un
t

n
 EQ 2.27 

Conservation of 

momentum 

equation 

 pBuEnquu
t

nm 



)()(

 
EQ 2.28 

 

where α is the particle species, m is the mass, u is the velocity and q is the particle 

charge. 

 

The continuity equation above assumes that the rate of change of the particles of each 

species at some point in space is correlated to the net flux of particles out from that 

point with no particle sources or sinks. The conservation of momentum equation takes 

into account the combined effects of pressure, Newton’s second law and the Lorentz 

force. 

 

2.3.3  Kinetic theory 

 

While the fluid model is convenient in the description of macroscopic plasma systems, 

it does not consider the velocity distributions of the particles within each fluid element. 

In a fluid model the particle density is considered as a variable in time and space only. 

Therefore, in order to achieve a more complete understanding of the microscopic 

plasma behaviour, it is necessary to consider the plasma in six-dimensional (r,v) space 

and to consider the evolution of the distribution functions f(r,v,t) of the particles in an 

infinitesimally small volume element. Describing a plasma in such a way is known as 

kinetic theory. By integrating over the distribution function, the fluid equations are 

obtained allowing kinetic theory to describe both the macroscopic aspects of the 

plasma as well as the microscopic details. 
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The evolution of the distribution functions is given be the equation, 
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 EQ 2.29 

where F is the force acting on the particles and 
ct

f












is the change in the distribution 

function f due to collisions. When this parameter is present this equation is known as 

the collisional kinetic equation. However, when this parameter is set to zero and F is 

represented by the Lorentz force equation, it has become known as the Vlasov 

equation. 

 

A key result that emerges from considering the solution of the Vlasov equation, where 

the electric field of the Lorentz force equation has been created by the perturbation of 

a homogenous plasma that was in equilibrium, is the effect of the damping of 

longitudinal space charge waves. This phenomenon was first discovered by Landau 

and is therefore known as Landau damping. 

 

2.4  Plasma waves 

 

Due to the inhomogeneous, anisotropic, dispersive and dissipative nature of plasmas, 

a multitude of different wave behaviours can be generated within a plasma system. 

These waves tend to act in a non-linear fashion but can be adequately defined (for 

certain circumstances) using a linear theory and a few assumptions. Initially ignoring 

plasma pressure and thermal effects can aid in understanding electromagnetic waves 

modes such as the R and L modes that can propagate parallel to magnetic field lines 

or the X mode which can propagate perpendicular to the field. By then considering a 

warm plasma and the effects of pressure, it is possible to observe electrostatic wave 

modes such as the longitudinal electron plasma waves (known as Langmuir waves) or 

ion acoustic waves [Boyd and Sanderson, 1969; 2003; Rosenbluth and Sagdeev, 

1984a;1984b; Stix, 1992]. 
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2.4.1  Basic wave theory 

 

It is important to understand the underlying concepts used to describe electromagnetic 

wave propagation. It is possible to express the electric field of any plane wave as the 

superposition of two linearly independent solutions of the plane wave equation 

(corresponding to orthogonal polarisations). The complex amplitudes of which are 

given below, 

 

 )(exp0   tkziEE xx  EQ 2.30 

 )(exp0   tkziEE yy  EQ 2.31 

 

This then leads to an electric field equation of, 

 

 )(exp)ˆˆ(),( 00   tkziyeExEtzE i

yx  EQ 2.32 

 

In this equation, the wave vector k is aligned along the z-axis, and Ex0 and Ey0 are real 

and δ=β-α. [Allen and Phelps, 1977]. 

 

The electric field vector’s rotation describes that of an ellipse if δ=±π/2. Therefore 

such an electromagnetic wave is generally described as being elliptically polarised. 

There are special cases when Ex0 or Ey0 (or δ) are equal to zero, which makes the wave 

linearly polarised and when Ex0=Ey0 with δ=±π/2 which makes the wave circularly 

polarised. The direction of rotation around the axis is dictated by the choice of positive 

or negative sign. For circularly polarised waves, when the sign is positive the rotation 

is anticlockwise and the wave is said to be right-circularly polarised. Conversely when 

negative the wave is clockwise and said to be left-circularly polarised. 

 

This description of electromagnetic waves has only considered monochromatic waves. 

In practically all waves there will be a spread in frequency and wavenumber. This 

leads to dispersive effects in a plasma as the wave envelope changes as it propagates 

as shown in the dispersion relation of figure 2.2. 
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Figure 2.2 Dispersion relation of an electromagnetic wave in a plasma 

 

As can be seen in Figure 2.2, the phase velocity vp of a wave is given by ω/k=vp and 

the group velocity vg is given by dω/dk=vg. 

 

2.4.2  Wave oscillations in a cold plasma 

 

A plasma is defined as being cold when the thermal speeds of the particles are much 

less than that of the phase speed of the propagating waves. This approach provides a 

good initial description of wave behaviour in a plasma. The problem may be further 

simplified by the assumption that the plasma is collisionless. The cold plasma wave 

equations are described purely by the ion and electron continuity equations, the 

Lorentz force equation and Maxwell’s equations. The linearised versions of these 

equations are given below [Boyd and Sanderson, 2003], 
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EQ 2.37 

 01  B  EQ 2.38 

 

For these equations, the initial conditions E0 and u0 are equal to zero and B0 and n0 are 

constant in space and time. E1 and B1 are the AC fields arising from a small 

perturbation from the plasma equilibrium. Likewise u1 and n1 are the particle velocity 

and density perturbed from equilibrium for each species. The summations are then 

performed over each particle species i. The total particle density, velocity and field 

strengths are, 
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EQ 2.39 

 

By assuming that all these variables vary as )(exp trki   and that the current J is 

defined in terms of the conductivity tensor (i.e. 1EJ   ), the wave equation can be 

written as, 
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11)( EE
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EEnn  


 
EQ 2.40 

where   is the cold plasma dielectric tensor and /kcn  is the dimensionless wave 

propagation vector. 

 

By defining the dielectric tensor as below, with B0 defined to be in the z direction, 
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This gives the components of the cold plasma dielectric tensor as, 
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EQ 2.46 

 

where Ωe is < 0 and Ωi > 0 associated with the opposite rotational direction of the 

cyclotron motion. The direction of the wave propagation is given such that 

)cos,0,sin(  nnn   and therefore equation 2.40 can be rewritten without any loss 

of generality as, 

 0)( 2  EEnEnn   EQ 2.47 

 

and therefore 
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EQ 2.48 

 

with the general dispersion relation of cold plasma waves given by, 

 024  CBnAn  EQ 2.49 

where, 
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  22 cossin PSA   EQ 2.50 

 )cos1(sin 22   PSRLB  EQ 2.51 

 PRLC   EQ 2.52 

 

θ in these equations is the angle between that of the direction of propagation of the 

wave and the static bias magnetic field. 

 

The solutions to n can only be purely real or purely imaginary as in a cold plasma with 

no particle streaming there is no source of free energy that will allow instabilities to 

grow. When the solution to n is real then the waves will propagate. If the solution is 

imaginary then the waves are evanescent. When n2 goes through zero or infinity, it 

corresponds to a transition between propagation and evanescence. When n tends 

towards zero as the frequency is tuned, then the transition is known as a cut-off as no 

wave above (or below as appropriate) the defined frequency will propagate. This 

occurs if P, R or L = 0. As such it is possible to define the cut-off frequencies of each 

case as follows (only considering positive ω), 
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At a cut-off, the wavevector tends towards zero while the phase velocity tends to 

infinity. The alternative extreme propagation condition, where n goes to infinity, 

requires that A transit through zero. This corresponds to a resonance as the wavevector 

tends to infinity and the phase velocity to zero. In this case it is possible to define a 

hollow cone with a resonance angle of θres. This cone separates angles where 

propagation is possible from angles where it is not. This angle is defined as, 

 

S

P
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EQ 2.56 

θres lies between 0 and π/2, since the problem is symmetric with regard to the 

propagation direction. There are two distinct cases, where propagation is possible for 
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angles less that θres and where propagation is possible for angles greater than θres. The 

principal resonances (where no propagation is possible for any angle) occur according 

to equation 2.57, for the first case, and equation 2.58 for the second, 

 00  Pres  or  )(5.0 LRS  EQ 2.57 
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EQ 2.58 

The first resonance condition in equation 2.57 is a degenerate case, i.e. all coefficients 

of equation 2.49 disappear. However, for the second resonance condition in equation 

2.58, 

 R  as ee   EQ 2.59 

 L  as 
i  EQ 2.60 

which defines the electron cyclotron resonance and the ion cyclotron resonance 

respectively, which are important for waves travelling along the magnetic field lines. 

In addition to these, at the second resonance, given by equation 2.58, there are also 

hybrid resonances associated with perpendicular propagation given by, 
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EQ 2.62 

The subscripts UH define the upper hybrid resonance and LH define the lower hybrid 

resonance. These different resonances and cut-offs affect the different special cases of 

waves that will now be discussed. 

 

For a plasma without a magnetic field, B0=0 and θ=0, equation 2.49 results in two 

simple wave solutions, 

 22

p    EQ 2.63 

 2222 ckp    EQ 2.64 

The first solution corresponds to the simple longitudinal (k || E) plasma oscillation. In 

the cold plasma limit, this wave has no group velocity and therefore does not 

propagate. The second wave solution is a transverse wave (k ┴ E) that cannot propagate 

in the range 0 < ω < ωp. The dispersion curve for this wave is given in figure 2.2. 

When the plasma has a finite temperature, the first solution becomes modified by the 
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thermal velocity of the particles resulting in what are known as Langmuir waves, given 

by, 

  22222

eip VVk     EQ 2.65 

where V represents the thermal velocity of the ion and electron species, given by the 

subscripts i and e respectively, and are defined as, 
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where T0 is the temperature of the species, m is the species mass and γ is the ratio of 

the specific heats, related to the degrees of freedom, s, of the species by (s+2)/s. A 

further solution for ion waves also appears when there is a finite temperature, given 

by, 
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where Z is the charge of the ion species. This wave solution is known as the ion 

acoustic wave. This is analogous to a sound wave in a neutral gas, except that where a 

sound wave is a longitudinal wave driven by particle collisions, the ion acoustic wave 

is a longitudinal wave driven by the electrostatic potentials that arise due to the 

difference in amplitudes of the ion and electron oscillations. These waves propagate at 

the ion sound speed which is defined as, 
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EQ 2.68 

Note that these warm plasma wave solutions make the assumption that the electrons 

in the plasma are typically hotter than the ions such that Vi << Ve. 

 

Returning now to the cold plasma model, in the presence of a magnetic field but 

considering θ=π/2, one solution to the dispersion relation is a transverse wave with 

E ┴ k which corresponds to a perpendicular propagating wave with an electric field 

parallel to the magnetic field vector B0. This wave is identical to the field free case 

described above and is known as the ordinary or O mode. Of particular interest in this 

work, another solution for θ=π/2 is given by,  
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This wave solution is known as the extraordinary or X mode. This mode has cut-offs, 

where k → 0, at ωR and ωL as well as resonances, where k → ∞, at ωUH and ωLH. Figure 

2.3 shows the dispersion relation for the X-mode. 

 

 

Figure 2.3 Dispersion relation of the X-mode 

 

2.5  Instabilities 

 

2.5.1  Two-stream / Beam-plasma instability 

 

Considering a simple cold, unmagnetised plasma in the steady state with streaming 

components it is possible to describe the two-stream instability. Starting with just one 

component species of this plasma, the cold plasma equations can be linearised 

similarly to before but now, 
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 EQ 2.70 

 

Where n0 and u0 are constants defining the initial number density and initial velocity 

of the species respectively and n1 and u1 are the perturbations in the number density 

and velocity respectively. As there are no initial electric and magnetic fields, the only 

fields arise from the perturbation. Therefore the equations of continuity and motion 

can be written, 

 
0)( 0110

1 



unun

t

n
 EQ 2.71 

 
)()( 10110

1 BuE
m

q
uu

t

u





 EQ 2.72 

 

Considering only longitudinal waves, then from Maxwell’s equations 01  E  

therefore there is no change in magnetic field component from the perturbation. As the 

initial magnetic field is zero, only Poisson’s equation is required, 
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From these equations, and assuming that all the perturbed quantities vary as 

)(exp trki   it is possible to solve for the non-trivial case of 01 E and obtain the 

generalised dispersion relation of longitudinal waves for all species in the plasma, 
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where ωpα is the plasma frequency and α is the species. Considering the dispersion 

relation given by equation 2.74 for two beams of electrons, it can be seen that this 

equation is a quartic with four solutions. For |k| > kc there are four real solutions, where 

the critical value is given by    221

33/2

2

3/2

1

2 / uuk ppc   . However, for |k| < kc the 

solutions become a pair of complex conjugate solutions. It is the imaginary part of 

these solutions which represent the exponentially growing and damped waves in the 

system, with the growing wave being associated with the two-stream instability. For 

the case where there is one population with a finite drift velocity streaming into a 
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secondary population with zero drift velocity, this is known as the beam-plasma 

instability [Thode and Sudan, 1975]. 

 

2.5.2  Modulational instability 

 

In a system where there is the propagation of both Langmuir waves and ion acoustic 

waves, it is possible for these two waves to couple and modify their propagation 

behaviours. Due to the large difference in response time between the electrons and the 

ions, the electron wave essentially sees the ions as a static background whereas the ion 

wave perceives the fast electron behaviour as a neutralising medium. If an ion density 

fluctuation is formed, this can introduce perturbations in the electron wave dispersion. 

Similarly, the electrons affect the ion acoustic wave as the pondermotive force of the 

slowly varying electric field can displace the electrons. This coupling is given by the 

Zakharov equations [Zakharov, 1972; Dendy, 2002], 
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Where ns is the perturbation in density introduced by the slow time-scale wave. These 

two equations describe the coupling between the slow-time scale density perturbations 

and the resultant electric field. They show that if there is a slow perturbation in the ion 

density, there is a corresponding slow perturbation in the electron density which 

moderates the evolution of the amplitude of the electric field associated with the 

electron plasma frequency. For electrons oscillating in an inhomogeneous electric field 

E (and assuming the simple case where the electric field and its gradient are aligned), 

as the electrons oscillate in the direction of the increasing field strength they will 

experience a stronger reverse force, -eE, in the opposite half of the cycle. This has the 

result of moving the electrons out of the region of high electric field amplitudes. A 

similar analogue occurs for the magnetic component of the Lorentz force, when the 

electron motion is perpendicular to the field gradient. As these electrons move out of 

these high field regions, the ions follow resulting in areas of plasma depletion which 



31 

 

leads to what is known as the modulational instability [Nishikawa, Hojo and Mima, 

1974; Rosenbluth and Sagdeev, 1984b]. 

 

In the example of a wave propagating with constant amplitude through a homogenous 

plasma, a small perturbation in density can lead to plasma depletion. This will in turn 

lead to an increase in the wave amplitude, which will drive more electrons from this 

plasma cavity. This modulation of the wave profile can grow, resulting in plasma 

cavities that are several Debye lengths in dimension. 

 

To determine the regime where the modulation instability can occur, it is important to 

consider the turbulence parameter which determines the threshold for the instability, 
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This parameter gives the ratio of the average electric field energy associated with an 

electrostatic or electromagnetic wave in the plasma to the thermal energy density of 

the particles. With this parameter defined, it is possible to show that if 
2

23

Dk

k
W  where 

k is the wavenumber of the wave and kD is the Debye wavenumber 
D

Dk


2
 , then it 

is possible for waves to become trapped and the modulational instability to grow. 

 

2.5.3  Cyclotron resonance maser instability 

 

The cyclotron resonance maser (CRM) instability grows when an electron beam 

gyrates around an external magnetic field and couples to an electromagnetic wave. 

[Twiss, 1958; Sprangle and Drobot, 1977; Chu 1978]. It is the main process that is 

utilised to extract energy from a gyrating electron beam and use it to produce radiation, 

such as in a gyrotron. 

 

The CRM instability consists of the gyrating electron beam interacting with the AC 

components of an electromagnetic wave, such as those in a waveguide, which results 
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in the electron beam forming azimuthal bunches which provides an efficient 

mechanism for the transfer of energy to the electromagnetic wave. 

 

   

Figure 2.4 Schematic of azimuthal bunching due to CRM instability 

 

Figure 2.4 shows schematically how the cyclotron resonance maser instability operates 

[Granatstein and Alexeff, 1987]. Initially the electrons are uniformly distributed 

around the magnetic field axis at the Larmor radius. The electrons and the electric field 

both co-rotate in the same clockwise direction. As the electrons continue to orbit they 

begin to interact with the transverse electric field components of the electromagnetic 

wave. This leads to a deceleration on the left side of the field line, illustrated in figure 

2.4, and an acceleration on the right. As the electrons exchange energy with the 

transverse electric field, the modulated relativistic factor begins to modify their 

cyclotron frequency i.e. the decelerating electrons increase their cyclotron frequency 

and advance in phase whereas the accelerating electrons decrease their cyclotron 

frequency and retard in phase. This ultimately leads to an azimuthal bunch forming. 

When the bunch is in a suitable phase with the electric field, they can emit radiation 

coherently. This occurs when the wave frequency slightly exceeds the cyclotron 

frequency, the resulting phase drift moves the electrons into the decelerating phase as 

indicated in the third image in figure 2.4. 

 

In the Earth’s magnetosphere, the AKR emissions are thought to be produced by a 

related CRM mechanism [Delory, et al., 1998; Ergun, et al., 1998b; 2000]. In this case, 

the emitted radiation has been observed to be polarised in the X-mode. It has been 

shown that the horseshoe velocity distribution of electrons is also unstable to the CRM 

mechanisms [Bingham and Cairns, 2000; 2002]. To approximate this process in the 
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laboratory, a waveguide with a circular cross-section was previously used to support 

near cut-off transverse-electric modes which would be able to simulate the properties 

of an X-mode, see section 2.6. Likewise the numerical simulations in this work would 

use the same waveguide approximation of the plasma X-mode. 

 

2.6  Waveguide theory 

 

From Maxwell’s equations (2.35-2.38), it is possible to derive the equation for a 

propagating electromagnetic wave as, 
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The solutions to these equations require careful consideration of the boundary 

conditions of the system being considered. Within a hollow conducting waveguide, 

the electric field component parallel to the structure boundary must become zero as 

the conduction path in the boundary will short out this field. Similarly, the AC 

magnetic field component perpendicular to the boundary must also be zero as there 

would be a current flow in the boundary that would cancel the field. A free-space wave 

has purely transverse electric and magnetic field components known as a TEM wave. 

In a hollow conducting waveguide, it is not possible for both of these fields to be 

transverse to the waveguide axis (and therefore the propagation direction) due to the 

boundary conditions. Therefore the only allowed waves that can propagate through the 

structure have either axial magnetic fields and are called transverse electric field modes 

(TE) or have axial electric fields and are referred to as transverse magnetic field modes 

(TM). The general (Cartesian) solutions for these waves are given, 
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Where 
22

cz kkk  is the propagation constant and kc is the cut-off wavenumber 

with these parameters dependant on the geometry of the waveguide and frequency of 

the wave (
c

f
k

2
 ). These equations describe TE waves when Ez=0 and TM waves 

Hz=0. 

 

 

Figure 2.5 Dispersion of rectangular waveguide TE modes and cross-section examples of TE 

electric field behaviour for TE modes 

 

For a waveguide of rectangular cross-section the Hz and Ez components for TE and 

TM waves respectively are given by, 
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And the different modes of propagation cut-off wavenumbers are given by, 
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Where A is an arbitrary amplitude, a and b are the waveguide dimensions and m and 

n are the waveguide mode numbers. For TE modes, m=n=0 is a forbidden mode 

whereas for TM modes m=0 or n=0 is a trivial solution. The graphical form of the 

dispersion relation for example TE modes are given in figure 2.5. One can see that in 
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a smooth waveguide the dispersion had a hyperbolic form with a minimum (cut-off) 

frequency of cck . 

 

For a cylindrical waveguide of circular cross-section, the equations 2.80-2.83 can be 

represented in cylindrical coordinates, 
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And again the Hz and Ez components for TE and TM modes respectively, 
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Where A and B are arbitrary amplitudes of the sin and cosine terms which can be 

independent of each other corresponding to two degenerate, orthogonal polarisations 

of the wave. Jn is a Bessel function of the first kind of order n. 

 

To find the cut-off wavenumber for TE modes, we require that Eϕ = 0 when r = a, the 

radius of the waveguide which gives, 
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Where P′nm is the mth root of the derivative of the Bessel function, J′n. The first few 

roots are shown in table 2.1, 

 

n P′n1 P′n2 P′n3 

0 3.832 7.016 10.174 

1 1.841 5.331 8.536 

2 3.054 6.706 9.970 

Table 2.1 First values for the roots of the derivative of the ordinary Bessel function of the first 

kind J′n 
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For the cut-off wavenumbers of the TM modes, Ez = 0 when r = a, which gives 
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Where Pnm is the mth root of the Bessel function, Jn. Again the first few values for this 

root is shown in table 2.2, 

 

n Pn1 Pn2 Pn3 

0 2.405 5.520 8.654 

1 3.832 7.016 10.174 

2 5.135 8.417 11.620 

Table 2.2 First values for the roots of the ordinary Bessel function of the first kind Jn 

 

As the propagation constant kz → 0 (i.e. near cut-off), a TE wave propagates 

perpendicular to the waveguide axis with a polarisation direction perpendicular to the 

waveguide axis. At the same condition, this leads to the magnetic field component of 

the wave tending to become purely axial. This particular type of wave has propagation 

and polarisation properties that are similar to a plasma X-mode as discussed in section 

2.4.2. Observations of the radiation generated in the magnetosphere show that it is 

polarised in the plasma X-mode and at a frequency close to the electron cyclotron 

frequency. The laboratory models relate to the AKR emission from the earth’s 

magnetosphere where there is an area of plasma depletion known as the auroral density 

cavity that has boundaries where the plasma frequency is greater than the electron 

cyclotron frequency. It has been supposed that these boundaries function in a similar 

manner to a conducting cylindrical waveguide of circular cross-section [Burinskaya 

and Rauch, 2007]. For the simulations presented in this work, the near cut-off TE 

modes are used for the laboratory models of the X-mode. 

 

2.7  Electron emission 

 

In order to generate an electron beam propagating in a vacuum, an emissive cathodic 

electrode is required in the system. The electron emission process from this cathode is 

enabled by a number of mechanisms, of particular importance are field emission, 

thermionic-Schottky emission and explosive electron emission (that is an extreme 
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consequence of the first two). The dense electron population within the conduction 

band of metals (and other conductors) is prevented from leaving the cathode due to a 

potential barrier that forms on the surface of the material. The different emission 

mechanisms describe ways in which this potential barrier can be traversed or 

penetrated. The mechanism which dominates is typically determined by the strength 

of the applied electric field across the cathode surface, along with the temperature and 

composition of the underlying material. The limit of the emission current is determined 

by the laws of electromagnetism and in particular the Child-Langmuir or space-charge 

limit. 

 

2.7.1  Space-charge limit 

 

For a relatively weak electric field applied to the surface of a warm cathode, the current 

can be found to increase in proportion with Va
3/2, where Va is the applied voltage. The 

cause of this limit arises due to the relative ease with which the electrons escape the 

cathode material. As the electron beam current is required to be continuous across the 

diode gap, at relatively low velocities near the cathode, the electron cloud density is 

high which depresses the local electrostatic potential, shown in figure 2.6. This density 

is large enough that the electric field on the cathode surface tends to zero. 

 

Figure 2.6 Electrostatic potential between the cathode and the anode 
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This is known as the space charge limit and it determines the maximum current that 

can be drawn from a cathode in vacuum. Whilst this behaviour is dependent on the 

geometry of the system, it always has the form, 

 

 2/3PVI   EQ 2.95 

 

Where P is the perveance. This equation is referred to as the Child-Langmuir law, or 

alternatively the three-half power law. For a plane parallel diode in the sub- relativistic 

limit, the perveance is defined as, 
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Where A is the area of the electrodes and d the electrode gap spacing [Gilmour, 1986; 

2011; Lorrain, Corson and Lorrain 1988; Humphries, 1990] 

 

2.7.2  Thermionic-Schottky emission 

 

For all cathode temperatures above absolute zero, there will exist a population of 

electrons in the high energy tail of the electron distribution function that have sufficient 

energy to escape over the potential barrier. The density of this population will be 

predominately controlled by the cathode temperature. If a weak electric field is applied 

to this cathode material, then these electrons will be allowed to leave the surface. This 

is known as the thermal emission current, given by the Richardson Dushman equation 

[Gilmour, 1986], 
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Where T is the temperature of the cathode and ϕ is the surface barrier potential. The 

constant A0 is given as 1.20x106 Am-2oK-2. 

