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ABSTRACT 

This thesis describes an investigation into the 

buckling, post-buckling behaviour and collapse of simply 

supported square and rectangular plates with centrally 

located circular holes. 

The re~iew of the current literature is preceded by 

a brief description of the approximate methods of plate 

buckling and post-buckling analysis. The basic equations 

of compatibility, equilibrium and strain energy are 

described. 

Theoretical analyses of the pre-buckling, bucklins 

and post-buckling behaviour are presented. The pre-buckling 

analysis is by the finite element method and the buckling 

and post-buckling analyses use the minimisation of total 

potential energy. The buckling analysis uses the pre­

buckling stress distribution with an approximate out-of­

plane deflection function with arbitrary coefficients. The 

post-buckling analysis uses finite element and analyticai 

stress distributions to ensure internal equilibrium and 

assumes that the out-of-plane defl~cted shape is the buckling 

mode. A simple collapse analysis was also presented. 

An experimental programme is described which was 

carried out to determine buckling loads, post-buckling 

deflections and collapse loads. The experimental investi­

gation of the distribution of strains along the plate· 

centre lines is also described. 

Comparison of the theoretical results is made with the 

results of the experimental investigation and, in addition, 

with the theoretical and experimental results of other 
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'investigators. These results are all fully discussed and 

the conclusions drawn from the discussion are presented. 

The thesis is ended by three appendices, the first 

of which describes and discusses the derivation of the 

finite element plane stress stiffness matrix, and the 

second describes the method of determining the smallest 

eigenvalue. The third appendix describes the material 

properties of the plate specimens, and their derivation. 
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NOTATION 

The following list of symbols have been used through­

out the text. Additional symbols are explained where they 

first appear. 

An Arbitrary coefficients of the deflection function. 

-
A~ Deflection function coefficients at buckling 

At' 

{A],(AJ 

normalised with respect to the largest term. 

Post-buckling deflection coefficient. 

-
Column vectors of the coefficients An and A~ 
~espectively. 

The length of the plate in the loaded direction. 

Coefficients of the stress function If. 

Half width of the plate across the direction of 
loading. 

be Effective width of an unperforated plate. 

bee Approximate effective width of a plate with a 
hole. 

Coefficients of stress function Ii. 
c Radius of the hole 

D Plate flexural rigidity E t '3 

£ 

F 

12.(1- va) 

Y~ung·s Modulus of Elasticity. 

Airey Stress Function. 

Post-buckling stress functions arising from the 
out-of-plane deflections .. 



f(X) 

CT 

In(Y) 

h/llfl (:r,y) 

~ I J;ftD1 
jQ (x.) 

I(, nM 1 kj 1 

Al'.M J X4nn 

Mo'( I My 

Components of stress function ~ 

The deflection in the x-direction. 

The shear modulus. 

The deflection function in the y-direction. 

A function representing the function of x and y 
in stress function G , i. e. 

If = LL AnAIt\ hllm(:X,LI) n-J,J,5 etc. ft-' "'~, J 

Coefficients of stress function f[ . 
Bess el function of x 

Components of the strain energy equation 
written as terms of An. Am 

The coefficients K1nl1l , /(JNn and /(qr: ... wri t~en in 
matrix form. 

Components of the total strain energy calculated 
from the deflection function coefficients ifn 

The number of half-wavelengths in the direction 

of loading. 

Bending moments per unit width of a plate normal 
to the x and y directions respectively. 

Twisting moment per unit width of a plate. 

Normal mid-plane forces per unit length 
perpendicular to the x and y directions 
respectively. 

~j Shearing force in the direction of the y-axis 
per unit length along the y-axis. 

/\Ie Number of elements in the finite element analysis. 



N Number of terms of the deflection function used 
in the solution. 

nxr, nJr,n,,. Components of the stress resultants 1Vx, ~ and 
Iv:xy due to stress system r. 

11 

p 

Components of the stress resultants~, ~ and 
N:x, in element f due to stress system r 

The stress resultants 11.r" n,,. l n31r referred to 
their appropriate characterising load or 
deflection parameter, e.g. 

fn.x. :: cp. "nzI 

2 -
co A,. n~U. 

z -
co At .pflx, 

Number' of half-waves across the direction of 
loading. 

Total applied end load. 

Components of the applied end load arising from 
the pre-buckling stress system, and the post­
buckling If and If stress functions respectively. 

Components of' the end load referred to their 

appropriate characterising parameter, i.e. 
- 2- 2-p,a ¢P, I F; = Arli I P, cArfj 

Critical load of a plate with a hole. 

Critical load of an unperforated plate • 

. 
The load on node l on the hole edge calculated 
from stress function I;f for the calculation of 
stresses fn:J(S' ,ny, and pnXJ). 

The ultimate load of a plate. 

Radii of curvature in x and y directions. 



The surface area of finite element p .1 

t The plate thickness. 

U Mid-surface deformation in the x-direction. 

l! Total Strain Energy. 

v" liz Strain energy due to mid-surface deformations 
and bending respectively. 

v Mid-surface deformation in the y-direction. 

~ Out-of-plane deflection in the middle surface. 

~y Rectangular Cartesian co-ordinates. 

5 y The yield stress of the material. 

0. The maximum stress in the plate parallel to "Xmax 
the x-axis. 

s6 The applied edge displacement (or load) parameter. 

V Poisson's Ratio. 

e~,E1 Direct strains in the x and y directions. 

Exr/Eyr Direct strains in the x and y directions arising 
from stress system r . 

Components of the direct strains ex and e~ 

arising from stress system r in element p • 

rEx,. J r"'ij ,. The dire ct strains pEx,. and pC1" re Ia ted to the 
relevant characterising load or deflection 
parameter, e.g. 

f&, :: tp."l;, 
f:_ A' -c-,xz = ,.. ex%. 

AJ 
-f t:~, ~ to opE-oX' 



~,. 

~Yl" 
fOxyr 

f:Il 
2. 

Shear strain in the x-y plane. 

Shear strain J;, arising from stress system r 

Shear strain ~, arising from stress system r 
in element f • 

Shear strain ,J:,,.r"elated to the appropriate 
characterising load or deflection parameter. 



CHAPTER ONE 

Introduction and Review of Literature 

1.1 Introduction 

Thin plates are among the most commonly used types 

of load-bearing members throughout a wide range of 

engineering structures. The trend in shipbuilding, air­

craft and vehicle body manufacture has been from stressed 

skin structures, where the coverings and panelling over 

the load-bearing frames were allowed to carry a small 

part of that load, to monocoque structures, which are 

built fully from thin plating and shells. 

Openings have to be cut in some thin plate 

structural members in order to' allow access, or to lighten 

the structure. For efficient and safe design it is neces-

sary to have some knowledge of. the stability and of the 

post-buckling and ultimate strengths of plates containing 

such perforations. 
,. ~ . r ' 

The behaviour of thin plates under in-plane loading 

is of particular importance, as it is one of the principal 

types of loading encountered. Thin flat plates have three 

phases of behaviou.r under compressive loading. Toe first 

phase occurs while the plate is compressed without any 

out-of-plane deformation. At a certain load this flat 

shape becomes unstable and beyond this lies the second 

phase, during which buckles, or waves, grow elastically. 

The second phase ends when the material begins to yield. 

The third phase of behaviour starts \-d th th~ growth of 

plasticity and ends when the plate is incapable of 
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supporting further loading and collapses. 

The division between the first and second phases of 

behaviour of a compressed flat plate is called initial 

instability or buckling. This point occurs when the energy 

of the load is more easily absorbed by the plate bulging 

or buckling than solely by middle surface deformations in 

the plane of the plate. ) 
~ 

A large amount of work has been done on the subject 

for various plate shapes and boundary conditions. This 

work has been adequately reviewed by Timoshenko and Gere 

(1), Bleich (2) and Bulson (3) and therefore it is only 

necessary to give a brief outline of the principal methods 

of analysis of this problem as background information to 

the literature on the buckling' of plates with holes. Most 

of the methods of analysis reviewed can also be applied to 

the post-buckling behaviour of thin plates. 

Bending can be regarded as being initiated at the 

point of initial instability of a thin flat plate. At 

this point, the out-of-plane displacements are only on the 

point of growing. Hence, it may be assumed that stretching 

caused by out-of-plane bending has no effect on the level 

of direct stresses in the plate. This simplifies the 

differential equations which describe the equilibrium and 

compatibility of the stresses and deformations in the plate 

and also simplifies the equations of strain energy. Even 

this simplification of the governing equations only allows 

a few cases of rectangular uniform plates with regular 

boundary conditions to be solved exactly. Approximate . 
energy and numerical methods must be used for irregular 
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or complex shapes or boundary conditions. The most 

successful of these approximate energy methods are the 

Rayleigh-Ritz, Galerkin and Lagrangian Multiplier methods. 

In the Rayleigh-Ritz method the total potential 

energy is written in terms of approximate displacement 

functions, containing arbitrary coefficients, and is 

minimised with respect to these coefficients. TIle 

method is described at greater length and discussed in 

detail by Oden (4) and by Argyris and Kelsey (5). Each 

term of the approximate displacement functions must at 

least satisfy the kinematic boundary conditions. Overall 

static equilibrium is approximately produced by minimising 

the total potential energy. In the particular case of 

plate buckling, only the out-of-plane deflections need be 

represented by an approximate function, if a two-dimensional 

plane stress pre-buckling solution for the plate geometry 

and boundary conditions is known. 

Alfutov and Balabukh (36) rewrote the strain energy 

equations of a plate into a form which did not require the 

exact prebuckling stress distribution, but required a 

stress distribution which could be separated into a 

statically determinate stress distribution which satisfied 

the stress boundary conditions, and another which satisfied 

the compatibility equations for the out-of-plane deflection 

function with zero stress on the boundaries. Khan and 

Walker (37) used this method of analysis for the buckling 

load of plates under localised edge loads, and related the 

deflection function to an approximate solution for the 

compatibility equation by Galerkin's method. 
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This method is useful if a reasonably accurate 

statically determinate approximation for the pre-buckling 

stress distribution is known, and a solution for the 

compatibility equati"on can be found. However, if the 

pre-buckling stress distribution is readily available, or 

too complex to be represented by a simple statically 

determinate stress distribution, then it is obviously more 

advantageous to use the actual pre-buckling solution. 

If the virtual displacements specified by the 

deflection function are considered not to disturb the 

deformed boundaries of the compressed undeflected plate, 

then no external work is done during these deflections. 

It therefore follows from reference (4) that only the strain 

energy requires to be minimise"d. As an alternative, 

Timoshenko (1) approached the problem of stability by 

ignoring the stretching of the plate during bending, and 

equated the change in bending strain energy caused by a 

variation of the deflection function from the undeflected 

state, to the external work done by that same variation. 

Due to the origin of Timoshenko's equations, both methods 

are equivalent. 

The Lagrangian Multiplier method requires displace­

ments to be represented by approximate series functions, 

but does not require these functions to satisfy either the 

kinematic or static equilibrium boundary conditions. The 

additional constraint equations necessary for the displace­

ment functions to satisfy the boundary conditions are added 

to the equation for total potential energy, after being . 
multiplied by constants known as Lagrangian multipliers. 
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The modifted energy equation is then minimised with respect 

to the displacement function coefficients and the further 

equations required for a solution come from thecequations 

of additional restraint. This method has been used success­

fully by Budiansky and Hu (6) to provide both upper and 

lower bounds to various problems of rectangular plates. 

It may be possible to apply this method to boundaries 

of irregular shape by using Langrangian multipliers to 

satisfy boundary conditions at discrete .points on these 

boundaries where the displacement functions do not satisfy 

the appropriate conditions. The idealisation of continuous 

boundaries as discrete points has been successfully carried 

out by Conway and Leissa (7) in order to satisfy solutions 

for the differential equations' of plate equilibrium for 

bending and buckling. However, the solution of the equi­

librium equation was mathematically exact and Lagrangian 

multipliers were not used. 

The Galerkin method requires the deflection functions 

chosen to satisfy all the boundary conditions. This method 

is fully explained in reference (5), but it is obvious that 

the method is extremely difficult_to apply to plates with 

highly irregular boundaries or complex loading conditions. 

The two most widely employed numerical methods are 

the Finite Element and Finite Difference methods. It is 

not considered necessary to describe these methods in detail, 

as they are fully discussed in references (8) and (26) •. 

Geometrically non-linear finite elements are discussed 

by Zienkiewicz (8) and Argyris, Kelsey and Kamel (9). Finite 

element subdivisions can reproduce highly irregular boun­

daries and the buckling of square plates with central 
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circular holes has been studied for shear loading by 

Rockey, Anderson and Cheung (lO)in this way. The finite 

element displacement method is basically a minimisation 

of the total potential energy of a structure, in which the 

structure is idealised ~y the displacements of a limited 

number of points, which are the corners or nodes of 'finite 

elements' of the structure. The load-displacement charac­

teristics, or stiffnesses of each of these elements can 

be determined, thus allowing the strain energy of the 

structure to be written in terms of the nodal displacements 

as the sum of the strain energy of the individual elements. 

Hence the method depends on how accurately the elements 

themselves can reproduce the behaviour of the plate. Many 

elements have been proposed or developed, and references 

(11), (12) and (13) are included in the bibliography as 

being typical of the range of these elements. However, 

the type of problem studied by the use of these elements 

for large deflection behaviour has been limited to simple 

regular structures. 

Finite differences have a limited application if 

highly irregular boundary conditions are to be applied. 

The conventional triangular or rectangular grid is very 

difficult to apply to irregular boundaries and high orders 

of derivatives. Series Functions with arbitrary coefficients 

could be used to approximate local deformation surfaces, 

but this added complexity begins to erode the advantage of 

relative simplicity which the finite difference method has 

over finite elements. 

There are other methods which idealise plates into 
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discrete points or regions. Yettram and Awadalla (14) 

wrote the energy equations in terms of displacements at 

the corners of regions of a plate, and used Castigliano's 

first theorem to produce a relationship between the 

corresponding loads and displacements. Walker (15) 

considered the overall behaviour of a plate as being the 

sum of localised displacements. The strain energy was 

written in terms of the governing parameter or coefficient 

of each local perturbation and the equilibrium conditions 

were determined by minimising the total potential energy. 

The main disadvantage of the numerical methods is 

that they produce very large eigenvalue problems for 

initial instability, which have to be examined for the 

lowest eigenvalue and its corresponding eigenvector, and 

non-linear analysis produces large systems of simultaneous 

non-linear equations. 

1.2 Plates with Holes 

The buckling of plates with circular holes has been 

studied under various conditions of edge loading and 

rest~aint, and much of this work has been summarised by -
Bulson (3). However, little work has been done on post­

buckling behaviour and collapse. 

The earliest work on the stability of rectangular 

plates with holes was carried out by Levy, Woolley and 

Kroll (16). This was applied to square plates "lith a 

ring stiffener around the edge of the hole, but the plate 

without any stiffening wa~ considered as a special case. 

Initial instability was calculated by the Rayleigh-Ritz 
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method. ( The pre-buckling stress distribution came from 
L 

work by Gurney (17) on an infinite sheet with a constant 

uniaxial stress applied at infinity and containing a 

stiffened circular hole. An approximate deflection 

function of the form 

N ,4It 

f4) = z.. z.. ttl ,," Cos nUx . c~s /111[j 
1/;/ /11./ a. b 

was used, selecting only the terms which gave the most 

rapid convergence. Instability was related to a parameter 

S in the stress distribution, which corresponded to the 

uniform applied stress at infinity. The critical applied 

stress was calculated from the average of the mean stress 

on the loaded edge and the mean stress across the minimum 

section for the critical value of iJ The critical stress 

thus calculated decreased with increasing hole size. The 

investigation was carried out for plates with hole sizes 

ranging from 0.125 to 0.5 times the plate width. The 

,results of Levy et alA are illustrated in Figure 1.1. 

~The stress distribution was only an approximation to the 

stresses in a finite plate, hence-these results corresponded 

to plates with some additional restraint or loading applied 

at the nominally unloaded edges. This approximation 

excluded these results from any discussion on the effects 

of in-plane restraint on critical loads.] 

Cxumai (18) used the Rayleigh-Ritz method to study 

simply supported and clamped square plates. An infinite 

plate stress distribution 'in curvilinear co-ordinates was 

used to represent the pre-buckling stress distribution. 

The deflected shapes were of simple sine/cosine relationships 
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with an exponential function, and were of the form 

b e-C(x'r'llj 
tv = ~! ('"os 0".% . CtZTIj -J-

for a simply supported square plate of sides having unit 

length and the origin of the co-ordinates in the centre 

of the plate. In radial co-ordinates this was appro xi-

mated by 
z -er
j + b t!!: 

By substituting the equation for W in radial co­

ordinates into the expression for zero'radial moment and 

Kirchoff's free edge boundary conditions at' the edge of 

the hole, values of band C were obtained. 

The theoretical analysis showed the critical stress 

to decrease with increasing hole size for simply supported 

plates, and also showed a change to occur in the buckling 

mode of clamped plates beyond a certain hole size. Kumai 

carried out an experimental investigation which confirmed 

the theoretical predictions. These tests were conducted 

on perspex plates, whose holes were progressively enlarged. 

