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Abstract

This thesis explores several aspects of Bayesian model selection in time

series forecasting of macroeconomic variables. The contribution is provided

in three essays.

In the �rst essay (Chapter 2) I forecast quarterly US in�ation based on

the generalized Phillips curve using econometric methods which incorporate

dynamic model averaging. These methods not only allow for coe¢ cients to

change over time, but also for the entire forecasting model to change over

time. I �nd that dynamic model averaging leads to substantial forecasting

improvements over simple benchmark regressions and more sophisticated

approaches such as those using time varying coe¢ cient models. I also pro-

vide evidence on which sets of predictors are relevant for forecasting in each

period.

In the second essay (Chapter 3) I address the issue of improving the

forecasting performance of vector autoregressions (VARs) when the set of

available predictors is inconveniently large to handle with methods and diag-

nostics used in traditional small-scale models. First, I summarize available

information from a large dataset into a considerably smaller set of variables

through factors estimated using standard principal components. However,

even in the case of reducing the dimension of the data the true number

of factors may still be large. For that reason I introduce in my analysis

simple and e¢ cient Bayesian model selection methods. I conduct model

estimation and selection of predictors automatically through a stochastic

search variable selection (SSVS) algorithm which requires minimal input

by the user. I apply these methods to forecast 8 main U.S. macroeconomic

variables using 124 potential predictors. I �nd improved out of sample

v



ABSTRACT vi

�t in high dimensional speci�cations that would otherwise su¤er from the

proliferation of parameters.

Finally, in the third essay (Chapter 4) I develop methods for automatic

selection of variables in forecasting Bayesian vector autoregressions (VARs)

using the Gibbs sampler. In particular, I extend the algorithms of Chapter

3 and provide computationally e¢ cient algorithms for stochastic variable

selection in generic (linear and nonlinear) VARs. The performance of the

proposed variable selection method is assessed in a small Monte Carlo ex-

periment, and in forecasting four short macroeconomic series for the UK

using time-varying parameters vector autoregressions (TVP-VARs). I �nd

that restricted models consistently improve upon their unrestricted coun-

terparts in forecasting, showing the merits of variable selection in selecting

parsimonious models.



Chapter 1

Introduction

1.1 General background

What is the probability that it is going to rain tomorrow? People try to

make optimal decisions under uncertainty in their everyday life. However,

decisions are costly. Taking an umbrella on a day that turns out to be

sunny entails the cost of carrying the umbrella. Not carrying an umbrella

on a rainy day can also prove to be very frustrating. Common sense suggest

that accurate predictions of future events is a very important, yet di¢ cult

task.

In macroeconomics, and economics and �nance in general, the cost of

wrong decisions can far exceed the cost of getting wet. Consequently, re-

liable forecasts of future uncertainty are very important during decision

making. For instance, many decisions are based on expectations about the

level of price in�ation in future months or years. The scope of many Cen-

tral Banks is to maintain in�ation at a natural target level, and accurate

1
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predictions about future deviations of prices from this target are impor-

tant in driving the right decisions. In accordance, with these predictions

investors in �nancial markets hedge the risk of nominal assets; �rms make

investment and price-setting decisions; employees and employers negotiate

nominal wages; households make choices over consumption today or con-

sumption in the future (saving). The in�uence of such predictions on agents�

decisions is thus widespread across the economy.

Statisticians have long ago developed methods to infer relationships be-

tween observed data. Thus, based on historical evidence, economists assign

probabilities to events of interest (like future in�ation). In this introduction

I explain why a quite natural way to assign probabilities to events is through

Bayesian inference. Bayesians assign a numerical value (the degree of be-

lief) on a speci�c hypothesis, prior to collecting any evidence supporting or

rejecting this hypothesis. Then they collect evidence (data) that is meant

to be consistent or inconsistent with a given hypothesis (model and para-

meters) - a procedure known as the scienti�c method. Their prior beliefs are

updated from the evidence, which provides a-posteriori a probability that

the hypothesis is supported by this collected evidence. This procedure can

be summarized in an elementary probability theorem of statistics, called

Bayes theorem:

p (HjE) = p (EjH) p (H)
p (E)

(1.1)

where p (H) is our prior belief about a hypothesis H (aka prior), p (EjH)

is the conditional probability of observing an event E given that the hy-
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pothesis H is true (aka likelihood)1, p (HjE) is essentially our prior belief

updated by the support from the evidence (aka posterior), and p (E) is the

marginal probability of observing the event E under all possible hypotheses

(aka marginal likelihood).

There are some features which are important to be discussed here. The

economist will spend some time thinking of a proper model to implement

forecasts, that is her hypothesis H above. She has the freedom to assign

any prior belief on the hypothesis, representing the degree of belief about

speci�c features of this hypothesis (model speci�cation, and parameters).

This proves to be a speci�c advantage in macroeconomic forecasting. It

is the case that macroeconomists often use priors in order to shrink the

parameter space of models, priors based on theory (Dynamic Stochastic

General Equilibrium, DSGE, models), priors based on their own experience

of using a certain class of models again and again, or priors declaring prior

ignorance about the degree of support of hypothesis H (non-informative

priors). Every agent in an economy (households, �rms, investors, decision

makers) has their own expectations about the evolution of macroeconomic

�gures, without having to look at models. Subsequently when doing formal

statistical forecasting it is a blessing that one can incorporate information

to a model using their prior beliefs.

There are other features that di¤erentiate the Bayesian paradigm from

classical statistics. The aim of this thesis is not to contribute to the ongo-

ing philosophical dispute between �Bayesians�and �Frequentists�, i.e. as

1Actually it is the case that p (EjH) is not equal to the likelihood function L (H;E)
but proportional to it.
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to which method is the most appropriate to use. For this, the reader is

referred to the excellent exposition in Robert (2001). Rather, this thesis

uses Bayesian methods due to their attractive properties from an empirical

point of view. In the remainder of this introduction I explain why this is

the case.

The motivation for this thesis is to built methods for selection of vari-

ables in macroeconometric forecasting models. Reducing uncertainty about

the �true� model speci�cation is of paramount interest if the researcher

wants to reduce uncertainty about the �nal prediction. Model selection

is implemented through the comparison of the marginal likelihoods p (E).

Assuming that we have two candidate models, M1 and M2, then the ratio

of marginal likelihoods of each distinct model gives a probability (in the

�Bayesian sense�, described earlier) that modelM1 has to be preferred over

model M2. This ratio can be de�ned as

BF =
p (EjM1)

p (EjM2)

and it is called the Bayes factor. In fact the Bayes factor obeys the law of

likelihood : the extent to which the evidence supports one parameter value

or hypothesis against another is equal to the ratio of their likelihoods. How-

ever instead of using the complete data likelihood functions, p (EjH;M1)

and p (EjH;M2), the use of marginal likelihoods takes into account model

complexity. This has the implication that more parsimonious models are

selected using Bayesian methods, a result which complies with Occam�s
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razor2.

As mentioned above, another aspect of Bayesian model selection is the

role of the prior. Uninformative priors do not make sense in this context,

since the marginal likelihood does not exist for �at prior densities p (H).

Some of the model selection methods described in this thesis involve well

de�ned and informative priors. In fact, as shown in Chapter 3, model

selection can be implemented solely through the prior. However, as I explain

in this thesis, the use of proper priors does not mean that model selection

results will be di¤erent among researchers. Default, non-informative choices

exist and are discussed extensively in the next chapters. Data-based model

selection approaches are easily de�ned, where the researcher can let the data

speak. Nevertheless, there is the additional freedom that restrictions do not

only have to come from the data, but the researcher is allowed to restrict

the model space accordingly. Additional restrictions from economic theory,

experience or external information can be incorporated as a complement to

data-based model selection.

The above discussion pertains to the theoretical aspects of Bayesian

methods, i.e. model selection based on a conditional probability measure

(not a frequency) and the use of priors. The reader will realize in this the-

sis that there is an additional attractive aspect of Bayesian inference which

is purely computational. Using modern posterior simulation methods -

i.e. computational Monte Carlo methods to compute the posterior p (HjE)

when this is analytically intractable - it is possible to do model selection

2Occam�s razor is a principle that states that �entities must not be multiplied beyond
necessity�(entia non sunt multiplicanda praeter necessitatem). Subsequently among two
equally performing models, the more parsimonious one is to be preferred.
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over a large number of models, without having to calculate the marginal

likelihood for each and every model. The problems that will be the focus

of this thesis can all be cast in linear or nonlinear regression form. This

implies that when using n exogenous variables for forecasting (also called

predictor variables or simply predictors in this context) the number of all

possible models is 2n. Even with modern computing power, it is too di¢ cult

to enumerate each model when n > 20 or 30 in most contexts. Further-

more, as it will be clear in the next chapter, variable selection in regression

is equivalent to (nested) model selection, so these two terms will be used

interchangeably as equivalent through this thesis.

1.2 Why is (Bayesian) model selection

important?

�[...] the signi�cance level a has to be determined. It has be-

come conventional to use a = :05 or :01 based on Sir Ronald Fis-

cher�s experience with relatively small agricultural experiments

(on the order of 30 to 200 plots). Subsequent advice has empha-

sized the need to take into account the power of the test against

H1 when setting a, and to balance power and signi�cance in

some appropriate way. However a precise way of doing this is

lacking, and this advice seems to boil down to a vague sugges-

tion that a be lower for large sample sizes, a suggestion that is

mostly ignored in practice.� - Raftery (1995, p.114)
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The answer to this question can hopefully prove to be quite obvious.

From a theoretical point of view, using the famous words of George Box

�all models are false but some are useful�. The task of model selection is

exactly this one: to discriminate good models from bad ones that can lead

to losses during decision making. More practically, and connected with the

speci�c features of macroeconomic datasets, model selection is important

for several reasons. First, sometimes data collection can be quite costly.

This statement is more relevant for biological (gene expression) or �nancial

(at the micro level) datasets, however monitoring macroeconomic variables

involves a large e¤ort from national statistical agencies. Related to this issue

is the problem of measurement error and data revisions evident in macro-

economic variables, which proliferates in large dimensions (i.e. when many

variables are used). Second, model selection can help preserve parsimony

and save valuable degrees of freedom in small (in terms of observations)

datasets. Most macroeconomic variables are observed monthly, quarterly

or annually3. This problem can be more evident when one wants to con-

sider the maximum possible information (variables) available, or when using

traditional multivariate models (see Chapters 3 and 4). Bayesian model se-

lection can be used when the number of predictor variables is larger than

the number of observations. Therefore, model selection has been used in

very demanding problems, most notably in genomics. In gene mapping

studies only a tiny number of genes is assumed to have a large e¤ect on a

trait4.
3The exception is some interest and exchange rates which are determined in the

�nancial markets and hence can be available weekly, daily or intradaily.
4For example, Merl et al. (2010) implement model selection in an 8; 509 � 97 di-



CHAPTER 1. INTRODUCTION 8

Nevertheless, probably the most important aspect of model selection is

the improvement of forecast accuracy. In many problems, variables which

are irrelevant in-sample (i.e. when estimating a model), are not expected

to be relevant out-of-sample (i.e. when forecasting), and vice-versa. Of

course, this simple rule is a naive (and not globally correct) simpli�cation

of the main idea: richly parametrized econometric models su¤er from over-

�tting the in-sample observations, which most often results in performing

very poorly out-of-sample. The statistics (and especially the econometrics)

literature is full of examples where simpler models usually perform much

better than complex models (like exchange rate forecasting using random

walks). However there are two issues that need to be taken care of when

forecasting with a �best�model. The �rst one is that every model, no mat-

ter how well or not it �ts the data, carries some information that might be

useful for forecasting. Secondly, macroeconomic data are subject to struc-

tural changes, so one variable might be relevant for forecasting only in a

part of the sample (so including or excluding the variable in the whole sam-

ple is a suboptimal strategy). This thesis deals with both these issues. The

�rst issue is easily solved using what is called Bayesian model averaging

(see Chapter 3). Instead of forecasting only with the model that has the

maximum posterior model probability, we can use the predictive content

of each model scaled by its sample model probability to obtain an average

forecast. This average forecast over a range of models, takes into account

model uncertainty and is optimal in a minimum mean square error sense.

mensional gene expression matrix, or equivalently, using �econometric language�, 97
observations on 8,509 variables.
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The second issue is also taken into account in this thesis by developing

model selection in speci�cations with parameter instability. For that rea-

son I use the popular state-space framework in order to specify dri�tng

parameters and drifting model probabilities (see Chapters 2 & 4).

1.3 The contribution of this thesis

In light of the motivation outlined above, this thesis develops model selec-

tion methods for speci�c forecasting problems in macroeconomics. In Chap-

ter 2, I extend Bayesian model averaging and selection to the time-domain.

Instead of allowing predictors to have a constant probability of inclusion in

the �true�model over the whole sample, I use methods which de�ne time-

varying probabilities of inclusion of predictors. In the same respect, aver-

aging across models can be implemented each time-period (quarter) using

di¤erent weighting probabilities each quarter. I implement Dynamic Model

Averaging and Dynamic Model Selection by allowing a regression model to

have time-varying parameters. Subsequently I also use e¢ cient approxi-

mations for estimating the time-varying parameters and the time-varying

probabilities of each possible model speci�cation which can make computa-

tions of recursive forecasts feasible. I show that these procedures are very

relevant for forecasting in�ation using the Phillips curve. Among 15 pre-

dictors, there is evidence that the forecasting content of di¤erent variables

has changed over time. The striking result is that for short-term forecasts

of US in�ation (one quarter ahead), in�ation expectations becomes an im-

portant predictor in the post-1984 era (i.e. after the Great Moderation).
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This complies with the empirical observation that - after the monetarist

experiment of the �rst chairmanship of Paul Volcker in 1979 to 1983 - the

Fed put more focus on price stability so it was easier to anchor in�ation

expectations on the part of the private sector. I compare the results with

benchmark models commonly used in the literature, and �nd that Dynamic

Model Averaging and Dynamic Model Selection provide superior forecasts

of in�ation.

In Chapters 3 and 4, I develop model selection methods appropriate to

vector autoregressive (VAR) models. VARs are multivariate econometric

models which have been used extensively for many years by macroecono-

mists in order to analyze the e¤ects of monetary policy and to create reliable

forecasts. As I argue in these two chapters (and as similarly many other

macroeconomists have done over the years), these models are heavily para-

metrized, and unconstrained estimation of these models can lead to erratic

predictions. In these chapters I propose two powerful model selection meth-

ods based on the Gibbs sampler. A common feature of these algorithms is

that model selection is implemented in one step, i.e. at the same time as

estimation of the parameters. There is no need to estimate all possible

2n VAR speci�cations; all that is needed is to estimate the full model, i.e.

the model with all possible predictors and lags of dependent variables, and

obtain probabilities of inclusion of each parameter. Additionally, as VAR

models consist of multiple equations (hence the term �multivariate�), I de-

�ne these algorithms in such a way that di¤erent predictors are allowed to

a¤ect di¤erent dependent variables in each equation.

In Chapter 3 I use linear VARs in order to forecast eight macroeconomic
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variables, commonly monitored by Central Banks and other institutions.

Despite the moderately large number of dependent variables, I consider a

large number of exogenous predictor variables, which in the empirical ap-

plication is of the order of 124. A practical problem that occurs in this case

is that �variables with the clearest theoretical (i.e. from macroeconomic

theory) justi�cation for use as predictors often have scant empirical pre-

dictive content�(Stock and Watson, 2003). Subsequently this is a problem

where data-based selection of predictions is very relevant. Nevertheless, the

computational problem can be very demanding, since in the eight-variable

VAR with 124 predictors, 13 lags and an intercept that I consider, there

are almost 9,000 free parameters which implies that the number of possible

models is approximately 29000. It is reasonable to expect also to use lagged

values of these 124 exogenous predictors, increasing the number of parame-

ters by even more. For that reason I consider a �factor-augmented VAR�

speci�cation, where the exogenous variables are replaced by a few factors

estimated using principal components. However, in light of ignorance about

the correct number of factors and lags of the factors, the true model might

still be very demanding. Adding in my analysis e¢ cient Bayesian model

selection methods, I forecast using a maximum of 10 factors with 13 lags

each. I show that the proposed stochastic search variable selection algo-

rithm leads to parsimonious models, with favorable results in forecasting.

In Chapter 4 I extend the previous analysis by dropping the assumption

of linearity in the VAR and I develop a generic method for model selection

which can e¤ectively be used in many popular nonlinear econometric mod-

els. I speci�cally consider the popular time-varying parameters VAR. This
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is a VAR model where the coe¢ cients change at each point in time (as in

Chapter 2). Even in small traditional speci�cations with three variables,

the number of total parameters is in the order of thousands, and over-

parametrization is a major concern. Additionally, time-varying parameters

models are very �exible (almost nonparametric) and can easily over�t the

data, with additional negative impacts on forecasting performance. A third

issue is that in these models marginal likelihood calculations are extremely

hard, and computation is quite demanding, so that piecewise comparison

is e¤ectively impossible. Many recent papers using the time-varying para-

meter VAR �x the number of lags for convenience (references are provided

in Chapter 4). These reasons call for Bayesian variable selection methods.

I provide a conceptually simple algorithm for automatic model selection

of parameters which may be constant or not. Again, there is no need to

estimate a new model for each possible lag length; the researcher only has

to select a maximum number of lags. Unlike the data- and observation-rich

empirical application of Chapter 3, I test empirically the new variable selec-

tion algorithm using a four-variable VAR for quarterly data. The Bayesian

model selection algorithm consistently provides improved forecasts.

Each chapter is self contained, so I provide speci�c motivation for each

method used in each individual chapter. Additionally, each chapter contains

the necessary information for the reader to understand the intuition behind

the methods proposed in this thesis. All the technical details are contained

in the Appendices. This is with the exception of Chapter 2 where the nature

of the problem being analyzed calls for providing a few more estimation

details within the main body of the chapter.
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Each of the subsequent chapters has been considered for publication. As

of May 2010, a revised working paper version of Chapter 2 is re-submitted

to International Economic Review. This is joint work with Gary Koop.

A working paper version of Chapter 3 has been published as: Korobilis,

D. (2008) �Forecasting in vector autoregressions with many predictors�.

Advances in Econometrics, vol. 23, 403-431. A working paper version of

Chapter 4 has beeen submitted to Journal of Applied Econometrics.



Chapter 2

Forecasting using Dynamic

Model Averaging

2.1 Introduction

Forecasting in�ation is one of the more important, but di¢ cult, exercises

in macroeconomics. Many di¤erent approaches have been suggested. Per-

haps the most popular are those based on extensions of the Phillips curve.

This literature is too voluminous to survey here, but a few representative

and in�uential papers include Ang et al. (2007), Atkeson and Ohanian

(2001), Groen et al. (2008), Stock and Watson (1999) and Stock and Wat-

son (2008). The details of these papers di¤er, but the general framework

involves a dependent variable such as in�ation (or the change in in�ation)

and explanatory variables including lags of in�ation, the unemployment

rate and other predictors. Recursive, regression-based methods, have had

some success. However, three issues arise when using such methods.

14
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First, the coe¢ cients on the predictors can change over time. It is

commonly thought that the slope of the Phillips curve has changed over

time. If so, the coe¢ cients on the predictors that determine this slope will

be changing. More broadly, there is a large literature in macroeconomics

which documents structural breaks and other sorts of parameter change in

many time series variables (see, among many others, Stock and Watson,

1996). Recursive methods are poorly designed to capture such parameter

change. It is better to build models designed to capture it.

Second, the number of potential predictors can be large. For instance,

Groen et al. (2008) consider ten predictors. Researchers working with

factor models such as Stock and Watson (1999) typically have many more

than this. The existence of so many predictors can result in a huge number

of models. If the set of models is de�ned by whether each of m potential

predictors is included or excluded, then the researcher has 2m models. This

raises substantive statistical problems for model selection strategies. In

light of this, many authors have turned to Bayesian methods, either to

do Bayesian model averaging (BMA) or to automate the model selection

process. Examples in macroeconomics and �nance include Avramov (2002),

Cremers (2002) and Koop and Potter (2004). Furthermore, computational

demands can become daunting when the researcher is facing 2m models.

Third, the model relevant for forecasting can potentially change over

time. For example, the set of predictors for in�ation may have been di¤er-

ent in the 1970s than now. Or some variables may predict well in recessions

but not in expansions. Furthermore, papers such as Stock and Watson

(2008) �nd that Phillips curve forecasts work well in some periods, but at
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other periods simpler univariate forecasting strategies work better. Such

arguments suggest that the forecasting model is changing over time. This

kind of issue further complicates an already di¢ cult econometric exercise.

That is, if the researcher has 2m models and, at each point in time, a dif-

ferent forecasting model may apply, then the number of combinations of

models which must be estimated in order to forecast at time � is 2m� . Even

in relatively simple forecasting exercises, it can be computationally infeasi-

ble to forecast by simply going through all of these 2m� combinations. For

this reason, to our knowledge, there is no literature on forecasting in�ation

with many predictors where the coe¢ cients on those predictors may change

over time and where a di¤erent forecasting model might hold at each point

in time. A purpose of this paper is to �ll this gap.

In this paper, we consider a strategy developed by Raftery et al. (2007)

which they refer to as dynamic model averaging or DMA. Their approach

can also be used for dynamic model selection or DMS where a single (po-

tentially di¤erent) model can be used as the forecasting model at each point

in time. DMA or DMS seem ideally suited for the problem of forecasting

in�ation since they allow for the forecasting model to change over time

while, at the same time, allowing for coe¢ cients in each model to evolve

over time. They involve only standard econometric methods for state space

models such as the Kalman �lter but (via some empirically-sensible ap-

proximations) achieve vast gains in computational e¢ ciency so as to allow

DMA and DMS to be done in real time despite the computational problem

described in the preceding paragraph.

