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Abstract

This thesis reports the design, assembly and characterisation of a new cold-atom fountain clock.

Diffractive optics have previously been used to produce compact atom trapping systems. I build

upon that research to launch the trapped atoms upwards, as in existing fountain clocks. Those

clocks launch their atoms up to a metre high, passing through a microwave cavity. I also embed

the diffractive optic within a microwave cavity allowing a small, integrated apparatus. This allows

an interrogation time of 100ms, intermediate between the 10ms to 20ms achievable without a

launch, and the 500ms observed in a full-scale fountain.

Coherent population trapping was used to test the new atomic fountain technique and observe its

initial performance in a clock system, where it improved the clock by allowing a longer time-of-

flight, with a best single-shot stability of 2.9×10−11 The diffractive optic was then mounted inside

a microwave cavity, allowing in-situ atom trapping with only a single aperture for the trapping

beam. Another clock sequence was realised here, using the microwave cavity to directly excite

atomic transitions. The microwave excitation doubled the detection SNR, going from 42 to 95

with potential for further increases. The future combination of the fountain and in-cavity trapping

techniques will produce a miniature version of the microwave fountain clocks which are central to

modern frequency metrology. An analysis has been done of the potential performance such a clock

could achieve, to highlight the most critical areas of design and guide future experiments.
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Chapter 1

Introduction

Timekeeping is a fundamental part of society. From the earliest calendars to the latest atomic

clocks, measuring the progress of time has allowed us to understand the world around us. As

technology has advanced, improved clocks have enabled both scientific research and technological

applications. The earliest devices, water clocks and sand-glasses, could be used to time specific

periods and determine rates such as the speed of a ship or the pulse rate of a doctor’s patient.1,2

Later, mechanical clocks were developed for navigation. The variation of local solar time against a

reference clock allowed the calculation of latitude, and global position could be determined within

10s of km.3 In the modern age, accurate clocks impact an enormous number of fields in ways both

trivial and profound. Satellite navigation systems rely on a clock in each of the satellites,4 general

relativity has been probed by measuring the effect of time-dilation on clocks,5,6 and almost the

entire SI measurement system depends upon the accuracy of clocks that define the second.7 The

availability of a common global timescale with sub-second accuracy has become an accepted part

of everyday life, enabling scheduling and communication across the world.

The most accurate clocks, by many orders of magnitude, are atomic clocks.8 The resonant fre-

quencies between atomic energy levels are universal among atoms of the same type, defined by

the fundamental physics of the atomic structure. Because of this, clocks using the same atoms

should always have exactly the same frequency, with no changes over time. In practice, external

influences can perturb those ‘perfect’ frequencies, and I will discuss that in this thesis, but the

potential accuracy of atomic references remains far superior to any mechanical oscillator.

When looking at the technological applications of clocks, it is clear that the usability of the clock is

of vital importance. A clock that can be easily transported, powered and operated will be useful in

many more situations than one which requires a laboratory full of equipment and staff to operate.

1



2 A cold-atom fountain clock from a diffractive optic

12:34:56
ν0(10MHz) νcount(1Hz)

t t

Figure 1.1: A general clock architecture consisting of a local oscillator, (electronic) clockwork and

a counter. The shown waveforms and frequencies are examples.

The easier a clock is to use, the more applications it will find (for a given level of performance).

There is now a great deal of focus on reducing the size, weight and power (SWAP) of existing

high-performance clock technologies.

During my PhD I have worked to produce a clock which uses the techniques of a microwave

cold-atom fountain clock but realises them in a more compact apparatus.

1.1 The Structure of a Clock

A clock consists of two main components: an oscillator and a counter. The oscillator, referred to

as the local oscillator (LO), determines the clock frequency while the counter keeps track of how

many cycles have occurred so the elapsed time is known (see Fig. 1.1). The clock performance

will be determined by the stability and accuracy of the LO. There may also be some ‘clockwork’

that divides (or multiplies) the frequency of the LO to a frequency that is suitable for the counter.

This frequency is often a standard of 1Hz or 10MHz as these are useful increments to count in

common applications. For example a 32 kHz quartz crystal may be divided down to 1Hz to drive

a wristwatch display which only needs to update once per second. In optical clocks, this clockwork

is of particular importance because the LO is at an optical frequency and the clockwork must

transfer this frequency into the electrical domain whilst maintaing its frequency stability.9

In atomic clocks, the LO is enhanced by measuring its frequency, νLO, relative to the frequency

of an atomic transition, ν0. Any change or drift of the LO will be seen in this comparison and

can be corrected. Fig. 1.2 shows this structure. The idea is that the atomic transition is far more

stable than the LO in the long-term because it is determined by a comparatively simple physical

system. The LO is more stable in the short-term and so a best-of-both scenario is achieved (the

atomic system alone may not even have a well-defined short-term performance if it is passively

2



3 A cold-atom fountain clock from a diffractive optic

×N

NνLO ≈ ν0

νLO

0

NνLO − ν0

Figure 1.2: An atomic clock, where the local oscillator is locked to an atomic frequency standard

(left). An example atomic signal that might be used for the lock (right).

interrogated, as opposed to an active oscillator). An unperturbed atomic transition should always

have exactly the same frequency, in contrast to the classical oscillator which will drift over time

(aging) even if unperturbed.

In general, the LO may be at a standardised frequency (e.g. 10MHz) which will be multiplied (or

divided) by a constant factor N (not necessarily an integer) so that it is close to the transition

frequency, NνLO = ν0 + δν. The atoms are used to produce a signal that depends on δν in some

manner. Measurement of the signal allows calculation of δν, and is used to drive a feedback loop

which maintains δν = 0, so the LO is locked to the atomic transition.

The principle challenge of building an atomic clock is to compare the LO and atomic frequencies

with maximal precision, and without introducing systematic errors. This is often done by using the

LO (after frequency multiplication) to drive the atomic transition directly. The resulting atomic

state then provides a discriminator that is sensitive to δν.

1.2 Current clocks

Any proposed new clock should improve on the existing technologies in some way. It is important

to understand the performance of the current generation of clocks and address their limitations.

In general, clocks have two kinds of metric which can be improved; the performance of the clock

in terms of stability (at various timescales) and the usability of the clock in terms of SWAP, cost,

reliability, or ease of use. As might be expected, there is usually a tension between these different

metrics. State of the art clock performance requires large, complex setups, whereas clocks which

are compact or less expensive have much more limited performance. The performance of some

next-generation clocks which have been demonstrated is illustrated in Fig. 1.3.

3
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Figure 1.3: A comparison of existing clock performance, witha focus on developing next-generation

clocks. Graph modified from [10], ©2021 IEEE. Y-axis is in time-deviation at 1 day, with 10−10 s

equivalent to a fractional error of 2× 10−15.

Currently, the most accurate clocks in the world are optical clocks based upon cold atoms or trapped

ions. These clocks can have an accuracy around 1 in 1018, or 1 s in the age of the universe.8,11

Optical clocks use a local oscillator (see Chapter 3) that oscillates at optical frequencies. In other

words, they ‘tick’ extremely fast, at hundreds of THz. This, combined with long interrogation

times of over 1 s, allows a very large number of clock cycles to be ‘counted’ in each measurement

that is made, which is key to their impressive performance. The high frequency also has a number

of downsides. It is hard to produce a highly stable oscillator at this frequency,12,13 and it is also

difficult to transfer the stability of the optical oscillations into the electrical domain so they can be

used in electronic clock applications.14,15 Further, each of these clocks requires a selection of lasers

at multiple widely spaced frequencies, and so the optical systems become rather complex. These

issues mean that it is currently very difficult to produce a compact, transportable optical clock.

Transportable clocks do exist, and substantial progress is being made, but even the smallest require

hundreds of litres of volume in addition to racks of electronic and optical equipment.5,16–18 The

difference between trapped-ion and cold atom optical clocks is worth examining. In some respects

these are similar, as similar optical transitions and interrogation techniques are used for the clock

itself. However, there are great differences in technology and performance. Ion clocks usually have

only a single trapped ion which is trapped using an electromagnetic trap such as a Paul trap. The

ions charge allows easier trapping, but only a single ion is used because they interact strongly with

each other and this perturbs the clock. Because the trapping is electrical, not optical, it requires

4



5 A cold-atom fountain clock from a diffractive optic

less optical access and can produce more compact physics packages. Cold atom clocks use neutral

atoms, which must be trapped using optical forces in an optical lattice. Many more atoms can

be trapped using this technique, in the range 1× 105, which gives a much higher SNR due to the

averaging power (see Section 3.2.4) and a better stability at short times (below 10−16 at 1 s for

cold atom clocks but only 10−15 for trapped ion clocks.) The accuracy (and long-term stability) of

both technologies is very comparable at a few 10−18, because similar kinds of shift occur in each,

with the major exception of shifts due to the trapping forces in each case. Even transportable

clocks have achieved 10−17 accuracy.17 An atomic clock will generally have improving instability

over time, τ , as 1/
√
τ so an optical lattice clock with 5 × 10−17 performance at 1 s would reach

it’s full accuracy specification in around 45 minutes, but a trapped ion clock might take 2 weeks

to reach the same level.

In contrast to optical clocks, microwave atomic clocks use a local oscillator in the GHz range which

is much more accessible using standard electronic components. These clocks usually work with

neutral alkali atoms, such as Cs or Rb, and have somewhat simpler optical requirements because

these atoms have relatively simple electronic structures.19 Cs and Rb clocks are very similar because

they have similar level structures, but there are some key differences. Cs has traditionally been

used for the highest performing clocks, and the SI second is defined in terms of the 133Cs frequency

at around 9.912GHz, which is higher than the 87Rb frequency of 6.834GHz. However it has been

found that Rb does have some advantages, mainly that it has a much smaller clock shift due to

collisions with other cold atoms, as discussed in Chapter 9. Rb also has fewer magnetic sublevels

which can improve signal in some types of clock. In general, the species can be treated similarly.

The best microwave clocks are the Cs fountain clocks which currently realise the SI second. These

clocks have a short-term stability of around 10−13 at 1 s and an accuracy of a few 10−16 , and it

is unlikely that any significant improvements will be made to this as the technology is now quite

mature.20–23 The field of compact microwave clocks is, likewise, much more developed than for

optical clocks and has a number of commercially available clock systems.

Microwave atomic clocks can be broadly split into two groups, those that use a thermal gas of atoms

in a vapour cell containing a substantial pressure of other gasses and those that use a collection of

laser cooled atoms in a high or ultra-high vacuum system. The vapour cell systems usually have

increased environmental sensitivity because the atoms are physically coupled to the temperature

and pressure of their environment.24,25 Vapour cell systems can be highly miniaturized and the

chip-scale atomic clock (CSAC) is an example of this, having a volume of only 17mL.26 The cold-

atom systems generally have much better long-term performance, with very little long-term drift,

because the atoms are much more isolated from their environment. Additionally, cold temperatures

5
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correspond to smaller thermal velocities and low collision rates allowing extended interrogation

times: 10s of ms or even 500ms in a fountain clock instead of a few ms at most in thermal systems.

This comes at the expense of requiring a vacuum and laser-cooling system. Cold-atom systems

can still be miniaturised, though not to the same extent, and there are two commercial systems

by Spectradynamics and MuQuans with volumes of 42L and 700L respectively.27,28

Finally, it is also worth considering those clocks not based on atomic transitions at all. Quartz oscil-

lators are easy to use and have been extensively commercialised. Quartz is by far the most common

kind of clock, and they can have good performance over short periods of time (< 10 s to 100 s),29

but they are not at all accurate when compared to atomic clocks, having long-term drift of around

1 part in 108 per year for high-quality ovenized oscillators.29–31 However, GPS signals contain

timing information that is derived from high-performance atomic clocks, and this signal can be

used to correct the drift of a quartz oscillator.32 These GPS-disciplined oscillators (GPSDO) can

provide a good compromise solution, with reasonable performance in both the short-term due to

the quartz oscillator and the very-long term as the GPS time is locked within a few ns of Inter-

national Atomic Time (TAI), which is referenced to a large number of atomic clocks.33 This gives

a stability around 10−12 at 1 s and a theoretical long-term performance limited by the accuracy

of TAI, in the 10−16 region. However, this is a quite misleading comparison to atomic clocks. A

GPSDO usually has fairly flat performance as τ increases from 1 s to about 1 day, before turning

sharply downwards as 1/τ , whereas atomic clocks average purely as 1/
√
τ . This means that at

many timescales of interest, from seconds to months, an atomic clock performs substantially better

than a GPSDO. These systems are also completely reliant on a stable, high-quality GPS signal

from a fixed antenna. This is significant when considering systems which must be robust to loss

of GPS or applications which are mobile, underground, underwater, or in space.

We have identified that there is potential for improvements to compact cold-atom microwave

clocks, by trapping atoms within the microwave cavity and therefore reducing the required size

of apparatus. Further, use of grating trap technologies developed at Strathclyde (see Chapter 2)

could reduce the amount and complexity of optics required for the clock. This thesis covers initial

investigation and proof-of-principle for a clock using these techniques. The eventual performance

targets for the clock are a few 10−13 stability at 1 s, 10−14 long-term accuracy, and <102 L system

volume. The physics package should be <101 L.
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1.3 Thesis Structure

This thesis consists of two parts.

Part I covers the theoretical background required for this thesis, including some novel contributions

I have made towards clock stability statistics. Chapter 2 describes the optical interactions relevant

to this thesis and their uses in trapping and cooling atoms. Chapter 3 describes the general

structure of clocks and atomic clocks. The methods for measuring and describing clock performance

are covered. Chapter 4 describes the Theo1 stability statistic and an improved algorithm that

I developed for its calculation. Chapter 5 describes the coherent population trapping (CPT)

mechanism and its use in atomic clocks.

Part II covers the design and construction of a cold atom microwave cavity clock. Chapter 6

describes the design process for the clock which I constructed for this thesis. Chapter 7 shows a

new technique for launching a GMOT, and gives the initial characterisation measurements of that

technique. The launch process is used as part of a CPT clock in Chapter 8, and the enhanced

performance of the clock is shown. Chapter 9 gives estimations of the performance which could be

achieved by an optimised version of the clock built for this thesis.

Chapter 10 concludes the thesis with a summary of the work that was completed, and an outlook

on the future work which could build upon it.
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Chapter 2

Cold Atom Trapping

This chapter will introduce the conceptual background that is necessary for understanding cold-

atom trapping. Much of this information has been explained and derived elsewhere, so this chapter

serves as a summary and a pointer to other resources. The physics of atom-light interactions will

be covered, followed by a discussion on how optical forces can be used to trap and cool atoms.

Finally, more recent developments in compact cold atom traps will be discussed, covering the

grating magneto-optical traps which are used in our group.

2.1 Atom-Light Interactions

In order for an atom to interact with an electromagnetic field, that electromagnetic field must

perturb the atom, such that there is a change to the system Hamiltonian. In all the interactions

of relevance to this thesis, the interaction will be through either an electric or magnetic dipole

interaction. The details of such interactions can be found in many sources, such as [34].

The simplest example of such an interaction is a monochromatic electric field interacting with an

atomic system of two states, |1⟩ and |2⟩, represented in column vector form as

|1⟩ =

1

0

 , |2⟩ =

0

1

 . (2.1)

For optical frequencies, this corresponds to a laser beam that is incident on the atom. In this case

the Hamiltonian will have an interaction term

HI = ℏ

 0 Ω cos(ωt+ ϕ)

Ω cos(ωt+ ϕ) 0

 , (2.2)

where Ω = X1,2|E0|/ℏ is the Rabi frequency which depends on X1,2, the (polarisation-dependent)

electric dipole matrix element between |1⟩ and |2⟩, and |E0|, the electric field amplitude. Details of

10



11 A cold-atom fountain clock from a diffractive optic

the dipole matrix element can be found in [34]. Note that ω,Ω and ∆ (used later) refer to angular

frequencies, while f , ν refer to ordinary frequencies.

The total system Hamiltonian will be formed from the sum of the interaction term and the unper-

turbed Hamiltonian, H0, which contains the energies of the bare atomic states,

H0 =

E1 0

0 E2

 , (2.3)

giving us

H = H0 +HI = ℏ

 E1/ℏ Ωcos(ωt+ ϕ)

Ω∗ cos(ωt+ ϕ) E2/ℏ

 , (2.4)

where E1,2 are the energies of |1⟩ , |2⟩ respectively. We may use the rotating wave approximation34

(neglecting the most rapidly oscillating terms) and make a basis transformation to the rotating

frame

ei(E1/ℏ−∆/2) |1⟩ → |1⟩ , ei(E2/ℏ+∆/2)t |2⟩ → |2⟩ , (2.5)

with ∆ = ω − (E2 − E1)/ℏ, the detuning of the laser from the atomic transition frequency. The

effective Hamiltonian becomes

H =
ℏ
2

∆ Ω

Ω∗ −∆

 , (2.6)

where the phase, ϕ has been absorbed into the complex phase of Ω and Ω∗.

To see how an initial state will evolve with this Hamiltonian, we must solve the Schrödinger

equation,

−iℏ ˙|ψ⟩ = H |ψ⟩ . (2.7)

If the system state is expressed as |ψ(t)⟩ = c1(t) |1⟩ + c2(t) |2⟩, then the Schrödinger equation

becomes:

iċ1(t) = ∆c1(t)/2 + Ωc2(t)/2 , (2.8)

iċ2(t) = −∆c2(t)/2 + Ω∗c1(t)/2 , (2.9)

which has solutions of the form

c1(t) = A sin(Ω′t/2) +B cos(Ω′t/2) , (2.10)

c2(t) = C sin(Ω′t/2) +D cos(Ω′t/2) , (2.11)

where Ω′2 = |Ω|2 + ∆2 is the effective Rabi frequency. The solution for an initial state of |1⟩
(c1(0) = 1, c2(0) = 0) is

|ψ(t)⟩ =
(
cos(Ω′t/2)− i

∆

Ω′ sin(Ω
′t/2)

)
|1⟩+

(
−iΩ

∗

Ω′ sin(Ω
′t/2)

)
|2⟩ , (2.12)

11
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so the population of |2⟩ is

P2 = |c2(t)|2 =
|Ω|2
Ω′2 sin2(Ω′t/2) , (2.13)

which oscillates at the effective Rabi frequency, Ω′.

This Schrödinger description of light-atom interactions is sufficient for reversible processes. How-

ever, in real atomic systems, energy levels that are excited may be unstable and can decay by

spontaneous emission of a photon. This is an irreversible process and cannot be modelled in the

Schrödinger picture. The decay process occurs because the atom-light system is coupled to, and

can emit photons into, the environment. This coupling process is modelled using the Lindblad

formalism. In this formalism, the randomness of the decay process causes the pure quantum states

to become a probabilistic mixture of states described by density matrices. The Schrödinger equa-

tion is extended to become the Gorini–Kossakowski–Sudarshan–Lindblad equation (also known as

the Lindblad master equation) which operates on density matrices.35 This equation contains an

operator which models the spontaneous decay processes.

Phenomenologically, in the absence of excitation an excited state will decay over time, P2 ∝ e−Γt

where Γ is the decay rate determined by the details of the interaction between the two states.

When the atom is excited, it can be shown that the system will evolve according to the ‘optical

Bloch equations’.36 The transient behaviour is a little complex but a steady state will eventually

be reached where the exciting field is balanced by spontaneous decay. In this case the population

of the excited state is

P2 =
1

2

s

1 + s+
(
2∆
Γ

)2 , (2.14)

where the saturation parameter, s, is

s =
I

Isat
=

2Ω2

Γ2
, (2.15)

and Isat is known as the saturation intensity. Notably, the steady-state excited population never

exceeds 0.5. This is expected, because even in the Schrödinger case of no decay, with full oscillations

between the two states, the average population in the excited state would only be 0.5.

In this steady state, photons are constantly absorbed from the laser beam and the re-emitted to

maintain the steady state. Some photons are emitted as stimulated emission and will be emitted

coherently back into the exciting laser beam. However some photons will be emitted by spontaneous

decay, and these photons will be emitted in a random direction. These photons are also called

scattered photons and will occur at a rate proportional to the excited state population, Γsc = ΓP2.

The spontaneously emitted photons cause a net force on the absorbing atom because the momentum

of absorbed and emitted photons does not cancel. The net force is in the direction of the original

12
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laser beam and given by

F (∆, s) = ℏkΓsc = ℏk
Γ

2

s

1 + s+
(
2∆
Γ

)2 , (2.16)

where k is the wavenumber of the beam.

