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Abstract

Passive seismic monitoring is important for understanding subsurface processes such as

landslides, mining activities, and geothermal systems, enabling the prediction and mit-

igation of their effects. However, continuous seismic monitoring produces vast datasets

containing various sources of seismicity that require accurate classification. Manual

detection and labeling of these events is both time-consuming and prone to inconsis-

tency, even when performed by the same expert. To address these challenges, this thesis

first proposes an automated joint detection and classification method for characterizing

seismic events using Convolutional Neural Networks (CNNs).

Despite their effectiveness and high accuracy, deep learning models, such as CNNs,

face two significant limitations: the lack of interpretability due to their “black-box”

nature and the large amount of manually labeled data required for training. Inter-

pretability is particularly important in seismic applications where reliable detection and

classification of earthquakes are essential for infrastructure safety. To ensure both ac-

curacy and explainability, the second contribution of this thesis is a novel methodology

for data labeling, verification, and re-labeling through CNNs enhanced by Layer-wise

Relevance Propagation (LRP), a popular explainable AI tool. This approach aims to

provide transparency in seismic event detection, improving trustworthiness in AI-driven

decisions.

Manual labeling of seismic events is often inefficient and contradictory to the goal

of automated detection. To overcome the time and resource inefficiency of manual

labeling, the third contribution of the thesis is a self-supervised learning (SSL) model

that reduces the dependency on large amounts of annotated data while maintaining

high detection accuracy. This model significantly reduces the manual effort involved
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Chapter 0. Abstract

in labeling seismic events, thereby improving the efficiency and scalability of seismic

monitoring systems.

The proposed CNN-based models achieve approximately 90% accuracy, effectively

distinguishing between seismic sources such as rockfalls and earthquakes. Furthermore,

the LRP-based method enhances interpretability of seismic classification by generat-

ing explainable relevance maps, which visually highlight the most influential parts of

the seismic signal that contributed to the model’s decision. These maps help experts

understand model reasoning, validate whether the model is focusing on geophysically

meaningful features, and identify potential mislabeling or overlooked patterns in the

data.The SSL model achieves accuracy comparable to state-of-the-art fully supervised

methods while requiring only 5% to 30% of the labeled data. Specifically, the lower end

(around 5%) is sufficient for distinguishing well-separated classes like rockfalls, while

more complex scenarios with overlapping signal characteristics, such as those between

quakes and a subset of earthquakes, may require up to 20% labeled data. This flexibility

significantly reduces the manual labeling burden without sacrificing detection precision.

Together, these contributions offer an accurate, reliable, efficient, and explainable deep

learning-based framework for seismic event detection and classification, advancing the

state of seismic signal monitoring and analysing.
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Chapter 1

Introduction

Passive seismic monitoring enables the detection of a wide range of seismic events

generated by natural and anthropogenic processes. These events can include tectonic

earthquakes, microseismic activity, and signals induced by landslides [2–4] or geother-

mal activities. One of the most common applications of passive seismic monitoring

is landslide monitoring, where seismic activity such as rockfalls, tremor-like signals,

and quakes are specifically triggered by landslide processes, including the formation of

surface fissures. Studying such microseismic events helps improve our understanding

of subsurface processes, with practical applications in areas such as landslide predic-

tion, mining, and geothermal exploration. However, detecting these events from seismic

recordings is challenging due to their low magnitudes and high attenuation. Manual

identification and labeling are labour-intensive and prone to subjectivity, highlighting

the need for automated methods to detect and classify seismic events accurately.

It is particularly important to discriminate between different types of seismic events

associated with landslides, such as precursory rockfall signals, shallow surface slips, or

deeper slope deformations, because they can provide critical early warnings and insights

into ongoing slope instability. Real-time monitoring and classification of these signals

enhance our ability to observe behavioral changes in a slope over time, contributing

to more informed hazard assessments. This is especially crucial given the increased

frequency and intensity of landslides globally, driven by factors such as climate change,

deforestation, and extreme weather events [5]. Improved understanding of landslide dy-
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namics through seismic analysis directly supports risk mitigation efforts, infrastructure

protection, and public safety planning in vulnerable regions [6].

With higher availability in seismic recordings and advances in Artificial Intelli-

gence (AI), seismic signal analysis has become a very much data-driven field and has

spread well beyond seismology and geoscience, as it is now of interest to much broader

research communities [7]. Due to the availability of many well-maintained datasets, such

as the Southern California Seismic Network and the Stanford Earthquake Dataset [8],

the number of data-driven deep learning approaches used in seismology has sky-rocketed

in recent years [7]. These models are often trained on enormous volumes of seismic data,

sometimes consisting of millions of waveform segments. While not all of this data is

labeled, several large-scale datasets, such as Stanford Earthquake Dataset, provide hun-

dreds of thousands of labeled seismic events, which are essential for supervised learning

tasks. In the context of landslide-related seismic monitoring, where data are often

noisy and manually analyzing signals is extremely labour-intensive, machine learning

techniques offer a powerful alternative. ML models are particularly well-suited to this

domain because of their ability to handle complex, high-dimensional, and noisy data,

making it possible to automate detection and classification of subtle or overlapping

event types that would be difficult to distinguish manually. Deep learning-based ap-

proaches dominate recent literature, including seismic event labelling [9], estimating

seismic events magnitude [10] and event localisation [11]. Various deep learning archi-

tectures have been proposed, and a detailed review of deep learning architectures for

seismic signal classification can be found in Chapter 3.

Deep learning has become the state of the art for detecting and classifying (mi-

cro)seismic events. However, it also presents some disadvantages. First, deep learning

models are often considered “black boxes” because of their lack of interpretability. Even

though these models can achieve high accuracy, it is difficult to understand how they

arrive at their predictions or decisions. The complexity of deep neural networks, es-

pecially with many layers and parameters, makes it challenging to explain their inner

workings in human-understandable terms. This lack of transparency is particularly

problematic in sensitive areas like seismic event analysis, where interpretability is im-
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portant for trust and accountability [12]. Second, deep learning models require vast

amounts of labeled data to train effectively. In supervised learning tasks, the quality

and quantity of labeled data directly impact the model’s performance. However, ob-

taining large, high-quality labeled datasets can be both time-consuming and expensive.

This data dependency limits the applicability of deep learning in domains like seismic

event analysis where labeled data is scarce or difficult to acquire [13].

To address these challenges, this thesis not only proposes efficient deep learning

models for microseismic event detection and classification but also explores the Ex-

plainable AI (XAI) tools and self-supervised learning techniques. These approaches

aim to enhance the interpretability of deep learning models and significantly reduce

the amount of labeled data required for training, making the models more transparent,

and hence trustworthy, and accessible in data-limited domains like (micro)seismic event

analysis.

1.1 Research Aim and Objectives

The aim of this thesis is to develop deep learning-based algorithms for microseismic

detection and classification that achieve high accuracy, scalability, and transferability,

while requiring minimal computational resources. Additionally, it aims to improve

trustworthness of the models, by exploring techniques that enhance the interpretability

of deep learning models and addressing the challenge of large amounts of annotated

data required for training. In particular, the following three objectves are set.

• Develop an automatic deep-learning based microseismic event detection and clas-

sification algorithm using Convolutional Neural Network (CNN), and evaluate its

performance, transferability, and computational efficiency.

• Use advanced Explainable Artificial Intelligence (XAI) tools to enhance the in-

terpretability of deep learning algorithms for classifying microseismic events. Ex-

plain model decisions, identify reasons for misclassifications, and improve the

accuracy of manual annotation by experts through these explanations.
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• Develop self-supervised algorithms to reduce the amount of labeled data required

for training deep learning models to below 20%, while maintaining high accu-

racy. Additionally, develop algorithms that significantly improve the efficiency of

manual annotation.

1.2 Contributions of the thesis

The major contributions of this thesis to achieve the research objectives can be sum-

marised as follows:

1. This research proposes three CNN models aimed at classifying four types of

events: earthquakes, rockfalls, quakes, and anthropogenic noise. To capture a

range of time-domain and frequency features at various scales, the models take

not only filtered raw time-series waveforms as input, but also Short-Time Fourier

Transform (STFT) and Continuous Wavelet Transform (CWT) coefficients. This

approach results in three distinct architectures, each tailored to a specific input

type. Additionally, the transferability of the pre-trained model, initially trained

on seismic data from the Super-Sauze landslide in Southeast France, is evaluated

using a geologically distinct dataset from Larissa region in mainland Greece. (See

Chapter 3.)

(a) Three CNN-based multi-classifier models for three different inputs (time

series, STFT maps and CWTmaps) for classification of three different micro-

seismicity types plus anthropogenic noise on continuous recordings.

(b) Detailed evaluation and analysis of classification performance of the three

models, including reliability of the results, and analysis of correctly and

incorrectly classified examples to shed light into the most important features

of the input signal and reasons for mis-classification.

(c) Evaluation of transferability of the proposed model by testing the CNN

model pre-trained on Résif dataset on a geographically-distinct dataset and

analysis of how different array typologies affect seismic signal classification
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(d) Release of validated labelled dataset from the Larissa region.

2. This research proposes a human-in-the-loop microseismic classification system

that leverages state-of-the-art XAI tools to interpret deep learning models for

detecting and classifying micro-seismic signals. The explanations help improve

model design and clarify both correct and incorrect predictions. In addition, in

cases of discrepancies between predicted and expert-labeled classes, the data is

reviewed, and experts use the model’s explanations as references to assess the

basis of the misclassification. (See Chapter 4.)

(a) Interpretation of outcomes of the CNN model for micro-seismic signal clas-

sification through the Layer-wise relevance propagation (LRP) heatmap.

(b) A detailed discussion of origins of misclassifications shedding light on how

trained deep learning models perceive seismic signals in frequency domain.

(c) The human-in-the-loop system assists experts in identifying and correcting

mislabeling within datasets, thereby enhancing the datasets’ overall reliabil-

ity and accuracy.

3. This research proposes a microseismic signal classification method based on Self-

Supervised Learning (SSL), designed to achieve good classification performance

with minimal or no labeled data. SSL is employed for representation learning, ex-

tracting features from raw waveform recordings without the need for labels. These

extracted features are used in three downstream classification tasks: unsupervised

clustering, semi-supervised classification, and post-labeling. (See Chapter 5.)

(a) An automatic feature extraction approach for landslide micro-seismic events

based on SSL

(b) Two new classification models, one fully unsupervised and the other semi-

supervised, based on SSL

(c) Visualisation of the SSL model’s features for different seismic classes, ex-

plaining misclassifications in clustering
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(d) A new method for enhancing the efficiency of manual labeling using Self-

Organizing Map (SOM).

1.3 Organisation of the thesis

The remainder of the thesis is organised as follows:

Chapter 2 reviews the background, dataset, and general definition of deep learning.

Chapter 3 provides a detailed literature review about deep learning based (mi-

cro)seismic event detection and classification. Following this, three convolutional neu-

ral network (CNN) models are proposed to classify four event types: earthquakes,

rockfalls, seismic sources related to landslide processes (referred to as “quakes”), and

anthropogenic noise.

Chapter 4 first introduces XAI and its current applications in (micro)seismic event

classification, then proposes a human-in-the-loop system designed to provide compre-

hensive explanations of the key features learned by a deep neural network in multi-class

classification tasks.

Chapter 5 proposes a (micro)seismic event feature extraction technique based on

self-supervised learning, followed by downstream tasks for unsupervised clustering and

semi-supervised classification. Additionally, an algorithm is introduced to significantly

enhance the efficiency of expert manual labeling.

Chapter 6 concludes this thesis and discuss the remaining challenges in (micro)seismic

event detection and classification.

1.4 Publications

Journal Articles

J1 Jiang. J, Stankovic. V, Stankovic. L, Parastatidis. E , and Pytharouli. S, Micro-

seismic event classification with time-, frequency-, and wavelet-domain convolu-

tional neural networks. IEEE Transactions on Geoscience and Remote Sensing,

vol. 61, pp. 1-14, 2023.

Contribution: Literature review, Experiments design, Algorithm implementation,
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Results analysis, Formal analysis, Draft writing.

The publication relates to Chapter 3

J2 Jiang. J, Murray. D, Stankovic. V, Stankovic. L, Hibert. C, Pytharouli. S, and

Malet. J.-P, A human-on-the-loop approach for labelling seismic recordings from

landslide site via a multi-class deep-learning based classification model. Science

of Remote Sensing, vol. 11, pp.100189, 2025..

Contribution: Literature review, Experiments design, Algorithm implementation,

Results analysis, Formal analysis, Draft writing.

The publication relates to Chapter 4

J3 Jiang. J, Stankovic. V, Stankovic. L, Murray. D, and Pytharouli. S, Generative

self-supervised learning for seismic event classification. Under Review in Engi-

neering Applications of Artificial Intelligence, 2025.

Contribution: Literature review, Experiments design, Algorithm implementation,

Results analysis, Formal analysis, Draft writing.

The publication relates to Chapter 5

Conference Papers

C1 Jiang. J, Stankovic. V, Stankovic. L, and Pytharouli. S, Automatic detection

and classification of microseismic events from super-sauze landslide using convo-

lutional neural networks. 2020 AGU Fall Meeting Abstracts, 2020.

Contribution: Experiments design, Algorithm implementation, Results analysis,

Formal analysis, Draft writing.

The publication relates to Chapter 3

C2 Jiang. J, Stankovic. V, Stankovic. L, Murray, D , and Pytharouli. S, Explain-

able AI for transparent seismic signal classification. 2024 IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), Jul. 2024.

Contribution: Experiments design, Algorithm implementation, Results analysis,

Formal analysis, Draft writing.

The publication relates to Chapter 4
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2.1 (Micro)seismic Event Analysis

Seismic events can be intuitively described as sudden brittle failures due to natural

causes or artificially triggered explosions, leading to a rapid release of energy in a

localised area that generates waves propagating through the surrounding medium [14].

For example, in volcanic seismology, seismic signals are generated by physical processes

within a volcano, such as the movement of gas and fluids (e.g., water, magma) and their

interaction with solid rock. These signals include volcanic-tectonic events, long-period

signals, tremors, and quakes [15]. In processes such as hydraulic fracturing and carbon

capture, seismic sources are linked to activities like string shots, perforation shots, plug

settings, ball drops, and sleeve openings, with source mechanisms often categorised as

volumetric or shear double-couple components [14, 16]. Additionally, seismic events

can occur from unstable slopes, such as in open-pit mining or landslides, due to elastic

strain accumulation, rupture, friction, and shear between soil particles [17].

Seismic monitoring of slope instabilities emerged in the 1960s and has been signif-

icantly advanced in recent decades through the development of microseismic monitor-

ing techniques [17]. These advances are attributed to improvements in seismometer

technology (higher sensitivity compared to other slope monitoring methods), simpler

installation (lower costs and reduced power requirements), and increased network den-

sity [18]. The primary goal of analysing (micro)seismic events is to support geological
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hazard assessments, enhance the understanding of underlying processes, and prevent

future failures to reduce the social and economic impacts of destructive events [18].

In some instances, (micro)seismic signals can act as precursors to landslides, ex-

hibiting low dominant frequencies and nonstationary characteristics. Thus, building a

solid understanding of various seismic signals is essential for effectively predicting major

geological disturbances and minimizing the risks of fatalities and infrastructure dam-

age [17,19,20]. Traditional analysis methods typically involve three steps: 1) applying

detection techniques to identify the event time period; 2) extracting meaningful features

from raw signal; 3) classifying the extracted features using classification algorithms to

determine the classes of (micro)seismic event.

2.1.1 System overview

To comprehensively analyse (micro)seismic events using traditional methods, the pro-

cess can be broken down into four primary stages: signal acquisition, detection, feature

engineering, and classification. A block diagram illustrating this workflow is provided

in Figure 2.1. Each stage is briefly outlined in this section and further detailed in the

subsequent sections. (1) Signal Acquisition: The process begins with acquiring seismic

or microseismic signals using a network of sensors such as seismometers or accelerom-

eters. These signals may originate from natural phenomena (e.g., volcanic activity,

landslides) or anthropogenic activities (e.g., hydraulic fracturing, mining). (2) Detec-

tion: Next, algorithms identify segments of the continuous signal that correspond to

potential (micro)seismic events, differentiating them from ambient noise or irrelevant

signals. (3) Feature Engineering: In this step, the detected signals are processed to

extract meaningful features, which are critical for effective event classification. This

involves a combination of feature construction, extraction, and selection. (4) Classi-

fication: Finally, extracted features are fed into classification algorithms to categorise

seismic sources based on predefined classes such as earthquakes, rockfalls, or anthro-

pogenic noise.
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Figure 2.1: Block diagram of the traditional system overview for (micro)seismic event
analysis.

2.1.2 Data Acquisition

The acquisition of (micro)seismic data is the foundational step in seismic event analy-

sis, directly influencing the quality and interpretability of downstream processing tasks

such as detection, feature engineering, and classification. Data acquisition typically

involves deploying networks of geophysical sensors, including seismometers, geophones,

and accelerometers, across the area of interest. These sensors capture ground mo-

tion caused by both natural and anthropogenic sources, converting analog vibrations

into digital signals that can be processed and analyzed. Depending on the applica-

tion, acquisition systems can be installed in various configurations: surface arrays,

borehole installations, or hybrid setups combining both. Surface sensors are easier and

cheaper to deploy but may suffer from high ambient noise levels and lower signal fidelity.

Borehole sensors, though more expensive to install, provide superior signal-to-noise ra-

tios (SNR) due to their placement within the subsurface, closer to potential seismic

sources [16,17]. Sensor placement, orientation, and calibration are crucial for accurate

waveform capture. The quality of acquired data can be affected by environmental noise

(e.g., wind, rainfall, human activity) and instrumental limitations (e.g., sensor drift,

gain inconsistencies). Therefore, pre-processing steps such as filtering, baseline correc-

tion, and sensor response removal are typically applied before detection and feature

extraction [21].

2.1.3 Detection

In seismic analysis, efficient and highly accurate signal detection is important and has

a wide range of applications. For example, in earthquake analysis, the identification

of distinct wave phases, such as primary (P-waves) and secondary (S-waves), is partic-

ularly important. P-waves, the fastest seismic waves, are typically the first to arrive

at a seismic station. Their precise arrival time, determined through a process known
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as P-wave picking, is a crucial step in earthquake analysis. Detection, on the other

hand, refers more broadly, to recognising that an earthquake has occurred and may

involve signals from P-waves, S-waves, or other seismic phases. Manually identifying

signals of interest from continuous seismic recordings, using expert knowledge, is often

time-consuming, labor-intensive, and subjective.

In recent years, there has been a growing shift toward the development of algo-

rithms that automatically detect seismic signals. The most widely used method is

the Short-Term Average to Long-Term Average ratio (STA/LTA), which applies slid-

ing windows of predefined lengths to the time/frequency domain amplitude, envelope,

or higher-order statistical features (e.g., skewness and kurtosis) of the recorded sig-

nal [22–27]. Events are detected by setting trigger and detrigger thresholds based on

the ratio of the short- and long-window average values. STA/LTA and its variants

have been commonly used in detecting seismic events from earthquakes [28], volcanic

activity [29], and landslides [25–27]. However, STA/LTA has some significant limi-

tations, such as 1) improper parameter initialization leading to false alarms [30]; 2)

high sensitivity to ambient noise [19, 31, 32]; and 3) time-consuming and inefficient

processes for selecting window lengths and thresholds [33, 34]. Based on STA/LTA,

a modified energy ratio detection method has been introduced, utilizing equal-length

pre- and post-sample windows [35]. Later, three enhanced detection methods using

seismic attributes—energy ratio, fractal dimension, and entropy—were developed [36].

The Akaike Information Criterion (AIC) detection algorithm proposed by [37] relies on

the idea that nonstationary seismic signals can be segmented into locally stationary

parts, each approximated as an autoregressive process. Another approach, known as

matched filtering, which is based on template matching, requires prior knowledge of

representative parent waveforms [38,39].

Low signal-to-noise ratio (SNR) and varying levels of ambient noise present signifi-

cant challenges for detecting (micro)seismic events [34,40]. Traditional detection meth-

ods work well for known seismic events but struggle to detect unknown or unexpected

low SNR microseismic events, such as landslide-induced quakes or rockfalls [15,17,34].
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2.1.4 Feature Engineering

In traditional (micro)seismic event analysis, feature engineering (including feature con-

struction, extraction, and selection) plays a critical role in efficient signal classification.

A large set of features with redundant information can increase processing time and

lead to issues such as classifier overfitting, multicollinearity, and suboptimal feature

ranking during the selection process [41]. A comprehensive review of feature construc-

tion for (micro)seismic events is provided in [19], where temporal, spectral, and cepstral

features, along with their combinations, are derived from raw, denoised data.

Feature extraction and selection are frequently employed to reduce the dimension-

ality of the feature space, thereby minimizing storage requirements and reducing the

testing and training time of classifiers. Among these, Principal Component Analy-

sis (PCA) is the most widely used feature extraction and dimensionality reduction

technique. It has consistently proven effective for a variety of (micro)seismic event

analysis tasks [42,43]. Besides PCA, many other dinesionality reduction methods have

been used for (micro)-seismic signal analysis, including, t-distributed Stochastic Neigh-

bor Embedding (t-SNE) and Linear Discriminant Analysis (LDA) [44].

