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Abstract

In the UK, only 7% of non-domestic buildings are newly built, whilst this sector

generates 20% of total gas emission. Consequently, the government has set

regulations to decrease the amount of energy take-up by buildings. It is

apparent from the seminal literature that deep energy retrofit is the primary

solution to achieve that goal. Due to the size and complexity of non-domestic

buildings, finding optimum plans is cumbersome. To that end, artificial

intelligence has been employed to assist this decision-making procedure, yet

limited to high time-complexity of energy simulations. Surrogate modelling

seems a promising alternative for simulation software, developing accurate

energy prediction models requires an understanding of the building physics and

a vision on the use of data-driven models. This study evaluated the accuracy

and time complexity of most popular Machine Learning (ML) methods in the

buildings energy efficiency estimation. It established an approach based on

evolutionary optimisation to reach the highest potential of MLs in predicting

buildings energy performance. It then developed an energy performance

prediction model for the UK non-domestic buildings with the aid of ML

techniques. The ML model amid at supporting multi-objective optimisation of

energy retrofit planning by accelerating energy performance computation. The

study laid out the process of model development from the investigation of

requirements and feature extraction to the application on a case study. It

outlines a framework to represent the building records as a set of features in a

ii



way that all alterations produced by applying retrofit technologies can be

captured by the model to generate accurate energy ratings. The model provides

a reliable tool to explore a large space of the available building materials and

technologies for evaluating thousands of buildings going under retrofit to fulfil

the energy policy targets and enables building analysts to explore the expanding

solution space meaningfully.
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Chapter 1

Introduction

1.1 Motivation and Background

In the UK, buildings are responsible for 46% of all carbon dioxide (CO2)

emissions [1]. This figure is 40% in the USA and 27% in Australia [2]. Accordingly,

the enhancement of energy efficiency of buildings has become an essential matter

in order to reduce the amount of gas emission as well as fossil fuel consumption.

An annual saving of 60 billion Euro is estimated as a result of the improvement

of EU buildings energy performance by 20% [3].

This issue has been addressed by the Energy Performance of Building

Directive (EPBD) bounding EU countries to improve their building regulations.

As a response to this request, the UK government set a series of regulations to

abate its gas emission by 29% by 2020 and at least 80% by 2050. The UK has

also targeted all new dwellings to be built on a zero-carbon basis by 2016 and

non-domestic buildings by 2018. However, a great deal of the problem faced by
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the UK government and other countries is in existing buildings. In the UK as

well as some European countries, the rate of replacing buildings is as low as

0.1% while the rate of constructing new buildings is over 1% [4]. It is expected

70% of existing buildings will be occupied at least until 2050 [5]. This

estimation indicates that improving the energy performance of new buildings

plays an important role. However, it is also crucial to establish strict rules in

the refurbishment of existing buildings to make a significant contribution in

reducing carbon emission.

The UK government has set a regulation that makes it illegal to lease out a

building if it does not meet the Minimum Energy Efficiency Standards (MEES).

The minimum Energy Performance Certificate (EPC) rating is ‘E’. This came in

to force on April 2018 for new leases and from April 2020 for existing leases [6].

In 2013, it was reported that 18% of the 427,814 non-domestic buildings

assessed in the UK have EPC ratings ‘F’ or ‘G’ [7]. However, further research

warns that the number of non-compliant properties could increase if EPCs are

updated to take into account the changes that have been made to the

calculation methodology in the last few years [8].

In the UK, energy assessments of non-domestic and public buildings are

displayed as EPC and Display Energy Certificate (DEC), respectively. The

bands show how efficient buildings are, in terms of energy consumption. By the

end of 2019, over 1.3 million non-residential building have been evaluated with

15% receiving bands F and G. Figure 1.1 illustrates the energy performance

statistics for non-domestic and public buildings in the UK. [9]. Details of EPC

and DEC are presented in Section 6.3.
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Figure 1.1: UK non-domestic and public buildings energy performance share per
EPC and DEC bands.

Currently, there are many retrofitting technologies on the market. However,

it is required to determine the most appropriate ones for a specific building

taking into consideration the constraints, such as building characteristic,

available budget, building usage, building fabric. In case of implementing

non-optimised solutions, it is possible to alter a building at a subsequent

attempt imposing however a much higher cost.

This process becomes more complicated for the non-domestic stock as the

number of solutions is remarkably high and the building energy enhancement

should fulfil the seven-year payback exemption test [10]. This rule allows

commercial stockholders to be exempted from the Act if the payback of energy

saving is less than the cost of the retrofit package. This legislation ensures

improvements to be economically feasible, but on the other hand, it raises a

challenge for building experts to find optimal solutions.
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Therefore, a decision-making (DM) tool is imperative to propose appropriate

retrofit technology(ies) for each specific case. To facilitate decision making in

selecting suitable solutions, where there is more than one objective, there are

some methodologies which can be classified in priori, and multi-objective

optimisation (MOO) approaches. Most of the developed methods are

simulation-based optimisations in which the optimisation algorithm is

implemented using a programming language, and the energy-related objectives

(energy consumption or gas emission) are calculated employing a Building

Performance Simulation (BPS) tool such as EnergyPlus [11], TRNSYS [12],

ESP-r [13]. These approaches limit the computation complexity of the

algorithm to BPS’s calculation time, and when a large number of solutions are

defined, the process may become extremely costly to handle.

In the UK, an EPC reflects the impact of buildings on the environment, and

it is typically calculated using the Simplified Building Energy Model (SBEM)

for non-domestic buildings. SBEM embeds the UK National Calculation

Methodology (NCM) which has been developed in response to EPBD. A

multi-criteria optimisation of CO2 emission and retrofit cost by considering a

few variables including insulation values, air tightness, lighting controls, system

efficiencies and PV provision has been reported [14]. It has been pointed out

that at least 9,000 simulations are required to obtain optimal solutions. By

taking a large number of variables and their options, the number of obligatory

simulations will be tremendously increased. Another research proposing an

EnergyPlus-based optimisation for retrofitting office buildings has reported

weeks of simulation for a single case [15]. There are multiple similar example

studies which reported time-consuming procedures for optimising building

energy performance and retrofit planning. [16–21].
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This calculation time is the main reason why most studies, which focus on

decision making for building energy improvement have investigated simple

models or retrofitting only one or two construction parts of the envelope.

Moreover most of the studies targeted residential houses [17, 22–26]. There are

few reports about the optimisation of non-domestic estates [15, 19, 27, 28].

Although, a few retrofitting models have been developed to help decision

making in the refurbishment of non-domestic buildings, human experience still

plays a principal role in producing appropriate solutions. Therefore, the

potential of Artificial Intelligence (AI) has been neglected in this area due to

the lack of interdisciplinary research works.

Considering the problem with using BPS for optimisation, it is required to

find an alternative method with accurate and fast forecasting of the target (e.g.

building emission rate, energy consumption or efficiency) to lower the

computational cost of optimisation processes. Otherwise, the means of

generating optimal solutions for massive commercial buildings with the

development of a MOO algorithm will be frustrating even for several sample

cases.

On the other hand, the use of Machine Learning (ML) methods in the built

environment and the prediction of building energy indicators to support such

optimisation procedures are facing some challenges. Firstly, most seminal works

have focused on modelling a single building or a group of similar buildings for the

analysis of energy consumption or performance. Hence, the process of selecting

relevant variables has been limited to elementary physical characteristics and

climate features. Moreover, the use of proper ML model for such application

has not been thoroughly investigated. In other words, ML for building energy

performance is still in a premature level.
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1.2 Research Problem and Hypothesis

Although AI optimisation has provided a useful solution for finding optimal

packages for retrofitting buildings, it is restricted to case studies due to the

time-consuming calculations required by the method. These algorithms consider

various objectives rather than building energy performance, namely cost,

number of applied recommendations and pay-back. However, the approach is

highly bound to the calculation of energy efficiency as the most complex

objective. BPS tools have been revolved in recent years, yet require substantial

computational time. The reason is that these tools are based on engineering

methods in which energy usage is derived for all energy-sub-systems using

complex mathematics or building dynamics considering internal and external

details as the inputs. Therefore, utilisation of BPS tools in the application of AI

optimisation for retrofitting complex system as non-domestic buildings is not a

practical approach.

It is hypothesised that developing a data-driven model for estimation of

buildings energy performance by the utilisation of historical data and

formulating building records as a set of numerical features will considerably

reduce the time complexity of energy calculation and make multi-objective

optimisation for deep energy retrofit of non-domestic buildings computationally

practical.

1.3 Research Justification

The grounds considered in establishing the research questions and the

corresponding objectives for this research are outlined in Figure 1.2. As

addressed earlier in this chapter and concluded from Figure 1.2, although AI
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techniques have been advanced in the last decade, the optimisation of

non-domestic, particularly large-scale buildings, faces several challenges towards

meeting modern energy standards. These issues are raised from the lack of

interdisciplinary research in this field. Furthermore, identification and

preparation of meaningful and reliable data has been a primary concern. Due to

the high costs of energy simulations in terms of computational complexity and

human labour, neither the retrofit industry nor the stakeholders are willing to

use costly optimisation methods. Thereby, those approaches are limited to

academic case studies and partially optimisation of building characteristics.

Hence, achieving a comprehensive retrofit planning considering all available

technologies and energy policies is not practically possible without a fast and

stable energy performance emulator.

Figure 1.2: Summary of the study justification, questions and objectives.
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This research provides benefits to both building owners to save and

contractors/consultants by significantly improving the quality of knowledge on

retrofit projects. This research highly contributes to the global attempt to

conserve energy and to enhance the quality of human environment by paving

the way to optimise building energy consumption and reduce gas emission.

Although ML has been widely used for modelling building energy indicators,

this is the first of the kind study, providing detailed data-driven model is

developed for supporting retrofit planning by considering available technologies

which guarantees the accurateness of energy performance estimation and

thereby reliability of the DM system.

1.4 Research Questions

As represented in Figure 1.2, it is necessary to advance the level of knowledge

on the non-domestic building energy retrofit planning. This leads to the principal

question of the present research as asserted below:

How to model non-domestic buildings to expedite accurate

calculation of energy performance?

Funded on the main question, this study aims to answer the following research

questions:

(RQ1): What are the model availabilities, and which is most proper for building

energy performance modelling?

A broad review of research works in the area of building energy

assessment, focusing on the energy retrofit is required to establish the

basis of the study in the selection of methods, formulating the building

8
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records from raw data and achieving high accuracy. This question is

addressed in Chapter 2 by providing an in-depth understanding of the

gap, as mentioned in Section 1.1. The role of a specific application in

the procedure of model development is also investigated. The seminal

works on the use of ML models for building energy performance do not

provide a complete evaluation of different non-linear models and do not

provide sufficient guidance about model selection. Hence, there is a lack

of guidance on how to optimise or ‘tune’ models to fit the problem at

hand for the best predictive accuracy and consistency. This is addressed

in Chapter 4 by investigating the accuracy of most popular ML

methods in the forecasting building energy indicators, carrying out

specific tuning for each ML model.

(RQ2): What are the methods to increase the model accuracy and to take full

advantage of MLs?

Basic ML algorithms with few parameters provide simple modelling, but

when dealing with a sophisticated ML algorithm, the utilisation of

traditional method for improving model accuracy becomes cumbersome.

That is why, traditionally, the researchers mostly relied on default

values for those models parameters. This is one issue of the study

because modelling complex systems as non-domestic buildings energy

performance require the utilisation of those advanced algorithms. This

is addressed in Chapter 5 by developing a precise method to optimise an

ML model for prediction of one or more energy indicators.

(RQ3): What are the choices of model inputs to describe building energy

behaviours? (i.e. key building and environment characteristics)

A few attempts that applied data-driven modelling for retrofit design

focused on a building’s general physical characteristics while

disregarding all possible technologies and the energy policies.

9
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Consequently, those models are not suitable for supporting deep energy

retrofit planning. This main question of the study is addressed in

Chapter 6, in which the recommendations from previous steps

(Chapters 4 and 5) are considered in generating the features space for

modelling non-domestic buildings energy performance, and by taking

into account retrofit technologies and the energy policy in the UK. The

feature set is used for generating big data and training an ML model for

prediction of energy performance.

(RQ4): What would be the accuracy of the model on a new building retrofit

evaluations?

The main concern in data-driven modelling is the accuracy and reliability

of the developed model. As the centre point of this study is to model non-

domestic buildings for accurate calculation of energy performance using

ML techniques, this concern is addressed by evaluating the developed ML

model through the assessment of thousands of variations of a case study

building and comparison with the actual ratings.

1.5 Research Aim and Objectives

The aim of this thesis is to develop an accurate and fast prediction method to

support decision-making for the optimal solution for retrofitting the existing non-

domestic real-estate stock, using state-of-the-art AI methods. Contributions to

carbon footprint reduction will be sought by decreasing the energy consumption,

where both community and stockholders will be the beneficiaries of the provided

service. To make MOO techniques computationally feasible, this thesis intends

to propose a surrogate model for fast and precise evaluation of buildings energy

performance.
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To make it measurable and achievable, this aim is further divided into 5

objectives as follows:

Objective1: To investigate advances in building energy numerical modelling

focusing on the use of ML methods

Objective2: To scrutinise ML techniques in building energy application and

propose the ML selection framework

Objective3: To propose an intelligent method for the development of accurate

energy forecasting ML models

Objective4: To develop a energy performance modelling for accelerated energy

assessment of non-domestic buildings

Objective5: To evaluate the energy performance ML model by use of genetic

algorithm and application on a case study

1.6 Contributions to Knowledge

The extent to which a study contributes to the body of knowledge has been

a key criterion for assessing the quality of all research efforts in Architecture,

Engineering and Construction (AEC) disciplines, including PhD studies [29]. As

asserted by Glasziou et al. [29], a study’s contribution at the PhD level is assessed

with reference to two primary criteria, namely: (1) originality and (2) implications

for practice.

Likewise, contribution to the knowledge in the field of building energy

efficiency in the past 15 years has shifted from only creation of knowledge to be

used by other academics to the creation of interdisciplinary knowledge which

can be applied to problem-solving [30,31].

Therefore, the contribution of a study in the building energy efficiency
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discipline lies in its originality in the development of knowledge as well as its

impacts on practice [32].

Studies at the PhD level are expected to provide an original contribution to

knowledge. In fact, PhD studies are defined as pieces of work that are designed

to make an original contribution to knowledge [33]. Theoretical knowledge in

construction research focuses on raising awareness of something factual about a

concept of interest or on understanding how different realities associated with this

concept are constituted [34]. Hence, the originality of any research study in this

field is evaluated in terms of the creation of new theoretical knowledge. According

to Handfield and Melnyk [35] in their seminal study, the creation of knowledge

occurs through creating new theories, extending available theories and refuting

theories (or some elements of theories) through exposure to empirical data. To

establish the originality of this study, its contributions in different dimensions are

next discussed. The research contributions of this research are summarised into

three aspects as follows.

A contribution to the theoretical understanding of building energy

permeance modelling: Proposing an integrative selection framework

of ML model for diverse data

The work presented in this thesis makes a significant contribution to research

and practice of energy management in buildings. In particular, the prediction

of energy loads, which is mired with several challenges for practitioners, is going

to be easier and more accurate using the approach outlined in this study. The

application of ML techniques in the building energy load forecast is not widely

used at the moment. Therefore, this research provided the practitioners with a

novel approach to address the challenges they encounter in this important and

key area of their routine activities. Although the potentials of ML techniques in

12
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predicting energy loads have been reported by several researchers, the credibility

of results may be questionable without the tuning ML models. Tuning models not

only increases the predictive accuracy, but also reduces model complexity, ease of

use, and consistency of predictions. Particularly, when the solution space grows

exponentially due to the large number of hyper-parameters, searching for the

optimal solutions without tuning of models is a non-trivial task. This research

addressed these issues and validated them on a substantial volume of realistic

data drawn from both tertiary as well as residential buildings.

Generating an accurate model for calculation of the energy loads with fast and

robust process paves the way for more informed and productive design decisions

for built environments. Furthermore, the use of ML in the complex buildings

goes beyond mere optimisation support matters by offering efficient retrofitting

plans, without which it would be a rather cumbersome task for the engineers to

carry out complicated calculations readily and make informed decisions.

The research highlights the potential of ML model-based techniques in

modelling building energy indicators, which are sometimes laborious to simulate

or calculate using engineering methods. It has been approximated that only

three per cent of industrial data is currently being used in a meaningful way.

This is why Industry 4.0 has put more emphasis on the utilisation of

technologies that could take advantage of the ever-growing data.

A contribution to the theoretical understanding of model development

for supporting retrofit DM

This study demonstrated that in the development of energy modelling for

retrofit planning or other applications, such as building management, achieving

a high accuracy is not the only concern. It is crucial to take into account all

13
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the variations and reflects the corresponding impacts in the model behaviour.

For example, a proper energy modelling for supporting BMS should consider the

occupational behaviour, as it can vary by different situations and cause model

failure, whilst the model can accurately perform in the normal condition due to

insufficient data collection.

This research investigated the retrofit recommendations prior to extracting

features for ML modelling and explained how these technologies are affecting the

model in prediction of building energy performance. The methods for sensitivity

analysis described in this thesis provide powerful tools for such analysis.

A contribution to the development of MOO-based building design

and retrofit optimisation

As policy tightens on inefficient energy consumption and our understanding

of the limitations of BEM-led design decision-making, the necessity for more

efficient and flexible models increases. Research over the last few years has been

giving greater credence to designing buildings with consideration for

medium-term climate change and any number of occupant presence or

behaviour uncertainties. Every extension to the potential configurations

exponentially inflates the problem space while likely reducing the conventional

options solution space. Furthermore, these climate and utilisation properties are

internal to BEMs, however, design and retrofit analysis is increasingly

considering external and more challenging to integrate properties. The

framework introduced in this study demonstrated that algorithmic

decision-making capabilities are not nearing their limit and lays a foundation for

more complex ML frameworks.

The study demonstrated a successful development of ML model capable of
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processing thousands of records in milliseconds, while generating accurate energy

performance ratings.

The publishability of the work provides evidence of its originality [36]. As

asserted by [33], “publishability is a way of measuring contribution to knowledge”.

The potential publishability of all or a number of parts of a thesis reflects the

originality of the study in view of the rigour of the peer-review process that applies

to publications. In particular, publishability is a reliable measure for assessing

originality in disciplines associated with science, technology and engineering [36].

NB, there was an initial pause on the candidate’s ability for publication of the

main findings of this study, due to industry sensitivity and confidentiality aspects

of the research carried out in collaboration with the industry partner. Therefore,

most significant research outputs were only submitted to world flagship journals

after securing the UK patent.

1.7 Overview of Methodology

In order to achieve the research objectives, this study is divided into four

stages, each devoted to acquit one or more objective(s). The detailed method for

the advancement of each stage of this research is explained in Chapters 3 to 6.

Description of research methodology is as follows:

Firstly, an in-depth review of the state-of-the-art building energy

performance benchmarking, employment of ML techniques in building energy

evaluation and energy policies regarding non-domestic buildings was carried

out. This identified other studies and the relevant research works in the area of

investigation. Furthermore, it highlighted the gap between AI and human

experts decision-making approaches as well as the most effective surrogate

15



Chapter 1. Introduction

models dealing with building energy data. Second, different ML models were

evaluated using established building energy datasets. This included the

optimisation of prediction models using the traditional exhaustive search

method. Next, using AI and MOO process, the model optimisation for

prediction of building energy indicators was proposed and evaluated.

The next stage consisted of four main phases: Firstly, based on the findings

from the literature review and the study of building physics, a set of relevant

features for statistical modelling of UK non-domestic buildings was proposed.

This procedure considered available retrofit technologies on the market in order

to cover all alterations in energy performance estimation caused by the

application of them. Secondly, a real raw data, which includes non-domestic

building energy assessments from the industry, was processed and extended by

mutating the records and evaluating the new versions using the simulation

software. Thirdly, the processed data was translated to the ML space (i.e. the

raw detail of building characteristics was converted to the numerical values of

extracted features identified in the first step). Fourthly, the most appropriate

ML model was trained over the generated data to create a model. Lastly, the

importance of the proposed features was evaluated using sensitivity analysis.

This approach also provided an overview of how well the retrofit technologies

were covered by the building variables.

The final step was an evaluation of the developed model accuracy on a real

case study by predicting retrofitted versions of the building generated in the

process of optimisation.
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1.8 Scope of Research

This thesis aims to develop a framework for improving the energy efficiency of

non-domestic buildings by developing an energy performance emulator to support

the optimisation of retrofit planning where the decision making is very complex

and providing cost-effective solutions, which are not feasible by only relying on

human capabilities. As in the refurbishment of dwellings, the computational time

and calculation complexity hasn’t been issues, this sector is out of the scope of

this work. The enhancement of the energy efficiency of new stock is achieved in

the design stage and is more flexible than for existing buildings as the structural

limitations are far less. Hence, the energy modelling in this research work does

not take into account the energy efficiency improvement of new non-domestic

buildings.

This work focuses mainly on the UK non-domestic sector and uses related

historical data for the development of energy estimation and modelling.

However, the framework can be adapted for other markets where a reasonable

amount of data is accessible or collectable. The data used in this thesis consists

of five thousand original non-domestic building records evaluated using the

SBEM energy simulation software which have been provided by a building

energy consultancy company. Thereby, the case study is performed by selecting

a complex commercial building in the UK.

1.9 Thesis Structure

This thesis is organised into seven chapters. This first chapter provides an

introduction to intelligent decision making of building retrofitting and modelling

building energy performance, presenting the motivation and background of the
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research. It discusses the research problem and defines the solutions proposed for

tackling those challenges in building retrofit planning.

Chapter 2 continues with an overview of building energy benchmarking and

provides a summary of related regulations focusing on the UK. It further justifies

the need for rapid evaluation of energy consumption or efficiency and gives a

broad review of developed models. The chapter provides a substantial report

on four main ML approaches, including artificial neural network, support vector

machine, Gaussian-based regressions and clustering, which have commonly been

applied in the forecasting and improvement of building energy performance.

Chapter 3 presents an overview of the research methodology before

describing in detail the methods in individual chapters (4 to 6). Details of the

rationale behind the research plan are described, with a particular focus on the

arrangement of processes to model non-domestic building energy performance

effectively, outlined in sequential order. Moreover, the scope and objectives of

the study are clearly defined, and the research activities presented in order to

clarify the research methodology.

Chapter 4 presents the investigation the accuracy of most popular ML

methods in the prediction of buildings heating and cooling loads by carrying out

specific tuning for each ML model and comparing the results of two simulated

building energy datasets generated by the use of EnergyPlus and Ecotect. The

study uses a grid-search coupled with a cross-validation method to examine the

combinations of model parameters. Furthermore, sensitivity analysis techniques

are used to evaluate the importance of input variables on the performance of

ML models. The accuracy and time complexity of models in predicting building

energy loads are demonstrated.
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The development of a MOO-based optimisation model for prediction of

building energy indicators is presented in Chapter 5. This chapter proposes a

method for optimising ML models for forecasting both heating and cooling

loads. The technique employs the MOO technique with evolutionary algorithms

to search the space of possible parameters. The proposed approach not only

tunes single model to precisely predict building energy loads but also accelerates

the process of model optimisation. It utilises simulated building energy data

generated in EnergyPlus to validate the proposed method and compares the

outcomes with a regular ML tuning procedure (i.e. grid search).

Chapter 6 describes the details of meta-model development for the estimation

of non-domestic Building Emission Rate (BER). In this chapter, the original,

available parameters and created synthetic data are elaborated. Then feature

extraction and engineering procedures are described in detail. A machine learning

model based on the decision tree algorithm is tuned and trained. The model

fitting is followed by sensitivity analysis to demonstrate the importance of the

input variables for final selection. Afterwards, the performance of the model

in predicting energy performance of a non-domestic building and it’s retrofitted

suggested recommendations (reserved as test cases) is evaluated. The surrogate

model detailed in this chapter could be used as an engine for feeding the primary

retrofit optimisation target function (i.e. BER).

Finally, Chapter 7 summarises the thesis emphasising the significant

contribution to knowledge and impact on the practice of this research work.

Future works are also recommended.
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Literature Review

2.1 Introduction

The previous chapter defined the challenges of developing an intelligent

decision-making system for retrofitting of non-domestic stock and explains the

need for a fast energy performance emulator. To provide an in-depth

understanding of the gap as mentioned in Section 1.1, this chapter provides a

literature review of the current knowledge on building energy efficiency

benchmarking followed by inspection of Machine Learning (ML) techniques

used for prediction of energy consumption and performance of various building

types. This chapter further highlights the necessity of attaining optimal

solutions for retrofitting and rises the incompetency of AI in the building sector.
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2.2 Drivers of Change

Global warming phenomena have been considered as one of the main threads

for the human future. An average increase of 0.13 ◦C/decade is observed from

1956 to 2005. This value is almost twice of that over pas decade [37]. The

primary cause of global warming is identified as anthropogenic greenhouse gas

emissions (GHGs). The discharge of these gases including carbon dioxide (CO2),

methane (CH4) and nitrogen dioxide (NO2) in higher layers of the atmosphere

is due to the human actions in excessive consumption of fuel and destruction of

natural resources. Reports unveil that the effect of global warming will further

be more intensified from current experiences such as extreme heatwaves, storms

and violent floods to the extinction of species and human starvation [38].

It is approximated that nearly 50% of CO2 emission, which has been

recognised as the main contributor to change is related to fuel-burning for

construction and energy use of municipal buildings [39]. The attempt to lower

the amount of GHGs needs significant alteration in human behaviour in energy

consumption, manufacturing of more environmental-friendly products, plus

identifying and mitigating the causes of these undesirable gases [40]. Therefore,

enhancement of techniques for the construction of more energy-efficient

buildings and improvement of current buildings’ energy usage seems excellent

moves in the reduction of global warming menace.

In 1990, China showed a 30% drop in energy intake in building construction

sector through the employment of some simple techniques in design and

construction stages [2]. In Europe, enhancement of energy efficiency of buildings

has been prioritised, which has led to the prologue of the Energy Performance of

Buildings Directive (EPBD). EPBD requested EU member states to establish
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energy efficiency demands and begin an energy performance obligation scheme

for existing and new buildings [41]. In 2010, EPBD recast was legislated

introducing a new target for energy efficiency of buildings. The remoulding

which came into force in 2013 amid at achieving Nearly Zero-Energy Building

(nZEB).

The global attempt for cutting down GHGs by enacting related regulations

forces stockholders to take action to improve the energy efficiency of their

buildings. This enforcement indicates that retrofitting of buildings as well as

improvement of the Building Energy Management System (BEMS) are the most

essential solution in meeting the demanded decrease in carbon emission [42].

Although designers consider sustainability in new buildings to satisfy

regulations, 99% of constructions are existent, and approximately 70% of these

buildings will be utilised till 2050 [43].

The non-domestic building sector accounts for almost 20% of total gas

emission [6]. However, due to the non-domestic sector’s inattentive response to

the sustainability program, governments mediation for improvement of energy

efficiency for this sector has intensified significantly [44, 45]. The retrofitting of

non-domestic buildings, particularly complex ones, has been a challenge for

experts in obtaining cost-optimally solution [46]. The proposed optimisation

solutions have proven to be an efficient tool for enhancing retrofit design

employed on several case studies, however, some challenges hinder these

methods to be practically applicable in industry and by authorities.
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2.3 Building Energy Performance Assessment

Wang et al. [47] described that building energy assessment is an informative

tool, which provides a comparative energy performance index to decision-makers

for energy consumption improvements. Thus, the primary objective of energy

assessment of buildings is energy classification and energy performance diagnosis,

which connected to endeavours to enhance their efficiencies.