2.2 Atom trapping

In order to trap cold atoms with optical forces, it is necessary for that force to depend upon the

atoms’ position and velocity. The velocity dependence allows a damping or cooling force, which

reduces the atoms kinetic energy. Fortunately, suitable velocity dependence can be realised by

proper engineering of ∆, the detuning of an incident laser beam. When an atom is moving with

velocity v⃗ in a laser of wavevector k⃗ the apparent frequency of the beam (as observed by the

atom) will be Doppler shifted by k⃗ · v⃗. This immediately produces a frequency-dependant force,

F (∆0−kv, s). If the beam is red-detuned for atoms at rest (∆ < 0), then an atom moving towards

the beam will be Doppler shifted closer to resonance, increasing the force and causing them to

slow down faster. If two equal and opposing beams are present, then a dispersive force profile is

produced, as in Fig. 2.1. The atom is more likely to absorb an atom from the beam which it is

moving towards, so the motion slows over time. This system of opposed beams is referred to as an

‘optical molasses’ because it imposes a damping force analogous to that experienced by objects in

a viscous liquid for sufficiently slow atoms.

−2 −1 1 2

−1

−0.5

0.5

1

−∆0/Γ

v/kΓ

F/Fmax

Figure 2.1: Net force applied to an atom in a 1D optical molasses as a function of velocity. The

force from each beam (dashed) cannot cross zero, but the combination produces a symmetric

restoring force. An initial detuning, ∆0 is required to offset the peak force of each beam from zero,

providing a strong gradient at equilibrium.

In order to extend this picture to 3D and also to understand magnetic effects, it is now necessary

to consider the effects of field polarisation and the quantisation of angular momentum. If an atom
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is in a state with non-zero total angular momentum, F , then that angular momentum can be

quantised along a particular direction, mF with |mF | ≤ F . In the absence of a symmetry-breaking

effect, the states with different mF must be degenerate, but often there is such an effect. For

example, if the states |1⟩ and |2⟩ have F = 1 then they are each subdivided into three states with

mF = −1, 0, 1. If there is a magnetic field, B, present along the quantisation direction, then these

states will be separated in energy due to the Zeeman effect. The atoms magnetic dipole interacts

with the magnetic field, adding a component to the atomic Hamiltonian, VM ≈ gFµBBmF where

gF is a Landé g-factor and µB is the Bohr magneton.34 The approximation is correct in the weak-

field approximation where the magnetic interaction is much less than spin-orbit coupling. This

splitting means that the atomic transition is split into multiple possible transitions between the

upper and lower state manifolds. In principle, all these transitions could be driven, but only those

which change mF by −1, 0,+1 will have non-zero dipole matrix element. These types of transition

are characterised as σ−, π, σ+ respectively, and are driven by different kinds of electric field

polarisation. An electric field polarised along the quantisation axis will drive only π transitions, but

σ transitions are driven if the field is left- or right-circular polarised around the quantisation axis.

Any other polarisation or combination thereof can be decomposed into these three components,

which are also called π and σ± polarisations. It is worth noting that I define these polarisations

with respect to the chosen quantisation axis, not the direction of light propagation. There are

opposing conventions that may be used elsewhere, so be cautious!

To understand how a trapping force can be generated, consider an F = 0 to F = 1 transition.

The F = 0 ground-state only has the mF = 0 sublevel, so the atoms are always available for

transitions to all three F = 1 states, with mF = −1, 0, 1. If a magnetic field gradient is present in

the quantisation direction, z, so

B⃗ ∝


0

0

−2z

 , (2.17)

then the detuning of the σ± transitions will be ∆± = ∆0 ± αz for some α. If we illuminate the

atoms with opposing beams along the quantisation axis, then the amount of force from each beam

depends on its polarisation. By giving the beams opposite polarisation, one beam can be shifted

onto resonance while the other shifts away, see Fig. 2.2. This is directly equivalent to the optical

molasses described previously, except the force is now dependant on position instead of velocity.

In actuality the two effects occur in combination, to give both trapping and cooling forces in a

magneto-optical trap (MOT).

The MOT can be extended to 3D quite easily by providing additional counter-propagating beams

in each dimension. A pair of anti-Helmholtz coils can produce a quadrupole field which has zero

14
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E

z

mF = −1

mF = 0

mF = +1

F ′ = 1

F = 0

σ+σ+ σ−

Figure 2.2: The energy levels in a MOT. The magnetic sublevels are Zeeman shifted by a magnetic

gradient. The red-detuned σ+ beam (dashed) comes on resonance as the atom moves left of centre,

while the σ− beam (dotted) comes on resonance if it moves right. The σ+ and σ− beams propagate

to the left and right respectively, in order to generate a restoring force.

field centrally and gradient fields in all 3 dimensions,

B⃗ ∝


x

y

−2z

 , (2.18)

in the region near the origin. Strictly speaking the beams cannot be considered independent,

as each beam changes the equilibrium state distribution which the other beams interact with.

However, this simplification provides a good picture of the physics at work, and is much less

complicated than trying to account for the fully coupled 3D behaviour. Additionally, real atoms

may use transitions with other F numbers, giving a larger number of states and more complex

pumping behaviour.

Although the simple picture of forces in Fig. 2.1 suggests cooling towards exactly zero velocity

and position, in actuality random fluctuations of the scattering force (each photon is emitted in

a random direction) cause a heating effect and the atoms become distributed in a thermal cloud

around the equilibrium point. The minimum temperature reachable in this manner is the Doppler

temperature, TD, given by

kBTD =
ℏΓ
2
. (2.19)

This temperature can be understood qualitatively by considering the lifetime of the excited state,

1/Γ, and then the ‘uncertainty relation’ between energy and time of δEδt ≥ ℏ/2 sets the minimum

energy scale that can be achieved in the system.37 This qualitative explanation can be confirmed

by detailed examination of the balance between Doppler cooling and the heating from spontaneous

emission.34 For 87Rb (used in this thesis) the Doppler temperature is 146 µK.19
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There are ways to cool below the Doppler temperature, the most common of which is polarisation-

gradient cooling.38 This cooling mechanism is achieved in the same optical setup as a MOT but

without any magnetic field present. No trapping is present, only a velocity-damping force and so

this technique is also a form of ‘optical molasses’. On a small scale, the counter-propagating beams

form an optical lattice, which alternates between different polarisations over wavelength scales.

As atoms move across these ‘polarisation gradients’ they are optically pumped between different

magnetic sublevels. This optical pumping can occur on a much slower timescale than 1/Γ, and

therefore allows a smaller energy uncertainty, and lower temperature. The optical pumping rate

decreases as the optical intensity is decreased or the detuning is increased, giving T ∝ I/∆ ∝
Ω2/∆. It can be made arbitrarily long, which seemingly gives arbitrarily small temperatures. The

temperature is actually limited by the energy imparted by a single scattered photon. This recoil

temperature, TR = ℏ2k2/(mkB), is around 0.37 µK for 87Rb though temperatures of 2µK to 10 µK

are normally achieved.39–41 Sub-recoil cooling methods do exist, though they will not be addressed

in this thesis.42,43

Once the MOT technique developed, it quickly became the foundation of many experiments. A

dense source of ultracold atoms provides access to a wide range of physics that would otherwise

be inaccessible. Atoms released from a MOT are extremely well isolated from their environment

and may remain so until acted on by an external force. Unfortunately, the released atoms will

immediately start falling due to gravity and so the experiment time is limited by the size of the

experimental system. One method to counteract this problem is to give the atoms an initial upwards

velocity, causing the atoms to move upwards before falling back to their starting position. This

technique is referred to as an atomic fountain.44 Giving the atoms a velocity in another direction

can be used to transfer atoms between different sections of an experiment. This initial velocity

is usually imparted by using a frame transformation. If the entire atom cooling apparatus were

moving, of course the atoms would inherit that initial velocity. However, this is quite impractical,

so instead the effects of that motion are recreated. In an optical experiment, the dominant effect is

the Doppler shifting of the laser beams. In the lab frame, each laser beam must be frequency shifted

by an amount δω = k⃗ · v⃗ where v⃗ is the desired velocity. In the moving frame this frequency shift

will be perfectly cancelled by the Doppler shift, restoring the initial cooling beam configuration.

If a magnetic field gradient were present (e.g. in a MOT) this would complicate matters, as the

gradient field would have to move with the desired frame, but the frame transformation is usually

applied only during the sub-Doppler cooling, when no gradient is present. This technique is known

as a ‘moving molasses’ and was first demonstrated in 1990.45 Note that the atoms temperature is

frame-independent because it refers to their velocity spread, not their absolute velocity.
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2.3 Grating Magneto Optical Traps

Our group has been working on grating MOTs (GMOTs) for over a decade. Here I briefly review

their operation, the motivation for their use, and the progress that has been made previously. I

direct the reader to the previous theses that have been produced on this topic.46–48

One drawback of MOTs is that they may require a significant amount of optics to produce the

six beams required (two per dimension). These optics take up space and require good optical

access into the trapping region. Additionally, the MOT beams require careful alignment, and may

need individual power stabilisation if long-term drifts are critical.49 To facilitate more compact

experiments, with fewer components, it would be beneficial to derive each of the MOT beams

from a single source. This was first done using an inverted pyramid of mirrors to produce the

six beams.50 This technique was very effective, as the resulting beams are almost identical to the

standard 6-beam MOT. However it has disadvantages; the pyramid construction may be difficult

to integrate with more complex experimental setups, and the MOT forms within the pyramid

structure giving very limited optical access to the MOT. Some work has been done to alleviate

this second issue, using incomplete pyramids with space between the mirrors.51 It was then shown

that a MOT could also be formed using four beams in a tetrahedral configuration, generated by

diffraction from etched grating patterns.52,53 Because the grating is planar, it is often easier to

integrate into a compact experimental setup.

A tetrahedral MOT does not have tetrahedral symmetry.54 Only one beam is directed along the

quadrupole field axis, and that beam has an opposite polarisation handedness to the other three.

In a six-beam MOT, there are two counter-propagating beams along the axis, and four equally

separated radial beams with opposite circular polarisation (relative to each beams propagation

direction). A tetrahedral MOT maintains this distinction, but with only a single axial beam and

three radial beams. The radial beams are angled below the radial plane to provide a balancing

force to the single axial beam. It is harder to apply the 1D model of a MOT to this situation,

because there is cross-coupling between all 3 dimensions, and a complex 3D optical lattice is formed.

Fig. 2.3 illustrates the different MOT geometries.

The gratings we use are generally made from silicon, with a grating etched into their surface. The

etching pattern may be produced by a number of lithographic techniques.47 Electron-beam lithog-

raphy has shown better performance than photolithography, perhaps due to increased resolution.

The gratings in this thesis were manufactured using nano-imprint lithography. The gratings are

then surface coated to improve their reflectivity. A number of coatings have been used such as gold

and aluminium. For in-vacuum applications, gold may be unsuitable as it reacts with rubidium.
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Previous work in our group has produced grating MOTs (GMOTs) which trap up to several 107

atoms and can cool atoms to 3 µK. In a GMOT, the overlap volume is considerably smaller

than would be gained for a 6-beam MOT with the same beam size. This limits the number of

atoms trapped. Further advances to the GMOT design may include ‘chequerboard gratings’ that

use a single 2D grating to produce four diffracted trapping beams. Because the grating is not

segmented into multiple regions, the trapping volume is greater (Fig. 2.3), increasing the trapped

atom number.40,55 However this technology is less well developed; previous work has struggled to

balance the intensity of the diffracted orders and to remove the zero order reflection. Development

is ongoing, but the linear grating MOTs are widely used within our group and their properties are

much better understood, so they were used throughout this thesis.
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a)

b)

c) d)

Figure 2.3: A comparison of different MOT geometries.53 The beam k-vectors are shown by red

arrows. Black tori (shown for (a) but implied for (b) - (d)) are magnetic quadrupole coils. Green

zones indicate overlap volumes. a is (a) standard six-beam MOT, (b) is a pyramid MOT, (c) is

a tetrahedral GMOT, and (d) is a chequerboard GMOT which increases the overlap volume for

the same input beam. Reprinted by permission from Springer Nature Customer Service Centre

GmbH: Nature Nanotechnology, A surface-patterned chip as a strong source of ultracold atoms for

quantum technologies, C. C. Nshii et al. ©(2013)
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Chapter 3

Atomic Clock Theory

This chapter will cover the background theory of atomic clock systems and their performance.

Building on the clock architecture described in Chapter 1, I shall describe two methods by which

atoms can be interrogated, so that a local oscillator may be locked to the atomic transition. Clock

stability and its most common metric, the Allan variance, will be considered, with emphasis of the

most common limiting factors for atomic clocks.

3.1 Clock Sequences

3.1.1 Rabi excitation

The task is to produce an atomic state which has maximal frequency sensitivity. The simplest

solution is to excite the atomic transition with a simple pulse of field over some time τ . The atoms

will undergo Rabi oscillations during that time, and the population in each state will change.

Assuming the atoms are initially in |1⟩, then equation (2.13) gives the transition probability of

P1→2 =
Ω2

Ω2 +∆2
sin2

(√
Ω2 +∆2

τ

2

)
, (3.1)

for a Rabi frequency of Ω. The detuning ∆ is the angular frequency equivalent of δν in Section 1.1

above, ∆ = 2πδν.

We see that the transition probability oscillates as ∆ varies, shown graphically in Fig. 3.1. All

the atoms will transfer if ∆ = 0 and the pulse area, Ωτ = π. This Rabi sequence is said to use a

π pulse. The precision to which ∆ can be measured is determined by the experimental signal to

noise ratio (SNR) when measuring P2 and the fringe width (∆FWHM ≈ 1.6π
τ ).

The effect of a Rabi pulse can also be shown on a Bloch sphere. In this visualisation, any pure
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Figure 3.1: Rabi oscillations as a function of detuning from the atomic transition, ∆. The pulse

area has been chosen such that Ωτ = π, giving full population transfer when ∆ = 0.

state of the two-level system is represented by a point on the unit sphere. The states |1⟩ and |2⟩
are represented by the poles:

|1⟩ →


0

0

1

 and |2⟩ →


0

0

−1

 , (3.2)

and a general state is represented as

|ψ⟩ = cos

(
θ

2

)
|1⟩+ sin

(
θ

2

)
eiϕ |2⟩ →


sin(θ) cosϕ

sin(θ) sin(ϕ)

cos(θ)

 = r⃗ . (3.3)

Converting the Schrödinger equation into the Bloch sphere representation, it can be shown that

the state will evolve as

˙⃗r = W⃗ × r⃗ , (3.4)

so r⃗ rotates around the new vector,

W⃗ =


Re(Ω)

Im(Ω)

∆

 . (3.5)

If ∆ = 0, then rotation is observed around a vector representing the magnitude and phase of Ω,

Ω⃗ =


Re(Ω)

Im(Ω)

0

 , (3.6)

which can transfer perfectly from |1⟩ to |2⟩. As ∆ is varied, W⃗ also changes and the initial |1⟩
vector rotates more rapidly around a smaller circle, as shown in Fig. 3.2, and cannot complete a

full transfer.
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Figure 3.2: Bloch diagrams showing the effect of a Rabi pulse on an initial state |1⟩, for different

detunings, ∆. The initial state is rotated around W⃗ .

3.1.2 Ramsey sequence

In many practical atomic clocks, a Ramsey sequence is used instead of the simple Rabi pulse. For

this sequence, the π-pulse is split into two π/2 pulses separated by a ‘Ramsey time’, T . This has

several benefits: the driving field need only be maintained for a small time, narrower fringes are

achieved for the same total time. (∆FWHM = π
T , 60% narrower than a Rabi pulse with length

T ), and frequency shifts caused by effects during the pulses are ‘diluted’ by the longer Ramsey

time. This can be extremely significant because during the Ramsey time the atoms are ‘in the

dark’, not interacting with any electromagnetic field, and can ideally be made not to interact with

any perturbing factors at all. In contrast the Rabi pulse requires a perturbation be applied for

the entire sequence in order to realise the interrogation. At the time of this innovation, atomic

beams were in use, where time and distance requirements are closely linked.56 It is very difficult

to engineer a uniform oscillating field over a region much larger than one field wavelength, which

greatly limited the length of Rabi pulse which could be used. Ramsey’s technique of separated

fields allowed two separate field regions to be used, separated by large distances which correspond

to longer times and narrower linewidths.

To model the Ramsey system two different Hamiltonians H1,2 are required for during the pulses

and between them respectively. These Hamiltonians, applying to dressed states in the rotating

wave approximation as in equation (2.6), are

H1 =
ℏ
2

∆1 Ω

Ω ∆1

 , H2 =
ℏ
2

∆2 0

0 ∆2

 , (3.7)

where ∆1,2 is the detuning of the LO from the atomic frequency during the two stages of the

sequence. These detunings may be different if the pulses themselves cause a perturbation of the
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Figure 3.3: The Rabi frequency and detuning during a Ramsey sequence. Perturbations from the

Rabi pulses cause the detuning to change as well as the Rabi frequency.

atomic energy levels, such as an AC Stark shift,57 resulting in ∆1 = ∆2 + ∆perturb as shown in

Fig. 3.3. The meaning of ∆2 requires some further explanation. The exciting field is not incident on

the atoms between the pulses, so how can the detuning between this field and the atomic transition

have a physical effect? The answer is that the field is assumed to still exist somewhere in the form

of a local oscillator which ensures phase continuity between the two exciting pulses. Between the

pulses, an additional phase difference can accrue between the local oscillator and the atomic phase.

In essence, ∆2 is important because it determines the phase difference between the atomic state

and the exciting field at the start of the second pulse.

Solving the Schrödinger equation using H1, H2, H1 for intervals of τ , T , τ respectively then gives

the probability of transferring atoms from state |1⟩ to state |2⟩,

P1→2 =

(
Ω

Ω′

)2

sin2 (Ω′τ)

(
cos

(
∆2T

2

)
− ∆1

Ω′ tan

(
Ω′τ
2

)
sin

(
∆2T

2

))2

, (3.8)

where Ω′2 = |Ω|2 +∆2
1.

In the case of perfect π/2 pulses, such that Ω′τ = π/2, and with ∆1τ ≪ 1, this can be simplified

to

P1→2 ≈ 1

2
+

1

2
cos

(
∆2T +∆1

4τ

π

)
≈ 1

2
+

1

2
cos (∆2T ) . (3.9)

The effect of this Ramsey sequence can be visualised on a Bloch diagram (Fig. 3.4). The first π/2

pulse causes a rotation of the state vector from |1⟩ to (|1⟩+ |2⟩)/
√
2. During the Ramsey period, a

phase difference of ∆2T is accrued between the LO and atomic state. The final π/2 pulse applies

another π/2 rotation, but the accrued phase means this may now bring the state vector somewhere

between |1⟩ and |2⟩.

A Ramsey scheme will produce fringes, similar to a Rabi scheme. However, the fringes are much

closer to a true sinusoid, so many more fringes can be observed (within a Rabi envelope from the

pulses). Additionally, a slightly narrower fringe width (δνFWHM ≈ 0.5
T ) is achieved for the same
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Ω

|1⟩

|2⟩

(a) ∆2T = 0

Ω

|1⟩

|2⟩

(b) ∆2T = π/3

Ω

|1⟩

|2⟩

(c) ∆2T = π

Figure 3.4: Bloch diagrams showing the effect of a Ramsey sequence on an initial state |1⟩, for

different values of detuning, ∆2. During the driving pulses (red), the state is rotated around Ω⃗.

During the Ramsey period (blue), the atoms may pick up an additional phase relative to the local

oscillator. It is assumed that ∆1 ≪ Ω, so that W⃗ ≈ Ω⃗.

sequence length, allowing more precise frequency measurements. More importantly, the reduced

sensitivity to perturbations during the pulses (∆1) is advantageous for accuracy and long-term

stability.

3.2 Clock stability

3.2.1 Clock comparisons

There is no single parameter that fully describes the performance of a clock. In order to evaluate

a clock, it is necessary to compare it against other clocks. Assuming an ideal reference clock, we

can monitor the difference between the clocks and see any deviations from the exact time. These

deviations (noise) could have many different behaviours, which may or may not be important in a

given application.

x(t)

t t

x
(t
)

Figure 3.5: A clock comparison. The oscillator under test (blue) is compared to a reference

oscillator (red). The time difference x(t) can be measured and plotted over time.
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For example, a constant frequency offset in a clock is often unimportant, as it can be calibrated

out, except in the case of a primary standard clock where it would be extremely important. Some

clocks may be highly stable over short timescales, maintaining their frequency with very low noise,

but drift over the course of days or months. Other clocks have poor short-term performance,

exhibiting high frequency jitter, but are extremely stable when averaged over long enough periods.