Selecting the most discriminative features for a given task is not straightforward.

Many feature selection methods have been proposed, typically classified into several

types: filter-based (the most common in (micro)seismic analysis), wrapper-based, em-

bedded, hybrid, and ensemble approaches. Filter-based methods, which assess and

select features using various statistical tests, are model-agnostic, meaning they can be

applied to any learning algorithm to eliminate irrelevant and redundant features, and

they have lower computational complexity [45]. These feature selection methods have

been widely explored in various (micro)seismic analyses.

Feature engineering in traditional machine learning for seismic event classification is

a labor-intensive process, requiring substantial manual effort to design, construct, and

select relevant features. This approach heavily relies on domain expertise, introducing

potential biases and subjectivity, which may result in incomplete or suboptimal feature

sets. Manually designed features can fail to capture the full complexity of the raw data,

limiting the model’s ability to recognize intricate patterns in seismic events. Moreover,
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the challenge of selecting the right features can lead to issues like overfitting, multi-

collinearity, or reduced model performance. Predefined feature sets further constrain

the model’s adaptability to new or unknown seismic events, making it less effective in

dynamic environments compared to deep learning models, which automatically learn

relevant features directly from raw data.

2.1.5 Classification

In the context of (micro)seismic signal analysis, classification refers to the process

of categorizing seismic signals into predefined classes based on their characteristics,

such as frequency range, amplitude, signal shape, and duration. The primary goal

is to distinguish events of interest (e.g., (micro-)earthquakes, rockfalls) from noise or

other signals, enabling better understanding and monitoring of seismic activity. The

main challenges in (micro)seismic classification include: (1) a lack of openly accessible

annotated datasets [19]; (2) an imbalanced catalog of labeled events due to the scarcity

of events of interest [19]; and (3) the high degree of similarity between unknown natural

and anthropogenic “interfering” signals and the events of interest in either the time

or frequency domain [26]. As a result, manual classification remains prevalent, where

experts analyze signals based on their characteristics to assign categories such as (micro-

)earthquakes, block falls, rockfalls, quarry blasts, and multiple events [46].

Automatic classification methods, such as Support Vector Machine (SVM) and

Random Forest (RF), are typically applied alongside various feature extraction or se-

lection techniques, as previously discussed. SVMs are effective for addressing high-

dimensional nonlinear classification challenges with a limited number of training sam-

ples [47], and they have been used to differentiate between long-period events, tremors,

and volcanic tectonics in [15, 48], as well as between earthquakes and non-earthquake

events in [49], among others. RF is parallelizable, performs well with high-dimensional

signals, is fast in both training and prediction, robust to outliers and non-linear data,

can manage imbalanced datasets, and has low bias [50]. It has been utilized to clas-

sify landslide (micro)seismic events, including rockfalls, slide quakes, earthquakes, and

both natural and anthropogenic noise [18, 26]. Other classification models, such as
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Multilayer Perceptron Neural Network (MLP), Linear Discriminant Analysis (LDA),

Naive Bayes (NB), K-Nearest Neighbor (KNN), and Feed-Forward Back-Propagation

Neural Networks, have also been explored for distinguishing volcanic-seismic events

[51, 52]. Conventional (micro)seismic event classification heavily relies on handcrafted

feature construction, extraction, and selection, which typically necessitates substantial

domain knowledge for the physical characterization of events.

Traditional classifiers, in addition to requiring manual feature engineering, often

struggle to capture complex, nonlinear relationships in data. These models rely on

predefined features and lack the flexibility to adapt to new data types or variations.

They may overfit on small datasets, especially when feature selection is not optimal,

leading to poor generalization. Furthermore, traditional classifiers face scalability issues

with larger datasets or high-dimensional data, and their fixed feature sets make them

less responsive to emerging patterns or anomalies. In contrast, deep learning models

handle complex relationships more effectively, scale efficiently with larger datasets, and

offer better performance, particularly in tasks involving high-dimensional or complex

data, such as seismic event classification.

2.2 Deep Learning Architectures

Deep learning is a subset of machine learning that has gained prominence in recent

years due to its effectiveness in tasks involving large amounts of data. Unlike tradi-

tional machine learning methods that rely heavily on feature engineering, deep learning

models automatically learn hierarchical features from raw data, which makes them par-

ticularly useful for tasks like image recognition, speech processing, and natural language

understanding. Deep learning is built on artificial neural networks, with multiple layers

of interconnected units (neurons) mimicking the structure and function of the human

brain. These multi-layered networks, often referred to as DNN, allow models to learn

complex patterns and representations from data. The backbone of deep learning is the

neural network architecture, which consists of an input layer, several hidden layers,

and an output layer. Each layer comprises neurons, or nodes, which perform simple
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calculations and pass the output to the next layer. The network’s learning process re-

lies on minimizing a loss function using an optimization algorithm, commonly gradient

descent, through a process known as backpropagation. In recent years, the availabil-

ity of large datasets, advanced hardware, especially Graphic Processing Units (GPUs),

and improved training algorithms have made deep learning models more practical and

scalable for a wide range of applications [53].

One of the most successful deep learning architectures is the CNN [54]. CNNs are

specifically designed for processing data with a grid-like topology, such as images, where

spatial relationships between pixels are critical. A CNN typically consists of three key

types of layers: 1) Convolutional Layers, in this layer, filters (or kernels) slide across

the input image to extract local patterns, such as edges, textures, or more complex

features. These filters allow CNNs to capture spatial hierarchies in images by learning

increasingly abstract features at deeper layers; 2) Pooling layers are used to reduce the

spatial dimensions of feature maps, which decreases computational load and minimizes

the risk of overfitting. The most common pooling method is max pooling, which selects

the maximum value from each region covered by the filter, thus preserving the most

prominent features; 3) Fully Connected Layers, after several convolutional and pooling

layers, the feature maps are flattened and passed through fully connected layers. These

layers combine the extracted features to produce the final output, such as classifying

an image into a specific category.

The proposal of CNNs has demonstrated impressive performance in various appli-

cations. The architecture is highly effective at tasks such as image classification and

object detection. Some of the most famous generic CNN models include LeNet-5, one

of the earliest architectures designed for digit recognition [55]; AlexNet, which signif-

icantly advanced image classification by utilizing ReLU activation and dropout [54];

and ResNet, which introduced skip connections to enable the training of very deep net-

works [56]. The VGG16 model [57] is more recent, and currently one of the best CNN

architecture, renowned for its simplicity and uniformity in design. The key innovation

in VGG16 lies in its use of smaller 3 × 3 convolution filters throughout the network,

stacked in increasing depth, allowing the model to capture fine-grained patterns in the
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data while maintaining computational efficiency. By using smaller filters but increasing

the number of convolutional layers, VGG16 is able to extract more complex features

progressively, which improves its performance in tasks like classification. The deep

learning models proposed in this thesis are mostly inspired by VGG16.

Though demonstrating competitive performance, deep learning presents some dis-

advantages. First, deep learning models are often considered “black boxes” because of

their lack of interpretability. Even though these models can achieve high accuracy, it

is difficult to understand how they arrive at their predictions or decisions. The com-

plexity of deep neural networks, especially with many layers and parameters, makes

it challenging to explain their inner workings in human-understandable terms. This

lack of transparency is particularly problematic in sensitive areas like seismic event

analysis, where interpretability is important for trust and accountability [12]. Second,

deep learning models require vast amounts of labeled data to train effectively. In su-

pervised learning tasks, the quality and quantity of labeled data directly impact the

model’s performance. However, obtaining large, high-quality labeled datasets can be

both time-consuming and expensive. This data dependency limits the applicability of

deep learning in domains like seismic event analysis where labeled data is scarce or

difficult to acquire [13].

2.2.1 Performance measures

To evaluate performance of the proposed models, standard classification performance

measures, namely precision, recall (also referred to as sensitivity), and the F1 score,

are utilized as defined in [19]:

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1score =
2× Precision×Recall

Precision+Recall
. (2.3)

True positive (TP) is the number of correctly detected and classified events, i.e.,
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the input window contains the waveform of the target event, and the model correctly

classified it. False positive (FP) is the number of false alarms, i.e., an event of the

non-target class is misclassified as the target class. False negative (FN) is the number

of missed events, i.e., an event of the target class is misclassified as another classes or

it is not detected.

In the context of seismic event detection, recall is often considered more critical than

precision or even the F1 score, particularly in applications such as early warning systems

or hazard monitoring. This is because missing a true seismic event (false negative) can

lead to severe consequences, including delayed response to natural hazards and failure

to issue timely alerts. In contrast, false alarms (false positives), while inconvenient, are

generally more tolerable in real-world applications [58].

2.3 Dataset

The dataset utilized in this thesis is publicly available through the Résif Seismological

Data Portal and was collected by the French Landslide Observatory, OMIV (Observa-

toire Multi-disciplinaire des Instabilités de Versants) [59]. The data was gathered using

the MT network, specifically from Super-Sauze C (SZC) stations, located on the east

and west sides of the Super-Sauze landslide in Southeast France (Latitude: 44.34787,

Longitude: 6.67805), as shown in Figure 2.2. Further information on the sensors and

terrain can be found in [60]. The signals were recorded during three periods: from 11

October to 19 November 2013; from 10 to 30 November 2014; and from 9 June to 15

August 2015. The seismic stations were equipped with short-period seismometers (Noe-

max and Sercel L4C), which have a flat frequency response in the range of 5–100 Hz,

enabling detection of a broad range of seismic events. The signals were recorded with

broadband seismic recorders (RefTek 130S-01) at a sample frequency of 250 Hz. The

array consisted of a tripartite arrangement of 40 m layout, centered around one three-

component seismometer and three vertical, one-component seismometers arranged in

an equilateral triangle configuration, resulting in six channels for data acquisition [26].

In addition to the raw seismic data, a catalogue of labelled events is provided.

The dataset contains four distinct types of seismic events: earthquakes, quakes, rock-
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(a) regional-scale location within European con-
tinent

(b) local-scale topographic position in alpine en-
vironment

Figure 2.2: Geographic location of the SZC sensor station (a) global distribution and
(b) detailed topographic positioning.

falls, and natural/anthropogenic (N/A) noise signals [26]. Table 2.1 displays the total

number of events per class in the used dataset, after removing duplicates. Rockfalls

predominantly occur at the main scarp of the landslide, where rigid blocks fall from a

steep slope (height over 100m). Quakes are defined as low-magnitude endogenous seis-

mic events that are hypothesized to originate from several internal mechanisms within

the landslide body. These include shear deformation along basal or internal slip sur-

faces, fracturing or collapse of voids, and the progressive accumulation of strain leading

to micro-failures. These processes generate seismic signals that are typically short in

duration (less than 5 seconds) and display strong attenuation, often being recorded by

only a few nearby seismometers. The location and waveform characteristics of these

signals reflect their origin within the deforming landslide mass, distinguishing them

from other event types. These physical characteristics enable their classification as a

distinct event class in the dataset [26]. In contrast, earthquakes correspond to exoge-

nous seismic events, including regional tectonic activity and teleseisms, with stronger

signal amplitudes and broader spatial detectability. N/A noise events include various

environmental and human-made noise sources. Environmental noises originate from

phenomena such as wind or heavy rainfall, while anthropogenic noises come from ac-

tivities like traffic, pedestrians, or helicopters. For further details on the endogenous
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seismicity at the Super-Sauze landslide, refer to [61], [62], and [3]. Figure 2.3 presents

examples of seismic signals, including earthquakes, quakes, and rockfalls, with varying

Signal-to-Noise Ratio (SNR), demonstrating the range of noisy events in the dataset.

This study focuses on seismic events collected on landslides, a topic that has received

comparatively less attention than earthquakes in the field of automatic seismic event

detection. Most existing detection algorithms are primarily developed and evaluated

on earthquake datasets. This is partly due to the availability of large, well-annotated

seismic datasets in tectonic contexts, such as those from the Southern California Seis-

mic Network or the Stanford Earthquake Dataset, which include millions of labeled

events. In contrast, annotated datasets focused on landslide-related seismicity remain

scarce. By investigating landslide-related seismicity, this work aims to fill this research

gap and highlight the potential for improving monitoring systems in landslide-prone

regions. Detecting seismic signals generated by landslides is important for understand-

ing the internal dynamics of slope failure, identifying precursory signals, and ultimately

mitigating geological hazards that threaten infrastructure and human lives [63].

Table 2.1: The number of labelled events in Résif catalogue.

Class Total No. events

Earthquake 388

Quake 234

Rockfall 401

Noise 351
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(a) Earthquakes

(b) Quakes

(c) Rockfalls

Figure 2.3: Examples of seismic events: (a) Earthquake (b) Quake (c) Rockfall. Three
different events are shown for each class, including high, medium and low SNR cases.
In all cases, we show three waveforms, representing, respectively, the East, North and
vertical direction of the three-component sensors from top to bottom.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.
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Microseismic event classification

with time, frequency and

wavelet-domain Convolutional

Neural Networks

3.1 Introduction

As discussed in Chapter 1, algorithms for automated detection and classification of

seismic events are important but also challenging to develop. Prior work has focused

on application of traditional machine learning algorithms to classification of (micro-

)seismic events, supported by various signal processing tools for denoising and detection

of events. Most classification approaches have been based on well-known algorithms,

such as Hidden Markov Model (HMM), SVM and RF [64], [65], [66], [67].

For example, Provost et al. [26] propose a classification method using an RF super-

vised classifier to classify micro-seismic events on slow-moving landslides. The method

uses the Short-Term-Average/Long-Term-Average (STA/LTA) algorithm for detection,

then calculates 71 seismic attributes as features inputted into a supervised RF to clas-

sify each event into one of four pre-determined classes (earthquake, quake, rockfall and

Natural/Anthropogenic noise). Ruano et al. [66] propose a seismic detection system
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based on SVMs to improve the detection accuracy of seismic events at the station level.

The system processes seismic data from Portugal’s seismographic network using fea-

tures derived from power spectral density at selected frequencies. Curilem et al. [64]

focuses on classifying seismic signals from Villarrica, one of the most active volcanoes

in South America. The study specifically looks at three key types of seismic signals:

long-period (LP), tremor (TR), and energetic tremor (ET). The authors developed a

classifier that processes 30-second signal windows to classify these events. A feature

extraction process was applied to identify relevant signal characteristics, and a MLP

was optimized with genetic algorithms to classify. Hibert et al. Hibert et al. [65] pro-

pose a method to detect rockfall events at Piton de la Fournaise volcano by identifying

their distinct high-frequency seismic signals within continuous seismic data, filtering

out non-rockfall signals using time-frequency analysis. More recently, an end-to-end

automated system is proposed in [19] consisting of signal denoising, event detection

via statistical Neyman-Pearson based thresholding, feature selection, and graph-based

classification.

In contrast to traditional pipeline-based approaches, e.g., [64], [65], [66], [26], [19],

deep learning provides an integrated approach to detection, feature representation and

classification, with competitive performance under the assumption that a good repre-

sentative dataset is available for training. Though there have been many attempts to

use various deep learning architectures for seismic signal detection and classification

(e.g., [11], [68], [69], [70], [71], [72]), classification of microseismic endogenous landslide

events based on deep learning is rarely studied. Moreover, transferability of deep learn-

ing classification models to different monitoring network geometries is rarely discussed.

In this chapter, we formulate the microseismic classification problem as a multi-

class classification task, and propose three CNN models. To capture a variety of time-

domain and frequency features at different scale, besides using filtered raw time-series

waveforms as input to the network, we also use STFT and CWT coefficients. As typical

with time-series data analysis, we slide a fixed length window over the input to achieve

multi-classification on continuous data. In addition, we test our pre-trained model on

a geologically-distinct dataset from the region of Larissa in mainland Greece, using two
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different array geometries, to evaluate its transferability.

3.2 Related work

We present a summary of methods for seismic signal classification utilizing Deep Learn-

ing (DL). The majority of DL-based seismic classifiers are designed as binary models,

typically distinguishing between the event of interest (e.g., earthquakes) and a catch-

all category for other events. There are some emerging seismic multi-classifiers which

output more than two categories. We also include DL approaches whose end result is

classification, although they also perform detection or phase-picking. It is worth noting

that an additional detection step is not necessary if performing classification on contin-

uous recordings, parsed into windows. For non-DL approaches, an up-to-date review

can be found in [19].

3.2.1 Binary classification

In [69], seismic data are sampled and parsed into time windows of 20 msec duration,

which are then fed into a CNN. The CNN model, consisting of one 1-D convolutional

layer, one pooling layer and 3 Fully Connected (FC) layers, acts as a binary classifier

and classifies the input window into earthquake event waveform or noise waveform.

Perol et al. [11] propose earthquake detection techniques for multi-channel 1-D data

using CNN with 3 channels and sampling rate of 100Hz. The raw recordings were split

into 10sec seismic waveform windows that are fed into a trained network consisting of

eight 1-D convolutional layers to extract features for earthquake detection, followed by

a FC layer to perform the earthquake/noise classification and location estimation by

features outputted by convolutional layers.

Besides feeding raw signals, various methods are proposed that take as inputs spec-

trograms [73], [74]. For example, Dokht et al. [75] propose a CNN model to classify the

input spectrogram into earthquake or noise. The authors use Three-Component (3C)

spectrograms of 10sec seismic data as input to a CNN architecture consisting of 4

convolutional and 2 FC layers. Each convolutional layer is followed by a max-pooling
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layer. The final output layer is a two-neuron FC layer with softmax activation which

outputs the probability distribution of 2 classes (earthquake and noise). Liao et al. [73]

use the method of transfer learning to detect whether the CWT map contains first

break of earthquake. In particular, the authors use pre-trained CNNs used for image

classification tasks, namely, GoogLeNet, AlexNet and SqueezeNet, to perform transfer

learning from image data to seismic signals and classify the CWT output into first-

break waveform and not first-break waveform. Linville et al. [76] use Long-Short-Term

Memory (LSTM) and CNN models to classify seismic events as either quarry blasts or

earthquakes. The LSTM model routes input spectrograms to output classes (0 or 1)

which represents quarry blasts or earthquakes through 4 bidirectional layers as a many-

to-one learning scenario which takes input from many time steps to make one binary

classification output. The CNN architecture with 4 convolutional, 4 max-pooling and

2 FC layers outperforms RF, SVM and residual neural network.

Mousavi et al. [77] propose a sequence-to-sequence learning model, ‘EQ-transformer’,

for phase picking and earthquake classification using a multi-task structure, that out-

puts 3 sequences of probabilities, representing presence of earthquake, P-phase picking

and S-phase picking. The deep network structure consists of an encoder that con-

verts the raw input signal into features through 1-D convolution, max-pooling, residual

convolution, and LSTM layers, and 3 separate decoders. In [78], the authors propose

a vision transformer (ViT)-based system for earthquake detection and its magnitude

prediction. The system consists of two separate ViT networks: the first one detects

earthquake events from the picked P-wave; the second network predicts the magnitude

of the detected earthquakes.

In [70], spectrograms of 30 seconds 3-component seismograms are used as input to

a CNN-RNN Earthquake Detector (CRED), that consists of convolutional, recurrent

and dense layers, in a residual structure. A 2D convolution layer extracts features

from the input spectrograms. Then, bi-directional LSTM performs sequence learning.

Finally, dense layers classify the extracted features and output a sequence of predicted

probabilities, for classification of earthquakes and noise. [79] perform a 7-level CWT

on 3-component 30s-long time window with 100Hz sampling frequency to construct a
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CWT map as input to an encoder-decoder network with residual learning to classify

earthquake signals using 2 classes - earthquake signal or not.

3.2.2 Classification of more than one event type

A CNN is proposed in [68] to classify seismic events into 3 categories - tectonic earth-

quakes, mining-induced events, and mining blasts, based on 90sec long spectrograms

as input. The model consists of 4 2-D convolutional and a 3-node softmax activated

dense layer.

A ‘deepquake’ CNN architecture is proposed in [1] that classifies 3-component 20sec

input data into earthquake, other events and noise. Two CNNs are built for two

different input types: time series and spectrograms. The two architectures consist of

6 convolution layers for feature extraction and one dense layer for classification. An

attention-based CNN architecture is proposed in [72] using multi-task learning. This

architecture first acts as a binary classifier and classifies the seismic waveform into

earthquake or noise; then as a multi-class classifier, it classifies the seismic waveform

into micro-earthquake, macro-earthquake or noise. The input data is a 10-sec raw

seismic waveform with 100Hz sampling rate. 8 1-D convolutional layers (with Relu

activation) with an attention module to extract features, and 2 task-specific layers

with 2 FC layers (softmax activation) classify the features.