Energy classification apprises stockholders and public about the relative

energy consumption and gas emission of buildings. The diagnosis provides a

mean for identifying the defects in a building that induces the low energy

efficiency, so aiming at the reform of the intended building.

Generally, the energy consumption of building during a definite period

normalised by floor area is used to express the performance (kWh/m2/period)

known as Energy Performance Indicator (EPI) or Energy Use Intensity

(EUI) [48,49].

To achieve the aforementioned goal in building assessment, a comparison

between calculated (through simulation or estimation) or actual measured

efficiency (EPI or EUI) and a standard reference building is required [50].

Therefore, it is necessary to define a set of reference values for each category of

buildings. To fulfil this aim, there are different approaches based on the

performance assessment techniques as:

• Measurement of historical energy performance.

• Market survey of typical performance of similar buildings

• Building energy modelling at design stage to define expected energy

performance.
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• Building energy audits to delineate potential energy performance

• Regulatory method to get required standard

The energy performance for the non-domestic stock can also be calculated by

normalising energy consumption by operational hours or both floor and hours.

For calculation of this value generally, five factors are considered as climate,

energy systems, occupant behaviour and maintenance [47].

Various methods for energy performance assessment, types of classification

and the actual application of that, are described in the following sections.

There are mainly two methods for assessment of building energy efficiency

namely performance-based and feature-specific. The former one is obtained by

analysing the EUI or building emission rate (BER), and the given benchmark

building is its category. The latter approach, the score is awarded by assessment

of specific features (i.e. if these features are present) [51, 52]. Applying the

feature-specific method is comparatively simple as it addresses the contents of

the efficient envelope, Heating, Ventilation, Air Conditioning (HVAC), lighting,

boiler and renewable energy systems [53]. The performance-based method is the

most preferred, though the assessment of energy performance using this method

is more challenging. The issues are because this approach is established based

on quantifiable performance indicators which necessitate the development of

quantification method and a standard for performance assessment [54].

Another category suggested by the American Society of Heating,

Refrigerating and Air-Conditioning Engineers (ASHRAE) classifies energy

assessment modelling in forward and data-driven modelling approaches.

Forward modelling is mostly utilised in the design stage for optimisation of
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energy, and the latter focuses on the existing building and defining

references [55, 56].

Burman et al. [57, 58] categorised energy performance assessment regarding

engineering methods into a top-down and bottom-up approaches. In a top-down

scheme, a system is first designed neglecting the information of sub-systems and

calculates the incorporated energy or emission rates considering different

general building materials. This approach can be implemented using simple or

advanced statistical methods. In contrast, the bottom-up technique involves an

accumulation of building system-level details through energy modelling. This

information is then compared to actual building efficiency and used to create a

more accurate summary [59].

Borgstein et al. [60] addressed a model-based and empirical benchmarking,

characterised the leading strategies, and described in depth the application of

benchmarks for the establishment of rating and classification methods. In this

study, building energy assessment were separated into three main categories:

engineering calculation, simulation model-based benchmarking and statistical

modellings.

2.3.1 Engineering Calculation

The engineering methodologies employ physical laws for the derivation of

building energy consumption in whole or sub-system levels. The most precise

methods apply complex mathematics or building dynamics for the derivation of

accurate energy usage for all components considering internal and external

details as the inputs (e.g. climate information, construction fabric, HVAC

system). Since input data gathering for engineering calculation is challenging,
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this method requires a great deal of time and effort [61].

In order to accelerate the calculations, several simplified models for

estimating building energy efficiency has been developed [62–65]. These models

intend to implement rapid optimisation in the design step; however, they can be

beneficial in estimating energy efficiency and approximating the effect of

preservation measures (e.g. for energy audit) [66]. The advantages of these

models over simulation modelling are low computational time, obvious

connection with physical parameters and being more comprehensible to use.

Typically, this computation implicates the development of mathematical

equations and the methods in this class, in general, employ steady-state models

that consider an average of variables for a duration (e.g. for a year) where other

building features are constant. Quasi-steady-state (QSS) calculates the heat

gain and loss on a monthly basis and explains the impact of transitory

parameters (i.e. weather) [67]. QSS for estimating building energy performance

connects the energy usage to those input features [64]. Software that exercise

these simplified models generally do not consider all elaborate connections of a

building; consequently, they do not simulate the energy behaviour of it. These

tools are frequently mentioned as calculation tools [68].

The International Organisation for Standardisation (ISO) explains the

procedure for computing method as a foundation for heating and cooling loads

calculations before the simplified calculation of whole-building energy

estimation [69,70].

In the simplified calculation, building total energy usage can be estimated as

the aggregate of the fair use of all systems [71]. This accumulation model has
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been referred as the most precise approach for estimating energy efficiency, which

has the potentiality in the implementation of system-level benchmarks [57]. For

benchmarking of existing buildings, these computations are compared to baseline

buildings and provide advantageous detail and energy assessment. Figure 2.1

presents the axiom of end-use energy calculations [71].

Figure 2.1: Demonstration of end-user energy analysis method.

Although the aggregated computation methods are obviously powerful tools

for energy assessment and energy saving estimation, they have some specific

restrictions in whole building calculations. Firstly, the HVAC heating and

cooling loads must be individually computed, and secondly, these calculations

are mostly beneficial along with system-level benchmark [58].

The method as mentioned above is established by the Energy Consumption

Guide (ECG) for office building benchmark in the UK [72] and has been employed

to expand the most of empirical benchmarks referenced in Chartered Institution

of Building Services Engineers (CIBSE), which legislates benchmarks for non-

domestic buildings in the UK [73].
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2.3.2 Simulation Method

Building energy efficiency simulation includes software and computer models

for simulation of performance with predefined status. Generally, computer

simulation can be used for a variety of applications such as lighting and HVAC

system design. A detailed method computes the energy usage with the first

principle model and precise input detail.

In recent years, simulation software has provided an authentic tool to design

low energy buildings. Optimisation of HVAC and other building parts using

simulation tools have been reported by different researchers [22, 24, 46, 74, 75].

Building simulation tools are normally used for new buildings for acquiescence

assessment [76]. Figure 2.2(a) and 2.2(b) illustrates the use of simulation models

for energy evaluation of new and existing buildings, respectively [60].

Over the last three decades, many simulation tools for energy performance

assessment have been developed, such as EnergyPlus [11], DOE-2 [77], ESP-

r [13]. Table 2.1 summarises the commonly used simulation tools for energy

performance assessment and shows the share of each tool in energy optimisation

research. The application and developer of each software are also presented. As

can be seen, EnergyPlus, DOE-2 and TRNSYS are three main tools, which are

widely used in building energy optimisation. The former two are developed by

the US Department of Energy, one for assessment of building energy performance

and the other for hourly prediction of energy usage.
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(a)

(b)

Figure 2.2: Illustration of energy performance assessment using simulation
method for (a) new designs and (b) existing buildings.
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Table 2.1: Common simulation tools for energy performance evaluation.

Software
Name

Application Developer
Share in
energy
opt.

Latest
version Ref

B
LA

ST

Estimation of energy
consumption,
performance and cost
for new and existing
building

The US
Army
Construction
Engineering
Lab &
University of
Illinois

NA
V 3.0,
Aug
1998

B
Si
m

Simulation tool for
detailed and combined
hydrothermal
modelling of buildings

Danish
Building
Research
Institute

Jointly
6.5%

V
6.13.9.24,
Sep
2013

[78]

D
eS
T

Analysis of building
thermal processes and
HVAC system
performance

Jointly
6.5%

V2.0
2005 [79]

D
O
E
-2

Prediction of the
hourly energy use and
cost of a building based
on weather
information, geometric
and HVAC description

The US
Department
of Energy
and Lawrence
Berkeley
Laboratory

10%

DOE-
2.3
version
50e,
Aug
2017

[77]

E
C
O
T
E
C
T Simulation of building

performance from the
earliest stages of
conceptual design

Square One
Research
(until 2005)
& Autodesk
(until 2015)

2.7% March
2015 [80]

E
ne
rg
y-
10

Simulation of building
energy design in early
stage, integrates
daylighting, solar
heating and low-energy
cooling strategies

The
Sustainable
Buildings
Industry
Council

Jointly
6.5%

V 1.8,
Jun
2005 [81]
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Table 2.1 (cont.): Common simulation tools for energy performance evaluation.

Software
Name

Application Developer
Share in
energy
opt.

Latest
version Ref

E
ne
rg
yP

lu
s

A modular tool based
on BLAST and DOE-2.
The primary building
energy simulation
program supported by
the US Department of
Energy for calculation
of building energy
performance.

The U.S.
Department
of Energy

37%
V 8.8.0,
Sep
2017 [11]

eQ
ue
st Enhanced version of

DOE-2 with GUI
integration

National
Renewable
Energy
Labratory

2.7%

V 3.65
build
7173,
April
2016

[82]

E
SP

-r

Building performance
assessment by
modelling heat, air,
moisture, light and
electrical power flows
and based on based on
a finite volume
approach

University of
Strathclyde 5.6%

V 12.7,
Jul
2017 [13]

H
A
P

Measurement of HVAC
systems and simulating
hourly building energy
performance to
calculate annual energy
consumption and costs

Carrier
Corporation NA

V 4.20a,
Feb
2004 [83]

SU
N
R
E
L Simulation tool for

design of small energy
efficient buildings

National
Renewable
Energy
Laboratory

1.5%
V1.14,
Nov
2004 [84]

T
R
N
SY

S Simulation software for
evaluation of thermal
and electrical energy
systems

Solar Energy
Lab
(University of
Wisconsin &
University of
Colorado)

35%
V 18.0,
Apr
2017 [12]
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2.3.3 Statistical Models

Existing of building energy data has allowed usage of top-down methods for

assessment of energy performance. The statistical techniques use building

historical data and frequently apply regression to model the energy

consumption/performance of buildings. These models are also called

data-driven surrogate models as they take advantage of existing data instead of

relying upon system complex detail.

Statistical models are utilised in benchmarking by introducing an

anticipated value of energy usage for each building. In general, energy

consumption is normalised and expressed as EUI. This method uses different

building characteristics as input variables and EUI as target values for

developing a linear or non-linear model to predict for EUI of other buildings.

The traditional statistical method that has widely used in the building sector

is simple and Multivariate Regression Models (MRM). The general rules of using

these models can be found in ASHRAE [85]. Another popular method is the

ChangePoint Regression Model (CPRM), which imitates the non-linear behaviour

of input features. CPRM is ideally suitable for prediction of energy loads of

buildings have a temperature or other climate-dependent variable controlling [86].

Considering EEb to represent the baseline energy efficiency, and U to denote

the vector of input features (e.g. age of the building, energy system, roof type,

floor area) throughout the monitoring stage, then EEb can be calculated using:

EEb = EE0 +
n∑
i=1

ciUi (2.1)
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Here EE0 is a constant value, c is a vector of coefficients that are calculated

by training n number of input features. Then the problem of Ordinary Least

Squares (OLS) can be expressed as [87]:

Minmise :
EE0,a,ε2i

{
o∑
i=1

bε2i |EEb

}
(2.2)

where ob is the number of observations and ε is the stochastic error for ith

observation.

Stochastic Frontier Analysis (SFA) which is a developed OLS regression,

introduces a method for inefficiency calculation rather than only a simple error

measurement [88]. SFA model creates an efficiency frontier as a function of

determined features, and measure the inefficiency by calculating the distance

from this frontier [89,90]

Another mathematical method which has been recently received attention in

building energy modelling is Data Envelopment Analysis (DEA). DEA is a non-

parametric method and allows performing a multi-factor productivity analysis by

introducing Decision-Making Unit (DMU) and efficiency expectation [91]. DEA

in contrast with linear regression does not provide any information on the relation

of building physical characteristics; hence, the interpretation of the model is

difficult [92].

By increasing the vast amount of valid and attainable datasets of buildings,

there is a great interest in the utilisation of Artificial Intelligent (AI) methods

such as ML in the construction sector. The most applied ML techniques in this

field are Artificial Neural Network (ANN), Support Vector Machine (SVM),
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Gaussian Process Regression (GPR) and ensemble models including Random

Forest (RF). As the primary objective of this thesis is the development of a

meta-model using state-of-the-art ML techniques for evaluation of energy

performance for non-domestic buildings, these models will be discussed in

detail, and thorough literature will be presented.

2.3.4 Classification of Energy Assessment

Classification of building energy is used to determine the efficiency of energy

consumption in comparison with similar buildings, generally in the same region.

Classification assigns a grade (e.g. a number from 1 to 100 or a letter from A

to Z) indicating the performance of building energy usage, same as for electrical

appliances.

The classification includes different processes as mentioned before, an

informative tool to increase stockholders and public awareness of building

energy efficiency. The report is presented as an explicit form such as grades

(e.g. 1 to 100 & A to Z) or a satisfaction scale (i.e. poor to excellent). Various

energy classification tools have been introduced as benchmarking, rating

labelling and certification. Each type utilises unique classification procedure in

categorising and presenting building energy performance; however, at some

points, they have overlapping practices and can be supplanted [93].

2.3.4.1 Process of Benchmarking

Based on the Cambridge dictionary, benchmarking means “the act of

measuring the quality of something by comparing it with something else of an

accepted standard”. Correspondingly, the benchmarking of a building denotes to

the comparison of its energy efficiency with that of reference buildings defined

by standards [87,93].
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The benchmarking energy indicators support the governmental and private

sectors in regulating energy usage. In some countries, policy-makers use these

models to set out rules for efficient energy consumption in buildings. The

increasingly common metrics or indicators for benchmarking are EPI or EUI

which mostly present whole building energy consumption.

The whole building benchmarking includes a method to provide decision-

makers with a relative energy performance level by comparing the performance

index of the desired building with the pre-defined benchmark building. Two

famous examples of energy benchmarking are “Energy Star” and “Cal-Arch” in

the USA and “Energy Smart Office Label” in Singapore [47].

2.3.4.2 Rating

European Standard EN 15603:2008 [10] has introduced two primary standards

of energy rating, including calculated energy and the “measured energy ratings”.

The former is further divided into standard or asset rating and tailored rating,

considering the calculation conditions (using standard data or actual data), and

are devised to rate the building and not the occupant. The latter is based on real

metering on-site.

Stein and Meier [94] presented the more accurate definition of energy rating:

“a method for the assessment of predicted energy use under standard conditions

and its potential for improvement” with standard output (i.e. energy usage

foresight, score based on a comparison with a notional building and a list of

energy improvement technologies).

The most common rating systems normalise energy consumption in relation

to building size (dividing the annual usage by heated floor area or volume). An
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example of an energy rating system would be the Home Energy Rating System

(HERS) developed by the US Green Building Council (USGBC).

2.3.4.3 Certification

Energy certification is a method to evaluate building energy performance

and to provide an energy certificate by an authorised institution. This process

includes three main parts: 1) an energy rating procedure to measure energy

usage, 2) a licenced energy labelling scale to assign the correspondent

presentation, and 3) a minimum requirement to reduce the unsatisfactory

performance. Even though operational rating has been advised for existing

building assessment, in reality, most methods for new and existing buildings

utilise the asset rating based on standard practice. Building energy performance

certification has become obligatory in Europ. The certificate should be available

to new owners or tenants when buildings are sold or rent out.

The examples of EU mandatory certificate schemes are:

• Energy certification of large buildings or energy management (ELO) and

for small buildings (EM) targeting new and existing buildings in Denmark,

• Energy Performance advice for existing houses (EPA-W) and for

non-residential buildings (EPA-U) and Energy Performance Coefficient

(EPC) for new buildings in the Netherlands

• Energy performance assessment for existing dwellings (EPA-ED) and for

non-residential buildings (EPA-NR) approved by the European Commission

and with engaging of European member states.
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2.3.4.4 Labelling

EU proposed energy labelling with two main objectives 1) to inform consumers

about the energy efficiency of devices consuming energy and 2) to increase energy

savings. As a result of the achievement of its objective to domestic appliances, the

scheme was extended to buildings after ten years (Directive 2002/91/EC 2002).

Building energy labelling includes assigning an energy efficiency label or rank to

the building and needs a scale related to a Labelling Index (LI) [93]. The decision

of the comparison strategy is a crucial issue for the scale definition.

If the number of comparable buildings is high enough, labelling can be

accomplished by assigning percentile intervals to energy bands through

statistical analysis of the EPI. The labelling scale defines these percentile

intervals (e.g. top 10 per cent for Lable A). This scale determines the way of

displaying the evaluation results with distinguishing levels, in comparison with

national performance.

Singapore’s Building and Construction Authority (BCA) was launched in

2005 to motivate Singapore’s construction industry for constructing more

eco-friendly buildings. The scheme presents a complete frame for evaluating the

overall environmental performance of buildings [28]. The existing non-domestic

buildings owners and directors are inspired to satisfy the predefined sustainable

operations goals and to decrease adverse consequences of their buildings on the

environment. The National Australian Building Environmental Rating System

(NABERS) scheme, proposed to originate Australia’s rating system for existing,

operational buildings. NABERS has been developed as a performance-based

rating method scaling a building’s actual environmental impact while operation,

through real assessment instead of simulations, or forecasting [95].
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2.3.5 Summary of Energy Performance Assessment

While benchmarking systems are developed by utilising the energy

performance of a significant number of reference buildings, benchmarking

outcomes can be used to encourage owners of the buildings which are poor in

energy usage to enhance them. Benchmarking methods additionally operate as

a public measure of energy-use performance in buildings; some governors release

benchmarking information to the media. This communication demonstrates

advantageous as it increases public pressure on owners/developers of poorly

performing buildings. Accurately benchmarking energy efficiency of existing

buildings is a key step towards the success of a building energy retrofitting

strategy. Several building benchmarking systems have been developed based on

one of the methods introduced in this section. The Energy Star scheme is based

on actual energy usage data and a regression model and is considered the most

reliable energy benchmarking. The Energy Star score is an estimation of the

similar buildings nationwide with higher energy use intensities. Clustering

which is discussed in Section 2.4.5 is also a promising alternative which seems to

be considered in developing the future benchmarking systems.

2.4 Machine Learning for Building Energy

Forecasting

Three main techniques that have widely used in the building sector for

supervised learning are ANN, SVM and Gaussian distribution regression

models. K-means and hierarchical clustering methods have also utilised for

unsupervised learning purposes. Very recently, ensemble models have also been

limitedly employed in this area. These methods are discussed in detail in the

following sections, and a summary of other ML techniques is presented
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subsequently.

2.4.1 Artificial Neural Networks

In building sector, ANN models have been applied for fast estimation of

heating and cooling loads [96–98], energy consumption [99–101], energy

efficiency [102–104] and space heating [96, 105]. Several successful application of

ANN for Automated Fault Detection and Diagnostics (AFDD) in building

energy conservation [106], solar water heater [107, 108] and HVAC system [109]

have been reported. ANN is also applied in building management systems to

provide automatic energy consumption control [110, 111], optimisation of

heating system [112,113] and comfort management [114,115].

In 1995, an early study on the application of ANN in prediction of energy

consumption using simple Feed Forward Network (FFN) model was performed

to forecast electric energy usage of a building in tropical climate based on the

occupancy and temperature data. Mena et al. [116] used ANN for short-term

estimation of building electricity demand. Targeting the bio-climatic stock, it

was shown that outdoor temperature and solar radiation have a notable impact

on electricity consumption. Mihalakakou et al. [105] used FFN and Recurrent

Neural Network (RNN) for prediction of hourly electricity energy consumption

in a residential building located in Athens. The models consider meteorological

variables including air temperature and solar radiation using time series data

gathered over six years. Gonzales & Zamarreno [117] estimated short-term

electricity energy consumption using a feedback ANN. Effect of the number of

neurons in hidden layers, the best size of data windows and the ANN

parameters on the accuracy of the model is investigated. Li et al. [118] proposed

an optimised ANN for prediction of hourly electricity consumption using partial
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swarm optimisation (PSO) algorithm. Principal Component Analysis (PCA)

was used to remove unnecessary input variables obtained from two datasets:

ASHRAE Shootout I and Hanzou library building.

Platon et al. [119] applied PCA to investigate the pre-input variables of

ANN in the prediction of hourly electricity consumption of an institutional

building. Results from comparison of ANN and case-based reasoning (CBR),

revealed that the ANN is superior in term of accuracy. However, as CBR

provides more transparency than the ANN and the capability to learn from

small data, it can be an alternative approach for complex systems dependent on

more variables. Li et al. [118] proposed an optimised ANN for prediction of

hourly electricity consumption using PSO algorithm. PCA is used to remove

unnecessary input variables obtained from two datasets: ASHRAE Shootout I

and Hanzou library building.

Yalcintas [120, 121] used ANN for energy benchmarking in tropical climate

contemplate weather and chiller data. The selected building included office,

classroom, laboratory-type buildings, or mixed-use buildings. The accuracy of

EUI prediction was compared with multiple linear regression methods showing a

remarkable advantage over it. Hong [100] applied ANN and statistical analysis

for energy performance assessment of primary and secondary schools located in

the UK by estimating electrical and heating consumption. By comparison of

results with DEC benchmarks, it was shown that the ANN is more accurate for

the energy assessment. It was concluded that the statistic benchmarks required

further advancement and considerations (e.g. number of students and density of

the schools) to provide better evaluations in this sector. However, it has been

shown that ANN prediction is not as precise as simulation and engineering

calculations.
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Wong et al. [122] used ANN for assessing the dynamic energy performance of a

commercial building with day-lighting in Hong Kong. EnergyPlus software along

with algorithms for calculation of interior reflection was applied to generate the

building daily energy usage. Nash–Sutcliffe Efficiency Coefficient (NSEC) was

used as the primary measurement to investigate ANN accuracy in predicting

cooling, heating, electric lighting and total electricity consumption.

ANN can be used for determination of parameters for energy performance

assessment of buildings. Lundin et al. [123] proposed a method for prediction of

total heat loss coefficient, the total heat capacity and the gain factor that are

key elements in the estimation of energy efficiency. Buratti et al. [124] employed

ANN as a tool for evaluation of building energy certificates accuracy using 6500

energy labels in Italy. The study investigated a different combination of input

variables to minimise the number of training features. Using the outcome of the

ANN, a new index was proposed to check the accuracy of declared data for

energy certificates with a low error of 3.6%.

Hong et al. [57] applied ANN for benchmarking of schools buildings in the

UK and investigated the limitations of the assessment. An extensive database

including 120000 DEC records was used for training and testing the model [100].

Reviewing outcomes of the research and comparison with bottom-up models,

authors suggested the combinational use of top-down and bottom-up methods to

achieve higher accuracy.

Khayatian et al. [125] predicted energy performance certificates for residential

building using an ANN model and Italian CENED database as training records.

A combination set of direct and calculated features was used as inputs and heat
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demand indicators (derived using CENED software) as the output target of ANN.

Ascinoe et al. [104] proposed an ANN for evaluation of energy consumption

and inhabitants’ thermal comfort to predict energy performance of the building.

Energy assessment of the buildings was performed using EnergyPlus software,

and a simulation-based sensitivity/ uncertainty analysis was proposed for

further improvement of network parameters. New buildings and retrofitted

stock in presence of energy retrofit measures was considered separately. For the

latter case, ANN was employed for optimisation of retrofit parameters. For the

first one, three single output ANN was developed to predict primary energy

consumption of space heating and cooling and the ratio of yearly discomfort

hours by setting whole-building parameters as network inputs (i.e. geometry,

envelope, operation and HVAC). At the same time, Beccali et al. [126] proposed

the use of ANN fast forecasting as a decision support tool for optimising the

refurbishment actions of buildings located in Italy.

Kalogirou & Bojic [110, 127] applied RNN to predict hourly energy demand

of a passive solar building. ZID software was employed to calculate the output

target. Although results demonstrated high accuracy of estimation, the number

of input features (season, insulation, wall thickness and time of the day) and

total training records (forty simulated cases) was insufficient. Later in 2001,

Kalogitrou [128] applies ANN for estimating the daily heat loads of model house

buildings with different calumniations of the wall (single and double) and roof

(different insulations) types using a typical meteorological data for Cyprus. In

this study, TRNSYS software was used as an energy evaluation engine for all

cases and the data validated by comparison of one building energy consumption

with the actual measurement. Karatasou et al. [99] developed an FFN model

for hourly prediction of energy loads in residential buildings. The impact of
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various parameters on the accuracy of a trained model was also investigated,

and it was shown that parameters such as humidity and wind speed are less

significant and can be eliminated from training features. Furthermore, the

application of statistical analysis for enhancement of ANN model and 24 hours

ahead prediction of energy consumption was demonstrated. These methods

consist of hypothesis testing, information criteria and cross-validation in

pre-processing and model development. However, there is less enlightenment

about the main distinctions of applied FFN models. In 2010, Dombayci [129]

used ANN to prediction hourly energy consumption of a simple model house

based on Turkish standards. The degree-hour method was applied to derive the

hourly energy consumption to be used in ANN training. The models are

suitable for single building energy management of simple residential buildings as

it does not take many characteristics into account.

Kialashaki & Reilsel [130] compared an ANN with Multiple linear regression

(MLR) for estimation of the US domestic buildings energy demand. Seven

independent variables (population, gross domestic product, house size, median

household income, cost of residential electricity, natural gas and oil) was

selected from different data sources (1984-2010) to represent the building

characteristics. Antanasijevic et al. [131] compared ANN with multiple linear

and polynomial regression models for forecasting the energy consumption and

energy-related greenhouse gas emission using building data from 26 European

countries. The results showed 4.5% improvement in term of ANN accuracy

(mean absolute percentage error) in both cases.

Neto & Fiorelli [132] compared predicted energy demand of a building in

Brazil using ANN model and simulation software, EnergyPlus. The research

investigated the impact of using hidden layer showing an insignificant difference
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in accuracy of the models. Furthermore, it revealed that external temperature is

more important than humidity and solar radiation in estimating energy

consumption of the study case. The authors showed that ANN is more accurate

that detailed simulation model, especially in short-term prediction. They

concluded that improper assessment of lighting and occupancy would be the

main reason for uncertainty in engineering models. Popesco et al. [133]

developed an original simulation and ANN-based models for predicting hourly

heating energy demand of buildings connected to district heating system.

Climate and mass flow rate variables of prior 24h were used as inputs. Deb et

al. [134] also used five previous day’s data as ANN model inputs to forecast

daily cooling demand of three institutional buildings in Singapore.

Olofsson & Anderson [135] predicated daily heating consumption of six

building family in Sweden constructed in the 1970’s. The building went through

the retrofitting in the early 1990’s, and the measurements were performed

before and after the renovation procedure. ANN makes an accurate long-term

prediction of energy demand based on short-term measured data. PCA was also

applied to reduce the number of input features to four (i.e. construction year,

number of floors, framework, floor area, number of inhabitants and ventilation

system). Ekici & Aksoy [136] used back-propagation ANN to predict heating

loads of three different buildings by taking climate information into account.

Heating energy demand of the sample buildings was calculated using a finite

difference approach of transient state one-dimensional heat conduction problem.

Paudel et al. [137] used dynamic ANN to predict heating energy consumption

focusing on building occupancy profile and operational short-term heating

power level characteristics.

Ben-Nakhi [138] used a general RNN for prediction of public buildings profile
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of the next days using hourly energy consumption data, intending to optimise

HVAC thermal energy storage. Data from a public office building in Kuwait

constructed from 1997 to 2001 was used for training and testing the ANN model.

Energy consumption value of buildings was calculated using ESP-r simulation

software and considering climate information, various densities of occupancy and

orientation characteristics. The results showed that ANN only needs external

temperature for accurate prediction of cooling loads, whereas simulation software

demand for intricate climate detail.