To capture this timescale dependence, a range of statistics are used which describe performance

as a function of either time or frequency. The noise may then be categorised, understood, and

possibly mitigated according to the frequency/time-dependent behaviour.

The statistics describing clock performance are based on a general oscillator model, used to describe

the LO behaviour in a well-defined manner. A clocks performance is usually entirely determined

by its LO with the counter having a negligible contribution, so this is sufficient to describe the

clock performance. The oscillator is modelled as a signal of a given frequency and amplitude

S(t) = (S0 + ϵ(t)) sin(2πν0t+ ϕ(t)) , (3.10)

where S0 and ν0 are the nominal frequency and amplitude respectively, and ϵ(t) and ϕ(t) are time

varying deviations from the expected behaviour. The ‘ideal’ time, t, is given by a reference clock.

Normally the amplitude fluctuations, ϵ(t), are unimportant and the information of importance

is contained in the phase fluctuations, ϕ(t). This is because the signal is usually processed in a

manner that is relatively independent of the signal amplitude, e.g. using the zero-crossing times

as reference times.

The phase fluctuations, ϕ(t), describes how far the clock has diverged from the ideal time, but it

does so in a manner that depends on ν0. Instead, the time-error function is used,

x(t) = ϕ(t)/(2πν0) , (3.11)

which is the total difference of the ‘clock time’ from the reference time. Additionally, the oscillator

has an instantaneous frequency,

ν(t) = ν0 +
1

2π

dϕ

dt
, (3.12)

from which the fractional frequency error is calculated,

y(t) =
∆ν

ν0
=
ν(t)− ν0

ν0
=

1

2πν0

dϕ

dt
=
dx

dt
, (3.13)

=⇒ x(t) =

∫ t

0

y(t′)dt′ + x(0) . (3.14)

The functions ϕ(t), x(t), ν(t), y(t) all describe the same behaviour, but have different interpretations

and utilities.

In a real clock comparison, we will not have access to e.g. x(t). Instead we will sample x(t) over

some finite period. This produces a series of N data points, xn(tn). We usually assume that tn =
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nτ0 for integer n, i.e. that x is sampled uniformly with sampling period τ0. Alternatively, we might

have measured the clock frequency instead of phase to produce M fractional frequency samples,

yn. We can convert our data between these forms using the discretised versions of equations (3.13)

and (3.14):

yn =
xn+1 − xn

τ0
, (3.15)

xn = x0 + τ0

n∑
i=0

yi . (3.16)

Note that there will be one more frequency sample than phase samples, M = N + 1

3.2.2 Allan variance

For many types of measurement, the most commonly used noise statistic is the standard variance,

s2. The standard variance quantifies the average amount of fluctuation around the ‘true’ value of

the measurement.

s2 =
〈
(y(t)− y0)

2
〉
, y0 = ⟨y(t)⟩ . (3.17)

For clocks, such a measurement is usually inappropriate. Firstly, there is no notion of timescale

involved with the standard variance. More importantly, for many types of noise the standard

variance is not even well-defined. If a clock has any kind of long-term drift, or divergent (random-

walk) noise, then the clock frequency will deviate further and further over time, leading to a

divergent standard variance.

The Allan variance58 is an attempt to rectify these problems, and is the most common statistic

used to describe clock performance on a range of timescales. The Allan variance σy(τ) is a function

of the timescale τ . To prevent divergence, the clock frequency fluctuations are taken relative to

the clock frequency a finite period τ earlier, instead of the long-term average. One advantage of

the Allan variance is that it has a relatively straightforward interpretation; the Allan variance is

half the mean-square fluctuation of the average clock frequency between two consecutive periods

of length τ . The half is introduced because the fluctuations of y(t) and y(t + τ) both contribute

independently to σy(τ).

Suppose that the (normalised) clock frequency, y(t′) is averaged over the two periods, t < t′ ≤ t+τ

and t + τ < t′ ≤ t + 2τ to give ȳ1 and ȳ2 respectively. The Allan variance is then given by
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σ2
y(τ) =

〈
(ȳ2 − ȳ1)

2
〉
/2 where the ⟨⟩ indicates an average over all values of t.

σ2
y(τ) =

1

2

〈
(ȳ2 − ȳ1)

2
〉

=
1

2

〈(
1

τ

∫ τ

0

y(t+ τ + t′)dt′ − 1

τ

∫ τ

0

y(t+ t′)dt′
)2

〉

=
1

2

〈(
1

τ
(x(t+ 2τ)− x(t+ τ))− 1

τ
(x(t+ τ)− x(t))

)2
〉

=
1

2τ2

〈
(x(t+ 2τ)− 2x(t+ τ) + x(τ))

2
〉
. (3.18)

The Allan variance can also be defined using a wavelet formalism.59 In this case the oscillator

frequency y(t) is convolved with a wavelet g(t) where

g(t) =


+1/τ , τ < t < 2τ

−1/τ , 0 < t < τ

0 , otherwise

, (3.19)

as is shown in Fig. 3.6(a). This convolution is equivalent to finding the value of ȳ2 − ȳ1 described

earlier:

g(t) ∗ y(t) = ȳ2 − ȳ1 =⇒ σ2
y(τ) =

1

2

〈
(g(t′) ∗ y(t+ t′))

2
〉
. (3.20)

The Allan variance is then the mean-squared value of this convolution as the convolving waveform

is shifted across the full width of the available y(t). The wavelet formulation is useful as another

picture for describing the statistic, and can extended to give other kinds of frequency statistic by

using different wavelets g(t).60,61 The strength of the wavelet picture is its simplicity. While it may

seem trivial here, the value may be clearer in Chapter 4 where it is used to describe the Theo1

statistic.

τ

τ

t

g
(t
)

(a)

. .
.

. .
.

ȳ1 ȳ2

τ = 4τ0 t

y
(t
)

(b)

Figure 3.6: The wavelet representation of the Allan variance (a). The discrete sums that form ȳ1,2

for real calculations of the Allan variance (b). The regions of ȳ1,2 are swept across the full dataset.

A specific value of τ = 4τ0 is shown, but the calculation would be repeated for different values of

τ to give σy(τ).
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When measuring a real clock, we will only be able to estimate the value of σy(τ) using our sampled

measurements xn or yn. To do this we substitute τ = nτ0 and replace the averages over t to

averages over our entire set of samples.

σ2
y(nτ0) =

1

2n2τ20

〈
(xi+2n − 2xi+n + xi)

2
〉
i

=
1

2n2τ20 (N − 2n)

N−2n∑
i=1

(xi+2n − 2xi+n + xi)
2
, (3.21)

σ2
y(nτ0) =

1

2n2(M − 2n+ 1)

M−2n+1∑
j=1

j+n−1∑
i=j

yi+n − yi

2

. (3.22)

Fig. 3.6(b) shows how the Allan variance is estimated using this method.This method of estimating

the Allan variance is sometimes referred to as the overlapping Allan variance, in contrast to earlier

methods of which used only non-overlapped intervals in the estimation. That earlier method has

been largely superseded by the overlapping Allan variance estimation.

Many types of noise follow a power-law relationship in which the noise amplitude is related to a

power of the frequency or timescale, Sy(f) ∝ fα , where Sy(f) is the power spectral density (PSD)

of the fractional frequency fluctuations, and α is the power-law exponent. Table 3.1 shows the

most common types of power-law noise. One limitation of the Allan deviation is that it cannot

distinguish between white phase noise and flicker phase noise. This is a limitation of the statistic,

and is one reason that other statistics, such as the modified Allan deviation,61 were developed.

There may also be other non-ideal behaviours: linear frequency drifts or environmental dependence

on temperature, pressure, magnetic field, or even gravitational environment. The Allan variance

is normally plotted on a log-log plot, to summarise the clocks behaviour across many orders of

magnitude (Fig. 3.7). The gradient of the plot will then reveal which types of noise are dominant

at different timescales.

τ−1

τ−1/2 τ1/2

τ

log(τ)

lo
g
(σ

y
(τ
))

Figure 3.7: An idealised Allan deviation vs τ plot, showing different types of power-law noise. The

type of power-law noise determines the gradient.
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Table 3.1: Types of power-law noise. The PSD of frequency fluctuations, Sy(f) is given for

each noise type, alongside the Allan deviation and modified Allan deviation responses, σy(τ) and

σy,mod(τ).

Noise type Abbreviation Sy(f) σy(τ) σy,mod(τ)

White Phase Noise† WPM ∝ f2 ∝ τ−1 ∝ τ−3/2

Flicker Phase Noise FPM ∝ f ∝ τ−1 ∝ τ−1

White Frequency Noise WFM ∝ 1 ∝ τ−1/2 ∝ τ−1/2

Flicker Frequency Noise FFM ∝ f−1 ∝ 1 ∝ 1

Random Walk Frequency Noise RWFM ∝ f−2 ∝ τ1/2 ∝ τ1/2

† The Allan deviation cannot differentiate between WPM and FPM, and has a τ−1 response to both. Other

statistics may be used to distinguish these noise types.

3.2.3 SNR and stability

Most atomic clocks will be dominated by white frequency noise at short times. This is because the

atoms are interrogated periodically and do not maintain their phase between measurements. The

noise in each measurement is generally uncorrelated so that each measurement is an independent

frequency measurement with a random noise. Over time, more measurements are made and the

frequency error decreases as 1/
√
τ due to averaging.

We can derive the short-term stability by considering the transfer of measurement noise onto

the clock output. In general, we will have some experimental signal, S(δν), which depends on the

detuning of our LO from the atomic resonance, δν = ν−ν0. We use the observed signal to calculate

the value of δν and thereby apply a correction to the LO which drives δν → 0. However we will

also observe some noise on S, causing a random error in our calculation of δν and a corresponding

frequency error in our clock output because the LO correction is inaccurate.

We shall assume that the observed noise is white and normally distributed with standard deviation

σS and that we can expand S(δν) around the nominal detuning of δν0:

S(δν) ≈ S(δν0) + (δν − δν0)
dS

d(δν)

∣∣∣∣
δν0

. (3.23)

We also assume that σS is sufficiently small, and S(δν) sufficiently linear that this approximation

causes negligible error. We can calculate that the observed error in S causes a normally distributed

frequency error on the clock output with standard deviation of

σν =
σS∣∣∣∣ dS

d(δν)

∣∣∣
δν0

∣∣∣∣ . (3.24)
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In fractional frequency the clock will have a single-shot performance of σy(τ0) = σν/ν0, and as mul-

tiple frequency measurements are taken the performance will improve by a factor of
√
Nmeasure =√

τ/τ0 to give

σy(τ) =
σS
ν0

1∣∣∣∣ dS
d(δν)

∣∣∣
δν0

∣∣∣∣
√
τ0
τ
. (3.25)

For a Ramsey clock, we know from equation (3.9) that we expect to see a sinusoidal signal, such

that

S(δν) = A cos(∆T ) +B = A cos(2πTδν) +B , (3.26)

where parameters A and B are the signal amplitude and offset respectively, and depend on the

experimental details. This gives

dS

d(δν)
= −2πAT sin(2πTδν) . (3.27)

To maximise the gradient and therefore minimise clock error, Ramsey clocks usually operate on

the side of the fringe where δν0 = ±T/4, giving∣∣∣∣∣ dS

d(δν)

∣∣∣∣
δν0

∣∣∣∣∣ = 2πAT . (3.28)

Substituting this into equation (3.25) finally gives us the short-term stability,

σy(τ) =
2σS
Sp−p

1

2πν0T

√
τ0
τ

=
1

SNR

1

πQ

√
τ0
τ
, (3.29)

where Sp−p = 2A is the peak-to-peak signal amplitude and Q = 1/(2ν0T ) is the atomic quality

factor. For other interrogation methods, such as a Rabi sequence, similar formulae will hold though

they may differ by constant factors due to the exact lineshape observed. As we predicted, this is

white frequency noise with σy(τ) ∝ τ−1/2.

3.2.4 Quantum projection noise

It will be possible to remove (or make negligible) many sources of noise such as detection or

electronic noise, by suitable engineering of the clock system. However, whatever interrogation

method is used, it must involve a measurement made upon the atomic system, a quantum system.

The statistics of quantum measurements will then present a fundamental limit to the short-term

stability.

Most atomic clocks can be modelled as a collection of N independent atoms, each acting as a 2-state

quantum system. In the ideal case, all these atoms will be in the same quantum state, |ψ⟩ at the

end of the clock sequence. To detect a signal, the atoms must be projected onto some chosen basis

set, |1⟩ and |2⟩. This projection is fundamentally random due to its quantum nature, and therefore
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there is an inherent noise in the measurement process, regardless of the physical measurement

technique that is used. The probability of projecting each atom into |2⟩ is P2 = | ⟨2|ψ⟩ |2. Because

the atoms are independent, the total number of atoms which are projected into |2⟩, N2, will now be

randomly drawn from a binomial distribution. This distribution will have a mean of ⟨N2⟩ = NP2

and variance of σ2
N2

= NP2(1 − P2), and is usually well approximated by a normal distribution

with the same values, because N is relatively large and P2 close to 0.5.

In a Ramsey sequence, our signal will be S = N2 = NP2 with

P2 =
1

2
+

1

2
cos (2πTδν) , (3.30)

from equation (3.9) and using ∆2 = 2πδν. From this we can calculate the observed noise:

σ2
S = σ2

N2
= N

(
1

2
+

1

2
cos (2πTδν)

)(
1

2
− 1

2
cos (2πTδν)

)
=
N

4
sin2(2πTδν) , (3.31)

=⇒ σS =

√
N

2
|sin(2πTδν)| . (3.32)

We can also calculate the signal gradient,

dS

d(δν)
= −NπT sin(2πTδν) . (3.33)

Finally, substituting into equation (3.25) gives the short-term stability of

σy(τ) =
1

2πν0T

1√
N

√
τ0
τ
. (3.34)

This is the quantum projection noise (QPN) limit for a Ramsey atomic clock, and shows that it is

beneficial to have a large Ramsey time to ensure narrow clock fringes and a large number of atoms

to increase SNR. It is interesting to note that the QPN limit does not require that measurements

are made on the side of the fringe, where the fringe gradient is maximised. This is because the

quantum noise is also maximised at this point. However, in practice other sources of noise (e.g.

electronic noise) will add uniform noise at all points on the fringe, and so the side of the fringe is

still a better frequency discriminant. It is also beneficial to operate around a symmetrical point of

the fringe to minimise bias.
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Chapter 4

Theo1

This chapter is based upon a published article.62 That article was edited to fit the context of this

thesis.

As discussed previously, in Section 3.2.2, there are many stability statistics used to describe the

performance of a frequency source. One of the statistics used for this purpose is the ‘theoretical

variance #1’ (Theo1 or Thêo1).63 This chapter will firstly introduce the Theo1 statistic, with

comparison to the Allan deviation, and then show an algorithm which improves the computational

complexity of calculating Theo1 from O(N3) to O(N2), allowing faster calculation.

4.1 The Theo1 statistic

The Theo1 statistic is specialised to give more reliable estimates of stability at the longest averaging

times, τ , achievable for a given dataset. Compared to the more commonly used Allan variance,

Theo1 has increased confidence at long averaging times, and can be used to estimate stability up to

50% longer averaging times. Theo1 is also better able to identify which type of ‘power-law’ noise is

present.64,65 These properties have allowed Theo1 to be used for long-running experiments where

datasets cannot easily be extended.66 For a series of N time deviation points xi, each separated

by an interval τ0, Theo1 can be defined63 as

Theo1(τ = 1.5kτ0, N) =
Tk

3(N − 2k)(kτ0)2
, (4.1)

where 0 < k ≤ (N − 1)/2, the averaging time is τ and

Tk =

N−2k−1∑
i=0

k−1∑
δ=0

1

(k − δ)
[(xi − xi−δ+k) + (xi+2k − xi+δ+k)]

2 . (4.2)
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Figure 4.1: A comparison of Theo1 and the Allan variance. (a) shows a selection of wavelets used

in Theo1. The top wavelet is equivalent to that used for the Allan variance. For the other wavelets,

a dead period is added in the centre, whilst keeping the same wavelet length, τ1. This increases

the effective sampling time, τ2. (b) shows the Allan deviation and Theo1 (deviation) calculated

for the same dataset,67 with confidence intervals shown by thinner lines. Theo1 has significantly

improved confidence at large τ (blue box, magnified in inset).

This definition can be broadly understood by considering the wavelet representation of stability

variances, described earlier (Chapter 3). In the case of Theo1, a family of wavelets are used as

illustrated in Fig. 4.1(a). The combination of these different wavelets requires the additional nested

sum in equation (4.1). The use of wavelets with a larger effective averaging time, τ2, allows Theo1

to provide results at a longer averaging period than the Allan deviation given the same dataset.

Averaging across the larger family of wavelets provides additional averaging power to the statistic.

An example of the difference between Allan deviation and Theo1 is shown in Fig. 4.1(b).

A naive implementation of this definition of Theo1 will have a complexity of O(N3) because there

are ≈ N/2 values of k for which to calculate Tk, each taking O(N2) operations due to the nested

sum in equation (4.2) compared to equation (3.21). This can make computation prohibitively

expensive for extremely large datasets or in applications requiring low latency, such as measuring

the dynamic stability of an oscillator with a high data rate.68

In some cases it is not necessary to calculate Theo1 for every value of k, sometimes called an ‘all-τ ’

calculation, and it may be sufficient to only use k equal to powers of two. However, the more

sophisticated statistics TheoBr and TheoH,69 which attempt to correct for bias in Theo1 relative

to the Allan deviation, require the calculation of Theo1 for all k as a first step. There is a technique

called ‘fast TheoBr’70 which increases the speed of this calculation by averaging points within the
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initial dataset to reduce its size. However, for a fixed amount of averaging, the speed increase is

only a constant factor and does not change the O(N3) complexity. Similar statistics with O(N3)

complexity have been reduced to O(N2) complexity by the use of an appropriate algorithm.71

4.2 Algorithm

One way to produce a faster algorithm for Theo1 is to find a recurrence relation between parts

of the outer sum, which allows calculation of one term from the next without performing the full

inner sum. This is made difficult by the term 1/(k − δ) which forces a different coefficient before

each terms as δ is incremented in the inner sum. However, the definition of Tk can be rearranged

to move this awkward term outside the inner sum by swapping the order of the sums and using

the substitution v = k − δ, so that

Tk =

k∑
v=1

1

v
Ak,v , (4.3)

where Ak,v is defined by

Ak,v =

N−2k−1∑
i=0

(xi − xi+v + xi+2k − xi+2k−v)
2 (4.4)

=

N−2k−1∑
i=0

(x2i + x2i+v + x2i+2k + x2i+2k−v

+ 2xixi+2k + 2xi+vxi+2k−v − 2xixi+v

− 2xixi+2k−v − 2xi+vxi+2k − 2xi+2kxi+2k−v) . (4.5)

Some of the expanded terms in equation (4.5) have similar forms, and can be expressed in terms

of new summations C(n), defined as

C
(1)
j =

j∑
i=0

x2i , (4.6)

C
(2)
j =

N−j−1∑
i=0

xixi+j , (4.7)

C
(3)
k,j =

N−k−1∑
i=k

xi−jxi+j , (4.8)

C
(4)
k,j =

N−2k−1∑
i=0

xixi+j + xi+2kxi+2k−j . (4.9)

It can then be shown by substitution that

Ak,v = C
(1)
N−2k−1 + (C

(1)
N−2k−1+v − C

(1)
v−1) + (C

(1)
N−1 − C

(1)
2k−1)

+ (C
(1)
N−v−1 − C

(1)
2k−v−1) + 2(C

(2)
2k + C

(3)
k,k−v − C

(4)
k,v − C

(4)
k,2k−v) . (4.10)

The calculation of Tk from the C(n) can be completed in O(N2), so if the C(n) could all be

calculated in O(N2) then this would reduce the overall complexity of Theo1 to O(N2). For C(1,2)
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the definition is already ≤ O(N2), but it can also be achieved for C(3,4) by using a recurrence

relation between consecutive terms to avoid the full sum in equations (4.8) and (4.9):

C
(3)
k,j = C

(3)
k−1,j − xk−1−jxk−1+j − xN−k−jxN−k+j , j <k , (4.11)

C
(4)
k,j = C

(4)
k−1,j − x2k−2−jx2k−2 − x2k−1−jx2k−1

− xN−2kxN−2k+j − xN−2k+1xN−2k+1−j , j <2k − 1 . (4.12)

This allows almost all values of C(3,4) to be calculated in a recursive manner, the remaining values

are

C
(3)
k,k = C

(2)
2k , (4.13)

C
(4)
k,2k−1 = 2C

(2)
2k−1 − x0x2k−1 − xN−2kxN−1 , (4.14)

C
(4)
k,2k = 2C

(2)
2k , (4.15)

and so C(3,4) can be calculated in the required O(N2). Because the recurrence relations are for an

incremented k value, the technique can only be used when calculating Tk for all values of k.

