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Abstract 

The spread of HIV and AIDS is a serious and increasing global problem with the sharing 

of contaminated injection equipment a primary cause of HIV infection in the developed 

world. Mathematical models of disease transmission allow us to assess the impact of 
different epidemiological and behavioural assumptions on the long term behaviour of 
disease. 

Initially a simple deterministic model is examined which allows intravenous drug 

users to progress through three different infectious stages after initial infection with 

HIV and prior to the development of AIDS. This model is then developed to also allow 

contaminated injection equipment to exist in three different states of infectivity. The 

resulting model contains a number of parameters, which while potentially important, 

are extremely difficult to estimate. In response to this, several special cases are exam- 
ined which represent intuitive upper and lower bounds for the spread of disease. In each 

case an equilibrium and stability analysis is presented. Later these special cases, to- 

gether with a generalisation of them, are compared with a well established single stage 

infectivity model to ascertain whether the inclusion of variable infectivity increases the 

predicted spread of disease. We find that the impact of variable infectivity depends on 

a number of factors and can lead to either an increase or decrease in the prevalence of 

disease. 

Testing drug users for the presence of HIV has been proposed as a method of 

reducing the incidence of HIV. Using the previously discussed upper and lower bound 

variable infectivity models, we examine the effect of testing addicts for HIV using a 

number of different infectivity assumptions. We find that under certain conditions 

HIV testing can be an effective control strategy against the future spread of HIV. 

This is followed by a short discussion of sensitivity analysis of these models. While 

predominantly discussing deterministic models we conclude with a brief discussion of 

stochastic models and demonstrate the behaviour of these models using simulation. 
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Chapter 1 

Introduction & Literature Survey 

1.1 Introduction 

This thesis is concerned with modelling the spread of the Human Immunodeficiency 

Virus (HIV) and the subsequent Acquired Immune Deficiency Syndrome (AIDS) among 

populations of intravenous drug users via shared injection equipment. Medical evidence 

suggests that once an individual has been infected with HIV the level of virus in their 

blood varies considerably over their infectious lifetime. Many existing models of the 

spread of HIV via shared injection equipment assume that the infectivity of an addict 

is constant throughout his or her infectious lifetime. This thesis explores the effect of 

a three stage infectious period with different levels of HIV infectivity in each infectious 

stage on long term prevalence levels of HIV and AIDS and whether control strategies 

such as needle exchange programs need to be reassessed. In addition we examine the 

testing of addicts for HIV as a potential control strategy. It has been suggested that 

the effectiveness of such a strategy is closely linked to the varying levels of infectivity 

which occur in an addict during the long AIDS incubation period. 
In this first chapter we briefly outline the origins of epidemiological modelling and 

the effects of some of the world's worst epidemics. This leads us'on to discussing the 

history and nature of HIV and AIDS. We then give a short summary of the state of the 

AIDS pandemic at the start of 1999 and in particular the role played by intravenous 

drug use. We then discuss some of the main modes of transmission of HIV and why 

populations of intravenous drug users are particularly vulnerable to HIV infection. Next 

we outline the main epidemiological characteristics of HIV infection before moving on 

to a short review of the literature concerned with the sexual spread of HIV and AIDS. 



We then review a number of published articles specifically concerned with modelling 

the spread of HIV and AIDS among populations of intravenous drug users. Finally we 

conclude with an overview of the material in Chapters 2-11. 

1.2 Epidemics, Plagues and Other Scourges 

Of the riders of the Apocalypse, the Fourth Horseman has been the busiest. Since the 

beginning of history malaria has killed half of the men, women and children that have 

died on the planet (Nikiforuk, 1992). It has outperformed all wars, all famines and 

all other epidemics. The tiny proportion of Native Americans alive today is testament 

to the huge devastation caused by smallpox. Syphilis introduced menace to sex and 

people to the wig. With the plethora of sophisticated drugs available today it is easy to 

forget our plague-ridden past, however the Fourth Horseman rides into our lives at his 

convenience, with HIV and AIDS offering yet another poignant example that pestilence 

never rests. 

Nikiforuk (1992) puts forward the case that epidemics of infectious diseases are 

brought about by changes in the lifestyles and habits of civilizations. For example the 

development of agriculture created a common market of diseases by bringing together 

all manner of viruses, fungi and bacteria in gardens, houses and villages. When the 

dog became man's best friend so too did measles; with the cow came tuberculosis 

and diphtheria. Rhino-viruses (the common cold) probably came riding in on a horse. 

Anthrax popped out of the soil. These biological collisions were probably a shock for 

all species involved. 

Throughout history many attempts have been made to contain the spread of in- 

fectious disease, however invariably these attempts had little effect and some control 

strategies while well intentioned only served to exacerbate an already poor situation. 

The following extract is from Nikiforuk (1992) and is a good illustration of when a 

seemingly sensible idea can go badly wrong. 

Once DDT had established a reputation as the `atomic bomb' of the insect 

world, public health officials adopted the weapon with unquestioning fervor. 

By the 1960's when the World Health Organization's anti-malarial campaign 

peaked, 76,000 tons of DDT fell on 76 countries. Although the chemical 

initially killed anopheles with clinical efficiency, it soon bred a stronger and 

more resistant adversary. At least 57 mosquitoes can now swim in DDT and 
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other insecticides without suffering any ill effects. Gallons of DDT sprayed 

randomly also produces a myriad of unforeseen health problems. 

A typical case of good intentions gone awry occurred in Sarawak, part 

of Borneo. Here the spraying of homes with DDT not only killed the 

mosquitoes but cockroaches. Cats returned to the sprayed homes, ate the 

poisoned cockroaches and died. Free of predators, the Malaysian field rat, a 

carrier of plague and typhus, overran the mosquito-free villages. Fearing an 

outbreak of plague, the WHO eventually asked the Royal Air Force to drop 

cats by parachutes over the isolated villages. Fortunately for Sarawak's 

peasants, `Operation Cat Drop' helped avert an epidemic of plague that 

DDT and malarial control had invited into their villages. 

Perhaps the most clear message we can take from the past history of epidemics is 

that while the names and types of disease may change it seems inevitable that epidemics 

will continue. This means that new challenges will continually present themselves to 

both medical and biological researchers and the epidemiological modelling communities. 

The most important recent challenge is of course the HIV/AIDS epidemic and it is this 

challenge that the subsequent chapters of this thesis are concerned with. Before we 

discuss the background and particular social and biological details of the HIV/AIDS 

epidemic we now give a short outline of the origins of epidemiological modelling and 

several of the early pioneering papers in this field. 

1.3 Origins of Epidemiological Modelling 

We now take a very brief tour of some of the founding articles and papers of epidemio- 

logical modelling. A concise introduction to the history of epidemiology can be found 

in Schwager et al. (1989). The first epidemiological model was presented by Daniel 

Bernoulli in 1760 to the Royal Academy of Sciences in Paris. However the mathe- 

matical theory of epidemiology made no significant advances until the work of Russian 

physician P. D. En'ko published in 1889. En'ko constructed the first chain binomial 

model (wrongly attributed to Reed, see Dietz, 1988 for further details). The key con- 

cepts in the development of the mathematical foundations of theoretical epidemiology 

derived from the work of Major Ronald Ross who spent half of his life trying to solve 

"The Great Problem": how malaria infected humans (Nikiforuk, 1992). In 1902 Ross 

received the Nobel Prize when he identified the life cycle of the malaria parasite in birds, 
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and this work was described in Ross (1908), (1911) and (1915). Ross introduced the 

assumption that the rate of new infections is proportional both to the number of sus- 

ceptibles and to the number of infectious individuals (the so-called "mass-action law"), 

developed the first mathematical model for the spread of vector-transmitted disease 

(malaria), and concluded that to eradicate malaria it was sufficient to bring the vector 

population below a threshold level. This was a revolutionary result in that it dispelled 

the belief that to control malaria one had to eradicate the mosquito population (which 

was an impossible task). McKendrick extended this result and in 1927 published the 

famous threshold theorem with Kermack, in Kermack and McKendrick (1927), which 

established that at least a threshold number of susceptible individuals must be present 

in order for an epidemic to occur. 