A 3D-CNN/RNN-based architecture is proposed in [10] to classify earthquake mag-

nitudes. Each segment of 60-sec waveform is split into 6× 10 sec clips, which are then

processed and transformed into a 2-D Log-Mel map. Thus, the input data of the model

is the 3-D matrix of 6 Log-Mel maps stack that is first inputted to a 3-D CNN and then

to RNN. FC layer is used to classify the extracted features into five categories (greater

than or equal to 0.0, 1.0, 2.0, 3.0 and 4.0 on Richter scale). In [80], a CNN is used to

detect and classify seismic events into microseismic event, single-phase event, and am-

bient noise events. The model’s input is a 22× 2000 seismogram image obtained from

22 seisometer channels with 2000 sampling points. The proposed architecture consists

of 6 convolutional, 6 pooling, and 2 FC layers. The models are first trained and tested

on synthetic data and then used to detect microseismic events from a field data set. It

26



–
M
ay

30
,
2
02

5
–

Chapter 3. Microseismic event classification with time, frequency and
wavelet-domain Convolutional Neural Networks

is showed that training on synthetic data and testing on the field data leads to poor

performance. The results are then improved by labelling the field data and using it for

training the model and testing.

Table 3.1: Summary of prior work on using deep learning models for seismic signal
classification. UUSS stands for University of Utah Seismic Stations, UUEB for Uncon-
strained Utah Event Bulletin, NCEDC stands Northern California Earthquake Data
Center. NECIS stands for National Earthquake Comprehensive Information System,
IRIC for Incorporated Research Institutions for Seismology, STEAD for Stanford Earth-
quake Dataset and KNMI for Royal Netherlands Meteorological Institute.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Paper Year Aim Best Architecture Input data Dataset & Transf. learning

[76] 2019
seismic classification

(quarry blasts and earthquakes)
CNN & LSTM

Spectrograms
(three channels)

UUSS

[68] 2019
seismic classification
(tectonic earthquakes,

mining-inducedevents, mining)
CNN

Spectrograms
(three channels)

UUSS & UUEB [81]

[70] 2019
seismic detection

(earthquakes and noise)

residual structure
with convolutional,

recurrent,
and dense

Spectrograms
(three channels)

North California [82]
transfer learning to Arkansas [83]

[72] 2020

seismic detection
(earthquake and noise) and classification

(microearthquake, macroearthquake
and noise)

attention-based
CNN

Time series
(three channels)

NECIS [84] & IRIS [85]

[77] 2020
seismic detection
and phase picking

(earthquake, P-phase and S-phase)
multi-task structure

Time series
(three channels)

STEAD [8]
transf learning to

aftershock region of Tottori

[10] 2021

earthquake magnitude classification
(greater than or equal to

0.0, 1.0, 2.0, 3.0
and 4.0 on Richter scale)

3D-CNN RNN
Log-Mel spectrogram

(one channel)
STEAD

[79] 2021
Seismic detection

(earthquake and noise)
U-NET

CWT map
(3 channels)

Northern California
transfer learning to
Arkansas,Texas [86],
Japan and Egypt

[80] 2021
microseismic classification
(Dyke-roadway, Longwall,
Low-frequency and noise)

CNN
seismogram
(6 channels)

an underground
coal mine

[9] 2021
Microseismic event classification

(microseismic event,
single-phase event, and ambient noise)

CNN
seismogram
(22 channels)

synthetic data; unsuccessful
transfer learning to field data

[78] 2022
seismic detection
(P-wave and noise)

and magnitude estimation
Vision Transformer

Time series
(three channels)

STEAD

[1] 2022
seismic classification

(earthquake, other events and noise)
CNN

Time series
and seismogram
(three channels)

KNMI [87]

This thesis 2023
microseismic classification

(earthquake, quake,
rockfall and noise)

CNN

Time series,
STFT maps

and CWT maps
(6 channels)

Résif [59]
Transfer learning to Larissa [88]
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3.2.3 Overview of the literature of DL-based seismic signal classifica-

tion

Table 3.1 summarises the state-of-the-art in DL-based approaches whose end result is

classification. In the table, ‘transfer learning’ refers to the application of a pre-trained

model to evaluate data from a previously unseen dataset collected at a different location.

In [68], [76], [10], [72], [80], [9], a single type of feature is used as input, with no study

on feature selection. It can be seen that the majority of the proposed architectures rely

on CNNs and primarily use temporal or spectral features, often with 1 to 6 channels.

The CNN model of [1] reports classification results that are among the best in the

literature, without complex feature engineering. Although using more complex input

features and network structures, such as [10], [70], [77], [79], [78], can lead to high

performance, the complex pre-processing steps and deep models are computationally

demanding. In addition, sequence-to-sequence learning requires clearly labelled start

and end times of each event. Limited by the absence of such a dataset for rockfall and

quakes, as is usually the case in practice, we adopt a sequence-to-point classification

architecture.

The uniqueness of this approach lies in its ability to classify three important types

of landslide micro-seismisity, which has not been addressed in prior work on DL, as

well as anthropogenic noise. Moreover, the proprosed architecture demonstrates suc-

cessful transfer learning for endogenous landslide seismicity from one seismic dataset to

another collected at a different location, showing that differences in structural terrain

do not necessarily affect attributes that the model learned during training. Finally,

this chapter offers three types of architectures to effectively exploit both temporal and

frequency features and analyses how these features affect detection and classification

performance. It is worth noting that the proposed approach does not require a P-wave

picking or detection step (manually or via an algorithm) since it performs classification

on continuous recordings, as sliding windows, fed directly into the network.
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3.3 Methodology

3.3.1 Data processing

First, we apply band-pass filtering to remove high-frequency measurement noise and

low-frequency noise from sources such as humans, vehicles, rain, and animals. Specif-

ically, considering the frequency range of the events of interest, the raw recordings

are processed using a 3-order Butterworth band-pass filter with a frequency range of

5-60Hz.

We use 3 different model inputs: raw temporal data, STFT and CWT maps. Fig-

ure 3.1 shows examples of three classes of seismic events (earthquake, quake and rock-

fall). For time-series raw signals, we use 10 seconds window as input. Given the

sampling frequency of 250 Hz, the length of the input window is thus 2500 samples,

which is usually sufficient to capture the entire seismic event, and short enough to

ensure manageable complexity. Thus, for 6-channel recordings, the input time series

signal is of dimension 2500× 6. To perform STFT, we use Hann window with heuris-

tically set length of 128 samples with 75% overlap, generating output of dimension of

65 × 75 × 6. For CWT, as in [79], as mother wavelet, we use the Morlet wavelet with

8 cycles. We construct scalograms using 80 scales spanning frequency range between

5Hz and 60Hz. Thus, CWT model’s input dimension is 80× 2500× 6.

The choice of these three inputs is motivated by their widespread use in prior liter-

ature, as summarized in Table 3.1. Time series, STFT, and CWT representations are

among the most commonly employed inputs in seismic signal classification, offering a

fair and meaningful basis for comparison. Moreover, in practice, when experts manually

label seismic events, they mainly observe time series and STFT representations. Each

input type has its advantages and disadvantages: time series preserve the complete

temporal structure of the signal but may require the model to learn frequency-related

features implicitly; STFT provides joint time-frequency information with fixed resolu-

tion but may lose fine details at different scales; CWT offers high resolution analysis

that captures both low- and high-frequency components effectively but comes with

higher computational cost and redundancy.
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Figure 3.1: Examples of seismic signals for 3 classes (earthquake, quake and rockfall)
with 3 different input formats (temporal waveform, STFT and CWT maps) in Résif
dataset.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

3.3.2 Neural Network Architecture

The architectures of the proposed three networks, one for each type of signal input, are

inspired by VGG16 which mentioned in Section 3.2 and adapted to the sampling rate,

the size of the input seismic signal and its feature map. These are deep networks com-

posed of convolutional layers (for feature representation and extraction), max pooling

layers (for downsampling the extracted features to obtain the feature map of a small

size) and FC layers (for classification). That is, after multiple convolutional layers,

where the number of convolutional kernels increases with the layer number, and max-

pooling layers, the input signals are compressed into small feature maps, that are then

classified through 3 FC layers. The output layers have 4-node softmax classifiers, pro-

viding the probability distribution of 4 classes of events. The three architectures are

shown in Figure 3.2.

For the raw time-series model, the input dimension is 2500×6, corresponding to 10-

30



–
M
ay

30
,
2
02

5
–

Chapter 3. Microseismic event classification with time, frequency and
wavelet-domain Convolutional Neural Networks

second waveform segments sampled at 250 Hz across 6 channels. All convolutions and

pooling operations are performed in 1D. The first convolutional layer contains 64 filters

with kernel size 9. Subsequent convolutional layers double the number of filters up to

512 in the final layer. The max-pooling filter size is set to 4. These parameters were

selected to balance temporal resolution preservation and computational efficiency, while

ensuring that the receptive field grows sufficiently deep to capture temporal features

over the 10-second window. Importantly, for the time-series model, the activation

functions in the first two convolutional layers are set to linear instead of ReLU. This

is to prevent the premature suppression of information, since waveform data contains

both positive and negative values, and early ReLU activation may cause many neurons

to be zeroed out, impairing learning effectiveness.

For the STFT and CWT models, the architectural design was adjusted to maintain

comparable model complexity and capacity to the time-series case, facilitating a fair

comparison of performance across input types. The input to the STFT model is a

64 × 75 × 6 tensor, representing spectrogram slices per channel. All convolutional

layers here are 2D, with 3 × 3 kernels, which is a standard choice in image-based

CNNs for capturing local spatial and frequency correlations. In the CWT model, the

input map is highly anisotropic (80 × 2500), with one dimension (time) being much

longer. To manage this, stride values of 1× 2 are used in select layers to compress the

time axis more aggressively, preventing overly deep architectures. Additionally, some

convolutional kernels are enlarged to 3 × 9 to allow a broader temporal field of view,

which is beneficial for capturing long-duration waveform patterns unique to certain

seismic events.

Many deployed monitoring network configurations contain less than 6 channels. For

such systems, we design single-channel models that take one channel at a time as inputs.

The parameters of the single-channel model are the same as in the multi-channel model

except that the input shape is changed. To classify single-channel data, the input size

is 2500 × 1 for time series, 65 × 75 × 1 for STFT maps and 80 × 2500 × 1 for CWT

maps . When these single-channel models are used with n-channel data, it will output

n softmax vectors for each event. Then, to make a decision, we calculate the mean of
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each class for these n vectors.

(a) Time series-based model (b) STFT-based model (c) CWT-based model

Figure 3.2: The network structure for three different inputs.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

3.3.3 Data and Training Strategy

The dataset used to train and test all the models is openly accessible from the Résif

Seismological Data Portal, acquired by the French Landslide Observatory OMIV (Ob-

servatoire Multi-disciplinaire des Instabilités de Versants) [59]. To validate our classi-

fiers, first we use only labelled events, that is, we removed all sections in the dataset

that were not catalogued. We note that the catalogue includes natural/anthropogenic

noise segments, hence the classifiers are trained to distinguish this type of noise as well

as the other three micro-seismic events. We split the dataset of labelled events into

training (60%), validation (10%), and testing (30%) sets according to the time of the

event (earliest to latest). To increase learning efficiency, we standardise the dataset by

subtracting the mean and dividing by the standard deviation after denoising. Since
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the original dataset is very unbalanced (see Table 2.1), the training set was balanced

to avoid training bias, by generating new events by shifting the seismic events in the

window as well as adding background noise from non-catalogued eventless waveforms

to the catalogued events. This results in approximately 600 training samples per class,

ensuring a more uniform class distribution during training.

While alternative techniques such as loss function reweighting (e.g., assigning higher

weights to minority classes in the cross-entropy loss) or resampling strategies could also

address class imbalance, we chose data augmentation because it not only balances class

frequencies but also improves the diversity and robustness of the training data. In par-

ticular, shifting the target events within the sliding window not only simulates realistic

waveform variation but also enhances the model’s ability to detect events in continuous

data streams, where event boundaries are not fixed. This makes our approach especially

suitable for real-time applications involving streaming seismic signals. Importantly, the

test set remains unbalanced and untouched to reflect the true event distribution and

maintain the realism of performance evaluation.

3.3.4 Sliding window-based detection

To illustrate the applicability of our previously trained time-series model on continuous

data, we evaluate it on an unseen period (25-28 Nov 2014) from the Résif dataset, during

which 18 quakes, 23 earthquakes, and 65 rockfalls were recorded. Since the input of

the model is a time window, and the output is a 4-class probability vector, we slide the

input window on the continuous data to achieve a continuous series of probabilities, as

in [89], [30], [90]. This was necessary as the CNN was designed to process a fixed-length

signal, and a continuous stream of signals is not of a fixed length. The sliding window

method involves dividing the input signal into smaller windows of fixed length, with a

fixed overlap between consecutive windows. The input window is set, as before, to 10

sec. The input time window was slid with 90% overlap, that is, the classification result

is output each second. We set the decision threshold to 0.7: that is, a class probability

greater than 0.7 will be considered as an event class of this time window.
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3.4 Results and discussion

3.4.1 Classification Results

All networks were implemented using the Keras framework and trained for 100 epochs.

In preliminary experiments, training curves indicated that the validation loss typically

stabilized around the 80th epoch. The Adam optimizer was used due to its effective-

ness in training deep networks with sparse gradients and its adaptive learning rate

capabilities. The cross-entropy loss function was chosen as the task involves multi-

class classification with four target categories (earthquake, quake, rockfall, and noise).

Cross-entropy is a standard choice for such tasks, as it directly measures the divergence

between the predicted probability distribution and the true labels. The initial learning

rate was set to 0.0007, a conservative value to ensure stable gradient descent. To pro-

mote convergence and prevent the model from getting stuck in shallow local minima,

the learning rate was reduced by 10% every five epochs. This step decay strategy helps

the model learn quickly in the early stages of training, while gradually refining the

weights as it approaches convergence, improving final performance and generalization.

Table 3.2: The classification performance results for the three six-channel models.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Input: Time series Input: STFT maps Input: CWT maps

precision recall F1-score precision recall F1-score precision recall F1-score

Earthquake 0.96±0.016 0.97±0.009 0.96±0.008 0.96±0.019 0.98±0.004 0.97±0.011 0.97±0.017 0.98±0.008 0.98±0.007

Rockfall 0.91±0.023 0.90±0.011 0.90±0.010 0.88±0.009 0.92±0.012 0.90±0.007 0.91±0.004 0.91±0.005 0.91±0.005

Quake 0.86±0.032 0.84±0.015 0.85±0.013 0.90±0.039 0.87±0.019 0.88±0.023 0.90±0.023 0.88±0.015 0.89±0.011

Noise 0.85±0.011 0.86±0.013 0.86±0.004 0.89±0.008 0.85±0.013 0.86±0.009 0.86±0.015 0.86±0.017 0.86±0.013

The classification performance results for the three models are shown and com-

pared in Table 3.2. Each model was trained and tested 5 times using the same train-

ing and testing sets to ensure repeatability. The results are presented in the form

of “mean±standard deviation” where the mean and standard deviation are calculated

using the results obtained after 5 trainings and tests.

It can be seen from the table, that all three models provide highly accurate and

similar classification performance, with the F1-score ranging from 0.85 for quakes to
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Table 3.3: The classification performance results for the three single-channel models.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Input: Time series Input: STFT maps Input: CWT maps

precision recall F1-score precision recall F1-score precision recall F1-score

Earthquake 0.95±0.010 0.93±0.026 0.95±0.016 0.96±0.007 0.97±0.007 0.96±0.005 0.96±0.004 0.97±0.012 0.96±0.005

Rockfall 0.86±0.018 0.83±0.013 0.85±0.014 0.89±0.012 0.88±0.009 0.89±0.008 0.91±0.009 0.81±0.016 0.86±0.002

Quake 0.85±0.012 0.83±0.018 0.84±0.016 0.90±0.021 0.84±0.024 0.86±0.020 0.87±0.015 0.87±0.013 0.87±0.002

Noise 0.80±0.027 0.84±0.011 0.82±0.013 0.84±0.014 0.85±0.009 0.84±0.014 0.81±0.011 0.88±0.017 0.84±0.006

0.98 for earthquakes. The CWT model has marginally better classification accuracy

(averaged over all classes) of 90.82%, followed closely by the STFT model with 90.62%,

and the time series model with 89.97%. However, the relatively lower overhead of the

time-series model over the others makes it more desirable in practice.

The results using the proposed single-channel models when only one channel is

available are shown in Table 3.3. Comparing with the multi-channel models, the single-

channel models performs slightly worse for all classes of events. This can be explained

by the fact that the channels with very poor SNR affect the output due to averaging,

which is not the case with the multi-channel model.

We compare our results to traditional machine learning methods in [26], where an

RF classifier is used on a subset of randomly chosen events from the same dataset,

and correctly classified 94% of earthquakes (vs. 98% with the proposed method in

Table 3.2), 94% of rockfalls (vs. 92% in Table 3.2), 92% of noise (vs. 86% in Table 3.2)

and 93% of quakes (vs. 89% in Table 3.2).

The corresponding confusion matrices are shown in Table 3.4, for time waveform,

STFT, and CWT models, respectively. From the confusion matrices, we can see that

few quake events are misclassified, due to much shorter duration (<5seconds), smaller

SNR and the fact that quakes are usually localised events and hence not detected by

all channels, which is not the case with earthquakes. Quake classification results are

better for STFT and CWT than time series inputs, with fewer misclassified events,

since CWT and STFT features take into account both frequency and time duration.

However, the recall (sensitivity) of quake is still slightly inferior to the 93% reported

by [26].
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We think there are three reasons for this. First, Provost et al. [26] use 71 con-

structed features including nine network geometry attributes (such as mean and std

correlation lag between the stations; stations with max/min amplitudes, etc.), that

assume knowledge of positions of the deployed sensors. After removing these features,

the performance of [26] was reduced to 90% in average over all classes, ranging between

86% and 94%. Secondly, the number of labelled quake events is much smaller than

the number of other events. For example, there are 401 labeled rockfalls and only

234 quakes, and this has negative impact on the generalisation ability of the networks.

Thirdly, in [26] the channel with the highest SNR is chosen for feature extraction. In

our models, all 6 channels’ data were inputted, and some channels with low SNR may

impact classification results.

Table 3.4: The confusion matrix for the three six-channel models.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Input: Time series Input: STFT maps Input: CWT maps

Earthquake Rockfall Quake Noise Earthquake Rockfall Quake Noise Earthquake Rockfall Quake Noise

Earthquake 112 1 0 3 113 2 0 1 115 0 0 1

Rockfall 0 110 4 6 3 110 0 7 1 109 2 8

Quake 4 1 58 7 2 3 61 4 1 3 62 4

Noise 3 5 7 90 2 13 5 85 1 8 11 85

3.4.2 Interpretation of Misclassified Events

The misclassified events for the three multi-class models, time series input, STFT, and

CWT, accounted for 12.65%, 11.14% and 11.12%, respectively, of the total number

of events. As can be seen from the confusion matrices, the main cause of a drop in

recall is quake events being misclassified as noise, which is not surprising given their

low SNRs. Therefore, a close examination was conducted on cases where quake events

were misclassified as noise, totaling 10 events across all three multi-class models. Out

of these 10 misclassified quake events, 4 events were misclassified by 2 or 3 models. We

focus on these events and show a representative example for the time-series model in

Figure 3.3. From the figure, it can be seen the main reason for the wrong classification

is that the energy of the seismic signal is too weak compared to background noise.
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Indeed, in Figure 3.3 (left column), the wave peak of the correctly classified quake

event reaches roughly 1 × 10−6m/s while the wave peak of the missed quake event

(right column) is only around 8× 10−8m/s, that is, two magnitudes lower.

In general, quake events are of low amplitude and short duration. Due to the energy

of seismic activity and the distance between the event location and the monitoring

station, a small number of these events have extremely low amplitude, and the duration

of seismic events is often also very short. This makes the model prone to misclassifying

such events as noise, as out-of-distribution samples.

Figure 3.3: Waveforms of two quake events in all six channels. The quake event
which was correctly detected and classified (first column) and the quake event which
was misclassified as noise (second column) with the same ordinate axis ranges from
−1.5×10−6m/s to 1.5×10−6m/s. The misclassified quake event with the scaled zoomed
(third column), its ordinate axis ranges from −1.5× 10−7m/s to 1.5× 10−7m/s.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.
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3.4.3 Comparison with state of the art DL-based methods

In addition to benchmarking against traditional machine learning methods [26], we

compare the performance against the state-of-the-art CNN-based ‘deepquake’ network

[1] that was shown to outperform similar DL architectures [1]. The ‘deepquake’ network

has two models, one for time series input and another for STFT map, namely ‘arch-

time’ and ‘arch-spect’, respectively. The network uses 20 seconds windows with 100Hz

sampling frequency as input. Thus, we first down-sample our data to 100Hz (from

250Hz), use the same proposed pre-processing method to normalise data and extract

20 seconds of event waveforms as input window. The ‘deepquake’ model classifies

inputs into three classes: earthquakes, other events and noise. Thus, we re-label both

quakes and rockfalls as ‘other events’. We use ‘deepquake’ pre-trained models as initial

weights of each layers. Then, we re-train these two models using the Résif dataset for an

additional 80 epochs. The results are shown in Table 3.5. From the confusion matrix,

it can be seen that ‘arch-spect’ has better performance than ‘arch-time’ on Résif data,

which is expected and in accordance with our results, i.e., the STFT map input model

outperforms the time series input model.