Hou et al. [139] predicted hourly cooling loads in an air-conditioned building

integrating rough set theory and ANN. Input features of ANN were determined

and optimised by analyses relevant parameters to cooling load using rough set

theory. The proposed model with different combinations of input sets was

compared with the autoregressive integrated moving-average model all showing

better accuracy. Yokoyama et al. [140] used back-propagation ANN to predict

cooling load demand by introducing a global optimisation method for the

improvement of network parameters. The effect of the number of hidden layers

and the number of neurons in each layer was investigated to optimise the

accuracy of the proposed ANN.

Yan & Yao [141] has proposed an investigation of the climate information

effect on energy consumption in various climate zones. Back-propagation ANN

was used to predict heating and cooling load to assist new building designs.

Later, Biswas et al. [142] applied the similar approach on residential sector and

demonstration houses in the USA using Matlab toolbox.

Aydinalp et al. [143] modelled the Appliance, Lighting and space Cooling

(ALC) in residential buildings located in Canada. ANN for prediction of energy
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consumption showed better accuracy in comparison with engineering calculation

methods. Later, they used ANN to predict space heating and domestic hot water

for the same buildings [96].

Azadeh et al. [144,145] demonstrated the application of ANN based electricity

consumption prediction model in the manufacturing industry. The model was

used to predict the annual long-term consumption of industries in Iran using

a multilayer perception model. The results was compared with the traditional

regression model using ANOVA and showed superiority for the application. Later

in 2014, Kialashaki [146] foretasted energy demand of the industrial sector in the

US considering gross domestic and national products and population.

2.4.2 Support Vector Machine

In building sector, SVM has been used for forecasting of cooling and heading

loads [97, 147, 148], electricity consumption [149, 150], energy consumption [151–

154], and classification of energy usage of buildings [3].

In 2005, at first in building sector SVM was applied for estimation monthly

electricity usage for non-domestic building in tropical country of

Singapore [149]. This study considered three input parameters including

temperature, humidity and solar radiation and targets four different buildings.

The data was collected over three years and used for training and testing the

developed model. Results of using RBF kernel indicated that SVM model has

excellent accuracy in predicting the electrical loads and the low error rate of 4%.

The conclusion declared the superiority of SVM over previously derived ANN

models in terms of selection of small model parameters and accuracy. This

initial work was followed by Lai et al. [147] by applying SVM for forecasting
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monthly and short-term (i.e. daily) prediction of electricity consumption of a

domestic building located in Japan. They used outdoor, living and bedroom

temperature and humidity as well as water temperature as input parameters

and collected electricity usage data over a year. Massana et al. [155] compared

SVM, ANN and MLR in short-term prediction of non-domestic buildings’

electricity demand and concluded that SVM provide higher accuracy and lower

computational cost.

Later in 2010, Li et al. [152] used SVM for long-term prediction (yearly) of

electricity consumption of domestic buildings. They considered fifteen building

envelope parameters collected from 59 different cases along with the annual

electricity consumption which is normalised by unit area. Besides, they

compared the accuracy of the SVM model with three types of ANNs including

propagation, RFB and general regression. Testing the trained model over 20%

of study cases provided results that showed SVM outperforms ANNs for all

samples. Solomon et al. [156] predicted weekly electricity consumption of a

massive commercial building considering previous electricity usage, temperature

data and wind velocity.

In addition, Li et al. [97] applied SVM to forecast hourly cooling leads of an

office building located in China. They considered three similar input parameters

which were used by Dong et al. [149] and collected from local climate database.

The target samples were gathered during summer, and one month used for

training and four months for testing the model. In the meantime, they

presented a comparison with ANN models and indicate that SVM and general

regression ANN have more potential to be used in the field. Hou & Lian [148]

examined the accuracy of SVM with an autoregressive integrated moving

average based model [157] and demonstrate the supremacy of SVM regarding
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maximum and minimum error values. Xuemei et al. [158] developed a model

based on Least Square SVM (LS-SVM) and used the same input parameters.

This approach contributes to learning correction for limited training sets and

enhanced prediction time efficiency to traditional SVM model in load

forecasting. Jinhu et al. [159] and Li et al. [160] applied improved PCA to find

the significant parameters and show better accuracy. However, the information

about original and selected features are missing. The further improvement of

similar SVM based cooling load prediction has been demonstrated using a fuzzy

C-mean algorithm for clustering samples [161], simulated annealing particle

swarm optimisation to prevent premature convergence [162] and Markov chains

to the farther forecast of the interval after primitive prediction [163]].

Zhao & Magoules [153] predicted energy consumption of office building using

parallel implementation of SVM. They aimed at optimising the building

characteristics of a model case. They utilised EnergyPlus software to calculate

the energy demands. The results show a slight improvement regarding accuracy.

Later in 2012, the authors applied gradient guided feature selection and the

correlation coefficients methods to decrease the number of features for RBF and

polynomial based SVM models [164].

In 2014, Jain et al. [165] used sensor-based data of multi-family domestic

building located in New York City to develop an SVM model. The aim was to

investigate the effect of a different time interval and building spaces of data

collection on energy consumption forecasting. The authors pointed out that the

optimum efficiency of the derived model was obtained when hourly intervals

collected at floor level is utilised. Edwards et al. [166] presented a comparison of

SVM, LS-SVM and ANN in forecasting hourly energy consumption of small

residential buildings and find ANN as the least accurate model.
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2.4.3 Gaussian Process and Mixture Models

Since early 2000, Gaussian process (GP) regression has been employed by

researchers in different application [167–169]. In building energy field, GP has

been recently utilised due to its potentiality in determining the uncertainty of

predictions. In building energy modelling, there are usually uncertainties in the

section of appropriate values for some characteristics (e.g. envelope insulation).

Hence, evaluation of input uncertainty on foretasted results has made the GP as

an alternative approach to model building energy rather than conventional and

other ML regression models.

Heo [170,171] applied GP model to calculate the building energy saving after

retrofitting by forecasting the total energy consumption. The model used outside

temperature, relative humidity, and occupancy count as an input variable and

considers output measurement errors to approximate uncertainty levels. Later in

2013, Zhang et al. [172] used GP regression for predicting the energy demand of

an office building cooling and heating in the post-retrofit phase. They showed

that the accuracy of the GP model is very dependant on training and testing

data range.

Noh & Rajagopal [173] proposed a long-term GP prediction model for total

energy consumption of a campus building using smart meter measurements and

weather data. Nghiem & Jones [174] proposed a GP based model for demand

response service by predicting building energy consumption. Rastogi et al. [175]

compared the accuracy of GP and linear regression in emulating of a building

performance simulation and showed that the accuracy of GP is four times better

than linear regression testing on EnergyPlus simulated case studies located in the

US.
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Burkhart et al. [176] integrated GP with a Monte Carlo expectation

maximisation algorithm to train the model under data uncertainty. The aim

was to optimise office building HVAC system performance by predicting its

daily energy demand. Relative humidity and ambient temperature were

considered as specific input variables and daily occupancy with two different

scenarios (moderate and vigorous) as uncertain data. The results indicated that

the models can be trained even with limited data or sparse measurements

employing rough approximation and data range instead of sensor data.

Manfren et al. [177] developed a method for calibration and uncertainty

analysis of building energy simulation model. They used detailed simulation,

GP with RFB kernel and MLR to predict monthly electricity and gas usage of

heating and cooling systems. The results indicated that GP not only provides a

tool for optimisation and uncertainty analysis of building energy models but

also shows higher accuracy in comparison with a piece-wise regression model.

Sirvastav et al. [178] employed Gaussian mixture model (GMM) to predicts

daily/hourly energy consumption of commercial buildings (a DOE reference

model for supermarket and a retail store building). This parametrised model

allows locally adaptive uncertainty quantification for building data.

Zhang et al. [103] compared change-point models, GP, GMM and FF-ANN

models for prediction of an office building’s HVAC system hot water energy

usage considering weather data (ambient dry bulb temperature) as an input

variable. The ANN utilised in this work has one hidden layer activated using

tangent sigmoid transfer function. The results showed that the best

performance is achieved using GMM and the worst by ANN. The authors

concluded that as the ANN was not fed by adequate data, it was not a suitable
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model for the case study. Although the accuracy of GMM and GP is slightly

better than the change-point regression, the later is recommended due to the

simplicity of the approach. It should be noted that the Gaussian methods are

the best choice for analysing uncertainty and capturing complex building

behaviour.

2.4.4 Ensemble Models

The use of ensemble ML methods (e.g. RF and gradient boosted regression

trees) in the building energy domain is restricted to recent years [179–182],

despite an established track-record of utilisation in other disciplines. Li et

al. [183] compared SVM, ANN and ensemble models on prediction of building

energy performance by using trust metric to evaluate the reliability of the

models. The superiority of SVM and ML over the ensemble and linear models

was concluded. However, the authors did not optimise the models to generate

the Pareto frontier. Papadopoulos et al. [184] also compared different ensemble

models in estimation of the energy performance of residential buildings

(including 768 variations of a model building) evaluated using Ecotect software.

2.4.5 Clustering Algorithms

Clustering is one of the well-known ML techniques that identifies implicit

relations, patterns and distributions in data sets. Clustering is an unsupervised

learning method that can describe the hidden structure in a collection of

unlabeled data. In building energy, the primary application of this technique is

to classify buildings using various features and characteristics instead of only

use type or topology is very advantageous in building energy benchmarking.

Clustering for such an application implicates four steps [185]: (a) data

collections, (b) feature identification and selection, (c) adaptation of appropriate
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clustering algorithm and (d) benchmarking each building within classified

groups. The most common clustering algorithm is k-means that iteratively seeks

for a local maximum. The algorithm begins with a random selection of k

centroids (centre of cluster), and each data is assigned to the nearest centre

point. Then all centroids are recalculated using the mean of all data points in a

group. This process continues until it satisfies a stopping criterion (e.g. a

minimum aggregation of distances is reached).

Targeting 320 schools in Greece, Santamouris et al. [186] proposed a

building energy classification method using fuzzy clustering [187]. Total energy

consumption (heating and electricity) over three years along with information

on operating hours, number of pupils, structure characteristics, etc., were

collected. By applying a clustering algorithm, five building energy rating classes

were determined. The clustering based classification was then compared to

similar frequency rating process indicating that clustering offers more robust

classes resolving the problem of low and unbalanced or very large class

constitution. The authors applied outcomes to ten study cases to investigate the

potential energy conservation. Gaitani et al. [188] used 1100 school samples for

the development of a framework for heating energy consumption rating, aiming

at evaluation of potential energy savings. A k-mean clustering incorporating

PCA algorithm was utilised to form five rating classes and determine

representative building of each cluster. Pieri et al. [189] proposed a

cluster-based energy audit considering cooling and heating loads of hotels in

Greece.

Gao & Malkawi [185] demonstrated that energy performance benchmarking

using clustering algorithm is more accurate and robust than the US Energy Star

scheme due to the ability in integrating all the building features that affect
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energy consumption. The feature extraction was made using ordinary least

squares regression and clusters were generated using the k-means algorithm.

Lara et al. [190] also applied k-means clustering to assess the energy

performance of schools in Italy and characterise reference building for each

group. First an MLR method, as a mean of correlation analysis, was used to

identify the most appropriate quantities and variables for representation of

energy demand and building properties. Then clustering algorithm clustered

similar buildings regarding the defined variables. Finally, the building having

the minimum distance from the centroid was selected as the representative for

each cluster. These reference buildings are useful tools for optimising retrofit

solutions.

Yu et al. [191] used clustering technique to demonstrate the impact of

occupancy behaviour in building energy consumption. A similarity of building

features unrelated to occupants behaviour was used for creating clusters, and

the impact of users action in energy demand was investigated for each cluster.

Petcharat et al. [192] proposed a clustering algorithm to asses potential energy

saving regarded to the lighting system in Thailand non-domestic stock. The

authors indicated that cluster-based analysis is more effective than the only

comparison of target building power density with reference cases that are

defined by the country’s Energy Act.

Yang et al. [193] applied a k-shape (proposed for clustering time series)

algorithm to identify energy usage patterns and then employ SVM for

enhancing the accuracy of building energy demand prediction. Jalori &

Reddy [194] proposed clustering of days based on daily/hourly energy

consumptions to detect ad removed outlier data point. This process further

improves data-driven energy forecasting models, and so increases the
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performance of BMS.

2.5 Summary of Building Energy Modelling Using

ML

A summary of ML approaches based on the application is given in Table 2.2.

The table provides information on prediction duration, the building study cases

and data or energy usage collection and features used in model training. Column

‘Target’ presents the building energy indicator predicted by the ML model, which

is specified in column ‘ML’. The prediction term (i.e. the targeted period for

energy predictions) is shown in column ‘ Pred. term’. Building study cases and

the extracted features are presented in the other columns.
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Table 2.2: Summary of machine learning techniques for prediction of building
energy consumption and performance

T
ar
ge
t

ML
Pred.
term Building case and data Features Ref

E
n

e
r

g
y

P
e

r
f

o
r

m
a

n
c

e

ANN Month

schools in England and
Wales (120,253 DEC
records)

Construction year, Phase of education,
Number of pupils,Internal
environmental conditioning, Site
exposure, Orientation, North facade
adjacency, South facade adjacency,
East facade adjacency, West facade
adjacency, Floor area, Building depth
ratio, Compactness ratio, Surface
exposure ratio, North glazing ratio,
South glazing ratio, East glazing ratio,
West glazing ratio, Glazing type, Roof
shape, Roof glazing, Heating
degree-days, Cooling degree-days

[100]

ANN -

Educational building
(previous preliminary
energy assessments
(PEA) reports for over 60
buildings in Hawaii)

Operation hours, Age, Square feet
area, Yearly electricity usage,
percentage electricity used for lighting,
air conditioning, plug loads

[121]

ANN Year

Office buildings in Italy
(8800 building stock
simulated using
EnergyPlus)

geometry(9), envelope(30), operation
(6) and HVAC (3) [104]

ANN Year Schools in UK (120,253
DEC records)

North glazing ratio, South glazing
ratio, East glazing ratio, West glazing
ratio, Glazing type, Roof shape, Roof
glazing, Heating degree days, Cooling
degree days

[57]

ANN - Residential buildings (the
online CENED database)

Degree days, Net volume, Net floor
area, Dispersant surface, Opaque to
glazed ratio, Year of construction,
Thermal conductivity, Average floor
height, Opaque surface area, Glazed
surface area, Construction period,
Non-linear features

[125]

ANN Day

An generic reference
office building in Hong
Kong (8760 hourly
records calculated using
EnergyPlus)

External weather conditions (daily
average dry-bulb temperature, daily
average wet-bulb tempera-ture, daily
global solar radiation and daily
average clearness index), Building
envelope designs (solar aperture,
daylight aperture, overhang and
side-fins projections), Day type

[122]
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Table 2.2 (cont.): Summary of machine learning techniques for prediction of
building energy consumption and performance

T
ar
ge
t

ML
Pred.
term Building case and data Features Ref

E
n

e
r

g
y

P
e

r
f

o
r

m
a

n
c

e
C
lu
st
er
in
g

-
5215 commercial building
samples (CBECS
database)

Area, percent heated, percent cooled,
Wall materials, Roof materials,
Window materials, Window%, Shape,
Number of floors, Construction year,
Weekly operation hours, Occupants,
Variable air volume, Heating unit,
Cooling unit, Economizer,
Refrigerators, Number of servers,
Office equipment, Heating and cooling
degree day

[185]

C
lu
st
er
in
g

- 1100 school in Greece
(data gathered over one)

Heated surfac, Age of the building,
Insulation of the building, Number of
classrooms, Number of students,
School’s operating hours per day, Age
of the heating system, Energy
consumption per unit

[188]

C
lu
st
er
in
g

-

320 schools in Greece
(Energy data have been
collected for a three
years)

Temperature, Solar radiation, Energy
consumption per unit, Operational
period, Number of students,
Construction characteristics, Installed
equipment

[186]

C
lu
st
er
in
g

- 60 schools in Italy (data
collected over 5 years)

Area of the floor in thermal contact
with the ground, Opaque envelope
area, Transparent envelope area,
Windows tp vertical walls ratio,
Windows to floor area ratio,
Transparent to opaque envelope ratio,
Envelope average thermal
transmittance, Shape, Heating system
Capacity

[190]

H
VA

C
Lo

ad
s

GPR Day

An office building in
Chicago (Loads
calculated using
simulation)

Weather, Occupancy count [176]

GPR,
GMM,
ANN

Day Office building (three
months data collected) Outside dry bulb air temperature, Day [103]
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Table 2.2 (cont.): Summary of machine learning techniques for prediction of
building energy consumption and performance

T
ar
ge
t

ML
Pred.
term Building case and data Features Ref

H
ea

ti
ng

&
C

oo
lin

g
Lo

ad
s

ANN Year

Model house with 9
combination of wall and
roof type (loads are
calculated using TRNSYS
simulation)

Wall and Roof type, Maximum and mean
daily direct and global radiation,
Maximum and mean temperature of the
day , Mean wind speed and direction
(degrees)

[128]

GPR Hour Office building in
Philadelphia Outdoor temperature [172]

GPR Year
Typical buildings in the
US (loads calculated
using EnergyPlus)

Building characteristics, Climate data (28
features) [175]

GPR Month

Retrofitted office building
(Actual measurements
and simulation)

Building envelope characteristics, Solar
shading control system [177]

H
e

a
t

i
n

g
L

o
a

d
s

ANN Hour

Simulation models (Data
collected from a District
Heating Company of the
city of Iasi)

Solar radiation, Wind speed, Outside
temperature of previous 24h, Mass flow
rate of hot water of previous 24h, Hot
water temperature exit from plant system

[133]

ANN Hour Schools in UK (120,253
DEC records)

Glazing ratio in all cardinal directions,
Roof shape and glazing, Heating and
cooling degree days [57]

ANN Day
Six single-family
buildings, constructed in
Stockholm

Construction year, Stories, Framework,
Floor area, Number of inhabitants,
Ventilation system [135]

ANN Hour

An institutional building
in Nantes (The data is
taken from data
acquisition system for 1.5
months)

Climate and heating energy data,
Occupancy profile [137]

SVM Day
Single-story mass-built
buildings (Simulated
using EnergyPlus)

Outdoor dry bulb and relative humidity,
Wind speed, Direct solar, Ground
temperature, Outdoor air density, Water
mains temperature, Number of occupants,
Total heat gain of lights, electric
equipment and window, Heat loss for
walls, Mean air temperature, Infiltration
volume, Heating outlet temp

[164]

ANN Month Three sample buildings Transparency ratio, Insulation thickness,
Building form factors [136]
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Table 2.2 (cont.): Summary of machine learning techniques for prediction of
building energy consumption and performance

T
ar
ge
t

ML
Pred.
term Building case and data Features Ref

C
oo

lin
g

Lo
ad

s

ANN Hour Parking space (data gathers over 23
weekdays)

Temperature, Relative
humidity [140]

ANN Day Public office building in Kuwait
(data for three building types) External temperature [138]

ANN,
SVM

Hour
A model building in China
(measurements from an existing
HVAC system)

Temperature, Relative
humidity

[139,
148,
158]

ANN Day
Three institutional buildings (The
energy data is obtained through
the facility management office)

Five previous day [134]

GPR Hour
office building in Lemont city (data
obtained from baselining and
post-retrofit days)

Outdoor temperature [170]

GPR Day
An School building in Stanford city
(data obtained from baselining and
post-retrofit days)

Outdoor temperature [173]

E
ne

rg
y

D
em

an
d

ANN Hour
holiday home which is used only
during weekends (forty cases
generated by the program ZID)

Season, Insulation, Wall
thickness, Time of day,
Energy calculating function [127]

ANN Hour

Two datasets (Great Building
Energy Predictor Shootout I (5
months), office building located in
Athens, Greece (one year))

Temperature, Solar
radiation, Humidity ratio,
Wind speed, Day [99]

ANN Year

the US domestic buildings (energy
consumption is taken from U.S.
Energy Information
Administration)

Population, Gross domestic
product, House size, Median
household income, Cost of
residential electricity,
Natural gas and oil

[130]

ANN Day An office building in University of
Sao Paulo

Daily maximum and
minimum external dry-bulb
temperatures [132]

SVM Month

Four office buildings in Singapore
(energy consumption is obtained
from utility bills over 4 years)

Dry bulb temperature,
Relative humidity, Global
solar radiation [149]

SVM Hour
Multi-family domestic building in
New York City (data from the
Great Energy Predictor Shootout)

Temperature, Humidity,
Wind speed [165]
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Table 2.2 (cont.): Summary of machine learning techniques for prediction of
building energy consumption and performance

T
ar
ge
t

ML Prediction
term

Building case and data Features Ref

E
l

e
c

t
r

i
c

i
t

y
D

e
m

a
n

d ANN Hour
An institutional facility
in Calgary (data collected
over 15 month)

Outside temperature and relative
humidity, Boiler outlet water temperature
and flowrate, Chiller outlet water
temperature and flowrate, Supply air
temperatures for hot, cold duct, Supply
and return control settings, Indoor air
temperatures of 2 different zones

[119]

ANN Hour

A building in Athens
(time series of hourly
values are collected over 6
years)

Air temperature, Solar radiation [105]

SVM,
ANN

Month,
Day

A residential building in
Japan (data is collected
over one year)

Date, Outdoor temperature, Bedroom
temperature, Living temperature, Living
humidity, Bedroom humidity, Outdoor
humidity, Water temperature

[147]

SVM,
ANN

Year 59 residential buildings in
China

Mean heat transfer coefficient of building
walls, Mean thermal inert index of
building walls, Roof heat transfer
coefficient, Building size coefficient,
Absorption coefficient for solar radiation
of exterior walls, Window to wall ratio in
four directions, Mean window to wall
ratio, Shading coefficient of window in
four directions, Integrated shading
coefficient

[152]

SVM,
ANN

Hour

A university office
building (electrical load
data is collected with a
power meter)

Outdoor/indoor temperature and
humidity, Indoor illumination, Solar
radiation, Calendar nominal attributes

[155]
[152]

GMMDay
DoE super market
reference model (climate
data from Chicago)

Outside dry-bulb air temperature and
humidity ratio, Direct solar radiation [178]
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Based on the results from seminal works and proposed methods for different

applications and considering some ML factors, this study proposes a framework

for selecting the right method for building energy prediction and benchmarking

as demonstrated in Figure 2.3

Figure 2.3: Proposed method of selecting ML for building energy data.

ANN has been broadly used in building energy forecasting since the first

introduction in the sector at 1990’s. ANNs provide a powerful tool for

modelling building energy modelling and faithful prediction, however, they

require proper choice of network structure and precise adjustment of its several

hyper-parameters for training. The performance of the models are not

guaranteed as ANN suffer from local minimum problem. Results from different

researches indicates that ANN should be fed with adequate number of samples

in order to obtain acceptable accuracy, otherwise it might be outperformed with
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simple MLR models. It could be concluded that ANN is much appropriate for

engineers having a strong knowledge of deep learning and statistical modelling.

In contrast with ANN, SVM and GP are supervised using few parameters

and provide satisfactory performance. It has been shown that SVM surpasses

ANN in load forecasting and has the potential to build models from limited

samples. Nevertheless, the ANNs used for comparison in the aforementioned

studies, exploit simple structure and the hyper-parameters might not be well

optimised due to the complexity. Among ML techniques and other black box

methods, only GP is used for model training with uncertainty assessment,

nevertheless, it is not the sole capable technique. Recently, uncertainty and

sensitivity analysis for other ML techniques has been introduced and utilised.

Hence, it worth to devote research attention to deploy these approaches for

modelling building under uncertain data.

Im general, it is very difficult to conclude that which ML model is the best, as

from literature it can be induced that all models provide reasonable accuracy by

supplying large samples and optimising the hyper-parameters. Thereby, it is very

important to thoroughly analyse the nature of available or collectable data and the

application, in order to choose most suitable model. For example, ANN provide

a fast and precise short-term load forecasting for EMSs where temperature and

humidity data is collected using sensors, while GP is more beneficial for long-tern

energy estimation when there is uncertainty in input variables. In fact, feature

selection itself require an extensive investigation for each application as it is the

preliminary requisite for implementation of any ML methods.
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2.6 Building Retrofit Planning

This section provides the study of state-of-the-art literature on non-domestic

retrofit planning and related developed decision-making methods.

2.6.1 Critical Factors of Efficient Retrofit Plan

Ma et al. [195] suggested a comprehensive study of the leading methods

utilised for devising an effective energy retrofit, through distinguishing

fundamental elements. These factors include policies and regulations, client

resources and expectations, building specific information, human factors, retrofit

technologies and other uncertainty factors as illustrated in Figure 2.4 [195].

Figure 2.4: Factors effecting building retrofit decision-making process.

Building energy policies and regulations force a minimum level of energy

efficiency to be obtained during the retrofit. Some governments offer financial

packages to encourage building owners to take part in energy enhancement
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programmes. The Salix grant scheme funded by Department of Energy &

Climate Change (DEEC) and Green Investment Bank (GIB) funding are

examples of these governmental supports for energy efficiency

improvement [196]. Tobias & Vavaroutsos [197] summarised public policies

addressing building energy efficiency retrofit (BEER) and Pombo et al. [198]

reviewed the practices and energy saving measures in renovations.

Client resources and expectations delimit the project objectives, available cost

and the constraints in retrofit planning. This pieces of information are essential

factors in MOO for searching the optimal solutions. Several elements affect the

decision-making on investment in energy efficiency improvements, however, the

one most important is the payback period [199].

Retrofit technologies are applied to improve building energy performance

and categorised into supply-side management consisting electrical system

enhancement and the application of renewable energy, demand-side

management including the procedures to decrease heating and cooling loads,

and the use of efficient equipment and low energy technologies, and alteration of

consumption patterns [195].

Retrofit DM requires a precise measurement of building specific information

including geographical location, class, dimensions, age, energy sources, operation

and maintenance plan, fabric, etc. to alleviate the number of assumptions that

need to be made [200].

An extra essential challenge for the achievement of a proper empirical risk

minimisation regards to a stable and precise evaluation of the building energy and

thermal performance. Different approaches of building performance evaluation
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are discussed in Section 2.3.

Building retrofit process is divided into different steps: In the first step the

project targets are set by the owner and consulting with an Energy Service

Company (ESCO) to manage the retrofit planning. In the second step, a

professional assessor audits building energy characteristics which are then used

for determining the building energy rating. Step three is the identification of

the most appropriate retrofit options employing established energy assessment

methods to confirm the energy saving achievement. The final step involves the

implementation of chosen retrofit measures.

This study focused on the third step (decision-making) where there is a

significant challenge on the selection of retrofit measures as it involves not only

the available technologies, but also many other factors. These include policies

which are different in countries, weather condition, owner constraints, etc.

2.6.2 Decision Making for Retrofit

Building energy efficiency enhancement consists of an optimisation method of

determining a selection of technically advantageous and cost-effective measures.

The traditional procedure of evaluating a broad variety of retrofit technologies

is to investigate several potential solutions based on practician experience. The

primary restriction of with this strategy is that only limited number of scenarios

can be evaluated and the probability of obtaining an optimal solution is quite

low. It has been indicated that implementing of non-optimised solutions, it is

possible to alter the building at a subsequent attempt imposing much higher

cost [201]. This issue causes investors to be unwilling to invest in their building

energy efficiency improvement.