We use these methods in the context of a forecasting exercise with quar-
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terly US data from 1959Q1 through 2008Q2. We use two measures of in�a-

tion and �fteen predictors and compare the forecasting performance of DMA

and DMS to a wide variety of alternative forecasting procedures. DMA and

DMS indicate that the set of good predictors for in�ation changes sub-

stantially over time. Due to this, we �nd DMA and DMS to forecast very

well (in terms of forecasting metrics such as log predictive likelihoods, MS-

FEs and MAFEs), in most cases leading to large improvements in forecast

performance relative to alternative approaches.

2.2 Forecasting In�ation

Generalized Phillips curve models

Many forecasting models of in�ation are based on the Phillips curve in

which current in�ation depends only on the unemployment rate and lags

of in�ation and unemployment. Authors such as Stock and Watson (1999)

include additional predictors leading to the so-called generalized Phillips

curve. We take as a starting point, on which all models used in this paper

build, the following generalized Phillips curve:

yt = �+ x0t�1� +

pX
j=1


jyt�j + "t (2.1)

where yt is in�ation which we de�ne as ln
�

Pt
Pt�1

�
, with Pt being a price

index, and xt a vector of predictors. This equation is relevant for forecasting

at time t given information through time t � 1. When forecasting h > 1

periods ahead, the direct method of forecasting can be used and yt and "t
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are replaced by yt+h�1 and "t+h�1 in (2.1).

In this paper we use quarterly data. We provide results for in�ation

as measured by the GDP de�ator and by the consumer price index (CPI).

As predictors, authors such as Stock and Watson (1999) consider measures

of real activity including the unemployment rate. Various other predictors

(e.g. cost variables, the growth of the money supply, the slope of term

structure, etc.) are suggested by economic theory. Finally, authors such as

Ang et al. (2007) have found surveys of experts on their in�ation expec-

tations to be useful predictors. These considerations suggest the following

list of potential predictors which we use in this paper. Precise de�nitions

and sources are given in Appendix A.

� UNEMP: unemployment rate.

� CONS: the percentage change in real personal consumption expendi-

tures.

� INV: the percentage change in private residential �xed investment.

� GDP: the percentage change in real GDP.

� HSTARTS: the log of housing starts (total new privately owned hous-

ing units).

� EMPLOY: the percentage change in employment (All Employees: To-

tal Private Industries, seasonally adjusted).

� PMI: the change in the Institute of Supply Management (Manufac-

turing): Purchasing Manager�s Composite Index.
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� WAGE: the percentage change in average hourly earnings in manu-

facturing.

� TBILL: three month Treasury bill (secondary market) rate.

� SPREAD: the spread between the 10 year and 3 month Treasury bill

rates.

� DJIA: the percentage change in the Dow Jones Industrial Average.

� MONEY: the percentage change in the money supply (M1).

� INFEXP: University of Michigan measure of in�ation expectations.

� COMPRICE: the change in the commodities price index (NAPM com-

modities price index).

� VENDOR: the change in the NAPM vendor deliveries index.

This set of variables is a wide one re�ecting the major theoretical ex-

planations of in�ation as well as variables which have found to be useful in

forecasting in�ation in other studies.

Time Varying Parameter Models

Research in empirical macroeconomics often uses time varying parameter

(TVP) models which are estimated using state space methods such as the

Kalman �lter. A standard speci�cation can be written, for t = 1; ::; T , as

yt = zt�t + "t (2.2a)

�t = �t + �t: (2.2b)
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In our case, yt is in�ation, zt = [1;xt�1; yt�1; : : : ; yt�p] is an 1 � m vector

of predictors for in�ation (including an intercept and lags of in�ation),

�t =
�
�t�1; �t�1; 
t�1; : : : ; 
t�p

�
is an m � 1 vector of coe¢ cients (states),

"t
ind� N (0; Ht) and �t

ind� N (0; Qt). The errors, "t and �t, are assumed to

be mutually independent at all leads and lags. Examples of recent papers

which use such models (or extensions thereof) in macroeconomics include

Cogley and Sargent (2005), Cogley et al. (2005), Groen et al. (2008), Koop

et al. (2009), Korobilis (2009a) and Primiceri (2005).

The model given by (2.2a) and (2.2b) is an attractive one that allows

for empirical insights which are not available with traditional, constant co-

e¢ cient models (even when the latter are estimated recursively). However,

when forecasting, they have the potential drawback that the same set of

explanatory variables is assumed to be relevant at all points in time. Fur-

thermore, if the number of explanatory variables in zt is large, such models

can often over-�t in-sample and, thus, forecast poorly.

Popular extensions of (2.2a) and (2.2b) such as TVP-VARs also in-

clude the same set of explanatory variables at all times and su¤er from

the same problems. Even innovative extensions such as that of Groen et al.

(2008) involve only a partial treatment of predictor uncertainty. In an in�a-

tion forecasting exercise, they use a model which modi�es the measurement

equation to be:

yt =
mX
j=1

sj�jtzjt + "t;
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where �jt and zjt denote the jth elements of �t and zt. The key addition

to their model is sj 2 f0; 1g. Details of the exact model used for sj are

provided in Groen et al. (2008). For present purposes, the important thing

to note is that it allows for each predictor for in�ation to either be included

(if sj = 1) or excluded (if sj = 0), but that sj does not vary over time. That

is, this model either includes a predictor at all points in time or excludes

it at all points in time. It does not allow for the set of predictors to vary

over time. It is the treatment of this latter issue which is the key addition

provided by DMA.

Dynamic Model Averaging

To de�ne what we do this paper, suppose that we have a set of K mod-

els which are characterized by having di¤erent subsets of zt as predictors.

Denoting these by z(k) for k = 1; ::; K, our set of models can be written as:

yt = z
(k)
t �

(k)
t + "

(k)
t (2.3)

�
(k)
t = �

(k)
t�1 + �

(k)
t ;

"
(k)
t is N

�
0; H

(k)
t

�
and �(k)t is N

�
0; Q

(k)
t

�
. Let Lt 2 f1; 2; ::; Kg denote

which model applies at each time period, �t =
�
�
(1)0
t ; ::; �

(K)0
t

�0
and yt =

(y1; ::; yt)
0. The fact that we are letting di¤erent models hold at each point

in time and will do model averaging justi�es the terminology �dynamic

model averaging�. To be precise, when forecasting time t variables using

information through time t� 1, DMA involves calculating Pr (Lt = kjyt�1)



CHAPTER 2. FORECASTING USING DYNAMIC MODEL
AVERAGING 22

for k = 1; ::; K and averaging forecasts across models using these probabil-

ities. DMS involves selecting the single model with the highest value for

Pr (Lt = kjyt�1) and using this to forecast. Details on the calculation of

Pr (Lt = kjyt�1) will be provided below.

Speci�cations such as (2.3) are potentially of great interest in empirical

macroeconomics since they allow for the set of predictors for in�ation to

change over time as well as allowing the marginal e¤ects of the predictors

to change over time. The problems with such a framework are that many of

the models can have a large number of parameters (and, hence, risk being

over-parameterized) and the computational burden which arises when K

is large implies that estimation can take a long time (a potentially serious

drawback when forecasting in real time).

To understand the source and nature of these problems, consider how the

researcher might complete the model given in (2.3). Some speci�cation for

how predictors enter/leave the model in real time is required. A simple way

of doing this would be through a transition matrix, P , with elements pij =

Pr (Lt = ijLt�1 = j) for i; j = 1; ::; K. Bayesian inference in such a model

is theoretically straightforward, but will be computationally infeasible since

P will typically be an enormous matrix. Consider the case where we have

m potential predictors and our models are de�ned according to whether

each is included or excluded. Then we have K = 2m and P is a K � K

matrix. Unless m is very small, P will have so many parameters that

inference will be very imprecise and computation very slow.1 Thus, a full

1See, for instance, Chen and Liu (2000) who discuss related models and how compu-
tation time up to t typically involves mixing over Kt terms.
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Bayesian approach to DMA can be quite di¢ cult. In this paper, we use

approximations suggested by Raftery et al. (2007) which have the huge

advantage that standard state space methods (e.g. involving the Kalman

�lter) can be used, allowing for fast, real-time forecasting.

The approximations involve two parameters, � and �, which they refer

to as forgetting factors and �x to numbers slightly below one. To explain

the role of these forgetting factors, �rst consider the standard state space

model in (2.2a) and (2.2b). For given values of Ht and Qt, standard �ltering

and smoothing results can be used to carry out recursive estimation or

forecasting. That is, Kalman �ltering begins with the result that

�t�1jyt�1 � N
�b�t�1;�t�1jt�1� (2.4)

where formulae for b�t�1 and �t�1jt�1 are standard (and are provided below
for the case considered in this paper). Note here only that these formulae

depend on Ht and Qt. Then Kalman �ltering proceeds using:

�tjyt�1 � N
�b�t�1;�tjt�1� ; (2.5)

where

�tjt�1 = �t�1jt�1 +Qt:

Things simplify substantially if this latter equation is replaced by:

�tjt�1 =
1

�
�t�1jt�1 (2.6)
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or, equivalently, Qt =
�
1� ��1

�
�t�1jt�1 where 0 < � � 1. Such approx-

imations have long been used in the state space literature going back to

Fagin (1964) and Jazwinsky (1970). It is a neat way to avoid the immense

computational challenge of estimating the covariance matrix Qt. Since �t is

unobserved, estimating its covariance matrix is a challenging task for which

prior information is usually not available. A di¤erent important aspect of

the approximation in (2.6) is that it is related to statistical methods such as

age-weighting and windowing. The name �forgetting factor� is suggested

by the fact that this speci�cation implies that observations j periods in the

past have weight �j. An alternative way of interpreting � is to note that

it implies an e¤ective window size of 1
1�� . It is common to choose a value

of � near one, suggesting a gradual evolution of coe¢ cients. Raftery et al.

(2007) set � = 0:99. For quarterly macroeconomic data, this suggests ob-

servations �ve years ago receive approximately 80% as much weight as last

period�s observation. This is the sort of value consistent with fairly stable

models where coe¢ cient change is gradual. With � = 0:95, observations

�ve years ago receive only about 35% as much weight as last period�s obser-

vations. This suggests substantial parameter instability where coe¢ cient

change is quite rapid. This seems to exhaust the range of reasonable values

for � and, accordingly, in our empirical work we consider � 2 (0:95; 0:99).

� = 0:99 will be our benchmark choice and most of our empirical results will

be reported for this (although we also include an analysis of the sensitivity

to this choice).

An important point to note is that, with this simpli�cation, we no longer

have to estimate or simulate Qt. Instead, all that is required (in addition to
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the Kalman �lter) is a method for estimating or simulating Ht (something

which we will discuss below).

Forecasting in the one model case is then completed by the updating

equation:

�tjyt � N
�b�t;�tjt� ; (2.7)

where

b�t = b�t�1 + �tjt�1zt �Ht + zt�tjt�1z
0
t

��1 �
yt � ztb�t�1� (2.8)

and

�tjt = �tjt�1 � �tjt�1zt
�
Ht + zt�tjt�1z

0
t

��1
zt�tjt�1: (2.9)

Recursive forecasting is done using the predictive distribution

ytjyt�1 � N
�
ztb�t�1; Ht + zt�tjt�1z

0
t

�
: (2.10)

We stress that, conditional on Ht, these results are all analytical and, thus,

no Markov chain Monte Carlo (MCMC) algorithm is required. This greatly

reduces the computational burden.

The case with many models, (2.3), uses the previous approximation

and an additional one. To explain this, we now switch to the notation for

the multiple model case in (2.3) and let �t denote the vector of all the

coe¢ cients. In the standard single model case, Kalman �ltering is based

on (2.4), (2.5) and (2.7). In the multi-model case, for model k, these three
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equations become:

�t�1jLt�1 = k; yt�1 � N
�b�(k)t�1;�(k)t�1jt�1� ; (2.11)

�tjLt = k; yt�1 � N
�b�(k)t�1;�(k)tjt�1� (2.12)

and

�tjLt = k; yt � N
�b�(k)t ;�

(k)
tjt

�
; (2.13)

where b�(k)t ;�
(k)
tjt and �

(k)
tjt�1 are obtained via Kalman �ltering in the usual

way using (2.8), (2.9) and (2.6),except with (k) superscripts added to de-

note model k. To make clear the notation in these equations, note that,

conditional on Lt = k, the prediction and updating equations will only pro-

vide information on �(k)t and not the full vector �t. Hence, we have only

written (2.11), (2.12) and (2.13) in terms of the distributions which hold

for �(k)t .

The previous results were all conditional on Lt = k, and we need a

method for unconditional prediction (i.e. not conditional on a particular

model). In theory, a nice way of doing this would be through specifying a

transition matrix, P , such as that given above and using MCMC methods

to obtain such unconditional results. However, for the reasons discussed

previously, this will typically be computationally infeasible and empirically

undesirable due to the resulting proliferation of parameters. In this paper,

we follow the suggestion of Raftery et al. (2007) involving a forgetting
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factor for the state equation for the models, �, comparable to the forgetting

factor � used with the state equation for the parameters. The derivation of

Kalman �ltering ideas begins with (2.4). The analogous result, when doing

DMA, is

p
�
�t�1jyt�1

�
=

KX
k=1

p
�
�
(k)
t�1jLt�1 = k; yt�1

�
Pr
�
Lt�1 = kjyt�1

�
; (2.14)

where p
�
�
(k)
t�1jLt�1 = k; yt�1

�
is given by (2.11). To simplify notation, let

�tjs;l = Pr (Lt = ljys) and thus, the �nal term on the right hand side of

(2.14) is �t�1jt�1;k.

If we were to use the unrestricted matrix of transition probabilities in

P with elements pkl then the model prediction equation would be:

�tjt�1;k =
KX
l=1

�t�1jt�1;lpkl;

but Raftery et al. (2007) replace this by:

�tjt�1;k =
��t�1jt�1;kPK
l=1 �

�
t�1jt�1;l

; (2.15)

where 0 < � � 1 is set to a �xed value slightly less than one and is

interpreted in a similar manner to �. Raftery et al. (2007) argue that

this is an empirically sensible simpli�cation and, in particular, is a type of

multiparameter power steady model used elsewhere in the literature. See

also Smith and Miller (1986) who work with a similar model and argue

approximations such as (2.15) are sensible and not too restrictive.
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The huge advantage of using the forgetting factor � in the model pre-

diction equation is that we do not require an MCMC algorithm to draw

transitions between models nor a simulation algorithm over model space.2

Instead, simple evaluations comparable to those of the updating equation

in the Kalman �lter can be done. In particular, we have a model updating

equation of:

�tjt;k =
�tjt�1;kpk (ytjyt�1)PK
l=1 �tjt�1;lpl (ytjyt�1)

; (2.16)

where pl (ytjyt�1) is the predictive density for model l (i.e. the Normal

density in (2.10) with (l) superscripts added) evaluated at yt.

Recursive forecasting can be done by averaging over predictive results

for every model using �tjt�1;k. In that case, DMA point predictions are

given by:

E
�
ytjyt�1

�
=

KX
k=1

�tjt�1;kz
(k)
t
b�(k)t�1:

DMS proceeds by selecting the single model with the highest value for

�tjt�1;k at each point in time and simply using it for forecasting.

To understand further how the forgetting factor � can be interpreted,

note that this speci�cation implies that the weight used in DMA which is

attached to model k at time t is:
2Examples of simulation algorithms over model space include the Markov chain

Monte Carlo model composition (MC3) algorithm of Madigan and York (1995) or the
reversible jump MCMC algorithm of Green (1995).
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�tjt�1;k /
�
�t�1jt�2;kpk

�
yt�1jyt�2

���
=

t�1Y
i=1

�
pk
�
yt�ijyt�i�1

���i
:

Thus, model k will receive more weight at time t if it has forecast well in

the recent past (where forecast performance is measured by the predictive

density, pk (yt�ijyt�i�1)). The interpretation of �recent past� is controlled

by the forgetting factor, � and we have the same exponential decay at the

rate �i for observations i periods ago as we had associated with �. Thus, if

� = 0:99 (our benchmark value and also the value used by Raftery et al.,

2007), forecast performance �ve years ago receives 80% as much weight as

forecast performance last period (when using quarterly data). If � = 0:95,

then forecast performance �ve years ago receives only about 35% as much

weight. These considerations suggest that, as with �, we focus on the

interval � 2 (0:95; 0:99).

Note also that, if � = 1, then �tjt�1;k is simply proportional to the

marginal likelihood using data through time t � 1. This is what standard

approaches to BMA would use. If we further set � = 1, then we obtain

BMA using conventional linear forecasting models with no time variation in

coe¢ cients. In our empirical work, we include BMA in our set of alternative

forecasting procedures and implement this by setting � = � = 1.

We stress that, conditional on Ht, the estimation and forecasting strat-

egy outlined above only involves evaluating formulae such as those in the

Kalman �lter. All the recursions above are started by choosing a prior for
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�0j0;k and �
(k)
0 for k = 1; ::; K.

The preceding discussion is all conditional on Ht. Raftery et al. (2007)

recommend a simple plug in method where H(k)
t = H(k) and is replaced

with a consistent estimate. When forecasting in�ation, however, it is likely

that the error variance is changing over time. In theory, we could use

a stochastic volatility or ARCH speci�cation for H(k)
t . However, to do

this would greatly add to the computational burden. Thus, we prefer a

simple plug-in approach which is a rolling version of the recursive method

of Raftery et al. (2007). To be precise, let

eH(k)
t =

1
t�

tX
j=t�t�+1

��
yt � z

(k)
t
b�(k)t�1�2 � z

(k)
t �

(k)
tjt�1z

(k)0
t

�
:

Raftery et al. (2007) uses this with t� = t, but to allow for more substantial

change in the error variances (e.g. due to the Great Moderation of the

business cycle), we set t� = 20 and, thus, use a rolling estimator based on

�ve years of data. Following Raftery et al. (2007), we can avoid the rare

possibility that eH(k)
t < 0, by replacing H(k)

t by bH(k)
t where:

bH(k)
t =

8><>:
eH(k)
t if eH(k)

t > 0bH(k)
t�1 otherwise

:

2.3 Empirical Work

Our empirical work is divided into three sub-sections. The �rst two of these

sub-sections present results using DMA and DMS, implemented in our pre-

ferred way. This involves setting � = 0:99, � = 0:99, a noninformative prior
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over the models (i.e. �0j0;k = 1
K
for k = 1; ::; K so that, initially, all models

are equally likely) and a relatively di¤use prior on the initial conditions of

the states: �(k)0 � N (0; 100) for k = 1; ::; K. The �rst sub-section presents

evidence on which variables are good for predicting in�ation. The second

sub-section investigates forecast performance by comparing DMA forecasts

to those produced by several alternative forecasting strategies. The third

sub-section presents evidence on the sensitivity of our results to the choice of

the forgetting factors. We present results for short-term (h = 1), medium-

term (h = 4) and long-term (h = 8) forecast horizons for two measures

of in�ation: one based on the CPI, the other based on the GDP de�ator.

The list of potential predictors (which speci�es the transformation used on

each variable) is given in sub-section 2.1 (see also Appendix A). All of our

models include an intercept two lags of the dependent variable.3

Which Variables are Good Predictors for In�ation?

In theory, DMA has a large potential bene�t over other forecasting ap-

proaches in that it allows the forecasting model to change over time. Of

course, in a particular empirical application, this bene�t may be small if

the forecasting model does not change much over time. Accordingly, we be-

gin by presenting evidence that, when forecasting in�ation, the forecasting

model is changing over time.

One striking feature of all of our empirical results is that, although

we have 15 potential predictors (and, thus, tens of thousands of models),

3Preliminary experimentation with lag lengths up to four indicated two lags leads to
the best forecast performance for both our measures of in�ation.
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most probability is attached to very parsimonious models with only a few

predictors. If we let Sizek be the number of predictors in model k (note

that Sizek does not include the intercept plus two lags of the dependent

variable which are common to all models), then

E (Sizet) =
KX
k=1

�tjt�1;kSizek

can be interpreted as the expected or average number of predictors used in

DMA at time t. Figure 2.1 plots this for our six empirical exercises (i.e.

two de�nitions of in�ation and three forecast horizons).

For the short forecast horizon (h = 1), the shrinkage of DMA is par-

ticularly striking. It consistently includes (in an expected value sense) a

single predictor for both our de�nitions of in�ation. For GDP de�ator in-

�ation at horizons h = 4 and h = 8, slightly more predictors are included

(i.e. roughly 2 predictors are included in the early 1970s, but the number

of predictors increases to 3 or 4 by the end of the sample). It is only for

CPI based in�ation at longer horizons that DMA chooses larger numbers

of predictors. For instance, for h = 8 the expected number of predictors

gradually increases from about two in 1970 to about eight by 2000. But

even this least parsimonious case (which is still very parsimonious before

1990) excludes (in an expected value sense) half of the potential predictors.