Comparing these results with Table 3.4, we can see that our time series-based

CNN model outperforms ‘arch-time’ for all classes. Indeed, 104 earthquake events are

correctly classified by ‘arch-time’ while 112 earthquake were correctly classified by our

time series-based CNN. 22 other events (rockfalls and quakes) are misclassifed as noise

by ‘arch-time’ while 6 rockfalls and 7 quakes (13 in total) are misclassfied as noise by

our model. For STFT maps as input, we can see that ‘arch-spect’ performs worse than

our STFT-based CNN. Both models correctly classify 113 earthquakes. 14 other events

are misclassified as noise by ‘arch-spect’ while 7 rockfalls and 4 quakes (11 in total) are

misclassified as noise by our STFT-based model. This shows that our proposed model

is in line with the state-of-the-art, with the advantage of additionally distinguishing

endogenous landslide seismicity, including rockfalls and quakes.
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Table 3.5: The confusion matrix for the two ’deepquake’ models [1].
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

’arch-time’ network ’arch-spect’ network

Earthquake Other Noise Earthquake Other Noise

Earthquake 104 9 3 113 2 1

Other 6 162 22 1 175 14

Noise 3 23 79 1 19 85

3.4.4 Continuous detection results

For results we test our network on continuous stream, time series-based CNN correctly

detected and classified 91% of earthquakes, 83% of quakes and 94% of rockfalls (TP).

These results are similar to the time series-based model’s recall (sensitivity) in Ta-

bles 3.2 and 3.4, and therefore we conclude that the network is robust to continuous

detection and classification. In Figure 3.4, we show 2 and a half minutes (i.e., 150

sec) of the continuous waveform of an earthquake event that occurred at 4:05:39 on

November 28, 2014. It can be seen from the figure that the model correctly detects the

start of the signal. In addition, our network detected many other events that have not

been catalogued, namely, 174 earthquakes, 260 quakes and 32 rockfalls.

It is important to note that performing continuous detection and classification using

a sliding window over continuous data streams introduces a much higher proportion of

background noise compared to testing on curated datasets. Due to the good sensitivity

of the CNN, a small portion of the background noise may be misclassified as events

(earthquakes, quakes and rockfalls). Although the probability of such misclassification

is low, the overwhelming amount of noise in continuous data inevitably leads to a num-

ber of false positives. This phenomenon causes the precision of seismic event detection

to decrease, which in turn reduces the overall F1 score. A detailed evaluation of model

performance on continuous stream, including precision, recall, and F1 score under these

conditions, will be presented and discussed in Chapter 4.
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Figure 3.4: Continuous detection results for an earthquake event.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

3.4.5 Transferability analysis

Using the same sliding window of continuous time series recordings as above, we evalu-

ate transferability of our trained time series input model. The models described above,

trained on the Résif dataset, are used to detect events on a microseismic dataset from

Larissa region in Greece [91], [88]. There are inherent differences between the two

sites. The Résif dataset was collected from the Sauze catchment basin in the Alps,

characterized by limestone formations and black marl [60]. The region around Larissa

in Greece is a seismically active area, characterized by gneiss and schists [92]. The

two sites are geologically different, with different monitoring networks: different num-

ber of sensors and deployment geometries, sampling at different rates (250Hz Résif vs.

100Hz Larissa). Such differences, especially the different geological background, alter

the characteristics (amplitude, frequency content) of the signals, therefore making the

transferability problem very challenging.

To transfer the model from the 6-channel Résif dataset, we selected six channels from

the Larissa dataset from HT network as the array: all three components (North, East,

vertical) of station TYR1, vertical (Z) components of TYR3, TYR6 and TYRN [88].

The choice of these particular stations, referred in the following as Array 1 (A1), was

40



–
M
ay

30
,
2
02

5
–

Chapter 3. Microseismic event classification with time, frequency and
wavelet-domain Convolutional Neural Networks

based on their location and quality of recordings. The four chosen stations form an

almost equilateral triangular array, with three stations at the three vertices and one

inside the triangle - see Fig. 3.5. This is a commonly used geometry in microseismic

monitoring surveys to maximise detection of microseismic events.

To assess the sensitivity of the results to sensor array deployment geometry, we

perform the same analysis as above on another set of stations forming a more random

geometry, referred to as Array 2 (A2): all 3 components of TYR1, Z-components of

TYR2, TYR3 and TYR4. Compared to the previous array geometry, the sensors in

this array are located further apart - see Fig. 3.5 - and hence, waveforms from the same

event are likely to look different in the recordings of the different stations.

Since the sampling rate of two datasets is different, we up-sampled the data from

Larissa using linear interpolation to 250Hz and denoised the signal as described in

Subsection 3.3.1. The dataset from Larissa contains 86 catalogued earthquakes during

the entire day of 17th March 2021, from 0:00 to 24:00. The catalogue we used can be

downloaded from the Institute of Geodynamics, National Observatory of Athens [91]

using as search area a circle with radius of 218km and centre at longitude 22.1777

degrees and latitude 39.6460 degrees. Our proposed models correctly classified all

catalogued earthquakes, demonstrating good transferability.

Additional (to the aforementioned earthquake catalogued events) earthquake, quake

and rockfall events were classified via our proposed approach. These findings are veri-

fied via manual detection, as well as the commercial InSite software v3.15 developed by

ITASCA, which is widely used for seismic event detection. The software uses energy-

based triggering algorithms to identify potential seismic events by detecting sudden

increases in signal amplitude [93]. For manual verification, experienced analysts ex-

amined the multichannel time series waveforms and corresponding spectrograms to

identify and validate seismic events. We randomly chose one hour within 17th March

2021, from 18:53 to 19:53 and manually searched the recordings of the same six channels

to detect seismic events via visual observation. The data were filtered using a 5-100Hz

band-pass filter (as per Subsection 3.3.1). An event is valid if it was visually observed

on at least 2 channels (at different stations). Note that manual detection of the events

41



–
M
ay

30
,
2
02

5
–

Chapter 3. Microseismic event classification with time, frequency and
wavelet-domain Convolutional Neural Networks

was blind, i.e., without using the output of the proposed CNN model as guide. The

start time is set as the time of the earliest arrival at any of the four stations of the array

and duration is based on that station’s channel. We fed the same 1 hour of continuous

bandpass filtered data from Larissa to InSite software, where an amplitude threshold

value of 6.6e-7m/s (meters per second) was used for detection of events.

An additional catalogue of all events detected and classified via the proposed CNN,

manual detection and InSite software is published and publicly available in [94], and

also provided in Appendix A for further analysis by the research community. This

catalogue, which we refer to as comprehensive catalogue from now, also includes the

type or class of event and its the duration. A1 and A2 refer to the events classified by

the proposed CNN multi-classifier for the first (equilateral triangular) array and second

array configurations, respectively. Similarly, M1 and M2 refer to events identified via

manual detection on array 1 and 2, respectively, whilst I1 and I2 denote events identified

by the InSite software.

The proposed CNN multi-classification model is designed for waveform pattern

recognition (not P-wave picking as in [77]), therefore it does not estimate the start time

and duration precisely because the model locates the event on a subset of the 6 input

channels using a 10-sec window. After manual verification of traces, we observed that

there are a number of occasions where the CNN model estimated multiple adjacent

earthquakes as either one event or vice versa. For distant events from the station

locations, the different signal phases (e.g., P wave, S wave etc.) arrive with a distinct

time difference. This results in later phases, e.g., P wave reflections, being detected by

the CNN model as separate earthquake events, instead of a single event. To mitigate

this effect, we perform processing as follows. In the network’s last FC layer, we set

a bias towards classifying segments as non-events. In particular, we set as a decision

threshold softmax value of 0.7 (instead of the default value of 0.5), which means that

only when the softmax value greater than 0.7 is reached, the candidate window will be

classified as an event. Next, as a post-processing step, we merge all events that start

within 5-sec time interval, into one to prevent classifying different wave reflections into

multiple events. Furthermore, for events that originated far away from the monitoring
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stations, the time interval between P-phase and S-phase will be large (>10 sec), and

hence in this case, an earthquake event will appear as two separate events.

Referring to the proposed comprehensive catalogue, we compare events detected

between time-series based on (1) CNN model with post-processing, (2) manual event

detection and (3) automatic detection using the InSite software. It can be seen that

the results of the proposed model and manual detection are very aligned. Indeed, only

8 earthquake events are detected manually by M1 and missed by A1, 4 of which were

detected by A2. Similarly, 13 earthquakes detected by M2 are missed by A2, but 6

of these events were picked up by A1. These were more distant or more localised

events, respectively. Each array configuration detected 62 earthquakes. 15 events were

detected by A1 and missed by A2, or vice versa. InSite detected 32 and 38 of these

earthquakes for A1 and A2, respectively, 22 of which are common for all 6 detection

methods (2 arrays with manual, automatic detection and InSite). 9 (11) and 21 (8)

rockfall (quake) events were detected by A1 and A2, respectively. Out of these, 7 and

4 rockfall events were detected by I1 and I2, respectively, 2 of which are common for

all 6 detection methods.

Figure 3.5: Six selected monitoring stations in Larissa, Greece. A1 configuration, based
on an almost equilateral triangular array, comprises TRY1, TRY3, TRY6, and TRYN.
A2 configuration, random geometry, is based on stations TRY1, TRY2, TRY3, and
TRY4 that are further apart.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.
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Tables 3.6 and 3.7 summarise the 3 types of events detected by the proposed ap-

proach (A1 and A2), that were manually corroborated (referred to as TP), missed by

the proposed approach (False Negative (FN)) and not confirmed manually (False Pos-

itive (FP )). We observe that no quake and rockfall events detected by the proposed

CNN were missed. Fewer earthquakes were missed by A1 than A2, since the A2 con-

figuration includes stations that are spread further apart. Most earthquake events are

detected by both A1 and A2 configurations, with some events of distant origin picked

by A2 only, and localised events by A1 only. Details of the 3 distinct events and their

time of occurrence, that were detected manually, via Insite Software and proposed CNN

are provided in the comprehensive catalogue1.

Table 3.6: Larissa results from proposed CNN on one hour data using readings from
TYR 1, 3, 6, and N stations (A1): Comparison between automatic and manual detec-
tion.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Class
No. of manually

corroborated events
(TP)

No. of events
only observed by
manual detection

(FN)

No. of events
only observed by

CNN
(FP)

earthquake 40 13 8

quake 10 0 3

rockfall 7 0 2

3.4.6 Internal workings of proposed architecture via feature maps

vizualization

We visualize the feature maps at the output of different convolutional layers in our

proposed network designs and visualize the features at the output of the second FC

layer (which is the input to the output layer). The feature maps are the result of

applying the filters to the input of convolution layers. Visualizing feature maps can be

used to explain which input features are extracted in convolutional layers and analyse

1https://doi.org/10.15129/589f7af3-26b3-4a93-b042-fbc8100fc977.
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Table 3.7: Larissa results from proposed CNN on one hour data using readings from
TYR 1, 2, 3 and 4 stations (A2): Comparison between automatic and manual detec-
tion.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Class
No. of manually

corroborated events
(TP)

No. of events
only observed by
manual detection

(FN)

No. of events
only observed by

CNN
(FP)

earthquake 16 19 11

quake 2 0 2

rockfall 19 0 29

the influence of time, frequency, wavelet domain representation on the interior of the

network. A visualization example is shown in Figure 3.6. The same earthquake event

forms an input to all three proposed CNNs. The figure shows the first 9 feature maps

output by the first, the second, and the fourth convolutional layer after max-pooling,

for each of the three proposed models. For time series, we can see the input signal

being transformed into many earthquake-like signals by the first convolution layer.

Then in the second convolution layer, the feature map extracts more detailed features

from the input signals. The key features in earthquake signals (i.e., P-waves and S-

waves) are preserved and enhanced in the fourth convolutional layer, where we can

see clearly extracted peaks of events to be classified. In the STFT network, the first

convolutional layer highlights the frequency band and the time step where the event

occurred. From the second convolutional layer, it can be seen that the STFT-based

model has learned the frequency features of the event, as the feature maps highlight the

high-frequency and low-frequency range of the event. The fourth convolutional layer

transforms these feature maps of different highlighted frequencies into more abstract

representations. The CWT-based model works similarly to the STFT-based model. In

the first convolutional layer, the feature maps highlight where, in time and scale, the

event occurs. Compared with the feature maps of the first layer, the feature maps of

the second layer have larger highlighted areas of the event, as the model is extracting
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more detailed wavelet features. Then, the fourth convolutional layers transform the

features into abstract representations. In summary, through the visualization of feature

maps, we explain the internal process of CNN in classifying seismic signals. The first

convolutional layer is often used to find the position of the event in the input window.

Then, CNN starts to extract more detailed features of the event. With the deepening of

the convolutional layers, the extracted features are gradually transformed into abstract

representations for subsequent classification. After the feature maps output by the

convolutional layers are flattened, these one-dimensional features are classified by the

FC layers. There are 256 nodes in the second FC, so there are 256 features. Figure 3.7

shows the features extracted by the second FC layer (which is the input of the last

layer) for the four classes by three different models. For earthquake, the max value of

the feature tends to be large (greater than 20), while quake and rockfall events have

relatively small max features (between 10 and 20), and the max features of noise are

the smallest (less than 10). As deep learning is a black-box algorithm, it is difficult

to determine what attributes of the event these 252 features represent. However, we

can see that different events have different feature distributions, and seismic events

(earthquakes, quakes and rockfalls) have larger feature values than noise. This means

that the CNN can extract different features for the seismic event waveforms, but does

not extract many features from noise signals.

3.4.7 Complexity Analysis

Table 3.8 presents the execution time required to process a 10-second input window

with 6 channels (equivalent to 15,000 samples), covering denoising, transformation, and

testing for each CNN model. CNN models were designed and tested using Python 3

and the Keras framework. The denoising and transform steps are also programmed

in Python 3. All experiments were performed on an i5-10310U CPU. The time series-

based model has the lowest complexity requiring 24ms to output result for a 10-sec

window, followed by the STFT-based (37ms), and CWT-based model (808ms). This

is expected since the time series- and STFT-based models have 5,684,036 trainable

parameters, while the CWT-based model has 6,035,012 parameters. Note that the
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Figure 3.6: Feature maps of the first, second, and fourth convolutional layer of the
three CNNs with seismic events as input.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

time series-based and STFT-based models require much less than the 1sec window

time shift applied on continuous data traces, and hence these two models can process

the data in real time.

3.5 Summary

This chapter proposes microseismic classification on continuous recordings (no addi-

tional detection step needed) via a CNN, exploiting the inherent feature engineering

ability of deep learning. Three CNN models were developed for three types of data in-

puts: temporal waveform, STFT and CWT maps. These proposed models were trained

on the labelled Résif dataset, in order to detect/classify three types of events, namely

earthquakes, quakes and rockfalls. During testing on an unseen portion of the Résif

dataset, the time-series-, STFT- and CWT-based models all had similar performance

for the three microseismic events and anthropogenic noise classes. Additionally, the

time series-based model was observed to be the fastest during complexity analysis,
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Figure 3.7: Feature maps of the second fully connected layer of the three CNNs for four
classes.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

Table 3.8: The execution time for each model in ms.
© 2023 IEEE. Reprinted, with permission, from Jiang et al., ”Microseismic Event
Classification With Time-, Frequency-, and Wavelet-Domain Convolutional Neural Net-
works,” *IEEE Transactions on Geoscience and Remote Sensing*, vol. 61, pp. 1–14,
2023.

10 seconds input
Fs=250Hz, 6 channels

15000 samples
Approach Time (ms)

Denoising band-pass filter 2

Transform
STFT 7
CWT 625

CNN models
Time series-based 22

STFT-based 28
CWT-based 181
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demonstrating near real-time performance. The ability of the proposed pre-trained (on

the Résif dataset) model to classify events from continuous recordings in a geologically

distinct site was demonstrated via transferability to a 24 hours dataset from the region

of Larissa, Greece. All 86 catalogued earthquakes made available to us during that

time period were correctly detected and classified despite major differences in mon-

itoring layout used at the two sites and geological terrain. Using a less favourable

deployment geometry, results where still within a satisfactory range. The following

chapter will address the ’black box’ problem in CNN models by utilizing advanced XAI

tools to enhance the interpretability of the proposed CNN model. It will demonstrate

how deep learning classifies seismic events and provide insights into why the model may

occasionally misclassify them.
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Chapter 4

A human-on-the-loop approach

for labelling seismic recordings

from landslide site via a

multi-class deep-learning based

classification model

4.1 Introduction

Deep learning models achieve state-of-the-art performance in detecting and classifying

seismic signals avoiding cumbersome manual feature generation, selection and extrac-

tion process, with their ability to automatically learn most discriminative features from

raw recordings as discussed in Chapter 3. However, this also means that these models

are limited by the used training set, and may learn specifically spurious correlations

with the prediction target [95], [96]. Furthermore, the fact that the feature engineering

task is taken away from the designer, makes deep learning models opaque, and hence

often referred to as “black box”, which limits their use. Indeed, geoscientists are still

reluctant to use them and rather rely on less complex interpretable methods based
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on hand-crafted features [19] that ensure that relevant physical features are used for

detection and classification (see, e.g., Table I in [19] and Table A1 from [97]).

Explainable AI (XAI) [98], [99] is a research direction that provides human-interpretable

explanations that can potentially enhance training process, correct manual data anno-

tation, improve models, and contribute towards building trust in AI-generated out-

puts [100], [101]. XAI tools have been extensively used in computer vision (e.g., [102])

and time-series signal analysis problems (e.g., [103]); however, the work on explaining

the output of deep learning models for seismic signal analysis, and using these expla-

nations to improve confidence in data labelling, model training and building trust in

inferred outputs, is still in its infancy.

This chapter provides comprehensive explanations to identify key features learnt

by a deep neural network for multi-class classification, and demonstrates that these

features are in agreement with the physical properties of seismic signals and common

hand-crafted features used in the literature [19]. The generated explanations are then

used to explain instances of misclassifications and correct errors in manual labelling,

jointly with a geoscientist, who verified the corrected labels of the classified events and

the features associated with these events. This builds trust in the models confirming

that the learnt feature representations agree with expert knowledge.

We use state-of-the-art XAI tools to explain deep learning models for detection and

classification of micro-seismic signals and show how these explanations can be used

to improve the designs and explain correct and wrong predictions. In particular, we

use CNN-based architectures for detection and classification of seismic signals into four

classes: earthquake, micro-earthquake referred to as quake, rockfall and noise. These

are the same classes as used in Chapter 3.

4.1.1 Pertinence of Trustworthy AI to seismic analysis

In order to pave the way towards a regulatory framework for ensuring trust in AI, the

European Commission has published seven principles of Trustworthy AI [104], which

include Human Agency and Oversight, Technical Robustness and Safety, Privacy and

Data Governance, Transparency, Diversity, Non-discrimination and Fairness, Societal
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and Environmental Well-Being and Accountability.

Depending on how the AI-based seismic analysis will be used, from understand-

ing the subsurface processes and mechanics to hazard and disaster management, the

AI systems can be seen as minimal risk to high risk, and therefore subject to strict

oversight before they can be used to ensure infrastructure and human safety. There-

fore, the following principles are of relevance to seismic analysis. First, AI systems

should empower decision makers when it comes to hazard assessment or infrastructure

planning, allowing them to make informed decisions from the AI system outputs. The

principle of Human Agency and Oversight caters for proper oversight mechanisms that

need to be ensured, which can be achieved through human-on-the-loop and human-

in-command approaches. Second, the principle of technical robustness and safety, in

part states that AI systems need to be accurate, reliable and reproducible to ensure

unintentional harm can be minimised and prevented. Accuracy refers to the ability to

correct predictions based on AI models and can be implemented via rigorous evaluation

and indication of likelihood of potential errors. Reproducibility describes whether an

AI experiment exhibits the same behaviour when repeated under the same conditions.

A reliable AI system is one that works properly with a range of inputs and in a range of

situations. Third, the principle of privacy and data governance enables users to trust

the data gathering process and that it does not contain inaccuracies, errors or mistakes,

especially with respect to labelling or cataloguing by expert geoscientists. Fourth, the

principle of transparency states that the data and AI system should be transparent

through traceability mechanisms in the form of documentation of datasets and pro-

cesses that yielded in decision, including data gathering, data labelling and algorithms

used. Furthermore, transparency also includes explainability, that is, AI systems and

their decisions should be explained in a manner adapted to the stakeholder concerned.