The loads were applied through a system of levers in order 

to approximate a uniform stress loading. The slope of the 

plate at 'a point was measured from the reflections of a 

light source from a mirror attached to the plate at that 

point. The slopes were used in the Southwell-Donnel method 
\ 

to estimate the buckling load. The results are summarised 

in Figure 1.2. 

Kumai's theoretical results show better agreement 

with his experimental results than do those of Levy. This 

is attributed to his use of the exponential function in 

attempting to approximately.satisfy the hole free edge 
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boundary conditions. However, for large hole sizes, the 

addition of this term means that none of the boundary con­

ditions are satisfied. The plane stress distribution is 

for an infinite plate, and therefore also limited in 

accuracy to small hole sizes. No information was given on 

how the buckling loads were estimated from the critical 

infinite applied stress. 

The stability of square plates with uniform edge 

displacements and straight unloaded edges was studied by 

Schlack (19). The Rayleigh-Ritz energy method was used, 

with all the displacements represented by functions 'con-

taining arbitrary coefficients, i.e. 

Bx X
Z 

) N ~ (;x!il)n 
IJ. - + t{/- i?· i- LZ 4", a. b 

n;/ Mal 

V I: C'J + , 'il 'j N J-t {;X )7'9" t (J - hI.) b f., f, en", ii b 

x2 y' N,1I\ (;")"'~!I )n 
W I: t (/ - a' J(I - b2 ) L Z. AnM a b 

n=1 Pta' 

The effect of adding a term, which was singular at 

the centre of the hole, was assessed, but was not used in 

later work (20). The critical load was calculated from 

the critical displacement, as being the average load in 

the compressed direction along the length of the plate. 

The theoretical analysis showed that the critical stress 

decreased with increase in hole size, and this was veri­

fied by experimental work carried out by Schlack. The 

experimental work was performed on aluminium square plates 

whose holes were widened progressively from a diameter of 

0.1 to 0.3 times the plate'width (19) and to 0.7 times the 

plate width (20). The critical load was estimated as 
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being the point of inflection of the load deflection curve, 

and was determined by numerically analysing the load-

deflection data. The point of inflection of the load­

deflection curve was recommended by Coan (21) and Yamaki 

(22) as corresponding closely to the buckling load of a 

flat plate. Schlack's results are summarised in Figure 

r~The effect of the position of a circular hole on 'the 
~ 

critical load of a square plate was examined theoretically 

and experimentally by Yoshiki et al. (23). The same method 

of theoretical analysis was used as in reference (18), with 

modification to the exponential term in order that the 

singular point occurred at the centre of the hole. The 

applied critical load was calculated from the average stress 

in the direction of loading across the minimum section and 

at the loaded edge for the critical value of the stress at 

infinity. There is a discrepancy between Yoshiki's and 

Kumai's theoretical results, which suggests that Kumai used 

another method of evaluating a critical load from the 

critical stress at infinity. 

Tests were carried out on 600 mm x 600 mm x 6.6 rom 

steel plates. No details were given of the test rig, except 

that it had a rigid loading head. The loading was therefore 

expected to be of the constant displacement type. The nature 

of the in-plane restraint on the uncompressed edges was not 

mentioned. Critical loads were estimated from the plot of 

load against the square. of the out-of-plane deflection. 

The experimental critical loads showed good,agreement with 

theory and with the experimental and theoretical results of 
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Kumai. The experimental results of Yoshiki and Kumai for 

plates without a hole indicate that the uncompressed edges 

were probably free to move in their own plane. The theo­

retical and experimental results of Yoshiki are summarised 

in Figure 1.4. 

Some discussion was made by Yoshiki et ale on the 

difference between constant stress and constant displacement 

loaded edges, and their representation by infinite plate and 

strip stress distributions. The conclusion was that in-

finite plate or strip stress distributions could be used 

for plates compressed by a uniform edge displacement, but 

that exact or finite element stress distributions should be 

used for constant applied stress loading of plates with 

large holeS. A finite plate stress distribution from an 

unspecified source was applied to a particular case. How-

ever, this theoretical result did not show any better 

agreement with the experimental results than the other 

theoretical results based on infinite plate stress 

distributions. 

The use of finite element stress distributions in 

the Rayleigh-Ritz method was proposed by Kawai and Ohtsubo 

(24) for the solution of plate stability problems. In 

order to demonstrate this method, the problem of the simply 

supported square plate with a central circular hole was 

studied. The out-of-plane deflection was represented by a 

polynomial series, and Green's theorem was used to simplify 

integration of the energy equations over the finite element 

areas. 

Kawai and Ohtsubo studied plates with the same boun-

dary conditions as Schlack (19), Kumai (18) and Fujita (23) 
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and their theoretical results showed good agreement with 

the experimental "lork of these previous authors. Compari­

son is made between Kawai and Ohtsubo's results and those 

of Kumai in Figure 1.5. 

Kawai and Ohtsubo were first to compare the effects 

of restraint in the plane of the plate at the unloaded 

edges. They were also able to show theoretically the 

. distinct differences in buckling strengths of plates 

loaded by constant stress, and those loaded by uniform 

displacements. 

The buckling and ultimate strengths of perforated 

compression flanges of thin walled members were studied 

by Yu and Davis (31) for various boundary and loading 
\ 

conditions. Flanges, fully supported or with one edge 

free, with single centrally located holes were investi­

gated experimentally for initial instability and, in 

addition, fully supported shear webs were also investigated 

experimentally for puckling. The experimental results 

were compared with the theoretical results of other 

investigators (16), (18), (19), (23), (24) in order to 

find those which most closely pregicted the experimental 

results. The ultimate strengths of fully supported flanges 

under direct compression were also measured. 

The tests on the fully supported flanges were carried 

out on beam and column specimens. The ratio of hole sizes 

investigated was for diameter/width ratios 0 - 0.122 and 

width to thickness ratio 36.6 - 18.2. The aspect ratio of 

the perforated compression flanges was 2.6. The experimen­

tal variation of the buckling loads 'against hole size is 
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shown in comparison with the theoretical results of Kawai 

and Ohtsubo (24) for simply supported square plates in 

Figure 1.6. Yu and Davis recommended that the theoretical 

curve for the buckling loads of constant stress loaded 

plates in Figure 1.6 be used for the prediction of local 

buckling of fully supported compression flanges. The 

ultimate strengths of these flanges were comparable to 

the ultimate strength of solid flanges. 

The post buckling strength was defined in terms of 

modifications to Winter's 'effective width' formulae (33). 

The results of the local buckling investigation indicat~d 

to Yu and Davis that the fully supported perforated flange 

with a hole of diameter/width ratio greater than 0.1 could 

be replaced by two strips, each with one edge free and 

width !(total width-diameter). Two coefficients dependent 

on the hole diameter/plate width ratio were introduced 

into Winter's design formula, and the resulting expression 

was equated to the expression for the effective width of 

a flange with one edge free at the transitional value of 

hole diameter/plate width ratio of 0.1. This enabled the 

values of these coefficients to be found, which gave a 

continuous relationship for the effective width relative 

to the hole diameter. 

For fully supported flanges, this was:-

d = hole diameter 

be = effective breadth 

A = 0.226 
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~ = plate-width 

8 = 0.0319 



Comparison was made between the design formula and 

experimental results derived from the ultimate loads of 

the columns. These are reproduced in Figure 1.7. 

No comments were made on the mode of buckling or on 

the modes of failure. 

1,.3 Summary 

The discussion of the methods of analysis of stability 

and post-buckling behaviour of plates, subjected to com­

pressive edge loads, has indicated that the most suitable 

line of approach to the analysis of the buckling and post­

buckling behaviour of plates with holes lies with approxi­

mate en,ergy methods. 

Despite the large body of work on the buckling 

strength of perforated plates under direct compression, 

there is relatively little knowledge of the behaviour of 

rectangular plates, and no attempt has previously b~en made 

to analytically describe the post-buckling behaviour of 

perforated plates under edge compression. Toe modes of 

failure of square and rectangular plates have not been 

investigated, and apart from the empirical equations dra"ln 

up by Yu ,and Davis for the compression flanges of cold 

rolled thin compression members, no method of predicting 

the ultimate strength has been devised. 

The work described in this thesis was an investiga­

tion into the initial buckling, poot-buckling load 

deflection behaviour, internal stresses and collapse of 

simply supported square'and rectangular plates with single 

centrally located holes. The boundary conditions chosen 
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to be applied were:-

(i) All edges simply supported. 

(ii) Constant displacement along the loaded edge. 

(iii) The unloaded edges are allowed to move freely 

in the plane of the plate, i.e. no direct 

stress normal to the edges. 

(iv) All edges free of shear stress. 

These boundary conditions were selected as being 

those which could be produced experimentally with the 

greatest degree of accuracy and reliability, so that valid 

comparisons can be made between experimental and theoreti­

cal results. 

The i.nvestigation took the form of experimental 

tests on square and rectangular plates of aspect ratio 

2:1 in order to determine buckling loads, post-buckling 

load deflection behaviour, collapse loads and the stress 

distribution in certain areas of the plates. Square and 

rectangular plates of aspect ratio 2:1 buckle into square 

waves, i.e. where the half wavelength equals the plate 

width. Thus the square plates enabled the effect of a 

hole.at the centre of a square waye to be studied and 

rectangular plates enabled the effect of a hole between 

two square waves to be assessed. The investigation also 

included the development of an analytical method of pre­

dicting the elastic buckling and subsequent non-linear 

behaviour of perforated square and rectangular plates. 

The method of analysis was applied to plates with the 

previously described boundary conditions, but its applica­

tion to other boundary conditions including rotational and 

16 
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in-plane restraint and constant stress applied loading is 

indicated. A simple analysis for the determination of 

collapse loads is proposed. 
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CHAPTER TWO 

Basic Equations 

2.1 Basic Equations of Equilibrium and Compatability 

The deformation of a thin plate under compressive 

loading, in which the out-of-plane deflections are of the 

order of two to three times the plate thickness, can be 

treated as being produced by interdependent stress systems 

whose individual actions can be analysed separately. The 

distribution of stress in a plate is due to the bending of 

the plate itself, stretching of the plate during bending, 

and to the in-plane applied loads. By making the following 

assumptions, the actions of the stresses in the plate may 

be regarded as being due to 'small deflection' bending, 

and to the superposition of the stretching of a constant 

thickness membrane on the stresses in a loaded plate with 

no out-of-plane deformation. 

(i) Plane sections remain ~lane during bending. 

(ii) Deformations' in the plane of the plate are small 

in relation to the overall plate dimensions, 

therefore the products_of the derivatives of the 

in-plane displacements may be neglected. 

(iii) Deformations in the plane of the plate may be 

represented by U and V , the middle surface 

movements. 

(iv) The out-of-plane deflection of the plate can 

be represented by the deflectionw of the 

middle surface ,of the plate. 
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Assumption (i) allows bending moments to be related 

to out-of-plane deflections by 'small deflection' theory 

(reference 25). For an element of a plate loaded as in 

Figure 2.1, the expressions for the bending moments are 

as follows:-

o (I - £I) 
2.' a, Pie 

The stress resultants in the plane of the plate are 

related to the strains by the conditions of plane stress, 

i.e. 

c -1- (My - l/ Nx ) 
t£ 

2.2 a, b, c. 

The actions of N:JO Ny and N:x'j on a plate element are 

shown in Figure 2.2. Manipulation of the stress resultants 

can be simplifie"d by introducing an Airey stress function 

which inter-relates the stress resultants thus:-
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Nr 
::- t. rE 

Jj 
1 

Ny = t. tf 
),x 1 

N:r, = - t. IT. 
~aJ l.3a, b, c 

By substituting equations 2.3 a, band c into 

equations 2.2 a,b"c" c)t "E~ and O:IC, become 

_ 1. ( ) 'l.F \ 'F) f., - £ Jx' - V fy. 
y _ 2 (I + J/) J Z,F 
o:xy = £ W, 

2..4 a., b, c 

The strain components EJ( "fy and r:XJ were derived 

in reference (4) from variational calculus, as being:-

e.x ::: lY. + 1 [(Jar + (~r 1- ('iY),J he l Jx J:x . J:x-

f., = Jv ..,. fU~r + (~r of (Wl) J~ 

Dx, - Jv J~ + ~. ~..I~ Jv Jv !tY.w - + - Jj + fx'ry + Jx J:x )J J.;>c. ~j 

2..5a,b,c 
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The application of assumption eii) to equations 2.5a, 

band c reduces them to 

e.x :: IU + l(~r -J:x 2. Jx 

E.y = Jv + 1 (~/Af Jj 2. J'j 

r:r, - )V + Ju ..,. Jw. ~ - & J, Jx JJ 
2.6 a.lb,c 

In order to express the strain components in terms 

of W , as a step to relating F and W , the second deriva­

tives of equations 2.6 a, band c can be collected together 

to give 

substituting equations 2.4a, 2.4b and 2.4c into the 

left hand side of equation 2.7 gives 

A second equation, relating F and W can be found by 
-

consideri~g the equilibrium of forces in a direction normal 

to the plane of the plate. For a plate with no transverse 

loading, this equation is 

Jt + 2.i1 T ~ = i[J:..F. Ji, + J'F. L~ _ 2. Er. &) 
"j;4 J~'JJ2 Jii D J,J ):1,' J;cl JJI J:xJ; J:x), 

2.'1 
This equation is not used in the analysis, as equili-

brium is approximately s'atisfied by minimising the potential 

28 



energy of the plate, and for this reason its derivation 

has not been more fully explained. 

2.2 Strain Energy Equations 

The strain energy of a plate due to the stretching 

of its middle surface may be calculated from the in-plane 

stress resultants and the corresponding strains. For a 

linear elastic plate, the equation of this membrane 

strain energy is:-

2../0 

This equation can be rewritten by substituting 

equations 2.2a, 2.2b and 2.2c into equation 2.10. 

\{ = Ht ll(N",! -rNi - 2vtVx Ny + 2(t+ "'J N,.j ) thaJ 
, 2.1/ 

Equation 2.11 may be further rewritten in terms of 

a stress function ~ , by sUbstitution of equations 2.3a, 

2 • 3b and 2. 3c. 

V. :: 
I 

Because plane sections are assumed to remain plane, 

the strain energy of bending is simply the work done by 

the rotation of internal moments in the plate during 

bending. The rotation of a plane normal to the mid surface 

of the plate is simply the change in radius of curvature, 

the curvature being directly related to the deflection 

function W , by 

I c - J~ I _J~ 
. 
J~ I C' - = -.rx J:c z r; J,2- r;, J:K~j 
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The strain energy of bending is thus:-

~ e 1 ff[ J'1" (j;') T MJn;~) + /1"1 (J:~) } dx dJ 
2../3 

This can.be written in terms of «I by substituting 

equations 2.la - 2.lc for ~~, l1y and ~~,~ 

\'z = 12 {([(LW + ~l1 _ 2(1-I/)r )'w . J~ _ / ~ )'j'l ax ~ 
2. JJ ~ J:x J JJz/ Z );X2 JJl (J.r.JJ J . 

2.11-

The total strain energy VI of the plate is the sum 

of the bending strain energy L{ and the membrane strain 

energy V, ,i. e • 

v :: .v, -to \Iz 
2.. '5 

The equilibrium equation 2.9 can be derived, as 

previously outlined, from the equilibrium of a small element 

as shown in Figure 2.2, but it can also be derived from 

the strain energy equation 2.15. ~ox, in reference 27, 

showed that by equating the variation of V' caused by a 

small variation in GV , to zero, the equilibrium equation 

2.9 could be derived. This is equivalent to the minimisation 

of the strain energy with respect to the out-of-plane 

deflection UI, which is a statement of the equilibrium in 

the direction of UJ , i.e. perpendicular to the plane of 

the plate. 
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fi(;'V~E 2. I 

z. 

Nx 

. ~ 

Fi(;rVR£ 2.. 2 

--dx _--J 

11----- N;:c + W.x clx 
Jx 

~==i==~ NX1 + ~:1 cla: 
N1:r+ ~~:t o.lf 

~~ I 

IJ~ + ~1o.) 
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CHAPTER THREE 

Theoretical Analysis 

The theoretical analysis of the behaviour of a flat 

plate with a centrally located circular hole under edge 

compression is described in this chapter under the following 

headings! 

3.1 Pre-Buckling Analysis. 

3.2 Initial Instability. 

3.3 Post-Buckling Analysis. 

3.4 A Simplified Failure Analysis. 

The co-ordinate system chosen to represent the plate 

is shown in Figure 3.1. The boundary conditions described 

in Chapter One can be stated, using these co-ordinates, 

as follows:-

(1) The plate is loaded in the direction of the 

x-axis in a manner such that the sides x=a and 

x=o are .uniformly displaced and have zero 

shearing stress resultants i.e. 
, 

U I = a constant u/ - a constant x-o %~~ 

(2) The unloaded edges ~=±b are free from restraint 

in the plane of the plate. This means that the 

normal direct stress and shearing stress resul­

tants are zero, i.e. IV, I +' = Ny] + :: 0 
Xj 1''::-0 J ',=-b 

(3), The edges of the plate are simply supported, i.e. 

no out-of-plane deflections and no rotational 

restraint at the edges of the plate. 
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- t1 I. :: - ,~: ±b o 
The analysis is described specifically for these 

boundary conditions in each section. However, the analysis 

can be applied to plates with different boundary conditions 

and geometries, and this has been indicated, where appro­

priate, in each section with any necessary differences in 

the method of analysis. 