64



Chapter 2. Literature Review

To consider all technologies and combinations, an evaluation of a considerable

number of solutions is needed which make the decision-making process a complex

work and challenging to manage [202]. Several methodologies have been proposed

to facilitated DM in energy retrofits which generally are divided in two groups:

priori or multi-criteria analysis (MCA) and multi-objective optimisation (MOO).

MCA still relies on users’ experience by defining a set of alternative options

and pre-evaluation of the solutions. As such achieving the most optimal retrofit

packages is not guaranteed [203]. IN MCA,each criterion is weighted, and then

total weights create a unique criterion. Gero et al. [204] were among the first to

suggest an MCA method for design of an energy efficient building. This model

examined the trade-off between the thermal efficiency and other factors which are

not energy-related (e.g. building cost and available area). This approach was then

followed by several researchers by applying in related problems [205–208]. Jaggs

et al. [209] and Flourentzou et al. [210] suggested strategies for the assessment

of retrofitting situations. Kaklauskas et al. [211] proposed a multivariate design

and MCA approach for energy retrofit, defining the importance and advantages of

building retrofit options and choosing the topmost preferred alternative. Another

drawback MCA based methods is that the information about the sensitivity of

each criterion to alteration of others is not provided [16].

The other method, which is based on MOO, allows considering a broad retrofit

technology options limiting the search space and perceive the trade-offs among the

objective functions assisting in attaining an optimal solution. Still, comparatively

limited consideration has been given to tackling building retrofit DM support with

MOO [23]. This is due to the fact that a large number of simulations are required

to obtain a solution. These calculations are time-consuming and demand for

heavy processing in case of using energy simulation tools. Diakaki et al. [22]
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studied the usefulness of applying MOO methods for enhancing building energy

efficiency, by use of a simplified model for thermal simulation. Asadi et al. [23]

developed a MOO model to support the definition of retrofit scenarios intended

to cost-effectively optimise energy consumption. Further to that, a MOO model

coupled with TRNSYS was developed to optimise retrofit cost, energy savings,

and thermal comfort in a residential building [24].

Ascione et al. [19] proposed a framework for the MOO to optimise building

energy design considering the most extensive selection of objective functions and

design variables. Genetic Algorithm (GA), combined with EnergyPlus, was used

to generate the retrofit solution space for an office building. The same group

previously was focused on the use of MOO for optimising residential buildings

retrofit planning [25]. Gou et al. [212] used the MOO approach by coupling

ANN and GA to optimise residential building comfort indoor and energy usage.

Ferrara et al. [17] also focused on a residential building and used TRNSYS and

GenOpt optimisation software to minimise energy demand and global cost. Bre

and Fachinotti [20] focused on minimising energy consumptions for heating and

cooling and maximising thermal comfort for occupants by coupling EnergyPlus

and GA. Jafari and Valentin [26] also employed GA and eQuest and aimed at

optimisation of life cycle cost of the retrofit strategies for a residential building.

Carlucci et al. [213] used GA and EnergyPlus to optimise thermal, visual comfort

and indoor air quality in the design stage. With similar configuration and adding

ANN, Yu et al. [214] aimed at evaluating energy usage and thermal comfort for

the design of the Chinese buildings.
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2.6.3 Summary of Retrofit Planning

There is an evident increase in the popularity of optimisation for building

retrofit planning, and of MOO in particular. This fact is somewhat because the

growing computational power is accessible to address challenges that were

previously infeasible. This is likely to continue, with optimisation expanding

into areas currently beyond our capabilities. However, the current state of the

energy simulation, which is utilised as the calculation tool in energy retrofit

optimisation is still such time-consuming that the industrial application seems

impracticable. Hence, accelerating the optimisation process will provide

sufficient reason to increase interest in optimisation in the industry and to

uncover the enormous potential of such methods.

2.7 Chapter Synthesis

In recent years, optimisation of construction and building energy usage have

been received great attention as this sector is known as main contributor to air

pollution and fossil energy consumption. The regulations and rising fuel prices

have forced owners to reduces energy use by means of smart controls, sensors or

retrofitting. This concern have become more critical in non-domestic sector as

huge amount of energy is wasted due to inefficient management. As a result,

various smart technologies has been applied for the purpose of energy saving.

Rapid development of the modern technologies including sensors, information,

wireless transmission, network communication, cloud computing, and smart

devices has been led in a great amount of data accumulation. The traditional

modelling of building energy using software and statistical approaches does not

satisfy the demand for fast and accurate forecasting, which is essential for DM

systems. ML models have shown a great potential as an alternative solution for
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energy modelling and assessment for different types of buildings.

Figure 2.5 illustrates the summary of this chapter and the research gap

motivated this study. Review of seminal literature indicated the necessity of

employing ML models in support of deep energy retrofit DM, yet the lack of

comprehensive studies to address this gap enabling industry and researchers to

deploy potentials of AI-based optimisation methods.

In this chapter, to address objective 1 and partly RQ 1 and RQ3, a broad

review of research works in the area of building energy assessment, focusing on

the energy retrofit was performed. ML tools applied for the prediction of building

energy indicators are discussed, and the input parameters utilised in training

the models are identified. It was concluded the selecting suitable features had

been limited to the elementary physical characteristics and climate features, as

the majority of the seminal works concentrated on the accuracy of developed

models. Whilst in the optimisation of building design and energy retrofit, it

is of paramount importance that the model should reflect the impact of any

alteration or improvement. It was therefore concluded that in order to develop

an accurate model to support retrofit DM, it is essential to take many energy-

related features into account, rather than the basic parameters identified from

the literature review.

By scrutinising several studies, comparing various ML models, it was also

concluded that these models would perform quite differently if they are precisely

tuned. Moreover, the nature and size of the data utilised for the model

development are highly important in the selection of a suitable technique.

However, a reasonably large dataset is required to train a generalised and

reliable energy model.
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To address the mentioned challenges, Chapter 4 lays out a widely-applicable

approach to tuning ML models fitted over building energy data. Its investigates

the accuracy of most popular ML techniques in the prediction of building

energy loads by carrying out specific tuning for each ML model. Then, Chapter

5 outlines a detailed method to train one single model for prediction of both

heating and cooling loads of buildings and to maximise the ML model’s

efficiency. A method for optimising ML models is proposed for forecasting

multiple energy loads. Next, Chapter 6 develops an energy performance

prediction model for UK non-domestic buildings with the aid of ML techniques.

The aim of the ML model is to provide a rapid energy performance calculation

engine for assisting multi-objective optimisation of energy retrofit planning.

This chapter scrutinises the process of model development, from the

investigation of requirements and feature extraction, to the application on a

case study. Finally, the model is evaluated through the calculation of energy

performance of a case study building variations.
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Research Methodology

3.1 Introduction

This chapter describes the steps adopted to accomplish the objectives of this

study and explains the logic behind the selection of each method, tool and

approach. Accordingly, the chapter clarifies the implemented research plan

given the objectives, as well as describes the nature of the selected methods.

The chapter also defines and outlines the links between the objectives and the

measures for undertaking the research. In doing so, the chapter prescribes a

robust scientific research design that is capable of successfully executing the

adopted approach.

Furthermore, This chapter provides an overview and foundation of the

research with a focus on its design and structure. The details of data and

processes that are particular to each method are elaborated in each chapter to

provide continuity.
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Firstly, a detailed description of the research design is presented, elaborating

the steps and continuity of the research process. Lastly, the main techniques,

tools and regulations used thought the study are discussed and explained.

3.2 Research Approach

In general, three types of research design are generally applied to address

research problems: qualitative, quantitative and mixed-methods approaches. As

suggested by McCusker and Gunaydin [215], each method is suitable for treating

different types of investigations.

As defined by the list of objectives (Section 1.5), understanding the most

developed trends of energy use in UK’s non-domestic buildings and the

influences of intrinsic building and operational features on their energy

performance are at the heart of this research. As it can be anticipated, the

knowledge expected to address the research questions is complicated to obtain

without applying empirical data. There are instances of employing theoretical

methods similar to simulation models in combination with sensitivity analysis

methods to gain understanding of the impacts of different building and

operational characteristics. As mentioned in Section 2.3, these methods heavily

rely on engineering methods and require substantial processing and time for

energy calculations. Consequently, it is believed imperative to employ empirical

data throughout the study in order to thoroughly address the proposed

questions.

The choice to conduct experiments relying on broad empirical data implies

that quantitative methods of analysis would be essential for interpreting the

building energy data in the context of statistical modelling (regression). Uses of
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detailed statistics would allow the latest and historical patterns of energy

performance in various non-domestic buildings to be investigated in order to

evaluate the factors that determine the robustness of the ML models.

Correlation and sensitivity analysis would also provide valuable insights in

evaluating and distinguishing the key fundamental characteristics that influence

the energy performance of non-domestic buildings, which would be necessary for

assessing the probability of adopting more advanced methods. Consequently, a

quantitative approach is considered the most appropriate to address the

research questions.

3.3 Research Methods

The investigation of potential methodologies has proven that in order to obtain

a holistic view of how non-domestic building energy can be modelled to support

retrofit decision making, the research should be designed in a way to facilitate

both general and specific questions being addressed.

The proposed design incorporates four phases in order to fully exploit the

insights that could be acquired from literature, AI techniques and building energy

data. The underlying idea is that the analysis of ML models and the employment

of AI models utilising established energy data prior to the application on the

generated data would yield distinct, yet complementary insights. The flowchart

of research activities is shown in Figure 3.1.

The first phase reported in Chapter 2 highlighted the fact that conventional

methods of building energy calculations employing software and statistical

approaches do not meet the necessities for energy retrofit decision-making with

fast and accurate predictions. It has been shown that advanced regression
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Figure 3.1: Flowchart of research design and methods.
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methods, so called ML models, have great potential to substitute engineering

methods with high time complexity. However, several challenges have been

identified related to data-driven modelling of building energy performance.

Firstly, it is essential to choose the most appropriate model for the data and to

take full advantage of that. Additionally, one primary process is to select

meaningful variables to model building energy efficiency.

In Chapter 2, it was shown that there are a multitude of examples of ML

regression models applied to problems related to predicting energy and mass flows

in buildings. Each study demonstrates the use of one model type/architecture

or the comparison between different model types. However, there is a lack of

guidance on how to optimise or ‘tune’ models to fit the investigated problem for

the best predictive accuracy and consistency. In Chapter 2, the feature selection

for building energy modelling was also reviewed. Some variables proved to be

suitable to be included in modelling for supporting retrofit DM. However, these

features are related to climate and buildings’ general characteristics. Hence, an

in-depth investigation will be carried out to extract a feature space for detail

modelling of energy performance.

To answer research question 1 and address objective 2, phase 2 lays out a

widely-applicable approach to tuning ML models fitted over building energy

data. Before developing an ML model for non-domestic buildings (extracting

the features for energy performance and testing the model), it is essential to

select the most appropriate ML algorithm. As the feature set is not yet

finalised, the use of primitive data using that set would result in poor

performance and uncertainty in the selection of the algorithm. Hence, it is ideal

to choose the techniques that have had better performance on similar data and

application. However, the review of the literature revealed the lack of such
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guidance. As such, this study utilised previously established datasets that have

proven robustness both in terms of generality and accuracy. This phase

investigates the accuracy of most popular ML techniques in the prediction of

building energy loads by carrying out specific tuning for each ML model and

comparing the results of two simulated building energy datasets generated in

EnergyPlus and Ecotect. Both datasets are available online for use in research

studies. The review of recent literature on the application of MOO showed that

many attempts are made to minimise the heating and cooling loads as the

metrics for energy efficiency, this being the reason for selecting the datasets,

especially EnergyPlus. Hence, the modelling using these data would be not only

beneficial for the subsequent phases of this study, but also for other research

works considering such optimisations. This research phase uses a grid-search

coupled with a cross-validation method to examine the combinations of model

parameters. Furthermore, sensitivity analysis techniques are used to evaluate

the importance of input variables on the performance of ML models. The

accuracy and time complexity of models in predicting heating and cooling loads

are demonstrated. Comparing the accuracy of the tuned models with the

original research works reveals the significant role of model optimisation. The

outcomes of the sensitivity analysis are shown to be of relative importance

which results in the identification of unimportant variables and a faster model

fitting. This chapter presents the explanation of ML methods, the analysis and

the evaluation methods, but the detail of tuning the utilised datasets along with

the results are presented in Chapter 4.

The results from phase 2 reveal that simple models with few parameters such

as SVM are easy to optimise, however, when the number of hyper-parameters is

increased, the search space grows exponentially. For example, to tune an RF

with six parameters, a grid search will explore more than four thousand possible
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configurations. That is why, traditionally, the researchers mostly relied on

default values for those hyper-parameters. However, such models provide far

more accurate results by precisely tuning in comparison with SVM or Gaussian

process regression. Forecasting two or more building energy measures, such as

heating and cooling loads or building emission rate and energy usage

simultaneously, requires even more expertise and investigation. The use of a

complex model and grid search for such applications is not a viable solution due

to the complexity in processing time, as well as the selection of the ideal model.

Phase 3 addresses research question 2 and objective 3, and outlines a

detailed method to train one single model for prediction of both heating and

cooling loads of buildings and to maximise the ML model’s efficiency. During

this phase, a method for optimising ML models is proposed for forecasting both

energy loads. The technique employs MOO with evolutionary algorithms to

search the space of possible parameters. The proposed approach not only tunes

single models to precisely predict building energy loads but also accelerates the

process of model optimisation. The study utilises the same EnergyPlus data in

phase 2 to validate the proposed method, and compares the outcomes with the

regular ML tuning procedure. The optimised model provides a reliable tool for

building designers and engineers to explore a wide variety of available building

materials and technologies. The method is detailed in Chapter 5

As indicated in Chapter 2, seminal work in modelling building energy

indicators has widely concentrated on the building design and building energy

management applications. A few attempts also applied data-driven modelling

for retrofit design, but focusing on a building’s general physical characteristics

while disregarding all possible technologies and the energy policies.

Consequently, those models are not suitable for supporting deep energy retrofit
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planning.

Phase 4 addresses the research question 3 and objective 4 and develops an

energy performance prediction model for UK non-domestic buildings with the

aid of ML techniques. The aim of the ML model is to provide a rapid energy

performance calculation engine for assisting multi-objective optimisation of

energy retrofit planning. This phase scrutinises the process of model

development, from the investigation of requirements and feature extraction, to

the application on a case study. The recommendations from previous steps

(Chapters 2, 4 and 5) are considered in generating the features space, the

selection of ML methods and maximising the model accuracy. The process takes

careful consideration of retrofit technologies and the energy policy in the region

(UK). The same approach to identifying important features is adopted from two

previous chapters to optimise model time-complexity. Finally, the model is

evaluated through the calculation of energy performance for three thousand

variations of a case study building and comparison of these with the actual

ratings. Modelling non-domestic building energy performance is elaborated in

Chapter 6.

Although the dataset utilised in phases 3 and 4 is different from the data

collected for modelling non-domestic buildings energy performance in the UK,

the nature of both data which are formulated as a set of building characteristics

and climate features is similar. However, the aim has been employing widely used

building data in selecting the superior ML technique before externally validating

the developed model. The comparison of outcomes of phases 3 and 4 with the

original studies provide a reliable method to validate the approach in this study.
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3.4 Machine Learning for Modelling Energy

Performance

ML is generally used to describe computer algorithms that learn from existing

data. These algorithms normally use a large amount of data and a relatively small

number of input features for learning processes. In recent years, numerous ML

techniques have been proposed in the building sector for the estimation of heating

and cooling loads, energy consumption and performance in various circumstances.

ML models operate as a black box and need no information on building

systems. They discover the relation between various input features and output

targets (e.g. energy performance) using given data. When the ML models are

trained with enough amount of data, they can be used to predict targets for

unseen samples, though the relation of features and the targets is not defined.

This procedure is also known as supervised learning in the ML field. In this

case, the target energy parameter is calculated using simulation (in general

engineering method) and is used for training the model. The general scheme of

supervised learning for modelling building energy is illustrated in Figure 3.2.

The second method of ML namely unsupervised learning, has received great

attention in building energy analysis. Unsupervised learning also known as

unsupervised classification is mainly applied on unlabelled data in order to

cluster them based on hidden pattern and similarities underlying in features.

This method is very beneficial for the application of energy benchmarking where

determination of baseline buildings is crucial for calculating the energy

performance of similar cases. Hence, the clustering algorithms provide a more

precise tool for grouping various buildings in comparison with the traditional
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Figure 3.2: General schematic diagram of supervised learning.

method which mainly relies on building usage type. It should be noted that

using the clustering algorithm for forming groups, it is not possible to estimate

clusters for new buildings. Therefore, in order to determine the reference

building for other cases, an extra supervised ML technique should be applied.

In this approach, all buildings used for clustering are used as training samples

for classification, where the generated labels from clustering are considered to

be learning targets. The flowchart of the overall procedure is demonstrated in

Figure 3.3.
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Figure 3.3: General schematic diagram of unsupervised learning for building
energy application.

3.5 Description of Machine Learning Models

Five ML algorithms, namely ANN, SVM, GP, RF and GBRT are

investigated in this study. As the superiority of these techniques over traditional

regression models are abundantly demonstrated in the literature, this research

avoid comparison with those basic statistical methods. Basics of each model

and the parameters going under optimisation are explained as follows.
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3.5.1 Artificial Neural Network

Neural networks have been broadly utilised for building energy estimation

and are known as the major ML techniques in this area. They have been

successfully used for modelling non-linear problems and complex systems. By

applying different techniques, ANNs have the capability to be immune to fault

and noise [216] while learning key patterns of building systems.

The main idea of the ANN is obtained from the neurobiological field.

Several kinds of ANNs have been proposed for different applications including,

Feed Forward Network (FFN), Radial Basis Function Network (RBFN) and

recurrent networks (RNN). Each ANN consists of multi-layers (minimum two

layers) of neurons and activation functions that form the connections between

neurons. Some frequently used functions are linear, sigmoid ad hard limit

functions [217]. Based on the application and complexity of the task, a

structure is decided, and by feeding the adequate amount of records, the

activation function updates the weights and bias.

In the FFN which was the first NN model as well as the simplest one, there

are no cycles from input to output neurons and the pieces of information moves

in one direction in the network. Figure 3.4 illustrates the general structure of

FFN with input, output and one hidden layer.

The RNN uses its internal memory to learn from preceding experiences by

allowing loops from output to input nodes. The RNN is proposed in various

architectures including fully connected, recursive, long short-term memory, etc.

This type of neural network has usually been employed to solve very deep learning

tasks such as multivariate time-series prognostication where often more than 1000
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Figure 3.4: Conceptual structure of feed forward neural network with three layers.

layers are needed [218].

In the RBFM, a radial basic function is used as the activation function

providing a linear combination of inputs and neuron parameters as output. This

type of network is very effective for time series estimation [219–221].

3.5.2 Support Vector Machine

SVMs are highly robust models for solving non-linear problems used in

research and industry for regression and classification purposes. As SVMs can

be trained with a few numbers of data samples, they could be the right

solutions for modelling case studies with no recorded historical data.

Furthermore, SVMs are based on the Structural Risk Minimisation (SRM)
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principle that seeks to minimise an upper bound of the generalisation error

consisting of the sum of training error and a confidence level. SVMs with kernel

function act as a two-layer ANN, but the number of hyper-parameters is lower

than that. Another advantage of SVM over other ML methods is the uniqueness

and global optimality of the generated solution, as it does not require non-linear

optimisation with the risk of remaining in a local minimum limit. One main

drawback of SVMs is the computation time, which has the order almost equal

to the cube of problem samples.

Suppose every input parameter comprises a vector Xi (i denotes the ith

input component sample), and a corresponding output vector Yi which can be

building heating loads, rating or energy consumption. SVM relates inputs to

output parameters using the following equation:

Y = W · φ(X) + b (3.1)

where φ(X) function non-linearly maps X to a higher dimensional feature

space. The bias, b, is dependent on the selected kernel function (e.g. b can be

equal to zero for Gaussian RBF). W is the weight vector and approximated by

empirical risk function as:

Minimise :
1

2
‖W‖2 + C

1

1

N∑
i=1

Lε(Yi, f(Xi)) (3.2)

Lε is ε-intensity loss function and is defined as:

Lε(Yi, f(Xi)) =

|f(x)− Yi| − ε, |f(x)− Yi| ≥ ε

0, otherwise
(3.3)
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Here ε denotes the domain of ε-insensitivity and N is the number of training

samples. The loss becomes zero when the predicted value drops within the band

area and gets the difference value between the predicted and the radius ε of

the domain, in case the expected point falls out of that region. The regularised

constant C presents the error penalty, which is defined by the user.

SVM rejects the training samples with errors less than the predetermined ε.

By acquisition of slack variables ξ and ξ∗i for calculation of the distance from the

band are, equation (3.3) can be expressed as:

Minmise :
ξ,ξ∗i ,W,b

1

2
‖W‖2 + C

1

N

N∑
i=1

ξ + ξ∗i (3.4)

subject to


Yi −W · φ(xi)− b ≤ ε+ ξ

W · φ(xi) + b− Yi ≤ ε+ ξ∗i

ξ ≥ 0, ξ∗i ≥ 0

The SVM problem using a kernel function of K(Xi, Xj) (αi, α∗i as Lagrange

multipliers) can be simplified as:

Maximise :
{αi},{α∗

i }
−ε

N∑
i=1

(α∗i + αi) +
N∑
i=1

Yi(α
∗
i − αi)−

1

2
sumN

i=1

N∑
j=1

(α∗i − αi)(α∗j − αj)K(Xi, Xj)

(3.5)

subject to
N∑
i=1

(α∗i − αi) = 0, 0 ≤ αi, α
∗
i ≥ C

As mentioned before the number of parameters in SVM with a Gaussian RBF

kernel is as few as two, these being C and Gamma.
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3.5.3 Gaussian Process

The main drawback of GP modelling is expensive computational cost,

especially with the increase of training samples. This is due to the fact that the

GP constructs a model by determining the structure of a covariance matrix

composed of an N × N input variable where the matrix inversion required in

predictions has a complexity of O(N3)

Given a set of n independent input vectors Xj (j = 1, · · · , n), the

corresponding observations of yi (i = 1, · · · , n) are correlated using the

covariance function K with normal distribution equal to [183]:

P (y;m; k) =
1

(2π)n/2|K(X,X)|1/2
×

exp

(
−1

2
(y −m)TK(X,X)−1(y −m)

) (3.6)

The covariance or kernel function can be derived as:

K =

∣∣∣∣∣∣∣∣∣∣∣∣

k(x1, x1) k(x1, x2) · · · k(x1, xn)

k(x2, x1) k(x2, x2) · · · k(x2, xn)
...

... . . . ...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.7)

A white noise, σ, is presumed in order to consider the uncertainty. It is assumed

that the samples are corrupted (presumed as new inputs as x∗) by this noise. In

this case, the covariance of y is expressed as:

cov(y) = K(X,X) + σ2 (3.8)
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Then y∗ can be estimated as below.

y∗ =
n∑
i=1

αik(xi, x
∗) (3.9)

αi =
(
K(X,X) + σ2I

)−1
yi (3.10)

3.5.4 Random Forest

The RF is an ensemble of randomised Decision Trees (DTs). A DT

encompasses the establishment of an ML model in a tree structure form by a

non-parametric algorithm. The DT progressively divides the given data into

elemental subsets until reaching a single sample residing in each sub-group. The

inner and outer sets are called nodes and leaf nodes. The accuracy of the DT is

significantly dependent on the samples’ distribution in the learning dataset. As

such, a DT is always introduced as an unsteady method, where even minor

alteration in the input data can change the whole structure. A set of DTs are

often employed in conjunction with each other, and calculated an average

representative estimated values, in order to address the aforementioned issue. In

other words, bagging and optionally bootstrapping are applied in RF with the

aim of combining the separate models containing a similar set of information

and generating a linear combination from various independent trees. The RF

training procedure mechanism is illustrated in Figure 3.5.

3.5.5 Gradient Boosted Regression Trees

Like a RF, a GBRT is an ensemble of other prediction models such as DTs.

The principal difference between GBRT and RF is that the latter one is based on

fully developed DTs with low bias and high variance, while the former employs
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Figure 3.5: Diagram of an RF model with n independent trees.

weak learners (small trees) having high bias and low variance [222]. In the GBRT,

trees are not independent of each other; instead, each branch is created based on

former simple models through a weighting procedure. This approach is known as

boosting algorithm. At each inner node (i.e. the split point) a given dataset is

divided into two samples. Let us assume a GBRT with three node trees. There

will be one split point in which the best segmentation of the data is decided,

and the divergence of the obtained values (from the individual averages) are

calculated. By fitting on these residuals, the subsequent DT will seek for another

division of data to reduce the error variance.

3.5.6 Model Validation

Validation is the essential method used for the assessment of the ML model

stability and the demonstration of model generalisation. It represents how well

the model performs on predicting unseen data (the dataset which is not used in

training the model). In this study, cross-validation, which is a standard statistical

re-sampling method, is used. Figure 3.6 schematically demonstrates the k-fold
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cross-validation procedure.

Figure 3.6: Cross-validation technique for evaluating model generalisation.

In this method, each dataset is randomly divided into k folds, including a

training subset, which is used for training the ML model, and a testing subset,

used to evaluate the model’s generalisation efficiency. Then, the average of all k

folds accuracies (e.g. RMSE) is calculated and regarded as the final

performance. This technique assists the model development procedure in

avoiding over-fitting and under-fitting. The former refers to capturing noise and

relations which do not generalise accurately to new data. In this case, the

trained model runs exceptionally well on the training set, yet poorly at the test

set. The latter refers to not capturing relations adequately in the data. The

model accuracy would be then poor for both the training and the test sets. In

this research, 10-fold cross-validation is employed in different phases except

where it is specified.

It is conceivable that using all datasets in the cross-validation procedure would

not guarantee the performance of the developed model on a totally new data, as

the model would be biased to the utilised data. Therefore, it is essential to
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test the ML model on a set separate from the main one. In this research, for

external validation, the model performance on an educational building used as

the case study belongs to the University of Strathclyde and was not logged in the

company database. The building detail is processed, and different variations (as

it is performed in the process of MOO for retrofit planning) are generated. The

trained model accuracy is then evaluated by predicting those samples.

For statistical confidence, in performing sensitivity analysis, all methods are

repeated n times (logically) with the dataset randomly permuted in each run.

3.5.7 Feature importance

A potent tool, for identifying the important features is sensitivity analysis.

Including Sobol, ML feature importance and permutation importance, its use in

this study will be explained in the following section.

Several methods are proposed for the aim of evaluating feature importance

[223] including correlation matrices, sensitivity analysis and ML-based methods.

The correlation matrix is typically presented as a heat map of Pearson correlation

values, and it calculates the linear correlation between features and the target.

The Sobol method aims to decide the dependency of variability in model

output upon each of the input features, either considering one variable or the

interaction between different elements. It should be noted that the Sobol analysis

does not intend to explore the cause of the input variability. It identifies the

contribution of any feature and their interactions to the overall model output

variance. The idea of this method is that the total unconditional variation of the

model output can be expressed as a sum of the variance contribution of first-order
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effects, Vi, second-order the interaction effects, Vij, third-order effects, etc.

V (Y ) =
∑
i

Vi +
∑
i

∑
j‘1

Vi,j + ... (3.11)

The total variance is then associated with the singular features and interactions

between them. The above phrase can be expressed as:

V (Y ) = VXi
(EX∼i

(Y |Xi)) + EXi
(VX∼i

(Y |Xi)) (3.12)

The first term denotes the model variance conditional on Xi (the first-order

effect of Xi) varying between zero and V (Y ). EX∼i
represents the mean of Y

calculated upon all values of the input matrix X while retaining Xi constant.