Ross was aware of the necessity of taking into account the effects of non-homogeneous 

mixing, demography, geographical distribution and other factors in order to increase 

the predictive and explanatory power and applicability of epidemiological models. This 

level of detail could only be introduced by the stratification of a population into sub- 

populations according to specified criteria and a detailed description of the mixing 

between the various subpopulations. Elaboration of these ideas was greatly developed 

during the 1960's due to dramatic increases in venereal diseases and further expanded 

in response to the AIDS epidemic (which we discuss in the following section). The first 

mathematical model for the transmission of a venereal disease was developed by Cooke 

and Yorke (1973). A model for gonorrhea with an arbitrary number of randomly (pro- 

portionate mixing) interacting groups was formulated and analysed by Lajmanovich 

and Yorke (1976), and Hethcote and Yorke (1984) introduced concepts such as satu- 

ration and pre-emption, as well as the concept of a core subpopulation into gonorrhea 

analysis. This idea of a core subpopulation has been extremely important in theoretical 

epidemiology. Once HIV and AIDS was discovered the pace of research into modelling 

the spread of infectious diseases was very rapid indeed and today represents a very 

large body of work. Having given some background to the importance of infectious 

diseases and briefly outlined some of the founding work in the field of epidemiological 

modelling we now move on to discussing the diseases upon which this thesis focuses, 

namely HIV and AIDS. 
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1.4 A Brief History of HIV and AIDS 

Between October 1980 and May 1981, five young homosexual men were treated for 

Pneumocystis carinii pneumonia in hospitals in Los Angeles, USA. These cases at- 

tracted attention because Pneumocystis carinii pneumonia was known to be a disease 

associated with immunodepression. Around the same time Kaposi's sarcoma, a skin 

tumour, was being diagnosed with increasing frequency in young men in New York City 

and in California. These observations heralded the early stages of the emergence in the 

USA of an apparently new disease, subsequently termed Acquired Immune Deficiency 

Syndrome (AIDS), (Anderson and May, 1991). The word "acquired" was used to de- 

scribe the disease because unlike other immune deficiency illnesses it appeared that 

AIDS was an illness that you acquired from someone else as opposed to being some- 

thing that happened to you, for example the taking of immuno-suppressant drugs after 

an organ transplant. By the autumn of 1981 the United States Public Health Service 

had begun efforts to try to define and understand this new disease. The hunt for a 

transmissible agent rapidly narrowed down to a search for a virus. In 1984 an Interna- 

tional Committee for the Taxonomy of Viruses named the Human Immunodeficiency 

Virus (HIV) the aetiological agent of AIDS. 

At the end of 1982 AIDS had been reported in fourteen nations worldwide. By 

the end of 1983 this had increased to 33 countries and two years later AIDS had been 

reported in 51 countries. By November 1987,62,811 cases of AIDS had been officially 

reported to the World Health Organisation (WHO) from 127 countries worldwide. By 

the end of 1990 over 307,000 AIDS cases had been officially reported to the WHO with 

the actual number estimated to lie closer to one million, (MAP, 1998). 

In response to the rapidly growing AIDS pandemic the Joint United Nations (UN) 

Programme on AIDS (UNAIDS) became operational in January 1996. UNAIDS was de- 

signed to combine the AIDS work previously undertaken by the WHO Global Program 

on AIDS, the UN Children's Fund, the UN Population Fund, the UN Educational Sci- 

entific and Cultural Organisation, the UN Development Program and the World Bank. 

UNAIDS describes itself as "the main advocate for global action on HIV/AIDS", "UN- 

AIDS leads, strengthens and supports an expanded response aimed at preventing the 

transmission of HIV, providing care and support, reducing the vulnerability of indi- 

viduals and communities to HIV/AIDS, and alleviating the impact of the epidemic", 

(UNAIDS statement to UN General Assembly on Drugs, 1998). 
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Table 1.1: Figures from AIDS epidemic update: 1998 

Global Summary of the HIV/AIDS Epidemic 

December 1998 

People newly infected with HIV in 1998 5.8 million 

No. of people living with HIV/AIDS 33.4 million 
AIDS deaths in 1998 2.5 million 
Total no. of AIDS deaths since 1980 13.9 million 

Table 1.1 contains figures extracted from the AIDS epidemic update: December 

1998 published on the Internet by UNAIDS (www. unaids. org). The figures in Table 

1.1 describe unmistakably the seriousness of the AIDS pandemic. From the beginning 

of the AIDS epidemic a total of 47 million people have been infected. Moreover there 

is evidence that AIDS is becoming more widespread, for example the number of people 

living with HIV/AIDS (33.4 million) at the end of 1998 has grown by 10% in just 

a single year. The AIDS epidemic update: December 1998 (produced by UNAIDS) 

states that "The [HIV/AIDS] epidemic has not been overcome anywhere. Virtually 

every country in the world has seen new infections in 1998 and the epidemic is frankly 

out of control in many places". In a speech made at The Hague on the 8th of February 

1999 the UNAIDS Executive Director Peter Piot claimed that "AIDS is the single 

greatest threat to continued global development". 

The seriousness of the AIDS pandemic is not only in the massive loss of life which 

ensues from it but also the severe social and economic consequences. For example 

UNAIDS estimates that in sub-Saharan Africa the life expectancy by 2010-2015 will 

be approximately 47 years of age rather than the pre-AIDS estimate of 60 years of 

age. In particular young people are now disproportionally affected by HIV/AIDS with 

around half of all new HIV infections occurring in people aged 15-24. This has very 

serious consequences for the prospects of future generations. The economic disrup- 

tion from HIV/AIDS in developing areas such as Africa is particularly acute with the 

economies of whole countries becoming decimated. The World Bank Internet site, at 

www. worldbank. org contains a number of reports and papers on the serious economic 

aspects of the AIDS pandemic. 

There is little doubt about the seriousness of the HIV/AIDS global pandemic, how- 
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ever HIV/AIDS is spread very unequally around the world both in the context of the 

total number of people infected and the different population groups which are worst af- 

fected. We now examine more closely the differences between the spread of HIV/AIDS 

in various parts of the world and in particular the significance of populations of intra- 

venous drug users. 

1.5 The AIDS Pandemic and the Role of Intravenous Drug 

Use 

We now outline the spread of HIV/AIDS in various parts of the world and summarise 

the role of intravenous drug use. We first examine the epidemics in Africa, Asia and 

Latin America before moving on to North America, Western Europe and finally Eastern 

Europe. Statistics concerning the spread of HIV/AIDS throughout the world can be 

obtained from the UNAIDS Internet site at www. unaids. com. This site contains many 

reports and bulletins on the spread of HIV/AIDS, three which were of particular use 

were: AIDS epidemic update: December 1998; Drug use and HIV/AIDS - UNAIDS 

statement presented at the United Nations General Assembly Special Session on Drugs 

on the 9th of June 1998 and Provisional Report from MAP (Monitoring the AIDS 

Pandemic) entitled "The Status and Trends of the HIV/AIDS Epidemics in the World", 

dated June 26,1998. All these documents are available in electronic form on the 

Internet from www. unaids. org. It should be noted that these sources are UNAIDS 

publications and as such have not been subject to an independent refereeing procedure. 

