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Abstract 

The Common Information Model (CIM) is an object-oriented representation of a 
power system used primarily as a data exchange format for power system 
operational control systems and as a common semantic model to facilitate enterprise 
application integration. The CIM has the potential to be used as much more than an 
intermediary exchange language and this thesis explores the use of the CIM as the 

core of a power systems toolkit for storing, processing, extracting and exchanging 
data directly as CIM objects. 

This thesis looks at the evolving nature of the CIM standard and proposes a number 
of extensions to support the use of the CIM in the UK power industry while 
maintaining, where possible, backwards compatibility with the IEC standard. The 

challenges in storing and processing large power system network models as native 
objects without sacrificing reliability and robustness are discussed and solutions 
proposed. 

A number of applications of this CIM software framework are described in this 
thesis aimed at facilitating the use of the CIM for exchanging data for network 
planning and operations. The development of novel algorithms is described that use 
the underlying CIM class structure to convert power system network data in a CIM 
format to the native, proprietary format of an external analysis application. The 

problem of validating CIM data against pre-defined profiles and the deficiencies of 
existing validation techniques is discussed. A novel validation system based on the 
CIM software framework is proposed that provides a means of performing a level 

of validation beyond any existing tools. Algorithms to allow the integration of 
independent power system network models in a CIM format are proposed that 

allow the automatic identification and removal of overlapping areas and integration 

of neighbouring networks. 

The development of an application to dynamically generate network diagrams of 
power system network models in CIM format via the novel application of existing, 
generic data visualisation tools is described. The use of web application 
technologies to create a remotely-accessible tool for creating power system network 
models in CIM format is described. 

Each of these applications supports a stage of the planning process allowing both 

planning and operational engineers to create, exchange and use data in the CIM 

format by providing tools with a native CIM architecture that can adapt to the 

evolving CIM standard. 

IV 



Table of Contents 
ACKNOWLEDGEMENTS 

.................................................................................................................... III 

ABSTRACT ............................................................................................................................................... IN7 

TABLE OF CONTENTS 
.......................................................................................................................... N, 

TABLE OF FIGURES .............................................................................................................................. x 

ABBREVIATIONS 
............................................................................................................................... XIII 

I INTRODUCTION ............................................................................................................................... 

1.1 MOTIVATION AND CONTEXT FOR RESEARCH 
................................................................................ 

1 

1.2 PRINCIPAL RESEARCH CONTRIBUTIONS 
........................................................................................ 

3 

1.3 INDUSTRIAL APPLICATIONS OF RESEARCH CONTRIBUTIONS 
....................................................... 

5 

1.4 THESIS OUTLINE 
............................................................................................................................. 

6 

1.5 ASSOCIATED PUBLICATIONS 
.......................................................................................................... 

6 

1.5.1 Journal Publications 
............................................................................................................. 

6 

1.5.2 Conference Publications 
....................................................................................................... 

7 

2 BACKGROUND .................................................................................................................................. 8 

2.1 CHAPTER INTRODUCTION ............................................................................................................... 8 

2.2 POWER SYSTEM DATA FORMATS ................................................................................................ .. 
8 

2.3 CLASS HIERARCHIES AND UML CLASS DIAGRAMS 
................................................................... 

10 

2.3.1 Classes 
.................................................................................................................................. 

11 

2.3.2 Inheritance (Generalisation) 
............................................................................................... 11 

2.3.3 Association ........................................................................................................................... 
13 

2.3.4 Aggregation .......................................................................................................................... 14 

2.3.5 Composition 
......................................................................................................................... 15 

2.3.6 Summaiý ............................................................................................................................... 16 

2.4 THE COMMON INFORMATION MODEL FOR POWER SYSTEMS 
.................................................... 17 

2.4.1 History .................................................................................................................................. 
17 

2.4.2 CIM Class Structure 
............................................................................................................ 18 

2.4.3 Converting a Circuit to CIM Objects 
................................................................................. 25 

2.4.4 JEC 61970-301 CIMPackages 
........................................................................................... 32 

2.5 THE EXTENSIBLE MARKUP LANGUAGE (XML) ......................................................................... 36 

2.5.1 XML ...................................................................................................................................... 36 

2.5.2 RDF 
...................................................................................................................................... 

39 

2.5.3 CIM RD F XAff. 
.................................................................................................................... 42 

2.6 XML MESSAGING ........................................................................................................................ 45 

2.6.1 Existing Inter-Application Communication Infrastructure 
............................................... 45 

V 



2.6.2 The Message Bus Concept 
.................................................................................................. 46 

2.6.3 Mapping Application Interfaces to the CIM 
...................................................................... 

47 

2.6.4 Constructing a Message Payload 
....................................................................................... 

48 

2.6.5 XAIL Messaging Summary 
.................................................................................................. 

51 

2.7 CHAPTER SUMMARY 
.................................................................................................................... 

52 

3 EXTENSIONS TO THE COMMON INFORMATION MODEL ............................................. 53 

3.1 CHAPTER INTRODUCTION 
............................................................................................................. 

53 

3.2 METHODS FOR COPING WITH MULTIPLE CIM STANDARDS 
....................................................... 

53 

3.2.1 XA1L Namespaces 
................................................................................................................ 

53 

3.3 IEC PROPOSED EXTENSIONS TO CIM 
.......................................................................................... 

56 

3.3.1 JEC 61970 Extensions 
......................................................................................................... 

56 

3.3.2 JEC 61968 Extensions 
......................................................................................................... 

57 

3.4 OTHER PROPOSED EXTENSIONS TO THE CIM 
............................................................................. 

59 

3.4.1 CIM Extensionsfor Electrical Distribution 
...................................................................... 

59 

3.4.2 CIM For Market Operations 
............................................................................................... 

61 

3.4.3 Common Graphics Exchange 
............................................................................................. 

62 

3.5 EXTENSIONS PROPOSED TO SUPPORT THE RESEARCH WORK DISCUSSED IN THIS THESIS 
....... 

62 

3.5.1 Requirementfor Enhanced Line and Transformer Models ............................................... 
63 

3.5.2 A Line Model to allow the Calculation ofZero-sequence Impedance Values ................. 
66 

3.5.3 Modelling an A uto- Transformer as CIM Objects 
.............................................................. 

70 

3.5.4 Representing Fault Ratings & Constraints 
........................................................................ 74 

3.5.5 Defining Network Interconnection Points .......................................................................... 
76 

3.6 BACKWARD COMPATIBILITY ISSUES ........................................................................................... 
79 

3.6.1 Areas of Concern 
................................................................................................................. 

79 

3.6.2 Implementation ofBackwards Compatibility 
..................................................................... 

80 

3.7 CHAPTER SUMMARY .................................................................................................................... 81 

4 EXCHANGE & STORAGE OF CIM POWER SYSTEM MODELS ...................................... 82 

4.1 CHAPTER INTRODUCTION 
............................................................................................................. 

82 

4.2 POWER SYSTEm ANALYSIS SOFTWARE DESIGN METHODOLOGIES 
........................................... 

82 

4.3 POWER SYSTEms ToOLKIT DESIGN 
............................................................................................. 

83 

4.4 CHALLENGES OF IMPLEMENTING A CIM BASED POWER SYSTEm ToOLKIT 
............................. 

85 

4.4.1 Implementation of CIM classes in Java 
............................................................................. 85 

4.4.2 Advantages of Storing A Power System Model as Objects 
............................................... 87 

4.4.3 Memory Storage Requirementsfor an Object-Based System 
........................................... 89 

4.4.4 Importing CJMXAff- Power Sistem Data into Java Objects 
............................................ 91 

4.4.5 Use ofSerialization to Track ModellData Changesfor Securit-i ...................................... 93 

4.5 EXTENDING CIM .......................................................................................................................... 94 

vi 



4.6 JAVA PACKAGES 
........................................................................................................................... 96 

4.7 THE MERcuRy FPAMEWORK 
....................................................................................................... 

97 

4.7.1 The Model Library 
............................................................................................................... 97 

4.7.2 The Server Interface 
............................................................................................................ 97 

4.8 CHAPTER SUMMARY 
.................................................................................................................... 

98 

5 TRANSLATION & CONVERSION OF CIM POWER SYSTEM MODELS ...................... 100 

5.1 CHAPTER INTRODUCTION 
........................................................................................................... 

100 

5.2 CIM XML TRANSLATION 
.......................................................................................................... 

100 

5.3 TRANSLATION OF POWER SYSTEm DATA 
.................................................................................. 

100 

5.3.1 Topology Format 
............................................................................................................... 

101 

5.3.2 Unique Component Identifiers 
.......................................................................................... 

103 

5.3.3 Physical Characteristics 
................................................................................................... 

106 

5.3.4 Identifying a Specific Equipment Property ...................................................................... 
107 

5.4 CIM XML TO PSS/E DATA FORMAT TRANSLATION ............................................................... 
108 

5.4.1 Extensible Stylesheet Language Transform 
..................................................................... 

108 

5.4.2 Mercury Translation Module 
............................................................................................ 

109 

5.5 EXAMPLE OF CIM XML TO PSS/E DATA TRANSLATION 
........................................................ 

III 

5.6 CHAPTER SUMMARY 
.................................................................................................................. 

112 

6 VALIDATION OF CIM XML DATA .......................................................................................... 113 

6.1 CHAPTER SUMMARY 
.................................................................................................................. 

113 

6.2 XML SYNTAX VALIDATION ...................................................................................................... 113 

6.3 CIM DATA VALIDATION ............................................................................................................ 114 

6.3.1 Transformer Winding CIMXAff- Element Example 
........................................................ 

114 

6.3.2 CIMJava Object Creation 
................................................................................................ 115 

6.3.3 Reference Propagation 
...................................................................................................... 116 

6.3.4 'CIMValidate' Validation Tool ......................................................................................... 117 

6.4 MINIMUM DATA REQUIREMENTS .............................................................................................. 117 

6.4.1 Validation of Empty Objects 
............................................................................................. 117 

6.4.2 CPSM Minimum Data Requirementsfor the CIM 
.......................................................... 118 

6.4.3 Creating Minimum Data Requirement Rules 
................................................................... 118 

6.4.4 Vendor Interpretations ...................................................................................................... 120 

6.4.5 Rule Inheritance ................................................................................................................. 
121 

6.4.6 Complex Rule Translation ................................................................................................. 121 

6.4.7 Applying the Minimum Data Requirement Rules 
............................................................ 123 

6.5 CHAPTER SUMMARY .................................................................................................................. 136 

7 AUTOMATIC NETWORK INTEGRATION ............................................................................ 137 

7.1 CHAPTER INTRODUCTION 
........................................................................................................... 

137 

vii 



7.2 REPRESENTING INTER-NETWORK CONNECTIONS 
..................................................................... 137 

7.3 INTEGRATING MODELS OF IDENTICAL ABSTRACTION 
.................................................. ............ 

138 

7.3.1 Matching Voltage Levels ....................................................................................... ............ 139 

7.3.2 Creating Component Identifiers ........................................................................... ............ 140 

7.3.3 Creating Network Section Identifiers ................................................................... ............ 141 
7.3.4 Weighting Connection Pair Matches 

.................................................................... ............ 
141 

7.4 INTEGRATING MODELS AT DIFFERENT LEVELS OF ABSTRACTION 
.............................. ............ 

143 

7.4.1 Locating Network Discrepancies 
.......................................................................... ............ 

145 

7.4.2 Comparing Differing Levels ofAbstraction ......................................................... ............ 
146 

7.4.3 Incremental Bus-Branch Conversion and Comparison 
...................................... ............ 

147 

7.5 JOINING POWER NETWORK MODELS 
............................................................................. ............ 

148 

7.5.1 HardJoin 
................................................................................................................ ............ 

148 

7.5.2 Copy Join 
............................................................................................................................ 149 

7.5.3 Soft Join 
.............................................................................................................................. 149 

7.6 VALIDATING INTEGRATION OUTPUT 
............................................................................. ............ 

149 

7.6.1 Exporting the Output 
......................................................................................................... 150 

7.6.2 Viewing the Model in the Mercury Library 
...................................................................... 

150 

7.6.3 Graphically Checking the Network Structure 
.................................................................. 

150 

7.7 USES FOR THE MODEL INTEGRATION PROCESS 
........................................................................ 

151 

7.7.1 Forming Regional or National Network Models 
............................................................. 151 

7.7.2 Creation ofnew power system models in the CIM 
............................................... ........... 

152 

7.7.3 Creation ofplanning scenarios .............................................................................. ........... 
152 

7.8 FUTURE WORK 
........................................................................................................................... 

153 

7.9 CHAPTER SUMMARY 
.................................................................................................................. 

154 

8 VISUALISATION OF NETWORK TOPOLOGIES ................................................................ 155 

8.1 CHAPTER INTRODUCTION 
........................................................................................................... 

155 

8.2 AUTOMATIC GRAPHING TOOLS 
................................................................................................. 

155 

8.2.1 Graphing Standard CIMXALL data 
.................................................................................. 157 

8.2.2 Graphing Simplified CIMXAff- data 
................................................................................ 159 

8.2.3 Path Generation for Incremental Network Visualisation 
............................................... 168 

8.2.4 Modifying the Graphing Tool to Display Power System Model Information 
................ 173 

8.2.5 Summary 
............................................................................................................................. 177 

8.3 RICH WEB APPLICATIONS .......................................................................................................... 178 

8.3.1 Graphical Network Creation 
............................................................................................ 179 

8.3.2 Inle7jace Overview 
............................................................................................................. 180 

8.3.3 Browser-Server Communications 
..................................................................................... 183 

8.3.4 Inclusion QfNetwork Data Overlays 
................................................................................ 187 

8.3.5 Integration ofRich Web Application with Graphing Tool 
.............................................. 187 

viii 



8.4 CHAPTER SUMMARY .................................................................................................................. 189 

9 CONCLUSIONS & FUTURE WORK ......................................................................................... 191 

9.1 CONCLUSIONS 
............................................................................................................................. 

191 

9.1.1 CIMExtensions 
.................................................................................................................. 191 

9.1.2 CIM Software Framework 
................................................................................................. 

192 

9.1.3 Translation and Conversion 
.............................................................................................. 

192 

9.1.4 Validation 
........................................................................................................................... 

193 

9.1.5 Integration 
.......................................................................................................................... 

193 

9.1.6 Visualisation 
....................................................................................................................... 

194 

9.1.7 Creation 
.............................................................................................................................. 

194 

9.1.8 Using CIMDatafor Operations and Planning ............................................................... 
195 

9.2 FUTURE WORK 
........................................................................................................................... 

195 

9.2.1 Enhanced Validation 
......................................................................................................... 

196 

9.2.2 Advanced Creation and Editing ........................................................................................ 
196 

9.2.3 Difference Models 
.............................................................................................................. 

196 

9.2.4 CJM Extensionsfor Distributed and Renewable Generation 
......................................... 

197 

9.2.5 A Common Information Modelfor Energy Systems 
........................................................ 

197 

9.2.6 Analysing CIM Models Natively 
....................................................................................... 

198 

10 REFERENCES ............................................................................................................................... 199 

ix 



Table of Figures 
FIGURE 2.1 THE PERSON CLASS 

FIGURE 2.2 CLASS HIERARCHY OF PEOPLE AT A UNIVERSITY 
.................................................................. 12 

FIGURE 2.3 CLASS HIERARCHY OF STUDENTS, STAFF AND SUBJECTS ....................................................... 13 

FIGURE 2.4 CLASS HIERARCHY OF A UNIVERSITY AND BUILDING 
........................................................... 14 

FIGURE 2.5 CLASS HIERARCHY OF A UNIVERSITY, BUILDING AND Room 
............................................... 15 

FIGURE 2.6 CLASS DIAGRAM SHOWING SOME OF PREVIOUS CLASSES AND THEIR RELATIONSHIPS ......... 16 

FIGURE 2.7 BREAKER CLASS INHERITANCE HIERARCHY 
.......................................................................... 19 

FIGURE 2.8 SWITCH CLASS WITH BREAKER AND LOADBREAKSWITCH SUBCLASSES .............................. 20 

FIGURE 2.9 SWITCH CLASS DIAGRAM WITH NEW SUBCLASSES OF SWITCH AND BREAKER 
..................... 21 

FIGURE 2.10 CONNECTIVITY EXAMPLE CIRCUIT ........................................................................................ 22 

FIGURE 2.11 CONNECTIVITY EXAMPLE CIRCUIT WITH DIRECT ASSOCIATIONS ........................................ 23 

FIGURE 2.12 CONNECTIVITY EXAMPLE CIRCUIT WITH CONNECTIVITY NODE 
......................................... 23 

FIGURE 2.13 CONDUCTING EQUIPMENT AND CONNECTIVITY CLASS DIAGRAM ....................................... 24 

FIGURE 2.14 CONNECTIVITY EXAMPLE CIRCUIT WITH CONNECTIVITY NODE AND TERMINALS 
............. 24 

FIGURE 2.15 EXAMPLE CIRCUIT AS A LINE DIAGRAM ................................................................................ 26 

FIGURE 2.16 EXAMPLE CIRCUIT WITH PARTIAL CIM CLASS MAPPINGS .................................................. 27 

FIGURE 2.17 TRANSFORMER CLASS DIAGRAM .......................................................................................... 
28 

FIGURE 2.18 CIM MAPPINGS FOR TRANSFORMER 17-33 
.......................................................................... 29 

FIGURE 2.19 EXAMPLE CIRCUIT WITH FULL CIM MAPPINGS 
................................................................... 31 

FIGURE 2.20 ANNOTATED SIMPLE XML SC14EMA EXAMPLE DESCRIBING THE DATA WITHIN A BOOK ... 38 

FIGURE 2.21 TRANSFORMER SHOWN AS FOUR CIM OBJECTS WITH ATTRIBUTES .................................... 43 

FIGURE 2.22 COMMUNICATION LINKS BETWEEN ENTERPRISE APPLICATIONS .......................................... 45 

FIGURE 2.23 ENTERPRISE APPLICATION Bus MODEL FOR INTER-APPLICATION COMMUNICATION ......... 46 

FIGURE 2.24 CIM INTERFACE MAPPING .................................................................................................... 47 

FIGURE 2.25 MESSAGE PAYLOAD AS UML ............................................................................................... 48 

FIGURE 3.1 BRANCHING CIRCUIT EXAMPLE .............................................................................................. 63 

FIGURE 3.2 PROPOSED CLASS HIERARCHY FOR AN EXTENDED LINE MODEL FOR ALLOWING THE 

CALCULATION OF ZERO SEQUENCE IMPEDENCE ............................................................................... 67 

FIGURE 3.3 PROPOSED CIM OBJECT REPRESENTATION FOR A SECTION OF A LINE 
................................. 

70 

FIGURE 3.4A)-D) PROPOSALS FOR MODELLING AN AUTo-TRANSFORMER AS CIM OBJECTS 
.................. 

71 

FIGURE 3.5 AUToTRANFORMER, AUToTRANSFORMERWINDING AND TAP CLASS HIERARCHY ............. 
73 

FIGURE 3.6 PROPOSED RATING CLASS DIAGRAM ....................................................................................... 
75 

FIGURE 3.7 STRUCTURE OF CORE TOOLKIT SHOWING INTERACTION WITH EXTERNAL COMPONENTS VIA 

API ..................................................................................................................................................... 
77 

FIGURE 3.8 ILLUSTRATION OF A NETWORK CONNECTION USING NETWORK INTERCONNECTION POINTs78 

FIGURE 4.1 STRUCTURE OF TOOLKIT SHOWING INTERACTION WITH EXTERNAL COMPONENT VIA API .. 
84 

x 



FIGURE 4.2 CIM OBJECTS MEMORY USAGE, 0 To 236,000 OBJECTS ...................................................... 
89 

FIGURE 4.3 CIM OBJECTS MEMORY USAGE, 0 To 522,000 OBJECTS ...................................................... 
90 

FIGURE 5.1 A SUBSTATION FEEDER BAY IN: A) NODE-BREAKER FORMAT; AND B) Bus-BRANCH 

FORMAT 
. ........................................................................................................................................... 102 

FIGURE 5.2 A) SCHEMATIC OF THE STAGES FOR TOPOLOGICAL NODE CREATION ON A SAMPLE 

NETWORK. B) THE RESULTING Bus BRANCH CIRCUIT ................................................................... 
105 

FIGURE 5.3 SCHEMATIC OF CASE STUDY NETWORK IN NODE-BREAKER FORMAT 

FIGURE 6.1 VALIDATION RULES CLASS STRUCTURE ............................................................................... 130 

FIGURE 6.2 COMPENSATORTYPE ATTRIBUTE RULE VALIDATION TREE ................................................... 131 

FIGURE 6.3 VALIDATION OUTPUT REPORT FROM INVALID COMPENSATOR OBJECT ............................... 133 

FIGURE 7.1 NETWORK A AND NETWORK B WITH THE INTER-CONNECTION POINTS MARKED ............... 138 

FIGURE 7.2: NETWORK A WITH A SIMPLIFIED PORTION OF NETWORK B ATTACHED ............................. 144 

FIGURE 7.3: NETWORK B WITH A SIMPLIFIED PORTION OF NETWORK A ATTACHED ............................. 145 

FIGURE 8.1 WELKIN VISUALISATION OF SIEMENS 100 BUS MODEL BEFORE PROCESSING .................... 157 

FIGURE 8.2 WELKIN VISUALISATION OF SIEMENS 100 Bus MODEL AFTER THREE MINUTES OF 

PROCESSING ..................................................................................................................................... 157 

FIGURE 8.3 WELKIN VISUALISATION OF SMALL MODEL PRIOR TO PROCESSING .................................... 158 

FIGURE 8.4 WELKIN VISUALISATION OF SMALL MODEL AFTER THREE MINUTES OF PROCESSING ........ 158 

FIGURE 8.5 WELKIN VISUALISATION OF THE REDUCED FORMAT LANGSIDE & CATHCART MODEL PRIOR 

TO PROCESSING ................................................................................................................................ 159 

FIGURE 8.6 WELKIN VISUALISATION OF THE REDUCED FORMAT LANGSIDE & CATHCART MODEL AFTER 

THREE MINUTES OF PROCESSING ..................................................................................................... 160 

FIGURE 8.7 WELKIN VISUALISATION OF THE REDUCED FORMAT SMALL MODEL MODEL PRIOR TO 

PROCESSING ..................................................................................................................................... 160 

FIGURE 8.8 WELKIN VISUALISATION OF THE REDUCED FORMAT SMALL MODEL AFTER THIRTY SECOND 

OF PROCESSING ................................................................................................................................ 161 

FIGURE 8.9 WELKIN VISUALISATION OF THE TOPOLOGICAL FORMAT SIEMENS 100 BUS MODEL MODEL 

PRIOR TO PROCESSING ...................................................................................................................... 163 

FIGURE 8.10 WELKIN VISUALISATION OF THE TOPOLOGICAL FORMAT SIEMENS 100 Bus MODEL AFTER 

THREE MINTES OF PROCESSING (BORDER INDICATES EDGE OF THE APPLET'S DRAWING CANVAS 

WHICH NODES "BOUNCE" OFF) ........................................................................................................ 163 

FIGURE 8.11 WELKIN VISUALISATION OF THE TOPOLOGICAL FORMAT LANGSIDE & CATHCART MODEL 

PRIOR TO PROCESSING ...................................................................................................................... 164 

FIGURE 8.12 WELKIN VISUALISATION OF THE TOPOLOGICAL FORMAT LANGSIDE & CATHCART MODEL 

AFTER PROCESSING .......................................................................................................................... 164 

FIGURE 8.13 WELKIN VISUALISATION OF THE TOPOLOGICAL FORMAT SMALL MODEL PRIOR TO 

PROCESSING ..................................................................................................................................... 
165 

FIGURE 8.14 WELKIN VISUALISATION OF THE TOPOLOGICAL FORMAT SMALL MODEL AFTER THIRTY 

SECONDS OF PROCESSING ................................................................................................................ 165 

xi 



FIGURE 8.15 WELKIN VISUALISATION OF THE BUS-BRANCH FORMAT SIEMENS 100 BUS MODEL PRIOR 

TO PROCESSrNG 
................................................................................................................................ 167 

FIGURE 8.16 WELKIN VISUALISATION OF THE BUS-BRANCH FORMAT SIEMENS 100 BUS MODEL AFTER 

TWO MMTES OF PROCESSrNG ........................................................................................................ 167 
FIGURE 8.17 WELKfN VISUALISATION OF THE BUS-BRANCH FORMAT A) LANGSIDE & CATHCART MODEL 

AND B) SMALL MODEL AFTER THIRTY SECONDS OF PROCESSING 
................................................ 167 

FIGURE 8.18 LANGSIDE & CATHCART NETWORK, MULTIPLE LAYERS INCREASING INCREMENTALLY 

FRom 2 VISIBLE LAYERS (A), THROUGH 3 (B), 4(c), 5(D) To 6 (E) AND 17 VISIBLE LAYERS (F). 170 

FIGURE 8.19 LANGSIDE & CATHCART NETWORK WITH FOUR PATHS, EACH WITH TWO LAYERS VISIBLE. 

STARTING LOCATIONS INDICATED BY THE ARROWS . ..................................................................... 
171 

FIGURE 8.20 LANGSIDE & CATHCART NETWORK WITH PATH A AT LAYER 9 AND PATH B AT LAYER 8. 

SHADED AREA INDICATES OVERLAPPING PATHS . ........................................................................... 
172 

FIGURE 8.21 MODIFIED WELKIN MODEL DIAGRAM WITH POWER SYSTEM ICONS TO REPRESENT LOADS, 

GENERATORS, LINES AND TRANSFORMERS . .................................................................................... 
175 

FIGURE 8.22 MODIFIED WELKIN DIAGRAM WITH ELBOW CONNECTORS BETWEEN COMPONENTS ........ 
176 

FIGuRE 8.23 SCREENSHOT OF THE GRAPHICAL NETWORK CREATOR 
.................................................... 

181 

xii 



Abbreviations 

AJAX Asynchronous javaScript and XMLHttpRequest 

API Application Programming Interface 

BSD Berkeley Software Distribution 

CAD Computer Aided Design 

CCAPI Control Centre Application Programming Interface 

CIM Common Information Model 

CPSM Common Power System Modelling 

DMS Distribution Management System 

DNO Distribution Network Operator 

DTD Document Type Definition 

EAI Enterprise Application Integration 

EMS Energy Management System 

EMTP ElectroMagnetic Transients Program 

EPRI Electric Power Research Institute 

ERP Enterprise Resource Planning 

GIS Geographic Information System 

GMR Geometric Mean Radius 

HTML Hyper Test Markup Language 

HTTP Hyper Text Transfer Protocol 

IEC International Electrotechnical Commission 

IT Information Technology 

JDBC Java Database Connectivity 

JDO Java Data Objects 

xiii 



kV Kilovolt 

MFLOPS Million Floating Point Operations 

MVAr Megavolt Ampere Reactive 

MW Megawatt 

NERC North American Reliability Council 

OAG Open Applications Group 

ODMG Object Database Management Group 

OWL Web Ontology Language 

PNG Portable Network Graphics 

PSS/E Power System Simulator for Engineering 

RDF Resource Description Framework 

RDFS RDF Schema 

RMI Remote Method Invocation 

SCADA Supervisory Control and Data Acquisition 

SGML Standard Generalized Markup Language 

SQL Structured Query Language 

SVG Scalable Vector Graphics 

TNO Transmission Network Operator 

UML Unified Modelling Language 

URI Uniform Resource Identifier 

WK World Wide Web Consortium 

XML eXtensible Markup Language 

XSLT eXtensible Stylesheet Language Transform 

xiv 



I Introduction 

1.1 Motivation and Context for Research 

Since deregulation, both in the UK and internationally, there has been an increasing 

need for power companies to exchange data on a regular basis. This is to ensure the 

reliable operation of the interconnected power networks owned and operated by a 
number of different utilities. Power companies use a variety of different formats 

to store their data, whether it be asset and work scheduling information in a 
proprietary internal schema within a database, topological power system network 
data within a control system, or static files used by simulation software. 

While much of this data is only required within a company, there is often a need to 

exchange the data both internally between different applications and externally 
with other companies. The large number of proprietary formats used by these 

applications requires a myriad of translators to import and export the data between 

multiple systems. This exponential growth in complexity when integrating 
increasing numbers of applications and exchanging between multiple companies 
has driven the requirement for a common format that covers all the areas of data 

exchange in the power electrical domain. 

The IEC standard 61970-301 [1] is a semantic model that describes the components 

of a power system at an electrical level and the relationships between each 

component. The IEC 61968 [2] extends this model to cover the other aspects of 

power system software data exchange such as asset tracking, work scheduling and 

customer billing. These two standards, 61970-301 and 61968 are collectively known 

as the Common Information Model (CIM) for power systems and currently have 

two primary uses: to facilitate the exchange of power system network data between 

companies; and to allow the exchange of data between applications within a 

company. 

The development of the CIM has primarily taken place in North America, where the 
North American Electric Reliability Council (NERC) has adopted the CIM as the 
format for exchanging network data between transmission companies. The majority 

of the application integration activities have similarly taken place within North 

American utilities. 

1 



This has resulted in aspects of the CIM's design being focussed on the needs of 
American utilities, which do not always correspond directly with those of the UK 
transmission and distribution companies. While network operators in the UK are 
also required to exchange information, unlike their North American counterparts 
the regulator in the UK has not specified a standard format the utilities must use. 
The Grid Code[3] defines the data that must be exchanged between system 
operators but does not state the format or medium that must be used. 

The first part of this thesis discusses possible changes and extensions to the CIM to 

allow the representation of data important to UK network operators. This is to 

address some of the perceived deficiencies in the CIM that prevents it from 

accurately modelling the UK network at a level that would allow it to be adopted as 
the common format for exchanging network data between UK network operators. 

Both the applications described previously use the CIM as an intermediary data 

exchange format, whether it is transmitting small segments of data between 

applications or entire power system network models between companies. The focus 

of the research outlined in the second part of thesis is the use of the CIM beyond 

this current data exchange application and utilising the CIM architecture for 

creating, editing, exchanging, validating and visualising power system network 
data for both planning and operational applications. 

This entails the creation of extensions to the CIM standard to support the use of 

power system networks in a CIM format for planning, and the development of a 

software framework to allow this data to be natively created, stored, edited and 

processed. 

The framework requires: 

0 Novel methods of storing the data that allows instant access, supports fast 

conversion to other formats, and concurrent access from multiple sources. 

mA schematic drawing application that allows the user to create new power 

system networks natively in the CIM format using a familiar interface. The 

underlying format must be full, non-abstracted CIM but provide the user 

with an interface that is equivalent to that of a standard power system 

network design package, while concealing the complexity of the underlying 
data if it is not required. 

The development of algorithms to utilise the structure of the CIM to create 

methods for converting CIM data into other formats for export to external 
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simulation and analysis software that are linearly scalable (i. e. the execution 
time is proportional to the size of the network) 

m The design and implementation of an extensible engine for validating CIM 
data against any number of pre-defined profiles. 

mA way for a user to dynamically create a schematic of the power system 
network from CIM data that contains no graphical information 

Such tools will provide the utilities with the ability to utilise the CIM immediately 
for operational purposes, thus reducing the impact of such a major transition, and 
allow planning engineers to create, exchange, validate, integrate and visualise full 

power system network models. Existing commercial tools utilise the CIM as an 

exchange format, while the open source tools available are concerned with checking 
the validity at a very basic level, or generating schema for use in application 
integration applications. 

There are no tools currently on the market specifically designed to allow the user to 
deal with power system networks in CIM format natively for planning purposes. 
This presents a number of challenges for developing novel methods for storing, 

processing, validating, editing and converting the data that scales linearly and is 

capable of easily coping with any future changes to the CIM. It is these challenges 
that are addressed by the research recorded in this thesis. 

1.2 Principal Research Contributions 

There are a number of key contributions that have been made by the work 
described in this thesis. 

Several extensions to the CIM have been proposed both to support the 

representation of equipment within the UK electrical network at a level of detail 

beyond that currently available in the CIM, and to facilitate the use of power system 

network models in CIM format for planning applications. The approach taken in 

making these extensions has been to minimise the changes to the existing CIM 

standard. This facilitates backwards compatibility, which simplifies the integration 

of any extensions with existing software. 

The use of an underlying CIM architecture for the software framework has 

provided a powerful foundation for providing both storage and processing of data 

in a native CIM format. This use of the CIM as the basis of a software framework is 

itself a novel application of a standard that until now has been used exclusively for 
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exchanging static data. Applications built on this framework have shown that data 
in CIM format can be used for more than just data exchange and power system 
models in CIM format can be natively created, edited, processed and exported. 

It has been demonstrated that the CIM format, in conjunction with an extension to 
define points in the network that can be used for an external connection, allows 
power system models in CIM format to be used for planning applications. Using 

the developed software framework and its remote multi-user access architecture, 
users can remotely upload new or modified network sections and automatically 
identify possible connection points within a larger base network model; integrate 

these models into a single, coherent model; then export this data into a format 

usable by an existing analysis application. 

These previous novel developments have required the development of new 

algorithms that utilise the CIM representation of a power system network to allow 
the conversion and processing of the native CIM data. These algorithms are 

essential to all the CIM based applications described in this thesis, most notably the 
tool to export power system data in a format compatible with PSS/E, a 

commercially available power system simulator, and the automatic integration of 

power system models in CIM format. 

These algorithms, combined with the CIM based software framework has allowed 
the rapid creation of tools for a number of applications: 

mA CIM power system network design web application. This design tool is a 

novel application of the popular AJAX technique for creating interactive web 

applications. The web-based nature of the tool provides a means of natively 

creating and sharing power system network models in a CIM format with 
embedded schematic information. 

mA modified version of an open source generic data visualisation tool that, 

when used with network models in CIM format, allow the user to 
dynamically generate network topology diagrams at differing levels of 

abstraction. 

mA novel method of validating CIM data against pre-defined profiles by 

defining logical rules and validating each object individually. This is a 

completely different approach to other members of the CIM community who 
have chosen to implement an Extensible Markup Language (XML) schema 
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based validation system that has proven itself less flexible and unable to 

express all the required constraints. 

1.3 Industrial Applications of Research Contributions 

The use of the CIM for network data exchange by all utilities that fall under the 
jurisdiction of NERC has required all the major power system software vendors to 

create import and export modules that are capable of dealing with CIM data. 

Regular Interoperability Tests are organised to ensure compatibility between the 

products from each vendor. This involves each party creating a network model file 

from their own applications and then exchanging it with every other user who in 

turn imports the file into their software. 

Until recently the only validation that could be performed on these files was at a 

very basic level based on early XML schemas, and as such there was a requirement 
for a validation tool that could express every requirement stated. To aid the 

participants the validation tool described in this thesis was made available online 

and was used by the participants during and in the weeks preceding the last 

Interoperability Test. The flexibility of the CIM software framework allowed the 

validation engine profile and error reporting mechanism to be designed, written 

and deployed in under two weeks. Since being made available as an online web 

application in January 2006, the tool has been used by engineers from a number of 

companies and institutions including: ABB, Areva, EDF, ELIA, ESB National Grid 

Ireland, General Electric, KEMA, LS Industrial Systems, National Grid, Siemens, 

SISCO, SNC Lavalin, Scottish Power, Subnet Solutions, Western Area Power 
Administration and Xtensible Solutions. 

A similar validation tool produced by one of the largest power system software 

vendors was used alongside the application described herein at the last CIM 

Interoperability Test. This tool was unable to perform the same level of validation 

as the application described in this thesis. This resulted in engineers from one 
department of the company having to use the validation tool described in this thesis 

to validate their test model since the tool developed by another department was 

unable to perform the validation to the same level of accuracy. 

Allowing public access to this one outcome of this research has brought 

international recognition to the project and University, including invitations to 

present at CIM User Group meetings and to join the IEC Working Group 

responsible for the creation of the IEC 61968 standard, as well as a number of 

5 



enquiries from commercial companies interested in the technology and its novel 
application of the CIM standard. 

1.4 Thesis Outline 

The remainder of this thesis has been divided into eight principal chapters: 

Chapter Two provides some background on the existing techniques and 
technologies used within the research work. This includes a basic description of the 

modelling language the CIM is expressed in, along with a description of the CIM 

itself and the different methods used to encapsulate the data 

Chapter Three covers extensions to the CIM, including those proposed by IEC 

working groups and academics, and the extensions proposed to allow the CIM to 

successfully cover the major requirements of UK utilities. 

Chapter Four describes the framework used to construct native CIM applications 

while Chapter Five provides details on the application to convert CIM data to a 
proprietary format for power system simulation. Chapter Six describes how the 

validation engine was designed and implemented while Chapter Seven details how 

the CIM structure can be utilised to allow the automatic integration of power 

system network models in CIM format. Chapter Eight discusses how diagrams of 

network models in CIM format can be automatically generated and presents a 

method of graphically creating new power system network models in CIM format. 

Finally, Chapter Nine summarises the principal conclusions of the research work, 
highlighting the main achievements and proposing further research and 
development work to build on the existing outcomes. 

1.5 Associated Publications 

The following publications have arisen from the work described in this thesis: 

1.5.1 Journal Publications 

A. W. McMorran, G. W. Ault, C. Morgan, I. M. Elders, J. R. McDonald, "A Common 

Information Model (CIM) Toolkit Framework Implemented in Java", IEEE 

Transactions on Power System, February 2006, Volume 21, Number 1, pp. 194-201 

A. W. McMorran, G. W. Ault, I. M. Elders, C. E. T. Foote, G. M. Burt, J. R. McDonald, 

"'Translating CIM XML Power System Data to a Proprietary Format for System 
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Simulation", IEEE Transactions on Power System, February 2004, Volume 19, 
Number 1, pp. 229-235 

1.5.2 Conference Publications 

A. W. McMorran, G. W. Ault, C. Morgan, I. M. Elders, J. R. McDonald, "A Common 

Information Model (CIM) Toolkit Framework Implemented in Java", IEEE Power 

Engineering Society General Meeting, 18-22 June 2006, Accepted for presentation 

A. W. McMorran, "The Common Information Model as a Software Framework", 
CIM User Group Meeting, Carmel Indiana, 1-4 November 2005 

A. W. McMorran, G. W. Ault, I. M. Elders, C. E. T. Foote, G. M. Burt, J. R. McDonald, 

"'Translating CIM XML Power System Data to a Proprietary Format for System 

Simulation", IEEE Power Engineering Society General Meeting, Denver Colorado, 

6-10 June 2004 p. 116 Voll 

A. Dysko, A. W. McMorran, G. M. Burt, G. Ault, J. R. McDonald, "Web Services 

Based Distributed Dynamic Protection System Simulation And Testing", 

Developments in Power System Protection Conference, Amsterdam, The 

Netherlands, April 2004 

A. W. McMorran, G. W. Ault, G. M. Burt, J. R. McDonald, "Web Services Platform For 

Power System Development Planning", UPEC 2003: Proceedings of the 38th 

International University Power Engineering Conference, Thessaloniki, Greece, 

September 2003 
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2 Background 

2.1 Chapter Introduction 

This chapter describes the pitfalls of the traditional methods of storing power 
system data, then introduces the concepts behind class modelling and how this 

approach is used to define a power system in the IEC 61970 Common Information 
Model (CIM) standard. The use of the Extensible Markup Language (XML) to 

encapsulate this data for the exchange of both full power system models and inter- 

application messages is then described. 

2.2 Power System Data Formats 

Since the advent of the modern digital computer, power system engineers have 

utilised the capabilities of this tool in a variety of areas, whether it be performing 

complex analysis calculations on a power system or to control its operations in real- 
time. All of these applications require the operator to digitally store and exchange 
data about the system. 

Large-scale Energy Management Systems (EMS) and asset-management systems 

use database schemas for defining the structure of the data storage data, often 

custom-written to reflect the operator's specific requirement. Offline applications 
for performing load-flow and fault-level analysis simulations use application- 

specific file formats that represent the data required by each application. 

In modern utilities' IT infrastructures, large-scale applications such as the EMS and 

asset-management system communicate with each other, generally using a vendor's 

own custom format based on the internal database schema. In the past this often 

required the user to purchase each piece of enterprise-level software from the same 

vendor to ensure compatibility when integrating them. 

The deregulation of the power industry, however, has resulted in multiple utilities, 

running software from a number of different vendors, having to exchange large 

data sets on a regular basis. The use of proprietary, custom formats complicates 
this exchange, requiring complex translation between each of the custom formats. 

Similarly, offline applications traditionally use a rigid, proprietary format 

containing only the data required by that particular version of the application. 

When subsequent versions of the program require additional details the file format 
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is changed, resulting in multiple formats for a single application. Of course, such a 
scenario is not limited to power system applications. Changing the file format for 

each new software version is common practice within the software industry but 

usually only causes minor irritation since each new version of a vendor's software 
contains import facilities to convert previous versions of the file format into the new 
format. 

Problems occur when companies need to exchange data between software 
applications from different vendors, and/or have multiple versions of the same 

software running within their company. Such a scenario requires a company to 

either: 

1. Maintain multiple copies of the same data in multiple formats 

2. Store the data in a format compatible with every piece of software, requiring 
the removal of application-specific data and a subsequent loss in precision 

3. Store the data in a single, highly-detailed format and create software to 

translate from this highly-detail format to the desired application file 

formats 

4. Use a highly detailed format that is compatible with every application and 

whose standard format contains the basic data required to represent the 

power system while simultaneously allowing additional, detailed, 

application-specific data to be contained without invalidating the format. 

The third option requires additional software engineering on the part of the 

company to create translation tools, but requires them to maintain only a single 
format containing all the data required. The fourth option represents the ideal 

solution, allowing a company to maintain a single, highly detailed format that is 

compatible with any of their software. 