This includes XAI. Fifth, transparency also states that humans need to be aware that

they are interacting with an AI system, and must be informed of the system’s ca-

pabilities and limitations. Finally, the social and environmental well-being principle

state that the AI systems should be sustainable and environmentally friendly - this

can be through taking into considering the resource usage and energy consumption for
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training the models. Moreover, they should consider the societal impact. Monitoring,

understanding, modelling and predicting landslide processes due to climate change, es-

pecially rainfall, tackle United Nations (UN) Sustainable Development Goal (SDG) 13

on Climate Action [105]. As explained in [106], shearing and friction between the soil

grains results in release of seismic energy within the landslide body. Therefore, passive

seismic monitoring is a good approach to monitor and mitigate slope instabilities, as

it provides high temporal resolution data in near real time that relate to the dynam-

ics of the landslide. This means that the transition (and rapid transformation) of the

landslide from slow rate sliding into a rapid slope failure may be detected and therefore

mitigate associated hazards.

4.2 Related work

To ensure trust and expert’s control of the decision process, machine learning-based

seismic signal analysis has been performed either in a semi-automated manner [107]

using continuous expert oversight and monitoring (human-on-the-loop), using inter-

pretable models [19], or using non-interpretable models (such as Random Forests) but

with numerous hand-crafted features [26] to ensure that the inference is made on signal

characteristics identified by experts as important. In [97] a detailed study of feature

importance is presented where 119 features are constructed based on seismic signal

literature and their importance tested using four different feature importance methods

and different classifiers based on Support Vector Machine, Random Forest, and three

graph signal processing based semi-supervised approaches. The features are experi-

mentally ranked showing time-, frequency-, cepstrum and polarity features that are of

highest importance in inference making per studied class. The results show that out of

119 constructed features only a subset contributed significantly to the decision. Note

that this study was based on quantifying the importance of hand-crafted features in

accurately classifying multiple event classes from continuous data, thus deep learning

networks were not considered.

In [1], CNNs are used to classify isolated catalogued seismic events into noise, earth-

quake and other events. The authors developed a heatmap-based visualisation tool to
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explain model outputs via the outputs of activation functions of each filter in the convo-

lutional layers and then overlapping the result with the raw input signal. However, this

study has several weaknesses when it comes to gaining trust in model outputs. Firstly,

it is not clear how explanations are formed by fusing outputs of the activation functions

from different layers. Secondly, only binary classification is considered, i.e., identifying

relatively well-defined earthquakes from other signals. Thirdly, the approach does not

exploit advanced XAI methods, and it is not used to explain any false predictions.

In [108], the authors proposed a Dual-Channel CNN Module where one channel con-

tains raw time-domain waveforms, and the other channel contains frequency-domain

information by Discrete Cosine Transform (DCT) to classify input seismic waveform

into rock fracturing and noise, together with an explanation module, EUG-CAM (Elab-

orate Upsampling-based Gradient-weighted Class Activation Mapping). It builds upon

the principles of the gradient weighted class activation mapping (GradCAM) [109],

harnessing the influence of feature map values and gradients to elucidate the impor-

tance of diverse features in the last convolutional layer. Recognizing the discrepancy

between feature map sizes and input data dimensions, EUG-CAM uses a strategic amal-

gamation of transposed convolution, unpooling, and interpolation, to generate feature

mappings from a coarse localization map. This results in an explanation feature map

that effectively encapsulates class activation, learning insights, and network architec-

ture considerations. However, the model’s limitation is in classifying only two classes

(rock fracturing vs. noise) and its confinement to binary classification. Furthermore,

the reliance on a 1-D CNN model facilitates explanations primarily within the time

domain, possibly neglecting the benefits of frequency-domain insights garnered from

the DCT. Additionally, the visualization maps cannot show the adverse input signal

influence (negative contribution) on classification results, hampering a comprehensive

and well-rounded comprehension of the model’s decision-making process.

4.3 Data gathering and context

The dataset we used is Résif which has been introduced in Chapter 2. In this study,

we used data from the 3C sensor. This choice aligns with common practices in seismic
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waveform classification, where a 3-channel input is standard, such as EQ-transformer [77]

and DeepQuake [1]. Additionally, it facilitates transfer learning, as many seismometers

employ three-component sensors, ensuring compatibility with various seismic datasets

and applications. Using 3 channels also reduces the number of false positives which can

occur with arrival mismatches and reduces the computational demand.

4.3.1 Labelling

The number of labels for each class in the Résif catalogue, referred to as the original

catalogue, is detailed in Chapter 2 Section 2.3. Events were classified from continuous

recordings using both manually designed feature-based classifiers and deep-learning-

based classifiers with automated feature extraction, as discussed in Chapter 3. Since

detection and classification were performed on a continuous data stream, additional

events not present in the original catalogue were identified by both the Normalised

Graph Laplacian Regularisation (normGLR)-based classifier [97] and the CNN-based

classifier. These methods detected and classified hundreds of previously uncatalogued

events, particularly between November 25th and 28th, 2014—a period characterized by

heightened activity on the SZ slope [110].

As reported in [97], all four types of events are present in this 4-day time period,

and in addition to the 120 events (65 rockfalls, 18 quakes, 23 earthquakes and 14 noise)

labelled in the original catalogue, 17 quakes, 89 earthquakes and 92 rockfalls events were

detected and classified by the normGLR classifier whereas an additional 260 quakes,

174 earthquakes and 32 rockfalls were detected and classified with the CNN approach

proposed in Chapter 3. These algorithms only missed 1 earthquake, 1 rockfall and 2

noise events that were present in the original catalogue.

All events detected by the normGLR classifier, the CNN classifier and an additional

classifier based on Siamese networks [111] were reviewed by an expert for labelling fol-

lowing the methodology used to build the original catalogue, which is based on the

seismic signal waveform and spectrogram features. The final outcome of the expert

reviews for this 4-day period were 69 quakes, 29 earthquakes and 126 rockfalls. Note

that the normGLR classifier was too sensitive, overestimating the number of earth-
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quakes [97]. The CNN-based 6-channel input multi-classifier in Chapter 3 was too

sensitive for quakes and earthquakes but missed a number of rockfalls.

This chapter demonstrated the value of machine learning-based classification on

continuous streaming recordings, since it is tedious for experts to manually review

continuous data streams, as well as pick up the microseismic events, especially quakes

and rockfalls, that are often “hidden” or “unclear” within ambient noise present in the

recordings. These newly detected and expert-labelled events during the period 25th to

28th Nov. 2014, not present in the original catalogue, are released.

4.4 Methodology

4.4.1 Proposed CNN-based architecture

In this chapter, an STFT-based CNN model adapted from Chapter 3 utilising STFT

maps as inputs, is used. These frequency-domain inputs have been shown to provide

better results on average compared to directly feeding time-series signals. Additionally,

human experts traditionally detect and classify seismic events based on their spec-

tral characteristics, reinforcing our choice of the STFT model. This spectral analysis

aligns well with expert practices, making STFT a natural fit for our human-on-the-loop

objectives.

The architecture of the model is composed of convolutional layers, max pooling

layers and FC layers, adapted to the input shapes and output categories, as shown in

Figure 4.1. Convolutional layers perform feature representation and extraction, followed

by max-pooling layers that downsample the extracted feature into a feature map with

smaller size.

Compared to the model in Chapter 3, several modifications have been made to

improve the model’s robustness and suitability for long-duration seismic event detection

in continuous data streams. Specifically, the input window size has been extended from

10 to 15 seconds. Additionally, the number of convolutional kernels and neurons in each

layer has been reduced. These adjustments are motivated by findings in Chapter 3,

which reveal that CNN models tend to exhibit excessive sensitivity. Through extensive
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experimentation, we found that reducing certain parameters helps to mitigate this

sensitivity, lowers model complexity, and achieves a better balance between performance

and complexity. The detailed network configuration is presented in Figure 4.1, while the

classification performance of the revised model is discussed in Section 4.5.1. Moreover,

recognising the prevalence of waveforms captured by three-component sensors, the input

to the network is 3-channel input data, in contrast to 6-channel used in Chapter 3, which

significantly expands the model’s applicability across a wider range of scenarios.

Figure 4.1: STFT-based CNN for seismic classification. Kr denotes the number of
kernels, and ‘Flatten’ function transforms the input data into a 1D array. © 2024 IEEE.
Reprinted, with permission, from J. Jiang, V. Stankovic, L. Stankovic, D. Murray, and
S. Pytharouli, ”Explainable AI for Transparent Seismic Signal Classification,” IGARSS
2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Athens,
Greece, 2024.

4.4.2 Training and testing strategy

The inputs to the model for both training and testing comprise STFT maps generated

from the raw recordings as discussed in the previous subsection. Chapter 3 demonstrate
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that CNN models tend to be overly sensitive. To address this, we refine the sensitivity

of our CNN by only using the high-quality events to train the model. Specifically, we

visually inspected and chose events from the original catalogue to ensure that the set

used for training comprised only high-quality events based on signal clarity and high-

SNR for earthquake, quake and rockfall classes. This selection process was conducted by

two experts with experience in seismic data analysis, who manually reviewed both the

multichannel time series waveforms and their corresponding spectrograms. The number

of events in each class is shown in Table 4.1. All noise events originate from the original

catalogue. In addition to the manually selected events, we utilise the labelled events

from the 25th November 2014 (one day) to train the model further. This additional

data allows us to augment the training set with events that are not included in the

high-quality subset of the original catalogue and help to improve precision and recall.

Table 4.1: The number of labeled events chosen from the original Résif catalogue

Class Total No. events

Earthquake 340

Quake 207

Rockfall 378

Noise 351

4.4.3 Continuous detection and post-processing

Raw signals recorded by 3-channel (North, East and vertical direction) seismic recorders

are used. Since the classes of interest are 5-60Hz bandwidth, we first use a BandPass

Filtering (BPF) to remove low frequency noise (denoising) as in Chapter 3. To allow

prediction on a continuous stream of signals, a sliding window method as discussed in

Chapter 3 is used to segment the continuous stream into smaller windows.

In this study, a window size of 3750 samples (i.e., 15 seconds) is used. The overlap

between consecutive windows is set to 93% of window size (3500 samples (14 seconds)),

which corresponds to a shift by 1 sec, allowing the CNN model to capture the temporal

dynamics of the events of interest. Furthermore, since the peak amplitude of signals

belonging to different classes is large, to improve the learning ability of the models, we

perform normalization of the filtered recordings. In particular, in order to enable the
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model to focus on classifying the input signals and facilitate the subsequent explanation

of the classification results, we normalise each 15-second window by subtracting mean

and dividing by the maximum of the absolute value of each input window. For the

STFT map input, in order to get good time and frequency resolution, ‘Boxcar’ window

with length of 128 samples with 70% overlap is used. We perform STFT on denoised

and normalized time series input window. Thus, the input shape for the STFT-based

model is 65× 95× 3 samples.

While the sliding window technique enables continuous detection, it can introduce

certain challenges. One of the main issues is that it may break the continuity of the

event waveform, leading to potential inconsistencies or artefacts in the classification

results. This occurs because the sliding window segments are treated independently,

without considering the temporal context or smooth transitions between adjacent win-

dows. In this chapter, a post-processing techniques are proposed to refine and enhance

the detection output by taking into account the temporal relationships between adja-

cent windows.

The proposed post-processing system is based on threshold filtering, median filter-

ing, and Gaussian kernel filtering of the softmax output of the CNN. In addition, a

peak selection method is applied to resolve cases where two classes of events have very

similar detection results. (1) Threshold filtering: the softmax output of the CNN is

filtered with a threshold value (set to 0.5), and all values below this threshold are set

to zero. This is done to remove low-probability detections. (2) Median filtering: After

the threshold filtering step, the probability distribution may contain isolated spikes. To

remove these isolated spikes, we apply a median filter to each class separately. In addi-

tion to removing isolated spikes, the median filter can also merge spikes that are very

close together, resulting in smoother and more continuous probability distributions. We

set the size of the median filter to 5. (3) Gaussian kernel filtering: a Gaussian kernel

filter is applied to the median filtered output to smooth the probability distribution.

Gaussian kernel is defined with a sum of 1 and a length of 15. Its standard deviation

is 5. (4) Peak selection: after using Gaussian kernel filtering, we select the highest

peak (i.e., the longest duration) as the final output. This peak selection method allows
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us to choose the class of the event with the longest duration, as it indicates a higher

confidence level in the classification result.

4.4.4 Explainability-informed re-labelling

Unlike classifiers such as RF, SVM and (norm)GLR-based classifiers that take hand-

crafted features as inputs and where feature importance was studied in detail in [97],

the CNN multi-classifier is essentially a “black box” since we do not know what features

were deemed important. We therefore utilise LRP to understand feature importance

for the deep-learning CNN multi-classifier.

LRP [112] is a state-of-the-art XAI method, that shows the contribution of each

sample in the input data to the classification results and can be implemented in the

pre-trained model [113]. In this chapter, LRP is used to help identify which parts of

the seismic signal are most important in making the final classification decision. This

helps understanding which features of the seismic signal are most relevant for seismic

detection, and identify any potential biases in the model. In addition, LRP can provide

interpretable and detailed explanations of the model’s decision-making process, which

can be useful for communicating the model’s results to human experts.

The LRP method starts from the output of the model, sets the output value before

activation function as relevance, and gradually back propagates the relevance, itera-

tively, layer by layer, to the input nodes. In the backpropagation, the relevance follows

the conservation law, that is, a neuron’s relevance equals to the sum of the relevance

it flows out toward all other neurons. Various propagation rules have been proposed,

such as LRP-γ, LRP-ϵ, LRP-0 rule [101]. In this paper, we used LRP-ϵ rule which is

suitable for convolutional layers and max pooling layers [114], and is defined as:

Rj =
∑
k

ajwjk

ϵ+
∑

0,j ajwjk
Rk, (4.1)

where Rj represents the relevance score assigned to neuron j, aj denotes an input

activation, wjk is the weight connecting neuron j to neuron k in the layer above,
∑

0,j

denotes that we sum over all neurons j in the lower layer plus a bias term w0k with
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a0 = 1. ϵ is a regularisation term, i.e., a small value that prevents the denominator

from being 0.

In our implementation, The LRP algorithm was implemented using the iNNvesti-

gate toolbox, default parameters of the LRP-ϵ rule are used. All other parameters,

such as the layer-wise activations and weights, were taken directly from the pre-trained

CNN model without modification.

In practical expert usage, LRP maps are generated for all instances where the CNN’s

predicted class differs from the expert-provided label (as outlined in Subsection 4.3.1).

The post-processing techniques described earlier play an important role in making

the CNN’s outputs on continuous streams smoother, thus enabling experts to more

easily observe the model’s predicted class transitions during continuous detection. The

LRP maps are presented alongside the corresponding STFT spectrograms and raw

time-series signals. This multi-modal visualization enables experts to assess whether

the CNN’s attention (i.e., relevance) focuses on physically meaningful seismic features

(e.g., P-wave or S-wave arrivals, spectral characteristics of tremor). If the highlighted

regions align with seismological expectations, it may suggest that the CNN correctly

identified the event despite an incorrect label, prompting expert re-evaluation. Thus,

LRP maps act as a bridge between deep learning outputs and seismological expertise,

promoting transparency, improving model validation, and supporting the generation

of more accurate labeled datasets. If, upon review, the expert determines that the

original label was incorrect, the event is re-labelled accordingly. These corrected labels,

together with their STFT spectrograms and LRP maps, are made publicly available

in [115]. The overall expert-driven label verification process is illustrated in Figure 4.2.

4.5 Results and discussion

4.5.1 Analysis of classifier output

Network models are implemented in Keras framework. Since the activation function

of the output layer is softmax, we use categorical cross entropy as loss function. The

used optimiser is Adam with an initial learning rate of 0.0007. Adaptive learning rate
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Figure 4.2: Flowchart of the proposed human-on-the-loop process.

adjustment is implemented, which reduces the learning rate by a factor of 0.9 when

loss improvements plateau for 5 epochs. Training is performed over 100 epochs with a

batch size of 128. For the second training session, utilizing the data from November 25,

the model is trained over a total of 50 epochs. To prevent the risk of overfitting due to

additional training, early stopping is implemented; that is, if the training accuracy did

not exhibit significant improvement within 5 consecutive epochs, the training process

is terminated early.

In the 3-day testing period (26th-28th Nov.), the expert labelled 46 quakes, 18 earth-

quakes, 74 rockfalls and 719 noise events. The confusion matrix in Table 4.2 compares

the output of the proposed CNN-based network, with post-processing (Sec. 4.4.3), to

the expert labels. As is common practice for seismic signal classification on continuous

data [26], the confusion matrix also includes recall or sensitivity values in brackets.

Recall is the ratio of true positives to the sum of true positives and false negatives.

In Section 4.3.1, it is demonstrated that during the 4-day period from November 25th

to 28th, there are 6 additional earthquakes not labelled in the original catalogue [26].

The model discussed in Chapter 3 detected a much larger number, specifically 174

additional, earthquakes. This comparison shows the significant improvement in the
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precision of earthquake classification achieved by our model. Additionally, our model

achieved high recall (sensitivity) for rockfall events. As expected, quake and noise

events can be confused with the other 3 classes, due to heterogeneity of the noise signal

and very low signal amplitude of quake signals.

Table 4.2: Confusion Matrix - Proposed CNN-based network with post-processing
against expert labels (the numbers in brackets indicate recall rates).

Model
Quake Earthquake Rockfall Noise

E
x
p
er
t Quake 26 (56.5%) 2 9 9

Earthquake 0 15 (83.3%) 1 2
Rockfall 2 0 72 (97.2%) 0
Noise 110 13 58 538 (75.1%)

4.5.2 Explainability

Figure 4.3(a) shows an example of a correctly classified earthquake event. Positive and

negative values of the LRP relevance represent positive and negative contributions to

the classification results, of the corresponding STFT, respectively. The distribution

of relevance is focused on the high frequencies (about 40 to 50Hz) when the P-wave

is picked as well as the low frequencies (around 15 to 20Hz) of the P-wave and, after

roughly 5sec, the low frequencies of the S-wave with intermediate noise shown in light

blue correctly identified as not contributing (negative contribution). This example

shows that the model learnt, and uses as basis for its predictions, that the P-waves of

earthquake events tend to have both high and low frequencies (around 50Hz and 20Hz,

respectively) and that high energy content of S-Waves follows in time.

Figure 4.3(b) shows an example of a correctly classified quake event. Quake events

are of shorter duration than earthquakes, have lower amplitudes, and energy focused

in low frequencies. The relevance is concentrated in the single peak (positive and

negative) of the event waveform, suggesting that the normalised maximum amplitude

is the key distinguishing feature. In the frequency domain, the LRP map clearly shows

the importance of the peak that has energy mainly focused below 30Hz while there is

also a small positive contribution between 30 to 40Hz.

Figure 4.3(c) shows an example of a correctly classified rockfall event. While the
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relevance of quake events is concentrated on a single peak, the relevance of rockfall

events is concentrated on multiple peaks, which also shows an important property of

rockfall events − multiple significant peaks. Looking at the LRP map, the relevance

has multiple focused points corresponding to multiple short waves − a characteristic of

rockfalls. In addition, although both, the rockfall and the quake events have a frequency

band between 10 to 30Hz, the relevance are mostly concentrated at frequencies greater

than 20Hz for rockfalls and below 20Hz for quakes.

Similar visualisation maps are produced for other correctly classified events. In

summary, the model searches: (a) for P-wave and S-wave peaks and their corresponding

frequency contributions to predict an earthquake; (b) a short wave with a single peak

below 20Hz to decide quake; (c) multiple significant frequency components around 25Hz

to decide that the target signal is rockfall. This is in accordance to the characteristics

of the three signal classes [26], [19], [94]. Next, we will analyse misclassified events to

explain why they occur and how they can be avoided.

4.5.3 Explaining origin of misclassification

In this section, the way LRP can be used for model diagnosis is shown. The confusion

matrix presented in Table 4.2 shows that the quake signals are sometimes misclassified

as rockfalls. Interestingly, however, rockfall signals are rarely misclassified as quakes

(only 2 misclassified events). To investigate this further, Figure 4.4(a) shows an example

of a quake event misclassified as rockfall. In the LRP map, the relevance distribution

is very scattered. That is, the LRP relevance is not focused on the quake event’s

peak, but instead picked up several consecutive peaks, where the positive relevance is

correctly concentrated at 5 seconds. This indicates that the model correctly recognised

a quake event’s peak appearing around 5 seconds, but there was a high energy signal

in nearby frequency bands, influencing the final prediction. On the other hand, there

are many positive relevancies at different times that correspond to frequencies between

20Hz to 30Hz, which is akin to the learnt rockfall ‘behaviour’. Thus, the main reason

of misclassification between quake and rockfall is that the signal-to-noise ratio of the

quake event was very low, with a noise signal appearing immediately after, mimicking
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(a) Correctly classified earthquake

(b) Correctly classified quake

(c) Correctly classified rockfall

Figure 4.3: Correctly classified examples of earthquake, quake and rockfall: The first
column shows the time-series signal, middle column the STFT, and the right column
is the LRP relevance heatmap.
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multiple peaks of rockfall events.

In Figure 4.4(b), we show an instance in which a rockfall event is misclassified as a

quake. The rockfall event displays multiple peaks; however, these peaks, aside from the

principal one, are of low magnitude and the event has a very short time span. Analysis

of the LRP representation illustrates a concentration of positive effects (depicted in

red) at the primary peak of the event. Conversely, numerous negative contributions

(depicted in blue) are observed at the secondary peaks, suggesting that the presence of

these multiple peaks is not taken into account due to their limited magnitudes; hence,

the model finally classifies this event as a quake.

