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ABSTRACT

This thesis describes an investigation into the
buckling, post-buckling behaviour and collapse of simply
supported square and rectangular plates with centrally
located circular holes.

The review of the current literature is preceded by
a brief description of the approximate methods of plate
buckling and post-buckling analysis. The basic equations
of compatibility, equilibrium and strain energy are
described. |

Theoretical analyses of the pre-buckling, buckling
and post-buckling behaviour are presented. The pre-buckling
analysis is by the finite element method and the buckling
and post-buckling analyses use the minimisation of total
potential energy. The buckling analysis uses the pre-~
buckling stress distribution with an approximate out-of-
plane deflection funqtion with arbitrary coefficients. The
post-buckling analysis uses finite element and analytical
stress distributions to ensure internal equilibrium and
assumes that the out-of-planc deflected shape is the buckling
mode. A simple collapse analysis was also presented.
An experimental programme is described which was

carried out to determine buckling loads, post-buckling

deflections and collapse loads. The experimental investi- '

gation of the distribution of strains along the plate

centre lines is also desecribed.

Comparison of the theoretical results is made with the
results of the experimental investigation and, in addition,

with the theoretical and experimental results of other



‘investigators. These results are all fully discussed and
the conclusions drawn from the discussion are presented.

The thesls is ended by three appendices, the first

of which describes and discusses the derivation of the
finite element plane stress stiffness matrix, and the
second describes the method of determining the smallest
eigenvalue. The third appendix describes the material

properties of the plate specimens, and their derivation.
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NOTATION

The following list of symbols have been used through-

out the text. Additional symbols are explained where they

first appear.

Ap Arbitrary coefficients of the deflection function.

Deflection function coefficients at buckling
normalised with respect to the largest term.

An Post-buckling deflection coefficient.
{A},{A} Column vectors of the coefficients An and Zn
‘ respectively.

a The length of the plate in the loaded direction.

B,,B, Coefficients of the stress function /;-

b Half width of the plate across the direction of
loading.

bg Effective width of an unperforated plate.

b, Approximate effective width of a plate with a
hole.

G””C@m Coefficients of stress function f{ .

(o4 ‘Radius of the hole

D Plate flexural rigidity E?t3
12(1- v

£ Young's Modulus of Elasticity.

F Airey Stress Function.

h, 3

Post-buckling stress functions arising from the
out-of-plane deflections.



T s I,
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A

Ve

Components of stress function f;

The deflection in the x-direction.

The shear modulus.
The deflection function in the y-direction.

A function representing the function of x and y
in stress function ﬁ; , 1.e.

€= ZZ AnAm hnm(“"j) n=1,3,5 ete.

nzl mrcl

Coefficients of stress function éf-.
Bessel function of x

Components of the strain energy equation
written as terms of An.Am

The coefficients K,,,,,,, Kom and Kizn written in
matrix form.

Components of the total strain eneréy calculated
from the deflection function coefficients )ﬂ

The number of half-wavelengths in the direction
of loading.

Bending moments per unit width of a plate normal
to the x and y directions respectively.

—

Twisting moment per unit width of a plate.

Normal mid-plane forces per unit length
perpendicular to the x and y directions
respectively.

Shearing force in the direction of the y-axis
per unit length along the y-axis.

Number of elements in the finite element analysis.



N Number of terms of the deflection function used
in the solution.

(xp, I?,,-,ﬂ,jr Components of the stress resultants /\4,/\(7 and
Nz due to stress system r.

,,rg,,,,/;],, Components of the stress resultants M, /V] and
Py AG, in element p due to stress system r

iz,r,ﬁ},,ii,r The stress resultants M , 777»-1 n.n,.- referred to

their appropriate characterising load or
deflection parameter, e.g.

fn.xn = ¢ f’ﬁx:

Ne = Ab.Ny,
z m—
play = Ar-pllas

n " Number of half-waves across the direction of
loading.

Ry,

Total applied end load.

/,’,/?,6 Components of the applied end load arising from
the pre=-buckling stress system, and the post-
buckling f’z_ and/:; stress functions respectively.

//D, E, 8 Components of the end load referred to their
appropriate characterising parameter, i.e.

Eﬂ ¢Pl / PZ-Ar'?l 5"‘Ar’3

E’ Critical load of a plate with a hole.

ﬁ; Critical load of an unperforated plate.

/? The load on node { on the hole edge calculated
from stress function / for the calculation of
stresses pl;,, ,,ny, and ,,n,,,.

Eh The ultimate load of a plate.

:;,ry Radii of curvature in x and y directions.
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-

The surface area of finite element p ..

ﬂ,

The plate thickness.

Mid-surface deformation in the x-direction.

<< K

Total Strain Energy..

S

’

<<

Strain energy due to mid-surface deformations
and bending respectively.

v Mid-surface deformation in the y-direction.
w Out-of-plane-deflection in the middle surface.
2;y Rectangular Cartesian co-ordinates.
6Y The yield stress of the material.
G max The maximum stress in the platg parallel to
the x-~-axis.
95 ) The applied edge displacement (or load) parameter.
v Poisson's Ratio.
Ex,fy Direct étrains in the x and y directions.

€xr, €y ~ Direct strains in the x and y directions arising
from stress system I .

PE€xr \pEyr  Components of the direct strains Ex and &y
- arising from stress system I in element p .

/’Exr, /’Ejr The direct strains,,fx,. and,,&,,. related to the
relevant characterising load or deflection
parameter, e.g.
P& = ¢-FEII
Ex; = A;- Ex:.

2 e
pExs = Ar.ff.x,



3

Shear strain in the x-y plane.

Shear strain );7 arising from stress system I°

Shear strain )&, arising from stress system 7
in element p .

Shear strain,);y,,r'el‘ated to the appropriate
characterising load or deflection parameter.
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CHAPTER ONE

Introduction and Review of Literature

1.1 Introduction

Thin plates are among the most commonly used types
of load-bearing members throughout a wide range of
ehgineering structures. The trend in shipbuilding, air-
craft and vehicle body manufacture has been from stressed
skin structures, where the coverings and panelling over
the load-bearing frames were allowed to carry a small
part of that load, to monocoque structures, which are
built fully from thin plating and shells.

' Openings have to be cut in some thin plate
structural members in order to allow access, or to lighten
the structure. For efficient and safe design it is neces-
sary to have some knowledge of the stability and of the
post-buckling and ultimate strengths of plates containing

such perforations.

r The behaviour of thin plates under in-plane leoading
is of particular importance, as it is one of the principal
types of loading encountered. Thin flat plates have three
phases of behaviour under compressive loading. The first

phase occurs while the plate is compressed without any

out-of-plane deformation. At a certain load this flat

shape becomes unstable and beyond this lies the second
phase, during which buckles, or waves, grow elastically.
The second phase ends when the material begins to yield.
The third phase of behaviour starts with the growth of

plasticity and ends when the plate is incapable of

i



supporting further loading and collapses.

The division between the first and second phases of
behaviour of a compréssed flat plate is called initial
instability or buckling. This point occurs when the energy
of the load is more easily absorbed by the plate bulging
or buckling than solely by middle surface deformations in
the plane of the plate. _\

A large amount of work has been done on the subject
for various plate shapes and boundary conditions. This
work has been adequately reviewed by Timoshenko and Gere
(1), Bleich (2) and Bulson (3) and therefore it is only
necessary to give a brief outline of the principal methods
of analysis of this problem as background information to
the literature on the buckling of plates with holes. Most
of the methods of analysis reviewed can also be applied to
the post-buckling behaviour of thin plates.

Bending can be regarded as being initiated at the

point of initial instability of a thin flat plate. At

this point, the out-of-plane displacements are only on the
point of growing. Hence, it may be assumed that stretching
caused by out-of-plane bending has no effect on the level
of direct stresses in the plate. This simplifies the
differential equations which describe the equilibrium and
compatibility of the stresses and deformations in the plate
and also simplifies the equations of strain energy. Even

this simplification of the governing equations only allows

a few cases of rectangular uniform plates with regular

boundary conditions to be solved exactly. Approximate

energy and numerical methods must be used for irregular



or complex shapes cor boundary conditions. The most
successful of these approximate energy methods are the
Rayleigh-Ritz, Galerkin and Lagrangian Multiplier methods.
In the Rayleigh-Ritz method the total potential
energy is written in terms of approximate displacement
functions, containing arbitrary coefficients, and is
minimised with respect to these coefficients. The
method is described at greater length and discussed in
detail by Oden (4) and by Argyris and Kelsey (5). Each
term of the approximate displacement functions must at
least satisfy the kinematic boundary conditions. Overall

static equilibrium is approximately produced by minimising

the total potential energy. In the particular case of

plate buckling, only the out-of-plane deflections need be
represented by an approximate function, if a two-dimensional
plane stress pre-buckling solution for the plate geometry
and boundary conditions is known.

Alfutov and Balabukh (36) rewrote the strain energy
equations of a plate into a form which did not require the
exact prebuckling stress distribution, but required a
stress distribution which could be separated into a
statically determinate stress distribution which satisfied
the stress boundary conditions, and another which satisfied

the compatibility equations for the out-of-plane deflection

function with zero stress on the boundaries. Khan and

Walker (37) used this method of analysis for the buckling
load of plates under localised edge loads, and related the

deflection function to an approximate solution for the

compatibility equation by Galerkin's method.



This method is useful if a reasonably accurate
statically determinate approximation for the pre-buckling
stress distribution is known, and a solution for the
compatibility equation can be found. However, if the
pre-buckling stress distribution is readily available, or
too complex to be represented by a simple statically
determinate stress distribution, then it is obviously more
advantageous to use the actual pre-buckling solution.

If the virtual displacements specified by the
deflection function are considered not to disturb the
deformed boundaries of thé compressed undeflected plate,
then no external work is done during these deflections.

It therefore follows from reference (4) that only the strain
energy requires to be minimised. As an alternative,
Timoshenko (1) approached the problem of stability by
ignoring the stretching of the plate during bending, and
equated the change in bending strain energy caused by a
variation of the deflection function from the undeflected

state, to the external work done by that same variation.

Due to the origin of Timoshenko's equations, both methods

are equivalent.

~

The Lagrangian Multiplier method requires displace-
ments to be represented by approximate series functions,
but does not require these functions to satisfy either the
kinematic or static equilibrium boundary conditions. The
additional constraint equations necessary for the displace-
ment functions to satisfy the boundary conditions are added
to the equation for total potential energy, after being

multiplied by constants known as Lagrangian multipliers.



The modified energy equation is then minimised with respect
to the displacement function coefficients and the further
equations required for a solution come from thecequations

of additional restraint. This method has been used success-
fully by Budiansky and Hu (6) to provide both upper and
lower bounds to various problems of rectangular plates.

It may be possible to apply this method to boundaries
of irregular shape by using Langrangian multipliers to
satisfy boundary conditions at discrete .points on these
boundaries where the displacement functions do not satisfy
the appropriate conditions. The idealisation of continuous
boundaries as discrete points has been successfully carried

out by Conway and Leissa (7) in order to satisfy solutions

for the differential equations of plate equilibrium for

bending and buckling. However, the solution of the equi-

librium equation was mathematically exact and Lagrangian
multipliers were not used.

The Galerkin method requires the deflection functions
chosen to satisfy all the boundary conditions. This method
is fully explained in reference (5), but it is obvious that
the method is extremely difficult.to apply to plates with
highly irregular boundaries or complex loading conditions.

The two most widely employed numerical methods are
the Finite Element and Finite Difference methods. It is
not considered necessary to describe these methods in detail,
as they are fully discussed in references (8) and (26).

Geometrically non-linear finite elements are discussed
by Zienkiewicz (8) and Argyris, Kelsey and Kamel (9). Finite
element subdivisions can reproduce highly i;regular boun-

daries and the buckling of square plates with central



circular holes has been studied for shear loading by
Rockey, Anderson and Cheung (10)in this way. The finite
element displacement method is basically a minimisation
of the total potential energ& of a structure, in which the
structure is idealised by the displacements of a limited

number of points, which are the corners or nodes of 'finite

elements' of the structure. The load-displacement charac-

teristics, or stiffnesses of each of these elements can

be determined, thus allowing the strain energy of the
structure to be written in terms of the nodal displacements
as the sum of the strain energy of the individual elements.
Hence the method depends on how accurately the elements
themselves can reproduce the behaviour of the plate. Many
elements have been proposed or developed, and references

(11), (12) and (13) are included in the bibliography as

being typical of the range of these elements. However,

the type of problem studied by the use of these elements

for large deflection behaviour has been limited to simple

regular structures.

Finite differences have a limited application if
highly irregular boundary conditions are to be applied.
The conventional triangular or rectangular grid is very

difficult to apply to irregular boundaries and high orders

of derivatives. Series Functions with arbitrary coefficients

could be used to approximate local deformation surfaces,
but this added complexity begins to erode the advantage of
relative simplicity which the finite difference method has

over finite elements.

There are other methods which idealise plates into



discrete points or regions. Yettram and Awadalla (14)
wrote the energy equaticns in terms of displacements at
the corners of regions of a plate, and used Castigliano's
first theorem to produce a relationship between the
corresponding loads and displacements. Walker (15)

considered the overall behaviour of a plate as being the

sum of localised displacements. The strain energy was

written in tefms of the governing parameter or coefficient
~of each local perturbation and the equilibrium conditions
were determined by minimising the total potential energy.
The main disadvantage of the numerical methods is
that they produce very large eigenvalue problems for
initial instability, which have to be examined for the
lowest eigenvalue and its corresponding eigenvector, and

non-linear analysis produces large systems of simultaneous

non-linear equations.

1.2 Plates with Holes

The buckling of plates with circular holes has been
studied under various conditions of edge loading and

restraint, and much of this work has been summarised by

Bulson (3). However, little work has been done on post-

buckling behaviour and collapse.
The earliest work on the stability of rectangular

plates with holes was carried out by Levy, Woolley and

Kroll (16). This was applied to square plates with a

ring stiffener around the edge of the hole, but the plate
without any stiffening was considered as a special case.

Initial instability was calculated by the Rayleigh=-Ritz



method. [?he pre-buckling stress distribution came from
work by Gurney (17) on an infinite sheet with a constant
uniaxial stress applied at infinity and containing a

stiffened circular hole. An approximate deflection

function of the form

§ oM
w= 22 a

cosnllac . cosm
7y Com O35 - o3y

~

was used, selecting only the terms which gave the most
rapid convergence. Instability was related to a parameter
S in the stress distribution, which corresponded to the
uniform applied stress at infinity. The critical applied
stress was calculated from the average of the mean stress
on the loaded edge and the mean stress across the minimum
section for the critical value of §] The critical stress
thus calculated decreased with increasing hole size. The
investigation was carried out for plates with hole sizes
ranging from 0.125 to 0.5 times the plate width. The
.results of Levy et al. are illustrated in Figure 1l.1.

[@he stress distribution was only an approximation to the
stresses in a finite plate, hence-these results corresponded

to plates with some additional restraint or loading applied

at the nominally unloaded édges. This approximation

excluded these results from any discussion on the‘effects

of in-plane restraint on critical loads. |

LKumai (18) used the Rayleigh-Ritz method to study
simply supported and clamped square plates. An infinite
plate stress distribution 'in curvilinear co-ordinates was
used to represent the pre-buckling stress distribution.