3.1 Pre-Buckling Analysis 

The pre-buckling analysis was accomplished using 

constant strain plane stress finite element analysis, as 

in reference (8). The use of finite element analysis is 

well established and its derivation is fully described in 

reference (8). 

The development of the finite element meshes illus­

trated in Figures 3.2 and 3.3 was based on the comparison 

of results from various finite element meshes for rectangu­

lar plates, with the theoretical stress distributions 

around a circular hole in a strip under tension derived by 

Howland (28). Various sUbdivisions for a rectangular plate 

with a hole of diameter 0.3 times the plate width were 

devised, and the solutions for these with a uniform edge 

displacement were compared with the stresses in the loaded 

direction across the minimum section. The mesh shown in 

Figure 3.2 was the optimum ,solution for mesh size and 

element arrangement. Comparison between finite element 

and theoretical results is shown in Figure 3.4 for a hole 
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diameter of 0.3 times plate width, and agreement is within 

ten per cent. The average element stress around each node 

was plotted with the centroidal value of the stress in 

Figure 3.4. The presentation of finite element results is 

subsequently made as a line passing through the average 

nodal values, which is also a line of best fit to the 

centroidal values. 

The mesh subdivision of the rectangular plate with a 

hole of diameter 0.3 times the plate width was used as a 

basis for the subdivisions of plates with other hole sizes. 

The co-ordinates of the nodal points were scaled radially 
\ between the hole centre and the plate edges to produce 

holes of differing sizes. The effect of this distortion 

of the mesh on the accuracy of the results was slight, and 

the Finite Element distribution of stresses in the loaded 

direction across the minimum section, for plates with hole 

diameters.of 0.1 and 0.5 times the plate width, is shown in 

Figure 3.4 in comparison to the theoretical solutions. 

The mesh for square plates was based on the rectangu-

lar mesh, by using a similar number of elements and a 

similar geometrical arrangement. Th~ square plate meshes 

were distorted in the same manner as the rectangular meshes 

in order to obtain different hole sizes. 

The derivation of the stiffness matrix of a constant 

strain triangular finite element is fully described in 

Appendix One. 

The analyses were carried out for square plates and 

for rectangular plates with an aspect ratio of 2:1 for 

the range of hole diameters of 0.0 to 0.7 times the plate 

width. The results are described and compared with the 
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experimental results in Chapter Five. However, the stress 

distributions of a square and a rectangular plate with 

uniformly displaced loaded edges and holes of diameters 

0.2 and 0.4 times the plate width are illustrated in 

Figures 3.5 and 3.6 as examples. In Figure 3.6 the re1a-

tive magnitudes of the stresses, in each direction along 

the axis can be seen. The stresses in the direction of 

loading across the minimum section are the largest. 

The variation of axial stiffness of. the square and 

rectangular plates with hole size is illustrated in 

Figures 3.7 and 3.8 respectively. 

3.2 Initial Instability 

3.2.1 Description of the Stability Analysis 

The Rayleigh-Ritz energy method and its applica­

tion to stability problems was discussed in Chapter One. 

In order to determine the initial buckling load, an 

approximate deflection function tv , containing arbitrary 

coefficients was chosen. The approximation was made that 

the buckled shape in the loaded direction was fixed and 

the deflection took the form 

N 
'W = lex) f An In(J) 

The strain energy V is composed of two parts, the 

bending energy Vz and the energy due to membrane stresses 

~ · L{ and ~ are given by equations 2.11 and 2.14. 

Substitution of equation 3.1 for UJ, into equation 2.14 

gave an expression for ~ of the form 
ttl N 

Vz ::: L:..L Ah·Am . K, 
n: ""'11:1""" J. 2 

where 
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/(". = f r {[f(Xlo'.(~) + f(x),; (,,] [ nxlj,,(,) + fCx )o1:c,) ] 

- .z (1-~ J[r"(x)f(x) 0 ,. (J )1; (,) - nx)' ,;(1 ).,; ( ~ ) ]} d"'.!j 

The integral/Adz; is the integral of the function over 

the surface area of the plate, excluding the area of the 

hole, i.e. 

t tJ1 jb ° "y"x 
i- G tcJ-(x-It 

The strain energy due to in-plane stresses was 

calculated using the results of the finite element analysis 

with the strains caused by stretching during bending. 

Equation 2.10 was re-written in a more convenient form as · 

J.J 

where fn~ = the stress resultant . the x-direction . ~n ~n 

element no. p 

,n1 = the stress resultant in the y-direction in 

element no . .p 
,nxJ = the shear stress resultant in element p 

The finite element stress distribution was calculated for 

some unit loading parameter and was related to the actual 

loading by the multiplier, ¢. The stress resultants can 

be re-written in terms of the loading parameter tP and the 

stress resultants calculated from the unit value of this 
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parameter i.e. 
fnx :: fpflx 

t'1 :: tlPn, 
fn;Z} rf I'~J 

. 
3.5a, bJt. :. 

The strain components tJ( , f) and~, came from equations 2. 6a, 

2.6b and 2.6c respectively. These were again rewritten to 

accommodate that component of each, which came from the 

finite element analysis. 

C;c = rC:x + i(J!)% 

c'j = 1'7 + i(jfJ' 
~, ::. ~~ + (~)(~) 

J.6a., h, c 

Where fE,x = strain component . x-direction . element? l.n l.n 

fe., = strain component in :f-direction in element p 

p~, = shear strain component in element f 

These strain components can be written in terms of the 

applied loading parameter ~ in a similar manner to the 

stress resultants, i.e. 

fSt. = rpE.x 
rEJ -= frEy 

fD.xJ 
::. 1> P"ZJ 

substituting equations 3.6a, 3.6b and 3.6c into equation 

3.3 gave the following equation for the strain energy~, 

V, = t t. {fn"fE,.· 5" + "n'·fe,· 5" + 1''''''' ,lx, : Sf of' 
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Sp Sp Sp 

+ ';-JJ(J:),d"dJ + pI! g~t/tkdJ + Ay ffe~lr,)d:rdJ} 
. 3'7 

Sr = area of element p 

The integralll¥represents the integral of the function 

over the area 5, of element r · 

Equation 3.7 became, when it was re-written using the 

loading parameter f ' and equation 3.1 is substituted for W:­
NW 

V. = rh 2 V' + rl. 2.1.. A" AM /(lnm 
I ., I\Z 't' 11_/ ",., 

3'8 

where 

and $ S 

K,n .. "-1 t. ( P~-» f(xi·J.(1J• 'm(11d"d~ + r;, il ~,tJ~ j;r,) 'J~(j) d:rJ;) 
oSe 

. + ,n, jJf(:tJ.f(X)J/J)}:r,) dxdj J 
3.10 

The total strain energy \I is 

V=v,+~ 

i.e. 

3./1 

The expression for \I can be re-written in matrix form as 

J.12 

At the point of buckling, the out-of-plane deflections 

are infinitesimally small. The effect of a virtual deflec-

tion or infinitesimally small variation in the out-of-plane 

deflections in a plate with its loaded edges assumed to be 



fixed at some unspecified displacement will therefore not 

produce a change in the external potential. This means 

that only the strain energy requires to be minimised. 

Minimising the strain energy with respect to the deflec­

tion coefficients produces the following set of simultaneous 

equations 

JV -J[A} J./J 

Equation 3.13 is an eigenvalue problem. The solution 

is that either the vector/A) is zero, and hence ~ can take 

any value, or the eigenvector (A) has an indeterminate value 

at certain values of ~ , the eigenvalue, such that the 

determinant of the expression in the square brackets in 

equation 3.13 is zero, i.e. 

c: 0 

The second variation of strain energy is 

--

·A condition of neutral equilibrium exists when the 

determinant of the second variation is zero (reference 4) 

i.e. 

~·I 5 
This has already been satisfied by the non-trivial 

solution .of equation 3.13 and hence the eigenvalues and 

eigenvectors are points of·neutral equilibrium. The points 

of neutral equilibrium are the transition or bifurcation 
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points between different deformation modes, and therefore 

the smallest eigenvalue ~ corresponds to the point of 

initial instability. 

3.2.2 Application of the Stability Analysis 

The function chosen to represent the deflected 

shape of the simply supported plate shown in Figure 3.1 was 

N 

W =' sIn knx L An cos nTT~ 
a. n=1 21, 

n=/,J,5 ..... . 

J./6 

The analysis was carried out for square and rectangular 

plates of aspect ratio 2:1, with a range of hole sizes from 

0.0 to 0.7 ~imes the pl~te width. It was necessary to 

examine the buckling loads for various buckle wavelengths 

in the loaded direction in order to determine the minimum 

buckling load and its associated buckling mode. It was found 

that three terms of equation 3.16 were enough to reduce the 

variation in buckling load to less than 1% in all cases. 

The integration of the energy expressions was performed 

by .the numerical integration of the functions over each 

element area. The solution for the eigenvalue equation 3.13 

was performed using,the simple iterative method described 

in Appendix Two, which allowed the minimum eigenvalue to 

be calculated. The iteration was stopped when subsequent 

values of the eigenvalue had converged to less than 0.1%. 

The convergence of the normalised eigenvector was slower, 

but when the iterations were stopped, the smallest element 

of ·the eigenvector had generally converged to three 

significant figures. 
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The theoretical variation of buckling load with hole 

size is presented in Figure 3.9 for simply supported 

rectangular plates with uniformly displaced loaded edges , 

and in Figure 3.10 for simply supported square plates for 

both constant displacement and constant stress loading 

conditions. 

3.3 Post-Buckling Analysis 

3.3.1 General Description of the Post-Buckling Analysis 

In a plate loaded through uniformly displaced edges, 

the middle surface stress distribution "las regarded as the 

sum of two stress distributions. The first, represented 

by the Airey stress function ~, was the stress distribution 

in a plate with no out-of-plan~ deflections produced by the 

applied displacements. The second, represented by the Airey 

stress function ~ , was the stress distribution produced by 

the stretching of the middle surface of the plate into the 

out-of-plane deflections, with no displacement of the loaded 

edges. The first stress distribution was dependent only on 

the magnitude of the applied displacements and the second, 

If , depended on out-of-plane deflection. Because fJ. does 

not affect the loaded edge displacements, any variation in 

deflection, while it does affect the external load, does 

not produce external work. This means that a variation in 

the total potential energy is a variation in the total 

strain energy, and that therefore only the strain energy 

requires to be minimised as a condition for equiiibrium. 

Marguerre (29), Yamaki (22) and Rhodes and Harvey (30) 

amongst others, derived stress functions for the post-buckling 
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behaviour of unperforated rectangular plates, all of which 

could be separated into an F, and t;. for uniformly displaced 

loaded edges. In each of these investigations, the deflec­

tion function was represented by selected terms of a Fourier 

series, which were inserted into the compatibility equation 

2.8. The resulting equation was then solved for the stress 

function~. Marguerre (29) only used the particular integral 

for the solution of stress function ~and employed one and 

three term analyses. Yamaki (22) used both the particular 

integral and the complementary function, and employed four 

terms of the deflection function. Rhodes and Harvey (30) 

assumed the shape fixed in the loaded direction but used 

several terms to represent the deflections across the plate. 

The solution for the stress function ~, used a particular 

integral and one term of the complementary function. 

In order to relate the out-of-plane deflection co­

efficients to the applied displacements, Marguerre and 

Rhodes and Harvey satisfied the condition of external 

equilibrium by minimising the total potential energy, whereas 

Yamaki used the Galerkin method. Levy (32) in his post­

buckling analysis of square plates with unloaded edges held 

straight, substituted the equations for ~ and tv back into 

the equilibrium equation 2.9 in order to relate out-of-plane 

deflections to applied load. 

In a plate containing a hole, the stress distribution 

representing F, can be obtained from plan'e stress finite 

element analysis as the stress resultants. The applied dis­

placement can be related to ·parameter cf, as in equations 

3.5a to 3.5c used in the stability analysis. The problem of 
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finding a stress function fi, which satisfied the boundary 

conditions along the straight edge of the plate and at the 

edge of the hole, is very difficult, and to overcome this 

problem a third stress system, F; , was used with the stress 

function f;i, of a plate with no hole. The stress function 

F;; was a plane stress function, which when superimposed on 

stress function f;f, produced zero normal direct and shear 

stresses at, the edge of the hole, and did not disturb the 

displacements produced byffon the loaded edge. The boun­

dary conditions for ~ are the same as those for fie 
The stress function F, was obtained by finite element 

plane stress analysis in terms of the stress ~esultants rn:x" 
pn" and pnJcp. For the case of a simply supported square 

or rectangular plate having the overall boundary conditions 

of uniformly displaced loaded edges and stress free unloaded 

edges, the boundary conditions for stress functions f:f and 

~ are that the loaded edges should remain undisplaced and 

free of shear stresses and that the unloaded edges should 

remain stress free. The boundary conditions for (iand f;; 
are stated as follows:-

1) The loaded edges are undisplaced and the shear 

stresses are zero at this edge, i.e. for the 

plate shown in Figure 3.1 

fA loX 8C:~. = U}:ltao = 0 

= = 0 

2) The unloaded edges are stress free, i.e. the 

normal and shear stress resultants are zero. 
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=' 0 

The deflected shape of the plate shown in Figure 3.1 

was the same as that used in the stability analysis, i.e. 

Sin krrx 
a 

N 
L A /I cos lJ!I.t.I 
/1-' 2b'J 

n c ,,3,5 ..... 
~./6 

This meant that the buckled shape was fixed in the 

loaded direction, and was a good approximation for an un­

perforated plate. The sUbstitution of equation 3.16 into 

equation 2.8 produced an equation which can be solved to 

give a function fori.f, which fits the appropriate boundary 

conditions, and is of the following form 

3.17 

The derivation of h"fI\{:X''j) is described in the following 

section. 

The nodal loads required to produce static equi~ibrium 

at the edge of a hole in a plate containing the stress dis­

tribution repr~sented by Airey str~ss function ~were 

calculated from stress function Ii. A nodal load ~ was 

calculated from ~as being in the form of 

3.18 

where f':,.l was a function of x and y. 

It is obvious that if a multi-term solution was used 
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for the post-buckling behaviour, then the stress resultants 

,f1.ts "ny, and rn~p would have to be evaluated from the loads 

described by equation 3.18 for each combination of An.A~ 
at some unit value. In order to reduce the labour involved, 

the approximation was made that the buckled shape did not 

change from the initial buckling mode, but tha~ only its 

magnitude changed. The magnitude of the out-of-plane 

deflections was represented by a coefficient Ar such that 

1t'=1,3,5 .... 
J. 'Cl 

Ar was selected as the largest deflection coefficient and 
-

therefore the values An were the values of the critical 

eigenvector normalised with respect to the largest value of 

the eigenvector. 

The nodal loads 11 can be re-written as 

3.20 

The application of these nodal loads produced a set 

of stress resultants related to the deflection coefficient 

Ar , as follows 

= 

wheref~sis the stress resultant calculated with reference 

to some unit level of Ar • 
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This allows the stress resultants to be written as 

follows:-

II II _ 

Mq ~ if; p'ii;jl + ,,; t 1.. L All' Am L.(h.", (;r,j)) + A: rn:rrt, 
J net ",~I ~JI,~ J 

'l '.124,b,t 

The sUbstitution of equation 3.1 into the expression, 

described by equation 2.14, for bending strain energy gives 

equation 3.2, i.e. 

J.2. 

The strain energy due to in-plane stresses can be 

calculated by the substitution of equations 3.22 a, b, c 

into equation 2.11. Collection together of terms of 

similar order produces an equation for the total strain 

energy of the form 

V= 

In order to satisfy overall equilibrium the strain 

energy was minimised with respect to the out-of-plane 

deflection coefficient )\r. This was done by examining 

the turning points of the equation for the strain energy 

i.e. when 

-- o 
Substituting equation 3.23 into' equation 3.24 produces 
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The solutions for equation 3.2'5 are 

Ar C' 0 
or 

Ar = ±., / R, + cp KJ 

, V ZKtt 
The solution A,.: 0 was rejected as being the trivial 

solution, and the relationship 

3.2.6 

was adopted as the solution. 

The end load on a plate is made up from three 

co~ponents, P, , fz. and 1;. The first, ~ , is the end load 

required to produce the uniform edge displacement 9'in a 

plate with no out-of-plane deflections. The second component 

~ , comes from the stretching of a plate \'dthout a hole 

to the assumed deflected shape, with the condition that the 

loaded edge remains undisplaced. The final component 9f 

the total end load, Ii , arises from the loads applied at 

the edge of the hole in order to produce a free surface. 