VXi
is computed over all possible values of Xi. By normalising with the total

variance of V (Y ), the first-order index for the ith feature can be written as:

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
(3.13)

In decision trees as RF and GBRT, the more a variable is utilised to make critical

determinations with the trees, the greater its relative importance. This value is

computed for each feature, enabling them to be ranked. The relative importance

is determined for a single tree considering the amount by which each split point

enhances the accuracy measure of the model. The average value of all importances

for an individual feature in all independent trees is calculated.

For a single decision tree, the importance for each variable Xl is calculated as

I2
l (T ) =

J−1∑
t=1

î2t I(v(t) = l) (3.14)
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The sum is calculated over J − 1 internal nodes at each tree, and one of the

features Xv(t) is utilised to split the region related to that node into two branches.

The single variable selected is the one that provides the most significant expected

improvement of î2t in squared error risk over that for a regular fit over the whole

branch. The average for all trees is defined as:

I2
l =

1

M

M∑
1

I2
l (Tm) (3.15)

To perform the permutation importance, a fully trained model is also required,

but a separate test-set is utilised to evaluate the significance of features. In this

method, each input variable is iteratively permuted, while keeping others

constant. This process is repeated until all features are investigated. The model

accuracy alteration due to shuffling of each variable is considered as its

importance. Although this technique is computationally expensive, it is a useful

complement of the ML importance method, especially in identifying inflated

values. Moreover, the sensitivity analysis provides beneficial information on how

the model predicts, making it less of a black box. In other words, it reveals

which variables play a more significant role in calculating the building energy

performance. Hence, this detail can be verified by comparison to the field of

knowledge. The influence of the retrofit strategies on the model can also be

conceded and substantiated with this method.

3.6 Validity and Reliability

It is essential to perform reliability and validity checks in both qualitative

and quantitative research for achieving confidence in the study findings. Validity

determines that the results are accurate and it measures the concept or outcome

that was expected. Reliability explains if there is consistency in the research
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approaches [224].

This study used an exhaustive literature review of energy performance

assessments and applications of ML techniques on building energy forecasting

and identified the enablers of and barriers to modelling non-domestic building

energy performance. Based on the findings from the review of seminal works,

the research questions and objectives were carefully defined. The research

methods and phases were designed in a way to satisfy the goals and answer the

questions.

In this study, three different datasets were utilised. Two of them were

employed in the investigation of the suitability of ML models and the proposal

of the smart ML optimisation method. These data sets were initially generated

for research purposes and validated by different studies. The results derived

using these sets were evaluated by arbnco specialists and professional reviewers

from Q1 journals. The other dataset was obtained from arbnco consultancy

platform and used for modelling non-domestic building energy performance.

The records were created by licenced energy assessors trained to collect

information about existing non-domestic properties for generating EPCs and

were assessed to ensure compliance with energy policies. However, thorough

data analysis under the supervision of arbnco building physicist and academic

experts was conducted in order to reject the records with the probability of

errors.

The performance of ML models was assessed using state-of-the-art statistical

modelling evaluation methods, including various accuracy measures and k-fold

cross-validations. The results from modelling the non-domestic building

emission rate (BER) were evaluated and confirmed by arbnco and DataLab
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Innovation Centre, who partly funded this study. Furthermore, the performance

of the developed model was validated by demonstrating the application on a

case study. To that end, an academic building was selected, and three thousand

variations were generated using GA to mimic a multi-objective optimisation

process. These modified building records were then assessed using the software

and the trained model. The energy performance prediction model development

aimed at supporting optimisation of building energy retrofit. In this application,

the optimisation algorithm generates variation of the intended building to be

evaluated for their energy performance. Here, the developed model is validated

by estimating retrofit versions of a building that are never seen by the model.

Therefore, the gaol of this analysis is to further investigate the stability and

generalization of machine learning (i.e. the training and testing the model is not

biased by the utilised dataset).

3.7 Ethical Data Collection

The data for UK non-domestic buildings is obtained from arbnco Ltd, and the

ethical approval was obtained through the Research and Knowledge Exchange

Services department at Strathclyde University, as part of a standard protocol of

the University for external collaborations.

3.8 Summary

This chapter provided an account of the main aspects of the research methods

utilised in this study, thus establishing the research paradigm of the present thesis.

In this chapter, the research methodology was elaborated by explaining various

processes and steps that were designed to conduct the study. The procedure for

evaluating non-domestic building performance regulated by the government was
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also demonstrated. Different ML techniques, the methods for assessing them and

the datasets adopted/generated were explained. The detail of each phase of the

study and the corresponding results are presented in chapters 4 to 6.
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Chapter 4

Machine Learning Models for

Prediction of Building Energy

Performance

4.1 Introduction

The use of ML models requires careful consideration of the accuracy and

appropriateness of the data and relationships inferred from the data. In this

phase of the study, the research examines a practical aspect of this approach:

selecting and tuning regression models for a given dataset. This means selecting

the model types, structures, and parameters most appropriate to the problem at

hand. As described in the literature review, most previous work in using ML

methods in building simulation either compares linear models with nonlinear

models or different types of nonlinear models (Chapter 2). In addition, previous
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works has usually only optimised a limited number of model parameters. The

selection of model parameters, however, determines the performance of a model

on a given dataset, and this performance varies from one dataset to another.

Thus, the previous work does not provide a complete evaluation of different

nonlinear models and does not provide sufficient guidance about model

selection. Hence, there is a lack of guidance on how to optimise or ‘tune’ models

to fit the problem at hand for the best predictive accuracy and consistency.

This chapter demonstrates the optimisation or selection of most proper

parameters for training an individual ML and lays out a framework for the

selection of the right ML algorithm considering training and prediction time

complexities and ease of use. It shows that the process of selecting a model

must account not just for predictive accuracy but also model complexity, ease of

use, and consistency of predictions.

4.2 Supervised Machine Learning Models

Different ML models were investigated for modelling building energy loads.

Established energy datasets were utilised, and the performance of optimised

models were compared with the seminal works. Sensitivity analysis was also

applied for the identification of important features where the input set was

logically large.

The study presented in this chapter used the datasets described by [175] and

[179] to demonstrate the performance of different candidate models. This phase,

lays out a widely-applicable approach to tuning ML models to building energy

data. Though the examples shown here are from simulators, the method is also

applicable to measured data.
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In this study five ML techniques as described in Section 3.5 including ANN,

SVM, GP, RF and GBRT were employed to emulate two BPS tools namely

EnergyPlus and Ecotect. A standard method that this part of study used to

select optimal hyper-parameters is a grid-search combined with k-fold

cross-validation. In this procedure, the data is divided into k exclusive subsets,

and each combination of model parameters and architecture is fitted to each

distinct group of k − 1 subsets and tested on the remaining subset. This process

provides a distribution of errors for a given model choice on different parts of

the dataset, i.e., an estimate of the general applicability of the model to

represent the variation in the dataset. Furthermore, different normalisations

such as standard, min-max and robust were applied to data before training

procedure. Robust scaler eliminates the median and normalises data according

to the inter-quartile range.

4.2.1 Models Hyper-parameters

Due to the nature of the datasets, a multilayer perception FFN was utilised in

this work. Her Keras package in Python was utilised. The ANN hyper-parameters

which go under optimisation are:

• Optimiser: the function that updates the weights and bias;

• Activation: a non-linear transformation function which is applied over the

input, and then the output is fed to the subsequent layer neurons as input.

An ANN without activation function will act as a linear regressor and may

fail to model complex systems;

• Initialisation: the initial values of weights before the optimiser is applied

for training;

• Epoch: the number of forward and backward passes for all samples of data;

• Batch size: specifies the number of samples that are propagated through
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the ANN training (i.e. the number of samples in one epoch);

• Dropout rate: dropout is a regularisation method for preventing ANN

from overfitting and creating more generalised model by randomly rejecting

some neurons during training. Droput rate determines the percentage of

randomly input exclusion at each layer;

• Size: number of neurons in each layer and number of layers.

As mentioned in the previous chapter, the number of parameters in SVM with

a Gaussian RBF kernel is few as two which are C and Gamma. Here, support

vector regressor from sklearn package was utilised.

For GP model three parameters were tuned: kernel, alpha (α) which is the

value added to the diagonal of the kernel matrix (equation 3.9) and the number

of restarts of the optimiser for discovering the parameters maximising the log-

marginal probability. Two combinations of white noise with RBF and Matern

covariance functions were used for GP model kernel. Matern kernel is denied as:

K(X,X ′) =
261− v

Γ(v)

(√
2v | x− x′ |

I

)v

Kv

(√
2v | x− x′ |

I

)
(4.1)

Here, Γ is the Gamma function andKv is the modified Bessel function the second-

order v [225]. GP implemented using GaussianProcessRegressor from sklearn

package.

Determining several hyper-parameters is a prerequisite to adopting RF. The

first parameter to determine here is the number of independent trees of the forest.

The precision of the model and training is always negatively related to predicting

computational complexity; therefore, an optimal model was achieved through

balancing these together. There are also other settings to be considered. This

includes the number of variables while seeking the best split, whether or not
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apply bootstrapping while creating independent trees, and a minimum number

of a data sample to split on nodes.

Most important parameters for optimising GBRT comprise learning rate (also

known as shrinkage) which is a weighting procedure to prevent over-fitting by

controlling the contribution of each tree, number of trees, maximum depth of

tree and the number of features for searching best division, and the minimum

number of data sample to split a node and required in each node. Moreover, the

sub-sample parameter defines the fraction of observation to be selected for each

tree.

Rather than conventional GBRT model the recently improved version known

as eXtreme Gradient Boosting (XGBoost) algorithm [226] was also evaluated

with similar parameters, but some differences. The minimum sum of instance

weight controls the generalisation similar to minimum sample split in GBRT.

The portion of columns when constructing each tree (colsample bytree) similar

to maximum features was also considered in the model optimisation. Both RF

and GBRT was implemented using ensemble package from sklearn, and XGBoost

from xgboost package.

4.3 Evaluation Methods

4.3.1 Performance Evaluation Measurements

Various measurements based on actual and predicted results are calculated

in order to evaluate the performance or accuracy of data-driven models. These

include Coefficient of Variance (CV), Mean Bias Error (MBE), Mean Squared

Error (MSE), Root Mean Squared Error (RMSE), Mean Squared Percentage

100



Chapter 4. ML Models for Building Energy Performance

error (MSPE), Mean Absolute Percentage Error (MAPE) and Mean Absolute

Error (MAE). CV is the variation of the overall prediction error concerning

actual mean values. MBE is used to determine the amount

over/underestimation of predictions. MSE and MSPE are good inductors of

estimation quality. MAE determines the average value of the errors in a set of

forecasts and MAPE is the percentage of error per prediction. RMSE has the

same unit of actual measurements. In this work, RMSE, MAE and the

coefficient of determination (R2) are used to present the accuracy of ML

models. R2 is the percentage variance in the dependent variable explained by

the independent ones. These values are calculated as follows:

RMSE =

√
1

N

∑
(yi − ŷ)2 (4.2)

MAE =
1

N

∑
| yi − ŷ | (4.3)

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

(4.4)

Here, y, ŷ and ȳ represent the real, estimated and average response values,

respectively.

4.4 Selected Datasets for Case Study

Two building datasets simulated using BPS tools were utilised. First data

contains 768 variations of a residential building obtained altering eight basic

envelope characteristic [179], and the second dataset includes various building

type represented by 28 envelope and climate features [227]. Each set and the

distribution of variables are presented in this section. The prediction targets for

both sets are heating and cooling loads.
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4.4.1 Ecotect Dataset

This dataset was developed by Tsanas et al. [179] and obtained from UCI

(University of California, Irvine) machine learning repository [228]. It includes 12

residential buildings types with the same volume (771.75m3) and varying envelope

features, outlined in Table 4.1. The materials were chosen to achieve the lowest

U-values based on availability in the market (walls: 1.78 m2K/W , floors: 0.86,

roofs: 0.50 and windows: 2.26). The window-to-floor ratio is varied from 0% to

40%. The glazing distribution on each façade has 6 variants: (0) uniform, with

25% glazing on each side; (1) 55% glazing on the north façade and 15% on the

rest; (2) 55% glazing on the east façade and 15% on the rest; (3) 55% glazing

on the south façade and 15% on the rest; (4) 55% glazing on the west façade

and 15% on the rest; and, (5) no glazing. All combinations were simulated using

Ecotect with weather data from Athens, Greece, and occupancy by seven people

conducting mostly sedentary activities. The ventilation was run in a mixed mode

with 95% efficiency and thermostat setpoint range of 19-24◦C. The operating

hours were set to 3 pm - 8 pm (15:00-20:00) for weekdays and 10 am - 3 pm

(10:00-15:00) for weekends. The lighting level was set to 300 lx.

Figure 4.1 illustrates the frequency of features as histogram graphs. The

correlation between each pair of input and target variables is demonstrated using

heatmap matrix in Figure 4.2.

4.4.2 EnergyPlus Dataset

This datasets consists of commercial and residential buildings and was

described by [227]. The original commercial building models were downloaded

from the US Department of Energy (USDOE) commercial reference building

models [229]. The commercial buildings set includes sixteen types of buildings
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Table 4.1: List of features that represent the characteristics of residential
buildings for prediction of energy loads

Feature Unit Range Variation Code

Inputs
Relative compactness - 0.62 – 0.98 12 rc
Surface area m2 514 – 808 12 sa
Wall area m2 245 – 416 7 wa
Roof area m2 110 – 220 4 ra
Overall height m 3.5, 7 2 oh
Orientation - 2 – 5 4 ori
Glazing area m2 0 – 0.4 4 glza
Glazing area distribution 0 – 5 6 glzd

Targets
Heating load KWh/m2 6 – 43 - heat
Cooling load KWh/m2 10 – 48 - cool

classified into eight overall groups based on usage. Table 4.2 presents the

building types which are considered in the simulations and the frequency of

each with unique features. For each subtype, there are three variations for

envelope construction: pre-1980, post-1980, and new construction. Each usage

type has the same form, area and operation schedules. The residential buildings

were described by [230]. Variation in the outputs was also introduced by

considering several years of historical weather data from many climates

(weather stations) and augmenting this data with synthetic weather generated

for some climates [227].

This study used the same regression inputs as originally proposed in [231]

as presented in Table 4.3. They describe the feature selection as being based on

correlation estimation and Principal Component Analysis (PCA). There are three

kinds of input variables: climate, building, or mixed. The climate variables were

extracted from one year of weather data only and are independent of the buildings

simulated. The building features are related to the physical characteristics of the
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Figure 4.1: Distribution of features for Ecotect data.

building envelope and independent of the climate. These inputs were chosen

on the basis of impact on the heating and cooling loads and calculated from

geometry, material and structure properties. The mixed parameters represent

the interactions between weather and buildings. An input that does not belong

to any of these categories, the internal heat gain, was also included to represent

the impact of human behaviour.
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Table 4.2: Frequency and size of building types in EnergyPlus data

Building
Usage Type Area

(m2)
Volume
(m3)

No. of
E+
zones

No. of
samples

Health Hospital 22,422 88,864 55 3,827
Outpatient 3,804 11,932 118 5504

Home
Mid-rise
Apartment 3,135 9,553 36 37,173

Single
Family 78,532

Hotel Large 11,345 35,185 43 5,504
Small 4,014 11,622 67 5,468

Office
Large 46,320 178,146 73 275,345
Medium 5,503 4,982 18 19,741
Small 511 1,559 5 5,483

Restaurant Full Service 5,502 55,035 2 3,824
Quick
Service 232 708 2 5,505

Retail
Stand Alone 2,294 13,993 5 5,503
Strip_Mall 2,090 10,831 10 5,498

Supermarket 45,002 900,272 6 5,554

School Primary 6,871 27,484 25 5,505
Secondary 19,592 95,216 46 5,507

Warehouse – 4,835 39,241 3 5,492
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Figure 4.2: Ecotect data features correlation map.

Figure 4.3 illustrates the frequency of features as histogram graphs for

EnergyPlus dataset. It can be seen that the each variable is relatively

distributed over the possible predefined values. The correlation heat-map

matrix presented in Figure 4.4 shows the independency of different features

especially building physics related ones from each other.

4.5 Comparison of Models Accuracy

All models were implemented using Python programming language and tests

were carried out on a PC with Intel Core i7-6700 3.4GHz CPU, 32GB RAM.
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Table 4.3: List of EnrgyPlus features extracted for model training

GroupQTY
Stats

Description Range Code Unit

B
ui
ld
in
g

U-
value

A
ve
ra
ge Average U-value of

envelope 0.14–
6.06

uval
W/m2K

Thermal
Mass Su

m Sum of thermal
storage capacity 1e-4–

7.61
tmass

MWh/K

Envelope
Ratios R

at
io Ratio of window

area to wall area 0.58–
85.00

wwr -

Ratio of window
area to floor area 0.01–

0.42
wfr -

Massing R
at
io

Form Factor
(Volume / Wall
Area)

2.47–
17.14

ff -

Roof Ratio (Roof
/ Wall Area) 0.31–

2.73
rr -

M
ix
ed

Shading

A
ve
ra
ge Average sunlit

percentage of
envelope

0.35–
100

avgsunperc%

Infiltration Su
m

Annual sum of
energy gained due
to infiltration

0–0.74 suminfgain
GWh

Annual sum of
energy lost due to
infiltration

-2.7– -
1e-4

suminfloss

Other Su
m Annual sum of

Internal Heat Gain 0.03–
5.24

sumIHGGWh

The stated goal of this phase was to highlight the importance of tuning

nonlinear regression models (ML models) to achieve the best predictive

performance for a given use case. To put this work in context, it is worth noting

the results from the original studies that introduced the datasets used

here [175, 179]. Tsansa et al. [179] reported RMSEs of 1.014 and 2.567 for
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Table 4.3 (cont.): List of EnrgyPlus features extracted for model training.

Grp QTY
Stats

Name Range Code
Unit

C
lim

at
e

Degree
Days

Su
m

Annual sum of cooling degree days (9.6–
160)e4 cdd

C
-d
ay

Annual sum of heating degree
days 424–64878 hdd

Dry Bulb
Temp
(Hourly)

A
vg

. Annual average of dry bulb
temperature

-3.11–
28.39 avgtdb

C

M
ed
ia
n

Median dry bulb temperature -7.20–30 medtdb

IQ
R Inter-quartile range of dry bulb

Temp 3.6–34 iqrtdb

Dry
Point
Temp
(Hourly)

A
vg

. Annual average of dry point
temperature

-7.41–
21.43 avgtdp

C

M
ed
ia
n

Median dew point temperature -6.4–24.2 medtdp

IQ
R Inter-quartile range of dew point

temperature 0–26.8 iqrtdp

Global
Horizontal
Irradiation
(Hourly)

A
vg

. Annual average of global
horizontal irradiation 190–509 avghi

M
W

h
/m

2

Su
m Annual sum of global horizontal

irradiation 0.40–2.23 sumghi

IQ
R Inter-quartile range of global

horizontal irradiation
(0.84–
5.2)e-3 iqrghi

Direct
Normal
Irradiation
(Hourly)

A
vg

. Annual average of direct normal
irradiation 57–676 avgdni

M
W

h
/m

2

Su
m Annual sum of direct normal

irradiation
-10.34–
3.15 sumdni

IQ
R Inter-quartile range of direct

normal irradiation
(0.38–
26.3)e-4 iqrdni

Humidity
(Hourly) A

vg
. Annual average of relative

humidity 22–98 avrh %

M
ed

ia
n

Median relative humidity 18–99.6 medrh
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Figure 4.3: Distribution of features for EnergyPlus data.

heating and cooling loads, respectively. The best RF model in this work

achieved 0.476 and 1.585 for the same variants, a roughly 40% improvement in

accuracy in term of RMSE (kWh/m2). Rastogi et al. [175] reported an error of

10-15 kWh/m2 on the EnergyPlus dataset while this research achieved 6-10
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Figure 4.3 (cont.): Distribution of features for EnergyPlus data.

kWh/m2. Tables 4.4 and 4.5 give an overview of results for the Ecotect and

EnergyPlus datasets, respectively. The detail result of tuning models is

presented in Appendix B.

The tables contain Coefficients of Determination (R2), RMSE, MAE, fit

time, test time, and number of parameters for the best combination of

hyper-parameters; the average fitting time of all tested models; and the total
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Figure 4.4: EnergyPlus data features correlation map.

number of iterations for comparison of time complexity. Here, the test time is

the average of predictions of all folds (192 data points per fold for Ecotect and

1,000 for Energy Plus). For EnergyPlus data, GP was excluded from the

comparison because the training time was extremely high for large datasets.

This study at this step tuned all models separately for heating and cooling

loads. It was ascertained that none of the techniques obtained the best

accuracies for both target values using the same combination of

hyper-parameters. This inconsistency indicates that the importance of input

variables as well as the corresponding weights are different.
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Though the datasets were drawn from different simulators, similarities in the

performance of the models did emerge. The lowest RMSE for both heating and

cooling loads was achieved by XGBoost, followed by GBRT and RF. These

models are all based on decision trees, but unlike RF the other two do not build

independent trees. Hence, they train models slightly faster than RF.

Considering prediction time in addition to accuracy, however, GBRT is slightly

faster than XGBoost but has comparable accuracy. The NN models tend to

have the fastest prediction times, which might make them more appropriate for

applications requiring very large numbers of simulation estimates. For example,

optimising many building parameters, each with several possible choices, under

a sample of uncertain operating conditions, such as the problem described

in [175]. This work found that GP is the slowest and least accurate model. This

is partially due to the challenge of using large datasets with GP regression;

since the time complexity of GP is O(N3) (where N is the number of data

points used for training/fitting), the training speed is not comparable with

other ML models and inversion of matrices of size {N,N} is unfeasible for large

N . Thus, studies using GP have used small datasets, usually less than a few

thousand [103, 170, 172, 173, 175, 176]. However, since GP regression allows for

the automatic estimation of prediction uncertainty, it is useful in some cases.

An example is the estimation of summary statistics, where it is more

informative to know the uncertainty of, e.g., annual heating and cooling loads,

rather than just a point estimate. Although all models predict the energy loads

with high accuracy, the use case should determine the most appropriate model.

For example, increasing the number of records (size of training data), the fitting

and forecasting time of SVM rises significantly. The training size of NN is

slightly increased as well, but it is still the fastest predictor by a considerable

margin (10-20 times faster). GBRT and its variant XGBoost achieved the best

RMSE. However, the increased accuracy and sophistication of models like NN
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and XGBoost comes with the penalty of requiring very large training datasets

(e.g., the 25,000 simulations used here). This could be an issue where a model

has to be trained on the fly, i.e., where simulating 25,000 distinct cases to train

an accurate model is prohibitively expensive. As expected, using more data to

fit a model increases the predictive accuracy of all models, such that complex

models with more parameters lose out to simpler models that have seen more

data, provided the simpler models can use the additional data available. In

summary, where sufficient training data is available and the testing or use cases

are not too dissimilar from the training data, the use of models such as GBRT

and NN improves accuracy. Where training data is harder to generate, or a

model must be trained on the fly with a small dataset, techniques such as GP

provide adequate predictions.

4.6 Performance of the Best Model

The performance characteristics of the best models for each dataset is now

discussed. The results are illustrated using two kinds of plots: predicted

(estimated) loads (ŷ) against loads from the simulator (y), and the distribution

of errors between simulated-predicted pairs (ŷ − y). Figures 4.5 and 4.6 show

the values predicted by tuned GBRT models against their corresponding

simulated heating and cooling loads for the Ecotect and EnergyPlus datasets,

respectively. The error distributions of these estimations are given in Figure 4.7

and 4.8 with a red dashed line representing a theoretical normal PDF with the

same parameters.
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(a)

(b)

Figure 4.5: Actual and predicted (a) heating and (b) cooling loads of EnergyPlus
dataset.
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(a)

(b)

Figure 4.6: Actual and predicted (a) heating and (b) cooling loads of Ecotect
dataset using GBRT model.
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(a)

(b)

Figure 4.7: Error distribution of (a) heating and (b) cooling loads prediction for
EnergyPlus dataset.
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(a)

(b)

Figure 4.8: Error distribution of (a) heating and (b) cooling loads prediction for
Ecotect dataset.
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4.6.1 Effect of Increasing Size of Training Data

Given that using large datasets for training seems to improve the predictive

accuracy of all models, the research investigated the effect of increasing the size of

the training dataset on accuracy. Figure 4.9 shows RMSE versus size of training

dataset for the GBRT model. A 10 fold cross-validation was used to obtain the

worst, best and mean RMSE over all folds. Mean training time is also displayed as

the top axis to show computational cost. Although the best result was obtained

by the highest number of samples tested, 25,000 is enough to build a reliable

model considering the fitting time and error gap. At this point, the mean RMSE

is equal to 7.770 kWh/m2 and time required to fit the model is 66.02 seconds.

On the other hand, using 400,000 samples and fitting over 2600 seconds, mean

RMSE only goes down to 2.338 kWh/m2 (4% of average heating loads).

4.7 Feature Selection and Importance

To emphasise the importance of features in predicting different loads, this

section presents a sensitivity analysis using two approaches. First, it presents the

feature importance calculated by the RF models. RF creates many decision trees

and the amount of weighted variance explained by each feature can be calculated

for each tree. For a forest, the variance explained by each feature can be averaged

and the features ranked according to this measure. Here, the research trained

30 RF models using 100,000 randomly selected samples to obtain an empirical

distribution of feature importance, shown in Figure 4.10.

The study used a global variance-based method called the Sobol

method [232, 233]. Unlike RF, GBRT does not generate unique trees. Rather,

each trees is correlated to the last. To facilitate a comparison, this work fitted

119



Chapter 4. ML Models for Building Energy Performance

Figure 4.9: RMSE for heating load against number of total number of samples
used for training.

30 different models and used them to evaluate the 150,000 samples generated by

the algorithm. The Sobol first-order indices of features is illustrated in Figure

4.11. It can be seen that the importance of features to this method is less stable

in Sobol than RF. However, since it is calculated directly from the original data,

it is more representative of the features of the dataset itself.

For a final test, the effect of dropping variable that the model does not deem

to be important was examined. Based on the results of the Sobol comparison, the

following features are identified to drop: ‘avrh’, ‘avdni’, ‘iqrdni’, ‘iqrghi’, ‘medrh’,

‘sumdni’ for both loads, and ‘avghi’, ‘sumghi’ for cooling only. All of the dropped

variables are climate-related, which implies that there may be too many variables
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(a)

(b)

Figure 4.10: Importance of features for (a) heating and (b) cooling loads
prediction using RF model.
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(a)

(b)

Figure 4.11: Sobol first-order indices of features in predicting (a) heating and (b)
cooling loads using best ML model.
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used to explain variance due to climate.

The GBRT with fewer features was also trained and tested over 10 folds

with 25,000 random samples. The results of training a model with a reduced

feature set is compared with using the full set of features in Table 4.6. It can

be seen that removing features to which the model is apparently insensitive does

not negatively affect the model performance. However, the time complexity of

training model is reduced due to a reduction in the size of the dataset. Given that

this result applies only to this dataset and cannot be generalised to all buildings or

EnergyPlus simulations, this is not a repeatable result unless there is a confidence

that the dataset used for training represents the use case or problem completely.

Table 4.6: Performance comparison of ML models with full and reduced feature
sets determined by sensitivity analysis.