Figure 2.1 shows clear evidence that DMA will shrink forecasts and

provides some evidence that the way this shrinkage is done changes over

time. But it does not tell us which predictors are important and how the

predictors are changing over time. It is to these issues we now turn.
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Figure 2.1: Expected Number of Predictors in Each Forecasting Exercise

Figures 2.2 through 2.7 shed light on which predictors are important

at each point in time for each of our six empirical exercises. These graphs

contain posterior inclusion probabilities. That is, they are the probability

that a predictor is useful for forecasting at time t. Equivalently, they are

the weight used by DMA attached to models which include a predictor. To

keep the �gures readable, we only present posterior inclusion probabilities

for predictors which are important at least one point in time. To be precise,

any predictor where the inclusion probability is never above 0.5 is excluded

from the appropriate �gure.

These �gures con�rm that DMS is almost always choosing parsimonious

models and the weights in DMA heavily re�ect parsimonious models. That

is, with the partial exception of h = 8, it is rare for DMS to choose a model

with more than two or three predictors.

Another important result is that for both measures of in�ation and for
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all forecast horizons, we are �nding strong evidence of model change. That

is, the set of predictors in the forecasting model is changing over time.

Results for CPI in�ation for h = 1 are particularly striking. Before

1975, no predictors come through strongly. Between 1975 and 1985 money

is the only predictor. After 1985 the measure of in�ation expectations

comes through strongly. With regards to the in�ation expectations variable,

similar patterns are observed for h = 4 and h = 8. Before the mid- to

late- 1980s there is little or no evidence that it is a useful predictor for

in�ation. But after this, it often is a useful predictor. To a lesser extent,

the same pattern holds with GDP de�ator in�ation. With h = 1 very few

predictors are included, with money being an important predictor near the

beginning of the sample and in�ation expectations being important near

the end. However, for GDP de�ator in�ation with h = 1, the predictor

re�ecting earnings (WAGE) comes through as being the strongest predictor

after 1980 (this variable was not found to be an important predictor for

CPI in�ation).

Housing starts is another variable which often has strong predictive

power for both measures of in�ation. But, interestingly, only at medium

or long horizons. For h = 1, there is no evidence at all that housing starts

have predictive power for in�ation.

The interested reader can examine Figures 2.2 through 2.7 for any par-

ticular variable of interest. Most of our potential explanatory variables

come through as being important at some time, for some forecast horizon

for some measure of in�ation. Only CONS, DJIA, COMPRICE and PMI

never appear in Figures 2.2 through 2.7. But it is clearly the case that
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Figure 2.2: Posterior Probability of Inclusion of Main Predictors (CPI in-
�ation, h = 1)

there is a large variation over time, over forecast horizons and over mea-

sures of in�ation in what is a good predictor for in�ation. We stress that

the great bene�t of DMA and DMS is that they will pick up good predictors

automatically as the forecasting model evolves over time.

Figures 2.2 through 2.7 show how models evolve over time in our various

empirical exercises. But they only indirectly address the issue of how the

marginal e¤ect of each predictor is changing over time. With �fteen predic-

tors and six empirical exercises, the number of marginal e¤ects to present

is huge. Accordingly, to illustrate the kind of result that DMA is providing,

we present E (�tjyt) (averaged over all models) for one case. Figure 2.8 plots

E (�tjyt) using CPI in�ation for h = 1 for the main predictors (i.e. the ones

plotted in Figure 2.2). Consistent with Figure 2.2, it can be see that the
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Figure 2.3: Posterior Probability of Inclusion of Main Predictors (CPI in-
�ation, h = 4)

Figure 2.4: Posterior Probability of Inclusion of Main Predictors (CPI in-
�ation, h = 8)
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Figure 2.5: Posterior Probability of Inclusion of Main Predictors (GDP
de�ator in�ation, h = 1)

Figure 2.6: Posterior Probability of Inclusion of Main Predictors (GDP
de�ator in�ation, h = 4)
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Figure 2.7: Posterior Probability of Inclusion of Main Predictors (GDP
de�ator in�ation, h = 8)

marginal e¤ect of MONEY on in�ation is high until the mid to late 1980s.

The marginal e¤ect of in�ation expectations becomes large only after this.

Forecast Performance: DMA versus Alternative

Forecast Procedures

There are many metrics for evaluating forecast performance and many al-

ternative forecasting methodologies that we could compare our DMA and

DMS forecasts to. In this paper, we present two forecast comparison metrics

involving point forecasts. These are mean squared forecast error (MSFE)

and mean absolute forecast error (MAFE). We also present a forecast metric

which involves the entire predictive distribution: the sum of log predictive

likelihoods. Predictive likelihoods are motivated and described in many

places such as Geweke and Amisano (2007). The predictive likelihood is
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Figure 2.8: Posterior Means of Coe¢ cients on Main Predictors (CPI in�a-
tion, h = 1)

the predictive density for yt (given data through time t � 1) evaluated at

the actual outcome. The formula for the one-step ahead predictive density

in model l was denoted by pl (ytjyt�1) above and can be calculated as de-

scribed in Section 2.2. We use the direct method of forecasting and, hence,

the log predictive density for the h-step ahead forecast is the obvious ex-

tension of this. We use the sum of log predictive likelihoods for forecast

evaluation, where the sum begins in 1970Q1. MSFEs and MAFEs are also

calculated beginning in 1970Q1.

In terms of alternative forecasting methods, we present results for:

� Forecasts using DMA with � = � = 0:99.

� Forecasts using DMS with � = � = 0:99.

� Forecasts using a single model containing all the predictors, but with

time varying parameters (i.e. this is a special case of DMA or DMS
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where 100% of the prior weight is attached to the model with all

the predictors, but all other modelling choices are identical including

� = 0:99). This is labelled TVP in the tables.

� Forecasts using DMA, but where the coe¢ cients do not vary over time

in each model (i.e. this is a special case of DMA where � = 1).

� Forecasts using BMA (i.e. this is a special case of DMA where � =

� = 1).

� Recursive OLS forecasts using an AR(2) model.

� Recursive OLS forecasts using all of the predictors.

� Random walk forecasts.

The �nal three methods are not Bayesian, so no predictive likelihoods

are presented for these cases. Note that there are many multivariate bench-

mark models that could be used as well. For example the time-varying

parameters vector autoregression (TVP-VAR) - see also Chapter 4 - is a

popular multivariate extension of the model we are using here, allowing for

structural instabilities and stochastic variances and co-variances. However,

this is a computationally demanding model since full MCMC methods must

be used to forecast recursively. This is something which contradicts the

spirit of this paper, which is to propose e¢ cient computational methods for

forecasting in the presence of structural instabilities and model uncertainty.

Subsequently results of the TVP-VAR are not presented here.

Tables 1 and 2 present results for our forecasting exercise for our two

di¤erent measures of in�ation. The big picture story is a clear and strong
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one: DMA and DMS forecast well. In most cases much better than other

forecasting methods and in no case much worse than the best alternative

method. We elaborate on these points below.

Consider �rst the log predictive likelihoods (the preferred method of

Bayesian forecast comparison). These always indicate that DMA or DMS

forecasts best. One message coming out of Tables 1 and 2 is that simply

using a TVP model with all predictors leads to very poor forecasting per-

formance. Of course, we are presenting results for only a single empirical

exercise. But TVP models such as TVP-VARs are gaining increasing pop-

ularity in macroeconomics and the very poor forecast performance of TVP

models found in Tables 1 and 2 should serve as a caution to users of such

models (at least in forecasting exercises). Clearly, we are �nding that the

shrinkage provided by DMA or DMS is of great value in forecasting.

DMA and DMS extend conventional forecasting approaches by allow-

ing for model evolution and parameter evolution. A message provided by

the predictive likelihoods is that most of the improvements in forecasting

performance found by DMA or DMS are due to their treatment of model

evolution rather than parameter evolution. That is, DMA with constant co-

e¢ cient models typically forecasts fairly well and occasionally even leads to

the best forecast performance (see the results in Tables 1 and 2 for h = 1).

Recently, macroeconomists have been interested in building models involv-

ing parameter change of various sorts. Our results suggest that allowing for

the model to change is at least as important. At short horizons, conven-

tional BMA forecasts fairly well, but at longer horizons it tends to forecast

poorly.
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Predictive likelihoods also consistently indicates that DMS forecasts a

bit better than DMA (although this result does not carry over to MAFEs

and MSFEs where DMA tends to do better). DMS and DMA can be

interpreted as doing shrinkage in di¤erent ways. DMS puts zero weight on

all models other than the one best model, thus �shrinking�the contribution

of all models except one towards zero. It could be that this additional

shrinkage provides some additional forecast bene�ts over DMA.

If we turn our attention to results using MSFE and MAFE, we can see

that the previous picture still holds (although DMA does somewhat better

relative to DMS than we found using predictive likelihoods). In addition, we

can say that naive forecasting methods such as using an AR(2) or random

walk model are clearly inferior to DMA and DMS for both measures of

in�ation at all forecast horizons. However, with CPI in�ation, recursive

OLS forecasting using all the predictors does well at the long horizon (h =

8). Forecasting at such a long horizon is di¢ cult to do, so it is unclear

how much weight to put on this result (and predictive likelihoods for this

non-Bayesian method are not calculated). But it is worth noting that the

good performance of recursive OLS in this case is not repeated for in�ation

measured using the GDP de�ator nor at shorter horizons.
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Sensitivity Analysis

Our previous DMA and DMS results were for our benchmark case where

� = � = 0:99. As discussed previously, researchers in this �eld choose

pre-selected values for � and � and the interval (0:95; 0:99) is the empiri-

cally sensible one for most empirical applications. It would be possible to

choose � and � in a data-based fashion, but this is typically not done for

computational reasons. For instance, the researcher could select a grid of

values for these two forgetting factors and then do DMA at every possible

combination of values for � and �. Some metric (e.g. an information cri-

teria or the sum of log predictive likelihoods through time t � 1) could be

used to select the preferred combination of � and � at each point in time.

However, this would turn an already computationally demanding exercise

to one which was g2 times as demanding (where g is the number of values

in the grid). Accordingly, researchers such as Raftery et al. (2007) simply

go with � = � = 0:99 and argue that results will be robust to reasonable

changes in these factors. In order to investigate such robustness claims,

Tables 3 and 4 present results for our forecasting exercise using di¤erent

combinations of the forgetting factors.

Overall, Tables 3 and 4 reveal a high degree of robustness to choice of

� and �. If anything, these tables emphasize the bene�ts of DMA in that

measures of forecast performance are sometimes better than those in Tables

1 and 2 and rarely much worse.

One �nding of particular interest is that the combination � = 0:95 and

� = 0:99 tends to forecast very well, for both of our measures of in�ation.
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Table 2.3: Sensitivity Analysis: CPI in�ation

Forecast Method log PL MSFE MAFE
h = 1

DMA, � = � = 0:95 �107:19 47:29 24:87
DMS, � = � = 0:95 �74:57 43:94 23:16
DMA, � = 0:99; � = 0:95 �95:39 58:30 26:61
DMS, � = 0:99; � = 0:95 �87:24 48:92 28:81
DMA, � = 0:95; � = 0:99 �91:48 45:63 22:57
DMS, � = 0:95; � = 0:99 �52:04 40:53 21:65

h = 4

DMA, � = � = 0:95 �106:25 54:26 34:31
DMS, � = � = 0:95 �57:34 46:44 26:19
DMA, � = 0:99; � = 0:95 �101:91 56:16 35:94
DMS, � = 0:99; � = 0:95 �98:64 59:34 42:43
DMA, � = 0:95; � = 0:99 �100:38 54:87 34:46
DMS, � = 0:95; � = 0:99 �61:37 47:63 26:36

h = 8

DMA, � = � = 0:95 �98:15 56:19 33:84
DMS, � = � = 0:95 �51:29 47:28 28:68
DMA, � = 0:99; � = 0:95 �111:58 64:04 51:40
DMS, � = 0:99; � = 0:95 �114:02 67:02 56:72
DMA, � = 0:95; � = 0:99 �92:93 56:48 36:06
DMS, � = 0:95; � = 0:99 �66:48 51:30 31:35

Note that the value � = 0:95 allows for quite rapid change in forecasting

model over time. This is consistent with a story we have told before: that

it appears that allowing for models to change over time is more important

in improving forecast performance than allowing for parameters to change

(at least in our data sets).

2.4 Conclusions

This paper has investigated the use of DMA and DMS methods for fore-

casting US in�ation. These extend conventional approaches by allowing
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Table 2.4: Sensitivity Analysis: GDP De�ator in�ation

Forecast Method log PL MSFE MAFE
h = 1

DMA, � = � = 0:95 �66:23 36:20 14:03
DMS, � = � = 0:95 �46:81 38:12 15:96
DMA, � = 0:99; � = 0:95 �48:89 38:04 15:75
DMS, � = 0:99; � = 0:95 �48:56 38:77 16:52
DMA, � = 0:95; � = 0:99 �34:45 32:17 11:33
DMS, � = 0:95; � = 0:99 �0:11 30:76 10:84

h = 4

DMA, � = � = 0:95 �26:49 35:52 15:26
DMS, � = � = 0:95 �10:48 37:48 18:60
DMA, � = 0:99; � = 0:95 �37:50 42:46 22:79
DMS, � = 0:99; � = 0:95 �36:97 43:24 24:02
DMA, � = 0:95; � = 0:99 �13:04 32:25 13:48
DMS, � = 0:95; � = 0:99 25:36 28:87 11:81

h = 8

DMA, � = � = 0:95 �42:43 37:90 18:04
DMS, � = � = 0:95 �19:91 39:48 22:48
DMA, � = 0:99; � = 0:95 �57:95 46:96 29:40
DMS, � = 0:99; � = 0:95 �58:65 48:58 30:31
DMA, � = 0:95; � = 0:99 �36:93 38:19 18:36
DMS, � = 0:95; � = 0:99 �12:26 37:47 20:51

for the set of predictors for in�ation to change over time. When you have

K models and a di¤erent one can potentially hold at each of T points in

time, then the resultingKT combinations can lead to serious computational

and statistical problems (regardless of whether model averaging or model

selection is done). As shown in this paper, DMA and DMS handle these

problems in a simple, elegant and sensible manner.

In our empirical work, we present evidence indicating the bene�ts of

DMA and DMS. In particular, it does seem that the best predictors for

forecasting in�ation are changing considerably over time. By allowing for

this change, DMA and DMS lead to substantial improvements in forecast
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performance.



Chapter 3

Forecasting with many

predictors

3.1 Introduction

It is common practice today to collect observations on many variables that

potentially help explain economic variables of interest such as in�ation and

unemployment. Technological progress has allowed the collection, storage,

and exchange of huge amounts of information without much e¤ort and cost.

In turn, this has signi�cantly a¤ected recent macroeconomic modeling tech-

niques. Current academic research is focused on �nding solutions on how

to e¢ ciently handle large amounts of information with, for example, Stock

and Watson (2002) using 215 predictors to forecast 8 major macroeconomic

variables for the U.S. economy. Bernanke and Boivin (2003), among oth-

ers, argue that this is also the case nowadays in central banks, where it

is customary for researchers and decision makers to monitor hundreds of

49
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subsidiary variables during the decision-making process.

These reasons justify the current trend in applied modeling with large

datasets. The modern econometrician has tools adequate enough to success-

fully extract information from hundreds of predictor variables and compute

more accurate forecasts than ever before. It is noteworthy that these tools

mainly do not rely on economic theory in an explicit way; rather they are

statistical and consequently atheoretical methods that are used to cover the

unfortunate gap between theoretical models and their empirical validation.

Within the sum of all possible options, two methods in particular have re-

cently gained ground: dimension reduction and model averaging. Among

many others, Bernanke et al. (2005), Favero et al. (2005), Giannone et

al. (2004), Stock and Watson (2002, 2005a, 2005b) and Koop and Potter

(2004) show how forecasts can be improved over univariate or multivariate

autoregressions, using either dynamic factors or Bayesian model averaging

(BMA), or both techniques, when a rich dataset is in hand.

In this paper I examine empirically the merit of using factors extracted

from a large set of explanatory variables and at the same time implement-

ing Bayesian model averaging/selection in the context of macroeconomic

vector autoregressions (VARs). While factor methods have already been

examined thoroughly in multivariate models, the challenging task of model

averaging/selection is implemented with a stochastic search variable se-

lection algorithm (henceforth SSVS) proposed by George and McCulloch

(1993, 1997) and George et al (2008).

The proposed approach is �exible as its output can easily be used for

selection of a single best model or model averaging. The SSVS adds to a
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recent and expanding literature on di¤erent approaches to BMA in VARs

(Strachan and van Dijk, 2007; Andersson and Karlsson, 2008). The innova-

tion of the speci�c prior formulation is that it is more appropriate for VAR

models compared to previous model selection priors used in multivariate

regressions (Brown et al., 1998, 2002). That is because each right-hand

side variable is allowed to enter in all, some, or none of the VAR equations,

and not only in all or none of them. The additional advantages come from

the fact that this class of restriction search algorithms is extremely simple

to use and automated. Furthermore, certain versions of these algorithms

can incorporate variable selection when the number of predictors is larger

than the number of time series observations.

The following section de�nes the Bayesian VAR model when many vari-

ables are available. Within this �large model approach�the large number

of variables is replaced with a small number of factors and several aspects of

this approach are discussed. In Section 3, the stochastic restriction search

is introduced as a means of e¢ ciently selecting a subset of macroeconomic

variables or factors that should be restricted from the VAR speci�cation,

based only on the information in the data. The prior speci�cation necessary

for model selection is analyzed, as well as the interpretation of model selec-

tion probabilities as a special case of BMA. Section 4 outlines the setting

of the empirical section (data, forecasting models, prior hyperparameters,

and comparison statistics), and the results of the forecasting performance of

various VAR speci�cations. Section 5 concludes the paper with a summary

and thoughts for further extension of the basic framework presented in this

paper.
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3.2 Methodology

Let yt be an m� 1 vector of variables of interest (that we want to forecast)

observed for t = 1; :::; T . Unlike previous univariate studies (Stock and

Watson, 2002, Koop and Potter, 2004), m > 1 and I de�ne a forecasting

model for y using a general VAR representation

yt =

p1X
i=1

aiyt�i + c0wt + "t (3.1)

where the parameter matrices ai and c0 are of dimensionsm�m andm�N

respectively, yt�i, i = 1; :::; p1, are lagged values of the dependent variable,

wt is a N � 1 vector containing current and lagged values of some exoge-

nous predictor variables, and the errors are iid Gaussian, "t � N (0;�).This

model can be estimated both by OLS and Bayesian methods, provided that

the total number of explanatory variables will not exceed the total number

of time series observations T . I propose to adopt a Bayesian setting which

allows for a uni�ed treatment of this model in high dimensions. For a re-

view of the VAR under standard prior speci�cations and di¤erent sampling

methods, the reader is referred to Kadiyala and Karlsson (1997).

Assume we have available observations xt = (x1t; :::; xnt)
0 on some macro-

economic quantities, where n is large (in the order of hundreds). A popular

and simple method to incorporate into an econometric model all the infor-

mation inherent in a large set of variables, is to reduce their dimension into

a lower-dimensional vector of k � n latent factors and insert these in the
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VAR model as explanatory variables

xt = �ft + ut (3.2)

y0t =

p1X
i=1

y0t�iai +

p2X
j=1

f 0t�jbj + "t (3.3)

where ft is an k � 1 vector of unobserved factors, � is the matrix of factor

loadings and ut are iid normal errors, ut � N (0;W ). In equation (3.3) the

same assumptions hold as in the base model in (3.1), with the only di¤erence

that now wt = (ft�1; :::; ft�p2)
0 and N = k�p2, and the bj are of appropriate

dimensions. For simplicity xt is demeaned which is equivalent to imposing a

constant term in the factor equation, equal to the sample mean x = 1
T

P
xt

(which in this model coincides both with the MLE of the constant or the

mode of its posterior under a di¤use prior). The factors are unobserved

quantities and usually it is assumed that they follow a normal distribution

with diagonal covariance matrix. One more convention in the factor model

literature is to impose the covariance matrix of the innovations, W , to be

also diagonal so that (3.2) reduces to independent equations. Estimation

methods vary from principal component analysis (PCA) to full likelihood-

based approaches. The ultimate goal of using the factor model is to obtain

the factor scores ft as a valid reduced representation of the manifest vector

xt, so that factor identi�ability issues play no actual role here and will not

be further discussed.

In terms of the general forecasting VAR model in equation (3.1), I re-

place the predictors wt with the principal components (PC) estimates of

the factors bFt = h bft; bft�1; :::; bft�p2i, i.e., as if they were observed data. Note
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that this speci�cation is slightly di¤erent from the dynamic factor model

(or factor-augmented VAR) used in Bernanke et al. (2005). From their

point of view, the dynamic factor model (DFM) is treated as a state-space

model, which has the advantage of a probably more e¢ cient one-step esti-

mation of the factors (i.e., along with the parameters of the model) through

the Kalman �lter algorithm. But this comes at a huge computational cost

which makes the application of this model prohibitive in the recursive fore-

casting setting adopted in this study. After all, Stock and Watson (2005a)

have already implemented a large-scale forecasting exercise involving DFMs

where they compare several frequentist, full Bayes, and empirical Bayes ap-

proaches.