In order to calculate Tk it is sufficient to calculate

C
(1)
j , 0 ≤ j ≤ N , (4.16)

C
(2)
j , j = 2k, 2k − 1 , (4.17)

C
(3)
k,j , 0 ≤ j ≤ k , (4.18)

C
(4)
k,j , 0 ≤ j ≤ 2k , (4.19)

so only these values need to be held in memory. The recursion relations equations (4.11) and (4.12)

can then be used to update C(3,4)
k,j to C(3,4)

k+1,j in place, allowing calculation of Tk+1. The memory

requirement is only O(N). Specifically, it requires memory for 4N double precision values: N

values for each of the input array x and C(1,4), and N/2 values for each of C(3) and the output

array. The naive algorithm requires storage of 3N/2 values so this is a significant increase but is

still only 32 MB for a dataset with N = 106.

In order to calculate Theo1, the algorithm can proceed as follows:

1. Calculate C(1) using equation (4.6).

2. For each value of k from 0 to ⌊(N − 1)/2⌋ :

(a) Calculate required values of C(2) using equation (4.7).

(b) Add new values to C(3,4) using equations (4.13) to (4.15).

(c) Update C(3,4) using equations (4.11) and (4.12).
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(d) Calculate Ak,v from the C(n) using equation (4.10).

(e) Calculate Tk from Ak,v using equation (4.3).

An example implementation of the algorithm in C++ can be found in Appendix A.

4.3 Accuracy

Whilst the new algorithm for Theo1 is faster than the naive approach, it has more opportunities

for floating point errors to accumulate. Equation (4.10) shows that terms of similar magnitude are

subtracted from each other, allowing catastrophic cancellation to occur and leading to a loss of

precision. The size of each term in equation (4.10) is ≤ ∑
x2 and the size of the total is ∼ Tk, so

the fractional error might be expected to scale as ∼ ⟨x2⟩/Tk. Theo1 is insensitive to any offset or

linear change in x, so these components can be removed in order to reduce ⟨x2⟩ without ill-effect.

This prevents a significant drop in precision that could be caused by a constant frequency or phase

offset. This change alone is sufficient to prevent appreciable errors in most practical situations.

However, in some cases with large datasets and where the long-term clock stability is dominated

by frequency drift the errors could grow large enough to be significant.

In order to fully mitigate the floating point error it is necessary to use additional bits of precision.

Whilst 128-bit floating point types are available in some environments, they are not generally

supported in hardware and are therefore very slow to use. In contrast, many 64-bit CPUs have

hardware support for multiplying two 64-bit integers into a 128-bit integer. By re-scaling the data

and converting it to a 64-bit integer representation, this CPU instruction can be used to calculate

Theo1 quickly without floating point errors. Terms ∝ x are stored as 64-bit integers, but terms

∝ x2 are stored as 128-bit integers. In C or C++ the GCC __int128 datatype may be used with

multiplications implemented as

int64_t x1 , x2 ;

__int128 r e s u l t = (__int128 ) x1 ∗ x2 ;

The use of a larger data types does cause a speed reduction of approximately 70%, possibly due

to additional memory overhead. The conversion between datatypes is O(N) and takes negligible

time in most cases.

The speed and fractional floating point error for the different methods are shown in Figs. 4.2 and 4.3

respectively. The fractional error was measured by comparing the value of Theo1 as calculated

with the new algorithm to that calculated with the naive algorithm. Due to the slow speed of

the naive algorithm, only points spaced at powers of two were compared, and the maximum of
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Figure 4.2: The time taken by different methods of calculating Theo1 on a desktop PC with an

Intel i7-6700k CPU. The naive algorithm scales as O(N3), but the improved algorithm scales as

O(N2). Using the int-128 datatype causes a reduction in speed, but the improved scaling remains.

© 2020 IEEE

these errors was taken. Fig. 4.3 should be taken as indicative only as the details vary significantly

depending on the noise type of the simulated data, although the ‘int-128’ method had negligible

error in all cases tested. To exaggerate the errors seen, a white frequency noise with added linear

frequency drift was simulated. The linear drift was chosen such that the frequency stability at

the longest and shortest averaging factors was approximately equal. A linear frequency drift is

particularly difficult for the simpler error reduction method (removing any linear component to x)

to deal with, as the dominant x component is quadratic. Despite this, 1 to 2 orders of magnitude

improvement was seen. For virtually all practical situations, this will be sufficient. However, if

N > 105 and the dataset is know to be significantly dominated by low frequency noise, it may be

worth spot checking some individual points against the naive algorithm. The int-128 algorithm

could then be used if necessary.
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Figure 4.3: The maximum fractional error introduced by different methods of calculating Theo1,

measured against the naive method. For the standard double precision method, errors grow rapidly

with the dataset size. Removing any linear component helps reduce the shift at negligible compu-

tational cost. Using the int-128 datatype makes the errors negligible. Results depend strongly on

the type of noise simulated, for this test white frequency noise with a linear frequency drift was

used. © 2020 IEEE
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Chapter 5

CPT clocks

Coherent population trapping is a feature of three-level quantum systems (or larger). When the

system is excited by two separate fields, there may be a special state for which these two excitations

interfere destructively, leaving no net excitation. This state is known as a ‘dark state’: because

the atoms are not excited they cannot emit any fluorescence photons and appear dark. Because

the destructive interference is phase-sensitive, this dark state is phase-coherent with the exciting

fields and that phase-sensitivity can be used in an atomic clock.

5.1 Λ-system CPT

In Λ-system CPT, there are two stable ground states and an unstable excited state which couples

to them both. In this system a dark state is formed as a coherent superposition of the two ground

states.

The Λ-system can be modelled by extending our previous models of a two-level system. We now

use two exciting fields on the |1⟩ → |3⟩ and |2⟩ → |3⟩ transistions with Rabi frequencies of Ω1,2

and detunings of ∆1,2.

∆1 = ω1 − (E3 − E1)/ℏ , (5.1)

∆2 = ω2 − (E3 − E2)/ℏ , (5.2)

However the CPT effect can also be viewed as a two-photon interaction between states |1⟩ and |2⟩,
so it is useful to refer to the one and two-photon detunings of the system, ∆1ph = (∆1 + ∆2)/2

and ∆2ph = ∆1 −∆2, as illustrated in Fig. 5.1.

Using the results from Chapter 2, we can express the Hamiltonian of this system (in a dressed
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state picture) as

H =
ℏ
2


∆2ph 0 Ω1

0 −∆2ph Ω2

Ω∗
1 Ω∗

2 −2∆1ph

 , (5.3)

and we can then observe that if the (dressed) state amplitudes are given by ci, then the excited

state amplitude will vary according to the Schrödinger equation as

iċ3 = Ω∗
1c1 +Ω∗

2c2 − 2∆1phc3 . (5.4)

A dark state requires zero excited population and therfore must have c3 = 0, ċ3 = 0 which implies

Ω∗
1c1 +Ω∗

2c2 = 0 , (5.5)

=⇒ |ψ⟩ = |Dark⟩ = Ω∗
2

Ωt
|1⟩ − Ω∗

1

Ωt
|2⟩ , (5.6)

where Ωt =
√
|Ω1|2 + |Ω2|2.

The dark state, |Dark⟩, is a superposition of |1⟩ and |2⟩. It is only an eigenstate in the case that

∆2ph = 0 as then the dressed states |1⟩ and |2⟩ have the same energy, and ċ1,2 = 0. If ∆2ph ̸= 0

then the dark state is unstable (ċ1,2 ̸= 0) and will evolve into a bright state. In this case, all of the

system eigenstates will have some excited population.

If we extend our model to include spontaneous decay, then the atomic population will be pumped

into the dark state provided that ∆2ph ≪ Ω1,2,
1
Γ . The dark state is still slightly unstable for

∆2ph ̸= 0 and will evolve into a bright state in proportion to ∆2ph. However, that bright state is

then rapidly excited (proportional to Ω1,2) and decays (proportional to 1
Γ ). The decay has an even

chance of entering the dark or bright states, so the steady state has the vast majority of atoms

collected in the dark state.

It is worth noting that there is another effect in the CPT system that is not modelled above. We

assumed that each laser couples only to it’s own near-resonant transition, without affecting the

Ω2

Ω1

∆2ph
∆1ph |3⟩

|2⟩

|1⟩

Figure 5.1: A Λ CPT system.
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other transition in any way. This is inaccurate because both lasers can actually interact with both

transitions, but they will be near-resonance for ‘their transition’ and detuned by ≈ ω1 − ω2 for

the other. This off-resonance excitation of another transition causes an AC Stark shift, effectively

changing the energies, E1,2,3. In a real atom, other transitions may also exist that will be off-

resonantly excited causing additional shifts.

5.2 Ramsey CPT clock

In order to make a clock measurement, we perform a similar sequence to the Ramsey sequence

discussed in Chapter 3. Two pulses of the CPT light fields are shone on the atoms with a Ramsey

time in between where the atoms can evolve freely. This is an unusual Ramsey scheme as the

two pulses are not performing π/2 pulses on the atoms. In fact the pulses are not any kind of

unitary state operation, but instead optically pump the atoms. The first pulse is long enough to

reach a steady state, where all atoms are in the dark state. The atoms do not need to be in any

particular state before the first pulse; it also acts as a state preparation. During the Ramsey time,

the exciting fields are removed, so we are left with the effective Hamiltonian of

H =
ℏ
2


∆2ph 0 0

0 −∆2ph 0

0 0 −2∆1ph

 , (5.7)

and the |1⟩, |2⟩ states will pick up a relative phase during this time. To produce the most sensitive

initial state, we would like Ω1 = Ω2 so that |Dark⟩ = (|1⟩ − |2⟩)/
√
2. The evolution of the initial

dark state throughout the Ramsey time will then be given by

|ψ⟩ = 1√
2
(ei∆2pht |1⟩ − e−i∆2pht |2⟩) ,

= cos(∆2pht)
1√
2
(|1⟩ − |2⟩) + i sin(∆2pht)

1√
2
(|1⟩+ |2⟩)

= cos(∆2pht) |Dark⟩+ i sin(∆2pht) |Bright⟩ , (5.8)

so if we can detect the population of |Dark⟩ we will see interference fringes. The second pulse

of exciting fields will, in the same manner as the first pulse, optically pump the atoms back into

the dark state. Atoms already in the dark state are unaffected, but atoms in the bright state will

undergo Rabi oscillations to the excited state until they decay to the dark state. This decay process

requires the spontaneous emission of at least one photon, which can be detected. The amount of

spontaneous emission forms a signal proportional to the number of atoms in the bright state, and

so we will have

S ∝ | ⟨ψ|Bright⟩ |2 = sin2(∆2pht) . (5.9)
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These fringes are sensitive to ∆2ph and so can be used to lock the frequency difference between

the exciting fields with ∆2ph = 0. This frequency difference can be referenced to a local oscillator,

forming the basis of a Ramsey-CPT clock.

5.3 Polarisation schemes in 87Rb

While the level structure of Fig. 5.1 is sufficient to illustrate the mechanisms of CPT and Ramsey-

CPT, real atoms have a more complex structure. In our clock we use atoms of 87Rb, in which

states |1⟩ , |2⟩ correspond to the two stable ground states of the atom: 52S1/2 states with F = 1, 2

respectively. State |3⟩ can be any state of the D1 or D2 manifolds, though it must have F ′ = 1

or F ′ = 2 so that it couples to both ground states. All excited states decay with linewidth

Γ = 2π × 6MHz. The neighbouring hyperfine levels will be detuned by ∼ 100MHz, and all others

are THz away, so none of these should strongly affect the CPT-Ramsey mechanism though they may

cause perturbations. However, each of the levels |1⟩ , |2⟩ , |3⟩ are actually degenerate due to their

non-zero total angular momentum, allowing for Zeeman splitting between different magnetic sub-

levels. Fig. 5.2 shows the level structure we used in our experiment. A small magnetic bias field will

be applied during experiments, so that a quantisation axis is defined and the magnetic degeneracy

is broken. The magnetic sub-levels will be separated by less than the transition linewidth, so it is

unavoidable that multiple sub-level transitions will be excited.

In this more complicated system, it is possible to form many different CPT systems, sometimes

simultaneously. The selected light polarisation will determine which systems are driven, and so

−
−

−
+

52P1/2, F
′ = 2

52S1/2, F = 2

52S1/2, F = 1

mF = -2 -1 0 +1 +2

Figure 5.2: The relevant states for the CPT scheme used in our experiment. The desired dark

state will use the shown transitions, which form two Λ systems. The red system uses only σ+

transitions, and the blue system uses only σ− transitions. The Clebsch-Gordan coefficient of the

transitions are equal in magnitude but have varied signs, as annotated.
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which dark state(s) are formed. In general, we would like to form a dark state from the mF = 0

states as these are magnetically insensitive to first order (making the eventual clock system less

magnetically sensitive). This means we cannot use π-polarised light, because we would have to

use a ‘forbidden’ transition with ∆F = 0 and mF = 0 → 0. We can use pure σ+ or pure σ− light

but this will also pump the atoms into a stretched state (F = 2,mF = ±2). A combination of

different σ+ and σ− light is used to prevent this and concentrate atoms in the desired mF = 0 dark

state. This necessarily produces a ’double-Λ system where the dark state is excited by two distinct

Λ systems, one coupling to an excited level with mF = +1 via σ+ light and the other to a level

with mF = −1 via σ− light. The dark states for these two ‘separate’ systems must be identical in

order to form a common dark state for the overall system. This is somewhat complicated because

the signs of the transition Clebsch-Gordan coefficients (the relative weighting of the dipole matrix

element that is dependent on the angular momentum projections) are different between the σ±

systems.

The electric field at the atoms position can be described as a combination of frequency and polar-

isation components,

−→
E = E+

1 e
iω1t

−→
σ+ + E+

2 e
iω2t

−→
σ+ + E−

1 e
iω1t

−→
σ− + E−

2 e
iω2t

−→
σ− . (5.10)

where
−→
σ± are the vector representation of σ± polarisations. Equation (5.6) shows that the dark

state for a Λ system depends only on the ratio Ω1/Ω2. For equal dark states in the two systems,

we need this ratio to be consistent, so
Ω+

1

Ω+
2

=
Ω−

1

Ω−
2

, (5.11)

and this can be expressed in terms of the electric field using the Clebsch-Gordan coefficients as

E+
1

E+
2

= −E
−
1

E−
2

. (5.12)

Dark states between e.g. |F = 1,mF = +1⟩ and |F = 2,mF = +1⟩ will have a substantially dif-

ferent resonance frequency to our desired dark state because they have a first order magnetic

shift of 1.4MHzG−1. (A bias field of 100mG will separate the dark states by 140 kHz, clearly

separated when the excitation has a 100 µs timescale as in Fig. 8.3.) These dark states will not

contribute strongly as they will be significantly detuned when exciting the desired dark state.

However dark states between e.g. |F = 1,mF = −1⟩ and |F = 2,mF = +1⟩ have only a small first

order magnetic shift of magnitude 1.393 kHzG−1, which is due to the non-zero nuclear g-factor for
87Rb.19,72,73 These dark states will have overlapping resonance with the desired dark state, caus-

ing interference between the three states and additional magnetic field dependence for the clock.

However, if we use an excited state with F ′ = 2 then the |F = 2,mF = 1⟩ → |F ′ = 2,mF = 2⟩ and

|F = 1,mF = −1⟩ → |F ′ = 2,mF = −2⟩ transitions prevent this from being a true dark state. We
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could use the F ′ = 2 state of either D1 or D2 manifolds. The D1 line is simpler, with fewer levels

and larger energy spacing between levels. An existing CPT clock was using the D1 line, and we

borrowed that laser for our experiment. Therefore we use the 52P1/2, F
′ = 2 level as our excited

level. If this technique were used long term, it would potentially be better to use the D2 transition

which could be generated from the same laser diode used for the MOT.

The combination of σ± light can be supplied in a number of ways and push-pull optical pumping

(PPOP), Lin-∥-Lin, Lin-⊥-Lin and σ+-σ− are examples of schemes which have been used before.

Lin-∥-Lin is a quite simple method experimentally, requiring only linear-polarised light at the two

required frequencies.74,75 The linear light contains both σ± components, and so will drive all the

transitions needed. However, the Clebsch-Gordan sign change in not accounted for, and so there is

no mF = 0 dark state formed for this technique! Instead, this polarisation scheme only forms dark

states between the |F = 1,mF = ±1⟩ and |F = 2,mF = ±1⟩, which are magnetically sensitive as

described above.48 The other polarisation schemes address this problem in different ways. Lin-⊥-

Lin supplies the two beam frequencies in perpendicular linear polarisations, causing a sign difference

when projected into the σ± components. This can be problematic because it requires separated

beam paths for the two frequency components, giving the potential for additional noise in their

frequency difference. PPOP uses a Michaelson interferometer to separate the σ± paths and adds

path length to one arm until it accrues an additional π phase shift between the two frequencies.76

The σ+−σ− polarisation scheme supplies only the σ+ component in a single beam, but that beam

is retroreflected through a quater-waveplate to provide the σ− component.77,78 The position of the

retroreflecting mirror is adjusted until the extra path length produces a π phase shift between the

two frequency components

We selected a σ+ − σ− scheme for this experiment. The counterpropagating beams are beneficial

because they come with an inherent Doppler-insensitivity (provided the intensity is balanced) and

prevent the beam from exerting a net force on the atoms. Despite being a two-photon process,

there can still be a residual Doppler effect because the two photons are at different frequencies (the

Doppler effect is relative to the microwave wavelength). The Doppler-insensitivity can be achieved

for other polarisation schemes by retroreflecting them as well, but then it is questionable why

the extra complexity of that polarisation scheme is necessary. Additionally, counterpropagating

components in the same polarisation state will interfere to form standing waves, making a detailed

analysis of the system much more complicated, especially as atoms move across these waves due

to finite velocity/temperature.

In any of these schemes it is advantageous to use counterpropagating beams which will mitigate

any Doppler effect due to the atoms motion during the Ramsey time. Using counterpropagat-
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ing beams also prevents the beams from exerting a net force upon the atoms, but can bring an

additional complexity due to interference effects between the counterpropagating beams. The op-

tical interference take place on a wavelength-scale and can usually be averaged over. However, for

two-frequency beams there is also interference of the microwave signal formed by this frequency

difference and this has a longer wavelength of 44mm. The retroreflecting mirror must be placed

the correct distance from the atoms to produce constructive microwave interference at the atoms

position.
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Part II

Experimental Work
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Chapter 6

Cavity clock design

This chapter will detail the design of the microwave fountain clock that was produced during

this PhD. The purpose and requirements of the project are described, and then an experimental

sequence to achieve those requirements is specified. Details of the experimental apparatus required

to fulfill these needs are given.

6.1 Experimental Aims

Cold-atom fountain clocks based on microwave cavities are the highest-stability microwave clocks

that exist, as recognised by their realisation of the SI second. Our group aims to build a clock

that uses the same fundamental design principles as these fountain clocks, but miniaturises the

experimental apparatus as much as possible, targeting the few litre scale. In principle, most lasers,

optical components and electronics are miniaturisable and can be integrated to a high degree,

being a matter of suitable engineering.14,79–81 Therefore, we first aim to reduce the volume of

those components which are critical to the physics of the clock, specifically the components which

directly interact with the atoms as they go through a clock sequence. For a microwave fountain

clock, this is a variety of laser fields and the microwave cavity.