This option does, however, requires three things: 

nA highly detailed model to describe the power system 

0A file format capable of storing extended data without affecting the core 
data 

0 Power system software vendors and utilities to either adopt and embrace 
this data model and format either for economic or regulatory reasons 
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The Common Information Model (CIM) for Power Systems has the potential to meet 
the first requirement of the above list while the eXtensible Markup Language 
(XML), combined with the Resource Description Framework (RDF) offers a means 
of fulfilling the second requirement. The remaining requirement can be considered 

more of a commerical challenge than a technical one. Universal acceptance of this 
format requires both utilities and vendors to acknowledge the benefits of adopting 
the standard. At present, all of the major power system application vendors are 

active participants in the CIM Interoperability tests and the popularity of the format 

is spreading. 

This chapter will provide some background on the CIM and the CIM RDF XML 

format. To understand the structure of the CIM, however, it is important to have an 

understanding of class hierarchies within the object-oriented software paradigm 

and the benefits of using such an approach to model the components of a power 

system. The following sections will provide some general background on class 
hierarchies, followed by more detailed background information on the CIM. Finally, 

it will be shown how this data can be represented in the RDF XML format. 

2.3 Class Hierarchies and UML Class Diagrams 

When building any system to represent data, whether it be a software architecture 

or a database schema, the design of the system will define how extensible and 

scalable the system is, and ultimately, whether it succeeds or fails at its given task. 
This chapter provides an introduction to the concept of Class Hierarchies and how 

they are used in system design, along with the Unified Modelling Language 
(UML)[17]. 

Within a system, a class represent a specific type of object being modelled. A class 
hierarchy is an abstract model of a system defining every type of component within 

a system as a separate class. A class hierarchy should reflect the real-world structure 

of the system. 

While a full description of UML is outwith the scope of this thesis, UML class 
diagrams provide a useful means of visually representing object hierarchies. This 

section will provide a simple case study to show how a class hierarchy representing 

a small segment of a University system can be constructed independently of the 

final platform on which the design will be utilised. 
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1.1 Classes 

h class can have its own internal attributes and relationships with other classes. 
,h class can be instantiated into any number of separate instances, known as 
ects, each containing the same number and type of attributes and relationships, 
with their own internal values. 

Person 
Name 
Gender 

I "W"', MM"WIMM" 

Figure 2.1 The Person Class 

3imple example of a class is that of a Person as shown in Figure 2.1. The Person 

ss contains two basic attributes: Name and Geiider. If the system being created 

re to represent every person in the University, it would require only this single 

ss since every person within the University can be represented at the most basic 

el by the attributes defined in Person. 

ra University containing 10,000 students and staff, the system would create 
000 separate instances of the Person class, each containing a value for Name and 

nder independent of the other 9,999 instances (although not necessarily unique). 

-he system is required to store more information than just a person's Name and 

rider, and differentiate between staff, students and the different types of each, 

ýn the class diagram becomes more complex. 

3.2 Inheritance (General isation) 

ieritance (also known as Generalisation) defines a class as being a sub-class of 

: )ther class. As a sub-class, it inherits all the attributes of its parent, but can also 

itain its own attributes. 
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Person 
Name 
Gender 

I Staff I 

StudentNumber 
Course 

Research II Academic 

Undergraduate II Postgraduate 

Masters Research 

Figure 2.2 Class Hierarchy of people at a University 

Figure 2.2 provides a class hierarchy to represent some of the different types of 
people that exist within a University system. This diagram, as with all subsequent 

class diagrams uses standard UML symbology. Student and Staff are both sub- 
classes of Person. A Student is still a person and still has a Name and Gender, but 
has additional attributes to denote the year they are in, their student number and 
the course they are studying. Similarly, if someone is Staff they are still a Person, 
but have gained a new attribute to indicate their salary. 

The Student class itself has two sub-classes, Undergraduate and Postgraduate, both 

inheriting all the attributes of Student (and in turn, of Person), but independent of 

each other. The Postgraduate class also has two subclasses, Masters and PhD. A 

PhD is a Postgraduate and a Student and a Person, with all of their attributes, but 

with the addition of its own ResearchTopic attribute. 

The Staff class also has two sub-classes, Research and Academic, both of which 

retain all the attributes of Staff and Person. 

So while a PhD is a Postgraduate, a Student and a Person, not all Students are PhDs. 
Similarly, an Academic is Staff and a Person, but not every member of Staff is an 
Academic. 
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2.3.3 Association 

Section 2.3.2 has shown how a class hierarchy can be formed to describe sub-classes 
of Person, but other than the inheritance there are no other relationships defined 
between classes the classes in Figure 2.2. 

Figure 2.3 Class hierarchy of students, staff and subjects 

In Figure 2.3 we have introduced two additional classes: Subject and Period. 

Neither of these classes are a type of Person, and as such do not inherit from the 

Person class. The Subject class does however, have a relationship with the 

Undergraduate and Academic classes. 

An Undergraduate can study a number of subjects and an Academic can teach a 

number of subjects. These relationships are shown on the diagram as associations 
between the classes. 

For the Undergraduate-Subject association, the role is given as "'Studies"' while the 
location of the arrowhead indicates that it is the Undergraduate who Studies the 
Subject (if the arrow were reversed, it would mean that the Subject studied the 

Undergraduate). 

At each end of the association link is the multiplicity. For the Undergraduate- 

Subject association, these indicate that a Subject must have from I to many (I.. *) 

Undergraduates, but an Undergraduate can have from 0 to many (0.. *) subjects 
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(since it is possible that some Undergraduates may not be studying any subjects due 
to industrial placements, sabbaticals etc. It is assumed that a subject will not exist in 
the system if no students have chosen to study it). 

Similarly, a Subject will have from 1 to many Academics who teach that Subject, but 
an Academic may teach from 0 to many Subjects (since not all Academics have to 
teach). 

The other additional class, Period, with Day, Time and Duration attributes, 
represents a particular timetable period and as such a Subject has an association 
with a Period. As with the other associations, the Subject-Period association has a 
role, isTaughOurbig and multiplicities which indicate that a Subject will be taught 
during 1 to many periods and that a Period will have from 0 to many Subjects 

taught during its time-period. 

This demonstrates how classes relate to each other on a very basic level and how 
UML Class Diagrams provide a means of graphically displaying these relationships. 

2.3.4 Aggregation 

Figure 2.4 Class Hierarchy of a University and Building 

The Aggregation relationship defines a special kind of association between classes, 
indicating that one is a container class for the other. In the example shown in Figure 

2.4, two new classes University and Building have been introduced, each very 

simple classes containing only a single attribute to denote their name. The 

multiplicity on the diagram operates in the same manner as to that of the 
Association, indicating that a Building can be part of 0 or more Universities (we are 

assuming that some Universities operate joint schools and not every building within 
the system will necessarily be part of a University). The second multiplicity 
indicates that a University can contain 0 or more buildings (0 if it operates solely by 

remote learning for example). 

Unlike a simple Association relationship the line denoting a relationship on the 

diagram contains a diamond instead of an arrowhead. This indicates that the two 
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classes have an Aggregation relationship. This can be thought of as "The University 
is made up of 0 or more Buildings", indicating that the relationship is stronger than 

a simple association. The clear diamond, however, indicates that the two are not 
completely inter-dependent, and that if the University were destroyed the buildings 

would still exist (assuming the destruction was not a literal demolition but instead 
indicated that the University had ceased to exist). 

2.3.5 Composition 

. 

0.1 
Build 

Name 

l.. *l 
Room---l 

Figure 2.5 Class Hierarchy of a University, Building and Room 

Composition is a specialised form of Aggregation where the "contained" object is a 
fundamental part of the ""container" object, and that if the "container" is destroyed, 

all the objects that are related to it with a composition are similarly destroyed. An 

example of this is shown in Figure 2.5 between the new Room class and the 

Building class. 

The line here has a solid diamond, indicating that the relationship is a composition. 
The multiplicity states that a building will have I or more rooms (since even an 

empty building can be thought of as one giant room) and that a room will be 

contained within I building only. This reflects the real world makeup of rooms and 
buildings. If a building is destroyed then the rooms within it are also destroyed. 

Any system that implements this design will know that if a Building object is 

destroyed, any Room objects that are contained within that particular instance will 

also be destroyed. 
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2.3.6 Summary 

Figure 2.6 Class diagram showing some of previous classes and their relationships 

The previous sections should have provided you with a basic understanding of 

what a class hierarchy is and how this can be represented on a class diagram. Figure 

2.6 shows some of the classes from the previous sections (along with two extra sub- 

classes of Room), and how the separate diagrams in Figure 2.3, Figure 2.4 and 
Figure 2.5 all relate to each other. It should be clear that the system could be 

extended further to incorporate more details about the University system such as 

timetables for students and staff or the computing facilities available in each room. 
Both of these examples would make use of the existing classes by association along 

with the introduction of new classes. 

These fundamentals of the class system are essential in the understanding of the 

CIM as described in the following sections. 
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2.4 The Common Information Model for Power Systems 

This section provides some history of the CIM and how it represents the common 
components within a power system. Examples are given to show where a common 
power system component fits into the class hierarchy, how connectivity is 

represented using CIM classes and how an example circuit, shown as a line 
diagram, can be converted to CIM objects. Finally, each of the packages in the IEC 
61970-301 standard is summarised. 

2.4.1 History 

Exchanging power systems data between utility companies is always problematic 
when proprietary formats are used. In the past, a company would traditionally use 
a single software system, whether it is a custom in-house solution, or purchased 
from a large software company, and there would be a single proprietary data 

standard and format used. With the deregulation of the power industry both in the 
UK and abroad, there is now a greater need to be able to share such power system 
data between companies. The increase in choice provided by the number of power 
system software vendors, and the different software packages and architectures 
available add to the challenge of data exchange. These issues point to a requirement 
for a single, open standard for describing power system data and to aid the 
interoperability between software packages and exchange of information both 

within one company and between companies. 

The Common Information Model (CIM)[1][21 is an open standard for representing 
power system components developed by the Electric Power Research Institute 
(EPRI) in North America. The standard was developed as part of the IEC TC57 
WG13 on developing a Control Centre Application Programming Interface (CCAPI) 

to provide a common model for describing the components in power systems for 

use in a common Energy Management System (EMS) Application Programming 

Interface (API). The format has been adopted by the major EMS vendors to allow 
the exchange of data between their applications, independent of their internal 

software architecture or operating platform. 

The data model itself is language-independent, defining the components of a power 

system as classes along with the relationships between these classes: inheritance, 

association and aggregation; and the parameters within each class are also defined. 

This provides the foundation for a generic model to represent all aspects of a power 
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system, independent of any particular proprietary data standard or format. This 

simplifies the interoperability between software applications, since there need only 

exist a translator to convert to and from the CIM based data, where previously there 

would have been the need for translators to convert to and from every other third 

party company's proprietary format. 

For an engineer the format of the Common Information Model (CIM) may at first 

appear confusing compared with a flat file format. This chapter will explain how 

the CIM was created using a class structure to describe components of a power 

system network; the advantages of this approach; and how a power system network 

model can be translated into a number of CIM objects. 

2.4.2 CIM Class Structure 

The CIM hierarchy currently has no official common super-class (i. e. a class from 

which every component inherits). The majority of CIM classes, however, inherit 
from the Naming class' so for this section it can be considered the base class for the 
hierarchy. 

2.4.2.1 Example: The Breaker Class 

A simple example will be used to explain why it is advantageous to use a class 

structure for defining components instead of simply specifying attributes for every 
different type of component in the CIM as an independent entry. 

A Breaker is one of the most common components in a power system described as a 
"mechanical switching device capable of making, carrying and breaking currents 

under normal circuit conditions and also making, carrying for a specified time, and 
breaking current under specified abnormal circuit conditions"' [1]. To understand 
how this fits into the CIM class hierarchy the Breaker can be thought of at different 

levels of abstraction. 

' There is ongoing discussion within the CIM User Group on the use of the Naming class itself and whether a 

single super-class should replace it. The Naming class breaks a strict class hierarchy since no object can be thought 

of as being a "Naming" at its highest level. Suggested solutions include the removal of the Naming class itself and 
its replacement with a CIMObject class, or retaining the Naming class but have it as an associated class to a 
CIMObject class. This approach breaks the current hierarchy since no other class will inherit from Naming, but 

instead, any CIM class can have one or more Naming objects associated with each instance. These discussions are 

continuing and at the current time no changes have been finalised for the next version of the CIM. 
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At the most detailed level it is a Breaker, but since a breaker's most basic 

functionality is the ability to be open or closed it can be described as a specialised 
type of switch. Within the power system a switch is part of the physical network 
that conducts electricity, and as such can be considered a type of conducting 

equipment. Since the power system may contain equipment that does not conduct 

electricity directly, conducting equipment can be considered a tý 7 pe of generic 

equipment. A piece of equipment can similarly be considered as a being resource 

within the power system. 

A Breaker can therefore be considered to be a Power System Resource, a type of 
Equipment, a type of Conducting Equipment and a type of Switch. This b 
corresponds to a class inheritance structure shown in Figure 2.7 below. 0 

Figure 2.7 Breaker Class Inheritance Hierarchy 

The Naming class is the root class for this particular branch of the CIM class 
hierarchy and other CIM classes in the Breaker hierarchy are: 

PowerSystemResource, used to describe any resource within the power 

system, whether it be a physical piece of equipment such as a Switch or an 

organisational entity such as a SubControlArea. 47) 
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Equipment, which refers to any piece of the power system that is a physical 
device, whether it be electrical or mechanical. 

E ConductingEquipment, used to define types of Equipment that are designed 

to carry current or that are conductively connected to the network and 

contains an attribute to denote the phases (A, B, C, N or any combination of 

each). 

Switch, a generic class for any piece of conducting equipment that operates 

as a switch in the network and hence has an attribute to define whether the 

switch is normally open or closed. 

a Breaker, a specific sub type of Switch, with additional attributes to define the 

current rating and transit time. 

As with the University system example in Section 2.3, all subclasses inherit the 

attributes from their parent class, and as such a Breaker will contain a normalOpen, 
from the Switch class, and phases attribute, from the ConductingEquipment class, 

as well as its own native attributes. 

2.4.2.2 Subclasses of Switch 

As well as Breaker, the CIM standard contains multiple subclasses of Switch, 

including Jumper, Fuse, Disconnector, LoadBreakSwitch and GroundDisconnector. 

Co 

I Switch I 

Breaker LoadBreakSwitch 
ampRating am 

__eRatinQ inTransit-Fime 

Figure 2.8 Switch class with Breaker and LoadBreakSwitch subclasses 

Figure 2.8 shows an example of how the LoadBreakSwitch class, a subclass of 
Switch fits into the class hierarchy. Both Breaker and LoadBreakSwitch inherit from 

Switch, so they both contain a normalOpen attribute whilst maintaining their own, 
internal attributes. 
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As well as dealing with them as their native class, the system can treat a Breaker or 
LoadBreakSwitch component as being a Switch, a piece of Conducting Equipment, a 

piece of Equipment, a Power System Resource or just a Naming entry. 

For example: 

If a piece of software is performing a topological analysis on a power system 

network then it will need to know whether a switch is open or closed to determine 

the status of the network. The software does not need to know whether the Switch 

is a Breaker, a LoadBreakSwitch or any other subtype of Switch since the attribute it 
is concerned with, normalOpen, exists in all the classes that inherit from Switch. As 

the software traverses the network model, if the component it reaches is of the class 
Switch or any of its subclasses it extracts the value of iiormalOpcii and proceeds 

accordingly. 

Figure 2.9 Switch Class diagram with new subclasses of Switch and Breaker 

If a new type of Switch, NewSwitchType is added to the standard at a later date as 

shown in Figure 2.9, assuming the original Switch class is not modified, then the 

software will still be able to treat NewSwitchType as if it were a Switch when 

performing its analysis. Even though the class did not exist when the software was 

originally written it is looking for any components that are of a class that inherits 

from Switch. 

Similarly, if a new subclass of Breaker, NewBreakerType, is added (as shown in 

Figure 2.9), it is still a type of Switch (since its parent class, Breaker is a subclass of 
Switch) and can be treated as Switch or a Breaker by the software. 
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As has been shown, this use of an inheritance hierarchy to define components 

allows classes within the system to be defined as specialised subclasses of a general 

parent class until the desired level of detail has been reached, from the generic 
PowerSystemResource right down to the Breaker or LoadBreakSwitch class. 

This use of a class hierarchy also allows extensions to be made to the standard by 

extending the existing classes instead of introducing completely new, independent 

entries. This approach, as shown, can allow existing software applications to 
interpret the new data, albeit at a higher level of abstraction, without necessarily 

requiring extensive modification. 

2.4.2.3 Defining Component Interconnections 

When defining how components within a power system network join together, 

rather than define direct connection between components, the CIM uses Terminals 

and Connectivity Nodes. 

To understand why this approach is taken consider the very simple, circuit shown 
in Figure 2.10 below. 

6 

Figure 2.10 Connectivity Example circuit 

ie Alpha 

This circuit, containing a Breaker, Load and Line, would require three CIM Objects 

to represent the pieces of physical conducting equipment: An Energy Consumer (to 

represent the load), a Breaker and an AC or DC Line Segment for the line. 

The CIM does not model interconnections by associating each component with the 

other components it connects to, since having Breaker I contain associations to Load 
A and Line Alpha; Load A contain associations to Line Alpha and Breaker 1; and 
Line Alpha contain associations to Breaker I and Load A would result in the 
interconnections being defined as shown in Figure 2.11. 
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ie Alpha 

Figure 2.11 Connectivity Example circuit with direct associations 

Instead, the CIM uses a Connectivity Node to connect equipment, so that should 
three or more pieces of equipment meet at aT or Star point, the connectivity is 

accurately represented as shown in Figure 2.12. 

B 
ie Alpha 

Figure 2.12 Connectivity Example circuit with Connectivity Node 

In CIM, however, pieces of conducting equipment are not directly associated with 
Connectivity Nodes. A piece of conducting equipment will have one or more 
Terminals associated with it, and these Terminals in turn are associated with a 

single Connectivity Node. 
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Figure 2.13 Conducting Equipment and Connectivity class diagram 

The relationship between the Terminal, ConnecitivtyNode and 
ConductingEquipment classes is shown in Figure 2.13. Since only pieces of 

conducting equipment carry current on the network, the association to the Terminal 

class is from the ConductingEquipment class with a multiplicity of O.. n since a piece 

of conducting equipment can have zero or more connections to the network. The 

corresponding Terminal to Conducting Equipment relationship has a multiplicity of 
I since a Terminal can only ever be associated with one Connectivity Node. Since 

the Breaker class (via its Switch class parent), Energy Consumer and AC or DC Line 

Segment (via the Conductor class) all inherit from Conducting Equipment, they too 

inherit the association relationship with the Terminal class. 

The connectivity relationship between the terminals, conducting equipment and 
connectivity nodes is illustrated in Figure 2.14a) below. 

a) 

Breakerl 

Load A 

Terminals 
I--, ' 

_a4,,,. 

Une Alpha 

Load A 

Connectivity Node I 

Terminals 

Line Alpha 

Connectivity Node 

Figure 2.14 Connectivity Example circuit with Connectivity Node and Terminals 
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The inclusion of the Terminals may initially seem unnecessary, but as well as 
defining connectivity, Terminals are also used for defining points of connectivity- 

related measurement in the network such as power flows, currents and voltages. 

The importance of allowing the measurement point to be defined so exactly can be 

shown in Figure 2.14b). In this diagram Breaker 1 has two Terminals associated 

with it to represent the two distinct network connection points it would have in a 

real-world power system network. If the Breaker is open then the measurement of 

voltage for the Breaker will be different at these two points where the Breaker 

connects to the network. This would result in an ambiguity if measurement were 

only defined as being on a particular component without specific information about 

which point of connection the measurement is to be made at. 

2.4.3 Converting a Circuit to CIM Objects 

The previous chapters have described a small section of the class hierarchy for 

describing CIM components and shown how Terminals and Connectivity Nodes are 

used to define the interconnection of components within the network. This section 
will use a more complex example to show how voltage levels, current transformers, 

power transformers and generators are modelled by converting a standard line 
diagram into CIM objects. 
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2.4.3.1 Identifying the CIM Classes 

---------------- ----------------------------- 
33kV 132kV 

Load A 
A 

Line I 

Breaker: 
33 kV Breaker 132 kV 

------ ----- -------- 
Transformer 17-33 

---------------- 
Transformer 17-132 

r ----------- - ---------------- -- ------------ 
17 W 

Busbar 17 W 

CT17kV 

Breaker 17 kV 

Generator Alpha 

----------------------------------- ------------------- 

Figure 2.15 Example Circuit as a line diagram 

The circuit shown in Figure 2.15 shows a circuit containing a single generating 

source, load, line and busbar. The circuit also contains two power transformers 

resulting in three distinct voltage levels of 17kV, 33kV and 132kV. 

The load, line and breakers, as stated in Section 2.4.2.3 map to the CIM 

EnergyConsumer, ACLineSegment and Breaker classes respectively while the 

busbar similarly maps to the BusbarSection class. Generator Alpha will map to a 

single piece of conducting equipment, the SynchronousMachine, an 
"electromechanical device that operates synchronously within the network"[1]. 
When operating as a generator, the SynchronousMachine object must have an 

association with an instance of the GeneratingUnit class. 
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The GeneratingUnit class does not represent a piece of conducting equipment that 

physically connects to the network; instead it represents "a single or set of 

synchronous machines for converting mechanical power into alternating-current"[1] 

---------------- 
33kV 

Load A 

r Y( 
Energy( 

V- -\j 
Transformer 17-33-__-(ý--, j Transformer 17-132 
------------- ---------------- 

Breaker; 
Breaker 132 kV 

I F-I 33 kV : Breaker 1rI 

Br=eaker Breaker 

------ 
it 

---------- 

I --Tl Breaker 

CT 17 kV 

----------------------------- 
132kV 

.6 
Line I 

ACLineSegment 
mmer T 

Busbar 17 kV 

l7kV 

Generator Alpha 
Synch ronousMachine 

GeneratingUnii 

--------------------------- --------------------------- 
Figure 2.16 Example Circuit with partial CIM Class mappings 

These mappings are shown in Figure 2.16, leaving only the two power transformers 

and current transformer to be mapped to CIM classes. 

2.4.3.2 Representing Power Transformers as CIM Objects 

A power transformer is not mapped to a single CIM class, instead it is split down 

into a number of components with a single PowerTransformer coi7taliier class. Thus 

a two-winding power transformer becomes two TransformerWinding objects within 

a PowerTransformer container. If a tap changer is present to control one of the 

windings then an instance of the TapChanger class is associated with that particular 

winding while still being contained within the PowerTransformer instance. The 
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UML class diagram for the classes that form a transformer is shown in Figure 2.17 

below. 

PowerSystemResource 

Equipment 

O.. n TapChanger 

Figure 2.17 Transformer Class Diagram 

Although a PowerTransformer is still a piece of Equipment in the system, it does 

not conduct electricity itself and thus does not inherit from ConductingEquipment 

but from its parent, Equipment. A TransformerWinding, however, does inherit 
from ConductingEquipment since it is physically connected to the network and 
does conduct electricity. The TapChanger is part of the TransformerWinding and as 

such cannot be considered to be a separate piece of equipment in its own right and 
inherits from PowerSystemResource. 

The PowerTransformer and TransformerWinding classes have an aggregation 

relationship2, meaning that a PowerTransformer is made up on 1 or more 
TransformerWindings which in turn can be made up of zero or more TapChangers. 

When considering a physical transformer sitting in a substation the 

PowerTransformer container can be thought of as the shell of the transformer. The 

shell itself does not conduct any of the electricity in the network, but instead holds 

the windings of the transformer, the insulating material, magnetic core, and all the 

other components that make up the transformer. 

' Although it could be ar ed that this relationship is composition rather than aggregation the CIM class gu 00 
structure contains no composition relationships. This is due to the flexible design of the standard, where a 

composition relationship would indicate a tighter relationship between classes than is necessary for a number of 

applications of the standard. 
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The connections from the transformer to the network are made with the windings 
themselves, a relationship that is mirrored in the CIM representation where it is the 

TransformerWinding class that inherits from ConductingEquipment. 

Transformer 17-33 

PowerTransformer 

,,, 
ýTransformefflinding 

'TransformerWinding 

TapChangejr 

Figure 2.18 CIM Mappings for Transformer 17-33 

Thus, Transformer 17-33 from Figure 2.15 can be represented as 4 CIM objects: two 

TransformerWindings, one TapChanger and one PowerTransformer as shown in 
Figure 2.18. 

Similarly, a transformer with a tertiary or quartiary winding can be represented as a 

single PowerTransformer containing three or four instances of the 
TransformerWinding class. 

2.4.3.3 Representing a Current Transformer as a CIM Object 

The current transformer CT 17kV does not map directly to a piece of conducting 

equipment in the CIM hierarchy as would be expected. The current transformer's 

purpose is to measure the current at its location in the network, and as such when 

modelling the network it is the measurement from that location that is modelled 

rather than the piece of equipment doing the measuring. 

This involves creating an instance of the Measurement class to measure the current 

at a particular terminal. As described in Section 2.4.2.3, each piece of conducting 

equipment has one or more terminals to represent the points at which it connects to 

the network. By associating a Measurement object with a particular terminal and 
defining the measurement taken by that instance to be current then the 
Measurement object will reflect the role played by the current transformer. 
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2.4.3.4 Defining Containment 

As well as having component interconnections defined using the 
ConductingEquipment-Terminal-ConnectivityNode associations, the CIM has an 
EquipmentContainer class that provides a means of grouping pieces of Equipment 
together to represent both electrical and non-electrical containment. 

Voltage Levels 

Pieces of conducting equipment do not have a voltage attribute to define the voltage 
as a specific value, instead they are associated with a VoltageLevel, a subclass of 
EquipmentContainer. Each instance of the VoltageLevel class itself has an 
associated BaseVoltage object that contains a single attribute to define the nominal 
voltage of that particular group of components. A BaseVoltage instance may be 

associated with more than one VoltageLevel, since standard voltage levels (e. g. 33, 
132,275,400kV) will exist throughout the network. Each VoltageLevel instance, 
however, contains only the interconnected pieces of equipment at the same voltage 
level. This is an example of using a subclass of EquipmentContainer to represent 

electrical containment. 

Substations 

The Substation class is a subclass of EquipmentContainer that can contain multiple 
VoltageLevels and is used to define a collection of equipment "through which 

electric energy in bulk is passed for the purposes of switching or modifying its 

characteristics" [1]. 

In the example network shown in Figure 2.15, the three different voltage levels 

identified by the dashed bounding boxes are mapped to three instances of the 

VoltageLevel and contained within a single SubStation instance. Each VoltageLevel 

object also has an associated BaseVoltage object with a nominal voltage of 17,33 and 
132kV. 

The Substation class, being a subclass of EquipmentContainer can also contain other 
instances of Equipment, such as PowerTransformer, which, as previously explained, 

is itself a container, not a piece of conducting equipment. The Substation class is an 

example of a subclass of EquipmentContainer to represent non-electrical 

containment since it will contain pieces of equipment that are physically grouped, 

but not necessarily electrically connected. 
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Lines 

The ACLineSegment, however, is not contained within a VoltageLevel, instead it is 

contained within an instance of the Line class. The Line class in CIM is used to 
define a ""component part of a system extending between adjacent substations or 
from a substation to an adjacent interconnection point"[1]. A Line may contain 

multiple line segments of either the AC or DC variety, but does not itself represent a 

piece of physical conducting equipment. 

Since a line segment is used to represent "'a wire or combination of wires ... used to 

carry alternating [or direct] current between points in the power system"[11 it 

would be inaccurate to define it as being inside a specific voltage level within a 

substation. As such, the AC and DCLineSegment classes contain a direct 

association to the BaseVoltage class to define their nominal voltage level. 

2.4.3.5 Equivalent CIM Representation 

* ConnectivityNode 

0 Terminal 

SubStation VoltageLevel 
( EnergyConsumer 

BaseVoltage Load A 

Breaker I Breaker 
33 kV 

Tra nsfo r me 
Transformer 

17-33 PowerTransformer 
__ .............. ...... 

VoltageLevel Tra sformerWinding 
(TapChangerý 

Measurem 

Breakerý 

Line 
ACLineSegment ý 

Line I 

VoltageLevel 
BaseVoltage 

132 kV 
I 

Breaker 
132kV 

II 

Busbar 17 kV 

BusbarSection 

Breaker l7kV 

I Generator Alpha 
SynchronousMachine I 

TransformerWinding 
----- - --------------------- 

PowerTransformer 
- ................. - ---- TransformerWinding 

TapChang-erý 

Figure 2.19 Example Circuit with full CIM Mappings 

17-132 
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When fully converted to CIM objects, the original example circuit shown in Figure 

2.15 is translated into the 45 CIM Objects shown in Figure 2.19. The BusbarSection's 

position may at first seem erroneous, but in the CIM the ConnectivityNodes are 

used to define the point of interconnection for pieces of equipment. As such, the 
BusbarSection object is used primarily to provide a point of association (via its 

terminal) for measurement objects measuring the voltage at that particular busbar in 

the system. This reflects the positioning of equipment in the physical system, since 

a voltage transformer will often measure voltages at the busbars within a 

substation. 

This representation of the example network could be extended further with the 

addition of objects to represent control areas, equipment owners, measurement 

units and generation and load curves, but for now it is enough to understand how 

an existing network representation can be mapped to CIM objects. 

2.4.4 IEC 61970-301 CIM Packages 

As with any other complex class structure, classes in CIM are grouped together into 

packages dependent on their role within the power system. The core IEC 61970-301 

standard contains eight main packages, and a global domain package used for 

defining data types. The Core, Wires and Topology packages contain all the basic 

classes for defining the physical characteristics of a power network and, with the 

exception of the Measurement class, all the classes used in the CIM representation of 
the example circuit in Section 2.4.3 come from these three packages. 

The Wires package defines classes that are required to represent the electrical 

components of a network, such as Transformers, Lines and Switches, while the Core 

and Topology packages define the interconnection of components: The Connectivity 

Node (contained in the Topology package) and Terminal (contained in the Core 

package). 

These three packages alone, however, do not fully describe a functioning power 

system, but provide only the basic electrical characteristics of the equipment and 
describe how they are connected. To provide a detailed description of a network at 

an operational level, other classes are required to define the operation and 

additional characteristics of the equipment, both electrical and non-electrical. 

The CIM is not only used for exchanging full power system models, as will be 

covered in more detail later on, the CIM is also used as a common model for defined 

business process messages. As such, a number of the packages contain classes that 

32 



are used for business processes and not for defining the properties of a full power 

system model in CIM format. 

2.4.4.1 Core 

The Core package contains the parent PowerSystemResource class, from which all 
other classes concerned with the physical properties of the network inherit 
(including all classes relating to physical pieces of equipment, as well as Equipment 

Containers which are used for organising pieces of equipment into groups, such as 
specific VoltageLevels, or equipment contained within a specific Substation). 

2.4.4.2 Wires 

The Wires package defines all pieces of equipment electrically connected to the 

network, as well as supporting classes for defining additional properties and 

arrangement of objects. This includes classes for the components that are physically 
connected to the network at the points of power generation and consumption 
(Energy Consumer and Synchronous Machine, as previously mentioned), as well as 
several classes that detail the arrangement and settings for Power Transformers, 

properties for Lines (comprised of one or more Line Segments), and other pieces of 

conducting equipment including Switches, Busbar Sections and Regulating 
Conducting Equipment (Compensators). 

2.4.4.3 Generation 

The Generation package is split into two sub-packages, Production and 
GenerationDynamics. 

Production 

The Production package is used for defining various kinds of generators, and 
includes a class hierarchy for defining the components of Thermal and Hydro 

generators. The package also includes definitions of production costing information 

such as Cost Curves and Net to Gross curves. To define power generation unit in 

the CIM requires an association of a production class object with a 
SynchronousMachine, a class contained within the Wires package. 

Genera tionDynamics 

The GenerationDynamics package contains the description of Prime Movers, 

including turbine types, and classes that define various types of steam supplies, 
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such as Pressurised or Boiling Water Reactors for nuclear power stations, and 
different types of Fossil Fuel Boilers for coal oil and gas fired boilers. 

2.4.4.4 LoadModel 

The LoadModel package deals with modelling energy consumers through curves 
and associated data. The EnergyConsumer class (and its subclasses) within the 
Wires package define the physical connection point between the network and 
customer. Instances of the EnergyConsumer class also contain associations to Load 
Demand Models and Schedules for non-conforming load (e. g. large industrial loads, 

or power station services). 

2.4.4.5 Topology 

The Topology package, together with the Terminal class, provides definitions of 
how equipment connects together in the form of Connectivity Nodes. The 
Topological Node class is comprised of Connectivity Nodes connected by closed 
switches (and for many applications can be considered analogous to a bus in a bus- 
branch representation). The Topological Island class contains all electrically 
connected Topological Nodes, and as such a fully interconnected power network 
should contain only one Topological Island. 

2.4.4.6 Measurement 

The Meas (Measurement) package is used to define the Measurements being taken 
from a particular Power System Resource. There are two ways of connecting 
Measurements: 

The first option is to associate a measurement instance with a Power System 

Resource, which covers measurements not related to electrical connectivity 
including temperature or weight. 

The second option, as described in Section 2.4.3.3 is to associate the Measurement 

with a Terminal. This is used for measurements dependent on connectivity, such as 

current or voltage where the Terminal defines the point of the network that the 

measurement is to be taken from. The Measurement class acts as a Current or 

Voltage Transformer for measuring the current or voltage at a point in the network, 
however it does not represent a piece of physical equipment. 
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2.4.4.7 Outage 

The Outage package define schedules for the planned network configuration, and 
includes classes that associate with a Switch to define its state at a particular time. 

This is used primarily for defining business process messages, however it could be 

used to change network configurations at specific times during a simulation. 

2.4.4.8 Protection 

The Protection package defines the settings and parameters of pieces of protection 

equipment that operate Switches. The classes defined in this package are used to 

describe the behaviour of the Switch: its current limit, delay from detection of 

abnormal conditions to operation, maximum and minimum limits. 

35 



2.5 The eXtensible Markup Language (XML) 

2.5.1 XM L 

XML, the eXtensible Markup Language, is a "'universal format for structured 
documents and data"[3], which is quickly becoming the standard for storing 
machine-read able data in a structured, extensible format that is accessible over the 
internet. XML is actually a meta-language' that allows the user to design their own 
markup language to describe the structure of the data. 

XML is a subset of SGML, the Standard Generalized Markup Language[7] designed 
for both on and offline storage and transferral of data. The data is encoded as plain 
text, thus allowing it to be both human and machine-readable and the use of 

standard encoding schemes makes it platform independent. 

The XML syntax uses tags to denote the elements within the document. Each 

element is either expressed as an open and close tag containing data of the form: 

<tag> ... Contained Data... </tag> 

Or with as a single empty entry closed with a slash at the very end: 

<tag/> 

An entry may also contain its own attributes which are expressed in the form: 

<tag attributeOne="something" attributeTwo="somethingElse"/> or 
<tag attributeOne="something" attributeTwo="somethingElsell> ... </tag> 

When an element has a start and end tag, any other elements contained within these 

two tags are classed as "children" of the parent element. 

2.5.1.1 Simple XML Example 

As an example, a simple XML tag-syntax to store a book can be created. The 

contents and properties of the book can then be expressed as XML, using self- 
descriptive tags of the form: 

<book title="Introduction to XML" author="Alan McMorran"> 
<revision number="2, f> 

<year>2006</year> 
<month>January</month> 
<day>l</day> 

</revision> 

A meta-language is a language used to describe a language (whether it be another language or itselO. 
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<chapter title="Preface"> 
<paragraph>Welcome to <italic>this</italic> book 

... </paragraph> 
<paragraph> ... </paragraph> 

</paragraph> ... and we shall continue</paragraph> 
</chapter> 
<chapter title="Introduction"> 

<paragraph>To understand the uses ... </paragraph> 

</chapter> 
</book> 

Here the book element contains its own attribute to describe the title and author, with 
a child element to describe the revision of the book, plus several chapter elements. 
The chapters in turn contain elements for each paragraph, which themselves contain 
mixed data of other elements and text. Although to anybody with knowledge of the 
English language, the names of these tags make their semantics clear, the tag syntax 
and semantics must still be clearly defined if the data is to be interpreted correctly 
by an application. 

2.5.1.2 XML Schema 

While XML itself has no set tag-syntax or semantics, schemas can be defined for 

expressing almost any kind of data using XML notation. An application 
interpreting XML data must be given this knowledge of the syntax and semantics 
used, otherwise it will have trouble interpreting it. This requires the tag-syntax and 

semantics of the XML to be expressed as a schema, which provides constraints on 
the structure and contents of an XML document. 

The most common formats for describing these schemas are in Document Type 

Definition (DTD)[4] format or the newer XML Schema[5]. The XML Schema defines 

the elements and attributes that can appear in a document; which elements are child 

elements; the number of allowed child elements for each element type; whether an 

element can include text (i. e. is an empty element or within an open and close tags); 

the data types for elements and attributes; whether their values are fixed; and if they 
have default values. 

Using the previous book example, a simple XML Schema can be created to describe 

the elements within the document and the restrictions placed on them. This 

example schema is shown, along with additional comments, in Figure 2.20 
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<xs: schema xmlns: xs="http: //www. w3. org/2001/XMLSchema"> 

<xs: element name="book"> 
<xs: cornplexType> 

<xs: attribute name="title" type="xs: string"/>, 
<xs: attribute name="author" type="xs: string"/> 

The book element is a 
complex type and must 

contain a title and author 
attribute (both of which are 

strings i. e. text) 

<xs: element name="revision"> 
<xs: complexType> 

<xs: attribute name="number" type="xs: positiveInteger"/> 
<xs: element name="year" type="xs: positiveInteger"/> 
<xs: element name="month" type="xs: string"/> 
<xs: element name=day" type="xs: positivelnteger"/> 

< /Wq - r-nmnl I 

The revision element 
contains a single 

number attribute and 
three other elements for 

year, month and day 
The book element 
also contains two 

other types of 
element, revision 

and chapter 

<xs: comp1exType> number of times. The 
<xs*attribute name="titie" type= "xs: stri'ng " /> -AV-- default is that it can only 

The chapter element "'V<xs*: e1ement name=" paragraph" maxOccurs="unkýounded"> occur once <xS: complexType mixed="true"> must have a title 
<xs: sequence> "IF 

attribute and can <xs: element name="italic" type="xs: string', max0ccurs="unbounded"/> contain paragraph <xs: element name="boZd" type="xs: string" max0ccurs="unbounded"/> 
elements <xs: element name="uncferline" tvr)e="xs: strina"", maxoccurs="unbounded"/> 

</xs: e1ement> 
The max0ccurs attribute 
indicates that an element 

<xs: element name=" chapter" maxOccurs="unb6iqnded">-q4-- can occur an unlimited 
<xs: comp1exType> number of times. The 

<xs*attribute name="title" type="xs: string"/> default is that it can only 
ient <xs*: element name="paragraph" maxOccurs="unkýounded"> occur once <xs: complexType mixed="true"> fe 

<xs: sequence> 
in <xs: element name="italic" type="xs: string', max0ccurs="unbounded"/> 
oh <xs: element name="boZd" type="xs: string" maxOccurs="unbounded"/> 

<xs: element name="uncferline" type="xs: string"-inax0ccurs="unbounded"/> 
</xs: sequence> 
</xs: comp1exType> 

</xs: element> The type attribute of an </xS: comp1exType> 
</xs: element> element defines the 

</xS: comp1exType> [ 
The mixed attribute indicates restrictions placed of the 

</xs: element> r-rintrint r-. f sin plarnont nr that this element can contain a 
combination of its own data and attribute 

</xs: schema> 
additional elements 

Figure 2.20 Annotated simple XML Schema Example describing the data within a 
book 

The other notable feature of this document is the introduction of namespaces. In the 

example above, every element is prefixed by xs:. The document's root node contains 

an xmlizs: xs="http: //www. w3. org/2OOl/XMLSchema" attribute which indicates that 

every element prefixed with xs is an XML element that is part of the namespace 
identified by the Unique Resource Identifier (URI) 

http: //zt7uýw. w3. org/2OOl/XMLSc/ýema 4. An XML document can contain elements from 

multiple namespaces simultaneously, each of which denote a seperate XML Schema 

with its own set of restrictions. For the previous example, the root node could 
become: 

<xs: schema xmlns: xs="http: //www. w3. org/2001/XMLSchema" 
xmlns: ab="http: //www. other. com/2005/ABSchema" 
xmlns: yz="http: //www. something. com/2004/YZ-Schema"> 

Indicating that the XML document may contain elements from the 
http: //www. other. com/2005/ABSchema namespace, identified by an ab prefix, 

' The WX is the World Wide Web Consortium, the governing body for web standards. Their domain is w3. org 

and as such WK standards such as XML Schema and RDF use this domain as part of their unique resource 

identifier. 
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along with elements from http: // www. something. com / 2004 / YZ-Schema 

namespace, identified by a yz prefix in addition to the original 
http: // www. w3. org / 2001 / XMLSchema namespace. 

The benefits of using namespaces will be discussed further in Section 3.2-1. 

2.5.2 RD F 

With a basic XML document there is no way to denote a link between two elements 
that are not parent or child. For instance, consider a library system containing 
entries for multiple books with information on their shelf position in the form: 
<library name="Glasgow Library"> 

<book title="History of Glasgow, 
Hannah"> 

<position section="A" shelf="2"/> 
</book> 
<book title=11A Brief History of Time" 

<position section="E" shelf="4"/> 
</book> 
<book title="History of Glasgow, 

Hannah"> 
<position section="A" shelf="2"/> 

</book> 
</library> 

1900-19501, author="Walter 

author="Stephen Hawking"> 

1950-2000" author="Walter 

Each book element is contained within the library as an independent entry, but 

should the user wish to add a link between the History of Glasgow, 1900-1950 and 
History of Glasgow, 1950-2000 books to indicate that reader may wish to read the 

former book before the latter, there is no standard way to do this using the basic 
XML constructs. 