However we use these publications as they provide a convenient snapshot of the current 

global state of the HIV/AIDS epidemic and contain only observed statistics rather than 

projections or model based predictions. 

Africa 

While no country in Africa has escaped the Human Immunodeficiency Virus some are 

far more severely affected than others. The bulk of new infections are concentrated in 

East and especially Southern Africa. Sub-Saharan Africa is home to 70% of all people 

who became infected with HIV in 1998. During 1998 it was estimated that AIDS was 

responsible for 2 million African deaths. However despite the scale of death there are 

more Africans living with HIV than ever before: 21.5 million adults and a further 1 

million children. 
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The vast majority of HIV infections in Africa are due to heterosexual contacts and 

mother-to-infant transmission. However MAP does note that the rising availability of 

injectable substances such as heroin, especially at new transit points for drug trafficking, 

creates an additional risk for HIV spread in sub-Saharan Africa. MAP summarise the 

spread of HIV in Africa as unabated, diverse and complex. 

Asia 

This region has over 60% of the world population and contains a wide diversity of 

HIV-related risk environments in terms of behavioural, political and cultural factors. 

While HIV/AIDS infection rates remain low relative to some parts of the world, well 

over 7 million Asians are already infected, and HIV is clearly beginning to spread in 

earnest through the vast populations of India and China. India alone has a population 

of close to 1 billion, roughly half of them in the most sexually active age group of 15-49. 

An estimated adult prevalence rate of about 0.6 to 1.0 percent translates to between 

three and five million infected persons, a figure higher than any other single country. 

However the distribution of HIV/AIDS in India is not uniform. For example 21 of 

the 31 states taken together report only four percent of the total AIDS cases. The 

major impact of the epidemic is being felt in Maharashtra, Tamil Nadu, Pondichery 

and Manipur. While the epidemic is predominantly heterosexual in nature over most 

of India the northeastern states have a severe epidemic among intravenous drug users. 

In Manipur it is estimated that the infection rate among intravenous drug users is now 

more than 70%. 

Latin America and the Caribbean 

HIV epidemics in Latin America and the Caribbean reflect the heterogeneity of HIV 

epidemics worldwide: they differ from country to country and within countries. The 

aggregate population of the forty-four countries in this region totals 476 million, 8.4 

percent of the global population. An estimated 1.6 million people are living with 

HIV/AIDS in Latin America and the Caribbean, equivalent to 5.4 percent of the total 

number of people around the world living with HIV/AIDS as of January 1998 (MAP). 

There are a number of transmission routes responsible for the HIV/AIDS cases in this 

region. The dominant transmission route so far has been thorough homosexual contact 

and intravenous drug use, however the rising rate in women suggests that heterosexual 
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contact is becoming more prominent. In general the epidemics are either in an early 

phase or show slow growth, with several areas such as Honduras and Mexico having 

more established epidemics. 

North America and Western Europe 

In North America and Western Europe new combinations of anti-HIV drugs continue 

to reduce AIDS deaths significantly. However during 1998 no progress was recorded in 

reducing the number of new infections. Over the last decade the rate of new infections 

has remained stable rather than decreasing. During 1998 alone nearly 75,000 people 

became infected with HIV bringing the total number of North Americans and Western 

Europeans living with HIV to almost 1.4 million (890,000 in North America and 500,000 

in Western Europe). UNAIDS states that while the epidemic is no longer out of control 

in these countries it has clearly not been stopped. 

In Western Europe the epidemic originally occurred predominantly among male ho- 

mosexuals, however subsequently the number of cases of HIV/AIDS in intravenous drug 

users has become dominant. UNAIDS suggests that this is due to the rapid and inten- 

sive spread of HIV through injecting drug use in populations of south-western Europe, 

particularly Spain, Italy and more recently Portugal. In North America and Western 

Europe heterosexual contact accounts for an increasing proportion of HIV/AIDS cases 

though this is still small in comparison to the number of cases in either homosexual 

males or intravenous drug users. 

Eastern Europe 

Until 1995 Eastern European countries including the Asian republics of the former So- 

viet Union reported few HIV cases, these were mostly among homosexual men. Since 

1995 HIV has spread very rapidly among intravenous drug users in cities of several 

countries including the Ukraine, Belarus, Moldova and the Russian Federation. Epi- 

demics among drug users are also emerging in the Caucasus, the Baltic States and in 

Kazakstan in Central Asia. UNAIDS and WHO estimates that the total number of 

infections may have risen from less than 30,000 in 1995 to more than 270,000 in 1998. 

According to MAP the main factors fueling the HIV epidemic among intravenous drug 

users are increased drug demand and supply, migration and widespread local drug 

production. It is estimated that Russia alone has over 1 million intravenous drug users. 
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Summary of the Importance of Intravenous Drug Use 

To summarise we have that the truly massive number of HIV/AIDS cases in areas such 

as sub-Saharan Africa and India arise from heterosexual contact. However in many 

parts of the world injecting drug use is the major mode of HIV transmission. Moreover 

UNAIDS claims that "injecting drug use plays a critical role in how and when the HIV 

epidemic starts in a particular region and how it continues to unfold". More than half 

of all reported cases of HIV/AIDS in the Russian Federation have been in intravenous 

drug users. The UNAIDS statement to the United Nations General Assembly Special 

Session on Drugs (9th June 1998) claims that in the world today there are at least 

5.5 million and possibly up to 10 million intravenous drug users, ranging across 128 

countries and territories, up from around 80 six years ago. In the USA alone it is 

estimated that 700,000 people inject illegal drugs intravenously, whilst Russia has seen 

a massive 20-fold increase in the number of intravenous drug users since 1990 taking 

the estimated total to 1 million users. In short the study of the spread of HIV and 

AIDS among populations of intravenous drug users can easily be justified as relevant 

and potentially important in helping combat the global spread of HIV and AIDS. 

1.6 The Transmission Aspects of HIV 

Before we discuss why drug users are a group at particularly high risk of infection from 

HIV, we first outline the various ways in which HIV can be transmitted other than 

through intravenous drug use. Other than drug related HIV infection there are three 

main modes of HIV transmission, these are infection from receiving a contaminated 

blood transfusion (or other related blood products such as plasma), infection through 

sexual contact and infection from mother to infant (perinatal transmission). ' Some other 

speculative forms of HIV transmission have appeared in the press, such as infection from 

insects and close (non-sexual) personal contact. There is no evidence to suggest that 

insects carry HIV or that close non-sexual personal contact carries any risk of HIV 

transmission, (Friedland and Klein, 1987). We now briefly outline each of the three 

main (non-drug related) modes of HIV infection. 

Firstly we examine the transmission of HIV via the transfusion of blood and blood 

products. Persons who have acquired AIDS through the transfusion of infected blood 

or blood products represent a small but important proportion of the total number of 

AIDS cases. Up to January 1987,2 percent of adults and 12 percent of children with 
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AIDS in the USA were believed to have acquired the disease in this manner (CDC, 

1987). Transfusion related AIDS has provided a number of important insights into 

HIV transmission. Arguably the most important of these is the information available 

concerning the duration of the AIDS incubation period. This mode of transmission rep- 

resents a single point in time of inoculation as opposed to probable repetitive exposures 

over time characteristic of other modes of infection. HIV infection by transfusion can 

therefore provide accurate information as to the likely length of the AIDS incubation 

period. In response to the risk of transmission of HIV by blood and blood products, 

the screening of donated blood and plasma for antibody to HIV began in 1985. This 

reduced the risk of infection from blood transfusion and blood products to a very low 

level, from between 1 in 100,000 to 1 in 1,000,000, (Friedland and Klein, 1987). Fried- 

land and Klein argue that other methods of HIV transmission are not susceptible to 

such simple technical solutions as blood screening. 