Heating Load Cooling Load

All inputs Selected
inputs All inputs Selected

inputs

RMSE 7.871 7.648 4.455 4.384
MAE 2.127 2.085 2.314 2.310
R2 0.991 0.991 0.993 9.993
Fit time
(s) 61.621 48.420 9.387 7.700

Test time
(s) 0.642 0.622 0.151 0.145

4.8 Summary

This chapter elaborated Phase 2 of the study which addressed the gap in

using ML methods (part of RQ1) for estimating building energy loads through

a comprehensive study of common ML methods fitting over energy simulation

data. As became evident in Chapter 2, despite the wide usage of MLs in this

field, a conclusion on selecting the right model for the energy prediction was not
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possible. The main reason is that most of the research works have focused on the

first eminent part of statistical modelling which is features selection. The chapter

covered Objective 2 of the study by investigating ML techniques to facilitate the

model selection procedure.

This chapter discussed the importance of ML model optimisation in providing

a fair comparison of different methods in term of accuracy, the simplicity of

tuning and training and response times of model. This research optimised the

hyper-parameters of each model for both heating and cooling loads to obtain the

best precision. It was also indicated that when there are two energy indices as

cooling and heating loads to be estimated by model, it is desired to optimise and

train separate machines. To that end, the role of ML model in recognising most

impacting factor in prediction of building loads was also investigated. The other

key outcome of the stage presented in this chapter was a set of recommendations

for the quick selection of ML model based on the data and usage.

It was ascertained that the standard and advanced GBRTs provide the most

accurate predictions, considering the RMSE value. However, when the data was

simple (in term of input variables and size), SVM was proven to be the best choice

because of simplicity and the speed of calculations. The results also ascertained

that for complex data sets, multi-layer NNs are more appropriate when there is

a massive demand for ever-more energy simulations. In this case, NN was proven

to be capable of estimating incredibly faster than other MLs methods. It should

be noted that NN is complicated, and requires an expert to particularly tune it

for each studied case; otherwise, NNs could fail quickly.

Comparison of tuned models with previous studies highlighted the

importance of determining the hyper-parameters for each data set, and the fact
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that this can become more crucial by increasing the size and intricacy of the

examinations set. By fitting individual models for heating and cooling loads, it

was shown that one assorted set of model parameters could not accurately

estimate both values. Therefore, unlike previous studies, it is recommended by

this work to train models for each energy load independently, unless a method

for optimising a model with two targets are utilised. The other approach would

be the implementation of a specific sorting algorithm to find balanced values.

As results signified, it is suggested to attain a higher accuracy feeding the

machines with more number of instances is essential. It might not be a solution

for measured historical data; however further simulation using various values of

inputs could be aggregated during the design stage prior to optimising the

building. Another identified critical factor was that the features must be

thoroughly selected/created for representing building characteristics and needs

should be appropriately investigated before developing models.

The findings of this study in the second stage concurred with the seminal

literature by demonstrating the fact that MLs techniques are overtly superior

over the conventional statistical and engineering methods in building energy

calculation. This study also revealed the further power of those ML methods

and newly developed ones when they thoroughly optimised. There are several

ready to use software packages (e.g. Matlab) providing various ML methods

with few parameters to modify. Nevertheless, it is advisable to use simpler

models like SVM or RF with an advanced programming language, such as

Python and R.

Finally, the most important features was recognised using sensitivity analysis

methods, and the investigation of the model with reduced dimension revealed that

even though the computational cost of building model is reduced, the performance
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didn’t alter. This analysis demonstrated the capability of MLs in eliminating

inessential input parameters, while most statistical methods are susceptible to

these type of features.

The methods discussed in this phase proved the efficiency of ML models in

predicting building energy loads as well as performance. The fast and accurate

calculation of those values paves pathways for more informed and productive

design decisions for built environments. Furthermore, along with the optimisation

algorithms, ML seems as a promising solution for efficacious retrofit planning of

complex buildings, where engineers are not capable of massive calculations.
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Chapter 5

Multi-Objective Optimisation for

Accelerating Machine Learning

Modelling for Predicting Building

Energy Performance

5.1 Introduction

As indicated in Chapter 2, ML techniques have been widely used for modelling

building energy loads and performance, however, the default values for hyper-

parameters have been used in this field. In Chapter 4, it was demonstrated that

tuning ML models can significantly increase their accuracy.

Simple models with few parameters like SVM are easy to optimise, but when
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the number of hyper-parameters is increased the search space grows

exponentially. For example, to tune an RF with six parameters, a grid-search

will explore more than four thousands possible configurations. That is why

traditionally, the researchers mostly relied on default values for those

hyper-parameters. However, such models provide far more accurate results by

precisely tuning in comparison with SVM or Gaussian process regression.

Forecasting two or more building energy measures such as heating and cooling

loads simultaneously requires even more expertise and investigation. The use of

complex model and grid-search for such applications is not a viable solution,

due to the complexity in processing time as well as the selection of the ideal

model. This chapter elaborates Phase 3 of this study which outlines a detailed

method to train one single model for prediction of both heating and cooling

loads of buildings and maximise the ML model’s efficiency. The method not

only accelerates the ML optimisation process, but also provide fine-tuning of the

model as the hyper-parameters aren’t selected from predefined discrete values,

but smartly from a given continues space. Though the demonstration presented

here are from simulated data, the approach is also applicable to measured energy

data.

In the proposed method in this stage, evolutionary-based multi-objective

optimisation (MOO) algorithm was employed to smartly explore the ML

model’s configuration parameters space and suggest a set of packages for

maximising ML accuracy for both heating and cooling load predictions. Here,

despite the recommendations from Chapter 4 an RF model is employed because

a Python implementation is capable of providing the multivariate forecasting.

The study utilises simulated building energy data generated in EnergyPlus (th

same dataset introduced in Section 4.4.2 is utilised.) to validate the proposed
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method, and compares the outcomes with the regular ML tuning procedure

(presented in Chapter 4).

5.2 Optimisation Based on Evolutionary

Algorithms

In traditional grid-search method, a specified set of possible values for each

parameter is required. However, evolutionary algorithms are able to select the

values from a determined continuous space or a discrete set.

In the proposed method, a MOO technique is utilised to exploit genetic

algorithm in the optimisation of ML models for prediction of heating and

cooling loads of buildings. Figure 5.1 demonstrates the proposed optimisation

procedure for selecting the best hyper-parameters. Here, the ML parameters are

defined as the MOO variables to generate several sets with which ML model

accuracy is maximised for forecasting both energy loads. Most implementations

of the established ML models such as NN and RF support the concurrent

prediction of multiple targets. However, choosing a set of hyper-parameters

might improve the prediction accuracy of one target but less the accuracy of the

other objective function.

In the proposed approach, the ML algorithm parameters are given to the

evolutionary algorithm as continuous spaces based on knowledge on the algorithm

functioning. First, MOO is initiated with pre-set values (in this study, default

values suggested by the Python library were used) to create a model. This is

evaluated using a 10-fold cross validation method. In this approach, the dataset

is divided into 10 equal segments. Then a model is trained using 9 parts and
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tested on the remaining one, and this procedure is repeated until the accuracy

of the model is assessed covering all parts. Finally, the average values of the

model performance (e.g. mean absolute error) of all 10 folds is sent to the MOO.

It continues generating new samples and evaluating models until it reaches 500

iterations.

Figure 5.1: Schematic diagram of the proposed ML optimisation method.

5.2.1 Multi-Objective Optimisation

There are several tuning methods for optimising the MLs for accurate

predictions. These approaches include grid and random search techniques,

evolutionary algorithms or Bayesian optimisation. Generally, these methods are

applied to optimise a single objective criterion. However, in applications where
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two or more objective functions (i.e. heating and cooling loads) are optimised,

those approaches are not adequate to designate the behaviour of the ML, and

the Pareto front of multiple criteria has to be considered. Usually, for each

objective, an ML is independently tuned to get the best hyper-parameters, and

the most accurate model and its configuration are selected eventually. The main

disadvantage of this strategy is the high time-complexity of tuning the separate

models. This research at this stage proposes a MOO method for automated

hyper-parameter selection in modelling the heating and cooling loads of a

building. The proposed method reduces the time required for tuning, speeds up

the model predictions and decreases human effort for implementing ML.

The general MOO problem is presented mathematically as: Minimise:

F (x̂) = [f1(x̂), f2(x̂), · · · , fm(x̂)]T (5.1)

Subject to:

g(x̂) ≤ 0

h(x̂) = 0

where

xmini ≤ xi ≤ xmaxi (i = 1, 2, · · · , n)

x = [x1, x2, · · · , xn]T ∈ Θ

y = [y1, y2, · · · , yn]T ∈ Ψ

Here m is the number of objective functions which is three in this case. Θ is

the search space with n dimensions and identified by upper and lower bounds of
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decision variables xi(i = 1, 2, · · · , n).

xmax = [xmax1 , xmax2 , · · · , xmaxn ]T (5.2)

xmin = [xmin1 , xmin2 , · · · , xminn ]T (5.3)

Ψ is an m-dimensional vector space of objective functions and defined by Θ

and the objective function f(x) · gj(~x) ≤ 0(j = 1, 2, · · · , p) and h (~x) = 0(j =

1, 2, · · · , q) denotes p and q which are respectively the number of inequality and

equality constraints. If both p and q are equal to zero, then the problem is

simplified as an unconstrained optimisation problem.

Figure 5.2 shows a hypothetical Pareto frontier for the optimisation of two

objective functions which are energy loads estimation errors. These solutions

(set of ML hyper-parameters) have been enclosed by a vector of an ideal solution

and a vector of dominated results, delimiting the upper and the lower borders

of optimal packages. An ideal or utopia point is a theoretical notion relative

to an ideal target in which each objective is optimised without paying attention

to the satisfaction of the others. MOO tries to produce solutions as close to

the Pareto optimal front with a possible uniform distribution. When the non-

dominated solutions are recognised, decision-makers choose one as a final answer

in accordance with the problem and individual preferences.

The tuning method used in this study involves an improved multi-objective

genetic algorithm (NSGA-II) [234]. Genetic algorithm is initiated by randomly

generated solutions as a population and sorts them into fronts based on non-

domination criteria. These solutions are evolved from one generation to another

based on the objective evaluation, selection, crossover and mutation operators.
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Figure 5.2: An example Pareto frontier of minimising errors in heating and cooling
loads predictions.

5.2.2 Evaluation Criteria and Optimisation Variables

The objective functions for the optimisation problem in this study are

accuracy of the model (i.e. RMSE) for prediction of both heating and cooling

loads. To this end, model accuracy for both loads is calculated by comparison of

predicted and actual values. Each model was evaluated using k-fold

cross-validation in which the accuracy of each fold was calculated as RMSE of

the prediction test set. The average RMSE value of heating and cooling loads in

all folds was computed and regarded as the final value for the objective

functions.

When the MOO algorithm generates a population, each solution contains a
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set of RF parameters. Table 5.1 summarises these variables and presents the

range of values defined to the optimisation algorithm.

Table 5.1: List of RF parameters which are considered as MOO variables

Parameter Description Type Values

n_еstimator Count of independent trees in the
formation of the forest Integеr 200 –

1200

max_fеatures Count of input variables in
creating each independent tree Catеgory 26, 5

max_dеpth The maximum dеpth of thе tree Intеger 10 –
100

min_samplеs
_split

The minimum samples in splitting
an intеrnal node Integеr 2 – 10

min_samplеs
_leaf

The minimum number of samples
required to be at a leaf node Integеr 1 – 10

bootstrap
Whether or not to apply
bootstrapping samples while
generating the trees

Boolеan True,
False

5.3 Performance of Intelligent Tuning Method

This study used Python programming language and packages for

implementing the proposed algorithms. The study used a PC with Intel Core

i7-6700 3.4GHz CPU, 32GB RAM (with no utilisation of GPU processing) for

running the experiments.

Using conventional grid-search method requires further investigation to decide

the topmost hyper-parameters for the ML model. Besides, the existing solutions

are not developed to calculate the accuracy of predicting multiple targets. Hence,

a custom function is needed to perform the task. The proposed method generated

non-dominating solutions in which models accuracy in estimating heating and

cooling loads were the highest. Furthermore, in a grid-search, it is not possible to

search every potential value for the parameters in the grid due to the size of the
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vast search space. Therefore, as the hyper-parameters are discretely introduced

to the grid, the chance of success of the optimisation algorithm, which smartly

selects the values from predefined intervals is higher to build a model with more

reliable accuracy.

Figure 5.3 demonstrates the top 5 solutions, the ML parameters and models

accuracies for heating and cooling loads in terms of RMSE. These are the non-

domination packages as outcomes of applying MOO on tuning the RF model.

Among those, the two closest solutions to the utopian point are S4 and S5. The

number of trees in S4 is lower than S5 resulting in faster training and predictions.

As such, S4 was suggested as the final set of parameters for modelling energy loads

of the selected building dataset.

Figure 5.3: Top solutions provided by MOO for predicting heating and cooling
loads of buildings.
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Performance of the selected model was tested using a 10-fold cross-validation

over 5,000 randomly selected samples. The results, along with the results from

Grid search, and the original study are summarised in Table 5.2. It can be seen

that the selection of the right ML model and optimising the parameters using

a Grid search method, the accuracy of predicting energy loads is considerably

increased. The proposed MOO approach not only reduces the tuning time but

also improves the performance of the models by precise tuning. The selection of

1,500 as the number of evolutionary algorithm iterations was based on a rule of

thumb while the best model was identified at the 879th iteration.

Table 5.2: Results comparison of the proposed method, grid-search and the
original study

Best RMSE Complexity

Method Heating Cooling No. of Iterations Tuning time (h)

Moo 12.56 9.28 1,500 79
Grid-search 12.72 9.4 7,000 349
Original Study [175] 25.05 12.84 Using 4,000 random samples and

Gaussian Process Regression

5.4 Evaluation of the Trained Model

To illustrate the effect of data size on the accuracy of supervised models,

RMSE was plotted versus the number of training and test records forecasting

heating and cooling loads of EnergyPlus data which is depicted in Figure 5.4. To

evaluate the accuracy and generalisation of RF model in predicting energy loads,

the 10-fold cross-validation method was also utilised. The prediction confidence

intervals, which are maximum and minimum values of all folds along with the

mean value, are illustrated in Figure 5.4. Figure 5.5 shows the average training

and testing times versus the number of records.
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(a)

(b)

Figure 5.4: RMSE of predicting (a) heating and (b) cooling loads by varying the
number of total number of samples used for training
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Figure 5.5: Average training and testing time of energy loads models the versus
number of records.

From two figures, it can be seen that there is a trade-off between accuracy

and time complexity of the model. However, the results indicate that the sample

size of 45,000 is sufficient for training a dependable model. With that record

size, the model which was trained and tested at an average of 64.14 and 0.51

seconds achieved the RMSE of 6.97 and 4.61 kWh/m2 for heating and cooling

loads, respectively. It should be noted that this testing time was spent for the

forecasting of 4,500 samples. This figure denotes that the model has the capability

of processing 8,8000 building records in one second.

The calculated confidence intervals at that point, assure building a reliable

model not only because of the narrow band but also due to the fact that the data

covers the space of possible values of the selected features for the building design.

Moreover, the use of 10-fold cross-validation and a random selection of records
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grantee a fair test procedure. Therefore, the upper bound of the RMSE in the

presented graph could be considered as models’ worst performance.

To show the model performance using the full capacity of generated data,

400,000 records were fitted into a model in 6672 seconds achieving the accuracy

of 2.78 and 2.12 kWh/m2 for heating and cooling loads (4% of mean energy load

values). Figure 5.6 shows the predicted (model estimation) vs actual (simulated)

values of energy loads testing over 30,000 buildings. The error distributions are

illustrated in Figure 5.7.

5.5 Feature Space Reduction

Due to the nature of RF models in training independent trees in which

different feature set is selected, they are able to determine input variables

importance in target estimation. This competency provides useful information

in the analysis of the studied system. In this study, 30 RF models were fitted

over 100,000 random building samples to generate a better empirical

distribution of feature importance. Figure 5.8 illustrates the results of the

sensitivity analysis of these RF models, which were configured based on the

MOO algorithm outputs (best hyper-parameters set).

In comparison with the results from training two different models for each of

heating and cooling loads (Chapter 4), it can be seen the important features in

the model is a combination of those in two separate models (refer to Section

4.7). Moreover, the results indicated that prediction of heating loads mostly rely

on building characteristics while cooling load forecasting depends on weather

features. Here, the unimportant variables are ‘аvrh’, ‘аvdni’, ‘iqrdni’, ‘iqrghi’,

‘mеdrh’, ‘sumdni’, however, ‘аvghi’ and ‘sumghi’, which had an insignificant
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(a)

(b)

Figure 5.6: Actual and predicted (a) heating and (b) cooling using single
optimised model.
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(a)

(b)

Figure 5.7: Error distribution of (a) heating and (b) cooling loads prediction.
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Figure 5.8: Importance of features for energy loads prediction using RF model.

impact on modelling cooling loads still play a considerable role in this model.

Although the advanced machine learning can ignore unimportant features

despite the traditional statistical modelling, removing those from the data can

reduce the model time complexity and slightly increase the accuracy. Table 5.3

presents the results of testing the model by removing the identified features. It

can be seen that the RMSE fluctuations of the folds are also reduced compared

to the original model.

5.6 Summary

This chapter detailed Phase 3 of the study which addressed the issues

regarding inaccurate modelling of building energy loads using ML techniques

(RQ2). The latest attempt to enhance the performance of those ML models as

shown in Chapter 4, included exhaustive exploration of variable parameters to
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Table 5.3: Performance comparison of ML models including all features and
removing unimportant ones.

Parameters All inputs Selected inputs

Heating Cooling Heating Cooling

RMSE (kWh/m2) 6.97±3.29 4.61±2.02 6.19±1.55 4.48±1.64
MAE (kWh/m2) 2.54 2.36 2.44 2.22
R2 0.992 0.993 0.993 9.993
Fit time (s) 64.16 57.12
Test time (s) 0.51 0.49

choose the best performing model. To achieve Objective 4, this phase has

proposed a method based on MOO to expedite the process of selecting

hyper-parameters, and simultaneously to optimise one single model for

forecasting both heating and cooling loads. The main advantages of this

method over traditional approaches include a reduction in the time complexity

of creating reliable models and improvements in the accuracy of predictions by

fine-tuning of the ML models. The method at each step of Genetic evolution,

precisely selects/mutates model parameters, in contrast with the traditional

approach where the parameters are defined based on the experience. The

proposed approach was evaluated by implementing the random forest decision

tree algorithm and testing the accuracy over a building data which was

simulated using EnergyPlus. The effectiveness of the proposed approach was

demonstrated through comparisons with conventional grid-search methods and

traditional statistical modelling.

The finding of the study at this step revealed the potential of combining ML

and AI optimisation (i.e. evolutionary MOO algorithm) for developing building

energy models. By the increase in the amount of data, it is possible to generate

more accurate models, however, handling big data and iterative training such

massive data becomes cumbersome. Hence, the application of smart evolutionary
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algorithms becomes essential in dealing with complex data such as non-domestic

buildings.

The next chapter is dedicated to describing the final phase of this study

which is modelling non-domestic building energy performance, considering the

recommendations from this chapter as well as Chapters 2 and 4 . After

extracting the desired set of features, a GBRT model will be trained and

optimised using state-of-the-art evolutionary algorithms to support

decision-making in retrofit planning.
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Modelling Energy Performance of

Non-Domestic Buildings

6.1 Introduction

Chapter 6 elaborates the last phase of the study, which develops an energy

performance prediction model for the UK non-domestic buildings with the aid

of ML techniques. The aim of the ML model is to provide a rapid energy

performance calculation engine for assisting multi-objective optimisation of

energy retrofit planning. The study in this phase lays out the process of model

development from the investigation of requirements and feature extraction to

the application on a case study. It also employs sensitivity analysis methods to

evaluate the effectiveness of the feature set in covering retrofit technologies. The

ML model is tuned using advanced evolutionary algorithms to reach its highest

potential. The optimised model provides a robust and reliable tool for building

engineers enabling them to enlarge the space of the possible technologies.
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6.2 Building Energy Performance Modelling

Phases 2 and 3 of this study, which were elaborated in Chapters 4 and 5

proposed an appropriate ML model for building energy modelling and an

intelligent approach to optimise the developed model. They also outlined

recommendations on developing a feature set and analysis of their impact on

the model. Based on the findings from previous phases, Figure 6.1 illustrates

the procedure of research in the final stage.

Modelling whole building energy consumption or performance is more

complicated than forecasting the loads for a single building, as it requires details

of building characteristics rather than weather or occupancy information (refer

to Chapter 2, Section 2.4).

Before applying an ML, it is required to transform the building raw data to

a form to be amenable to learning. This procedure includes extracting

meaningful input variables (features) from the available data. Each application

requires specific considerations when applying this transformation. As the aim

of this study was to provide a fast energy efficiency estimation tool for retrofit

planning applications, it was essential to take all the available retrofit

technologies into account. Hence, not only the model should produce accurate

energy performance predictions, but also the effect of an alteration due to a

single building upgrade should be considered. The features could be numeric or

categorical, however, categorical variables are not preferable as they have to be

converted to several binary variables which increases the feature space and

consequently the time complexity.

146



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Figure 6.1: Specific setting and environment of the conducted usability tests.

When the features are selected, all data is transferred to the ML space. At

this step training ML models is essential to evaluate the accuracy of predictions

using the selected set of variables. Machine learning requires a reasonable amount

of data, the more precise data, the more accurate the model. .
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Based on the finding from phase 2, GBRT was selected as the main ML

algorithm to train the model, however, in the preliminary steps of extracting

features SVM was utilised. This research used Sequential Model-based Algorithm

Configuration (SMAC) [235] for smart optimisation of the GBRT models.

6.3 Energy Performance Calculation

Building energy performance benchmarking has existed since the 1980s.

Traditionally, these standards have provided the quality of the buildings in

consuming energy against their similar peers. Therefore, the aim has been to

inspire the owners to consume in a more efficient manner [71]. However, these

schemes have been utilised voluntarily. Hence, there has been a necessity for a

legal framework to exert the potential of the benchmarking in reducing energy

consumption and consequently, carbon emissions.

The EPC and DEC programs were adopted in the UK to satisfy EPBD

requirements. Even though both programs geared towards increasing the energy

performance of non-domestic buildings, they are different from in what concerns

the developed methods.

The EPC scheme is developed to express the energy-efficiency of buildings

regarding their asset ratings which are calculated using simulations. These

ratings indicate the carbon emissions of a building which is used under standard

conditions. Therefore, EPCs aim at the performance assessment of buildings

concerning their fabric and services [236]. DECs, on the contrary, are

certificates which denote the efficiency of the energy usage of a building when it

is occupied. The principal distinction from the EPC is that operational ratings

in this scheme are calculated based on the actual energy consumption, meaning
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that DECs display how, in reality, energy is consumed by occupants. The

certificate also includes the inefficient uses of the energy [236]. Hence DECs

encourage the occupants to behave in a more energy-efficient manner.

The operational ratings are calculated by comparing the carbon emissions of

the building with the benchmark building. The benchmark indicates the typical

performance of similar buildings and can be notional or actual [237].

Operational Rating =

Acual building emissin rate (kgCO2/m
2/)

Adapted energy benchmark (kg/m2/year)
× 100

(6.1)

Asset ratings for EPCs are produced based on the government’s Standard

Assessment Procedure (SAP) for new buildings. In the case of existing buildings,

both the operational rating reflecting the actual energy usage and the asset rating,

based on the reduced-data SAP, are applied. Asset rating is calculated as:

EPC Rating =
Acual building emissin rate (kgCO2/m

2/)

Standard emissin rate (kgCO2/m2/year)
× 50 (6.2)

The Standard Emission Rate (SER) is determined by applying a fixed

improvement factor to the emissions from a reference building. EPCs are

intended to send market signals about the relative performance of comparable

buildings, and so it is necessary that the notional reference building should be

the same for all buildings of a given type. The reference building specifications

introduced in 2015 are assigned based upon the servicing strategy identified for

each zone within the proposed building. There are therefore two reference

building specifications for: a) Heated and naturally ventilated zones, and b)

Heated and mechanically ventilated or heated and cooled zones [238].
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The ‘reference building’, is a version of the actual building modified in

accordance with rules relating to glazing area, insulation and system efficiency.

Each space must contain the same activity as proposed for the equivalent space

in the actual building. The reference building is also subject to the standard

operating conditions, and it is created within the Building Research

Establishment (BRE) Simple Building Energy Model (SBEM) tool. Both actual

and reference buildings have monthly heat balances performed for standard

weather data appropriate to the building location. Results are automatically fed

into the BRUKL compliance calculator provided by BRE.

The energy performance standards of the reference building are based on a

concurrent specification that delivers a 43% reduction in CO2 emissions relative

to the 2010 energy performance standards based on an assumed build mix. This

means that the emissions target for some buildings will improve by more than

this percentage, others by less [238].

The operational energy performance and asset ratings are displayed in terms

of seven-letter ranks, from A (the lowest number, the best) to G (the worst). It

can be seen in equation (6.2) that a building with an energy consumption similar

to the typical performance of buildings in that class will get an operational rating

of 50, i.e. between the grades D and E (refer to Figure 6.2).

The DEC program initially required non-domestic public buildings with a

floor area larger than 1000m2 to produce and display the rating in a noticeable

location in the building. The floor area threshold was reduced to 500 m2 in 2013

and then to 250m2 in 2015 [239].

In order to satisfy the requirements set out by EPBD, targeting both new and

150



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Figure 6.2: The UK energy performance certificate for non-domestic buildings.

existing buildings in the UK, the Royal Assent granted the Energy Act 2011. The

act presents the provision for energy efficiency rules, especially focusing on leased

properties, as two-thirds of non-domestic buildings are rented. The act makes it

illegal to lease out the building if it does not meet the Minimum Energy Efficiency

Standards (MEES). The minimum EPC rating is ‘E’ which came in to force in

April 2018 for new leases and in April 2020 for existing leases [6]. The owners of

buildings with EPC of ‘F’ or ‘G’ would not be able to lease their properties unless

amendments are done, or an exemption applies. The main exception is related to

the economic efficiency of the improvements, which is assessed using the viability

test. This test for non-domestic buildings implies that the selected retrofit works

should not be higher than the energy bill savings for seven years. However,

selecting a cost-effective retrofit plan is challenging and demands for computer

optimisation algorithms to search for the possible combinations of technologies.

This issue becomes more dominant for complex and large scale non-domestic

buildings.

Leases for less than six months or over ninety-nine years are also exempted
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from the rule. Another exemption is when the necessary improvement works

reduce the value of the property by five per cent. Specific buildings with

characteristics that could be altered in the process (e.g. historical buildings) are

also expected to be excluded from the regulations.

As mentioned earlier, over 15% of UK’s non-domestic stock possesses EPC

ratings of ‘F’ or ‘G’, while 20% are rated ‘E’. Nevertheless, further research

suggests that the number of non-compliant properties might increase if the

calculation method for EPCs is updated with the recently proposed

modifications [42, 240]. Accordingly, sustainability must not be neglected by

commercial property landlords and investors.

In 2018, most investors in building sector became concerned about the EPC

ratings, as poor rating influences the investment value of their property asset. As

a result, commercial landlords are facing billions of pounds costs to bring their

properties up to legal energy performance standards.

The EPC calculation tool for non-domestic buildings in the UK is SBEM

which is a quasi-steady state based developed by the BRE for implementing

national calculation methods. SBEM employs a non-graphical MS Access based

interface (iSBEM) for creating data input. Apart from the highly time-consuming

input method, it is mainly restricted by the incompetence of the calculation

method to model complicated HVAC systems [236].

The challenges mentioned above have led to the authorisation of the

approved third-party software tools possessing the capacities to fulfil the

modelling needs with functional complexities of non-domestic buildings [241].