The deflected shapes were of simple sine/cosine relationships



with an exponential function, and were of the form

—c( 8+ 2
a/=&)o[cos/fx.casﬂ}+ be 7]

for a simply supported square plate of sides having unit
length and the origin of the co-ordinates in the centre

of the plate. In radial co-ordinates this was approxi-

mated by
2

~-cr
w = ¢u,[.4:(2ﬂ79 + be J/

By substituting the equation for & in radial co-
ordinates into the expression for zero radial moment and

Kirchoff's free edge boundary conditions at the edge of

the hole, values of b and € were obtained.

The theoretical analysis showed the critical stress
to decrease with increasing hole size for simply supported
plates, and also showed a change to occur in the buckling

mode of clamped plates beyond a certain hole size. Kumai

carried out an experimental investigation which confirmed
the theoretical predictions. These tests were conducted
on perspex plates, whose holes were progressively enlarged.

The loads were applied through a system of levers in order

to approximate a uniform stress loading. The slope of the

plate at a point was measured from the reflections of a

light source from a mirror attached to the plate at that

point. The slopes were used in the Southwell-Donnel method

\
to estimate the buckling load. The results are summarised

in Figure 1.2.

Kumai's theoretical results show better agreement
with his experimental results than do those of Levy. This
is attributed to his use of the exponential function in

attempting to approximately .satisfy the hole free edge



boundary conditions. However, for large hole sizes; the
addition of this term means that none of the boundary con-
ditions are satisfied. The plane stress distribution is
for an infinite plate, and therefore also limited in
accuracy to small hole sizes. No information was given on

how the buckling loads were estimated from the critical

infinite applied stress.
The stability of square plates with uniform edge

displacements and straight unloaded edges was studied by

Schlack (19). The Rayleigh-Ritz energy method was used,

with all the displacements represented by functions con-

taining arbitrary coefficients, i.e.

Uu = Bax +t(/" az) ZZ M/f//;;/

n=1 msi

ooy + t0-2 122 o O

w = t(/ a‘)(/—bz)nzivné‘- nm(g)/g)n

The effect of adding a term, which was singular at

the centre of the hole, was assessed, but was not used in

later work (20). The critical load was calculated from

the critical displacement, as being the average load in
the compressed difection along the length of the plate.
The theoretical analysis showed that the critical stress
decreased with increase in hole size, and this was veri-
fied by experimental work carried out by Schlack. The
experimental work was performed on aluminium square plates
whose holes were widened progressively from a diameter of

0.1 to 0.3 times the plate width (19) and to 0.7 times the

plate width (20). The critical load was estimated as

10



being the point of inflection of the load deflection curve,
and was determined by numerically analysing the load-
deflection data. The point of inflection of the load-
deflection curve was recommended by Coan (21) and Yamaki
(22) as corresponding closely to the buckling load of a

flat plate. Schlack's results are summarised in Figure

1. 3.

Q:The effect of the position of a circular hole on ‘the
critical load of a square plate was exariined theoretically
and experimentally by Yoshiki et al. (23). The same method
of theoretical analysis was used as in reference.(18), with
modification to the exponential term in order that the
singular point occurred at the centre of the hole. The
applied critical load was calculated from the average stress
in the direction of loading across the minimum section and
at the loaded edge for the critical value of the stress at
infinity. There is a discrepancy between Yoshiki's and
Kumai's theoretical results, which suggests that Kumai used
another method of evaluating a critical load from the

critical stress at infinity.

Tests were carried out on 600 mm x 600 mm x 6.6 mm

steel plates., No details were given of the test rig, except

that it had a rigid loading head. The loading was therefore

expected to be of the constant displacement type. The nature

of the in-plane restraint on the uncompressed edges was not

mentioned. Critical loads were estimated from the plot of

load against the square of the out-of-plane deflection.,
The experimental critical loads showed good, agreement with

theory and with the experimental and theoretical results of

11



Kumai. The experimental results of Yoshiki and Kumé& for
plates without a hole indicate that the uncompressed edges
were probably free to move in their own plane. The theo-
retical and experimental results of Yoshiki are summarised
in Figure 1.U4.

Some discussion was made by Yoshiki et al. on the
difference between constant stress and constant displacement
loaded edges, and their representation by infinite plate and
strip stress distributions. The conclusion was that in-
finite plate or strip stress distributions could be used
for plates compressed by a uniform edge displacement, but
that exact or finite element stress distributions should be
used for constant applied stress loading of plateé with

large holes. A finite plate stress distribution from an

unspecified source was applied to a particular case. How-
ever, this theoretical result did not show any better
agreement with the experimental results than the other
theoretical results based on infinite plate stress
distributions.

The use of finite element stress distributions in
the Rayleigh-Ritz method was prbposed by Kawai and Ohtsubo
(24) for the soluﬁion of plate stability problems. In
order to demonstrate this method, the problem of the simply
supported square plate with a central circular hole was
studied.

The out-of-plane deflection was represented by a

polynomial series, and Green's theorem was used to simplify

integration of the energy equations over the finite element

areas.

Kawal and Ohtsubo studied plates with the same boun-

dary conditions as Schlack (19), Kumai (18) and Fujita (23)

12



and their theoretical results showed good agreement with
the experimental work of these previous authors. Compari-

son is made between Kawai and Ohtsubo's results and those

of Kumai in Figure 1.5.

Kawai and OChtsubo were firsf to compare the effects
of restraint in the plane of the plate at the unloaded
edges. They were also able to show theoretically the
_distinet differences in buckling strengths of plates

loaded by constant stress, and those loaded by uniform

displacements.

The buckling and ultimate strengths of perforated
compression flanges of thin walled members were studied

by Yu and Davis (31) for various boundary and loading

conditions. Flanges, fully supported or with one edge

free, with single centrally located holes were investi-
gated experimentally for initial instability and, in
addition, fully supported shear webs were also investigated
experimentally for buckling. The experimental results

were compared with the theoretical results of other

investigators (16), (18), (19), (23), (24) in order to

find those which most closely predicted the experimental

results. The ultimate strengths of fully supported flanges

under direct compression were also measured.

The tests on the fully supported flanges were carried

out on beam and column specimens. The ratio of hole sizes

investigated was for diameter/width ratios O - 0.722 and

width to thickness ratio 36.6 - 78.2. The aspect ratio of

the perforated compression flanges was 2.6. The experimen-

tal variation of the buckling loads against hole size is

13



shown in comparison with the theoretical results of Kawai
and Ohtsubo (24) for simply supported square plates in
Figure 1.6. Yu and Davis recommended that the theoretical
curve for the buckling loads of constant streés loaded
plates in Figure 1.6 be used for the prediction of local
buckling of fully supported compression flanges. The
ultimate strengths of these flanges were comparable to

the ultimate Strength of solid flanges.

The post buckling strength was defined in terms of
modifications to Winter's 'effective width' formulae (33).
The results of the local buckling investigation indicated
to Yu and Davis that the fully supported perforated flange
with a hole of diameter/width ratio greater than 0.7 could

be replaced by two strips, each with one edge free and

~width }(total width-diameter). Two coefficients dependent

on the hole diameter/plate width ratio were introduced
into Winter's design formula,'and the resulting expression
was equated to the expression for the effective width of

a flange with one edge free at the transitional value of
hole diameter/plate width ratio of 0.7. This enabled the
values of these cpefficients to be found, which gave a

continuous relationship for the effective width relative

to the hole diameter.

For fully supported flanges, this was:-

- /9t g,‘f; (/- gé)// - 0-4/5/;;’5';)}5;//"35)

o~
!

d = nole diameter
be = effective breadth w = plate-width
A = 0.226 5 = 0.0379

14



Comparison was made between the design formula and
experimental results derived from the ultimate loads of
the columns. These are reproduced in Figure 1.7.

No comments were made on the mode of buckling or on

the modes of failure.

1.3 Summary

The discussion of the methods of analysis of stability
and post-buckling behaviour of plates, subjected to com-
pressive edge loads, has indicated that the most suitable
line of approach to the analysis of the buckling and post-
buckling behaviour of plates with holes lies with approxi-
mate energy methods.

Despite the large body of work on the buckling
strength of perforated plates under direct compression,
there is relatively little knowledge of the behaviour of
rectangular plates, and no attempt has previously been made
to analytically describe the post-buckling behaviour of
perforated plates under edge compression. The modes of
failure of square and réctangular plates have not been
investigated, and apart from the empirical equations drawn
up by Yu and Davis for the compre;sion flanges of cold
rolled thin compression members, no method of predicting
the ultimate strength has been devised.

The work described in this thesis was an investiga-
tion into the initial buckling, post-buckling load
deflection behaviour, internal stresses and collapse of

simply supported square and rectangular plates with single

centrally located holes. The boundary conditions chosen

15



to be applied were:-
(i) All edges simply supported.
(ii) Constant displacement along the loaded edge.
(iii) The unloaded edges are allowed to move freely

in the plane of the plate, i.e. no'direct

stress normal to the edges.
(iv) All edges free of shear stress.

These boundary conditions were selected as being
those which could be produced experimentally with the
greatest degree of accuracy and reliability, so that valid
comparisons can be made between experimental and theoreti-
cal results.

The investigation took the form of experimental
tests on square and rectangular plates of aspect ratio
2:1 in order to determine buckling loads, post-~buckling
load deflection behaviour, collapse loads and the stress

distribution in certain areas of the plates. 8Square and

rectangular plates of aspect ratio 2:1 buckle into sguare
waves, i.e. where the half wavelength equals the plate

width. Thus the square plates enabled the effect of a
hole .at the centre of a square wave to be studied and

rectangular plates enabled the effect of a hole between

two square waves to be assessed. The investigation also

included the development of an analytical method of pre-
dicting the elastic buckling and subsequent non-linear
behaviour of perforated square and rectangular plates.

The method of analysis was applied to plates with the
previously described boundary conditions, but its applica-

tion to other boundary conditions including rotational and

16



in-plane restraint and constant stress applied loading is
indicated. A simple analysis for the determination of

collapse loads is proposed.
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CHAPTER TWO

Basic Equations

2.1 Basic Equations of Equilibrium and Compatability

The deformation of a thin plate under compressive
loading, in which the out-of-plane deflections are of the
order of two to three times the plate thickness, can be
treated as being produced by interdependent stress systems
whose individual actions can be analysed separately. The
distribution of stress in a plate is due to the bending of
the plate itself, stretching of the plate during bending,
and to the in-plane applied loads. By making the foilowing
assumptions, the actions of the stresses in the plate may
be regarded as being due to 'small deflection' bending,
and to the superposition of the stretching of a constant
thickness membrane on the stresses in a loaded plate with
no out-of-plane deformation.

(1) Plane sections remain .plane during bending.

(ii) Deformations in the plane of the plate are small
in relation to the overall plate dimensions,
therefore the products_of the derivatives of the
in-plane displacements may be neglected.

(1ii) Deformations in the plane of the plate may be

represented by d and ¥V , the middle surface
movements.

(iv) The out-of-plane deflection of the plate can

be represented by the deflection @w of the

middle surface of the plate.

25



Assumption (i) allows bending moments to be related

' to out-of-plane deflections by 'small deflection' theory

(reference 25). For an element of a plate loaded as in

Figure 2.1, the expressions for the bending moments are

as follows:-

My = ~D Jtu _V)w/
)y

My < =D )_’_a./-wé_‘éf)

87‘ dx?
= -v) Yw
Mey = D(1-v) i,

2.1la,b,c

The stress resultants in the plane of the plate are

related to the strains by the conditions of plane stress,
i.e.

R
E. = — (M — v/,
* T (E -

| -
617 = Ezf (A@ L)Aér)
= )
b;, G Nxf

2.2 a,b, c
The actions of N ,7 and ij on a plate element are

" shown in Figure 2.2. Manipulation of the stress resultants
can be simplified by introducing an Airey stress function

which inter-relates the stress resultants thus:-
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N, = tdF
2y’
Ny - t. o
dx?
sz = =T .)_z.F
dxdy 2.3a,b,c

By substituting equations 2.3 a, b and ¢ into

equations 2.2 a,b,c, €, , 5-1 and X,y become

'"/a ax)

F_ )F
E' ‘{ 5}&

Y - -20+v) ¥F
xy E ,}x)y
2.4 a,bc

The strain components 2; ’Ej and Kv were derived

in reference (4) from variational calculus, as being:-

o Al ) - )]
o g4l o)+ ()]
A R S R AR
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The application of assumption (ii) to equations 2.5a,

b and ¢ reduces them to

£, = 1w )
* Jx+2(x)

z
g, = v 4 L[
Y = v du Jw . w
Y ox * )y * o ()J
. ’ 2.6 a,b,c

In order to express the strain components in terms
of W , as a step to relating F and W , the second deriva-

tives of equations 2.6 a, b and ¢ can be collected together

to give

azx,Lag__ [ 2_&,,,_)_@]
oo ot )x)y 39“’_1 Jx* Iy’

2.7
Substituting equations 2.l4a, 2.4b and 2.4¢ into the

left hand side of equation 2.7 gives

YF 4 2. ) ._'F-.-E[ _uy]
Ja* Jx’)y )] /ar)] dx* My’

A second equation, relating F and & can be found by

considering the equilibrium of forces in a direction normal

to the plane of the plate. For a plate with no transverse

loading, this equation is

S . 2.)% )__@,_I_Zf.y OF dw _ 2. dF. %
Izt t Sy’ * 4 Dl Iy ;f‘i +J;z 33 Jxdy ).x)]] 29

This equation is not used in the analysis, as equili-

brium is approximately satisfied by minimising the potential

28



energy of the plate, and for this reason its derivation

has not been more fully explained.

2.2 Strain Energy Equations

The strain energy of a plate due to the stretching
of its middle surface may be calculated from the in-plane

stress resultants and the corresponding strains. For a

linear elastic plate, the equation of this membrane

strain energy is:-

/
Z[/(A/x Ex */1{7. Ej +/Vx] t):zj ) dXJ‘(j )./0

This equation can be rewritten by substituting

equations 2.2a, 2.2b and 2.2c¢ into equation 2.10.

z,stﬂ(/‘/ N = 2o Helly #2014 V) Ny ) ey

2.1]
Equation 2.11 may be further rewritten in terms of

a stress function F s by substitution of equations 2.3a,

2.3b and 2.3c.

v = £ || )’F - [’F VE _(VF ) ] dx d
V= 55 /j + 20+v) & i /)_;)—j)] dx dy

2.12

Because plane sections are assumed to remain plane,
the strain energy of bending is simply the work done by

the rotation of internal moments in the plate during

bending. The rotation of a plane normal to the mid surface

of the plate is simply the change in radius of curvature,

the curvature being directly related to the deflection

function W , by

LR / X .
e

1
zt 5oy Gy dxdy

W



The strain energy of bending is thus:-

//[M iy +M7(1) +M,,(54;_’§;)]dxd]

This can.be written in terms of W by substituting

equations 2.1a - 2.lc for My, ﬁ4] and ﬂ@w.

c ZD//[( * ) ‘2(’"'))[);; a)f' prat ]j ke

2.14
The total strain energy b/ of the plate is the sum

2.13

of the bending strain energy L{ and the membrane strain

energy V{ , l.e.

V*= A 2.15

The equilibrium equation‘2.9 can be derived, as
previously outlined, froﬁ the equilibrium of a small element
as shown in Figure 2.2, but it can also be derived from
the strain energy equation 2.15. <CLox, in reference 27,

showed that by equating the variation of b/ caused by a

small variation in W , to zero, the equilibrium equation

2.9 could be derived. This is equivalent to the minimisation

of the strain energy with respect to the out-of-plane

deflection W, which is a statement of the equilibrium in

the direction of & , i.e. perpendicular to the plane of

the plate.
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1 PNy
-“5 Afg_"’ )15—’\;1 dx
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Wux .
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~ X
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CHAPTER THREE

Theoretical Analysis

The theoretical analysis of the behaviour of a flat

plate with a centrally located circular hole under edge

compression is described in this chapter under the

headings: !
3.1 Pre-Buckling Analysis.
3.2 Initial Instability.
3.3 Post-Buckling Analysis.