 

However, the effect of an externally applied electric field modifies the work function, 

which acts to reduce the maximum value of the barrier potential. This is known as the 
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Schottky effect and is described by a modified version of the Richardson Dushman 

equation, 
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Where E is the applied electric field. For a warm cathode, as the applied electric field 

is increased, this mechanism will reach a point where it can no longer support the 

space-charge limit of the current which can be carried by the vacuum diode. This will 

result in the current reaching a plateau at the so-called temperature limit. The current 

as a function of applied voltage is shown in figure 2.7. 

 

 

Figure 2.7 Emission current as a function of applied voltage 
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2.7.3  Field emission and field enhancement 

 

As the applied electric field is increased further, more electrons will begin to be 

emitted than can be explained by the thermionic mechanism. This behaviour is due to 

the surface potential barrier becoming narrow enough that the dense electron 

population at or near the Fermi level in the conduction band has a finite probability of 

surface barrier tunnelling from the metal to the vacuum. This tunnelling current rapidly 

becomes dominant over the thermionic current. It should be noted, however, that this 

process cannot raise the current to the space charge limit as by definition this would 

result in no field on the cathode. This tunnelling current is given by the Fowler-

Nordheim relation, 
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Where A is given as 1.54x10-6(


54.4

10 ) and B is 6.53x109 2
3

eV , with E the electric 

field (Vm-1), J the current density (Am-2) and ϕ the work function (eV) [Ronald, 1996; 

Noer, 1982]. 

 

For real plane cathode materials, the onset of field enhanced emission occurs orders of 

magnitude lower than would be expected. This is due to the surface containing many 

discontinuities and, in particular, extreme whiskers of material that can result in local 

enhancement of the electric field. This enhancement is typically on the order of the 

aspect ratio of the discontinuities. For very thin whiskers with tips ~nm across, this 

can result in particularly high enhancement. Field emission from only a few such 

microscopic sites can dominate the bulk thermal emission from the entire cathode 

when the applied electric field is sufficiently high. 

 

2.7.4  Dielectric enhanced breakdown 

 

Field enhancement is no longer thought to provide a complete explanation for the 

experimental observations from surfaces in high field environments (though it does 

explain the potential for significant field emission at macroscopic fields well below 
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the critical value predicted by the Fowler-Nordheim relationship). Other additional 

mechanisms associated with dielectric surface coatings have been identified. Above a 

certain critical field, small currents that flow from the metal to the empty conduction 

band of the insulator, avalanche through the dielectric which provides a large supply 

of electrons at the vacuum edge of the dielectric [Latham, 1983]. 

 

2.7.5  Explosive electron emission 

 

The operation of a velvet cathode depends upon a mix of the previous effects that result 

in electron emission. The surface is initially a dielectric that is covered in uniform 

fibrous tufts. These tufts perturb the electric field, leading to the enhanced emission 

process. This is further enhanced by the breakdown along the length of the fibres from 

the underlying metal which provides a large electron density at the cathode tips. 

 

All of these field enhanced emission processes (see sections 2.7.3 - 2.7.4) are generally 

unstable in reality. Rapid, localised heating typically results in the vaporisation of the 

cathode material which creates a gas cloud at the cathode surface. The intense 

thermionic current from the hot underlying material can ionise this gas, forming a 

dense plasma. This plasma then supports space charge limited emission in the vacuum 

gap. This process is known as explosive electron emission [Ronald, 1996; Mesyats and 

Proskurovsky, 1989; Tsimring, 2007]. This is a highly dynamic process, due to the 

non-static nature of the plasma cloud. This cloud can expand with a velocity 

determined primarily by the specific energy of vaporisation of the bulk material, 

although this is affected by the electric and magnetic fields present. An estimate of this 

expansion velocity has been given by [Mesyats and Proskurovsky, 1989] as, 
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Where γ1 is an adiabatic parameter, typically ~1.24 [Mesyats and Proskurovsky, 1989], 

tv is the time taken for the tip to vaporise, κ the resistivity and ρ the material density. 
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Typical values of the expansion velocity are in the range of 1-7 cm/µs [Mesyats and 

Proskurovsky, 1989; Ronald, 1996] for metals from lead to stainless steel (slow to fast 

respectively). This limits the operation of such cathodes to systems that have pulse 

durations significantly less than the time taken for the plasma cloud to traverse the 

anode-cathode gap. A cathode immersed in a magnetic field will also exhibit more 

uniform emission as the magnetic field prevents the space charge cloud at an emission 

site from suppressing the electric field in a neighbouring potential site. 

 

2.8  Gas discharges 

 

For the beam-plasma laboratory experiment, it is necessary to produce a low density 

plasma from a low pressure background of helium gas. To achieve this, the gas has to 

be ionised in a sustained discharge which is the result of a process similar to that of 

Townsend discharge. 

 

In its simplest form, the Townsend discharge is created between two parallel 

conducting plates (an anode and cathode) and a potential difference is applied between 

the electrodes, illustrated in figure 2.8. Initially as the voltage is raised above zero, the 

anode and cathode collect randomly produced charge carriers formed in the gap [von 

Engel 1965; 1983]. The cathode also emits a weak electron current (which can be 

enhanced by UV irradiation or heating) which propagates towards the anode (figure 

2.8(i)). Whereas in a vacuum, where the electrons propagate all the way to the anode 

with little disruption, in the presence of a background gas the propagating electrons 

can begin to collide with the neutral atoms or molecules of the gas. The likelihood of 

this event is dictated by the mean free path. Typically these collisions are elastic and 

scatter the directed drifting electrons whilst conserving the bulk of their energy, hence 

the electric field effectively ‘heats’ the electron thermal motion. If the colliding 

electron’s kinetic energy exceeds that of the ionisation threshold of the neutral gas 

particles, then an electron can be stripped from that neutral resulting in both a positive 

ion and now two electrons (figure 2.8(ii)). 
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Figure 2.8 Townsend discharge schematic 

 

The colliding electron deflects in a different direction and with a reduced kinetic 

energy due to the inelastic nature of the collision. The secondary electrons which are 

stripped from the neutrals are also accelerated and drift towards the anode, again 

leading to further collisions resulting in an exponential avalanche of ionisation. In 

addition, the ions that are created accelerate back and impact upon the cathode surface 

which can result in secondary electron emission (as the ion delivers it’s kinetic and 

potential energy locally) (figure 2.8(iii)). In order for the discharge to be self-

sustaining, the following expression must be satisfied, 

   11 de  EQ 2.101 

Where α is known as the first Townsend coefficient which relates the number of 

electron-ion pairs produced by an electron over a unit path length as it moves from the 

cathode to anode, d is the distance between the anode and cathode and γ is the second 

Townsend coefficient related to the number of secondary electrons generated per ion 

impacting on the cathode. 

 

Unfortunately this particular type of discharge does not work well at low gas pressures. 

This is due to the mean free path of the electrons which increases as the pressure of 

the gas is reduced. This typically results in the electrons travelling from the cathode to 

anode without colliding with any neutral particles leading to a very low ionisation rate 

and no sustained discharge. For the laboratory beam-plasma experiment we instead 

use a Penning-like discharge. 
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Figure 2.9 Penning discharge schematic 

 

For the Penning trap geometry [Chambers, Fitch and Halliday 1998; Eichmeier and 

Thumm 2008], the anode consists, instead of a conducting plate, of a conducting 

cylinder and there are now two cathode plates or discs at either end of the anode, figure 

2.9. A static magnetic field is applied parallel to the length of the anode. For this 

discharge, a voltage is again applied to the cathode and, similar to the Townsend 

discharge, electrons will either be formed by random statistical ionisation in the bulk 

of the gas, or begin to be emitted from the cathode surface. In this geometrical 

configuration, the electrons are again attracted towards the anode but the applied 

magnetic field prevents the electrons from reaching it. Instead the electrons gyrate 

along the magnetic field lines until they are repelled by the second cathode. The 

electrons will therefore ‘bounce’ back and forth between the cathodes greatly 

increasing their path length. As would be expected, this results in many more collisions 

between the electrons and the neutral gas particles, increasing the amount ionisation. 

The ions are still attracted to the cathodes and are still able to impact upon the cathode 

surfaces, producing secondary electrons. The specific designs of the traps used in the 

beam-plasma experiment are described in Chapter 5. 
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2.9  Plasma probe theory 

 

In order to obtain a measurement of the characteristic parameters of a plasma, such as 

the number density and electron temperature, probes are typically inserted into the 

plasma [Huddlestone and Leonard, 1965; Hutchinson, 2002]. When a plasma is 

incident upon a surface, such as the probe, a sheath forms as described in section 2.2.3. 

By applying a varying bias voltage to the probe, the amount of current flowing in the 

probe changes due to changes in the particle distribution in the sheath due to the probe 

potential. Through the measurement of the current-voltage (I-V) characteristics of the 

plasma it may be possible to obtain an estimate for the electron temperature as the 

collected current density, J, on the probe is related to the probe voltage, Vp, as follows, 

 

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By taking the natural logarithm of equation 2.102, 
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p
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Therefore the gradient of a plot of ln J vs Vp is 
ekT

e
 allowing the electron temperature 

to be determined. From this it is possible to use equation 2.103 to determine the 

thermal velocity of the electrons and from this the number density by, 
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The value for J0 can be determined again by the plot of J vs Vp, as it will occur at the 

plasma potential Vpot and correspond to the electron saturation region. A typical plot 

of the I-V characteristics of a probe inserted into a plasma is shown in figure 2.10, 
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Figure 2.10 Typical plasma probe I-V characteristics 

 

From this curve it can be seen that there are various charge collection regimes on the 

probe. When the probe is biased increasingly positive, the probe is in the electron 

saturation regime. Here the electron current is predominantly collected as the electrons 

are attracted and the ions are repelled from the probe surface. The plasma potential, 

Vpot, is the point at which the probe is at the same potential as the plasma and there is 

no particular attraction to the probe for either the electrons or ions. Here the current is 

determined predominately by the thermal motion of the electrons. As the voltage is 

decreased below the plasma potential, electrons are increasingly repelled (reducing 

their density according to the Boltzmann distribution) until there is no net current flow 

at the floating potential Vfloat. Continuing to decrease the voltage will result in the 

current being predominately generated from the ion flow to the probe, whereby the 

probe reaches the ion saturation regime. Due to the larger mass of the ions compared 

to the electrons, the magnitude of the ion saturation current is less than that of the 

electron saturation current. In the presence of a magnetic field, the probe sheath 

behaviour can become more complicated as the electron trajectories through the sheath 

will gyrate along the field lines. The ions on the other hand do not respond as strongly 

to the bias magnetic field, typically having a larger Larmor radii (even for a significant 

temperature decrement over the electrons) which may therefore adversely affect the 

collection current balance. Moreover, the assumed temperature anisotropy of equation 

2.102 may be challenged in the presence of a strong magnetic field. 

 



47 

 

 

 

 

 

 

 

Chapter 3 : Computational 

methodology 



48 

 

3  Computational methodology 

 

3.1  Particle-in-cell finite difference time-domain solver 

 

Due to the inherent complexity of the non-linear dynamics of a plasma system, 

computational codes have been employed to model the systems of interest. One 

approach, followed in this thesis, utilises a finite difference time-domain (FDTD) 

method to solve Maxwell’s equations in their partial differential forms by splitting the 

space of the system into an array of 1, 2 or 3-dimensional grid points. 

 

 

Figure 3.1 Cartesian 3D Yee-cell 

 

In this method, the electric and magnetic field components are arranged around a 

rectangular cell element formed by the normal planes to three orthogonal vectors 

defined by 6 grid points, as proposed by [Yee 1966]. The electric field components are 

defined along the edges of the cell whereas the magnetic field components are located 

at the centre of each of the cell faces. Note that if one transposes half a cell in each 

direction one may perceive that there is a mesh structure which inverts these 
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alignments. This arrangement of field components is known as a Yee-cell, shown in 

figure 3.1 for Cartesian coordinates. The minimum length of the Yee-cell is required 

to be substantially less than the smallest simulated wavelength. 

 

The fields are solved at fixed integers of time, or time-steps, which are defined at the 

start of the code. This time-step is required to satisfy the Courant criterion, 
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EQ 3.1 

The electric and magnetic field components are calculated at each time-step and at 

each grid point using a leapfrog method. This is done by calculating the electric fields 

at one instance of time and then calculating the magnetic fields half a time-step later. 

Another half time-step later, the electric fields are calculated again and this process is 

then iterated over the whole simulation run-time. 

 

In order to investigate plasma systems or beam dynamics, particles must also be 

considered in the computational codes. As the electric and magnetic field components 

are determined across an array of grid nodes, the charged particles in the system are 

moved according to the Lorentz force equation and the relativistic equations of motion. 

These particles are tracked through the system irrespective of the grid nodes giving 

rise to the name particle-in-cell (PiC). Quantities such as charge density and current 

are calculated and are fed back for use in the calculation of the electric and magnetic 

field components at the grid nodes. 

 

As modelling all the particles in even a typical tenuous plasma would be 

computationally expensive, the concept of macro-particles is introduced. A macro-

particle is a larger effective particle that approximates the mass and charge of a 

combined number of particles of a given species defined by the code. The fewer 

particles that make up the macro-particle, the more accurate the system becomes 

therefore there is a trade-off between accuracy and computational speed to be 

considered. Normally a minimum of 3 macro-particles (per species) to one grid cell is 

desirable to have a low numerical noise floor. 
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3.2  xOOPIC numerical code 

 

The PiC code used predominately in this work is the freely available xOOPIC written 

in C++ and developed by the University of Berkley [Verboncoeur, 1995]. This code 

implements the finite difference method over 2.5-dimensions (2-dimensions in space 

and 3-dimensions in phase-space) and can be run using either a Cartesian coordinate 

system or a cylindrical coordinate system. 

 

xOOPIC is a parallelisable code and for this work has been compiled and configured 

to run on up to 96 threads split between four Linux-based machines. This 

parallelisation functions by splitting the defined grid point array and macro-particles 

axially between each of the computational threads. Each thread then calculates the 

field components and particle positions and velocities independently within its own 

computational zone. To maintain cohesion across the system, shared boundaries are 

setup where the grid point array is split, and the code then makes use of the 

standardised message passing interface (MPI) to transfer the calculated boundary 

fields and the data of the macro-particles that traverse the shared boundaries between 

the adjacent computational zones. xOOPIC can only divide the computational mesh in 

one spatial dimension, a scheme which is well suited to problems which are long in 

that dimension. 

 

For this work, three simulation boundary conditions were utilised. The first is a simple 

conducting boundary which assumes a perfect conductor and therefore sets tangential 

electric field component to zero and absorbs particles that impact upon it (without 

secondary emission). The second is the symmetry boundary which maintains 

Maxwell’s equations for cylindrical systems and allows particles to be retransmitted 

back into the system in line with cylindrical geometry. The final boundary is the output 

wave boundary. This boundary uses a surface impedance method to set the ratio of the 

tangential electric and magnetic field components to the impedance of the boundary 

medium. In all cases in this work, the boundary medium is free-space. While it is 

possible to inject waves in via this boundary this was not required, however using a 
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similar method the output ports were set at a fixed potential in some scenarios to mimic 

electrostatic confinement potentials. 

 

Modifications to the xOOPIC source was necessary for some of the investigations 

performed in this work. 

 

3.2.1  Injecting beams with required velocity distributions 

 

xOOPIC as distributed does not provide the functionality to inject a particle beam with 

a user-defined velocity distribution. Therefore, in order to match the velocity 

distribution of the electron beam in the computational simulation of the laboratory 

AKR experiment, without simulating the full magnetic compression region, required 

the modification of the xOOPIC source. 

 

Initial modification was required to allow the injection of a phase asynchronous 

gyrating beam at a fixed Larmor orbit, offset from the axis of the simulation system. 

Due to the cylindrical nature of the simulations this required conversion between the 

perpendicular velocity of the beam reference frame (i.e. the azimuthal velocity of the 

electron about its own guiding centre) to the radial and azimuthal velocities of the 

overall simulation reference frame (i.e. about the symmetry axis of the entire 

simulation volume). This can be achieved through the use of simple trigonometry. 
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Figure 3.2 Conversion from beam-frame to cylindrical simulation frame 

 

From Figure 3.2, it can be shown that for a known magnetic field, injected particle 

radial position, guiding centre radius and beam perpendicular momentum,  
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With this conversion mechanism in place it is possible to apply any distribution to the 

injected particles pitch angle as once the perpendicular velocity is known; it can be 

converted as above. However, to apply a distribution function to each particle the 

corresponding random variate must be calculated. 

 

Random variates are calculated based on the application of a probability density 

function to a uniform random sample. In xOOPIC there already exists a uniform 

pseudo-random number generator that is used for particle loading and a Gaussian 

variate generator for temperature distributions. 
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For a specific distribution function it is therefore necessary to code in the appropriate 

random variate generator. For this work, a gamma distribution function (illustrated in 

figure 3.3) was chosen as it allowed for a variety of different forms for the distribution 

(such as the Maxwell-Boltzmann distribution which exists as a special case of the 

Gamma distribution) to be produced by changing two constant values k and θ in the 

function, 

 





x

k

k
ex

k
kxF





 1

)(

1
),;(

 

EQ 3.4 

 

Figure 3.3 Gamma distribution function 

 

Fast generation of this variate was implemented as laid out by [Marsaglia and Tsang, 

2000]. 

 

3.2.2  Output diagnostics 

 

The output from xOOPIC is produced via user-defined data dump-steps, defined as a 

fixed number of time-steps. However, at each dump-step all information within the 

system is output, including the fields at all grid points and macro-particle positions, 
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phase-velocities and charge. This makes the output data very large and difficult to 

analyse if the data-dump frequency is high. In order to observe temporal behaviour of 

the fields and the particle quantities it was necessary to build new diagnostic outputs 

into the code. To this end, a new diagnostic routine was introduced that would only 

output one single variable into its own dump file. This new feature allows the user to 

select specific variables to be output at a frequency independent of the simulation’s 

overall data-dump rate. 

 

An additional data output problem arises due to the parallelisation of the code. As the 

simulation is split up between the computational nodes, each node is independent of 

the others with the exception of the shared split boundaries. As a result, each node 

produces an output file for the variables only for the grid points that particular node is 

processing. As such, the output data needs to be collated into a single output file for 

future post-processing. This was achieved by writing a C++ program to combine all of 

the individual nodes output files at each dump-step. 
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3.3  Overview of xOOPIC Simulations 

 

3.3.1  Simulations of laboratory experiments investigating AKR mechanisms 

 

Figure 3.4 Schematic of AKR simulations 

 

Numerical simulations have been constructed in xOOPIC to model the CRM 

behaviour seen in laboratory experiments conducted in [McConville, 2009]. To this 

end the simulation has been designed to model the laboratory experiment as closely as 

possible as shown in Figure 3.4. A uniform axial magnetic field is applied across the 

input taper and interaction region. This confines both the beam and plasma radially. 

At the output taper, the axial magnetic field is ramped down to prevent the electron 

beam from intercepting the output port. As Bz is ramped down, Br is modified to ensure 

that 0 B . In the experiment, the electron beam velocity distribution is created via 

a long magnetic compression region. This region of the laboratory experiment has not 

been modelled, and an input taper has been included in the simulation to prevent 

backwards waves from reaching the electron beam injection region. The experiment 

also included a reflecting structure here which formed an electrode of the discharge 

used to produce the plasma. 
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Figure 3.5 Schematic of magnetic mirror simulation 

 

Prior to undertaking the CRM simulation described in the preceding section, it was 

necessary to test and optimise the electron beam that would be injected with a user 

defined velocity distribution. This distribution was matched to the experimental 

electron beam velocity distribution as it enters the interaction region. To achieve this, 

a secondary simulation was designed to determine the transmission of the simulated 

electron beam through a magnetic mirror and compare it to that of the experimental 

measurements. 

 

This secondary simulation consists simply of injecting the electron beam with the 

selected velocity distribution into a straight cylindrical waveguide with an axially 

increasing magnetic field, see Figure 3.5. Experimental measurements of the 

transmitted beam current have been recorded with varying amplitudes of maximum 

magnetic field in the interaction region. Applying a profiled magnetic field in the 

simulation, rising from the resonant magnetic field to the same maximum magnetic 

field amplitude as in the experiment, allowed the velocity distribution of the simulated 

beam to be optimised to provide as close a match as possible to the experimental beam. 
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3.3.2  Two-stream/Beam-plasma simulations 

 

 

Figure 3.6 Schematic of magnetically confined two-stream simulation 

 

In order to investigate the non-linear behaviour that occurs during a beam-plasma 

interaction, simulations have been created that can be duplicated in a laboratory 

experiment. These simulations consist of an electron beam, injected from a perfectly 

conducting surface propagating through a confined plasma column. A secondary 

conducting surface is also in place to intercept the beam and prevent it interacting with 

the computational exit port. To confine the plasma radially, an axial magnetic field is 

applied over the plasma column but to confine the plasma axially, two schemes have 

been investigated numerically. The first, shown in Figure 3.6, is a magnetic bottle 

arrangement that relies purely on the applied magnetic field. At both exit ports of the 

simulation, the axial magnetic field is ramped up to a higher level than the plateau field 

over the plasma column. As the axial field rises, approaching particles are mirrored 

back into the plasma column. 

 

 

Plasma 

e- beam 

Bz 

 

Axis of symmetry 

In
p

u
t 

p
o

rt
 O

u
tp

u
t p

o
rt 



58 

 

 

Figure 3.7 Schematic of electro-statically confined two-stream simulation 

 

In the second scheme, shown in Figure 3.7, a constant negative electric potential is 

applied to the exit ports while the axial magnetic field is uniform across the whole 

simulation. This negative potential repels the negatively charged electrons back into 

the plasma column, the space-charge effects of which attract the positive ions keeping 

the plasma confined. This scheme is similar in style to the Penning discharge that 

would be utilised in the laboratory experiment. For all of the beam-plasma simulations, 

each particle species was initialised with 108 macro-particles per cell. 

 

3.4  MAGIC simulation overview 

 

A second finite-difference PiC code was used for this project known as MAGIC. This 

code is commercially available and has been designed primarily to model vacuum 

electronic devices. For this work, this particular code was used to design and simulate 

the electron emitter that would be used in the laboratory experiment. Like xOOPIC, 

this code is 2.5-dimensional but also has full 3-dimensional capabilities. However, 

unlike xOOPIC, it is not easily parallelisable which makes plasma simulations with a 

large amount of macro-particles highly time consuming. The boundary conditions in 

MAGIC are similar to xOOPIC but the output port boundaries operate based on a 

matched phase-velocity scheme [Ludeking and Woods, 2010]. The advantage of this 

code is that it has a variety of inbuilt electron emission models and magnetic field input 
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and creation features that make it ideal for the design of vacuum electronic 

components.  

 

 

3.4.1  Electron generation and propagation simulation 

 

For the laboratory experiment, a means to generate a laminar, rectilinear electron 

beam, similar to the one used in the two-stream instability simulations, was required. 

To this end, numerical simulations in MAGIC were undertaken in order to design the 

components necessary for such a device. 

 

 

Figure 3.8 Schematic of the electron generation simulation 

 

Figure 3.8 shows the schematic of the numerical simulation created in MAGIC. The 

cathode utilises a simple, inbuilt explosive emission model that simulates the electron 

emission from the cathode surface. This model does not contain the complexities of a 

realistic explosive emission, instead when the electric field on a region of the cathode 

surface (pre-defined as the emitter surface) reaches a critical level (~30kV/cm), that 

region will begin to emit electrons continuously, even if the field subsequently drops 

below the critical level. As MAGIC does not support applying fixed voltages to 

conducting surfaces, in order to produce the electric field between the cathode and 

anode, an electric field is injected as a TEM wave along the coaxial line from behind 
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the cathode from a free-space boundary. This creates the necessary electric field to 

start to produce and accelerate the electrons. 

 

The magnetic field profile was determined theoretically from an analytical model of 

the magnet solenoids, benchmarked against measurements with a Hall probe. This 

field was then recreated using MAGICs own magnetic field coil algorithms. The 

spacing between the two magnet coils creates a depression in the axial magnetic field, 

which may lead to unwanted effects in the electron beam, such as mirroring or 

scalloping. By modifying the shape of the electrode and adjusting the anode-cathode 

gap spacing, it is possible to compensate for this dip in magnetic field and simulate the 

production an electron beam with a similar current and beam diameter to that which 

was used in the two-stream numerical simulations. 

 

3.5  Post-processing 

 

In order to analyse the raw data output from xOOPIC and MAGIC, it was sometimes 

necessary to write a variety of MATLAB scripts to process the data. 

 

 Animations 

Scripts were made to take each combined output dump and produce image 

frames that were used to generate an animation file for the corresponding 

output variable. 

 Fourier analysis 

As each output variable is saved across all of the grid points of the entire 

simulation and output at regular time intervals, it was possible to write 

automated scripts to perform both spatial and temporal Fourier analysis on the 

output data. This enables the visualisation of the variation of the spectrum of 

the system across space and similarly any change in the spatial structures with 

time. 
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 Temporal evolution 

In addition to animations, scripts were written to analyse the temporal 

evolution of plasma and field structures, either at a point in the simulation or 

across a line through the simulation. 