In calculating ,n:J' , rn" ,pnJijl for a plate with uniformly 

displaced loaded edges, a unit displacement was applied in 

the finite element analysis, and the end load produced by 

. this was the sum of the nodal reaction loads at that edge 
, -

of the plate. The end load, f,> , developed by 
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the edge displacement p was therefore 

P, = 1i! ":1.2.7 

The end load ~ was calculated from the stress resultant 

in the direction of the applied load at the loaded edge. 

This stress resultant is calculated from the stress 

function Ii, i.e. 

j
b 

2 
t J'F; cl _~ Jr' r.... 1 

This meant that ~ could be written in terms of A" i.e. 

1 -I? = Ar If 

where if comes from equations 3'.28 and 3.17, i.e. 

N ft/ 

!f. = t z. t... An. A", [ WIl~Jt11 j) )1 -) (hit'" (ll, 'j ))1 ] 
nwl Mil' J~ ,,. b ~1 j=-b 

3.2.11 

Because the's tress function F; waa expressed in terms 
2 

of Ar' the end load r; produced in satisfying equilibrium 

at the hole edge was also expressed in terms of A: , i.e. 

2. -fJ = AI" P, 
3.'30 

The total end load is the sum of the end loads P" F; 
and ~ , 'described by equations 3.27, 3.29 and 3.30, and can 

be written as 

p = ~?, 
I 

3.31 
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The sUbstitution of equation 3.26 into equation 3.31 

allowed the end load to be related to the applied displace-

ment, i.e. 

J.32 

The post-buckling stress distributions were calculated 

by superimposing all the stress distributions as described 

by equations 3.22 a, b, c. By writing 

n ~ tliAaAtr\ )%(h"M(:X;'i)) 
~z "w, Mat )j2 J 

etc., the equations 3.22 a, b, c for the post-buckling 

strens resultants can be written as 

N~ r: rf ,fit, -+ A: (nZJ + p~J) 

tV, :: tf ~ii11 + It: (ii~2. + ,'fiJI) 

~1 • cf ~~J' + A; (i-tjl + "n.Jjl) J.'3~4, biG 

Subntituting equation 3.26 for the deflection 

coefficient into equations 3.33 a, b, c allows thene 

equations to be rewritten solely in terms of" the applied 

displacement, i.e. 

+ nXJ ) 

ThUD the applied load and the internal stresses can 

be defined aolely in terms of the applied displacement. 

The derivation of Ii for plates with uniformly displaced 

loaded edges is described in the following section 3.3.2. 
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However, for plates loaded by uniform stresses some changes 

have to be made in the analysis. The loaded edge boundary 

conditions for If and t=; become 

N:x Ix=D... 
&:: Nlxr:o = 0 

instead of 

U. l:x. a. = u./xwo 
= 0 

In this case the movement of the loaded edge caused by a 

virtual out-of-plane deflection makes it necessary to 

minimise the total potential energy instead of only the 

-strain energy for the uniform applied displacement case. 

Application of the Post-Buckling Analysis 

The application of the theoretical post-buckling 

analysis to simply supported plates with uniformly displaced 

loaded edges is described in this section. 

The stress function fi was evaluated from the 

compatibility equation 2.8 and the out-of-plane deflection 

function,tV equation 3.16. Substitution of equation 3.16 

into equation 2.8 gave the following equation:-

3.35 

Equation 3.35 shows that. the function ~ can be separated 

into a function of y only and into a functio~ of x and y, i.e. 
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+ !fa cos 2krr.x 
a. 

where F;. and If, are functions' of y only. Substituting 

equation 3.36 into the LHS of equation 3.35 gave" 

= RHS equation 3.35 
J. "37 

Two equations were then separated from equation 3.31 i.e. 

and [(~l F[, - 2(~kV2{/ <- IJ/) co, 2~r -
£(E!J~os2.krr:x. rii. AnA",(nm~)~/flnrr~ S'flrnrrl +lnTT)2COS/11"'l. CO$!llIJ)] Z a./ ~ Ln-,,,,., (~2~ 2b lib 2£'.1 21, 

3.31 
Because ~ is a function of y only, any derivatives 

of ~ with respect to x are zero, hence equation 3.38 was 

not solved for .any derivatives of ~ lower than the second 

order. 

A solution to equation 3.39 for ~ was found by 

combining the symmetrical terms of the particular integral 

and a single. term of the complementary function, i.e. 
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3·41 

Coefficients 1znrtt and J1nll1 were obtained by substituting 

equation 3.41 into equation 3.39 and equating similar terms •. 

The remaining two coefficients in &, C'nm and ~"m , 

were calculated by the application of the boundary condi-

tions on the unloaded edge, which were, zero shearing 

stress resultant, and zero,stress resultant normal to the 

edge, i.e. 

i.e. 

=0 

Because ~is a function of'y only, these boundary conditions 

become 
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1 . Pi,=-0 and 

The substitution of equation 3.41 into these boundary 

conditions gave two simultaneous equations inC1nl'l and C"nm , 

which were solved to give 

C/1M = - (Jznrn cosfn-;)rr + J, ... (01 (ni)lT + C411J71 smA~" ) 
cosh lkrrb 

0. J.44-

where C4nm is a function of J2nm and J1ftm only, i. e. 

C .. nm :: [~ntJ\((ib"'JrrSln(lJ.m)1T + 2krrtanh lkII.k COs (n-m)1T)' 
2. c:t A Z 

+ JIm> ((¥i;'/TSin (n"'j")Jr + 2~1Ttanh 2kf~ CDs(n~m)rr ) ] 

(i Sinh 2k7Tb ~ llir cosh 2kn b - 2k7T smh 2k"b faltA 2knb) 
a. (A a. a (). a 

The two remaining unknown coefficients B, and Bz , in fip.1I 

were determined by applying the boundary conditions at the 

loaded edge. For the stress function fi , these were:-

1) zero shear stress, which is satisfied innately 

QY ~ and ~. 
2) undisplaced loaded edges i.e. 

U Ix.~ - u /xwo 0 0 

The displacement of the end X= a of the plate can be 

written as:-

The substitution of' equations 3.16,3.36 and 2.4a into the 

above equation gave:-
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ct 

U "to <t : 1 [ fl fi,ll + Pz/I cos 2!Tf:c + J/ (?:f!l !fa cos 2 !Trx ] 

_l!Jrl1 (cos 2krr:x. ~ I) 11. An Am cosl1If.~ CO$ mml,1 dx 
litt/ a. ,n~' m-, 2b 2b J 

Integration with respect to X led to 

ul =[ X (&,1I _ ll/§J\Z. L l A" A", cos nTT~ . Cos I!!l!J}) ({ 
x=" £ 1- La) n=' ",-, 2b J 2b 

o ~.46 

Substitution of equation 3.40 for ,~ into equation 3.46 

gave 

Since the displacement is zero in the y-direction 

The stress function cannot be written down directly, as 
II ' 

only ~ was calculated. However, the stress resultants 

calculated from F; = ~ +!fa cos2kTT:x. can be written down as 
0.. 

follows. 
AI II 

flxz. = t £/hJJ1. l L An·Am cos!!Jl'i cosmlLlI 
(iii! ne' ",.j 2£ J 2b J 

+ tf{:~)2 c~s 2knz t 1:.. A" AM [-Jinm /rJ.:!!))lTfZ cos (n-/fI) TT1 z aj. a n=' 1111:' \"Zb 2b 

- 1,,,1'\ en ... ,.,\2 rrZcos(n+I11)ffl/ + c'nm (2k7T12(oslt 2kffJ 
2b ) 21> J a "j a. 

+ C~ .. ( wr co.A ~J . + I (?fI)'s;nlt 2:"J ) ] 
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3.47c 

The nodal 10ads,/1 , at the hole edge for the 

calculation of nX ) , n~, , n",l were calculated from the 

stress resultants nXl , n,,, ,n~2. described by equations 

3.47a, b, c, using/the normalised values of the critical 

eigenvector. The stress resultants were calculated for 

a unit value of Ar , so that equations 3.2la, b, c could 

be written. 

The coefficients R" Ks and' iG in equation 3.23 for 
, 

the total strain energy were evaluated from the deflection 

function 3.16 and the equations for the stress resultants 

3.33a, b, c. These coefficients can be expressed as:-

R, = e It All AmJA[SI'fl1 ~ cosl!1!!.'1 CCSrurj (18ff1' + I7m/.!!)' f' 
2. II" /It.' a. 2b:j 21> ( Ui) (2b / 

- 2{I-V) [(kJ'yh .. fJirSInI~ coso/l~ cos~:J 

-l1m~l( fJ}'cor'KfX Tlir IJ ~Iir 1!JJ) dxdJ 

3.4-8 
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~ = $. [[fii~ . .,n.., +,n,. ,n,. -1'c,!&,t1- + pi&, ."ii" ) 

+ 2{1 ~ "') "n.x'J' in'f,' ] E.f 
s tE 

+ .1 l.t A" A",lrTrpii, .. Ii;,. ·f~l. n" - v ~i.'J,.ffxl + pii;q . n.,z ) Et ",11'\'1 ~Lj . 

+ 2( I + v) pii~JI . (ix1'] tI.x dJ] 
3·50 

K4 = t {(P'Fb~ .,. r;;l~ - 2v ,n:XJ '"1J + 2(1+ V ) ri&:J~ ) 1e... 
p=' 2tE 

$'p 

+ J..JJ.. An A.. {(r tn.,· iin -I-/, n.p. ii'll. - 1'(/,1&, . iI.. + rn-"'. ib-.) £t 'II·IJI\~I JJlI J J J 

+ 2 (t 4- v) I"ii~, I . ii",. ] 01", dy 

+ -L 11tl A.A .. ;V:t ~[1ix; -+- ill! - Zvii.ttn,1 
1.E.t nsl/JI:r'p:'tc , JJl 

~ 2{1+v) ii"'l'] cbdj ] 
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The integration of these coefficients was carried out in 

the same way as in the stability analysis, and the co­

.efficients were inserted directly into equations 3.26, 

3.32 and 3.34. The end load F;, developed by Fi and 

described by equation 3.29 was obtained by substituting 

equation 3.47a into equation 3.28 to give 

where 

~. 52. 

The analysis was carried out for square and rectangu­

lar plates with a breadth to thickness ratio of 160. The 

rectangular plates had sides of ratio of length to breadth 

of 2 to 1, and the range of hole sizes studied for both 

square and rectangular plates was from a diameter of 0.0 
-

to 0.6 tim~s the plate width. The post-buckling analysis 

of rectangular plates was carried out for plates with two 

o~ three half-waves in the loaded direction, depending on 

the buckling mode calculated from the stability analysis. 

The variation of the deflection coefficient Ar with 

applied load is illustrated in Figures 3.11 and 3.12 for 

square and rectangular plates with various hole diameters. 
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3.4 A Simplified Failure Analysis 

The collapse of a plate with large elastic buckles 

-is .a complex phenomenon, involving the growth of plasticity 

on the surface of the buckles, and the formation of plastic 

hinges. In both perforated and unperforated plates, the 

plastic hinges, which produce collapse, grow from the 

supported edges. It was therefore assumed that collapse 

was associated with the yield stress being reached at or 

near the supported edges. Von Karman and Sechler (34) and 

Winter (33) made the assumption that the ultimate load, ~t 
was related to the yield stress 6 y and to the effective 

width for this corresponding maximum stress by the expression 

The effective width be is the width of the plate over which 

the maximum stress is considered to act for a given load. 

This is illustrated in Figure 3.13. If accurate approxima­

tions can be made on the redistribution of stresses following 

the introduction of a hole, the effect of the hole on the 

effective width of an unperforated plate may be assessed. 

If the relationship between applied load and effective 

width of a plate with no hole is known, and the general 

pattern of post-buckling stress distribution is also known, 

then the ultimate loads of centrally perforated plates can 

be calculated, by making the following assumptions 

1) The ultimate load of a plate is reached when the 

maximum stress in the loaded direction reaches 

yield stress. 

2) The redistribution of stresses in a plate with a 
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centrally located hole follows the same trends 

as in a plate with no hole, i.e. the maximum 

stresses become redistributed towards the edge 

of the plate. 

3) The redistribution of stresses in the plate is 

such that the tensile and compressive loads due 

to the tensile and compressive components of the 

membran'e stress distribution are unchanged by the 

introduction of a hole. 

4) The compressive and tensile stresses formerly in 

a region with a hole can be redistributed over 

the respective compressive and tensile regions 

of the stress distribution of a plate with no 

hole in order to represent the stresses in a plate 

with a hole. 

The first assumption was that made by Von Karman and 

Sechler (34) and by Winter (33) and is expressed by equation 

3.53. 

The second assumption was justified by the theoretical 

and experimental results described in Chapter Five and dis­

cussed in Chapter Six. 

The post-buckling distribution of stresses in unper­

forated plates was investigated for square and rectangular 

plates by Coan (21) and Yamaki (22). The post-buckling 

stresses in the loaded direction take the form of the 

distributions illustrated diagrammatically in Figure 13.4.1. 

for simply supported plates with unloaded edges held straight, 

and in Figure 13.4.2 for simply supported plates with un-. 
loaded edges allowed to warp. These stress distributions 
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can be represented with sufficient accuracy by functions 

of the form 

E).x == A + B cos (1jrJ) 
3'5'1-

where k. = 1 for plates with straight unloaded edges 

or " = 0.5 for plates with stress free unloaded edges. 

The constants)\ andB were evaluated from data on 

effective widths of plates with the appropriate boundary 

conditions. The effective width of a plate was defined by:-

3.S5 

Substitution of equation 3.54 into equation 3.55 

allowed the effective width, 'be, to be expressed in terms 

of constants A and B , i.e • 

be = 2.. [A.b 
6.;;t.max 

..f- B . ..k. sin kn-] 
kff 

J.56 

In the cases where the maximum stress occurred at the 

edge of the plate, 5
XIIJ4X 

was written in terms of A and 13 :-

3.S7 

At a given constant load P, the value of effective 

width corresponding to maximum stress 6.... can be found if 
..... ""a,.x 

the relationship between load f' and effective width be is 

known. 

The coefficients A and B were found in terms of be 
and 0xm4x from equations 3.56 and 3.57, i.e. 
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(be c()skrr ..L Slit krr ) 
2b I<ff 

6 

( COj krr 
Xm ... " 

_..L si" kn ) 
kn 3'58 

,A = 

[3 -
(I - k) 6xma" 

(cos kff - iTT Sin kTT ) 

The third and fourth assumptions implied that when 

_a hole was introduced into a plate, the compressive stresses 

formerly carried by the area removed from the 'cross-section 

by the hole can be redistributed over the compressive 

region of the stress distribution in a plate with no hole 

between the hole edge and Suppol:'ted edge in' order to 

represent the post-buckling stress distribution of a plate 

with a hole. This redistribution was assumed to occur 

uniformly. This also implied that in plates where the 

area removed by the hole was completely under tension, 

the introduction of the hole caused no change in the maximum 

compressive stresses, and therefore did not affect the 

ultimate load. 

, The compressive stresses in a plate, where the post­

buckling stress distribution is represented by Figure 3.15, 

start at a distance Cr from the centre line, where 

Cr = 0 A> -8 

or Cr " f; cos-' (-;) A <- B 
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The compressive load formerly carried by the cross­

sectional area removed by a hole of radius C was therefore 

3.60 

or F; = O. if 3.61 

The constant average compressive stress to be added 

to the compressive stress region was written as 

Ll {5 = I 1< 6 x c:l.~ 
(I:> - c.) c,. J 

i.e. by substitution of equation 3.54, equation 3.60 

became 

where A and B were defined by equations 3.58 and 3.59. 

Equation 3.63 is valid for C. > Cr , otherwise A 6= 0 . 

3'62 

The maximum stress then became, after the addition 

of the constant stress ~ 6 :-

The applied load ~ was assumed to remain constant 

and was defined in terms of maximum stress 6x~~ and 

effective width be of a plate with no hole, and could 

therefore be defined in terms of the new maximum stress 

6x,..,x and a 'corrected" effective width bee: i.e. 
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Thus the corrected effective width l=b. could be written as:­

bet: = be 6.x,.,A.~ 
6~/I'IA~ 

By substitution of equations 3.58, 3.59 and 3.63 

+ 

(c - C,.) . (tf co, krr 
(b -c) (co~ kIT 

- rff sin RlT ) 

- ..1 Sin frr) 
kff 

- sin ktrc,. ) 
~ 

(b - c) ('os kTr -.1 sin krr ) 
kif 

] 
'3.65, 

This corrected effective width b~ was the effective 

width for a plate with a hole, for a given load f>. There­

~9re, where the relationship for end load )D and the 

effective width is known, and the stress distribution can 

be written as a simple expression, as in equation 3.54, 

then the relationship between applied load P and 'corrected' 

effective width can be established as the approximate 

relationship between applied load and the effective width 

of a plate with a hole. 

The relationship between applied load and effective 

width was derived by Rhodes 'and Harvey (30) for plates with 
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simply-supported stress free edges and loaded by constant 

edge displacements. This relationship between applied load 

and effective width can be converted into a graph of 

maximum stress in the loaded direction against effective 

width, and this is illustrated in Figure 3.16. Equation 

3.65 allows a family of curves to be derived for a range of 

hole sizes, relating maximum stress to 'corrected' effective 

width b~. These are illustrated in Figure 3.16. 