3.4 A Simplified Failure Analysis.

following

The co-ordinate system chosen to represent the plate

is shown in Figure 3.1.

The boundary conditions described

in Chapter One can be stated, using these co-ordinates,

as follows:-

(1) The plate is loaded in the direction of the

x-axis in a manner such that the sides x=a and

x=0 are uniformly displaced and have zero

shearing stress resultants i.e.

u = a constant “l = a constant
x= D rQ
(2) The unloaded edges g=ik> are free from restraint
in the plane of the plate. This means that the
normal direct stress and shearing stress resul-
tants are zero, i.e. M, / "'A// +,. = O
s Jy j:ib ] y:—b
(3)

The edges of the plate are simply supported, i.e.

no out-of-plane deflections and no rotational

restraint at the edges of the plate.
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w/.x=0 = w/:utt - wj=tl> = ©

Mx/xza b Mx/-"tsa. = Mjlsib = 0

The analysis 1s described specifically for these

boundary conditions in each section. However, the analysis

can be applied to plates with different boundary conditions
and geometries, and this has been indicated, where appro-

priate, in each section with any necessary differences in

the method of analysis.

3.1 Pre-Buckling Analysis

The pre-buckling analysis was accomplished using

constant strain plane stress finite element analysis, as

in reference (8). The use of finite element analysis is

well established and its derivation is fully described in

reference (8).

The development of the finite element meshes illus-
trated in Figures 3.2 and 3.3 was based on the comparison
of results from various finite element meshes for rectangu-
lar plates, with the theoretical sEress distributions

around a circular hole in a strip under tension derived by

Howland (28). Various subdivisions for a rectangular plate

with a hole of diameter 0.3 times the plate width were
devised, and the solutions for these with a uniform edge

displacement were compared with the stresses in the loaded

direction across the minimum section. The mesh shown in

Figure 3.2 was the optimum solution for mesh size and

element arrangement. Comparison between finite element

and theoretical results is shown in Figure 3.4 for a hole
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diameter of 0.3 times plate width, and agreement is within
ten per cent. The average element stress around each node
was plotted with the centroidal value of the stress in
Figure 3.4. The presentation.of finite element results is
subsequently made as a line passing through the average
nodal values, which is also a line of best fit to the
centroidal values.

The mesh subdivision of the rectangular plate with a
hole of diameter 0.3 times the plate width was used as a
basis for the subdivisions of plates with other hole sizes.
The co-ordinates of the nodal points were scaled radially

between the hole centre and the plate edges to produée

holes of differing sizes. The effect of this distortion

of the mesh on the accuracy of the results was slight, and
the Finite Element distribution of stresses in the loaded
direction across the minimum section, for plates with hole
diameters.of 0.1 and 0.5 times the plate width, is shown in
Figure 3.4 in comparison to the theoretical solutions.

The mesh for square plates was based on the rectangu-
lar mesh, by using a similar number of elements and a'
similar geometrical arrangement. The square plate meshes
were distorted in the same manner as the rectangular meshes
in order to obtain different hole sizes.

The derivation of the stiffness matrix of a constant
strain triangular finite element is fully described in
Appendix One.

The analyses were carried out for square plates and
for rectangular plates with an aspect ratio of 2:1 for
the range'of hole diameters of 0.0 té 0.7 times the plate

width. The results are described and compared with the
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experimental results in Chapter Five. However, the stress
distributions of a square and a rectangular plate with
uniformly displaced loaded edges and holes of diameters
0.2 and 0.4 times the plate width are illustrated in
Figures 3.5 and 3.6 as examples. In Figure 3.6 the rela-
tive magnitudes of the stresses. in each direction along
the axis can be seen. The stresses in the direction of
loading across the minimum section are the largest.

The variation of axial stiffness of the square and
rectangular plates with hole size is illustrated in

Figures 3.7 and 3.8 respectively.

3.2 Initial Instability

3.2.1 Description of the Stability Analysis

The Rayleigh-Ritz energy method and its applica-
tion to stability problems was discussed in Chapter One.
In order to determine the initial buckling load, an

approximate deflection function W , containing arbitrary

coefficients was chosen. The approximation was made that
the buckled shape in the loaded direction was fixed and

the deflection took the form

= fex) Z Ay ],,(])
3.
The strain energy V is composed of two parts, the
bending energy\é and the energy due to membrane stresses
b{ . L{ and bg are given by equations 2.11 and 2.14.

Substitution of equation 3.1 for &, into equation 2.14

gave an expression for \/ of the form

V, = ZZAA K,

n=imsz| S. 2
where
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Km = 5 {[('&n.g,(j) +f(a>j,:q)J[F”u)3m(5_) +£0x).9709)

~2(1-v) [f"(x) {(x).jn(y)gglj) ~ f?x)zj,}(y ).]n’(j )]} dloxdy
A
The integral/ dxd] is the integral of the function over

the surface area of the plate, excluding the area of the

hole, i.e.

a
A 7=c b
]r d&%’ = ‘fj[ /[.__ %9&& + 4 ‘ ayctx
o O q

¢ et ag)
The strain energy due to in-plane stresses was
calculated using the results of the finite element analysis
with the strains caused by stretching during bending.

Equation 2.10 was re-written in a more convenient form as °

Ne Sp Sp 5p
V, = 'z!é,[fﬂx‘//fxdxdj + fﬂjjjfjdxd] +/oﬂ,]jjd;j dxdj }

3.3
where f”x = the stress resultant in the x-direction in
element no. p -
,nj = the stress resultant in the y-direction in
element no. p
pﬂx] = the shear stress resultant in element p 3.4

The finite element stress distribution was calculated for

some unit loading parameter and was related to the actual

loading by the multiplier, ¢ . The stress resultants can

be re-written in terms of the loading parameter ¢ and the

stress resultants calculated from the unit value of this
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parameter i.e.

Pl = Ppll
Py = 2oy
Py = P ol " 3.5a,b,c

The strain components &y ’Ej and X,, came from equations 2.6a,
2.6b and 2.6c respectively. These were again rewritten to

accommodate that component of each, which came from the

finite element analysis.

A

) dx ;3
_ Jd.ba,b, c
Where Fe-" = strain component in x-direction in element p
rEj = strain component in y-direction in element p
Y = shear strain component in element P
P

These strain components can be written in terms of the

applied loading parameter ¢>in a similar manner to the

stress resultants, i.e.

Substituting equations 3.6a, 3.6b and 3.6c into equation

3.3 gave the following equation for the strain energy\{:
Ne

Ny '
\/’ - 2 PZ-_:l[F”X./JEx.SP ' Pnj'fEJ'SP + P”:J.PIXJ : SF +
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+ ol /j ) ol +f£7[/(l,j)dxdj + p a]j/ i dsz}

SP = area of element
5
The integral represents the integral of the function

over the area Sf of element P -

Equation 3.7 became, when it was re-written using the

loading parameter ¢>, and equation 3.1 is substituted for w:-

2 Ny
Vi = K+ ZZ, A Fom
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where

Ne |
! - - — -
, .9
and 5 5p
Ne n ), 2 ﬁ 2?2 , ’
K '-‘-2!-2 [P'E”ﬂf(x).j,,(y).jm(j)dxd” + "'2‘7”'?“)‘. jn(J)‘]n(J) dxdj
5

P
+ fﬁ,j//f'[x).f(x)]h(j).Ji;[j) d“dj} s.lo

The total strain energy \V4 is

V= \ +V
L 22 AmK, K+ c}SZ,Z,A A b,
el mey nsi ns 3.11

The expression for \/ can be re-written in matrix form as

V= ¢k +¢arlK,, I} + (A]LK,, ]{A] 3.12

At the point of buckling, the out-of-plane deflections
are infinitesimally small. The effect of a virtual deflec-
tion or infinitesimally small variation in the out-of-plane

deflections in a plate with its loaded edges assumed to be
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fixed at some unspecified displacement will therefore not
produce a change in the external potential. This means
that only the strain energy requires to be minimised.
Minimising the strain energy with respect to the deflec-

tion coefficients produces the following set of simultaneous

% = 2[] « #lna] )

Equation 3.13 is an eigenvalue problem. The solution
is that either the vector{/v is zero, and hencetﬁ can take
any value, or the eigenvector{A] has an indeterminate value
at certain values of 4>, the eigenvalue, such that the

determinant of the expression in the square brackets in

3.13

equation 3.13 is zero, i.e.

[[Kua]* ?[Fom] |

The second variation of strain energy is

W o K]+ $lE]
oA} o) 3.14

"A condition of neutral equilibrium exists when the

determinant of the second variation is zero (reference 1)
i.e.

= 0O

5. + B[]
3.15

This has already been satisfied by the non-trivial
solution of equation 3.13 and hence the eigenvalues and
eigenvectors are points of neutral equilibrium. The points
of neutral equilibrium are the transition or bifurcation
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points between different deformation modes, and therefore

the smallest eigenvalue 95 corresponds to the point of

initial instability.

3.,2.2 Application of the Stability Analysis

The function chosen to represent the deflected

shape of the simply supported plate shown in Figure 3.1 was

n=i

) N
w = sin Kllx Z. A, cospﬂg n=1[,3,5....
a 2b
3.16
The analysis was carried out for square and rectangular

plates of aspect ratio 2:1, with a range of hole sizes from

0.0 to 0.7 times the plate width. It was necessary to

examine the buckling loads for various buckle wavelengths
in the loaded direction in order to determine the minimum

buckling load and its associated buckling mode. It was found

that three terms of equation 3.16 were enodgh to reduce the

variation in buckling load to less than 1% in all cases.

The integration of the energy expressions was performed

by .the numerical integration of the functions over each

element area. The solution for the eigenvalue equation 3.13

was performed using the simple iterative method described

in Appendix Two, which allowed the minimum eigenvalue to

be calculated. The iteration was stopped when subsequent

values of the eigenvalue had converged to less than 0.1%.
The convergence of the normalised eigenvector was slower,
but when the iterations were stopped, the smallest element

of the eigenvector had generally converged to three

significant figures.
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The theoretical variation of buckling load with hole
size is presented in Figure 3.9 for simply supported
rectangular plates with uniformly displaced loaded edges ,
and in Figure 3.10 for simply supported square plates for

both constant displacement and constant stress loading

conditions.

3.3 Post-Buckling Analysis

3.3.1 General Description of the Post-Buckling Analysis

In a plate loaded through uniformly displaced edges,
the middle surface stress distribution was regarded as the

sum of two stress distributions. The first, represented

by the Airey stress function.ff, was the stress distribution

in a plate with no out-of-plane deflections produced by the

applied displacements. The second, represented by the Airey

stress function /Z , was the stress distribution produced by
the stretching of the middle surface of the plate into the
out-of-plane deflections, with no displacement of the loaded
edges. The first stress distribution was dependent only on
the magnitude of the applied displacements and the second,
/f{ » depended on out-of-plane deflection. Because Edoes

not affect the loaded edge displacements, any variation in

deflection, while it does affect the external load, does

not produce external work. This means that a variation in

the total potential energy is a variation in the total
strain energy, and that therefore only the strain energy
requires to be minimised as a condition for equilibrium.

Marguerre (29), Yamaki (22) and Rhodes and Harvey (30)

amongst others, derived stress functions for the post-buckling
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behaviour of unperforated rectangular plates, all of which
could be separated into an /‘;’-and I;-for uniformly displaced
loaded edges. In each of these investigations, the deflec-
tion function was represented by selected terms of a Fourier
series, which were inserfed into the compatibility equation
2.8, The resulting equation was then solved for the stress
function fr. Marguerre (29) only used the particular integral
for the solution of stress function frand employed one and
three term analyses. Yamakil (22) used both the particular
integral and the complementary function, and employed four
terms of the deflection function. Rhodes and Harvey (30)
aséumed the shape fixed in the loaded direction but used
several terms to represent the deflections across the plate.
The solution for the stress function f:, used a particular
integral and one term of the complementary function.

In order to relate the out-of-plane deflection co-
efficients to the applied displacements, Marguerre and
Rhodes and Harvey satisfied the condition of external
equilibrium by minimising the total potential energy, whereas
Yamaki used the Galerkin method. Levy (32) in his post-
buckling analysis of square plates with unloaded edges held
straight, substituted the equations for F and W back into

the §Quilibrium equation 2.9 in order to relate out-of-plane

deflections to applied load.

In a plate containing a hole, the stress distribution

representing f? can be obtained from plane stress finite

element analysis as the stress resultants. The applied dis-

pPlacement can be related to ‘parameter gﬁ » as in equations

3.5a to 3.5c used in the stability analysis. The problem of
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finding a stress function fi, which satisfied the boundary
conditions along the straight edge of the plate and at the
edge of the hole, is very difficult, and to overcome this
problem a third stress system, fi, was used with the stress
function f§, of a plate with no hole. The stress function
f;‘was a plane stress function, which when superimposed on
stfess function é{, produced zero normal direct and shear
stresses at the edge of the hole, and did not disturb the
displacements produced by /:z—on the loaded edge. The boun-
dary conditions for Eare the same as those for E

The stress functionlg'was obtained by finite element
plane stress analysis in terms of the stress ?esultantsflgg,
kly, andpﬂws. For the case of a simply supported square
or rectangular plate having the overall boundary conditions
of uniformly displaced loaded edges and stress free unloaded
edges, the boundary conditions for stress functions /f.and
fg are that the loaded edges should remain undisplaced and
free of shear stresses and that the unloaded edges should
remain stress free. The boundary conditions for /:z—and 5
are stated as follows:-

1) The loaded edges are undisplaced and the shear

stresses are zero at this edge, i.e. for the

plate shown in Figure 3.1

u]ZIA = ulx-o = O

= =
N“’f L:o N"5 Lc=a 2
2) The unloaded edges are stress free, i.e. the

normal and shear stress resultants are zero.

NI’ ,tj:ib B 0
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Ny /7=1:z> =0

The deflected shape of the plate shown in Figure 3.1
was the same as that used in the stability analysis, i.e.

N
w = sin RTx Z.A,, cos Ny n= 1,3,5.....
a hel 2b

3.16
This meant that the buckled shape was fixed in the

loaded direction, and was a good approximation for an un-

perforated plate. The substitution of equation 3.16 into

equation 2.8 produced an equation which can be solved to

give a function for/i-, which fits the appropriate boundary

conditions, and is of the following form

NN '
f = ZZ AvAn b (xy)

A=l me=]
3.'7

The derivation of h,,m(-'!.'j) is described in the following

section.

The nodal loads required to produce‘static equilibrium
at the edge of a hole in a plate containing the stress dis-
tribution represented by Airey stress function4€_were

calculated from stress function E . A nodal load :? was

calculated from /fas being in the form of

N N
B 22 Ak Byl

n=l msi -

3.18

where 6;£ was a function of x and y.

It is obvious that if a multi-term solution was used
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for the bost—buckling behaviour, then the stress fesultants
f”-xs ,,,n,, and,,fl,,,would have to be evaluated from the loads
described by equation 3.18 for each combination of /LNAM
at some unit value. In order to reduce the labour involved,
the approximation was made that the buckled shape did not
change from the initial buckling mode, but that only its
magnitude changed. The magnitude of the out-of-plane

deflections was represented by a coefficient Ar such that

A = A A, n=l,3,5....
. 3.19

‘A, was selected as the largest deflection coefficient and
therefore the values .‘.1—,, were the values of the critical
eigenvector normalised with respect to the largest value of
the eigenvector.