In Figure 4.4(c), we present an instance of a quake misclassified as an earthquake.

This misclassification is evident in the LRP map, where both high-frequency and

low-frequency components simultaneously exhibit positive contributions around the

3-second period. Thus, the model interprets this segment as a P-wave. Furthermore,

at approximately 5 seconds into the waveform, a positive contribution appears in the

low-frequency range. Although the primary peak of this event occurs around 3 seconds,

the spectrogram reveals that the low-frequency component persists for an extended du-

ration. Moreover, the event is influenced by higher-frequency noise (exceeding 30Hz),

and this high-frequency noise coincides with the primary waveform peak around the 3

seconds. Consequently, this led the model to mistakenly identify it as a P-wave, with

the prolonged low-frequency component being mistakenly identify as a S-wave. These

observations align with seismic features of earthquakes, thereby causing the model’s

misclassification as an earthquake event.

In Figure 4.4(d), we encounter an instance where an earthquake is mistakenly clas-

sified as a rockfall. The LRP map highlights multiple spectral peaks, which is a feature

of rockfall events. However, this event may have resulted from an earthquake occurring

amidst background noise, exhibiting a distinctive multi-peak pattern. Thus, despite the

presence of a P-wave at approximately 1 second and an S-wave at roughly 4 seconds,

complex background noise caused misclassification.

In Figure 4.4(e), the misclassification of noise as an earthquake is shown. The

noise signal exhibits prominent peaks around 4 seconds and 5.5 seconds. Examination
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of the LRP map reveals the model’s recognition of low-frequency and high-frequency

components (15-20Hz) around the 4-second mark, along with low-frequency signals at

5.5 seconds (15Hz). This aligns with the characteristic features of P-waves and S-waves

in earthquake signals, resulting in the model’s misclassification as an earthquake. The

result might have been different if time-series signals were inputted to the network

instead of the STFT maps as can be seen from the left time-series plot that shows high

level of noise throughout the signal.

It can be seen from these examples that most misclassifications are due to high

level of background noise. The next example highlights another origin of error related

to the filtering process. Figure 4.5 displays an unfiltered earthquake waveform with

a frequency below 3 Hz, characteristic of low-frequency earthquakes that are rarely

associated with active landslides [116]. Since the focus is on detecting local seismic

events related to landslides, we apply a BPF in the 5-60 Hz range (see Sec. 3.3.1),

which excludes these low-frequency earthquakes. Consequently, this filter removed the

low-frequency event’s waveform, leaving only background noise as input to the CNN.

As illustrated in Figure 4.6, the LRP map indicates that the model failed to extract

meaningful features from the filtered input, resulting in the earthquake being misclas-

sified as noise. This misclassification can be attributed to the rarity and uniqueness

of low-frequency earthquakes on landslides, as the filter inadvertently eliminated their

distinctive waveforms, confounding the CNN’s classification process.

4.5.4 Re-labelling results

Figure 4.7 shows three examples of misclassifications, which could be due to human

error during expert labelling. The example shown in Figure 4.7(a), is an event classified

by the model as noise, though the domain experts labelled it as a quake. In the STFT

representation of the signal, no obvious peak corresponding to the event was discernible.

Moreover, the LRP map exhibits a disordered distribution of relevance. Collectively,

these findings lead to the argument that the event in question is more likely to be

anthropogenic noise rather than a quake. Figure 4.7(b) illustrates a similar situation

where the event is mistakenly labelled as an earthquake. There are no clear P-waves at
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(a) Quake misclassified as rockfall

(b) Rockfall misclassified as quake

(c) Quake misclassified as earthquake

(d) Earthquake misclassified as rockfall

(e) Noise misclassified as earthquake

Figure 4.4: Misclassified examples.

68



–
M
ay

30
,
2
02

5
–

Chapter 4. A human-on-the-loop approach for labelling seismic recordings from
landslide site via a multi-class deep-learning based classification model

Figure 4.5: Waveform (left) and STFT map (right) of the unfiltered low-frequency
earthquake.

Figure 4.6: Waveform (left), STFT map (middle) and the LRP map (right) of the
filtered low-frequency earthquake.

both low and high frequencies, and there are no S-waves with high energy content. For

this earthquake event, we also examined the unfiltered raw signal, and it still did not

exhibit any earthquake waveform characteristics. Figure 4.7(c) shows an example that

was classified as a rockfall by the CNN model, while the expert labelled it as a seismic

quake. It can be concluded from the LRP map that the model focused on multiple

peaks in the event, with a frequency distribution centred around 30Hz, characteristics

that align with typical rockfall patterns. In contrast, quakes tend to exhibit a single

dominant peak, a feature that was notably absent in the input STFT map, where

multiple peaks were discernible. Consequently, based on these distinctive patterns and

spectral features, it becomes evident that the event in question is more accurately

classified as a rockfall.

Here we list all corrections made to the expert catalogue, following above explain-

ability and queries. Specifically, 7 quakes were relabelled as noise as per example

Figure 4.7(a), 1 earthquake was relabelled as noise (shown in Figure 4.7(b)), and 1

quake as rockfall (Figure 4.7(c)). In addition, some noise events were labelled by the

expert though these events occurred very close to earthquake, quake and rockfall events,
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(a) Noise mistakenly labelled as quake

(b) Noise mistakenly labelled as earthquake

(c) Rockfall mistakenly labelled as quake

Figure 4.7: Three examples of events with labels corrected.
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which potentially caused confusion. Hence, we removed all noise events that occurred

in close proximity (within 30s) to the earthquake, quake and rockfall events - this way

38 noise events were removed.

Thus, after this relabelling there are 38 quakes, 17 earthquakes, 75 rockfalls and 689

anthropogenic noise events in total. The verified catalogue of events is publicly available

in [115], as a contribution to address the second and third principles of Trustworthy

AI, related to reproducibility and data access. Specifically, the 260 verified events on

the 25th Nov. 2015 are listed in the Training events identified by the date. The 819

verified events on 26th to 28th Nov. 2014 are listed in the Additional 3-day catalogue.

In order for other researchers to enable benchmarking, Table 4.3 and Table 4.4 show

the confusion matrix and classification performance after the re-labelling, respectively.

Although the F1-score for quake events is low, we have a high Recall but precision is low

because of 8 instances of false positives for rockfall. There are relatively few instances

of quake and earthquake, which explains why the F1-score is not the best indicator

of performance and the confusion matrix provides a more explainable and trustworthy

measure of performance.

Table 4.3: The confusion matrix after label correction. The numbers in the brackets
show the recall.

Model
Quake Earthquake Rockfall Noise

E
x
p
er
t Quake 26 (68.4%) 2 8 2

Earthquake 0 15 (88.2%) 1 1
Rockfall 2 0 73 (97.3%) 0
Noise 95 11 37 546 (79.2%)

Table 4.4: The classification performance after label correction.

Precision Recall F1-score

Quake 0.21 0.68 0.32

Earthquake 0.54 0.88 0.67

Rockfall 0.61 0.97 0.75

Noise 0.99 0.79 0.88
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4.6 Summary

This chapter reflects on the relevance and application of the seven principles of Trust-

worthy AI: Human Agency and Oversight, Technical Robustness and Safety, Privacy

and Data Governance, Transparency, Diversity and Fairness, Societal and Environ-

mental Well-Being, and Accountability. These principles are particularly important

in the context of seismic signal analysis, where AI systems are used for tasks ranging

from understanding subsurface processes to managing geological hazards. Depending

on the use case, AI systems in this domain may be considered minimal to high risk and

therefore must adhere to stricter requirements to ensure safe and ethical deployment.

To align with these principles, we propose a human-on-the-loop seismic classifi-

cation framework that incorporates explainable AI techniques, specifically Layer-wise

Relevance Propagation (LRP). This approach enhances transparency, strengthens tech-

nical robustness, and supports expert oversight during the classification process. LRP

is used to highlight which parts of the input signals contribute most to the model’s deci-

sions, helping to identify potential human labeling errors. For example, LRP maps have

revealed cases where quake events are misclassified as rockfalls due to high-frequency

noise that resembles rockfall signatures. These visualizations assist experts in diag-

nosing such misclassifications and refining event labels accordingly. The use of LRP

supports informed and accurate decision-making by experts, thereby reinforcing the

principle of Human Agency. Through this collaboration between human expertise and

AI-assisted interpretation, the accuracy of microseismic event catalogues is improved,

contributing to more reliable geological assessments. The system also addresses data

governance by facilitating quality control during data labeling, which is essential for

maintaining trust in the dataset and downstream AI applications.

However, training deep learning models typically requires a large amount of la-

beled data, but labeling seismic data is time-consuming and inefficient, making labeled

seismic events costly. This challenge limits the advancement of deep learning-based

seismic event classification. In the following chapter, SSL technology is introduced to

reduce the model’s dependency on extensive labeled data by assigning unsupervised
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and semi-supervised downstream tasks to address varying levels of annotation needs.

Additionally, a novel algorithm that significantly enhances the efficiency of manual

annotation by experts is proposed.
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Generative Self-Supervised

Learning for Seismic Event

Classification

5.1 Introduction

Deep learning-based models achieve state-of-the-art performance in detecting and clas-

sifying seismic signals, surpassing traditional machine learning methods that require

manual feature generation, selection, and extraction. Their key advantage is the abil-

ity to automatically learn the most relevant features from raw recordings. However,

achieving high accuracy in seismic classification through deep learning often relies on

supervised learning techniques, which necessitate large labeled datasets. The labeling

process requires professional expertise and is inherently time-consuming, costly and

prone to human error; thus, gathering sufficient data for supervised inference can be

prohibitively difficult. Hence, there is a need for methods that can detect and process

continuous seismic signals without or with minimum labelled data.

Self-supervised learning (SSL) is a paradigm in machine learning where a model

is trained on a task using the data itself to generate supervisory signals, rather than

relying on external labels provided by humans. This makes SSL approaches time- and

cost-effective, hence their popularity in fields such as computer vision and natural lan-
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guage processing that require large amounts of labeled data to train models [117] [118].

This chapter proposes a microseismic classification method based on SSL. The pro-

posed approach enables the model to achieve good classification performance for land-

slide seismic signals while using no or minimal labeled data. SSL is used for repre-

sentation learning, to extract features from raw waveform recordings without relying

on labels. The learnt features are then employed in three downstream signal classifi-

cation tasks. Firstly, using K-means clustering, we classify the SSL-generated features

into four classes: earthquake, micro-quake, rockfall, and noise signal, providing this

way a fully unsupervised learning-based classification method. Secondly, we utilize a

small portion of the labeled data (5%, 10%, 20% and 33.3%) and the corresponding

extracted features to train an Artificial Neural Network (ANN), thereby proposing a

semi-supervised learning approach. Our models are trained on the publicly accessible

Résif dataset, which contains 1375 labeled (micro)seismic events. We use all event wave-

forms for SSL without labels and a small portion of the labels for the semi-supervised

downstream tasks. Thirdly, leveraging the superior feature extraction capability of SSL,

we employ SOM with various shapes (8 × 8, 12 × 12, 17 × 17, and 21 × 21) to cluster

the SSL-based extracted features into multiple nodes. The key motivation for using

SOM its ability to cluster high-dimensional SSL features into topologically ordered

nodes. Each node in the SOM can be treated as a representative unit encompassing

similar seismic events. Instead of labeling individual events, experts can label each

SOM node once, and this label can then be propagated to all events mapped to that

node. For example, using an 8 × 8 SOM reduces the manual labeling task to just 64

nodes, which collectively represent the entire dataset. This significantly alleviates the

labeling burden and can reduce the required human effort by 95.4%.

5.2 Related work

SSL can be generative-, contrastive-, or adversarial-based [119]. Generative-based SSL

trains models to generate data, similar to the input, learning the underlying data dis-

tribution, with autoencoding being an example. Contrastive-based SSL trains models
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to distinguish between similar and dissimilar data instances, bringing similar instances

closer in the representation space (e.g., the SimCLR model [120]). Adversarial-based

SSL involves a generator creating data indistinguishable from real data and a discrim-

inator distinguishing between real and generated data, with Generative Adversarial

Network (GAN) exemplifying this approach.

Murshed et al. [121] propose a semi-supervised Seismic Contrastive Graph Neu-

ral Network (SC-GNN) for an earthquake early warning system, that uses a GNN to

propagate spatio-temporal information through a graph representing seismic station

distribution and wave propagation. A contrastive-based SSL approach is used to train

the network with larger time windows, enabling predictions using shorter initial wave-

forms, where similarity in terms of seismic intensity is defined, i.e., waveforms from

the same seismic event are considered similar. The SC-GNN provides accurate seismic

intensity predictions using only the initial seismic waveforms from a limited number

of seismic stations. In [122], Li et al. introduce a generative-based Self-Supervised

Convolutional Clustering Picking (SCCP) method for automatically picking the first

break of microseismic recordings. The SCCP method decomposes and reconstructs the

time-frequency features of the microseismic recordings using accurate convolutional en-

coding and decoding under self-supervision. The output is then clustered by Fuzzy

C-means.

Using seismic geophone data from the unstable Åknes rock slope in Norway, Lee et

al. [123] develop seismic event waveform classification to distinguish 8 different sig-

nal classes, namely noise, regional earthquake, rockfall, slopequake high-frequency,

slopequake low-frequency, multi slopequake, tremor and spike. There are 1818 lablled

events and 1611 unlabelled events. The authors use Neighboring and Random Crop

for input data augmentation, and employ a contrastive-based SSL method, Variance

Neighboring-Invariance better-Covariance Regularization (VNIbCReg) model [124], to

extract features. After pre-training using unlabelled data, the authors evaluate per-

formance using linear and fine-tuning methods as downstream tasks. In the linear

evaluation protocol, only the encoder from the SSL-trained model was kept with frozen

weights and an additional linear layer, trained using 80% of the labelled data. For the
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fine-tuning evaluation, the authors again kept only the encoder from the SSL-trained

model, but this time the encoder’s weights were left trainable, with fine-tuning using

5%, 10%, and 80% of the labelled data. The linear evaluation is to assess how well the

learned features perform in classification tasks by SSL. The fine-tuning evaluation is

particularly effective at revealing the generalizability of a SSL method. Note that [123]

uses 80% of the labeled data for training in linear evaluation, without exploring the

impact of using less training data, and does not explain the learning process, which

could be done through the visualization of features extracted by the encoder. This

limits the comprehensiveness of the analysis regarding the model’s feature extraction

capabilities.

Song et al. [125] pre-train the contrastive-based Simple Framework for Contrastive

Learning of Representations (SimCLR) model [120] using a large amount of unlabeled

data. Then, a linear classifier is added to the encoder part (with weights frozen),

leveraging small labeled datasets for linear classification. The extracted features are

classified into microseismic and blasting events. A Data Balancing Algorithm is used to

enlarge the labeled dataset from 3,966 to 7,932 samples. The augmented data is then

split, with 60% used to train the downstream classifier and 20% used for performance

evaluation and testing. The paper uses only a fixed proportion of labeled data for linear

evaluation. In [126], Mousavi et al. propose a generative-based SSL method, using an

auto-encoder structure model to extract features and then apply K-means clustering to

classify the features into local and teleseismic earthquakes. No other downstream task

is considered to demonstrate efficiency of the learnt features.

In summary, SSL has been applied for various seismic signal analysis tasks. How-

ever, there is relatively little research on SSL techniques for event classification of seis-

mic waveforms. Unlike abstract inputs such as images or text in Computer Vision (CV)

and Natural Language Processing (NLP), which often use data augmentation and con-

trastive learning methods, seismic signal recordings have precise numerical values. This

makes generative self-supervised learning particularly effective for extracting meaning-

ful features. The uniqueness of our proposed approach, compared to the above reviewed

literature, lies in its ability to classify various types of landslide micro-seismicity, along
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with rockfalls and anthropogenic noise, using SSL with only a small amount of la-

beled data. We tackle the challenge of using at most 1375 labeled events in total and

evaluate the model’s performance with various proportions of training data for linear

evaluation. Additionally, we explore the effects of different dimensionality reduction

methods on clustering, which involves four categories (in contrast to two-category clus-

tering of [126], [121], [122], and [125]). To further enhance our analysis, we employ

feature visualization methods to identify the primary causes of misclassification and

to demonstrate how the inclusion of a small number of labels improves model perfor-

mance. Additionally, we propose a novel approach to improve the efficiency of manually

labelling data, using SOM, to perform multi-node clustering on the features learned by

SSL. Human experts can thus label clusters of nodes instead of directly labeling raw

data, significantly enhancing the efficiency of the labeling process.

5.3 Methodology

5.3.1 Data Pre-processing

Firstly, a 15-second seismic recording window is extracted from the continuous time-

series data. Given the sampling rate of 250Hz and measurements recorded from three

channels (East, North and Vertical), each extracted 15-sec window is a 3750× 3 array

(3750 time samples over 3 channels), as described in Chapter 4. To focus on sig-

nals of interest, a BPF is applied, effectively removing low- and high-frequency noise

that might obscure relevant seismic features. Unlike the 5 to 60 Hz filter used in

Chapter 4, the filter frequency range is adjusted to 2–60 Hz to capture low-frequency

earthquakes [127], [128]. Subsequently, normalisation is carried out by dividing each

channel’s data by the maximum absolute value within that channel, thereby standar-

dising the data range to [-1, 1]. A window size of 128 samples and an overlap of 70%

are chosen for the STFT as in Chapter 3, resulting in an output shape of 65× 98× 3,

representing 65 frequency bins, 98 time steps (within each 15-sec window), and 3 chan-

nels. To prepare the data for SSL feature learning via auto-encoder, each STFT map

is resized to a uniform size of 64× 64× 3 using bilinear interpolation, which is suitable
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for model training including 2×2 maxpooling.

5.3.2 Generative-based SSL using auto-encoder

An automatic feature extraction approach using an auto-encoder for generative-based

SSL is proposed. The structure of the auto-encoder consists of an input layer fol-

lowed by an encoder and a decoder, shown in Figure 5.1. The input layer takes in

the pre-processed STFT maps of seismic events. The encoder part consists of several

convolutional and pooling layers, progressively reducing the spatial dimensions while

increasing the depth of the features extracted.

To train the auto-encoder to extract features from the STFT maps, the autoen-

coder input and output correspond to the same event’s STFT map, ensuring that the

model learns to faithfully reconstruct the original input. The training process involves

optimizing the autoencoder to minimize the mean squared error between the encoder

input and decoder output STFT maps using the Adam optimizer. Additionally, a call-

back is employed to dynamically adjust the learning rate during training based on the

loss. Specifically, if the training loss does not show a significant decrease in 5 epochs,

the learning rate will decrease by 10%. Once trained, the decoder part, responsible for

reconstructing the input from the learned features, is discarded. Only the encoder part

is retained to extract features, producing a feature vector of shape 4 × 4 × 16. This

vector represents a compressed and abstract representation of the input seismic event,

capturing its salient features.

5.3.3 Downstream task

After employing generative-based SSL to automatically extract features from seismic

data recordings, we proceed with three downstream tasks.

Unsupervised learning with k-means

The proposed fully unsupervised method employs k-means clustering on the extracted

features, flattened into a 256 (= 4 × 4 × 16)-length vector. Considering that high-

dimensional data can negatively impact clustering performance [126], we utilize vari-
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Figure 5.1: Generative-based SSL using auto-encoder. ’Kr’ stands for kernel. The left
part presents the encoder structure, while the decoder, removed after training, is shown
on the right.

ous dimensionality reduction methods. Specifically, we apply t-distributed Stochastic

Neighbour Embedding (t-SNE) [129] to reduce the 256-length vector to both 2 and 3

dimensions and PCA to reduce the dimensions to 2, 3 and 10 (with 10-D explaining

95.3% of the variance). Additionally, we use the original features with 256 dimen-

sions for comparison. These features are clustered into k=4 classes, which are labeled

post-clustering as earthquake, rockfall, quake, and natural/anthropogenic noise.

Semi-supervised ANN-based classification

The proposed semi-supervised ANN method constructs a classifier with a sequential

architecture comprising several dense layers. The input shape of the ANN is 256 which

is determined by the length of the flattened feature. The ANN consists of four dense

layers: the first layer contains 128 neurons with a Rectified Linear Unit (ReLU) acti-

vation function; the second dense layer has 64 neurons and ReLU activation; the third

dense layer comprises 32 neurons with ReLU activation; the final dense layer contains

four neurons, representing the number of classes, with a softmax activation function
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to output class probabilities. The model is compiled with the Adam optimizer and

categorical cross-entropy loss function. We train the model using 5%, 10%, 20%, and

33.3% of the data.