The Resource Document Framework (RDF)[25] is an XML schema used to provide a 
framework for data in an XML format by allowing relationships to be defined 

between XML nodes. Each element can be assigned a unique ID attribute under the 

RDF namespace http: //www. w3. org/1999/02/22-rdf-syntax-ns# (which uses the 

rdf prefix). Adding a resource attribute to an element allows references to be made 
between elements by having its value refer to another element's ID. 

2.5.2.1 Simple RDF Example 

For the library example above, assigning an ID under the RDF namespace to each 
book allows the addition of sequel and sequelTo elements. These elements contain 

only a single resource attribute that point to another element within the document 

by referencing their ID. 
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To distinguish between the library elements and attributes, themselves governed by 
an XML Schema, and the RDF elements and attributes, an additional namespace 
http: //www. strath-ac. uk/libraries/2006/library-schema# is added with the prefix 
lib. An RDF root element is also added with xmIns attributes to denote the 
namespaces and prefixes. The new Library RDF XML representation is shown 
below: 
<rdf: RDF xmlns: rdf="http: //www. w3. org/1999/02/22-rdf-syntax-ns#" 
xmlns: lib="http: //www. strath. ac. uk/libraries/2006/library-schema#"> 
<lib: library lib: name="Glasgow Library"> 

<lib: book lib: title="History of Glasgow, 1900-1950" 
lib: author="Walter Hannah" rdf: ID=" 

- 
entryOO01"> 

<lib: position lib: section="A" lib: shelf="2"/> 
<lib: sequel rdf: resource="#-entryOO03"/> 

</lib: book> 
<lib: book lib: title="A Brief History of Time" 1 ib: author=" Stephen 

Hawking" rdf: ID="_entryO002"> 
<lib: position lib: section="E" lib: shelf="4"/> 

</book> 
<lib: book lib: title="History of Glasgow, 1950-2000" 

lib: author="Walter Hannah" rdf: ID=" 
- 

entryOO03"> 
<lib: position lib: section="A" lib: shelf="211/> 
<lib: sequelTo rdf: resource="#-entryOO01"/> 

</lib: book> 
</lib: library> 
</rdf: RDF> 

As shown, the RDF provides a means of showing relationships between elements 
outwith the standard parent-child relationship. The schema contains additional 
elements that go beyond the simple ID and resource attribute as will be shown in 

next section, but it is these features of the framework that are utilised when 
expressing the CIM in XML format. 

2. S. 2.2 RDF Schema 

While RDF provides a means of expressing simple statements about the relationship 
between resources, it does not define the vocabulary of these statements. The RDF 

Vocabulary Description Language, known as RDF Schema[26] provides the user 

with a means of describing specific kinds of resources or classes. The RDF Schema 

does not provide a vocabulary for a specific application's classes like lib: sequel or 
lib: sequeffo, or properties like lib: title and lib: author. Instead, the RDF Schema allows 
the user to describe these classes and properties themselves and indicate when they 

should be used together. For example, they may state that the property lib: title will 
be used in describing a lib: book, or that 11b: sequel is an element of lib: book and should 
indicate a reference to another lib: book entry. 
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In essence, the RDF Schema provides a type system for RDF. The RDF Schema type 
system is similar to that of object-oriented programming languages such as Java, 

. NET and C++. Amongst other things, RDF Schema allows resources to be defined 

as instances of one or more classes and for these classes to be organised in a 
hierarchy. 

For the previous example, the RDF Schema would, amongst others, contain entries 
to describe the class book and the properties sequel and sequelTo. 
<rdfs: Class rdf: ID="book> 

<rdfs: label xml: lang="en">Book</rdfs: label> 
<rdfs: comment>A book contained within a library</rdfs: comment> 

</rdfs: Class> 

<rdf: Property rdf: ID="sequel"> 
<rdfs: label xml: lang="en">Sequel</rdfs: label> 
<rdfs: comment>Indicates that the book has a sequel that is also 

within the library</rdfs: comment> 
<rdfs: domain rdf: resource="#book"/> 
<rdfs: range rdf: resource="#book"/> 

</rdf: Property> 

<rdf: Property rdf: ID="sequelTo"> 
<rdfs: label xml: lang="en">SequelTo</rdfs: label> 
<rdfs: comment>Indicates that the book is the sequel to another 

book also within the library</rdfs: comment> 
<rdfs: domain rdf: resource="#book"/> 
<rdfs: range rdf: resource="#book"/> 

</rdf: Property> 

Here, the class of book is defined, then the two properties sequel and scquclTo are 
defined. Each of these properties has their domain (the class the property is within) 

referencing the book class, as does their range (the class of element the property 

refers to). Should the library schema be extended so that instead of just having a 
book element, fictional novels could be differentiated with a separate novel element 
that, when modelled in UML, would be a simple sub-class of the existing book class. 
This can be represented in RDF Schema as: 
<rdfs: Class rdf: ID="novel> 

<rdfs: label xml: lang="en">Novel</rdfs: label> 
<rdfs: comment>A fictional book</rdfs: comment> 
<rdfs: subClassOf rdf: resource="#book"/> 

</rdfs: Class> 

The RDF, combined with RDF Schema provides a mechanism for expressing a basic 

class hierarchy as an XML schema by specifying the basic relationship between 

classes and properties. This then allows a set of objects to be expressed as XML 

using a defined schema that retain their relationships and class hierarchy. 
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2.5.3 CIM RDF XML 

Since the RDF and RDF Schema provide a means of mapping an object-oriented 
design to XML the CIM class structure can be mapped in a similar way. Existing 
tools can automatically generate an RDF Schema from the original CIM UML 
model. Using the previous example of the Transformer class hierarchy shown in 
Figure 2.17, the resulting RDF Schema takes the form: 
<rdfs: Class rdf: ID="PowerSystemResource"> 

<rdfs: label xml: lang="en">PowerSystemResource</rdfs: label> 
<rdfs: subClassOf rdf: resource="#Naming"/> 

</rdfs: Class> 

<rdfs: Class rdf: ID="Equipment"> 
<rdfs: label xml: lang="en">Equipment</rdfs: label> 
<rdfs: subClassOf rdf: resource="#PowerSystemResource"/> 

</rdfs: Class> 

<rdfs: Class rdf: ID="ConductingEquipment"> 
<rdfs: label xml: lang="en">ConductingEquipment</rdfs: label> 
<rdfs: subClassOf rdf: resource="#Equipment"/> 

</rdfs: Class> 

<rdfs: Class rdf: ID="PowerTransformer"> 
<rdfs: label xml: lang="en">PowerTransformer</rdfs: label> 
<rdfs: subClassof rdf: resource="#Equipment"/> 

</rdfs: Class> 

<rdfs: Class rdf: ID="TransformerWinding"> 
<rdfs: label xml: lang="en">Transformerwinding</rdfs: label> 
<rdfs: subClassof rdf: resource="#ConductingEquipment"/> 

</rdfs: Class> 

<rdfs: Class rdf: ID="TapChanger"> 
<rdfs: label xml: lang="en">TapChanger</rdfs: label> 
<rdfs: subClassOf 

rdf: resource="#PowerSystemResource"/></rdfs: Class> 
</rdfs: Class> 

<rdf: Property rdf: ID="Transformerwinding. MemberOf PowerTransformer"> 
<rdfs: label xml: lang="en">MemberOf 

- 
PowerTransformer</rdfs: label> 

<rdfs: domain rdf: resource="#TransformerWinding"/> 
<rdfs: range rdf: resource="#PowerTransformer"/> 

</rdf: Property> 

<rdf: Property rdf: ID="TapChanger. TransformerWinding"> 
<rdfs: label xml: lang="en">TransformerWinding</rdfs: label> 
<rdfs: domain rdf: resource="#TapChanger"/> 
<rdfs: range rdf: resource="#Transformerwinding"/> 

</rdf: Property> 

Each CIM Class has a corresponding rdfs: Class entry, while the two aggregation 

relationships are expressed as RDF Property elements with the appropriate domains 

and ranges. The entire CIM Class structure can be expressed in this manner, and 
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then this RDF Schema can be used to express a CIM power system model as RDF 
XML. 

2. S. 3.1 CIM RDF XML Example 

As an example, the simple Transformer example from Figure 2.18 will be extended 
to include attributes for each object. This produces four objects with their own 
internal data as shown in Figure 2.21 below: 

PowerTransformer 
name: 17-33 
transformerlyee: Transformerape. voltauControl 

MemberOf PowerTransformer 

name: PrimaryWindingOf-17-33 
b: 0 
r: 0.099187 
ratedKV: 115.00 
windingType: WindingType. primary 
x: 4.701487 

name: SecondaryWindingOf-17-33 
b: 0 
r: 0.39675 
ratedKV: 230.00 
windingType: Wind i ngType. secondary 
x: 18.80595 

TransformerWinding 

name: TapChangerOd-PowerTransformer-1 7-33 
highStep: 20 
lowStep: -20 
neutralKV: 115.00 
neutralStep: 0 
normalStep: 0 
stepVoltageincrement: 0.641 
tcu lControl Mode: Tra nsforme rCo ntrol Mode. volt 

Figure 2.21 Transformer shown as four CIM Objects with attributes 

Each of these objects can then be expressed as an XML node using the CIM RDF 

Schema given the namespace http: //iec. ch/TC57/2003/CIM- schema-cimlO# and 

prefix cim: 
<rdf: RDF xmlns: cim="http: //iec. ch/TC57/2003/CIM-schema-cimlO#" 

xmlns: rdf="http: //www. w3. org/1999/02/22-rdf-syntax-ns#"> 

<cim: PowerTransformer rdf: ID="PowerTransformer_1733"> 

<cim: PowerTransformer. transformerType 

rdf: resource="http: //iec. ch/TC57/2003/CIM-schema- 

cimlO#TransformerType. voltageControl"/> 
<cim: Naming. name>17-33</cim: Naming. name> 

</cim: PowerTransformer> 
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<cim: Transformerwinding 
rdf: ID="PrimaryWindingof 

- 
PowerTransformer 

- 
1733"> 

<cim: TransformerWinding. b>O</cim: TransformerWinding. b> 
<cim: TransformerWinding. r>0.099187</cim: TransformerWinding. r> 
<cim: TransformerWinding. ratedKV>115.00</cim: TransformerWinding. rat 

edKV> 
<cim: TransformerWinding. windingType 

rdf: resource="http: //iec. ch/TC57/2003/CIM-schema- 
cimlO#WindingType. primary"/> 

<cim: TransformerWinding. x>4.701487</cim: Transformerwinding. x> 
<cim: TransformerWinding. MemberOf PowerTransformer 

rdf: resource="#PowerTransformer_302"/> 
<cim: Naming. name>Primarywindingof_17-33</cim: Naming. name> 

</cim: TransformerWinding> 

<cim: TransformerWinding 
rdf: ID="SecondaryWinding0f_PowerTransformer 

- 
1733"> 

<cim: TransformerWinding. b>O</cim: TransformerWinding. b> 
<cim: TransformerWinding. r>0.39675</cim: TransformerWinding. r> 
<cim: TransformerWinding. ratedKV>230.00</cim: Transformerwinding-rat 

edKV> 
<cim: TransformerWinding. windingType 

rdf: resource="http: //iec. ch/TC57/2003/CIM-schema- 
cimlO#WindingType. secondary"/> 

<cim: Transformerwinding. x>18.80595</cim: TransformerWinding. x> 
<cim: TransformerWinding. MemberOf PowerTransformer 

rdf: resource="#PowerTransformer_302"/> 
<cim: Naming. name>SecondaryWindingof_l7-33</cim: Naming. name> 

</cim: TransformerWinding> 

<cim: TapChanger rdf: ID="TapChanger0f_PowerTransformer 
- 

1733"> 
<cim: TapChanger. highStep>20</cim: TapChanger. highStep> 
<cim: TapChanger. lowStep>-20</cim: TapChanger. lowStep> 
<cim: TapChanger. neutralKV>115.00</cim: TapChanger. neutralKV> 
<cim: TapChanger. neutralStep>O</cim: TapChanger. neutralStep> 
<cim: TapChanger. normalStep>O</cim: TapChanger. normalStep> 
<cim: TapChanger. stepVoltageIncrement>0.641</cim: TapChanger. stepVol 

tageIncrement> 
<cim: TapChanger. tculControlMode 

rdf: resource="http: //iec. ch/TC57/2003/CIM-schema- 
cimlO#TransformerControlMode. volt"/> 

<cim: TapChanger. Transformerwinding 
rdf: resource="#PrimaryWinding0f 

- 
PowerTransformer_302"/> 

<cim: Naming. name>TapChanger0f_PowerTransformer_17- 
33</cim: Naming-name> 
</cim: TapChanger> 

</rdf: RDF> 

The PowerTransformer. transformerType and TapChanger-tculControlMode 

elements do not refer to other nodes within the document; instead their values are 

of an enumerated type. Enumerated types consist of a fixed set of legal values (e. g. 
for a variable of type Days, the enumerated type would be: Sunday, Monday, 

Tuesday, Wednesday, Thursday, Friday, Saturday and any variable of this type 

must have one of these values). Within the CIM there are certain class attributes that 
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are also enumerated types and do not contain a node value but instead refer to an 
enumerated type within its RDF Schema. 

This combination of the CIM, XML, RDF and RDF Schema allows an entire CIM 

power system model to be expressed in a standard, cross-platform plain-text format 
that is both human and machine readable and extensible. The ability to include 

additional data within the standard CIM RDF XML (commonly shortened to CIM 
XML) by using multiple schemas and namespaces simultaneously will be covered 
further in Section 3.2.1. 

2.6 XML Messaging 

As well as exchanging full power system model data as CIM RDF XML, the other 
main application of the CIM is as a common semantic model for enterprise 
application integration. 

2.6.1 Existing 

Infrastructure 

Inter-Application Communication 

Within large companies there will be a number of computer applications that must 

communicate with each other. This often results in a large number of point-to-point 
links using custom formats and protocols to exchange data between software 

applications from a number of vendors. Adding a new application to the system 

requires additional communication links to be defined and implemented, further 

increasing the complexity of the overall system with a corresponding financial 

penalty. 

Figure 2.22 Communication links between enterprise applications 

45 



As illustrated in Figure 2.22, even for a small section of the overall IT system, this 
can result in a large number of inter-ap pli cation communication links. As 
companies expand their IT infrastructure or replace existing applications with 
products from other vendors they must define new interfaces for each 
communication link, a process that is both time consuming and expensive. 

GIS Asset I II 
Database II SCADA 

Interface )( interface )( interface 

Middleware Services EMS 
CD 

Interface )( interface )( Interface 

Customer Work Planning Information Management 
I 

Figure 2.23 Enterprise Application Bus model for inter-application communication 

2.6.2 The Message Bus Concept 

Enterprise Application Integration (EAI)[11] replaces these dedicated links with a 
single communication link called a "message bus". Using middleware services, this 

provides a mechanism for applications to communicate using a pre-defined 

message format and requires only a single interface to be written for each 

application. 

The CIM provides the common semantic model used to construct the messages that 

are used for communication between the applications[ 12]. This requires each 

application to map its external interface to the CIM class structure allowing the 

inter-application messages to be defined in the CIM. 

These messages, in XML format, use a restricted CIM XML Schema to define the 

payloads of the messages. This takes the standard CIM Schema, itself created from 

the CIM UML class structure and restricts the multiplicity of associations and 

required attributes. 
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2.6.3 Mapping Application Interfaces to the CIM 

This can be illustrated using a simple example. An EMS application's external 
interface requires the user to access data on the transformers within the system. The 
EMS application's interface attributes are: 

m TRANS-NAME - The Transformer's name 

m WINDINGA-R - The Transformer's primary winding resistance 

u WINDINGA_X - The Transformer's primary winding reactance 

M WINDINGB_R - The Transformer's secondary winding resistance 

m WINDINGB-X - The Transformer's secondary winding reactance 

WINDINGA V- The Transformer's primary winding voltage 

a WINDING B_ V -The Transformer's secondary winding voltage 

Each of these attributes can be mapped to a corresponding attribute within a CIM 

class, resulting in an interface to CIM mapping. 

Equipment 

PowerTransformer 
Conducting 

name 
Eq 

, 
ui 

, 
pment 

EMS 
TRANS-NAME-- 
WINDINGA R 
WINDINGA X 
WINDINGB R 
WINDINGB X 
WINDINGA V 
WINDINGB V 

Figure 2.24 CIM Interface Mapping 

TransformerWinding 
R 
x 
windinQjjee 

VoltageLevel 
association via 

Equipment- 
EauiDmentContainer 

BaseVoltage 

nominalVoltaqe 

\1 
Equipment 
Container 

VoltageLevel 

This mapping, shown in Figure 2.24, highlights that although the two windings 0 
have separate names in the interface, they map to the same attributes within the 

CIM class structure. The aggregation relationship between the PowerTransformer 

and TransformerWinding class has, however, been changed from a O.. n multiplicit\' 

to 2 (since in this example the EMS represents all transformers as having two 
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windings). This means that there must be two instances of the Trans formerWin ding 

class present in the message, with the windingType attribute then used to 
differentiate between the primary and secondary windings. 

The voltage for each winding is contained with the 1101711*11(71VOIf(7(I'C attrIL)LIte of HIC 

BaseVoltage class. The BaseVoltage instance is associated with the 
TransformerWinding via the VoltageLevel class whose relationship with 
TransformerWinding is defined in the Equipment - EquipmentContainer associatioll 
further up the class hierarchy. This is because the TransformerWin ding class itself 
does not contain a direct VoltageLevel association within the CIM, but instead 
inherits a MemberOf-Equipment container association from the Equipment class 
(via ConductingEquipment), and since VoltageLevel is a subclass of 
Equip mentConta ine r this can be used to provide the required association to 
VoltageLevel. 

Both the EquipmentContainer and BaseVoltage associations have their multiplicity 

changed from OA to I requiring each VoltageLevel to have one BaseVoltage 

instance associated with it and each piece of Equipment (in this case 
Transfo rmerWin ding) to have an association to a single Equip mentCo ntaine r 
instance. 

Figure 2.25 Message Payload as UML 

2.6.4 Constructing a Message Payload 

This message payload can be further restricted by changing the associations to 

aggregations and removing the parent classes since they are not required by the 

actual message content. Thus the message payload can be represented as the 

modified class structure shown in Figure 2.25. 

Thus a single two winding transformer containing the desired attributes can be 

represented in XML as: 

<cim: PowerTransformer> 
<cim: Naming. name>Transformer SGT1</cim: Naming. name> 
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<cim: PowerTransformer. Contains 
- 

TransformerWindings> 
<cim: TransformerWinding. r>0.23</cim: TransformerWinding. r> 
<cim: TransformerWinding. X>0.78</cim: TransformerWinding. x> 
<cim: TransformerWinding. windingType>WindingType. primary 

</cim: TransformerWinding. windingType> 
<cim: Equipment. Memberof_EquipmentContainer> 

<cim: VoltageLevel. BaseVoltage> 
<cim: BaseVoltage. nominaVoltage>400 

</cim: BaseVoltage. nominalVoltage> 
</cim: VoltageLevel. BaseVoltage> 

</cim: Equipment. Member0f_EquipmenContainer> 
</cim: PowerTransformer. Contains Transformerwindings> 
<cim: PowerTransformer. Contains Transformerwindings> 

<cim: TransformerWinding. r>0.46</cim: TransformerWinding. r> 
<cim: TransformerWinding. x>0.87</cim: Transformerwinding. x> 
<cim: TransformerWinding. windingType>WindingType. secondary 

</cim: TransformerWinding. windingType> 
<cim: Equipment. Member0f_EquipmentContainer> 

<cim: VoltageLevel. BaseVoltage> 
<cim: BaseVoltage. nominaVoltage>275 

</cim: Basevoltage. nominalVoltage> 
</cim: VoltageLevel. BaseVoltage> 

</cim: Equipment. MemberOf 
- 

EquipmenContainer> 
</cim: PowerTransformer. Contains_TransformerWindings> 

</cim: PowerTransformer> 

This XML message in turn has an XML Schema to describe the payload contents: 
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<xs: schema xmlns: cim="cimBase" xmlns: xs="http: //www. w3. org/2001/XMLSchema"> 

<xs: element minOccurs="J" max0ccurs="1" name="PowerTransformer"> 
<xs: complexType> 

<xs: complexContent> 
<xs: extension base="cim: PowerTransformer"> 

<xs: sequence> 
<xs: element minOccurs="1" max0ccurs="1" 

name="Naming-name" type="xs: string"/> 
<xs: element minOccurs="2" max0ccurs="2" 

name="PowerTransformer. Contains-TransformerWindings"> 
<xs: complexType> 

<xs: complexContent> 
<xs: extension base="cim: TransformerWinding"> 

<xs: sequence> 
<xs: element minOccurs="1" maxoccurs="l" 

name="TransfomerWinding. r" type="xs: float"/> 
<xs: element minoccurs="I" maxoccurs="1" 

name="Transformerwinding. x" type="xs: float"/> 
<xs: element minoccurs="1" maxoccurs="1" 

name="TransformerWinding. windingType" type="cim-. WindingType"/> 
<xs: element minoccurs="1" maxoccurs="l" 

name="TransformerWinding. memberof_EquipmentContainer"> 
<xs: complexType> 

<xs: complexContent> 
<xs: extension base="cim: VoltageLevel"> 

<xs: sequence> 
<xs: element minOccurs="1" maxoccurs="1" 

name="VoltageLevel. BaseVoltage"> 
<xs: complexType> 

<xs: complexContent> 
<xs: extension base="cim. -Basevoltage"> 

<xs: sequence> 
<xs: element minOccurs="1" max0ccurs="1" 

name="BaseVoltage. nominalVoltage" type="xs: float"/> 
</xs: sequence> 

<xs: extension> 
</xs: complexContent> 
</xs: complexType> 

</xs: element> 
</xs: sequence> 

</xs: extension> 
</xs: complexContent> 

</xs: complexType> 
</xs: element> 

</xs: sequence> 
</xs: extension> 

</xs: complexContent> 
</xs: complexType> 

</xs: element> 
</xs: sequence> 

</xs: extension> 
</xs: complexContent> 

</xs: complexType> 
</xs: element> 

</xs: schema> 

This schema refers to another cimBase schema that contains the definitions for the 

CIM classes, their attributes and associations and for the enumerations and data 

types such as WindingType. 
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The major difference between the CIM XML Message and the CIM RDF XML is that 
instead of having each CIM object as an independent XML element that is then 
linked using the RDF ID and resource attribute, the elements are contained within 
each other. This way a PowerTransformer element contains child elements to 
describe the TransformerWindings, that in turn contain child elements to denote the 
voltage. 

For the scope of the message, this means that the PowerTransformer element 
contains all the required data making it simpler to then transform the element into 
another format if that is required. As will be described later, importing and 
converting CIM RDF XML data is more challenging, but given the highly 
interconnected nature of that representation it is not possible to represent it as 
nested XML elements for anything other than the most simple network models. 

2.6.5 XML Messaging Summary 

This example has shown how a simple portion of an application's interface can be 
mapped to the CIM class structure and then used to construct a simple XML 
message payload. Real-world examples often use tens or even hundreds of 
elements to construct a message payload. The benefit of this approach is that when 
every application within the system is mapped to this common model it becomes far 

simpler for applications to communicate. The CIM provides not only a common 
data format but crucially provides a common semantic model, which provides 
consensus on the interpretation of each class and attribute. 

This CIM XML messaging approach has been applied by a number of large utilities 
both in the UK and the USA and has proven to be a flexible and scalable system. As 

well as exchanging data on logical power system components, extensions to the core 
61970-301 CIM classes contains packages and classes to allow the definition of 
business processes such as work scheduling, customer invoicing and financial 

trading arrangement as a CIM XML messages. 

While the work detailed in the rest of document is concerned with using 61970-301 

CIM data in the form of full power system models initially encoded as CIM RDF 

XML, an understanding of the XML messaging application of the CIM standard is 

beneficial. Much of the work being undertaken to extend the CIM is concerned with 

using it to define message payloads for exchanging between applications in an EAl 

environment. This is why only a small subset of the overall CIM class structure is 

used when representing a logical power systems model. 
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2.7 Chapter Summary 

This chapter has introduced the concept of classes and class hierarchies along with 
their basic relationships that define how classes relate to each other: inheritance, 

association, aggregation and composition. The benefits of using this approach to 
define the components of a power system were then demonstrated along with an 
example of how a simple power system, represented as a line diagram, can be 

mapped to CIM Objects. The extensible markup language, its resource document 
framework subset and schemas were then introduced to demonstrate how the CIM 

class structure is mapped and the data encapsulated in an XML format. Finally the 

primary uses of the CIM were discussed: for encapsulating entire power system 

models as CIM RDF XML; and exchanging data between applications as CIM XML 

Messages. All of this forms an essential foundation on which the novel 
developments in this thesis are built. 
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Extensions to the Common Information model 

3.1 Chapter Introduction 

The object oriented nature of the CIM, combined with the adoption of XML as the 
primary method of encapsulating the data for exchange purposes, allows the CIM to 
be extended and enhanced to include additional data not provided for by the 
original IEC standard classes. Such extensions have been proposed by a number of 
parties including official IEC working groups, academic institutions and software 
vendors. This chapter describes the methods used to allow these multiple standards 
to co-exist within a single CIM network model and then summarises a number of 
these extensions. Finally extensions are proposed by the author to enhance the CIM 
to allow the accurate modelling of the UK electrical network, and to support the use 
of power system network models in CIM format for planning applications. 

3.2 Methods for Coping with Multiple CIM Standards 

Since, there is often a need to extend the current IEC 61970-301 CIM standard, this 

creates the problem of having an extended version of CIM co-existing with the IEC 

standard CIM. To accomplish this, a means of identifying which standard each item 

of data comes from is required. This identification should exist within the data 

format being imported into a CIM based application and the application itself must 
be able to identify which standard each item of data comes from and how to deal 

with it. In this project the industry standard method of exchanging CIM data, CIM 

XML format, is used. This approach utilises the Resource Document Framework 

(RDF) syntax to represent the associations between nodes. 

3.2.1 XML Namespaces 

Multiple standards can be used within one file by utilising the XML (eXtensible 

Markup Language) namespace system, whereby XML nodes are prefixed with a 

short string that corresponds to a namespace Uniform Resource Identifier (URI) in 

the head of the document denoting a separate XML schema. For the IEC 61970-301 

standard CIM data, the cim prefix is used with a URI that refers to a unique XML 

Schema (in this case also an RDF Schema). Thus the root element of the XML 

document contains: 
xmlns: cim="http: //iec. ch/TC57/2003/CIM-schema-cimlO#" 
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This indicates that the XML Namespace prefix cim corresponds to the schema 
identified by that particular URI. The URI is used to provide a unique identifier for 
the schema, but does not resolve to a specific file or addess. Their purpose is purely 
to provide a unique identifier for the namespace and schema, and this format was 
adopted because the formatting of URls is well documented. Any unique string 
could be used, however, but with the example given above, it allows a quick 
interpretation of the standard to be made: 

0 iec. ch - the standard is from the IEC (the A refers to Switzerland where the 
IEC is based) 

n TC57 - the standard was developed by Technical Committee 57 (Power 
Systems Management and Associated Information Exchange) 

0 2003 - the standard is the 2003 version 

m CIM-schema-cimlO# -a brief description of the standard, and version number 

Prefixing nodes and attributes with cim indicates that they are part of this IEC 

standard, and as such, any application that is importing the data can deal with any 
namespace that it recognizes. 

Extending and changing the standard therefore requires that any new or modified 
classes are identified as being of a different standard, since simply adding a cim 

prefix to them would indicate that they are part of the original IEC standard 

schema, when this is not the case. 

For the extended standard proposed in this project, the prefix ngt is used, with a 

namespace of "http: // eee. strath. ac. uk / 2006 / Strath-CIM-Schemal I #"' denoting that 

the schema is from the University of Strathclyde's EEE Department; is the 2006 

revision and denoted as version 1.1 of CIM. 

The head of the XML document therefore now contains three namespaces to denote 

the nodes and attributes that are either: 

m From the original IEC CIM schema 

m From the extended Strathclyde CIM schema 

m From the RDF schema. 
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This creates a head node, the start of the RDF document, denoted by rdf. RDF. 
Within this head node, the URIs of the other namespaces used within the document 
are included. Thus the opening RDF node contains: 
<rdf: RDF xmlns: cim="http: //iec. ch/TC57/2003/CIM-schema-cimlO#ll 
xmlns: stcim=" http: //eee. strath. ac. uk/2006/Strath-CIM-Schemal 1#" 
xmlns: rdf="http: //www. w3. org/1999/02/22-rdf-syntax-ns#" > 
Contained within this rdf. RDF node is all the network information formatted as the 
following example shows: 
<cim: Disconnector rdf: ID="DisSwitch 2"> 

<cim: Switch. normalOpen>false</cim: Switch. normalOpen> 
<cim: ConductingEquipment. Terminals rdf: resource="#Terminal 

- 
23A"/> 

<cim: ConductingEquipment. Terminals rdf : resource= "#Terminal-22B " /> 
<cim: Equipment. Member0f_EquipmentContainer 

rdf: resource="#VoltageLevel 2"/> 
<cim: Naming. name>DisSwitch_2</cim: Naming. name> 

</cim: Disconnector> 

<stcim: NetworkConnectionPoint rdf: ID="NCP 1"> 
<cim: Naming. name>NCP 

- 
1</cim: Naming. name> 

<cim: EquipmentContainer. Contains_Equipments 
rdf: resource="#DisSwitch 2"/> 

<stcim: NetworkConnectionPoint. External_Terminal 
rdf: resource="#Terminal NCP2Xl"/> 
</stcim: NetworkConnectionPoint> 

This example shows two nodes, a Disconnector and a NetworkConnectionPoint, the 
former being a standard IEC CIM class, the latter from the Strathclyde CIM 

standard. The mixture of stcim and cim prefixes in the second node is because the 
Network Connection Point class is a child class of the IEC CIM EquipmentContainer 

class, and as such these attributes are inherited from it (or its parent class, Naming). 

This system allows data from the two standards to co-exist within the same 
document. Existing applications that are not able to cope with the extended 
Strathclyde data will simply ignore the nodes that are of the 

"http: // eee. strath. ac. uk / 2006 / Strath-CIM-Schemal 1 #" namespace and only import 

those identified as being from the IEC CIM standard. 
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3.3 IEC Proposed Extensions to CIM 

The IEC TC57 Working Groups 13 & 14 are proposing additional extensions to the 
CIM standard to include additional data. This includes the proposed IEC 61968 
standard under development by WG14: System Interfaces for Distribution 
Management which is designed to facilitate inter-application integration among 
application software sharing information as part of a company"s Distribution 
Management System. 

3.3.1 IEC 61970 Extensions 

As well as the core packages that form the IEC 61970-301 standard, there are 
additional packages under the 61970-302 and 303 standard that are focussed on 
exchanging data between companies and for dealing with Supervisory Control and 
Data Acquisition (SCADA) applications. 

3.3.1.1 IEC 619 70-3 02 

The 61970-302 packages, Reservation, Financial and Energy Scheduling are used 

primarily for exchanging data between companies. 

The Energy Scheduling package provides a model to represent the data exchanges 

made between companies when scheduling the transfer of electricity and the 

resulting transactions. These transactions include recording power that is 

generated, consumed and lost as well as the sale and purchase records. 

The Financial package contains classes to represent the legal entities (e. g. 

generators, consumers, operators, transmission providers) involved with the 

exchange of electricity along with the settlement and billing agreements that are 

required. 

The Reservation package represents the transmission services and paths used to 

exchange electricity. This includes classes to represent the Ancillary Services. These 

relate to various aspects of insuring that the production of energy matches 

consumption of energy at any given time. Such services are critical to the security 

and reliability of the interconnected network. 

These three packages are primarily aimed at the application of CIM to XML 

Messaging described in Section 2.6 and are not usually included with a full power 

system model in CIM format. 
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3.3-1.2 IEC 61970-303 

The 61970-303 standard is focused on providing a model to represent the 
information required by SCADA applications. This SCADA package links in with 
the Measurement package and provides definitions of the SCADA units that link to 
the Control class for providing Measurement Values within the Measurement 
package. 

3.3.2 IEC 61968 Extensions 

The IEC 61968-11 draft standard[2] contains extensions to the CIM aimed at 
covering the data requirements of distribution management systems, and contains 
six packages. The Core2 package contains packages intended to be included in the 
initial version of CIM, but was not included in the standard submitted to the IEC 
since they were not deemed to be of sufficient maturity at the time. 

Within the draft of the 61968 packages are a number that have an impact on the 
work undertaken to develop application using a CIM software architecture. A large 

number, however, are aimed at the business process messaging application of the 
CIM and are not of direct relevance when exchanging power system model data. 

3.3.2.1 Activity Records 

The Activity Records package contains the classes to "record the activity for an 
Asset, Location, Power System Resource, Customer, Erp Contact (e. g., operator, 

market participant, etc. ), or other object at a point in time"[2]. Such activites can be 

events that have already occurred, or details of pre-planned activities. An Activity 

Record is associated with a Power System Resource, and "'the relationship records 

events regarding the logical function being provided by the resource in the electrical 

network"[2]. The relationship between the Asset object and the Power System 

Resource objects allows the recording of the asset's history, independently of where 
it is currently being used in the electrical network. The Location object records 

events associated with the geographical location of the asset. The future state 

activities are used, for example, when generating units must be scheduled for 

maintenance or when a transformer is scheduled for refurbishment. 

3.3.2.2 Assets 

The Assets package and its child packages of Asset Basics, Point Asset Hierarchy 

and Linear Asset Hierarchy provide classes for describing both the asset- 
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management level of data for existing Power System Resources, and stand-alone 
assets that are independent of the function of the power network. 

3.3.2.3 Location 

The Location package defines the position of a Power System Resource, allowing for 
single coordinate points or multiple coordinates for defining a specific area (such as 
a substation site). 

3.3.2.4 Outage 

The Outage Package within the proposed 61968 standard is more concerned with 
Asset management and record keeping than the Outage package in the 61970 
standard detailed in 2.4.4.7. Whereas in the 61970 Outage package the classes are 
used to define planned outages and the current status of the equipment, in the 61968 
the classes are used to create an Outage Record for an item of Power System 
Resource. This Record is made up of O.. n Outage Steps (i. e. each Outage incident 

creates a new Outage Step). This package contains the necessary classes and 
parameters required to create a complete record of equipment outages, including 
the ability to specify which work crew was dispatched to deal with the outage. 

3.3.2.5 Additional Packages 

Of the remaining packages, there are few classes that are of direct interest to 

representing working power system models in a CIM format. The remaining 
packages are there to model business processes and the exchange of information 

related to customers (e. g. pricing, billing and accounts), documents (e. g. work 

orders, trouble tickets, safety documentation) and to facilitate the integration of the 
Enterprise Resource Planning (ERP) standards proposed by the Open Applications 

Group (OAG) with the CIM. While these extensions are required for companies to 

implement ClM based messaging and using the CIM as their company's global 
information model, they are not of direct relevance to the work described in this 

document. 
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3.4 Other Proposed Extensions to the CIM 

3.4.1 CIM Extensions for Electrical Distribution 

As well as the continuing work by the IEC Working Groups to extend the CIM, 
there have been recommended extensions to CIM for representing Electrical 
Distribution and IEEE Radial Test Feeders published by Wang, Schulz and 
Neumann in the IEEE Transactions on Power Systems[8]. 

Wang, Schulz and Neumman focus on adding extensions to the CIM to cover the 
data requirements for electrical distribution power flow as well as modifying the 
existing classes for distribution lines, loads and introducing specific distribution 
devices. The majority of the work involves extending the existing CIM classes to 
allow it to accurately describe unbalanced multiphase connections. This is required 
since the CIM standard is based on exchanging data for balanced three phase 
transmission networks, which is sufficient for the exchange of data at the 
transmission level. For distribution management systems, where analysis is also 
conducted on unbalanced three phase, two phase or single phase systems, there is a 
requirement to accurately represent data for these networks. 

3.4.1.1 Line Model 

The paper proposes some significant changes to the Line model, including the 

modification of existing classes, the separation of data into separate associated 

classes, and the addition of new classes. 

Conductor 

All the attributes from the Conductor class, bar length are removed and put into a 

separate BalancedThreePhase subclass of the new ConductorImpedence class that 

has a L. 1 relationship with Conductor. The purpose of this is to allow the model to 

accommodate one, two and asymmetrical three phase systems, whereas the existing 
CIM classes are used to define a balanced three-phased system. 

Conductor Impedance 

As mentioned above, this class, and its child classes, SinglePhase, TwoPhase, 

ThreePhase and Balance dThreePhase are used to define the impedance of a 
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conductor. Separating the data into a separate associated class "'provides the 
flexibility for a conductor to have an appropriate impedance representation" [7]. 

ConductorType 

This class is omitted entirely from the modified package, with the Conductor- 
>ConductorType->WireAttangement relationship replaced with Conductor- 
>Wire Arrangement. This introduced the problem of breaking the existing CIM 
hierarchy by modifying the relationship of existing classes. 

WireArrangment 

The WireArrangement class in the standard CIM contains the mounting point 
information, defining the coordinates to specify the positioning of each wire on a 
tower. As part of the modifications to the CIM proposed by Wang, Schulz and 
Neumman, the mounting point information is removed from the class and put into 
its own separate class. The WireArrangement also has a phase attribute added, 
since each conductor potentially has multiple WireArrangement instances, one for 

each phase. This attribute is used to identify which phase each WireArrangement 

refers to, allowing for a single ACLineSegment object to be classed as the Line for a 

single circuit, but still include the information about the layout of each individual 

phase's cable. 

ie ype 

Each WireArrangement instance has an associated WireType, as with the standard 

verion of the CIM, but the paper removes the attributes from the parent WireType, 

and creates child classes of WireType for OverheadConductor and Cable, with all 

the original WireType attributes included in the OverheadConductor class, and the 

Cable class (and its subsequent child classes, ConcentricNeutral and TapeShielded), 

include only the attributes specific to them. The only concern with this approach is 

that it makes the attributes too specific, ignoring that resistance, ampRating and 

radius are attributes common to overhead conductors and cables, and as such have 

a place in the parent WireType class. 

3.4.1.2 Voltage Regulator 

The addition of a VoltageRegulator and LineDrop Compensator to the model is used 

to represent the voltage regulation equipment in a power system, with the proposed 
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classes capable of representing single, two and three phase regulators as well as the 
connectivity between the regulators, transformer windings and tap changers. 

The paper considers a step-type voltage regulator, which "is fundamentally an auto- 
transformer with many taps in the series winding" [7]. The addition of the line-drop 

compensator allows for the automatic voltage changing with resistance and 
reactance attributes to describe the equivalent impendence between regulator and 
the load centre. The association with a tap changer object provides the information 

about which tap changer the compensator controls. 

3.4.1.3 Load Model 

As with the Volta geRe gulator and Line models, the changes to the Load Model are 
intended to allow the representation of the individual loads on each phase, since the 

current CIM representation assumes the load is balanced across all phases. This is 

realised by introducing a DistributionLoad class which is comprised of 1--n 

PhaseLoads, which are defined as a being a percentage of the overall 
DistributionLoad. 

3.4.1.4 Summary 

These changes are designed to show how the current CIM standard can be extended 

so as to allow the modelling of lines at the distribution where it cannot be assumed 

that every line is balanced three phase. A significant number of the changes 

proposed to the Line model by Wang, Schulz and Neumman provide part of the 

proposed solution to the deficiencies of the CIM in relation to detailed zero 

sequence impedance calculations that will be discussed in section 3.5.2 

3.4.2 CIM For Market Operations 

An additional package for the CIM standard is under development by the IEC 

Working Group 16 as part of the IEC 62325, Framework for Deregulated Electricity 

Market Communications standard. This working group is looking at extending 

CIM to facilitate market operations. This involves adding classes for allowing bids 

and setting clearing parameters aimed at the business process messaging 

application of the CIM. This development is still in draft form and, since it does not 

affect the properties of the physical power system directly, is not of direct relevance 

to the work described in this document. 
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3.4.3 Common Graphics Exchange 

There has been a request for proposals from the Control Centre Application 
Programming Interface (CCAPI) task force to establish a common methodology for 
exchanging graphical data between power system applications[9]. The format 
required by the working group however is aimed at the exchange of data between 
EMS systems, and as such is aimed at a Proprietary Format -> CIM Graphics -> 
Proprietary Format system, with CIM as a framework exchanging information on 
the symbols used along with detailed layout information. No official extensions 
have been proposed to solve this problem; however this, request for proposals 
relates to work that will be described in Section 8 of this document. 

3.5 Extensions Proposed to Support the Research Work 
Discussed in this Thesis 

It has always been acknowledged by the task force that defined the original CIM 
that the base classes, while providing a high level of detail, will not always meet the 
requirements for all power system applications and as such, the CIM would evolve 
over time. This is reflected in the extensions already under development as 
previously detailed in section 3.3. 

While the CIM Base, part 301 of the IEC 61970 standard for Energy management 

application program interface provides a highly detailed, object-based data 

representation of a power network, there are several areas that were investigated as 

part of the program of research work detailed in this document. 