The nodal loads /? can be re-written as

N N

fom At AP B )

30 20

The application of these nodal loads produced a set

of stress resultants related to the deflection coefficient

A,. s as follows

3.2la,b,c

2 -—
qu Ar an
Pl = A ol

2 -
plys = Ar plgy

wherefﬁnis the stress resultant calculated with reference

to some unit level of A,..
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This allows the stress resultants to be written as

follows:-

N = $5 +AtZZ AR, )/Am (q)) + A LE,

Asl m=i 7
= ¢pﬁ}l + A th"%‘A A )._["‘ ("xj)) +A n,,

nel nNed

= Polty A tZZA A az(h'"‘ (143) + AL pliay

%y 3.22a,b, ¢
The substitution of equation 3.1 into the expression,

described by equation 2.14, fof bending strain energy gives

equation 3.2, 1i.e.

\{Z = Zz‘ AR'AP\'}(IM\

32
The strain energy due to in-plane stresses can be
calculated by the substitution of equations 3.22 a, b, ¢
into equation 2.11. Collection together of terms of

similar order produces an equation for the total strain

energy of the form

Ve AR AR+ PR) * K¢

—~

3.23
In order to satisfy overall equilibrium the strain
energy was minimised with respect to the out-of-plane

deflection coefficient /qr This was done by examining

the turning points of the equation for the strain energy
i.e. when

av _
a = ©

Substituting equation 3.2

3.24

3 into equation 3.24 produces
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di/ . 44 K, + 2A.(K + ¢K) =0
A4,

3:25
The solutions for equation 3.25 are
A =O
or
Ar = i ‘\//(‘ + ¢K3
. Z‘K}
The solution A.= O was rejected as being the trivial
solution, and the relationship
A, =4/ K+ K
ZK4 3.26

was adopted as the solution.

The end load on a plate is made up from three
components, B s Pz and 8 . The first, P, , 1s the end load
required to produce the uniform edge displacement qbin a

plate with no out-of-plane deflections. The second component

f; , comes from the stretching of a plate without a hole

to the assumed deflecfed shape, with the condition that the
loaded edge remains undisplaéed. The final component of

the total end load, f3 , arises from the loads applied at
the edge of the hole in order to pr;duce a free surface.

In calculating Pl s fﬂa,,PQv,for a plate with uniformly

displaced loaded edges, a unit displacement was applied in
the finite element analysis, and the end load produced by

. this was the sum of the nodal reaction loads at that edge

Ly

of the plate. The end load, é) s developed by
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the edge displacement ¢ was therefore

R=¢F 3.27

The end load fi was calculated from the stress resultant
in the direction of the applied load at the loaded edge.

This stress resultant is calculated from the stress

function 5, i.e.

b b
/z) / ﬂnl = t JF JJ

J xesQ
-b
! 3.23

This meant that e could be written in terms of A,, i.e.

2

A

where £ comes from equations 3.28 and 3.17, i.e.

nel mey

Eétgﬁéﬁ[(m&N[ - Yoy ]

3.29
Because the stress function /;-was expressed in terms

2
of ’A‘r ,» the end load/? produced in satisfying equilibrium
2
at the hole edge was also expressed in terms of /4,. , 1.€.
, =
A. £
ro3 3.30
The total end load is the sum of the end loads R s B

and ’; » described by equations 3.27, 3.29 and 3.30, and can

be written as

P=¢F +A(E+F)

3.31
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The substitution of equation 3.26 into equation 3.3l
allowed the end load to be related to the applied displace-

ment, 1l.e.

P= &P + (R+§ )Ks +(E+P) K
2K, 2K,
3.32
The post-buckling stress distributions were calculated

by superimposing all the stress distributions as described

by equations 3.22 a, b, ¢. By writing

Fi, = t 27 AZ )z/z,,,,(ac,tj))

Ast may J

etc., the equations 3.22 a, b, c for the post-buckling

stress resultants can be written as

96f&; ’4 </Qn + -;3)
Pply  + Ar (IT,z + fﬁyz)

Peily A (R + plis) 333a,bc
Subsfituting eﬁuation 3.26 for the deflection
coefficient into equations 3.33 a, b, ¢ allows these .
equations to be rewritten solely ig terms of the applied
displacement, i.e.
96 fﬂn 4'/G / 4‘0ui/ R: (}ﬂn '*'Gz)

ZK’ 2R 3.34
* a

Thus the applied load and the internal stresses can
be defined solely in terms of the applied displacement.
The derivation offi'ror plates with uniformly displaced

loaded edges is described in the following section 3.3.2.
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However, for plates loaded by uniform stresses some changes

have to be made in the analysis. The loaded edge boundary

conditions for ﬁ{ and E; become

NJ( ’x:a_ = leso = O
instead of
u laua. =Uu ’x-o = O

In this case the movement of the loaded edge caused by a

virtual out-of-plane deflection makes it necessary to
minimise the total potential energy instead of only the

-strain energy for the uniform applied displacement case.

3.3.2 Application of the Post -Buckling Analysis

The application of the theoretical post-buckllng

analysis to simply supported plates with uniformly dlsplaced

loaded edges is described in this section.
The stress function li was evaluated from the

compatibility equation 2.8 and the out-of-plane deflection

function, & equation 3.16. Substitution of equation 3.16

into equation 2.8 gave the following equation:-

V4I'; . ( )'l,éé..A A (nm(ﬂ)smrmy sm%z_ry -(ﬂl’)costLj m’mﬂj) :

2
2
* (.?)2[ s ch’lrx né nZ\'-l A ( (Il[,)m nm} sth j'*‘ (%I)z(as%J .cos%_fj)
| 3.35

Equation 3.35 shows that. the function Ecan be separated

into a function of y only and into a function of x and y, i.e.
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fo= o %l cos Zkmx
3:36

where ’LZ-A ansz; are functions of y only. Substituting

equation 3.36 into the LHS of equation 3.35 gave

4 I 2 x I
(Zalgll')@;cosﬂ?_ajz —Z@B(Z?EUJCDSZ_%I_T_J_L + ca.s_Z%Ez + F

= RHS equation 3.35
3.37

Two equations were then separated from equation 3.37 i.e.

" gl gy e ) gy )

3.38
" [ e -

E(klycosz_kl@‘ ZZ AA {E)smn sin j+( )casm7 cosp ])]337

psimet
Because fz.-A is a function of y only, any derivatives

of 5 with respect to x are zero, hence equation 3.38 was

not solved for any derivatives of I}—A lower than the second

order. ] h
FH =Elf’k ZZ AnPn Cosﬂ y cosmn'y + B 9 7 F

4(1 ns ms

3.4D

A solution to equation 3.39 for /Z, was found by
combining the symmetrical terms of the particular integral

and a single term of the complementary function, i.e.
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2 YUY
Fz; ) ZE—'/gLT 5%: A (‘72-)1»1 Cos&'z_’z-)_’.ry + Tom cos(n-’;b! Ty
+ Cim cosh Zz_.f_l[y + Conm _g sink Z_}?’Ej )

34|
Coefficients J,,,m and Jznm were obtained by substituting

- equation 3.41 into equation 3.39 and equating similar terms. .

g = n®+ mn
nm 2[(&@ z+(z_k)z]2(2ﬂb)z
# “ 3-42
J;hm = n’~ mn —
e+ ) ]eny

The remaining two coefficients in /f; y Cipm  and Gy
were calculated by the application of the boundary condi-
tions on the unloaded edge, which were, zero shearing

stress resultant, and zero.stress resultant normal to the

edge, i.e. . =
/V"] I,::x, =0 N]I-j=ib =0
i.e.
A > YE| =0
).Zéj J_-_j;') “2 J:i‘b

Because E;is a function of y only, these boundary conditions
become
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/FZ;;-O and FZA':O

The substitution of equation 3.41 into these boundary
conditions gave two simultaneous equations inC,, and Cmn ’

which were solved to give

C"m = 7 (J-an CDS‘n°Z‘)n + \T,nm s n"'zm )1 + C4’|m 5"1}\ Z_kéml’ )
cosh 2kmb
/3

3.44
where Cgpm is a function of'Jz,,m and Jmm only, i.e.

nem|
C4nm = [J;nm((ZL)FSIn(n'Zm)D' + Zak" tanh Z;‘ﬂ_l_? Ca5<n.£1 m‘)

n+m ..
i - )

( —1'; sinh 2knb 4 2RT cosh 2knb — 2kN smh 2kmb tanh Zf;@)
a a a a a a 345

The two remaining unknown coefficients B, andBZ s, in EAH
were determined by applying the boundary conditions at the
loaded edge. For the stress function E{, these were:-
1) zero shear stress, which is satisfied innately
by Fz;, and Fz; . )
2) undisplaced loaded edges 1i.e.
ul = u| = O

x=Q, xXeo

The displacement of the end xX=a of the plate can be

written as:-

a
2
u : - [dw
Ix-a J[ [éi -Z(;x).] o
o .
The substitution of equations 3.16, 3.36 and 2.4a into the

above equation gave:-
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L~

uL‘:a /[E_'—[/j;ﬂ Fs cosz_Z[z: +V(an)’}2-' __/e;_]

z .
- 2,%17) ((o;g%r_g +()Z_Z A, Ay cosnll J cosmn‘j} dox

hel m=1

Integration with respect to X led to

u{xm =[ zf - —(E_) %%' Anhp cosnrfj Cosmgy)]a
| o 3.46

Substitution of equation 3.40 for.é; into equation 3.U46

gave

U = E(By * B) = 0

Since the displacement is zero in the y-direction

The stress function cannot be written down directly, as

I
only E; was calculated. However, the stress resultants

calculated from /‘z_'-'-' /';,4*65 cos7kllx can be written down as
a

follows.
My tE_U nZMé’A Am cos 7casm_
2
-J;nm L’ﬁf’ 21 cos n;:-)ﬂ] + Cm (%;79 cosh Zﬁjy

347q

z .
+ C4nm(§/;” cosh zc'f”y | -+ _g (%'IT) Sink Z‘_l/_?_f_f)l)]

54



iy = -ZEt(_lgU) 52k/rx ZL A AM(an cos(n-g\bzrrj + Jiom ros(n}n;)ﬂj |

nsl Mzl

Y o
+ Cpppy €3 Z}o%ﬁ’ + C:}nm 5 sinh Z%r_f,j )

3.47b
Nayy = ‘Et(k) 5m2/?ITx nZ'g AnAm [—)‘mmqléﬁ’)mm( -m)Tl y
"J:lnm( 2b )n‘sm (ﬂﬂl-j + Cipm (an“) sinh kaj
+ Gy (§ 50k 21y + 3. 27 coh Zbr >
4nm \ b 7] b a —a—ff
3.47c

The nodal loads,P,- » at the hole edge for the

calculation of Ny, , n,, s n,,, were calculated from the

stress resultants 7#,, ,n7, > May2 described by equations

3,47a, b, ¢, using,the normalised values of the critical
eigenvector. The stress resultants were calculated for

a unit value of A,. , 80 that equations 3.2la, b, ¢ could

be written.

The coefficients /q, ﬁg.and'ﬁg in equation 3.23 for
the total strain energy were evaluated from the deflection
function 3.16 and the equations for the stress resultants

3.33a, b, ¢c. These coefficients can be expressed as:-

D%%”A A /{Smkﬂ_ﬁgws cosLj(@) +nm(lf)

-2 ( 1-v) [ (%T)l hm GE )’Sml [_.gg cosnz%fj cas%‘lzf_fj

1/, 12 2 . .
mng) / ﬁ_fr) cos gat sth %‘Ty Sin %’7]]} da:dy

3.48
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= Z; {{an, f”x: + F"]’P”J’ V@’Zx}pﬂf /on.m /’njx )

+ 2(!“‘9) /an:x,; anjg ] SE
NN L
._l_ Z% A A ﬁ‘p”.n nxz /”9 ﬂjz ‘V(’ ]'”1’3 +F””~" ”jz)

Et !
+2(! + V) Fﬂaj, . n::}z dx dj}

2tE

X

Ny
.L.hZ”é;‘A A j[[fﬂx! N2 P”P ﬂjz I)(Fh;; ”]" +F073 n:z)
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The integration of these coefficients was carried out in

the same way as in the stability analysis, and the co-
efficients were inserted directly into equations 3.26,
3,32 and 3.34. The end load E developed by f; and
described by equation 3.29 was obtained by substituting

equation 3.47a into equation 3.28 to give

B = Ar.

~UI

where

NN
P = Et(t;zr}’zz A, Ap [c,,,m Zkr  sinh Zkmb

a nsl msi a

+ Tsinkh Zkmb -+ 2kT b
Cinm (bsmk __%__ + ol cosh _ZkaE_ ) ]

3.52

The analysis was carried out for square and rectangu-
lar plates with a breadth to thickness ratio of 160. The
rectangular plates had sides of ratio of length to breadth
of 2 to 1, and the range of hole sizes studied for both

square and rectangular plates was from a diameter of 0.0

to 0.6 times the plate width. The Bost—buckling analysis

of rectangular plates was carried out for plates with two
or three half-waves in the loaded direction, depending on

the buckling mode calculated from the stability analysis.

The variation of the deflection coefficient A, with

applied load is illustrated in Figures 3.11 and 3.12 for

square and rectangular plates with various hole diameters.
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3:4 A Simplified Failure Analysis

The collapse of a plate with large elastic buckles
is a complex phenomenon, involving the growth of plasticity
on the surface of the buckles, and the formation of plastic
hinges. In both perforated and unperforated plates, the
plastic hinges, which produce collapse, grow from the
supported edges. It was therefore assumed that collapse
was associated~with the yield stress being reached at or
near the supported edges. Von Karman and Sechler (34) and
Winter (33) made the assumption that the ultimate load,‘&h
was related to the yield stress 6y and to the effective

width for this corresponding maximum stress by the expression

Be = 6p.b 3.53

The effective width be is the width of the plate over which
the maximum stress is considered to act for a given load.

This is illustrated in Figure 3.13. If accurate approxima-

tions can be made on the redistribution of stresses following
the introduction of a hole, the effect of the hole on the
effective width of an unperforated plate may be assessed.

~If the relationship between gpplied load and effective
width of a plate with no hole is known, and the general
pattern of post-buckling stress distribution is also known,
then the ultimate loads of centrally perforated plates can

be calculated, by making the following assumptions

1) The ultimate load of a plate is reached when the
maximum stress in the loaded direction reaches
yield stress.

2)

The redistribution of stresses in a plate with a
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centrally located hole follows the same trends
as in a plate with no hole, i.e. the maximum
stresses become redistributed towards the edge
of the plate.
3) The fedistribution of stresses in the plate is
such that the tensile and compressive loads due
to the tensile and compressive components of the
membrane stress distribution are unchanged by the
introduction of a hole.

,M) The compressive and tensile stresses formerly in
a region with a hole can be redistributed over
the respective compressive and tensile regions
of the stress distribution of a plate with no
hole in order to represent the stresses in a plate
with a hole.

. The first assumption was that made by Von Karman and
Sechler (34) and by winter (33) and is expressed by equation
3.53.

The second assumption was justified by the theoretical

and experimental results described in Chapter Five and dis-

cussed in Chapter Six.