The factors replace the original variables in order to allow richer dy-

namics and subsequently are allowed to have up to p2 lags. If the original

observed series xt = (x1t; :::; xnt)
0 were included as predictors then �for a

typical macroeconomic dataset with monthly observations on many vari-

ables �a degrees of freedom problem would occur if more than one or two

lags were assumed. However, even in the case of reducing the dimension of

our data with factors the fact that we would ideally allow for many lags does

not resolve the problem of overparameterization. ForN = k�p2 larger than

20 the number of all possible models will tend virtually to in�nity so that

pairwise model comparison is practically infeasible using an AIC/BIC-type

criterion or prior predictive (marginal) densities and Bayes factors. A rea-

sonable proposed solution from a Bayesian point of view is to use shrinkage

subjective priors. For example, the Minnesota prior imposes restrictions on

parameters which correspond to higher order lags of y, whereas the prior
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weight (i.e., the prior mean) for the parameter on the �rst own lag in each

of the m equations is equal to one, and zero on the �rst lag of the rest

m � 1 dependent variables. While this approach will work well in VARs

which include only lags of the dependent variables, it is di¢ cult to adopt

this approach in the models examined here. This happens because there is

no theoretical or empirical justi�cation for constructing a subjective prior

on exogenous predictor variables, especially if these exogenous variables are

latent (constructed) factors.

Introducing any kind of subjective prior information in this model is not

an easy task, anyway. These priors may not be speci�ed concretely because

of the lack of prior information regarding joint distributions or the large

amount of models involved in the analysis. In that respect, subjective prior

beliefs require a huge amount of input from the researcher. It is unrealistic

to assume that uncertainty about the true model speci�cation can be de-

scribed meaningfully using ones�own beliefs; hence prior elicitation should

be based mainly on economic theory. The problem with this approach is

that in many cases economic theory has empirically proven to be bad guid-

ance in proposing relevant predictors. Stock and Watson (2003) argue that

this is the case when forecasting in�ation: �the literature does suggest [ . .

. ] variables with the clearest theoretical justi�cation for use as predictors

often have scant empirical predictive content.�

The discussion so far has focused on the �large-n�case, avoiding to men-

tion anything about how small or large the dimension m of the dependent

variable y should be. Although macroeconomic VARs typically contain as

dependent variables three or four fundamental quantities that describe the
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economy, when forecasting, the actual number of variables of interest can

grow large. A decision maker would be interested to forecast future values of

many series, like production, employment/unemployment, short- and long-

term interest rates, consumer and producer price in�ation, exchange rates,

and many other nominal or real quantities. This is easily handled with

the model selection algorithm which is the focus of the next section. The

methods described below apply to large VARs in a general sense, that is (i)

when the number of predictors n grows large and the number of dependent

variables m is small, (ii) when m grows large and n is small, or (iii) when

both m;n ! 1, although the empirical application is centered upon the

�rst case.

3.3 Bayesian model selection and averaging

As was mentioned in the introductory section, when the number of can-

didate models is too large to enumerate, posterior sampling methods are

necessary for the computation of marginal likelihoods for model compari-

son. Stochastic search algorithms that base on a Markov chain on model

space identify regions of high posterior probability and can be used for

model selection or to obtain posterior weighted estimates for model aver-

aging. When applied to small models, these algorithms have the ability to

search the entire model space, while in large settings only more plausible

models are visited. An indicator (zero/one) variable 
, epitomizes the core

of Bayesian model selection using stochastic search techniques. Let us de-

�ne the vector 
 = (
1; :::; 
s) as the complete set of indicators, where s
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is the maximum number of variables in the model. When 
i = 0 (
i = 1)

then variable j exits (enters) the �true�model, i = 1; :::; s. This allows

to index all possible 2s models as combinations of the available variables.

Then we can proceed by de�ning a prior p (
) which combined with the

likelihood p (dataj
), will give zero or one value for each 
i, i = 1; :::; s,

from the (updated based on data) posterior distribution p (
jdata). This

posterior distribution entails all the necessary information for model selec-

tion and averaging. The main idea is to impose the vector of parameters,

say � = (�1; :::; �s), to have a structure conditional on the values of 
, so

that when 
i = 1 the associated parameter �i will be estimated according to

its unrestricted posterior density, and when 
i = 0 this would imply �i = 0.

There are many ways to implement this general strategy and many alter-

native methods exist which involve several prior speci�cations. Analytical

reviews of model averaging and selection is o¤ered in Hoeting et al. (1998),

O�Hara and Sillanpää (2009), George (2000), Clyde and George (2004), and

Chipman et al. (2001). Recent references of BMA in economics include

Fernandez, Ley and Steel (2001), Ciccone and Jarocinski (2007), and Sala-

I-Martin, Doppelhofer and Miller (2004). Ciccone and Jarocinski (2007)

in particular implement an investigation of BMA in the presence of data

revisions. A computationally fast restriction search is described in this sec-

tion which is based on the SSVS algorithm of George and McCulloch (1993,

1997). The general idea is to use a mixture prior on the parameters we want

to restrict, conditional on the model selection indicators 
. That is, we can
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write a prior for � of the form

�ij
i � (1� 
i) � (0) + 
iN (0; �) (3.4)

where � (0) is the Dirac delta function with mass at 0. Thus when 
i = 0, �i

will be shrunk towards zero, due to very tight prior. When 
i = 0, �i will be

left unrestricted (Normal prior with �large�variance �). The exact SSVS

implementation of the above prior from George and McCullogh (1993), sets

the �rst mixture component to be Normal (instead of the Dirac delta at

zero) with a very tight variance (see below for more details).

A di¤erent approach is to set in (3.4) a double exponential prior in the

second mixture component. This can be implemented if we assume at a

second level a hyperprior for � of the form

� � exp
�
� 2=2

�
:

This double exponential prior can better accommodate large regression coe

cients due to its heavier tail probability. Additionally it can achieve the

adaptive minimax convergence rates that are not obtainable using normal

priors. Most importantly, this empirical Bayes estimator is closely related

to the LASSO algorithm (see Liang et al., 2008).

De�ne zt =
�
y0t�1; :::; y

0
t�p1 ; w

0
t

�0
, then the VAR model in familiar matrix

form is obtained by stacking the row vectors yt+1, zt and "t for t = 1; :::; T

y = z�+ ", " � N (0;�) (3.5)
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where y =
�
y02; :::; y

0
T+1

�0
, z = [z01; :::; z

0
T ]
0, � = [a0; :::; ap1 ; c0], and " =�

"02; :::; "
0
T+1

�0
. Note that when forecasts are projected h-steps ahead, y is

the matrix y =
�
y01+h; :::; y

0
T+h

�0
(see next section for a de�nition). Let

nu = m � (m� (p1 + 1) + k � (p2 + 1)) be the total number of elements

in ' = vec (�). From these elements the m in total constants are always

included in the models and admit a typical normal prior of the form

'c � N
�
'c; vIm

�
(3.6)

where 'c is the block of ' which contains the constant terms. Let 'k

be the vector of the remaining n' = nu � m parameters in ' which are

subject to restriction search and let 
 =
�

1; :::; 
n�

�
be the vector of

indicator variables associated with the elements of 'k. Then each element

'ki conditional on 
i, i = 1; :::; n', follows a scale mixture of normals prior

of the form

'ki j
i � (1� 
i)N
�
0; � 20i

�
+ 
iN

�
0; � 21i

�
(3.7)

The hyperparameters � 0i, � 1i are selected in such a way so that � 20i is small

(or even zero) and � 21i is large. Subsequently each parameter '
k
i is restricted

with zero prior mean and very small (or zero) prior variance when 
i = 0,

while for 
i = 1 has a large (locally uninformative) prior variance and in

that respect is left unrestricted.

It would not make sense to de�ne the 
i�s if these were de�ned subjec-

tively and not updated by the information in the data. Hence a Bernoulli

prior on these variables is placed, which updated by the likelihood will re-

sult in a conditional posterior which is also Bernoulli. The elements of the
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vector 
 follow an independent Bernoulli pi 2 (0; 1) prior of the form


 �
Y

p

i
i (1� pi)

(1�
i) , i = 1; :::; n' (3.8)

This prior choice reduces computational costs and leads to a posterior den-

sity which is easy to derive. In this case p (
i = 1) = pi = 1 � p (
i = 0)

so that pi re�ects the prior belief that 'ki is large enough and should be

left unrestricted. By selecting pi < 1=2, models with an unreasonably large

number of parameters are downweighted in order to highlight the signif-

icance of parsimonious models. The special case where pi = 1=2 8 i, is

equivalent to a constant uniform prior p (
) � 1=2n'. This prior is uninfor-

mative in the sense that it favors each parameter equally; see Section 4.2 in

this paper for more details, and the discussion in Chipman et al. (2001).

The hierarchical mixture prior described above is straightforward to

interpret and can be applied virtually to any model for which a normal

prior can be speci�ed3 as the conjugate prior that leads to easy derivation

of the underlying posterior. A di¤erent version of the SSVS is used in

Brown et al. (1998) for a multivariate regression model used to predict

three variables using 160 predictors. Following the suggestions of George

andMcCulloch (1997) and Smith and Kohn (1996) they set in equation (3.7)

� 20i = 0 and �
2
1i = g�

�
z0
z


��1
. This prior implies that the �rst component

of the mixture is a Dirac delta function at zero, i.e., a function that puts

point mass at zero and hence whenever 
i = 0, 'ki will be exactly zero.

The second component is Zellner�s g-prior speci�cation and suggestions for

setting uninformative values of g (although in a univariate context) are given
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in Fernandez et al. (2001). An updated and computationally more e¢ cient

version of this prior speci�cation appears in Brown et al. (2002), where

more variables than observations can be handled. The shortcoming of their

approach is that it is able to treat each equation in the VAR individually, but

instead is choosing the variables in z which are more probable to be included

in all VAR equations together. Put simply, if, say, z contains only the �rst

lag of the dependent variables, then the latter approach will allow the yit�1

to be a predictor of the whole vector yt, while the approach proposed here

yit�1to explain the dependent variable in equation j of the VAR (denoted

yjt), but not the dependent variable in the l-th VAR equation (denoted

ylt). Nevertheless, the Brown et al. (2002) implementation of the SSVS

algorithm is a valuable complement to the one used here, and undoubtedly

a useful tool in empirical analysis with focus on prediction.

Smith and Kohn (2002) extend the stochastic search for parameter re-

strictions to the covariance matrix of longitudinal data. George et al. (2008)

apply their idea to the covariance matrix of structural VARs: motivated by

the fact that identifying restrictions on the covariance are usually imposed

on the elements of a reparametrization of �, they focus on restricting the

elements of the m�m upper triangular matrix 	 satisfying

��1 = 	0	 (3.9)

They then derive a mixture of normals prior, as in equation (3.7), for the

nondiagonal elements of 	, while the diagonal is integrated out with a
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gamma prior. Matrix 	 has the form

	 =

266666664

 11  12 � � �  1m

0  22
. . .

...
...

. . . . . . 0

0 � � � 0  mm

377777775
(3.10)

so let = ( 11; :::;  mm)
0 and � = (�02; :::; �

0
m)

0 =
�
 12;  13;  23; :::;  (m�1)m

�0
be

the vectors of the diagonal and upper diagonal elements respectively, where

�j =
�
 1j; :::;  (j�1)j

�0
for j = 2; :::;m. Let !j =

�
!1j; :::; !(j�1)j

�0
be a

vector of 0-1 variables so that each element of �j has prior conditional on

!j of the form

�ijj!ij � (1� !ij)N
�
0; �20ij

�
+ !ijN

�
0; �21ij

�
(3.11)

for i = 1; :::; j � 1 and j = 2; :::;m. As in the case of the vector 
, assume

that the elements of the vector ! = (!02; :::; !
0
m)

0 are independent Bernoulli

qij 2 (0; 1) random variables so that

! �
Y

i

Y
j
q
!ij
ij (1� qij)

(1�!ij) (3.12)

For i = 2; :::;m, each  ii has a gamma prior density

 2ii � Gamma (�i; �i)

For more information on these priors the reader is referred to the ana-
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lytical calculations of George et al. (2008) where it is shown that �nding

restrictions on the covariance matrix based solely on the data provides an

attractive alternative to identifying restrictions imposed in structural VARs.

It should be clear from the prior speci�cation that the SSVS is an intuitive

extension of the Bayesian conjugate (normal �inverse Wishart) prior. In

the empirical application I adopt a fast sampling scheme (see Section 4.2)

to draw from the posteriors of 
 and !, which makes computation feasible

in multivariate models. The parameter posteriors are given in detail in Ap-

pendix B. Although selection of prior hyperparameters seems to be fairly

automatic in this setting, prior elicitation is an important factor in model

selection.

3.4 Empirical Application

Data

I use the Stock and Watson (2005b) dataset which is an updated version

of the Stock and Watson (2002) dataset that is widely used in empirical

applications. This version consists of 132 monthly variables pertaining to

the US economy measured from 1960:01 to 2003:12. The 132 predictors

can be grouped in 14 categories: real output and income; employment and

hours; real retail, manufacturing, and trade sales; consumption; housing

starts and sales; real inventories; orders; stock prices; exchange rates; inter-

est rates and spreads; money and credit quantity aggregates; price indexes;

average hourly earnings; and miscellaneous. The data were transformed to
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eliminate trends and nonstationarities. All the data and transformations

are summarized in Appendix C.

Selection of prior hyperparameters

Implementation of Bayesian model selection requires all the priors to be

proper, as the ones described in Section 3. Noninformative improper priors

are not suitable to calculate Bayes factors and posterior model probabilities.

Even though there are certain methods which overcome this di¢ culty (BIC

approximations, intrinsic, or fractional Bayes factors), the standard practice

in the Bayesian model selection literature is to use only proper priors. This

does not necessarily mean that noninformative proper priors cannot be

speci�ed. It is easy to choose the hyperparameters in such a way that all

the priors are locally noninformative.

Selection of � 0i, � 1i and �0ij, �1ij can be made along the guidelines of

Chipman et al. (2001, p. 86). For instance, given a non-negative scalar

threshold �i, higher posterior weighting can be allocated to those values of


 for which
��'ki �� > �i when 
i = 1, i¤ � 0i, � 1i satisfy

log

�
� 1i=� 0i

��10i � ��11i

�
= �2i

A similar argument can be made for the choice of �0ij and �1ij. Alternatives

for a more objective selection of these hyperparameters exist, but at the cost

of a substantial increase in computational calculations. The �rst one is to

use empirical Bayes criteria in the spirit of George and Foster (2000), while a

fully Bayes approach would require to place an inverted-Gamma hyperprior
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on each � 0i, � 1i and �0ij, �1ij. Selection based on the formula above is a

simple task which can easily be implemented in large models. George et al.

(2008) argue that even if the restriction search algorithm is not e¤ective in

selecting the correct restrictions on �, the results can still be used to obtain

improved forecasts.

The only source of di¢ culty may arise in eliciting the hyperparame-

ters of the Bernoulli random variables 
 (similarly !). The prior structure

that appears in equation (3.8) (similarly in equation (3.12)) is an �inde-

pendence prior,�in the sense that each element of 
 (!) is assumed to be

independent of the rest. This simpli�cation makes it di¢ cult to account for

similarities or di¤erences between models when the correlation between the

explanatory variables is high. Just using a prior probability of inclusion for

all variables, equal to 1=2 has implications in this case. A clear example

of this is when three di¤erent but highly correlated measures of the same

quantity are used (say three di¤erent measures of unemployment). Then

with the uniform prior, the prior probability of unemployment having an

e¤ect would be 7=8, not 1=2.While priors that �dilute�probability across

neighborhoods of similar models (Chipman et al., 2001; Yuan & Lin, 2005)

are able to correct this shortcoming, it is preferable to use an orthogonal

transformation of the variables1 in z, by applying a singular value decompo-

sition. This allows exploring the model space in considerably less iterations,

which subsequently decreases the computational cost in multivariate mod-

1Note that when orthogonalizing variables, their economic interpretation is lost. As-
sume that x1 and x2 are predictors and we implement model selection to their orthogo-
nalized equivalents, x�1 and x

�
2. If x

�
1 is included in the �true�model, this does not imply

that x1 should be selected.
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els. Hence, in the forecasting exercise, I apply the restriction search to the

model

yT+h = GT�h + "T+h

where G = zH are orthogonal variables and � = H�1�; see Koop and

Potter (2004). This approach will speed up computations, even though

orthogonality does not lead to posterior independence of elements of 
.

The default choice pi = 1=2 in equation (3.8) and qij = 1=2 in equation

(3.12) may result in a uniform prior, but this would not be a noninformative

prior about model size. A rule of thumb is that if the researcher anticipates

many (few) restrictions on the model then the choice should be pi; qij < 1=2

(pi; qij > 1=2). Prior sensitivity analysis using real and simulated data

showed that pi = qij = 1=2 is able to identify restrictions quite well and

hence is left as the default reasonable choice.

Following the suggestions of George et al. (2008) and George and Mc-

Culloch (1997), I adopt a fast sampling scheme for 
 and !, which requires

to set � 0i and �0ij small, but di¤erent from 0. According to the preceding

discussion in this subsection and the absence of prior beliefs about speci�c

parameters I set � 0i = � 0 = 0:01, � 1i = � 1 = 70 for all i = 1; :::; n', and

�0ij = �0 = 0:01, �1ij = �1 = 30 for all j = 2; :::;m and i = 1; :::; j � 1. For

the intercept term, the typical normal prior has mean 'c = 1 and variance

v = 100. A default noninformative choice for the parameters of the Gamma

density is �i; �i = 0:01.
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Implementation of Bayesian Model

Averaging/Selection

At this point, as it is practically impossible to summarize model selection

results from the recursive forecasting exercise, I summarize the average pos-

terior probability of some of the variables in the dataset without extracting

factors, i.e., replacing wt with xt = (x1t; :::; xnt)
0 in speci�cation (3.1), and

using the full sample of observations from 1960:1 to 2003:12. I am not

presenting the results with factors (which is the main model used for fore-

casting in the empirical application), since those factors are latent and their

selection does not have economic contect. Subsequently this demonstration

of model averaging/selection is to show how the SSVS algorithm can choose

which variables can a¤ect (or not) the dependent variables in a VAR, and

then verify if these results comply with expectations from economic the-

ory and the empirical literature. I consider a New Keynesian VAR with

three variables (unemployment, consumer price index, and federal funds

rate) regressed on an intercept, 14 autoregressive lags, and the remaining

129 variables in the dataset which are used as exogenous predictors. This

gives a total of 129 + 13 � 3 = 168 right-hand side variables (excluding

the intercept which is always included) to choose from in each equation.

The horizon chosen in this illustration is h = 12. The unemployment and

interest rate are transformed to stationarity by taking �rst di¤erences. The

consumer price index is transformed by taking the second di¤erence of the

logarithm.

A parameter should either be included or excluded, hence the number
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of all possible models is 2168 in each VAR equation and 2168�3 = 5:2e+151

in total. The BMA posterior probabilities are computed for each parameter

i = 1; :::; n' as

E (
ijy) =
1

S

SX
s=1



(s)
i

where S is the total number of iterations from the posterior sampler, and



(s)
i are draws from the conditional posterior of 
i. This suggests that

the average probability is actually the proportion of models visited by the

Gibbs sampler, which contain the corresponding variable. Exactly similar

inference and interpretation holds for the parameters !, although these

index elements of the covariance matrix and not columns of predictors in

mean VAR equation.

Tables 3.1 and 3.2 summarize the results for those predictor variables

and own lags, respectively, that have the highest probabilities. Variables

which had average posterior probability less than 0:5 in all of the three

equations are not included at all in the tables. Each element in these

tables is the BMA posterior probability and can be interpreted simply as

the probability that the corresponding right-hand side variable should be

included. For this speci�c application the variables are not orthogonalized

in order to retain the interpretation of the probabilities as the amount of

belief that the respective variable is included in the model. The results

are based on 150,000 iterations with a burn-in period of 50,000, which

leaves 100,000 draws to evaluate the posterior of 
. Elicitation of prior

hyperparameters is based on the values described earlier.

Note that the probabilities ! for	 are 0.52, 1, and 1 for each of the upper
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Table 3.1: Average Posterior Probabilities of Explanatory Variables in the
3-variable VAR

Explanatory variables ut+12 cpit+12 rt+12
Personal income 0.141 0.001 0.949
IP index - Final products 0.251 0.003 0.564
IP index - Manufacturing 0.593 0.016 0.17
Capacity Utilization 1 0.124 0.032
Employment ratio 0.011 0.002 0.992
Civilian labor force: Total employed 0.428 0.003 0.652
Employees on nonfarm payrolls - Total private 0.811 0.018 0.317
Employees on nonfarm payrolls - Manufacturing 0.5 0.014 0.33
Employees on nonfarm payrolls - Service-providing 1 0.023 0.826
Employees on nfm prl - Trade, transportation and
utilities

0.878 0.003 0.682

Employees on nonfarm payrolls - Wholesale trade 0.296 0.003 1
Employees on nonfarm payrolls - Financial activi-
ties

0.687 0.008 0.697

Average weekly hours of production 0.001 0.082 0.941
Housing starts: Total 0.879 0.001 0.04
Housing authorized: Total 1 0.001 1
Houses authorized by building permits: Northeast 1 0.105 0.003
Houses authorized by building permits: Midwest 1 0.025 0.018
Houses authorized by building permits: South 1 0.001 0.006
Houses authorized by building permits: West 1 0 1
Consumer installment credit to Personal income
(ratio)

0.013 0.001 1

S&P�S common stock price index: Composite 0.962 0.132 0.004
S&P�s composite common stock: Dividend yield 0.092 0.001 0.937
Commercial paper rate (spread from Fed Funds
Rate)

0.028 0.7452 0.851

3-month interest rate (spread from FFR) 0.002 0.087 1
6-month interest rate (spread from FFR) 0.005 0.002 1
1-year interest rate (spread from FFR) 0.941 0.752 0.992
5-year interest rate (spread from FFR) 1 0.982 1
10-year interest rate (spread from FFR) 1 0.861 1
Bond yield: Moody�s BAA corporate (spread from
FFR)

0.001 0 0.978

NAPM commodity prices index 0.0012 0.867 0.857
CPI-U: Durables 0.172 0.002 0.543
CPI-U: All items less shelter 0.246 0.006 0.692
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Table 3.2: Average Posterior Probabilities of autoregressive lags in the 3-
variable VAR

Dependent
Variable

Most important lags
(probability>0.5)

Average posterior
probability

ut+12 rt�8 0:56

cpit+12

rt�8
Own lags 1 to 7 (cpit�1-cpit�7)

cpit�8

0:74
1
0:83

rt+12 rt�7 1

diagonal elements  12,  13, and  23 respectively. Once all these probabili-

ties are available, it is straightforward to interpret them. This output can

be used to implement BMA if all variables contribute to the �nal forecast

according to their probability, no matter how high or low this probability

is. Looking for example at Table 3.1, the spread of the 10-year interest rate

from the federal funds rate variable will contribute to the �nal forecast of

the unemployment rate, the consumer price index, and the interest rate in

100, 86.1, and 100%of the occasions (models visited by the sampler), re-

spectively. In contrast the same output can be used to select the best single

model. Barbieri and Berger (2004) show that in the context of Bayesian

model selection the optimal model is the median probability model. Ac-

cording to this result, only the variables which have average probability

larger than 0.5 in each equation will be unrestricted. These probabilities

are presented in Tables 3.1 and 3.2. Hence, in this �best�model, the 1, 5,

and 10-year interest rate spreads should be included in all three equations,

while capacity utilization should enter only the unemployment equation.