The first assumption enabled the collapse of a plate 

with a hole to be calculated using Figure 3.16. From 

equation 3.53, the ultimate load became:~ 

3·66 

where h~ was the corrected effective width for the given 

hole size at or; and was obtained from Figure 3.16. 

A curve showing the variation in ultimate load with 

hole size was constructed for plates with the nominal 

dimensions of those plates under test, and was presented 

in Figure 3.17. This figure illustrates a reduction in 

ultimate load caused by the introduction of a hole. 

Comparison with observed results was made in Chapter Five 

and was di,scussed in Chapter Six. 

Tables of corrected effective width are presented for 

the range of effective widths ~ = /·0 - 0·3 and hole diameters 
b 

,0.0 to 0.7 times the plate width. Table 3.1 presents 

corrected effective widths for simply supported plates with 

uniformly compressed loaded edges, and stress free unloaded 

edges i. e. k= 0'5, and Table 3.2 presents corrected effective 
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widths for simply supported plates with unifo~mlY com­

pressed edges and straight unloaded edges. 

65 



~ -
~ 

• 
t') 

\0\ 

~ ~ 
~ 

~ 

~ ~ ~ 

~ 

X 
~ 

66 



-J ,. ~ 
~ ~ 
~ 
~ 

~ 
~ 
~ 

~ 
~ 

~ 
~ 
~ 
~ 

~ 
~ 
~ 
~ 

~ 
..... 
\) 
~ 
~ 
~ 

. 
t-") 

67 



• 

- + ---------,''"---.1"--_-.1"-__ --' 
I 

fiG-tiRE. 3. 3 
A TYPICAL fiNITE ELEMENT MeSH FoR 

A SqUARE PLATE 

68 



0) 
\0 

7HEO~Y 

2b.t 6:;( 

P 
4=0 

c c 0-/ 
b 

f.. 0-' b 

~aO-S 

---HOWlANe> J·O 

F.E.I1. 
c 

V CENT~OID I> = 0·, 

A Alo.o~ 
c 
~~0'1 

0 
c 

CE/tIT~OID b = 0·3 

X NOPE ~ =0-3 
c 

r8J C£NTifOID b '=-05 

<-) NOOE E- =05 
b 

AG-v~c 3·1 

2'0 

/-0 

o 0-' 0'2. o.J 0-4- o·s 0-6 0-7 0'9 0'9 /-0 

Dlsr1(1911TIO.v OF 6.x ST£ESSE$ AGtoss mE" #;v/-"fpn SeCT/ON 01' A 

If'EcrnNGVLAK P£AT£. CO~PAI(J50N PET'WEEN r£1"1 KEsv[.rs ANC> 

TIfE'OKETICAl. tfESVl.TS 

~ -b 



Fi(;V~E 3·5 

'·0 15x 

0''1 

O'S 

0'7 

0'6 

LOAD€D £Da.~ 

04-

03 

0·2 

LOADED eva,.c 

·0·, 

0·2. 

mE fiEBIJC/r'I./;VG- I)/S7RIBVrIOA/ OF SrRESS'E~ l...v A 

Sftllll~E" .fl-"'1rc: ~&>Eb $r tI/tIFO.f'tf1 £)ISPiACE,f1eAlT S 

70 



6:JC FJ 

/,2 

,., 

o·q 

0'7 

0·6 

o·s 

0,3 

0'2. 

71 

FiG-VilE 3'6 F'KEStlCKJ.JNC- Srl(ess 

t:>ISTItII8VnON IN A KEC7"/I/tIGVLM ibtTE 

AVE~GC ApPLlEO 5T/(ESS = 0.25 

------ -----



::J..tV7d CGJ.VUO.:JV.;JdfY/J IV"""/O ~tY..:I.JI..l.S :3",:)0:; 

;;170/1 V Hoi/rot ~.J.V7d V.:fO S'531Y.:I.:Ju.~ .3")03 

72 

01-4 

'.tl 
<:) 

'!> 
~ 

~ 
~ 

t'\ 
() 

~ 
~ 

.... 
(:) 

~ 

~ 
~ 
~ 
~ 
~ 

~ 

'" t1 
~ 
~ 
~ 
~ 
~ 
~ ~ 
~ " ~ ~ 
~ ~ 

I 

~ ~ ~ 
4J 

~ ~ ~ ~ 
~ 

.~ 

~ ~ 
t: 
;S ~ ~ 

~ a 



3~1"t ~np -----. -
1) dP 

() . 

3.J.vy C3.J.tI;YO.;/~adN(} NV dO SS3N.:I.,;!.J.S 3:JO:g 

37()1I V lIotlf'r1 .i7.J.VY V:KJ SSif1N.:h'I.J.~ :i/':JO;;r 

13 

U)-4 

\() 

~ 

\n 
(.) 

~ 
~ 

'" . (.) 

~ 
0 

... . 
() 

~ 
~ 
~ 
~ 

~ 
~ 

'" 0 

~ 
~ 
CI) 

ll.I 
CJ 

~ ~ 
~ ~ 
~ 

.... 
~ 
~ 

~ ~ , 
~ ~ ~ lij 

~ ~ 
~ 

~ ~ ~ 
~ 

~ 
~ 

~ ~ 
tI2 ~ 

~ ~ 



Pc -
fcCl. 

/·4 

/'0 

0'8 

0·6 

0'2. 

o 

na.v R~ J. 9 

0'/ 0'3 0'4 o·s 0'6 

c 
b 

0tK/AT/O~ Or BVCI\LING- LOAP WITH #01-£ 

!<AP/VS roR .5//t1PJ.Y SVPPORTE&> RecrAAlGULJtI{ 

i'LATE.S WITH VNIFO~I1L'r" [)/SPLACCD £i;;(i./::.-s 

k = A/"I1BEA' OF BUCKL.ES IN THE' /)/A'EC7'laN OF 

LoAPIN(i 

74 

. 
I 



Fi~V~e J./O 

/·5 '1'"---_______ ---, 

0·5 

o 0'6 c -b 

l!A,f/ATlO..v Or /?VCI(I..IN(;. LoAD WITH HOLE 

!tAPIVS FO/e SIMPLY .5t1PPC>~TEP St?(/AR~ 
PLATES 

CVR,V£ A U NI;:O~M f)/SPJJ1ce,f1E,v r loAD/Nt;. 

CV~VE B I, 
II 

75 



p -
Pcu 

0·0:0 ~------------------..I 0.000 0·900 1·000 1·sao 2·000 2·500 ~·ooo 3·50( 

NON DIMENSIONAL DEFLECTION Ar/t 

At;VRE J. / / mE mEOKET/("AL LOAD - Ow of P~N£, 

I/EFtEc:.rION Be/lAVlc¥/~ OF' A 5CYVARE. I1..AT£ 

16 



.E 
Pc.u 

o·()'.X) ~-------+-------------I 
o·QCX) 0·500 1·em 1.:al 2.000 2·500 3.()'.X) 3·500 

AGV~£ 3./2 

NON DIMENSIONAL DEFLECTION Ar/t 

mE 7iI£o££TlCAL LOAD - Our OF ?.uw£ 

OEFLECTICW BEfJ4VIa'lR or A R£CTAN611lAR 

PLATE -k. It NVI18£K OF BtlcrJ.cs IN 7}le P/~ecno,y Or 

lOAt:>I,vc;. 

11 



b b 

FiG-URE J. /3 THE EFFECTIve MOTH OF A PLAT£. 

3 ./1-. I STRAIGHT EIXTES 3. 14.2 STKESS FREE EO(;ES 

, 

FIG-liRE 3. / f 6..x STl?ess DJST~/el)rlt:)N A r ~IID Le"N(;'TH 

78 



c 

nGllRE 3. /5 POST - BlIcKUNCr £)ISTRIBVTION OF 5mE'ss 

79 



il ~ \()~ \() 

0 

~ ~ 

~ 
0 

~ 
0 

~ 
g ~ 

0 ~ 
0- ~ 
~ 

~ 
l1li ~ 

~ 
0 
,;. ~ 

~ "i 
0 .. 

~ q: 
0 ~ '" oil 

~ 
~ 

~ ~ 
~ 

II) 

<? 
~ , ~ 0 ~ & . '" 

~ ~ ~ 
0 

~ .... 

t'o 
~ 
~ 

~ "\. 

0 
0 

"rA 
'P 

~ . .... 0 ~ ~ 
"',, \Ii .. 0 0 -. \li.o \( 

11\" ~ ~ 
~ "" 

! 
v l1li 
0 <> 

.. \II 
0 Co '" 0 0 ... 0 ~ ~ 

0 coo 0 ~ ~ 0 0 ~ 
~ ~ lO~ 

v 

..d'1~ 

80 



4·0 

~ 

~ ~ 
:t: 

~ 3'0 ~ 

t ~ ~ u:: 

~ ~ 
~ q: 

~ ~ 2'0 ~ 
~ ~ 
ll. ~ () 

~ ~ 

~ ~ 
~ ~ /'0 

~ ~ 
~ ~ 
~S 

o 

RG-VRE :J ./7 

0'2. 0'4 0·6 0'8 

c -b 

THE VARIATION OF liLT/MATE LoAO 

.W/if] 1I0LE: i(Aolvs FOR PLArE5 

WITH 2b 1: 160 
T 

.I' 

81 



0:> 
J'\) 

be 
HOLE-DIAMETERI PLATE WIDTH S/b 
0.1 0.2 0.3 _ 0.4 0.5 0.6 0.7 

0.9 0.8229 0.7430 0.6600 0.5737 0.4842 0.3917 0.2964 

0.8 0.7433 0.6822 0.6159 0.5439 0.4659 0.3818 0.2920 

0.7 0 .. 6610 0.6172 0.5673 0.5099 0.4442 0.3697 0.2866 

0.6 0.5760 0.5477 0.5132 0.4707 0.4183 0.3548 0.2797 

0.5 0.4882 0.4731 0.4528 0.4249 0.3867 0.3359 0.2705 

0.4 0.3973 0.3929 0.3848 0.3707 0.3474 0.3109 0.2578 i 

0.3 0.3000 0.3000 0.3000 0.2967 0.2868 0.2656 0.2282 

0.2 0.2000 0.2000 0.2000 0.2000 0.1981 0.1891 0.1678 

0.1 0.1000 0.1000 0.1000 0.1000 0.1000 0.0979 0.0897 
---

TABLE 3.1 EFFECTIVE WIDTHS OF SIMPLY SUPPORTED PLATES WITH STRESS FREE 

UNLOADED EDGES 



00 
\)J 

HOLE DIAMETER/ PLATE WIDTH c/b he 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.9 0.8264 0.7490 0.6672 0.5808 0.4901- 0.3957 0.2985 

0.8 0.7497 0.6937 0.6303 0.5585 0.4783 0.3905 ' 0.2968 

0.7 0.6699 0.6336 0.5884 0.5322 0.4639 0.3840 I 0.2946 

0.6 0.5865 0.5679 0.5405 0.5008 0.4460 0.3756 0.2917 
-

0.5 0.5000 0.4960 0.4853 0.4625 0.4231 0.3645 0.2878 

0.4 0.4000 0.4000 0.4000 
i 

0.3911 0.3675 0.3241 0.2604 

0.3 0.3000 0.3000 0.3000 0.3000 0.2880 0.2599 0.2126 

0.2 0.2000 0.2000 0.2000 0.2000 0.1968 0.1816 0.1513 

0.1 0.1000 0.1000 0.1000 0.1000 0.1000 0.0939 0.0797 
-

TABLE 3.2 EFFECTIVE WIDTHS OF SIMPLY SUPPORTED PLATES WITH STRAIGHT 

UNLOADED EDGES 



CHAPTER FOUR 

The Experimental Investigation 

The general object of the investigation was to observe 

the behaviour of plates with centrally located circular 

holes under edge compression and to produce data for com­

parison with theoretical results. Square plates and 

rectangular plates with aspect ratio 2:1 were tested. The 

boundary and loading conditions applied to the plates by 

the test equipment were those which approximated the 

boundary conditions chosen for study in Chapter One, i.e. 

1) Uniformly displaced loaded edges 

2) Simply supported edges 

3) No restraint in the plane of the plate on the 

unloaded edges 

4) All edges free of shear stress. 

, Th'e 'experimental investigation is described under the 

four main headings, i.e. 

4.1 The Test Programme. 

4.2 Test Equipment. 

4.3 The Specimens. 

4.4 Test Procedure. 

The experimental results and their comparison with 

the theoretical analysis are presented and discussed in the 

following chapters. 
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4.1 The Test Programme 

The test programme was divided into two parts. 

Part A 

Part B 

A series of tests designed to produce data 

on buckling loads, collapse loads, and the 

out-of-plane deflection behaviour of the . 
plates for comparison with theoretical 

predictions. 

Four strain investigations to measure the 

stress distribution in each of- four plates 
. 

for comparison with the theoretically 

predicted distributions. 

Part A of the test programme was intended to produce 

information on the overall behaviour of the square and 

rectangular plates under edge compression, with the pre-
• 

viously stated loading and boundary conditions. 

Part B of the experimental programme was to measure 

the strains along the axes of the plates at various points, 

for comparison with the theoretically derived values. This 

comparison was intended to show to what extent the assump­

tions made in deriving the stress functions were valid, 

and to find what limits could be set to the accuracy of 

the theory in providing information on the stress distribu-

tion in post-buckled plates. 

The imperfections in the plates allowed the theory 

to be compared with the behaviour of plates of commercial 

quality, and thus provided estimates of the extent of 

application of the theoretical results in practice. The 

disadvantage of the imperfections was that they made any 
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detailed examination of the buc~led shape of limited value 

for comparison with the calculated shape. 

4.2 Test Equipment 

The principal items of equipment used in the tests 

were as follows:-

4.2.1 

4.2.1 The plate test rig 

4.2.2 The loading machine 

4.2.3 The strain recording apparatus 

The Plate Test Rig 

The apparatus for supporting the edges of the plates 

and transmitting applied loading from the loading ~achine 

'to the edges of the plate is shown in Figures 4.1 and 4.2. 

The test rig \lIas originally designed and built by W. C. Fok' 

(39) for rectangular plates of length to breadth ratio 2:1, 

and modifications were made by the author to allow square 

plates to be tested. Figure 4.1 shows the test rig in its 

configuration for testing rectangular plates and Figure 4.2 

shows the test rig in its configuration for testing square 

plates. 

The main components of the test rig were:-

4.2.1.1 Fixed base 

4.2.1.2 Vertical upright supports 

4.2.1.3 Vertical knife edges 

4.2.1.4 Loading head 

4.2.1.5 Roller bearing assembly 

These components are described more fully as follows:-

4.2.1.1 The Base 

The base consisted of a mild steel plate 
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machined to 16" x 5" x Ii" (406 mm x 127 mm x 34.5 nun) 

with four 1 inch (12.7 rom) BSW holes tapped to receive the 

uprights. A 11" XiII (39 mm x 9.5 rom) locating recess "laS 

machined in the upper surface of the base. 

4.2.1.2 Vertical Uprights 

The uprights were two sections of 511 x 2l" (127 mm 

x 63.5 rom) plain channel each with a 1" (12.1 mm) thick 

plate welded to the lower end. Two 9/16" (14.3 mm) holes 

were drilled through the plate to allow the uprights to be 

bolted to the base (part 4.2.1.1) A locating key was 

machined on the plates of both uprights in order to accurately 

position the uprights on the base. The webs of the plain 

channel were machined flat and parallel to each ,other, and 

then the flange and plate of each upright was machined flat 

and perpendicular to each other and to the flanges. Holes 

were drilled in the uprights in order to allow the knife 

edges to be attached. 

4.2.1.3 The Vertical Knife Edges 

The knife edges were made of mild steel of 21" x 

11" x i" (534 rom x 38 mm x 9.5 mm) overall size and were 

attached to the uprights by i" (9.5' mm) cap screws. One 

knife edge "las located on each upright by i" (9.5 rom) dia 

dowel pins, while the other was allowed to move so that 

the gap could be adjusted for different plates. The knife 

edges were machined to a small radius. 

4.2.1.4 The Loading Head 

The loading head was similar in size and shape 

to the fixed base, but had four guides attached which ran 

against the sides of the uprights. A triangular section 
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block was held on top of the loading head by four 5/16th" 

(8 rom) capscrews. This triangular block located into a 

V-shaped slot in the loading head of the loading machine, 

so that the load was known to be located centrally on the 

edge of the plate. 

4.2.1.5 Roller bearing assembly 

The load was applied to the edges of the plate 

through two cylindrical rollers. These rollers were held, 

supported by needle bearings, in blocks. One roller was 

--used at each end of the plate. The components of this 

assembly are illustrated in Figure 4.3 and are as follows:-

(i) The cylindrical roller. The roller was 2" (51 mm) 

diameter. A flat surface was machined on to the 

roller and a groove 1.5" (38 rom) wide was machined 

into the flat along the whole length of the roller. 