—

The post-buckling distribution of stresses in unper-
forated plates was investigated for square and rectangular
plates by Coan (21) and Yamaki (22). The post-buckling
stresses in the loaded direction take the form of the
distributions illustrated diagrammatically in Figure 13.4.1.
for simply supported plates with unloaded edges held straight,

and in Figure 13.4.2 for simply supported plates with un-

loaded edges allowed to warp. These stress distributions
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can be represented with sufficient accuracy by functions

of the form

6 = A + ‘B'aas(%ﬁj)

354
where k

or R

1 for plates with straight unloaded edges

0.5 for plates with stress free unloaded edges.

The constantsA and B were evaluated from data on

effective widths of plates with the appropriate boundary

conditions. The effective width of a plate was defineq by:

b
be"z JOxdj

C&mxx o o 3.55

Substitution of equation 3.54 into equation 3.55

allowed the effective width,'Eh s to be expressed in terms

of constants A and B , i.e.

bp = 2 [Ab + B & sbrkﬂ:]
Bt mas RIr 3.56

In the cases where the maximum stress occurred at the

edge of the plate, 5xmx was written in terms of A anda B:-

& = A + B coskr
Amax 3.57

At a given constant load f’, the value of effective
width corresponding to maximum stress Cahmu:can be found if

the relationship between load P ana effective width b.is
known.

The coefficients A and B were found in terms of be

and &, from equations 3.56 and 3.57, i.e.
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b I A
( Z—E cos RIT B S RIT )

>

(s kr - 7?’77 sin kﬂ) - 1se
g A=) S
(cm AT — 7(}”. sin /?77) \sq

The third and fourth assumptions implied that when

_a hole was introduced into a plate, the compressive stresses
formerly carried by the area removed from the cross-section
by the hole can be redistributed over the compressive

region of the stress distribution in a plate with no hole
between the hole edge and supported edge in order to
represent the post-buckling stress distribution of a plate
with a hole. This redistribution was assumed to occur
uniformly. This also implied that in plates where the

area removed by the hole was completely under tension,

the introduction of the hole caused no change in the maximum

compressive stresses, and therefore did not affect the

ultimate load.

—~

The'compressive stresses in a plate, where the post-
buckling stress distribution is represented by Figure 3.15,

start at a distance C, from the centre line, where

¢. = O A> -8B
or ¢ = G cas"(-;;-‘) A<L-B
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The compressive load formerly carried by the cross-

sectional area removed by a hole of radius C was therefore

c

E = th 6:: d]
if C>cr

3. 60

or E =0 if ¢ 7 C 3.61

The constant average compressive stress to be added

to the compressive stress region was written as

c
= | js d
As - Jo. = ) 3-62
i.e. by substitution of equation 3.54, equation 3.60
became
A6 = i [A(c &) + B.b (singn_c — sin @[_cr)]
( kr > b 3-63

where A and B were defined by equations 3.58 and 3.59.
Equation 3.63 is valid for € > C, , otherwise A6=0 .

The maximum stress then became, after the addition

of the constant stress D6 :-

-~

6fn¢x = 6J’Aux + 46 364

The applied load F> was assumed to remain constant

and was defined in terms of maximum stress O,,, and

effective width tk of a plate with no hole, and could

therefore be defined ih terms of the new maximum stress

6&hu‘ and a 'corrected' effective width b, : i.e.
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A mast

Thus the corrected effective width B, could be written as:-

l@c = be 6

Xmas
6"mz

By substitution of equations 3.58, 3.59 and 3.63

4 be
ec = 1.

[ . c—cr) (Zbcos,élr -~ R M/?IT)

(b-<) ( cos RT - -k—’ sin kIT }

L (- L) B fon B - s trcr )
(b-¢) (coskﬂ” ——,:f-”smkrr)

3.65

This corrected effeqtive width & was the effective
widﬁh for a plate with a hole, for a given load P . There-
fore, where the relationship for end load P and the
effective width is known, and the stress distribution can
be written as a simple expression, as in equation 3.54
then the relationship between applied load F’and 'corrected!
effective width can be established as the approximate
relationship between applied load and the effective width
of a plate with a hole.

The relationship between applied load and effective

width was derived by Rhodes ‘and Harvey (30) for plates with
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simply-supported stress free edges and loaded by constant

edge displacements. This relationship between applied load

and effective width can be converted into a graph of

maximum stress in the loaded direction against effective

width, and this is illustrated in Figure 3.16. Equation

3.65 allows a family of curves to be derived for a range of
hole sizes, relating maximum stress to 'corrected' effective

width fa:. These are illustrated in Figure 3.16.

The first assumption enabled the collapse of a plate

with a hole to be calculated using Figure 3.16. From

equation 3.53, the ultimate load became:-

Fﬁt = 6& é%c 3.46

where b, was the corrected effective width for the given
holé size at 6, ; and was obtained from Figure 3.16.

A curve showing the variation in ultimate load with
hole size was constructed for plates with the nominal

dimensions of those plates under test, and was presented

in Figure 3.17. This figure illustrates a reduction in

ultimate load caused by the introduction of a hole.

Comparison with observed results was made in Chapter Five

and was discussed in Chapter Six.

Tables of corrected effective width are presented for

the range of effective widths -Z-e = [0 - 03 and hole diameters

0.0 to 0.7 times the plate width. Table 3.1 presents

corrected effective widths for simply supported plates with

uniformly compressed loaded edges, and stress free unloaded

edges i.e..k=Cﬁ5, and Table 3.2 presents corrected effective

6l



widths for simply supported plates with uniformly com-

pressed edges and straight unloaded edges.
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b HOLE DIAMETER/ PLATE WIDTH A

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.9 0.8229 0.7430 0.6600 0.5737 0.4842 0.3917 0.2964
0.8 0.7433 0.6822 0.6159 0.5439 0.4659 0.3818 0.2920
0.7 0.6610 0.6172 0.5673 | 0.5099 0. 4442 0.3697 0.2866
0.6 0.5760 0.5477 0.5132 30.4707 0.4183 0.3548 0.2797
0.5 0.4882 0.4731 0.4528 | 0.4249 0.3867 0. 3359 0.2705
0.4 0.3973 | 0.3929 0.3848 0.3707 | 0.3474 0. 3109 0.2578
0.3 0. 3000 0. 3000 0. 3000 0.2967 0.2868 0.2656 0.2282
0.2 0. 2000 0.2000 0.2000 0.2000 | ©0.1981 | 0.1891 0.1678
0.1 0.1000 | 0.1000 0.1000 0.1000 | 0.1000 0.0979 0.0897

TABLE 3.1 EFFECTIVE WIDTHS OF SIMPLY SUPPORTED PLATES WITH STRESS FREE

UNLOADED EDGES
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HOLE DIAMETER/ PLATE WIDTH

“b

b, _
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.9 0.8264 0.7490 0.6672 0.5808 0.4901-] 0.3957 0.2985
0.8 O0.7497 0.6937 0.6303 0.5585 0.4783 0.3905 ' | 0.2968
0.7 0.6699 0.6336 0.5884 0.5322 0.4639 0. 3840 0.2946
0.6 0.5865 0.5679 0.5405 Q.5008 0.4460 0. 3756 0.2917
0.5 0.5000 0. 4960 0.4853 0.4625 0.4231 0. 3645 0.2878
0.4 0. 4000 0.4000 0.4000 0.3911 0.3675 0. 3241 0.2604
0.3 0. 3000 0. 3000 0. 3000 0. 3000 0.2880 0.2599 0.2126
0.2 0.2000 0.2000 0.2000 0.2000 0.1968 0.1816 0.1513
0.1 0.1000 0.1000 0.1000 0.1000 0.1000 0.0939 0.0797

TABLE 3.2 EFFECTIVE WIDTHS OF SIMPLY SUPPORTED PLATES WITH STRAIGHT

UNLOADED EDGES




CHAPTER FOUR

The Expefimental Investigation

The general object of the investigation was to observe
the behaviour of plates with centrally located circular
holes under edge compression and to produce data for com-
parison with theoretical results. Square plates and
rectangular plates with aspeét ratio 2:1 were tested. The
boundary and loading conditions applied to the plates by
the test equipment were those which approximated the
boundary conditions chosen for‘study in Chapter One, i.e.

1) Uniformly displaced loaded edges

2) Simply supported edges

3) No restraint in the plane of the plate on the
unloaded edges

) All edges free of shear stress.

“The Experimental investigation is described under the

four main headings, i.e.
4,1 The Test Programme.
4,2 Test Equipment.
4,3 The Specimens.
4.4 Test Procedure.
The experimental results and their comparison with

the theoretical analysis are presented and discussed in the

following chapters.
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4.1 The Test Programme

The test programme was divided into two parts.

Part A A series of tesps designed to produce data
on buckling loads, collapse loads, and the
out-of-plane deflection behaviour of the
plates for comparison wiéh theoretical
predictions.

Part B Four strain investigations to measure the
stress distribution in each of four plates
for comparison with the theoretically

" predicted distributions.

Part A of the test programme was intended to produce
information on the overall behaviour of the square and
rectangular plates.under edge compression, with the pre-
viously stated loading and boundary conditions.

Part B of the experimental programme was to measure
the strains along the axes of the plates at various points,
for comparison with the theoretically derived values. This
comparison was intended to show to what extent the assump-
tions made in deriving the stress functions were valid,
and to find what limits could be sét to the accuracy of

the theory in providing information on the stress distribu-

tion in post-buckled plates.

L

The imperfections in the plates allowed the theory
to be compared with the behaviour of plates of commercial
quality, and thus provided estimates of the extent of
application of the theoretical results in practice. ‘The

disadvantage of the imperfections was that they made any
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detailed examination of the buckled shape of limited value

for comparison with the calculated shape.

4.2 Test Equipment

The principal items of equipment used in the tests

were as follows:-
4,2.1 The plate test rig
4.,2.2 The loading machine

4.,2.3 The strain recording apparatus

4,2,1 The Plate Test Rig

The apparatus for supporting the edges of the plates

and transmitting applied loading from the loading machine
"to the edges of the plate is shown in Figures 4.1 and 4.2.
The test rig was originally designed and built by W.C. Fok
(39) for rectangular plates of length to breadth ratio 2:1,

and modifications were made by the author to allow square

_ plates to be tested. Figure 4.1 shows the test rig in its

configuration for testing rectangular plates and Figure 4.2

shows the test rig in its configuration for testing square
plates.

The main components of the test rig were:-

y,2.1.1 FPixed base

4,2.1.2 Vertical upright supports

4.2.1.3 Vertical knife edges

4,2.1.4 Loading head

4.2.1.5 Roller bearing assenmbly

These components are described more fully as follows:-

4.2.1.1 The Base

The base consisted of a mild steel plate
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machined to 16" x 5" x 13" (L4O6 mm x 127 mm x 34.5 mn)
with four } inch (12.7 mm) BSW holes tapped to receive the

uprights. A 13" x 2" (39 mm x 9.5 mm) locating recess was
machined in the upper surface of the base.

4.2.1.2 Vertical Uprights

The uprights were two sections of 5" x 21" (127 mm
x 63.5 mm) plain channel each with a 1" (12.7 mm) thick
plate welded to.the lower end. Two 9/16" (14.3 mm) holes

were drilled through the plate to allow the uprights to be

bolted to the base (part 4.2.1.1) A locating key was

machined on the plates of both uprights in order to accurately

position the uprights on the base. The webs of the plain

channel were machined flat and parallel to each other, and
then the flange and plate of each upright was machined flat

and perpendicular to each other and to the flanges. Holes

were drilled in the uprights in order to allow the knife

edges to be attached.

4.,2.1.3 The Vertical Knife Edges

The knife edges were made of mild steel of 21" x
11" x 2" (534 mm x 38 mm x 9.5 mm) overall size and were
attached to the uprights by " (9.5 mm) cap screws. One
knife edge was located on each upright by 2" (9.5 mm) dia
dowel pins, while the other was allowed to move so that
the gap could be adjusted for different plates. The knife
edges were machined to a small radius.

4,2.1.4 The Loading Head

The loading head was similar in size and shape

to the fixed base, but had four guides attached which ran

against the sides of the uprights. A triangular section

87



block was held on top of the loading head by four 5/16th"

(8 mm) capscrews. This triangular block located into a

V-shaped slot in the loading head of the loading machine,

so that the load was known to be located centrally on the

edge of the plate.

4.2.1.5

Roller bearing assembly

The load was applied to the edges of the plate

through two cylindrical rollers. These rollers were held,

supported by needle bearings, in blocks. 'One roller was

~used at each end of the plate.

The components of this

assembly are illustrated in Figure 4.3 and are as follows:-

(1)

(i1)

(iii)

(iv)

The cylindrical roller. The roller was 2" (51 mm)

diameter. A flat surface was machined on to the

roller and a groove 1;5" (38 mm) wide was machined
into the flat along the whole length of the roller.
Locating strips. These strips fitted into the
groove on the rollers, as shown in Figure 4.3,

and were machined to allow the plates to he located

in the centre of the roller. The strips were made

from mild steel of cross section 11/16" x 3/16%
(17.5 mm x 4.8 mm) )

Needle bearings. The needle bearings were made up

from standard commercial full race bearings. The

needles were i" (12.7 mm) long and ten sets of

bearings were used to support each roller.

The bearing blocks. These blocks were made up from

2,5" x 2.5" x 5" ( 63.5 mm x 63.5 mm x 127 mm) mild

steel in order to contain the needle bearings and

the roller. Aluminium strips were bolted over the
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edges of the hole in order to contain the needle

bearings.

h.2.2 The Loading Machine

The load was applied by a Tinius Olsen Universal
testing machine of a maximum 200,000 1bf (889.6 KN) capacity.
The loading was of the applied displacement type applied
through the loading head, anq was measured through the base
of the machine by load transducers. The test rig is shown
under the loading head of the machine in Figure 4.4. The
load was applied through a V-groove, in a block of metal

attached to the machine head, to the triangular section

block on the loading head of the test rig.

4,2.3 Strain Measuring Equipment

The buckling loads were estimated from the measured

strain at various points on each plate. The strains were

measured from foil type strain gauges applied to the plate,

and connected, using the 'three wire' technique, to the
resistance bridge circuit of a MODULOG data logger. Output

from the data logger was printed on to a paper roll. For

the strain investigations, two gauge rosettes were applied

along the axes of the plates, and using the same 'three wire!

technique as before, were connected to an ELCOMATIC data

logger. Output from this data logger went to a paper printer

and to a tape punch. The paper tape produced was used as

data for a computer program written by the author in order

to produce tables of strain and stress.

The 'three wire' technique is a standard method of

connecting strain gauges into a Wheatstone bridge circuit,
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which compensates for changes in resistance in the leads
from the bridge circuit to the gauges. The wiring diagram
is shown in Figure 4.5. The common lead (A) shown in
Figure 4.5 between the temperature compensating dummy gauge
and the active gauge is in the opposite arm of the bridge
from lead (B) and being in close proximity to each other

experience almost identical temperature fluctuations. The

third lead (C) has no effect, as no current passes through

it when the bridge is balanced.

4,3 The Specimen Plates

The plate specimens were cut_from hot-dip galvanised
mild steel sheeting of nominal thickness 0.063" (1.62 mm).

The plates were cut to the overall dimensions 10.125 ins x

10.125 ins (257 mm x 257 mm) and 10.125 ins x 20.125 ins
(257 mm x 511 mm), which included a slight margin to allow

the knife edges and rollers to hold the edges of the plates.