 Histograms 

Scripts had to be written to generate histograms of macro-particle information, 

such as velocity, temperature etc. In addition, scripts were made to create 

animated histograms over time or space. 
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Chapter 4 : Numerical results 
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4  Numerical results 

 

4.1  Simulation of plasma mediated cyclotron instabilities 

 

Experiments have been undertaken at the University of Strathclyde [McConville, et 

al., 2008] where an electron beam has been formed into a horseshoe distribution in 

electron velocity space by adiabatic magnetic compression. The cyclotron maser 

emissions from this electron beam have been studied to aid in the understanding of the 

mechanism of Auroral Kilometric Radiation [Gurnett and Green, 1978; Delory, et al., 

1998; Ergun, et al., 2000; Bingham and Cairns, 2000; 2002]. These prior experiments 

were used to test the predictions of numerical simulation tools which may be used to 

simulate cyclotron wave emission in the environments similar to the magnetosphere 

[Ronald, et al., 2011; Bingham, el al., 2013]. Three dimensional ray-tracing has also 

been used to model the mechanism and the radiation propagation, feedback and escape 

processes with a ring-like distribution of electrons [Burinskaya, 2013]. A recent 

addition to these experiments, to more realistically reproduce the magnetospheric 

environment was the introduction of a background plasma. This work therefore 

focused on extending the numerical models to consider the impact of this background 

plasma on the evolution of the CRM instability (which was seen in the experiment to 

be rather substantial). This demanded a parallel PiC code as the serial codes used to 

model the electron beam-wave interaction were insufficient to address the complex 

problem when the plasma was added to the system. In many ways the 2D PiC code 

xOOPIC is well suited to this task, however it was not capable of injecting gyrating 

electron beams as distributed. As indicated in section 3.2.1, a scheme was devised 

which allowed such beams to be injected into the system, and new software routines 

were introduced to the xOOPIC source code to enable this. Sections 4.1.1-4.1.2 

demonstrates the functionality of these new routines incorporated into the xOOPIC 

source. Section 4.1.3 shows the matching and optimisation of the numerical electron 

beam distribution to the experimentally measured distribution by means of magnetic 

compression simulations. Finally, section 4.14 presents the results obtained from the 

numerical modelling of the auroral radio wave simulation experiments.  
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4.1.1  Gyro-orbit beam injection/Gyrotron test 

 

To test the electron beam injection routines added to the xOOPIC source code, it was 

first necessary to ensure that the code was correctly injecting a simple arbitrary 

gyrating electron beam at a set gyro-orbit. As this was a test of beam behaviour, the 

simulation size was set to a short section 3cm in length and 2cm in radius. The beam 

was injected from a conducting boundary using the set of parameters given in table 4.1, 

 

Current 60A  Confining B-field 0.4T 

Voltage 75kV  Beam guide radius 0.07m 

Beam α 1.0  Current rise time 4ns 

Table 4.1 Simulation parameters for gyro-beam test 

 

 

Figure 4.1 Gyrating beam generated by xOOPIC (i) Z-R space (ii) Pr-R space 

(iii) Pθ-R space 

 

(i) 

(ii) (iii) 
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Figure 4.1 shows the gyrating beam that is produced by the newly created routines in 

xOOPIC. The radial and azimuthal velocity components that are generated can be 

compared directly to that of a gyro beam produced in a different 2D code (MAGIC) 

with the same parameters, shown in figure 4.2. This code has inbuilt functionality that 

allows the generation of gyrating particle beams and was therefore used as a control 

for the new routine. MAGIC 2D is not capable of parallel execution and therefore was 

not suitable for the complex plasma calculations required. 

 

 

  

Figure 4.2 Gyrating beam generated by MAGIC (i) Z-R space (ii) Pr-R space 

(iii) Pθ-R space 

 

As can be seen, the particle injection routines added to xOOPIC creates very similar 

particle trajectories to those generated by MAGIC for matched input parameters. The 

azimuthal component from the MAGIC simulation is in the alternate direction as the 

axial magnetic field and gyration direction were inverted. However, the values for both 

the radial and azimuthal velocities are a close match. Note that in both codes the 

azimuthal and radial components of the velocity are determined relative to the 

simulation axis of symmetry. This leads to a visual distortion in the beam momentum 

plots. If the radial and azimuthal components were relative to the beam gyro-centre, 

(i) 

(ii) (iii) 
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figures 4.1(ii) and 4.2(ii) would be perfectly circular while figures 4.1(iii) and 4.2(iii) 

would be a straight line. 

 

To further test the growth of the cyclotron instabilities excited by the gyrating electron 

beam in the xOOPIC code, a simulation of a simple non-optimised gyrotron was run 

in MAGIC and was then recreated in xOOPIC. The simulations output power is 

broadly consistent with this type of device, and MAGIC is known to provide a 

reasonable simulation of these systems. Shown in figure 4.3 below is the comparison 

between the predicted output power from each of the codes. 

 

 

Figure 4.3 Simple non-optimised gyrotron output power 

 

It is interesting to note that the switch on dynamics predicted by the two codes is quite 

consistent. The difference between the output power predicted by the two codes is 

approximately 30%. This disparity may be due to the differences in the meshing 

algorithms used between the codes. This may lead to slight differences in the cut-off 

frequency of the resonant cavity, and hence to slightly different cyclotron detuning 

(the difference between the wave frequency and the cyclotron frequency). To show 
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this, the generated frequency between the codes was also compared. Figure 4.4 shows 

the frequency of the azimuthal electric field predicted from both the MAGIC and 

xOOPIC simulations. 

 

 

Figure 4.4 Simple non-optimised gyrotron output frequency 

 

As can be seen, there is a small frequency difference between the predictions of the 

two codes. Given the sensitivity of gyrotron operation to the shift between the 

waveguide cut-off frequency and the cyclotron frequency, this small shift in frequency 

may move the MAGIC simulation further from the optimal magnetic field for that 

frequency. With detailed optimisation of the mesh it may be possible to decrease the 

power and frequency disparity however, the similarity in the overall growth and 

saturation of the CRM instability in the two codes provided satisfactory confidence. 

 

Benchmarking the specially written particle injection subroutines written for the 

parallelisable xOOPiC package against a known stable (though serial) PiC code with 

inbuilt gyro-injection algorithms, which have been used previously to design 

experimental apparatus, gives confidence in the use of the custom algorithms added to 
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xOOPIC. This will allow these algorithms to be used to simulate the CRM instability 

in the complex electron beams and plasmas used in the experiments reported by 

McConville [McConville, et al., 2008; McConville, 2009]. 

 

4.1.2  Horse-shoe beam injection 

 

As the previous benchmark showed, the gyro-beam injection code is correctly 

generating gyrating realistic electron beams. Tests were then carried out on the 

injection of a beam with the horse-shoe like distribution function that would be created 

using the gamma function (as shown in section 3.2.1) to describe the electron 

distribution in pitch angle, arctan(v┴/vz). To begin with, a test beam with its current 

and energy selected to match experimental values, was again propagated along a 

simulation of length 3cm and radius 2cm with the parameters given in table 4.2. 

 

Current 60A  Confining B-field 0.21T 

Voltage 75kV  Beam guide radius 0.07m 

Gamma fn k value 3  Current rise time 4ns 

Gamma fn θ value 4    

Table 4.2 Simulation parameters for beam gamma function distribution tests 

 

Figure 4.5 Particle pitch angle distribution of a horseshoe beam generated by xOOPIC at the 

point of injection 
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Shown in figure 4.5 is a histogram of the distribution of the beam particles in pitch 

angle produced by the simulation at the instant of injection normalised to the maximum 

particle bin count in the system at the time of injection. The overlaid red line is the 

analytical function (subject to the same normalisation) of the gamma distribution used 

to define the electron beam. From this it can be seen that there is good agreement 

between the analytic function and the distribution produced by the simulations 

showing that the code is injecting the beam requested. 

 

Figure 4.6 Horseshoe beam generated by xOOPIC (i) Z-R space (ii) Pr-R space 

(iii) Pθ-R space 

 

The plots shown in Figure 4.6 show the properties of the beam propagating after 5ns. 

At this time, the beam has reached its full current along the entire axial extent of the 

beam, meaning essentially that the highest pitch angle particles have had time to 

propagate along the length of the simulation. Further from figure 4.7, it can be seen 

that injecting with a gamma distribution, with these configuration parameters, yields a 

beam with a horseshoe-like distribution in axial and perpendicular momentum.  

(i) 

(ii) (iii) 



70 

 

 

Figure 4.7 Horseshoe distribution of Pz vs P┴ 

 

Figure 4.8 shows a histogram of the beams particle density against pitch angle after 5 

ns again normalised to the maximum particle bin count in the system at 5 ns. What this 

shows is that the differing axial and perpendicular velocities can slightly skew the 

distribution filling a finite volume away from the pre-defined configuration as the 

beam propagates. This arises essentially because it takes longer for the high pitch 

particles to traverse the system, hence their population density becomes slightly 

higher. 

 

Figure 4.8 Particle pitch angle distribution of a horseshoe beam generated by xOOPIC after 

5 ns 
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4.1.3  Magnetic compression tests 

 

Given that the beam is being defined with a mathematical function, to ensure 

maximum comparability between the simulations and experimental measurements of 

the radiation excitation induced by the beam, it is appropriate find a method to match 

the numerical beam distribution to the measured electron beam. It is possible to attempt 

to match the beam distribution to the experimental setup by optimising the distribution 

to give the same magnetic mirroring behaviour seen in the experimental measurements 

(see section 3.3.1). 

 

Figure 4.9 shows the beam behaviour and axial magnetic field profile of a typical 

magnetic mirror simulation. The electron beam is injected into a static B-field with a 

magnitude of ~0.21T, comparable with the experiments resonant plateau field. The 

magnitude of the axial B-field is increased progressively along z (modifying the radial 

magnetic field to ensure that 0 B  from Maxwell’s second equation) to a higher 

value. As the beam, with the gamma pitch angle distribution, propagates into the area 

of increasing axial magnetic field, the beam follows the magnetic field lines and 

compresses radially. Any particles with a perpendicular velocity component start to 

convert axial velocity to perpendicular velocity, due to the conservation of the 

magnetic moment. If a particle loses all of its axial velocity, magnetic mirroring will 

occur and the particle will begin to propagate back towards the injection point. The 

non-mirrored particles continue to propagate forward and this transmitted current of 

the beam can be measured once the system has reached a steady state (example shown 

in figure 4.10) and compared to the experimental current measurements. This is 

analogous to the method used in the experiment to map the electron distribution 

function in pitch angle. Note that in the simulations the axial magnetic field is aligned 

in the negative z-direction. 
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Figure 4.9  Example beam behaviour during a magnetic mirror simulation  Z-R (ii) Pz-Z  

(iii) Axial magnetic field profile 

 

(i) 

(ii) 

(iii) 
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The experimental current measurements were made at a number of maximum plateau 

magnetic fields and for multiple different cathode magnetic field strengths induced by 

the currents flowing in the insulating magnet coils. These results are shown in figure 

4.11. Each of the beams yielded by these different cathode magnetic fields were 

modelled in the xOOPIC magnetic mirror simulations. To do this, different distribution 

parameters were selected and optimised for each experimental beam. As the xOOPIC 

simulations would not be modelling the magnetic compression region of the AKR 

experiment, the beam would be injected at the magnetic field corresponding to the 

cyclotron resonance condition. Therefore, for these magnetic mirror simulations, the 

magnetic mirror ratio was calculated from the resonant magnetic field. 

 

Figure 4.10 Example transmitted current in magnetic mirror simulation 

 

It was discovered, unsurprisingly, that as the magnetic field in the electron emitter was 

changed in the experiment a different pitch angle distribution was required in the 

simulations. Table 4.3 shows the optimised parameters for the gamma pitch angle 

distribution: 

 

Experimental 

cathode B-field 

xOOPIC injection 

current 

Gamma k value Gamma θ value 

0.01T 11A 2 32 

0.02T 35A 2 20 

0.063T 60A 1.5 12 

Table 4.3 Optimised beam distribution parameters for different experimental cathode 

currents 
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Figure 4.11 Experimental magnetic mirror results for different cathode magnetic fields 

[McConville, 2009] compared with optimised xOOPIC magnetic mirror simulation results 

 

The experimental data shown in figure 4.11 was conducted in a previous work 

[McConville, 2009]. It was obtained by injecting an annular electron beam into a 

magnetic compression region in order to form the necessary horseshoe distribution. 

The magnetic field is increased from the electron emitter region to the plateau 

magnetic field in the interaction region. The plateau field was adjusted and the 

transmitted beam current was measured with a Faraday cup. As the magnetic field is 

increased, more electrons with perpendicular momentum will be reflected due to the 

magnetic mirror effect, just as in the simulations. The transmitted current data was 

initially recorded against the ratio of the magnetic field at the electron beam emitter 

and the plateau magnetic field. 

 

The simulation does not model the experiments primary magnetic compression region 

(between the electron emitter and the plateau field in the solenoid) and the pitch angle 

distribution has been configured for a specific magnetic field (0.21T). The initial 

magnetic field in the magnetic mirror simulation is always set to this value and the 

maximum field is varied downstream. Therefore to compare both experimental and 
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simulation results, the maximum experimental field is re-normalised to this plateau 

magnetic field for the x-axis of figure 4.11. 

 

Three different beam currents were optimised and are plotted in figure 4.11, however 

only the beams produced with cathode magnetic fields of 0.02T and 0.063T were used 

further. As can be seen, the optimisation of the velocity distribution resulted in 

reasonably good agreement at all beam currents. 

 

4.1.4  Experimental AKR simulation 

 

The optimised beam distributions, were injected into a numerical representation of the 

laboratory experiments interaction region. In each case, the beam is injected through a 

short taper section to allow the beam to stabilise after injection and prevent backward 

wave propagation. This can be important in preventing the electron beam being subject 

to non-physical modulation at the injection point if electromagnetic waves can exist at 

this artificial region. The beam then enters the resonant cavity where the beam’s 

cyclotron frequency is approximately the same as the cut-off of the waveguide TE01 

mode. Resonance between the beam’s cyclotron oscillations and the electromagnetic 

oscillations of the cavity mode allow the growth of the CRM instability. There is then 

another tapered section into the output waveguide where the beam is dissipated on the 

wall due to the decrease in axial magnetic field.  Shown in figure 4.12 is an example 

of the beam behaviour at times before (20ns) and after (340ns) the CRM instability 

has grown to saturation. The azimuthal bunching and energy modulation due to the 

CRM instability can be seen in the trajectories shown in the latter case but not in the 

former. Figures 4.13 and 4.14 show the corresponding temporal evolution of the output 

signal and spectral content of the radiation. 
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Figure 4.12 35A beam current AKR simulation Z-R plots (i) 20ns (ii) 340ns 

(iii) Axial magnetic field profile 

 

(iii) 

(i) 

(ii) 
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Figure 4.13 Output power predicted a for 35A beam in the AKR simulation 

 

Figure 4.14 Output frequency predicted for a  35A beam in the AKR simulation 

 

Figure 4.13 shows that after ~110ns, the energy being extracted from the electron beam 

is approaching saturation and subsequently produces near constant output power. 

These results may be compared to the experimental performance which has shown that 

the frequency generated is typically around the relativistic cyclotron frequency 

(5.4GHz) with an efficiency of ~1.5%. Here the wave is shown to be generated at a 

frequency of 5.31GHz and an efficiency of ~1% when the system is optimally tuned 

(fine adjustment of the magnetic field). Kinetic modelling of the astrophysical case 

shows approximate wave efficiencies of a few percent [Kuznetsov and Vlasov, 2012]. 

By increasing the mesh resolution of the simulation there is negligible change in either 

the output frequency or the power giving confidence in the numerical robustness of 

the predictions of the simulations. 

 

Saturation 
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Figure 4.15 Output efficiency/frequency for the 60A beam current at varying background 

plasma frequencies 

 

By running the simulation again for the higher current 60A beam, again the efficiency 

is predicted to be ~1% at 5.31GHz. This configuration of electron beam was used in 

the laboratory experiments to test the sensitivity of the instability to the presence of a 

background plasma. These experiments revealed that the plasma caused significant 

damping to the maximum wave production efficiency, falling from 1.5% to zero as the 

background plasma frequency was increased from 0Hz to 300MHz. While this is 

higher than the efficiency seen in the simulations, it is relevant to note that the 

experimental measurement of the output power is a complex process and subject to a 

degree of uncertainty. Therefore the simulations are deemed to be in reasonable 

agreement.  Exploiting the parallel execution features of xOOPIC, it was possible to 

introduce a background plasma to investigate the efficiency decrease numerically. 

Figure 4.15 shows the output efficiency and output frequency as a function of the 

background plasma frequency. As the background plasma frequency is increased the 

efficiency of the predicted CRM instability decreases as expected from the theory 

[Cairns, et al., 2011], geophysical observations and the laboratory experimental 

results. As background ωp approaches ωce/10 the efficiency falls off very strongly. This 

simulation therefore provides good agreement with this aspect of the experimental 

results. 
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Figure 4.16 Saturation time of output power for a 60A beam current for varying background 

plasma frequencies 

 

When operating with the background plasma present, the experiment showed 

statistical variability whereby there would be no output power detected when the 

electron beam was injected. No similar ‘critical’ or ‘threshold’ effects were seen in the 

simulations. It had been considered that the essential electron velocity distribution for 

driving the cyclotron instability was being affected by the near to threshold streaming 

instability, however these simulations provided no evidence of such an effect. Figure 

4.16 shows the time that the simulations predict it would take for the CRM instability 

to become saturated and provide constant power output. As can be seen, as the 

background plasma frequency is increased, the time until saturation increases. It is 

possible that in the experimental setup, the instability growth rate may be having an 

effect as the duration of the electron beam pulse is finite (~100ns in the experiment). 

It has been observed that during the Penning discharge, the plasma column can operate 

in different spatial modes. This could result in variations in plasma density across the 

radial dimension of the trap. Therefore, during the transit of the electron beam, if the 

Penning trap has switched to a different mode, the electron beam may experience a 

temporarily higher or lower plasma frequency that could affect the instability growth. 

Ultimately this will require further work. 
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4.2  Two-stream simulations 

4.2.1  Linear computational solutions 

 

Following from the linear two-stream instability theory 2.5.1 it is possible to solve 

equation 2.74 computationally for differing plasma stream scenarios yielding their 

dispersion relations. 

 

The dispersion relations shown in figure(s) 4.17 contain either four real solutions or 

two real solutions and two complex conjugate solutions. The solutions that are always 

real are shown in red while the blue and green curves correspond to solutions that 

switch between real and complex values, where the blue curve shows the real 

component and the green curve shows the imaginary. It is the imaginary component 

of the complex solutions that show the growth of the instability. Shown in table 4.4 

below is a summary of the approximate growth rates predicted by the linear analysis 

for each of the two-stream scenarios. 

 

Scenario Maximum 

temporal growth 

rate 

Wavenumber of 

maximum growth 

Corresponding angular 

wave frequency 

Co-propagating 1.73x109rads-1 160m-1 1.5x1010rads-1 

Counter-

propagating 

1.5x109rads-1 22m-1 8x107rads-1 

Beam-plasma 1.78x109rads-1 78m-1 7.7x109rads-1 

Table 4.4 Linear theory predictions of the two-stream growth rates 
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Figure 4.17 Linear theory two-stream dispersion relations (i) co-propagating beams 

(ii) counter propagating beams (iii) beam-plasma, here ω and u represent the plasma angular 

frequency and drift velocity of each component 

Co-propagating 

 

 

ω1=3.27x109rads-1 

ω2=4.02x109rads-1 

u1=1.11x108ms-1 

u2=0.73x108ms-1 

 

Counter-

propagating 

 

ω1=3.14x109rads-1 

ω2=3.14x109rads-1 

u1=1.2x108ms-1 

u2=-1.2x108ms-1 

 

Beam-plasma 

 

 

ω1=1.8x109rads-1 

ω2=8.73x109rads-1 

u1=1.2x108ms-1 

u2=0ms-1 

 

(i) 

(ii) 

(iii) 

Real 

Real 

Imag 
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4.2.2  Co-propagating two-beam simulation 

 

While the two-stream instability growth has been investigated numerically in the past 

[Bret, Gremillet and Dieckmann, 2010], it was important to test the numerical code 

xOOPIC against the linear theory. The simple case of two spatially overlapped, co-

propagating electron beams was used with the same parameters as the linear theory in 

table 4.4. This case allowed the growth of the two-stream instability to be observed 

without the complication of plasma confinement problems or neutralising ion 

populations. The two-beams are injected from the same conducting surface with a 

beam radius of 0.008m. The simulation is 1.2m long in the beam propagation direction 

and 0.03m in radius. The total simulation time is 20ns. 

 

 

Figure 4.18 Axial momentum along beam propagation axis at 20ns 

 

Figure 4.18 shows the axial momentum of the two co-propagating electron beams 

along the beam propagation axis after 20ns. As can be seen, there is substantial 

modulation of the axial momentum of each of the beams after they have propagated 

together over a distance of approximately 0.6m. Phase-mixing of the electron beam 

velocities can be seen at a position of approximately 1m. 

 

To compare these numerical results to the linear theory the axial electric field must be 

analysed. A snapshot in time of this field at 10ns is shown in figure 4.19. The spatial 

oscillation of the axial electric field produced from the two-stream instability can be 
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seen clearly from 0.6m. To show the growth and spatial movement of this axial wave, 

the temporal behaviour of the axial electric field has been plotted in figure 4.20. 

 

 

Figure 4.19 Axial electric field along beam propagation axis at 10ns 

 

 

Figure 4.20 Axial electric field temporal evolution along electron beam axis 

 

As can be seen, the electric field oscillations propagate axially in the beam propagation 

direction at a velocity between that of the two beams (approximately 1x108ms-1 in this 

case). From this data it is possible to perform Fourier analysis to obtain plots of the 

wave frequency and spatial structure. 
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Figure 4.21 Axial E-field angular frequency ω against axial position 

 

 

Figure 4.22 Axial wavenumber k against time 

 

From figure 4.21, the strongest oscillations are seen to occur at an angular frequency 

of 1.09x1010 rads-1. This is ~30% less than that predicted from the real component of 

the complex solution for the frequency (Re(ω(k)) at the wavevector corresponding to 

the maximum instability growth rate (Im((k)) of the linear dispersion shown in figure 

4.17. Similarly from figure 4.22, the strongest spatial Fourier structure is observed at 

a wavenumber ‘k’ of 104m-1. Again this is approximately 25% less than the 

wavenumber predicted corresponding to the maximum temporal growth rate of the 

instability. Even in this simple scenario there is large amplitude, nonlinear behaviour 

observable from the phase mixing of the two species [Roberts and Berk, 1967]. The 

difference in predicted frequency and wavenumber may be due to this nonlinear 
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behaviour beginning to affect the electron densities and velocities. When reducing the 

temporal window of the Fourier transform, to only include the first 10ns where the 

electric field amplitude is small, the primary frequency observed is ~1.5x1010rads-1 

which is comparable to the frequency predicted by the linear theory. 

 

4.2.3  Beam plasma magnetic mirror confinement simulations 

 

Satisfied the co-propagating scenario reproduces the predicted linear theory behaviour, 

the beam-plasma scenario can now be explored. Numerical simulations of this are 

relevant in fields including astrophysics [Ratcliffe, et al., 2014] (1D PiC simulations) 

and fast-ignition ICF [Sircombe, et al., 2008] (1D Vlasov simulations). While this 

work focuses on PiC methods to model the instability, the weak turbulence method 

has previously been used in the limit where the turbulence parameter W is small in 

homogeneous and inhomogeneous plasma [Kontar and Pécseli, 2002]. In the first 

scheme of beam-plasma simulations, the plasma is confined using the magnetic mirror 

arrangement shown in section 3.3.2. The increasing axial magnetic field at the 

simulation exit ports confines the plasma axially however, as the electron beam enters 

the simulation the beam expands in radius due to the changing axial magnetic field. 

This does not hinder the beam-plasma interaction but does reduce the overall beam 

number density. Table 4.5 lists the parameters that are initially used to define the beam-

plasma simulation. 

 

ne 2.4 x 1016m-3  Mesh cell 0.4mm 

Te 100eV  ωpe 8.73x109rads-1 

Ti 10eV  ωpi 2.04x108rads-1 

Beam current 36A  Plateau Bz 0.4T 

Beam voltage 50kV  Expanded radius 24mm 

Beam radius 8mm  Ion species H+ 

Simulation radius 64mm    

Table 4.5 Simulation parameters for beam-plasma magnetic mirror confinement 
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Figure 4.23 Beam-plasma instability, magnetic mirror confinement, axial momentum of all 

particles – orange = beam electrons, green = plasma electrons, blue = plasma ions (i) at 7ns 

(ii) at 50ns 

 

The entire simulation is run for 440ns in order to investigate the non-linear effects of 

the saturation of the two-stream instability. At 7ns the two-stream instability is still 

growing as seen in figure 4.23, however, by 50ns the instability is well saturated as 

can also be seen in figure 4.23. At 50ns the electron beam axial momentum has formed 

multiple phase-space vortices that continue to propagate in the positive axial direction. 