SOM-based Method for Enhancing Manual Labeling Efficiency

Finally, to significantly improve the efficiency of expert manual labeling data, we pro-

pose a SOM-based clustering, where we initialise various SOMs with the shape of 8× 8

(64 nodes), 12× 12 (144 nodes), 17× 17 (289 nodes), and 21× 21 (441 nodes) and use

all unlabelled events for training. The SOM is trained with the following parameters

that are heuristically set: the input length is determined by the shape of the flattened

feature vectors (i.e., 256); the sigma parameter controls the spread of the neighborhood

function (set to 1.5 for 8 × 8, 2 for 12 × 12, 2.5 for 17 × 17 and 3.2 for 21 × 21); the

learning rate, initialized at 0.5, determines the rate at which the weights of the SOMs

are adjusted. The neighborhood function was set to ‘Gaussian’. During training, the

SOMs undergoes 2000 iterations to adapt their weights and organize the data based

on similarities. Following training, the SOMs organize the large dataset into a reduced

number of nodes without requiring labels. This approach enables experts to label the

nodes rather than the entire dataset. However, the SOM may sometimes organize

events incorrectly, and theoretically, the more nodes the SOMs have, the higher the

accuracy. To reduce SOM errors, we use a very small amount of labels to perform

majority voting and post-label the grid map produced by the SOMs.

5.4 Results and discussion

5.4.1 Simulation setup

The dataset used in this chapter is also the Résif dataset. The waveform recordings

from the 3-component sensor are used as in Chapter 4.

In the unsupervised learning task, we use features from all 1375 labeled events. For

the semi-supervised tasks, we utilize a small portion of the labeled data (5%, 10%, 20%,

and 33.3%) to train the ANN. To ensure a balanced class representation in both training
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and testing sets, we employ a stratified split strategy. Given that these portions of the

dataset are very small and could potentially affect the training process, we employ k-fold

cross-validation to ensure reliable evaluation results. When using 5%, 10%, 20%, 33.3%

of the data, we employ a 20-fold, 10-fold, 5-fold, and 5-fold cross-validation strategy,

respectively, with one fold used for training and all remaining data for testing.

The ANN model is implemented using the Keras framework and the SOM model is

created by MiniSom [130] in Python. The K-Means clustering, PCA and t-SNE are all

implemented using scikit-learn [131]. We utilized StratifiedKFold from scikit-learn to

create the folds, ensuring that each fold preserves the percentage of samples for each

class label.

5.4.2 Unsupervised learning results and feature visualization

The results of the SSL-based clustering using k-means and different dimensionality

reduction methods are shown in Table 5.1, averaged over all 4 classes. It can be seen

that due to their ability to preserve local similarities, capturing non-linear relationships

between data points, and robustness to outliers, 2D and 3D t-SNE achieve the highest

accuracy of 72%, which is close to a 5% improvement compared to the case without

dimensionallity reduction (i.e., of 256 dimension) and the 10D PCA case that explains

over 95% of variance.

Detailed results using 2D t-SNE features are presented in Table 5.2, while the re-

sults of other dimensionality reduction methods are provided in Appendix B. K-means

achieves its highest F1 score (0.88) for rockfall events with N/A also displaying high

precision and recall. However, the performance is lower for the seismic signals, namely

quake and earthquake, where precision and recall scores vary significantly. While earth-

quake achieves a higher precision (0.82), quake shows better recall (0.67). The confusion

matrix 5.3 further illustrates this. Although k-means have a certain ability to distin-

guish between quakes and earthquakes, some earthquakes are mistakenly clustered as

quakes, resulting in low recall and precision of quakes.

To further analyse the misclassification of k-means, we visualize the 2-D features

extracted through SSL and t-SNE in Figure 5.2, where we show the ground truth clus-
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tering (left) and those generated by the proposed unsupervised approach. It can be

seen from the ground truth that rockfall events are well separated with a clear cluster

center and few outliers, resulting in highly accurate clustering results as can be seen

from the right figure. On the other hand, some features of earthquake events closely

resemble those of quake events, as evidenced by their proximity in the feature visu-

alization map, thereby resulting in misclassification. Indeed, due to factors such as

distance, intensity, and seismic source diversity, waveform patterns among earthquake

events vary, and some of them are very close to the characteristics of quakes due to their

low intensity and short duration. Furthermore, quake events typically manifest them-

selves as short duration, low-amplitude signals, often with poor signal-to-noise ratios,

particularly when originating from distant sources relative to the sensor. Consequently,

they may resemble N/A noise signals, as corroborated by the feature visualization map

where some quake event features align with the N/A noise features. If we consider seis-

mic signals, i.e., quakes and earthquakes, as one class, then a recall (sensitivity) of up

to 80% for seismic events is achieved (quake and earthquake), 71% for rockfall, and 78%

for N/A noise. In summary, the 2D feature space does not fully separate earthquake,

quake and N/A noise signals, leading to some k-means classification errors.

Figure 5.2 shows that there are many earthquake events that are mixed in the

feature space with quake events are consequently mis-classified by the unsupervised

method. Although some earthquake features are close to those of quakes in the feature

visualization map, clear cluster heads still differentiate between them. For instance,

some quake features are concentrated at coordinates (-20, -20) on the feature map,

whereas some earthquake features are distributed in a line at coordinates (-30, -20) to

(0, -20). Although the features of this subset of earthquakes bear strong similarities

to quakes, there are still subtle differences that might not be caught by unsupervised

clustering algorithms. Thus, our next step involves employing a limited number of

labels to enable semi-supervised ANN.

Table 5.1: Comparison of K-means Classification Performance Across Different Dimen-
sionality Reduction Methods.

Input Features Original (256D) PCA (2D) PCA (3D) PCA (10D) t-SNE (2D) t-SNE (3D)

Accuracy (%) 67.13% 56.07% 66.69% 67.13% 72.00% 72.00%
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(a) 2-D Features labelled by groundtruth (b) 2-D Features labelled by K-means clustering
results

Figure 5.2: 2-D Feature visualization by t-SNE: (a) shows the features labelled by
groundtruth, and (b) shows the features labelled by K-means clustering results.

Table 5.2: K-means Classification Performance Using 2D t-SNE Features

precision recall F1-score

Quake 0.42 0.67 0.52

Earthquake 0.82 0.65 0.72

Rockfall 0.95 0.82 0.88

N/A 0.72 0.72 0.72

Table 5.3: K-means Confusion Matrix Using 2D t-SNE Features

Quake Earthquake Rockfall N/A

Quake 157 3 3 68

Earthquake 113 252 6 18

Rockfall 21 40 331 10

N/A 82 9 8 251

5.4.3 Semi-supervised ANN results

The classification performance results and confusion matrix for the ANN-based semi-

supervised method, using 20% of the data for training, are presented in Tables 5.4 and

5.5, respectively. Each model was trained and tested using 5-fold cross-validation. The

performance results are provided in the format “mean±standard deviation.”

As shown in Table 5.4, the ANN models provide better classification performance

for all classes than K-means, as expected. Moreover, from the classification results
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and the confusion matrix, using a small amount of labelled data for training effectively

improves the results especially of earthquakes that are confused with quakes by k-means.

Indeed, compared to K-means clustering, the recall of earthquakes has increased from

65% to 90%, while the precision of quakes has increased from 42% to 71%. Moreover,

the obtained results are very close to those reported in Chapter 3, where a supervised

CNN classifier was used with 70% of the data for training and validation, and 30%

of the data for testing and validation. Specifically the F1-score for semi-supervised

classification with SSL and ANN vs supervised CNN (in Chapter 3) on the same test

STFT data are: earthquakes (0.88 vs. 0.96), quakes (0.68 vs. 0.86), rockfalls (0.91

vs 0.89) and N/A (0.83 vs 0.84). These clearly demonstrate that, compared to the

requirement for large labelled datasets with supervised learning, performance is not

negatively impacted through semi-supervised classification with robust SSL on smaller

labelled datasets for training.

Table 5.4: The classification performance results for the proposed SSL-based ANN
method.

precision recall F1-score

Quake 0.715±0.029 0.646±0.040 0.677±0.017

Earthquake 0.864±0.020 0.900±0.033 0.881±0.015

Rockfall 0.916±0.027 0.909±0.021 0.912±0.014

N/A 0.822±0.033 0.837±0.037 0.828±0.016

Table 5.5: The confusion matrix for the proposed ANN-based method.

Quake Earthquake Rockfall N/A

Quake 121.0±7.4 22.8±2.9 6.0±2.0 37.4±8.7

Earthquake 17.2±5.5 280.0±10.3 8.6±4.1 5.4±1.85

Rockfall 6.6±3.6 14.0±4.3 292.2±6.7 8.8±4.7

N/A 25.6±14.2 7.6±4.2 12.4±5.8 234.4±10.4

Results for other training set sizes are included in the Appendix B. It can be seen

from these results that, as expected, the overall accuracy steadily increases by the

increase of the labelled training set size: for 5%, the accuracy is 75.8%; for 10%, it is

77.5%; for 20%, it is 84.3%; and for 33.3%, it is 87.5%.
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5.4.4 SOM-based method results

The previous two sub-sections demonstrated that by gently increasing the labelled data

size, an increase in performance can be achieved from 72% without using any labels, to

87.5% when using one third of the dataset for training. In an attempt to strike better

trade-off between labelling effort and performance, we leverage on SOMs. SOM is a

powerful unsupervised tool for compressing large datasets into a manageable number

of nodes, determined by the SOM model’s size. During training, when a new signal is

introduced, the distance between the signal and each node in the map is calculated,

and the node closest to the signal is designated as the Best Matching Unit (BMU).

During the adaptation phase, the weights of the BMU are adjusted to more closely

resemble the signal. This adjustment also influences the neighboring nodes, causing

them to become more similar to the signal, thereby creating a neighborhood effect.

This compression allows for significant reduction in workload and improved efficiency

when manually labeling data, as annotators can focus on a smaller set of representative

nodes instead of the entire dataset. However, despite the improved efficiency, SOM can

sometimes incorrectly assign different types of events to the same node. Therefore, to

enhance the efficiency of labeling using SOM, it is essential to specifically analyze the

SOM clustering process by having experts label the SOM nodes.

Specifically, we assign each node to a class according to the majority of events it

contains based on available labels. For example, if a SOM node contains 30 earthquakes,

5 rockfalls, and 1 N/A noise event, it will be labeled as an earthquake node. This

approach simulates the process of human experts labeling nodes and helps in assessing

the accuracy of SOM.

Table 5.6: The classification performance results for SOM.

precision recall F1-score

Quake 0.74 0.67 0.70

Earthquake 0.83 0.91 0.87

Rockfall 0.93 0.91 0.92

N/A 0.83 0.81 0.82

The results and confusion matrix of SOM with 17 × 17 size is shown in Table 5.6

and Table 5.7, respectively. The SOM results with other map sizes’ are shown in
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Table 5.7: The confusion matrix for the SOM.

Quake Earthquake Rockfall N/A

Quake 156 35 5 38

Earthquake 12 355 11 11

Rockfall 9 17 367 9

N/A 34 20 13 283

Appendix B. The SOM-based clustering method achieves high precision, recall, and

F1-scores across different classes, particularly for earthquake and rockfall events, very

close to those achieved by the ANN-based method. Examining the confusion matrix,

most quake events are correctly classified (156), but, similarly to ANN results, there

are instances where quakes are confused with earthquake (35) and N/A noise (38).

Figure 5.3a shows the 17 × 17 SOM grid where each dot on the grid represents an

event, and the grid structure visually clusters events based on their similarities. It

can be seen that SOM separated well the N/A and rockfall events, occupying bottom

left and top right corner of the map. Earthquake and quake events are in between, as

expected, partly mixed, with quakes closer to the N/A noise signals due to their low

signal-to-noise ratio, and earthquakes closer to rockfalls due to their longer duration

and closer frequency representation.

Figure 5.3b shows the same SOM grid, but instead of plotting individual events,

it displays pie charts at each node, based on the proportion of different seismic event

classes assigned to the node. We can observe that single-coloured nodes are predomi-

nant which means that in most cases the events of the same type are assigned to the

same node. Only few nodes have more than two events assigned to them, and these

nodes are mainly positioned at the boundaries of the four class regions. For these nodes

we apply majority voting to determine the output class. The more evenly a node is

coloured, the lower our confidence in the classification output.

5.4.5 Labelling Effort vs. Accuracy Trade-off

For an entire dataset consisting of 1375 seismic events, if an 8×8 SOM is used, then

experts need to annotate only 64 nodes. These 64 annotated nodes can then be used

to label the entire dataset, reducing the experts’ workload to just 4.6% compared to
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(a) Distribution of different seismic events on the
17× 17 SOM

(b) Proportions of Seismic Events per SOM
node

Figure 5.3: Visualization of the 17 × 17 SOM Clustering Results. (a) Distribution of
seismic events on the SOM, and (b) Proportions of seismic events per SOM node.

the case when each event is separately labelled. Note that, a 64-node SOM, requiring

4.6% of the data to be labeled, is comparable with an ANN trained using 5% of the

data. Similarly, a 289(= 17× 17)-node SOM, requiring 21% of the data to be labeled,

is comparable with an ANN trained using 20% of the data. Hence, we use SOM

configurations of 8× 8 (4.6%), 12× 12 (10.2%), 17× 17 (21%), and 21× 21 (32.1%) to

make a fair comparison with ANNs trained on 5%, 10%, 20%, and 33.3% of the data.

Figure 5.4 shows the obtained accuracy performance of three different algorithms—ANN,

SOM, and K-means across different levels of expert workload effort expressed as the

percentage of data that needs to be labelled. The accuracy results are averaged over

all four classes. ANN’s accuracy increases from approximately 75.8% to 87.5% as the

expert workload percentage rises from 5% to 33.3%. SOM’s accuracy initially improves

from around 79.8% to 84.4% but then plateaus, reaching 85.3% at 33.3% workload. It

can be seen that 20% is a tipping point when the ANN method becomes superior.

This behaviour is expected since the optimization process of SOM is purely un-

supervised. The labeled data is used for post-labeling, which limits SOM’s ability to

improve accuracy significantly as more labeled data is provided, unlike ANN, which

benefits more directly from the increased amount of labeled data during supervised
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training. Additionally, as each iteration of a SOM feeds the same data, the blending

of similar events (e.g., small earthquakes and quakes) may pull the SOM nodes closer

together, which also contributes to the plateauing accuracy.

Figure 5.4: Accuracy Comparison of k-means, ANN, and SOM Methods with Varying
Expert Labelling Workload Percentages

5.5 Summary

This chapter proposes a comprehensive approach to efficiently and accurately clas-

sify seismic events, regardless of the amount of labeled data, minimizing the resource-

intensive manual labeling process. The proposed SSL framework extracts features from

STFT maps of seismic events, producing compressed and informative feature vectors,

which are used for different classification task, namely, unsupervised learning, semi-

supervised learning, and enhancing manual labeling efficiency via SOMs.

The experiments demonstrate that the accuracy of unsupervised, k-means cluster-

ing benefits from dimensionality reduction techniques, with t-SNE achieving the highest

accuracy due to its ability to preserve local similarities and non-linear relationships be-

tween data points. The semi-supervised ANN-based approach, trained with varying

amounts of labeled data, better learns salient features of each class and outperforms

k-means, particularly for earthquakes, which are often confused with micro-seismic sig-
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nals, to due their similar frequency characteristics. As expected, ANNs rapidly improve

performance as more labelled data are used for training, reaching 87.5% accuracy when

one third of available data is used to train the model. Furthermore, SOM provides a

valuable tool for reducing expert workload by organizing large datasets into a small

number of map nodes, significantly enhancing labeling efficiency, by allowing experts

to focus on representative nodes rather than the entire dataset. Our analysis shows

that SOM outperforms ANN when the amount of labelled data is below 20% of the

total dataset.
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Conclusion and Future Work

This chapter gives a summary and conclusion of this work. It also provides several

insights into future research.

6.1 Summary

Recent advancements in passive seismic monitoring have accelerated the use of auto-

mated microseismic event detection and classification, especially through deep learning

techniques such as CNNs. However, achieving accuracy, interpretability, and scala-

bility in seismic monitoring using deep learning remains challenging, particularly due

to the limitations of black-box models and the high demand for labeled data. This

research introduces a comprehensive system addressing these challenges by leveraging

CNNs for microseismic classification, explainable AI (XAI) for interpretability, and

self-supervised learning (SSL) for reducing the need for extensive labeled datasets.

To address the key challenging in seismic event analysis, the following methodolo-

gies are proposed. First, Chapter 3 presents an end-to-end CNN-based classification

model, designed to identify seismic events directly from continuous recordings with-

out requiring multi-steps. Three CNN models were developed using different types

of inputs: temporal waveform, STFT, and CWT maps. These models were trained

on the Résif dataset to classify seismic events into earthquakes, quakes, and rockfalls.

The models demonstrated strong performance, achieving an overall classification accu-
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racy of approximately 90% on the Résif dataset. Testing on an independent dataset

from Larissa, Greece, further confirmed the model’s robustness and adaptability across

diverse geological settings and monitoring configurations.

Chapter 4 addresses the interpretability of CNNs in seismic monitoring by incor-

porating LRP, a technique from XAI that maps feature importance within the model’s

decision-making process. This chapter emphasizes how LRP helps human experts by

visually identifying features leading to specific classifications, such as noise signals con-

tributing to misclassifications between quake and rockfall events. By combining human

oversight with automated classification, the approach improves the accuracy and trust-

worthiness of seismic event catalogues.

To minimise the reliance on extensive labeled data, Chapter 5 introduces an SSL

framework based on STFT maps of seismic signals, which reduces manual labeling

efforts while maintaining classification accuracy. The framework employs t-SNE for

dimensionality reduction within SSL features and self-organizing maps (SOMs) to en-

hance efficiency in expert labeling. Experimental results show that using the SSL-based

approach, the proportion of manually labeled data required for training could be re-

duced by approximately 50% (from 70% in the fully supervised case to only 20%) while

still achieving classification performance close to that of supervised learning models.

Additionally, SOMs are particularly effective in allowing experts to focus on a small

subset of representative map nodes, significantly optimizing the manual annotation

process.

Importantly, the approaches developed in this thesis are highly transferable to other

domains involving time-series or event-based data. Domains such as environmental

monitoring, structural health assessment, and industrial sensor data analysis could

benefit from the proposed CNN classification models, explainability techniques, and

SSL-based label reduction frameworks. This cross-domain applicability highlights the

broader potential impact of this research beyond seismology.

Together, the methodologies presented in this thesis offer a scalable, transferable,

explainable, and efficient system for seismic event detection and classification. This

work advances the field of passive seismic monitoring by providing a robust frame-
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work that meets the demands for high accuracy, transparency, and reduced reliance

on labeled data, facilitating proactive management of seismic risks and furthering our

understanding of subsurface processes.

6.2 Future Work

Recent advancements in deep learning techniques enhance the accuracy and effective-

ness of seismic monitoring. While this research addresses many challenges associated

with the analysis of (micro)seismic events in practical applications, several limitations

remain. This section outlines a number of recommendations for future research.

1. Enhancing Generalization, Transferability, and Robustness Through

Diverse and Noisy Data

Although the models developed in this thesis showed strong performance across

varied geological settings, further improvements in generalization, robustness, and

cross-domain applicability are essential. Future work should focus on expanding

the diversity of seismic datasets, including data from geologically distinct re-

gions and environments with high ambient noise. Training models on such data

can improve resilience to noise and enable more accurate classification in real-

world scenarios where signal quality may be low. In addition, the transferability

of the proposed methods to other domains—such as environmental monitoring,

structural health analysis, and industrial sensor data interpretation—presents a

valuable avenue for exploration. Investigating the adaptability of the frameworks

developed here to different types of time-series or event-based data could extend

their impact and uncover new insights into model limitations and scalability.

Collectively, these efforts would foster the creation of more robust and widely

applicable deep learning systems for complex signal analysis.

2. Quantitative Analysis of Interpretability in Seismic Event Classifica-

tion

Although the human-in-the-loop framework has successfully provided interpretabil-

ity for deep learning-based seismic classification and assisted experts in labeling,
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future work could focus on developing quantitative metrics to evaluate the qual-

ity of the generated LRP maps. Metrics commonly used in generative text or

image models to assess generated outputs could inspire further advancements in

interpretability evaluation [132]. For example, coherence, which evaluates the log-

ical consistency of generated content, could be adapted to ensure that relevance

maps consistently highlight meaningful and relevant features. Similarly, cover-

age, a metric used to measure whether all critical information is included, could

be applied to ensure that the relevance maps capture all essential signal features

without overlooking key details. By integrating such metrics, researchers can

achieve a more robust evaluation of the reliability and quality of interpretabil-

ity methods, such as LRP, further refining these approaches to enhance trust,

accuracy, and usability in seismic event detection systems.

3. Enhancing Seismic Event Annotation with Expert Confidence Model-

ing

One limitation of our approach for enhancing manual labeling efficiency is the

assumption that labels provided by the expert are always considered to be correct.

Extending the method to allow labelling errors and possibly multiple labels per

event provided by different experts that include expert confidence levels, is an

interesting direction of future research. Another possible approach to enhance

labelling is the use of explainable AI to assist experts in labelling. Using a human-

in-the-loop labelling framework based on XAI will enable experts to have clear,

explainable insights into the AI’s decision-making process, thereby supporting

more accurate annotations. This integrated approach is expected to enhance

both the efficiency and accuracy of the annotation process, reducing the risk of

human error.