The dimensions of the plate between supports were 10 ins x
10 ins (254 mm x 254 mm) and 10 ins x 20 ins (254 mm x 508 mm)

for square and rectangular plates. The loaded edges were

filed straight after the holes were cut in the plate in

order to remove any distortion of these edges caused by the

hole cutting process. Only a small amount of filing was
required in order to remove the irregularities on the edges,

and a small rat-tail file was used. The loaded edges,

although straightened, were not parallel to each other by

a very small amount. This slight skewness of the edges was

not of importance as the load was applied to the head of

the rig by a centrally located pivot.
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The smaller.holes 1" (25.4 mm) dia. and 2" (50.8 mm)
diameter were drilled out, and the larger holes were tre-
‘'panned. In order to minimise the effect of the trepan
causing a bulge in the plate, fthe holes were cut halfway
through the plate from one side and then completed from
the other.

The plates all had out-of-plane imperfections. In
order to gain an estimate of the magnitude of these imper-
fections, some of the plates were laid on a surface table,
and a dial gauge which had been zeroed to the surface was
passed over it. Bulges were found in the plates of an order
of 0.006" (0.015 mm) to 0.016" (0.41 mm) peak height in'
exceptional cases. The out-of-plane deflections were reduced
when the plates were held between the knife edges, but this
test indicated that initial imperfections in the.order of

0.1 - 0.25 times the plate thickness existed. It was felt

that an investigation using these plates would be of value,
as the results would show the behaviour of plates of commer-

cial standard, and therefore would allow an estimation of

the limitations of the theory for practical applications.

—~—

4.4 Test Procedure

4,4.1 Test Series A

The plates were prepared with holes in the following

ranges of sizes.

Length Breadth Range of hole diameters

20" (508 mm) | 10" (254 mm) | O"=6" (152 mm) in 1" (25.4 mm) step

10" (254 mm) | 10" (254 mm)

O"=6" (152 mm) in 1" (25.4 mm) step
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Each plate was numbered before testing and the
thickness measured at various points with a micrometer in

order to determine an accurate average value. The varia-

tion in thicknesses over individual plates was slight.

The plates were each loaded into the test rig and tested

as follows.

The cap screws fastening the movable knife edges to
the vertical upfights'were loosened and the plate inserted
between the knife edges. The movable knife edges were then
tightened against the plate until the plate could just be

slipped up and down without any free lateral movement of

the plate between the knife edges. G-clamps were used to

hold the knife edges in place while the cap screws were

tightened.

The dial gauges used to measure the out-of-plane
deflections were attached to the uprights by means of their
magnetic bases. For rectangular plates, the gauges were
generally positioned at the ! and 1/3 plate length distances

from the loaded edge on the 'long' axis of the plate, and

at the hole edge. However, the positions varied for

different plates and were recorded with the results of each

test. For square plates the gauges were placed on a dia-

gonal, halfway between the centre of the plate and the

corner, and at the hole edge.

The rig was positioned under the loading head of the
Tinius Olsen machine and the loading head was carefully

lowered until a small load (approx. 0.1 x buckling load)

registered on the machine. This load was intended to

settle the plate into its supports and take up any movement

between the components of the rig. The load was then
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released until the load measured by the machine just
registered zero. All the dial gauges'on the plate were
set to zero and the channels of the MODULOG data logger
were zeroed before initial readings of strain and deflec-
tion were made. The load was increased from zero and held
steady at regular intervals, while readings of strain and
deflection were made, until the collapse load of the plate
was reached. C§llapse was shown on the loading gauge of
the Tinius Olsen machine as a sudden reduction in load.
The buckling loads were estimated from the variation
of the membrane strain with load at some particular point
on each plate. The membrane strains at that point were
estimated from surface strain measurements obtained from

strain gauges attached to both surfaces of the plate at

that point. The strain gauges were connected to the Wheat-

stone bridge circuit of the MODULOG data logger by the
tthree wire' technique, as previously described. Several
strain gauge locationé and strain directions were tried on
ah early test, but as there was negligible difference in
the buckling load calculated from each, only one position\
was cdnsidered on each plate in subsequent tests.

The estimation of the buckling load from the strain
measurements was made by comparing pre- and post-buckling
curves of loaa against membrane strain. The intersection
of these two curves was taken as the point of buckling.
This method and the various other methods of estimating

buckling loads are discussed with the presentation of the

experimental results in Chabter Five.
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4.4.2 Test Series B. The Strain Investigations

The test procedure for both square and rectangular
‘plates was the same as that used in test series A, with
the exception fhat the ELCOMATIC data logger was used
instead of the MODULOG machine. The ELCOMATIC data logger
was connected to the strain gauge rosettes on the plates
by the 'three wire' technique. The loading was initiated.
and incremented in the same manner as before. The deflec~-
tion gauges were used in siﬁilar positions to those on

- plates without strain gauge rosettes.
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CHAPTER FIVE

Theoretical and Experimental Results

The theoretical and experimental results and the

comparison between them are described under four headings.

These headings are as follows:-
5.1 Initial Instability

5.2 Load Deflection Behaviour

5.2.1 Load - out~of-plane deflections
5.2.2 Load - edge displacements
5.3 Ultimate Loads
5.4 Internal Stress Distributions
Typical examples of the plates tested have been
selected for comparisoh with theoretical behaviour. In this
chapter, comments are only made on the general patterns of 3
behaviour, whilst detailed discussion of the théoretical
analysis and its comparison with experimental results is

made in the next chapter.

5.1 Initial Instability

The buckling loads were estimated from the experimental
results for the variation of mid surface strain with applied
load. The choice of the method was made on the basis of

work reported by Coan (21) and Yamaki (22) on plates with

initial out-of-plane imperfections. Coan found, from

analytical and experimental investigations, that the inflec-
tion point of the load-deflection curve corresponded most

closely to the buckling load of a flat plate. However, this

point cannot readily be identified when out-of-plane imper-

fections are large. Schlack (19) used numerical analysis
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of the load-deflection experimental data to identify this
inflection point, but obtained considerable scatter in his

results.

Coan studied several methods of estimating the

eritical load of a flat plate and recommended two methods,

using load-strain curves. The first, and more accurate,

waé to consider that buckling occurred when the tangent to
the curve of mid surface strain in the loaded direction

pecame parallel to the deflection axis. ‘The application

of this method was considered unfeliable, as the scatter
of experimental results did not allow a smooth curve to be
drawn through them.

The second method described by Coan was to consider
that the buckling occurred at the load at the intersection

of the tangents to the pre- and post-buckling load - mid

surface strain curves. In this method, only straight lines

of best fit are required to be drawn through the pre- and
post-buckling experimental plots, as illustrated in Figure
5.1. This method was described as being less accurate

than the previous two but consistent in underestimating

the buckling loads.

—

It was decided to adopt the second load - mid surface
strain method as the potentiality for error was considered
to be less than that of the other methods described. 1In
addition, Rhodes (35) found this method to give reliable

and consistent results when applied to the local buckling

of wide flange beams.
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5.1.1 Comparison of Experimental and Theoretical Results

5.1.1.1 Square Plates

The theoretical relationships between buckling
1oad and the hole diameter for simply supported square plates
under constant stress and uniform displacement edge loading
are presented in Figure 5.2. The theoretical curves show
thé differences in behaviour between the two types of
1oading. The experimentally derived results for constant
edge displacement are also plotted on Figure 5.2, and the

6bserved mode of buékling was a single half-wave, which was

the same as the predicted mode.

5.1.1.2 Rectangular Plates (length/breadth = 2:1)
The theoretical relationships between buckling

load and hole size for simply supported rectangular plates,

of the overall dimensions and geometry tested, are illus-
trated in Figure 5.4 for constant stress loading, and in
Figure 5.3 for constant edge displacement loading.

The variation in buckling load for constant displace-

ment loading is presented in Figure 5.3 for buckling modes

of two and three half-waves. The change in buckling mode

at a hole diameter of approximately 0.35 times the plate
width, indicated by these results, was observed .in the tests,

where the majority of plates tested took up the theoretical

buckling mode.

5.1.2
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5.1.2 Comparison of the theoretical results with the
results of other investigators

5.1.2.1 Simply Supported Square Plates with Constant
Stress Lodded Edges

The theoretical relationship between buckling load
and hole size established by Levy (16), Kumai (18) and Xawail

and Ohtsubo (24) are presented with the author's theoretical

relationship in Figure 5.5. The experimental results of

Kumai (18) and Yoshiki et al. (23) are also plotted in
Figure 5.5.

The derivation of these authors' results has already
been described in Chaptér One.

5.1.2.2 Simply Supported Plates with Uniformly Displaced
Loaded Edges

The theoretical relationship between buckling load
and hole size, derived by Kawai and Ohtsubo, is illustrated

in Figure 5.6 in comparison with the author's theoretical

relationship.

5.2 Theoretical and Experimental Load-Deflection Behaviour

The two types of deformations of thin plating under

-

compressive loading which are of greatest interest are:-

5.2.1 Out-of-plane deflections

5.2.2 In-plane displacements of the loaded edges.

The ability to predict these out-of-plane deflections
is important, as the redistribution of post-buckling stress

and change in axial stiffness are dependent on the deriva-

tives of these deflections. Out-of-plane deflections are

easily measurable by the methods described in Chapter Four.
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Measuremenf of the end compression was not attempted,
due to lack of suitable reference points on the plates or
. test rig, which were not affected by the motions of the
plate and the flexibility of the test rig. However, the
theoretical results are presented.

5.2.1 Out-of-plane Deflections

Comparison was made between fhe theoreticai load -
. out-of-plane deflection curve derived by Yamaki (22) for
simply supported plates, and that derived by the author,
as a check on the performance of the author's theory for

the limiting case of a plate with no hole. The comparison

is illustrated in Figure 5.7.

This also allows the performance of the test rig with
plates having no holes to be checked against an established
mathematical theory, by referenqe to the comparisén between

the author's theoretical and experimental results for these

platesf

5.2.1.1 Square Plates

Figure 5.8 illustrates the theoretical variation
in load deflection behaviour of plates with various hole
sizes. The deflections in Figure 5.8 are fictitious as

they represent the hypothetical deflection at the centre

of the plates. However, they provide a comparison of the

relative magnitudes of the deflections of the plate.

Comparisons were made between the theoretical and

experimentally measured load-deflection behaviour, and

typical comparisons throughout the range of hole sizes are

presented in Figures 5.9 - 5.15,
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Figures 5.13 and 5.15 are of interest in that the
deflections remote from the hole suggest that a change in
.Jwaveférm took place prior to collapse. This is discussed
in Chapter Six.

5.2.1.2 Rectangular Plates

The theoretical load-maximum deflection curves
for various hole sizes are compared for two and three half-
wave buckling modes in Figures 5.16 and 5.17 respectively.
Comparison between the two and three half-wave buckled shapes
-for ‘a plate with a hole diameter of 6.3 times the plate width
was made in Figure 5.18.

Comparisons between experimental 1oad-def1ecti6n
behaviour and theoretical behaviour are presented for typi-
cal plates in Figures 5.19 to 5.27. Figures 5.19 to 5.22
show results for plateé with the range of hole sizes 0.0 to
0.2 times the plate width, which buckled into two half-waves,
and Figures 5.24 - 5.27 show the results for the range of
plates, having hole diameters of 0.4 -~ 0.6 times the plate

width, which buckled into three half-waves. Figure 5.23

shows the comparison of theoretical and experimental results
for a plate with a hole diameter of 0.3 times the plate

width, which buckled into three half-waves.

5.2.2 Load-Edge Displacement Behaviour

Theoretical curves derived by Yamaki (22) represen-
ting the uniform ioaded edge displacements with applied
load are compared in Figure'5.28 with the theoretical
curves derived by the author for the limiting case of a

plate with no hole, which has square buckles.
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The graph of the theoretical variation of uniform edge
displacement with applied load for square plates with a
.- gentrally located circular hole and the experimental boun-
dary conditions are shown in Figure 5.29. The post-buckling
slopes are all similar to those of a plate with no hole,
and the variation of pre- and post-buckling axial stiffnesé
with hole size is shown in Figure 5.30. |
The theofetical loaded edge displacement Qariation
with applied load for the rectangular plates under test is
illustrated for the two and three half-wave buckled shapes
in Figures 5.31 and 5.32. The variation of the post-buckling

stiffnesses with hole size is presented in Figure 5.33 for

both buckled shapes. This shows the variation of the two

and three half-wave post-buckling stiffnesses in comparison
to the variation of pre-buckling stiffness with hdle size.
The load-edge displacement curve in Figure 5.34
represents a rectangular plate with hole diameter to plate
width ratio equal to 0.3, and shows the intersection of the
cﬁrves arising from the two and three half-wave buckling
modes, which suggests that coupled modes of buckling are

possible under certain conditions.”

5.3 Ultimate Loads

Two types of failure were observed in the plates,
The first type occurred in plates with relatively small

holes of diameter less than 0.3 times the plate width and

is illustrated in Figure 5.35. This mode of failure was
the type observed in unperforated plates.

The second type of failure is illustrated in Figures
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5.%6 and 5.37, and occurred mainly in plates with holes of
diameter greater than 0.3 - 0.4 times the plate width.
-Plastic hinges or folds grew across the narrowest section
of the plate between the hole edge and the supported edge.
This either took the form of a kink, or two half-waves
developed, as shown diagrammatically in Figure 5.38. The
development of these two half-waves can be seen in the load-
deflection curves presented in Figures 5.13 and 5.15.
Experimentally measured collapse loads were plotted
.against hole size in Figure 5.39. This showed that the
collapse loads tended to decrease appreciably with increase

in hole diameters greater than 0.3 to 0.4 times the plate

width.

5.4 The Internal Stress Distributions

The general objects of the experimental strain in§esti-

gation are explained in Chapter Four. ‘

The four plates tested in this investigation were
selected from the stock of plates prepared for the general

series of tests, and no special preparations were made, other

than those necessary to make the surface suitable for the

-

application of strain gauges. The nominal dimensions of

each of the four plates tested are set down in Table 5.1.

Plate Length Breadth Thickness Hole dia.
ins(mm) ins (mm) ins (mm) ins (mm)

A 20 (508) 10 (254) 0.0622 (1.6){ 2 ( 50.8)

B 20 (508) 10 (254) 0.0622 (1.6) | 6 (152.14)

c 10 (254) 10 (254) 0.0622 (1.6) | 5 (127.0)

D 10 (254) 10 (254) 0.0622 (1.6) | 3 ( 76.2)

" Table 5.1
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* Each plate was strain gauged along both centre lines

with two-gauge 900 rosettes. The strain measurements were

. .uysed to calculate stresses from the following relationships

between stress and strain.

Ox (/ u’) (‘E * V‘Eﬂ

5 = 7t uz) (gy + ves)

The stresses calculated from the strain measurements

are presented in comparison to theoretical stresses derived

in the manner described in Chapter Three.

5.4.1 Rectangular Plates

5.4.1.1 Plate A

Plate A was a rectangular plate with a hole of

diameter 0.2 times the plate width, having the dimensions

described in Table 5.1. The layout of the strain gauges
along each axis is shown in Figure 5.40.

The plate buckled into a two half-wave shape as
predicted by the theoretical analysis and collapsed pre-
maturely at an applied load of 5930 1lbf (27.2 KN) when one
of the plate edges slipped from between the knife edge
supports.

The theoretical stresses in each direction along both
‘of the principal axes were drawn to the same scale and set
out on the same diagram in Figure 5.41 for an applied load
of approximately twice the buckling load, in order to

demonstrate the relative magnitudes of these stresses.