This phase trapping leads to large axial electrostatic fields that can be seen in figure 

4.24. 

 

(i) 

(ii) 
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Figure 4.24 Beam-plasma instability, magnetic mirror confinement, axial electric field at 50ns 

 

The behaviour of analogous individual phase-space vortices has been investigated 

previously in both theory and in numerical simulations [Eliasson and Shukla, 2006]. 

However, before looking into the effects of the non-linear behaviour it is necessary to 

first analyse the linear behaviour of the system. 

 

Linear regime 

 

Figure 4.25 Beam-plasma instability, magnetic mirror confinement, axial electric field 

temporal behaviour  in the linear regime at a radius of 32mm 
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Figure 4.26 Beam-plasma instability, magnetic mirror confinement, axial E-field angular 

frequency over axial position at a radius of 32mm for a window of 0ns to 40ns 

 

Using the same approach as in the co-propagating scenario, it is possible to plot the 

temporal behaviour of the axial electric field, shown in figure 4.25, and perform 

Fourier analysis on it. The angular frequency of the axial electric field, taken from 

figure 4.26, is approximately 7x109rads-1 which is close to the predication of the linear 

theory. Likewise, the axial wavenumber from figure 4.27 is 80m-1 which also closely 

matches the linear theory prediction presented in table 4.4. 

 

Figure 4.27 Beam-plasma instability, magnetic mirror confinement, axial wavenumber 

evolution over time for the linear regime of the two-stream instability at a radius of 32mm 
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Figure 4.28 (i) Growth in time of the wave with a wavenumber of 80m-1 (ii) Growth in space 

of the wave at an angular frequency of 7x109rads-1 

 

Figure 4.28 shows the spatial and temporal growth of the signal with the strongest 

wavenumber and angular frequency. During the initial phase of the growth both of 

these curves approximate an exponential. For each of these plots, by taking two points 

of the amplitude and time/space it is possible to work out the exponential time/space 

constant by, 

)1/2ln(

)12(

AA

xx 
  

From these time and space constants the growth rates can be determined. The spatial 

growth rate is found to be ~92m-1 and the temporal growth rate ~3.3x109rads-1. This is 

approximately twice as fast as the linear theory predictions of the temporal growth 

rate. Like the co-propagating case, non-linear behaviour may be present within the 

40ns Fourier window that may result in this faster growth. 
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Non-linear behaviour 

 

 

 

Figure 4.29 Ion behaviour at 140ns (i) Ion density Z-R (ii) Plasma phasespace Pz-Z (where the 

blue particles are the plasma ions and green are plasma electrons) 

 

As an objective of this research was to look at the long time scale, multi-dimensional 

evolution of the instability, particularly with a view to considering the impact on the 

ions, the simulations were run for some 400ns. It was observed that after 

approximately 80ns, the ions and electrons begin to form strong axial bunches at an 

axial position of approximately 0.25 to 0.45m. The formation of these bunches appear 

similar to regions of plasma depletion that have been observed in prior PiC 

investigations of the two-stream behaviour [Dieckmann, Shukla and Drury, 2006]. 

Following the formation of these bunches, they appear to form two streams of particles 

drifting along the beam propagation axis in both the positive and negative directions. 

(i) 

(ii) 
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A snapshot of this behaviour at 140ns is shown in the upper frame in figure 4.29 while 

particle axial phase-space behaviour is shown in the lower frame. Figure 4.30 shows 

the evolution of these bunches in time at a given radial position of 32mm. Similar 

propagation of ion density modulations have been seen in the experiments conducted 

in [Franck, et al., 2001] where periodic ion bunches are injected into a plasma 

discharge. 

 

 

Figure 4.30 Ion temporal behaviour at 32mm radius 

 

The macroscopic background electron density behaviour during these late time periods 

in the simulation maps closely to that of ion behaviour. For all intents and purposes, 

the ion density figures shown also relate to the macroscopic electron behaviour. 

Investigating the axial electric field at this point suggests that the cause of this ion 

behaviour is the presence of a standing wave structure along the beam propagation 

axis. Figure 4.31 shows the temporal behaviour of the axial electric field again but this 

time observing the behaviour when the ion/electron bunches start to form. It should be 

noted that the background plasma electron density oscillates weakly with the high 

frequency (~1GHz) component of the axial electric field standing wave structure. 
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Figure 4.31 Beam-plasma instability, magnetic mirror confinement, axial electric field 

temporal behaviour  at 70ns to 140ns at a radius of 32mm 

 

The standing wave structure can be seen at an axial position of approximately 0.273m 

in figure 4.31. In figure 4.32, more detail of the temporal behaviour can be seen in the 

line plot of the axial electric field at an axial position 0.273m and radial position of 

32mm. As can be seen the axial electric field associated with the standing wave begins 

to grow at approximately 70ns and grows to a maximum at 95ns. The signal then 

oscillates with a beat period of ~10-20ns before declining after ~140ns. This wave has 

an angular frequency of 7.14x109rads-1 which is near the frequency identified in the 

linear limit of the two-stream instability. The temporal Fourier transform of the axial 

electric field can be seen in figure 4.33 and shows periodic variation of the strength of 

the 7.14x109rads-1 spectral component with spatial location. 

 

 

Figure 4.32 Beam-plasma instability, magnetic mirror confinement, temporal behaviour of 

the axial electric field at Z=0.273m and R=32mm 
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Figure 4.33 Beam-plasma instability, magnetic mirror confinement, axial E-field (high 

angular frequency component) over axial position at a radius of 32mm over  a temporal 

window of 64ns to 154ns 

 

A possible explanation behind the formation of these standing wave structures can be 

that the beam-plasma instability is generating a series of Langmuir oscillations as the 

beam transits through the plasma, as the beam-plasma instability frequencies are close 

to that of the electron plasma frequency. The superposition of these Langmuir 

oscillations appear to build in strength in the region near where the first phase-vortices 

have formed. These oscillations extend across the radial extent of the waveguide 

before being suppressed close to the conducting boundary. The wavelength of these 

electrostatic-like oscillations are below the vacuum cut-off of the waveguide and can 

therefore only be supported within the plasma. These oscillations lead to a depletion 

of the electrons, forming a cavity, forcing the electrons out in both the positive and 

negative longitudinal directions. As there are periodic cavities being formed, the 

displaced electrons merge with the electrons displaced from the adjacent depletion 

regions, forming density bunches. Due to the increase in electron density in these 

regions, the ions are drawn towards them to maintain quasi-neutrality. This mechanism 

appears to be similar to that of the modulational instability discussed in section 2.5.2. 

 

As these bunches form, they appear to have a dampening effect upon the large electric 

fields generated by the beam-plasma instability, leading to the standing waves being 
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the dominant electric field structure in the system. The phase-space vortices are still 

present but tend to move through the system to regions less perturbed by the spatial 

bunching of the plasma particles (typically downstream and deeper into the plasma 

column). The electron and ion density bunches that were formed from the cavities 

continue to evolve at a constant velocity in their initial displacement direction. They 

can then propagate through oppositely directed bunches and through the adjacent 

cavities before eventually beginning to dissipate. As they begin to dissipate, this allows 

the beam-plasma instability to begin to grow once again in its original location. 

 

When examining the lower frequencies shown in figure 4.34, there appear to be 

frequencies that would correspond to that of the waves associated with the ion 

behaviour. At an axial position of 0.27m-0.4m, in a location where there is significant 

ion bunching and strong, higher frequency standing wave oscillations, there exists a 

spatially modulated low frequency ion oscillation as well, at a frequency of 

~50x106rads-1. These oscillations may be ion-acoustic related [Sircombe, et al., 2009] 

as the density bunch velocities correspond closely to the ion-acoustic velocities of the 

plasma. As the modulational instability theory [Dendy, 2002] describes a coupling 

between Langmuir and ion-acoustic waves, it may be possible for ion-acoustic waves 

to build up in the cavities formed by the strong higher frequency oscillations which 

would explain the spatial modulation of the electric field at this low frequency closely 

matching the spatial modulation of the strength of the high frequency signals. 

 

 

Figure 4.34 Beam-plasma instability, magnetic mirror confinement, low axial E-field (low 

angular frequency component) over axial position at a radius of 32mm over a temporal 

window of 64ns to 440ns 
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Similar behaviour in frequency has been observed in observations of type III solar 

radio bursts [Thejappa,et al., 2012] relating the behaviour to the two-stream instability, 

although this hypothesis has been challenged [Graham et al., 2012]. 

 

As an aside, a simulation was run with similar parameters as above but with a periodic 

density profile applied to the plasma along the axial length of the system, at a similar 

spatial frequency to the cavities that were predicted by the streaming instability 

simulations described in section 4.2.3. This resulted in the suppression of the beam-

plasma instability. This suggests that the beam-plasma instability may be self-limiting 

as it induces an axial bunching of the particles that will inhibit its own growth. Similar 

suppression was seen by [Nakamura, 1970] when applying a density modulation to an 

electron beam propagating in a background plasma. 

 

4.2.4  Beam plasma electrostatic confinement simulations 

 

It was decided to develop an experiment to attempt to observe the features of the two-

stream instability and potentially the low frequency ion oscillations. The magnetic 

mirror simulations provided a good starting point to investigate the non-linear 

behaviour of the beam-plasma two-stream instability. The experimental design 

proposed however, utilises electrostatic axial confinement rather than that of a 

magnetic mirror system. To better match the experimental design it was necessary to 

remove the magnetic mirror elements of the simulation and replace it with a constant 

axial magnetic field that provided the field required for radial confinement. The axial 

confinement was then created by applying a constant negative voltage onto the ports 

of the simulation as seen in section 3.3.2. This is actually the inverse of the 

experimental design. In the experimental design, the anode wall is set at a positive 

potential whilst the cathode(s) are grounded, allowing the electron beam to pass 

through unperturbed by the Penning trap cathode, and moreover ensures that should 

the cathodes intercept the electron beam, this charge would immediately be diverted 

to ground, rather than the terminals of the power supply. Unfortunately, the means to 

apply a voltage to a conducting boundary is not supported in xOOPIC. This inverse 

method results in a very slight acceleration of the electron beam as it enters the system 
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and a deceleration as it reaches the end (which can also be expected in the experiments 

due to the slightly positive anode since only the potential difference is relevant). 

Ultimately this did not result in any obvious impact upon the mechanisms being 

investigated. 

 

To further match the experimental setup, the radius of the system had to be reduced. 

This constraint was imposed by the design of the magnet coils in order that they could 

achieve an adequate magnetic field with the power supplies realistically available. Re-

optimisation of the numerical simulations was required as it was discovered that when 

the radius was reduced it was necessary to increase the plasma density in order to 

completely observe similar non-linear ion behaviour as seen previously in the 

magnetic mirror simulations. While there was some evidence of ion bunch formation, 

the bunches formed close to the conducting boundary at the density used in the first, 

magnetically confined simulations. This results in the interception of the ions at the 

conducting boundary removing the macro-particles from the simulation leading to a 

change in the long term plasma dynamics. By increasing the plasma density, the 

bunches form closer to the electron beam reducing the impact of this boundary 

interception. These new simulation parameters are given in table 4.6. 

 

ne 9 x 1016m-3  Mesh cell 0.4mm 

Te 100eV  ωpe 16.9x109rads-1 

Ti 10eV  ωpi 3.94x108rads-1 

Beam current 10A / 35A  Axial Bz 0.4T 

Beam voltage 10-100kV  Ion species H+ 

Beam radius 8mm  Simulation radius 25mm 

Table 4.6 Simulation parameters for beam-plasma electro-static confinement 
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Figure 4.35 Beam-plasma electrostatic confinement axial momentum of all particles – orange 

= beam electrons, green = plasma electrons, blue = plasma ions at 70ns 

 

Figure 4.35 shows that the simulations of electrostatic confinement with a smaller 

radius (but higher background density) exhibit the same saturated axial momentum 

behaviour as seen in the magnetic mirror confinement scenario. Again, by 70ns the 

two-stream instability seems to be fully saturated and is exhibiting regular phase-

trapping along the axis of propagation. The background plasma electrons also appear 

to be being modulated in axial velocity by the phase-space vortices formed in the 

electron beam. 

 

Observing the axial electric field behaviour shown in figure 4.36, the instability 

exhibits similar growth behaviour despite the change in the confinement arrangements. 

However, in this case the temporal growth rates are faster due to the increased 

background plasma frequency. In addition, as there is no magnetic decompression of 

the electron beam, its overall density was higher, thus the plasma frequency of the 

electron beam was also increased. The non-linear behaviour therefore begins much 

sooner due to the faster saturation of the linear regime of the two-stream instability. 
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Figure 4.36 Beam-plasma electrostatic confinement temporal evolution of the axial electric 

field at a radius of 16mm for 10A beam current (i) linear regime (ii) non-linear regime 

 

Satisfied that the electrostatic confinement simulation is exhibiting the same overall 

behaviour as the magnetic mirror confinement calculations, it was now possible to 

investigate the effects of changing the beam current on the non-linear ion behaviour. 

 

(i) 

(ii) 
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Figure 4.37 Evolution of the beam-plasma electrostatic confinement simulation at a radius of 

16mm for a 50 kV 10A electron beam (i) ion density (ii) ion temperature (iii) electron 

temperature 
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Figure 4.38 Evolution of the beam-plasma electrostatic confinement simulation at a radius of 

16mm for a 50kV 35A electron beam (i) ion density (ii) ion temperature (iii) electron 

temperature 
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Figures 4.37 and 4.38 show the different temporal evolutions of the ion density and 

the ion and electron temperatures predicted for a beam current at 10A and 35A 

respectively at a radius of 16mm. Note that in both figures 4.37 and 4.38, a small 

fraction of the particles can traverse the gap between the plasma edge and the confining 

electrostatic boundaries leading to anomalous temperatures. These can be ignored due 

to the very low particle density and distance from the region of interest. 

 

At 10A beam current the ion bunches form at an axial position of ~0.25m after 

approximately 70ns and have a relatively uniform structure size of ~0.02m. They 

appear to propagate predominately in the positive axial direction. In the vicinity of 

these bunches the ion temperature is noticeably higher than the background ion 

temperature. The electron temperature has hot spots that roughly correspond to the 

regions where strong axial electric field standing waves are seen in figure 4.36. 

 

Raising the current to 35A, results in high density ion bunches forming after a shorter 

drift length in the plasma at an axial position of ~0.15m again after ~70ns. The 

structure is not as uniform and they appear to propagate towards an area of ion 

depletion at an axial position ~0.25m which seems to have been formed by a similar 

weaker process which commenced after 30ns. Again the ion temperature appears to 

increase near the bunch formations, however additional hotspots in the electron 

temperature appear to form after 100ns near axial electric field standing wave 

structures at a position of ~0.3m, but there does not seem to be such a close correlation 

between the electron temperature spatial structure in this case and the relatively weak 

ion density modulations. It should be noted that these temperatures are approximated 

utilising the mean of the macro-particle speeds within each mesh cell. 

 

One can clearly see that in both simulations, the precursor for the ion modulation is 

the observation of rather energetic electron populations, indicating the development of 

strong axial electric fields. This is clearly visible in the development of Figure 4.38 

where hot electrons are observed close to z=0.25m very early in the simulation which 

precede the first ion spatial structures observed after 35ns. Subsequently after some 
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50ns, energetic electrons are observed near z=0.2m which are shortly followed with 

the formation of a second, stronger modulation in the ion density and temperature at 

~75ns. 

 

Taking the values of the electrostatic fields to be approximately 106 V/m with an 

electron temperature of 500eV and density of 5x1016m-3, it is possible to determine 

that the turbulence parameter W~0.55 (from equation 2.77, [Dendy, 2002]). Given the 

same electron density and temperature the Debye wavenumber is kD~8442m-1. This 

suggests that within this system it is possible for waves to become trapped and the 

modulational instability to grow for k values less than 3614m-1 (i.e. for wavelengths 

exceeding ~2mm). As the cavity size observed in these numerical simulations are on 

the order of ~20mm, it is possible for waves to have become trapped and the instability 

to grow. 

 

It should be noted that in both of these simulations there is a large increase of ion 

temperature when the beam turns off at 200ns. This was due to rather abrupt 

termination of the beam current giving rise to strong E-fields due to sudden step change 

in the charge balance. 

 

Increasing the current further causes extremely strong disruption to the ion density 

distribution but there is little in the way of ion structure and the particles do not exhibit 

the same collective behaviour as seen in the lower current scenarios. 

 

It is also possible to investigate the effects of changing the beam voltage on the non-

linear ion behaviour, with example behaviour shown for voltages of 10kV and 100kV 

in figures 4.39 and 4.40 respectively. In order to observe the full behaviour at higher 

beam voltages (where the growth rate is rather lower) the total simulation length was 

doubled for all of the simulations investigating the impact of the beam voltage on the 

development of the instability. Similarly, in order ensure saturation of the instability 

over the larger plasma length, the electron beam current was maintained after 200ns. 
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Figure 4.39 Beam-plasma electrostatic confinement temporal behaviour at a radius of 16mm 

for a 10kV 10A electron beam (i) ion density (ii) ion temperature (iii) electron temperature 
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Figure 4.40 Beam-plasma electrostatic confinement temporal behaviour at a radius of 16mm 

for a 100kV 10A electron beam (i) ion density (ii) ion temperature (iii) electron temperature 
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For a beam voltage of 10kV, the phase-space vortices, and hence the strong axial E-

field that proceed to modulate the particle positions, now develop after the beam has 

propagated a distance of ~0.15m after 35ns. In comparison, the 50kV beam simulation 

showed the formation of ion spatial bunching after a propagation distance of 0.3m and 

after 70ns whilst raising the voltage to 100kV requires the beam to traverse a distance 

of 0.6m before the ion spatial bunching is observed after some 100ns. 

 

As the ion bunching process at a beam current of 10A, for all beam voltages, is 

relatively uniform and well defined it is possible to plot the ion bunch spacing and ion 

bunch velocity as a function of the beam voltage. 

 

 

Figure 4.41 Beam-plasma electrostatic confinement - ion structure spacing as a function of 

beam voltage 

 

 

As seen from figure 4.41 as the beam voltage is increased the ion bunch spacing 

increases relatively linearly. However, at a beam voltage of 60kV the ion bunch 

spacing trend seems to offset by ~0.003m. The ion bunch spacing seems to behave 

linearly again after this offset. This kink appears reproducible but has not been linked 

to a physical process and may warrant further investigation. Also plotted is the 

wavelength corresponding to the maximum growth for the beam-plasma instability, 
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derived from the linear theory. It can be seen that the ion bunch spacing scales 

approximately at the same rate as the wavelength of the electron beam-plasma 

instability. This suggests that the spatial wave-vector favoured by the beam-plasma 

instability determines the length of the standing oscillations that appear to be the driver 

for the ion and electron bunching. 

 

Test simulations with no electron beam or very high beam voltages which results in 

no beam-plasma instability growth (i.e. no particle phase trapping) shows no indication 

of plasma cavity formation. This suggests that these cavities are directly related to the 

phase-trapping behaviour associated with the beam-plasma instability. Reducing the 

overall longitudinal dimension of the simulations also showed the cavities formed at 

the same absolute spatial location further suggesting that neither reflections at the 

boundaries, nor any backwards growing instabilities are involved in the cavity 

formation. 

 

 

Figure 4.42 Beam-plasma electrostatic confinement ion bunch velocity  as a function of beam 

voltage 

 

Figure 4.42 shows the approximate ion bunch velocity as a function of beam voltage. 

For voltages < 20kV, the ion bunches seem to propagate quite slowly at ~1.2x105ms-1. 

For higher beam energies the ion bunch velocity seems to increase to ~2.4x105ms-1 
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to the ion acoustic velocities in the system, dictated by the electron temperatures, 

typically the ion bunch velocity is larger than that of the average acoustic speed, based 

on the electron temperature averaged over the system, with the exception of beam 

voltages less than 20kV. However for beam voltages above 30kV, the bunch velocities 

appear to move close to the maximum localised ion acoustic velocities predicted in the 

system. These local maxima correspond to the hot spots within the density cavities 

formed in the system. This suggests that the ion density bunches are leaving the 

depleted cavity regions at the local ion acoustic velocity and are continuing to 

propagate through the system at that particular velocity. 

 

These 2D simulations show the development and growth of a two stream instability 

and show the saturation of the instability with the formation of phase-space vortices 

[Roberts and Berk, 1967]. The strong E-fields established by the two stream instability 

appear in the non-linear regime to give rise to spatial modulation of the plasma density 

[Dieckmann, Shukla, and Drury, 2006] in a manner similar to the modulational 

instability [Dendy, 2002] and with low frequency wave oscillations as anticipated by 

[Sircombe, et al., 2008]. The density perturbations appear to drift at the ion acoustic 

velocity. Similar excitation of low frequency signals have been interpreted in type III 

solar bursts as being associated with ion acoustic oscillations [Thejappa, et al., 2012]. 

Although using a different excitation model, ion acoustic oscillations have been 

observed experimentally to be excited by modulation of the plasma density [Franck, 

et al., 2002]. 
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4.3  Electron beam simulations 

 

To produce the electron beam required to drive the beam-plasma instability described 

in sections 4.2 in a laboratory experiment, it was necessary to design the emitter system 

using numerical simulations in the PiC code MAGIC as outlined in section 3.4.1.  

 

 

 

Figure 4.43 (i) Z-R plot showing particle positions after 10ns (ii) Axial magnetic field profile 

 

(i) 

(ii) 
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Figure 4.43 shows the particle positions after 10ns from the start of the simulation 

along with the magnetic field profile that was produced by the MAGIC coil function. 

The initial electron emission has a radius of ~16mm and the magnetic field profile used 

introduces a degree of scalloping to the beam radius. Within the larger diameter 

cathode region, this scalloping is on the order of 2mm in radius variation. As the beam 

transits from the cathode region to the interaction waveguide region, the magnetic field 

rises due to the stronger field created by the main interaction region solenoid. This has 

the effect of magnetically compressing the electron beam down to a radius of ~8mm 

with a beam radius fluctuation of ~1mm. Removing all scalloping effects from the 

electron beam proved difficult therefore 1mm of beam radius fluctuation was deemed 

acceptable. As the emission model implemented in the simulations is a simplistic 

representation of the explosive electron emission cathode to be used, the beam 

generated by the real cathode will not be as uniform and experimental optimisation 

will be required in any event. 

 

 

Figure 4.44 Emitted current from the cathode 

 

For an anode gap spacing of 1.5cm, the numerical simulations predict a beam current 

of ~40A for an applied voltage of 50kV. Figure 4.44 shows the predicted current 

emitted from the cathode surface. There is a brief oscillation in the emitted current as 
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the accelerating electric field is introduced into the system (as a TEM wave from the 

LHS of the geometry) but after 2ns the current is constant. As no magnetic mirroring 

occurs and there is no interception between the particles and any of the conducting 

boundaries this emitted current will translate directly to beam current in the interaction 

region. This gives scope for experimental tuning of the beam current, given the 

realities of the experiment, in the energy range of interest by using beam collimators, 

filtering meshes and the magnetic compression from the emitter to the plasma column. 

 

 

Figure 4.45 Particle energy along the propagation axis after 20ns 

 

The TEM wave injected into the system corresponds to an applied voltage pulse of 

amplitude 50kV on the cathode. Figure 4.45 shows that after 20ns, when the beam is 

in a state of equilibrium, the electrons are accelerated to ~40kV with an energy spread 

of ~3kV. As the accelerating potential is produced by the injected TEM wave, 

mismatching (due to reflections) on the accelerator of the simulation may slightly 

reduce the field applied across the anode-cathode gap and therefore result in the lower 

beam energy, combined with space-charge depression induced by the beam itself.  
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5  Laboratory experimental apparatus 

 

5.1  Experiment overview 

 

In order to verify the results of the numerical simulations of the beam-plasma two-

stream instability, a laboratory experiment was constructed. Prior experiments have 

shown that the quasi-linear theory of the beam-plasma instability holds [Roberson, 

Gentle and Nielsen, 1971] and that ion acoustic trapping of the electron-plasma waves 

can occur in an unmagnetised plasma [Ikezi, Chang and Stern, 1976]. The design of 

this experiment is intended to realise a parameter space similar to that described in 

Section 4.2.4 and achieve the correct regime for the turbulence parameter W. To this 

end, the laboratory experiment consists broadly of an electron accelerator, a Penning 

trap plasma discharge region which provides the low temperature background plasma, 

and a range of diagnostic instruments to determine the electron beam energy and 

current, the plasma density and the impact the beam has on the plasma. The electron 

emitter generates a rectilinear beam that propagates into the Penning trap which 

contains a helium plasma discharge with a pressure on the order of 7x10-4 mbar. The 

mean free path for helium at this pressure is ~30cm [von Engel, 1965], so collisions 

should not severely affect the movement of the ions predicted by the simulations. The 

beam is expected to perturb the plasma as seen in the numerical simulations and the 

behaviour is measured utilising the diagnostic instruments. A schematic showing the 

experimental setup is shown in figure 5.1. 