The results presented in Table 3.1 are also subject to economic inter-

pretation. Space restrictions, however, do not allow further analysis in



CHAPTER 3. FORECASTING WITH MANY PREDICTORS 71

this study. Structural interpretation is not the main focus, but forecast

improvement is. This is an issue examined in the following section.

Forecasting in Large VAR Models

The �rst estimation period is set to 1960:1 and a simulated real-time fore-

casting of yt+h is done from 1983:1 through 2003:12-h, for horizons h = 1; 6;

and 12. Each VAR model has eight dependent variables of interest (with

their short mnemonic from the dataset in parentheses): Personal Income

(A0M052), Industrial Production (IPS10), Employment Rate (CES002),

Unemployment Rate (LHUR), 3-month Treasury Bill Rate (FY GM3),

Producer Price Index (PWFSA), Consumer Price Index (PUNEW ), and

PCE De�ator (GMDC). This leaves a total of 124 variables to explore

their predictive content. There are methods available to forecast with non-

stationary variables. Nevertheless in this paper I am forecasting with sta-

tionary VARs only. All the variables are transformed to stationarity as

in the Appendix, however the dependent variables in yt+h are transformed

as follows for the purpose of forecasting. Let vit denote the untransformed

value of yit for each of the eight monthly dependent variables i, then yit+h =

(1200=h) log (vit+h=vit) for i = (A0M052; IPS10; CES002), yit+h = vit+h �

vit for i = (LHUR;FY GM3), and yit+h = (1200=h) flog (vit+h=vit)� h� log (vit)g

for i = (PWFSA;PUNEW;GMDC).

The principal components are estimated from the 124 variables in the

dataset using the same sample period as the VAR. Several multivariate

forecasting exercises in the literature (cf. Stock and Watson, 2002) focus
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on �nding the best performing model. In contrast, here the main challenge

is to improve forecasts when the number of predictors grows large and the

researcher has no prior information about which is the correct model size.

Thus, the maximum potential number of factors and lags is deliberately set

to large, �uninformative� values. In particular, 10 principal components

(k = 10) are extracted from the factor model in equation (3.2), while the

VAR speci�cation in equation (3.3) contains an intercept, 13 autoregressive

lags (p1 = 13), and 13 lagged factors (p2 = 13). This gives a maximum of

221 (plus the intercepts, which are unrestricted) potential predictors on each

of the 8 dependent variables. For the purpose of the empirical application

forecasts are computed from: (i) VAR with SSVS and model averaging,

(ii) VAR with SSVS and model selection, and (iii) VAR estimated using

OLS with selection of predictors with the Bayesian information criterion

(which has a larger penalty for less parsimonious models relative to the

Akaike information criterion, and is a rough approximation to the Bayes

factors). The predictors in the latter method are orthogonalized and the

total number of possible models considered is equal to the maximum number

of right-hand side variables and subsequently selection of the best model is

implemented in a �nite number of calculations.

An appropriate common way to quantify out-of-sample forecasting per-

formance is to compute the root mean square forecast error (RMSFE) sta-

tistic for each forecast horizon h:

RMSFEhij =

vuut2003:12�hX
t=1982:12

�
y�i;t+h � eyi;t+h;j�2 (3.13)
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where y�i;t+h is the realized (observed) value of y at time t + h for the i-th

series, and eyi;t+h;j is the mean of the posterior predictive density at time
t + h, for the i-th series, from the j-th forecasting model. The RMSFE of

each model is reported relative to the RMSFE of a benchmark VAR with

an intercept and seven lags of the dependent variables, estimated with OLS

rRMSFEhij =
RMSFEhij

RMSFEhiV AR(7)
(3.14)

This VAR(7) model is not chosen because of its higher forecasting ability

compared to other alternatives. Following the standard convention in the

literature an AR(2) model would be a better candidate to serve as the

benchmark model. But note that the VAR(7) is nested to the VAR with

factors, which will give a better picture of whether the restrictions found by

the SSVS are actually the ones that will lead to reduced RMSFE statistics,

compared to a more parsimonious alternative. The forecasting performance

of the models based on the relative RMSFE for horizons h = 1; 6; 12, is

summarized in Table 3.3. These are the averaged values of the RMSFEs

over the forecast period, 1983:1 through 2003:12-h.

The results are encouraging about the application of the restriction

search algorithm in large models. In most occasions the BMA and Bayesian

model selection give improved results compared to the BIC selection. Note

that the improvement is not only due to the fact that the models of interest

contain more predictors than the benchmark model. It is noteworthy that

in some occasions only lags of the dependent variable are selected from the

restriction search, while for most samples the number of important lagged
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Table 3.3: Forecast Comparison - relative RMSFE

PI IP EMP UR TBILL PPI CPI PCED
BVAR with factors (Bayesian Model Averaging)
h = 1 0.94 1 0.9 0.96 1.08 0.88 0.95 1.09
h = 4 1.06 0.96 0.93 0.94 0.95 0.92 1.05 0.94
h = 12 0.97 0.92 0.99 1.02 0.98 0.92 0.95 0.96
BVAR with factors (Model Selection)
h = 1 0.86 0.98 0.87 0.96 1.06 0.91 0.93 0.91
h = 4 0.9 0.97 0.85 0.92 0.94 0.94 0.98 0.93
h = 12 0.87 0.99 0.91 0.98 0.89 0.87 0.99 0.96
VAR with factors (BIC Selection)
h = 1 0.92 0.99 0.94 0.99 1.22 0.99 1.01 0.97
h = 4 0.93 0.97 0.94 0.94 1.12 0.97 1.06 0.94
h = 12 0.97 1.04 0.98 1.05 0.99 0.9 1.1 0.95
Note: The variables of interest are: PI: Personal Income (A0M052), IP: Industrial Production

(IPS10), EMP:Employment Rate (CES002), UR: Unemployment Rate (LHUR), TBILL: 3-

month Treasury Bill Rate (FYGM3), PPI: Producer Price Index (PWFSA), CPI: Consumer

Price Index (PUNEW), andPCED: PCE De�ator (GMDC)

factors, for each dependent variable, is not more than �ve. This is sup-

ported by the fact that the average RMSFE (results not reported here) of

the large VAR with factors but without selection of predictors (i.e., a heav-

ily overparametrized model) is, as expected, extremely high relative to the

VAR(7). An important feature of the restriction search algorithm applied

to the speci�c VAR is that the forecasts from Bayesian model selection are

better than the forecasts from BMA. The practical di¤erence of the two

approaches is that BMA shrinks the posterior means of the parameter with

low probability toward zero, while Bayesian model selection imposes that

these parameters (with probability less than 0.5) will be exactly zero.
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3.5 Conclusions

This paper addresses the forecasting performance of Bayesian VAR models

with many predictors using a �exible prior structure which leads to out-

put that can be used for model selection and model averaging. For eight

U.S. monthly macroeconomic variables of interest forecasting accuracy is

improved over least squares estimation and selection of predictors using the

Bayesian information criterion. Without arguing that the choice of prior

hyperparameters was the best possible and done with a strict �objective�

criterion (like in other BMA applications, see Fernandez et al., 2001), the

gains from the standard automated choices are appreciable. As already

mentioned, there are many proposals in the Bayesian literature for e¢ cient

elicitation of prior hyperparameters for model selection and some of them

were discussed in the paper. Nevertheless, the merit of the SSVS for VAR

models lies in its simplicity and intuitive interpretation.

With regard to other macroeconometric speci�cations, the �exibility

of the restriction search algorithm suggests many interesting extensions.

Firstly, note that it is straightforward to adopt it in general piecewise-

linear multivariate regressions that allow for thresholds, Markov switching

or structural breaks; an interesting area for future research. Secondly, I only

considered the case where the number of dependent variables, m, is small

and the number of predictors grows large. But as already mentioned the re-

striction search algorithm may also be used when the number of dependent

variables grows large. Banbura et al. (2010) examine this case using shrink-

age priors and �nd huge gains from this large VAR speci�cation. Lastly, an
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interesting direction for future research would be the empirical application

of the restriction search algorithm in the Bayesian dynamic factor model.

This approach will probably improve forecasting performance and impulse

response analysis in DFMs that lack parsimony (see Bernanke et al., 2005,

and Stock and Watson, 2005b).



Chapter 4

Forecasting using Bayesian

variable selection

4.1 Introduction

Since the pioneering work of Sims (1980), a large part of empirical macro-

economic modeling is based on vector autoregressions (VARs). Despite

their popularity, the �exibility of VAR models entails the danger of over-

parameterization which can lead to problematic predictions. This pitfall

of VAR modelling was recognized early and shrinkage methods have been

proposed; see for example the so-called Minnesota prior (Doan et al., 1984).

Nowadays the toolbox of applied econometricians includes numerous e¢ -

cient modelling tools to prevent the proliferation of parameters and elim-

inate parameter/model uncertainty, like variable selection priors (George

et al. 2008), steady-state priors (Villani, 2009), Bayesian model averag-

ing (Andersson and Karlsson, 2008) and factor models (Stock and Watson,

77
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2005a, 2005b), to name but a few.

This paper develops a stochastic search algorithm for variable selection

in linear and nonlinear vector autoregressions (VARs) using Markov Chain

Monte Carlo (MCMC) methods; see Gilks et al., (1996). The term �sto-

chastic search�simply means that if the model space is too large to assess in

a deterministic manner (say estimate all possible model combinations and

decide on the best model), the algorithm will visit only the most probable

models. In this paper the general model form that I am studying is the

reduced-form VAR model, which can be written using the following linear

regression speci�cation

yt = Bxt + "t (4.1)

where yt is an m � 1 vector of t = 1; :::; T time series observations on the

dependent variables, the vector xt is of dimensions k�1 and may contain an

intercept, lags of the dependent variables, trends, dummies and exogenous

regressors, and B is a m� k matrix of regression coe¢ cients. The errors "t

are assumed to be N (0;�), where � is an m �m covariance matrix. The

idea behind Bayesian variable selection is to introduce indicators 
ij such

that

Bij = 0 if 
ij = 0 (4.2)

Bij 6= 0 if 
ij = 1

where Bij is an element of the matrix B, for i = 1; ::;m and j = 1; :::; k.

There are various bene�ts of using this approach over the shrinkage
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methods mentioned previously. First, variable selection is automatic, mean-

ing that along with estimates of the parameters we get associated probabili-

ties of inclusion of each parameter in the �best�model. In that respect, the

variables 
ij indicate which elements of B should be included or excluded

from the �nal optimal model, thus implementing a selection among all pos-

sible 2m�k VAR model combinations, without the need to estimate each and

everyone of these models. Second, this form of Bayesian variable selection

is independent of the prior assumptions about the parameters B. That is,

if the researcher has de�ned any desirable prior for her parameters of the

unrestricted model (4.1), adopting the variable selection restriction (4.2)

needs no other modi�cation than one extra block in the posterior sampler

that draws from the conditional posterior of the 
ij�s. Finally, unlike other

proposed stochastic search variable selection algorithms for VAR models

(George et al. 2008, Korobilis, 2008), this form of variable selection may be

adopted in many nonlinear extensions of the VAR models.

In fact, in this paper I show that variable selection is very easy to adopt

in the non-linear and richly parameterized, time-varying parameters vector

autoregression (TVP-VAR). These models are currently very popular for

measuring monetary policy, see for example Canova and Gambetti (2009),

Cogley and Sargent (2005), Cogley et al. (2005), Koop et al. (2009) and

Primiceri (2005). Common feature of these papers is that they all �x the

number of autoregressive lags to 2 for parsimony. That is because marginal

likelihoods are di¢ cult to obtain in the case of time-varying parameters.

Therefore, automatic variable selection is a convenient and fast way to

overcome the computational and practical problems associated with mod-
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els where parameters drift at each point in time. Although the methods

described in this paper can be used for structural analysis (by providing

data-based restrictions on parameters, useful for identifying monetary pol-

icy for instance), the aim is to show how more parsimonious models can be

selected with positive impact in macroeconomic forecasting.

In particular, the next section describes the mechanics behind variable

selection in VAR and TVP-VAR models. In Section 3, the performance

of the variable selection algorithm is assessed using a small Monte Carlo

exercise. The paper concludes by evaluating the out-of-sample forecasting

performance VAR models with variable selection, by computing pseudo-

forecasts of 4 UK macroeconomic variables over the sample period 1971:Q1

- 2008:Q4.

4.2 Variable selection in vector

autoregressions

The standard VAR model

To allow for di¤erent equations in the VAR to have di¤erent explanatory

variables, rewrite equation (4.1) as a system of seemingly unrelated regres-

sions (SUR)

yt = zt� + "t (4.3)

where zt = Im 
 x0t is a matrix of dimensions m � n, � = vec(B) is n � 1,

and "t � N (0;�). When no parameter restrictions are present in equation
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(4.3), this model will be referred to as the unrestricted model. Bayesian

variable selection is incorporated by de�ning and embedding in model (4.3)

indicator variables 
 = (
1; :::; 
n)
0, such that �j = 0 if 
j = 0, and �j 6= 0

if 
j = 1. These indicators 
 are treated as random variables by assigning a

prior on them, and allowing the data likelihood to determine their posterior

values. We can explicitly insert these indicator variables multiplicatively in

the model1 using the following form

yt = zt� + "t (4.4)

where � = ��. Here � is an n�n diagonal matrix with elements �jj = 
j on

its main diagonal, for j = 1; :::; n. It is easy to verify that when �jj = 0 then

�j is restricted and is equal to �jj�j = 0, while for �jj = 1, �j = �jj�j = �j,

so that all possible 2n speci�cations can be explored and variable selection

in this case is equivalent to model selection.

The Gibbs sampler provides a natural framework to estimate these pa-

rameters, by drawing sequentially from the conditional posterior of each

parameter. In fact, sampling the restriction indices 
 just adds one more

block to the Gibbs sampler of the unrestricted VAR model2. For example,

the full conditional (i.e. conditional on the data and �) densities of � and �

are of standard form, assuming the so-called independent Normal-Wishart

prior. For the restriction indicators we need to sample the n elements in

the column vector 
 = (
1; :::; 
n)
0, and then recover the diagonal matrix

1See for example the formulation of variable selection in Kuo and Mallick (1997).
2See Koop and Korobilis (2009a) for a review of priors and estimation approaches in

Bayesian vector autoregressions.
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� = diag f
1; :::; 
ng only when computations require it. Derivations are

simpli�ed if the indicators 
j are independent of each other for j = 1; :::; n,

i.e. p (
) =
Qn
j=1 p

�

j
�
=
Qn
j=1 p

�

jj
n�j

�
, where n�j indexes all the ele-

ments of a vector but the j� th, so that a conjugate prior for each 
j is the

independent Bernoulli density. In particular, de�ne the priors

� � Nn (b0; V0) (4.5)


jj
n�j � Bernoulli (1; �0j) (4.6)

��1 � Wishart
�
�; S�1

�
(4.7)

where b0 is n � 1 and V0 is n � n, �0 = (�001; :::; �
0
0n) is n � 1, 
 is a

m � m matrix, and � a scalar. Note that the algorithm presented below

does not depend on the assumption about the prior distribution of (�;�).

The Normal-Wishart form is used here only for illustration and because it

is a standard conjugate choice in Bayesian analysis which makes computa-

tions of the conditional posteriors easier (see Koop and Korobilis, 2009a).

Extensions to other prior distributions are straightforward and not a¤ected

by variable selection.

Exact expressions for the conditional densities of the parameters are

provided in Appendix D. Here I provide a pseudo-algorithm which demon-

strates that the algorithm for the restricted model (4.4) actually adds only

one block which samples 
, in the standard algorithm of the unrestricted

VAR model (4.3).

Bayesian Variable Selection Algorithm
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1. Sample � as we would do in the unrestricted VAR in (4.3), but con-

ditional on data being Z�t , with Z
�
t = Zt�.

2. Sample each 
j conditional on 
n�j, �, � and the data from


jj
n�j; �;�; y; z � Bernoulli (1; �0j)

preferably in random order j, j = 1; :::; n, where e�j = l0j
l0j+l1j

, with

l0j = p
�
yj�j;�; 
n�j; 
j = 1

�
�0j (4.8)

l1j = p
�
yj�j;�; 
n�j; 
j = 0

�
(1� �0j) (4.9)

3. Sample � as in the unrestricted VAR in (4.3), where now the mean

equation parameters are � = ��.

In this type of model selection, what we care about is which of the

parameters �j are equal to zero, so that identi�ability of �j and 
j plays

no role. In a Bayesian setting identi�ability is still possible, since if the

likelihood does not provide information about a parameter, its prior does.

When �j = 0 then 
j is identi�ed by drawing from its prior: notice that

in this case in equations (4.8) - (4.9) it holds that p
�
yj�j; 
n�j; 
j = 1

�
=

p
�
yj�j; 
n�j; 
j = 0

�
; so that the posterior probability of the Bernoulli den-

sity, e�j, will be equal to the prior probability �0j. Similarly, when 
j = 0
then �j is identi�ed from the prior: the j-th column of z

�
t = zt� will be zero,

i.e. the likelihood provides no information about �j, and drawing from the

posterior of �j collapses to getting a draw from its prior, i.e. ebj = b0j and
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3. Nevertheless, in both of the above cases the result of interest is

that �j = 0, whether because �j = 0 or because 
j = 0, and the respective

parameter is restricted.

There are several other approaches to automatic Bayesian model selec-

tion for regression models which can be generalized to VAR models. Most

of them are based on introducing and sampling indicator variables 
 as we

saw above. For the speci�c case of the simple VAR the restriction search

proposed in Algorithm 1 is computationally more intensive than other ap-

proaches, like the variable selection algorithm of George et al. (2008);

see also Chapter 3. Nevertheless, Algorithm 1 can be easily adopted in

the case of nonlinearity in the parameters, or speci�cations which admit

non-conjugate priors. In that respect, the remainder of this paper devel-

ops a useful extension, namely model selection in time-varying parameters

VARs. Since a di¤erent value of the parameters at each time period t oc-

curs in these models, they tend to be non-parsimonious representations of

macroeconomic data. Additionally, marginal likelihood calculations may be

di¢ cult to obtain (at least in terms of computer time). In this case, vari-

able selection o¤ers a very easy and fast method for selection of lag length

and/or exogenous predictors.

3This holds when V0 is diagonal, which is usually the case in practice. If V0 is a full
n� n matrix, then the prior variance of �j is obviously detemined by the j-th row and
j-th column of V0. However the basic result stays una¤ected, i.e. when 
j = 0 taking a
draw from the posterior of �j collapses to taking a draw from its prior.
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Time-varying parameters VAR model

Modern macroeconomic applications increasingly involve the use of VARs

with mean regression coe¢ cients and covariance matrices which are time-

varying. In fact, Granger (2008) shows that any nonlinear econometric

model can be cast as a special case of a time-varying parameters model.

Nonetheless, forecasting with time-varying parameters VARs is not a new

topic in economics. During the �Minnesota revolution� e¢ cient approxi-

mation methods of forecasting with TVP-VARs were developed, with most

notable contributions the ones by Doan et al. (1984) and Sims (1989); for a

large-scale application in an 11-variable VAR see Canova (1993). However,

the development of accurate Bayesian sampling methods through the �90s

(Gibbs sampler), combined with modern computing power has resulted in a

recent rising interest in forecasting structural instability using time-varying

parameters models. Canova and Ciccarelli (2004), Clark and McCracken

(2010) and D�Agostino et al. (2009) are examples of forecasting multiple

time-series using TVP-VAR�s, while Stock and Watson (2007), Groen et al.

(2009) and Koop and Korobilis (2009b) are focusing on univariate predic-

tions but with the use of a large set of exogenous variables.