Four of these possible extension areas have been identified in collaboration with 
National Grid (the GB System Operator), for investigation as part of this project: 

a The requirement for highly detailed line information to allow the calculation 

of zero-sequence impedance from multiple segment values 

m Modelling an Auto-transformer 

N Representing fault constraints 

m Defining the points of interconnection between Network Operators for the 

purposes of model integration. 
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For each of these problem areas, solutions are proposed and discussed. Minimising 
the changes to the existing CIM data structure, so as to preserve compliance with 
the IEC 61970-301 CIM 1.0 standard is a priority. 

3.5.1 Requirement for Enhanced 

Models 

3. S. 1.1 Enhanced Line Model 

Line and Transformer 

The CIM's roots in the North American EMS industry has resulted in the model 
being focussed on exchanging data to allow accurate load flow calculations of fully 
balanced three phase transmission systems. This level of detail is often insufficient 
for post-fault and stability analysis, which is an important issue for power engineers 
in the UK. The UK transmission network is far more interconnected in comparison 
to its North American counterpart which, combined with the reduced geographical 
spread of the network, results in lower impedance connections and more generating 
devices in relatively close proximity. This means that short-circuits in the network 
can result in a higher level of short-circuit current flowing to the earth point than in 

a less interconnected, geographical dispersed network. This means that short- 
circuits have a more serious impact on overall network operations in the UK than in 
North America and the network must be modelled to a level of detail that allows 

post-fault and stability analysis to be performed to a high degree of accuracy. 

The UK transmission network is more interconnected than its North American 

counterpart in part due to the practise of installing turn-ins to other substations. 
This involves splitting a transmission line and redirecting it to another substation so 

that, for example, a double circuit on a route will consist of one continuous circuit 
from substation A to substation B and another circuit that is split into two by being 

redirected to substation C. 

Substation 1 rirrtfit A Substation 2 

Substation 3 

Figure 3.1 Turn-in Circuit Example 
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An example of a double circuit connection where one circuit is split by another 
substation is shown in Figure 3.1. Here Circuit A and B will be on the same tower 
until Circuit B is branched off to Substation 3. Similarly, Circuit C will rejoin Circuit 
A's transmission route and become a neighbouring circuit on the remaining 
transmission towers. 

For load flow purposes it is sufficient to give Circuits A, B and C positive and zero 
sequence impedance values that are based on the average across their length. For 
post-fault and stability analysis, however, such values are insufficiently accurate to 
allow accurate results to be produced. 

Using Carson's formula [131, the zero-sequence impedance of an individual span 
can be calculated from a wire's length, phase and shield GMR, phase and shield 
impedance, its height above the ground and the proximity of other conductors, 
along with their phase. 

In a situation where Circuits B and C are energised and Circuit A is de-energised 
the zero sequence impedance of A will determine the zero-sequence current 
induced within this circuit from the magnetic fields of Circuits B and C when they 

are in close proximity on a transmission tower. Given that the current flow in 
Circuits B and C is likely to differ, by having accurate information on the zero 
sequence impedance of each individual span in Circuit A it is possible to accurately 
calculate the zero-sequence current flow in the entire circuit. 

If there is a fault in Circuit B, unless Circuit A is fully grounded along its entire 
length the induced current in A from the section where it shares its tower with 
Circuit C, can affect the resulting post-fault current in B. So for accurate post-fault 

analysis of a fault knowing the induced current in a neighbouring circuits will allow 

the engineer to more accurately analyse the resulting post-fault condition of the 

network. 

As such, there is a requirement for the CIM line model to allow the modelling of 

transmission lines to the level of detail that will allow zero-sequence impedance 

values to be calculated on a per-span basis and thus for zero-sequence currents to be 

calculated based on these values. 
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3.5.1.2 Auto- Transformer Modelling 

A transformer in the CIM is modelled as having two or more windings, electrically 
isolated with a magnetic coupling. An Autotransformer by comparison has a single 
winding with fixed connection on one side and a variable connection on the other. 
For load flow purposes an autotransformer can be represented as a two winding 
transformer, but for post-fault and stability analysis, this masks the differences in 
electrical properties between the two systems that can impact on the stability of the 
network. 

Autotrans formers have a low initial cost and size in comparison to a double-wound 
transformer when the ratio of transformation is less than 2[14]. This makes them an 
attractive option for utilities when there is a relatively small difference in voltage 
level. Autotransformers, however, do have some disadvantages related to their 

construction. 

The electrical continuity of the two windings and the fact that part of the winding is 

common to both sides results in the "'leakage field between the primary and 

secondary windings [being] small and the reactance correspondingly so" [14]. 

Earthing the low voltage neutral point of an autotransformer also earths the high 

voltage neutral point since this point is common to each side and thus provides an 

additional low-resistance path to ground under fault conditions. This means that 

the autotransformer, without the installation of external protection in the form of 

reactors[14], is more likely to fail under external short circuit conditions with a high 

short-circuit current than a double-wound transformer[ 15]. 

The electrical continuity between the two voltage levels means that in three-phase 

transmission network, autotransformers fail to suppress harmonic currents between 

voltage levels unlike a double-wound transformer[14] 

These issues must be considered in post-fault and stability analysis, but are not 

required for load-flow analysis. As such it is beneficial to have a transformer model 

that reflects the physical connectivity within the transformer, something currently 

lacking in the CIM. 
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3.5.2 A Line Model to allow the Calculation of Zero-sequence 
Impedance Values 

3.5.2.1 Problem 

The Common Information Model was developed in North America, where the 
transmission network's configuration can differ significantly from that of the UK. 
The differences in geography means that the UK transmission network contains 
significantly more complex transmission line configurations. Lines are generally 
shorter in the UK, and there is more interconnectivity and branching than in the 
North American network. As such the standard CIM representation for a Line is 
insufficiently detailed for the UK network operators to accurately calculate the zero- 
sequence impedance of a transmission line based upon its component parts. Due to 
this deficiency, it is proposed that the Line package be extended to include the 
additional detail that is currently lacking. 

Currently, CIM contains a Line class, which itself is made up from multiple AC or 
DC Line Segments. Typically, (based on the example CIM network models used at 
the latest Interoperability Test), a Line is generally represented as containing no 
more than one or two Line Segments, often spanning several kilometres. The level 

of detail required by British utilies for the calculation of zero sequence impedance 

values, will involve each Line Segment representing the span between two towers, 

substantially increasing the complexity and size of the data-set required. 

The issue of increasing the complexity of the Line model has been looked at 

previously for the distribution network as detailed in section 3.4. While the 

extensions proposed for distribution systems provide some of the additional 

complexity required, they still lack classes to describe the additional components 

whose parameters will be required to calculate an accurate zero-sequence 
impedance value for a circuit. 

The extensions proposed to the Line model include some of the changes proposed 
for the line model in a distribution network, described in section 3.4.1.1. It was, 
however, felt that some of the changes proposed for distribution systems diverged 

from the IEC standard without providing enough added benefit, and hence the 

original standard is used for the base rather than the distribution system version. 
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Figure 3.2 Proposed class hierarchy for an extended line model for allowing the 
calculation of zero sequence impedence 

3.5.2.2 Proposal 

The proposal is to extend and modify the Line Model of the CIM to allow the 

accurate representation of a line with details about the arrangement of individual 

phases at each tower on a line. This includes the addition of a set of classes to 

describe the insulators on a tower; some modifications to the existing conductor 

classes; and the addition of a tower class to represent a single tower on the line. A 

class diagram showing the proposed modifications is show in Figure 3.2. The class 

diagram is marked to show which original CIM classes remain unchanged, and 

which are new or modified. A detailed list of the changes and additions proposed is 

given below: 

Conductor: The Conductor class remains unchanged, since it was felt that there was 

nothing to be gained by modifying a class that contains all the required attributes. 

ConductorType: As with the Conductor class, the ConductorType class remains 

unchanged. 



WireArrangernent: The WireArrangement class was modified with the addition of a 
Phase attribute to define the electrical phase that the specific instance of the class 
refers to. The moutingPointX and mountingPointY attributes were removed from this 
class and put into a separate Spacing class that has an association with the 
WireArrangement. These changes are taken from the changes proposed in the CIM 
Extensions to Electrical Distribution[81 paper discussed in Section 3.4.1.1. Since the 
Conductors and AC Line Segment classes will be used to describe each individual 
span between towers in the network, it is necessary for there to be more than one 
spacing class for the majority of instances, since the arrangement at either end of the 
span will be needed. 

Spacing: As detailed above, the Spacing class defines the X-Y coordinate of the 
wire's arrangement on the tower, with the Origin given at ground level and in the 
centre of the tower. Both WireArrangement and InsulatorArrangement instances 

can use the Spacing class, and each instance is associated with a tower. The same 
instance could be referenced by three objects simultaneously, since it is possible that 
an Insulator and either end of a Conductor will meet at the same point. 

WireType: The WireType class is modified by removing the phase ConductorCount 

and phaseConductorSpacing attributes. Subclasses of WireType, OverheadColiductor 

and Cable are created with the removed attributes reinstated in the 
OverheadConductor class, and a phaseConductorType attribute added to the Cable 

class. It was felt that the ampRating, gMR (Geometric Mean Radius. "'If the 

conductor is replaced by a thin walled tube of radius GMR, then its reactance is 

identical to the reactance of the actual conductor" [1]. ), radius and resistance 

attributes would be common to all children of WireType, and as such these 

attributes were retained in the WireType class. 

Insulator: For the proposed Line model to contain all of the data required to 

successfully calculate zero-sequence impedance values for a line it should contain 

objects to describe the insulators that hang from a Tower and provide electrical 

insulation against leakage from the lines into the Tower (and hence into ground). 

The Insulator model will follow that of the Conductor model, with an associated 

InsulatorType class and an association with a Tower, which it physically connects 

to. 

InsulatorType: Like the corresponding ConductorType class in the Conductor 

model, the InsulatorType has a O.. n inheritance relationship, and as such can be 

associated with multiple instances of the Insulator type. This is because the class 
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may contain data that is constant across multiple instances, such as length and 
material type, as opposed to instance specific attributes such as Reluctance, 
Susceptance and Conductance which will likely change between insulators. 

InsulatorArrangement: As with the WireArrangement class, this is used to define the 
phase associated with the Insulator instance. This class will be associated with the 
corresponding WireArrangement class so that the conductor that is physically 
connected to the Insulator can be ascertained. As with the WireArrangement class, 
the InsulatorArrangement will have an associated Spacing class to define the 
physical position of the insulator with respect to the tower. 

Tower: Since the Tower class is not part of the conducting equipment on the 
network, it inherits from the super-class Power System Resource. It is possible that 
this will be deemed to be part of the Asset Package rather than Power System 
Resource, and as such would inherit from the Structure class rather than be 
associated with an instance of the class. Both systems have merit, however the draft 
nature of the 61968 standard, and the fact that in this model the tower itself is 
directly associated with pieces of network Equipment, has led to the inheritance 
stemming from the Power System Resource class, and associated with an instance of 
Asset (in this case, the Structure child class). The Tower is associated with multiple 
instances of the conductor and insulator classes, but due to it not actually being a 
part of the Conducting Equipment, is not part of the Topology itself and has no 
associated Terminals or Connectivity Nodes. The Tower will also have multiple 
Spacing classes associated with it that are used to define the physical spacing of 
wires and insulators on the tower itself. 

Figure 3.3 illustrates how a small portion of a Line would now be represented as 

objects. The solid black lines show physical connectivity, the dashed lines showing 

associations. A tower has no physical connection to the electrical portion of the 

network, since although the Tower is physically connected; its electrical impact on 
the network is accounted for by the Insulator itself and as such is ignored. An AC 

Line Segment representing a span between tower associates with two tower 

instances. Below the left AC Line Segment in Figure 3.3 is expanded to demonstrate 

that it is composed of a single Conductor Type, which itself is made of three Wire 

Arrangements, one for each phase of the circuit. The corresponding decomposition 

of an Insulator is also shown, and one of the Spacing objects for each tower is 

shown, with the Wire Arrangement and Insulator Arrangement instances that share 

an association with it. For this example each tower would have three spacing 
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instances per circuit, denoting points at which Wire Arrangement and Insulator 
Arrangement (i. e. phases) physically connect. 
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Figure 3.3 Proposed CIM Object Representation for a Section of a Line 

3.5.2.3 Conclusion 

This solution allows for a line to be represented down to the individual spans 
between towers. Using the associations between instances of the spacing, tower and 

wire arrangement classes, an accurate representation of the positioning of the 

phases of all the circuits that each tower carries can be constructed. This, combined 

with the data within each instance to describe the properties of the line provides 

sufficient detail to calculate the zero sequence impedance of an entire line. 

3.5.3 Modelling an Auto-Transformer as CIM Objects 

3.5.3.1 Problem 

An Auto Transformer is a Power Transformer that has a physical connection 

between the windings, unlike a normal transformer where the windings are 

electrically isolated. In the CIM, the standard arrangement for a transformer is for 

each winding to have a single Terminal (physical connection to the network) and 

the windings to be contained within a Power Transformer container object. 

There are several options for modelling an Auto-Transformer in the CIM using 

either the existing standard, or the modified standard version. 
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Figure 3.4a)-d) Proposals for modelling an Auto-Transformer as CIM Objects 

3.5.3.2 Proposals 

Use the TransformerType Attribute 

The first option is to use the existing Power Transformer model as shown 'in Figure 

3.4a) and to set the Power Transformer's transformerType attribute to Auto. This 

method of defirung an auto transformer would require software to be written to 

note this change in type, and have knowledge of any special characteristics that an 
Auto -Transformer has over a Transformer that has no physical connection between 

the windings. 

By assigning a Tap Changer to one of the windings it is possible to denote which is 

the static winding and which winding can be altered. However it should be noted 

that given that the two windings represent a single connected winding in reality, 

any changes to the voltage in one winding will be reflected by an inverse change in 0 



the voltage of the other winding. Any software that alters the tapped voltage must 
know that it must subsequently alter the other winding correspondingly. 

The other major problem is that by representing the transformer in this way, it 
ignores the differences in physical construction between a Transformer with 
electrically isolated windings, and an auto-transformer 

This solution is undoubtedly the simplest to implement, since it does not alter the 
existing CIM classes, but has a major weakness in that it relies on any application 
using the data to cope with the inconsistencies between the physical network 
structure and the CIM representation. 

Connect the Windings in the Power Transformer 

The second option is to connect the Transformer Windings within CIM by giving 
each Transformer Winding two terminals and connecting them via a Connectivity 
Node, as shown in Figure 3.4b). As with the proposal in 4.2.1, by assigning a Tap 
Changer to one of the windings it is possible to denote which is the static winding 
and which winding can be altered, but the problems of the changes in voltages 
between the windings described in 4.2.1 remain. 

This proposal provides a more accurate model of the auto transformer than that 
described in 4.2.1 since the two inter-connected windings can be thought of as a 

single winding that is split into two parts. This representation, however, has the 

additional problem of being contrary to the normal Transformer representation in 

CIM where a Transformer Winding has a single Terminal associated with it. As 

such, this could lead to problems with third party software that uses the CIM 

standard approach for dealing with transformers. 

Create a new Subclass of Power Transformer 

The third option is to create a new subclass of Power Transformer that inherits all 

the attributes of the Power Transformer class, but can introduce its own parameters 

that define the characteristics of the Auto-Transformer. As shown in Figure 3.4c), 

this would allow the interconnection as given in either Figure 3.4a) or Figure 3.4b), 

as well as the introduction of the additional parameters required to accurately 

model an Auto -Transformer. It does, however, introduce the problem of deviating 

from the standard and introducing a custom class where the requirement for it is 

questionable. 
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er 

Figure 3.5 AutoTranformer, AutoTransformerWinding and Tap Class hierarchy 

Create Multiple New Classes 

The fourth option introduces two new classes to help represent the Transformer and 
offers the most extensible solution to the problem. Rather than represent the single 
auto-transformer winding as two connected windings, as is the case in the other 
proposed solutions, this proposal involves having a single winding with a single 
terminal and then I.. n instances of a new Tap class associated with it as shown in 
Figure 3.4d). 

The AutoTransformerWinding class is a subclass of the existing 
TransformerWinding class, and is used to represent the special case of a transformer 

with a single winding. The main change to the TransformerWinding class is the 

introduction of a relationship between it and the Tap class, used to define the 

secondary connection to the winding to provide the step-down voltage. Since each 
Tap is also associated with a TapChanger the TapChanger class is altered to include 

a OA association with a Tap. 

The Tap class inherits from Conducting Equipment and is associated with a single 

Auto Transformer Winding and a single TapChanger. The Terminal connected to 
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the Auto Transformer Winding will always have the full Transformer voltage, but 
the Tap, controlled by the Tap Changer, is used to define the point on the winding 
that the stepped down voltage is taken from. 

The new AutoTransformer class inherits from the PowerTransformer class and 
contains a new aggregation relationship with the newly formed Tap class. 

This representation allows for the model to more accurately reflect the physical 
construction of the network and, by having a single fixed winding rather than two 
connected windings, it also allows for the modelling of an auto transformer with an 
electrically isolated tertiary winding, since the changes to a tap will not affect the 
main winding's voltage, from which the tertiary winding's own potential will be 
derived. 

3.5.3.3 Conclusion 

The model proposed in Figure 3.4d), while involving the most significant changes to 
the existing CIM transformer representation of the four options, offers the most 
extensible method for modelling an Auto-transformer. It closely models the 

physical connectivity of the transformer itself and the associations with the Taps. 

The use of a subclass of the existing Power Transformer class allows for the accurate 

representation of more complex Auto-transformers that include tertiary windings or 

multiple taps, allowing the model to cope with several auto-transformer 

configurations. 

This option is the most complex to implement (ultimately requiring additional 
functionality to allow conversion of these new classes into their equivalent IEC 

61970 CIM classes for backwards compatibility) but the benefits of accurately 

modelling the physical construction of the transformer are more important. 

3.5.4 Representing Fault Ratings & Constraints 

3.5.4.1 Problem 

Resources within the power network will contain ratings which define the operating 

constraints of the equipment. These will include maximum and minimum ratings 

for a number of attributes, including current and voltage. The present version of the 

CIM is oriented at defining the thermal constraints of equipment, but for the CIM to 

meet the requirements of the UK utility companies, the ability to accurately define 

electrical fault constraints will be required. 
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3.5.4.2 Proposal 

An option for including fault rating data is to include the ratings as attributes vvithin 
the Equipment and Co nductingE quip ment classes. Extra attributes can then be 

added to any existing child classes where required. The problem with this approach 
is that it limits the number of constraints defined for each rating on a piece of 
equipment (e. g. Cyclic, Post Fault), and it is possible that the number of constraints 
specified could vary between ratings, and even between instances of the same class. 
It is therefore preferable to have a more adaptable solution. 

It is proposed that a separate Rating class will be created, as shown in Figure 3.6, 

which will contain attributes to define the constraint on a piece of equipment as a 

separate associated object. It is possible that a fault constraint for a piece of 
equipment will be defined as multiple instances of the Rating class, contairung both 

static values and curves that denote the constraint according to other parameters 
(e. g. current vs. time). 

This RatingCurve class will inherit from the standard Curve Schedule class, but is 

likely to require its own parameters, such as the DC Component of a waveform, to 

allow accurate results to be calculated using the formula. As such a new child class 

of Curve Schedule is proposed to meet this requirement. 
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Figure 3.6 Proposed Rating class diagram 
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3.5.4.3 Conclusion 

A O.. n relationship between the class's particular rating attribute and the Rating 
class allows for the Fault Constraints to be defined as a combination of specific 
values and formulae, thus allowing flexibility in defining the constraints of a piece 
of equipment, whether they be Post Fault, Cyclic or any other required Ratings. 

3.5.5 Defining Network Interconnection Points 

3.5.5.1 Problem 

The ability to take two or more existing power system models represented in the 
CIM and join them together to form a single, interconnected power system model is 
of fundamental importance to this project. A system that would allow the 
automatic reception, interrogation and amalgamation of power system models from 
third parties with the existing transmission network model would obviously be of 
major benefit to network operators and to planning engineers. 

When connecting two power system models together it is necessary to identify the 
points on each network that are to be electrically connected and from these 
connection points Voltage Level, Substation and Topological nodes can then be 

automatically combined should that be required. 

Since two power system models may share multiple inter-connection points, a 
method of initially identifying which points of the network are intended for external 
connection is required. The most obvious method for doing so is to create a 
Terminal for a piece of equipment that does not itself connect to a Connectivity 

Node. This isolated Terminal can then be used to connect the network model to 

another network model by identifying the other network model's corresponding 
isolated Terminal, then creating a Connectivity Node to join the two. 

Unfortunately there exists the potential for isolated Terminals to exist that are not 
intended to be used as network connection points. Relying purely on the 

importation software to correctly identify the points of interconnection could lead to 

errors. For large network integrations, manually defining the interconnection 

points removes much of the benefit of an automated system. 

Allowing a network model to incorporate the ability to identify which of the 

isolated terminals are intended for connection to an external network instantly 
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removes one of the possible areas for error, and makes the job of matching 
connection points simpler. This will be discussed in detail in Section 7. 

3.5-S-2 Proposal 

Rather than define a new piece of Conducting Equipment or Topological object that 
would alter the core CIM classes, a new container class, Network Connection Point, 
is created. This extends the existing Equip mentContainer class with additional 
associations to a single Terminal object and Voltage Level. The Network Connection 
Point can also be associated with multiple pieces of Conducting Equipment, which 
serves two purposes: 

1. It allows a network operator to store information on which pieces of 
equipment exist in a specific Grid Supply Point. 

2. It allows for overlap of models between networks, which aids the process of 
automatically matching Network Connection Points where each model 
contains multiple points of inter-connection. 

A class diagram showing the relationships that exist between the new 
NetworkConnectionPoint class and the existing CIM classes is shown in Figure 3.7. 

EquipmentContainer 

+VoltageLevel 
jo.. l 

VoltageLevel NetworkConnection Point 

+External-Terminal 

Terminal 

+Con nectsTo-NetworkConnection Point 
O.. l 

Figure 3.7 Structure of core toolkit showing interaction with external components 
via API 

The solution adopted is to extend the existing EquipmentContainer class to form the 

new NetworkConnectionPoint class. The UML class diagram of this new class is 

shown in Figure 3.7, with two additional associations: 

ConnectsTo-NetworkConnectionPoint and External-Terminal. This allows the 

Network Connection Point to be defined in two ways depending on the network it 

represents: 
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1. 

2. 

As the provider of a connection, where the connection point is defined by an 
association with a single Terminal using the new External-Terminal 

association 

As the receiver of a connection, where the connection point is defined by an 
association with a Connectivity Node using EquipmentContainer's existing 
ConnectivityNodes association. 

When combining two networks, each pair of Network Connection Points, one from 

each network, should contain at least one External-Terminal and one 
ConnectivityNode. If a Network Connection Point contains multiple 
External-Terminal and/or ConnectivityNode associations or multiple Network 
Connection Points then the process must identify the best match or matches. The 

External Terminal and Connectivity Node, being virtual network components (i. e. 
they do not represent real pieces of physical network equipment), are used to 

represent the point at which the two networks are connected in the model. When 

both networks are fully connected, each External Terminal will associate with a 
Connectivity Node from another Network Connection Point and vice-versa. The 

ConnectsTo-NetworkConnectionPoint association provides a link between a 
Network Connection Point instance from each model. 

NetworkConnection Point A 

External Terminal 
D: 

................ 

NetworkConnectionPoint B 

ConnectivityNode 

.................... 

Figure 3.8 Illustration of a network connection using Network Interconnection 
Points 

A simple example of a Network Connection Point is shown in Figure 3.8. Network 

Connection Point (NCP) A is the provider of the connection and contains a single 

External Terminal. NCP B is the receiver and contains a single Connectivity Node. 

Upon integration the Connectivity Node and External Terminal would become 

connected, thus creating a direct link between the Transformer and Breaker and 

joining the two network models. 
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3.5.5.3 Conclusion 

The benefit of this additional Network Connection Point class is that, as a container, 
it can be excluded from the network model when exporting as IEC 61790-301 
compliant CIM without affecting the network's structure or topology. Software to 
import and connect models can be written to function without the classes, but by 
including the data the process is made significantly more straightforward with the 
potential for fewer errors. 

3.6 Backward Compatibility Issues 

As discussed in Section 3.2, the Strathclyde and IEC CIM standards are able to co- 
exist, with XML files and software applications capable of storing data from 

multiple CIM standards concurrently. Since applications that import XML data can 
ignore nodes from unrecognised namespaces, the stcim prefixed nodes will simply 
be ignored by third party applications, which is acceptable when the classes do not 
directly impact upon the network layout or electrical characteristics of the model. 
For example, the Network Connection Point, does not represent a piece of physical 
equipment, and as such its inclusion is not required to create a valid connected 
network. 

A problem occurs, however, in the case of the modified Line Model and Auto 

Transformer classes. If omitted from a model, the network connectivity would be 

incomplete since essential pieces of electrical equipment would be missing because 

they are from the Strathclyde standard and not the CIM standard. 

For any classes such as these, it must be possible to convert them into existing CIM 

classes in such a way that although the higher level of detail will be lost, the 

essential connectivity and basic parameters are maintained. 

3.6.1 Areas of Concern 

The following sub-sections describe how backwards compatibility can be achieved 

with the proposed CIM extensions. 

3.6.1.1 Line Model 

Translation from the modified Strathclyde standard classes back into the original 

IEC standard CIM classes is required. Equipment attributes that have been moved 

into Strathclyde classes (such as Spacing) can be copied into the original class with 
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any new subclasses cast back into the original parent class from the IEC standard. 
The additional tower class and those that are used to model the arrangement of 
insulators are not essential parts of the network model, and their omission removes 
a level of detail but does not affect the model's connectivity. 

3.6.1.2 Auto Transformers 

For an Auto Transformer, the Tap, AutoTransformerWinding and AutoTransformer 

classes must be converted into the original TransformerWinding and 
PowerTransformer classes. For the AutoTransformerWinding this should be a 
simple case of converting it back to the TransformerWinding class, and in the 
process removing the associations to any Taps that are connected to it. For the Tap 

class the creation of a new TransformerWinding instance is required. This involves 
the calculation of appropriate values for each attribute in the Two-Winding Power 
Transformer representation and calculating electrical parameter values as close to 
the Single Winding-Tap Auto Transformer representation as possible. The 
AutoTransformer must similarly cast itself to its parent PowerTransformer class and 
then contain the newly created TransformerWinding classes. 

3.6.1.3 Other Extensions 

The other additional modifications to CIM detailed all involve the addition of 

classes that provide extra detail to the model, and any modifications to existing 

classes were to allow the addition of these extra associations. As such, the modified 

classes can be cast back to their equivalent classes in the original IEC specification 
CIM, removing the associations to the new classes in the process. Any instance of 
the new classes can now be ignored without breaking object associations. 

3.6.2 Implementation of Backwards Compatibility 

Exportation methods (to move from a CIM+Strathclyde model to a CIM only 

model) will be built into the classes themselves to allow CIM based applications to 

be extensible. Backward compatibility can be maintained by setting down stringent 

requirements on any new classes that modify any core CIM classes or any classes 

directly related to the representation of network topology. If all of these new CIM 

classes are capable of exporting themselves as a valid representation in IEC CIM 

(whether it be as a single or multiple objects), backwards compatibility, albeit at a 

reduced level of detail, can be maintained. 
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This approach is required to ensure that data in any new CIM applications is 
compatible with the existing third party software applications that are capable of 
importing and modifying only IEC CIM data in XML format. This approach will be 
embedded in the core application software being developed as part of this current 
project, rather than being part of the data standard itself. 

3.7 Chapter Summary 

This chapter has summarised a number of extensions to the CIM and their relevance 
to the work discussed in this thesis. The new extensions proposed to support the 

adoption of the CIM within the UK power community highlight some of the 
deficiencies of the current CIM standard, while illustrating how the standard can be 

extended to cover these gaps without breaking backwards compatibility. The final 

proposed extension defines a way of marking components in the network that can 
be used as points of connection. This has two main applications: to facilitate the 

automatic integration of operational models by explicitly defining the points in a 
network that connect to neighbouring network; to allow planning engineers to 
define points in a network that are suitable for connection by existing or prospective 

connection partners. The automatic integration of models, whether for operational 

or planning purposes, will be discussed further in Chapter 7. 
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4 Exchange & Storage of CIM Power System 
Models 

4.1 Chapter Introduction 

As mentioned previously in Section 2.4.2, the CIM defines each component of a 
power network as a separate class and how these classes relate to each other. The 

model itself does not describe functionality, only the associations for a class, the 
data it contains and the format of the data. 

This approach, of creating a generic model of power network components allows 
the model to be translated into classes for exploration and manipulation within an 
object oriented programming language application. Languages such as Java, C++ 

and C# are object oriented, and the CIM structure can be used to create 

corresponding classes in any of these, or other object oriented languages. Each CIM 

class becomes a corresponding class in the target language, with the corresponding 

attributes and inheritances. 

This chapter will describe how the CIM can be used to build a software framework 

in Java, thus providing a powerful mechanism for interrogating and processing 

power system network models in a CIM format and highlights the originality of 

using the CIM as the foundation of a software tool. 

4.2 Po wer System Analysis Software Design 

Methodologies 

Much of the power system simulation software currently in use within large utility 

and consultancy organisations is based on procedural programming languages, 

many of which date back to the late 1970s and early 1980s, when processing power 

and memory capacities were a tiny fraction of what is available today. Since then, 

programming languages have evolved, moving on from procedural, functional 

programming, to an object oriented design. This technique involves creating 

programs as instances of modules or classes, so that a program is split into a 

number of small, self-contained systems that are adaptable and reusable. 

As mentioned, CIM is ideal as the basic framework of such object oriented software, 

since it defines all the basic components of the power network as objects that can be 
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quickly converted to classes in an appropriate object oriented programming 
language application. All the different components of a network can be instantiated 
in the computer's main memory simultaneously, creating a dynamic computer 
representation of the network. 

With a CIM implementation of a power system, objects can communicate directly 

with each other, reducing the requirement for a single, centralised program or 
procedure to perform all the processing of data. Multithreaded software, where 
more than one process can run concurrently, based on an object oriented CIM 

network would allow a distributed simulation system that integrates the processing 
and storage of data. 

The use of the CIM for the basis of the underlying architecture instead of a custom- 
designed solution, as has been used in other object-oriented power system 
applications [161, is to allow the framework to cope with extensions and 
modifications to the CIM standard without requiring a complete redesign of the 

software. The CIM defines the relationships between classes, and by defining rules 
for creating methods within each class for setting and getting the attributes or 

associations. The Application Programming Interface (API) for the software follows 

a pattern based on the UML standard, prefixing an attribute name of 0.. 1 

multiplicity with get and set or add and remove for O.. n multiplicities. This is a 

common practice for object-oriented software development, and allows for simple 

creation of Java classes from a UML design, and as such allows the software to 

integrate extensions to the CIM standard with little modification. A custom 

designed class hierarchy is unlikely to integrate extra CIM classes without 

significant redesign of the class structure. 

Many existing power systems analysis software packages and Energy Management 

Systems can import and export data in the CIM format, encapsulated in XML. 

However, they convert this data into or from their own internal data structure and 

as such, their ability to cope with extended formats or modifications to the standard 

is obviously limited by how the CIM maps to their own data structure. 

4.3 Power Systems Toolkit Design 

The CIM objects form the core data storage system for the power systems toolkit 

proposed in this chapter. Access to the data is via the core toolkit module's API, 

which maintains the integrity of the data. Additional modules can be attached to 

this main module, allowing the import, export and modification of the data. 

83 



The primary motivation for the design of this system is to allow it to operate as a 
remote application, providing multiple users access to the same data and tools 
concurrently. This system creates problems concerning the synchronization of data 
between multiple, concurrent user sessions. A remote system of this type must 
prevent multiple sessions from creating multiple instances of the original data if any 
changes are to be integrated back into the original data during runtime. These 
issues will be addressed further in section 4.4. 

Figure 4.1 Structure of toolkit showing interaction with external component via API 

Figure 4.1 shows the structure of the toolkit (the import module, core toolkit and its 

associated serialization module and object storage system) and three additional 

modules that utilise the API. The export modules (PSS/E in this case but could be 

any other power systems analysis application) use the API to read the core data 

then process it into the required output format. The Topological Processor uses the 

existing CIM objects to create associated Topological Node objects, which are 

inserted into the core data storage system, via the API. 

The import module has access to the CIM class definitions, and must be able to 

determine which classes are required, and how many instances of each class will be 

required to successfully parse all the data from the source CIM XML file. The 
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module will then work its way through the imported file, creating instances of one 
or more CIM classes for each component of the network described in the source file, 
until the whole network has been instantiated as interconnected CIM objects. 

This CIM model is then passed to the core toolkit, via the API, which integrates 
these objects into its core object storage system. The additional modules can then 
access the data through the core module's API. This way the data can be 
interrogated, modified or exported, while the core module maintains the integrity 
and tracks modifications to the data. 

Accessing the data through the core model will allow the implementation of the 
serialization based journaling system described in section 4.4.5, since the data itself 
is not made available natively to the attached modules, but is accessed through the 
core API. This records, and serializes, all commands performed that modify the 
core data, as well as verifying the integrity of the attached modules, to prevent 
unauthorised access to the sensitive network data. 

4.4 Challenges of Implementing a CIM Based Power 

System Toolkit 

Several challenges were overcome in creating a CIM-based power systems toolkit in 

Java. These included: creating a Java implementation of CIM; choosing a system of 
data storage for the toolkit which would be both fast, flexible and allow concurrent 

access from multiple sources; creating a simple method of importing data from a 
CIM XML file into the toolkit itself; and ensuring that the software system was 

reliable. 

4.4.1 Implementation of CIM classes in Java 

An implementation of CIM in the Java programming language was undertaken to 

demonstrate the expected advantages of using objects to store network data. Since 

Java is a fully object oriented language, the UML [17] version of CIM already 

publicly available on the CIM User Group website[101 could be used to 

automatically create the base Java classes. There are tools available, both free- 

standing and within existing commercial design packages to translate the language- 

independent UML specification into a number of programming languages, and 

create the appropriate base functions for inserting and retrieving values from each 

class. 

8-5 



The benefit to using the CIM for the software's internal architecture rather than a 
custom solution is that with major power systems software vendors such as ABB, 
Areva and Siemens implementing CIM import and export functionality into their 
software, storing the data internally in the CIM format removes one extra level of 
translation when exchanging data between applications. The ability to cope with 
extensions to the CIM is also easier when the internal data storage architecture 
mirrors that of the standard. Any additions and modifications to the standard 
requires only a corresponding change to the internal data storage architecture, 
removing the problems of mapping a proprietary internal architecture to changes in 
the CIM. 

When converting the CIM UML classes into Java code, functions are automatically 
created for adding, modifying and retrieving data in the format of get[Attribute]O 
and set[Attribute]O where [Attribute] is replaced with the name of the attribute, or 
get[Associationsl(), add[Associationl() and remove[Association]() where similarly 
[Association] is replaced with the name of the association. This allows the classes to 
follow the standard, but can also be easily extended to create custom classes with 
additional custom functionality. These functions allow a single function call to 

perform multiple data modifications on the object, and any other associated objects. 
This combines the data storage and manipulation into one single entity which, 

while more complicated than a file or database system, provides a more 

comprehensive API and enables the actual software applications using the data to 

be simplified. 

Java's performance, and thus suitability, for computationally intensive applications 

can be measured using the Math, Statistics, and Computational Science Division of 

the National Institute of Standards and Technology's SciMark2 benchmark suite[181. 

This benchmark is used to measure the performance of computer systems using a 

series of computational kernels: a Fast Fourier Transform, Jacobi Successive Over- 

relaxation, Monte Carlo integration, Sparse Matrix Multiply and Dense LU Matrix 

Factorization. The benchmark code is available in both C and Java and returns 

values in MFlops (Million Floating Point Operations) per second for each kernel and 

a composite score. 

The two matrix based benchmarks offer the most relevant comparison for this 

application, since the extensive use of arrays in each kernel allows the access times 

of the two systems for storing arrays in each language: object-references in Java and 

pointers in C, to be compared as well as the numerical performance. Benchmarks 

run recently on a Pentium 4 system using both the Java and C versions found that 
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while the C code was marginally faster overall, producing a composite score of 
384MFlops compared with 361MFlops for the Java 1.4.2 version, this is a drop of 
only 67o. The full benchmark results can be found at [19]. 

The advantages of using Java all outweigh what is now only a small performance 
disadvantage over natively compiled C or C++ code: its cross-platform 
compatibility; the ability to easily use the same framework for graphical, command- 
line or server based applications; the inbuilt libraries for constructing distributed 
applications; its intrinsic security features; and the integrated multithreading 
capabilities. 

4.4.2 Advantages of Storing A Power System Model as 
Objects 

The traditional approach to storing large quantities of data for concurrent access 
from multiple sources is to use a database system for storing, searching and 
retrieval of the data. Such databases required the use of the database interface, 

which, while powerful for complex searching, has significant disadvantages when 
performing traversals of the power system network layout, like those required for 

converting node-breaker data in bus-branch format, at a higher level of abstraction. 

Using objects written directly in the chosen object-oriented language for persistent 
storage offers several benefits: 

0 Far greater flexibility for access and manipulation of data. 

m The interface is written in the native language and is fully customisable, so 
data manipulation and access can be fully integrated into the data storage 

medium. 

EA standard data format can be maintained, while providing a powerful, 

adaptable interface for accessing the data. 

The use of packages and inheritance allows for the core classes to be extended, but 

compatibility with previous versions to be maintained by using separate packages 

for each version of the CIM and the use of inheritance between packages allows 

backwards compatibility to be maintained where required. 

One of the main functions of the toolkit is to automatically create Topological Node 

objects, analogous to a Bus in bus-branch format, from the more detailed node- 

breaker format of CIM. This process will be discussed in detail in Section 5.4, along 
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with the implemented algorithm. However, for now it is enough to consider the 
conversion as a full traversal of the network, accessing every object at least once. 
For comparison, the algorithm was implemented using an object-storage system for 
the CIM data, then using a MySQL database to store identical data. 

This choice of comparison is due to the three available choices for a multi-access 
system: Using a database to store the data and allow it to be accessed concurrently 
by each session as data is required; use a persistent object-storage system for 

common data storage; use a database for data storage then instantiate an 
independent set of objects based on the database data for each user session. The 
latter option creates the problem of synchronizing data between multiple sessions, 
but for the purposes of benchmarking, operates on the same principle as the object- 
storage option. 

With the object-storage option, the references to any connected objects are contained 

within the object as a direct reference. With a database, the field that refers to 

another entry in the database uses a foreign key to locate the entry for the other 

object and extract the appropriate information. 

Assuming the database is fully indexed, containing data for ii objects with each 

object having a single row and unique numeric identifier in the primary table, then 

a single step in a network traversal would occur in O(log n)[20]. This is because a 

standard binary search of an ordered index would takes place on average in log 11, 
for a fully ordered index of n items. If the traversal takes m steps, then the database 

will take 0(mlog n) to complete the traversal. 

For a persistent object-storage system, a single step of the traversal will take 00), 

since objects contain direct references to other associated objects, and no searching is 

required. A full network traversal therefore takes place in m steps, or O(m). 

It can therefore be concluded that for a network of size n, the time taken for a 

complete network traversal with an object persistent storage system will increase 

linearly as the number of steps in the traversal m increases, but is independent of 

the network size n. Using a database system for data storage and retrieval however, 

shows a growth that is linearithmic, since the execution time is a product of the log 

of the network size and the average number of steps for a traversal. 
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4.4.3 Memory Storage Requirements for an 
System 

Object-Based 

An object prevalent system stores all the data in memory. To compare the memory 
requirements when instantiating a power systems model as CIM objects in Java, the 
toolkit instantiated an increasing number of power system models in memory, and 
used Java's Runtime. totalMemoryo to measure the memory used by the Java 
Virtual Machine. 

The system was tested with a number of CIM models of varying complexity taken 
from the industry's CIM Interoperability tests. These included test models of 
varying sizes from ABB, Areva, Siemens, EDF and the Western Area Power 
Administration (WAPA). By having the toolkit instantiate multiple instances of 
these models in varying combinations, the amount of memory used to store 
networks of increasing size can be measured. 

CIM Objects Memory Usage 
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Figure 4.2 CIM Objects Memory Usage, 0 to 236,000 objects 

On a computer with 4.5Gb of Physical memory, the memory usage follows a linear 

growth pattern. Figure 4.2 shows a graph of the total number of CIM objects plotted 

against the memory used to instantiate them in memory. The outliers in the graph 

are due to the variance in complexities between the difference models. One CIM 

object may contain only one or two attributes and associations, while another CIM 

object may contains tens or even hundreds of attributes and associations. As such, 
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the complexity of the CIM power system model will affect the memory used for 
each object. 

CIM Objects Memory Usage 
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Figure 4.3 CIM Objects Memory Usage, 0 to 522,000 objects 

The increase in memory usage does, however, show a linear growth in memory 
usage as the number of instantiated objects increases. By using multiple instances of 
large, real-world models, the number of instantiated objects can be increased by tens 

of thousands of objects each time. Figure 4.3 shows the original graph extended to 

over half a million objects using almost 70OMbytes of memory. 

On average a CIM Object uses 1.3Kbytes of memory allowing the system to 

continue to store up to 1.7 million CIM objects, at which the 32bit Java Virtual 

Machine (the environment in which Java programs run on a computer) memory 

address limit of 2.2Gbytes is reached. Beyond this, Java 1.5 supports 64 bit memory 

addressing on compatible operating systems, and with modern 64 bit workstations 

and servers available at prices less than $3000, the system has the potential to scale 

up to tens or hundreds of millions of objects. Beyond this limit, the system could be 

split across multiple computers, operating as an interconnected cluster. 