Figure 5.41 shows clearly that the dominant stresses are
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the @stresses along the y-axis.*

The 6, stress distribution along the y-axis is
presented in Figures 5.42 and 5.48 for both the experimen-
tally and theoreticaliy derived results. In the post-
buckling range the redistribution of stresses is clearly
shown in Figures 5.44 - 5.48. !muacystresses along the
y-axis are also presented in Figures 5.42 - 5.48 in order
to show the relative magnitudes of stresses in both x and

y directions.

Figures 5.49 - 5.53 show the theoretical and experi-
mental &, stress distributions on the x-axis and the
corresponding 5hstresses are shown in Figures 5,5“ - 5.,56.
These figures have been portrayed with relatively larger

gscales than the Oy stress distributions on the y-axis.
5.4.1.2 Plate B

Plate B was a rectangular plate with a hole of
diameter 0.6 times the plate width, having the dimensions
stated in Table 5.1. The plate buckled into three half-

waves as predicted by the buckling analysis and reached an

ultimate load of 7780 1bf (34.6 KN).

—~

The layout of strain gauges is shown in Figure 5.57.

The theoretical and experimental qﬁstress distribu-
tions on the y-axis are illustrated in Figures 5.58 - 5.62.
The corresponding é% stress distributions are also plotted
~in these figures in order to illustrate the relative orders
of magnitude of the stresses in each direction.

On the x-axis the theoretical and experimental Oy

stress distributions are shown in Figures 5.63 to 5.68 angd

* For the purpose of comparison of theoretical and experi-

mental results the x and y axes of the plate are taken
~ to pass through the centre of the plate.
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the 63 stress distributions are illustrated in Figures

5.69 - 5-73'

5.4.2 Square Plates

5.4.2.1 Plate C
Plate C was a square plate with a hole of diameter

0.5 times the plate width. The plate buckled iﬁto a single
half-wave and collapsed at a load of 9000 1bf (40.1 KN).
The layout of the strain gauges is shown in Figure 5.T74.

Comparison between theoretical and éxperimental G~
stresses on the y-axis is made in Figures 5.75 - 5.78. The
stress distributions on the x-axis were not pfeéented.
The high stress gradients on the x-axis cause relatively
large experimental error and it was felt the finite element
analysis had too few elements in this region to represent
the stresses accurately. Therefore it was felt that valid

comparison between theory and experiment was not possible.
5.4.2.2 Plate D

Plate D was a square plate with a hole of diameter
0.3 times the plate width, and nominal dimensions described
in Table 5.1. The plate buckled into a single half-wave

\

and collapsed at a load of 8400 1lbf (37.4 KN). The layout

of gauges on the plate centre lines is shown in Figure 5.79.

Graphs of theoretical and experimentally derived 5}

stress distributions on the y-axis are shown in Figures

5.80 - 5.84. The distribution of the experimental points

was unexpected and indicates some experimental error, which

makes the rest of these results invalid for comparison with
the theoretical analysis.
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Figure 5.9

Out-of-plane deflections of a square plate
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Figure 5.10 Out-of-plane deflections of a square plate £ - OO
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Figure 5.11 Out-of-plane deflections of a square plate _E= ol
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Figure 5.12 Out-of-plane deflections of a square plate
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Figure 5.13 Out-of-plane deflections of a square plate .19).=O-4-
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Figure 5.15 Out-of-plane deflections of a square plate %: 0-6
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Figure 5.19 Out-of-plane deflections of a rectanguiar plate _E.-_- o-0
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Figure 5.20 Out-of-plane deflections of a rectangular plate € =0
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Figure 5.21 Out-of-plane deflections of a rectangular plate
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Figure 5.22 Out-of-plane deflections of a r'ectangular plate
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Figure 5.24 Out-of-plane deflections of a rectangular plate
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Figure 5.26 Out-of-plane deflections of a rectangular plate _CE;-. o5
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Figure 5.27 Out-of-plane deflections of a rectangular plate E.b= 0-6
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Ficure 5.35

Fiaure  5.36
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[I6VRE 5,38  FAILURE MODES OF A SPUARE FLATE
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For the purpose of comparison of theoretical and experi-
mental results the x and y axes of the plate are taken
to pass through the centre of the plate.

Figure 5. 40 ARRANGEMENT OF STRAIN GAVGE RoseTTES on FZATE
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For the purpose of comparison of theoretical and experi-
mental results the x and y axes of the plate are taken
to pass through the centre of the plate.
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CHAPTER SIX

Discussion of the Theoretical and
Experimental Results

6.1 Buckling

Comparison between theoretical and experimental

results for the buckling loads of the square plates under
test is illustrated in Figure 5.2. There is scatter in
the experimental results. However, the trend of increasing
. buckling load with hole size is clearly seen, and agreement
-petween the theoretical and experimental values is good.
. Comparison between the author's theoretical results for
constant edge displacement loaded square plates and the

theoretical results derived by Kawal and Ohtsubo illustrated

in Figure 5.6 show some slight differences. However, this

can be attributed to the differing deflection functions used,
j.e. Kawail and Ohtsubo used a truncated polynomial series
of the following type:-
R P
& = ZZ .xpy"
r=1 pel
Favourable comparisons can be seen in Figure 5.5

betweeﬁ the author's theoretical results for constant stress
loaded square plates and the theoretical results derived by

Kumai (18) and Levy (16), and also between the experimental

results of Kuméi and Yoshiki et al. (23). The author's

theoretical results agree more closely with the experimental

results of‘Yoshiki and Kumai than the other theoretical

results. Kumai and Levy's theoretical analyses both usegd

infinite plate stress distributions, which limited rigorous
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application of their results to plates with hole diameters
1less than 0.3 times the plate width. 1In addition, Kumai's
out-of-plane deflection equation was invalid for plates
with large hole sizes, for the reasons outlined in Chaﬁter
One.

Comparison between the theoretical and experimental
pbuckling loads of the rectangular plates tested is shown
to be good in Figure 5.3, and the trend of increasing
buckling load with increase in hole size is clearly shown.
_The theoretical analysis generally predicted the buckling

mode of the rectangular plates. The few exceptions were

plates with hole sizes in the region of the critical hole
diameter at which the change in buckling mode occurs. The
possible sources of uncertainty over the mode of buckling
in this region are, very large initial imperfections inter-
fering with the buckling mode; coupled modes of buckling
_arising in the immédiate post-buckled region; or interaction
between the previous two causes.

The presence of large initial imperfections are seen

in the experimental load - out-of-plane deflection curves

for most of the plates tested. The possibility of coupled

modes of buckling is indicated by the load - end displace-
ment graph shown in Figure 5.34 for a plate with a hole
diameter of 0.3 times the plate width, in which the curves

for the two and three half-wave modes intersect. However,

this uncertainty only occurred in a few of the plates with

hole diameter near that of the critical size.
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6.2 Post-Buckling Behaviour

6.2.1 Out-of-plane Deflections

The author's theoretical results agree well with.
the results derived by Yamaki for out-of-plane deflections

of a plate with a square buckle, and the comparison is

i11llustrated in Figure 5.7. The agreement is particularly

clbse in the immediate post-buckling range, but deteriorates
due to the author's theory having a fixed deflected shape
corresponding to the buckling mode, and Yamaki's solution

having four variable terms. The effectiveness of the test

rig in reproducing the plate behaviour under the required
poundary conditions can therefore be estimated from the
close agreement of the author's theoretical results with
the experimental results for plates with no holes, illus-
trated in Figures 5.9, 5.10 and 5.19.

Comparison of the theoretical and experimental results
for out-of-plane deflections of plates with small hole sizes
(diameters less than 0.3 times the plate width) is good for
both square and rectangular plates, and is illustrated in
Figures 5.11, 5.12 and 5.20 to 5.23 for both square and
rectangular plates respectively. . -

The'accuracy of agreement between theory and experi-
ment deteriorates with increasing hole size for diameters
greater than 0.4 times the plate width, and is illustrated

in Figures 5.13 to 5.15 and 5.24 to 5.27 for square and

rectangular plates respectively. This deterioration in
accuracy arises from the. author's theory using a fixed

deflected shape, which is unable to reproduce a free edge'
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boundary condition at the hole edge. This is due to the

inaccuracy of the energy expressions increasing with increase
in hole diameter because of the discrepancy between the
approximate and actual boundary conditions.

In general, the reduction in accuracy of theoretical
results with increasiﬁg load arises from the theoretical
poét—buckling deflection being fixed in shape. However,
agreement between theory and experimental results is

good at low levels of loading.

6.2.2 End Compression

[ ]
The load - end compression relationships shown in

Figures 5.29, 5.31 and 5.32 show an almost constant post-

buckling stiffness for each buckled mode for any hole sigze.

This is further illustrated in Figures 5.30 and 5.33, which
show the relationship between hole size and pre- and post-
buckling stiffnesses for square plates and rectangular

plates with various buckling modes.

The post-buckling load - end compression curve for

a plate with no hole was tangential to the curve calculated

by Yamaki at the point of buckling. The deviation between

the two curves was due to Yamaki's solution having four
terms of variable magnitude in the post-buckling region.
The single degree of freedom allowed by the author's theory
overestimated the strain energy of the plate, which céused

the stiffness of the plate to be overestimated when the

total potential energy was minimised. In this case, this

meant that the end displacements were underestimated for

any given load, and this was observed in comparison with
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Yamaki's solution.

6.2.3 Post-Buckling Stresses

The accuracy of the experimental stresses was depen-
dent upon the accuracy of measurement of the strains, which,
in turn, was highly dependent on the gradient of the strain
field over the gauge area, and on the magnitude of the
strain, as the constant measurement errors‘obviously became

a smaller proprtion as the magnitude of the strain measure-

ment increased. As an example, this reasoning infers that

the 63 strains along the y-axis'are relatively less accurate
than the &y strain along the same axis, the £, strains
being higher in magnitude, and having less steeply sloping

gradients. The corresponding C%:stresses calculated on
the y-axis from the strain measurements will therefore be

more accurate than the C& stresses.

Figure 5.41 illustrates the relative magnitudes of
the theoretical and experimental stresses at approximately

twice the buckling load in Plate A. This figure shows that

-

the Eﬂxstresses across the minimum section are the greatest

stresses in the direction of loading. Therefore the

effectiveness of the theoretical analysis was assessed by

its ability to predict these stresses.
Comparison between theoretical and experimental

stresses for Plate A is good until approximately twice the

buckling load. Similar trends of redistribution of

theoretically and experimentally derived stresses occur for

the Ca'stress distribution on the y-axis in Figures 5.42

to 5.48 and for the 6, and 55 stress distributions on the

x-axis in Figures 5.49 to 5.53 and 5.54 to 5.56. The
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theoretical redistribution of 6, stresses across the
minimum section is illustrated for Plate A in Figure 6.1.
The theoretical analyses of Plates B and C (hole diameters
of 0.6 and 0.5 times the plate width respectively) did not
reproduce the observed redistribution of stresses; In plate
b (hole diameter 0.3 times the plate width) the theoretical

anélysis showed the same type of experimentally observed

redistribution found in Plates A, B and C. Unfortunately

the experimental results for this case were so unrealistic

that they were not considered to be valid.

The accuracy of the theoretical deflections strongly
affects the accuracy of the calculated post-buckling stresses.
The stresses were calculated by the method described in
Chapter Three from equations 3.33a - ¢ which are based on

squares of the derivatives of the deflection function.

‘Differentiation of the deflection function induces a greater

error in the derivatives than in the function. The relatively

lower accuracy of the theoretical out-of-plane deflections

for large holes (diameters greater than 0.3 times the plate
width) than for small holes (diameters less than 0.3 times
the plate width) therefore explains-the inability of the

theory to predict the post-buckling redistribution of

stresses in plates with large holes. The reduction in

accuracy of the theoretical deflections with increasing load,
shown in all the plates tested, also explains the loss in

accuracy of the theoretical stress distributions in Plate A

beyond approximately twice the buckling load.
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6.2.4 Summary of the Discussion on the Post-Buckling

Behaviour

The comparison between theoretical and experimental
results infers tbat the application of the results from the
theoretical analysis should be confined to within twice the
buckling load and to plates with hole diameters less than
0.3 times the plate width for good accuracy of out-of-plane
deflections and post-buckling membrane stress. This infers
that the theoretical analysis would be useful for studying
relatively thick plates where collapse occurred around twice

the buckling load, and the membrane stresses produced by

out-of-plane deflections were a'relatively small proportion

of the total stress distribution.
6.3 Collapse

The experimental results presented in Figure 5.39
show that the collapse load only decreased slightly with
jncrease in hole size, and that there are still relatively

large reserves of strength left in a plate even with a

large hole. A change of collapse mode was observed to occur

in both the square and rectangular plates, and this is

described in the previous chapter &s a change from a mode I

to a mode II type failure.

. The experimental collapse loads and the results of

the failure analysis are compared in Figure 5.39. The

failure analysis produced results which followed the trends

of reduction in ultimate load observed in the tests. The
analysis is described in Chapter Three and the four assump-

tions made in formulating the analysis. were explained in
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detail. The first assumption was that collapse occurred
when the maximum stress in the loaded direction reached
yield, and this allows the ultimate load to be reléted to
the effective width ahd yield.stress. This assumption is
accurate if applied to effective widths calculated from
collapse loads, as in refcrences 33 and 34, or from elastic
sé;ess disﬁributions, as opposed to effective widths
calculated from end shortening as in reference 22.

The second assumption on the redistribution of
stresses in the post-buckling region was justified by the
results of the experimental strain analysis of Plates A,

B and C in which the peak stresses occurred at the supported

edge of the plate after buckling. This redistribution was
accurately predicted in plates with small holes up to
approximately twice the buckling load, which made it
necessary to resort to an approximate method in order to

calculate the effective widths. Because the theoretical

analysis was inaccurate over approximately twice the buckling
load, it was necessary to base an approximate analysis on a
more accurate post-buckling analysis of the load - effective
width relationship for a plate with no hole. The anaiysis
chosen for the basis of the collapse analysis was Rhodes and
Harveys' (30).

The third and fourth assumptions were on the differences

between the post-buckling stress distributions of plates
with holes and unperforated plates. The low accuracy of the
theoretical stress distributions near collapse load levels

did not allow the mode of redistribution to be examined and

v

hence these_assumptions could not be improved upon. However,
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: the theoretical results for the collapse loads are in good

agreement with the experimental results.

188



)
gu o
HY!

P= 203 F,

3.0 -
P= /84‘&0

P= 166 R,

70 P-1476,

Pg,'l’Pcu

/0 -

P=O-74 R,

P=037.B,

o2 o4 0-6 o8 1-0

| (K

Fievre 6./ THE Repisrrisurion oF Fosr- Bucktive
STRESSES IV FLATE A Ackoss 7we
Mivimuom  Secrion

189



CHAPTER SEVEN

General Discussion on the Buckling and Post-
Buckling Behaviour of Plates with Holes

7.1 Buckling
The load at which buckling occurs in a plate is
related to the pre-buckling distribution of membrane stress

and the amount of rotational or 'translational restraint on

out-of-plane deflections. Buckling more readily occurs

when the maximum stresses occur where the out-of-plane

restraint is low.