SBEM front end interfaces (FI-SBEM) and Dynamic Simulation Modelling
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Figure 6.3: The UK building energy assessment tools options.

(DSM) tools are the two permitted primary classes [236]. FI-SBEM includes

DesignBuilder, Design Database, G-iSBEM, LifespanSBEM and Virtual

Environment with the capability to produce EPCs. DSM approved software are

TAS, Virtual Environment and DesignBuilder [68]. These options are depicted

in Figure 6.3.

6.4 Model Parameter Fine-tuning

The importance of ML hyper-parameter optimisation forecasting building

energy has been highlighted in the Phases 2 and 3 per presented in Chapters 4

and 5. The traditional method for tuning ML models has been the exploration

of all possible configurations of model parameters using grid search (Section

4.2). However, this method can be extremely laborious for complex models as

ANN and GBRT for they have many parameters to be tuned. Phase 3 used a

multi-objective optimisation based on genetic algorithm (GA) to tune model for

accurate estimation of cooling and heating loads at the same time (Section

5.2.1). In this phase, as the aim is to model only energy performance of

buildings (building emission rate), a simpler evolutionary algorithm namely

sequential model-based algorithm configuration (SMAC) [235] was employed for
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Figure 6.4: Diagram of hyper-parameter optimisation method for modelling
buildings BER.

smart optimisation of the ML models.

Figure 6.4 illustrates the mechanism of tuning algorithm coupled with

cross-validation testing. First, the possible space for all hyper-parameter going

under optimisation is defined. Next, the algorithm starts with the specified

default values and sends it to the evaluation function to build a model for BER

prediction. It then continues based on the evaluated RMSE and smartly creates

new configurations. Finally, it stops when the number of iterations reaches the

maximum value, which i.e. 800 in this case. Whereas, using the grid search

method, the number of repetition would be around 3,500. As mentioned in the

previous chapter, smart ML optimisation not only reduces the time complexity

but also allows for the selection of precise tuning.
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6.5 Feature Engineering

Ng [242] defines feature engineering as follows:

“Feature engineering is the process of using domain knowledge of the data to

create features that make machine learning algorithms work. Feature engineering

is fundamental to the application of machine learning and is both difficult and

expensive. The need for manual feature engineering can be obviated by automated

feature learning.”

For an ML algorithm to predict with high performance, the most explicit

and deepest relationship of data details should be exposed to it in the form

of features. For the building energy performance modelling, it requires strong

expertise in building physics and retrofit technologies on one side, and creative

feature extraction methods on the other side to interpret this knowledge into

useful features.

Feature engineering is not a one-step procedure, but several processes are

iterated until the satisfactory result is achieved. Figure 6.6 demonstrates the life

cycle of feature engineering which is adopted in this study.

Firstly, the raw data, including several thousands of non-domestic records,

are collected. Then, potential features related to building characteristics are

selected. This also includes combining datasets from different building energy

data to generate unique and independent features. Next, statistical analysis is

performed to evaluate the impact of derived features. This step consists of an

investigation of data to identify potential outliers and correlation analysis. The

subsequent stage, which is very important to achieve the main objective of this

study, is engineering new features. In this step, it is essential to consider retrofit
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Figure 6.5: Feature extraction circular procedure.

technologies to be covered by the variables, as the aim of this study is not only

to accurately predict energy performance but also to effectively support retrofit

DM. This process is, therefore, for creating new features from existing variables

based on knowledge on retrofit planning and energy performance calculations.

It also includes translating categorical variables to the ML model usable form.

When the final feature set is decided, a model is trained over it and then scored

using the evaluation method, which was described earlier in this chapter. All

these steps are repeated until the model performance is satisfactory.

6.5.1 Data Engineering

The studied data was collected from arbnco company’s arbn consult

platform [243] which consists of 4,900 records related to non-domestic buildings

distributed all over the UK. All of these records were assessed and labelled

using the latest version of SBEM software considering the most up-to-date

regulations (as discussed in Section 6.3 ). The buildings detail are submitted as

“.inp” files by assessors, engineers or owners. These files includes the detail of
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building type, building geometry, construction, use, HVAC and lighting

equipment. Despite EnergyPlus input files that are nested based on geometric

zones, SBEM files are assorted by HVAC zones. These zones are categorised

into unconditioned and conditioned. The latter can be heated, cooled,

ventilated or mix of them. unconditioned or conditioned The files then went

through a whole building energy simulation, and the BER was calculated. The

Standard Emission Eate (SER) was also derived for a notional building. The

EPC is calculated based on these rates using Eq. 6.2. This study aimed at

developing an accurate and fast prediction model for building BER.

It should be noted that in the UK the SBEM versions for buildings located

in Scotland and England. The differences are related to consideration of the

reference building and derivation of EPC from the calculated BER values. A

building in England may appear to be more energy-efficient than that same

building in Scotland due to the comparison to different reference buildings.

However, this study targeted prediction of the BER to be able to take

advantage of the vast dataset all around the UK. When the BER is estimated

with a simple formula EPC can be derived for England and Wales or Scotland.

From these records, around 80,000 samples were mutated using possible

alterations to create a large dataset to train a robust and general model. Most

of these mutated buildings have better energy performance than their original

versions. The method is advantageous for this study, as it aims at creating a

model most suitable for predicting energy efficiency of potential retrofitted

versions of a building to be used in an optimisation process. All mutated

buildings were then evaluated using the software and recorded with their

assessed BER values.
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Details of the distribution of buildings categorised in different usage type and

weather locations are presented in Appendix B.

6.6 Feature Engineering

Ng [242] defines feature engineering as follows:

“Feature engineering is the process of using domain knowledge of the data to

create features that make machine learning algorithms work. Feature engineering

is fundamental to the application of machine learning and is both difficult and

expensive. The need for manual feature engineering can be obviated by automated

feature learning.”

For an ML algorithm to predict with high performance, the most explicit

and deepest relationship of data details should be exposed to it in the form

of features. For the building energy performance modelling, it requires strong

expertise in building physics and retrofit technologies on one side, and creative

feature extraction methods on the other side to interpret this knowledge into

useful features.

Feature engineering is not a one-step procedure, but several processes are

iterated until the satisfactory result is achieved. Figure 6.6 demonstrates the life

cycle of feature engineering which is adopted in this study.

Firstly, the raw data, including several thousands of non-domestic records,

are collected. Then, potential features related to building characteristics are

selected. This also includes combining datasets from different building energy

data to generate unique and independent features. Next, statistical analysis is

performed to evaluate the impact of derived features. This step consists of an
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Figure 6.6: Feature extraction circular procedure.

investigation of data to identify potential outliers and correlation analysis. The

subsequent stage, which is very important to achieve the main objective of this

study, is engineering new features. In this step, it is essential to consider retrofit

technologies to be covered by the variables, as the aim of this study is not only

to accurately predict energy performance but also to effectively support retrofit

DM. This process is, therefore, for creating new features from existing variables

based on knowledge on retrofit planning and energy performance calculations.

It also includes translating categorical variables to the ML model usable form.

When the final feature set is decided, a model is trained over it and then scored

using the evaluation method, which was described earlier in this chapter. All

these steps are repeated until the model performance is satisfactory.

6.6.1 Feature Extraction

Extracting features for modelling building energy indices is dependant on

the several parameters including prediction period (hourly, monthly, annually,

etc.), target (electricity, cooling, heating or whole building demand) and the
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studied case (i.e. investigating one case or a group of records). Short-term

predictions normally aim at modelling single cases and involve few features

mostly weather related and in some instances the calendar nominal attributes

(refer to Section 2.4). However, when dealing with the whole building energy

performance simulations, a high number of variables should be taken into

account. In this research stage, as the focus has been to aid retrofit

optimisation, it was essential to ensure that every possible alteration would be

reflected by one or multiple variables in the model. Hence, before defining the

ML input space, the potential retrofit technologies were identified.

Table 6.1 presents the available retrofit recommendations to improve energy

performance of non-domestic stock in the UK.

6.6.2 Input Feature Selection

In this phase, to check the significance of the selected variables in the

regression model, the trained GBRT model itself was used to determine what

features are more important.

The permutation importance was also employed, in which the number of

random shuffles for each feature was set to 50, which made the total number of

model evaluations to 2,200. Although this technique is computationally

expensive, it is a useful complement of GBRT importance method, especially in

identifying inflated values (for the detail of these methods, please refer to

Section 3.5.7).
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Table 6.1: Available retrofit recommendations for EPC rating improvement

Code Description

C2

Modify the seasonal and nominal efficiency properties of comfort
cooling plant to mimic the replacement of existing chiller with a system
compliant with the building regulations as defined in non-domestic
building services compliance, guide 2013 (NDBSC-2013), Section 9.

E2

Modify the roof thermal properties to mimic the effect of insulating the
roof in accordance with Approved Document L2B: Conservation of fuel
and power in existing buildings other than dwellings. Section 5,
Retaining thermal elements

E4

Modify envelope thermal properties of cavity walls to mimic the effect
of insulating the cavity in accordance with Approved Document L2B:
Conservation of fuel and power in existing buildings other than
dwellings. Section 5, Retaining thermal elements

E8

Modify the glazing thermal properties to mimic the effect of replacing
existing glazing in accordance with Approved Document L2B:
Conservation of fuel and power in existing buildings other than
dwellings. Section 4, Work on controlled fittings and services

H1
Modify low-temperature hot water boilers’ system seasonal energy
efficiency to replicate the replacement of inefficient buildings as per
NDBSC-2013 Section 2 Gas, oil and biomass-fired boilers

H7

Modify the heating system to mimic the installation of an optimum
start/stop controller to the heating system as per the heating efficiency
credits system outlined in NDBSC-2013, Section 3: Gas, oil and
biomass-fired boilers

H8

Modify the heating system to mimic the installation of weather
compensation systems to the heating system as per the heating
efficiency credits system outlined in NDBSC-2013, Section 3: Gas, oil
and biomass-fired boilers

L2

Modify zonal lighting system properties for zones with Tungsten or
Halogen filament lamps to mimic a like-for-like replacement with
high-efficiency lamps in accordance with NDBSC-2013, Section 12:
Lighting
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Table 6.1 (cont.) Available retrofit recommendations for EPC rating
improvement.

Code Description

L5
Modify zonal lighting system properties for zones with T8 fluorescent
tube light to mimic a like-for-like replacement with high-efficiency T5
fluorescent tubes in accordance with NDBSC-2013, Section 12: Lighting

L8
Modify zonal lighting system properties for zones with T12 fluorescent
tube light to mimic a like-for-like replacement with high-efficiency T5
fluorescent tubes in accordance with NDBSC-2013, Section 12: Lighting

R5
Modify or create a HVAC whose heating and comfort cooling demand
are served by an air source heat pump in accordance with
NDBSC-2013, Heat pumps

V1
Modify the g-value of glazing systems to mimic the application of solar
control film to all transparent surfaces

W1
Modify the existing domestic hot water system to mimic the
installation of a high-efficiency version in accordance with
NDBSC-2013, Section 8: Domestic hot water

W2
Modify the centralised domestic hot water systems to mimic replacing
the systems with instantaneous point of use systems.

W3
Replace or install domestic hot water cylinder jacket in accordance with
NDBSC-2013, Section 8: Domestic hot water

MTR
Improve the building metadata to reflect the nominal energy
consumption benefits of installing sub-metering

AFM

Modify existing air handling unit efficiencies to mimic the installation
of a high-efficiency system in accordance with NDBSC-2013, Section 10:
Air distribution

AHR

Modify the existing mechanical ventilation system to mimic the
installation of a high-efficiency rotary heat exchanger in accordance
with NDBSC-2013, Section 10: Air distribution

DSF
Modify the properties of zones with high ceilings to mimic the
installation of destratification fans.

FC

Modify the energy efficiency properties of existing fan-coil units to
mimic the installation of high-efficiency units in accordance with
NDBSC-2013, Section 1.7: Summary of recommendation minimum
energy efficiency standards
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Table 6.1 (cont.) Available retrofit recommendations for EPC rating
improvement.

Code Description

RAD
Modify existing convection heating systems in industrial and warehouse
areas with a ceiling-mount radiant heating system in accordance with
NDBSC-2013 Section 5: Gas and oil-fired radiant heaters.

VSD
Modify existing low-temperature hot water boilers to mimic the
installation of variable speed pumps.

WET

Modify existing direct electric heating systems with a high-efficiency
wet radiator system served by a low-temperature hot water boiler in
accordance with NDBSC-2013, Section 2: Gas, oil and biomass-fired
boilers

8LO

Modify zonal lighting system properties for zones with T8 fluorescent
tube light to mimic a lamp-luminaire replacement with high-efficiency
T5 fluorescent tube systems in accordance with NDBSC-2013, Section
12: Lighting

DLD
Mimic the installation of photoelectric daylight dimming controls

HLU

Modify zonal lighting system properties for zones with Tungsten or
Halogen filament lamps to mimic a lamp-luminaire replacement with
high-efficiency systems in accordance with NDBSC-2013, Section 12:
Lighting

HPL

Modify zonal lighting system properties for zones with High Pressure
Sodium or High-Pressure Mercury to mimic a lamp-luminaire
replacement with high-efficiency systems in accordance with
NDBSC-2013, Section 12: Lighting

HPT

Modify zonal lighting system properties for zones with T5 fluorescent
tubes to mimic a lamp-luminaire replacement with high-efficiency
systems in accordance with NDBSC-2013, Section 12: Lighting

PIR
Modify zonal lighting system properties to mimic the installation of
passive infrared occupancy sensors.

T8L
Modify zonal lighting system properties for zones with T8 fluorescent
tubes to mimic a lamp-luminaire replacement with high-efficiency
systems in accordance with NDBSC-2013, Section 12: Lighting
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6.7 Evaluation of Energy Performance Model

6.7.1 Extracted Features

The procedure of selecting the features for modelling energy performance

was conducted by iterative processes, as explained earlier in 6.6. Based on

recommendations from findings of Phase 2 presented at Section 4.5, the

primitive models for evaluation of generated input set were trained and tested

using SVM. At each iteration, new features were defined and the function for

extracting them from building “.inp” files were formulated, some uninfluential

variables were removed, or some with certain effects (based on the building

physics knowledge ) were recalculated/modified.

Table 6.2 shows the final extracted features from buildings characteristics

available in logged assessment files and their description. Most of these

variables are calculated, and some are directly taken from the input models.

Column “Calculation” in Table 6.2 explains the formulation of those derived

features. “Mutable” column determines if a feature is changeable, and if so the

recommendations that affects the variable is shown in the last column, “Covered

solutions”. The complex features and their calculation methods are elaborated

in Appendix C.

Figure 6.7 illustrates the frequency of features as histogram graphs. The

correlation between each pair of input and target variables is demonstrated using

heatmap matrix in Figure 6.8.

164



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Ta
bl
e
6.
2:

Fe
at
ur
es

ex
tr
ac
te
d
fo
r
tr
ai
ni
ng

B
E
R

pr
ed
ic
ti
on

m
od

el

Fe
at
ur
e

D
es
cr
ip
ti
on

C
al
cu
la
ti
on

M
ut
ab

le
C
ov
er
ed

so
lu
ti
on

s

SE
R

St
an

da
rd

em
is
si
on

ra
te

C
al
cu
la
te
d
fr
om

in
it
ia
lS

B
E
M

ru
n
fo
r

a
no

ti
on

al
bu

ild
in
g

N
o

-

D
H
W

_
D
em

D
om

es
ti
c
ho

t
w
at
er

de
m
an

d
D
H
W

sy
st
em

de
m
an

d
no

rm
al
is
ed

by
ar
ea

Y
es

W
1,

W
2,

W
3,

V
SD

U
_
Tr

an
s

E
qu

iv
al
en
t
U
-v
al
ue

of
th
e

tr
an

sp
ar
en
t
pa

rt
of

th
e

ex
te
rn
al

su
rf
ac
e
(w

in
do

w
s)

(w
in
do

w
)
ar
ea
-w

ei
gh

te
d
av
er
ag
e
of

th
e

U
-v
al
ue
s
of

in
di
vi
du

al
ex
te
rn
al

w
in
do

w
s

Y
es

E
8

ST
_
E
xW

E
qu

iv
al
en
t
so
la
r

tr
an

sm
it
ti
vi
ty

of
th
e
ex
te
rn
al

w
in
do

w
s

(w
in
do

w
)
ar
ea
-w

ei
gh

te
d
av
er
ag
e
of

th
e

so
la
r
tr
an

sm
it
ti
vi
ty

of
in
di
vi
du

al
ex
te
rn
al

w
al
ls

Y
es

E
8,

V
1

U
_
O
pa

q
E
qu

iv
al
en
t
U
-v
al
ue

of
th
e

op
aq

ue
pa

rt
of

th
e
ex
te
rn
al

su
rf
ac
es

(w
al
ls
)

(w
al
l)
ar
ea
-w

ei
gh

te
d
av
er
ag

e
of

th
e

U
-v
al
ue
s
of

in
di
vi
du

al
ex
te
rn
al

w
al
ls

Y
es

E
4

W
W

R
W

in
do

w
to

w
al
lr

at
io

R
at
io

of
to
ta
lw

in
do

w
ar
ea

to
to
ta
l

w
al
la

re
a

N
o

-

SF
P
_
V
en
t

Sp
ec
ifi
c
fa
n
po

w
er
,

ve
nt
ila

ti
on

,t
er
m
in
al

un
it
s
an

d
ex
ha

us
t
(t
er
m
in
al

un
it
en
er
gy

de
m
an

d)

O
ne

va
lu
e
pe

r
H
VA

C
sy
st
em

Y
es

FC
,A

F
M
,A

H
R

P
L_

H
P
ea
k
lo
ad

of
he
at
in
g
de
m
an

d
H
ea
ti
ng

sy
st
em

de
si
gn

pe
ak

lo
ad

(k
W

)
Y
es

V
1,

E
4

165



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Ta
bl
e
6.
2
(c
on

t.
)
Fe

at
ur
es

ex
tr
ac
te
d
fo
r
tr
ai
ni
ng

B
E
R

pr
ed
ic
ti
on

m
od

el

Fe
at
ur
e

D
es
cr
ip
ti
on

C
al
cu
la
ti
on

M
ut
ab

le
C
ov
er
ed

so
lu
ti
on

s

A
IR

A
ir
In
fil
tr
at
io
n
R
at
e

A
nn

ua
ls

um
of

en
er
gy

ga
in
ed

du
e
to

in
fil
tr
at
io
n
no

rm
al
is
ed

by
ar
ea

Y
es

H
1,

H
7,

H
8,

R
5,

M
T
R
,R

A
D
,

W
E
T
,D

SF

IG
C

In
te
rn
al

ga
in

fr
om

eq
ui
pm

en
t
fo
r
co
ol
in
g
sp
ac
es

N
o

-

LP
D

Li
gh

ti
ng

po
w
er

de
ns
ity

Y
es

8L
O
,D

LD
,

H
LU

,H
P
L,

H
P
T
,P

IR
,T

8L
,

L2
,L

5,
L8

SR
_
H

H
ea
te
d
sp
ac
e
ra
ti
o

R
at
io

of
to
ta
lh

ea
te
d
sp
ac
e
to

to
ta
l

sp
ac
e

N
o

-

SR
_
C

C
oo

le
d
sp
ac
e
ra
ti
o

R
at
io

of
to
ta
lc

oo
le
d
sp
ac
e
to

to
ta
l

sp
ac
e

N
o

-

SR
_
V
en
t

V
en
ti
la
te
d
sp
ac
e
ra
ti
o

R
at
io

of
to
ta
lv

en
ti
la
te
d
sp
ac
e
to

to
ta
l

sp
ac
e

N
o

-

SR
_
U
C

U
nc
on

di
ti
on

ed
sp
ac
e
ra
ti
o

R
at
io

of
to
ta
lu

nc
on

di
ti
on

ed
sp
ac
e
to

to
ta
ls

pa
ce

N
o

-

V
SR

_
di
ab

In
te
rn
al

di
ab

at
ic

ve
rt
ic
al

su
rf
ac
es

ra
ti
o

R
at
io

of
to
ta
li
nt
er
na

ld
ia
ba

ti
c
ve
rt
ic
al

su
rf
ac
e
ar
ea

to
to
ta
la

re
a
of

al
lv

er
ti
ca
l

su
rf
ac
es

N
o

-

166



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Ta
bl
e
6.
2
(c
on

t.
)
Fe

at
ur
es

ex
tr
ac
te
d
fo
r
tr
ai
ni
ng

B
E
R

pr
ed
ic
ti
on

m
od

el

Fe
at
ur
e

D
es
cr
ip
ti
on

C
al
cu
la
ti
on

M
ut
ab

le
C
ov
er
ed

so
lu
ti
on

s

V
SR

_
ad

ia
In
te
rn
al

ad
ia
ba

ti
c
ve
rt
ic
al

su
rf
ac
es

ra
ti
o

R
at
io

of
to
ta
li
nt
er
na

la
di
ab

at
ic

ve
rt
ic
al

su
rf
ac
e
ar
ea

to
to
ta
la

re
a
of

al
l

ve
rt
ic
al

su
rf
ac
es

N
o

-

V
SR

_
ex
t

E
xt
er
na

lv
er
ti
ca
ls

ur
fa
ce
s

ra
ti
o

R
at
io

of
to
ta
le

xt
er
na

lv
er
ti
ca
ls

ur
fa
ce

ar
ea

to
to
ta
la

re
a
of

al
lv

er
ti
ca
l

su
rf
ac
es

N
o

-

IH
G

In
te
rn
al

he
at

ga
in

A
nn

ua
ls

um
of

In
te
rn
al

ga
in

fr
om

eq
ui
pm

en
t
fo
r
he
at
ed

sp
ac
es

no
rm

al
iz
ed

by
ar
ea

Y
es

8L
O
,D

LD
,

H
LU

,H
P
L,

H
P
T
,P

IR
,T

8L
,

L2
,L

5,
L8

,E
2,

E
4,

E
8,

H
1,

H
7,

H
8,

R
5,

M
T
R
,

R
A
D
,W

E
T

W
F
R

W
al
lt

o
flo

or
ra
ti
o

R
at
io

of
to
ta
lw

al
ls

ar
ea

to
to
ta
lfl

oo
r

ar
ea

N
o

-

RW
R

R
oo

ft
o
w
al
lr
at
io

R
at
io

of
to
ta
lr

oo
fa

re
a
to

to
ta
lw

al
l

ar
ea

N
o

-

IC
O

H
ea
t
tr
an

sf
er

fr
om

co
nd

it
io
ne
d
to

un
co
nd

it
io
ne
d
sp
ac
es

N
o

-

E
C
S

E
ffi
ci
en
cy

of
co
ol
in
g
sy
st
em

Y
es

C
2

E
H
S

E
ffi
ci
en
cy

of
he
at
in
g
sy
st
em

W
ei
gh

te
d
he
at
in
g
ar
ea

ad
ju
st
ed

by
fu
el

em
is
si
on

s
fa
ct
or

Y
es

V
SD

,R
5,

W
E
T
,

R
A
D

167



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Ta
bl
e
6.
2
(c
on

t.
)
Fe

at
ur
es

ex
tr
ac
te
d
fo
r
tr
ai
ni
ng

B
E
R

pr
ed
ic
ti
on

m
od

el

Fe
at
ur
e

D
es
cr
ip
ti
on

C
al
cu
la
ti
on

M
ut
ab

le
C
ov
er
ed

so
lu
ti
on

s

I_
N

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
N
or
th
-fa

ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s

w
it
h
he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
S

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
So

ut
h-
fa
ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s

w
it
h
he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
W

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
W
es
t-
fa
ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s

w
it
h
he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
E

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
E
as
t-
fa
ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s

w
it
h
he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
SE

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
SE

-fa
ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s
w
it
h

he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
N
E

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
N
E
-fa

ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s
w
it
h

he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
SW

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
SW

-fa
ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s
w
it
h

he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
N
W

So
la
r
ra
di
at
io
n
on

th
e
cu
m
ul
at
iv
e
N
W

-fa
ci
ng

ex
te
rn
al

su
rf
ac
e
in

zo
ne
s

w
it
h
he
at
in
g
(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
H

So
la
r
ra
di
at
io
n
on

th
e
ro
of

(u
ni
t
in
so
la
ti
on

m
ul
ti
pl
ie
d
by

ar
ea
)

N
o

-

I_
V
C

So
la
r
ir
ra
di
an

ce
,v

er
ti
ca
ls

ur
fa
ce
s
in

co
ol
ed

sp
ac
es

(d
ir
ec
t
+
di
ffu

se
so
la
r

ga
in
s
pe

ak
Ju

ly
)

Y
es

E
2

I_
V
H

So
la
r
ir
ra
di
an

ce
,h

or
iz
on

ta
ls

ur
fa
ce
s
in

he
at
ed

sp
ac
es

(D
ir
ec
t
+
di
ffu

se
so
la
r)

Y
es

E
2

168



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Ta
bl
e
6.
2
(c
on

t.
)
Fe

at
ur
es

ex
tr
ac
te
d
fo
r
tr
ai
ni
ng

B
E
R

pr
ed
ic
ti
on

m
od

el

Fe
at
ur
e

D
es
cr
ip
ti
on

C
al
cu
la
ti
on

M
ut
ab

le
C
ov
er
ed

so
lu
ti
on

s

C
I_

N
Av

er
ag

e
ir
ra
di
an

ce
on

N
or
th

fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

S
Av

er
ag

e
ir
ra
di
an

ce
on

So
ut
h
fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

W
Av

er
ag

e
ir
ra
di
an

ce
on

W
es
t
fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

E
Av

er
ag
e
ir
ra
di
an

ce
on

E
as
t
fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

SE
Av

er
ag

e
ir
ra
di
an

ce
on

SE
fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

N
E

Av
er
ag

e
ir
ra
di
an

ce
on

N
E

fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

SW
Av

er
ag

e
ir
ra
di
an

ce
on

SW
fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

C
I_

N
W

Av
er
ag

e
ir
ra
di
an

ce
on

N
W

fa
ci
ng

su
rf
ac
e
fo
r
co
ol

zo
ne
s

N
o

-

169



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

Figure 6.7: Distribution of the selected features for building energy data.
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Figure 6.7 (cont.) Distribution of the selected features for building
energy data.
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Figure 6.7 (cont.) Distribution of the selected features for building
energy data.
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Figure 6.8: Non-domestic building data features values represented as a heat
correlation map.

As depicted in Figure 6.8, there are no direct correlations between the selected

variables and BER. It is not also possible to evidently identify which variable can

be removed without affecting the model precision.

6.7.2 Model Optimisation

As mentioned before, an ML model was optimised using the generated as

well as actual data. To this end, 5,000 records were randomly selected, and the
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GBRT model was tuned using SMAC algorithm over that set. Here, this research

phase used a five fold-cross validation for evaluating the performance of each

model configuration. The tuning algorithm output after 1,000 iterations was the

hyper-parameter set with which the model reached the RMSE accuracy of 7.01

CO2Kg/m
2 (mean RMSE of all folds). Next, the same configuration was used for

modelling variant number of records up to 80,000. Each model was tested using

10-fold cross-validation , and the results were recorded as the worst, average and

best RMSE of all folds, as demonstrated in Figure 6.9.

Figure 6.9: Average, min and max RMSE of all folds in BER prediction against
total number of train-test records

As it is seen in Figure 6.9, 30,000 samples of building assessment records are

adequate to build a reliable model, as at this point, the prediction interval of

[2.5546231, 1.572446264] with an average RMSE of 1.92 CO2Kg/m
2 is achieved.