An alternative is to implement persistent CIM Java objects using a database with 

JDBC Gava Database Connectivity), which stores each object in a serialized form 

within a database. The problems with such a system have been discussed 

previously[21], where it was noted that the complexity of mapping Java objects into 
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tables and back increases dramatically when multiple levels of inheritance, as 
contained in CIM, are included. 

The other system used in [211, was an ODMG (Object Database Management 
Group) Java binding, which has since been superseded by Java Data Objects UDO). 
This is a system for storing Java objects in a database with transparent object 
mapping to database tables. While this approach does offer advantages over JDBC 
since it is simpler to implement, it still requires a database system to function, which 
removes much of the speed advantage of an object prevalent storage system since 
each object is loaded from the database. 

A database storage system does offer advantages when performing complex 
searches across multiple object types. For example, locating all pieces of equipment 
of a specific voltage level would require a single database query in the database 
implemented previously, but to implement the same search in an object-storage 
system would require functionality to search through every instance of each 
equipment type to find any matches. 

The advantages provided by the superior search capabilities of a well-designed 
database make the combination of an object-store with an associated read-only 
database the most attractive option. Making the database read-only and making 
any changes to data within the object-store be mirrored automatically on the 
database by each object removes the problem of synchronising data between the 

two. This system provides the advantages of complex database searches while 

maintaining the benefits in speed for complex data transformation provided by an 

object-storage system. 

4.4.4 Importing CIM XML Power System Data into Java 

Objects 

As has been mentioned previously, CIM provides a framework for creating an 

object based representation of a power system. Rather than interpreting CIM XML 

data directly, importing this data as a series of CIM objects allows greater flexibility 

in accessing and manipulating the data. Of course, the construction of an export 

module for straight translation into other, proprietary power system modelling data 

formats is also possible. 

The model is instantiated using a generic import module that can cope with any 

XML components within the document that validate against the defined schemas, 
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and for which a corresponding class file exists. Rather than using a large compare 
statement to locate the corresponding class, the name of the XML components can 
be used to create a class file of the same name using Java's Reflection functionality. 
This allows the available functions of a class to be found dynamically by the 
program when running. As previously described in section 4.4.1, if a class is 

constructed so that for a variable X the corresponding set and retrieval methods are 
setX and getX then it is possible to propagate the object based on the data retrieved 
from the XML component. 

In this way small pieces of code can be reused for importing any CIM XML node, 
since the import module is generic and non-class specific. As each XML component 
is read, the name of it is used to create an object whose class has an identical name 
to that of the XML component. Now the attributes in the XML component can be 

added into the object by using the Reflection API to locate a set method that matches 
the name of the attribute. 

For example, the code below shows an excerpt from a CIM XML file containing the 

g, r, x, ratedKVA and ratedMVA values for a Transformer Winding, TW_IA. 

<cim: TransformerWinding rdf: ID="TW 
- 

1A"> 
<cim: TransformerWinding. g>0.04</cim: TransformerWinding. g> 
<cim: TransformerWinding. r>0.07</cim: TransformerWinding. r> 
<cim: TransformerWinding. x>0.47</cim: TransformerWinding. x> 
<cim: Transformerwinding. ratedKV>400</cim: TransformerWinding. ratedK 

V> 
<cim: TransformerWinding. ratedMVA>164</cim: TransformerWinding-rated 

MVA> 
</cim: Transformerwinding> 

When this data is imported into the toolkit, the import module selects the 

corresponding Java class, Transformer Winding by using the name of the XML node, 

cim: Transfor merWi n ding, locating the Package in the CIM that contains the 

Transformer Winding class then using Java's reflection functionality to create a new 

instance of that class. Given that the Java class structure and XML schema are 

created from the same UML model, a CIM XML file that validates against the 

schema during the initial stage of importation, will in turn map to one of the class 

files, preventing the software from trying to import invalid XML data. 

The Java class contains attributes that correspond to the values in the XML nodes: 

variables named g, r, x, ratedKVA and ratedMVA, and also contains the functions 

setG, getG, setR, getR, setX, getX, setRatedKVA, getRatedKVA, setRatedMVA and 

getRatedMVA which are used to set or retrieve the value of the corresponding 

variable. 
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The data will initially be in a String format since an XML file is plain text, but this 
can be converted to the appropriate data type within the class itself durIng the set 
method, keeping the import module simple and generic. For example the string 
"34.2" can be converted to the floating-point value 34.2 by the set method, since the 
variable in the class will be a floating-point value type rather than a string. 

For object associations (where the attribute of the XML node refers to another 
node), it is necessary to initially store these associations as the unique String 
identifier for the other component. As each node is read in, an index is updated 
with the identifier of an object, and a reference to the object itself. Then, once the 
file has been fully imported and all the objects instantiated, the references in each 
object can be converted from a text identifier to an object association using the 

previously created index. 

This import system results in the saved network model being instantiated as CIM 
Java objects, and thus any export or processing module can access and modify the 
data through each object's API. The associations and interconnections between the 

objects simplify the process of modifying multiple Interconnected objects and 

provide a powerful API, capable of much more than simply setting or retrieving the 
data. A single command could result in changes to data rippling through all the 

associated objects automatically as functions in one object can call additional 
functions to modify data accordingly in associated objects. 

4.4.5 Use of Serialization to Track Model/Data Changes for 

Security 

One of the major disadvantages of storing the model in memory is that in the event 

of a system crash, the entire model is lost, since memory is usually volatile. This 

drawback, however, can be overcome, without significantly reducing the advantage 

provided by object prevalent data storage. 

Java, and other common object oriented languages (C++, C#, CORBA), have 

support for serialization (saving the state of an object into a file). It is beyond the 

scope of this thesis to explain the intricacies of serialization, however, the basic 

process involves converting the current state of an object as an encoded stream of 

bytes, which can then either be saved to a file, or transmitted. This byte stream 

contains all the data required to reconstruct the original object. 
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Serialization can also be applied to the commands executed on the model, so a 
record of these commands, combined with a regular serialization and storing of the 
model's state at a given point in time, allows for the full restoration of the model's 
current state following a system crash. 

To save the state of the model during a controlled shutdown of the system however, 
the model"s state can be exported as a valid CIM XML file. This allows an\, 
upgraded version of the system containing a newer version of the CIM class 
hierarchy, with additional or modified classes to recreate the full network from the 
CIM XML file. 

4.5 Extending CIM 

As was discussed in section 3, the CIM, whilst comprehensive in many areas, lacks 
the detail required for specific areas of power system engineering. The object-based 
design of CIM allows for enhancements and modifications to the current standard, 
but it can be easily recognised that ad-hoc modifications to a standard are 
undesirable in the majority of cases. Open standards, such as CIM, are adopted to 

aid the process of exchanging data, and, so data in the standard format and 
structure (or a future revision), immediately becomes incompatible if the standards 

used are subsequently modified. 

Using an object prevalent data storage system, however, can provide a compromise, 

allowing enhancements and extensions to CIM data, but still maintain the capability 
to output CIM 1.0 compliant data. Extensions to the CIM are defined in UML, and 
by auto-generating the appropriate class files from this UML file, these new classes 

can be easily integrated into the existing data storage architecture without requiring 

modifications to the existing importation module. 

The most basic way of adding additional data is to add extra attributes to each 

object in addition to the standard CIM attributes. This allows for more data to be 

stored in each object, whilst maintaining the ability to export the standard data 

without introducing incompatibilities. 

To extend the level of detail that can be stored in object format, it may be 

advantageous to have child classes for existing classes. For example, a Line object is 

currently made up of one or more Alternating or Direct Current Line Segments in 

CIM 1.0 representation. In some cases, having the resistance and reactance specified 

as absolute values for each line segment is not sufficient for some users of CIM, and 

it may be better for this value to be calculated based on the: 
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m length of each line segment 

a type of conductor and bundles 

0 type of tower 

number of towers for each segment 

distance between towers 

m positioning of phases on each tower 

m number of circuits using each tower 

Some of this data is not currently included in standard CIM. However the 

additional child classes and attributes proposed in the previous section can be 

added to the Line and Line Segment classes, as was detailed in section 3.5.2. With 

standard CIM, when the value of the resistance is requested from an AC Line 
Segment object, the absolute value stored as a variable within the object is returned 
to the user. Using the enhanced data objects, however, the value returned is itself 

calculated by a function within the object based on the values of both the object's 
internal values, and the child objects associated with it. This way, CIM compliance 
is maintained, since the resistance value is still obtainable if desired, but the greater 
level of detail can also be maintained, and is available by direct interrogation of the 

child objects. The ability to include multiple schemas in the same XML file also 

allows for the standard and enhanced data to be included in a single output file, 

without breaking compatibility. 

Using the extensions to the Line Model described in section 3.5.2. towers can be 

represented in this extended CIM data model. The inclusion of this data allows the 

software to identify any points in the network where two or more circuits share a 

tower, which can affect the electrical characteristics of the individual phases of a 

circuit. A Line will span several towers, at varying distances from each other, and 

the span between each tower will be defined as an instance of the Conductor class. 

Each tower on the line is recorded with a single instance of the Tower class, itself 

associated with all instances of Conductor from every circuit that use the tower. A 

Resistance value for the Conductor would be calculated using the attributes of its 

associated classes (Conductor Type, Wire Arrangement, Wire Type and any 

instances of the Tower class) as well as the positioning of the phases from any 

surrounding conductors. This would allow a getResistance function in a Conductor 

object to calculate the resistance each time the function is called. This way any 
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changes to the attributes of any child classes or other nearby conductors would 
always be reflected in the value of Resistance returned from the Conductor object. 

Using a generic import system as detailed previously allows for additional classes to 
be added by simply including their class descriptors in the configuration settings for 
the toolkit. This way, the import modules and toolkit itself do not need to be 
recompiled or rewritten to cope with additional classes. The network model can 
contain additional information in this extended format, and by ensuring that the 
version information for each class is correctly assigned, the model can be exported 
with or without the additional data included. 

By structuring the extensions in such a way that, wherever possible, the extra data 
and classes do not break the existing standard's class associations, then these 
additional classes will enhance the existing data without necessarily disrupting 
backwards compatibility. 

4.6 Java Packages 

Within Java, classes are arranged into packages, a hierarchical system like the 
arrangement of directories or folders on a hard disk. This way, classes with the 

same name can exist by being part of a separate package, allowing extensions to the 

standard to co-exist with the standard IEC classes. This allows the software that is 
to interrogate, modify and integrate CIM data to be able to cope with multiple 
standards of CIM data where the class files will have identical names. 

A separate package is created for each standard, and the importation system uses 
the namespaces to choose which package an object is instantiated from for each 

node. A simple configuration file is used to specify which namespace corresponds 
to which package, allowing additional packages of extensions without rewriting the 
importation system. 

Since classes can inherit between different packages, the modified line hierarchy 

within a Strathclyde. Wires package can inherit from the original classes within an 
IEC. Wires package. This allows the Java class structure to mirror the data 

specification where new classes inherit from the existing IEC CIM, but also maintain 

all the existing classes (i. e., the Strathclyde modified WireArrangment class will 

exist in the Strathclyde package, while the original class can co-exist within the IEC 

package). This system allows the embedding of functionality to have Strathclyde 

CIM objects as one or more IEC CIM objects or to be simply interpreted as an 
instance of its parent class. 
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4.7 The Mercury Framework 

This core framework of enhanced CIM objects has been used as the foundation for a 
web-based CIM power system network model toolkit, developed by the author, 
known as Mercury. The software's core is the model library, which stores the CIM 
Objects and provides an API, extending that of the core CIM framework for 
accessing, interrogating and modifying the models. The second element of the 
model toolkit is the server interface, which provides remote access to the library 
with either Web Services or by generating HTML to form the user interface through 
which the model library can be accessed. 

4.7.1 The Model Library 

The model library runs as background process on the host computer storing CIM 
power system models, using the Java object storage framework describe. Each 
model is contained within a separate instance of the Model class, which provides 
access to the underlying CIM objects as well as additional functionality for 
interrogating, modifying, analysing and exporting the entire model. 

The library stores the multiple instances of the Model class, providing user-level 
access control; archiving facilities; the command serialization system discussed 

previously and an interface through which other applications can access the Model 
API. 

With modules that can access the Model API and that of the CIM classes themselves 
the library can be enhanced beyond the core functionality. These "plugin" modules 
can export the data in additional formats and perform more complex analysis of the 

network. 

The library also allows access to its API via the Remote Method Invocation (RMI) 

facilities within Java, allowing any other computer on the network that meets the 

security criteria to access its public functions. This allows access by command line 

Java applications, graphical applets on the desktop or by servlets running under 
Apache Tomcat or any similar J2EE compatible server engine. 

4.7.2 The Server Interface 

For the Mercury software, the model library is accessed via a number of servlets 

running under Apache Tomcat 5.5. Since Tomcat itself is written in Java, it 

maintains the platform independence that led to the initial selection of Java as the 
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language of choice for the framework. The servlets access the model library using 
the RMI API, and in turn provide a set of public functions, accessible via the HTTP 
POST and GET protocols. This allows the functions to be accessed by Web Services 
and Web Browsers. By generating HTML code to access the functions, the user's 
web browser becomes the user interface for accessing the models within the library. 

A component's attributes can be updated using standard forms, with the server 
validating and converting the form's parameters, received in String format, into the 
appropriate format for the destination's attributes in the same manner as the initial 
importation process described in section 4.4.1. By using the unique IDs assigned to 
each object, associations can be altered by accessing functions within the servlets 
that receive String IDs to represent the components. The servlet then uses the 
Model's own internal ID index to locate the CIM object to which these textual 
identifications refer. 

4.8 Chapter Summary 

The combination of several new technologies, notably the Common Information 
Model and object prevalent data storage, along with established techniques for 

object oriented programming has created the foundations for an international- 

standard-based, highly extendable and scalable system for storing and 

manipulating power system data. The implementation of the framework in Java, 

which is available on a wide variety of computing platforms, allows for significant 

platform independence for the system. 

The use of the open CIM standard for the internal software architecture is itself a 

novel concept, since the standard is currently used as an intermediary exchange 
format between applications that have their own internal storage architecture. 

Combining the data storage and manipulation into a single memory resident 

program for long term storage, while unconventional, provides significant speed 

advantages over dealing with a native file or database when performing complex 

interrogations of the power system. It allows for the development of a powerful 

and significantly more extensible API than that of a traditional enterprise-level 

database. Using Java allows the software to be deployed in a number of ways, 

including a web servlet, allowing remote execution of the software. This aids the 

development of web services and other remote or distributed systems for power 

system simulation and analysis based around the toolkit. 
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The system provides functionality for the data to be easily exported in XML format, 

allowing the exchange of data between applications and companies in an open non- 

proprietary format, one of the major reasons for the development of the Common 

information Model in the first place. The ease with which modules to modify and 

export the data can be constructed highlights the flexibility of the design, and the 

scope for'extending and utilising the core framework. 
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Translation & Conversion of CIM Power System 
Models 

I Chapter Introduction 

This chapter outlines the main challenges posed when translating data from CIM 
XML to proprietary data formats. If utilities are to adopt the CIM tools to translate 
CIM formatted network models into the format used by their legacy analysis 
applications then translation is essential. This chapter discusses these challenges 
and proposes solutions to some of the more complex problems such as node-breaker 
to bus branch conversion and the mapping of CIM attributes to proprietary file 
formats along with a case study to translate a small CIM XML power system model 
for load flow simulation. 

5.2 CIM XML Translation 

With the use of CIM increasing, and the acceptance of XML as the most common 
format for distribution, more applications of CIM XML will emerge in the near 
future. Widespread use will encourage industry participants to innovate within the 
bounds of the technology and the ability to interpret CIM XML files will become 

necessary for power system simulation. Several software vendors are now offering 

products with CIM XML compatibility built in, but it is still a relatively new format 

and many legacy applications have yet to implement native support. 

Currently, some tools and applications support CIM XML natively, and more 

applications that are based on CIM, or are able to natively interpret the data, will 
become available. This migration to CIM XML-aware tools is, however, constrained 
by the availability and investment required for creating new tools or modifying 

existing applications. Of the four scenarios outlined in Section 2.2, this chapter is 

concerned with the third scenario: storing the power system data in a common 
format but still requiring software to translate this data into the native format for 

the target application. 

5.3 Translation of Power System Data 

One of the principal challenges in the representation and exchange of power system 

data is the passing of data between applications. Different applications and 
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software tools use different models of the power system and a variety of data 
formats. Moving data from one format to another requires some "translation" of 
the data. A method for performing such translation is presented in this section. 

The most widely used power system simulation tools, such as PSS/E and EMTP, 
use their own proprietary data formats. Future simulation tools may be able to read 
CIM XML data directly, perform analysis and output directly in CIM XML. Until 
such applications are available, data translation will be required. Even after the 
introduction of CIM-based simulation tools there will still be substantial embedded 
investment in software using proprietary formats. Translation to and from CIM 
XML will be required to integrate CIM XML tools with legacy software. 

In translating from CIM XML to a proprietary power system data format, there are 
several interrelated issues that must be resolved simultaneously: 

1. Topology Format 

Unique Component Identifiers 

3. Physical Characteristics 

4. Identifying a Specific Equipment Property 

5.3.1 Topology Format 

Power systems can be represented with models at different levels of abstraction, 
which results in different formats for the power system topology. "Node-Breaker" 

models are one of the most detailed and are used in CIM. This level of complexity 
is not required for the simulation of large power systems, as many of the 

components do not play an active role in the network's behaviour. Simulation tools 

most commonly use a Bus-Branch model of the power system. Figure 5.1 shows the 

same substation bay in these two topology formats. 
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Figure 5.1 A substation feeder bay in: a) Node-Breaker format; and b) Bus-Branch 
format. 

Devices such as ground disconnectors are used to isolate sections of a substation to 
allow engineers to work safely. They should be included if substation data is to be 

comprehensive, as required in EMS applications. However power system analysts 
are primarily concerned with the main system components: buses, branches, 
transformers, generators and loads. In the Bus-Branch format, all the switches and 
connections to ground are missing because under normal operational conditions, if 
the switches are closed, they do not directly affect the circuit's performance. 

One challenge in translating from the Node-Breaker topology format of CIM XML 

to a proprietary Bus-Branch format is recognising the component type in CIM XML 

and translating to the correct component type in the proprietary format. There are 
three courses of action for each CIM XML component identified: 

1. Translate one CIM XML component to one proprietary format component. 

2. Amalgamate two or more CIM XML components into a single proprietary 
format component. 

Ignore the CIM XML component and do not create a component in the 

proprietary data format. 

The higher resolution in the CIM XML representation of a power system means that 

it will usually not be necessary to create two or more proprietary format 

components from a single CIM XML component. 
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The translator must convert the higher-resolution data of CIM XML to the lower- 
resolution format of the simulation tool whilst maintaining the integrity of the 
output. This process means that it is not always possible to translate back to CIM 
resolution from the proprietary format since the conversion and formatting is often 
a one-way process. 

It would not be possible to convert back to the high-resolution circuit data when 
amalgamating several components into a single Bus, unless the legacy data about 
the components contained within the bus are included, or the bus type is of a 
standard for which the internal structure is known. 

Similarly, for single numerical values calculated from two or more source values, it 
is, in most cases, impossible to work back to the source values if only the result is 
known. This is because mathematical formulae are often one way functions, where 
there are multiple possible combinations of factors that could have resulted in the 
value. 

An example of this is calculating the overall branch resistance and reactance for a 
transformer. This requires getting values of resistance and reactance for each 
winding of the transformer from the CIM data, then calculating the overall 
resistance of the transformer using the values extracted. This formula however 

results in single values for resistance and reactance for the transformer, and it is not 
possible to work back to the individual values for each winding from this. 

This shows why it is important for legacy data to be retained if data at a high level 

of abstraction is to be converted back to a higher detailed format. 

5.3.2 Unique Component Identifiers 

Unique bus identifiers in proprietary formats create problems for the translation 

since a unique bus may be created from several components in a CIM XML model. 
In Bus-Branch data formats, a bus appears as a single point with equipment 

connected to it and each bus has a unique identifier. In Node-Breaker data (as in 

CIM), a bus is not a single point but can contain switches and circuit breakers 

which, when closed, function as uninterrupted connections between two points. 
This issue may arise with other component types. 

CIM has a class that is analogous to a bus, the Topological Node. This class contains 

a list of Connectivity Nodes, and can be used to amalgamate a group of 

Connectivity Nodes into one object. Connectivity Nodes are defined as "points 
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where terminals of conducting equipment are connected together with zero 
impedance" [31]. Connectivity Nodes are not physical components in a power 
system, but exist only within CIM data to provide a connection point for pieces of 
equipment. Thus, all Connectivity Nodes that are joined by closed switches, or 
other non-primary circuit elements can be put into a single Topological Node, 
which can be used to represent a bus in a CIM data structure. 

In this context, primary equipment refers to any piece of coducting equipment that 
would be connected to a bus in a bus-branch representation. In the CIM the 
primary equipment is anything that is a sub class of EnergyConsumer (for loads), 
SynchronousMachine and EquivalentSource (for generators), TransformerWinding 
(the physical connection points to the network for a transformer) or AC or 
DCLineSegments (for lines). 

When Topological Nodes are present in the CIM data, these can be directly 

converted into buses with unique identifiers. However, Topological Nodes are 
optional and not required for a valid CIM XML document. For those files that do 

not contain Topological Nodes, effective translation requires a means of 
dynamically generating the required bus data whilst maintaining the integrity of the 

original data. 

A process has been developed to perform this task. The process uses a recursion 
system based around the Connectivity Node class. For each piece of primary 
equipment in the CIM XML file that will be connected to a busf the recursion 

process identifies other pieces of primary equipment connected to it, and creates a 
CIM Topological Node instance that will become a bus in the Bus-Branch data. 

The algorithm for this process is shown below: 
1. For each piece of primary equipment 
2. If the equipment has not been processed 
3. For each of the equipment's unprocessed Connectivity Nodes 
4. Create a new Topological Node 
5. Add the current Connectivity Node to the current Topological Node 
6. Mark the Connectivity Node as having been processed 
7. For each of the Connectivity Node's other connected equipment 
8. If the equipment is a piece of Primary Equipment or Open Switch 
9. Stop 
10. Otherwise 
11. Find the Equipment's other Connectivity Nodes 
12. For Each of these Connectivity Nodes 
13. Go back to step 5 
14. Select the next piece of Primary Equipment and goto step 2 
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This process spiders through a network, adding in all Connectivity Nodes until it 

reaches another piece of Primary Equipment or open switch, which indicates an 
edge of the Topological Node. By repeating this process until no more paths are 
available, a Topological Node will be created. Repeating this process until all 
elements of Primary Equipment have been processed will result in a set of 
Topological Nodes covering the whole network. 

Each Topological Node will only have external connections to the defined primary 
elements, and will contain one or more Connectivity Nodes. As the process 
executes, each Connectivity Node is marked as having already been processed, so as 
to keep each Topological Node unique, and prevent a Connectivity Node from 

existing in two or more Topological Nodes. That situation would be undesirable as 
it could result in pieces of non-primary equipment being linked to more than one 
bus. 

An example of this process is illustrated in Figure 5.2a). Here, the Transformer is 

selected as the starting piece of primary Equipment. The Transformer contains two 
Windings, which, in CIM, define the physical connection points to the network. 

Load 

Topological 
Node A 

2 

------- -------------- 
Topological 
Node B 

r\.., 

a) h) 

Bus A 

Bus B 

Figure 5.2 a) Schematic of the stages for Topological Node creation on a sample 

network. b) The resulting Bus Branch circuit 
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Taking the primary Transformer Winding of the Power Transformer, the initial 
piece of Primary Equipment, as the starting point, the process spiders out until the 
first piece of connected equipment, a Ground Disconnector, is found. This is not a 
piece of Primary Equipment, and so is amalgamated into the Topological Node, 
which is illustrated as Area 1 in the diagram. 

The processing application then finds the other piece of equipment connected to the 
primary Transformer Winding, an Isolator. This is closed, and as such, the process 
continues, incorporating the Isolator into the Topological Node. This node now 
contains all equipment in Area 2. 

The spidering process continues through the closed Isolator and finds that it is 

connected to a Load, which is a piece of Primary Equipment. As such, the process 
halts its progress in that direction. With all other possible routes exhausted it 
finishes, and the Topological Node is complete, containing all equipment in Area 2. 

A new Topological Node is now created, and the secondary Transformer Winding 

of the Power Transformer is selected as the starting point. Its first connection is to a 
Ground Disconnector and since this is not a piece of Primary Equipment, it is 

included in the Topological Node that covers Area 3. 

The Transformer Winding is also connected to a closed Switch, which enlarges the 
Topological Node to cover Area 4. The spidering now continues through the closed 
Switch, finding a closed Breaker, which is amalgamated into the Topological Node. 

It now holds all equipment in Area 5. 

Passing through the circuit breaker, a Generator is found, and, being a piece of 
Primary Equipment, halts the spidering process. It has now exhausted all possible 

routes, and the second Topological Node is complete, encompassing Area 5. 

This process has simplified the circuit to three pieces of primary equipment; a 

Transformer, a Load and a Generator; and two Topological Nodes, which are 

equivalent to the Buses shown in Figure 5.2 b). 

5.3.3 Physical Characteristics 

Once the topology format transformation has taken place, the values quantifying 

the physical characteristics of the network must be extracted from the values 

available in the CIM XML file. This can pose problems because CIM XML 

represents the physical characteristics of power system components in literal xalues 

such as MW, MVAr, Ohms and Amperes. Many proprietary data formats use ratio, 
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per unit and percentage values to represent the power system components. These 
values must be calculated from the available CIM data. 

An example of this problem is calculating the per-unit voltage of a piece of 
equipment when given only the literal value. Calculating a per-unit voltage 
requires two values: the literal value of the voltage of the equipment itself; and the 
base voltage in that section of the network. In CIM, the equipment's data node 
contains only its own voltage. The base voltage of the network section is stored in 
the Connectivity Node. To find the base voltage the following steps must be taken 
using data from the CIM XML document: 

1. Find the Terminal that the equipment is connected to 

2. Find the Connectivity Node that this Terminal connects to 

3. Find the Voltage Level that the Connectivity Node is in 

4. Find the Base Voltage Level of the Voltage Level 

Each of these stages involves searching and comparing different classes of node in 
the CIM XML file then extracting the appropriate information. For large networks 
this can involve searching several thousand nodes at a time, which can become a 
time consuming process. Under some circumstances the proprietary format may 
require data that cannot be extracted directly or derived from the CIM XML file, in 
which case default values are needed. These values can be taken from the default 

values used in the destination program or, alternatively, defined in a configuration 
file that can be altered by the operator before each execution. 

When default values are used, it would be useful for the user to identify the 

attributes they were applied to, so the values can be adjusted for future conversions 
if necessary. This would be facilitated through a log file generated during the 

conversion process that would flag when a default had been used, and show its 

value. 

5.3.4 Identifying a Specific Equipment Property 

Problems also arise when an analysis program requires the identification of a 

specific equipment property for which CIM does not contain information for. For 

example, network load flow calculations require one of the generator buses to be 

defined as the swing bus, which is adjusted to balance the power flow. As 

mentioned previously, CIM XML does not contain bus information and translation 
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to Bus-Branch data formats requires buses to be generated by combining many CIM 

components into a single bus. Since all bus data must be generated prior to analysis 
there is nothing to define which bus should be the swing bus. 

This problem can be solved by prompting the user to select a swing bus from a list 

of the buses generated, or automatically selecting one based on a set of criteria (e. g. 
the largest generator). 

5.4 CIM XML to PSSIE Data Format Translation 

PSS/E is a widely used power system simulation and analysis software package. 
Tools have been developed by the author for the translation of CIM XML data to the 
PSS /E format. In PSS /E data, each bus has an individual number associated with it 
but, since the buses themselves are not always defined in the CIM data, the 

algorithm detailed above was used to provide unique bus objects, which were 
assigned incremental identifiers. 

To perform the necessary manipulations of XML files, there are two main options: 
The eXtensible Stylesheet Language Transform (XSLT) is a recommended language 
for converting XML documents into simple text, or other vocabularies of XML and 

could be used to convert XML to a plain text file; or create a module for the Mercury 

CIM Java Framework to translate and export a PSS /E compatible input file from the 

memory resident CIM Java objects. 

5.4.1 Extensible Stylesheet Language Transform 

An XSLT solution has the potential of providing a quick, and simple solution to the 

problem requiring only an XSLT parser (the software that applies an XSLT to an 

XML file) to operate instead of the full Mercury framework. Although XSLT is used 

for defining transforms to XML data, it is limited in many ways and lacks many 

features available in popular programming languages, such as arrays and the ability 

to change a variable once it has been created. When an attempt was made to 

implement the above algorithms in XSLT it was found that the language was unable 

to cope with the complexity required, and could only implement a reduced process 

for use on very small networks. For very large networks, the XSLT script was 

unable to finish processing the model file. This is due to XSLT's limited variable 

handling abilities, which prevented it from marking when nodes had previously 

been processed, and thus resulted in infinite loops occurring within the program as 

it repeatedly processed the same section of the network. 
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PSS/E requires a swing bus to be selected from the generation buses. When using 
XSLT to do this, a rule must be created because there is no facility to state that the 
swing bus has already been set. The simplest rule is to define the swing bus as 
being the bus connected to the first power generation device found. This could 
cause a problem, however, if the generator selected has insufficient capacity to 
secure the system in a simulation. In Java this is not a problem: the swing bus is 

assigned, and can be changed if required. A flag is set when a swing bus is 

assigned, thus preventing more than one swing bus in the network. 

XSLT is better suited for simpler translations, where the data is moved directly, or 
requires very little alteration, merely a reformatting. This is not the case with the 

majority of the translations required to convert data into PSS/E input format. For 

these more complex conversions, Java, or other object-oriented languages such as 
C++, are more suitable. When the algorithms are implemented in one of these 
languages, it allows the conversion of much larger and more complex CIM XML 
files than is possible with an XSLT-based translation. This is primarily due to the 
limited variable handling in XSLT in comparison to mainstream programming 
languages. 

5.4.2 Mercury Translation Module 

Since the XSLT solution proved unviable, the algorithms were implemented as an 

export module for the Mercury framework. Since the CIM objects are stored in 

memory within the Mercury model library, the time taken to traverse the network 

increases linearly as the network size grows (as was discussed in section 4.4.2). The 

direct memory references between each objects removes the need to search and 

index to locate the next network component. By implementing a reverse- 

propagation system into the Mercury import module, to ensure that references are 

bi-directional (i. e. if a Terminal is associated with a Connectivity Node, the 

Connectivity node in return is associated with the Terminal), the resulting network 

is fully interconnected, allowing the algorithm to step through from Conducting' 

Equipment to Terminal to Connectivity Node etc. without requiring any searches, 

and the ensuing time penalties. This provides a fast, efficient method for traversing 

the network using the functions already present in the CIM Java Framework, plus 

some simple logic to locate the next element in the sequence. 

During the process, the Topological Nodes created are inserted into the model since 

they are standard CIM objects. Since the creation process can be accomplished in a 

fraction of a second, even for large models, it is generally a good idea to delete all 
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existing Topological Nodes prior to executing the Topological Nodes creation 
process. This, however, may not be ideal if additional information is included 
within the Topological Node, added after the process has run. As such, it is possible 
to store the model"s original Topological Node instances prior to the process 
beginning, then, after the process has run, compare the newly created objects with 
the originals. If any original Topological Nodes contain a matching list of 
associations to any of the newly created objects, it can be assumed that the two 
represent the same bus, and the original Topological Node is retained in place of the 
newly generated instance. 

S. 4.2.1 The Bus and Branch Classes 

The export module creates a Bus object for every Topological Node in the network. 
This Bus class provides functionality to obtain the required values from the 
Topological Node by transparently extracting values from the other CIM 

components connected to the node and returning them upon request. For example, 
the getPgO function for the Bus returns the total amount of real power generated at 
that bus. This function locates all the Synchronous Generators connected to the 

assigned Topological Node, locates their associated Generating Unit objects, extracts 
the initialMW attribute and returns the total of these values. 

Similar functions are put in place for the reactive power generated, the real and 

reactive power demands, and the voltage level. This Bus class contains no values 
itself, but instead calculates them transparently from the model each time the 

function is called. 

A similar class is created for each Branch, containing an association to either a 

transformer or a line. This class is more complex than the Bus class, since it must 

cope with different classes of associated CIM object. The transformer-associated 

instance, for example, must contain functionality to convert the multiple winding 

resistance and reactance values into a single transformer value. This requires a 

more complex formula than a simple addition but, as with the Bus class, each 

function returns a value "on-the-fly", calculating it from the values contained within 

the OM object. 

The PSS/E output file is created by looping through every Bus and Branch instance, 

extracting the appropriate values and inserting them into the correct position in a 

text file. 
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5.5 Example of CIM XML to PSSIE data Translation 

To test the output generated by the CIM XML to PSS/E translation program when 
implemented as a Mercury module, a sample circuit was needed In CIM/XML 
format. The sample circuit was designed to contain a variety of components, 
including transformers; generators; lines; switches; breakers; and loads. The sample 
circuit created to test the translation script is illustrated in Figure 5.3. 
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Figure 5.3 Schematic of case study network in Node-Breaker format. 

From this diagram the CIM classes for each component can be identified, and the 

circuit converted into a CIM format model. This CIM data was then expressed as 
CIM XML to create a valid test file for the translation program. All the switches 

were closed to create a fully interconnected network. 

The resulting file was run through the translation program. A PSS /E native output 
file was successfully produced by the program and then used as simulation input 

data for PSS/E. A power flow simulation was run using this input data and 

completed successfully. A valid simulation result for the circuit was produced. 

The test proved that a valid CIM XML file can be interpreted and translated 

successfully, producing a valid PSS /E input file. 
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5.6 Chapter Summary 

The ability to convert data in the CIM format into proprietary formats for power 
system applications is important, since many existing applications do not have 
native support for this relatively new format. With increasing numbers of power 
system models being stored in CIM XML, the ability to load and perform analysis 
on these models using existing applications will aid in the transition to open model 
standards throughout the industry. 

For those applications that work at a higher level of abstraction, the high detail level 
of CIM data allows for accurate conversion to a less detailed format. This allows for 
successful conversion from Node-Breaker to Bus-Branch topologies, by combining 
several network elements into a single Bus. 

CIM does not include a specific Bus class; however, the Topological Node class is 
analogous to a Bus. When Topological Node information is not present within the 
provided CIM XML data, they can be created dynamically using the network's 
present configuration, and if it is already present, the existing Topological Nodes 

can be converted directly into Buses. This approach also allows results from 

analysis applications to be returned as attributes that can be used to directly update 
objects in the CIM model. 

While much of the CIM data is stored as literal values, destination applications can 
require these values as percentages or ratios. As such the data must be converted by 

extracting all the required factors from the available CIM data and using 

predetermined mathematical formulae to express the value in the required format. 

Implementing the conversion algorithms for converting to PSS/E format 

highlighted the limitations of XSLT for performing complex transformations, and it 

was deemed unsuitable for the task. The module built on the CIM Java object 

storage framework, however, performed as expected and was able to cope with 

complex network configurations whilst producing valid output. This CIM Java 

Object storage system provides the ability to quickly traverse a network's topology 

allowing node-breaker to bus-branch conversions to take place in under a second 

for even large power system models comprising tens of thousands of CIM Objects. 
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Validation of CIM XML Data 

6.1 Chapter Summary 

The validation of CIM data is an important issue for network operators when 
exchanging power system data. When encoded as XML the validation of the 
resulting CIM XML data should take place on at least two levels during any 
exchange. it must check 

m The syntax of the RDF formatted XML is correct 

u The data encoded within the XML conforms to the CIM standard 

A third level of validation is also required so that the CIM data describing specific 
attributes of a power system (e. g., switch status, voltage level) should then be 
validated, whether it is obtained from a CIM XML file or from another source. This 
level of validation ensures that the attributes and associated objects of each CIM 

object meet the minimum data requirements for their class. 

The first two levels of validation are already built into the Mercury CIM Toolkit 
Framework: the first through the use of the XML Parsing functionality within the 
Java API, the second by the Mercury import module. 

The third level of validation uses the Common Power System Modelling 
(CPSM)[34] minimum data requirements for the CIM to define the required 
attributes and associations for each class. Since the CPSM standard is a document 

listing the data requirements for a power system model in the CIM format, these 

requirements must be converted into logical rules and software written to test CIM 

data against these rules. All three levels of validation have been successfully 
demonstrated and are in use in international CIM Working Group activities. 

6.2 XML Syntax Validation 

The DocumentBuilder class, part of the standard Java API, validates the CIM XML 

document's syntax automatically during the parsing procedure. This checks that 

the XML is correctly formatted and throws an exception if the document is 

malformed. The XML validation provided by the DocumentBuilder class ensures 

that 
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The file has an XML declaration to define the XML version and character 
encoding 

Each document has a single root element 

All elements are properly closed 

All namespaces used within the document have an entry in the root tag 

All tags are correctly formatted 

All attributes are enclosed within quotes 

Child Elements are correctly nested within their parent element 

This level of validation ensures that the file provided is valid XML. However, this 
does not ensure that it is valid CIM data. 

6.3 CIM Data Validation 

Since CIM XML is, at the most basic level, an XML representation of CIM Objects as 
described in Section 2.5.3, it must validate against the CIM standard to ensure that 
the data is valid CIM. This requires each CIM XML element to be an instance of a 
valid CIM Class and for its child elements to correspond to the attributes and 
associations of that class. 

6.3.1 Transformer Winding CIM XML Element Example 

Below is an example of a CIM XML element for a transformer winding 
<cim: TransformerWinding rdf: ID=" 

- 
6E4BEBOE885452C9FC6868COD46A3FA"> 

<cim: Transformerwinding. b>0.0</cim: TransformerWinding. b> 
<cim: TransformerWinding. r>0.01904</cim: TransformerWinding. r> 

<cim: TransformerWinding. ratedMVA>75.0</cim: TransformerWinding. ratedM 
VA> 

<cim: TransformerWinding. windingType 
rdf : resource=" http: //iec. ch/TC57/2003/CIM-schema- 
cimlO#WindingType. primary"/> 

<cim: TransformerWinding. x>7.37004</cim: TransformerWinding. x> 
<cim: TransformerWinding. memberOf PowerTransformer 

rdf: resource="# AFOE4452890842B8BDB07A9C2F2765AA"/> 
<cim: ConductingEquipment. Terminals 

rdf: resource="# 22488CBA8340489EB4D6C48EE2F754EF"/> 
<cim: Naming. name>High winding</cim: Naming. name> 

</cim: TransformerWinding> 

For this CIM XML element to be valid the CIM standard must have a Transformer 

Winding class, with the following attributes and associations: 

0 An attribute b which is a floating point number 
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a An attribute r which is a floating point number 

m An attribute ratedMVA which is a floating point number 

m An attribute windingType which is of type WindingType 

m An attribute x which is a floating point number 

An association to another CIM Object (or Objects) 
MemberOf-PowerTransformer 

An association to another CIM Object (or Objects) called Terminals 

o An attribute name which is a string 

called 

The CIM Java class for TransformerWinding contains all of these attributes and 
associations either directly or by inheritance. However, for the element to be valid 
the associated objects must also be verified. 

The MemberOf-PowerTransformer association within the TransformerWinding 

class requires the association to be with a PowerTransformer object but, since the 
XML element provides a reference to another XML element, this element must be 

verified as an instance of the PowerTransformer class or one of its subclasses. 

Similarly, the Terminals association is a O.. n association with objects of the Terminal 

class, and so the XML element given in that reference must similarly be checked to 

ensure that it is of the Terminal class or one of its subclasses. 

The problem with this validation is that, since the XML importation is looping 

through the XML elements one by one converting them to CIM Java Objects, it 

cannot guarantee that an object will not reference another XML element that has yet 

to be imported. To solve this problem, the import process uses a two-pass approach. 

6.3.2 CIM Java Object Creation 

The first pass converts all XML elements into their corresponding CIM Java Objects 

and puts an entry into the reference index that stores the original XML rdf: ID for 

each object together with a reference to the CIM Java object itself. 

The attributes are converted into their corresponding types obtained from the class 

file itself using Java"s reflection API. This allows an object to examine itself and 

extract its own attributes and methods along with their appropriate types. 

115 



For the TransformerWinding element shown above, the newly created CIM Java 
Object will know that its r, x, b and ratedMVA attributes are of type Double (double 
precision floating point). Since all of the XML child elements are imported as plain 
text (Strings) initially and stored in a temporary hash table, the attributes can be 
converted to their appropriate type by simply creating new instances of their type 
class (e. g. Double, Integer) with the string representation as the constructor field. 
For example: 

r= new Double("0.01904"); 
This provides another level of validation to the import, since the object creation will 
report an error if the original XML element value is not valid. For a Double value 
this will catch non-numeric input, but if an attribute is of type Integer and the XML 
element for that attribute has the value "1.23" then it would be imported into the 
object using the code shown below: 

attribute = new Integer("1.23"); 
This will report an error since "1.23"' is not a valid integer. By catching this error and 
processing it correctly, the importation can continue but the final model will contain 
a report of the error within the data. 

6.3.3 Reference Propagation 

The associations must remain as string values until all the XML elements have been 
imported and converted to CIM Java Objects. When this first-pass is complete, the 

second-pass through the objects uses the reference index to locate the corresponding 
CIM Java object for that association and adds it to the object. 

As with the attribute conversion, should the reference be to an object whose class is 

not the same as the association's class (or a subclass of it), then it will report an 

error. This prevents a TransformerWinding's MemberOf-PowerTransformer 

association from pointing to anything other than an instance of the 

PowerTransformer class (or one of its subclasses). 