(ii) Locating strips. These strips fitted into the 

groove on the rollers, as shown in Figure 4.3, 

and were machined to allow the plates to be located 

in the centre of the roller. The strips were made 

from mild steel of cross section 11/1611 x 3116" 

(11.5 mm x 4.8 rom) 

(iii) Needle bearings. The needle bearings were made up 

from standard commercial full race bearings. The 

needles were ~" (12.1 nun) long and ten sets of 

bearings were used to support each roller. 

(iv) The bearing blocks. These blocks were made up from 

2.5 11 x 2.5" x 5" ( 63.5 rnm x 63.5 mm x 121 mm) mild 

steel in order to contain the needle bearings and 

the roller. Aluminium strips were bolted over the 
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edges of the hole in order to contain the needle 

bearings. 

4.2.2 The Loading Machine 

The load was applied by a Tinius Olsen Universal 

testing machine of a maximum 200,000 lbf (889.6 KN) capacity. 

The loading was of the applied displacement type applied 

through the loading head~ and was measured through the base 

of the machine by load transducers. The test rig is shown 

under the loading head of the machine in Figure 4.4. The 

load was applied through a V-groove, in a block of metal 

attached to the machine head, to the triangular section 

block on the loading head of the test rig. 

4.2.3 Strain Measuring Equipment 

The buckling loads were estimated from the measured 

strain at various points on 'each plate. The strains were 

measured from foil type strain gauges applied to the plate, 

and connected, using the 'three wire' technique~ to the 

resistance bridge circuit' of a MODULOG data logger. Output 

from the data logger was printed on to a paper roll. For 

the st~ain investigations, two gauge rosettes were applied 

along the axes of the plates~ and using the same 'three wire' 

technique as before, were connected to an ELCOMATIC data 

logger. Output from this data logger went to a paper printer 

and to a tape punch. The paper tape produced was used as 

data for a computer program written by the author in order 

to produce tables of strain and stress. 

The 'three wire' tech~ique is a standard method of 

connecting strain gauges into a Wneatstone bridge circuit, 
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which compensates for changes in resistance in the leads 

from the bridge circuit to the gauges. The wiring diagram 

is shown in Figure 4.5. The common lead (A) shown in 

Figure 4.5 between the temperature compensating dummy gauge 

and the active gauge is in the opposite arm of the bridge 

from lead (B) and being in close proximity to each other 

experience almost identical temperature fluctuations. The 

third lead (C) has no effect, as no current passes through 

it when the bridge is balanced. 

4.3 The Specimen Plates 

,The plate specimens were cut from hot-dip galvanised 

mild steel sheeting of nominal thickness 0.063" (1.62 mm). 

The plates were cut to the overall dimensions 10.125 ins x 

10.125 ins (257 mm x 257 mm) and 10.125 ins x 20.125 ins 

(257 mm x 511 mm), which included a slight margin to allow 

the knife edges and rollers to hold the edges of the plates. 

The dimensions of the plate between supports were 10 ins x 

10 ins (254 mm x 254 mm) and 10 ins x 20 ins (254 mm x 508 mm) 

for square and rectangular plates. The loaded edges were 

filed straight after the holes were cut in the plate in 

order to r,emove any distortion of these edges caused by the 

hole cutting process. Only a small amount of filing was 

required in order to remove the irregularities on the edges, 

and a small rat-tail file was used. T~e loaded edges, 

although straightened, were not parallel to each other by 

a very small amount. This slight skewness of the edges was 

not of importance as the load was applied to the head of 

the rig by a centrally located pivot. 
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The smaller holes 1" (25.4 mm) dia. and 2" (50.8 rom) 

diameter were drilled out, and the larger holes were tre­

panned. In order to minimise the effect of the trepan 

causing a bulge in the plate, the holes were cut halfway 

through the plate from one side and then completed from 

the other. 

The plates all had out-of-plane imperfections. In 

order to gain an estimate qf the magnitude of these imper­

fections, some of the plates were laid on a surface table, 

and a dial gauge which had been zeroed to the surface was 

passed over it. Bulges were found in the plates of an order 

of 0.006" (0.015 mm) to 0.016" (0.41 nun) pealt height in 

exceptional cases. The o,ut-of-plane deflections were reduced 

when the plates were held between the knife edges, but this 

test indicated that initial imperfections in the order of 

0.1 - 0.25 times the plate thickness existed. It was felt 

that an investigation using these plates would be of value, 

as the results would'show the behaviour of plates of commer­

cial standard, and therefore would allow an estimation of 

the limitations of the theory for practical applications. 

4.4 Test Procedure 

4.4.1 Test Series A 

The plates were prepared with holes in the following 

ranges of sizes. 

Length Breadth Range of hole diameters 

20" (508 mm) 10" (254 mm) 0"-6" (152 mm) in 1" (25.4 rom) step 

10" (254 rom) 10" (254 mm) 0"-6" (152 mm) in 1" (25.4 mm,) step 
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Each plate was numbered before testing and the 

thickness measured at various points with a micrometer in 

order to determine an accurate average value. The varia­

tion in thicknesses over individual plates was slight. 

The plates were each loaded into the test rig and tested 

as follows. 

The cap screws fastening the movable knife edges to 

the vertical uprights were loosened and the plate inserted 

between the knife edges. The movable knife edges were then 

tightened against the plate until the plate could just be 

slipped up and down without any free lateral movement of 

the plate between the knife edges. G-clamps were used to 

hold the knife edges in place while the cap screws were 

tightened. 

The dial gauges used to measure the out-of-plane 

deflections were attached to the uprights by means of their 

magnetic bases. For rectangular plates, the gauges were 

generally positioned at the 1 and 1/3 plate length distances 

from the loaded edge on the 'long' axis of the plate, and 

at the hole edge. However, the positions varied for 

different plates an~ were recorded with the results of each, 

test. For square plates the gauges were placed on a dia­

gonal, halfway between the centre of the plate and the 

corner, and at the hole edge. 

The rig was positioned under the loading head of the 

Tinius Olsen machine and the loading head was carefully 

lowered until a small load (approx. 0.1 x buckling ,load) 

registered on the machine. This load was intended to 

settle the plate into its supports and take up any movement 

between the components of the rig. The load was then 
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released unti.l the load measured b:r the machine just 

registered zero. All the dial gauges on the plate were 

set to zero and the channels of the MODULOG data logger 

were zeroed before initial readings of strain and deflec­

tion were made. The load was increased from zero and held 

steady at regular intervals, while readings of strain and 

deflection were made, until the collapse load of the plate 

was reached. Collapse was shown on the loading gauge of 

the Tinius Olsen machine as a sudden reduction in load. 

The buckling loads were estimated from the variation 

of the membrane strain with load at some particular point 

on each plate. The membrane strains at that point were 

estimated from surface strain measurements obtained from 

strain gauges attached to both surfaces of the plate at 

that point. The strain gauges were connected to the Wheat­

stone bridge circuit of the MODULOG data logger by the 

'three wire' technique, as previously described. Several 

strain gauge locations and strain directions were tried on 

an early test, but as there was negligible difference in 

the buckling load calculated from each, only one position , 
was considered on each plate in subsequent tests. 

The estimation of the buckling load from the strain 

measurements was made by comparing pre- and post-buckling 

curves of load against membrane strain. The intersection 

of these two curves was taken as the point of buckling. 

This method and the various other methods of estimating 

buckling loads are discussed with the presentation of the 

experimental results in Chapter Five. 
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4.4.2 Test Series B. The Strain Investigations 

The test procedure for both square and rectangular 

plates was the same as that used in test series A, with 

the exception that the ELCOMATIC data logger was used 

instead of the MODULOG machine. The ELCOMATIC data logger 

was connected to the strain gauge rosettes on·the plates 

by the 'three wire' technique. The loading was initiated 

and incremented in the same manner as before. The deflec­

tion gauges were used in similar positions to those on 

- plates without strain gauge rosettes. 
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CHAPTER FIVE 

Theoretical and Experimental Results 

The theoretical and experimental results and the 

comparison between them are described under four headings. 

These headings are as follows:-

5.1 Initial Instability 

5.2 Load Deflection Behaviour 

5.2.1 

5.2.2 

Load - out-of-plane deflections 

Load - edge displacements 

5.3 Ultimate Loads 

5.4 Internal Stress Distributions 

Typical examples of the plates tested have been 

selected for comparison witp theoretical behaviour. In this 

chapter, comments are only made on the general patterns of 

behaviour, whilst detailed discussion of the theoretical 

analysis and its comparison with experimental results is 

made in the next chapter. 

5.1 Initial Instability 

The buckling loads were estimated from the experimental 

results f.or the variation of mid surface strain with applied 

load. The choice of the method was made on the basis of 

work reported by Coan (21) and Yamaki (22) on plates with 

initial out-of-plane imperfections. Coan found, from 

analytical and experimental investigations, that the inflec­

tion point of the load-deflection curve corresponded most 

closely to the buckling load of a flat plate. However, this 

point cannot readily be identified when out-of-plane imper­

fections are large. Schlack (19) used·numerical analysis 
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of the load-deflection experimental data to identify this 

inflection point, but obtained considerable scatter in his 

results. 

Coan studied several methods of estimating the 

critical load of a flat plate and recommended two methods, 

using load-strain curves. The first, and more accurate, 

was to consider that buckling occurred when the tangent to 

the curve of mid surface strain in the loaded direction 

became parallel to the deflection axis. -The application 

of this method was considered unreliable, as the scatter 

of experimental results did not allow a smooth curve to be 

drawn through them. 

The second method described by Coan was to consider 

that the buckling occurred at the load at the intersection 

of the tangents to the pre- and post-buckling load - mid 

surface strain curves. In this method, only straight lines 

of best fit are required to be drawn through the pre- and 

post-buckling experimental plots, as illustrated in Figure 

5.1. This method was described as being less accurate 

than the previous two but consistent in underestimating 

the buckling loads. 

It was decided to adopt the second load - mid surface 

strain method ~s the potentiality for error was considered 

to be less than that of the other methods described. In 

addition, Rhodes (35) found this method to give reliable 

and consistent results when applied to the local buckling 

of wide flange beams. 
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5.1.1 Comparison of Experimental and Theoretical Results 

5.1.1.1 Square Plates 

The theoretical relationships between buckling 

load and the hole diameter for simply supported square plates 

under constant stress and uniform displacement edge loading 

are presented in Figure 5.2. The theoretical curves show 

the differences in behaviour between the two types of 

loading. The experimentally derived results for constant 

edge displacement are also plotted on Fig'ure 5.2, and the 

observed mode of buckling was a single half-wave, which was 

the same as the predicted mode. 
I 

5.1.1.2 Rectangular Plates (length/breadth = 2:1) 

The theoretical relationships between buckling 

load and hole size for simply supported rectangular plates, 
, 

of the overall dimensions and geometry tested, are illus-

trated in Figure 5.4 for constant stress loading, and in 

Figure 5.3 for constant edge displacement loading. 

The variation in buckling load for constant displace­

ment loading is presented in Figure 5.3 for buckling modes 

of two and three half-waves. The change in buckling mode 

at a hole .diameter of approximately 0.35 times the plate 

width, indicated by these results, was observed.in the tests, 

where the majority of plates tested took up the theoretical 

buckling mode. 

5.1.2 
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5.1.2 

5.1.2.1 

Comparison of the theoretical results with the 
results of other investigators 

Simply Supported Square Plates with Constant 
Stress Loaded Edges 

The theoretical relationship between buckling load 

and hole size established by Levy (16), Kumai (18) and Kawai 

and Ohtsubo (24) are presented with the author's theoretical 

relationship in Figure 5.5. The experimental results of 

Kumai (18) and Yoshiki et ale (23) are also plotted in 

Figure 5.5. 

The derivation of these authors' results has already 

been described in Chapter One. 

5.1.2.2 Simply Supported Plates with Uniformly Displaced 
Loaded Edges 

The theoretical relationship between buckling load 

and hole size, derived by Kawai and Ohtsubo, is illustrated 

in Figure 5.6 in comparison with the author's theoretical 

relationship. 

5.2 Theoretical and Experimental Load-Deflection Be~aviour 
t 

The two types of deformations of thin plating under 

compressive loading which are of greatest interest are:-

5·2.1 

5.2.2 

Out-of-plane deflections 

In-plane displacements of the loaded edges, 

The ability to predict these out-of-plane deflections 

is important, as the redistribution of post-buckling stress 

and change in axial stiffness are dependent on the deriv~­

tives of these deflections. Out-of-plane deflections are 

easily me~surable by the methods described in Chapter Four. 
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Measurement of the end compression was not attempted, 

due to lack of suitable reference points on the plates or 

- test rig, which were not affected by the motions of the 

plate and the flexibility of the test rig. However, the 

theoretical results are presented. 

Out-of-plane Deflections 

Comparison was made between the theoretical load -

. out-of-plane deflection curve derived by Yamaki (22) for 

simply supported plates, and that derived by the author, 

as a check on the performance of the author's theory for 

the limiting case of a plate with no hole. The comparison 

is illustrated in Figure 5.7. 

This also allows the performance of the test rig with 

plates having no holes to be checked against an established 

mathematical theory, by reference to the comparison between 

the author's theoretical and experimental results for these 

plates. 

5.2.1.1 Square Plates 

Figure 5.8 illustrates the theoretical variation 

in load deflection behaviour of pl~tes with various hole 

sizes. The deflections in Figure 5.8 are fictitious as 

they represent the hypothetical deflection at the centre 

of the plates. However, they provide a comparison of the 

relative magnitudes of the deflections of the plate. 

Comparisons were made between the theoretical and 

experimentally measured load-deflection behaviour, and 

typical comparisons throughout the range of hole sizes are 

presented in Figures 5.9 - 5.15. 
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Figures 5.13 and 5.15 are of interest in that the 

deflections remote from the hole suggest that a change in 

_~waveform took place prior to collapse. This is discussed 

in Chapter Six. 

5.2.1.2 Rectangular Plates 

The theoretical load-maximum deflection c~rves 

for various hole sizes are compared for two and three half­

wave buckling modes in Figures 5.16 and 5.17 respectively. 

Comparison between the two and three half-wave buckled shapes 

-fora plate with a hole diameter of 0.3 times the plate width 

was made in Figure 5.18. 

Comparisons between experimental load-deflection 

behaviour and theoretical behaviour are presented for typi-. 

cal plates in Figures 5.19 to 5.27. Figures 5.~9 to 5.22 

show results for plates with the range of hole sizes 0.0 to 

0.2 times the plate width, which buckled into two half-waves, 

and Figures 5.24 - 5.27 show the results for the range of 

plates, having hole diameters of 0.4 - 0.6 times the plate 

width, which buckled into three half-waves. Figure 5.23 

shows the comparison of theoretical and experimental results 
-

for a plate with a·hole diameter of 0.3 times the plate 

width, which buckled into three half-waves. 

5.2.2 Load-Edge Displacement Behaviour 

Theoretical curves derived by Yamaki (22) represen­

ting the uniform loaded edge displacements with applied 

load are compared in Figure 5.28 with the theoretical 

curves derived by the author for the limiting case of a 

plate with no hole, which has square buckles. 
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The graph of the theoretical variation of uniform edge 

displacement with applied load for square plates with a 

._. centrally located circular hole and the experimental boun­

dary conditions are shown in Figure 5.29. The post-buckling 

slopes are all similar to those of a plate with no hole, 

and the variation of pre- and post-buckling axial stiffness 

with hole size is shown in Figure 5.30. 

The theoretical loaded edge displacement variation 

with applied load for the rectangular plates under test is 

illustrated for the two and three half-wave buckled shapes 

in Figures 5.31 and 5.32. The variation of the post-buckling 

stiffnesses with hole size is presented in Figure 5.33 for 

both buckled shapes. This shows the variation of the two 

and three half-wave post-buckling stiffnesses in comparison 

to the variation of pre-buckling stiffness with hole size. 

The load-edge displacement curve in Figure 5.34 

represents a rectangular plate with hole diameter to plate 

width ratio equal to 0.3, and shows the intersection of the 

curves arising from the two and three half-wave buckling 

modes, which suggests that coupled modes of buckling are 

possible under cer~ain conditions.-

5.3 Ultimate Loads 

Two types of failure were observed in the plates. 

The first type occurred in plates with relatively small 

holes of diameter less than 0.3 times the plate width and 

is illustrated in Figure 5.35. This mode of failure was 

the type observed in unperforated plates. 

The second type of failure is illustrated in Figures 
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5.36 and 5.37, and occurred mainly in plates with holes of 

diameter greater than 0.3 - 0.4 times the plate width. 

--Plastic hinges or folds grew across the narrowest section 

of the plate between the hole edge and the supported edge. 

This either took the form of a kink, or two half-waves 

developed, as shown diagrammatically in Figure 5.38. The 

development of these two half-waves can be seen in the load­

deflection curves presented in Figures 5.13 and 5.15. 

- Experimentally measured collapse loads were plotted 

-against hole size in Figure 5.39. This showed that the 

collapse loads tended to decrease appreciably with increase 

in hole diameters greater than 0.3 to 0.4 times the plate 

width. 