HIV is fundamentally a sexually transmitted virus, which is transmitted by both 

homosexual and heterosexual activity. The risk of acquiring HIV infection from a single 

or several sexual encounters with an infected person is not known. However it is known 

that other sexually transmitted diseases such as syphilis and gonorrhea carry a substan- 

tial risk from a single encounter, which increases with repeated encounters. Available 

information suggests that HIV is less easily transmitted and in studies of steady het- 

erosexual partners the overall rates of infection ranged from 7 to 68 percent, Fischl 

et al. (1987), Redfield et al. (1985), Kreiss et al. (1985) and Peterman et al. (1986). 

Although the risk of transmission is substantial in all populations, most regular sexual 

partners remain uninfected, (Friedland and Klein, 1987). However it is interesting to 

note that studies of heterosexual and homosexual communities (BMBR, 1987) reveal 

an important difference between these two risk groups. There appears to be an eight 

to twenty-fold difference in the average relative rate of acquisition of partners between 

heterosexuals and homosexuals, (Anderson and May, 1991). Irrespective of the relative 

magnitudes of other factors that determine the rate of transmission of HIV, this factor 

by itself suggests that the spread of HIV in heterosexual communities in developed 

countries will be much slower than that observed in homosexual communities. 

The third main mode of HIV transmission is from a mother to her offspring. In the 

USA, 80 percent of children with AIDS are known to have a parent who has AIDS or is 

at risk of the disease and presumably infected with HIV (CDC, 1987). Since pediatric 

AIDS is closely linked to maternal infection, it is not surprising that its demographic 

11 



features in the USA parallel those of AIDS in women and are closely tied to intravenous 

drug use. HIV may be transmitted from infected women to their offspring by three 

possible routes: to the fetus in utero through the maternal circulation, to the infant 

during labour and delivery by inoculation or ingestion of blood and other infected 

fluids, and to the infant shortly after birth through infected breast milk, (Friedland 

and Klein, 1987). Presumably in an infant infection may occur by any combination of 

these routes, but the relative efficiency and frequency of each route is not known. The 

final and arguably the most efficient route of HIV transmission is in an intravenous 

drug using environment where infectious needles are shared among addicts. It is this 

mode of transmission with which the models in this thesis are concerned and it is this 

we now discuss. 

1.7 Why Drug Users are at High Risk from HIV/AIDS 

Having illustrated that the spread of HIV/AIDS among intravenous drug using popu- 

lations is a widespread problem we now briefly discuss why this particular group are at 

such a high risk of infection from HIV/AIDS. There are a number of ways in which HIV 

can be transmitted from addict to addict in an intravenous drug using environment. 

The most obvious method of transmission is when an addict infected with HIV uses 

a needle and leaves a residue of HIV infected blood in the needle. The next user (or 

sharer) of the needle is then exposed to this infectious blood and may become infected. 

UNAIDS claims that of all the different ways that the HIV virus can be passed on, 

directly injecting a substance contaminated with HIV into the blood stream is by far 

the most efficient, much more so in fact than through sexual contact. This raises the 

obvious question of why addicts share needles when the risks attached are so severe. 

However it is not merely the direct sharing of needles which transmits HIV among 

addicts, there are a number of related methods of infection concerned with preparing 

the drug prior to injection which are often not perceived as risky by addicts but which 

do carry the possibility of HIV infection, (Hunter et al., 1995). We now briefly discuss 

why addicts share needles and what additional risks are associated with drug injection 

practices. 
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1.7.1 Needle Sharing 

It is not clear why addicts share needles (Hay, 1999), however there are a number of 

reasonable explanations, perhaps the most obvious of which is the lack of access to 

sterilised needles. In many parts of the world, in particular much of the USA, it is 

illegal to purchase or possess drug injecting equipment without a valid prescription, 

and this is backed up by stiff criminal penalties. The motivation behind this policy is 

to use legislation to decrease the availability of injection equipment, and thus prevent 

people being able to inject drugs and therefore cause the size of the IVDU (intravenous 

drug using) population to decrease. However it could be argued that there is a serious 

incompatibility between policies to control drug use and policies to control the spread 

of HIV among intravenous drug users. 

Intuitively it is not hard to see that restricting the supply of uncontaminated in- 

jection equipment in this way could produce a vicious cycle in which the prevalence 

of AIDS among the general population increases (and will continue to increase) as a 
direct result of such a policy. Intravenous drug use is socially undesirable and not just 

because of the AIDS issue. Drug use is often directly linked to crime, poverty and gen- 

eral social deprivation. This provides motivation for governments to pass laws which 

make possessing injecting equipment a serious crime in an effort to restrict the popula- 

tion size of IVDUs. However the intravenous drugs used by addicts, such as heroin, are 

highly addictive and therefore rather than reduce the size of the population all this may 

achieve is to force addicts to share needles with greater frequency. With fewer needles 

available, a needle is shared between more people and hence is more likely to become 

contaminated with HIV as time progresses. Therefore the prevalence of HIV/AIDS in 

the population of IVDUs increases and since the IVDU population interacts sexually 

with the general population this causes an increased threat of HIV infection to society 

at large. This in turn puts additional pressure on governments to decrease the IVDU 

population by further restricting access to injecting equipment and so on. 
The type of needle sharing environment which has emerged as a result of mak- 

ing the possession of injection equipment illegal is particularly hazardous. Where the 

possession of injection equipment is illegal it is common for drug addicts to frequent 

"shooting galleries" to share needles. A "shooting gallery" is a place where drugs are 

purchased and where drug injection equipment is sequentially rented to users (Kaplan, 

1989a). This is a very hazardous environment as large groups of addicts inject with the 
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same needles which are often used without effective cleaning and where the injection 

equipment is not regularly replaced (Des Jarlais et al., 1987). Hay (1999) describes 

various types of shooting galleries, such as the residential gallery where long and short 

term residents share injection equipment with non residents. A particular danger of vis- 

iting a shooting gallery is the lack of knowledge that addicts have about the behaviour 

of each other, and it is quite possible that a number of the addicts who frequent the 

gallery may be infected with HIV. It is commonly accepted that a shooting gallery is 

one of the most dangerous environments for the spread of HIV among a population of 

intravenous drug users. For example Kaplan and O'Keefe (1993) found that in a sam- 

ple of needles taken from a shooting gallery in New Haven, Connecticut, USA, 44 out 

of 48 needles tested positive for HIV. Hence it seems that a policy which restricts the 

supply of sterilised needles can have a very serious effect on the spread of HIV among 

an intravenous drug using population (by forcing the widespread sharing of needles). 
A lack of availability is not the only reason why addicts share needles. Needle 

sharing still occurs in areas where needles and injection equipment are freely avail- 

able (Kretzschmar and Wiessing, 1998). A common type of needle sharing is called 

"friendship networks", these are where addicts share needles with close friends or sex- 

ual partners. The addicts themselves do not class this as sharing and as such see no 

risk of HIV infection from this behaviour (McKeganey and Barnard, 1992). - However 

as with any needle sharing this behaviour does carry a real risk of HIV infection. 

A further reason why addicts share needles may be because they do not recognise 

the risks involved. This argument is perhaps less convincing in the late 1990's than in 

the early 1980's when HIV was first diagnosed, since there has been an increased public 

awareness to the dangers of HIV and AIDS in recent years. However that is not to say 

that all new drug users (particularly young ones) recognise the risks of needle sharing. 