A time-varying parameters VAR with constant covariance (Homoskedas-

tic TVP-VAR) takes the form

yt = zt�t + "t (4.10)

�t = �t + �t (4.11)

where zt = Im 
 x0t is an m� n matrix, �t is an n� 1 vector of parameters
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for t = 1; :::; T , "t � N (0;�) with � an m � m covariance matrix, and

�t � N (0; Q) with Q an n � n covariance matrix. Models of the form de-

scribed above, and variations of it, have extensively been used for structural

analysis (cite papers) and forecasting (cite papers). Obviously, the model

in (4.10) is not a parsimonious representation of our data, and in practice

most of the studies mentioned rely on quarterly data while using 2 lags of

the dependent variable in order to prevent the proliferation of parameters

and the estimation error.

Variable selection in this model is a simple extension of the VAR model

with constant parameters4. For that reason replace (4.10) with

yt = zt�t + "t (4.12)

where, as before, �t = ��t and � is the n�nmatrix de�ned in (4.4). For this

model, the priors on � and 
j are the same as in the VAR case, i.e. �
�1 �

Wishart (�; S�1) and 
jj
n�j � Bernoulli (1; �0j) respectively. For the

time varying parameters, a prior on the initial condition is necessary which

is of the form �0 � Nn (b0; V0). The random walk evolution of �t, it would be

desirable to restrict their prior variance in order to avoid explosive behavior.

The (implied) priors for �1 to �T are provided by the state equation (4.11),

and they are of the form �tj�t�1; Q � N
�
�t�1; Q

�
. The covariance matrix

Q is considered to be unknown, so it will have its own prior of the form

4Note that variable selection is parsimonious and implies that a coe¢ cient �jt will
either be selected or discarted from the �true�model at all time periods 1; ::; T . For
di¤erent approaches which allow di¤erent coe¢ cients to enter or exit the �true�model
at di¤erent points in time, see Koop and Korobilis (2009b) and Chan, Koop and Strachan
(2010).



CHAPTER 4. FORECASTING USING BAYESIAN VARIABLE
SELECTION 87

Q�1 � Wishart (�; R�1). A Gibbs sampler for the unrestricted TVP-VAR

model exists, so that sampling from the TVP-VAR with model selection,

requires only one extra block which samples 
, in the spirit of Algorithm 1

of the previous section. Full details are provided in Appendix D.

Due to the random walk assumption on the evolution of �t, it is im-

perative need to restrict its covariance Q otherwise draws of �t will enter

the explosive region which might a¤ect forecasting negatively. Primiceri

(2005, Section 4.4.1.), who gives a detailed description of this issue, pro-

poses prior hyperparameters for Q based on the OLS quantities obtained

from a constant-parameters VAR on a training sample. D�Agostino et al.

(2009) adopt this idea in forecasting with TVP-VAR models, and follow-

ing Cogley ad Sargent (2005) and Cogley et al. (2005) they also request

that only stationary draws of �t are accepted. Stationarity restrictions in

TVP-VAR models are satis�ed if the roots of the reverse characteristic VAR

polynomial de�ned by �t lie outside the complex unit circle for each and

every t = 1; :::; T . This restriction can hardly be satis�ed in VARs with

more than 3 variables and 2 lags (see also Koop and Potter, 2008). Ad-

ditionally, in many cases a training sample might not be available due to

shortage of observations.

In that respect, in this forecasting exercise I use a Minnesota-based prior

to elicit the prior hyperparameters of the TVP-VAR model. This results to

an Empirical Bayes prior that can be tuned using the full sample, without

the need to waste useful observations in a training sample. In order to

avoid explosive draws, I subjectively choose the hyperparameters for the

initial condition �0 and the covariance matrix Q, in order to get a very
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tight prior. This prior allows to overcome stationarity restrictions which

make the MCMC sampler ine¢ cient. The reader should note that I use

only a single choice of hyperparameters for the Minnesota prior, without

searching and comparing other choices for the TVP-VAR model. The main

purpose of the paper is to compare the unrestricted to the restricted (with

variable selection) model, so only one benchmark prior is used for the shake

of this comparison. Nevertheless, examining the forecasting performance

of di¤erent priors in models with time-varying parameters is a challenging,

but very important idea for future research.

Prior elicitation for variable selection

The performance of the variable selection is a¤ected by the hyperparameters

which a¤ect the mean and variance of the mean equation coe¢ cients � or

�t. In the case of the VAR, we already discussed that when 
j = 0 and

a parameter �j is restricted we just take a draw from each prior. That

means that the prior variance V0 cannot be very large (to go to1) because

this would imply that no predictors are selected. Kuo and Mallick (1997)

propose to set b0 = (0; :::; 0)0 and V0 = d � In, where In is the identity

matrix of dimensions n� n. Then reasonable values for d would be in the

range [0:25; 25]. At �rst, this may seem like a restrictive assumption, but for

VARs where the variables are approximately stationary, a prior variance on

the regression coe¢ cients of the form V0 = 10� In is fairly uninformative.

In TVP-VARs, as explained previously, it is common practice to use an

Empirical Bayes prior on the variance Q. These priors are by de�nition
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informative. For the purpose of comparison, I use a benchmark Minnesota-

type prior.

Finally, it should be noted that variable selection is also a¤ected by the

hyperparameter of the Bernoulli prior of 
j. The hyperparameters �0j can

be tuned according to the researcher�s beliefs about the number of expected

restrictions in a model. As a rule of thumb, if the researcher expects or wants

to impose as many restrictions as possible (for example, due to a degrees

of freedom problem) then she can set 0 < �0j � 0:55. Less restrictions are

implied by setting �0j > 0:5. The choice �0j = 0:5 is used in practice as the

uninformative choice, although it implies a priori that exactly 50% of the

predictors should be included; see Chipman et al. (2001) for more details.

4.3 Simulated numerical examples

In order to assess the performance of the model selection algorithm, this

section presents the results of two examples using simulated datasets.

Example 1: Constant parameters VAR. The �rst exercise is the

one considered in George, Sun and Ni (2008). Consider a 6-variable VAR

5An insightful application of Bayesian variable selection by imposing many restric-
tions a priori, can be found in Brown, Vanucci and Fearn (2002). In this paper, the
authors forecast with regression models using more predictors than observations.
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with a constant and one lag and constant parameters6

B =

0BBBBBBBBBBBBBBBBB@

1 1 1 1 1 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCCCCCCCCA

, 	 =

0BBBBBBBBBBBBBB@

1 0:5 0:5 0:5 0:5 0:5

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1CCCCCCCCCCCCCCA
:

(4.13)

where it holds that � = (		0)�1. 100 samples of size T = 50 are generated,

using a random initial condition for the dependent variables y�1 � U (0; 1).

Hence 100 VAR models are estimated using the generated samples, saving

30.000 draws from the posterior of the estimated parameters after discarding

an initial 20.000 draws to ensure convergence. The prior hyperparameters

(see equations (4.5) - (4.7)) are set to be uninformative: b0 = 0n�1, V0 =

9� In, �0j = 0:5 for all j = 1; :::; n, � = 0 and S = 0� Im. The intercepts

are always included in each model, so that the variable selection applies

only to lags of the dependent variables.

The unrestricted VAR is just a special case of variable selection, where

we impose all 
j = 1. Thus, a fully unrestricted estimate of B can be

obtained using the variable selection priors and imposing always � to be

the identity matrix I of dimensions n�n. The average over the 100 samples
6The SUR transformation requires to estimate � and 
 which are the parameters in

vectorized form. For clarity in presentation, the parameters in these simulation study
are given in their usual VAR matrix form (B and 
, where it holds that � = vec (B) and

 = vec (
)).
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of the posterior mean (posterior standard deviations of non-zero parameters

are in parentheses) of B using the unrestricted prior is

bBUN =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1:05

(:51)

1:06

(:56)

1:07

(:57)

0:91

(:56)

0:79

(:56)

0:96

(:56)

0:81

(:08)
:12 :10 :11 :10 :09

:05
0:71

(:12)
:05 :01 :03 :05

:04 :02
0:74

(:11)
:01 :01 :06

:00 :06 :06
0:75

(:12)
:05 :02

:06 :01 :00 :05
0:69

(:12)
:03

:00 :06 :08 :03 :07
0:72

(:12)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
The posterior means of the unrestricted model are identical to the MLE

estimate. Now de�ne 
 to be the k �m matrix obtained from the column

vector 
, which also includes the unrestricted constants. The average, over

the 100 samples, of the posterior mean of the variable selection indices (in

matrix form) b
 are:
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b
 =

0BBBBBBBBBBBBBBBBB@

1:00 1:00 1:00 1:00 1:00 1:00

1:00 :09 :09 :05 :06 :07

:05 1:00 :05 :09 :05 :04

:06 :09 1:00 :14 :10 :08

:07 :11 :06 0:99 :15 :05

:05 :13 :05 :11 1:00 :10

:03 :06 :07 :08 :06 1:00

1CCCCCCCCCCCCCCCCCA
and the average of the variable selection posterior mean, bBV S are

bBV S =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0:99

(:32)

1:10

(:40)

1:05

(:43)

1:02

(:42)

0:98

(:42)

1:00

(:41)

0:98

(:03)
:01 :00 :00 :01 :00

:00
0:93

(:06)
:04 :05 :04 :01

:01 :01
0:94

(:06)
:03 :01 :02

:01 :02 :03
0:92

(:07)
:04 :02

:01 :02 :01 :01
0:87

(:10)
:01

:00 :02 :03 :01 :03
0:96

(:04)

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:
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The elements of the b
 matrix can be interpreted as "probabilities of
inclusion" of a certain parameter. The top row of b
 is 1 by default, since it
refers to the VAR intercept which was left unrestricted. Variable selection

picks the correct restrictions in small samples, resulting in more accurate

estimates of the VAR regression coe¢ cients (compare bBUN and bBV S). This
is true also for the unrestricted intercepts, which are much closer to their

true values. Additionally, the covariance matrix resulting from the variable

selection is also more accurate than the MLE of the covariance matrix

(results not reported here).

George et al. (2008) have used the exact same setup to evaluate the

e¢ ciency of the SSVS algorithm described in Section 3.1. Comparing the

matrix of restrictions, b
, reported above, with their equivalent matrix it
is obvious that their reported probabilities of inclusion of the parameters

are more decisive. In their case, the highest probability which a parameter

which should be restricted gets is equal to 0:5 in only a few cases. This

happens because the SSVS restricts a parameter if it is too low7, while

variable selection in this paper requires a parameter to be restricted exactly

to zero. However, using both algorithms model selection implies that the

optimal predictive model is the one which has parameters with probability

of inclusion higher than 0.5 (see Barbieri and Berger (2004) for a proof).

Example 2: Homoskedastic TVP-VAR. In the second example,

100 samples of size T = 100 are generated from a 4-variable Homoskedastic

TVP-VARwith one autoregressive lag (no constant). The covariance matrix

7In particular, they set their prior hyperparameters in such a way, that parameters
which are lower than 0:5 should be restricted and shrunk towards zero (but as explained,
never equal to zero).
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� is set equal to the upper left 4x4 block of the covariance matrix speci�ed in

Example 1 (in equation (4.13)), and �t = vec (Bt) is let to evolve according

to the random walk speci�cation (4.11), by setting initial condition, B0 =

fBtgt=0, and a simple diagonal covariance matrix Q, of the form

B0 =

0BBBBBBB@

:7 0 :35 0

0 :7 0 0

0 :45 :7 0

:4 0 0 :7

1CCCCCCCA
, Qj;j =

8>>>><>>>>:
0 , if B0;ij = 0

0:01 , if B0;ij > 0:5

0 , if B0;ij < 0:5

:

This speci�cation implies that the diagonal elements of Bt are time-varying

with initial condition 0:7, while the non-zero non-diagonal elements 0:4; 0:45; 0:35

(which are lower than 0:5) remain constant for all t (and, of course, the zero

non-diagonal elements remain zero for all t). The goal here is to examine

the e¢ ciency of variable selection when in the true model the R.H.S. vari-

ables a¤ect the dependent variable through a combination of constant and

time-varying coe¢ cients, but the (misspeci�ed) model we are estimating

assumes all coe¢ cients to be time varying.

The usual practice in the TVP-VAR models is to use tight data-based

priors. However, for the purpose of this exercise relatively uninformative
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priors are de�ned

�0 � Nn (b0; V0)

Q�1 � Wishart
�
�; R�1

�

jj
n�j � Bernoulli (1; �0j)

��1 � Wishart
�
�; S�1

�
where the hyperparameters are set to the values b0 = 0n, V0 = 10In, � = 16,

R = 1, �0j = 0:5 for all j = 1; :::; n, � = 4 and S = 1 . Full details, like

means and variances of the posteriors of the parameters, are di¢ cult to

present here. However, the average of the restriction indices is again very

informative about the e¢ ciency of the the variable selection algorithm to

�nd the correct restrictions:

b
 =
0BBBBBBB@

1:00 :04 1:00 :04

:01 1:00 :04 :01

:02 1:00 1:00 :05

1:00 :04 :02 1:00

1CCCCCCCA
:

As in the simple VAR case above, posterior means are more accurate and

posterior standard deviations are smaller (results available upon request).
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4.4 Macroeconomic Forecasting with VARs

Data and set-up

The variable selection techniques described in Section 2 are used to pro-

vide forecasts of four macroeconomic series of the U.K. economy. In par-

ticular, the variables included in these models are the in�ation rate ��t

(RPI:Percentage change over 12 months: All items), unemployment rate

ut (Unemployment rate: All aged 16 and over, Seasonally adjusted), the

annual growth rate of GDP gdpt (Gross Domestic Product: Quarter on

quarter previous year: Chain volume measure, Seasonally adjusted) and

the interest rate rt (Treasury bills: average discount rate). It is customary

in VAR models to include only one measure of economic activity, i.e. either

GDP or unemployment. The assumption here is that policy-makers are

interested individually, at least in the short-run, in forecasts of both GDP

and unemployment. There are many reasons for having individual forecasts

for unemployment and GDP growth, for example as of January 2010 it is

the case that many economies are out of the global recession according to

initial GDP growth rate estimates. However in the same countries (includ-

ing US) unemployment is not getting lower, and price in�ation is below its

target level.

The data are obtained from the O¢ ce for National Statistics (ONS)

website, http://www.statistics.gov.uk/. The available sample runs from

1971Q1 to 2008Q4. In�ation, unemployment and interest rates are mea-

sured on a monthly basis. Quarterly series are calculated by the ONS by

taking averages over the quarter (for in�ation), the value at the mid-month
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of the quarter (for unemployment), and the value at the last-month of the

quarter (for interest rate), respectively. The data are plotted in Figure 4.1.

The VAR and Homoskedastic TVP-VAR models include a constant and

a maximum of 2 lags of the dependent variables. One could argue that the

use of variable selection would allow to de�ne a higher maximum lag length,

say 4 lags, and then let the data decide on the optimal number of lags in each

VAR equation. However, given the fact that the total observations are only

152, we would be asking too much from the variable selection algorithm in a

recursive forecasting exercise. The forecast horizons used for comparison are

h = 1,4 and 8. The sample 1971:Q1 - 1988:Q4 is used for initial estimation,

and the forecasts are computed recursively with expansion of the estimation

sample each quarter. Subsequently for the period 1989:Q1 - 2008:Q4 we

obtain a total of 80-h forecasts.

Iterated forecasts are obtained by estimating the models (4.4) and (4.10),

writing the models in companion (VAR(1)) form, and iterating the forward

up to h = 8 periods ahead in order to obtain [byT+1; :::; byT+h], where T is

the last observation of the sample. Direct forecasts are obtained from the

VAR and the TVP-VAR speci�cations in (4.4) and (4.10) respectively by

estimating separately for h = 1,4 and 8 the models with the dependent

variable yt replaced by yt+h, while the R.H.S. variables are still measured

up to, and including, time t. When h = 1 direct and iterated forecasts are

exactly the same, since we are estimating and forecasting with exactly the

same speci�cations.
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Figure 4.1: Graph of the data for UK in�ation, unemployment, GDP, and
interest rate.

When forecasting, the parameters of the VAR model remain constant in

the out-of-sample period. However this is not the case for the autoregres-

sive coe¢ cients of the TVP-VAR model. The iterative nature of the Gibbs

sampler allows to easily simulate the out-of-sample path of �t. At each iter-

ation, conditional on obtaining a draw of �T and the covariances Q, we can

use the random walk evolution equation (4.11) to simulate
hb�T+1; :::; b�T+hi

in a recursive manner. Then conditional on knowing these parameters, cal-

culation of direct or iterated forecasts can be computed as in the VAR case,

separately for each out-of-sample period.
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Forecasting models

Dependent on the model speci�cation and the choice of prior hyperpara-

meters, there are 5 competing forecasting models. Common place in all

models, in order to evaluate the performance of variable selection of mean

equation coe¢ cients, is that the covariance matrix is integrated out using

an uninformative prior of the form p (�) / j�j�(m+1)=2 which is equivalent

to the Wishart prior de�ned in (4.7) with the additional restriction that

� = 0 and S�1 = 0m�m.

The 5 models are

1. VAR with variable selection (VAR VS)

The priors are 
jj
n�j � Bernoulli (1; 0:5) for all j = 1; :::; n, and

�j � N (0; 102) if �j is an intercept, and �j � N (0; 32) otherwise.

2. VAR with Minnesota prior (VAR MIN)

The Minnesota prior for � is of the form. � � N
�
bMIN ; V MIN

�
where

V MIN
i;l =

8>>>><>>>>:
g1=p for parameters on own lags

g3=s
2
i for intercepts

g2s2i
ps2l

for parameters j on variable l 6= i; l; i = 1; ::;m

(4.14)

Here s2i is the residual variance from the p-lag univariate autoregres-

sion for variable i. The prior mean vector bMIN is set equal to 0:9 for

parameters on the �rst own lag of each variable and zero otherwise.
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The hyperparameters are set to the values g1 = 0:5, g2 = 0:005 and

g3 = 100.

3. Benchmark VAR

The priors are the same as the VAR with variable selection (VAR

VS), where now we do not sample 
j (or equivalently, restrict 
j = 1

for all j)

4. TVP-VAR with variable selection (TVP-VAR VS)

The initial condition is set to �0 � N (0; 42VMIN), and 
jj
n�j �

Bernoulli (1; 0:5). The covarianceQ of the varying coe¢ cients has the

priorQ�1 � Wishart (�; R) where � = n+1 andR�1 = 0:001 (n+ 1)V MIN ,

where V MIN is the matrix de�ned in (4.14) above.

5. Benchmark TVP-VAR

The priors are the same as in the TVP-VAR case with variable selec-

tion, but in this case 
j = 1 for all j = 1; :::; n.

The priors for the VAR are fairly uninformative, however the TVP-VAR

prior is quite tight. Alternatively we can assign to �0 a large variance, say

100I, on the basis that this is a desirable uninformative choice. However

doing so, means that we increase the probability that the whole sequence

of draws for �t will be in the nonstationary region. This approach can be

computationally cumbersome as many draws may be required as in the case

of Cogley et al. (2005) who use 100.000 draws, discard the �rst 50.000 and

save every 10-th draw. Given the dimension of the parameter space and
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the compuational demands of a recursive forecasting exercise, the informa-

tive variance 42VMIN on the initial state is used here in order enhance the

e¢ ciency of the Gibbs sampler. All models are based on a run of 20.000

draws from the posterior, discarding the �rst 10.000 draws.

The choice of the hyperparameter R�1 is based on the variance of the

Minnesota prior as well, with a scaling constant equal to 0:001 (n+ 1).

This might not be the optimally elicited hyperparameter of this prior for

forecasting purposes, and other choices exist which the researcher ought to

examine. However the purpose of this paper is, for a given prior, to compare

the unrestricted model with the same model with variable selection added.

Subsequently, while a speci�c prior can be a subject of criticism if the

ultimate purpose was to compare the performance of the TVP-VAR with

that of other models (like random walk, and nonlinear models like a Markov

Switching or Structural Breaks VAR), this criticism should not apply here.

Forecast evaluation

All models are evaluated using the Mean Squared Forecast Error (MSFE)

and the Mean Absolute Forecast Error (MAFE). In particular, for each of

the 4 variables yi of y and conditional on the forecast horizon h and the

time period t, the two measures are computed as

MSFEhi;t =

q�byi;t+hjt � yoi;t+h
�2

MAFEhi;t =
��byi;t+hjt � yoi;t+h

��
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where byi;t+hjt is the time t+ h prediction of variable i (in�ation, unemploy-
ment, gdp or interest rate), made using data available up to time t. yoi;t+h

is the observed value (realization) of variable i at time t+ h. In the recur-

sive forecasting exercise, averages over the full forecasting period 1989:Q1

- 2008:Q4 are presented using the formulas

�
\MSFE

�h
i
=

1

� 1 � h� � 0

�1�hX
t=�0

MSFEhi;t

�
\MAFE

�h
i
=

1

� 1 � h� � 0

�1�hX
t=�0

MAFEhi;t

where � 0 is 1989:Q1 and � 1 is 2008:Q4.