 

 

Figure 5.1 Experimental schematic showing the roles of key components 
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5.2  Vacuum system 

 

In order to ensure a collisionless path for the electron beam and to ensure a collisionless 

plasma environment, the electron accelerator and the plasma discharge operate at a 

relatively low pressure. It is necessary therefore to first evacuate the entire system of 

atmospheric gases. The system is vacuum sealed primarily using nitrile gaskets in o-

ring grooves and is pumped down using both a roughing fore pump and a high vacuum 

pump, shown in figure 5.2. 

 

The roughing pump used is an Edwards RV12 two-stage rotary vane pump that is first 

used to reduce the internal pressure of the system down to approximately 1x10-3 mbar. 

During this regime the pressure is monitored through the use of two Pirani gauges, one 

of which is located in the foreline which links the roughing pump to the vacuum 

system, the other is on the high vacuum side of the high vacuum pump. Once the 

pressure has reached the maximum inlet pressure for high vacuum pump (~10-2mbar), 

this ‘fore’ pump is then used as a backing pump for the high vacuum pump. 

 

 

Figure 5.2 Vacuum system at the downstream end of the apparatus 
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The high vacuum pump used in this case is an Edwards 100/300M oil vapour diffusion 

pump. This pump allows the system pressure to be further reduced down to 

approximately 1x10-6mbar. In this regime the Pirani gauges can no longer operate 

effectively therefore ion gauges are now used, one located in the accelerator region, 

the other above the high vacuum pump on the downstream end of the apparatus. Once 

the required vacuum has been reached, helium is fed into the system via a high 

accuracy vacuum needle valve. This allows the pressure of the helium in the system to 

be set according to requirements. 

 

As the vacuum pumps are located only at one (downstream) end of the system, it is 

necessary to ensure that all components are constructed in such a way that they do not 

significantly impede the pumping path of the system. In addition, to aid in the uniform 

evacuation of the system, an auxiliary flexible hose is connected from the vacuum 

pumps to the accelerator (upstream) part of the experiment in order to provide a 

secondary pumping path to mitigate against the restrictions introduced by parts of the 

beam line apparatus. This is particularly important to ensure adequate evacuation of 

the accelerator when the discharge components are introduced into the principle axis 

of the apparatus. 

 

5.3  Solenoids 

 

Strong magnetic fields are required for the plasma confinement and to ensure that the 

electron beam does not expand due to space charge effects. To provide the necessary 

field, water cooled solenoids were employed. These solenoids were constructed by 

wrapping oxygen-free high conductivity copper tubing coated in a plastic electrical 

insulator around a non-magnetic metallic former. The winding density is 1 turn every 

7mm both axially and radially. The windings are always in paired layers with opposite 

helical pitch ensuring axial orientation of the magnetic field. For the two distinct 

solenoids, a different number of layers of this copper tubing was used determined by 

the required magnetic field. When high currents flow through the copper tubing, the 

heat generated has to be removed by circulating water through the tubes at a high flow 

rate. This is provided by a water cooling system operating at 23Bar. 
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For this experiment, two main solenoids were used, as shown in figure 5.3. To provide 

the necessary high field for plasma confinement, a coil was used that has an overall 

length of approximately 1.5m and an internal diameter of 64mm formed of 6 layers of 

windings as described above. To insulate the electron emitter and to ensure a smooth 

magnetic transition for the electron beam leaving the emitter region in to the main 

plasma confinement coil, a secondary coil was used. This coil had a length of 0.5m 

and an internal diameter of 210mm and was formed of 4 layers. The electron emitter 

cathode was immersed in the field near the centre of this coil. 

 

 

 

Figure 5.3 Solenoids (i) Main coil for plasma confinement (ii) Secondary coil for electron 

beam emission region and transition into the main coil 

(i) 

(ii) 
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Before the above solenoid setup was built, initial plasma measurements were 

undertaken using a previously designed Penning trap which used a different solenoid 

arrangement. This solenoid arrangement utilised a series of three coils, a primary coil 

of 0.5m length, 10cm inner diameter and wound in ten layers with two shim coils, each 

10cm long and formed of 2 layers on each end of the primary coil. The shim coils 

allowed a longer plateau field than would be possible with a single solenoid. In the 

case of the initial plasma measurements these coils were all driven by the same current 

and provided a uniform magnetic field over a length of 20cm. 

 

5.4  Preliminary low current Penning trap design 

 

To aid in the design of the final Penning trap, it was necessary to investigate the 

performance of a previously designed trap at higher currents. This previous design was 

constructed to operate at a much lower current (approximately 2.5mA) for use in the 

laboratory investigation of AKR [McConville, 2009]. 

 

 

Figure 5.4 Preliminary Penning trap design (yellow=insulator, blue = cathode, red=anode and 

black = waveguide) [McConville, 2009] 

 

The trap is constructed as shown in Figure 5.4. The anode is a copper tube 0.2m long 

with an internal diameter of 70.8mm. This is surrounded by electrically insulating 

nylon interconnecting rings that cover the entire length of the anode, held in place by 
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two nylon end-caps that the anode edge slots into. This is then wrapped in a film of 

mylar to aid insulation and insertion into the waveguide cavity. An electrical 

connection is made by connecting the inner conductor of a coaxial cable to the anode 

through a gap in the insulating nylon. This coaxial cable is then connected to a custom 

manufactured HT-BNC vacuum feed-through that allows a potential to be supplied by 

an external power supply. The power supply circuit schematic can be seen in figure 

5.5. 

 

The first cathode is held by one of the nylon end caps and is made of a hollow copper 

disc with an internal diameter of 40mm and outside diameter of 63mm, approximately 

5mm thick. The second cathode consists of a separate spoked copper mesh held in 

place by a copper ring. These cathodes are electrically grounded to the system 

waveguide. 

 

Figure 5.5 Initial Penning trap power supply circuit 

 

For this experiment a background pressure of helium gas is injected into the system, 

at ~10-4 mbar. A voltage is then applied to the anode wall of the Penning trap. This 
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voltage is ramped up to ~1-2kV whereupon breakdown of the gas occurs between the 

anode and the cathode which begins to draw current from the power supply. This 

current can then be regulated by the power supply, allowing a degree of control of the 

discharge. 

 

The experiments with this apparatus allowed investigation into a range of issues that 

may arise when applying a higher current to a design of this type. It also allowed for 

the testing of the trap in a pulsed discharge current configuration. 

 

5.5  Redesigned high current Penning trap design 

 

For the main beam-plasma interaction experiment, a longer trap was required to match 

the numerical simulations. After testing the previous Penning trap design, it was found 

that the design had a problem with metallic deposition on the insulators at high current. 

This would ultimately lead to an electrical short circuit between the anode and the 

cathodes, circumventing the discharge path. To counter this, the Penning trap 

insulators were redesigned. 

 

 

Figure 5.6 Modified Penning trap design 

 

Figure 5.6 shows the redesigned Penning trap. The anode has now been elongated to 

1m in length and reduced in inner diameter to 50.8mm to match a reduced waveguide 

inner diameter of 54.8mm (this was necessary in order that the power supplies could 

magnetise an adequate column length). It was decided that the interlocking nylon rings 

were not necessary for the voltage hold-off between the waveguide wall and the 

Penning anode. Instead, the length of the anode was simply wrapped in multiple layers 

of Mylar. This Mylar was slotted underneath two nylon end-caps which hold the anode 

in place in the waveguide and are tapered to increase the tracking length between the 

anode and the grounded outer waveguide. More importantly this ensures that the main 
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insulator surface is shielded from metallic deposition from the plasma. The design of 

the nylon end-cap is shown in figure 5.7 along with the first cathode. 

 

 

 

 

Figure 5.7 Nylon insulators 

 

The first cathode now consists of a hollow copper disc with an external diameter of 

59.5mm and internal diameter of 25mm with a thickness of approximately 3mm. An 

insulating nylon ring is placed in front of the cathode with the same external diameter 

but inner diameter of 45mm. These two pieces are then spaced 5mm away from the 

anode edge and held in place by way of four nylon screws. This means that the tracking 

distance between the anode and cathode is increased with the only path being obliged 

to follow the thread of the nylon screws. 
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The anode connection is made again with the inner conductor of a coaxial cable, 

however, this is now fed through a longitudinal hole drilled through one of the 

connecting nylon screws. 

 

Initially the second cathode was still the same spoked design as before but constructed 

from stainless steel and reduced in inner radius to fit in the reduced size waveguide. 

This cathode was then spaced 5mm away from the anode edge with no physical 

connection between them. Ultimately this second cathode was removed as the 

discharge could ignite irrespective of whether it was installed or not. Removing the 

spoked cathode allowed for easier insertion of the diagnostic probes. 

 

5.6  Penning trap anode power supply 

 

In order to drive a current of up to 400mA into the Penning trap, it is necessary to use 

a high voltage regulated DC power supply. In this experiment a Glassman PK10R400 

was used, capable of providing 10kV and 400mA. As this is a very powerful, regulated 

supply it was important to place a reasonable resistor stack with high power handling 

in series between the power supply and the Penning trap. When the discharge in the 

trap ignites, the resistance becomes variable and potentially ‘negative dynamic’ which 

would cause the power supply to be constantly adjusting its output as it attempts to 

control the current, and the control logic could find problems associated with the 

highly non-resistive behaviour of the load. By placing a resistance in series with the 

plasma load, seen in figure 5.8, one effectively reduces the percentage of variation in 

resistance compared with directly connecting the supply to the trap. The resistors used 

were 68kΩ wire-wound ceramic resistors. These were typically used in parallel banks 

of 10, giving a 6.8kΩ resistance per bank with up to 4 banks in series or parallel 

operation. 
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Figure 5.8 Resistor bank 

 

To further reduce degradation of the Penning trap due to heating and/or deposition, it 

is possible to pulse the current output of the power supply. This allows the plasma 

discharge to ignite and be maintained at a low baseline current (~5mA) and then only 

pulsed to higher current (up to 400mA) for a short time (≤~1s) when required. 

 

 

Figure 5.9 Pulse generator pulse shape 
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To facilitate this modulation of the power supply, a pulse generator was used to 

generate a pulse that provided a sufficiently long rise time that the power supply could 

track, shown in figure 5.9. The pulse generator supplied a voltage between 0-10V to 

the power supply via a serial interface (10V representing full scale deflection). The 

power supply then produces a current proportional to the pulse voltage between 0-

400mA. This pulse generator was ultimately switched for arbitrary waveform 

generator which provided a better control of the pulse rise and fall times. This could 

provide computer controlled pulses to the power supply that would ensure a greater 

discharge stability and control of the ramp rates of the current through the pulse. This 

had the drawback of only being able to generate a pulse of 1V, giving a maximum 

discharge current of 40mA for the experiments reported here. 

 

5.7  Electron beam generation 

 

The electron beam is produced by a cathode and anode arrangement that was designed 

using the numerical results shown in section 4.8. The cathode and emitter surface are 

mounted on a long aluminium cathode stalk that extends the cathode close to the 

interaction region of the Penning trap. The cathode itself is constructed from a solid 

disc of copper with a velvet emitter surface secured to the front face. The anode is 

constructed as a stainless steel mesh positioned at a distance of 20mm in front of the 

cathode surface. The mesh spokes are chemically etched to a fine scale to ensure that 

the electrons can stream through with minimal interception. Both the cathode and 

anode can be seen in figure 5.10 
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.  

Figure 5.10 Electron emitter cathode and anode 

 

By applying an electric field to the cathode, greater than the critical field (>30kV/cm) 

necessary for electrical breakdown, and keeping the anode at ground potential, the 

fibres of the velvet material will begin to emit electrons due to field enhancement. The 

fibre material sublimates to form a plasma on the cathode face which expands outward 

at a velocity of ~2x106ms-1. Electrons are then emitted from this plasma surface 

towards and through the anode mesh. For this type of emitter, if the applied voltage 

pulse length is too long, the plasma will expand fully to the anode causing the system 

to short in a vacuum arc. Around the cathode are rounded wings constructed from 316L 

grade stainless steel. Aluminium is used to keep the weight down in the cathode stalk, 

but for the emitter ‘wings’, stainless steel is essential due to the relatively aggressive 

environment created during the cathode discharge. These ‘wings’ shape the electric 

field in the vicinity of the emitter surface, ensuring that the electrons are emitted 

perpendicular to the cathode surface. In addition, the cathode is also fully immersed in 

the magnetic field produced from the secondary coil assisting in preventing the emitted 

electrons from expanding beyond the radius of the emitter surface. 
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5.8  Electron emitter firing circuit 

 

In order to apply high voltage rectangular pulses of ~100ns to the electron emitter, a 

special type of double stacked Blumlein [Somerville, MacGregor and Farish, 1990] 

system is utilised, as pictured in figure 5.11. 

 

 

 

 

 

 

 

 

 

1. Pulse forming 

cables 

 

2. Charging resistors 

 

3. Spark gap 

 

4. Ionic resistor 

Figure 5.11 Blumlein system 

 

This system operates through the use of four cables that are each charged in parallel to 

a voltage Vcharge. These cables are then discharged in series through the electron emitter 

in parallel with an ionic resistor that is connected to ground, producing a voltage of 

2Vcharge (the resistor/accelerator combination is similar to the 200Ω impedance of the 

4 cables in serial configuration, so half of the 4 Vcharge signal amplitude appears over 

1 

2 

3 
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the power supply and half over the load). This resistor is made using a saturated copper 

sulphate (CuSO4) solution which is capable of withstanding the high peak powers that 

are used to generate the electron beam. In order to trigger this system, a mid-plane 

spark gap was used in conjunction with a Thyratron. 

 

This spark gap is constructed as three conducting electrodes that are separated by a 

pair of gaps filled with a pressurised gas (Nitrogen). When a sufficiently high voltage 

is applied across the gaps, a spark is generated that ionises the gas. This has the effect 

of rapidly reducing the electrical resistance between the electrodes to virtually zero. 

The central electrode is initially kept at an intermediate DC potential to provide the 

same field strength in each half of the gap. The middle electrode is perforated so that 

when either half of the gap fires, the plasma can easily fill the other half, completing 

the circuit. A thyratron is used to short the middle electrode of the spark gap to ground 

which induces breakdown in the other side of the spark gap. Closing of this switch 

converts the Blumlein cables from parallel to series. The schematic for this is shown 

in figure 5.12. 

 

 

 

Figure 5.12 Blumlein circuit schematic 
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In order to monitor the voltage and current applied to the cathode during the pulse, two 

Rogowski coils were used (see section 5.9.2). The first monitored the current drawn 

through the 206Ω ionic resistor and could therefore be used to indirectly measure the 

cathode voltage. The second monitored the current flowing from the anode to ground 

allowing the total cathode current to be measured. The role of the 206Ω resistor was 

twofold. In the first instance it permitted measurement of the electron energy via the 

current flowing in this circuit branch. Its primary role however, was to define the 

maximum output impedance perceived by the pulsed power generator (the output 

impedance of which is 4 x 50Ω, from the serial superposition of the four co-axial lines). 

This prevents reflections and strong pulse distortion that could otherwise corrupt the 

form of the HT pulse applied to the cathode of the accelerator, since the accelerator 

initially presents a capacitive load which switches rapidly to resistive behaviour.  The 

resistor achieves the latter effect at the price of halving the output voltage for any given 

charging voltage. 

 

5.9  Diagnostics 

 

5.9.1  Faraday cup 

 

In order to diagnose the current of the generated electron beam, a Faraday cup was 

used, pictured in figure 5.13. This device is placed directly in the beam path and is 

used to capture the electron beam and from this determine it’s current. The Faraday 

cup has been designed with a conical cross-sectional beam collector which aids in the 

collection of any secondary electron emission due to beam impact. The collector is 

mounted to a nylon support structure that has multiple holes drilled to allow for a 

vacuum pumping path. The cup is grounded through a 50Ω resistance and then the 

output is shunted by a 50Ω co-axial line to an oscilloscope which was also terminated 

in a 50Ω impedance. This gives a total impedance of 25Ω to ground enabling the beam 

current to be measured from the voltage developed across the resistance. 
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Figure 5.13 Photograph showing the Faraday cup used in the experiments, illustrating the 

50Ω resistors, copper sliding contact, conical beam receiver and the nylon support structure 

with vacuum pumping apertures 

 

5.9.2  Rogowski Coils 

 

In order to measure the current flowing at different points in the system without 

making physical contact to the apparatus, Rogowski coils are utilised. These coils 

consist of a coil of wire wound around a torodial former (the secondary), constructed 

from a mu-metal magnetic material, which are placed around a wire (the primary) 

carrying a current flow (though in principle they can also be used to measure currents 

flowing in free space). When the primary current changes, the change in the magnetic 

field produced by the primary current linking the secondary coil induces a voltage 

around the windings of the secondary which can be monitored. This voltage is 

nominally proportional to the differential of the primary current due to Faraday’s law. 

However, the coils in these experiments are operated in the self-integrating mode, 

whereby the dominant impedance in the output circuit is the self-inductance of the 

secondary winding itself. This means that by measuring the voltage across a resistor 

in parallel with the secondary winding one obtains a signal that is proportional to the 

current in the primary. This constrains the minimum frequency (maximum pulse 

length) for the validity of the calibration. By ensuring that the coil is wound as 

uniformly as possible, other sources of magnetic fields may be prevented from 

inducing undesired voltages. These coils were commercially sourced from Ion Physics 
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and should therefore have a reasonable degree of coil uniformity. Their specification 

was that they had a sensitivity of 1.0 V/A into a 50Ω termination for a maximum pulse 

duration of ~10µs. 

 

5.9.3  Plasma probes 

 

For a plasma discharge, it is important to be able to measure electron temperature and 

density. To achieve this, a Langmuir type probe was inserted into the plasma discharge 

region, whilst an ionisation gauge was used to measure the background gas density.  

The initial probe design, used on the low current Penning trap, was constructed simply 

by stripping back the outer insulator and outer conductor of a solid core coaxial cable 

leaving only the inner conductor and insulator. This was then cut to produce a planar 

face, giving a near circular collection area on the inner conductor, as shown in figure 

5.14. 

 

 

Figure 5.14 Photograph of a simple probe fabricated from co-axial cable 

 

In the initial measurements using the Penning trap designed for low currents, this probe 

was held in place by a rigid nylon support structure. The probe is then connected to a 

high voltage supply that drives current through the probe tip to achieve a chosen 

electrical potential. By measuring the current drawn at a variety of voltages it is 

possible to obtain the I-V characteristics of the Langmuir probe. From this 

measurement it is possible to achieve an estimate of the plasma electron temperature 

and electron density as shown in section 2.9. 



129 

 

 

 

Figure 5.15 Tungsten probe with glass insulator surround 

 

For the high-current Penning trap, more robust probes were found to be required. To 

this end, custom probes were constructed from tungsten wire of various thicknesses 

that were surrounded by a glass insulator, an example of which can be seen in figure 

5.15. These materials are able to withstand the higher currents and temperatures 

produced by the higher density, higher power plasma. These probes function as 

Langmuir probes in a similar manner to the previous low current examples. A range 

of probe tip configurations were manufactured, including probes with barrel tips where 

the collection surface is the tip and ‘waist’ of a cylinder, and probes where the tungsten 

wire was completely enclosed by the glass except for the tip. A third configuration was 

a so called ‘baffled’ probe where the tip of the probe was blocked by a dielectric and 

the collection surface was exclusively the waist of the cylinder. The key difference 

between these configurations arises from the fact that the probe can only be practically 

inserted into the Penning trap orientated along the axis of the magnetic field system. 

This means that the tip will tend to collect particles travelling across the magnetic field. 

Baffling the tip of the probe would be expected to change the relative collection of the 

ions and electrons since the electron orbital size is likely to be less than the ions. In 

addition, these probes can be used as an RF pickup antenna that can be connected to a 

spectrum analyser to observe the RF fields that are produced longitudinally due to the 

plasma oscillations. This will give an approximate measure of the plasma frequency 

and as such an alternative measurement of the plasma density. The RF signals were 

measured on an Anritsu MS2036A spectrum analyser. 
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6  Laboratory experimental measurements 

 

In order to build upon the numerical simulations showing the complicated behaviour 

of the particles in the saturated regime of the beam-plasma simulations, it was decided 

to construct an experimental apparatus to ultimately investigate the long-time 

evolution of the beam-plasma instability. The experiment would aim to achieve similar 

beam currents, beam diameters and energies to those used in the simulations, with 

comparable densities. Key differences between the simulations and the experiment 

were that the experiment would (at least initially) use helium, not hydrogen gas, which 

would tend to increase the time scales of the ion processes, whilst the electron 

temperature is expected to be initially cooler.  The previous chapter shows the key 

features of the apparatus. Here preliminary measurements of the performance of the 

components of the apparatus, specifically the solenoid magnet coils, the gas discharge 

column, electron accelerator and beam are presented with some preliminary 

measurements of the transport of the electron beam through the plasma column. 

 

6.1  Magnetic field generation 

 

As the experiment was to depend on a high current Penning trap configuration to 

confine the plasma electrons, as well as require magnetic confinement for the 

formation and transit of the electron beam, it was necessary to confirm that the axial 

profile of the magnetic field generated by the new 1.5m long solenoid, defined in 

section 5.3, was adequately smooth and to calibrate the magnetic field generated as a 

function of the current flowing through the windings. To conduct this measurement, a 

nylon cylindrical disc was manufactured to fit inside the inner diameter of the main 

solenoid. This disc had a hole drilled through the centre into which a Hall effect probe 

was inserted. This enabled the probe to slide through the length of the coil allowing 

axial magnetic field measurements to be taken through the end section of the solenoid 

to the plateau region (the area approximately one diameter inside the coil end). 

 

The magnetic field was generated in the coil by allowing a relatively small 31.6A 

current to flow through the coil, which required a voltage of approximately 20V 
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(dependant on temperature) using a spectroscopy grade linear regulator power supply. 

This produced an adequate field to allow accurate measurement with the Hall effect 

sensor. 

 

 

Figure 6.1 Axial magnetic field profile of the plasma confinement coil 

 

Figure 6.1 shows that by moving in approximately 15-20cm from the end of the coil 

the magnetic field reaches a stable plateau. This gives a maximum plateau field of 

0.322T at the maximum current of 300A of the power supply. 

 

6.2  Preliminary DC plasma I-V characteristics tests 

 

To understand the issues that might arise when attempting to operate a Penning trap at 

a higher plasma density (which is assumed to imply a higher operating current), the 

initial low-current design [McConville, et al., 2008] was first investigated, initially 

using a lower current, relatively simple power supply. This was the supply originally 

intended for use with this Penning trap. Figure 6.2 shows the I-V characteristic plots 

for the external electrical circuit at different background gas pressures. These tests 
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were conducted with a magnetic field of 0.32T generated by a magnet coil current of 

200A. Note that the magnet coil used for these tests had a different winding 

configuration from the coil described in section 6.1. 

 

 

Figure 6.2 Preliminary plasma discharge I-V characteristics using a non-regulated anode 

power supply at different helium gas pressures 

 

As can be seen, at all pressures, before the Penning discharge fully ignites, the system 

presents a relatively high approximately resistive load with the voltage increasing 

quickly for relatively little increase in current (of course at the very lowest voltage 

settings, the current is zero). Once the discharge ignites, the voltage drops sharply and 

the current increases. After this point there are typically regions where the voltage 

drops as the current is increased, with the exception of the higher pressure 1x10-3 mBar 

case. Here the voltage drops but then begins to rise slightly again with increasing 

current. With this power supply, the two higher pressures show relatively stable 

operation at approximately 0.5 to 2 mA with a higher voltage required to drive the 

discharge at lower pressures limiting its range in current to 1mA (over which range it 

was also stable).  

 

For the beam-plasma two-stream experiments however, the Penning trap must be 

operated at a much higher anode current to achieve the required plasma density, the 
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previous experiment having achieved a density of ~1015m-3 with a current of 2.5mA. 

Using the same trap design as before, a higher current (400mA, 10kV), switched mode, 

current and voltage regulated power supply was connected to the anode in series with 

a 13.6kΩ load resistance. The I-V characteristics of the resultant discharge are again 

plotted for a range of different gas pressures in figure 6.3. 

 

 

Figure 6.3 Preliminary plasma discharge I-V characteristics using a regulated anode power 

supply at different helium gas pressures 

 

Similar behaviour is observed as the voltage rises with little current flowing before the 

discharge ignites. Again the voltage drops and the current rapidly rises once the 

discharge lights. For this supply configuration however, the discharge was rather 

unstable between 2-5mA, making measurements in that range difficult. Higher 

background gas pressures produced a more stable discharge in that low current range. 

At higher currents (i.e. > 5mA) the current and voltage were stable, and the voltage 

quickly rises with increasing current before reaching an apparent plateau.  