1.7.2 Drug Preparation and HIV Infection 

We now examine the risks of HIV infection associated with the manufacture and prepa- 

ration of drugs prior to injection. Before heroin can be injected it must first be dissolved 

in water. This can be done in small vessels such as bottle caps known as "cookers" 

which are heated, (Friedland and Klein, 1987). Some users will place cotton in this 

vessel to filter the dissolved drug. This filter may be used several times, hence if an 

infectious needle has been used with this filter then the cotton may be infectious and 
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a possible source of transmission of HIV. In addition when drug users want to share 

drugs which have been jointly purchased, instead of dividing up the raw drug it may be 

easier to divide up the dissolved solution. One method of dividing up this solution is 

known as "front-loading", (Grund et al., 1990). This involves drawing all the solution 

into a single syringe then injecting some of the contents into other syringes. If the 

initial syringe is infectious then there is a risk of contaminating subsequent syringes. 

In Eastern European countries and the Russian Republics the probability of trans- 

mission of HIV through intravenous drug use is particularly acute. In these areas most 
intravenous drug users use home-made opiates, and HIV risk appears to depend on 

specific drug preparation and distribution patterns (MAP, 1998). Needle sharing has 

been reported from all categories of injecting drug users but MAP believes that the 

use of home-made opiates is particularly risky. The reason for this is that home-made 

opiates may be prepared with contaminated equipment and ready-made drugs are sold 
in used and potentially contaminated syringes or other containers. In addition, accord- 
ing to MAP, human blood is often added to the drug solution as a cleansing agent 
during the production process (often coming from an HIV infected individual). These 

factors together create a particularly hazardous environment for intravenous drug users 

in Eastern Europe and the Russian Republics. 

We have shown the importance of drug using populations in the spread of HIV/AIDS 

and illustrated why these populations are so vulnerable. We now take a brief look 

at some of the epidemiological characteristics of HIV infection which are relevant to 

modelling the spread of HIV and assessing the public health issues involved in the AIDS 

pandemic. 

1.8 Epidemiological Characteristics of HIV Infection 

We first give some biological background on HIV before discussing how it manifests 

itself in humans. HIV is a retrovirus with morphological, molecular, and biological 

characteristics that have led to its proposed classification with the pathogenic animal 

lentiviruses (Anderson and May, 1991). Recent work has demonstrated that other 

primate species, notably the African Green monkey, may be symptomless carriers of 

a related retrovirus that can also infect humans, apparently without causing disease 

(Kanki et al., 1985). Since the discovery of HIV in 1983, the progress of research at the 

molecular and cellular levels of study has been very rapid indeed (Anderson and May, 
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1991). However in sharp contrast to the current understanding of the genetic structure 

and function of the virus, and the pathology induced by infection, comparatively little 

is known concerning the epidemiological and transmission dynamics of HIV. 

Once an individual is infected with HIV evidence suggests that the virus persists 

for the life of the individual (Weiss, 1985). After the initial infection with HIV the 

incubation period until the development of AIDS can be a few to many years with 

median estimates at approximately 9.8 years (Longini et al., 1989). The duration of 

the incubation period from initially being infected with HIV until the development of 

AIDS has been subject to major changes in recent years due to combination therapy 

drugs. For example UNAIDS reports that the death rate due to AIDS in the USA is the 

lowest in a decade (UNAIDS AIDS epidemic update, 1998), this is due to the ability 

of new combination drug therapies to substantially delay the onset of full blown AIDS, 

perhaps indefinitely. This situation poses a new problem for public health policies since 

the total number of people living with HIV has greatly increased in certain parts of the 

world due to the lowering of the AIDS mortality rate. However it should be noted that 

in terms of the global HIV/AIDS situation the proportion of infected individuals who 

have access to these new combination drug therapies is tiny (< 5%) and they are very 

costly. 

Returning to the incubation period of AIDS, we find that after initial infection the 

individual enters an incubation period prior to primary HIV infection. This may last 

a few weeks before progressing to the primary HIV stage which may last a few days to 

weeks. Next the infected individual enters a stage with no symptoms (the asymptomatic 

stage) which may last a few to many years before entering the AIDS Related Complex 

(ARC) stage. This is where the infected individual is classed as having a syndrome 

of chronic unexplained lymphadenopathy and persistent depletion of T-helper cells. 

This stage may last a few to many years, it is sometimes called the pre-AIDS stage of 

infection. Finally the infected individual enters the stage of full blown AIDS in which 

life expectancy is approximately 0.5-1.0 years (Anderson and May, 1991). 

In studying the transmission dynamics of HIV infection it is important to ascer- 

tain the relationship between the incubation period of the disease, and the duration 

and intensity of infectiousness over this incubation period, (Anderson and May, 1991). 

Anderson and May suggest that whilst data in this area is very sparse, a tentative 

hypothesis from the studies which have been conducted suggests that there are two 

phases of peak infectivity during the long incubation period of AIDS, one lasting for 
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a few months to a year or more following initial infection, and the other just prior to 

the onset of AIDS. In the intervening periods, infectiousness of the patient may well be 

very low. This is a very similar situation to that found by Peterson et al. (1990) and 
Seitz and Müller (1994). 

1.9 Review of Modelling HIV/AIDS 

Having briefly examined several epidemiological aspects of HIV/AIDS we now turn 

our attention to published literature concerned with modelling the spread of the dis- 

ease. There are a vast number of articles relating to modelling the sexual spread of 
HIV/AIDS. In this section we do not seek to provide a thorough review of all this liter- 

ature, but rather provide a flavour of the kind of modelling work which has been under- 
taken. Several extensive reviews of the literature concerned with modelling HIV/AIDS 

can be found in Abrams (1987) and Schwager et al. (1989). The amount of published 

work concerned with modelling the spread of HIV in populations of intravenous drug 

users via needle sharing is much more sparse, and we review some of this work in detail 

in the following section. 

May and Anderson (1987) discuss the transmission dynamics of HIV. This paper 
first reviews data on HIV infections and AIDS disease among homosexual men, het- 

erosexuals, intravenous drug users and children born to HIV infected mothers. All 

the information currently available (prior to 1987) concerning the distribution of in- 

cubation times that elapse between HIV infection and the appearance of full blown 

AIDS, the fraction of those infected with HIV who eventually develop AIDS, the time- 

dependence patterns of infectiousness and the distribution in the rates of acquiring new 

sexual or needle sharing partners is used by May and Anderson to develop models of 

the transmission dynamics of HIV. They begin with deliberately oversimplified models 

and progress (on the basis of understanding thus gained) to more complex models. 
Later in this paper the degree to which sexual or other habits must change in order 
to bring the basic reproductive number of HIV infections to below one is discussed. 

May and Anderson conclude that the epidemiology of HIV has many unusual features, 

and making accurate long term predictions about the prevalence of HIV and AIDS 

within any particular group requires an understanding of the nonlinear dynamics of 

HIV transmission and extensive reliable data. Given the current uncertainties about so 

many of the biological and sociological aspects of HIV transmission, May and Anderson 
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believe that it is sensible to begin by exploring relatively simple models that caricature 

the transmission dynamics, with a view to understanding the qualitative features of 

the HIV/AIDS epidemic. 

Blythe and Anderson (1988a) explore the effect of the incubation period and infec- 

tious periods in models of the transmission dynamics of HIV. A series of risk (or hazard) 

functions are used to describe variation in the incubation and infectious periods of HIV. 