By this reasoning, the introduction of a small hole
into a plate causes a decrease in the resistance to buckling,
due to the introduction of a free edge with an associated
stress concentration, and can be seen in Figures 5.2 and
5.5 for square simply supported plates with no in-plane edge
restraint. For relatively large hole sizes the stresses
diffuse towards the supported edge in rectangular plates
and also in square constant edge displacement loaded plates,

due to the relatively low stiffness of the loaded edge

opposite the hole. This causes an increase in the buckling

load shown in Figures 5.2 and 5.3. This diffusion of stress
towards the edges does not happen in constant stress loaded
square plates, as illustrated in Pigure 7.1, and this
produces the decrease in buckling load illustrated in
Figure 5.5.

The effect of rotational edge restraint can be seen
from a comparison of the results for simply supported square
plates with constant Stress loaded edges shown in Figure 5.5,

with the results obtained by Kumai for clamped plates, shown
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in Pigure T.2. The constant stress load produces a decrease
in buckling load with increase in hole size in compérison

with the increase in buckling load shown by clamped plates

for relatively large holes. This increase is due to stresses

around the hole being distributed towards a region highly
restrained against out-of-plane rotation as well as

translation.

The results shown in Figuré 1.3 for simply supported

square plates tested by Schlack under uniform edge com-
pression showed a decrease in buckling load in comparison
with the results obtained by the author. This was due to
the additional restraint of holding the unloaded edges

straight, which raised the general level of stresses in

the plate.

The author's theoretical and experimental work, and
the work of other investigators, has allowed the effects of
various types of boundary and loading conditions to be

qualitatively identified. This allows some speculation,

based on fact, to be made about the local buckling behaviour

of various plate components to be discussed. Compression

flanges and webs of thin walled beams and columns are of

interest. Compression flanges have a degree of rotational

edge restraint from the neighbouring elements which also
impose some constraint on the in-plane edge displacements
of the flange. However, this latter restraint is considered

to be slight, as it does not prevent the edges of unperforated

flanges moving in the post-buckling range. 1In long rectangu-

lar flanges, the differences in stress distribution produced
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by different types of loading diffuse in accordance with

St. Venants principle. This would tend to cause a slight

reduction in buckling load for plates with small holes and
an increase for plates with large holes, as previously
described. Thus the general trend in behaviour would be
exbected to be an increasing buckling load with increasing
hole size. .

The resulﬁs of local buckling tests performed by Yu
and Davis (31) on uniform thickness cold rolled beams and
columns, with a centrally located circular hole in the
compression flange, are illustrated in Figure 1.6. These
results showed a slight reduction in buckling load with
increasing hole size, and the theoretical relationship
derived by Kawai and Ohtsubo (24) for simply supported
square plates under constant stress loading was selected
by Yu and Davis as a suitable conservative design curve.
However, there is the possiﬁility that in estimating the
proportion of the load carried by the flange, the stiffness
of the neighbouring flanges was overestimated due to the
presence of initial imperfections, which would have
introduced errors into the estimation of the buckling loads.

The theoretical buckling analysis described in Chapter
Three can be readily applied to thin-walled sections com-

posed of an assembly of thin plates. The out-of-plane

deflections can be represented by the deflection functions
used in the analysis of thin-walled beams by Rhodes (35)
and the pre-buckling membrane stress distributions can be

readily obtained from a plate bending and membrane stress
finite element analysis.
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7.2 Post-Buckling Behaviour and Collapse

The experimental and theoretical investigations of
the post-buckling stresses in square and rectangular plates
with simply supported edges aﬁd uniformly compressed loaded
edges, has shown that the mode of redistribution of stresses
in plates with holes is similar to that in a plate with no
hole. This similarity is in the way that the stresses tend
to diffuse towards the supported edges away from the peak
of a buckle, so that the maximum stresses occur along the

supported edges of a plate. It is therefore a reasonable

assumption to consider that the post-buckling distribution

of stresses in plates with holes under different boundary
conditions and loading conditions follows the same trénds

as similarly loaded and restrained plafes with no holes.

By making this assumption, the method of analysis described
in Chapter Three can be applied to plates with holes, if

an analytical solution exists for the post-buckling behaviour
of a similarly loaded and restrained plate with no hole.

The limitations on the application of the results of such

theoretical analyses cannot be readily assessed. However,

the factors affecting the accuracy df the theoretical analysis
have been discussed, and the résults of these discussions can
be used as a basis for planning tests to determine the limits
of accuracy for oéher cases.

' The collapse analysis can also be applied to plates
with other boundary conditions if there has been a relation-
ship established between applied load and effective width
for plates with no holes. This is because the collapse

. analysis is based on the correction of the post-buckling
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stress distribution in a plate with no hole, in order to
allow for the redistribution of stresses caused by the

introduction of a hole. Only a mathematical approximation

to the shape of the post-buckling stress distribution is

required.
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CHAPTER EIGHT

Conclﬁsions and Suggestions for Future Work

The discussion of the theoretical analysis, and its
comparison with the author's experimental results and the
experimental results of previous investigators led to cer-

tain conclusions being drawn, and also suggested some areas

and directions for future work.

8.1 Suggestions for Future Work

1. A thorough experimental examination of the post-
“buckling out-of-plane deflections for initial
buckling modes and changes of buckling mode could
be made.

2. The stability analysis could be applied to
perforated compression flanges of typical cold
formed sections.

3. The stability analysis of suggestion 2 could be
extended to a post-buckling analysis, using a
theoretical analysis such as that described in

reference 35 as a basis for the post-buckling

behaviour.

The collapse analysis could be extended to plates
with different boundary éonditions, and to the
compression flanges of thin-walled beams and
columns;

8.2 Conclusions

1. The theporetical buckling analysis was successful,

in that it accurately predicted the results of tests con-

ducted on square and rectangular plates described in this
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thesis, and also predicted the experimentallresults of
other investigators with improved accuracy over previous
theoretical analyses. |

2. The theoretical post-buckling analysis of
out-of-plane deflections was most successful at predicting
the experimentally observed out—of—plaﬁe deflections of
the simply supported square and rectangular plates tested,
for the range of hole diameters 0.0 to 0.3 times the plate
width.

3. The experimentally measured post-buckling
membrane stress distribution showed the redistribution of
stresses in the post-buckling range of a plate with a
centrally located circular hole to occur in a manner similar
to that in a plate with no hole, in that the maximum stress
in the direction of loading became concentrated close to
the supported edge of the plate.

4. The theoretical analysis of post-buckling
stresses successfully predicted'the trends of post-buckling
stress redistribution and.showed good agreement with the
experimentally measured stresses for plates with relatively
small holes (diameters less than 0.3 times the plate width)
for applied 1oading.up to approximately twice the buckling
load.

5. The experimentally measured collapse loads of
the plates were not appreciably influenced by hole size
until a hole diameter of approximately 0.3 times the plate

width. Beyond this hole size the collapse loads decreased

slightly with increasing hole diameter.

6. The collapse analysis accurately and conservatively

agreed with the experimentally observed collapse loads.
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APPENDIX ONE

The Derivation of the Stiffness Matrix of a
Constant Strain Triangular Finite Element.

. The finite element calculations performed for the

theoretical analysis described in Chapter Three used'the
constant strain triangular elements described in Chapter
Four of reference 8. Briefly, the Finite Element method

minimises the total potential energy of a structure
expressed in terms of the loads and displacements at dis-
crete points in the structure. These discrete points, or

nodes, are on the boundaries of small regions, or finite

elements, of the structure, over which the strain energy

can be expressed in terms of the loads and displacements

at these points or nodes. This allows the total strain

energy of the structure to be expressed in terms of these

nodal displacements. This is accomplished by writing a
relationship for the loads and displacements of the nodes

for each element such that

(P} = [k] {§}] ALl
where {P} is the vector of the nodal loads and {3] is the

vector of the nodal displacements. [k]is the stiffness

matrix. The stiffness matrix should produce nodal loads

which are in equilibrium, and which are zero for rigid

body displacements or rotations.

The derivation of the stiffness matrix for the plane
stress constant strain triangular element is simple, direct

and rapid to calculate. Figure Al.l shows a typical
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triangular element with nodes numbered { = 1, 2 and 3.

Each node has two degrees of freedom, the displacements

U; and V; represented by the vector

»

{5} ‘

[}
=
re

L 3. Al.2

In order to define the displacements within the element by
these six nodal displacements, {S} , 1t is necessary to

represent the displacements by displacement functions with

a total of six arbitrary coefficients. The simplest

functions which fulfil this requirement are

u = U, +sz + U,y

A193

v = Vo Vet Uy AL 4

The nodal values of the W displacement can be written
using equation Al.3 as )

U, = LA + k&:rl + 1Y,
Uy, = U, + Uz X, + lJ3 1}2
U, = U' + U2 x, * U3 Y Al.5

&) {U]

-~
= -
St
n
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where {u}= 'uﬂ and {LJ} = L)j
iulr ﬁUzr
U,

- -

Hence {Lj} = IC}]ﬁ'{u} Al.é

For such a small matrix, the inverse of[ci]can readily be

found by substitution of variables i.e.
(7, -2, Yoy, - %) (e, = 25y,)]
-| '

[G’] = —Z.—A. (72 - ng) (’3 =Y ) (71 - (jz)

! (3(3"-7:) (-X, "'13) {-7(1 _9(2)4

Al.T7
where A = area of the triangular element.

Thus the coefficients of equation Al.3 can be directly

expressed in terms of the nodal displacements. A similar

operation can be performed on equation Al.l4 to produce the

corresponding expression
| -1
{V} = (G] {v}

-l
The matrix [(EJ can be re-written as follows in order

Al.8

to allow the relationships described by equations Al.8 and
Al.6 to be expressed as

(U} = [G] {5]

(V}- [&](s)

Al.9

Al.10

208



where

[g] = [G] [t 0 o000
© 01 00O
o o 001 o0
and
-1
[G,] = [c] Jo 1 0o 000
O 0 01 0O
0 0 o 0 O |

The strain in each element can be written as follows

-Ex 1 r .g_li w
dv
{E} = 1& ¢ T 1 ¥ .
u 3V
Lxgj. :3 + 5&‘

This can be obtained from equations Al.3 and Al.}4 as being -

U, |
{g} = Vs
LUB * Vz.. Al.11

Expression Al.11 can be re-written using expressions Al.9

~

A,
i

and Al.10

(0 0} [G] o |
(€] = |fo o 1}[G.]
L{o oi1tlal + {010} [Grz]

Al.1l2

This becomes, after substitution for[C%],[G{]etc,
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(e} = [H]{5)

Al.l3

where

(ljz' "3) 0 (73 - 71) o (7o - ‘jz) o
[H] = 0 (x-x) O (x, =x3) o (x, -, )
(xl-x})(‘jz- lj,)(xo-?ﬁ)(ﬂ;‘ lj,) (13"’x,)(‘j. "'(12)

Al.14 .

The stresses in each element can be written in terms of the

strains for a plane stress relationship as follows

6 (Ex + l)f)

x (I L79 J
. ( & L Ex)

° :-V’) )"

. = E

&
X e ————— o~
b tavv) Y
The relationship between stress and strain can be written

from this into a matrix formulation

O
(6} = {sy t = [Dl{e]
Ty ) ~ AL.15
where
[ P o
[D]= |v 1 o
0 O /1 -v)
L 2 -l
The strain energy in an element is
T
ue=zi[{e}{6}tdxdy e
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where the integration is over the surface of the element.

Lle can be re-written by the substitution of equations Al.1l5
and Al.13 into Al.16 to give

- 4 [V} ¢

The coefficients of the matrices in equation Al.17 are all

Alol7

independent of x and y. Therefore the integration of

equation Al.17 becomes

= LA (sYTHTTDHI) ¢ e
The total potential energy of the element is therefore
Ur = [P}{s}'

where {P} is the vector of the nodal loads i.e.

—

U = { }{3} - /At{ }T[HJTDJ[H]{B} A1.19

The equation for total potential energy is then minimised

with respect to the nodal displacements, in order to produce

an equilibrium relationship. This produces the following

equation.
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WU = (P} - at[HIDIHISY = ©
IEY; ‘

Al1.20

Equation Al.20 can be arranged to give

{P} = at[HIDIHI{5}

Al.21

Equation Al.21 is of the form of equation Al.l where

[k] = At [H)IDI[H]

Al.22

The stiffness matrix is therefore the product of only two
matrices which can be directly written without any previous
matrix inversion or numerical integration.

As no finite e}ement programs of sufficient size were
generally available within the University of Strathclyde at
the start of this investigation, the author wrote a simple
plane stress or plane strain two dimensional finite element
program, using constant strain triangﬁlar elements. The
program could accept either prescribed load or prescribed
displacement boundary conditions, and was written for the
IBM 370/155 computer which had become available to the
University of Strathclyde at that time.
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Fiaure Al.l  Diagram oF A TRianGuLarR FINITE ELEMENT

~
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APPENDIX TWO

Calculation of the Minimum Eigenvalues

The calculation of the smallest eigenvalue of equation
3,13 was performed by a simple iterative method. The

method is described in reference '38. However, its appli-

cation to the eigenvalue problem specified by equation 3.13

is described as follows.

Equation 3.13 is written in the fdllowing manner:-

{[ Kmm] + ¢ [Ksnn]\{A} =0 A2.1
This equation can be re-written as

(K 1{A} = - LKl {A]

- - == Klnm inm A2.2
9;) (A = = [Kun] [k} {2} | .
or STV (= (7)) h2.3
where A\ = (}!- and [Cnm] = "[Klnm] [ mm]

A2.4

The iterative method of solution was commenced by

taking an arbitrary real vect;or'{/\]o and calculating an

approximate value of )\{A} from equation A2.3
i.e. . >\, {A}' = [CM]{A}O

The first approximation for the eigenvalue of equation A2.3,

>\. , 1s the largest term in the product [Cnm]{A},, , and the

eigenvector {A}' is this product normalised with respect to
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the largest term. The iteration was continued by repeating
the calculation in order to obtain the second approximation

from the first approximation, until the 7~ th approximation

is

A, {A), = [Cm (A,

At some point in this calculation, the eigenvalue
converged to within suitable limits of accuraéy to give the
largest eigenvalue )\r of equation A2.3, which is therefore
the smallest eigenvalue, 95 , of equation A2.1. In practice,
the eigenvector takes longer to convergé than the eigenvalue.
However, convergence was assisted by choosing a suitable
initial approximation for (A]a' In practice this was found
to be a zero vector with a unit value in the location
corresponding to the row containing the largest absolute
term on the leading diagonal of the matrix[CnA]. Conver-

gence to within 0.1% of the eigenvalue was taken as the

point at which the iterations were stopped. However, as
this was found to occur within twenty iterations, a standard
number of thirty iterations was adopted to simplify pro-

gramming, as the additional computing time was negligible

for 3 x 3 matricesf
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APPENDIX THREE

The Material Properties

The material properties of the plates were established
as part of the experimental investigation. These properties
were measured from standard tensile test specimens made to
B.S. 485 from unused plate specimens. The tensile test
specimens were taken from both directions of the plating.

The Tinius Olsen machine was used to test the specimens
in tension. An extensometer was attached to each specimen,
which allowed a continuous recording of the load-extension
behaviour of each specimen to be obtained from the machine.

These recordings were used to calculate the Young's Modulus

and yield stress of the material. A few tensile test speci-

mens were strain gauged both in the axial direction and

across it, and were used to estimate Poisson's ratio.

The average material properties were found to be

E= 302.10° bfus® (2080 .10° MN.m2)

E¢= 43100 Ibfws? (297 MN.m2)
vV = O3 -

The scatter on the results for the Young's Modulus was
slight. However, the scatter on the values for the yield
stress were relatively large, ranging between +9% and -7% on

the mecan value. The mean values of the material properties

were used in all calculations.
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