If an rdf: ID reference does not exist within the reference index then this indicates 

that the CIM object contains an association to another CIM object that was not 

contained within the CIM XML file. This too reports an error that can be caught and 

processed accordingly. 
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6.3.4 'CIMValidate'Validation Tool 

This level of validation and the checking of the XML syntax itself can be 
accomplished using the CIMValidate Tool[351 in combination with a CIM RDF 
Schema file generated from the CIM Rational Rose UML file. This tool, developed 
by Langdale Consultants, can validate any XML file against a corresponding RDF 
Schema and reports any errors in the CIM data. 

This tool is available as open source, and as such could have been integrated into 
the Mercury toolkit. The decision was taken to omit it from the Mercury 
Framework for two reasons: 

The model importation, using the process described, already validates the 
CIM XML file to the same level as the CIMValidate tool due to the 
architecture of the framework 

The CIMValidate tool, when used with large models took over twice as long 

to process on single processor computers, and, unlike the Mercury 
framework., it is not multi-threaded, and so does not take advantage of 
computers with multiple processors. This resulted in the CIMValidate tool 
taking 5 minutes 32 seconds to validate a CIM XML file of 60,025 elements 

compared with 42 seconds to import, validate and create 60,025 CIM Java 

Objects for the Mercury Toolkit'. 

Any file that is found to be free from errors either by the Mercury import module or 

the CIMValidate tool can be considered valid CIM data in terms of structure and 

syntax. This in itself, however, does not mean that the data contained within the file 

represents a valid power system. 

6.4 Minimum Data Requirements 

6.4.1 Validation of Empty Objects 

The IEC 61970-301 standard defines the class hierarchy for the CIM with attributes 

and associations for each class, but does not define which attributes and associations 

are required and which are optional for each class. This means that a CIM Object 

' Tests were undertaken on a 2.5Ghz Quad core G5 with 4.5Gb of memory server running Apple OS X 10.4.4 and 

using Java 5 version 1.5. The test file was a CIM XNM file of 60,025 CIM Objects representing a large, real-world 

power transmission network. 
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can lack the attributes required for it to accurately represent a component within the 
system yet still validate. 

Using the same transformer-winding example from the previous section, by 
removing all attributes and associations except name, we are left with: 
<cim: TransformerWinding rdf: ID=" 6E4BEBOE885452C9FC6868COD46A3FA,, > 

<cim: Naming. name>High Winding</cim: Naming. name> 
</cim: TransformerWinding> 

It is obvious that this XML element contains no data about the winding's electrical 
properties or place within the network, yet both the Mercury import module and 
the CIMValidate tool find no errors with it. This is because there is nothing within 
the IEC 61970-301 standard to say that an instance of the TransformerWinding must 
contain any attributes or associations at all. As such, even an empty (or nearly 
empty) TransformerWinding object can be considered valid CIM data. 

6.4.2 CPSM Minimum Data Requirements for the CIM 

The CPSM Minimum Data Requirements for the CIM document contains general 
requirements and notes describing specific restrictions on object relationships. A 

validation tool must be capable of checking each CIM Object for the minimum 
attributes and associations required by the specification and for the requirements 

given in the general requirements and notes for each class which are not written as a 

series of logical rules. 

6.4.3 Creating Minimum Data Requirement Rules 

When using the Mercury CIM Java Framework, checking for the required attributes 

and associations within each CIM Object is a fairly simple process requiring an 

object to check that the defined attributes and associations are not null, which would 

indicate that the attribute does not have a value assigned or that the association 

does not reference another object. Similarly, checking that numeric values are 

within a specific range (e. g. greater than 0 or less than 100) can be accomplished 

with simple rules using basic comparison operators. 

Interpreting the notes and general requirements, however, is more problematic. For 

the TapChanger class, which can 'be fixed or it may regulate voltage, phase angle, 

or both, the notes state: 

"If the control mode is voltage, phase angle or both, the attributes "highStep", 

"lowStep", "neutralStep", and "normalStep" are all required. If voltage 

control is possible, the attributes "'neutralkV"' and "'stepVoltagelncrement" are 
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also required. If phase angle control is possible, the attribute 
"stepPhaseShiftlncrement" is required' 

The tculControlMode attribute within the TapChanger class does not actually state 
whether a Transformer is capable of voltage and/or phase control - this is defined 
in the PowerTransformer class's transformerType attribute. As such, x,,, hen a 
TapChanger object is checking itself it must know the value of this attribute in the 
PowerTransformer it is contained within. To do this it must navigate to the 
TransformerWinding instance it is within and from there to the PowerTransformer 

class. Then, depending on the value of this attribute it must check its own 
minimum attributes. 

This can written logically as: 

If any of the below rules are true then the object is valid: 
Start Rule: Given all of the below 

TransformerWinding. MemberOf 
- 

PowerTransformer. transformerType 
must be equal to "phaseControlff 
stepPhaseShiftIncrement must not be equal to <null> 
highStep must not be equal to <null> 
lowStep must not be equal to <null> 
neutralStep must not be equal to <null> 
normalStep must not be equal to <null> 

End Rule 

Start Rule: Given all of the below 
TransformerWinding. MemberOf-PowerTransformer. transformerType 

must be equal to "voltageControl" 
stepVoltageIncrement must not be equal to <null> 

neutralKV must not be equal to <null> 
highStep must not be equal to <null> 
lowStep must not be equal to <null> 

neutralStep must not be equal to <null> 

normalStep must not be equal to <null> 
End Rule 

Start Rule: Given all of the below 

Transformerwinding. MemberOf 
- 

PowerTransformer. transformerType 

must be equal to "voltageAndPhaseControl" 

stepVoltageIncrement must not be equal to <null> 

neutralKV must not be equal to <null>) 

stepPhaseShiftIncrement must not be equal to <null> 

highStep must not be equal to <null> 
lowStep must not be equal to <null> 

neutralStep must not be equal to <null> 

normalStep must not be equal to <null> 

End Rule 

The TransformerWinding. MemberOf-PowerTransformer. transformerType attribute 

means the object must navigate through its own TransformerWinding association to 

the corresponding PowerTransformer object and use its transformerType attribute 
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in the comparison operation. This allows rules for a particular class to be written so 
that the result is dependent on the value of one or more other attributes from 
associated objects. 

6.4.4 Vendor Interpretations 

An additional problem occurs when vendors interpret the CIM differently and 
produce different CIM representations for the same underlying data. An example of 
this issue is the containment of a PowerTransformer object. As discussed in Chapter 
2, the PowerTransformer class is used as a container for one or more 
TransformerWinding objects. Each winding will be associated with (i. e., contained 
within) a different VoltageLevel. The PowerTransformer class has a 
MemberOf-EquipmentContainer association for representing its own containment, 
but from analysis of the test files from a number of utilities and vendors provided 
for the latest CIM Interoperability Tests, some have the PowerTransformer 

contained by an instance of the Substation class and other have it contained by a an 
instance of the VoltageLevel class. 

Both of these representations are valid under the CIM standard since both the 
Substation and VoltageLevel class inherit from EquipmentContainer, and the 
PowerTransformer's MemberOf 

- 
EquipmentContainer association is to an object 

that is either an instance of EquipmentContainer or one of its subclasses. While 

both these representations are valid, it results in the same data being represented in 

two different ways, which can result in incompatibilities when exchanging data, the 

very issue the CIM was supposed to prevent. 

This issue also requires more complex solutions for many of the general 

requirements such as: 

Each PowerTransformer and its associated TransformerWindings and 

TapChangers must be contained within one substation 

This requires each TransformerWinding to ensure that the PowerTransformer it is 

contained within is also within the same Substation. However, since the 

PowerTransformer can either be contained within a Substation directly or within a 

VoltageLevel (which itself is contained within a Substation), the validation rules 

must check for both of these situations when checking that a TransformerWinding is 

contained within the same Substation as its parent PowerTransformer. 
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The TransformerWinding's own Substation can be found by a simple nax, igation 
through its VoltageLevel container to the Substation container. The 
PowerTransformer's MemberOf 

- 
EquipmentContainer can either be associated with 

a Substation or a VoltageLevel so the navigation can be either PowerTransformer- 
>Substation or PowerTransformer->VoltageLe vel->Sub station. Therefore the 
original requirement for Trans formerWinding containment is translated into two 
rules: 
MemberOf 

- 
PowerTransformer. Memberof_EquipmentContainer. Member0f_Subst 

ation is equal to all of 
Memberof_EquipmentContainer. MemberOf-Substation 

Or 

MemberOf 
- 

PowerTransformer. Member0f_EquipmentContainer is equal to 
all of Memberof_EquipmentContainer. MemberOf-Substation 

Since a PowerTransformer has only one MemberOf-EquipmentContainer 

association, only one rule can ever be met. If either of these rules is true for a 
TransformerWinding instance then its containment can be deemed valid. 

6.4.5 Rule Inheritance 

As with the class structure, by default a class inherits all the rules applied to its 

parent class. This can be seen in the CPSM Minimum Data Requirement document 

itself where the defined rules for an EquivalentLoad match those of an 
EnergyConsumer, its parent class. Similarly, all classes that contain a name 

attribute, and thus inherit from Naming, must contain a valid name attribute. By 

having this rule defined in the Name class it prevents the same rule being repeated 
in the rule set for every class that inherits from Naming. 

This prevents the duplication of rules from parent class to sub-class and ensures 

that any additional classes added to the CIM standard can be integrated into the 

validation engine quickly and accurately. The option to prevent rule inheritance is 

maintained within the rule definitions for each class to allow for any special 

exceptions that may occur in future profiles. 

6.4.6 Complex Rule Translation 

Translating the entire CPSM Minimum Data Requirement document into a series of 

rules is a time-consuming manual task, resulting in 101 rules spread across 44 

classes. These rules range from the very simple checks on a single attribute value to 

complex rules involving multiple sub-rules. 
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For example, the following rules check that a Compensator is either: operating in 
series with an r and x set; or shunt mode with maximumSections, mVArPerSection, 
nominalKV and normalSections set 
Start Rule: Given any of the below 

Start Rule: Given all of the below 
compensatorType must be equal to CompensatorType. series 
r must not be equal to <null> 
x must not be equal to <null> 
End Rule 

Start Rule: Given all of the below 
compensatorType must be equal to CompensatorType. shunt 
maximumSections must not be equal to <null> 
mVARPerSection must not be equal to <null> 
nominalKV must not be equal to <null> 
normalSections must not be equal to <null> 
End Rule 

End Rule 

Sub-rules can be nested within additional sub-rules so that more complex 

requirements can be defined. For example, an Energy Consumer's requirements 

state that the object is valid if the conformingLoadFlag is true and energy is defined 

as any pfixed and qfixed with pfixedPct and qfixedPct as null, or true and energy is 

defined with pfixedPct and qfixedPct and the LoadArea has one or more 
AreaLoadCurves, or false and energy is defined using pfixed and qfixed. 

To translate these into rules requires multiple, nested sub-rules: 
Start Rule: Given any of the below 

Start Rule: Given all of the below 

conformingLoadFlat must be equal to true 
Start Rule: Given any of the below 

Start Rule: Given all of the below 

pfixed must not be equal to <null> 

qfixed must not be equal to <null> 

pfixedPct must be equal to <null> 

qfixedPct must be equal to <null> 
End Rule 

Start Rule: Given all of the below 

pfixedPct must not be equal to <null> 

qfixedPct must not be equal to <null> 

The number of LoadArea. AreaLoadCurves 

or equal to 1 
End Rule 

End Rule 
End Rule 

Start Rule: Given all 

conformingLoadFlat 
pfixed must not be 

qfixed must not be 

End Rule 
End Rule 

of the below 
must be equal to false 

equal to <null> 
equal to <null> 

must be greater than 
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Using this approach all the minimum data requirements from the CPSM document 
can be successfully translated into logical rules. 

6.4.7 Applying the Minimum Data Requirement Rules 

Now the CPSM document has been translated into logical rules a method of 
applying these rules to the CIM data must be found. There are three options 
available: 

1. Translate the rules into an Resource Document Framework Schema (RDFS) 
or Web Ontology Language (OWL)[37] syntax and utilise an existing 
validation engine 

2. Translate the rules into native Java code and implement them within each 
CIM class in the CIM Java Framework. 

I Specify the rules in RDF Schema, OWL or a custom format then create a 
separate engine within the CIM Java Framework to translate the rules into 
Java code on the fly. 

Each of these options was considered. 

6.4.7.1 Utilising an Existing Validation Engine 

The CIM standard can be exported to RDFS automatically from the Rational Rose 

UML Model file using existing tools[36]. As described in Chapter 2, RDF is a data- 

model for objects that specifies the relationships between them using XML syntax, 

while RDF Schema is a vocabulary for describing the properties and classes of RDF 

resources. The CIMValidate tool uses this CIM RDF Schema to validate a CIM XML 

file against the CIM standard, but RDFS lacks the ability to fully express all the 

conditions set in the rules. 

OWL adds additional vocabulary for describing classes and their properties, 
including: "relations between classes (e. g. disjointness), cardinality (e. g. "exactly 

one"), equality, richer typing of properties, characteristics of properties (e. g. 

symmetry), and enumerated classes"[37]. 

OWL offers the ability to check for the basic CPSM rules: that properties exist, are of 

a specific type and are within a given range. Study of the OWL vocabulary and 

semantics indicates that the complex rules described in 6.4.6 are outside the scope of 

OWL. The language is designed for expressing ontologies and has limited first 
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order logic abilities, but as noted in previous publications [38][39 ], OWL lacks the 
ability to fully express all logical rules without extensions. 

The Eyeglass open-source validation engine is capable of validating a CIM XML file 

against an RDFS or OWL standard and flagging any errors in the CIM data. 
Ignoring the problems of converting every rule into valid OWL, the validation can 
only be undertaken on a complete CIM XML file. For stand-alone validation this is 
not a problem, but for integration with the CIM Java Framework it would require 
each model to be exported as a full CIM XML file to validate even a single object. 

6.4.7.2 Translating the Rules to native Java code 

Since each CIM class has a corresponding Java class in the CIM Java Framework, 

each class can be given a cpsmValidateo function that returns a true or false value 
for each CIM Object. The translation of the rules into native Java code is 

straightforward even for the complex rules described in 6.4.6. 

The compensatorType rules become: 
//Start Rule: Given any of the below 
if 

Start Rule: Given all of the below 
(compensatorType. equals(CompensatorType. series) 

r! =null && 
x! =null 
End Rule 

Or 
Start Rule 

(compensatorType. equals(CompensatorType. shunt) 

maximumSections null && 

mVARPerSection null && 

nominalKV != null && 

normalSections != null 
//End Rule 

//End Rule 
) return true; 
Else return false 

&& 

&& 

While the more complex conformingLoadFlag rules in the EnergyConsumer 

become: 

Start Rule: Given any of 
if ( 

//Start Rule: Given al. 

(conformingLoadFlat == 
Start Rule: Given 

the below 

of the below 
true && 
any of the below 

all of the below //Start Rule: Given 

(pfixed null && 

qfixed null && 
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pfixedPct null && 
qfixedPct null 

//End Rule 

Or 
//Start Rule: Given all of the below 
(pfixedPct null && 
qfixedPct null && 
getLoadAreao. getAreaLoadCurveso. sizeo >= 1 

//End Rule 

//End Rule 

//End Rule 

Or 
//Start Rule: Given all of the below 
(conformingLoadFlat == false && 
pfixed null && 
qfixed null 

//End Rule 

//End Rule 
) return true; 
else return false; 

The simple true or false result, however, does not give any clues as to the location of 
the problem if an object fails the validation. To provide the user with additional 
feedback as to where the error has occurred, additional code can be added that 

provides notes for the user on the exact causes of any failure. This can either be 

inserted as an additional cpsmValidateErrorso function, or by modification of the 

existing function. 

This increases the complexity of each rule by several orders of magnitude. The 

validation function for the compensatorType field alone now becomes: 
//Create an empty ArrayList of Errors 
ArrayList<String> Errors = new ArrayList<String>(); 

boolean subRulel = false; 
// Start Rule: Given all of the below 

if (compensatorType. equals(CompensatorType. series) && 

r! =null && 

x! =null 
End Rule 

subRulel = true; 

elsef 
if (! compensatorType. equals(CompensatorType. series)) 

Errors. add ("compensatorType is not CompensatorType. series"); 

If (r==null) 
Errors. add("r is equal to null"); 

If (x==null) 
Errors. add("x is equal to null"); 

I 

boolean subRule2 = false 
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// Start Rule 
(compensatorType-equals(CompensatorType. shunt) && 

maximumSections null && 
mVARPerSection null && 
nominalKv != null && 
normalSections != null 

//End Rule 
) subRule2 = true; 
elsel 

if (! compensatorType-equals(CompensatorType. shunt)) 
Errors. add ("compensatorType is not CompensatorType. shunt"); 

If (maximumSections ==null) 
Errors. add(I'maximumSections is equal to null"); 

If (mVARPerSection ==null) 
Errors. add("mVARPerSection is equal to null"); 

If (nominalKV ==null) 
Errors. add("nominalKV is equal to null"); 

If (normalSections ==null) 
Errors. add("normalSections is equal to null"); 

I 

//Start Rule: Given either of the below 
if (subRulel == true ^ subRule2 == true) Errors. clearo; 

return Errors; 

This method now checks each sub-rule individually. If they are found to be false it 

adds an entry to the list of Errors. At the very end, it checks if either of the sub-rules 
are valid. If so the object itself is valid and Errors that were flagged indicated that 

one of the sub-rules failed. This will always be the case, however, given that each 
sub-rule requires disparate values of compensatorType and the OR operator is 

replaced with an exclusive OR (XOR). If this XOR is true then the Errors list is 

cleared since the failure of one sub-rule is to be expected. However, if they both fail 

then the list of Errors is returned. 

This method of applying the rules, however has two major drawbacks. Firstly the 

validation and error reporting methods are time consuming to code for each class 

and secondly the validation is performed by hard-coded rules that are compiled 
directly into the system. This reduces the flexibility of the validation engine, 

providing only a single validation standard that is hard to change and substantially 

increases the amount of work required to add any extensions to the system. 

The approach does, however, offer three major benefits: all the CPSM rules can be 

successfully encoded; the native code allows even large scale models of 60,000+ 

objects to be full validated in under a second; and individual objects can now be 

validated within the CIM Java Framework without requiring the entire model to be 

exported. 
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6.4.7.3 Generating encoded rules at runtime 

The benefits of the native Java rules approach detailed in the previous section 
indicate that the logical rules discussed in section 6.4.3 can be converted into Java 

code with relative ease. Combining the benefits of the Schema approach with the 
native Java methods would provide the advantage of a rule-set that can be updated 
without requiring the user to re-code or recompile any of the system while retaining 
the benefits of the native methods: low execution time; the ability to validate a 
single object; and the translation of all the CPSM Minimum Data Requirement class- 
specific rules and general requirements into valid rules. 

Rule definition schema 

Since the CIM Java Framework already validates the CIM XML data to a level 

equivalent to that provided by the RDF Schema based validation of the 
CIMValidate tool, there is little justification for trying to implement a full RDFS or 
OWL validation engine. Instead, a simple schema is created to define the logical 

rules created from the CPSM Document. 

Using a few simple XML node types: 

Rule - Contains any number of the other nodes listed below, as well as 

containing other Rules. The node also has a condition attribute of "all", 

"none", "'any" or "either"' which correspond to the logical AND, NOT, OR 

and XOR operators. When the condition is "'all", every child-node must be 

true for the rule to be valid; "'none" requires that all of the child-nodes be 

invalid; "'any" requires one or more of the child-nodes to be valid; and 

"either" requires one and only one of the child-nodes to be valid. 

Value - contains a value and an operator (equalTo by default). The value 

and operator are used to perform a comparison with the attribute. The 

Value node is also used as a child node of Condition in combination with a 

reference to another attribute either in the same object or in a remote object. 

Condition - Allows for a comparison to be made between an attribute or 

association (both local and remote) and a value or another association 

M LocalAssoc -A child node of Condition that refers to another attribute of the 

same class, or can be chained to refer to attributes of other associated objects. 

This is expressed in the form localAssoc. remoteAttribute. Here, the period 

indicates that remoteAttribute is an attribute of the object that the localAssoc 
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association points to. The chain is not limited to a single link. A reference of 
the form localAssoc. remoteAssoc. remoteAttribute has the value of the attribute 
of an object that is not a direct association, but is referenced by navigating 
through another directly associated object. 

0 Class - Requires an association to be of a specific class (or subclass thereof) 

Number - Requires an association with O.. n multiplicity to have a certain 
number of associated objects (combines with an operator, equalTo by 
default) 

m Comment - Used to add a user-readable comment to describe more complex 
rules. 

When the logical rules are translated into an XML schema, the rules for the 

compensatorType attribute of the Compensator class become: 
<cim: Compensator. compensatorType> 

<! -- Start Rule: Given any of the below --> 
<strath: Rule condition="either"> 

<strath: Comment>Checks that the compensator is either: operating 
in series with an r and x set; or shunt mode with maximumS ect ions, 
mVArPerSection, nominalKV and normalSections set</strath: Comment> 

<! -- Start Rule: Given all of the below 
<strath: Rule condition="all"> 

> 
<! -- compensatorType must be equal to CompensatorType. series -- 

<strath: Value>CompensatorType. series</strath: value> 

<! -- r must not be equal to null --> 
<strath: Condition operator="not"> 

<strath: LocalAssoc>r</strath: LocalAssoc> 
<strath: value>null</strath: Value> 

</strath: Condition> 

<! -- x must not be equal to null 
<strath: Condition operator="not"> 

<strath: LocalAssoc>x</strath: LocalAssoc> 
<strath: value>null</strath: Value> 

</strath: Condition> 

<! -- End Rule 
</strath: Rule> 

<! -- Start Rule: Given all of the below 

<strath: Rule condition="all"> 

<! -- compensatorType must be equal to CompensatorType. shunt 

<strath: Value>CompensatorType. shunt</strath: Value> 

<! -- maximumSections must not be equal to null 
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<strath: Condition operator="not"> 
<strath: LocalAssoc>maximumSections</strath: LocalAssoc> 
<strath: Value>null</strath: Value> 

</strath: Condition> 

<! -- mVARPerSection must not be equal to null --> <strath: Condition operator="not"> 
<strath: LocalAssoc>mVArPerSection</strath: LocalAssoc> 
<strath: Value>null</strath: Value> 

</strath: Condition> 

<! -- nominalKV must not be equal to null 
<strath: Condition operator="not"> 

<strath: LocalAssoc>nominalkv</strath: LocalAssoc> 
<strath: Value>null</strath: value> 

</strath: Condition> 

<! -- normalSections must not be equal to null 
<strath: Condition operator="not"> 

<strath: LocalAssoc>normalSections</strath: LocalAssoc> 
<strath: Value>null</strath: Value> 

</strath: Condition> 

<! -- End Rule 
</strath: Rule> 

<! -- End RUle 
</strath: Rule> 

The Class and Number node types are not applied in this particular rule-set. An 

example of their usage can be shown when translating the CPSM requirements "A 
PowerTransformer may be contained by a Substation or a VoltageLevel" and "Each 

PowerTransformer must have two and only two TransformerWindingS" 6 into rules. 

For the class Power Transformer: 

Start Rule: Given any of the below 
MemberOf 

- 
EquipmentContainer must be of class Substation 

MemberOf-EquipmentContainer must be of class VoltageLevel 
End Rule 

Start Rule: Given all of the below 
Contains_TransformerWindings must contain two associations 

End Rule 

These can be subsequently translated to: 

<cim: PowerTransformer> 
<cim: Equipment. MemberOf 

- 
EquipmentContainer> 

<strath: Rule condition="any"> 
<strath: Class>Core. VoltageLevel</strath: Class> 

I This requirement can be deemed controversial since it is not unusual for a transformer to contain Tertiary or 

Quartiary windings. The current revision of the CPSM Minimum Data Requirements document, however, states 

that a transformer may contain only two windings, so for a CIM power system model to be deemed valid it must 

meet these requirements. 
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<strath: Class>Core-Substation</strath: Class> 
</strath: Rule> 

</cim: Equipment. Member0f_EquipmentContainer> 

<cim: PowerTranformer. Contains 
- 

TransformerWindings> 
<strath: Rule condition="all"> 

<strath: Number operator=" equalTo ">2 </ strath: Number> 
</strath: Rule> 

</cim: PowerTranformer. Contains-TransformerWindings> 
</cim: PowerTransformer> 

These 6 simple node classes allow all the logical rules created from the CPSM to be 
defined as XML. 

Applying the Rules to CIM Objects 

Once the CPSM document has been converted to a series of logical rules and a 
simple XML Schema has been created to define the rules in a machine-readable 
format, a system for applying these rules to the CIM data is required. 

This validation engine must translate the rule expressions into Java code similar to 
that produced manually in section 6.4.7.2 including the ability to provide the user 

with feedback on which part of each rule wasn't met. 

Figure 6.1 Validation Rules Class structure 

The different types of nodes used to define the validation rules for each class can be 

expressed as classes as shown in Figure 6.1. Each class contains zero or more fields 
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that must be validated and each field in turn must have one or more rule defined. 
Each rule is comprised of any number of other Rules in the form of Value, 
Condition, Number and Class objects. Each Condition object is similarly made up of 
either one LocalAssoc and one Value object or two LocalAssoc objects. 

Each class validates itself and passes the result up the tree to its parents, which uses 
the validation results from its children to in turn determine its own validation 
results. This continues until the top of the validation tree at which point the final 

validation result for each object is produced. 

Figure 6.2 below illustrates this process for the compensatorType field of the 
Compensator class: 

t ClassValiclation (Compensator) 

LField 
(CompensatorType) 

Rule A 

Rule (Either) 

Rule B "777- Rule C 

Rule (All) 
-1 r 

Rule (All) 
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Condition 

LoGalAssoc 
(no 

. 
t) 

(maximumSections) 

Value (null) 

Condition 
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(not) 
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, 
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Figure 6.2 compensatorType attribute rule validation tree 

For simplicity, this example assumes that no other fields in this class require 

validation. As shown in the diagram, the validation result of the Field class is 

dependent on the result of Rule A, which itself requires either Rule B or Rule C to be 

Im 

131 



valid. Rule B requires Value B1 and Conditions B1-4 to be valid while Rule C 
requires Value C1 and Conditions CI & C2 to be valid. 

The Value object uses its own value in combination with the value of the Field and 
the defined operator to determine its validity and passes the result back up to the 
Rule. Each Condition object has a LocalAssoc object that extracts the value for the 
specified local attribute, and a Value object that contains a single value. Each 
Condition object then uses these two values, along with its operator (equalTo, not, 
greaterThan etc. ) to determine whether its result is valid or invalid. 

The other benefit of this approach is that, should a Field declare itself as invalid, the 

point of error can be located by requesting each object in the tree to return the child 
objects that caused it to be invalid. For example, if an instance of Compensator 
found that its CompensatorType field was invalid it could request the reason for the 

error from the corresponding Field object within the Compensator ClassValidation 

object. 

The Field object would in turn request the reason from Rule A, which in tum passes 

the request down to Rules B and C. If we assume the reason is because Condition 

B4 is not met because normalSections is not set, then Rule B would receive valid 

responses from Value B1 and Conditions BI thru B3, but at Condition B4 it would 

receive an invalid response indicating that the error has occurred at this point in the 

tree. 

Rule C, would also fail, since Value B1 and Value CI are mutually exclusive, and a 

shunt compensator does not require an r and x value. 

Each object that caused the failure (in this case Condition B4) is passed back up 

through the tree to the validation engine. This can then be used to produce a 

detailed report for the user listing the rules that were not met by that particular 

instance of the class, along with more a detailed list of the specific sub rules that 

caused the error and the reasons. 

The resulting report is shown in Figure 6.3 below: 

I 
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Compensator - CP-ClKV-345ST-HOLDENDV-ECARCO-ECAR 
The following rules were not met by this instance 

Rule - Civen either of the below 
Checks that the compensator ýs either opera, ng in series Ait'i a-, - and x set. or shunt mode with maximumSections, mVArPerSection. 
nominalKV and normalSections set 

I 

Rule - Given all of the below 
(value] compensatorType is equal to CompensatorType series 
(condition) not (all of r (Value) must be equal to <nu#>) 
(condition] not (all of x (Value) must be equal to <nu#>) 

The rule failed because the conditions below were not met 
Jvaluej compensatorTypers equal-to Comp. ensatorType. series-, 

The rule failed because the conditions below were not met 
(condition) not (all of r (Value) rnust be equal to <nu#>) 

The rule failed because the conditions below were not met 
(condition) not (all of x (Value) rnust be equal to <nu#>) 

Rule - Given all of the below 

(value) compensatorType is equal to Com pe nsatorType. shunt 
(condition) not (all of maximumSections (Value) must be equal to 
<null>) 
Monumonj no[ tdii UT MvArrerýoecuon tvdiue) MUSI De equdi to 

<nufl>) 

(condition] not (alhof nominalkV (Value) must be equal to <nu#>) 

(condition] not (all of normalSections (Value) must be equal to 
<f7u//>) 

The rule failed because the conditions below were not met 

(condition] not (all of normalSections (Value) must be equal to 
<null>) 

Figure 6.3 Validation output report from invalid Compensator object 

This auto-generated report highlights the specific parts of each sub-rule that were Z7-) 
found to be invalid, providing the user with the information required to locate the 

errors in the original model. This report is generated from the original machine- 

readable XML report, providing the ability for other software to validate CIM 

Objects and then automatically interpret the results accordingly. 

I" C7 

onversion of Rule Object Definitions to lava Methods 

As with the CIM XML import interface described in Section 4.4.4, the Validation 

classes use Java's Reflection technology to convert the references in the XML data 

into the appropriate values or fields. 
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For the Value object this involves using the Field's type (e. g. String, Double, Integer) 
to cast the string value of the node to that type and comparing it to the value in the 
CIM object being validated. 

A similar approach is used in the Class object, which attempts to find the CIM Class 
of that name using Class. forNameo method. A comparison between the specific 
class and the class of the Field's associated object can then be undertaken. 

The Number object"s comparison is achieved by first casting the node value to an 
integer. Since all associations of O.. 2-n in the framework use an Arrayl-ist in the 
CIM Class, the ArrayList. size() method can be used to find the current multiplicity 
of that particular association and compare it to the node value. 

The Condition object's LocalAssoc object splits its node value into separate parts 
using the period character as the separator. For example, in the 
TransformerWinding class rule definitions the MemberOf-PowerTransfori-ner. 

MemberOf-E quipmentContainer. MemberOf-Sub station is split into three parts: 
MemberOf-PowerTransformer, MemberOf-EquipmentContainer and 
MemberOf-Sub station. The methods to access these associations can be found by 

prefixing "get" to the start of these field names and calling them in sequence. 

For this example, the TransformeringWinding object's 

getMemberOf-PowerTransformero method would be called first, returning its 

associated PowerTransformer object. The getMemberOf-EquipmentContainero 

method would then be called on the PowerTransformer object returned by the first 

method, which then returns a VoltageLevel object. Finally the 

getMemberOf-Substationo method is called on the VoltageLevel object which 

returns a Substation. Since this is the final object returned at the end of the sequence 

this is the object that would be used in the final comparison. In this case, since it is a 

CIM Object and not an attribute, the comparison would be with another CIM 

Object, either of a direct local association or obtained in the same manner. Should 

the final object returned have been an attribute of a remote object then the 

comparison could have been with a specific value using the Value validation class. 

For all of these rule objects, any generated error (known in Java as exceptions) must 

be handled correctly. An exception can indicate one of three things: the rules are 

malformed (e. g. A Field is a Double Attribute but the Comparison value is "XYZ"); 

the rule has not been met (e. g. in the example above, the PowerTransformer's 

getMemberOf-EquipmentContainero returned a Substation or null object the 

subsequent method, getMemberOf-Substationo would fail); or that there N-,, as an 
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unexpected error in the program's execution. By dealing with the exceptions in the 
correct manner, the user is provided with the correct feedback as to the cause of any 
failure and the program's integrity is maintained. 

Validation Class Initialisation 

Each CIM Class that is detailed in the CPSM Minimum Data Requirements 
document has an entry in the Validation Rules XML file. Each entry in turn creates 
an instance of the Class Validation class that in turn creates an instance of the Field 
Validation for each field in the class that is to be validated. Each Field Validation 
object contains multiple instances of the Rule, Condition, Number, Value and Class 

objects in the same manner as the compensatorType example shown in Figure 6.2. 

The Validation module accepts any CIM object, locates the appropriate Class 
Validation instance based on the class of the CIM object and passes the CIM object 
to the Class Validation object. The CIM object is then distributed through the tree to 
the other Validation objects that extract the values required to perform their 

validation operations. A validation process does not change the internal state of the 
Validation objects, allowing them to be used for multiple validations on any number 

of CIM objects. 

The alternative, to create unique instances of each Validation object for every CIM 

object, would significantly increase the memory requirements of the system by 

adding tens or even of hundreds of additional objects onto every CIM object. For 

large models this could potentially result in millions of additional objects being 

added, significantly increasing the memory footprint of the model. 

The importing and instantiation of the Validation rule XML file occurs when the 

system is initially started or whenever the XML file is updated. This removes the 

requirement of a validation process to import, parse and convert the rules entries 

every time a model of object is validated. 

The validation process, however, still requires a significant amount of object casting 

and requires Java's Reflection technology to extract the data from each CIM object. 

This, combined with the overhead of generating errors descriptions and passing 

them up through the validation tree adds a significant overhead to the execution 

time compared with hard coded rules as described in Section 6.4.7.2. When 

validating 19,000 instances of the Compensator class, the hard-coded rules 

completed their validation (including errors reporting) in 0.024 seconds. The same 

test was undertaken using the Validation objects, which required 3.721 seconds to 
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complete the test. This indicates that the Validation objects system of validation is 
over 150 times slower than using hard coded rules. The time taken to validate large 
models, however, can be considered acceptable given that, even very large-scale 
CIM power system models of 500,000 to 1 million objects can be validated in tNý'o to 
three minutes. The software scales linearly with the size of the model and, as NN-ith 
the importation process, the validation engine benefits from multi-threading 
support, further reducing the execution time for large models. 

6. S Chapter Summary 

The different methods of validation offer their own advantages and disadvantages. 
Utilising an existing RDFS/OWL validation engine along with an appropriate 
schema has the advantage of utilising existing tools and an open-standard schema. 
The major disadvantage of using an RDFS/OWL approach is its inability to 
successfully express every requirement of the CPSM standard at the current time. 

Hard-encoded rules offer a significant speed advantage, allowing very large-scale 

models to be fully validated in a matter of seconds. There are, however, major 
disadvantages to this approach since hard coding the validation rules reduces the 

execution time at the expense of flexibility. Any changes to the CPSM standard 

requires significant re-programming of the software, while the addition of any new 

validation profiles require a significant amount of software development work. 

The Validation Object tree approach allows'all the CPSM rules to be expressed in a 
logical manner and the validation engine itself provides an automatic system of 
identifying the exact causes of any errors within an object. The integration with the 

CIM Java Framework also allows single objects to be validated in a fraction of a 

second, independent of the overall model size. While significantly slower than 

natively encoded rules, the execution time is still acceptable for large-scale models, 

and can be considered an acceptable trade-off given the advantages of the approach. 

This novel and powerful approach to validation builds on the openness and 

flexibility of the CIM Java Framework. 
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Automatic Network Integration 

1 Chapter Introduction 

Given the interconnected nature of the electricity grid, Distribution Network 
Operators (DNOs) and Generation Companies have to exchange power system data 
with each other and with the Transmission Network Operator (TNO) to ensure their 
network interoperate correctly. This process can involve the exchange of data in a 
number of different formats, often requiring manual translation into the company's 
own proprietary format before being integrated with their own power network 
model for interpretation and analysis. 

For simple networks, manually joining the network models may seem to be the 
most obvious solution given the ease with which a trained network engineer could 
accurately identify the corresponding points of inter-connection. As the complexity 
of the networks increase, however, the number of points of inter- connection rises 
and the process becomes increasingly time consuming. With this manual 
integration, there is also an increased chance of errors being introduced to the 
output data, which could potentially lead to inaccurate data being introduced into 

an operational system. Such an event could result in a company incurring the 

additional expense to rectify these errors and any additional problems caused by 

the erroneous data. Taken from a TNO's perspective, an automated system for 

receiving network models from DNOs and Generators and automatically validating 

and combining them with a TNO's existing model would save time and 

significantly reduce the potential for human errors to be introduced into the data. 

The adoption of the Common Information Model (CIM) for power systems by 

network operators provides a common, open format for representing power 

networks, but the problem of integrating network models from multiple sources 

still exists. This chapter proposes novel solutions to the problem of integrating 

network models in CIM format. 

7.2 Representing Inter-Network Connections 

When connecting two power system models together it is necessary to identify the 

points on each network that are to be electrically connected. This problem has been 

discussed in Chapter 3.5.5 and a solution proposed. By using the Network 
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Connection Point class described in 3.5.5, a network model in CIM format can 
define the points at which it connects to neighbouring networks. 

7.3 Integrating Models of Identical Abstraction 

With the exception of the simplest networks containing only a single Network 
Connection Point, specifying Network Connection Points for each network alone 
will not provide sufficient data to allow the accurate amalgamation of power system 
models. A method for automatically pairing Network Connection Points from 

separate models using (whenever possible) the existing data contained within the 
network model is therefore required. 

------------------------------- ------------------------------------ 
Network 13 

Con ne ction 1 
�-_ 

Network A 

-\-ý II 

. /-dl I 
1, 

------------------------------------- 

Low Voltage 

A 

/-> 

/H" 
------------- 

Figure 7.1 Network A and Network B with the inter-connection points marked 

Figure 7.1 shows two sample networks, A and B, each containing multiple loads and 

generation sources. To integrate the two models, the process requires three stages: 

1. The process must automatically pair the connection points from each 

network 

It must then identify areas in the network models that overlap 

/. Connection 2 

1707/ 

-J 

High Voltage 

Connection 3 

138 

. I. ". --l- 



3. Finally, the process resolves the issue of duplicate components in the 
overlapping sections 

Upon successful completion of these three stages, the two network models will be 
combined to form a fully interconnected network model. 

It is beneficial for a network operator's power system model to contain elements 
that represent portions of the other operators' connected networks, so that their 
system does not terminate at an unrealistic point such as a transformer winding or 
at the end of a line. Instead, network models will overlap at the points of 
interconnection, with sections of neighbourinýz networks or eauivalent 
representations being included within a power system model. This allows the 
inclusion of all equipment within the same substation as well as equivalent loads 

and generation sources at the extremities to represent how this connected network 
impacts on the original network modelled at a high level of detail. 

The integration can be accomplished manually with little difficulty for a simple 
example such as that shown in Figure 7.1 because the relative lack of complexity 
within the networks makes visual identification of overlapping areas a trivial task. 
However, for larger network models where each network will contain thousands of 

components and tens or hundreds of interconnections, manual integration is both 

time-consuming and prone to human-error. The methods developed to allow the 

automatic identification and integration of power system models in CIM format 

detailed in this thesis can be used with networks of varying complexity with little 

requirement for human intervention and have been successfully implemented and 

applied to network models of considerable size and complexity. 

7.3.1 Matching Voltage Levels 

The first step when locating the matching partner for a Network Connection Point is 

to identify all points within the other network with the same voltage level. This can 

be accomplished by locating the VoltageLevel associated with either the 

Connectivity Node or Terminal identified as the point of connection. From this 

VoltageLevel instance the nominal voltage of that portion of the network is obtained 

from the BaseVoltage associated with that VoltageLevel. There are, however, cases 

when the VoltageLevel association will not be present for the chosen component 

because the original model file only contains VoltageLevel associations for a 

minimal number of topological and conducting equipment components. In these 
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cases only core components such as Transformer Windings, Line Segments, 
Generators and Consumers will include associations to a VoltageLevel. Stepping 
outward through the network from the selected component until a piece of 
equipment with an associated VoltageLevel is found within the same topological 
node will provide the voltage for that particular section of interconnected 
equipment in the network. 

7.3.2 Creating Component Identifiers 

The object-oriented nature of the CIM representation of the power system allows 
each individual component of the CIM network to have an identifier created for it 
based on its attribute values, class type and associations. In this way, the 
probability of a Transformer Winding in one network being a representation of the 
same Transformer Winding contained in another network can be evaluated by 
comparing the two identifiers. 

This comparison process makes use of the CIM Java objects architecture described 
in in Chapter 4 by integrating the comparison functionality into the object 
framework itself. Every object has a compareTo function that allows it to compare 
itself to any other object within the system. The default function, inherited by all 
the objects in a model, uses only an object's internal attributes and association 
relationships to compute the hash identifier and perform the comparison. This 
function is defined at the top level of the class hierarchy and then inherited by all 

subsequent child classes. 

The name attribute of each component and other String values including description, 

comment and aliasName are ignored during the calculation given the likelihood that 

the internal naming conventions for equipment and user-readable descriptions and 

comments will differ depending on the source of the network model. 

This method of calculating hash identifiers for each component, however, does not 

provide completely unique values. It is possible that simple components within a 

network model will produce identical hash identifiers when they have a small 

number of attributes with a limited number of different combinations. For example, 

a switch will always contain two Terminal associations and often only a single 

attribute to denote whether the switch is opened or closed. For a large model there 

will often be identical hash values across multiple instances of the same class when 

the name assigned to the component is ignored. it follows that comparing the 
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identifier of the first overlapping component of each network is not sufficient for 
matching connection points with the desired level of accuracy. 

7.3.3 Creating Network Section Identifiers 

A method of "'spidering"' through the network, combining hash identifiers from 
each component on each "step", allows for a comparison between network sections, 
or entire network models, decreasing the chance of a mismatch with each 
increment. This process reports the number of steps taken through each network 
from the common starting location until a mismatch, indicating a discrepancy 
between the networks, is found. 