Four forms of distribution are considered, namely, exponential, Weibull, Gamma and 

rectangular. Models of the transmission dynamics of the virus encompassing different 

assumptions concerning the distributed incubation and infectious periods are analysed, 

and their properties compared by steady state and local stability analyses and numerical 

methods. Blythe and Anderson find that which distribution should be used for the in- 

cubation period of the disease depends mainly on three factors. Firstly the distribution 

chosen should provide a general empirical description of the available epidemiological 

data. Secondly the risk function should again be chosen to mirror additional biological, 

immunological, or clinical data concerning the factors that determine progression to 

the disease state of AIDS. Finally, the ease with which analytical and numerical results 

can be obtained from the model containing the distribution should be borne in mind. 

Each of the four distributions examined in this paper yielded very similar results with 

respect to the steady state behaviour of the respective models and their local stability 

properties. Moreover Blythe and Anderson find that the full nonlinear behaviour of the 

different models was also not greatly different for the incubation period assumptions. 

Hence they conclude that provided that the mean of the distributed incubation period 

is fixed at the observed value then almost any distribution of approximately the right 

shape will suffice. 

Anderson (1988) examines two topics of particular relevance to the study of the 

transmission dynamics of HIV, namely variability in incubation and infectious periods 

and heterogeneity in sexual activity within homosexual and heterosexual communities 

in the UK. Anderson et al. (1986) examined the important related issue of the relation- 

ship between the infectious and incubation periods of AIDS. Anderson (1988) develops 

simple deterministic models to describe two episodes of infectiousness during the long 

and variable incubation period of AIDS. These simple models are used to address two 

specific problems, firstly the extent to which the variability in infectiousness affects the 

early stages of the epidemic, and secondly the measurement and analysis of heterogene- 

ity in sexual activity (defined as the rate of sexual partner change per unit time) within 
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homosexual and heterosexual communities. The main conclusion of Anderson (1988) 

is that much more research is needed, particularly in terms of collecting good quality 

data before any firm conclusions can be drawn. 

Blythe and Anderson (1988b) model the sexual transmission of HIV using a propor- 

tionate mixing single sex model in which sexual activity (new partners per unit time) 

is defined as a continuous variable in a set of integro-partial-differential equations. 

A discrete activity class approximation model is developed by matching equilibrium 

state and rate variables as closely as possible with the continuous variable model, and 

consists of only ordinary differential equations. Blythe and Anderson examine the re- 

lationship between the discrete and continuous variable models using both numerical 

and analytical studies in order to evaluate the accuracy of the approximation. 

In Isham (1988) mathematical modelling of transmission of infection in the context 

of the AIDS epidemic is reviewed. This paper first develops a simple homogeneous 

deterministic epidemic model which is adapted to follow the characteristics and pecu- 
liarities of HIV/AIDS. This model contains only five parameters: the probability of 

transmission from infective to susceptible per partnership; the rate of partner change; 

the probability that an infective will develop AIDS; the mean incubation period for 

AIDS patients and the mean infectious period for HIV infected patients. Isham shows 

that this model is reasonably applicable to a homogeneous, highly active homosexual 

community in the short term when the community can be assumed to be closed. This 

model is then extended to allow for immigration and emigration, variation in the rate 

of partner change and a non-exponential incubation period. This extended model is 

then applied to a very heterogeneous heterosexual population. Isham notes that as 

the model becomes more complex it becomes important to identify which sources of 

variation are critical in their effect on the spread of infection, and those which can ef- 
fectively be assumed to be constant in order to obtain a "bröad-brush" picture, which 
is the most that is needed for many practical purposes. Isham concludes with the 

remark that due to the lack of reliable data available from which to estimate model 

parameters, the main practical motivation for studying HIV/AIDS models is to gain 

understanding of the most important factors influencing the spread of HIV infection 

rather than predicting future HIV/AIDS trends. 

Stanley and Hyman (1988) contains an extensive discussion of the use of mathemati- 

cal models to understand the AIDS epidemic. This paper contains a justification of why 

models which are constructed by curve fitting methods (such as regression models) can- 
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not be used reliably for long periods of time, nor can they provide an understanding of 

the interactions that lead to the spread of the epidemic. During the long asymptomatic 

period after infection with HIV, changes in the environment of viral transmission occur 

continuously, causing complex interactions. Stanley and Hyman argue that only mod- 

els which are founded on the transmission mechanisms of HIV can show how the early 

infection of high risk groups, behavioural changes, and future medical advances such 

as treatments and vaccines will affect the future course of the HIV/AIDS epidemic. 

Stanley and Hyman briefly discuss a number of important modelling factors such as 

age, sexual activity and drug use as well as a number of other cofactors. 

Kaplan (1989b) discusses models of sexual mixing and HIV transmission and in 

particular whether a simple model, while technically poor, can still provide useful in- 

sight into potential control strategies for combating the spread of HIV and AIDS. An 

important point which Kaplan draws attention to is that of how precise a model must 

be to provide guidance for policy makers. Kaplan uses a highly tailored example of 

a model which assumes random mixing, which while not an accurate assumption still 

identifies useful control strategies. The main point Kaplan makes is that a model which 

is oversimplistic may still contain enough of the basic features of the spread of disease 

to point policy makers in the correct direction. 

Kaplan and Lee (1990) examine HIV modelling assumptions in order to create a 

model which offers a worst case scenario. Specifically they examine the maximum num- 

ber of infections that could occur under any feasible mixing pattern. Such worst case 

results are of special interest to decision makers who must prospectively evaluate the 

consequences of planned public interventions. Kaplan and Lee derive upper bounds for 

the maximum number of infected persons possible under endemic steady state condi- 

tions within the workings of a heterogeneous mixing model of HIV transmission. Two 

examples are presented that utilise this bound for a range of parameter values reason- 

ably descriptive of HIV/AIDS. These examples show that the worst case number of 

infected persons in the endemic steady state can be well within 10% of the number of 

infected persons that would result from random mixing. 

Thieme and Castillo-Chavez (1989) examine the effects of infection-age-dependent 

infectivity in the dynamics of HIV/AIDS. They discuss the epidemiological and be- 

havioural factors crucial to the dynamics of HIV/AIDS and include long and variable 

periods of infectiousness, variable infectivity, and the processes of pair formation and 

dissolution. Models which explore the effect of a long AIDS incubation period are dis- 
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cussed in Castillo-Chavez et al. (1989a), (1989b) and (1989c). In Thieme and Castillo- 

Chavez (1989) the role of variable infectivity in combination with a variable incubation 

period is examined in a homogeneously mixing population. It is shown that if the basic 

reproductive number is less than one then the disease dies out while if it is greater 

than one then the prevalence of disease converges to or oscillates around a uniquely 

determined nonzero equilibrium. Thieme and Castillo-Chavez observe that oscillations 

about the nonzero equilibrium cannot be excluded in all cases and may occur if the 

variable infectivity is concentrated at an early part of the AIDS incubation period. 

Sattenspiel et al. (1990) discuss a model for the spread of HIV among a population 

of male homosexuals. In this model the population is divided into five groups on the 

basis of degree of sexual activity. Within each group the individuals are classified 

as susceptible, infective or removed due to the development of full blown AIDS. The 

infective individuals are further subdivided into four stages of infection. Analyses of this 

model address two questions with regard to the spread of HIV: firstly how the sexual 

activity of an individual affects their risk of infection, and secondly how assumptions 

relating to how different population groups mix affect both the risk to individuals 

and transmission through the population as a whole. Results from analyses using a 

number of different parameter estimates show that increased levels of sexual activity 

increase the likelihood that an individual will become infected. In addition the initial 

spread of the disease is markedly changed by variation in the amount of contact among 

individuals from different subpopulations. The steady state incidence of the disease is 

not markedly changed by variation in the contact patterns, but the size of the steady- 

state population and therefore the number of infected individuals in the population 

does vary significantly with changes in the degree of mixing among subpopulations. 