In-sample variable selection results

Tables 1 and 2 present variable selection results for the VAR-VS and TVP-

VAR-VS models using the full sample. Entries in these tables are the means

of the posterior draws of the indices 
 for the two models. Draws from the

posterior of 
 is just a sequence of 1�s and 0�s, so that the mean can be

simply interpreted as a probability of inclusion of each variable. Note that

while 
 is a column vector, results are presented in the table in matrix form,

where the dependent variables are in columns and the R.H.S variables are

in rows. For h = 1 the model for direct forecasts has the same speci�cation

as the model for iterated forecasts, so columns 1-4 in the tables refer to

both models. However notice that for longer horizons we need to specify

a di¤erent model for direct forecasts and columns 5-12 in the tables refer

only to the this model speci�cation, for horizons h = 4 and 8.
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The �rst thing to observe from Tables 1 and 2 is that for both models

and for all horizons variable selection imposes many restrictions. This result

is not surprising, both from an empirical and theoretical point of view.

The most recent own lag of each variable is important in most cases for

all forecast horizons. Other than that, variable selection indicates only a

few extra variables as important in each VAR equation, leading to quite

parsimonious models. This pattern complies with the empirical results of

Korobilis (2008) and Jochmann et al. (2009) using the SSVS algorithm for

VAR models (see Section 3.3 above).

It is obvious that when the posterior mean of 
 is exactly equal to 0 or 1,

then a speci�c predictor variable should just respectively be exit or enter the

best model. An interesting question is how to decide and classify a predictor

when the associated probability is 0.6 or 0.3 for example. In fact, Barbieri

and Berger (2004) show that the optimal model in model/variable selection

for prediction purposes is the median probability model. Subsequently their

proposed rule is only to select variables which have probability of inclusion

in the best model higher than 0.5.

A comparison of the parameters of the VAR models with the respective

parameters of the TVP-VAR models, reveals quite a few di¤erences, but

also many similarities at the same time, as to which variables are selected

to enter the "best" model. For example, in the VAR strong (probability

equal to 1) predictors for 1-quarter ahead in�ation (��t+1) are current

in�ation (��t) and interest rate(rt), as well as in�ation in the previous

quarter (��t�1). In the TVP-VAR it is only ��t and ��t�1 which are

selected, and the current level of interest rate has only probability of 0.28.
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In the same equation, there is weaker evidence that gdpt, ut�1and rt�1 are

good predictors, which vanishes in the TVP-VAR case (for example rt�1

has a probability of 0.61 of entering the VAR model, but only a probability

of 0.41 of entering the TVP-VAR model). Similar inference can be made

for the rest of variables and equations.

An interesting question is whether any di¤erences in the inclusion prob-

abilities of the predictors in the VAR and the same predictors in the TVP-

VAR, are due to the fact that the models are di¤erent or because of the

di¤erent priors. This is a di¢ cult question to answer, since this would

require to place exactly the same priors (for instance a �at prior on all

parameters) in both speci�cation and do the comparison. As explained in

this paper, �at priors on all the hyperparameters of the TVP-VAR model

are not possible.
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Out-of-sample forecasting results

In this subsection the restricted and unrestricted VAR models are evaluated

out-of-sample. Tables 3 to 5 present the MSFE and MAFE statistics over

the forecasting sample 1989:Q1-2008:Q4. Although the aim of this fore-

casting exercise is to assess the gains from using variable selection in VAR

models, for ease of comparison the MSFE and MAFE of a naive forecasting

model are presented. This model is the random walk estimated for each

individual time series, over the three di¤erent forecast horizons. Note that

in Table 3 there is one set of results for direct and iterated forecasts, since

for h = 1 the model speci�cations are exactly the same.

The results indicate that on average we are much better o¤ when using

variable selection than when using the unrestricted models. For individual

series it is the case that variable selection would either o¤er large improve-

ments or it would give predictions similar to the unrestricted model. This

would not be surprising as soon as the restrictions imposed are the correct

ones. That is, it is expected that a correctly restricted model will perform

at least as well as the unrestricted model. However an incorrectly restricted

model will most probably give predictions which are really worse than the

unrestricted model (dependent on the importance of the relevant variables

which are incorrectly restricted). Subsequently, the improvement in fore-

casting suggests that Bayesian variable selection picks correct restrictions,

which lead to useful parsimonious models.

For short-term forecasts (h = 1) the multivariate VAR models, whether

restricted or unrestricted, o¤er more accurate forecasts compared to the
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parsimonious naive forecasts. However this picture is reversed for more dis-

tant forecasts and the performance varies substantially for each variable,

dependent on whether iterated or direct forecasts have been calculated.

Previous results (see for example Pesaran, Pick and Timmermann 2009,

and references therein) suggest that iterated forecasts may dominate di-

rect forecasts in small samples and for large forecast horizons, while direct

forecasts may dominate when the dynamics of the model are misspeci�ed.

For 4- and 8-step ahead forecasts of in�ation it is obvious that the direct

model performs much better. It is well known that the dynamics of in�ation

are other than linear which implies why the VAR model performs poorly

for this variable (always compared to the naive forecast). The nonlinear

TVP-VAR model hugely improves over the VAR forecasts for 4- and 8-step

ahead horizons, however the direct model speci�cation is more accurate.

The reader should note that in this paper the assumption is that the out-

of-sample parameters have to be simulated (instead of, for instance, �xing

their values at the value estimated at time T ), which might explain an accu-

mulated uncertainty in the parameters over longer horizons. Even though

this paper argues that stationarity restrictions are computationally ine¢ -

cient in TVP-VAR models for the estimation of the parameters [�1; :::; �T ],

the applied researcher might want to combine a tight prior on the esti-

mated parameter with stationarity restriction imposed in the out-of-sample

simulated parameters
�
�T+1; :::; �T+h

�
.

While MSFE and MAFE measures are very informative in our case,

since the purpose is just to evaluate point forecasts, full predictive densities

can be compared using predictive likelihoods. In fact predictive likelihoods
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averaged on all 4 dependent variables suggest that the restricted models

(whether VAR and TVP-VAR variable selection or the Minnesota VAR

prior) by reducing uncertainty about the parameters, tend to also reduce

the uncertainty regarding predictions. Finally, note that in order to have

a complete picture of the performance of variable selection, we should ad-

ditionally compare the restricted models with the respective unrestricted

models with one lag. The restricted models have a maximum lag of two

and it might be the case that the "true" data generating process is a model

with one lag which variable selection is not able to capture. It turns out

that unrestricted VAR and TVP-VARmodels with only one lag consistently

forecast worse than the unrestricted models with two lags, at all forecast

horizons. For the shake of brevity results on predictive likelihoods, and

VAR models with di¤erent lags are not presented here but are available

upon request8.

The reader can replicate the results in this paper using MATLAB code

available in http://personal.strath.ac.uk/gcb07101/code.html.

4.5 Concluding remarks

Vector autoregressive models have been used extensively over the past for

the purpose of macroeconomic forecasting, since they can �t the observed

data better than competing theoretical and large-scale structural macro-

8It turns out that among the unrestricted VAR and TVP-VAR models with up to
four lags, the speci�cations with two lags perform the best at all horizons and for both
iterated and direct forecasts.
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Table 4.3: Forecast evaluation, h = 1

MSFE MAFE
��t ut gdpt rt ��t u gdpt rt

Naive Model:
RW 0.576 0.108 0.501 0.394 0.624 0.262 0.594 0.484

VAR Models:
Direct/Iterated forecasts

VAR 0.285 0.027 0.247 0.239 0.423 0.132 0.406 0.355
VAR-MIN 0.300 0.029 0.267 0.241 0.432 0.135 0.419 0.356
VAR-VS 0.208 0.030 0.164 0.152 0.354 0.134 0.324 0.291
TVP-VAR 0.475 0.033 0.302 0.185 0.595 0.153 0.437 0.346
TVP-VAR-VS 0.419 0.035 0.273 0.157 0.542 0.149 0.360 0.318

Table 4.4: Forecast evaluation, h = 4

MSFE MAFE
��t ut gdpt rt ��t u gdpt rt

Naive Model:
RW 1.190 1.223 1.439 1.213 0.874 0.932 0.902 0.930

VAR Models:
Direct forecasts

VAR 9.714 1.382 1.374 2.761 2.695 0.989 0.874 1.421
VAR-MIN 3.674 1.307 1.347 2.928 1.696 0.966 0.864 1.465
VAR-VS 5.110 1.289 0.818 1.563 1.958 0.925 0.751 1.082
TVP-VAR 2.068 1.058 1.259 0.775 1.188 0.911 0.917 0.779
TVP-VAR-VS 1.965 1.046 0.903 0.675 1.150 0.912 0.814 0.644

Iterated forecasts
VAR 8.150 0.231 1.228 2.456 2.376 0.422 0.882 1.209
VAR-MIN 7.948 0.230 1.215 2.577 2.318 0.422 0.876 1.255
VAR-VS 7.730 0.208 1.263 1.303 2.025 0.361 0.697 0.843
TVP-VAR 3.157 1.243 1.715 1.983 1.388 0.896 1.082 1.106
TVP-VAR-VS 3.680 1.083 1.552 1.617 1.326 0.717 1.026 0.973
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Table 4.5: Forecast evaluation, h = 8

MSFE MAFE
��t ut gdpt rt ��t u gdpt rt

Naive Model:
RW 2.011 3.730 1.752 3.545 1.258 1.558 1.076 1.547

VAR Models:
Direct forecasts

VAR 10.535 7.238 2.984 9.435 3.121 2.2579 1.303 2.626
VAR-MIN 8.800 4.419 2.525 9.648 2.336 1.8006 1.211 2.684
VAR-VS 2.957 4.604 2.255 6.270 1.655 1.9645 1.112 2.177
TVP-VAR 1.533 2.831 2.913 3.928 1.072 1.2794 1.578 1.748
TVP-VAR-VS 1.251 1.679 2.907 4.063 0.918 1.0735 1.561 1.757

Iterated forecasts
VAR 30.870 0.790 0.849 7.903 5.069 0.750 0.687 2.471
VAR-MIN 29.863 0.771 0.820 7.262 4.959 0.743 0.675 2.335
VAR-VS 22.996 0.727 0.866 2.570 3.619 0.706 0.681 1.326
TVP-VAR 13.822 1.457 1.298 5.124 2.642 0.982 0.945 1.826
TVP-VAR-VS 4.126 1.043 1.554 2.380 1.604 0.849 1.004 1.259

econometric models. Nowadays, Bayesian dynamic stochastic general equi-

librium (DSGE) models like the one of Smets and Wouters (2003) have been

shown to challenge the forecasting performance of unrestricted VAR mod-

els, while at the same time having all the advantages of being structural,

i.e. connected to economic theory. While DSGE models provide restrictions

based on theory, this paper shows that Bayesian variable selection methods

can be used to �nd restrictions based on the evidence in the data, and at the

same time improve over the forecasts of unrestricted VAR models as well.

Additionally, Bayesian variable selection methods for vector autoregressions

can be used for structural analysis, like measuring monetary policy shocks

in identi�ed VARs. A di¤erent route for VAR variable selection algorithms
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would be to uncover empirically the relationship between variables, which

could potentially help in the development of new theoretical relationships.



Chapter 5

Conclusion

5.1 Summary & policy implications

Nowadays, Central Banks and policy makers monitor hundreds of variables

during the decision process (Bernanke and Boivin, 2003). Additionally, it is

currently recognized that forward-looking expectations are very important

during the price setting behavior of agents (Rudd andWhelan, 2007), which

results in an increasing importance of accurate forecasts of economic funda-

mentals on behalf of in�ation-targeting Central Banks. Another strand of

literature has identi�ed a large decrease in volatility (persistence) in most

macroeconomic variables of many developed countries (most notably the

US; see Giannone, Lenza and Reichlin, 2008, for a review), which suggests

that economic relationships are far from being constant over the course of

the last years.

This thesis deals with all these three important modeling issues using

empirically and computationally attractive methods. In three distinct - but

113
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methodologically interconnected - settings I show how model selection can

i) be adopted to models which capture nonlinearities in macroeconomic re-

lationships, ii) improve the forecasting performance of econometric models

by preserving parsimony, iii) select the most relevant indicators for policy-

making (among a set of hundreds of variables), and iv) provide multivariate

forecasts in cases where the limited number of macroeconomic time-series

observations would otherwise not allow econometric estimation to be im-

plemented in the �rst place.

Chapters 2 & 4 develop two methods to implement model selection in

models with time-varying parameters and volatility. Time-varying parame-

ters models are very popular in modern macroeconomics as they are able to

capture many important features of the observed data (Cogley and Sargent,

2005). For that reason in Chapter 2 I extend the New Keynesian Phillips

curve regression with drifting parameters, but I additionally allow the prob-

abilities of inclusion of predictor variables to be drifting as well. This proves

to be a feature supported by the data, since the relationship between in�a-

tion and many traditional predictor variables has changed dramatically in

the post WWII era. In�ation itself has changed as well and it is regarded as

more persistent since the mid-80s (Stock and Watson, 2007). Allowing the

model relevant for prediction to change over time is thus a very prominent

contribution, which has not been examined before in the literature.

In Chapter 4 I use a multivariate model, namely the time-varying para-

meters VAR (TVP-VAR). The methods of Chapter 2 can be extended in a

straightforward way in the case of the TVP-VAR. Nevertheless, due to the

high dimensionality of this model I develop a simple model selection method
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which assumes that a predictor is either relevant for all the periods in the

sample, or it is not relevant at all (and its coe¢ cient shrinks to zero). The

algorithm is computationally simple to adopt and doesn�t add unreasonably

too much computer time in the estimation of the (already computationally

demanding) TVP-VAR model.

In a context without structural instabilities and nonlinearities, but with

a large information set available, Chapter 3 addresses the issue of forecast-

ing variables of interest to Central Banks (and the general public) using

factor methods. A stochastic search variable selection algorithm is used

successfully to select among hundreds of predictors, and preserve degrees of

freedom. The results suggest that the bene�ts in forecasting are large.

5.2 Further research

Given the promising results of this thesis, there are many aspects of prac-

tical Bayesian variable selection which are relevant for macroeconometric

applications (as well as other �elds in economics). For instance, Korobilis

and Moretti (under preparation) introduce dynamic model averaging in a

nowcasting problem using dynamic factor models (see Giannone, Reichlin

and Small, 2008). The DMA methodology can provide the additional �ex-

ibility of allowing di¤erent number of factors to be selected at each time

series observation, and thus is not restricted by keeping the optimal number

of factors constant for the full sample.

Other than selecting variables/models relevant for forecasting, Bayesian

model selection has been used in numerous other applications involving
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�exible modeling. Using appropriate modi�cations one can use variable

selection of the form of Chapter 4 to select whether a parameter is constant

or time-varying, or obtain a degree of the �amount�of variation in time-

varying parameters models; see the Appendix of Korobilis (2009b) for a

brief review and Korobilis (2009a).

Nevertheless, an important �eld which might bene�t from Bayesian

model selection is the modern Dynamic Stochastic General Equilibrium

(DSGE) models. These models have bene�ted extremely from Bayesian

sampling methods, and the fact that parameters can be identi�ed from the

priors (see An and Schorfheide, 2007). However, prior elicitation in these

models is sometimes driven from the need of identi�cation. It is also the case

that some parameters have to be calibrated, a procedure that is completely

subjective and has been the matter of criticism for decades in economics.

Using priors which data-based restrictions is an attractive alternative that

should de�netely be explored in the future.
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Appendices

A Data Appendix (Chapter 2)

The variables used in this study are described in the table below. All

series were seasonally adjusted, where applicable, and run from 1959:Q1 to

2008:Q2. Some series in the database were observed on a monthly basis

and quarterly values were computed by averaging the monthly values over

the quarter. All variables are transformed to be approximately stationary.

In particular, if zi;t is the original untransformed series, the transformation

codes are (column Tcode below): 1 - no transformation (levels), xi;t = zi;t;

2 - �rst di¤erence, xi;t = zi;t � zi;t�1 ; 4 - logarithm, xi;t = log zi;t; 5 - �rst

di¤erence of logarithm, xi;t = log zi;t � log zi;t�1.

# Mnemonic Tcode Description
1 GDPDEFL 5 Gross Domestic Product: Implicit Price De�ator
2 CPI 5 Consumer Price Index For All Urban Consumers
3 UNEMP 1 Civilian Unemployment Rate
4 CONS 5 Real Personal Consumption Expenditures
5 INV 5 Private Residential Fixed Investment
6 GDP 5 Real Gross Domestic Product, 3 Decimal
7 HSTARTS 4 Housing Starts: Total Units Started
8 EMPLOY 5 All Employees: Total Private Industries
9 PMI 2 ISM Manufacturing: PMI Composite Index
10 COMPRICE 2 NAPM Commodity Prices Index (Percent)
11 VENDOR 2 NAPM Vendor Deliveries Index (Percent)
12 WAGE 5 Average Hourly Earnings: Manufacturing
13 TBILL 1 3-Month Treasury Bill: Secondary Market Rate
14 SPREAD 1 Spread 10-year / 3-month rate (GS10 -TB3MS)
15 DJIA 5 Dow Jones Industrial Average
16 MONEY 5 M1 Money Stock
17 INFEXP 1 University of Michigan In�ation Expectations
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B Technical Appendix (Chapter 3)

A Gibbs sampler for SSVS in VAR models

The priors described in Section 3 combined with the likelihood function of

a VAR model, will allow us to derive and draw from the full conditional

distributions. The likelihood of the VAR model y = z� + ", " � N (0;�)

with ��1 = 	0	, is

L (yj�;	) / j	j�T exp
�
�1
2
tr
�
	0 (y � z�)0 (y � z�)	

��
= j	j�T exp

�
�1
2

�
�� b��0 [		0 
 (z0z)]��� b��

�1
2
tr

��
y � zb��0	0	�y � zb����

where b� is the MLE of �. This form of the likelihood function allows to

derive the posterior of the � parameters. In order to derive the posterior

of the elements of 	 we need to �rst rewrite the likelihood function in

convenient form. De�ne S (�) = (y � z�)0 (y � z�) and write S (�) = sij.

For j = 2; :::;m de�ne the (m� 1) vectors sj =
�
s1j; :::; s(j�1)j

�0
containing

the upper diagonal elements of S (�), and the (m� 1) matrices Sj con-
taining the upper left j � j submatrix of S (�). De�ne also �1 = s11 and

�i = jSij = jSi�1j = sii � s0iS
�1
i�1si for i = 2; :::;m. The likelihood function

now cam take the following form

L (yj�;	) /
mY
i=1

( ii)
T

exp

(
�1
2

"
mX
i=1

 2ii�i +
mX
j=2

�
�j +  jjS

�1
j�1sj

�0
Sj�1

�
�j +  jjS

�1
j�1sj

�#)

Now de�ne D = diag
�
h1; :::; hn'

	
with

hi =

(
� 0i, if 
i = 0

� 1i, if 
i = 1
, for i = 1; :::; n'
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and, similarly, de�ne Dj = diag
�
h1j; :::; h(j�1)j

	
with

hij =

(
�0ij, if !ij = 0

�1ij, if !ij = 1

for i = 1; :::; j and j = 2; :::;m. Then we can rewrite equations (3.7) and

(3.11) in the main text, as

'ki j
 � N (0; DD)

�jj!j
iid� Nj�1 (0; DjDj)

respectively. Denote the combined prior of the unrestricted coe¢ cients 'c

and the restricted coe¢ cients 'k as ' � N
�
'; V

�
. Given starting val-

ues, model parameters are drawn from their conditionals for r = 1; :::; R

iterations:

1. Draw
�
 (r)j�(r�1); !(r�1); 
(r�1); '(r�1); data

�
by sampling each ele-

ment from the Gamma distribution

 2ii � Gamma

�
�i +

1

2
T;Bi

�

where

Bi =

(
�1 +

1
2
s11 for i = 1

�i +
1
2

h
sii � s0i

�
Si�1 + (DiDi)

�1��1 sii for i = 2; :::;m

2. Draw
�
�(r)j (r); 
(r�1); '(r�1); !(r�1); data

�
by sampling each element

from the Normal distribution

�j � Nj�1
�
�j;�j

�
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where for j = 2; :::;m.

�j = � jj
�
Sj�1 + (DjDj)

�1	�1 sj
�j =

�
Sj�1 + (DjDj)

�1	�1
3. Draw

�
!(r)j�(r);  (r); 
(r�1); '(r�1); data

�
by sampling each element

from the Bernoulli distribution

!ij � Bernoulli

�
1;

u1ij
u1ij + u2ij

�

where for j = 2; :::;m and i = 1; :::; j � 1

u1ij =
1

�0ij
exp

 
�
 2ij
2�20ij

!
qij

u2ij =
1

�1ij
exp

 
�
 2ij
2�21ij

!
(1� qij)

4. Draw
�
'(r)j�(r);  (r); !(r); 
(r�1); data

�
by sampling ' = vec (�) from

the Normal distribution

' � Nnu (�;�)

where

� =
�
(		0)
 (z0z) + V �1	�1 �((		0)
 (z0z)) b'+ V �1'

	
� =

�
(		0)
 (z0z) + V �1	�1

where b' is the vector occurring from stacking the elements of the

matrix of MLE coe¢ cients, i.e. b' = vec
�b�� = vec

�
(z0z)�1 z0y

�
.

5. Draw
�

(r)j�(r);  (r); !(r); '(r); data

�
by sampling each element from

the Bernoulli density
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i � Bernoulli

�
1;

u1i
u1i + u2i

�
1. where for i = 1; :::; nu

u1i =
1

� 0i
exp

�
� '2i
2� 20i

�
pi

u2i =
1

� 1i
exp

�
� '2i
2� 21i

�
(1� pi) :
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C Data Appendix (Chapter 3)

This table lists the 132 variables in the dataset used. The third column

indexes the respective transformation applied to each of the variables to

ensure stationarity (at least approximately). Let vt and xt be the un-

transformed value and transformed values respectively, then there are �ve

cases:(1) lv: xt = vt (level), (2) ln: xt = log(vt) (logarithm), (3) �lv:

xt = vt � vt�1 (�rst di¤erence), (4) � ln: xt = log (vt=vt�1) (growth rate),

and (5) �2 ln: xt = � log (vt=vt�1) :This table is from Stock and Watson

(2005b) and the reader should seek in this reference the original source of

the data.