 

For these pressures the helium ions will be collisionless over the scale lengths of 

interest found from the numerical simulations (~3cm). The mean free-path of the 

helium for 1x10-3mbar will be ~23cm. The drift of the ion perturbations was 

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30

V
o

lt
ag

e 
(V

)

Current (mA)

1.1x10-3 mBar

7.8x10-4 mBar

5x10-4 mBar



135 

 

approximately 10cm which would give an upper limit to the pressure of ~2x10-3mbar 

to ensure a collisionless plasma over the ion length scales of interest. 

 

Figure 6.4 Preliminary plasma discharge I-V characteristics using a regulated anode power 

supply at different protection resistances at 5x10-4 mBar 

 

Due to the regulation electronics of the higher current power supply, it is interesting 

to investigate the impact of the resistance in series with the Penning trap. Figure 6.4 

shows the discharge characteristics at a fixed pressure at three different ballast 

resistances. 

 

At higher currents (>13mA) the behaviour is broadly similar, however, with the lower 

load resistance of 6.8kΩ the system begins to become very unstable below 13mA 

making measurements difficult. At the higher load resistance of 27.2kΩ the lower 

currents become significantly more stable. This implied that higher load resistances 

yielded more stable behaviour from the regulated power supply as expected. In fact, 

the load resistance is fairly small compared to the discharge impedance, however the 

resistors (wire-wound on a ceramic frame – specifically built to dissipate significant 

heat whilst supporting high voltages) also provide a degree of inductance. The 

discharge has relatively complicated and dynamical I-V characteristics and the 

feedback regulation electronics of the power supply are designed for a primarily stable 

resistive or RC (resistor-capacitor) type load. It seems likely that the enhanced stability 
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arises from the resistors inhibiting the power supply regulation circuit responding to 

minor transient changes in the plasma. 

 

6.3  Preliminary pulsed plasma I-V characteristics 

 

In order to attain higher current levels on the discharge without causing too much 

degradation of the Penning trap, particularly the insulating components, many of 

which are in close proximity to the electrodes, it was necessary to attempt to pulse the 

anode current. It was found, in general, when the background gas pressure was lower, 

the behaviour of the apparatus could also become unstable at higher currents so all 

preliminary pulsed plasma tests were conducted at a pressure of 1x10-3 mBar. These 

measurements were also conducted with a magnetic field of 0.32T. 

 

Figure 6.5 Preliminary pulsed plasma discharge voltage and current measurements of a pulse 

rising from 5mA to 60mA with and without the plasma probe inserted at 1x10-3 mBar 

 

As noted previously, a higher load resistance in series with the Penning trap gave a 

more stable discharge, particularly at low current levels. However, for the pulse 
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measurements it was necessary to reduce the resistance back to 13.6kΩ as at higher 

current values the power supply could not ramp the current fast enough to follow the 

desired pulse trace. Figure 6.5 shows the typical voltage and current measurements for 

a pulse where the current increased from 5mA to 60mA. This plot also shows the 

behaviour both when there were no probes within the plasma discharge and when a 

probe has been inserted approximately 3cm into the plasma column. As can be seen, 

the probe insertion does not make a major change to the discharge behaviour, however 

the voltage required to maintain the plasma discharge at 5mA is approximately 200V 

higher in the presence of the probe. At higher current levels there is no sensitivity in 

the external circuit response of the discharge to the presence of the probe. 

 

In order to investigate the I-V characteristics at higher currents, the above pulse 

measurement was repeated, increasing the pulse maximum each time for a range of 

20mA to 100mA with the results shown in figure 6.6. 

 

 

Figure 6.6 Preliminary pulsed plasma discharge, peak pulse I-V characteristics, comparing 

the behaviour with and without probe insertion at a pressure of 1x10-3 mBar 
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The I-V characteristics of the plasma above 20mA appears to be relatively linear in its 

response both with and without the probe inserted. There does not appear to be a 

particularly significant impact on the external macroscopic electrical behaviour from 

inserting the probe at these currents. This suggests that the probes do not seriously 

perturb the electro and magneto static geometry of the Penning discharge at adequately 

high levels of discharge current. It should be noted however, that the probe was 

inserted no more than a few cm from the end of the discharge anode. 

 

6.4  Preliminary pulsed plasma Langmuir probe measurements 

 

Langmuir probe measurements were taken by applying a bias voltage on to the probe 

and recording the current flowing through the probe tip. For this measurement the 

pulsed current in the Penning trap was modulated between 10mA and 60mA with the 

results shown in figure 6.7. 

 

 

Figure 6.7 Preliminary pulsed plasma discharge Langmuir probe I-V characteristics for 

10mA minimum and 60mA peak current at 1x10-3 mBar 
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Due to the nature of the pulse measurements, it was possible to measure the probe 

current for both the baseline 10mA plasma current and the peak 60mA plasma current 

at each bias voltage nearly simultaneously. If Langmuir probe theory were applicable, 

it should have been possible to take the logarithm of this plot and determine the 

electron temperature from the gradient of the curve, however, the results show 

oscillatory behaviour near the important ‘knee’ of the curve which suggested problems 

with the measurements. Moreover (and this proved to be a common issue with these 

measurements), the electron saturation current was fairly small, whilst the ion 

saturation current was not obviously found. This is thought to correspond to the 

differential orbital radii in the magnetic field allowing the probe to collect the ions 

much more freely and over a larger volume than the electrons. 

 

6.5  Performance of electrical insulators 

 

During the probe measurements referred above, in section 6.4, the electrical 

performance of the trap eventually deteriorated, with very bright arc breakdowns being 

observed occasionally. Ultimately the trap insulators failed short-circuit. After 

removing the Penning trap from the system, figure 6.8 shows the damage caused to 

one of the cathodes as well as its nylon insulator. Metal had been deposited onto the 

insulator which created an electrical connection to the anode, resulting in the short-

circuit. Discolouration of areas on the copper cathode also indicated regions where 

electrical breakdown may have occurred. The observation of the aging of these 

components and in particular the deposition behaviour informed a new design of 

Penning trap for use at higher currents to inhibit the deposition of metal on key 

insulator surfaces. 
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Figure 6.8 Damage caused to Penning trap cathode and insulators due to metal deposition 

 

 

Figure 6.9 Damage caused to Langmuir probe due to thermal heating and electrical arcing 
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Figure 6.9 shows the condition of the Langmuir probe after the pulse measurements. 

Around the collecting face, the plastic insulator had partially melted exposing more of 

the inner conductor to the plasma. In addition to this, metal had been deposited onto 

the insulator as well. This would have led to a change in the current collection area of 

the probe during the experiment and may partially explain the strange behaviour of the 

I-V plot. For future Langmuir probes it was necessary to use a more robust material as 

an insulator, and a more robust conductor metal. 

 

6.6  High current Penning trap I-V characteristics 

 

In order to achieve a higher current discharge over a longer longitudinal length whilst 

minimising the issues caused by metal deposition, a new trap design was developed, 

as described in section 5.5. In a similar manner as before, the I-V characteristics of the 

discharge in the new trap were measured and plotted in figure 6.10 for varying 

magnitudes of confining magnetic field. 

 

For this particular trap diameter and length, it was found that the helium pressure range 

for stable operation was relatively narrow between 6x10-4 and 9x10-4 mbar. Outside of 

this range, large current transients were common and pulsed operation, in particular, 

could become unstable with the discharge switching between two distinct modes of 

operation, one high voltage and low current, the other low voltage and high current. 

This behaviour was largely mitigated by choosing to operate primarily at a pressure of 

7x10-4 mbar. The magnetic field selected for these experiments was ~0.3T. This was 

chosen as it was close to the maximum capacity of the power supply driving the 

system, and approached the 0.4T assumed in the simulations, providing strong 

transverse guidance and confinement of the electrons. Simulations were undertaken to 

verify that providing the magnetic field was strong enough to provide a high degree of 

transverse confinement to the plasma, the dynamics of the beam plasma interaction 

were independent of the exact value of this magnetic field. 
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Figure 6.10 I-V characteristics of the new, high current Penning discharge as a function of 

insulating magnetic field 

 

6.7  High current Penning trap Langmuir probe measurements 

 

In a similar manner to the low current trap design, Langmuir probe measurements were 

attempted to diagnose the properties of the plasma. In this case the probe was formed 

of tungsten wire encapsulated in glass. Various different probe tip configurations were 

fabricated including probes with cylindrical tips and probes which only exposed the 

circular end of the wire, as described in section 5.9.3. The probes were inserted 

approximately 2cm beyond the edge of the Penning trap, with the probe axis aligned 

with the magnetic field. Again the probe was held at a specific bias voltage and the 

current in the sheath measured using an ammeter. Figure 6.11 shows the relationship 

that was observed between the probe bias voltage and the current that flowed through 

the probe. As can be seen, whilst there was a general trend that would normally be 

associated with Langmuir probe I-V characteristics, there were various anomalies and 

systematic instabilities in the measurement. The floating potential of the probe was 

measured as approximately 790V. When the natural logarithm of the current density 

was taken and the gradient determined, the resulting electron temperature was 

estimated to be on the order of ~100eV. This temperature is not believable for this type 

of discharge therefore it is not sensible to determine the plasma density from this 

measurement. 
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Figure 6.11 Langmuir probe measurements for high current trap design (i) current measured 

on the probe (ii) natural log of the current density collected on the probe 

 

Further attempts to measure the electron density with the Langmuir probe technique 

were made using the different probe tip arrangements. None of these however provided 

any significant improvement on the measurement of the electron temperature. For a 
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magnetic field of 0.322T generated by the solenoid and an expected electron 

temperature of 5eV and an ion temperature of 0.5eV, the Larmor radius of the electrons 

would be ~17µm whereas the helium ions would be ~145µm. This difference in the 

two radii may alter the collection current of both species on the probe surface which 

could render the thermal assumption across the probe sheath invalid. 

 

6.8  High current Penning trap plasma frequency measurements 

 

As the probe I-V characteristic did not produce a reasonable curve that could be 

mapped to Langmuir probe theory, and therefore could not determine the electron 

temperature or density, an alternate measurement approach was attempted. With the 

probe inserted into the plasma discharge it is possible to connect the probe to a 

spectrum analyser to measure the longitudinal electric field oscillations within the 

plasma. This technique was used by [McConville, et al., 2011] and in that case it was 

possible to compare the results with Langmuir probe estimates of the electron density 

and temperature. Due to the delicacy of the spectrum analyser, and the relatively 

aggressive environment of the probe, the probe was connected with RG58 cable to a 

linear power supply, configured to hold the probe DC bias potential close to ground. 

A DC blocking adapter was inserted into the line connecting the spectrum analyser to 

the circuit, as was a co-axial RF spark gap and wide-band (~6GHz) high voltage Barth 

attenuators to protect against transient events on the probe reaching and potentially 

damaging the spectrum analyser. 
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Figure 6.12 Frequency spectrum in the plasma detected by the probe at varying discharge 

currents (i) 8mA (ii) 12mA (iii) 25mA 
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From the spectra obtained, it can be seen that the highest frequency observed increases 

in a progressive manner as the discharge current is increased. Three example spectra 

are shown in figure 5.12 for increasing discharge current. The probe is polarised 

parallel to the static magnetic field, and would therefore tend to be sensitive to electric 

fields polarised in this direction. Above the plasma frequency these oscillations would 

correspond to O-mode type signals with relatively long wavelengths perpendicular to 

the static magnetic field. It would therefore seem probable that they would not be able 

to conform to the waveguide boundary conditions. This would suggest that the sharp 

cut-off in the oscillation spectrum could be interpreted as the plasma frequency at each 

discharge current. Figure 6.13 shows the trend of increasing maximum detected 

frequency with the discharge current. The cut-off frequency appears to be relatively 

linear with increasing discharge current until 25mA. Due to the need to accumulate the 

data over time and given that 25mA was viewed as the maximum appropriate current 

for DC operation of the plasma combined with the delicacy of the spectrum analyser, 

higher discharge currents were not attempted with the analyser connected. 

 

 

Figure 6.13 Maximum frequency detected as a function of discharge current 

 

As a check of the validity of this method, it is possible to determine an estimate for the 

electron temperature by assuming the ion current to the cathode is controlled by the 
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plasma frequency at a discharge current of 20mA, the electron temperature can thus 

be estimated as ~1eV. This value appears reasonable for a low pressure DC discharge. 

 

Through linear extrapolation of the discharge current to a maximum of 40mA, this 

would generate a discharge of ~2GHz plasma frequency, corresponding to a plasma 

density of ~5x1016m-3 as given by equation 2.10. This is an intermediate plasma 

density between the magnetically confined simulations (section 4.2.3) and the 

electrostatically confined simulations (section 4.2.4). Long time-scale perturbations of 

the ions would still be expected at this density and Penning trap anode diameter 

although their evolution may be impacted by the decreased density. 

 

6.9  Electron beam characterisation 

 

With the Penning trap removed from the system, the electron emitter was tested to 

determine the unperturbed electron beam performance. The velvet cathode and mesh 

anode were inserted into the vacuum system, positioned at a point near the plateau 

region of the electron emitter solenoid. The distance between the cathode and anode 

was set to 1.5cm, equivalent to the spacing used in the simulations. This was expected 

to provide sufficient electric field to cause the velvet emitter to ignite at a voltage in 

the range of 50-60kV, whilst requiring about 0.75µs for the plasma to close the anode-

cathode gap. To provide the correct magnetic confinement of the electron beam, the 

two solenoids are used as described in section 5.3. The first immerses the cathode in a 

weaker magnetic field to focus and spatially confine the beam as the electrons are 

produced. The second is used to support the Penning discharge within its plateau 

region as well as keep the electron beam confined. The transition between the two 

magnet coils can potentially induce expansion, mirroring and/or scalloping behaviour 

into the electron beam. The magnetic field produced by the two solenoids was 

mathematically modelled to determine the field profile and the profile produced by 

this analysis was used as an input parameter in the numerical simulations of the 

electron beam generation and propagation (section 4.3). The numerical simulations 

were used to design the emitter electrodes and to adjust the parameters of the magnetic 

fields to attempt to minimise the predicted spread in the electron velocities caused by 
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transmission through the magneto-optical system. There are however aspects of the 

explosive electron emission process that are difficult to completely numerically model, 

and therefore the experimental electron emitter was tested at various magnetic field 

ratios to find an optimal operating regime to account for any potential real world 

effects not present in the simulations. 

 

 

Figure 6.14 Electron beam pulse measurement illustrating the beam and diode currents and 

accelerating voltage pulse envelopes, accounting for calibration of all diagnostics 

 

To determine the electron beam current, a Faraday cup was placed downstream within 

the plateau region of the second solenoid and connected to ground with a 50Ω 

resistance. This was connected to an oscilloscope (also 50Ω input impedance) through 

46 to 66dB of attenuation (dependant on the expected signal level). The acceleration 

voltage and diode current were also measured using 1V/A Rogowski coils, as 

described in section 5.8, connected to an oscilloscope (50Ω impedance) with 20dB of 

attenuation. Figure 6.14 shows a typical measurement obtained for an electron beam, 

generated in this case with an emitter solenoid at 0.048T, the second (main) solenoid 
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at 0.3T and a charging voltage of 39kV applied to the double Blumlein HT pulse 

generator. 

 

As can be seen, when the emitter HT circuit is switched, the voltage and current on the 

diode rise sharply together until the voltage approaches a plateau. The initial current 

peak occurs during the steepest point of the rise of the voltage trace and is associated 

with capacitive ‘displacement’ current charging the accelerator surface. As the rate of 

rise of the voltage pulse begins to fall off, this signal also drops, resulting in the dip in 

the diode current around ~120ns. At this point, the diode and beam current each begin 

to rise (note the current trace for the beam current is inverted in this graph) 

corresponding to the initiation of the explosive electron emission across the surface of 

the velvet. This sudden drop in the resistance of the diode appears as a drop in the total 

output impedance perceived by the HT pulser (recall that the accelerator is in parallel 

with the 206Ω matching resistor), resulting in a slight drop in the total potential across 

the accelerator. After some 200ns in figure 6.14, the power supply terminates its output 

(associated with the charge having been drained from the cables) and the potential 

across the diode decreases. Clearly the beam current pulse is associated only with the 

central ‘conduction current’ pulse in the diode current. 
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Figure 6.15 Electron beam properties as a function of emitter magnetic field (i) beam current 

(ii) cathode voltage for a range of downstream magnetic fields 

 

From the data presented in figure 6.15 it can be seen that the highest beam current is 

produced when both of the magnets are close to maximum strength, and was fairly 

insensitive to the main high field coil for fields above ~0.1T When the magnetic field 

in the interaction space dropped to ~0.05T the transmitted current starts to drop after 

the emitter field is raised above B=0.01T. This is likely to be associated with the 

electron beam diameter becoming too large in the relatively small (55mm) diameter 

downstream section of the apparatus, and certainly too large to be fully intercepted by 

the Faraday cup due to inadequate magnetic compression. A similar but weaker 
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response can be observed in the measurements taken with a magnetic field of 0.1T in 

the main coil. An interesting (and extremely reproducible) resonance appears to occur 

in the electron emission region when the emission region magnetic field is set to 0.03T 

which causes a dip in the applied cathode voltage, corresponding to a rise in the drawn 

cathode current. This has no impact on the downstream electron beam current, and the 

cause is not clear at this time. For magnetic fields of B=0.016T and below in the 

electron accelerator region, the electron beam current becomes completely 

independent of the downstream magnetic field, but a very strong function of the emitter 

magnetic field. This suggests that the beam is becoming heavily scraped (i.e. the beam 

is colliding with the anode electrodes) in the acceleration region. 

 

In order to characterise the diameter of the electron beam at the different magnetic 

field ratios, a series of beam collimators were placed in the beam path before the 

Faraday cup. These collimators consisted of a circular copper disk with a circular 

aperture machined into the centre of various diameters. If the beam diameter is greater 

than the machined aperture there will be a drop in beam current detected at the Faraday 

cup. These could therefore be used to measure the variation in the electron beam 

current density with radius and indeed provide control over the overall electron beam 

radius and total current in the beam for subsequent experiments. The results can be 

seen in figure 6.16 for various magnetic field arrangements. The maximum diameter 

detectable with no collimator was 40mm (defined by the diameter of the Faraday cup). 
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Figure 6.16 Beam current at different collimator diameter (i) Bmain=0.296T (ii) 

Bmain=0.216T (iii) Bmain=0.108T, for three values of the electron emitter magnetic field 
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For all main coil magnetic fields with an emitter magnetic field above 0.016T, there is 

a significant drop in beam current as the collimator diameter is reduced from 40mm to 

25mm. This suggests that in these configurations the beam has expanded out to a 

diameter between 25 and 40mm which is larger than the simulations predicted. The 

near linear variation of the beam current with diameter, since the cross sectional area 

scales as the square of the diameter, may imply that the outer regions have a profiled 

rather than uniform electron density. However, when the emitter coil is set at 0.016T, 

almost the entire beam current is transported through the 25mm collimator, giving an 

estimate of the beam diameter of 20mm to 25mm for this magnetic field profile, 

induced by the additional magnetic compression. As the collimator is decreased 

beyond 25mm the beam current also begins to fall off for this magnetic arrangement. 

By using these collimators and altering the magnetic field arrangement, it is possible 

to control both how much beam current is being transmitted through the system and 

the beam diameter. The simulations used a beam diameter of 16mm, so a 15mm 

collimator was chosen as a close match to this dimension. 

 

A general observation from the experiments suggested that the statistical behaviour of 

the electron beam current was very stable (for all downstream magnetic fields) when 

the accelerator magnetic field was less than 0.02T. This may be associated with the 

resonance noted when the accelerator field was tuned to 0.03T suggesting the potential 

for some complex behaviour in the electron accelerator when the magnetic field was 

set to a high value. For this reason, low emitter magnetic fields were chosen for the 

first experiments. 

 

As the electron beam would be required to propagate through the Penning trap, it was 

also necessary to verify that the beam did not collide with any of the components of 

the trap assembly. By placing the Penning trap arrangement into position in the plateau 

of the main solenoid and with the 15mm collimator positioned between it and the 

electron accelerator (but also in the plateau region), measurements were taken using 

the Faraday cup after the electron beam had propagated through the unlit Penning trap. 
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These measurements were taken for three magnetic fields at the accelerator region and 

with a fixed main solenoid field of 0.296T. 

 

 

Figure 6.17 Electron beam transit through unlit Penning trap 

 

The results shown in figure 6.17 illustrate that the electron beam is propagating 

through the trap with a current that can be controlled from 4 to 13A using the cathode 

magnetic field within a diameter of 15mm. This measurement of the beam current 

through the unlit Penning trap will be used as a baseline for the transit of the electron 

beam through the plasma. This provides a range of beam currents around that used in 

the numerical simulations presented in section 4.2.4. Together with a similar beam 

voltage and diameter this gives a beam that can be closely compared with that of the 

simulations. 

 

6.10  Beam-plasma measurements 

 

Initial tests of the effects of the electron beam on the plasma formed in the Penning 

discharge continued to use the Faraday cup to measure the electron beam current for 

different levels of accelerator magnetic field and different discharge currents. These 

measurements were undertaken to assess if the transit of the electron beam through the 

plasma has any impact upon the downstream beam current. The results for these 
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measurements are shown in table 6.1. Note that in all of the beam-plasma 

measurements, the 40mA discharge current was pulsed to prevent degradation of the 

trap whereas the 8mA discharge was run continuously DC. In the 40mA discharge 

current measurements, the beam was then triggered while the discharge current was at 

a maximum. This 40mA discharge current was selected as an extrapolation from figure 

6.13 which suggests that this could reach a plasma density of 5x1016m-3, 

approximately a factor of 1.8 down on the density used in the simulations of the beam-

plasma instability (section 4.2.4). It is relevant to note that in these experiments an 

arbitrary wave generator was employed to generate the pulsed current profile. This 

permitted greater control of the transfer between the high and low current states, 

significantly mitigating the stability issues observed in the earlier experiments where 

the pulse envelope was defined by a pulse generator (Section 6.3) but limited the peak 

current for the initial experiments to 40mA. 

 

Electron accelerator 

magnetic field (mT) 

Discharge current 

(mA) 

Beam current (A) 

6.72 0 13.32 

6.72 8 13.43 

6.72 40 12.06 

3.84 0 4.26 

3.84 8 4.35 

3.84 40 4.42 

Table 6.1 Electron beam current for different discharge currents 

 

From the results shown in table 6.1, it can be seen that, in general, there is little impact 

on the transmitted beam current from the introduction of the plasma discharge. When 

the discharge is at 40mA and the accelerator magnetic field is at 6.72mT there is a 

slight dip in the beam current. This is not unexpected as although the simulations show 

that there is drift velocity disruption from the beam-plasma instability, the main drift 

of the electron beam still ensures that the majority of the beam will propagate through 

the entire system. The Faraday cup measurement would not be sensitive to fast 

modulation in the electron current potentially set up by any streaming instability. 
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Figure 6.18 Penning trap current pulse trace 

 

The behaviour of the discharge current was monitored during the transit of the electron 

beam while the discharge current was pulsed to 40mA. A typical measurement of the 

discharge behaviour is shown in figure 6.18. The discharge characteristics were again 

relatively unaffected by the transit of the electron beam. There appears to be a slight 

modulation of the discharge current shortly after 1.5s, the time at which the electron 

beam will have passed through the system. This may be the result of perturbation in 

the background plasma caused by the transit of the beam. 

 

Although there remained an element of doubt about the measurement of the plasma 

density, it was decided that it would be sensible to attempt an initial measurement to 

establish the feasibility of observing the low frequency oscillations seen in the beam-

plasma simulations. The Faraday cup was removed from the system and a probe 

inserted 1cm into the plasma column. This probe was connected to ground by a 50Ω 

resistor and further connected to the 50Ω input of an oscilloscope. To prevent the 

electron beam from intercepting the probe dielectric support, a circular copper disc 

with a machined slot slot was placed downstream of the Penning trap. This disc was 

at the same diameter of the vacuum vessels outer wall and ~3mm thick. The probe was 
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then inserted through the machined slot into the plasma column. This disc would 

ensure that the beam was intercepted before it could reach the probe connections. The 

probe was formed of a 0.7mm diameter tungsten wire encapsulated in glass. As 

previously noted it was inserted 1cm into the end of the plasma column’s electrostatic 

confinement region, extending some 75mm from the copper shield plate and was 

positioned 12mm radially displaced from the axis of the experiment (and hence the 

centre of the electron beam path). The output from the probe was expected to indicate 

longitudinal oscillations in the plasma and the electric fields associated with the 

electron beam at the end of the plasma column. 