Sattenspiel and Castillo-Chavez (1990) explore the effect of the spread of HIV among 

a male homosexual population with a specific view to determining the effect of envi- 

ronmental context and social interactions. They split the homosexual population into 

different groups according to sexual activity but additionally allow individuals to tem- 

porarily take on characteristics of a different risk group (due to the current environment 

entered into by the individual). This paper concludes that when the goal of modelling 

is to increase understanding of the transmission system of HIV, then the decision to 

incorporate context effects must be evaluated with reference to the focus of the par- 

ticular model being used. Specifically models which focus on variability in parameters 

that would be strongly affected by the conditions operating at the time of contact must 
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consider the effects of context. 

Lin (1991) examines a proportionate mixing model first developed and discussed by 

Anderson et al. (1986) and subsequently extended by Castillo-Chavez et al. (1989a). 

Lin's model consists of a sexually active population divided into n subpopulations 

where each subpopulation is re-divided into three epidemiological classes: susceptibles, 

HIV infecteds and those with full blown AIDS. Lin shows that when the disease free 

equilibrium is unstable the model can have multiple positive endemic equilibria. This 

together with results from Castillo-Chavez et al. (1989b), Castillo-Chavez et al. (1989c) 

and Huang (1989) indicate that circumstances exist for which the stability of the dis- 

ease free equilibrium cannot be chosen as a threshold condition, which is contrary to 

the homogeneous mixing case. Lin shows that the proportionate mixing model is very 

sensitive to the HIV transmission rates and considerable variation among the transmis- 

sion rates could cause the model to have multiple endemic equilibria, in which case the 

prediction of the spread of HIV/AIDS becomes very difficult. 

Huang et al. (1992) discuss stability and bifurcation for a multiple group model 

of the dynamics of HIV/AIDS transmission. A multi-group epidemic model is used 

with a variable population size. They show that even in the case of proportionate 

mixing, multiple endemic equilibria are possible. The basic reproductive number is 

identified and it is shown that this governs the stability of the disease free equilibrium. 

An interesting result of this paper is the importance of using a variable population 

size in disease dynamics. Earlier models of sexually transmitted diseases assumed that 

the population and the subpopulations under consideration had a constant number 

of individuals. Under this assumption a very specific type of mixing is introduced, a 

mixing that is independent of the population dynamics. Models with varying population 

size make it possible to study the effects of mixing in population and disease dynamics 

effectively. The results of this paper imply that even in the case of proportionate mixing 

using a variable population size can generate multiple endemic equilibria. Huang et al. 

suggest that multiple endemic equilibria may occur for realistic parameter estimates 

and as such it seems possible that if this behaviour turns out to be generic then the 

potential for the use of models similar to that discussed in this paper will be very 

limited. Related work which discusses mixing and disease dynamics is Castillo-Chavez 

(1989b), Anderson et al. (1989), Anderson et al. (1990) and Blythe et al. (1991). 
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1.10 Review of Modelling HIV/AIDS in IVDU Popula- 

tions 

As mentioned in the previous section there are a considerable number of articles relating 

to modelling spread of HIV/AIDS, however much of this work has focused on the sexual 

spread of the disease rather than the spread via drug use. Literature on mathematical 

modelling of the spread of HIV amongst injecting drug users (IVDUs) is much more 

sparse, (Greenhalgh and Hay, 1997). 

To our knowledge the first attempt at modelling the spread of HIV via needle 

sharing among a population of intravenous drug users is due to Kaplan (1989a). This 

is a pioneering paper as the model featured in it has been the basis for much of the 

literature on modelling the spread of HIV among intravenous drug users. Kaplan 

examines the spread of HIV via shared drug injection equipment in "shooting galleries". 
As mentioned previously a shooting gallery is a place where addicts go to both purchase 

and inject drugs. It is thought that the risk of HIV infection from needles in a shooting 

gallery is particularly high. 

Kaplan models the spread of HIV using a simple system of two coupled differential 

equations. One differential equation models the fraction of infectious addicts in the 

population, and the other the fraction of infected needles circulating in the population 
(or equivalently the probability that a randomly chosen addict is exposed to HIV via 

sharing injection equipment). This model depends on quantities such as the rate at 

which injection equipment is shared, the ratio of addicts to injection equipment in the 

population, the probability of transmission of HIV from using infectious injection equip- 

ment, the likelihood that infectious equipment is rendered virus free by an uninfected 

user and the duration of needle sharing activities by HIV infected addicts. 
Kaplan first demonstrates that in order for the prevalence of disease to reach an 

endemic equilibrium in the addict population, Ro, the number of secondary infections 

from a single infectious addict (assuming an otherwise totally susceptible addict and 

needle population) needs to be greater than unity. By a secondary infection we mean 

addicts infected directly by needles infected directly by the given addict. Kaplan uses 
his model to examine the effect of the "gallery ratio", that is the ratio of addicts 

to needles in a shooting gallery, on the long term prevalence of HIV in the addict 

population. Kaplan demonstrates that the "gallery ratio" has no effect on the long 

term prevalence of HIV but does have an effect on the speed at which HIV spreads 
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among the addict population. He then extends his model to account for heterogeneity 

in the frequency at which addicts share needles. Evidence suggests that the distribution 

of addicts who visit shooting galleries is highly skew with a large number of addicts 

visiting very infrequently and a small minority who visit with very high frequency (Page, 

1990). Kaplan incorporates this effect into his model by introducing a further equation 

which deals with the likelihood that any particular addict who attends a shooting 

gallery at time t is HIV positive (this takes into account heterogeneity in the rate at 

which addicts share needles or equivalently visit a shooting gallery). Kaplan notes that 

an effect of introducing heterogeneity into the needle sharing rate (or shooting gallery 

visiting rate) is to increase the basic reproductive number. 

Kaplan next examines the effect of the cleansing of injection equipment. He looks at 

the impact of needle cleansing after use and finds that this can have a significant effect 

in lowering the long term prevalence of HIV in the population. With hindsight it is 

rather strange to assume that addicts would clean a needle after use rather than prior 

to use. Cleaning prior to use can make a possibly infectious needle virus free for the 

addict to use now, whereas cleaning after use serves only to protect the next user. In 

Caulkins and Kaplan (1991), the original model from Kaplan (1989a) is used as a basis 

for assessing the impact of AIDS on the size of intravenous drug using populations in 

the USA. This paper highlights the problem of assessing policies to reduce the number 

of intravenous drug users in the USA in the light of deaths from AIDS. Caulkins and 

Kaplan used their model to show that AIDS could reduce the size of drug injecting 

populations by more than 50%. This has major implications for how policies designed 

to reduce the number of intravenous drug users should be evaluated. 

In Kaplan and O'Keefe (1993), Kaplan's original model is extended to incorporate 

the impact of cleansing or bleaching of injection equipment prior to use and to allow 

needles to be removed from the population and be replaced by unused (and obviously 

uncontaminated) needles. In addition this model now assumes that an infectious needle 

can never be rendered virus free after use by an uninfectious addict. Kaplan and 

O'Keefe used their model to evaluate a pilot needle exchange program set up by the 

New Haven Health Department in Connecticut, USA. This scheme was initially set 

up after a survey of addicts found that the sharing of injection equipment was largely 

due to the lack of availability of unused needles in New Haven. This needle exchange 

program was set up to allow an addict to exchange a used needle for an unused needle 

on a one-for-one basis. Each addict was registered anonymously with the scheme and on 
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the first visit to the scheme received a single unused needle. To enable this scheme to be 

evaluated Kaplan and Heimer (1992a, 1992b) developed a needle tracking and testing 

system. This involved labelling all the program needles with serial codes so that it could 

be ascertained how long needles remained in circulation in the population. In addition 

when each needle was returned to the program it was tested for the presence of HIV. 