5.4 The Internal Stress Distributions 

The general objects of the experimental strain investi­

gation are explained in Chapter Four. 

The four plates tested in this investigation were 

selected from the stock of plates prepared for the general 

series of tests, and no special preparations were made, other 

than those necessary to make the surface suitable for the 

application of strain gauges. The nominal dimensions of 

each of the four plates tested are set dmln in Table 5.1. 

Plate Length Breadth Thickness Hole dia. 
ins(mm) ins(mm) ins (nun) ins (mm) 

A 20 (508) 10 (254) 0.0622 (1.6) 2 ( 50.8) 

B 20 (508) 10 (254) 0.0622 (1.6) 6 (152.4) 

c 10 (254) 10 ( 254.) 0.0622 (1.6) 5 (121.0) 

D 10 (254) 10 (254) 0.0622 (1.6) 3 ( 16.2) 

Table 5.1 
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· Each plate was strain gauged along both centre lines 

with two-gauge 900 rosettes. The strain measurements were 

--used -to calculate stresses from the following relationships 

between stress and strain. 

= E,} (e.", + 
(I-v 

+ J) E:x ) 

The stresses calculated from the strain measurements 

are presented in comparison to theoretical stresses derived 

in the manner described in Chapter Three. 

5.4.1 Rectangular Plates 

5.4.1.1 Plate A 

Plate A was a rectangular plate with a hole of 

diameter 0.2 times the plate width, having the dimensions 

described in Table 5.1. The layout of the strain gauges 

along each axis is shown in Figure 5.40. 

The plate buckled into a two half-wave shape as 

predicted by the theoretical analysis and collapsed pre­

maturely at an applied load of 5930 lbf (27.2 KN) when one 

of the plate edges slipped from between the knife edge 

supports. 

The theoretical stresses in each direction along both 

'of the principal axes were drawn to the same scale and set 

out on the same diagram in Figure 5.41 for an applied load 

of approximately twice the buckling load, in order to 

demonstrate the relative magnitudes of these stresses. 

Figure 5.41 shows clearly that the dominant stresses are 
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the ~stresses along the y-axis.* 

The 6x stress distribution along the y-axis is 

presented in Figures 5.42 and 5.48 for both the experimen­

tally and theoretically derived results. In the post­

buckling range the redistribution of stresses is clearly 

shown in Figures 5.44 - 5.48., The 6 j stresses along the 

y-axis are also presented in Figures 5.42 - 5.48 in order 

to show the relative magnitudes of stresses in both x and 

y directions. 

Figures 5.49 -. 5.53 show the theoretical and experi­

mental 6x stress distributions on the x-axis and the 

corresponding 01 stresses are shown in Figures 5' •. 54 - 5.56. 

These figures have been portrayed with relatively larger 

scales than the dx stress distributions on the y-axis. 

5.4.1.2 Plate D 

Plate B was a rectangular plate with a hole of 

diameter 0.6 times the plate width, having the dimensions 

stat~d in Table 5.1. The plate buckled into three half­

waves as predicted by the buckling analysis and reache~ an 

ultimate load of 7780 Ibf (34.6 KN). -. 
The layout of s~rain gauges is shown in Figure 5.57. 

The theoretical and experimental ~stress distribu­

tions on the y-axis are illustrated in Figures 5.58 - 5.62. 

The corresponding 6~ stress distributions are also plotted 

in these figures in order to illustrate the relative orders 

of magnitude of the stresses in each direction. 

On the x-axis the theoretical and experimental ~x 

stress distributions are shown in Figures 5.63 to 5.68 and 

* For the purpose of comparison of theoretical and experi­
mental results the x and y axes of the plate are taken 
to pass through the centre of the plate. 
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the o~ stress distributions are illustrated in Figures 

5.69 - 5.73. 

5.4.2 Square Plates 

5.4.2.1 Plate C 

Plate C was a square plate with a hole of diameter 

0.5 times the plate width. The plate buckled into a single 

half-wave and collapsed at a load of 9000 Ibf (40.1 KN). 

The layout of the strain gauges is shown in Figure 5.74. 

Comparison between theoretical and experimental e)x 

stresses on the y-axis is made in Figures 5.75 - 5.78. The 

stress distributions on the x-axis were not presented. 

The high stress gradients on the x-axis cause relatively 

large experimental error and it was felt the finite element 

analysis had too few elements in this region to represent 

the stresses accurately. Therefore it was felt that valid 

comparison between theory and experiment was not possible. 

5.4.2.2 Plate D 

Plate D was a square plate with a hole of diameter 

0.3 times the plate width, and nominal dimensions described 

in Table 5.1. The plate buckled i~to a single half-wave 

and collapsed at a load of 8400 Ibf (37.4 KN). The layout 

of gauges on the plate centre lines is shown in Figure 5.79. 

Graphs of theoretical and experimentally derived 6ix 
stress distributions on the y-axis are shown in Figures 

5.80 - 5.84. The distribution of the experimental points 

was unexpected and indicates some experimental error, which 

makes the rest of these results invalid for comparison with 

the theoretical analysis. 
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Figure 5.10 Out-of-plane deflections of a square plate .£ = 0'0 
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Figure 5.11 Out-of-plane deflections of a square plate c = 0.' 
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Figure 5.12 Out-of-plane deflections of a square plate 
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Figure 5.13 Out-or-plane deflections of a square plate .£ =0·4 
b 

. ~. 
'6)·5"",) 

A 
3 

2..S· 
(63·5_", 5 

2'$­
({,).s... .... ) 

2.,+ 

1." I (,1-, .. ,.; 
-t-x I~ 

/.-0-
(51-) 

4·CXX) 

3.!m 

2-000 

p 
Feu 

..... ...... 
i 

... + 

1 
1 .. + It 

'~"'J!1t L-
ilti' 
M+ 
X 

Jt 

. .. 
.. .. 
+ .. 

+ .. 

.. .. 
+ .. 

+ .. 

•• 
+ .. ... 

-2.500 -2·cxx) -1·sx) -1'()(X) -0·500 0·000 O·SlX) 1·000 1·5(X) 2·000 2·5(X) 3·000 3·sao 

NON DIMENSIO~AL DEFLECTION WIT 



I') 

N 

Figure 5.14 Out-of-plane deflections of a square plate 
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Figure 5.15 Out-o£-plane de£1ections o£ a square plate· £= 0·6 
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Figure 5.19 Out-of-plane deflections of a rectangular plate 
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Figure 5.20 Out-o£-plane de£lections o£ a rectangular plate c c: 0·/ -b 
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Figure 5.21 Out-or-plane derlections or a rectangular plate .£ c: 0·/ 
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Figure 5.22 Out-o~-plane de~lections o~ a rectangular plate 
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Figure 5.23 Out-of-plane deflections of a rectangular plate 
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Figure 5.24 Out-of-plane deflections of a rectangular plate f: c: 0·4-
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Figure 5.25 Out-of-plane deflections of a rectangular plate c :: 0-5 
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For the purpose of comparison of theoretical and experi­
mental results the x and y axes of the plate are taken 
to pass through the centre of the plate. 
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For the purpo.se of comparison of theoretical and experi­
mental results the x and y axes of the plate are taken 
to pass through the centre of the plate. 
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CHAPTER SIX 

Discussion of the Theoretical and 
Experimental Results 

6.1 Buckling 

Comparison between theoretical and experimental 

results for the buckling loads of the square plates under 

test is illustrated in Figure 5.2. There is scatter in 

the experimental results. However, the trend of increasing 

buckling load with hole size is clearly seen, and agreement 

"between the theoretical and experimental values is good • 

. Comparison between the author's theoretical results for 

constant edge displacement loaded square plates and the 

theoretical results derived by Kawai and Ohtsubo illustrated 

'in Figure 5.6 show some slight differences. However, this 

can be attributed to the differing deflection functions used, 

i.e. Kawai and Ohtsubo used a truncated polynomial series 

of the following type:­

R' P 

ZZ 
r=' pc I 

Favourable comparisons can be seen in Figure 5.5 

between the author's theoretical results for constant stress 

loaded square plates and the theoretical results derived by 

Kumai (18) and Levy (16), and also between the experimental 

results of Kumai and Yoshiki et ale (23). The author's 

theoretical results agree more closely with the experiment'al 

results of Yoshiki and Kumai than the other theoretical 

results. Kumai and Levy's theoretical analyses both used 

infinite plate stress distributions, 'which limited rigorous 
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application of their results to plates with hole diameters 

less than 0.3 times the plate width. In addition, Kumai's 

out-of-plane deflection equation was invalid for plates 

with large hole sizes, for the reasons outlined in Chapter 

One. 

Comparison between the theoretical and experimental 

buckling loads of the rectangular plates tested is shown 

to be good in Figure 5.3, and the trend of increasing 

buckling load with increase in hole size is clearly shown. 

-The theoretical analysis generally predicted the buckling 

mode of the rectangular plates. The few exceptions were 

plates with hole sizes in the region of the critical hole 

diameter at which the change in buckling mode occurs. The 

possible sources of uncertainty over the mode of buckling 

in this region are, very large initial imperfections inter­

fering with the buckling mode; coupled modes of buckling 

arising in the immediate post-buckled region; or interaction 

between the previous two causes. 

The presence of large initial imperfections are seen 

in the experimental load - out-of-plane deflection curves 

for most of the plates tested. The possibility of coupled 

modes of buckling is indicated by the load - end displace­

ment graph shown in Figure 5.34 for ·a plate with a hole 

diameter of 0.3 times the plate width, in which the curves 

for the two and three half-wave modes intersect. However, 

this uncertainty only occurred in a few of the plates with 

hole diameter near that of the critical size. 
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6.2 Post-Buckling Behaviour 

6.2.1 Out-of-plane Deflections 

The author's theoretical results agree well with 

the results derived by Yamaki for out-of-plane deflections 

of a plate with a square buckle, and the comparison is 
, 

illustrated in Figure 5.1. The agreement is particularly 

close in the immediate post-buckling range, but deteriorates 

due to the author's theory having a fixed deflected shape 

corresponding to the buckling mode, and ~amaki's solution 

having four variable terms. The effectiveness of the test 

rig in reproducing the plate behaviour under the required 

boundary conditions can therefore be estimated from the 

close agreement of the author's theoretical results with 

the experimental results for plates with no holes, illus­

trated in Figures 5.9, 5.10 and 5.19. 

Comparison of the theoretical and experimental results 

for out-of-plane deflections of plates with small hole sizes 

(diameters less than 0.3 times the plate width) is good for 

both square and rectangular plates, and is illustrated in 

Figures 5.11, 5.12 and 5.20 to 5.23 for both square and 

rectangular plates respectively •. -

The accuracy of agreement between theory ~nd experi­

ment deteriorates with increasing hole size for diame~ers 

greater than 0.4 times the plate width, and is illustrated 

in Figures 5.13 to 5.15 and 5.24 to 5.21 for square and 

rectangular plates respectively. This deterioration in 

accuracy arises from the. author's theory using a fixed 

deflected shape, which is unable to reproduc~ a free edge' 
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boundary condition at the hole edge. This is due to the 

inaccuracy of the energy expressions increasing with increase 

in hole diameter because of the discrepancy between the 

approximate and actual boundary conditions. 

In general, the reduction in accuracy of theoretical 

results with increasing load arises from the theoretical 

post-buckling deflection being fixed in shape. However, 

agreement between theory and experimental results is 

good. at low levels of loading. 

6.2.2 End Compression 
• 

The load - end compression relationships shown in 

Figures 5.29, 5.31 and 5.32 show an almost constant post­

buckling stiffness for each buckled mode for any hole size. 

This is further illustrated in Figures 5.30 and 5.33, which 

show the relationship between hole size and pre- and post­

buckling stiffnesses for square plates and rectangular 

plates with various buckling modes. 

The post-buckling load - end compression curve for 

a plate with no hole was tangential to the curve "calculated 

by Yamaki at the point of buckling. The deviation between 

the two curves was due to Yamaki's solution having four 

terms of variable magnitude in the post-buckling region. 

The· single degree of freedom allowed by the author's theory 

overestimated the strain energy of the plate, which caused 

the stiffness of the plate to be overestimated when the 

total potential energy was minimised. In this case, this 

meant that the end displacements were underestimated for 

any given load, and this was observed in comparison with 
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Yamaki's solution. 

6.2.3 Post-Buckling Stresses 

The accuracy of the experimental stresses was depen-

dent upon the accuracy of measurement of the strains, which, 

in turn, was highly dependent on the gradient of the strain 

field over the gauge area, and on the magnitude of the 

strain, as the constant measurement errors obviously became 

a smaller proprtion as the magnitude of the strain measure­

ment increased. As an example, this reasoning infers that 

the t~ strains along the y-axis are relatively less accurate 

than the ex strain along the same axis, the c..x strains 

being higher in magnitude, and having less steeply sloping 

gradients. The corresponding ~ stresses calculated on 

the y-axis from the strain measurements will therefore be 

more accurate than the 6, stresses. 

Figure 5.41 illustrates the relative magnitudes of 

the theoretical and experimental stresses at approximately 

twice the buckling load in Plate A. This figure·shows that 

the e)xstresses across the minimum ;ection are the greatest 

s.tresses in the direction of loading. Therefore the 

effectiveness of t~e theoretical analysis was assessed by 

its ability to predict these stresses. 

Comparison between theoretical and experimental 

stresses for Plate A is good until approximately twice the 

buckling load. Similar trends of redistribution of 

theoretically and experimentally derived stresses occur for 

the Clx stress distribution on the y-axis in Figures 5.42 

to 5.48 and for the Ox and 6~ stress distributions on the 

x-axis in Figures 5.49 to 5.53 and 5.54 to 5.56. The 
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theoretical redistribution of 6x stresses across the 

minimum section is illustrated for Plate A in Figure 6.1. 

The theoretical analyses of Plates Band C (hole diameters 

of 0.6 and 0.5 times the plate width respectively) did not 

reproduce the observed redistribution of stresses. In plate 

D (hole diameter 0.3 times the plate width) the theoretical 

analysis showed the same type of experimentally observed 

redistribution found in Plates A, Band C. Unfortunately 

the experimental results for this case were so unrealistic 

that they were not considered to be valid. 

The accuracy of the theoretical deflections strongly 

affects the accuracy of the calculated post-buckling stresses. 

The stresses were calculated by the method described in 

Chapter Three from equations 3.33a - c which are based on 

squares of the derivatives of the deflection function. 

'Differentiation of the deflection function induces a greater 

error in the derivatives than in the function. The relatively 

lower accuracy of the theoretical out-of-plane deflections 

for large holes (diameters greater than 0.3 times the plate 

width) than for small holes (diameters less than 0.3 times 

the plate 'width) therefore explains-the inability of the 

theory to predict the post-buckling redistribution of 

stresses in plates with large holes. The reduction in 

accuracy of the theoretical deflections with increasing load, 

shown in all the plates tested, also explains the loss in 

accuracy of the theoretical stress distributions in Plate A 

beyond approximately twice the buckling load. 



6.2.4 Summary of the Discussion on the Post-Buckling 

Behaviour 

The comparison between theoretical and experimental 

results infers that the application of the results from the 

theoretical analysis should be confined to within twice the 

buckling load and to plates with hole diameters less than 

0.3 times the plate width for good accuracy of out-of-plane 

• deflections and'post-buckling membrane stress. This infers 

that the theoretical analysis would be useful for studying 

relativelY thick plates where collapse occurred around twice 

the buckling load, and the membrane stresses produced by 

out-of-plane deflections were a relatively small proportion 

of the total stress distribution. 

6.3 Collapse 

The experimental results presented in Figure 5.39 

show that the collapse load only decreased slightly with 

increase in hole size, and that there are still relatively 

large reserves of strengt~ left in a plate even with a 

large hole. A change of collapse mode was observed to occur 

in both the square and rectangular plates, and this is 

described in the pr~vious chapter as a change from a mode I 

to ,a mode II type failure. 

, The experimental collapse loads and the results of 

the failure analysis are compared in Figure 5.39. The 

failure analysis produced results which followed the trends 

of reduction in ultimate load observed in the tests. The 

analy~is is described in Chapter Three and the four assump­

tions made in formulating the analysis· were explained in 
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detail. The first assumption was that collapse occurred 

when the maximum stress in the loaded d~rection reached 

yield, and this allows the ultimate load to be related to 

the effective width and yield stress. This assumpt~on is 

accurate if applied to effective widths calculated from 

collapse loads, as in references 33 and 34, or from elastic 

stress distributions, as opposed to effective widths 

calculated from end shortening as in reference 22. 

The second assumption on the redistribution of 

stresses in the post-buckling region was justified by the 

results of the experimental strain analysis of Plates A, 

Band C in which the peak stresses occurred at the supported 

edge of the plate after buckling. This redistribution was 

accurately predicted in plates with small holes up to 

approximately twice the buckling load, which made it 

necessary to resort to an approximate method in order to 

calculate the effective widths. Because the theoretical 

analysis was inaccurate over approximately twice the buckling 

load, it was necessary to base an approximate analysis on a 
, 

more accurate post-buckling analysis of the load ~ effective 

width relationship for a plate with no hole. The analysis 

chosen for the basis of the collapse analysis was Rhodes and 

Harveys' (30). 