4. Analysing Feature Learning Dynamics via LRP Under Varying La-

belling Regimes

A promising direction for future research is to systematically analyze how the

amount of labeled training data influences the internal feature representations

94



–
M
ay

30
,
2
02

5
–

Chapter 6. Conclusion and Future Work

learned by the model. By applying LRP to models trained with different propor-

tions of labeled data (e.g., 5%, 10%, 20%, and 33%), researchers can visualize and

compare the relevance maps to track how the model’s attention to different sig-

nal components evolves as more annotated examples are provided. This analysis

may reveal whether the model increasingly focuses on geophysically meaningful

features, suppresses irrelevant noise, or learns more abstract, high-level patterns

with greater data availability. Such interpretability-driven diagnostics can en-

hance our understanding of self-supervised and semi-supervised learning dynam-

ics, guide the design of more label-efficient training strategies, and improve model

reliability in data-scarce scenarios.
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Appendix A

Catalogue of Larisa data

The following tables present detection results comparing our CNN model’s performance

(Arrays A1/A2) against manual detection (M1/M2) and InSite software (I1/I2) for

seismic events in Larissa, Greece. Tables show detailed detections during 18:53-19:53

on 17 March 2021, including earthquakes, quakes, and rockfalls.
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Appendix A. Catalogue of Larisa data

Table A.1: Detection results of seismic events (Larisa Dataset, Part 1/3)

Class Time Detected Duration (s)

A1 M1 I1 A2 M2 I2

earthquake 18:53:46 ✓ ✓ ✓ ✓ 0.66
earthquake 18:54:20 ✓ ✓ ✓ ✓ 1.14
earthquake 18:54:47 ✓ ✓ ✓ ✓ ✓ ✓ 1.29
earthquake 18:54:57 ✓ ✓ 0.99
earthquake 18:55:47 ✓ ✓ ✓ ✓ ✓ 0.20
earthquake 18:56:10 ✓ ✓ 2.50
earthquake 18:56:25 ✓ ✓ ✓ ✓ ✓ ✓ 1.40
earthquake 18:57:05 ✓ ✓ ✓ ✓ ✓ 1.10
earthquake 18:57:13 ✓ ✓ ✓ ✓ 1.30
earthquake 18:57:32 ✓ ✓ ✓ ✓ 2.40
earthquake 18:58:03 ✓ ✓ ✓ ✓ ✓ ✓ 0.70
earthquake 19:00:09 ✓ ✓ ✓ ✓ ✓ 1.20
earthquake 19:01:02 ✓ ✓ ✓ 0.60
earthquake 19:02:55 ✓ ✓ ✓ ✓ ✓ ✓ 2.10
earthquake 19:03:56 ✓ ✓ ✓ 0.90
earthquake 19:04:06 ✓ ✓ ✓ 2.50
earthquake 19:04:48 ✓ 10.00
earthquake 19:06:29 ✓ ✓ ✓ ✓ ✓ ✓ 1.50
earthquake 19:06:51 ✓ ✓ ✓ 1.10
earthquake 19:07:04 ✓ ✓ ✓ ✓ 4.10
earthquake 19:08:16 ✓ ✓ ✓ ✓ ✓ 2.30
earthquake 19:09:08 ✓ ✓ ✓ ✓ ✓ ✓ 1.60
earthquake 19:11:02 ✓ ✓ ✓ ✓ ✓ ✓ 2.00
rockfall 19:11:30 ✓ ✓ ✓ ✓ ✓ ✓ 1.00
earthquake 19:12:47 ✓ 1.00
earthquake 19:13:53 ✓ ✓ ✓ 2.00
earthquake 19:14:09 ✓ ✓ ✓ 5.00
earthquake 19:14:57 ✓ ✓ ✓ ✓ ✓ ✓ 3.00
earthquake 19:17:18 ✓ ✓ ✓ ✓ ✓ 1.00
earthquake 19:17:37 ✓ ✓ ✓ ✓ ✓ 1.50
earthquake 19:17:52 ✓ ✓ ✓ ✓ 1.10
earthquake 19:18:38 ✓ ✓ ✓ ✓ ✓ ✓ 1.00
earthquake 19:19:26 ✓ ✓ ✓ ✓ ✓ 0.60
rockfall 19:19:58 ✓ ✓ ✓ 0.70
quake 19:21:11 ✓ ✓ ✓ ✓ 4.00
rockfall 19:21:23 ✓ 4.00
rockfall 19:21:37 ✓ ✓ 3.00
earthquake 19:21:54 ✓ 1.00
quake 19:22:15 ✓ ✓ ✓ 3.00
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Appendix A. Catalogue of Larisa data

Table A.2: Detection results of seismic events (Larisa Dataset, Part 2/3)

Class Time Detected Duration (s)

A1 M1 I1 A2 M2 I2

earthquake 19:22:38 ✓ ✓ ✓ ✓ ✓ ✓ 2.00
earthquake 19:22:50 ✓ 1.20
earthquake 19:23:00 ✓ 0.20
earthquake 19:23:17 ✓ ✓ ✓ ✓ ✓ ✓ 1.80
rockfall 19:24:14 ✓ ✓ ✓ 2.50
earthquake 19:24:25 ✓ ✓ 2.50
earthquake 19:24:35 ✓ ✓ ✓ ✓ ✓ 2.00
rockfall 19:25:00 ✓ 2.00
rockfall 19:25:12 ✓ ✓ ✓ ✓ ✓ 8.00
earthquake 19:25:40 ✓ 2.00
rockfall 19:25:00 ✓ 4.00
earthquake 19:26:27 ✓ ✓ ✓ ✓ ✓ 1.00
rockfall 19:26:48 ✓ 1.00
quake 19:26:57 ✓ ✓ ✓ ✓ 4.00
rockfall 19:27:46 ✓ 5.00
earthquake 19:28:00 ✓ ✓ ✓ ✓ ✓ ✓ 0.90
quake 19:28:08 ✓ 2.00
earthquake 19:28:21 ✓ 3.00
earthquake 19:28:40 ✓ 14.00
earthquake 19:29:23 ✓ ✓ ✓ 4.00
rockfall 19:29:39 ✓ ✓ 4.00
earthquake 19:29:55 ✓ ✓ ✓ ✓ ✓ ✓ 2.70
earthquake 19:30:42 ✓ ✓ ✓ ✓ 5.00
earthquake 19:31:24 ✓ ✓ 8.00
earthquake 19:31:09 ✓ ✓ 2.00
earthquake 19:31:47 ✓ 1.00
rockfall 19:32:07 ✓ ✓ ✓ ✓ 8.00
earthquake 19:33:06 ✓ 6.00
earthquake 19:34:00 ✓ ✓ ✓ ✓ 0.80
quake 19:34:31 ✓ 2.00
earthquake 19:34:41 ✓ 2.00
quake 19:34:49 ✓ 1.00
quake 19:35:17 ✓ ✓ ✓ ✓ 1.00
earthquake 19:35:40 ✓ ✓ ✓ 1.40
earthquake 19:36:08 ✓ ✓ ✓ ✓ ✓ ✓ 2.10
quake 19:36:32 ✓ ✓ 5.00
earthquake 19:37:08 ✓ ✓ 10.00
earthquake 19:37:47 ✓ 17.00
rockfall 19:38:12 ✓ 3.00
rockfall 19:38:36 ✓ 4.00
earthquake 19:39:11 ✓ ✓ ✓ ✓ ✓ ✓ 2.10
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Appendix A. Catalogue of Larisa data

Table A.3: Detection results of seismic events (Larisa Dataset, Part 3/3)

Class Time Detected Duration (s)

A1 M1 I1 A2 M2 I2

quake 19:39:19 ✓ 3.00
rockfall 19:39:27 ✓ ✓ 3.00
earthquake 19:39:41 ✓ ✓ ✓ ✓ 1.20
earthquake 19:40:00 ✓ ✓ 7.00
earthquake 19:40:17 ✓ ✓ ✓ ✓ ✓ ✓ 0.40
earthquake 19:40:33 ✓ 1.00
earthquake 19:40:41 ✓ ✓ ✓ ✓ ✓ ✓ 1.70
earthquake 19:41:29 ✓ ✓ ✓ 0.50
rockfall 19:42:07 ✓ 3.00
earthquake 19:42:20 ✓ 8.00
earthquake 19:42:44 ✓ ✓ ✓ ✓ ✓ 1.10
earthquake 19:43:10 ✓ ✓ ✓ 1.00
rockfall 19:43:41 ✓ 1.00
earthquake 19:43:51 ✓ ✓ ✓ ✓ 1.00
rockfall 19:44:00 ✓ 2.00
quake 19:45:24 ✓ ✓ ✓ ✓ ✓ 0.40
earthquake 19:46:12 ✓ ✓ ✓ ✓ ✓ ✓ 1.30
earthquake 19:46:40 ✓ ✓ ✓ ✓ ✓ ✓ 1.80
earthquake 19:47:12 ✓ ✓ ✓ ✓ 0.70
earthquake 19:47:22 ✓ ✓ ✓ 2.30
earthquake 19:47:33 ✓ ✓ ✓ ✓ ✓ ✓ 1.30
quake 19:47:55 ✓ ✓ ✓ ✓ ✓ 0.50
earthquake 19:48:04 ✓ ✓ ✓ ✓ 1.80
rockfall 19:48:25 ✓ ✓ ✓ 14.00
earthquake 19:48:45 ✓ ✓ ✓ ✓ ✓ 0.60
quake 19:49:03 ✓ ✓ 4.00
rockfall 19:49:17 ✓ ✓ 22.00
earthquake 19:49:41 ✓ ✓ 3.00
rockfall 19:49:52 ✓ ✓ ✓ ✓ ✓ ✓ 2.20
rockfall 19:50:14 ✓ ✓ ✓ ✓ ✓ 0.40
earthquake 19:50:32 ✓ ✓ ✓ ✓ ✓ 0.50
rockfall 19:50:42 ✓ 1.00
earthquake 19:51:12 ✓ ✓ ✓ ✓ ✓ ✓ 1.80
earthquake 19:51:39 ✓ ✓ 0.50
earthquake 19:51:57 ✓ ✓ 9.00
quake 19:52:11 ✓ ✓ ✓ 0.60
earthquake 19:52:23 ✓ ✓ ✓ ✓ ✓ ✓ 0.40
earthquake 19:52:36 ✓ ✓ ✓ ✓ 0.40
earthquake 19:52:51 ✓ ✓ ✓ 0.60
earthquake 19:53:11 ✓ ✓ 6.00
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Appendix B

Detailed Results and Confusion

Matrices for Self-Supervised

Learning Downstream Tasks

B.1 K-means clustering

Detailed results and confusion matrices for K-means clustering using the original 256-D

feature vector are presented. Additionally, results for t-Distributed Stochastic Neigh-

bor Embedding (t-SNE) in both 2-D and 3-D, as well as Principal Component Analysis

(PCA) with dimensions reduced to 2-D, 3-D, and 10-D (explaining 95.3% of the vari-

ance), are included.

Table B.1: t-SNE 2-D Classification Performance

Precision Recall F1-score

Quake 0.4198 0.6709 0.5164

Earthquake 0.8289 0.6478 0.7273

Rockfall 0.9511 0.8234 0.8827

N/A Noise 0.7163 0.7143 0.7153
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Appendix B. Detailed Results and Confusion Matrices for Self-Supervised Learning
Downstream Tasks

Table B.2: t-SNE 2-D Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 157 6 3 68

Earthquake 113 252 6 18

Rockfall 21 37 331 13

N/A Noise 83 9 8 250

Table B.3: t-SNE 3-D Classification Performance

Precision Recall F1-score

Quake 0.4286 0.6667 0.5217

Earthquake 0.8546 0.6195 0.7160

Rockfall 0.8772 0.8532 0.8651

N/A Noise 0.7396 0.7143 0.7267

Table B.4: t-SNE 3-D Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 156 8 4 66

Earthquake 110 241 27 11

Rockfall 24 24 343 11

N/A Noise 74 9 17 250

Table B.5: Original Dimension (256) Classification Performance

Precision Recall F1-score

Quake 0.3790 0.6624 0.4821

Earthquake 0.8415 0.5321 0.6520

Rockfall 0.8746 0.7463 0.8054

N/A Noise 0.6923 0.7457 0.7180

Table B.6: Original Dimension (256) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 155 4 2 73

Earthquake 133 207 21 28

Rockfall 55 32 300 15

N/A Noise 66 3 20 261

Table B.7: PCA 2-D Classification Performance

Precision Recall F1-score

Quake 0.3902 0.5085 0.4461

Earthquake 0.8043 0.6350 0.7099

Rockfall 0.7974 0.7537 0.7750

N/A Noise 0.6918 0.7143 0.7029

117



–
M
ay

30
,
2
02

5
–

Appendix B. Detailed Results and Confusion Matrices for Self-Supervised Learning
Downstream Tasks

Table B.8: PCA 2-D Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 119 60 6 49

Earthquake 46 247 14 82

Rockfall 49 31 302 20

N/A Noise 36 17 10 287

Table B.9: PCA 3-D (Explained variance: 79.59%) Classification Performance

Precision Recall F1-score

Quake 0.3717 0.6624 0.4786

Earthquake 0.8410 0.5167 0.6404

Rockfall 0.8746 0.7512 0.8084

N/A Noise 0.6907 0.7400 0.7149

Table B.10: PCA 3-D (Explained variance: 79.59%) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 155 4 2 73

Earthquake 133 207 21 28

Rockfall 56 32 302 12

N/A Noise 69 3 14 264

Table B.11: PCA 10-D (Explained variance: 95.3%) Classification Performance

Precision Recall F1-score

Quake 0.3790 0.6624 0.4821

Earthquake 0.8415 0.5321 0.6520

Rockfall 0.8746 0.7463 0.8054

N/A Noise 0.6923 0.7457 0.7180

Table B.12: PCA 10-D (Explained variance: 95.3%) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 155 4 2 73

Earthquake 133 207 21 28

Rockfall 55 32 300 15

N/A Noise 66 3 20 261
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Appendix B. Detailed Results and Confusion Matrices for Self-Supervised Learning
Downstream Tasks

B.2 ANN-based semi-supervised method

Detailed results and confusion matrices for Artificial Neural Network (ANN)-based

semi-supervised method using different training set proportions of the entire dataset

(5%, 10%, 20%, and 33.3%).

Table B.13: 33.3% (3-fold) Classification Performance

Precision Recall F1-score

Quake 0.777 ± 0.024 0.774 ± 0.048 0.774 ± 0.015

Earthquake 0.917 ± 0.025 0.920 ± 0.007 0.918 ± 0.007

Rockfall 0.916 ± 0.032 0.906 ± 0.024 0.913 ± 0.017

N/A Noise 0.861 ± 0.046 0.836 ± 0.051 0.845 ± 0.005

Table B.14: 33.3% (3-fold) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 120.6 ± 7.5 6.7 ± 2.4 6.3 ± 0.5 22.3 ± 9.1

Earthquake 8.3 ± 1.9 238.7 ± 8.9 9.3 ± 1.5 3.3 ± 2.1

Rockfall 5.6 ± 1.6 6.7 ± 2.4 249.3 ± 3.7 3.3 ± 0.6

N/A Noise 20.0 ± 7.1 4.7 ± 2.1 12.7 ± 4.8 195.0 ± 8.3

Table B.15: 20% (5-fold) Classification Performance

Precision Recall F1-score

Quake 0.715 ± 0.047 0.646 ± 0.040 0.677 ± 0.017

Earthquake 0.864 ± 0.020 0.900 ± 0.033 0.881 ± 0.015

Rockfall 0.916 ± 0.027 0.909 ± 0.021 0.912 ± 0.014

N/A Noise 0.822 ± 0.033 0.837 ± 0.037 0.828 ± 0.016

Table B.16: 20% (5-fold) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 121.0 ± 7.4 22.8 ± 2.9 6.0 ± 2.0 37.4 ± 8.7

Earthquake 17.2 ± 5.5 280.0 ± 10.3 8.6 ± 4.1 5.4 ± 1.85

Rockfall 6.6 ± 3.6 14.0 ± 4.3 292.2 ± 6.7 8.8 ± 4.7

N/A Noise 25.6 ± 14.2 7.6 ± 4.2 12.4 ± 5.8 234.4 ± 10.4

B.3 SOM models

Detailed results and confusion matrices for using different Self-Organizing Map (SOM)

models each requiring different amount of labelled data (shown in the brackets).
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Appendix B. Detailed Results and Confusion Matrices for Self-Supervised Learning
Downstream Tasks

Table B.17: 10% (10-fold) Classification Performance

Precision Recall F1-score

Quake 0.615 ± 0.077 0.432 ± 0.093 0.500 ± 0.073

Earthquake 0.765 ± 0.067 0.828 ± 0.046 0.792 ± 0.036

Rockfall 0.881 ± 0.037 0.882 ± 0.015 0.882 ± 0.010

N/A Noise 0.763 ± 0.042 0.821 ± 0.049 0.788 ± 0.018

Table B.18: 10% (10-fold) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 90.9 ± 19.6 52.4 ± 14.2 9.4 ± 5.2 57.9 ± 16.3

Earthquake 27.2 ± 9.5 289.0 ± 15.9 18.9 ± 8.2 18.1 ± 3.8

Rockfall 5.6 ± 2.9 26.6 ± 8.4 319.9 ± 8.7 10.3 ± 5.3

N/A Noise 26.3 ± 12.4 14.2 ± 8.2 16.6 ± 7.9 258.5 ± 15.5

Table B.19: 5% (20-fold) Classification Performance

Precision Recall F1-score

Quake 0.536 ± 0.074 0.472 ± 0.106 0.496 ± 0.075

Earthquake 0.783 ± 0.064 0.768 ± 0.064 0.771 ± 0.060

Rockfall 0.864 ± 0.042 0.882 ± 0.029 0.873 ± 0.025

N/A Noise 0.774 ± 0.021 0.796 ± 0.050 0.787 ± 0.018

Table B.20: 5% (20-fold) Confusion Matrix

Quake Earthquake Rockfall N/A Noise

Quake 105.0 ± 25.4 46.0 ± 23.5 10.9 ± 5.2 60.4 ± 30.4

Earthquake 49.0 ± 25.1 283.0 ± 23.5 23.1 ± 14.9 13.6 ± 9.2

Rockfall 6.7 ± 5.4 25.5 ± 18.4 337.1 ± 16.6 12.5 ± 5.5

N/A Noise 15.3 ± 7.5 11.6 ± 5.2 15.9 ± 7.7 254.6 ± 16.6

Table B.21: Classification performance results for SOM with 8x8 nodes (4.6%).

Precision Recall F1-score

Quake 0.6589 0.6026 0.6295

Earthquake 0.8532 0.7918 0.8213

Rockfall 0.8878 0.9055 0.8966

N/A Noise 0.7282 0.8114 0.7676

Table B.22: Confusion matrix for SOM with 8x8 nodes (4.6%).

Quake Earthquake Rockfall N/A Noise

Quake 141 24 7 62

Earthquake 29 308 24 28

Rockfall 6 16 364 16

N/A Noise 38 13 15 284
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Appendix B. Detailed Results and Confusion Matrices for Self-Supervised Learning
Downstream Tasks

Table B.23: Classification performance results for SOM with 12x12 nodes (10.4%).

Precision Recall F1-score

Quake 0.6567 0.6538 0.6552

Earthquake 0.8278 0.8406 0.8342

Rockfall 0.9406 0.9055 0.9227

N/A Noise 0.7944 0.8171 0.8056

Table B.24: Confusion matrix for SOM with 12x12 nodes (10.4%).

Quake Earthquake Rockfall N/A Noise

Quake 153 36 3 42

Earthquake 32 327 11 19

Rockfall 4 21 364 13

N/A Noise 44 11 9 286

Table B.25: Classification performance results for SOM with 17x17 nodes (21.0%).

Precision Recall F1-score

Quake 0.7393 0.6667 0.7011

Earthquake 0.8314 0.9126 0.8701

Rockfall 0.9268 0.9129 0.9198

N/A Noise 0.8299 0.8086 0.8191

Table B.26: Confusion matrix for SOM with 17x17 nodes (21.0%).

Quake Earthquake Rockfall N/A Noise

Quake 156 35 5 38

Earthquake 12 355 11 11

Rockfall 9 17 367 9

N/A Noise 34 20 13 283

Table B.27: Classification performance results for SOM with 21x21 nodes (32.1%).

Precision Recall F1-score

Quake 0.7650 0.6538 0.7051

Earthquake 0.8596 0.9126 0.8853

Rockfall 0.9279 0.9279 0.9279

N/A Noise 0.8111 0.8343 0.8226

Table B.28: Confusion matrix for SOM with 21x21 nodes (32.1%).

Quake Earthquake Rockfall N/A Noise

Quake 153 34 7 40

Earthquake 8 355 7 19

Rockfall 5 15 373 9

N/A Noise 34 9 15 292
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