 

 

Figure 6.19 Electron beam typical pulse characteristics, showing the accelerating potential 

and the oscillations detected by the probe 

 

Figure 6.19 shows the typical probe response detected during the transit of the electron 

beam through the plasma along with the voltage on the electron accelerator. The 

measurement shown corresponds to a beam current pulse of ~8A propagating through 

a plasma discharge at a current of 40mA. To detect the low-frequency oscillations 

expected due to the beam-plasma instability, the signal was recorded for approximately 

4µs after the electron beam pulse has terminated. Fourier analysis could then be 

-40

-20

0

20

40

60

80

-400

-300

-200

-100

0

100

200

300

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ele
ctro

n
 b

e
am

 vo
ltage

 (kV
)

Si
gn

al
 d

e
ve

lo
p

e
d

 t
h

ro
u

gh
 p

ro
b

e
 (

2
5
Ω

im
p

e
d

an
ce

) 

Time (µs)



158 

 

performed upon the probe signal for a range of beam currents and discharge currents 

to investigate whether any signatures were seen that would correspond to the 

simulation predictions of modulation in the ions, with a maximum frequency of 2GHz 

and a resolution of ~250kHz. Figure 6.20 shows a comparison of the spectra observed 

at a beam current of ~8A for different plasma discharge currents. 

 

Figure 6.20 Spectra of probe signal for ~8A beam current and varying discharge currents 

 

The spectra shown in figure 6.20, are mean results taken over a number of 

measurements at the same parameters, cropped to the low frequency region of interest. 

This aids in suppressing any statistical variation from the analysis. Despite this, the 

frequency spectrum detected on the probe for the electron beam propagating through 

the plasma does not vary significantly compared to the signals excited by the beam 

alone without the plasma. There are two regions (A and B on figure 6.20) where there 

may be indications of some low-frequency effects caused by the plasma. At a 

frequency of ~4MHz (A) there appears to be a slightly stronger signal recorded for 

both plasma discharge currents, with the 40mA fractionally larger. At a frequency of 

~7.5MHz (B) there appears to be a suppression of the low-frequency oscillations that 

are excited by the electron beam. Again the higher discharge current shows fractionally 

more suppression. 
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After analysis of results obtained with three different electron beam currents (4A, 8A 

and 13A), these spectral features appear consistently, and only in the presence of a 

plasma and at the same frequencies. This suggests that these features are independent 

of both the beam and discharge current, however it should be noted that the Fourier 

resolution of these spectra is on the order of 0.25MHz which limits the detailed 

interpretation of the data. The deviations between the signal strengths at these two 

regions are on the order of twice the standard error in the mean of the spectral 

amplitudes. However, these variations in amplitude occur in a region where there is a 

rich and complex spectral structure with considerable variation in amplitude with 

frequency. This is therefore only a tentative indication of potential additional low 

frequency dynamics in the presence of the plasma and indicates the requirement for 

additional diagnostics and considerable depth of statistics. 

 

 

Figure 6.21 Condition of the copper probe shield after beam-plasma measurements with the 

probe inserted (i) 1cm (ii) 4cm into the plasma column 

 

Repeat measurements with the probe inserted 4cm deeper into the plasma column 

showed no appreciable difference in low-frequency behaviour, with the exception of 

the case of the 40mA discharge current, 12A beam current case. In this particular case 

the frequency suppression at point B in the spectra was not as pronounced. Figure 6.21 

however, shows the copper disc shield and its mounting that was used to protect the 

probe connections. The picture on the left shows the condition of the probe after it was 

used in the beam-plasma measurements with the probe inserted 1cm into the plasma 

(i) (ii) 



160 

 

column. There is little damage or deposition of metal. The condition after the 

experiments were repeated with the probe moved 4cm deeper into the plasma are 

shown by the picture on the right. There is now a significant change to the surface of 

the copper shield (which was now only 3cm outside of the plasma column). This 

decolouration of copper has not been seen previously in any of the experiments 

conducted in this work which indicates that it is an effect associated with the beam-

plasma interaction. 
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7  Discussion and future work 

 

7.1  Overview 

 

This work set out to investigate the effects of electron beams propagating through 

plasmas in two different configurations. This involved the numerical simulation of 

beam-plasma systems as well as the design and construction of a low-pressure, low 

temperature experimental apparatus to aid in the benchmarking of the numerical codes 

for their use in the simulation of beam-plasma interactions. 

 

The first numerical study was undertaken in order to investigate the impact of a plasma 

in a laboratory experiment to simulate the cyclotron mechanism thought to be 

responsible for auroral kilometric radio wave emission from the Earth’s 

magnetosphere. The second numerical study was an investigation of the non-linear 

behaviour of the two-stream/beam-plasma instability, particularly in relation to the 

resulting ion behaviour, with potential relevance to current fast-ignition inertial 

confinement fusion experiments. The laboratory experiment was designed and 

constructed using information gathered from the numerical investigation to provide a 

system that was as representative of the simulations as was possible. Tertiary 

numerical simulations were also carried out in the design of the electron emitter that 

would be used in the laboratory experiment.  

 

7.2  Laboratory auroral kilometric radiation experiment numerical 

study 

 

For the numerical investigation of the laboratory AKR experiment to be possible, the 

electron beam velocity distribution had to be matched to that of the electron beam 

produced and magnetically compressed during the laboratory experiment (intended to 

replicate features of the auroral electron beam observed in the magnetosphere). This 

was necessary as, although a parallelisable particle-in-cell code was being utilised 

(xOOPIC), the simulation time required to solve correctly for the emission and 
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magnetic compression of the electron beam (which is a large volume problem) would 

be prohibitive when combined with the simulation of a plasma. Furthermore, xOOPIC 

does not contain explosive emission routines that could reasonably be used to simulate 

the electron emission from the cathode. Other codes such as MAGIC do have the 

capacity to simulate  such emission mechanisms (although in a simplified manner), 

however the lack of parallel computing capabilities and limited plasma simulation 

abilities made such a code incapable of simulating the electrons interacting 

simultaneously with the electromagnetic waves and the plasma. Instead, it was decided 

to inject the electron beam with a velocity distribution that was defined analytically 

and then matched to the empirical data. 

 

The cathode surface in the AKR experimental apparatus [McConville, et al., 2008] 

was shaped as an annular ring with a conical electrode in the centre. This geometry 

would have resulted in little to no electrons with purely axial beam velocity. Analysis 

by [McConville, et al., 2008] showed the distribution of electrons from the 

experimental cathode in terms of pitch angle and it was determined that a distribution 

similar to that of a Maxwell-Boltzmann could adequately describe the velocity 

distribution produced in the experiment. The gamma distribution function was 

however chosen as it has a more general analytic form that could produce a flexible 

and configurable electron distribution encompassing the Maxwell-Boltzmann 

distribution with a certain set of parameters as described in section 3.2.1. 

 

The algorithms to produce a gyrating electron beam of any particular velocity 

distribution did not exist in xOOPIC and so had to be added (Section 3.2.1). Once 

added, the simple case of a gyrating electron beam in xOOPIC was compared with a 

similar beam in MAGIC, which had inbuilt gyrating beam capabilities. The 

comparison was virtually identical for the same input parameters. As an additional test, 

the gyrating beam was used in a simple gyrotron simulation to verify that the new 

routines in xOOPIC would produce a beam supporting similar output radiation to 

MAGIC. MAGIC is a commercial code that has been used previously in the design 

and development of gyrotron oscillators and amplifiers. The two simulations compared 

reasonably. Temporally the cyclotron maser instability grew and saturated at the same 
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rate in both simulations, but the total output power predicted by xOOPIC was ~30% 

higher and there was an upward shift in output frequency of ~50MHz. This may be 

due to the different meshing algorithms in use by MAGIC and xOOPIC. MAGIC uses 

an adaptive meshing that is determined by the boundaries of the defined objects. This 

will adjust the meshing to ensure the objects are on the boundaries of the mesh. 

Conversely xOOPIC uses a simple uniform grid and will approximate any defined 

boundaries to that grid. This may result in a change in the cut-off frequency of the 

resonant waveguide, resulting in a different detuning value for the applied magnetic 

field that may provide a change in the efficiency of the coupling. 

 

With the electron injection algorithms thus demonstrated, it was necessary to match 

the gamma distribution function parameters to that of the experiment. Through the 

comparison with magnetic mirroring measurements made in the experiment it was 

possible to tailor a gamma distribution function to artificially generate a beam with a 

velocity distribution that gave the same transmitted current response as a function of 

magnetic field ratio as observed in the experiments. This was undertaken for three 

different experimental configurations (relating to different cathode currents and 

magnetic fields immersing the cathode) that correspond to transmitted beam currents 

of 12A, 35A and 60A. 

 

Simulations were undertaken of the emissions from the 35A electron beam in the 

absence of a background plasma and compared to the experimental measurements. The 

frequency was predicted at 5.31GHz in comparison to the measured 5.4GHz in the 

experiment. Similar efficiency levels were also found with the simulation at ~1% 

compared with ~1.5% from the experiment. The differences between the simulations 

and experiment may stem from slight differences in the exact geometry used in the 

experiment with those in the simulation. The simulations optimised the resonant cavity 

length within a range of ~1cm to produce the highest output efficiency. In addition, 

the previous experimental measurements of output power contain a degree of 

uncertainty that may also account for the efficiency disparity. 
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For the 60A electron beam current, it was possible to compare the impact of a plasma 

in the interaction region of the simulation to that of the experiment. It was first found 

that the efficiency was ~0.9% without the plasma, but that the efficiency was degraded 

by the presence of the plasma until the instability would not grow at all with a plasma 

frequency over 400MHz. This was similar to the behaviour seen in the laboratory 

measurements, where the output power fell with increasing plasma frequency (from a 

similar initial estimate of the efficiency) but in this case there was little emission 

measured at 300MHz. There was also a stochastic element to the experimental data, 

whereby there would be no emission observed at all even at lower plasma frequencies. 

No such stochastic behaviour was observed in the simulations. It was however found 

in the numerical simulations that the growth rate and time to saturation of the cyclotron 

maser instability was affected by the presence of the plasma. In the experiment the 

electron beam pulse was limited to ~100ns in length. During the experimental 

investigations in the present work, it was noted that the Penning discharge could 

change operating mode. It may be in fact that the stochastic effects observed in the 

AKR experiment were associated with such a process. More definitively, it had been 

supposed that an axial ‘two-stream’ type instability might be responsible for 

destroying the transverse particle distribution that provides the population inversion 

for the emission to occur. No evidence of this was seen in these simulations and 

therefore alternative explanations should now be sought. 

 

7.3  Numerical investigations of the two-stream/beam-plasma 

instability 

 

To begin to investigate the two-stream instability in xOOPIC, it was first necessary to 

ensure that the code could correctly model the well understood linear theory. 

Simulations were carried out using two co-propagating electron beams of similar 

current but different initial velocities allowing observation of the growth of the two-

stream instability in the simplest form. These gave relatively good agreement to the 

linear theory and also showed the development of a degree of phase velocity mixing 

and trapping once the instability had saturated. This leads to the growing longitudinal 

electric fields of the instability beginning to break-up into more complicated 
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behaviour. It is the impact of this non-linear behaviour that leads to modulated ion 

dynamics that is of primary interest in this numerical study. 

 

Simulations were then undertaken that consisted of injecting an electron beam into a 

plasma that was confined by a magnetic bottle. The confinement of the plasma, 

keeping the particles from interacting with the ports proved to be important for the 

stability of the PiC codes. Therefore a magnetic bottle arrangement was initially used 

to limit the number of particles reaching the ports of the simulation. This was 

eventually replaced with an electrostatic confinement as this was the method to be used 

in the laboratory experiment. Additionally, a small conducting block was added to the 

end of the simulation to ensure the electron beam did not interact with the exit port. 

 

The beam-plasma instability in the magnetic bottle confinement also compared well 

with analytic theory in the linear regime, albeit with a faster temporal growth rate. 

Once the instability saturated the longitudinal electric field behaviour became much 

more complicated in comparison to that of the co-propagating beams. Regions of a 

standing wave type structure in the longitudinal electric field eventually began to form 

in the area where the initial phase velocity vortices occurred due to the saturation of 

the beam-plasma instability. These waves appeared to increase in amplitude, resulting 

in electron and ion density cavities forming. This behaviour seems consistent with the 

modulational instability described in section 2.5.2. The ions (and electrons) that 

propagate from the cavities travel in density perturbations which propagate along the 

simulation axis in both the positive and negative directions, with a propensity for the 

positive direction. Similar motion of ion density perturbations were reported 

experimentally by [Franck, et al., 2001] where periodic ion bunches were injected into 

a plasma discharge. However, the excitation mechanism in this experiment differs; ion 

density perturbations are formed by a modulated ion beam which excite density 

perturbations propagating at the acoustic velocity. 

 

Fourier analysis was performed on the temporal behaviour of the longitudinal electric 

fields that occurred within the system. This discovered that the standing wave 

structures appeared to oscillate at a frequency of ~1GHz which is close to both the 
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frequency of maximum growth of the beam-plasma instability and the electron plasma 

frequency. This suggests that these waves consist of Langmuir oscillations. In addition 

to this, there appears to be a low frequency oscillation at ~10MHz that occurs in the 

same region as the density cavities. It is possible that this low frequency behaviour 

corresponds to ion acoustic wave oscillations. Assuming that the wavelength of the 

acoustic wave relates to the spacing between the ion density perturbations (~3cm) and 

that the ion acoustic velocity is defined by the electron temperature in the cavity 

structures ~300eV, this would give an ion acoustic frequency of ~10MHz. This lends 

further support to the suggestion that the modulational instability is responsible for 

forming the ‘ion bunches’ in the plasma as typically for this instability to occur there 

is a coupling between Langmuir oscillations and ion acoustic waves. Furthermore, the 

turbulence parameter defined in equation 2.77, was determined to be larger than 

2

23

Dk
k  for wavelengths greater than ~2mm. As the structure size of the ion density 

perturbations were ~3cm it is possible for wave trapping to have occurred in this 

system and for the modulational instability to grow. Similar spectral structures were 

also seen in observations of type-III solar radio bursts and linked to a two-stream 

instability [Thejappa, 2012], although this has been challenged [Graham, 2012] 

 

Simulations undertaken at a range of electron beam voltages and currents to investigate 

using electrostatic confinement for the background plasma continued to exhibit long 

term modulation of the ions. It was noted that, in general, for most electron beam 

voltages the velocity of these density perturbations was higher than that of the average 

ion acoustic velocity in the system at that time. When investigating the electron 

temperature variation in space (e.g. figure 4.37 (iii)), it was found that within the 

density cavities that formed, the electron temperature was significantly higher than 

that of the surrounding temperature. The temperature was analysed taking the mean of 

the distribution of macro-particle speeds within each simulation mesh cell. As there 

are ~100 macro-particles per cell of each species this would give a reasonable 

approximation of local electron temperature. The ion acoustic velocity related to this 

localised temperature appeared to be close to that of the drift velocity of the ion 

perturbations propagating from the cavities. Furthermore, the trend of the maximum 

ion acoustic velocity (figure 4.42) found in these cavities tended to follow that of the 
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ion perturbation drift velocity as the energy of the driving electron beam was varied. 

These observations would suggest that the ion perturbations leaving the density cavity 

propagate at a velocity dependent upon the electron heating that occurs within the 

cavity. This could be important for enhancing heating in collisional plasmas, such as 

a compressed deuterium-tritium pellet, as these density perturbations could potentially 

be damped by the ion-ion collisions leading to an overall increase in ion temperature. 

Further study on the collisional behaviour of these waves could be useful, discussed in 

section 7.5. In this collisionless case the ion perturbations also appear to exhibit 

behavioural characteristics of solitons [Ikezi, Taylor and Blake, 1970], insofar as they 

seem to travel at a fairly constant velocity and do not merge as they cross in space. 

Electron solitary structures have been observed in the earth’s magnetotail [Matsumoto, 

et al., 1994], auroral zone [Ergun, et al., 1998a] and high-altitude magnetosphere 

[Franz, et al., 2005]. The behaviour seen in the numerical simulations could potentially 

be of relevance to the formation of some of these structures. 

 

Furthermore, in measurements of solar radio bursts, zebra-like structural patterns have 

been observed in the radiation and absorption spectra of type III and IV bursts 

[Chernov, 2010]. A proton beam-plasma instability has been proposed as a possible 

driver for these spectral signatures [Fomichev, Fainshtein and Chernov, 2009]. This 

instability leads to an ion sound wave with multiple harmonics which are thought to 

be the source of the zebra-like structures. From the numerical simulations undertaken 

in this work, a series of ion density structures that propagate at the sound speed have 

been formed from the electron beam-plasma and modulational instability. The 

simulations in this thesis show the excitation of waves associated with the ion 

behaviour, however it is not clear that the cascade to produce additional spectral 

components is occurring before the structures largely dissipate. It may be possible to 

study the excitation of acoustic waves with the ions in the simulations developed in 

this thesis, however this would require the addition of collisional software routines as 

the collisional processes are a key damping term as shown in [Fomichev, Fainshtein 

and Chernov, 2009]. 
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7.4  Laboratory apparatus to investigate the two-stream/beam-

plasma instability 

 

The laboratory experiment to investigate and benchmark the effects seen in the 

numerical simulations was designed and built with initial measurements made. 

Compromises had to be made in terms of practicality for the design of the experiment. 

The gas species used for the plasma discharge had to be changed to helium from 

hydrogen due to the chemical volatility of hydrogen. This would have the impact of 

decreasing the frequency of potential ion oscillations by a factor of 2, assuming that 

the helium is only singly ionised by the Penning discharge. Additionally, the numerical 

simulations were artificially hot (100eV) to attempt to suppress any numerical heating 

effects that could occur. The Penning discharge used in the laboratory may reasonably 

be expected to be at a temperature of ~1-10eV (typical for such a low pressure 

discharges). This may also have an impact on any ion acoustic oscillations present, 

however, as seen in the numerical simulations it is the localised heating due to the 

beam-plasma instability that appears to impact upon the ion motion. Nevertheless it is 

entirely possible that the ion acoustic speeds are, at least initially, an order of 

magnitude smaller, and assuming that the spatial structure of the ion waves is 

dependent on the beam-plasma instability, would result in ion density perturbation 

frequencies up to a factor of 10 lower as well. Taking into account the increase of 

mass, this would result in ion acoustic frequencies of ~0.5 to 1.58MHz for electron 

temperatures of 1-10eV. 

 

Performance of the components was important in undertaking these laboratory 

experiments. Initial tests on a previously designed Penning trap geometry led to the 

understanding that the coating of insulating components with metal was of particular 

importance for a discharge at the required level of current. This could lead to electrical 

shorting of the discharge requiring the insulators to be cleaned or remade. The new 

insulators for the redesigned Penning trap were therefore designed in such a way to 

maximise the electrical tracking distance that would be required for the trap to become 

shorted and importantly ensuring these insulators had no line of sight to the cathode 

surface was found to be vital. These new insulators have been exposed to higher 
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current discharges (20mA for sustained periods with pulses to 40mA) over many 

hours, and although deposition has been observed, it has never led to shorting of the 

electrodes to ground. Likewise, using a coaxial cable as a plasma probe was unsuitable 

as the insulator surrounding the probe was not resilient to the higher current plasma. 

Glass encapsulated tungsten probes were manufactured in a range of configurations to 

offer enhanced resilience to the more aggressive environment at higher discharge 

current levels. 

 

The electron accelerator was constructed and tested based upon numerical modelling 

in MAGIC. This accelerator was designed to be able to produce a beam current of 40A 

and a voltage of ~50kV. The experiments show that the beam produced was up to 

~60A at ~62kV. This was acceptable as the current was found to be controllable by 

adjusting the magnetic field in the solenoid at the electron accelerator region, whilst 

the transverse size of the beam could be regulated using upstream collimators to match 

some of the simulated beam currents and dimensions, in particular, using fairly low 

magnetic fields on the electron emitter allowed the experiment to produce beams that 

were similar to those used in the simulations in section 4.2.4. 

 

The measurement of the plasma density using probes unfortunately proved to be 

inconclusive. A stable set of measurements could not be obtained that produced a 

reasonable electron temperature. The presence of the magnetic field complicates the 

probe measurement very significantly due to the cyclotron orbits of the ions and 

electrons. For a 1eV plasma in a 0.296T magnetic field, the Larmor orbital radius for 

a thermal electron would be ~10µm whereas an ion would be ~183 µm assuming the 

ions are at room temperature. 

 

By using the probe instead as a RF pickup antenna, it was possible to get an estimate 

of the plasma frequency of the discharge and from this an estimate of the number 

density and temperature of the plasma. Due to the delicate nature of the spectrum 

analyser used in these measurements, and more importantly the fact that the spectrum 

analyser required to build up data over an extended period of DC operations, a 

maximum trap operating current of 25mA was used as operating beyond this for long 
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time durations could risk damage to electrodes and discharge circuit components. The 

frequency was observed to increase with discharge current showing an almost linear 

trend and therefore the preliminary experiments investigating the transit of the electron 

beam through the plasma was extrapolated to a discharge current of 40mA (the 

maximum current used in the beam-plasma experiments). This would give a plasma 

frequency of ~2GHz which would result in a number density of ~5x1016m-3. This 

density was between that used in the simulations presented in section 4.2.3 and 4.2.4 

and therefore the long time-scale ion dynamics would still be expected at this density. 

Due to the radius of the Penning trap anode however, the evolution of the ion structures 

could be constrained. It should in future be possible to increase this density further. 

Moreover, this is an unconventional configuration for plasma diagnostics, it will 

therefore be important to test this estimate of plasma frequency against an alternative 

method. Estimates of the Bohm velocity suggest an electron temperature for this 

density of plasma of a few eV which appears reasonable for a plasma of this type and 

pressure. For investigating the formation of ion structures on the order of 3cm, 

operating at a pressure of ~7x10-4mbar also ensured that the mean free-path of the 

helium was ~10 times longer than these structures. As these structures appear to drift 

up to 10cm this gave an upper operating pressure of ~2x10-3mbar to ensure 

collisionless propagation. 

 

For the electron beam parameters and plasma density generated in this system, the 

dynamics seen in the numerical simulations should be observable. The electron beam 

current and voltage range is within the range considered in the simulations presented 

in section 4.2.4 while the plasma density is lower this should still lead to a strong 

beam-plasma instability. The formation of ion structures may be close to the centre of 

the 1m long plasma column but, due to the impact on stability, the plasma probes could 

not be inserted further than 4cm from the end of the Penning trap. Nevertheless, it may 

still be possible to detect the modulations in the ions by the probe. 

 

The measurements of the low-frequency oscillations that were produced during the 

initial beam-plasma interaction experiments were performed with the available probes 

inserted just beyond the downstream end of the plasma region. These measurements 
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showed that the plasma may be impacting on signals in the spectral range ~4MHz and 

~7.5MHz. However, the oscillations due to the electron beam pulse were very strong 

in comparison to the size of this perturbation. The amplitude variation at these 

frequencies did appear relatively consistently in the presence of a plasma, although 

they also appeared to be independent of the discharge and beam current. Further work 

will be required to verify this behaviour and additional diagnostics will be required to 

demonstrate the formation of the streaming instability and any subsequent impact on 

the plasma. Nonetheless at the end of this project, all the main components required to 

pass an energetic electron beam through the plasma column had been built, tested and 

shown to work well together. 

 

7.5  Future work 

 

While the predicted output from the simulations of the AKR laboratory experiments 

provided reasonable agreement to the experimental measurements in the presence of 

the plasma, there still remains a need to find an explanation of the stochastic behaviour 

seen in the experiments. While the growth and saturation rate of the instability is a 

potential explanation, further numerical investigation could be undertaken. The 

cylindrically symmetric 2.5D simulations cannot model some configurations of 

instabilities that may occur during the transit of the beam in the plasma. Therefore by 

extending these simulations to a full 3D PiC simulation, any such behaviour could be 

investigated. This would require the use of another software package as xOOPIC does 

not support 3D simulations. 

 

The numerical simulations of the beam-plasma two-stream instability show interesting 

behaviour of the ion density in the non-linear regime. This may be of relevance to the 

propagation of fast electrons into a compressed deuterium-tritium target in fast-

ignition inertial confinement fusion experiments. This would require scaling of the 

numerical simulations up many orders of magnitude in density and down in simulation 

(and mesh) scale in order to observe the frequencies of interest. Whilst the total length 

of the system would decrease, this would still dramatically increase the runtime of the 

simulations and would require access to reasonably large computing resources. 
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Investigations could also be undertaken with and without an applied magnetic field as 

filamentation could result in the transverse breakup of the beam where no external 

magnetic field were applied. Also, if binary collisions could be modelled in the code 

(not supported in the standard xOOPIC distribution), the effect of the ion-ion collisions 

on the generated density perturbations could be investigated further for potential 

relevance to ion heating in fast-ignition fusion [Mendonça, et al., 2005] and ion 

acoustic wave generation in solar bursts [Chernov, 2010]. 

 

Additionally, simulations could also be undertaken at astrophysical conditions relevant 

to the Earth’s magnetosphere, magnetotail and/or solar corona in order to observe any 

potential scaling of structure formation and dynamics for comparison with theoretical 

predictions and observations of these phenomena. 