The spidering not only includes components that represent the physical network, it 
uses all the CIM objects associated with a particular object. These include objects 
that represent voltage levels, load curves, load areas, measurement devices, 
equipment containers (such as Substations) and various other objects that do not 
represent actual physical conducting equipment but still represent essential 
attributes of the power system model. 

7.3.4 Weighting Connection Pair Matches 

For the examples given in Figure 7.1, Connection I's pair of Network Connection 
Points will be identified during the first stage since they are the only two Network 
Connection Points at the Low Voltage level. For the remaining two connection 
points, both in the High Voltage level, the process will then compare any 

overlapping network portions to find which provides the best match for each. 

Ideally, after the process has compared each Network Connection Point with all 

other potential points in the connecting network, each point will have a unique 

partner in the other network. However, should a situation occur where no clear 

match is found for one or more pairs of connection points due to either a) there 
being no high-weight match or b) more than one high-weight match, then the 

process will be unable to automatically pair the connection points and thus require 

external input to continue. 

The analysis of the best match requires the comparison of the weightings for each 

component in the network. By repeating this process for the other possible matching 

connection points a series of weightings can be calculated and then ranked to 

provide a best match. If one weighting is significantly higher than the others then it 

offers the best chance of a match. 
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The process involves comparing the two objects, one from each network, at each 
stage of the traversal and returning a weighting value to denote how accurately they 
match. 

This weighting is calculated using the following algorithm: 

If the two objects' classes do not match return 0 
Otherwise 

Set weight to 1; 
For each non-String attribute 

If the attributes do not match 
If the attribute is numeric (Integer or Floating Point) 

difference = (lowest attribute / highest attribute) 
Set weight to weight*difference 

Otherwise if the attribute is boolean 
Set weight to weight*0.8 

For each association 
If the Association is O.. n 

If the number of associations doesn't match 
difference = (lowest number / highest number) 

weight = weight * difference 
return weight 

This algorithm provides a weighting of between 0 and I for each comparison, with 1 
indicating a perfect match and 0 indicating they are either of a different class or 

contain no comparable attributes or associations. 

These weightings can be combined for an increasing number of traversal steps by 

multiplying the individual weightings together to obtain a weighting for each 

connection point. 

By repeating this process for all the available connection points a matrix is formed 

with the corresponding weightings for all possible matches of the available 

connections points in each network shown in Figure 7.1. 

NCP Al A2 A3 

Bl 0.82 0.0 0.0 

B2 0.0 0.92 0.65 

B3 0.0 0.72 10.81 

Table 7.1: Weighting distribution for Network Connection Point matching 

The two networks A and B shown in Figure 7.1 each contain small network 

segments from the neighbouring network, resulting in an overlapping area of 

shared network segments highlighted in the diagram. Within the overlapping 
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sections of each network, minor discrepancies in component parameters and switch 
statuses occur due to the differences in networks produced by each source 
application. Although the overlapping sections differ by only a small margin, it is 
enough to prevent the components from being completely identical. The weightings 
in Table 7.1 are produced after a single step in the traversal from the potential 
connection points, including only those connected components one step into the 

neighbouring network. 

Since Connection Is surrounding components (ignoring any Connectivity Nodes 

and Terminals hidden from this diagram) consist of a Disconnector, Breaker and 
Line, this produces a class mismatch with points 2 and 3, both of which are 
surrounded by two Disconnectors and a Breaker. This results in a weighting of 0 

between Connection 1 in network A and Connections 2 and 3 but a high weighting 

with its companion, B1. Connections A2 and A3, however, both have relatively high 

weightings with two possible connection points in the neighbouring network due to 

the similar network structure. 

In this case the automatic matching process fails due to there being more than one 

possible match for one or more connection points. If the overlapping sections were 
larger, a second traversal step would remove this ambiguity, but since the 

overlapping sections contain only a single component per connection point from the 

neighbouring network the comparison process can-not proceed further. 

The process will automatically match those points for which there exists only one 

possible match. For the remaining nodes, the user will be shown the calculated 

matches with the highest probability of being matched together with a small 

graphical diagram to represent the portions of the network. They will then be asked 

to either approve or alter the matching pairs before proceeding. 

When each Network Connection Point has a valid partner in the connecting 

network, the areas from each model that represent portions of the neighouring 

network are deleted. The resulting two networks are then combined at the three 

connection points resulting in a fully contiguous interconnected network. The 

processes used to perform this join will be described further in Section 7.5. 

7.4 Integrating Models at Different Levels of Abstraction 

As discussed in the previous section, components within a network and even 

network sections can be compared for equivalence. When a mismatch occurs the 

process will compare the two components that produced the mismatch, but if the 
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weighting returned is too low then the process concludes that the networks are 
dissimilar. 

However, instead of assuming that any mismatch between two network sections 
indicates a non-comparable network, it is possible to instead analyse the network at 
the point of divergence to ascertain whether the two networks represent the same 
section but at differing levels of detail. 

------------------- 
Network B 

Cohlnecti, on I 

Low Voltage 

Low Voltage 

6onneol*on 

A2, A3 A4: Network A 

.......... 

High Voltage 
. ........... 

Connectiori .3 

ý/R 
B4 BT B2 

B1 

.......... ... 

High Voltage 

-------------------------------------- 

Figure 7.2: Network A with a simplified portion of Network B attached 
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Network B 

Cohnection 1 

Low Voltage 
A 

Network A 

Low Voltage 
AL 

6onne4ýtýýon 

High Voltage 

B3* 62 I; h BI 

........... 

--------------------- /H', " 
) ------------- 

Figure 7.3: Network B with a simplified portion of Network A attached 

7.4.1 Locating Network Discrepancies 

Using the same two networks shown in Figure 7.1, we can produce two network 

configurations to represent the same overall network but with the connecting 

networks at different levels of abstraction. Figure 7.2 shows the network diagram 

for Network A with a portion of Network B included, but with a single load and a 

single source used in place of the multiple loads and generation sources. Similarly, 

Figure 7.3 represents the network diagram for Network B with a portion of Network 

A included with its loads and generation sources replaced with a single load and 

single generation source. These represent the network models each operator uses, 

containing a section of the neighbouring network that impacts on the functioning of 

their own system. 

For networks such as those shown in Figure 7.2 and Figure 7.3, a discrepancy in 

network topology will occur when the spidering reaches the equivalent loads and 

sources. The process can then decide, depending on the level reached, whether this 

discrepancy indicates that the network sections are equivalent and that it has 

reached an equivalent load or source or whether it indicates the wrong connection 

point. 

A2. ' A3: A4- 

High Voltage 
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For Connection 2, looking at Figure 7.2 and Figure 7.3, the steps through the 
network are reduced to four: Al through A4. The implemented model integration 
system would require more steps than this since it includes Connectivity Nodes, 
Terminals and the separation of the Transformer into two windings and a power 
transformer object. However, for this example the simplified steps illustrates the 
process involved. 

At the first step, Al, both networks return identical hash identifiers since they both 
contain a disconnector with the same attributes and number of associations. 
Similarly at A2, the hash identifier from Al is combined with that of the 
Disconnector and Breaker found as the process traverses the network, returning 
identical values. This process continues through A3, combining the identifiers of 
the components making up the line and transformer models until at the fourth step 
(M), a discrepancy occurs. In Figure 7.2 the process encounters a Disconnector and 
a Generation Source, where as Figure 7.3 has a Disconnector and two Breakers. The 
process has successfully traversed through 3 steps before encountering a 
discrepancy. It can then attempt the same process with the remaining Network 
Connection Point, however in this example it would fail at the first step since the 
first component in Network B at Connection 3 is a Ground Disconnector, compared 
with a Breaker at the same point in Connection 2. 

A similar traversal is shown when comparing the section of Network A connected 
to Network B, illustrated with steps B1 through B4 in Figure 7.2 and Figure 7.3. 

Here, as with the first example, after 3 steps through the network the hash identifier 

for the network sections are identical, then at the fourth step a mismatch is found as 
the traversal in Figure 7.2 reaches an equivalent generation source where as Figure 

7.3 contains three Breakers. 

7.4.2 Comparing Differing Levels of Abstraction 

Instead of assuming that these two networks are incomparable, the process can 

instead check whether the level of detail for the components after this point has 

been lowered, or non-essential components that do no affect the electrical properties 

of that section (such as open ground disconnectors or closed switches) have been 

removed. In both cases the electrical properties of the remainder of the network 

have been maintained but as a limited number of equivalent components. It is 

possible to compare these two networks of differing size by converting the higher 

detailed model down to its electrical properties and comparing the two overlaps at 

this level. 
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A simple example is the different levels of detail that can be used to represent a line 
between two substations. At a high level of abstraction, a single AC Line Segment 
object provides a sufficient level of detail for performing a basic analysis of the 
network. However, the operator of the network may store the data for the same line 
at a much higher level of detail. Instead of amalgamating the line into a single line 
segment, their internal model may store data on each line segment that is connected 
in series to form the complete Line. 

While both models would be valid CIM representations of a line, to the process 
described in the previous section, these two representations are different network 
configurations and as such it will report a mismatch at the first AC Line Segment in 
each, since its attributes (such as resistance, reactance and susceptance) will differ 
depending on whether it represents the entire line or just a section of it 

The method must therefore be extended so that the comparison works on multiple 
levels of abstraction. If a mismatch is found when comparing the hash identifiers of 
two object, instead of assuming this means the network differs from this point on 
the comparison will be performed on an amalgamation of an increasing number of 
components from that point on. 

7.4.3 Incremental Bus-Branch Conversion and Comparison 

Comparing two networks using this incremental Node-Breaker to Bus-Branch 

conversion proves involves the replacement of the compareTo function described in 
Section 7.3.2 in certain classes for which multiple pass comparisons are used to 

compare objects at different levels of abstraction. For the example above, the 

process need only request the comparison between two AC Line Segments once 

when there are differing levels of detail. If the simple hash identifier-comparison 

failed, the AC Line Segment object would perform the multi-pass comparison 

transparently by overriding the default compareTo function. 

Similarly, any piece of Conducting Equipment contains a compareTo function that, as 

well as performing the simple hash-comparison between itself and the target object, 

can compare the target object to an amalgamation of itself and an increasing number 

of surrounding components. This is accomplished by performing the topological 

simplification of the network, one level at a time to create virtual components to 

represent multiple interconnected components using the same algorithms used in 

the Node Breaker to Bus Branch conversion described in Chapter 5. 
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By incrementally increasing the number of network components within each bus 
and checking for a match with the target object each time, it is possible to identlf\, if 
they are comparable and how many components from the network are represented 
by the target component. The most simplified representation for a component 
would be a single piece of conducting equipment (to represent a bus), and an 
equivalent load and source component computed from the attached generating 
units and energy consumers. 

This simplified representation provides sufficient data to conduct a steady-state 
load-flow analysis of the network. As such, when the network segments are found 

to have identical Bus-Branch representations, the compareTo function returns a 
positive result. Along with the positive result, the function includes additional data 

detailing the components included in the amalgamation. This informs any 

application utilizing the function that the result was due to an amalgamated match 

rather than from a direct one-to-one comparison. 

7.5 Joining Power Network Models 

The CIM Java Objects storage framework described in Chapter 4 is used as a long- 

term storage repository for multiple power systems models in CIM format. It is 

within this framework that the integration process has been implemented. The 

integration process, however, must be capable of integrating network models 

without destroying their original configuration. For this reason, three methods of 

integrating the models have been developed: 

0 Hard Join 

9 Copy Join 

0 Soft join 

7.5.1 Hard Join 

The Hard join method is used for making permanent joints that alter both networks 

to create a single network model using the algorithms described above. 

Components within the overlapping sections from each model that are from the 

neighouring network are removed, and the associations in each replaced so that the 

connectivity node and terminal associations at each interconnection point to an 

object in the connected model. Each model is still maintained as a separate entity, 

capable of being separated from the combined network, and topological processing 
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in either direction (from A to B or from B to A) produces identical network 
structures. 

7.5.2 Copy Join 

The Copy Join method uses the same process as the Hard job, method described 
above. However, instead of having separate models with interconnecting 
associations, the process creates a new model containing copies of all the 
components from the two networks as a new CIM power system model 
independent of the two parent networks. 

7.5.3 Soft i oi n 

A Soft Join is used in cases where the core network is being joined to satellite 
network that must maintain its original configuration after importation. This 

method of integration requires an additional level of complexity within the classes 
of CIM objects linked with the physical topology of the network (Conducting 
Equipment, Terminals, Connectivity Nodes). These objects will contain multiple 
paths and requires a system of flags to indicate when a topological association is 

with an external model. Without these flags to indicate when a path is an 
overlapping section on an adjoining network, during the topological analysis, the 

overlapping section could be incorrectly interpreted as being an additional branch. 

To allow this one-way join, the core network will have its associations modified so 

that the satellite network becomes an integrated part of the overall network, and 

any topology analysis starting in the core network, at the point of interconnection 

with the satellite network, will proceed into this satellite network, treating it as an 

extension of the core network. However, this link is one way: if the topology 

analysis starts in the satellite network, it will either stop, or use the overlapping 

network section in the original model if it has no knowledge of the core network. 

7.6 Validating Integration Output 

There are a number of ways to validate the output from the integration process to 

ensure that the algorithms have performed as expected. Manual checking of the 

resulting CIM XML file is a tedious process and only possible on relatively small 

models. Instead, using the other applications created for exporting, viewing and 

visualising CIM network models can be used to verify the output. 
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7.6.1 Exporting the Output 

The test models, A and B shown in FiguresFigure 7.2 and Figure 7.3, were manuallv 
created by splitting an existing model, as shown in Figure 7.1, into two. The CIM 
XML output from the integrator can be verified by using the PSS/E exporter 
described in Chapter 5 on the CIM XML original file then on the combined Network 
A plus Network B output. By comparing the load flow results from PSS /E on each 
of the two files produced by the exporter, the validity of the resulting combined 
model can be determined. In this case, since the user has the original model, the 
results should be identical. When this test is used in a real-world situation the load 
flow results will highlight any major errors in the resulting model, e. g. overloading 
of a branch or isolated buses. 

7.6.2 Viewing the Model in the Mercury Library 

While manually checking a CIM XML file is time-consuming and impractical for 
large files, using the Mercury Library's model viewer, a web front end used for 

viewing and editing CIM Java objects, the associations can be navigated with ease 
and the interconnections checked. For the test models, where the names of the 

objects that should be paired are known in advance, this provides a simple means of 

checking that the objects have the appropriate bi-directional associations. For 

models where there is only limited knowledge of what the resulting network should 
be in CIM format, the model viewer still provides a means of checking that 

duplicate objects have been deleted by checking for the existence of multiple 
instances of objects with the same name. and that, at the interconnection points, 

there are no 

7.6.3 Graphically Checking the Network Structure 

In Chapter 8a means of generating network diagrams for CIM models will be 

described. These diagrams provide a means of graphically checking that the output 

from the model integration tool is consistent with the expected result. The diagrams 

allow the user to check that the two models have been fully integrated, since failure 

to create the proper associations would result in two islanded networks, clearly 

visible in the resulting diagrams or irregular connections between equipment 

showing on the diagram. 

For example, during development and testing of the software that implements the 

algorithm, a small bug in the code prevented the overlapping section being deleted 
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from one of the models. While not obviously visible from the resulting CIM XML', 
the graphical view clearly showed the additional network section as an extra branch 
connected to the intersection point. 

The graphical checking is the simplest means of ensuring that the resulting network 
model is correctly interconnected, and combined with the ability to export this file 
to PSS/E provides a means of ensuring that the integration has created a valid, 
interconnected model that is electrically robust. 

7.7 Uses for the Model Integration Process 

This process of network model integration has three primary applications, which 
will be discussed in the following sections. 

7.7.1 Forming Regional or National Network Models 

Network Operators, must exchange network data between themselves and and any 
generation companies then connect to their networks. Each company provides 
models of their own networks to their connecting partners who use them to form an 
overall regional or national network model 

This is an obvious application for an automatic model integration process, 
automating a procedure that is both time-consuming and prone to error when 
conducted manually. The level of network data provided by the generation 
companies and network operators is often defined by regulatory bodies and, as such 
the network data exchanged will often have lower detail, or the minimum required 
by the regulator. 

It is in this situation that the process for integrating networks of differing levels of 

abstraction is beneficial. Given a scenario whereby network operator A must 

provide a neighbouring utility, network operator B, with a model for a segment of 

its own network, it may choose to provide the network segment model at the 

minimum level of detail set out under the regulatory codes. Network operator B 

will then integrate this network segment with its own network model for analysis 

and simulation purposes. When B then has to provide its own network model back 

to A, the segment of A's model already integrated into B's network model will be of 

a lower detail level than As own, internal, network model. By using the integration 

process for differing levels of abstraction detailed previously, this discrepancy will 

not prevent the process from correctly matching the overlaps between the two 

network models. 
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7.7.2 Creation of new power system models in the CIM 

The second application that will make major use of the model integration process is 
that of creating power system models in the CIM format from scratch. 

Currently, the overwhelming majority of CIM data being produced is exported from 
existing applications or databases by either converting the application's own data 
format to CIM or mapping the database schema onto the CIM ontology. This is 
sufficient for exchanging pre-existing data but, given the increasing adoption of the 
CIM by a number of power system software vendors, the creation of new power 
system models in the CIM may prove to be the most universally acceptable format, 
and thus most compatible in the near future. 

The network model integration process described above has been used to allow the 
rapid creation of test CIM networks by allowing the reuse of CIM network segments 
commonly duplicated throughout a typical power systems network. 

By creating a number of basic substation models in the CIM format, either within a 
utility or provided by the substation supplier to represent the common layouts of 
substations at the distribution and transmission level voltages, large network 
configurations can be quickly constructed by joining these substations together. 
Adding energy consumers and generation equipment at the appropriate points of 
the network (either as stand alone objects or as pre-existing models) allows large 

networks to be formed quickly, requiring minimal changes to the properties of the 

substation components. 

Wind farms, for example, contain a large number of identical, interconnected 

groups of equipment that represent the turbine and its associated switches, 

measurement devices, etc. The model integration process allows an operator to 

create a CIM representation for each turbine then quickly duplicate that section of 

the model multiple times and interconnect them all to provide a detailed model of 

the entire wind farm. 

7.7.3 Creation of planning scenarios 

The third application is for planning engineers who will, as described in the 

previous section, create new network section to describe a proposed connection to 

the main network, whether it be for a supply or demand point. By accessing a full 

model of the existing network in CIM format with multiple network connection 

points defined to indicate all points on the network suitable for connection by 
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another utility, the planner can automatically generate a number of different 
network configurations by integrating their proposed network at any number of 
locations. 

Each of these power system network models in CIM format can then be exported to 
an analysis package, as described in chapter 5, allowing each scenario to be 
analysed individually for suitability. 

By using the Mercury framework described in Section 4.7, this process can be 
accomplished remotely either using a web browser interface or with a web service. 
This allows the planner to examine a number of possible connection locations prior 
to the submission of a formal proposal to the main network operator. 

7.8 Future Work 

The extensions to the CIM proposed in this thesis, combined with the network 
integration method, provides the core element in an automatic network 
amalgamation process. The process, however, is limited to network models that 

contain both the new Network Connection Point class, and contain overlapping 
sections of network that are electrically identical. 

Future avenues of research will focus on enhancing the automatic pairing of 

network connection points so that the lack of overlapping sections of network will 

not hinder the automatic integration of networks. The power system network 

attributes, combined with the use of intelligent techniques and the inclusion of GIS 

data has the potential to further aid the automatic integration of network models. 
This can be achieved by checking the validity of the resulting network model when 

applied to real-world situations and by using the physical location of network 

components and their proximity to potential connection points in satellite networks 

These enhancements, introducing knowledge and rule-based reasoning processes 

into the application, pose significant software engineering challenges, both to 

design and integrate the decision making systems and additional network 

component data into the existing application, then to create suitable data-sets for 

training purposes. 

An intelligent system capable of automatically identifying how separate networks 

with multiple connection points should be interconnected even when there are no 

overlapping sections present, would potentially remove the primarý, limitation of 

the existing process detailed in this chapter. 
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7.9 Chapter Summary 

The previous work into creating a framework for storing CIM data as Java objects 
provides a powerful foundation for creating applications that can process CIM data 
directly. The network model integration process described in this chapter makes 
use of the CIM Java framework requiring only the addition of a single additional 
class, to automatically integrate connected network models. 

Allowing each object that is either a piece of Conducting Equipment, or a direct 
subclass thereof, to compare itself with any other piece of conducting equipment on 
multiple levels of network abstraction allows the automatic overlap detection to 
cope with the differing levels of detail that can cause problems when exchanging 
network data between companies. 

By creating libraries of typical substation, line and generation plant systems, the 
model integration process was used to create ad-hoc network configurations for the 
testing of other tools and applications based on the CIM Java Framework. This 
included a basic load flow simulation application written to accept native CIM data, 

as well as an evolution of the CIM XML to PSS/E native format conversion process 
described previously. The ability to quickly create test cases of varying size, 
complexity and configuration in native CIM format has allowed the development 

and testing of these applications to proceed faster than the reliance on existing CIM 

XML test data or the manual writing of CIM XML files would have allowed. The 

same applications provide major opportunities for planning engineers who wish to 

both create new network models and integrate them with existing power system 

models to analyse the impact of connections at different points of the network. 

These additional applications, combined with the network model integration 

process's ability to compare, match and integrate complex network models in native 

CIM format, rather than translating to a proprietary format, demonstrates that the 

CIM standard can be used for more than simply data exchange. This application 

further demonstrates the benefits of the CIM Java object storage framework, 

providing the foundation for an application to quickly perform complex network 

interrogation and manipulation. 
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Visualisation of Network Topologies 

1 Chapter Introduction 

As an object-oriented data format, the CIM provides a means of representing the 
direct interconnections between components as associations between objects, thus 
allowing the topological analysis detailed previously to be performed on a network 
model. This system allows an application to accurately interpret the topology of a 
network but, for models without an accompanying graphical network schematic, 
the topology of the network is incomprehensible to an end user. 

Providing the end user with a visual representation of a network's structure is 
important for two reasons: 

1. Having a visual representation of the interconnections between components 
aids the end-user in quickly interpreting the existing data 

2. When altering or adding components to a CIM network, having a visual 
reference and the ability to point and click on a network diagram is arguably 
more user-friendly than manually altering a data file without a visual 
reference. 

What is required is an application that can produce a coherent visual representation 

of a CIM power system model's network's structure with minimal user input. This 

chapter shows how an open and flexible CIM toolkit architecture with an RDF XML 

output enables the adaptation of existing data graphing tools to provide a solution 

to the power system visualisation problem. 

8.2 Automatic Graphing Tools 

Since CIM XML data uses the Resource Document Framework (RDF) to define the 

relationships between each object, it is logical to investigate the use of existing RDF 

graphing utilities to organise the data. There are a number of RDF graphing 

applications available [40][41][42], all written in Java. 

Of these three tools, the HP Labs tool is aimed more at visually navigating the data 

rather than organising it all onscreen. The Salzbery Research application is closed 

source and thus cannot be modified or integrated with the existing Mercury 

framework. MIT's Welkin application, however, is a Java applet that allows entire 
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data sets to be viewed and organised onscreen and is available under a Berkeley 
Software Distribution (BSD) license, allowing it to be modified and integrated 
without incurring any legal penalties. 

Welkin is a graph-based RDF visualisation program developed to allow data 
analysts to visualise the overall shape and cluster characteristics of a set of data. 
The program was written as part of the Semantic Interoperability of Metadata and 
Information in unLike Environments (SIMILIE) project, a joint project between the 
W3C, MIT Libraries and MIT Computer Science and Artificial Intelligence 
Laboratories. 

The software, written in Java, uses the relationships between XML nodes to cluster 
data, attracting nodes that are joined together, and forcing apart nodes that are not 
interconnected. This uses algorithms similar to those previously proposed by 
Yongli & Malik [43], and Ong, Gooi & Chan [441 for network layout generation, but 

the tool itself is domain-agnostic so can be used with any data expressed in an RDF 

format. 

This clustering process takes place graphically in front of the user, who can alter 

various attributes within the program (mass, attraction, repulsion, acceleration etc. ) 

to alter the behaviour of the nodes and speed up or slow down the clustering effect 
(thought it can result in an unstable state where the graph never condenses and 
behaves in an erratic manner). The user can also interactively move individual 

nodes on the screen to manually influence the final shape of the resulting graph 

Welkin can read RDF, RDFS (RDF Schema), the OWL Web Ontology Language and 

TURTLE (a subset of the N3 textual notation for the RDF) formatted data regardless 

of the other ontologies used within the data. Since standard CIM XML data uses 

RDF to notate relationships between CIM objects, Welkin can read standard CIM 

XML data files without modification. A full power system model encapsulated in 

CIM XML, however, can exceed several megabytes in size and contain thousands of 

XML nodes. While Welkin can load files of this size, its ability to organise them is 

severely hampered by the large dataset. 

For small CIM XML datasets, however, the automatic clustering and reorganisation 

of the data can produce graphs that begin to mirror the topological structure of the 

network. 
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Figure 8.1 Welkin visualisation of Siemens 100 Bus Model before processing 

8.2.1 Graphing Standard CIM XML data 

Using an unmodified version of the Siemens 100 Bus CIM XML network file with 
Welkin requires several minutes to import the data into the application. Upon 
importation 6976 nodes are created and displayed on the screen to represent the 

network data as shown in Figure 8.1. The resulting graph displays all the ob*ects 

within the CIM model and their associations, including all the components that 
define the network topology (Terminals, Connectivity Nodes and all classes that 

inherit from Conducting Equipment) and all other classes that represent non- 

topological components: voltage levels, measurement devices, substations, 

companies etc. 

"a 
am. m 0 -6 

% f fir 

-Ce. - 16 V_ .... %. OA C- 

lix p j Ia 1. 0S 
., fps 4aJ. 

.. 'd 8.1, . 

Par ra A! 
f V-F A4: N'. 0 .4 

J-v % 
l. F IL . ft .. ; Ný: * wý jm 6: 4- 76ý 

% sow 
*r 
,e 0_0 

"ý'! do *"" ,r 
IF- - 

Vf. 'I r do al`ý - 
a 96 Af qýi, m: -W . ,a$%,,,. 

A Io _'. V: 
#. Ir 

yj 4. ýk% %I a V. 
; 16 

oil S, I"A. 
40-A. 

-.., 
:F 

i6_r If 

PRI 

a Ame r 

&a Ir % 
MUM IN 

- 
-a 

0 '6 4e US 40 
4r 

Lm 

i jq 4Výf ". . 4. 
P1-. 

I- 
J . 1-40 p. 0 4. : b. 

.%.. 
F%, %. e. -0,. 

- 
too. 

Figure 8.2 Welkin visualisation of Siemens 100 Bus Model after three minutes of 

processing 

The graph of almost 7000 nodes, however, is too large to perform any meaningful 

analysis on. The algorithms for clustering the data fail to cope with such a large 

number of densely packed nodes and any attempt to ascertain the topological 
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structure of the network represented by this particular CIM XML files fails due to 
the large data set as shown in Figure 8.2. 

Figure 8.3 Welkin visualisation of Small Model prior to processing 

Figure 8.4 Welkin visualisation of Small Model after three minutes of processing 
The Small Model CIM XML network file, however, has a significantly smaller 
dataset, producing only 70 nodes when imported into Welkin as shown in Figure 

8.3. This produces a more manageable graph as shown in Figure 8.4. However, 

when using a full CIM XML file, the inclusion of non-topological components 

results in those nodes that are contained within a VoltageLevel container clustering 

around about their associated VoltageLevel and hence the diagram does not reflect 

the topological structure of the network 

While this can be useful for identifying how many components are contained within 0 
each VoltageLevel it does not provide a means of visualising the topological structure 

of the network. Since Welkin does not provide a means of removing nodes based 

on their CIM class, the pruning of the XML file will have to be completed prior to 

importation. 
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8.2.2 Graphing Simplified CIM XML data 

Since a full CIM XML network file has already proved to be overly complex for 
Welkin to analyse successfully, the dataset needs to be simplified. 

8.2.2.1 Pruning a CIM XML Network Model 

The first step is to prune the CIM XML file produce by omitting those components 
not directly related to the topological structure of the network. This can be 
accomplished using the Merctiry software to export a limited set of CIM classes to 
XML. This set contains only those objects whose class inherits from 
CoiidtictingEqitipinent, plus all the Coil nectivityNodes and Tertimials. 

Using Mercitry to export a reduced file prevents broken dependencies within the 
resulting XML file, since the export function checks the references within each object 
as it performs the export. If a CIM object references another object in the model that 
is not a piece of Cond1ictingEq1t1priieiit, a ContiectivityNodc or a Tcrinilial (or a subclass 
that inherits from any of these classes) then that reference is omitted from the XML 
file produced. The resulting XML file contains only those classes and subclasses 
required to describe the network's topology removing all the superfluous nodes and 

any references to them. 

When importing this reduced CIM XML file into Welkin, the Siemens 100 Bus 

Model is still too large, with too many network components to provide a 

recognisable overview of the network's structure. The resulting graph, while 

several hundred components smaller than the full CIM XML file, is not discernibly 

different. The large number of densely packed, loosely connected components on 

screen once again prevents the automated clustering algorithm from condensing the 

network sufficiently to provide a useful representation of the structure. 

Figure 8.5 Welkin visualisation of the reduced format Langside & Cathcart model 

prior to processing 
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Figure 8.6 Welkin visualisation of the reduced format Langside & Cathcart model 
after three minutes of processing 

The Langside and Cathcart network, a CIM power system of 307 objects, created for 

testing the Merciiry software, was similarly pruned and imported into the Welkin 

application producing the graph shown in Figure 8.5. While significantly smaller 

than the Siemens model, the structure of the network is still not obvious even after 

the automatic clustering process has run for several minutes as shown in Fig-Lire 8.6. 

Figure 8.7 Welkin visualisation of the reduced format Small Model model prior to 

processing 
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Figure 8.8 Welkin visualisation of the reduced format Small Model after thirty 
second of processing 

The Small Model, shown in Figure 8.7, has fewer components than the previous 
models. These components are still loosely connected but less densely packed on 
screen. When the same conversion is applied to this model the shape of the network 
can be easily identified after the automatic clustering process has been run for thirty 
seconds as shown in Figure 8.8. The lack of a graphical notation to denote what 
each node is prevents the user from instantly differentiating between a breaker, 
synchronous generator or a transformer winding, but the overall layout of the 
network can still be observed. 

From the diagram produced by the Small Model, it can be concluded that the 
inclusion of every terminal and connectivity node within the network complicates 
the on-screen view unnecessarily. Each physical component within the network is 

represented by at least two on-screen nodes representing the component itself and 
at least one terminal. Every connectivity node is similarly included on screen, 
further increasing the number of graphical nodes displayed. Since a connectivity 

node is required to join two terminals, the on-screen representation of a simple 
Conductor-Conductor join requires the inclusion of two terminals and a 

connectivity node between the two Conductors, increasing what should be two 

nodes and one connection to five nodes and four connections. 

Since the purpose of the application is to provide an overview of a network's 

structure, rather than an accurate visual representation of every CIM object within a 

model, the inclusion of the terminals and those connectivity nodes that have less 

than three connected terminals overcomplicates the resulting graphical 

representation unnecessarily. 

8.2.2.2 Simplified Topological Representation 

Using the Mercury toolkit, an additional function was created for each piece of 

conducting equipment and connectivity node that returned a non-CIM compliant 

XML node, omitting the Terminals association, but adding a new neighbour 

association. 

When the Topological XML is outputted, the neighbour association is computed from 

the connected Terminals. For the conducting equipment the following algorithm is 

used: 
For each Terminal the Conducting Equipment connects to 

Retrieve the Terminal's Connectivity Node Association 

If the Connectivity Node has 3 or more connected Terminals 
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Output the id of the Connectivity Node as a neighbour Else, if the Connectivity node has 2 connected Terminals 
Retrieve the name of the other Connected Terminal 
If the other Terminal has a connected piece of Conducting Equipment 

output the id of the Conducting Equipment as a neighbour Else, if the Connectivity Node has 1 connected Terminal 
Output nothing 

Similarly, for the connectivity node: 
If the Connectivity Node contains 3 or more Terminal Associations 

For each Terminal the Connectivity Node connects to 
If the other Terminal has a connected piece of Conducting 

Equipment 
Output the id of the Conducting Equipment as a neighbour 

Else if the Connectivity Node has less than 3 Terminal Associations 
Output nothing 

A connectivity node will only produce an XML node for itself if it contains 3 or 
more terminal associations. This is because if it contains 2 or less terminal 

associations, none of the pieces of conductin g equipment that connect to these 
terminals will identify themselves as being connected to that node (since the 

algorithm forces them to bypass the connectivity node and identify the other piece 

of conducting equipment on the other side as its neighbour). However, if a 

connectivity node has three or more terminals then it is aT or star point connection 

and an XML node is required to show an accurate network structure. 

An exception to the rules occurs for Transformer Windings, since the default 

conducting equipment algorithm does not take account of the additional topological 

connections to the other windings within the Power Transformer. For transformer 

windings, an additional rule is appended to the algorithm included to include the 

other windings within the power transformer as neighbours. 

When this Topological XML output is performed, the resulting XML file includes 

child nodes within the main component node of the form: 

<s trath: Connect ivityNode. ne ighbour rdf : resource= "#-706cac32 /> 

<s trath: Connect ivityNode. ne ighbour rdf : resource= "#_5eabdf 21 /> 

The strath prefix is used since the cim prefix is reserved for nodes that adhere to the 

CIM schema, which the neighbour association does not. 
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Figure 8.9 Welkin visualisation of the topological format Siemens 100 bus Model 
model prior to processing 
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Figure 8.10 Welkin visualisation of the topological format Siemens 100 Bus model 
after three mintes of processing (border indicates edge of the applet's drawing 
canvas which nodes "'bounce"' off) 

When the Siemens 100 Bus Model is exported as this Topological XML file and 
imported into Welkin, the number of nodes produces is reduced from 6976 to 2468, 

a reduction factor of 2.8 from the original model. Even with this reduction, ZD 
however, the size of the network is still significant as shown in Figure 8.9. This 

prevents Welkin from condensing it sufficiently to provide a meaningful 00 
representation of the network structure as shown in Figure 8.10. 
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Figure 8.11 Welkin visualisation of the topological format Langside & Cathcart 
model prior to processing 
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Figure 8.12 Welkin visualisation of the topological format Langside & Cathcart 
model after processing 

When the same conversion is applied to the Langside and Cathcart model, it is 

reduced to 102 nodes as shown in Figure 8.11. This graph proves sufficiently 

compact to allow the network to cluster the nodes in such a manner as to provide a 

meaningful representation of the network structure within three minutes of the 

clustering process beginning. The graph shown in Figure 8.12 required only minor 47) Z-7) 
manual nudging of some key nodes to reduce overlapping. 
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Figure 8.13 Welkin visualisation of the topological format Small Model prior to 
processing 
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Figure 8.14 Welkin visualisation of the topological format Small Model after thirty 
seconds of processing 

The Small Model by comparison is reduced down to fourteen iiodes by the 
Topological XML output, representing thirteen pieces of conducting equipment and 0 ý7) 0 
a single connectivity node as shown in Figure 8.13. The resulting network structure (t) 
mirrors that of the Pruned CIM XML output, but without the superfluous terminals 

and connectivity nodes. As such, the resulting network diagram (Fiure 8.14) is 

neater than the previous output, but still lacks the power system network diagram 0 
notation that would allow the user to know more about the components within the 

network. 

8.2.2.3 Bus-Branch Notation 

Since the large Siemens 100 Bus Model, even when reduced to almost a third of its 

original size, is still too complex to be automatically organised using the Welkin 

application, a method of further simplifying the topology is required. 0 

The Node-Breaker to Bus-Branch conversion detailed previously converts a fully 

detailed CIM network model into a series of Toplogical Nodes (Buses), Lines and 

Transformers (Branches). This conversion process was initially created to allow 

CIM XML models to be used for the steady state load flow simulations and 

conversion to PSS /E format, but the same process can be used to create an XML file 

to represent the Bus-Branch configuration of the network. 
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Outputting only the Topological Node objects as XML nodes provides the bus data, 
but the topological nodes do not contain direct references to other topological nodes 
they connect to via the lines and transformers. The output function must therefore 
be modified so that a topological node can locate which other topological nodes it 
connects to via its external connections. 

Since the synchronous machines and energy consumers represent loads and 
generators respectively, they can be ignored, and the function need only concern 
itself with any lines or transformer windings that connect to the edge of the 
topological node. The modifications detailed previously to convert CIM data into 
PSS/E format required the addition of the External-Terminals association to the 
Topological Node class. This O.. n relationship stores associations to the terminals that 
denote the edge of the topological node and the Terminals themselves contain 
associations to the pieces of primary equipment (loads, generators, transformer 

windings and generators) that connect to the edge of the topological node. 

To identify the points at which a topological node connects to a branch, the function 

cycles through all the External Terminals of the topological node and identifies 

those that connect to either a line segment or a transformer winding. With these 

points identified it is a matter of locating the topological node connected to the 

other end of the branch. 

For the transformer branches, the transformer winding contains an association to its 

parent power transformer. The other windings that are contained within the same 

power transformer can be identified from the Contains-TransformerWinding 

associations within the power transformer instance. It can be assumed the 

transformer contains more than one winding as, even with the Auto Transformer 

model proposed previously, the Tap class is an extension of the Transformer Winding 

class and as such would be included within the Con tai ns-Transformer Winding 

association. Since every other topological node within the network will have a list 

of its own external terminals, by locating the terminals connected to the other 

windings within the transformer and comparing them to a list of external terminals 

from the other available topological nodes, the neighbouring topological nodes can 

be identified. 

By adding another neighbour node to the outputted XML (as with the Topological 

XML output), the model is further simplified to a series of topological nodes which 

represent the buses of the network and the interconnections which represent the 

branches. 
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Figure 8.15 Welkin visualisation of the bus-branch format Siemens 100 bus Model 
prior to processing 

Figure 8.16 Welkin visualisation of the bus-branch format Siemens 100 Bus Model 
after two minutes of processing 

When this conversion was applied to the Siemens 100 Bus model, the resulting XML 

file contained 99 Topological Nodes, indicating that the conversion algorithm used 

differs slightly to that used by Siemens, or that their 100 Bus model, does in fact 

contain data for only 99 buses. When this Bus-Branch XML file was fed into Welkin 

the graph shown in Figure 8.15 was produced. Upon execution, the clustering 

algorithm was able to successfully condense the network into a recognisable 

network structure as shown in Figure 8.16. 

a) b) 

Figure 8.17 Welkin visualisation of the bus-branch format a) Langside & Cathcart 

model and b) Small Model after thirty seconds of processing 

a 

a 
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The Langside and Cathcart model and Small Model both produce simplified 
network structures containing only a few buses and branches as shown in Figure 
8.17 a) and b). The reduction in detail for these models produces a simplified 
version of the network shape already produced by the Topological XML output. 
While this Bus-Branch representation does not provide the user with details of the 
position of every component with the network, it does allow the user to locate buses 
and branches based on their overall network position. This is sufficient if the goal 
is to gauge the overall shape of a power system's configuration. If, however, the 
application is required to construct a usable network diagram containing all the 
network components at the Node-Breaker level then, for large networks, a different 
approach is required. 

8.2.3 Path Generation for Incremental Network Visualisation 

As seen in the previous section, even with the Topological XML output, large power 
system networks contain too many components for the network to automatically 
cluster and condense the nodes into a usable network diagram. The smaller 
networks, however, show that when the number of nodes is reduced sufficiently, 
then a useable diagram can be produced. 

The solution is to allow the network to arrange itself gradually, increasing the 

number of components on the screen incrementally and fixing the positions of any 
on-screen nodes once their final position in the diagram has been decided. This way 
the user can build a network diagram in layers with the new components 

automatically arranging themselves around the previous layers. 

The first step is to generate a path through the network using the traversal 

algorithm originally designed for the Node-Breaker to Bus-Branch conversion but 

modified to use the Topological XML system of bypassing Terminals and 
Connectivity Nodes with less than three connected terminals. Each step through the 

traversal becomes a new layer in the resulting network diagram, from layer 0 

containing only the initial starting component through to layer n, containing the 

furthest components from the starting location. 

The first step in implementing this layered approach to network diagram 

organisation is to insert the layer information into the XML nodes produced for each 

network component with a child node of the form: 

<strath: layer strath: level="O"/> 
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Every CIM XML node in the exported Topological XML generated will contain a 
child node of this form to denote its layer in the network diagram. 

The next modification requires changing the Welkin application itself to provide 
control over which layers are displayed and to allow all the visible, on-screen nodes 
to have their position fixed simultaneously. 

8.2.3.1 Modifying the Graphing Tool to Interpret Layers 

Since Welkin is released under the BSD license, the source code can be modified 
without breaching any copyright or licensing restrictions and the source is made 
freely available from the project"s website. The software can therefore be modified 
to interpret the layer information embedded within the XML file. 

During importation, if a strath: layer child-node is found within an XML node, the 

software stores the layer position for that node in its own internal layer-index. 

When the importation procedure is complete the layer-index contains ii arrays of 

nodes (where n is the number of layers in the network). 

a) 

c) 

b) 

d) 
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e) J) 
Figure 8.18 Langside & Cathcart network, multiple layers increasing incrementally 
from 2 visible layers (a), through 3 (b), 4(c), 5(d) to 6 (e) and 17 visible layers (f) 

To begin with all nodes with a layer value greater than 0 are set as hidden, and thus 
ignored during the clustering process. The program is modified to provide a new 

panel on screen that contains a slider bar. By moving this slider, the number of 

visible layers is increased or decreased. This is shown in Fiaure 8.18, where the 
blurred nodes indicate those that are hidden, and the sharp nodes and connections 
indicate those that are visible. Figure 8.18 a) shows two visible layers, increasing to 

3 visible layers at b) with the addition of two more nodes. This process continues 

through c) and d), from 4 to 5 visible layers, with e) showing the network visible 

with 6 exposed layers. Finally, 0 shows the network with all bar the last layer 

visible. 