The atoms in a microwave fountain clock experience several experimental stages. These are trap-

ping and cooling, launching, state selection, microwave interactions, and detection. In traditional

fountain clocks these stages take place as the atoms move through an extended volume.82 In or-

der to miniaturise the clock, it is required that all of these stages take place within only a few

mL. Microwave cavities usually have a size similar to the microwave wavelength (≈ 44mm for
87Rb).83,84 Trapping a MOT of significant size typically requires laser beams of order 25mm diam-

eter. Achieving a MOT inside the microwave cavity will help minimise the total system volume.
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The aim of the cavity clock experiment was to produce a cold-atom microwave clock, using a

grating MOT inside a miniaturised microwave cavity produced by the University of Neuchâtel,

Switzerland. All the clock interactions should occur within the cavity. The clock was to be a

proof-of-principle, showing that this design was possible and could, in the future, be developed

into a compact clock with state-of-the-art performance (a few 10−13 stability at 1 s and accuracy

below 10−14).

Because the experiment was to be a proof-of-principle, several design choices were made to prioritise

experimental flexibility over performance. A large vacuum system would be used around the

microwave cavity, with no magnetic shielding. Little attempt was made to achieve long-term

stability. The verification of new techniques was the first priority, with short-term stability the

secondary goal. Accordingly, efforts were made to allow a long Ramsey time, as this directly

influences the achievable short-term stability. For this reason, a grating MOT launch method was

proposed (Chapter 7) to extend the Ramsey time from around 10ms to 100ms and a design that

would allow testing this method was chosen.

6.2 Experiment Overview

The experimental sequence is based on those of existing atomic fountain clocks, and consists of

four stages:

1. MOT preparation - Trapping and cooling the atoms and (optionally) launching them

2. State selection - Preparing the atoms within a particular magnetic sub-level

3. MW pulses - Two Ramsey MW pulses separated by a Ramsey time

4. Detection - Detection of the population in each state

One of the major design constraints was the MW cavity supplied by the University of Neuchâtel,

with whom we are collaborating. They already have the theoretical and technical expertise required

to manufacture compact microwave cavities, which they have used for vapour-cell Rb clocks.85–88

Their previous cavity designs have been made to accommodate a 25mm vapour cell, so they are

also able to accomodate the 25mm laser beam required for our GMOTs. The MOT grating must be

attached to the cavity base, opposite the large diameter entrace hole. These microwave cavities can

be 3D-printed in aluminium which substantially decreases the cost and difficulty of manufacture

compared to traditional machining. As aluminium is suitable for UHV, it is possible that future

designs could integrate the cavity within a 3D-printed vacuum chamber.89

The microwave cavity has a loop-gap structure where the resonance frequency is set mainly by the
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Figure 6.1: A schematic of the loop-gap cavity viewed from two axes. The electrodes (blue) are

contained within a shield (black). Shield and electrodes are in electrical contact. The spacing

between electrodes strongly affects the cavity resonance. The approximate magnetic field mode

shape is shown by field lines. More details can be found in [85].

structure of electrodes that are present on the inner face of the cavity.85,90 The cavity supports a

TE011-like mode that produces a magnetic field along the cylindrical axis of the cavity. The outer

body of the cavity is not critical to the microwave resonance, and small holes can be created in this

portion of the cavity. Beams can enter the cavity at these points, although they must fit between

the cavity electrodes. Lasers for state selection and detection will require specific polarisation

states, so they must use holes in the cavity side. An axial beam would be incident on the grating,

leading to multiple beams with different polarisation states. The initial vision for the MOT region

is shown in Fig. 6.2. I now consider each stage of the experiment in turn.

6.2.1 MOT preparation

This stage prepares the atoms into a known spatial distribution with restricted volume and velocity.

The main purpose of this is to confine the atoms in phase-space such that the largest number of

atoms may be detected after the Ramsey time has passed. For a small initial MOT after a

sufficiently long Ramsey time the number of atoms which can be detected, Ndet, using a beam of

radius R, is given by

Ndet = N0

(
1− exp

( −mR2

2kBTt2

))
≈ N0

mR2

2kBTt2
, (6.1)

where t is the atoms time of flight, N0 is the initial number of trapped atoms, T is their temperature,

m their mass and the initial MOT size has been neglected. The approximation applies when the

MOT has expanded significantly beyond the size of the detecting beam (in the opposite case, we

have simply Ndet = N0). Clearly, it is advantageous to have a large initial number of atoms, at a

very low temperature, and the ratio N0/T is a reasonable metric for optimising the MOT.
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Figure 6.2: The cavity clock design. Trapping beams (red) enter from the top of the microwave

cavity, striking a grating fixed to the cavity base. The cavity is excited by a microwave field (green)

and has apertures to admit a horizontal beam (blue) for state preparation and detection.

This MOT preparation stage will be accomplished by means of a grating MOT, as introduced in

Chapter 2, as that is the purpose of the experiment! The grating MOT will require a single input

beam (unless launching, see Chapter 7) with two frequency components. The trapping and cooling

is achieved by red-detuned excitation of the closed D2 transition F = 2 → F ′ = 3. This transition

is nominally closed, but off-resonant excitation can excite atoms to the F ′ = 2 state, allowing

decay back to F = 1. Therefore repumping on the F = 1 → F ′ = 2 transition is required. An

optical molasses is achieved by turning off the magnetic quadrupole field, allowing sub-Doppler

cooling. An optimised molasses sequence with dynamic intensity and frequency control is required

to achieve the lowest temperatures and maximise Ndet.

6.2.2 State Selection

This stage prepares the atoms into a known internal state so that the MW pulses have the desired

effect. The atoms must be prepared into either the |F = 1,mF = 0⟩ or |F = 2,mF = 0⟩ ground

states as these are the states that will be excited by the Ramsey sequence (because they are first

order magnetically insensitive). Several types of state selection are possible. The simplest is to

pump all atoms into the F = 1 states by removing the repump beam during the last portion of

the molasses. The remaining atoms will be spread across the magnetic sublevels but only those

in mF = 0 will contribute to the clock signal. The mF ̸= 0 states may cause a slight clock shift,

as discussed in Chapter 9. This method can be improved by an additional π microwave pulse to

transfer the mF = 0 atoms to |F = 4,mF = 0⟩, and the other atoms can be pushed away using a

resonant beam on any F = 3 transition. Finally, it is possible to optically pump directly into an

mF = 0 state, so that all of the atoms can be used in the clock procedure.91 This method requires

that the mF = 0 state is ‘dark’ and not excited by the incident fields whilst every other state is
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Figure 6.3: Optical pumping into |F,mF ⟩ = |2, 0⟩. Not all decay pathways are shown, but |2, 0⟩ is

the only non-excited ground state.

excited. This can be achieved because of the selection rule that forbids the ∆F = 0,mF = 0 → 0

transition.92 This method was selected as no atoms are discarded, giving a larger total signal.

The selected pumping scheme is based on that in [93]. Pumping F = 2 → F ′ = 2 and F = 1 →
F ′ = 2 with π-polarised light will pump all the atoms into |F = 2,mF = 0⟩ as shown in Fig. 6.3.

The pumping can happen very rapidly because the process is limited only by the optical pumping

timescale, 1
Γ ≈ 25 ns. A few photons must be scattered during the process which increases the

atomic temperature by 1µK to 3 µK.93 Because of the required π-polarised light, the pumping

beam must be perpendicular to the bias magnetic field.

6.2.3 Microwave Pulses

The microwave pulses perform the actual Ramsey sequence which compares the LO frequency to

the atoms. This is done with direct excitation of the microwave transition from |F = 1,mF = 0⟩
to |F = 2,mF = 0⟩.

The microwaves are applied with a microwave cavity as this reduces the ‘Doppler effect’ caused

by phase gradients in the microwave field. The quality factor of the cavity will influence the MW

phase uniformity, see Section 9.2.2. The MW transition is a π transition as ∆mF = 0, so the bias

field must be aligned with the MW field, along the cavity axis.

6.2.4 Detection

In this stage it is necessary to detect the number of atoms in each of |F = 1,mF = 0⟩ and

|F = 2,mF = 0⟩. Detecting the population in both states is necessary to calculate the fraction

of atoms that were excited. If only one of these populations is measured then fluctuations in the

total atom number are indistinguishable from fluctuations in the excited population, and contribute
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additional noise. Because all of the atoms should be in one of these two states, it is sufficient to

detect the total population of each hyperfine level across all magnetic sublevels. Due to the close

energy spacing it would be more difficult to measure the individual sublevel populations. The

sublevel population can, and should, be measured during characterisation stages (see Fig. 8.7), but

is not practical to measure during clock operation. The total population of F = 2 states can be

measured simply by exciting the closed |F = 2⟩ → |F ′ = 3⟩ transition. The amount of scattered

light will be proportional to the number of atoms in F = 2 states, N2. All the |F = 1⟩ transitions

are detuned by 6.8GHz so will not be excited. Because the transition is closed, many photons can

be scattered from each atom before the atom eventually decays to |F = 1⟩ by off-resonant exci-

tation to |F ′ = 2⟩. Up to 8∆2

Γ2 ≈ 15000 photons can be excited in this manner, with a reduction

when strongly excited (s > 1) as this power-broadens the off-resonant transition. If a repump laser

on the |F = 1⟩ → |F ′ = 2⟩ transition is added, the scattering will then be proportional to the total

number of atom, N1 +N2 because atoms that were initially in |F = 1⟩ are now also excited. The

population of each state individually, and their ratio can then be calculated. Any polarisation can

be used for the detection beams, as every ground state would be excited by every polarisation for

these transitions.

The number of scattered photons can be measured using either fluorescence or absorption. Ab-

sorption allows all scattered photons to be detected as they are now absent from the beam, but is

subject to intensity fluctuations and shot noise in that beam. The signal may be only a very small

fraction of the beam power, and is around 1% maximum in this thesis! Fluorescence detects only

a small fraction of the scattered photons due to the limited numerical aperture of the detection

optics, but has (in principle) no background. The clock experiment will initially use absorption

due to the limited optical access, though fluorescence could be advantageous in the future.

6.3 Optical systems

The optical system was designed to deliver all the optical fields required to drive transitions during

an experimental sequence, as shown in Fig. 6.4(a). Optical fibres were used to take light from the

optical system and deliver it to the main physics package. This decouples the two systems from

each other and allows them to be separately aligned. Three polarisation-maintaining optical fibres

were used: two carrying light for the MOT (as required by the launch procedure in Chapter 7),

and one carrying light for the side beam. Both state detection and state preparation stages can be

carried out using π-polarised light, so the side-beam fibre can carry all the light for these stages.

A nice feature of the optical transitions that have been selected for each stage, is that they are

all D2 transitions and can be driven by the same laser with some frequency shifting applied. All
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Figure 6.4: (a) The transitions required for a full experiment sequence. (b) The corresponding

experimental sequence. Indicative only, not quantitative.

the F = 2 transitions are within a 300MHz span, easily covered by acousto-optical modulators

(AOMs). The F = 1 transitions are only used to repump atoms, at times when an F = 2 transition

is also active. This allows the use of an in-line electro-optic modulator (EOM) to generate the

repump as a sideband of the F = 2 transition. A wide-bandwidth EOM is required to generate the

repump for all stages of the experiment. The state-selection stage pumps on the F = 2 to F ′ = 2

transition, which is 6.835GHz from the F = 1 to F ′ = 2 repump, but the MOT and detection

stages pump the F = 2 to F ′ = 3 transition, which is 6.568GHz from the F = 1 to F ′ = 2

repump. A single resonant EOM cannot usually cover both these frequencies, so a fibre-coupled

EOM is used instead. Fibre-coupled EOMs are power-limited to around 10mW output power,94

so a tapered amplifier (TA) is placed after the EOM and the EOM is heated to 50 ◦C which allows

higher power operation because photorefractive damage to the EOM can self-heal by ‘annealing’

at this temperature.95,96 A block diagram of the optical system is shown in Fig. 6.5.

The seed laser is locked 300MHz red-detuned from the crossover of the F = 2 → F ′ = 2, 3

transitions using saturated absorption spectroscopy97 and an AOM, which provides the frequency

offset. This allows double-pass AOMs to produce the final laser frequencies. This allows dynamic

frequency and intensity control of every beam, by changing the RF signal to the AOMs. Double-

pass AOMs are used for two reasons; firstly, it allows greater frequency tuning range and secondly,

the beam alignment is no longer sensitive to the AOM frequency.98 The fibre-coupling is also much

less dependent on the AOM frequency, although it is eventually limited by the bandwidth of the

AOM. It may become necessary to shutter the laser beams, to achieve higher extinction and prevent

light reaching the atoms during the Ramsey time. For this purpose space is left for a shutter in

each beam path. The AOM frequencies are calculated as shown in Fig. 6.6. The state-selection
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Figure 6.5: A block diagram of the optical system. The ECDL is locked by saturation spectroscopy

to 300MHz red-detuned from the crossover of the F = 2 → F ′ = 2, 3 transitions. The EOM and

TA add sidebands and amplify the light. Four double-pass AOMs (shown as 2×frequency) produce

the final frequencies required.

133

133

300

424

9

154

12

433

F ′ = 3

F ′ = 2, 3 crossover

F ′ = 2

Seed Laser
Lock MOT Pump Det.

Figure 6.6: The AOM frequencies required for the clock. Offsetting the seed laser from the F ′ = 2, 3

crossover brings all the required F = 1 transitions within range of standard double-pass AOMs.
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Figure 6.7: The optical system for the side-beam, simplified for clarity. A high extinction polariser

in a rotating mount is used to align the beam polarisation with the quantisation axis. The non-

polarising beam splitter(NPBS) has a 90:10 ratio of reflection:transmission. Removing one mirror

allows the camera to image the atoms.

beam should be red-detuned approximately 2Γ for maximum pumping,93 while the detection beam

should be resonant to cause maximum fluorescence. The MOT beams are nominally detuned by

1.5Γ, but have significant tuning range to allow for molasses optimisation.

6.3.1 Beam-shaping optics

The beam-shaping for the MOT-beam will be discussed in Chapter 7. The beam-shaping for the

side beam is done simply using a integrated fibre-connected collimation package. The beam then

goes through a high-extinction polariser to ensure good polarisation-purity as required for the

state selection stage. A 90:10 non-polarising beam splitter (NPBS) is used to divert 90% of the

light onto a photodiode to monitor the beam intensity. The remaining light passes through the

cavity, is retroreflected and then hits the same 90:10 NPBS so that the beam is directed to another

photodiode, allowing a differential measurement of the absorption by the atoms. The side-beam

optics are shown in Fig. 6.7. Removing one mirror allows the beam to strike a camera instead of

being retroreflected, imaging the atoms so fluorescence or absorption images may be taken.

6.4 Physics package

The main physics package must hold the MW cavity in place, supply optical access for each of

the required beams, allow control of the magnetic environment, and provide an ultra-high vacuum

environment in which cold atom trapping is possible.

The main design decision for the physics package concerns the placement of the MOT gradient

coils. These will be an anti-Helmholtz coil pair to supply the ≈ 15G cm−1 field gradient required

for a Rb MOT. These must switch off within 1ms to 2ms so that the sub-Doppler cooling can take

place. The coils can be placed either inside or outside the vacuum chamber. Internal coils will be
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Figure 6.8: The coil former, which also acts as a mount for the MW cavity. Macor clips are used

to hold the coil windings in place on the former, which has a spiral groove cut for the windings to

fit into. The former has an internal diameter of 50mm.

much smaller, and therefore require less power, and be easier to drive and switch. However it will

be difficult to dissipate heat from in-vacuum coils and it will reduce the amount of space available

in the vacuum system. External coils would require much more power (>100W) and potentially

water cooling. They would also create larger fields over a larger volume, potentially inducing eddy

currents or magnetisation of other components.

Internal coils were selected to avoid the need for water cooling, and allow easier driving/switching.

A coil former (Fig. 6.8) was designed which the coils would be wound onto, and which would also

hold the MW cavity in place. The rest of the vacuum system could then be designed from mostly

standard components, with optical and electrical feedthroughs as appropriate. A large 45L s−1 ion-

pump was specified with good conductance to the main chamber, because the outgassing properties

of the 3D-printed cavity were not well known. It was later confirmed that the cavity did not outgas

significantly. Fig. 6.9 shows the final design.

Magnetic shielding was not included due to the additional complexity that would be required in

a prototype system. However the gradient coils can be switched off hard using FETs to prevent

any current flow. Shim coils (one Helmholtz pair per axis) were used for control of the DC

magnetic field, cancelling the background field and applying a quantisation field axis. Non-magnetic

components were specified throughout the vacuum system, and the (stainless steel) optical table

was demagnetised before any components were placed. The vacuum system was baked at 100 ◦C
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Figure 6.9: The vacuum system. The main physics chamber (right) is connected to the ion pump

(left) by a long tube to reduce the influence of the magnetic field from the ion-pump magnets. The

system is around 600mm in length.

for > 1 day after pumping down to UHV levels, and the ultimate pressure of the system (according

to the ion pump gauge) was around 1 × 10−10 mbar. The bake temperature was limited by the

coaxial cable used to couple microwave signals into the cavity.

6.4.1 Microwave Cavity

The microwave cavity was supplied by Neuchâtel with one of our diffraction gratings pre-installed,

see Fig. 6.10. The diffraction grating is a tri-sector grating with grating period of 1080 nm, giving

a diffraction angle of 46◦ for light at 780 nm. The grating had a target etch depth of 195 nm

and a 60:40 duty cycle of etched:non-etched surface. The grating was produced by nano-imprint

lithography and coated with aluminium. It’s important that the grating and coating are compatible

with UHV and with Rb (gold coatings will react with Rb). The grating also had a 2mm hole laser

cut in it’s centre, to allow launching (Chapter 7).

Neuchâtel specified that the cavity had initially had a quality factor, Q, of around 500, but this

had decreased to around 185 when the grating was installed. This is an interesting phenomena that

will likely require future investigation, as it suggests that the grating is significantly influencing

the cavity mode.

On receipt of the cavity, it was tested to ensure that the resonance was correct (the cavity can
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Figure 6.10: The microwave cavity with installed diffraction grating. Looking down the cavity

axis (left) it is possible to see the grating with central hole and also the 4 cavity electrodes which

strongly influence the cavity resonance.

be tuned to correct this), and to confirm the quality factor that was observed in Neuchâtel. The

testing was done by measuring the reflection coefficient of the cavity as a function of frequency

(the ‘S11 parameter’), A coupler was used to separate the reflected power which was measured

using an RF power detector. As the frequency was varied, a dip in reflected power was observed

at the cavity resonance, see Fig. 6.11(a). Unfortunately, there was also a significant standing wave

component caused by unwanted reflections in the RF path. This could probably be mitigated

with more careful design and liberal application of attenuators, but it did not prove necessary.

Examining the resonance lineshape in Fig. 6.11(b) gives the cavity resonance frequency and Q.

Unfortunately the linewidth is not Lorentzian (or even symmetric) which means that exact fitting

is difficult, but the lineshape does appear compatible with Q = 185 and the resonance frequency

can still be pinpointed to 6835.8(2)MHz.

The cavity resonance frequency was also observed to change due to the physical changes it under-

went when being installed in the experiment. When going from atmosphere to UHV, the frequency

increased by 1.9(2)MHz, or 280 ppm, which is approximately the refractive index of air. When

the cavity was baked at 85C-100C for 60 h and returned to lab temperature, a further increase of

3.3(2)MHz or 440 ppm. This was unexpected and the cause is unknown. It appears to have been a

permanent change, perhaps due to changes in gasses adsorbed on the surface, or stress relaxation.

Finally, a thermal sensitivity of −130 kHzK−1 or −19(1) ppm/K is seen. This is likely due to ther-

mal expansion of the cavity, and should therefore be equal to the linear coefficient of expansion
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Figure 6.11: The reflected power from the cavity as a function of frequency. (a) shows that a

standing wave is visible in the microwave system, but the resonance is still clearly visible. Dashed

line is a guide to the eye. (b) shows the detailed lineshape. The red line is a Lorentzian withQ = 185

and a linear envelope applied which approximately accounts for the standing wave envelope.

for aluminium which is 23 ppm/K. The discrepancy is likely because the cavity temperature was

improperly measured, or had not reached steady-state (the thermal time constant is 2 h to 3 h), or

because the cavity is partially constrained by its mount.
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Chapter 7

GMOT launch

This chapter will cover the grating-based launch mechanism that was developed in this PhD. The

difficulties of launching with a GMOT are described, followed by a method to avoid these problems.

That method was tested and the results are presented.

7.1 Grating launch mechanism

One limitation of cold-atom sensors where atoms are released from a MOT is that the interaction

time is limited by the atoms falling out of the interaction region due to gravity. Launching cold

atoms allows significantly longer interaction times as the atoms return to their original position

after reaching a height h = gt2launch/8, where tlaunch is the time for the atoms to return. In an atomic

clock, launching allows a longer Ramsey time and therefore improves the short-term stability of

the clock.99,100 It is worth noting that the tradeoff between fountain height and clock performance

is quite strong. A 10× increase in Ramsey time requires a 100× increase in fountain height.