The third and fourth assumptions were on the differences 

between the post-buckling stress distributions of plates 

with holes and unperforated plates. The low accuracy of the 

theoretical stress distributions near collapse load levels 

did not allow the mode of redistribution to be examined and 

hence these assumptions could not be improved upon. However, 
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the theoretical results for the collapse loads are in good 

agreement with the experimental results. 
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CHAPTER SEVEN 

General Discussion on the Buckling and Post­
Buckling Behaviour of Plates with Holes 

7.1 Buckling 

The load at which buckling occurs in a plate is 

related to the pre-buckli~g distribution of membrane stress 

and the amount of rotational or ~.translational restraint on 

out-of-plane deflections. Buckling more readily occurs 

when the maximum stresses occur where the out-of-plane 

restraint is low. 

By this reasoning, the introduction of a small hole 

into a plate causes a decrease in the resistance to buckling, 

due to the introduction of a free edge with an associated 

stress concentration, and can be seen in Figures 5.2 and 

5.5 for square simply supported plates with no in-plane edge 

restraint. For relatively large hole sizes the stresses 

diffuse towards the supported edge in rectangular plates 

and also in square constant edge displacement loaded plates, 

due to the relatively low stiffness of the loaded edge 

opposite the hole. This causes an increase in the buckling 

load shown in Figures 5.2 and 5.3. This diffusion of stress 

towards the edges does not happen in constant stress loaded 

square plates, as illustrated in Figure 7.1, and this 

produces the decrease in buckling load illustrated in 

Figure·5.5. 

The effect of rotational edge restraint can be seen 

from a comparison of the results for simply supported square 

plates with constant stress loaded edges shown in Figure 5.5, 

with the results obtained by Kumai for clamped plates, shown 
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in Figure 7.2. The constant stress load produces a decrease 

in buckling load with increase in hole size in comparison 

with the increase in buckling load shown by clamped plates 

for relatively large holes. Tnis increase is due to stresses 

around the hole being distributed towards a region highly 

restrained against out-of-plane rotation as well as 

translation. 

The results shown in Figure 1.3 for simply supported 

square plates tested by Schlack under uniform 'edge com­

pression showed a decrease in buckling load in comparison 

with the results obtained by the author. This was due to 

the additional restraint of holding the unloaded edges 

straight, which raised the general level of stresses in 

the plate. 

The author's theoretical'and experimental work, and 

the work of other investigators, has allowed the effects of 

various types of boundary and'loading conditions to be 

qualitatively identified. This allows some speculation, 

based on fact, to be made about the local buckling behaviour 

of various plate components to be discussed. Compression 

flanges and webs of thin walled beams and columns are of 

interest. Compression flanges have a degree of rotational 

edge restraint from the neighbouring elements which also 

impose some constraint on the in-plane edge displacements 

of the flange. However, this latter restraint is considered 

to be slight, as it does not prevent the edges of unperforated 

flanges moving in the post-buckling range. In long rectangu­

lar flanges, the difference~ in stress distribution produced 
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by different types of loading diffuse in accordance with 

st. Venants principle. This would tend to cause a slight 

reduction in buckling load for plates with small holes and 

an increase for plates with large holes, as previously 

described. Thus the general trend in behaviour would be 

expected to be an increasing buckling load with increasing 

hole size. 

The results of local buckling tests performed by Yu 

and Davis (31) on uniform thickness cold rolled beams and 

columns, with a centrally located circular hole in the 

compression flange, are illustrated in Figure 1.6. These 

results showed a slight reduction in buckling load with 

increasing hole size, and the theoretical relationship 

derived by Kawai and Ohtsubo (24) for simply supported 

square plates under constant stress loading was selected 

by Yu and Davis as a suitable conservative design curve . . 
However, there is the possibility that in estimating the 

proportion of the load carried by the flange, the stiffness 

of the neighbouring flanges was overestimated due to the 

presence of initial imperfections, which would have 

introduced errors into the estimation of the buckling loads. 

The theoretical buckling analysis described in Chapter 

Three can be readily applied to thin-walled sections com­

posed of an assembly of thin plates. The out-of-plane 

deflections can be represented by the deflection functions 

used in the analysis of thin-walled beams by Rhodes (35) 

and the pre-buckling membrane stress distributions can be 

readily obtained from a plate bending and membrane stress 

finite element analysis. 
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7.2 Post-Buckling Behaviour and Collapse 

The experimental and theoretical investigations of 

the post-buckling stresses in square and rectangular plates 

with simply supported edges and uniformly compressed loaded 

edges, has shown that the mode of redistribution of stresses 

in plates with holes is similar to that in a plate with no 

hole. This similarity is in the way that the stresses tend 

to diffuse towards the supported edges away from the peak 

of a buckle, so that the maximum stresses occur along the 

supported edges of a plate. It is therefore a reasonable 

assumption to consider that the post-buckling distribution 

of stresses in plates with holes under different boundary 

conditions and loading conditions follows the same trends 

as similarly loaded and restrained plates with no holes. 

By making this assumption, the method of analysis described 

in Chapter Three can be applied to plates with holes, if 

an analytical solution exists for the post-buckling behaviour 

of a similarly loaded and restrained plate with no hole. 

The limitations on the application of the results of such 

theorctical analyses cannot be readily assessed. However, 

the factors affecting the accuracy bf the theoretical analysis 

have been discussed, and the results of these discussions can 

be used as a basis for planning tests to determine the limits 

of accuracy for other cases. 

The collapse analysis can also be applied to plates 

with other boundary conditions if there has been a relation­

ship cstablished between applied load and effective width 

for plates with no holes. This is because the collapse 

analysis is based on the correction of the post-buckling 
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stress distribution in a plate with no hole, in order to 

allow for the redistribution of stresses caused by the 

introduction of a hole. Only a mathematical approximation 

to the shape of the post-buckling stress distribution is 

required. 
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CHAPTER EIGHT 

Conclusions and Suggestions for Future Work 

The discussion of the theoretical analysis, and its 

comparison with the author's experimental results and the 

experimental results of previous investigators led to cer­

tain conclusions being drawn, and also suggested some areas 

and directions for future work. 

8.1 Suggestions for Future Work 

1. A thorough experimental examination of the post­

··buckling out-of-plane deflections for initial 

buckling modes and changes of buckling mode could 

be made. 

2. The stability analysis could be applied to 

perforated compression flanges' of typical cold 

formed sections. 

3. ~~e stability analysis of suggestion 2 could be 

extended to a post-buckling analysis, using a 

theoretical analysis such as that described in 

reference 35 as a basis for the post-buckling 

behaviour. 

4. The collapse analysis could be extended to plates 

with different boundary conditions, and to the 

compression flanges of thin-walled beams and 

coltUIlns. 

8.2 Conclusions 

1. The thepretical buckling analysis was successful, 

in that it accurately predicted the results of tests con­

ducted on square and rectangular plates described in this 

197 



thesis, and also predicted the experimental results of 

other investigators with improved accuracy over previous 

theoretical analyses. 

2. The theoretical post-buckling analysis of 

out-of-plane deflections was most successful at predicting 

the experimentally observed out-of-plane deflections of 

the simply supported square and rectangular plates tested, 

for the range of hole diameters 0.0 to 0.3 times the plate 

width. 

3. The experimentally measured post-buckling 

membrane stress distribution showed the redistribution of 

stresses in the post-buckling range of a plate with a 

centrally located circular hole to occur in a manner similar 

to that in a plate with no hole, in that the maximum stress 

in the direction of loading became concentrated close to 

the supported edge of the plate. 

4. The theoretical analysis of post-buckling 

stresses successfully predicted the trends of post-buckling 

stress redistribution and showed good agreement with the 

experimentally measured stresses for plates with relatively 

small holes (diameters less than 0.0 times the plate width) 

for applied loading up to approximately twice the buckling 

load. 

? The experimentally measured collapse loads of 

the plates were not appreciably influenced by hole size 

until a hole diameter of approximately 0.3 times the plate 

width. Beyond this hole size the collapse loads decreased 

slightly with.increasing hole diameter. 

6. The collapse analysis accurately and conservatively 

agreed with the experimentally observed collapse loads. 
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APPENDIX ONE 

The Derivation of the Stiffness Matrix of a 
Constant Strain Triangular Finite Element. 

The finite element calculations performed for the 

theoretical analysis described in Chapter Three used the 

constant strain triangular elements described in Chapter 

Four of reference 8. Briefly, the Finite Element method 

minimises the total potential energy of a structure 

expressed in terms of the loads and displacements at dis­

crete points in the structure. These discrete points, or 

nodes, are on the boundaries of small regions, or finite 

elements, of the structure, over which the strain energy 

can be expressed in terms of the loads and displacements 

at these points or nodes. This allov'ls the total strain 

energy of the structure to be expressed in terms of these 

nodal displacements. This is accomplished by writing a 

relationship for the loads and displacements of the nodes 

for each element such that 

{ p} = [k ] {b J A/.J 

where {P] is the vector of the nodal loads and {~) is the 

vector of the nodal displacements. [kJiS the stiifness 

matrix. The stiffness matrix should produce nodal loads 

which are in equilibrium, and which are zero for rigid 

body displacements or rotations. 

The derivation of the stiffness matrix for the plane 

stress constant strain triangular element is simple, direct 

and rapid to calculate. Figure Al.l ,shows a typical 
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· triangular element with nodes numbered l = 1, 2 and 3. 

Each node has two degrees of freedom, the displacements 

Ui and ~ represented by the vector 

u. 

[s} 
v. 

- U1 

V2. 

Us 
Vl Al.2 

In order to define the displacements within the element by 

these six nodal displacements, [~] , it is necessary to 

represent the displacements by displacement functions with 

a total of six arbitrary coefficients. The simplest 

functions which fulfil this requirement are 

u, Al.3 

v • AI.4 

The nodal values of the U. displacement can be written 

using equation Al., as 

U, - U, 4- V2 XI 004- U, ~, -
Ut . c- Ur + U1 XJ +- U3 ~% 
U, .. U. + U1 X 3 ... U.s J3 AI.5 

i.e. 
[ cr] {U] {~} :: 
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{u}= {U} - U, where (.(. and -
Ut UZ 

L{J UJ 

{UJ 
-I 

Hence = [G] [uJ AI.6 

For such a small matrix, the inverse offcr]can readily be 

found by substitution of variables i.e. 

-I 
[G] r: 

I -'LA 

where ~ = area or the triangular element. 

Thus the coefficients of equation Al.3 can be directly 

expressed in terms of the nodal.displacements. A similar 

operation can be performed on equation AI.ll to produce the 

corresponding expression 

AI.8 

I J
-I 

The matrix cr can be re-written as follows in order 

to allow the relationships described by equations AI.8 and 

Al.6 to be expressed as 

{U} ~ [er,] {b} Al.9 

{V}: [ct) (~) Al.lO 
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where 

[CT.] - [cr] -I 0 0 0 0 0 -
0 0 I 0 0 0 

0 0 0 0 0 

and 

r efz] = r Gr ]-1 0 I 0 0 o 0 

0 0 0 I o 0 

0 0 0 0 0 I 

The strain in each element can be written as follows 
JI.( 
lx 

[E} ~v - = ~~ -

This can be obtained from equations AI.3 and AI.4 as being . 

{e} = 
AI.II 

Expression AI.II can be re-written using expressions AI.9 

and AI.IO 

i.e. 

fEl· = 
{o I OJ [ cr. ] 
{o 0 I} (Cr,] 
{o 0 I} [Cr.] + {o I 0 J [4-2 ] 

This becomes, after sUbstitution for [cr.l, [4-1l etc. 
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{E} = (H]{~} 
Al.13 

where 

(~1-~3) 0 ('b-'f,) 0 (~'-~2) 0 

[HJ = o (:;(, - "1) 0 (:(, -.xJ ) O' (:XZ -.:x, ) 

(XJ-X2)(~1-ljJ)(X, -X,) (~J- y,> (:XI. -X,) (~, -~2) 

Al.14 . 

The stresses in each element can be written in terms of the 

strains for a plane stress relationship as follows 

Ox = £ (ex + t) E, ) 
(J - 1/9 

6~ ;: E ( c., + vf~J 
(I _1/2) 

'l;, = £ 4, 
2(1 -i- t)) 

The relationship between stress and strain can be written 

from this into a matrix formulation 

{6} = 

where 

[DJ = 
J 

V 

o 

tJ 
I 

o 

o 
o 

(I - £}) 
2 

The strain energy in an element is 
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where the integration is over the surface of the element. 

LJe can be re-written by the substitution of equations Al.l5 

and Al.l3 into Al.l6 to give 

Al.l7 

The coefficients of the matrices in equation Al.l7 are all 

independent of x and y. Therefore the integration of 

equation Al.l7 becomes 

. Al.l8 

The total potential energy of the element is therefore 

Ur = (P J [~ ) T Ue 

where {pJ is the vector of the nodal loads i.e. 

i.e. 

[p} = 

Pu. 
PV1 

Put 
Fh 
~, 

Pv, 

1: T: UT = {P}[~ r - ..LL1t{~} [H]rD][H){~} 
2 

Al.l9 

The equation for total potential energy is' then minimised 

with respect to the nodal displacements, in order to produce 

an equilibrium relationship. This produces the following 

equation. 
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--
T-

{pI - At [H](D][H]{S} - 0 

AI.20 

Equation AI.20 can be arranged to give 

{PI = b.t[HfLD][H1{&} 
AI.21 

Equation AI.21 is of the form of equation AI.I where 

[k] = At [Ht[D][H] 
AI.22 

The stiffness matrix is therefore the product of on~y two 

matrices w~ich can be directly written without any previous 

matrix inversion or numerical integration. 

As no finite element programs of sufficient size were 

generally available within the University of Strathclyde at 

the start of this investigation, the author wrote a simple 

plane stress or plane strain tl'lO dimensional finite element 

program, using constant strain triangular elements. The 

program could accept either prescribed load or p'rescribed 

displacement boundary conditions, and was written for the 

IBM 370/155 computer which had become available to the 

University of Strathclyde at that time. 
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APPENDIX TWO 

Calculation of the Minimum Eigenvalues 

The calculation of the smallest eigenvalue of equation 

3.13 was performed by a simple iterative method. The 

method is described in reference '38. However, its appli-

cation to the eigenvalue problem specified by equation 3.13 

is described as follows. 

Equation 3.13 is written in the following manner:-

This equation can be re-written as 

i.e. 

or 

-I 

1 fA} = - [1<,"",] [k,nm] {A} 
cp 

A {A} = [C"M] {A} 

where A. * and 
-I 

= - [Knltr\ 1 [ K,""J 

A2.l 

A2.2 

A2.3 

A2.4 

The iterative method of solution was commenced by 

taking an arbitrary real vector(At and calculating an 

approximate value of A{A} from equation A2. 3 

i.e. 

The first approximation for the eigenvalue of equation A2.3, 

A" is the largest term in the product (CD"'] {AJo ' and the 

eigenvector {Aj,is this product normalised with respect to 
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the largest term. The iteration \-las continued by repeating 

the calculation in order to obtain the second approximation 

from the first approximation, until the r th approximation 

is 

At some point in this calculation, the eigenvalue 

converged to within suitable limits of accuracy to give the 

largest eigenvalue )lr of equation A2.3, which is therefore 

the smallest eigenvalue, 9' ' of equation A2.l. In practice, 

the eigenvector takes longer to converge than the eigenvalue. 

However, convergence was assisted by choosing a suitable 

initial approximation for{A~. In practice this was found 

to be a zero vector with a unit value in the location 

corresponding to the row containing the largest absolute 

term on the leading diagonal of the matrix [e llm]. Conver­

gence to within 0.1% of the eigenvalue was taken as the 

point at which the iterations were stopped. However, as 

this was found to occur within twenty iterations, a standard 

number of thirty iterations was adopted to simplify pro­

gramming, as the additional computing time was negligible 

for 3 x 3 matrices. 
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APPENDIX THREE 

The Material Properties 

The material properties of the plates were established 

as part of the experimental investigation. These properties 

were measured from standard tensile test specimens made to 

B.S. 485 from unused plate specimens. The tensile test 

specimens were taken from both directiops of the plating. 

The Tinius Olsen machine was used to test. the specimens 

in tension. An extensometer was attached to each specimen, 

which allowed a continuous recording of the load-extension 

behaviour of each specimen to be obtained from the machine. 

These recordings were used to calculate the Young's Modulus 

and yield stress of the material. A few tensile test speci­

mens were strain gauged both in the axial direction and 

across it, and were used to estimate Poisson's ratio. 

The average material properties were found to be 

E'= 30'2.10
6 Ibf.mt2 

6'( = 43100 Ibf Ins-2 

V = 0,3 

( 2.08· 0 . 103 MN.p,-2) 

( 'l Cf 7 M N. m -2 ) 

The scatter on the results for the Young's Modulus was 

slight. However, the scatter on the values for the yield 

stress \llere relatively large, ranging between +9% and -1% on 

the mean value. The mean values of the material properties 

were used in all calculations. 
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