# Mnemonic Trans Description

1 A0M052 � ln Personal income (ar, bil. chain 2000 $)
2 A0M051 � ln Personal income less transfer payments (ar, bil. chain

2000 $)
3 A0M224 � ln Real consumption (A0M224=GMDC)
4 A0M057 � ln Manufacturing and trade sales (mil. chain 1996 $)
5 A0M059 � ln Sales of retail stores (mil. chain 2000 $)
6 IPS10 � ln Industrial production index - total index
7 IPS11 � ln Industrial production index - products, total
8 IPS299 � ln Industrial production index - �nal products
9 IPS12 � ln Industrial production index - consumer goods
10 IPS13 � ln Industrial production index - durable consumer goods
11 IPS18 � ln Industrial production index - nondurable consumer

goods
12 IPS25 � ln Industrial production index - business equipment
13 IPS32 � ln Industrial production index - materials
14 IPS34 � ln Industrial production index - durable goods materials
15 IPS38 � ln Industrial production index - nondurable goods mate-

rials
16 IPS43 � ln Industrial production index - manufacturing17
17 IPS307 � ln Industrial production index - residential utilities
18 IPS306 � ln Industrial production index - fuels
19 PMP lv NAPM production index (percent)
20 A0M082 �lv Capacity utilization (mfg)
21 LHEL �lv Index of help-wanted advertising in newspapers

(1967=100;sa)
22 LHELX �lv Employment: ratio; help-wanted ads/ no. unem-

ployed clf
23 LHEM �lv Civilian labor force: employed, total (thous.)
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# Mnemonic Trans Description

24 LHNAG �lv Civilian labor force: employed, nonagricultural indus-

tries (thous.)
25 LHUR �lv Unemployment rate: all workers, 16 years & over (%)
26 LHU680 �lv Unemployment by duration: average (mean) duration

in weeks
27 LHU5 � ln Unemployment by duration: persons unemployed less

than 5 wks (thous.)
28 LHU14 � ln Unemployment by duration: persons unemployed 5 to

14 wks (thous.)
29 LHU15 � ln Unemployment by duration: persons unemployed 15

wks + (thous.)
30 LHU26 � ln Unemployment by duration: persons unemployed 15

to 26 wks (thous.)
31 LHU27 � ln Unemployment by duration: persons unemployed 27

wks + (thous.)
32 A0M005 � ln Average weekly initial claims, unemployment insur-

ance (thous.)
33 CES002 � ln Employees on nonfarm payrolls - total private
34 CES003 � ln Employees on nonfarm payrolls - goods-producing
35 CES006 � ln Employees on nonfarm payrolls - mining
36 CES011 � ln Employees on nonfarm payrolls - construction37
38 CES017 � ln Employees on nonfarm payrolls - durable goods
39 CES033 � ln Employees on nonfarm payrolls - nondurable goods
40 CES046 � ln Employees on nonfarm payrolls - service-providing
41 CES048 � ln Employees on nonfarm payrolls - trade, transporta-

tion, and utilities
42 CES049 � ln Employees on nonfarm payrolls - wholesale trade
43 CES053 � ln Employees on nonfarm payrolls - retail trade
44 CES088 � ln Employees on nonfarm payrolls - �nancial activities
45 CES140 � ln Employees on nonfarm payrolls - government
46 A0M048 � ln Employee hours in nonagricultural establishments (ar,

bil. hours)
47 CES151 lv Average weekly hours of production or nonsupervisory

workers on private nonfarm payrolls
48 CES155 �lv Average weekly hours of production or nonsupervisory

workers on private nonfarm payrolls
49 AOM001 lv Average weekly hours: manufacturing (hours)
50 PMEMP lv NAPM employment index (percent)
51 HSFR ln Housing starts: nonfarm (1947-58); total farm
52 HSNE ln Housing starts: Northeast (thousands of units)
53 HSMW ln Housing starts: Midwest (thousands of units)
54 HSSOU ln Housing starts: South (thousands of units)
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# Mnemonic Trans Description

55 HSWST ln Housing starts: West (thousands of units)
56 HSBR ln Housing authorized: total new priv housing units

(thousands)
57 HSBNE ln Houses authorized by build. permits: Northeast

(thousands of units)
58 HSBMW ln Houses authorized by build. permits: Midwest (thou-

sands of units)
59 HSBSOU ln Houses authorized by build. permits: South (thou-

sands of units)
60 HSBWST ln Houses authorized by build. permits: West (thou-

sands of units)
61 PMI lv Purchasing managers�index (sa)
62 PMNO lv NAPM new orders index (percent)
63 PMDEL lv NAPM vendor deliveries index (percent)
64 PMNV lv NAPM inventories index (percent)
65 A0M008 � ln Mfrs�new orders, consumer goods and materials (bil.

chain 1982 $)
66 A0M007 � ln Mfrs�new orders, durable goods industries (bil. chain

2000 $)
67 A0M027 � ln Mfrs�new orders, nondefense capital goods (mil. chain

1982 $)
68 A1M092 � ln Mfrs�un�lled orders, durable goods indus. (bil. chain

2000 $)
69 A0M070 � ln Manufacturing and trade inventories (bil. chain 2000

$)
70 A0M077 �lv Ratio, mfg. and trade inventories to sales (based on

chain 2000 $)
71 FM1 �2 ln Money stock: M1 (bil$,sa)
72 FM2 �2 ln Money stock: M2 (bil$,sa)
73 FM3 �2 ln Money stock: M3 (bil$,sa)
74 FM2DQ � ln Money supply - M2 in 1996 dollars (bci)
75 FMFBA �2 ln Monetary base, adjusted for reserve requirement

changes(mil$,sa)
76 FMRRA �2 ln Depository inst. reserves: total, adjusted for reserve

req changes (mil$,sa)
77 FMRNBA �2 ln Depository inst. reserves: non-borrowed, adj reserve

req changes (mil$,sa)
78 FCLNQ �2 ln Commercial & industrial loans outstanding in 1996

dollars (bci)
79 FCLBMC lv Wkly rp lg com�l banks:net change com�l & indus loans

(bil$,saar)
80 CCINRV �2 ln Consumer credit outstanding �non-revolving
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# Mnemonic Trans Description

81 A0M095 �lv Ratio, consumer installment credit to personal income

(pct.)
82 FSPCOM � ln S&P�s common stock price index: composite (1941-

43=10)
83 FSPIN � ln S&P�s common stock price index: industrials (1941-

43=10)
84 FSDXP �lv S&P�s composite common stock: dividend yield (%

per annum)
85 FSPXE � ln S&P�s composite common stock: price-earnings ratio

(%)
86 FYFF �lv Interest rate: Federal funds (e¤ective) (% per an-

num)87
88 FYGM3 �lv Interest rate: u.s. Treasury bills, sec market, 3-mo.(%

per annum)
89 FYGM6 �lv Interest rate: u.s. Treasury bills, sec market, 6-mo.(%

per annum)
90 FYGT1 �lv Interest rate: u.s. Treasury const maturities, 1-yr.(%

per annum)
91 FYGT5 �lv Interest rate: u.s. Treasury const maturities, 5-yr.(%

per annum)
92 FYGT10 �lv Interest rate: u.s. Treasury const maturities, 10-yr.(%

per annum)
93 FYAAAC �lv Bond yield: Moody�s AAA corporate (% per annum)
94 FYBAAC �lv Bond yield: Moody�s BAA corporate (% per annum)
95 SCP90 lv CP90 �FYFF (spread)
96 SFYGM3 lv FYGM3 �FYFF (spread)
97 SFYGM6 lv FYGM6 �FYFF (spread)
98 SFYGT1 lv FYGT1 �FYFF (spread)
99 SFYGT5 lv FYGT5 �FYFF (spread)
100 SFYGT10 lv FYGT10 �FYFF (spread)
101 SFYAAAC lv FYAAAC �FYFF (spread)
102 SFYBAAC lv FYBAAC �FYFF (spread)
103 EXRUS � ln United States; e¤ective exchange rate (merm) (index

no.)
104 EXRSW � ln Foreign exchange rate: Switzerland (Swiss franc per

U.S.$)
105 EXRJAN � ln Foreign exchange rate: Japan (yen per U.S.$)
106 EXRUK � ln Foreign exchange rate: United Kingdom (cents per

pound)
107 EXRCAN � ln Foreign exchange rate: Canada (Canadian$ per U.S.$)
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# Mnemonic Trans Description

108 PWFSA �2 ln Producer price index: �nished goods (82=100,sa)
109 PWFCSA �2 ln Producer price index: �nished consumer goods

(82=100,sa)
110 PWIMSA �2 ln Producer price index: intermed mat. supplies & com-

ponents (82=100,sa)
111 PWCMSA �2 ln Producer price index: crude materials (82=100,sa)
112 PSCCOM �2 ln Spot market price index: bls & crb: all commodi-

ties(1967=100)
113 PSM99Q �2 ln Index of sensitive materials prices (1990=100)(bci-

99a)
114 PMCP lv NAPM commodity prices index (percent)
115 PUNEW �2 ln CPI-u: all items (82-84=100,sa)116
117 PU84 �2 ln CPI-u: transportation (82-84=100,sa)
118 PU85 �2 ln CPI-u: medical care (82-84=100,sa)
119 PUC �2 ln CPI-u: commodities (82-84=100,sa)
120 PUCD �2 ln CPI-u: durables (82-84=100,sa)
121 PUS �2 ln CPI-u: services (82-84=100,sa)
122 PUXF �2 ln CPI-u: all items less food (82-84=100,sa)
123 PUXHS �2 ln CPI-u: all items less shelter (82-84=100,sa)
124 PUXM �2 ln CPI-u: all items less medical care (82-84=100,sa)
125 GMDC �2 ln PCE, impl price de�ator (1987=100)
126 GMDCD �2 ln PCE, impl price de�ator: Durables (1987=100)
127 GMDCN �2 ln PCE, impl price de�ator: Nondurables (1996=100)
128 GMDCS �2 ln PCE, impl price de�ator: Services (1987=100)
129 CES275 �2 ln Average hourly earnings of production or nonsupervi-

sory workers on private nonfarm payrolls: goods
130 CES277 �2 ln Average hourly earnings of production or nonsupervi-

sory workers on private nonfarm payrolls: construc-

tion
131 CES278 �2 ln Average hourly earnings of production or nonsupervi-

sory workers on private nonfarm payrolls: manufac-

turing
132 HHSNTN �lv U. of Michigan index of consumer expectations
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D Technical Appendix (Chapter 4)

Posterior inference in the VAR with variable selection

In this section I provide exact details on the conditional densities of the

restricted VAR model. For simplicity rewrite the priors, which are

� � Nn (b0; V0) (D.1)


jj
n�j � Bernoulli (1; �0j) (D.2)

��1 � Wishart
�
�; S�1

�
(D.3)

Algorithm 1

Given the prior hyperparameters (b0; V0; �0;	; �) and an initial value for 
,

�, sampling from the conditional distributions proceeds as follows

1. Sample � from the density

�j
;�; y; z � Nn

�eb; eV � (D.4)

where eV = �V �1
0 +

PT
t=1 z

�0
t �

�1z�t

��1
andeb = eV �V �1

0 b0 +
PT

t=1 z
�0
t �

�1yt+h

�
,

and z�t = zt�.

2. Sample 
j from the density


jj
n�j; �;�; y; z � Bernoulli (1; e�j) (D.5)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�j; 
n�j; 
j = 1

�
�0j (D.6)

l1j = p
�
yj�j; 
n�j; 
j = 0

�
(1� �0j) (D.7)

The expressions p
�
yj�j; 
n�j; 
j = 1

�
and p

�
yj�j; 
n�j; 
j = 0

�
are con-

ditional likelihood expressions. De�ne �� to be equal to � but with
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its j � th element �j = �j (i.e. when 
j = 1). Similarly, de�ne �
�� to

be equal to � but with the j � th element �j = 0 (i.e. when 
j = 0).

Then in the case of the VAR likelihood of model (4.4), we can write

l0j, l1j analytically as

l0j = exp

 
�1
2

TX
t=1

(yt+h � Zt�
�)0��1 (yt+h � Zt�

�)

!
�0j

l1j = exp

 
�1
2

TX
t=1

(Yt+h � Zt�
��)0��1 (Yt+h � Zt�

��)

!
(1� �0j) :

3. Sample ��1 from the density

��1j�; 
; y; z � Wishart
�e�; eS�1� (D.8)

where e� = T + � and eS�1 = �S +PT
t=1 (yt+h � zt�)

0 (yt+h � zt�)
��1

.

Algorithm 2

In modern matrix programming languages it is more e¢ cient to replace

"for" loops with matrix multiplications (what is called "vectorizing loops").

This section provides a reformulation of the VAR, so that the summa-

tions in the Gibbs sampler algorithm (D.4) - (D.8) are replaced by matrix

multiplications. For example, computing l0j and l1j requires to evaluatePT
t=1 (yt � zt�

�)0��1 (yt � zt�
�) for t = 1; :::; T . In practice, it is more e¢ -

cient to use the matrix form of the VAR likelihood:

Begin from formulation (4.1), and let y = (y01; ::::; y
0
T ), x = (x01; :::; x

0
T )

and " = ("01; :::; "
0
T ). A di¤erent SUR formulation of the VAR takes the form

vec (y) = (Im 
 x0) �b+ vec (") (D.9)

Y = W� + e (D.10)
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where Y = vec (y) is a (Tn) � 1 column vector, W = Im 
 x is a block

diagonal matrix of dimensions (Tn) � m with the matrix x replicated m

times on its diagonal, � = ��� is am�1 vector, �� = vec(B0) and e = vec (")

� N (0;�
 IT ). To clarify notation, vec (�) is the operator that stacks the
columns of a matrix and 
 is the Kronecker product. In this formulation,
W = Im 
 x is not equal to z = (z01; :::; z

0
T ) =

�
(Im 
 x1)

0 ; :::; (Im 
 xT )
0�

which was de�ned in (4.4). Additionally, note that while � and b are both

n�1 vectors, they are not equal. It holds that � = vec(B) and �� = vec(B0).

The priors are exactly the same as the ones described in the main text.

The conditional posteriors of this formulation are given by

1. Sample b from the density

��j
;�; Y;W � Nn

�eb; eV � (D.11)

where eV = V �1
0 +W �0 (��1 
 IT )W

� andeb = eV �V �1
0 b0 +W �0 (��1 
 IT )Y

�
,

and W � = W�.

2. Sample 
j from the density


jj
n�j; ��;�; Y;W � Bernoulli (1; e�j) (D.12)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = exp

�
�1
2
(Y �W��)0

�
��1 
 IT

�
(Y �W��)

�
�0j

l1j = exp

�
�1
2
(Y �W���)0

�
��1 
 IT

�
(Y �W���)

�
(1� �0j) :

3. Sample ��1 from the density

��1j
; ��; Y; x � Wishart
�e�; eS�1�

where e� = T + � and eS�1 = �S + (Y � x�)0 (Y � x�)
��1
, where �
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is the k � n matrix obtained from the vector � = ���, which has

elements (�ij) = �(j�1)k+i, for i = 1; :::; k and j = 1; :::; n.

This sampler has slight modi�cations compared to the one above be-

cause of the di¤erent speci�cation of the likelihood function, but the two

SUR speci�cations are equivalent and produce the same results. Posterior

inference in the TVP-VAR model is just a simple generalization of the VAR

case and it is described in the next section. Unfortunately it is not possible

to formulate a TVP-VAR in the form (D.9), in order to take advantage of

matrix computations.

Posterior inference in the TVP-VAR with variable

selection

The homoskedastic TVP-VAR with variable selection is of the form

yt = zt�t + "t (D.13)

�t = �t�1 + �t (D.14)

where �t = ��t, and "t � N (0;�) and �t � N (0; Q) which are uncorrelated

with each other at all leads and lags. The priors for this model are:

�0 � Nn (b0; V0)


jj
n�j � Bernoulli (1; �0j)

Q�1 � Wishart
�
�; R�1

�
��1 � Wishart

�
�; S�1

�
Estimating these parameters means sampling sequentially from the follow-

ing conditional densities
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1. Sample �tj�t�1; Q;�; yt; z�t for all t, where z�t = zt� and � = diag f
1; :::; 
ng,
using the Carter and Kohn (1994) �lter and smoother for state-space

models (see below)

2. Sample 
j from the density


jj
n�j; �;�; y; z � Bernoulli (1; e�j) (D.15)

preferably in random order j, where e�j = l0j
l0j+l1j

, and

l0j = p
�
yj�j; 
n�j; 
j = 1

�
�0j (D.16)

l1j = p
�
yj�j; 
n�j; 
j = 0

�
(1� �0j) (D.17)

The expressions p
�
yj�1:Tj ; 
n�j; 
j = 1

�
and p

�
yj�1:Tj ; 
n�j; 
j = 0

�
are

conditional likelihood expressions, where �1:Tj = [�1;j; :::; �t;j; :::; �T;j]
0.

De�ne ��t to be equal to �t but with its j � th element �t;j = �t;j (i.e.

when 
j = 1). Similarly, de�ne ���t to be equal to �t but with the

j � th element �t;j = 0 (i.e. when 
j = 0), for all t = 1; :::; T . Then

in the case of the TVP-VAR likelihood of model (D.13), we can write

l0j, l1j analytically as

l0j = exp

 
�1
2

TX
t=1

(yt+1 � zt�
�
t )
0��1 (yt+1 � zt�

�
t )

!
�0j

l1j = exp

 
�1
2

TX
t=1

(yt+1 � zt�
��
t )

0��1 (yt+1 � zt�
��
t )

!
(1� �0j) :

3. Sample Q�1 from the density

Q�1j�; 
;�; y; z � Wishart
�e�; eR�1� (D.18)

where e� = T + � and eR�1 = �R +PT
t=1

�
�t � �t�1

�0 �
�t � �t�1

���1
.
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4. Sample ��1 from the density

��1j�;Q; 
; y; z � Wishart
�e�; eS�1� (D.19)

where e� = T+� and eS�1 = �S +PT
t=1 (yt+h � zt�t)

0 (yt+h � zt�t)
��1

.

Carter and Kohn (1994) algorithm:

Consider a state-space model of the following form

yt = ztat + ut (D.20a)

at = at�1 + vt (D.20b)

ut � N (0; R) , vt � N (0;W )

where (D.20a) is the measurement equation and (D.20b) is the state equa-

tion, with observed data yt and unobserved state at. If the errors ut, vt
are iid and uncorrelated with each other, we can use the Carter and Kohn

(1994) algorithm to obtain a draw from the posterior of the unobserved

states.

Let atjs denote the expected value of at and Ptjs its corresponding vari-

ance, using data up to time s. Given starting values a0j0 and P0j0, the

Kalman �lter recursions provide us with initial �ltered estimates:

atjt�1 = at�1jt�1

Ptjt�1 = Pt�1jt�1 +W

Kt = Ptjt�1z
0
t

�
ztPtjt�1zt +R

��1
(D.21)

atjt = atjt�1 +Kt

�
yt � ztatjt�1

�
Ptjt = Ptjt�1 �KtztPtjt�1

The last elements of the recursion are aT jT and PT jT for which are used to

obtain a single draw of aT . However for periods T � 1; :::; 1 we can smooth
our initial Kalman �lter estimates by using information from subsequent

periods. That is, we run the backward recursions for t = T � 1; :::; 1 and
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obtain the smooth estimates atjt+1 and Ptjt+1 given by the backward recur-

sion:

atjt+1 = atjt + PtjtP
0
t+1jt

�
at+1 � atjt

�
Ptjt+1 = Ptjt � PtjtP

0
t+1jtPtjt

Then we can draw from the posterior of at by simply drawing from a Normal

density with mean atjt+1 and variance Ptjt+1 (for t = T we use aT jT and

PT jT ).

E¢ cient sampling of the variable selection indicators

In order to sample all the 
j we need n evaluations of the conditional

likelihood functions p
�
yj:::; 
j = 1

�
and p

�
yj:::; 
j = 0

�
which can be quite

ine¢ cient for large n. Kohn, Smith and Chan (2001) replace step 2 of the

algorithms above with step 2* below. For notational convenience denote

S to be the total number of Gibbs draws, and let the (current) value of


j at iteration s of the Gibbs sampler to be denoted by 

s
j, and the (can-

didate) draw of 
j at iteration s + 1 to be denoted by 

s+1
j . An e¢ cient

acceptance/rejection step for generating 
j is:

2* a) Draw a random number g from the continuous Uniform distribution

U (0; 1).

b) - If 
sj = 1 and g > �0j, set 
s+1j = 1.

- If 
sj = 0 and g > 1� �0j, set 
s+1j = 0.

- If 
sj = 1 and g < �0j or 
sj = 0 and g < 1 � �0j, then generate


s+1j from the Bernoulli density 
jj
n�j; b; y; z � Bernoulli (1; e�j),
where e�j = l0j

l0j+l1j
and l0j, l1j are given in equations (D.6)-(D.7) and

(D.16)-(D.17), for the VAR and TVP-VAR models respectively.