Considering the average actual BER of 94.04 CO2Kg/m
2 for all building records,
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the attained error, which is only 2% of the target mean value has been a promising

achievement. Using the full dataset, the average RMSE of 1.25 CO2Kg/m
2 equal

to 1.3% of the target mean value could be achieved with the acceptable cost of

sacrificing time. The average spent time for fitting models with 30,000 and 80,000

samples was recorded as 7.12 and 31.22 seconds.

6.8 Sensitivity Analysis

The modelling non-domestic building in this study has concentrated on the

retrofit planning, therefore the feature engineering targeted not only at

accurately predicting building energy performance but also the ability of the

model in calculating the alteration. As such, it is beneficial to investigate the

impact of each selected variable on estimating buildings energy performance. To

this end, the GBRT model was trained 30 times each using randomly selected

records (30,000) and different random states (please refer to Section 3.5.7 and

6.6.2 for detail of sensitivity analysis). The results are illustrated in Figure 6.10

plotting the relative importance of features as a box and whiskers plot.

The result of permutation importance analysis considering a model trained

over 80% of full data and the rest for testing is presented in Figure 6.11. It can

be seen that very similar results presented in Figure 6.10 was achieved. This

shows that the GBRT model hasn’t been biased in the training procedure and

inflating the feature importances.

Consequently, the most significant features are related to domestic hot water,

internal heat gain and lighting. These parameters cover the improvement of

the hot water system, replacing the lamps and heating systems. SER which is

indirectly calculated from the building energy assessment procedure, along with
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Figure 6.10: Relative importance of the selected features for modelling non-
domestic buildings in the UK
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Figure 6.11: Importance of the selected features evaluated by permutation
importance method
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the wall to floor and window to wall ratios are not mutable, that is to say in energy

retrofitting the structure of the building is not altered. However, they play an

influential role in predicting energy performance. Other immutable features with

high impact having almost the same relative importance values, are space ratios,

followed by air infiltration rate, terminal unit energy demand and cooling system

efficiency. As it can be anticipated, roof to wall ratio, solar radiation on the roof

and generally solar radiation have medium to low impact, due to the UK climate.

It should be noted that the importance of the features in the prediction of

building energy performance is dependant on the data utilised for developing the

model. As such, this conclusion is not generalised for countries with different

climates and policies (software to check the energy performance), though the

features extraction proposed in the study lays the base for the development of

robust models to support building energy retrofit decision making and policies.

Furthermore, the data and results can be transferred to the new domain for

expedite model development.

To demonstrate the performance of model with dropping less important

features (CI_SW , CI_NW , CI_NE, I_NW , I_NE, CI_SE, CI_E,

I_SE, I_SW , CI_W ), a model was trained using 30,000 records and tested

over 8,000 samples. Both train and test sets were randomly selected among

available 80,000 building records. The results are demonstrated as plot of

predicted energy performances versus real simulation values and distribution of

error between simulated-predicted pairs in Figure 6.12.
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(a)

(b)

Figure 6.12: (a) Actual and predicted building emission rates and (b) error
histogram of testing over 8,000 samples.
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6.9 A Case Study

The energy performance prediction model development aimed at supporting

the optimisation of building energy retrofits. In this application, the optimisation

algorithm generates variations of the target building to be evaluated for their

energy performance. Here, the developed model is validated by estimating retrofit

versions of a building that are never seen by the model. Therefore, the goal of

this analysis is to further investigate the stability and generalization of machine

learning (i.e. the training and testing the model is not biased by the utilised

dataset).

To evaluate the efficiency of the developed model on prediction of a building

variations, one floor from a non-domestic building located in Glasgow City was

selected. To that end, the detail and data for the eighth floor of Graham Hills

building were obtained from estates department of the University of

Strathclyde. The obtained building surveyed floor plan was overlaid with the

model in DesignBuilder to create the case study zoning, as shown in Figure 6.13.

All zones have natural ventilation except for toilets which have local extract

fans. Although the eighth floor exclusively uses low-temperature hot water boilers

with wet radiators, other levels share several different systems, some of which

including cooling and mechanical ventilation. The DHW system does not share

heat generation with the wet radiator systems. Details of the case study building

envelope is provided in Appendix D.

Considering the recommendations introduced in Table 6.1 and by the means of

the GA, the studied building was mutated into 3,000 distinct retrofitted versions.

All generated building models were assessed by the software and received the
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emission ratings, which vary from 51 to 80 CO2Kg/m
2. The process of evaluating

all generated data using the SBEM tool took almost three days.

The evaluation procedure followed six steps which are presented as follow:

Step1: GBRT model was trained using the prepared dataset from the collected

records

Step2: Retrofit variations of the case study building was generated to emulated

multi-objective optimisation of retrofit planning

Step3: Retrofit versions was simulated and received their associated BERs

Step4: Data was translated from raw form (building energy model readable for

SBME) to ML space (defined as set of features)

Step5: GBRT model predicted the BER values

Step6: The model accuracy was calculated by comparison of predicted (from Step

5) and actual (from Step 3) values

In order to take full advantage of the ML model for this case study, the

model was fitted using the whole training set. Then the trained model was used

to predict the energy performance of the mutated records. Testing all samples

took only 0.22 seconds while having RSME, MAE and R2 of 1.02, 0.47 and 0.98,

respectively.
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Figure 6.14 demonstrates the performance of the predictions as the error

histogram.

Figure 6.14: Error histogram of predicting 3,000 variations of the Graham Hill
building

The obtained RMSE is equal to 1.7% of the average BER value, which is 58.3

CO2Kg/m
2. It can also be seen in Figure 6.14 that majority of the residuals

are cumulated around zero, proving the success of training a model with high

accuracy and generality.

6.10 Summary

The final phase of the study presented in this chapter addressed the issues

regarding lack of modelling of building energy performance considering related

policies. As mentioned in the reviewed literature, most research studies

concentrated on the fast prediction of building energy demand to support design

183



Chapter 6. Modelling Energy Performance of Non-Domestic Buildings

stage or considered single building optimisation. The latest attempt to enhance

the existing building energy efficiency included MOO method to find the best

performing retrofit plan. This phase has developed a statistical model of energy

performance for UK non-domestic buildings to support retrofit optimisation.

The main advantages of this method over utilisation of a simulation software

include a significant reduction in the time complexity of energy performance

calculation, the potential to investigate a more comprehensive range of retrofit

technologies, and consequently the ability to perform a proper inspection of

retrofit exemptions denoted by the policies.

In the proposed method, the essential characteristics of the non-domestic

building affecting the energy performance were identified and formulated as a

set of numerical features. The feature extraction considered available retrofit

technologies in the market to cover the potential improvements. Next,

real-world data was processed and translated into the defined feature set for

performing statistical modelling. The data was also extended by mutating the

records and evaluating them using energy simulation software. GBRT model

was then trained and tuned over the records and tested using cross-validation

method. The effectiveness of feature extraction and engineering was also

evaluated by employing sensitivity analysis.

The proposed approach was evaluated using a real non-domestic building as

a case study and testing the accuracy of the ML model over the retrofit

(mutated) versions which was simulated to get the emission rates. The precision

of the developed model was validated through comparisons with the

simulations. Development of an accurate model for estimation of the energy

performance with speedy and robust process lays the groundwork for more

informed and prolific decisions for energy retrofit planning.
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The proposed model solves two significant problems with the existing tools

which leverage SBEM, static retrofit package definitions and blindness to indirect

service dependence. The former is a limitation on the size of the solution space

that can be exhaustively explored. The latter are scenarios where retrofitting

one building service increases demand on another to the extent that the energy

savings for the isolated service demand are negated by the increased demand on

the dependent service. The typical example of SBEM is the relationship between

Tungsten or Halogen lighting and direct or storage electric heating where heating

is the dependent service. As far as SBEM is concerned, lighting fixtures both

contribute significantly to space heating and their contributions when considered

with also meeting the lighting demand, are more efficient than the electric heating

system in tempering the space. The existing model, which works based on an

exhaustive search of the solution space using linear estimation, treats the retrofit

an antagonistic matter. As such, it will not serve as a component of a candidate

retrofit strategy. The proposed model solves and can leverage the underpinning

diminishment of energy savings. It solves the problem by producing an estimate

that is sufficiently accurate to be considered as a proxy for a nonlinear estimation

of each retrofit scenario meaning a retrofit which might be antagonistic in isolation

is considered in compound scenarios. The model, being many orders of magnitude

faster than existing models, enables variable calibration of individual and grouped

retrofit technologies. This can be leveraged during MOO with the nonlinear

relationship between multiple objectives to find the Pareto fronts that approach

losses to meet another objective.

It was discussed how the proposed model expands the solution space of the

existing model. The solution space inherently changes every time what is known

about the building or retrofits change. Therefore, it is desirable to calibrate the

input parameters when a significant input is modified. For example, the model
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may suggest technology at an estimated price. The proposed model enables the

introduction of tender specifications to MOO, offer a means of optimising the

bid for the tendering party or enable the owner to hold tender-vs-tender MOO.

Generally, the performance of the proposed model should facilitate consideration

for occupant wellbeing benefits or other less conventional objectives.

This chapter highlights the significance of feature extraction and engineering

in the estimation of energy indices applying the built-in mechanisms of GBRT.

There have been several assumptions and limitations in creating building models

and simulations that affect energy predictions. Accordingly, as indicated in the

literature and emphasised in this study, the feature extraction and optimisation of

machine learning should be based on the application. The presented results also

revealed the practically of ML-based modelling in neglecting irrelevant variables

without influencing the accuracy.

The chapter emphasises the capacity of ML methods in the built

environment where calculation and simulation for energy indicators applying

engineering methods sometimes become cumbersome. So far, it has been

estimated that solely 4% of data captured in the industrial environments are

being employed with a meaningful and significant contribution. That is why

Industry 4.0 has put more emphasis on the utilisation of technologies that could

take advantage of the ever-growing data [244].

A technological innovation’s short-term value can be measured by its ability

to improve human capacity for an action in one or more metrics higher than its

negation on the other parameters. This chapter presented an approach on

several metrics which significantly improved developers’ capacity to exploit AI

optimisation effectively. It will facilitate significant improvements model design
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and implementation. Reducing the duration of the process, it essentially

increases the frequency of model calibrations , hence leading to opportunity to

reduce the cost per calibration. It also increases capacity to refine model

creation by processing for progressive interactive training models to reduce

reliance hierarchical reinforcement learning.

As policy contracts on ineffective energy usage and due to the shortcomings

of building energy management systems, the obligation for more efficient designs

and retrofits increases. Recently, research work emphasised on designing

buildings considering medium-term climate change, yet neglecting the occupant

size and behavioural uncertainties. Reflecting such variables drastically expands

the problem space whilst likely decreasing the traditional alternatives of the

solution space.

There are significant implications of this study not only on the industry in

terms of informing the retrofit planning process and making it more efficient but

also for the energy policy-making in terms of utilising the approaches

demonstrated in this work to evaluate the effectiveness and issues of the

methods in use.
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Chapter 7

Conclusion: Contributions, Impacts

and Recommendations for Future

Studies

7.1 Introduction

This chapter summarises the study findings for each objective. The chapter

includes four main sections, justification of how the research objective are

achieved, contributions to knowledge, implications on the practice, and

recommendations for the future work.
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7.2 Achievement of Research Objectives

7.2.1 Objective 1

To investigate advances in building energy numerical modelling

focusing on the use of ML methods A broad review of research works in

the area of building energy assessment, focusing on the energy retrofit was

performed. ML tools applied for the prediction of building energy indicators are

discussed, and the input parameters utilised in training the models are

identified. It was concluded the selecting suitable features had been limited to

the elementary physical characteristics and climate features, as the majority of

the seminal works concentrated on the accuracy of developed models. Whilst in

the optimisation of building design and energy retrofit, it is of paramount

importance that the model should reflect the impact of any alteration or

improvement. It was therefore concluded that in order to develop an accurate

model to support retrofit DM, it is essential to take many energy-related

features into account, rather than the basic parameters identified from the

literature review.

By scrutinising several studies, comparing various ML models, it was also

concluded that these models would perform quite differently if they are precisely

tuned. Moreover, the nature and size of the data utilised for the model

development are highly important in the selection of a suitable technique.

However, a reasonably large dataset is required to train a generalised and

reliable energy model.

189



Chapter 7. Conclusion

7.2.2 Objective 2

To scrutinise ML techniques in building energy application and

propose the ML selection framework

The study, in addressing the second objective, investigated the most

established ML techniques, which are widely available as programming libraries

or packages. The accuracy of these models fitted by using datasets of building

energy loads was analysed. To address the issue identified in the literature

review (unfair comparison of models), the research carried out specific tuning

for each model using a grid-search approach, in which models are evaluated by

employing cross-validation methods. The study set recommendations for the

quick selection of an ML model based on the data and application (e.g.

short-time predictions for BEM or long-term energy estimation for building

design).

The research showed that even though an exhaustive search method is a solid

choice for comparison of ML models, the time complexity of the process is still

expensive. Therefore, in practice, where energy models are trained and optimised

repeatedly to be aligned with energy policy updates, a more expedite and precise

method is required.

7.2.3 Objective 3

To propose an intelligent method for the development of accurate

energy forecasting ML models

To address Objective 3, this study laid out a precise approach to tune an

ML model for prediction of one or more energy indicators. The technique

applied MOO based on evolutionary algorithms to explore the ML

hyper-parameters space. The proposed method not only increased the time
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complexity of ML optimisation, but also improved the overall model accuracy.

The proposed method was evaluated by implementing an ML model capable

of predicting multiple targets concurrently. The performance of the proposed

approach was confirmed by comparisons with traditional search and statistical

modelling methods. The study proved the efficient application of smart

evolutionary algorithms in dealing with complex non-domestic buildings energy

data. The role of sensitivity analysis in developing more accurate and expedited

models was also studied.

7.2.4 Objective 4

To develop a energy performance modelling for accelerated energy

assessment of non-domestic buildings

This objective was addressed by the development of an ML model for

calculation of non-domestic buildings energy performance. The model provided

rapid energy performance predictions for supporting MOO-based DM for energy

retrofit planning of complex non-domestic buildings. The goal was achieved by

succeeding the process as follow:

• Thoughtful consideration of retrofit technologies and the energy policy in

the market was identified;

• A dataset of energy performance certificates for non-domestic buildings in

the UK was obtained, analysed, and processed;

• An iterative procedure was adopted to extract and define a set of features,

which are understandable to the ML model, and reasonable accuracy

could be achieved. To this end, basic parameters related to building

characteristics were selected, then sophisticated features were defined, and

calculation algorithms were prepared. Subsequently, data from the form of

raw assessment files were translated into the defined feature space. The
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process was followed by training a model to evaluate the extracted

features;

• Dataset was expanded by employing GA and applying retrofit

recommendations on the available non-domestic records. A large amount

of data was generated and assessed to receive the corresponding energy

ratings;

• An advanced ML model was tuned over the final input set and using

evolutionary algorithms, trained, and tested by means of cross-validation

method. The research also identified a sufficient number of samples for

creating an accurate model.

The model was evaluated using 10-fold cross-validation, for which the average

RMSE of all folds was achieved as low as 1.25 CO2Kg/m
2 (1.13% of the calculated

emission rate). This evaluation approach and delivered error proved the generality

and accuracy of the developed model.

7.2.5 Objective 5

To evaluate the energy performance ML model by use of genetic

algorithm and application on a case study

To address Objective 5 and the question on how well the accuracy of the

developed model would be on prediction of a new building records, this study

utilised a case study property, which was neither extracted from the original

dataset nor used in the model training and generalisation tests. This

non-domestic academic building record was processed and used for generating

three thousand variations. This procedure employed GA and applied the retrofit

recommendation to mimic an AI optimisation approach. Predicting the energy

performance for the studied building records took less than one second while
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achieving RMSE of 1.7 CO2Kg/m
2. The performance of the developed model is

perceivable by comparing these values to the average calculated BER value of

58.3 CO2Kg/m
2 and three days of simulation time to obtain BER values.

7.3 Implication for Practice

Studies within the context of doctoral education are expected to provide

implications of significant value to the field of study [33]. Having an industry

impact has always been central to the evaluation of the level of contribution of

construction management research [30]. In other words, AEC research should

examine real-world realities to enhance the efficiency of the building

industry [245]. In fact, “academic research in applied disciplines such as building

engineering has the dual mission of simultaneously contributing to the solution

of practical problems and creating theoretical and conceptual knowledge” [246].

As discussed in detail in Chapter 1, this intention was included among the

drivers directing the present study.

With the utilisation of AI technologies within the construction context

growing exponentially and modelling the energy performance as the core

component of energy retrofit DM, this study’s outcomes could be beneficial for

building designers, construction engineers and consultancy companies and

energy policymakers. Building designers could benefit from the findings,

particularly those findings that relate to the selection of ML techniques and

tuning energy models. This benefit could be achieved by treating the pertinent

findings as instructions for adapting their traditional ML modelling and

optimisation procedures. In relation to generic practitioners, a salient example

of potential benefit is derived from the findings related to knowledge, skills and

abilities of ML models in the identification of important features in energy
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modelling. Specifically, the findings provide guidelines to precisely consider the

impact of building alterations in the developed models. The construction

industry could directly benefit from the outcome of the study related to

developing a retrofit-specific energy modelling for assessing their

recommendation packages. Feature analysis methods would also be used for

evaluation of the building input parameters to inform clients in the case. The

alternative method for retrofit DM is demonstrated in Figure 7.1.

As it was stated in Sections 1.3 and 6.6.2, the ML model and its integration

with MOO would also be beneficial for evaluation of policy compliance assessment

and developing evaluation tools.

It should be noted again that the ML model is not proposed to ultimately

replace the engineering methods, but to promote the DM process where massive

calculations are required. In practice, when a retrofit configuration or building

design is selected with the support of a data-driven model, it should be evaluated

by the base engineering method for the detail energy simulation (e.g. EnergyPlus

and SBEM simulations in Phases 2 and 4 of this study).

There are significant implications of this work not only on the industry, in

terms of informing the design process and making it more efficient but also for

the energy modelling software industry, in terms of utilising the approaches

demonstrated in this research in the development of their software solutions.
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7.4 Research Limitations

For modelling energy performance, available retrofitting technologies for

glazing, wall and roof insulation, lighting, heating, ventilation, and air

conditioning (HVAC) systems and integration of solar energy systems for

improving the energy performance of buildings were considered for feature

extraction and for generating variations of the case studies. However,

new/outdated technologies can be added/removed for other regions by

updating/adding features. The effect of occupancy on the energy consumption

of buildings was out of the scope of this work as it requires extensive and

comprehensive research to be undertaken. This thesis only focused on modelling

the energy performance to support deep energy retrofitting of non-domestic

buildings. Furthermore, as the data collected from the UK building stock and

the regulations in this region were considered in energy modelling, the feature

generation is limited to the specific area. This limitation mostly affects the

analysis of the effects of climate variables on buildings deep energy retrofit.

7.5 Further Works

Blaster et al. [247] described research a cyclical process which “can be entered

at any point, in a never ending process; will cause you to reconsider your practice;

and will return you to a different starting place”. Taking into consideration the

limitations described in the Section 1.8 alongside the present study’s findings,

several opportunities for future research came to light. These opportunities are

summarised as follows:

• The data utilised for modelling building energy performance was related

to properties located throughout the UK. To consider the climate impact

on the energy performance of buildings, several features were identified.
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However, as it was expected, the sensitivity analysis revealed that those

variables have very low importance. In order to investigate how well climate

effect is considered with the standard calculation method, a more extensive

data of buildings distributed in diverse climates is essential. This requires

multidisciplinary research to process and prepare a cloud-based database.

• Chapter 2 indicated that several countries which reacted to global warming

and set energy regulations for the building sector have adopted different

approaches to assess and rate the energy performance of their buildings.

A new study would evaluate different standard methods adopted by these

countries and conclude the weakness and advantages of each approach. This

research would result in the development of a global benchmarking system

to be enforced.

• The energy regulations targeted non-domestic properties have only

focused on the physical building characteristics and the energy-related

equipment. As such, in the development of the energy performance

prediction model, different types of non-domestic buildings were

considered. However, in reality, these properties have one distinct

difference, and that is the behaviour of their occupant or users. Analysis

of occupant role in energy consumption pattern is not a new area, yet

answering the question on how this behaviour could be considered in the

benchmarking methods and how measured data could facilitate this

procedure requires extensive research works.

• In Chapters 1 and 2, it was stated that potential of AI has not been fully

exploited in building energy optimisation and standards due to the lack of in

interdisciplinary research works. One very potential ML tool is clustering

that classifies buildings using various features and characteristics instead

of considering only type or topology. A multidisciplinary research on the

application of unsupervised learning and building energy coupled with a
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comprehensive energy data would result in more effective benchmarking

methods. Smartly determination of reference buildings leads in more precise

energy labelling, comparing to traditional definition of notional buildings.

Moreover, combination of clustering with classification allows to estimate

the reference building for future cases. This area has not been studied

thoroughly and seems to be a trending topic in near future as the global

concern about energy is increases and many countries put efforts to regulate

the energy consumer industries especially buildings and construction.
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APPENDIX A

Detailed Results for Tuning Machine Learning
Model

The detail of tuning each ML model discussed in Chapter 4 is presented

here. Some models have several parameters, so the brute force search includes

thousands of train-test models. Therefore, it is not possible to present the list of

all results in this paper. However,Tables A.1 to A.6 demonstrates the parameters

for the best models predicting energy loads of datasets processed with EnergyPlus

and Ecotect. In each table the best model is highlighted with light blue colour.

In order to reduce the time complexity of tuning ANN model, the number of

epochs was fixed at 500 and the other parameters were optimised. Then the

optimal number of propagations was separately obtained using the best

parameters. As shown in the Figures A.1 (a) and (b)
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Table A.1: Detail of optimising SVM for both datasets.

EPlus Data Ecotect Data SVM
Parameters

Heat
RMSE Cool

RMSE

Heat
RMSE Cool

RMSE
C Gamma

14.318 9.785 0.677 1.622 10,000 1
18.988 9.774 0.654 1.667 1000 1
15.720 9.261 0.660 1.756 1,000,000 0.1
15.313 10.302 0.978 1.842 1,000,000 1
21.626 8.763 0.815 2.048 100,000 0.1
31.415 9.452 2.108 2.636 10,000 0.1
43.719 17.833 2.627 3.365 10,000 0.01
60.974 31.658 3.304 3.886 1 0.1
60.974 31.658 3.304 6.550 1 0.01

Table A.2: Detail of optimising RF for both datasets.

EPlus Data Ecotect Data RF Parameters

Heat
RMSE Cool

RMSE

Heat
RMSE Cool

RMSE Bootstrap
Max
features

No. of
estimators

12.873 9.894 0.568 1.585 False sqrt 600
12.720 9.693 0.576 1.605 False sqrt 400
14.556 10.734 0.604 1.612 True sqrt 200
13.334 10.214 0.502 1.658 False log2 1000
14.551 9.691 0.476 1.683 True auto 600
14.584 9.600 0.478 1.691 True auto 800
24.189 13.727 0.536 1.814 False auto 1000
14.199 10.995 0.616 1.604 True sqrt 400
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Table A.5: Detail of optimising GP for both datasets.

Ecotect Data GP Parameters

Heat
RMSE Cool

RMSE
Alpha Kernel No.

restarts

1.382 2.279 1e-08 Mattern 2
1.381 2.383 1e-12 RBF 4
8.472 2.332 1e-8 RBF 2
8.471 2.333 1e-10 RBF 0
1.383 3.138 1e-4 Mattern 0
4.440 4.238 1e-6 RBF 4
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(a)

(b)

Figure A.1: RMSE of ANN model predicting energy loads for (a) EPlus and (b)
Ecotects datasets against number of epochs.
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APPENDIX B

Non-domestic Building Records Distribution

Table B.1 presents the distribution of buildings in different weather locations

for the data collected from arbn consult platform. The first column, “Type”,

shows the usage type of buildings. The next 12 columns present the number of

building in each specific climate region. Column “area” presents the variation of

buildings area in m2.
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APPENDIX C

Calculating Features for Retrofit-specific Energy
Modelling

Here, the the details of calculated features for modelling non-domestic

buildings energy performance, are presented. The features are retrieved from

the ‘.inp’ output files processed with SBEM software.

DHW_Dem: The sum of the product of systems’ electric equivalent efficiencies

and associated hot water demand for a single day. Normalised by total area

including unconditioned zones.

DHW_Dem =

∑
zone DHW demand∑

area
(litters/m2day) (C.1)

U_Trans: Weighted U-Value for external glazing. The sum of the product of

glazing areas’ associated glass U-Value. Normalised by total glazing surface area.

U_trans =

∑
(window area× glass u value)∑

window area
(C.2)
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ST_ExW: Weighted solar transmittance ratio for external glazing. The sum of

the product of glazing areas’ associated GLASS total solar transmittance

coefficient. Normalised by total glazing surface area.

ST_ExW =

∑
(window area× glass total solar transmittivity)∑

window area
(C.3)

U_Opaq: Weighted U-Value for opaque external surfaces adjusted by heat

electric equivalent efficiency. It is calculated by the sum of the quotient of

HVAC-level aggregation of the product of wall area and associated construction

U-Value and the heat electric equivalent efficiency.

U_Opaq =

∑
(external wall area× wall u_value)∑

external wall area
(C.4)

LPD: Lighting power density is defined as the installed lighting power, in

wattages, in a building space divided by the space area in square meters or

square feet.

LPD =

∑
wattage of lighting∑

area
(W/m2) (C.5)

SFP_Vent: The collective air handling unit’s effective specific fan power

(SFP) weighted by area served by mechanical ventilation, representing the

power necessary to deliver 1 litre of fresh air per second (W/l/s).It is calculated

by the quotient of the product of serviced area by the associated HVAC’s SFP

and the sum of all mechanically ventilated areas.

SFP_V ent =

∑
zone sfp termial unit× area with fan coil system∑

zone area
(C.6)
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IHG: The internal heat gains from equipment, lighting and occupants adjusted

by the associated HVAC’s heat electric equivalent efficiency. It is calculated

by the quotient of the product of the sum of occupant gains, waste heat from

equipment and waste heat from lighting, and the associated HVAC’s efficiency

(heff) and normalised by heated area.

IHG =
∑heated zone gain (occgains + eqgains + lgains)

heff
×

1∑
heated zone area

(W/m2)

(C.7)

ICO: Internal conduction is the heat transfer from conditioned to unconditioned

building zones is calculated for one unit of area in unit time. It is calculated by

the quotient of the product of the sum of area of component under analysis and

wall heat transfer coefficient normalised by area.

ICO =

∑
adjacent area × heat coefficient × temp diff∑

zone area
(W/m2) (C.8)

ECS: It is the cooling system efficiency of the abstract conditioning system, and

calculated as the quotient of the product the sum of zone areas and cooling source

efficiency, and the sum of all cooled areas.

ECS =

∑
cool zone area × cool efficiency∑

zonearea
(C.9)

EHS: It is the heating system efficiency of the abstract conditioning system, and

calculated as the quotient of the product the sum of zone areas and heat source

efficiency, and the sum of all heated areas.

EHS =

∑
heat zone area × heat efficiency∑

zonearea
(C.10)
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APPENDIX D

Details of the Case Study Building Characteristics

The case study building, Graham Hill, has been subjected to several retrofits

over the last twenty years. Table D.1 summarises the thermal properties of

different layers of the envelope parts for the building at its latest status. These

include external walls, stud partitions (separate spaces where no load-bearing

wall is present), load-bearing internal envelopes, flat roof, internal floors and

glazing. All external envelopes and glazing remain without renovation since

construction.
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