Two additional buttons are added to the screen, which either fix or release all the 

visible nodes. To achieve this, the software loops through all the nodes in the graph 

and checks the state of their visibility. If they are set to be visible, it alters their on- 

screen position to be fixed or released, depending on the option chosen. If they are 
hidden, it leaves their position unchanged. 

The purpose of the Fix and Rclcasc All buttons is so that during the network 

arrangement, fixing the positions of nodes in the visible layers does not affect the 

unorganised, hidden nodes. As a new layer is added, then organised it can be fixed, 

so that when the next layer of nodes is added to the screen, they do not alter the 

position of the nodes in the layers below them. 

8.2.3.2 Multiple Paths and Multiple Layers 

The Layer approach to network diagram construction works successfully for 

building full network diagrams for those networks too complex to be organIsed 

with all the components on-screen simultaneously. The number of onscreen nodes 

is limited only by the size of the on-screen workspace (itself a limitation of the 
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computer"s screen resolution). This system, however, assumes that the user wishes 
to build a full diagram with only a single starting point. 

The same system, however, can be used to construct network diagrams for small 
sections of the network using multiple starting locations and/or multiple paths of 
traversal through the network. 

if the user wishes to construct a diagram for only a certain portion of the network, 
the layer system does not distinguish between the multiple paths out into the 
network from a single piece of conducting equipment (whether it be a single path 
from a generator or load, two paths, either side of a breaker, or any number of paths 
from a busbar section). The ability to expand the number of on-screen components 
based on a number of different paths and layers provides more flexibility in 
selecting only the desired network components. 

Similarly, to construct a full network diagram, if the position of multiple pieces of 

equipment is known prior to the start of the process then, rather than draw the 

network diagram from a single starting location, multiple starting locations can be 0 
used. This is shown in Figure 8.19, where the network contains four separate 

starting locations. 

Path A 
Path B 

a Path C 

Path D 

Figure 8.19 Langside & Cathcart Network with four paths, each with two layers 

visible. Starting locations indicated by the arrows. 

Each of these starting locations has its own path into the network, with Laver 0 for 

each path being the chosen piece of starting equipment. From there, as with the 

basic Layer system, each component encountered in the traversal is assigned a level 

value for that path. Figure 8.19 shows each path with two layers visible. 
0 
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Path A 
1A Path B 

Path C 

Path 0aa 

a 

Figure 8.20 Langside & Cathcart Network with Path A at Layer 9 and Path B at Layer 8. Shaded area indicates overlapping paths. 
Since the multiple paths will inevitably meet, there will be overlapping components 
as shown in Figure 8.20, and a node may be assigned multiple level positions, one 
for each path. A typical XML node will be of the form: 

<cim: BusbarSection rdf: ID=" ldl54952"> 
<strath: path strath: name=" Path 0" strath: level=" 2" /> 
<strath: path strath: name=" Path 1" strath: level=" 19"/> 

</cim: BusbarSection> 

This network component, a busbar section, is included in two paths, Path 0 and Path 

1. On Path 0 the component is only two steps away from the starting location, 

compared with 19 steps from the origin of Path I- 

The layer interpretation system must be modified to cope with these multiple paths 

and layers. The interface itself is modified to include a separate slider for each path 

to alter the levels being displayed. The system for hiding or displaying nodes 

dependent on their defined layer or path level is altered so that each path modifier 

knows the level of every other path and can recognise when one of its nodes is 

controlled by one or more other paths. 

This is to ensure that nodes, such as the busbar section displayed above, are 

displayed when either of the paths it is assigned to is visible at the desired level. For 

the node shown above the busbar -will be visible if Path 0 is greater than or equal to 

2, or if Path I is greater than or equal to 19. If Path I had no knowledge of Path O's 

setting, and was unaware that one of its nodes was also contained in one or more 

additional paths, then even if Path 0 was set to a value greater than 2, anv chanae to 

the value of Path I that resulted in it beinc- less than 19 would hide the node. 0 
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These modifications to the Mercury code for XML generation, combined x. "ith the 
modifications to Welkin for interpreting this embedded data prm, ide a fast and 
flexible system for generating a very basic power system network topology 

'n - diagram. As mentioned previously though, the diagram lacks the poxver system 
iconography used for traditional power system diagrams. The direct point-to-point 
connections are also contrary to the traditional horizontal and vertical connections. 

8.2.4 Modifying the Graphing Tool to Display Power System 
Model Information 

Since Welkin uses the standard Java graphical libraries for producing the on-screen 
diagram, it is possible to modify the display depending on the type of component. 
Since the Topological XML nodes are using the basic CIM XML constructs, the CIM 

class can be extracted from the XML node during importation. Icons are defined for 

specific CIM classes using Java Graphics commands and the default icon; a square, 
red rectangle, is replaced with the Graphic instance assigned to each class. 

For most equipment this process requires only an icon replacement, centred at the 

node"s position, but there are special cases that require additional modifications to 

the Graphics code. 

8.2.4.1 Drawing Transformer Diagrams 

t rl Since transformers are modelled as multiple windings, each winding is a separate 

node, and as mentioned previously, for the Topological XML, an connection is 

defined between these windings to maintain the topological integrity of the 

diagram. A winding centred at each node, however, would not produce a 

recognisable transformer diagram. 

Instead, using a circle to represent each winding, the windings should be spaced in 

such a way so that, no matter the distance between the two winding nodes, the 

diagram produced shows a typical two winding transformer diagram in the centre 

of the connection line. 

To do this, the graphics function is modified to include code that uses the following 

algorithm (where x and y are the two windings): 

Compute the equation of the line between points x and y 

Find the midpoint of that line 

(For x) 
Move 5 pixels along the line closer to x 

Draw a circle of radius 10 pixels 
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Return to the midpoint of the line 

(For y) 
Move 5 pixels along the line towards y Draw a circle of radius 10 pixels 

This algorithm allows the transformer winding icons to move with the connecting 
line and highlight the location of transformers within the network. 

8.2.4.2 Representing Line Segments 

A line segment, like any other piece of conducting equipment in the diagram, is 
represented as a single node on the diagram. The segment normally has two 
connecting lines running from it to the other pieces of conducting equipment it 
connects to. To accurately depict the line in the diagram the connecting lines from 
the segment node are modified with the addition of an arrowhead at the end of the 
connecting line furthest from the segment node. 

Using this method, a single line segment is represented as a normal connecting line, 
but with the addition of two black arrowheads at either end and the position of the 

actual segment node becomes a hinge point for the line. 

The line segment nodes are altered further, with modifications to the clustering 

algorithm itself. Any node that is identified as being a line segment (whether it be 

AC or DQ is given a reduced attractiveness rating. This is to stop other nodes from 

clustering around the line segments to the same degree as the other components. 
This modification was implemented so that on the final diagram the clusters of 

components that are joined by lines (i. e. buses and branches) can still maintain a 
degree of separation. 
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Figure 8.21 Modified Welkin model diagram with power system icons to represent 
loads, generators, lines and transformers. 

Figure 8.21 shows the results of these transformations, with the modified version of 
Welkin producing a diagram that instantly provides a recognisable overview of the 

power system network topology. The black squares indicate components for which 

no custom icon has been created, since at this stage, only icons for the primary 

pieces of equipment (loads, generators, lines and transformers) plus connectivity 

nodes (large black circles) have been created. 

8.2.4.3 Elbow Connectors 

Since traditional network diagrams do not use direct, diagonal, point to point 

connections between equipment, the ability to switch between the default straight 

connecting lines and elbow connections would provide the user with a means of 

producing a diagram more familiar to a power engineer. 
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Figure 8.22 Modified Welkin diagram with elbow connectors between components 
This modification requires the graphical engine to draw two lines, a horizontal and 
a vertical, rather than a single diagonal line. The vertical line attaches to the 
component at the top, and the horizontal line joins to the component below (with 

only a single horizontal or vertical line being drawn for those components with 
identical x or y coordinates). The results are shown in Figure 8.22, where all the 
diagonal connectors have been replaced with elbow connectors. 

8.2.4.4 Align to Grid 

The final modification to the Welkin program was the addition of an Aligil to Grid 

option. Since the graphics engine works at the pixel-level, few components lined up 
horizontally or vertically, as would be the case in a traditional diagram. To 

compensate for this, two methods for aligrung to a grid were provided. 

The first allows the clustering engine to run as normal, working out positions to the 

nearest pixel then provides the user with an Aligii button. This aligns all the 

onscreen nodes with the nearest grid point by rounding their x and y coordinates to 

the nearest 10. 

The second option forces the clustering engine to align the nodes during the 

clustering process. This user-selectable option has the benefit of preventing the 

ripplbig effect that can take place even after the nodes have clustered and settled. it 
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can, however, prevent some clustering by preventing the small movements that 

allow nodes to gradually "drift" into place. 

By providing both options, the user can use a combination of the tv, 'o methods to 

create the desired network diagram. 

8.2.5 Summary 

The combination of the component icons, straight connectors and aligned screen 

components, together with the Topological XML data created in the previous 

section has shown how Welkin, an open-source RDF visualisation tool, can be 

enhanced to create power system network diagrams. 

Since CIM in its current form does not embed any sort of diagram or visualisation 

data, this application offers the power system engineer the ability to quickly create 

recognisable diagrams so as to aid their interpretation of the data. The application's 

small code footprint (under 500kbytes with all required libraries) allows it to be 

used as an embedded applet within a web page and integrated with the other 

Mercury applications. 
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8.3 Rich Web Applications 

The concept of using web browsers as the user-interface for computer applications 
has existed since the original NCSA Mosaic and Netscape Navigator browsers made 
their debut in 1993 and 1994 respectfully. It is only in the last few years, however, 
that the use of Asynchronous javascript And XML (known as AJAX) has grown in 
popularity, allowing browser-based applications to take input from the user, 
request data from the server and update the browser window without a full refresh 
of the page. 

Previously, any web-based applications required a full refresh of the page in order 
to send data to the server via the HTTP Post or Get protocols. The browser then 
redrew the entire screen when loading the new data from the server. The 
introduction of the XMLHttpRequest set of APIs as an ActiveX object in Microsoft's 
Internet Explorer 4.0, released in 1997 and subsequently adopted by the Mozilla 
family of browsers, Apple's Safari browser and Opera software's Opera browser, 

provided a means of sending and receiving data without refreshing the page. The 
XMLHttpRequest APIs, combined with the Javascript object-based scripting 
language provides a means of communicating with the server and then updating 
the browser window without requiring the entire page to be reloaded, instead the 

contents will change dynamically, like a normal desktop application. 

The AJAX, Rich Web Application system offers several benefits over a standard, 

locally installed application: 

Cross-platform support. Any operating system with a compatible browser 

can utilise the application. 

Instant updates. Since the client's web browser reloads the Javascript code 

at the beginning of every session, there is no requirement to dispatch patches 

of updates to each user. 

Server-side processing. The processing requirements at the client side are 

minimal, with any complex operations being performed at the server-side. 

This can, however, be detrimental if the number of concurrent users strains 

the server. 

Remote access. If deployed on an internet-connected server, the application 

can be accessed from anywhere on the globe. 
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The system does, however, have a number of negative aspects that must be taken 
into consideration when writing a Rich Web Application: 

Network latency issues. The delays caused by the client-server 
communication can become and issue when the application is accessed over 
the Internet. Minimising the client-server communications and sending 
multiple commands as a single communiqu6 can reduce or eliminate any 
perceived delay. 

Browser interface limitations. The browser itself lacks the powerful graphical 
engine available for a desktop application. This can limit the type of 
applications suitable for deployment as a Rich Web Application. Complex 
CAD packages, photo manipulation software, or any programs requiring 
powerful 3D graphics support are not suited to the browser environment. 

Cross-browser support. While, in theory, any HTML and Javascript that is 

standards compliant should produce identical results across all browsers, 
the reality is that different browser platforms render the same code in 
different ways. This can hamper the development of web applications 
requiring either a limitation in supported browsers or custom, browser- 

specific code. 

For the Mercury software, a Rich Web Application provides a means of directly 

accessing, modifying and creating server-stored CIM Java power system models via 

an interface that operates like a standard desktop application. The issues raised 

above regarding latency and the graphical limitations of the system, however, must 

be taken into consideration when designing any web applications. 

8.3.1 Graphical Network Creation 

The modified Welkin browser described previously allows a user to construct a 

network diagram for an existing CIM network model. It does not, however, 

provide a graphical interface to allow a user to create a new power system model in 

the CIM format. 

Since an increasing number of EMS applications and power system analysis 

packages can import CIM data, usually in CIM XML format, it seems logical to 

create power system models in the CIM format rather than to create them in one 

proprietary format and then convert it to the CIM. A graphical interface, to allow 

CIM power system models to be constructed using a simple point and click interface 
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would provide a fast and efficient system for creating new power system models in 

the CIM format. 

The two options available for this application are: 

1) A standard desktop application to be installed and run on the user's 
computer, storing any created network model locally. 

2) A rich web application, storing the model on the remote server. 

The first option would provide the graphical network builder as a stand-alone 
application, lacking any integration with the existing Mercury software beyond 

exporting the resulting network in a format (CIM XML) that the Mercury software 
can then import. 

The second option would allow the graphical network builder to become part of the 
Mercury toolkit, creating and saving CIM components within the Mercury model 
library as they are created. 

Both options have their benefits. A stand-alone application running on the user's 
desktop has far less graphical limitations than the web application, and does not 

require a network connection to function. Applications to construct power system 

network models are already available from numerous power system software 

vendors, many of which can export CIM compatible models. A stand-alone 

application lacks any integration with the Mercury system beyond its CIM XML 

compatibility. 

As well as allowing the creation of the power system network models from scratch, 

the web application provides another interface for then editing these models within 

the library. With a stand alone application, any editing would require the 

downloading, editing and then replacing of the existing model library entry instead 

of online editing of the library entry itself - 

8.3.2 Interface Overview 

The network creation interfaces uses a grid of individual cells, initially blank to 

form the canvas onto which the network diagram will be drawn. Each cell can 

contain either a Piece of CIM Conducting Equipment or a Connectivity Node 

A cell with a piece of Conducting Equipment in it can be joined to one or more 

neighbouring cells that contain Connectivity Nodes (up to a maximum of three, 

since cells cannot be joined diagonally). The number of adjacent cells a component 
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can connect to is defined by its class: Switches, Fuses and Rectifiers /Inverters for 
example, can be connected to two adjacent cells; Energy Consumers, Synchronous 
Generators and Earth points can be connected to only one adjacent cell; but 
junctions can be connected to up to four adjacent cells. 

Special cases exist for Line Segments and Bus Bar Sections, since they can span 
multiple cells. 
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Figure 8.23 Screenshot of the Graphical Network Creator 

A screenshot from the graphical network creator is shown in Figure 8.23, with a 

small section of the component selection menu and network diagram. 

The process for adding a component to the network and defining its points of 

connection is shown in the flowchart in Figure 8.24. To add a component to a 

network the user chooses the type of component from a list of available Conducting 

Equipment classes. They then add this component to the desired place on the 

canvas either by first clicking on the component's icon or name then clicking on the 

desired cell or by dragging and dropping its icon onto the canvas. The browser 

updates the canvas by adding a small icon to the cell representing the type of 10 

equipment added. 

During this process, the browser sends a command to the server notifying it of the 

creation of a new CIM component. The server returns the unique ID of the new 

component so that canvas cell can be assigned a unique ID attribute, allowing 
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Figure 8.24 Graphical network interface component creation process 

subsequent processes to equate a cell's component with its corresponding entry in 

the server's model library. 

The user then clicks on a neighbouring cell to indicate where the component is to 

connect. if this cell already contains a Connectivity Node the browser acquires its 
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unique ID from the previously stored cell attribute. If, however, the cell is empty, 
the browser sends a command to the server instructing it to create a new 
Connectivity Node for the model. The server returns the unique ID of the new 
Connectivity node and it is stored in this new cell. An icon is then placed in the cell 
indicating that a Connectivity node has been created in that location. 

The browser sends multiple commands to the server to create the Terminal that 
connects the piece Conducting Equipment to the Connectivity Node, and then to 
create the associations that link the Terminal to the piece of Conducting Equipment 
and to the Connectivity Node. Finally, the browser updates the canvas by overlaying 
small graphics to represent line sections at the appropriate locations in the cell to 
show they are joined. If the component has available connection points the user can 
choose additional cells to connect the component to. If the component is connected 
to the maximum number of neighbouring cells allowed for its class type, or the user 
does not wish to connect it to any other cells, then the process is complete. 

8.3.3 Browser-Server Communications 

The Browser-Server communications use the XMLHttpRequest API to send 

commands to the server using the HTTP Post protocol. At the server-side, the 

commands are processed as normal, the parameters checked and the result returned 

either as XML nodes to be interpreted via Javascript or as HTML code for display on 

the page. 

Each command requires the browser to send, wait then receive a response from the 

server. This time is dependent on the network latency and bandwidth, the 

processing capabilities of the remote server and, to a lesser degree, the processing 

capabilities of the user's computer (since it must interpret the returned XML nodes 

in Javascript, an uncompiled, interpreted language). 

In Figure 8.24, Group A highlights a stage of the network creation process that 

requires the browser to send multiple sequential commands to the server and await 

a response on each occasion. Each stage in the diagram indicates multiple server 

commands: 

The creation of the Terminal includes the Terminal creation command and 

an additional command to assign it a valid name based on its canvas 

location. 
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The association command between the Connectivity Node and Terminal 
involves two commands, so as to associate the node with the terminal and 
the corresponding command to associate the terminal with the node. 

Similarly, the command to associate the Component with the Terminal 
includes the corresponding command to associate the Terminal ývith the 
Component. 

Thus, this one group, performed sequentially without any user input, requires six 
commands to be sent to the server. If the previous section of the process requires 
the creation of a Connectivity Node in the connecting cell, this adds a further two 
commands for the creation and naming of the new node. 

A single command can be sent, and a response received and interpreted without a 
noticeable delay on the user's side. When multiple commands are sent 
consecutively, a noticeable delay of close to two seconds can be introduced to the 
process. 

Benchmarking the processing time at the server side indicated that the delay was 
due to the delays in sending and receiving the data. The processing time on the 
server side to create a new object was, on average 10 milliseconds, and between 20 

and 60 milliseconds to add an association or update an attribute. With eight 
sequential commands, the server processing time, assuming the worst case scenario, 

accounts for 480ms. An average case, that of two object creations and an average of 
40 milliseconds for the remaining six commands to update the attributes and 

modify the associations results in a processing time of 260ms. This indicates that 

almost 1.5 seconds is due to the delays in sending and receiving data. 

Benchmarking single server commands found that the average time to send, receive 

and process a server call was 200ms. Since the processing at the server-side 

accounts for, on average, 40ms, this indicates that even on a local area network 

connection, a significant delays is introduced by the HTTP Post protocol. 

For the Group of six commands, in three stages, shown above, the only response 

required by the browser itself is the unique ID of the newly created Terminal. The 

other five commands use either previously stored IlDs, or browser-generated 

attributes for the name. 
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8.3.3.1 Multiple-Command Javascript Function 

A* method of invoking multiple server commands with a single XMLHttpRequest 
command would reduce the delay by requiring only a single HTTP Post. For a 
group of six sequential commands by reducing each transmission overhead of 
160ms (a total of 960ms) to a single 160ms overhead this has the potential to remove 
800ms of delay. The processing time at the server for each command will remain 
unchanged. However, an additional overhead for identifying and separating the 
multiple commands may be introduced. 

An additional complication is introduced since commands may need to refer to the 
result of previous commands in the sequence, which will be known by the server 
when they are processed but, at the point of browser-side invocation, are unknowil. 
A system must therefore be introduced that allows a command to refer to a 
previous command in the sequence. 

The two options available are to modify the server-side code to include additional 
commands that perform more complex modifications to the model, or to modify the 
Javascript to transmit multiple commands in a single server call. 

The addition of extra server-side commands has the benefit of reducing the 

processing burden on the client's computer and reducing the time required to 

perform complex operations on the network. The number of possible permutations 

of commands, however, requires a large and complex API, requiring modifications 

to both the javascript and server-side code each time either the server API or 
javscript code is modified. 

A method of sending multiple server commands as a single XMLHttpRequest call, 

independent of which server commands are being called, would allow complex 

browser-side processes to be undertaken by combining server commands, removing 

the need for complex functions on the server-side. This can be accomplished by 

sending a series of commands using a pre-defined format that the server can then 

interpret and process sequentially, sending a response only after the sequence has 

completed processing. 

A basic XML Schema is defined to contain the commands and their parameters, 

which can then be parsed at the server side and the corresponding server command 

can be found and executed. A single sequence of commands is contained "'ithin a 

commandQueue node of the format: 

<commandQueue> 
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Within this parent node is contained multiple command tags representing each 
command being invoked on the server. 
<command name=" theServerSideCommandNamell> 

The name of the command must match an available, public command on the server. 
To this node are added multiple child nodes to denote the parameters of the 
function, of the form: 
<param id="pO">parameterValue<lparam> 

Each parameter is given a sequential idea of the form pO to pn. The server-side XML 
parser will convert these parameters to the appropriate type, whether they be 
Strings, integers, floating point numbers or Booleans. If the parameter value is 
invalid then the function will fail to execute and the server will return an error. 

The final child-node type within each command is a result identification tag of the 
form: 

<result id="rO"/> 

This provides a means of identifying the results from each command, and the 
resultant ids are numbered sequentially from rO to rn. By using these tags, the 
parameter tags can have an additional attribute added in place of the internal value: 
<param id="pO" ref="rO"/> 

This formatting of the param tag allows a parameter to define its value as being that 

of a previous command's result. The server executes the commands in order, and so 

any command can reference the result of a previous command as a parameter if it 

comes later in the sequence. 

The server ensures that the parameter type and result type are compatible, and if 

not returns an error to the browser. 

The final child node within each commandQueue is the response. This defines which 

results from the previously defined commands should be returned. This is included 

since many results will not be required at the browser side, and would previously 

only have been returned so that they could be used as a parameter in the next 

function call. The user can therefore define which results they wish to receive back 

with a node of the form: 

<response ref=\"rO\"/> 

The ref attribute denotes which result from the previous set of commands' result 

nodes should be returned. 
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The parsing of the XML commands and use of Reflection to compare the textual 
name of a command with the function itself on the server added a minimal 
overhead to the processing, adding less than 10ms to the entire process. 

When used with a sequence of five sequential commands, the time taken to send, 
remotely process, receive and interpret was, on average, 250ms, rising to 280ms for 
six commands and dropping to 225ms for four commands. When used 1vith a 
single command, the time taken was on average 12ms more than when used with 
the standard server call, indicating that as previously mentioned, the XML 
processing overheads and additional javascript functionality themselves add a 
small delay to the procedure, thus making it efficient only for sending multiple 
commands simultaneously. 

This system of transmitting multiple commands as a single server call removes the 
need for an overly complex server-side API by slightly increasing the complexity of 
the client-side Javascript code. This trade-off prevents the server-side API from 
becoming too large and complicated while maintaining the ability to perform more 
complex model operations as a series of events without introducing excessive 
amounts of latency into the system. 

8.3.4 Inclusion of Network Data Overlays 

The graphical Web Application interface offers the ability to include functionality 

from the main Mercury interface within the graphical editing environment. Using 

layers of cells, information about the components can be overlaid on their icons, and 
hidden with the click of a button. This provides a means of instantly identifying 

key attributes of any components 

8.3.5 Integration of Rich Web Application with Graphing Tool 

The models created by the graphical network creation interface have extra data 

saved with them in the library to describe their graphical layout in the creator 

interface. This is because the graphical interface for creating CIM power system 

models also provides a means of editing these models at a later time. This can 

involve either adding additional components to the model or modifying the 

attributes of existing components by selecting them from the diagram. Both of these 

options require the layout of the model to be saved into the library. 
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8.3-5.1 Saving the Network Creator Canvas 

This requires saving the properties of the canvas and the attributes of every cell. By 
creating an XML file containing nodes representing every cell of the canvas all the 
required attributes are stored: 

m The x and y coordinates of the cell 

The unique ID and class of the CIM component in that cell 

The graphic in the cell and its orientation 

The connections to neighbouring cells and any remaining connection points 
From these attributes it is possible to recreate the canvas from the graphical network 
creation interface and continue creating or modifying an existing network. 
Of these attributes, however, the only three that cannot be automatically extracted 
from an existing CIM network model, not created in the graphical creation interface, 
are the x and y coordinates and the orientation of the component's graphic. The 
orientation, however, can be calculated based on the component's x and y 
coordinates and that of its neighbouring cells. 

8.3.5.2 Using the RDF Graphing Application to Generate Cell Positions 

The modified version of Welkin described earlier can be used to create a graphical 
representation of a CIM network, automatically arranging the components 
onscreen. When this process has completed, each piece of conducting equipment 
has an x and y coordinate. 

By transmitting these coordinates back to the server, along with the unique ID of 
each component as an XML stream, the server can parse the data and translate the 
Welkin x and y coordinates into cell positions for a graphical network creator 

canvas. Problems arise, however, for hidden Connectivity Nodes with only one or 
two pieces of Conducting Equipment connected. Since they are not included in the 

Topological XML file, they will have no coordinates associated with them from the 

transmitted Welkin file. This problem can be resolved by analysing the coordinates 

of the pieces of conducting equipment to which they connect and calculating the 

position of the Connectivity Nodes on the canvas. 

By using the position of the surrounding connectivity nodes, a component's 

orientation (and thus graphic) can be calculated along with the position of the wire 
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graphics to show connectivity between cells. This allows a canvas to be created in 
the graphical network creator interface based on the layout produced in the 
modified Welkin application. 

8.3.5.3 Limitations 

The major limitation of this system is that while approximate coordinates can be 
created using Welkin, the rigid layout of the graphical network creation interface 
which allows only lines and bus bars to span more than one cell, can result in the 
canvas produced having small discrepancies compared with that produced in 
Welkin. Similarly, while in the graphical creation interface a bus bar can span 
multiple cells, in Welkin a bus bar is treated like any other component and exists as 
a single nodal point. This requires the conversion system to decide upon the size of 
bus bar to be created based on the number of pieces of equipment that connect to it, 
their disparity and how many cells are available. 

While this system provides the ability to create a graphical network creation canvas 
for existing CIM power system models the discrepancies between the Welkin and 
graphical network creation layouts prevent a simple translation between the two. 

8.4 Chapter Summary 

The visualisation of network data for which no corresponding network diagram 

exists is not a new problem; however, the use of a modified version of an existing 
RDF XML graphing application and a modified, simplified version of a CIM XML 

representation of a power system provide an effective and novel system for 

generating network diagrams. Rather than relying on custom rules for placing the 

components, the software uses automatic clustering process to allow networks to 

organise themselves with only minor user-input. This, combined with the multiple 

levels of detail at which the network can be viewed (Full, Topologically reduced 

and Bus-Branch CIM XML) provides an extensible set of tools for viewing even 

large-scale systems. With the addition of basic icons to represent the type of 

component, and the elbow connectors for the interconnections between 

components, the graphic produced becomes a recognisable power system network 

diagram. The use of an existing graphing tool shows that an open CIM standard 

provides benefits in terms of access to existing data analysis tools, including those 

designed to interpret RDF XML data, which could bring significant benefits for 

power system operators. 
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The ability to create the multiple levels of detail dynamically from a single CIM 
power system network model is due to the use of the CIM Java object storage 
system. This allows the conversion algorithms to scale linearly with the model size, 
creating the required datasets in only a few seconds for even the largest of the test 
models. 

A graphical model creation tool is useful in its own right, providing the user with a 
simple point and click interface on which they can construct power system netNý'ork 
models in a familiar manner. By building this application on a nati\, e CIM 

structure, using the CIM Java object storage system to remotely store the data and a 
CIM-aware AJAX interface, the user is creating a power system network in a CIM 
format while not having to concern themselves with any of the peculiarities of the 
CIM's topological network representation. 

By combining the automatic network diagram generation with the network creation 
interface a diagram in the RDF XML graphing application can be recreated in the 

network creation tool, allowing the graphical editing of pre-existing network 

models. This allows existing CIM models in XML format to be viewed and 

interpreted by engineers that are not familiar with the format. For the standard to 

be widely adopted, tools like these will be of paramount importance in aiding the 

transition process for engineers that wish to create and edit data in a familiar, 

graphical manner. 
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9 Conclusions& Future Work 

9.1 Conclusions 

The work presented in this thesis concerns the applicability of the CIM for use in the 
UK power industry for the exchange of operational and planning data. This has 
involved proposing extensions to the CIM to allow the power system to be 
represented at a sufficiently high level of detail, and the development of a number 
of novel methods for creating, processing, viewing and exporting data in a CIM 
format. 

9.1.1 CIM Extensions 

The extensions proposed for the CIM include a line model based on a previou", 
proposal by Wang[71 but with a number of modifications that Included the 
reintroduction of classes removed by Wang that fundamentally broke the standard 
IEC CIM standard, and the creation of a number of new classes to support the 
requirements of the UK utilities. The proposed line model used a number of 
Wang's proposed extensions while maintaining backwards compatibility with the 

standard CIM line model. The representation of ratings for components used classes 
that built on existing CIM classes, but whose omission from a power system model 

would remove a level of detail but not fundamentally alter the core data. 

The new autotransformer model similarly built on the underlying CIM 

representation, extending it into new classes but providing a means of reverting 

back to an IEC standard representation to maintain compatibility. 

In addition to these extensions to cover the representation of data required by the 

UK utilities, a further extension is proposed to support the exchange of data 

between utilities. This Network Connection Point extension is used to define points 

in the network that can be connected to neighbouring transmission or distribution 

networks, or to proposed power system models that represent planned points of 

generation or consumption. This extension is required by the model integration 

application that uses these points when identifying possible points of connection 

and overlap. 

These extensions build upon existing work in extending the CIM. However, 

modifying the standard CIM classes creates major problems when exchanging data 
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between applications that are unable to interpret the extensions. For this reason it 
was of paramount importance that every extension proposed in this thesis can 
either revert back to an IEC CIM approved representation of the component with 
minimum transformation, or be omitted from the model without breaking the 
underlying power system model. 

9.1.2 CIM Software Framework 

While XML is the most common format for encapsulating CIM data, it must be 

converted to a suitable medium for medium term storage and processing. By using 
the CIM class structure as a software architecture, power system data could be 

stored in a native CIM format as memory resident objects, allowing both instant 

access and a means of medium to long term storage. The development of a generic 
import module has allowed the framework to cope with CIM extensions without 

requiring any rewriting of the underlying importation and management code. 

This architecture has shown itself to be linearly scalable both in terms of memory 

usage and when used for processing network models. The use of memory resident 

objects has allowed functionality to be embedded within classes, including the 

ability for extended classes to export themselves as standard IEC CIM 

representations. 

The object prevalent storage system, when combined with the Mercury model 

library provides a powerful platform for deploying online web applications. This 

provides instant, remote access to both the original models, and applications built 

on the CIM Java object framework. 

This framework allows the rapid traversal of network topologies, providing a 

means of analysing and converting the network structure in seconds, even for large- 

scale models. This is used heavily in the export, integration and visualisation 

applications detailed in this thesis. 

9.1.3 Translation and Conversion 

The PSS/E export functionality, implemented as a module for the Mercurý' 

framework, fulfils a critical requirement of using CIM for planning: the abflitý, to 

export power system models in a CIM format into a format compatible xvith an 

existing analysis package. The algorithms described use the CIM's ovvn topological 

representation to identify the buses and branches then extract the required value,, 

from the native CIM data. 
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This approach relies on the object storage frameWork"s ability to rapidly tra\'erse 
entire network topologies, since the bus and branch data cannot be identified 
simply by mapping a bus or branch to every instance of one or more CIM classes. 
Instead, the algorithms discussed provide a means of dynamically generating this 
data by analysing the CIM's object connectivity to identify the buses and branche" 
in the network. 

9.1.4 Validation 

While the importation system within the object prevalent storage frame%vork 
performs a basic validation of the XML file and the correctness of the CIM 
representation, the development of a validation engine that can define more 
stringent rules on the data itself was required to ensure that the full power system 
models exchanged between companies were compatible. Since these rules were 
expressed as requirements in a standards document, not as a series of cardinality or 
attribute restrictions, it was decided that a method of expressing the rules a, logical 
statements was most appropriate. This decision has since been tested by the 
development of a validation tool by one of the large power system vendors that 

used OWL schema to define the validation criteria. 

The OWL based validation tool was unable to test for the conditional requirements 
expressed in the requirements document due to the limitations of the OWL schema 

and the validation engine used. This highlights the benefits of the approach 
described in this thesis: using logical rules and implementing an engine based on 
the object storage framework. This validation system was able to check a CIM 

power systems model against every requirement expressed in the standard, 

including those that were conditional. 

9.1.5 Integration 

Being able to store, exchange, validate and export networks in a CIM format allows 

operators and planners to share network information, ensure it is valid and use it 

with their existing analysis packages, for both planning and operational purposes. 

They must also integrate multiple models from multiple sources together to form a 

single, interconnected model of the power network. By doing this in a native CIM 

format, there is no loss of data (as can occur when importing and exporting to 

another application) and the CIM's topological representation provides a 

mechanism for identifying and removing overlaps between the netl%, ork model. 

The application described in this thesis, when used with the newly defined Network 
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Connection Point class, has successfully integrated power system models %N, ith 
multiple connection points and overlapping sections. 

9.1.6 Visualisation 

Both planning and operational engineers must be able to visualise network 
topologies to aid their understanding of a network's design and operations. As such 
there was a requirement for the development of an application to dynamicalh- 
create network diagrams from CIM data. By utilising an existing RDF data 
visualisation tool, the software for graphically displaying and organising the 
network could be created with simple extensions to an existing, open source, tool. 
The object storage framework's ability to quickly traverse network topologie", 
allowed the visualisation of networks at different levels of abstraction to be 
accomplished by transforming the data presented to the application instead of 
transforming the data within the application itself - 
The storage of these models in an object storage framework on a remote server 
allows the data for the visualisation application, embedded as an applet x-,, ithin a 
web page, to be dynamically generated on the server and then utilised by the 
applet. The applet then provides the user with an interface to view, and if required 
influence, the generation of the network diagram for the power system model. By 

adding functionality to return the applet's layout to the server as a series of 
coordinates for each component, this data can then be embedded within the CIM 
data stored on the server and used to generate diagrams in a number of formats 

(e. g. SVG, PNG). 

9.1.7 Creation 

The previous applications have provided mechanisms for storing, converting, 

validating, integrating and visualising existing CIM data. Engineers may wish to 

create new power system network models in a CIM format where either no existing 

model exists in any format, or where the existing format cannot be exported to CIM. 

This required the creation of a tool to allow the generation of new power sNýstem 

networks in a native CIM format using a familiar interface. By implementing this 

tool as a web application, the models are stored on the server as CIM objects, and 

the user requires only a standard s-co mpliant web browser to \, isually create a 

power system network model. These models can then be shared, manipulated and 

used with any of the existing applications as normal, Nvhile embedding the 

schematic information within the CIM data on the serN, er. 
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9.1.8 Using CIM Data for Operations and Planning 

These tools together allow both operational and planning engineers to use native 
CIM data for the complete cycle of their work: 

For operational engineers, their EMS system can export their own poNver 
system network model in a CIM format, which can then be uploaded to a 
remote server, instantiated as CIM objects and made available to connection 
partners. The connection partners in turn can access this network, N, alidate it 
against a pre-defined profile, export it to a format used by their analý, sis 
software and generate a schematic diagram to aid their understanding of the 
underlying topology. They can then upload their own network model, 
similarly generated from their own EMS system and automatically integrate 
it with the existing model to create a new, interconnected model to represent 
the entire network spanning their two areas of responsibility. 

Planning engineers can access the full power system network model 
uploaded by the main network operator, then create a proposed, addition to 
the network using the model creation tool. This new network proposal can 
then be validated against a profile supplied by the operator, and, if found to 
be valid, integrated with the main network. By choosing to create a number 

of new, interconnected network models by selecting multiple pos'sible 

connection points on the main network and generating a new network 

model for each potential connection the planning engineer can create 

multiple network models to represent each possible scenario. By then 

exporting each of these model scenarios into the format used by their 

analysis software, they can decide upon the most suitable point for 

connection based on traditional power system analysis. 

9.2 Future Work 

While the applications described in thesis show that it is possible to use the CFNI to 

both exchange data and develop tools for operational and planning purposes, there 

is scope to add a number of enhancements to the existing tools, and develop new 

applications based on the same CIM object framework. 
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9.2.1 Enhanced Validation 

While the existing validation tool is capable of performing a level of validation 
beyond that of other OWL schema based tools, unless explicitly stated as a logical 
rule, it is ignorant of the basic requirements for a valid power system based on 
electrical properties. There is a need to extend this validation so that it checks the 
correctness of an object as well as its validity. For example, should a network 
contain 3 line segments of equal length, two with a resistance of 50 ohms, the other 
with a resistance of 5,000 ohms then unless a range has been specified for this- 
attribute, the current validation engine will not flag this potential error. 

A method of implementing such intelligent rules that would notice this discrepanc 
' and warn the user, or that has knowledge of normal parameters for a component 

based on both its own internal attributes, and any associated components ývould 
allow the validation engine to check that the network model is both valid and 
sensible. This may require the integration of an expert system into the validation 
interface and the inclusion of a load flow application capable of quickly analysing C) 
the power system network model to locate any potential errors in the network 
representation or configuration. 

9.2.2 Advanced Creation and Editing 

The existing model creation interface is similarly ignorant of the structure of a 

power system network beyond the basic electrical connectivity. A means of 

automatically assigning hierarchy components (e. g. voltage level and substation 

containment) would further remove much of the CIM complexity from the user 

while ensuring the resulting file is both valid CIM and compliant with any pre- 

defined profiles. 

9.2.3 Difference Models 

While planning engineers can currently generate multiple scenario models by 

choosing to integrate their proposed network connections at a number of different 

locations, each creating a new power system model, this requires any changes made 

to the main power system model file to be mirrored across each scenario file. 

Instead, it would be beneficial to have the ability to store a single base file, then a 

number of different scenario files that contain instructions on how to modify this 

base file to add the new components and change its own, existing components to 

accommodate these additions. 
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This would allow the user to store multiple scenarios for a single base model 
without requiring either multiple files with duplicate data, or for the model 
integration procedure to be undertaken each time a scenario file is to be generated. 
Similarly, the user can make small modifications to an existing scenario model then 
save these changes as a second scenario that can be applied sequentially to the base 
model. 

Such an approach, known as Difference Models, has been proposed[45] for use with 
the CIM. Using the object storage framework, it would be possible to both generate 
these difference models in the proposed format, and then subsequently apply them 
to a base CIM model. Such an application would be of benefit to planning engineers 
wishing to store a large number of different scenario iterations and a single base 
model file. 

9.2.4 CIM Extensions for Distributed and Renewable 
Generation 

The IEC 61970-301 is primarily concerned with the exchange of data at the 
transmission level, and the IEC 61968 is focussed at the distribution level. Neither 

standard contains classes to allow the detailed modelling of renewable forms of 

generation. Given the increasing amount of renewable generation in the UK, a 

significant portion of research and analysis will be required to add classes that will 

allow the detailed modelling of wind farms (requiring the introduction of a class to 

represent induction machines to complement the existing synchronous machine 

class), tidal and wave generators, micro-generation technologies (e. g. Combined 

Heat and Power Systems in residential locations) and any other forms of renewable 

or distributed generation with characteristics which are unlikely to be successfully 

modelled using the existing classes that are primarily aimed at modelling large scale 

hydro and thermal generating stations. 

9.2.5 A Common Information Model for Energy Systems 

While the CIM is being adopted by the electrical power industry, as yet there are no 

similar, open standards for modelling other systems within the energy domain. 

Since many electrical power companies also have interests in natural gas and oil 

production, extending the CIM to allow pipelines, refineries, storage facilities etc., to 

be modelled in a similar manner would facilitate the integrated modelling of a 

company fs entire energy infrastructure. 

I 



This would allow, for example, the modelling of the gas pipeline infrastructure so 
that the electricity generation process can be modelled from the extraction of the 
natural gas, through a pipeline to a storage facility, then, via another pipeline, to a 
gas-fired power station where the gas is consumed and electricity is produced. By 
basing the pipeline infrastructure modelling on the same basic principles of the 
CIM's electrical network it would simplify the integration of the two models into a 
Common Information Model for Energy Systems. 

This modelling effort would require significant research into how Gas and Oil 
systems are currently modelled and the requirements of the companies that operate 
them. The existing CIM standard has been developed over many years by a number 
of electrical utilities, software vendors and regulators, so it is envisioned that the 

creation of a sister standard for the Gas or Oil industry would require a comparable 
level of input from industrial partners should they be convinced that, in the long 

term, the effort would prove worthwhile. 

9.2.6 Analysing CIM Models Natively 

The network integration application described in Chapter 7 has shown that the 

CIM's class structure can be used to perform analysis of the network model. 

Further research is required to determine whether the CIM, by offering an object- 

based representation of a power system, would allow new, novel algorithms to be 

developed that would allow optimisation or probabilistic analysis of a power 

system network to be undertaken using the native CIM data. This would remove 

the need to convert the data and export it to an existing application for analysis. 

This work would investigate whether the use of object-oriented programming 

techniques in the application of such algorithms would prove faster or more flexible 

than traditional, procedural-based algorithms. 
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