Sacrificing a small amount of performance due to a short Ramsey time may allow a substantial

decrease in size.

As discussed in Chapter 2, the launch is typically achieved by manipulating beam frequencies

during molasses, such that the atoms are cooled into a moving frame and a co-moving optical

lattice is formed.99 In a grating MOT, this is not normally possible. All of the beams have the

same frequency because they are all generated by diffraction from one initial beam. The beams

will actually form a highly stable optical lattice that is pinned to the grating, suggesting that it is

not possible to use this technique for launching.

In order to achieve a launch with a grating, it is obvious that multiple frequencies must be present.
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Figure 7.1: A modified GMOT for launching atoms, in cross-section. The inner (red) beam only

strikes the atoms (green ellipse) from above but the outer (blue) beam only strikes the atoms from

below. The grating has side lengths of 20mm and the MOT forms ≈ 5mm above its surface.

If all four tetrahedral beam frequencies were independent, then launching in an arbitrary direction

would be possible. Two frequencies is the minimum that will be required to launch in a single

direction, and the axial symmetry of a tetrahedral MOT suggests different frequencies for the

incident beam and the diffracted beams. This produces a launch geometry similar to the (1,1,1)

geometry that is used for some six-beam MOT launches.49 Therefore, we will need to separate

the parts of the input beam which strike the atoms from ‘above’ and ‘below’ (incident on the

grating and diffracted from the grating, respectively). This can be done using the modification

shown in Fig. 7.1. Two concentric beams are produced and strike the atoms from above and below

respectively. A frequency detuning between the two beams will cause the optical lattice to move

vertically and launch the atoms. It is necessary to have a hole in center of the grating, because

any zeroth order reflection would be of the wrong frequency to strike the atoms from below, and

could disturb the launch. The grating should be designed to prevent zeroth-order reflection by

controlling the grating depth and duty cycle, but in real gratings design compromises must be

made and there will always be some reflection, often at the level of a few percent.40,47 The zeroth

order would cause a small component of static optical lattice to be present, which is pinned to the

grating. A static lattice would disrupt the transformation to a moving frame.

To launch the MOT with velocity v⃗ each beam must be frequency shifted by an amount δωi = k⃗ · v⃗,
where k⃗i is the wavevector of the i-th beam. The incident beam is directly opposed to v⃗, but the

diffracted beams are angled away from v⃗ by the Bragg diffraction angle off the grating, θ = 40◦.
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Figure 7.2: Optics for producing two concentric beams. Lens L2 forms an image of the mirror

surface at the grating, greatly reducing diffraction effects. L1, L2, M1 have focal lengths of 200mm,

150mm and 100mm respectively. The launch direction is opposite gravity, as indicated. Not to

scale.

The frequency difference between the two beams will therefore be given by

∆f =
1

2π
(δω1 − δω2) =

1

2π
(kv cos(θ)− (−kv)) = v

λ
(1 + cos(θ)), (7.1)

where λ = 780 nm is the laser wavelength. A 100ms flight time requires a launch velocity of

0.49m s−1 and ∆f = 1.1MHz.

Producing the concentric beams does require some thought. Because the concentric beams must

have the same polarisation, they cannot be combined using a simple polarising beam-splitter (PBS).

Instead a physical aperture is used: a mirror with a hole in it. The central beam is fed through the

hole, while the outer beam is reflected from the mirror face. As is shown in Fig. 7.2, the optical

axes of both beams can be fully colinear, and the incident and reflected beams separated using

a PBS. Using a sharp physical aperture has an unfortunate side-effect, the beams are strongly

diffracted as they are clipped by the aperture. The diffraction would lead to spatial variations

in intensity and mixing between the two beams. In order to mitigate the diffraction effects we

use a re-imaging system; a lens is added which forms an image of the mirror (and its hole) at the

grating surface. The optics system was designed to use a stock mirror with central hole (a Thorlabs

CM254-100CH3-M02) as there are not many mirrors of this nature commerically available. This

mirror is concave, but that is beneficial to forming the intermediate focus. The 3mm diameter

hole is magnified to form an 4.5mm diameter inner beam. This diameter was chosen to keep

the boundary between inner and outer beams a long way from the MOT for both the input and

diffracted beams.

In order to form a good image, the inner beam should be clipped only at the mirror surface and
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Figure 7.3: A comparison of the concentric beam profiles before (left) and after (right) a chamfer

was added to the back of the mirror hole. The large-scale fringes are artefacts from the image

sensor. The gap between beams is reduced from 150 µm to around 60 µm by using the chamfer.

Beam profiles were taken at the grating position in Fig. 7.2, where a sharp image is formed.

not before. However, the beam is focusing through the mirror, and so is clipped more by the back

surface of the mirror than the front. This leads to a gap between the inner and outer beams. To

avoid this, a rotary tool was used to grind a chamfer into the back of the mirror hole. This reduced

the gap between beams as shown in Fig. 7.3, but did not eliminate it as the chamfer could not

extend all the way to the mirror surface without risk of damaging the mirror coating. Further,

because the beam interacts with the atoms both before and after the grating surface, it is necessary

that the beam should not have strong distortions in the ≈ 10mm either side of the plane of the

grating. Moving a camera through the focal plane allows imaging the beam as it propagates, which

is shown in Fig. 7.4. A gap appears in the beam before it reaches the focal plane, but not after the

focal plane. This corresponds to imaging a plane that is behind the mirror where the beams are

combined, so it makes sense that this causes a larger distortion. Most importantly, no significant

effects are seeen in the center of the beam, where the atoms are located. The MOT is confined to a

small volume ≈ 1mm in extent. The distortions in Fig. 7.4 should not affect the MOT launching,

although they may have an effect on the MOT loading, which occurs throughout the full beam

overlap volume.

7.2 Launch results

Using the optics of Fig. 7.2, the GMOT launch was characterised. This used the apparatus of

Chapter 6 but without using the microwave cavity. This allowed improved optical access for

imaging the MOT launch from a transverse axis.
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Figure 7.4: Beam profiles taken moving around the focal plane along the beam axis. Moving

upstream of the focal plane (positive values) causes a gap in the beam to appear. Each image has

sides of length 6.5mm
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7.2.1 Trapping atoms

Initially, it was difficult to align the concentric beams to the grating. However, a system was

developed to ensure alignment. First, the inner beam and outer beam were aligned to each other,

by ensuring that they were well aligned at their shared focus, and also in the far-field. Then

the inner beam alone was aligned to the grating, using only optics after the beam combination.

The relative alignment of the beams remains good so that both beams are aligned to the grating.

Positional alignment was achieved using the transmitted beam through the grating hole. Angular

alignment was achieved by observing the weak zeroth-order reflection from the grating around the

hole. This was aligned to be coincident with the input beam, ensuring the beam was normal to

the grating. At this point, varying the intensity balance between the two beams was sufficient to

see a very weak MOT, which could then be optimised with further alignment.

Once the MOT was optimised, around 107 atoms could be trapped. A molasses sequence was then

created which cooled the atoms to a sub-Doppler temperature. Throughout this process, both

MOT beams were always kept at exactly the same frequency, mimicking a standard single-beam

GMOT. To do this, an AOM driver based on a two-channel direct digital synthesis (DDS) was used

to drive the AOMs in the two beam paths. This gives inherent phase-stability between the electrical

signals driving the AOMs, with rapid and flexible control of the relative frequency and intensity

of the two MOT beams. During the molasses both beams must be detuned from resonance by

around 60MHz in order to get sufficiently cold temperatures. To launch, the differential frequency

between the two MOT beams must be dynamically controlled over a range of about 1.5MHz with

an accuracy around 50 kHz. Voltage-controlled oscillators do allow for tunability, but a relatively

complex system would be needed to dynamically tune the frequency difference with the required

accuracy. The DDS system is preferred for its simplicity. Additionally, the MOT is quite sensitive

to the intensity balance between inner and outer beams, so closed-loop control of the intensity

in each beam was implemented. Photodiodes were inserted into an unused area of each beam

prior to combination, measuring the optical power. A homebuilt transimpedance amplifier and

differencing circuit was used to produce an error signal proportional to the difference between

desired and measured intensity. This error signal fed into the DDS controlling the AOM drive

power, which has built in PID controllers.

The details of the molasses sequence changed over time due to optimisation and different exper-

imental circumstances, but a representative example sequence is shown in Fig. 7.5. First, the

magnetic-gradient field was turned off over 5ms, then the optical intensity is reduced to 60%, so

that a constant power can be maintained through the AOMs as the MOT detuning is linearly

increased to 60MHz over 2ms. The final stage is to exponentially decrease the optical intensity
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Figure 7.5: An example molasses sequence. The relative magnetic gradient (top), relative intensity

(middle), and detuning of the MOT beams (bottom) all vary during the sequence. To launch the

atoms, a frequency difference is introduced between the two MOT beams, as shown by the dashed

lines. The frequency difference is exaggerated for clarity.

to 1% over 1ms before extinguishing the MOT beams. A MOT temperature of 9 µK was mea-

sured in both the radial and axial directions. To measure the MOT temperature, time-of-flight

fluorescence images were taken. When released from molasses the MOT starts to expand due to

the thermal velocities of the atoms. The MOT size as a standard deviation, σ, after a time t will

be approximately
√
x20 + kBTt2/m where x0 is the initial MOT size and m is the mass of 87Rb.

By pulsing the MOT beams, the MOT can be made to fluoresce at different times after its release,

giving images of the MOT for different values of t, and the temperature can be extracted from a

plot of σ2 against t2, as shown in Fig. 7.6.

7.2.2 Launch

Once a working molasses sequence was found, a frequency difference was introduced between the

two MOT beams to induce a launch. The frequency difference was constant throughout the entire

molasses sequence starting at the time where the magnetic gradient coils were switched off, as

in Fig. 7.5. A response was seen immediately as the atoms were launched upwards. The launch

was then characterised with two main methods, both operating on a shared axis perpendicular to
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Figure 7.6: Atom cloud expansion after being released from molasses. The vertical (black ×) and

horizontal (red +) size of the cloud as measured by standard deviation of a fitted Gaussian. As

the atom cloud falls, its wings leave the overlap volume and fluoresce less leading to an apparent

decrease in horizontal extent after 15ms. Each point is from a single image of the atoms. The

gradients of the lines of best fit correspond to temperatures of 9.4(4) µK and 8.5(9) µK in the

vertical and horizontal directions respectively.

the launch direction. Firstly, fluorescence images were taken of the atoms, as they were excited

using the main MOT beam. The second method was to use absorption techniques that had been

developed over the years in the existing cold-atom CPT clock. The absorption from the side beam

was used to measure the number of atoms that could be interrogated by the beam. The beam had

a 7.5mm 1/e2 diameter.

Turning the absorption and fluorescence signals into estimated atom numbers requires some cal-

culation. The two techniques both operate with on-resonance beams, but use different intensity

regimes designed to make the measurements less sensitive to the absolute power of the exciting

beam. Fluorescence is done using a strong excitation (s > 10) to saturate the atomic transition.

This means that each atom scatters photons at a rate of ≈ Γ/2. If the camera system has a

collecting solid angle of dΩ and an efficiency (counts/photon) of η then the detected number of

counts will be

Nc =
Γ

2

dΩ

4π
ηNattexp , (7.2)

after an exposure time texp.19 In contrast, the absorption measurements operate in a low power

regime with s < 0.1. This means that the transition remains unsaturated and each atom has a

constant scattering cross-section of

σ0 =
Γℏω
2Isat

= (370 nm)2 . (7.3)
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Figure 7.7: Detected atom number over time for a range of MOT launch beam frequency differences,

∆f . The dashed line at 10ms corresponds to the time at which images in Fig. 7.8 were taken.

The atoms then have an optical depth of nσ0 where n is the area density of atoms (integrated along

the imaging axis). By comparing images of the probe beam with and without the atoms present,

the atomic density profile is calculated, and then integrated to give the total atom number.

After some optimisation of the moving molasses sequence, the results were quite promising, in that

a measurable number of atoms could be seen at times up to 75ms after the atoms were launched,

see Fig. 7.7. However, there was significant atom loss relative to the initial atom number, much

more than would be expected from the initially measured temperature of 9 µK. This temperature

should lead to a MOT 1/e2 diameter of 9mm after 75ms and > 40% of the initial atom number

should be in the observation window, not the observed ≈ 17%.

The time-of-flight images in Fig. 7.8, show that as ∆f is increased, the MOT is launched faster,

in good agreement with equation (7.1). However, the MOT also expands in the launch direction,

indicating that the atoms are not being properly cooled in that direction. The reason for this

reduced cooling is unknown, though I will give some hypotheses shortly. By integrating across the

image in vertical and horizontal directions, the MOT shape along those axes can be examined,

as in Fig. 7.9. This reveals that the cloud is no longer close to Gaussian in the launch direction,

having a more flat-top profile. The cloud has an approximate FWHM of 1.15mm in the launch

direction after 10ms, so an approximate temperature of 140 µK could be assigned.

One possible cause of the reduced cooling is noise on the frequency difference of the two beams.

Although a DDS system was used, the dynamic frequency changes were made via analog control.

The launch velocity is directly proportional to the frequency difference, equation (7.1), so fluctua-
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Figure 7.8: Time of flight images for a range of launch beam frequency differences, ∆f from 0

to 800 kHz. All images were taken 10ms after the launch ended. As ∆f increases, the MOT is

launched faster and it expands more in the launch direction. The red line represents the expected

velocity as a function of ∆f using equation (7.1). Gravity is downwards.
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Figure 7.9: The images from Fig. 7.8, integrated across the horizontal (a) and vertical (b) direc-

tions and then normalised. Curves of (a) are offset vertically for clarity. Dashed lines indicate

the expected cloud position, assuming instantaneous acceleration to the final velocity when the

frequency difference is imposed.
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tions in the frequency difference could cause a spread of atomic velocities in the launch direction,

equivalent to a higher temperature. However, it is not clear why this noise would only occur when

doing a launch, and would get worse when launching faster. During an unlaunched molasses se-

quence the MOT beams are both detuned by 60MHz. During a 75ms launch they are detuned by

60.4MHz and 59.6MHz respectively, so it is surprising to have such large differences in behaviour.

To check the differential frequency noise, the optical beatnote between the two frequencies was

monitored on a photodiode during a mock molasses sequence. The result is shown in Fig. 7.10.

During the frequency sweep there is an increased amount of noise, but during the final portion of

molasses the frequency difference is highly stable at the exact value desired. The abrupt change in

behaviour is because the frequencies are controlled by analog voltages during the frequency sweep

but the final value, corresponding to a full scale signal, is fixed digitally. The velocity spread shown

in the fluorescence images would correspond to frequency fluctuations of 200 kHz peak-peak, which

is clearly not present.

Another possible cause is the introduction of a light of the wrong frequency to the moving molasses

which prevents the frame-transformation to a moving frame from being exact. If light from the

inner beam is incident on the MOT from below, or if light from the outer beam is incident from

above, a static component of optical lattice would be introduced to what should be a pure moving

lattice. This leakage could happen if the beam through the hole in the grating is partially reflected

back to the MOT. I deliberately misaligned the input beam to an angle such that the reflected

beam could not reach the MOT, but the reduced cooling was still observed, so such reflections

were not the problem. Scatter or diffraction of the inner beam from the hole in the grating could

still contribute. An image of the grating hole from its manufacturing report, Fig. 7.11, shows that

there is some damage around the grating hole caused by the laser cutting, which could increase

scatter.

Finally, the motion of the cloud during the launch could have an effect. However, the length

of the molasses sequence did not have a strong effect on the amount of cooling that was seen.

Molasses sequences as short as 2.5ms total were used, during which the MOT moves < 1mm, but

no significant change was seen in the vertical spreading. Ultimately, the cause of this effect remains

unknown.

In summary, the demonstration of a GMOT launch is a successful proof of principle. The launch

allows the Ramsey time to be extended from 10ms to 75ms but also demonstrates anomalous

heating, resulting in a loss of atoms and reducing the expected SNR. In the next chapter I shall

use the GMOT launch to generate clock signals and examine the trade-off between Ramsey time

and SNR.
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Figure 7.10: A spectrogram of the optical beatnote between the two MOT beams during a mock

molasses sequence. The MOT beams are detuned 60MHz over 4.2ms and then remain at a fixed

frequency. The optical power is kept high throughout to give a clear signal. The frequency width

is due to FFT resolution. The red line indicates the estimated central frequency over time.

Figure 7.11: The grating hole, as imaged in the manufacturing report. Damage is observed from

the laser cutting process.
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Chapter 8

Clock Operation

This chapter details the initial tests of the GMOT launch method as part of a clock. Initial results

were taken using a CPT-Ramsey interrogation, as described in Chapter 5, before switching to a

MW cavity-based approach at a later time.

8.1 CPT results

Initial results were taken using a CPT-Ramsey technique. This is because we already had a working

CPT-Ramsey clock in the group and wanted to test the GMOT launch using a known-working

clock system. Additionally, these tests could be done without having to install the microwave

cavity. The CPT light was carried from the CPT clock lab to the cavity-clock lab using a 20m

optical fibre. The same side-beam launch that would be used for state-selection and detection in

the cavity clock, Chapter 6, was also appropriate for introducing the CPT light and measuring its

absorption.

As explained in Chapter 5, we used a CPT system based on excitation of the D1 line to the F ′ = 2

state. We used a σ+-σ− polarisation scheme, which required minor modification to the beam optics

as shown in Fig. 8.1. This scheme has both frequency components in the same polarisation state,

so they can both be launched into the same optical fibre without worry of polarisation crosstalk.

Additionally, any polarisation drift due to the long fibre could be converted to intensity noise by

a high-extinction polariser. Two CPT pulses are used, and the launch velocity is chosen such that

the atoms will be returning through the CPT beam at the time of the second pulse.

In the CPT laser system the main laser (carrier frequency) is locked at a fixed frequency, resonant

with the F = 2 → F ′ = 2 transition. The second (sideband) frequency is added by an EOM at the
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Figure 8.1: Two λ/4 waveplates are added to the side-beam launch, producing the circular po-

larisations required for σ+-σ− CPT. The retroreflecting mirror is placed on a translation stage so

that the microwave phase of the forward and reverse beams can be matched at the position of the

atoms. This is only sensitive to a few mm as the microwave wavelength is 44mm.

hyperfine splitting frequency. When scanning frequencies, only the EOM frequency is changed, so

it is ∆1 which changes, and this causes changes to both ∆1ph and ∆2ph. However ∆2ph determines

most of the important behaviour.

The steady-state amount of absorption provides lots of information regarding the CPT resonance.

As the EOM frequency is scanned over a large range an absorption feature is seen, Fig. 8.2(a).

When the sideband is far from resonance, the atoms are quickly pumped into the lower hyperfine

level and are not strongly excited. Significant absorption only occurs when both frequencies are

near resonance. However, in the centre of the absorption feature there is a very sharp peak where

the absorption no longer occurs. This is the formation of a dark state which does not interact with

the light.

Closer examination of the central feature reveals that it has 3 separate peaks, see Fig. 8.2(b). The

two side-peaks show the formation of magnetically sensitive dark states, as discussed in Chapter 5,

with a small frequency offset. These peaks can be used to verify that the magnitude of the magnetic

bias field is 220(10)mG. The central feature corresponds to our desired, magnetically insensitive

dark state.

The CPT-Ramsey fringes that allow a clock measurement are taken from the absorption of the

second pulse. When the atoms are pre-prepared in the dark state we should not see a pumping

transient at the start of the pulse, although the photodiode will have a transient response, as in

Fig. 8.3(a). However, if the atoms have evolved into the bright state that signal is modified by

transient absorption as the atoms are pumped back to the dark state, shown in Fig. 8.3(b). The

signal used for the clock divides the average transmitted signal during the first 100 µs of the pulse

by that during the steady state (500ms to 900ms of the pulse). The 100 µs integration period was

found to maximise SNR. A second stage of normalisation is also used, where the same quantity is
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Figure 8.2: Absorption features seen when passing the CPT beam through the atom cloud. (a)

The absorption line is seen and fits well to a Lorentzian with 6MHz linewidth (red). (b) A detailed

scan of the central CPT feature shows the formation of three different dark states, separated by

the Zeeman splitting.

calculated for the reference photodiode which has not interacted with the atoms, and the signal is

divided by that amount. This technique reduces the amount of noise by cancelling fluctuations in

the laser intensity and was developed for the main CPT clock experiment.48

Exemplar Ramsey fringes are shown in Fig. 8.4. It is clear that longer Ramsey times (with faster

launches) lead to a decrease in both fringe width and signal amplitude. The loss of signal amplitude

is consistent with the reduction in atom number due to the launch, as measured by total absorption

from the probe beam. The fringes are centred on an offset of ≈ 30Hz which could be caused by a

228mG magnetic field, consistent with the measured bias field.