 

Initial measurements have been made using the laboratory apparatus designed and 

constructed as part of this work. These experiments show that the electron beam and 

the plasma column have been successfully formed and that the electron beam can be 

successful transported through the plasma (this was by no means certain at the outset 

of the project). Now that the bulk of the apparatus exists, these is an extensive 

parameter range which can be explored. However, there is need to improve upon the 

diagnostic measurements. Alternative methods for the determination of the plasma 

density could be designed and used. For example, a Faraday rotation technique 

[Hutchinson, 2002] could be used to estimate the line integrated number density (given 

that the magnetic field is precisely known). This operates by propagating a linearly 

polarised electromagnetic (in this case microwave) radiation signal through the plasma 

column. The magnetic properties of the plasma cause a rotation in the polarisation 

angle of the signal which can then be detected and measured. This angle shift can then 

be used to determine the properties of the plasma. Components for this method would 

have to be designed and constructed to facilitate the injection of the signal. This could 

be used to confirm the estimates from the RF pickup technique for the plasma density, 

without requiring the use of Langmuir probes which proved ineffective, or other 

disruptive insertion devices. 
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Other techniques for measuring the low-frequency oscillations should also be used. 

The probe currently used was only inserted up to a maximum of 4cm into the plasma 

column. This may not be close enough to the generated perturbations of interest and 

therefore a method of getting the probe deeper into the plasma column would need to 

be devised. Care would have to be taken as this could have dramatic effects on the 

stability of the plasma discharge. Alternatively, Penning traps of varying axial length 

could be used with the probe still 4cm in from the end. Numerical observations show 

that the modulational behaviour is independent of total plasma length as long as the 

beam-plasma instability has enough space to grow and saturate. As the I-V 

characteristics of each trap would change, they would each have to be tested separately 

to determine the necessary discharge currents to keep the number density the same. 

Techniques for direct observation of the ion structures could also be developed. These 

could include spectroscopic methods that could potentially measure the Doppler shift 

of the moving perturbations and/or electromagnetic (microwave) scattering whereby 

an electromagnetic wave is injected and the signal reflected and scattered from the ion 

structures could be detected. 
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Appendix 1 AKR 60A 200MHz xOOPIC script 

 

AKR 200MHz 60A 

{ 

 

 AKR experiment with beam current 60A with a plasma of 200MHz 

 

} 

 

Variables 

{ 

// General numerical parameters 

 

  Bpercent = 1.024 

 

  PI = 3.14159 

  eps0 = 8.854187e-12 

 

//*************************************************************** 

// General physical parameters 

//*************************************************************** 

 

  electronMassMKS = 9.1094e-31  

  electronCharge  = -1.6022e-19 

  speedLight      = 2.9979e8 

 

  unitMassMKS     = electronMassMKS / 5.48579903e-04 

  HeMassNum       = 4.0026 

  HeMassMKS       = unitMassMKS * HeMassNum 

 

//************************************************************** 

// Beam Parameters 
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//*************************************************************** 

 

  Current = 60 

  beamRadius = 0.016 

  beamgrad = 0.01 

  beamAnn = 0.002 

 

  rmsElectronSpeedMKS  = 3.e+04 

  electronVelocityEV = 75000 

  electronVelocityMKS  = speedLight*0.41218 

   

  beam_ramp = 5e-9 

 

  alpha = 1.0 

 

//*************************************************************** 

// Density Parameters 

//*************************************************************** 

   

  Plasma_Freq = 200 // MHz 

 

  Calc_Num_Density = 

((Plasma_Freq*1e6*2*PI)^2)*eps0*electronMassMKS/(electronCharge^2) 

 

 

  ionDensityMKS = Calc_Num_Density 

  electronDensityMKS =  ionDensityMKS 

 

  ds = 0.005 * speedLight / plasmaFrequency 

 

 

//*************************************************************** 
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// Geometry Variables 

//*************************************************************** 

 

  Hole_rad = 0.02 

 

  Drift_rad = 0.0279 

  Drift_len = 0.1 

 

  Waveguide1_rad = 0.0351 

  Waveguide1_len = 0.3 

 

  Waveguide2_rad = 0.0423 

  Waveguide2_len = 0.1 

 

  Taper_len = 0.13 

 

//*************************************************************** 

// Grid parameters 

//*************************************************************** 

 

  dz = 0.00025 

  dr = 0.0003 

   

  Lz = Waveguide1_len + Waveguide2_len + Taper_len + Drift_len 

  Lr = Waveguide2_rad 

 

  Nz = fabs(Lz/dz) 

  Nr = fabs(Lr/dr) 

 

  simulationVolume = Lz * Lr 

  plasmaVolume = (Waveguide1_rad^2)*PI*Waveguide1_len 

  numCells         = Nz * Nr 
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  df_cl = fabs(Drift_len/dz) 

  df_cr = fabs(Drift_rad/dr) 

 

  wg_cl1 = fabs(Waveguide1_len/dz) 

  wg_cr1 = fabs(Waveguide1_rad/dr) 

 

  wg_cl2 = fabs(Waveguide2_len/dz) 

  wg_cr2 = fabs(Waveguide2_rad/dr) 

 

  tp_cl = fabs(Taper_len/dz) 

 

  bm_cr = fabs(beamRadius/dr) 

  hl_cr = fabs(Hole_rad/dr) 

  bma_cr = fabs(beamAnn/dr) 

 

//*************************************************************** 

// Particle parameters 

//*************************************************************** 

 

// 

// Background electrons 

// 

  totalNumElectrons    = electronDensityMKS * plasmaVolume 

  numElectronsPerCell  = 3 

  numElectronPtcls     = numElectronsPerCell * numCells 

  electronNumRatio     = totalNumElectrons / numElectronPtcls 

 

  peakCurrentElectrons = electronCharge * electronDensityMKS * Lr * 

electronVelocityMKS 

 

// 
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// Background ions 

// 

  totalNumIons   = ionDensityMKS * plasmaVolume 

  numIonsPerCell = 3 

  numIonPtcls    = numIonsPerCell * numCells 

  ionNumRatio    = totalNumIons / numIonPtcls 

  ionMassMKS     = HeMassMKS 

  ionCharge      = -electronCharge 

  rmsIonSpeedMKS = 3000. 

 

//*************************************************************** 

// Misc parameters 

//*************************************************************** 

 

  BMax = -0.21 

 

  ZLength = Waveguide1_len 

  ZMid = Waveguide1_len+Taper_len 

  BRamp_Z = 25 

 

  BMin = 0.21 * 1.0173 * Bpercent 

 

  d = 1. / sqrt( 1./(dz*dz) + 1./(dr*dr) ) 

  timeStep = 0.6 * d / speedLight 

 

  Brampd = 0.3 

  Bdis = 0.2 

 

} 

 

Region 

{ 
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Grid 

{ 

  J = Nz 

  x1s = 0.0 

  x1f = Lz 

  n1 = 1.0  

  K = Nr  

  x2s = 0.0 

  x2f = Lr  

  n2 = 1.0 

 

  Geometry = 0        // 2D (z-r) slab geometry 

} 

 

Control 

{ 

  dt = timeStep 

 

// Use the multigrid electrostatic field solve 

  emdamping = 0.2 

  initPoissonSolve = 0 

//  CurrentWeighting=1 

//  DivergenceCleanFlag = 1 

  NonRelativisticFlag = 0 

  ElectrostaticFlag = 0 

 

  B01analytic = BMin/(1+exp(-(x1-(Waveguide1_len+0.25))*75)) - BMin 

 

  B02analytic = -BMin*75*exp(-(x1-(Waveguide1_len+0.25))*75)/((1+exp(-(x1-

(Waveguide1_len+0.25))*75))^2) * x2 
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} 

 

Species 

{ 

  name = electrons 

  m = electronMassMKS 

  q = electronCharge 

} 

 

Species 

{ 

  name = electron_beam 

  m = electronMassMKS 

  q = electronCharge  

} 

 

Species 

{ 

  name = ions 

  m    = ionMassMKS 

  q    = ionCharge 

} 

 

VarWeightLoad 

{ 

  speciesName = ions 

  density = ionDensityMKS 

  x1MinMKS = Drift_len 

  x1MaxMKS = Waveguide1_len + Drift_len 

  x2MinMKS = 0.0 

  x2MaxMKS = Waveguide1_rad-dr // *Per_plasma 

  np2c = ionNumRatio 
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// specify eV units for all velocities 

  units = EV 

 

  temperature = 50 

  LoadMethodFlag = 1 

} 

 

VarWeightLoad 

{ 

  speciesName = electrons 

  density = electronDensityMKS 

  x1MinMKS = Drift_len 

  x1MaxMKS = Waveguide1_len + Drift_len 

  x2MinMKS = 0.0 

  x2MaxMKS = Waveguide1_rad-dr // *Per_plasma 

  np2c = electronNumRatio 

 

// specify eV units for all velocities 

  units = EV 

 

  temperature = 5 

  LoadMethodFlag = 1 

} 

 

// Load the right-going plasma electrons over the entire simulation region 

VarWeightBeamEmitter 

{ 

  speciesName = electron_beam 

 

  I = Current 
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//  A1 = 0.0 

//  B1 = 0.0 

//  A2 = 0.0 

//  B2 = beamRadius+dr 

 

  j1 = 0 

  j2 = 0 

  k1 = 0 // bma_cr 

  k2 = df_cr // bm_cr 

 

  normal = 1 

 

  xtFlag = 1 

  F=((1-(step(t-beam_ramp)))*(ramp(t)/beam_ramp))+step(t-beam_ramp) 

 

 

  np2c = (1.12e+15)*(beamRadius^2)*PI*Lz / Nz /256 

//  np2c = 1 

// specify MKS units for all velocities 

  units = EV 

 

  v1drift = electronVelocityEV 

 

  v1thermal = 0.0 

  v2thermal = 0.0 

  v3thermal = 0.0 

 

  alpha = 12  //  Gamma theta 

  beta = 1.5  //  Gamma k 

  gyro = 5    //  Use horseshoe model 

  Bguide = -BMin 

  grad = beamgrad 
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  C=0 

} 

 

Conductor 

{ 

 j1 = 0 

 j2 = df_cl 

 k1 = df_cr 

 k2 = wg_cr1 

 

 normal = -1 

} 

 

Conductor 

{ 

 j1 = df_cl 

 j2 = wg_cl1 + df_cl 

 k1 = wg_cr1 

 k2 = wg_cr1 

 

 normal = -1 

} 

 

Conductor 

{ 

 j1 = wg_cl1 + df_cl 

 j2 = wg_cl1+tp_cl + df_cl 

 k1 = wg_cr1 

 k2 = wg_cr2 

 

 normal = -1 
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} 

 

Conductor 

{ 

 j1 = wg_cl1+tp_cl + df_cl 

 j2 = wg_cl1+tp_cl+wg_cl2 + df_cl 

 k1 = Nr 

 k2 = Nr 

 

 normal = -1 

} 

 

ExitPort 

{ 

 EFFlag =1 

 name = Output Port 

 

 j1 = wg_cl1+tp_cl+wg_cl2 + df_cl 

 j2 = wg_cl1+tp_cl+wg_cl2 + df_cl 

 k1 = 0 

 k2 = Nr 

 

 normal = -1 

 

 C=0 

 A=0 

} 

 

// Define the cylindrical symmetry axis. 

 

CylindricalAxis 

{ 
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 j1 = 0 

 j2 = Nz 

 k1 = 0 

 k2 = 0 

 

 normal = 1 

} 

 

Diagnostic 

{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 

k2 = Nr 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) End-Line 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 

k2 = Nr 
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save = 1 

VarName = E2 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Er Field (t) End-Line 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 

k2 = Nr 

 

save = 1 

VarName = E3 

HistMax = 2097152 

Comb=1 

integral=sum 

title = EPhi Field (t) End-Line 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 
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k2 = Nr 

 

save = 1 

VarName = poynting1 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = Poynting Z (t) End-Line 

x1_Label = t 

x2_Label = Poynting Z 

} 

 

Diagnostic 

{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 

k2 = Nr 

 

save = 1 

VarName = poynting2 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = Poynting R (t) End-Line 

x1_Label = t 

x2_Label = Poynting R 

} 

 

Diagnostic 
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{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 

k2 = Nr 

 

save = 1 

VarName = poynting3 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = Poynting Phi (t) End-Line 

x1_Label = t 

x2_Label = Poynting Phi 

} 

 

Diagnostic 

{ 

j1 = Nz-3 

j2 = Nz-3 

k1 = 0 

k2 = Nr 

 

save = 1 

VarName = poyntingm 

HistMax = 2097152 

Comb=1 

integral=sum 

Ave = 50 

 

title = Poynting Tot (t) End-Line 
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x1_Label = t 

x2_Label = Poynting Tot 

} 

 

Diagnostic 

{ 

j1 = wg_cl1/2 

j2 = wg_cl1/2 

k1 = wg_cr1-4 

k2 = wg_cr1-4 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = Ez in plasma 

x1_Label = t 

x2_Label = Ez 

} 

 

Diagnostic 

{ 

j1 = wg_cl1/2 

j2 = wg_cl1/2 

k1 = wg_cr1-4 

k2 = wg_cr1-4 

 

save = 1 

VarName = E2 

HistMax = 2097152 
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Comb=1 

integral=sum 

 

title = Er in plasma 

x1_Label = t 

x2_Label = Er 

} 

 

Diagnostic 

{ 

j1 = wg_cl1/2 

j2 = wg_cl1/2 

k1 = wg_cr1-4 

k2 = wg_cr1-4 

 

save = 1 

VarName = E3 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = Ephi in plasma 

x1_Label = t 

x2_Label = Ephi 

} 

} 
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Appendix 2 – Two-stream instability electrostatic 

confinement xOOPIC script 

 

two_stream_beam_plasma 

{ 

  Simulations of beam-plasma instability 

  Martin King 

} 

 

Variables 

{ 

// General numerical parameters 

  PI = 3.14159 

  eps0 = 8.854187e-12 

 

// 

********************************************************************

** 

// General physical parameters 

// 

********************************************************************

** 

  electronMassMKS = 9.1094e-31  

  electronCharge  = -1.6022e-19 

  speedLight      = 2.9979e8 

 

  unitMassMKS     = electronMassMKS / 5.48579903e-04 

 

// 

********************************************************************

** 

// Beam Parameters 
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// 

********************************************************************

** 

 

  Current = 10 

  beamRadius = 0.008 

 

  rmsElectronSpeedMKS  = 3.e+04 

  electronVelocityEV = 50000 

  electronVelocityMKS  = speedLight*0.41218 

   

  beam_ramp = 3e-9 

 

// 

********************************************************************

** 

// Density Parameters 

// 

********************************************************************

** 

  Plasma_beam_ratio = 1 

 

  Calc_Num_Density = 9e16 

 

  ionDensityMKS = Calc_Num_Density * Plasma_beam_ratio 

  electronDensityMKS =  ionDensityMKS 

 

 Per_plasma = 0.99 

 

  plasmaFrequency = 

sqrt((electronDensityMKS*electronCharge^2)/(electronMassMKS*eps0)) 

  ds              = 0.005 * speedLight / plasmaFrequency 
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// 

********************************************************************

** 

// Grid parameters 

// 

********************************************************************

** 

  Nz = 1280 

  Nr = 64 

  dz = 0.0004 

  dr = 0.0004   

  Lz =  Nz * dz 

  Lr =  Nr * dr 

 

  simulationVolume = Lz * Lr 

  plasmaVolume = simulationVolume*Per_plasma 

  numCells         = Nz * Nr 

 

// 

// streaming electrons 

// 

  totalNumElectrons    = electronDensityMKS * plasmaVolume 

  numElectronsPerCell  = 27*4 

  numElectronPtcls     = numElectronsPerCell * numCells 

  electronNumRatio     = totalNumElectrons / numElectronPtcls 

 

  peakCurrentElectrons = electronCharge * electronDensityMKS * Lr * 

electronVelocityMKS 

 

// 

// background ions 
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// 

  totalNumIons   = ionDensityMKS * plasmaVolume 

  numIonsPerCell = 27*4 

  numIonPtcls    = numIonsPerCell * numCells 

  ionNumRatio    = totalNumIons / numIonPtcls 

  ionMassMKS = electronMassMKS*1836 

  ionCharge      = -electronCharge 

  rmsIonSpeedMKS = 3000. 

 

  BMax = 0.4 

 

  Zplus = 16*0.004 

 

  ZLength = Lz + (2*Zplus) 

  BZ = BMax 

  BZ_Max = BMax*8 

  ZMid = Zplus +(4*dz) // * 1.25 

  BRamp_Z = 100 

 

  d = 1. / sqrt( 1./(dz*dz) + 1./(dr*dr) ) 

  timeStep = 0.6 * d / speedLight 

 

  Zplus_grid = fabs(Zplus/dz) 

  beamRadius_grid = fabs(beamRadius/dr) 

 

  Nz_tot = fabs(Nz + Zplus_grid + Zplus_grid) 

  Nr_tot = fabs(Nr) 

 

} 

 

Region 

{ 
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Grid 

{ 

  J = Nz_tot 

  x1s = 0.0 

  x1f = Lz +Zplus + Zplus 

  n1 = 1.0  

  K = Nr_tot 

  x2s = 0.0 

  x2f = Lr  

  n2 = 1.0 

 

  Geometry = 0        // 2D (z-r) slab geometry 

} 

 

Control 

{ 

  dt = timeStep 

 

  emdamping = 0.8 

  initPoissonSolve = 0 

  NonRelativisticFlag = 0 

  ElectrostaticFlag = 0 

 

   B01=BMax 

} 

 

Species 

{ 

  name = electrons 

  m = electronMassMKS 

  q = electronCharge  
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 collisionModel = 1 

} 

 

Species 

{ 

  name = electron_beam 

  m = electronMassMKS 

  q = electronCharge  

 collisionModel = 1 

} 

 

Species 

{ 

  name = ions 

  m    = ionMassMKS 

  q    = ionCharge 

 collisionModel = 2 

} 

 

MCC 

{ 

  gas = He 

  pressure=0.00075 

  temperature=0.025 

 

  eSpecies = electrons 

  iSpecies = ions 

 

  relativisticMCC = 1 

} 

 

VarWeightLoad 
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{ 

  speciesName = ions 

  density = ionDensityMKS 

  x1MinMKS = Lz*(1-Per_plasma) + Zplus // 4*dz 

  x1MaxMKS = Lz*Per_plasma + Zplus // -(4*dz) 

  x2MinMKS = 0.0 

  x2MaxMKS = Lr-dr // *Per_plasma 

  np2c = ionNumRatio 

 

// specify MKS units for all velocities 

  units = EV 

 

  temperature = 10 

  LoadMethodFlag = 1 

} 

 

VarWeightLoad 

{ 

  speciesName = electrons 

  density = electronDensityMKS 

  x1MinMKS = Lz*(1-Per_plasma) + Zplus  

  x1MaxMKS = Lz*Per_plasma + Zplus 

  x2MinMKS = 0.0 

  x2MaxMKS = Lr-dr // *Per_plasma 

  np2c = electronNumRatio 

 

  units = EV 

 

  temperature = 100.0 

  LoadMethodFlag = 1 

} 
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VarWeightBeamEmitter 

{ 

  speciesName = electron_beam 

 

  I = Current 

 

  j1 = Zplus_grid 

  j2 = Zplus_grid 

  k1 = 0 

  k2 = beamRadius_grid 

 normal = 1 

 

 xtFlag = 1 

 F=(((1-(step(t-beam_ramp)))*(ramp(t)/beam_ramp))+step(t-beam_ramp))*(1-step(t-

20000E-9)) 

  np2c = Calc_Num_Density*(beamRadius^2)*PI*Lz / 4 / Nz  /2 /4 /40 

// specify eV units for all velocities 

  units = EV 

  v1drift   =  electronVelocityEV 

 

  v1thermal = 500.0 

  v2thermal = 0.0 

  v3thermal = 0.0 

} 

 

ExitPort 

{ 

 j1 = 0 

 j2 = 0 

 k1 = 0 

 k2 = Nr 

 normal = 1 
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 C=0.5 

 A=0 

} 

 

Conductor 

{ 

 

  j1 = Zplus_grid 

  j2 = Zplus_grid 

  k1 = 0 

  k2 = beamRadius_grid 

 normal = 1 

} 

 

Conductor 

{ 

 

  j1 = Zplus 

  j2 = Zplus_grid 

  k1 = beamRadius_grid 

  k2 = beamRadius_grid 

 normal = 1 

} 

 

Conductor 

{ 

 

  j1 = Nz +Zplus_grid 

  j2 = Nz +Zplus_grid 

  k1 = 0 

  k2 = beamRadius_grid 

 normal = -1 
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} 

 

Conductor 

{ 

 

  j1 = Nz+Zplus_grid 

  j2 = Nz+Zplus_grid+Zplus_grid 

  k1 = beamRadius_grid 

  k2 = beamRadius_grid 

 normal = 1 

} 

 

Conductor 

{ 

 j1 = 0 

 j2 = Nz+Zplus_grid+Zplus_grid 

 k1 = Nr 

 k2 = Nr 

 normal = -1 

} 

 

ExitPort 

{ 

 j1 = Nz+Zplus_grid+Zplus_grid 

 j2 = Nz+Zplus_grid+Zplus_grid 

 k1 = 0 

 k2 = Nr 

 normal = -1 

 C=0.5 

 A=0 

 EFFlag=1 

 name=Output 
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} 

CylindricalAxis 

{ 

 j1 = 0 

 j2 = Nz+Zplus_grid+Zplus_grid 

 k1 = 0 

 k2 = 0 

 normal = 1 

} 

 

Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/2 

B1=(Lz+(2*Zplus))/2 

A2=Lr/2 

B2=Lr/2 

 

save = 1 

VarName = E3 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ephi Field (t) Zpoint Mid 1/2 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/2 
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B1=(Lz+(2*Zplus))/2 

A2=Lr/2 

B2=Lr/2 

 

save = 1 

VarName = E2 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Er Field (t) Zpoint Mid 1/2 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/2 

B1=(Lz+(2*Zplus))/2 

A2=Lr/2 

B2=Lr/2 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Mid 1/2 

x1_Label = t 

x2_Label = Electric Field 

} 
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Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/2 

B1=(Lz+(2*Zplus))/2 

A2=4*Lr/5 

B2=4*Lr/5 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Outer 1/2 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/4 

B1=(Lz+(2*Zplus))/4 

A2=Lr/2 

B2=Lr/2 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Mid 1/4 
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x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=3*(Lz+(2*Zplus))/4 

B1=3*(Lz+(2*Zplus))/4 

A2=Lr/2 

B2=Lr/2 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Mid 3/4 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/4 

B1=(Lz+(2*Zplus))/4 

A2=0 

B2=0 

 

save = 1 

VarName = E1 
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HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Beam 1/4 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=(Lz+(2*Zplus))/2 

B1=(Lz+(2*Zplus))/2 

A2=0 

B2=0 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Beam 1/2 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=3*(Lz+(2*Zplus))/4 

B1=3*(Lz+(2*Zplus))/4 

A2=0 
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B2=0 

 

save = 1 

VarName = E1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Ez Field (t) Zpoint Beam 3/4 

x1_Label = t 

x2_Label = Electric Field 

} 

 

Diagnostic 

{ 

 

A1=Zplus+(2*dz) 

B1=Zplus+(2*dz) 

A2=0 

B2=Lr 

 

save = 1 

VarName = I1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Current at input 

x1_Label = t 

x2_Label = Current 

} 

 

Diagnostic 

{ 
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A1=Zplus+ZLength-(2*dz) 

B1=Zplus+ZLength-(2*dz) 

A2=0 

B2=Lr 

 

save = 1 

VarName = I1 

HistMax = 2097152 

Comb=1 

integral=sum 

title = Current at output 

x1_Label = t 

x2_Label = Current 

} 

 

Diagnostic 

{ 

 

A1=Lz/2 

B1=Lz/2 

A2=Lr/2 

B2=Lr/2+dr 

 

save=1 

VarName = species1 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = 1Energy_Test 

x1_Label = t 
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x2_Label = Energy(ev) 

} 

 

Diagnostic 

{ 

 

A1=Lz/2 

B1=Lz/2 

A2=Lr/2 

B2=Lr/2+dr 

 

save=1 

VarName = species2 

HistMax = 2097152 

Comb=1 

integral=sum 

 

title = 2Energy_Test 

x1_Label = t 

x2_Label = Energy(ev) 

} 

 

Diagnostic 

{ 

 

A1=Lz/2 

B1=Lz/2 

A2=Lr/2 

B2=Lr/2+dr 

 

save=1 

VarName = species3 
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HistMax = 2097152 

Comb=1 

integral=sum 

 

title = 3Energy_Test 

x1_Label = t 

x2_Label = Energy(ev) 

} 

 

SingleDump 

{ 

 svar = C 

 sFILE = IC8mm50kV10A_05Ves_2len 

 sspc = 0 

} 

 

SingleDump 

{ 

 svar = U5 

 sFILE = TE8mm50kV10A_05Ves_2len 

 sspc = 2 

} 

 

SingleDump 

{ 

 svar = U5 

 sFILE = TI8mm50kV10A_05Ves_2len 

 sspc = 0 

} 

 

} 
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