For each of the Ramsey fringes of Fig. 8.4(a) we can calculate an SNR and fringe width. This al-

lows calculation of the corresponding single-shot fractional instability using Section 3.2.3 and equa-

tion (3.29),

σy,ss =
2σS
Sp−p

× 1

2πν0T
, (8.1)

with σS and Sp−p being the noise and peak-to-peak amplitude of the signal fringes respectively.

The fringe width is determined by the Ramsey time T .

The fit residuals are broadly consistent with an electronic noise of σS = 0.0102(6), in the normalised

units of Fig. 8.4, except for T = 50ms where the measured σS is 0.0127. This outlier was caused

by an unknown transient effect which perturbed the experiment in the middle of this run, which

is visible in the residual plot of Fig. 8.4(b). Using σS = 0.0102 and the experimental fringe

amplitudes we calculate the single-shot stability for each Ramsey time, as shown in Fig. 8.5(a).
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Figure 8.3: (a) The transmission signal seen when a CPT pulse is recorded on the signal photo-

diode, with no atoms present. (b) When atoms are present, some additional absorption is seen

corresponding to the number of atoms in the bright state. The atoms are pumped to the dark

state, so only transient absorption is seen. The three curves shown are averages of 15 data runs

each, and correspond to atoms that are fully in the bright state, in an intermediate state, and fully

in the dark state.
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Figure 8.4: (a) Clock fringes for different Ramsey times. Curves are best-fit sinusoidal fringes to

the single-shot data points. The dashed line marks the centre fringe which is shifted 30Hz from

the accepted hyperfine transition frequency due to the second-order Zeeman effect. (b) Residuals

from the fits in (a), with histograms.
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Figure 8.5: (a) The single-shot stability that was experimentally observed using CPT interrogation

for different Ramsey times. The launch velocity was changed to allow each Ramsey time. (b) The

estimated single-shot stability that would be observed if the measurements of (a) were QPN-limited.

The best stability of 2.9× 10−11 was achieved at T = 40ms.

A different clock design with a better detection method could achieve much lower noise and ul-

timately be limited by the atomic quantum projection noise (QPN).101,102 In this case we would

expect σS ∝
√
N for atom number N , and the impact of atom loss at longer Ramsey times would

be mitigated by decreased noise. Fig. 8.5(b) shows this change in behaviour, using N proportional

to the steady-state depth that is observed in the detection pulse. The calibration of absorption

depth to atom number is quite uncertain (within a factor of 2), so the whole curve of Fig. 8.5(b)

could move up or down but would retain its shape.

For QPN limited measurements, the best single-shot stability would be observed at T = 50ms

but with only a 15% decrease in stability out to T = 80ms. The fountain method would improve

stability by a factor of up to 3.3 compared to the 10ms result, which is a reasonable approximation

of the performance achievable without a fountain. Additionally, good performance at longer Ram-

sey times allows the effects of any phase shift induced during the Ramsey pulses to be reduced,

improving the accuracy and long-term stability.

8.2 MW cavity results

Once the GMOT launch had been characterised, the experiment moved towards the original design

of a MW cavity clock. The cavity was installed, characterised and a MOT was trapped within.
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Figure 8.6: A 167 µs microwave pulse of varied

amplitude is used to drive Rabi oscillations. A

relative amplitude of 1 corresponds to 1 dBm

microwave power.
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Figure 8.7: Optical pumping into a single state,

|F = 2,mF = 0⟩. Increasing the EOM modula-

tion depth, β, causes more efficient pumping.

Curves horizontally offset for clarity.

At this point, the experiment was handed over to Alan Bregazzi (Strathclyde) and Etienne Batori

(Neuchâtel) as my experimental time was complete. The results in the rest of this chapter were

taken by them, while I wrote this thesis, and not by myself. The following data is shown to

illustrate the results of my designing and building the clock experiment.

To validate the rest of the clock sequence and remove complexity, initial data was taken by dropping

the atoms rather than launching them. Only a single MOT beam was required, but the Ramsey

time was restricted to ≤ 20ms. Once the clock has been validated and somewhat optimised, it is

planned to re-introduce the GMOT launch for longer Ramsey times. Various measurements are

taken using the fractional population, P2 of the F = 2 states at the end of the chosen experimental

sequence. The detection of this population is not fully characterised, and fractions below 0 or

above 1 are sometimes seen, but relative changes in the detected fraction are reliable.

An on-resonance microwave pulse for 167 µs is used to excite atoms from |F = 1,mF = 0⟩ to

|F = 2,mF = 0⟩. When varying the power of the pulse, Rabi oscillations are observed in P2,

as shown in Fig. 8.6. The decay of the oscillations is believed to be due to variations of the mi-

crowave power and orientation across the volume which the atoms occupy. Atoms within the cloud

see different Rabi frequencies, causing them to gradually decohere. The amount of decoherence is

higher than expected, corresponding to around 10% variations in microwave amplitude over the

mm scale MOT. This data is very early and further investigation is required.
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By changing the frequency of the MW pulse, the mF ̸= 0 states can also be excited. The distribu-

tion of atoms between states can then be observed, see Fig. 8.7, which is useful for evaluating the

state-selection process. During the state-selection step, the EOM diverts power from the carrier

frequency (exciting F = 2 → F ′ = 2) to various frequency sidebands, one of which acts as a

repump on the F = 1 → F ′ = 2 transition. The amplitude of the EOM drive signal determines the

modulation depth, β, of the EOM and how much power is diverted to each sideband. When the

EOM is driven with a β = 0.51 the carrier and repump have 87% and 7% of the total output power

respectively. There is insufficient repumping during the state selection and atoms will accumulate

in the F = 1 states. P2 has a low baseline, a negative peak when the mF = 0 transition is excited,

and positive peaks when the mF = ±1 transitions are excited because atoms are excited out of the

F = 1,mF = ±1 states. When β is increased to 1.61 then the carrier and repump have 19% and

33% of the total power respectively and the F = 1 states are much more efficiently depopulated.

P2 has a much higher baseline, and only the central mF = 0 peak is observed, showing that the

atoms have been pumped into |F = 2,mF = 0⟩ as desired.

By adding a second MW pulse, a Ramsey sequence is formed and Ramsey fringes are observed in

P2, see Fig. 8.8. The fringes have the expected linewidth of 1/2T and are enclosed in an envelope

determined by the pulse shape. For square pulses of length τ , as described in equation (3.8), the

envelope has zeros where sin(Ω′τ/2) = 0 which first occurs for δν =
√
15/16/τ . The Ramsey

fringes were taken using τ = 167µs and so the envelope zero occurs at ±5.8 kHz. At T = 10ms

the fringes have an SNR of around 95 giving a single-shot stability of 2 × 10−11. This is already

equal to the best SNR we have ever observed in a CPT clock at Strathclyde,103 highlighting the

benefits of being able to scatter a much larger number of photons from each atom. The SNR is
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Figure 8.8: Ramsey fringes observed using the microwave cavity. Ramsey times of 3ms and 10ms

were used (left and right respectively). Inset shows the central fringe
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still limited by experimental noise, as the QPN and Dick effect are well below the experimental

noise floor. The QPN would limit the SNR to over 1000, and the Dick effect limits the stability

to < 5× 10−12/
√
τ . The Dick effect was calculated numerically from the noise specification of our

reference oscillator, and is particularly bad because the duty cycle of the experiment is currently

very poor. The system is running out of Rb and requires a long ∼ 3 s load time, while the Ramsey

time is only 10ms.

The cavity clock experiment will continue, with detailed characterisation of the state-selection and

detection systems, measurement of the clock short-term stability and re-integration of the fountain

technique.
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Chapter 9

Performance prospects

This chapter will consider the potential performance of the compact cavity-clock design. As the

clock is at an early stage of engineering, this chapter aims to identify the most likely factors that

will limit the clock, as these areas will require the most consideration in future designs. The chapter

is largely based upon a study of clock accuracy budgets and potential clock shift mechanism which

was undertaken during the lockdowns of the 2020 COVID-19 pandemic. During this time no

experimental work was possible.

One nice feature of the cavity-clock design is that the experimental procedure is designed to be

very similar, in principle, to those used for high-performance atomic fountain clocks such as the

Cs fountain clocks. Therefore, much of the theoretical work considering clock performance limits

has already been completed, and there are detailed accuracy budgets available.20–23,104,105 These

provide a good starting point to calculate what disadvantages are involved when moving to a

compact system.

When considering the potential performance of the clock, a set of operational parameters should

be selected. I have chosen the parameters shown in Table 9.1. These parameters are intended

as an optimistic, but realistic, choice using the techniques described previously. The results in

Chapters 7 and 8 suggest it is possible to detect this number of atoms at 100ms. Larger holes may

need to be added to the MW cavity to observe this number of atoms. Fortunately, due to the cavity

geometry, the holes can easily be extended in a vertical direction (between the cavity electrodes)

which is the MOTs longest dimension. Resolving the unknown issue which causes reduced cooling

in the launch direction would make it easy to achieve this atom number. The pulse time, τ , is

chosen to be relatively long as this decreases the effect of some shifts, see Sections 9.2.4 to 9.2.6.
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Table 9.1: Key parameters which a future clock might achieve,

used to predict the performance that could be realised.

Symbol Parameter Value

T Ramsey time 95ms

τ MW π/2 pulse length 2.5ms

Tc Experiment cycle time 250ms

N Detected atom number 1× 106

9.1 Short-term stability

For most atomic clocks, the short-term stability will consist of contributions from QPN (see Chap-

ter 3), the Dick effect and experimental noise. As we are considering theoretical limits, we will

assume that only the QPN and Dick effect limit the short-term stability. The real experiment will

also have technical/electronic noise and photon shot noise. The photon shot noise limits the SNR

to
√
Nphoton, similar to the QPN which limits the SNR to

√
Natom. We can say the QPN will

dominate the photon noise provided that many photons are detected from each atom, which is

the case for our detection techniques (unlike the CPT detection technique of Section 8.1). Addi-

tionally, detection schemes similar to ours have seen QPN-limited performance in practice, so this

assumption is reasonable.101,106

The Dick effect is due to fluctuations of the LO frequency which occur during the experimental

dead-time. These fluctuations cannot be detected by the atomic reference, and thus will never

be corrected.107 The Dick effect is reduced by having a low noise LO, and a high duty-cycle

experiment. As we aim to have a compact clock, our LO must be based on a quartz crystal.

Hydrogen masers and cryogenic sapphire oscillators both offer improved noise but are much larger

and more expensive.108,109 The Dick effect in Cs fountains using a quartz LO has been reduced to

below 7 × 10−14/
√
τ , and to 0.9 to 1.7 × 10−13/

√
τ in integrating sphere clocks.110–113 Therefore

a comparable performance could be expected for our clock.

The QPN can be estimated using equation (3.34). With the parameters given earlier, this gives

a stability of 1.1× 10−13/
√
τ . A total short-term performance below 2× 10−13/

√
τ is achievable.

This is highly competitive with other compact atomic clocks.27,28,114,115
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82 A cold-atom fountain clock from a diffractive optic

9.2 Accuracy

The accuracy of an atomic clock is one of the most challenging performance metrics to calculate as

a large number of factors could affect it. However the accuracy is also highly relevant for giving the

ultimate performance of the clock, as it presents an upper bound for the long-term stability. To

evaluate the potential accuracy of our clock, we can look at the error budgets for the existing full-

scale Rb and Cs fountains, and see which terms would be most important in our clock. The error

budgets for a number of these fountain clocks are summarised in Table 9.2. The largest clock shifts

are usually the second-order Zeeman shift, the blackbody radiation shift (unless cooled by liquid

nitrogen), and a relativistic shift due to gravitational potential. However these shifts are normally

well characterised, and the shifts with most uncertainty are more varied, with contributions from

the microwave spectrum, distributed cavity phase, collisional shifts and more.

I will now consider each type of shift in turn, and how it would affect our compact fountain clock.

I have ordered the shifts by the likely uncertainty of the shift.

9.2.1 Second-order Zeeman shift

The mF = 0 sublevels have a second-order magnetic sensitivity of δν = βB2 , with β = 575HzG−2

for 87Rb.19 There will be a bias field, B0 present to break the degeneracy of magnetic sublevels,

so the shift can be approximated as δf = 2βB0δB, in the worst case where the magnetic field

fluctuations, δB, are aligned with the bias field. Operating with a small magnetic bias field is

therefore advantageous, but the field direction must be well aligned with the cavity axis to ensure

the correct π transition is driven. This means that magnetic shielding is required to prevent any

magnetic fluctuations from influencing the clock. The fountain clocks have typical bias fields of

1mG to 4mG. Because the current experiment is unshielded, it must operate at large bias fields

> 100mG and this shift would be extremely limiting to long-term performance. If we used a bias

field of 5mG, then our clock sensitivity would be 8× 10−13 mG−1. Field fluctuations at the 0.1%

level would then give clock stability of 4 × 10−15. This level of stability is reasonable for a DC

magnetic field, and the large fountain clocks generally specify a magnetic shift uncertainty below

1×10−16 using multi-layer shields. However, one problem with our particular experiment is that a

field gradient of ≈ 15G cm−1 is required for the MOT, in the same region as our Ramsey sequence

and only a few ms before that sequence starts. Switching the MOT coils off will cause eddy currents

in nearby conductors which must decay by many 1/e lifetimes to reach the required field stability.

The vacuum chamber, MW cavity and MOT coils would have to be jointly designed, giving only

high resistance paths for eddy currents to ensure they would rapidly decay.117 The MOT could

also be held in the optical molasses before launching for a few extra ms or even tens of ms without
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84 A cold-atom fountain clock from a diffractive optic

significant detriment, allowing the transient magnetic field to dissipate.

9.2.2 Cavity phase shifts

Cavity phase shifts occur when the atoms experience a different microwave phase in the first and

second pulses, due to their motion within the MW cavity. An ideal MW cavity would have equal

MW phase at all points, but a real cavity will have small phase gradients. The phase shift will

transfer directly into a frequency shift of δν
ν0

= δϕ
2πν0T

. A 1mrad phase difference will cause a

frequency shift of 2.3 × 10−13. The cavity phase shift uncertainty is often significant in full-scale

fountain clocks, despite their reduced sensitivity due to longer Ramsey times. In a large fountain,

the atoms will pass through the entire cavity volume, and will enter regions with large phase

variations. Our atoms should stay near the cavity centre where the phase is more uniform. However,

our cavity has a much reduced quality factor, Q = 185. This leads to larger phase gradients because

the forwards and reverse travelling waves are of unequal amplitude. Modelling the cavity as a one

dimensional waveguide (a Fabry-Perot cavity) suggests that the reverse travelling wave has relative

amplitude of (1 − π
2Q ). Therefore the phase in the cavity varies with the displacement from the

centre, x, as ϕ ≈ π
4Q tan( 2πxλ ). This leads to a frequency shift of 1.5 × 10−13 per 1mm that the

MOT has moved in between the first and second pulses. By changing the pulse timing we can

apply the pulses when the atoms are at different heights, allowing us to map out the cavity phase

and test this assumption. A higher Q-factor cavity would allow us to reduce the cavity phase shift,

but this may or may not be possible. The current cavity is not optimised for high Q, but the Q

decreased from ≈ 500 to 185 when the silicon diffraction grating was added. This is believed to be

due to dielectric losses in the silicon, and may be hard to mitigate.

Separately, there can be dynamic cavity phase shifts, where the phase of the field driving the cavity

changes between the first and second pulse. This can be caused by phase transients in the switch

which produces the Rabi pulses.118 Fortunately, there exist switches designed for other fountain

clocks which exhibit extremely small phase transients below 2µrad.118–120

9.2.3 Collisional shifts

There is a clock shift due to collisions between the atoms in the cloud. This takes the form of

∆ν

ν0
= a1n1 + a2n2 ≈ an , (9.1)

for atoms that are sufficiently cold (below about 10 µK for Rb87). n1,2 is the density of atoms in

each of the two hyperfine states. The approximation is valid when the fraction of atoms in each

state is constant, e.g. during the Ramsey time when half the atoms are in each state. For 87Rb the

value of a is approximately 5(1)× 10−23 cm3.121,122 In Cs fountains this effect is > 30 times larger
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85 A cold-atom fountain clock from a diffractive optic

and is the focus of many design choices. We can expect a shift around 2.5 × 10−13 for 107 atoms

in a cloud with 1/e2 radius of 1mm. The total shift is averaged over the interrogation period and

would be less than the initial shift, which occurs when the density is highest. Fortunately, the

shift decreases strongly as the atom cloud size is increased. Expanding the MOT to 1/e2 radius

of 3mm before starting the interrogation results in an initial shift below 1× 10−14. This could be

achieved by briefly turning off the cooling light to allow thermal expansion. Only atoms that are

within the region covered by the inner coaxial beam can be properly launched.

There is also a shift due to collisions with background gas. These collisions are quite likely to

eject atoms from the cloud due to the high speed of incidence by the background gas. However,

‘glancing’ collisions can cause small disturbances to the atomic coherence which then cause a clock

shift. Increased background pressure will cause both a loss of atoms and a clock shift. According

to [123], the fractional atom loss, ∆A, can be used to bound the clock shift:

∆ν

ν0
≤ ∆A

13.8πTν0
[hν0(E

−1
1 + (E1 + Ep)

−1)] < ∆A
4ℏ

13.8TE1
, (9.2)

where E1,p are the ‘lowest resonant excitation energy’ of Rb and the colliding species respectively.

This is the D1 energy of 1.59 eV for Rb. The shift is therefore bounded by 1.2× 10−15∆A.

9.2.4 Microwave leakage

In large fountain clocks, leakage of the microwaves outside of their cavities can cause shifts. For

a compact fountain, the equivalent process is incomplete extinction of the microwave signal in-

between Ramsey pulses. The remnant signal can drive the clock transition and alter the atomic

phase. If the remnant microwave signal is in-phase with the original signal, it acts as a slightly

increased Ramsey pulse area, and does not induce a clock shift.124 However, a quadrature leakage

component (out of phase by π/2) can cause shifts. Similarly, if the microwave leakage is symmetric

about the centre of the Ramsey time, it does not induce a shift. The maximum phase shift which

can be caused is δϕ = ΩLtL where ΩL is the Rabi frequency of the (quadrature) leakage field,

and tL is the time for which the field is applied. This leads to an upper bound on the microwave

leakage shift of δν
ν0

= X
4ν0τ

where X is the amplitude extinction ratio for the quadrature component

of the leakage field (compared to during the microwave pulses).125 An extinction ratio of −100 dB

(1× 10−5 in amplitude) leads to a maximum shift of 1.5× 10−13. It is likely that shifts would be

below this level due to the symmetry constraints. Increasing τ would also decrease the shift and,

in the limit, a Rabi sequence could be used instead of a Ramsey sequence so there could be no

leakage between the pulses.
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86 A cold-atom fountain clock from a diffractive optic

9.2.5 Unwanted magnetic transitions

In a MW fountain, it is important that only a single transition is excited among the ground state

manifold, the |F = 1,mF = 0⟩ → |F = 2,mF = 0⟩ transition. If transitions occur between any

other states it could lead to a frequency shift. Several different kinds of transition are possible. In

general, to cause a clock shift an asymmetry is required between the mF > 0 and mF < 0 states.

Rabi and Ramsey pulling are caused by unwanted microwave transitions involving mF ̸= 0 states

in the F = 1 → F = 2 transition. Rabi pulling is due to π transitions. Atoms that are in the

mF = ±1 states will still interact with the microwave field, but their transition is detuned from

resonance by the Zeeman splitting of νZ = βZB0 where βZ = 1.4MHzG−1 for 87Rb. For a bias

field of 5mG, the Zeeman splitting is νZ = 7kHz. According to equation (3.8), the off-resonant

states will still be excited but the observed oscillations will have their amplitude decreased by the

multiplying factor (
Ω

Ω′

)2

<

(
Ω

∆

)2

=

(
π/2τ

2πνZ

)2

=
1

(4νZτ)
2 , (9.3)

so a large Zeeman splitting will help suppress the Ramsey pulling. We can bound the Rabi pulling

shift by assuming that the oscillations due to the mF = ±1 state are perfectly out of phase with

the actual Ramsey fringes. This causes a maximum phase shift of

δϕ =
f

(4νZτ)
2 , (9.4)

where f is the imbalance between mF = ±1 states as a fraction of the detected atoms. The

maximum frequency shift is ∣∣∣∣δνν0
∣∣∣∣ ≤ 1

2πν0T

f

(4νZτ)
2 . (9.5)

This gives a shift below 2.5× 10−15 for 5% imbalance.

Ramsey pulling involves the σ transitions between states with ∆mF = ±1. The effect is normally

quite similar to the Rabi pulling effect, except that the Zeeman splitting is only half as big, and

the transition strength is reduced because the σ transitions are only driven by the component of

the field which is misaligned with the magnetic field axis. This tends to make the Ramsey pulling

smaller than the Rabi pulling because the misalignment angle is small. However, in some situations

the Ramsey pulling can be significantly enhanced. If a coherence is present between the atoms in

the F = 1,mF = +1 state and those in the desired F = 1,mF = 0 state, then a much larger clock

shift may be observed126. This shift only decreases as 1/(νZτ) instead of 1/(νZτ)2, and is difficult

to calculate (numerical modelling has previously been used). However, I think it is notable that a

maximum shift of ∣∣∣∣δνν0
∣∣∣∣ ≤ 1

2πν0T

f

(4νZτ)
. (9.6)

86



87 A cold-atom fountain clock from a diffractive optic

is approximately consistent with the maximum shifts simulated in [126], and I think this is a

reasonable upper bound.

The initial coherence would be introduced by the state-selection process, so better design should

prevent these coherences from forming in the first place. The coherences can be manipulated to vary

in sign, allowing easier detection for verification of the shift suppression. Adding a small gradient

field after state selection can cause any coherences present to oscillate at different frequencies due

to varied Zeeman splitting, averaging to zero. However, this is difficult for our system as discussed

in Section 9.2.1.

Majorana transitions (∆F = 0,∆mF ̸= 0) occur when the magnetic field changes direction rapidly

(non-adiabatically) so that the mF number is not conserved. This typically happens near a zero

of the magnetic field. One fountain clock did observe a significant shift due to this effect in

combination with unwanted σ component in their state-selection beam which pumped mF > 0

states.127 This shouldn’t be a problem for our clock as the magnetic field is near-uniform after the

state-selection. Any eddy currents must have settled by this point, or the 2nd order Zeeman shift

will be a bigger problem than Majorana transitions!

9.2.6 Microwave spectrum impurities

If the microwave signal fed to the cavity is not a pure tone, then the additional frequency com-

ponents may affect the atomic state. This is particularly a problem if the microwave signal is

disturbed in a way synchronous to the experimental sequence. This problem has been analysed128

and the resulting frequency shift is ∣∣∣∣∆νν0
∣∣∣∣ <≈ 1

4Tτν0∆

Ω2
1

Ω2
0

, (9.7)

where ∆ is the modulation frequency and Ω0,1 are the Rabi frequencies of the main MW signal and

its modulation sideband. For high modulation frequencies, the shifts are lower than this expression

due to phase averaging within each microwave pulse. Even very small amounts of modulation may

cause significant shifts: a −100 dBc sideband can cause shifts up to 5 × 10−15. For this reason,

many primary fountains are run at a frequency such that 100Hz noise has opposite phases on each

experiment cycle, or have a randomised cycle length to prevent coherent modulation.23

There is also a second-order effect corresponding to sidebands which are incoherent with the ex-

periment. The general form of the shift is quite complicated,129,130 but if Ω0τ ≈ π/2 then the shift

can be bounded by ∣∣∣∣δνν0
∣∣∣∣ ≤ 1

2πν0T

Ω2
1

Ω2
0

α , (9.8)
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where

α =


π

2∆τ

(
π
2 − 1

)
∆
2π ≥ 1

8τ

2∆τ
π

(
1 + 4∆τ

π

)
∆
2π <

1
8τ

, (9.9)

with the crossover, 1/8τ = 50Hz. This limit was calculated using worst case assumptions in the

formula provided by [130].

In general microwave spectrum impurities do not appear to be a large factor in most fountain clock

accuracy budgets. Our errors will be somewhat worse because of a lower Ramsey time, but are

unlikely to be a limiting factor provided that care is taken to avoid modulation coherent with the

experimental sequence.

9.2.7 Microwave lensing

Microwave lensing occurs because the microwave field exerts a dipole force on the atomic cloud. The

effect causes a slight focusing of one microwave state, and a defocusing of the other, depending

on the frequency detuning. This leads to a difference in detection efficiencies, and an observed

frequency shift. The shift is of order

∆ν

ν0
=

ℏπν0
mc2

= 1.7× 10−16, (9.10)

so we can probably ignore it. The shift does seem to be difficult to evaluate precisely as it is a

significant contributor in some fountain accuracy budgets.

9.2.8 Cavity pulling

A mismatch between the cavity resonance frequency and the atomic resonance causes frequency

shifts. A first-order shift occurs due to interaction of the field emitted by the atoms with the

cavity field causing a phase shift in the total field. A second-order shift occurs due to the change in

field amplitude as the cavity is excited off-resonance. Both of these shifts have a dispersive shape,

with no shift when on the cavity resonance, and maximum shift when detuned by half the cavity

linewidth. The worst-case shift is taken, though this can be significantly reduced by accurately

tuning the cavity resonance.

The first order cavity pulling shift is given by [131] as

∆ν

ν0
≤ µ0µ

2
BNQ

2π2ℏV ν0
τ

T
S , (9.11)

where V is the cavity mode volume and S is a numerical constant of order 1. This term should

be negligible for us because the Q factor is low. With N = 107, Q = 185, V = 12mL the shift is

below 3 × 10−17. The background Rb vapour should not contribute because it has a randomised

state, and the emitted field has no defined phase.
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The second order cavity pulling shift is given by [22] as∣∣∣∣∆νν0
∣∣∣∣ ≤ Γ

8

π2ν0

(
Q

QA

)
Ωτ cot(Ωτ) ≈ 2πϵQ

(
1

2ν0T

)2

, (9.12)

where Γ = πν0/Q is the cavity resonance half-width, QA = 1/2ν0T is the atomic line quality

factor and ϵ is the fractional error in the microwave pulse area. ϵ = 0.05, Q = 150 gives a shift of

3× 10−17.

In summary, both cavity pulling shifts should be negligible because of our low cavity quality factor.

Even with a 100× improved quality factor,these shifts would be unlikely to dominate.

9.2.9 Blackbody shift

The blackbody radiation shift is an AC Stark shift from the interaction of the atoms with the

surrounding thermal radiation. This is a relatively weak effect because the thermal radiation is

not resonant with a transition. The shift is given by:

∆ν

ν
= β

(
T

T0

)4
[
1 + ϵ×

(
T

T0

)2
]
, (9.13)

with T0 = 300K. A breakdown of current experimental and theoretical values of β and ϵ is given in

[132], which uses the best experimental value of β = −1.2727(14)×10−14 and a theoretical value of

ϵ = 0.011(1).133 This gives a shift of −1.2867(19)× 10−14 at 300K with a temperature coefficient

of 1.72(2) × 10−16 K−1. These errors are negligible for us, provided minimal (10K) temperature

control measures are in place.

9.2.10 Negligible shifts

There are various other shifts which occur in fountain clocks which will be negligible in our clock.

Resonant AC Stark shifts can be removed entirely by the use of shutters on all laser beams.

Relativistic shifts have a magnitude of around 1.1 × 10−16 per metre of height above the geoid,

which can easily be calculated to within a few metre accuracy.

The DC Stark shift due to static electric fields can be neglected because the microwave cavity has

conductive surfaces (including the grating coating). Although patch fields may exist, these will be

negligible. A 1mm patch at a whole 1V generates a field of ≈ 40Vm−1 at a distance of 5mm,

causing a clock shift134 of only 3× 10−17.

The Bloch-Siegert shift is the AC Stark shift of the counter-rotating term from the rotating-wave

approximation. This only occurs during the MW pulse, and gives a total shift of approximately

δν

ν0
≈ 1

32τTν20
= 3× 10−18. (9.14)
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9.2.11 Summary

Most of the shifts in our clock are similar to those in full-scale fountain clocks. Many of the shifts

scale as 1/T and so, in principle, our clock should be capable of reaching approximately one order

of magnitude worse accuracy than a full-scale fountain, a few 10−15. However, the nature of our

experiment also has additional factors which would make this challenging:

• The low Q microwave cavity will cause large cavity phase shifts, at the 10−14 level.

• Switching the quadrupole coils will induce eddy currents, causing second-order Zeeman shifts.

• Low optical access necessitates a relatively small, dense atom cloud, allowing significant

collisional shifts, despite Rb being much less sensitive to them than Cs.

• The atoms remain in the microwave cavity during the Ramsey time, so are more sensitive to

microwave leakage due to incomplete extinction of the microwave field.

These effects are highlighted in Table 9.3, which summarises all the expected shifts. The worst

shifts all have around 10−13 upper bounds. The shifts can all be significantly reduced by taking

appropriate measures, but detailed evaluation is very hard precisely because the shifts are caused

by the novel clock design and depend greatly on the exact implementation. In theory, each shift

can be reduced to the 10−15 level, but the practicalities are very difficult. The distributed cavity

phase shift is particularly nasty as it is probably influenced by the grating, which is integral to the

new technique.

One interesting possibility is that a Rabi sequence could be used instead of a Ramsey sequence.

Using a Rabi sequence changes a number of shifts, as shown in Table 9.3, but the main benefit is

to drastically reduce the microwave leakage which would have occurred during the Ramsey time.

Other potential mitigations for the worst shifts include

• Increasing the cavity Q or mapping the cavity phase gradients.

• Adding a waiting time between atom trapping and launching. This would allow magnetic

transients to decay and the atom cloud to expand, reducing its density.

• High extinction, low phase transient microwave switches to prevent leakage

As might be expected, there may be compromises required between short-term and long-term

performance. However, the cavity clock has competitive prospects in both areas.
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Table 9.3: The scale of various clock shifts in a compact microwave fountain clock. Both a Ramsey

and Rabi sequence are considered, as this effects some shifts.

Effect δν/ν

Ramsey Rabi

2nd-Order Zeeman ≈ 10−13

Distributed cavity phase < 10−13

Cold collisions < 10−13

Microwave leakage < 10−13 < 10−15

Rabi, Ramsey pulling < 10−14 < 10−17

Cavity pulling < 10−16 < 10−15

Dynamic cavity phase < 10−15

Background collisions < 10−15

MW spectral impurities < 10−15

Microwave lensing/power < 10−15

Blackbody shift < 10−15

Relativistic shift < 10−15

DC Stark shift < 10−17

Bloch-Siegert < 10−18

Resonant AC Stark shift ≈ 0

Electronic/Software ≈ 0
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Chapter 10

Conclusion

Microwave cavity clocks have been a core part of the development of atomic frequency standards,

from the first Cs beam clocks, to the Cs fountains that realise the SI second, to the space-borne

clocks in GPS satellites. This thesis has followed my work developing a microwave cavity clock

using an in-cavity GMOT to trap cold atoms.

I created an experimental sequence to fulfil the project goal of a clock based on cold-atoms trapped

in a microwave cavity. The stages of atom trapping, cooling, state preparation, interrogation and

detection were each considered and an apparatus was designed to achieve them all within the

microwave cavity. By selection of compatible mechanisms at each stage, all the optical requirements

could be satisfied by a single seed laser with appropriate frequency shifts and intensity control. The

electrical, optical and vacuum systems were each commissioned to produce the working apparatus.

A MOT was trapped within the system and atom trapping and cooling was verified.

The potential clock performance would be strongly improved by increasing the available interro-

gation time. To take advantage of this, methods for launching atoms from the grating MOT were

investigated. It was realised that combining two concentric input beams on the grating would

result in an overlapping beam configuration compatible with a moving molasses launch. Working

backwards from this, a set of optics was developed that would create those beams with precise

alignment and minimal diffraction. When applied in the experiment the new MOT beams did not

compromise the atom trapping and cooling performance. Simply changing the relative frequency

of the concentric beams allowed a launch to be realised. Experiments were conducted to optimise

the launch and maximise the number of atoms seen at long interrogation times. An increased dis-

tribution of atomic velocities was observed in the launch direction as the launch speed increased,

causing a reduction in the detectable atom number at long times. This effect was investigated but
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the mechanism was not identified.

To demonstrate the utility of this launch, an existing CPT clock experiment was used to measure

clock signals under different launch conditions. The launch was shown to increase the clock perfor-

mance substantially, with the optimal launch time being 40ms resulting in 50% lower instability,

but clock signals were clearly visible for launches up to 100ms.

Having shown the viability of the launch technique using CPT, a microwave cavity was installed

to complete the construction of the clock as designed. Preliminary data from using the cavity has

shown all elements of the clock sequence are functional, with Rabi fringes, Ramsey fringes, state

selection and detection. The evaluation of the experiment performance in this mode is ongoing,

but the detection noise is already confirmed to be lower than using the CPT method.

To assess the potential performance of this new clock design, an investigation was undertaken

into the probable sources of clock shifts. This highlighted that the new clock design is more

susceptible to some kinds of shift (the second-order Zeeman effect and cavity phase shifts) compared

to fountain-clock designs, and more resilient against others (cavity pulling). The clock design should

be capable of competitive performance in both the short- and long-term, with potential short-term

stability in the low 1 × 10−13
√
τ and long-term accuracy in the 10−15 range. The accuracy in

particular is quite difficult to evaluate at this early stage, and significant effort would probably be

required to achieve this performance. The most problematic clock shift is likely to be caused by

phase gradients in the microwave cavity, because the presence of the diffraction grating will disturb

the cavity mode.

10.0.1 Future Work

This thesis is the first step in developing a new kind of clock. The results I have shown are

promising, but further improvements to both the grating launch and clock system are clearly

possible.

The CPT method which was used for preliminary work has been discarded due to its low SNR in

comparison to using the microwave cavity, where only detection of the separate hyperfine levels

is needed. However, a potential solution to this has been proposed which involves a coherent

transformation of the CPT bright and dark states onto the two hyperfine levels using a Raman

pulse, allowing clean detection. Work on this technique is ongoing for the existing CPT clock. A

similar proposal would be to recreate a full Ramsey sequence using a Raman pulse instead of a

microwave cavity. The advantage of these techniques is that it does not require the microwave

cavity, and removes some shifts which are related to it. A supermirror or optical cavity could

produce microwave phase gradients as good or better than any microwave cavity, and would not
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have the same eddy-current problems. However, the use of optical transitions will cause substantial

AC Stark shifts instead, as is seen in other CPT clocks. This could be mitigated by operating far

off-resonance (a THz or so), or using previously developed techniques for suppressing light shifts.

It is possible that the CPT detection method, which is currently greatly limited by SNR, could be

improved by coherent transformation of the CPT bright and dark states onto the two hyperfine

levels which can then be cleanly distinguished. However, it is likely that this would come with

significant additional AC Stark shifts in comparison to the cavity clock due to the use of optical

transitions in the CPT scheme. Research on this topic is being undertaken for the existing CPT

clock.

The grating launch could be most improved significantly by identification and removal of the

mechanism which is causing excess heating when launching at higher velocities. An immediate

increase in the available atom number, maximum launch time, and clock stability would result.

A different type of grating, using a chequerboard pattern, could potentially increase the trapped

atom number several times as it offers a larger overlap volume from which to trap atoms.

The cavity clock system is currently undergoing rapid improvement and testing as it is still in an

early development phase. The initial results are promising, but full performance and characterisa-

tion data are still being collected. The implementation of the GMOT launch within the cavity-clock

system has yet to be attempted, and the combination of those two aspects of the project should

bring significant improvements. The cavity clock system as a whole is still a prototype system, and

many potential improvements are available. Implementation of magnetic shielding, as a minimum,

would be required to meaningfully test the long-term stability that could be reached. The minia-

turisation of the clock is clearly not complete as it takes up 2m2 of optical table, but that was

not the goal of this project. The microwave cavity itself, where all of the atomic physics occurs,

has a volume of only 75mL. The size of an eventual clock would likely be dominated by other

components, and I believe is likely that magnetic shielding around the vacuum chamber, around

the cavity would be the largest component. A total volume of a few litres seems a reasonable

prospect.
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Appendix A

Theo1 implementation

/∗========================================

∗ Ca l cu l a t e s Theo1 o f a g iven da t a s e t .

∗ The da t a s e t i s assumed to be phase

∗ data , taken at un i t time increments .

∗ Any l i n e a r component to the da t a s e t i s

∗ removed as a f i r s t s t ep . Should be

∗ compi led wi th −O3 − f f a s t −math .

∗

∗ X = input da t a s e t

∗ N = number o f e lements in X

∗ T = Theo1 output

∗

∗ Ben Lewis , Un i v e r s i t y o f S t r a t h c l y d e

∗======================================∗/

/∗ Remove any l i n e a r par t o f the da t a s e t ∗/

void removeLinear (double∗ X, int N){

double midpoint = ( (double ) (N−1))/2;

long double sum1 = 0 ;

long double sum2 = 0 ;

for ( int i = 0 ; i < N; i++){

sum1 += X[ i ] ;

sum2 += X[ i ] ∗ ( i−midpoint ) ;
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}

double a = sum1/N;

double b = sum2/N∗12/((double )N∗N−1);

for ( int i = 0 ; i < N; i++){

X[ i ] −= a + b∗( i−midpoint ) ;

}

}

/∗ The computat iona l rou t ine ∗/

void Theo1 (double ∗X, double ∗T, int N){

// I n i t i a l i s e arrays

int k_max = (N−1)/2;

double∗ C1 = new double [N ] ;

double∗ C3 = new double [ k_max+1] ;

double∗ C4 = new double [ k_max∗ 2 ] ;

// Preprocess by removing l i n e a r par t

removeLinear (X,N) ;

// Ca l cu l a t e C1

double s=0;

for ( int i = 0 ; i < N; i++){

s += (X[ i ]∗X[ i ] ) ;

C1 [ i ] = s ;

}

// Main loop

C3 [ 0 ] = C1 [N−1] ;

for ( int k=1; k<=k_max ; k++){

// Ca l cu l a t e C2 va l u e s

double C2_2k = 0 ;

double C2_2k_1 = 0 ;

for ( int j = 0 ; j <= N−2∗k−1; j++){

C2_2k += (X[ j ]∗X[ j+2∗k ] ) ;

C2_2k_1 += (X[ j ]∗X[ j+2∗k −1 ] ) ;

}

C2_2k_1 += (X[N−2∗k ]∗X[N−1 ] ) ;

// Update C3 , C4 in p l ace
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for ( int v=0; v < k ; v++){

C3 [ v ] −= (X[ k−1−v ]∗X[ k−1+v ] )

+ (X[N−k+v ]∗X[N−k−v ] ) ;

}

for ( int v = 1 ; v<=2∗k−2;v++){

C4 [ v−1] −= (X[2∗k−1−v ]∗X[2∗k−1])

+ (X[2∗k−2−v ]∗X[2∗k−2])

+ (X[N−2∗k ]∗X[N−2∗k+v ] )

+ (X[N−2∗k+1]∗X[N−2∗k+1+v ] ) ;

}

C3 [ k ] = C2_2k ;

C4 [2∗k−2] = 2∗C2_2k_1 − (X[ 0 ] ∗X[2∗k−1])

− (X[N−2∗k ]∗X[N−1 ] ) ;

C4 [2∗k−1] = 2∗C2_2k ;

// Ca l cu l a t e un−normal ised T_k from C1−C4

double T_k = 0 ;

double A0 = C1 [N−1] − C1[2∗k−1]

+ C1 [N−2∗k−1] + 2∗C2_2k ;

for ( int v = 1 ; v<=k ; v++){

double A1 = A0 − C1 [ v−1]

+ C1 [N−1−v ] − C1[2∗k−v−1]

+ C1 [N−1−2∗k+v ] ;

double A2 = C3 [ k−v ] − C4 [ v−1]

− C4[2∗k−v−1] ;

T_k += (A1+2∗A2)/v ;

}

// Apply norma l i sa t ion to ge t Theo1

T[ k−1] = (T_k/(3∗ (double ) (N−2∗k )∗k∗k ) ) ;

}

//Release memory

delete [ ] C1 ;

delete [ ] C3 ;

delete [ ] C4 ;

}
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