By interviewing the participants of the needle exchange program (using self assessment 

questionnaires) and using information from the needle tracking and testing scheme 

Kaplan and O'Keefe could estimate the parameters in their model and thus examine 

the long term effect of maintaining the pilot needle exchange program. Kaplan and 

O'Keefe examined the decrease in long term prevalence of HIV in addicts in their model 

when needles circulated among the addict population for approximately 17.8 days on 

average (the post-needle exchange circulation time) compared to circulating indefinitely 

(the assumed pre-needle exchange circulation time). This represented the effect of 

introducing and maintaining a needle exchange program (whose primary purpose was 

to lower the time a needle spends in circulation). Kaplan and O'Keefe's model suggested 

that the long term prevalence of HIV could be decreased by up to 33% by implementing 

and maintaining a needle exchange program. 

Kaplan and O'Keefe also conducted a survey of the intravenous drug using pop- 

ulation to determine whether the introduction of the needle exchange program had 

resulted in an increase in overall drug use (in other words increased recruitment from 

the general population). This survey suggested that no increase in drug use had oc- 

curred which was a particularly important result as this had been a major criticism 

of introducing such a program. As a result of the evaluation study by Kaplan and 

O'Keefe the pilot needle exchange program in New Haven was extended making this 

scheme the first federally funded study of needle exchange in the USA and 20 months 

later the purchase of hypodermic syringes was legalised in Connecticut. The success of 

this study was (at least in part) responsible for altering legislation in New York City, 

California and Massachusetts to allow needle exchange programs to be developed. 

In a couple of later articles, Kaplan (1994,1995) formulates a circulation theory 

of needle exchange that highlights the impact such programs have on the behaviour 

of needles. In essence Kaplan argues that the shorter the duration of time a needle 

circulates in the population the less likely it is to become infectious. This is where 

needle exchange programs play an important role by reducing the mean duration any 

given needle spends in circulation. In these articles Kaplan uses a different modelling 
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approach from his previous work in an effort to establish empirically the decrease in the 

long term prevalence of HIV/AIDS caused by introducing a needle exchange program. 

One of the potential flaws in the model used in Kaplan and O'Keefe (1993) was 

that most of the parameter estimates required by this model could only be obtained 

subjectively from the addicts themselves. For example this model requires an estimate 

of the frequency at which addicts share needles and the proportion of times addicts 

cleaned needles prior to use. These highly subjective behavioural parameters can only 

be obtained by interviewing addicts, and Kaplan (1994) believes that parameter esti- 

mates obtained in this way could be biased towards practices which are safer than those 

actually undertaken (although there may also be a possibility of them being biased in 

the other direction). To overcome this problem he devised a model of the behaviour of 

needles which contained only three parameters, the rate at which an uninfected needle 
becomes infected, the rate at which an infected needle becomes uninfected and the 

average duration a needle spends in circulation. Each of these parameters could be 

estimated objectively using data from the needle tracking and testing scheme. Kaplan 

then used this model to estimate the reduction in the long term prevalence of HIV in 

needles due to the decrease in needle circulation time caused by the introduction of a 

needle exchange program. He found that the reduction in the long term prevalence of 

HIV in needles was approximately 33% which suggests that the number of new infec- 

tions (in addicts) from these needles will also be reduced by 33%. This is further good 

evidence of the potential benefit of needle exchange programs. 

While the model used in Kaplan (1994) makes very good use of the data available, 

and contains arguably some of the most accurate parameter estimates in any HIV model 

it is not without problems. For example the model assumes that the prevalence of HIV 

in addicts is constant and hence examines only the behaviour of needles. This is very 

unlikely since the prevalence of addicts and needles are inextricably linked. However 

that said, the parameter estimates used by Kaplan suggests that his model reaches a 

steady state very rapidly (in approximately one year). Also the timescale on which the 

addicts inject, typically of the order of a few days, is very much smaller than that of the 

other epidemiological and demographic processes involved, with the possible exception 

of the needle exchange rate. Hence it could be argued that provided the epidemic is not 

growing rapidly (and thus causing the prevalence of HIV in addicts to change rapidly) 

then this model may be fairly reasonable. 
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We have briefly discussed some of the work by Kaplan and whilst there is little 

doubt of the important practical significance of this research there are a number of 

shortcomings in the models which Kaplan uses. A number of papers have been devoted 

to extending the original model by Kaplan (1989a) to reflect more realistically the 

behaviour of a population of intravenous drug users. Several substantial extensions 

have been investigated by Greenhalgh, and Greenhalgh and Hay and it is this work we 

now discuss. 

One of the major deficiencies in Kaplan's, original model was that it assumed a 

single homogeneous population of addicts and needles. As a first investigation into the 

spread of HIV via shared injection equipment this is entirely reasonable, however a 

more realistic assumption is that the drug using population contains many sub-groups, 

each with different attributes and behavioural characteristics. For example in a large 

metropolitan area such as New York City which has an estimated 200,000 drug users, 
(Ginzburg, 1984 and Drucker, 1986), it is highly likely to be the case that many shooting 

galleries exist, where each of these may have a different composition of drug users (in 

terms of the frequency of sharing and needle cleansing). In addition it is unrealistic to 

assume that each of the 200,000 addicts is equally likely to visit each shooting gallery 

as it seems reasonable to expect addicts to visit mainly shooting galleries in their own 

locality. Moving from Kaplan's original model to the highly heterogeneous situation 

just described is an extremely important step since this reflects much more accurately 

the behaviour of drug using populations throughout the world. 

Greenhalgh (1996) extends Kaplan's original model to incorporate variability in the 

rate at which addicts visit shooting galleries (or equivalently the frequency of needle 

sharing), the choice of shooting gallery, and the probability that addicts clean needles 

prior to injection. This model consists of a system of differential equations which 

Greenhalgh analyses to investigate the conditions necessary for the disease to die out 

or remain in the population. He found that (as implied by Kaplan's original model) a 

necessary and sufficient condition for HIV/AIDS to become endemic in the population 

is that the basic reproductive number exceeds unity, moreover if Ro >1 then the disease 

will tend to a unique endemic equilibrium and if no <1 then the disease will die out 

in all addicts and all needles. 

In Greenhalgh (1997) it is demonstrated that heterogeneous mixing of addicts and 

needles (as modelled in Greenhalgh, 1996) can give rise to higher long term prevalence 

levels of HIV/AIDS than homogeneous mixing. This is a potentially important result as 
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Kaplan (1989a) argues that homogeneous mixing is always a conservative assumption 

and overestimates the equilibrium prevalence of HIV amongst addicts. The results of 

Greenhalgh (1997) imply that it may not be suitable (as previous thought) to examine 

the spread of HIV among populations of drug users using simple homogeneous models. 

In Greenhalgh and Hay (1997), the effect of more of the simplifications made in 

Kaplan's original model are investigated. Kaplan assumed that an infectious drug user 

always leaves a needle infectious after use, and the probability that an infectious needle 

is rendered virus free by an uninfectious addict is independent of the probability of 

transmission of HIV from the needle to the susceptible addict. The former assumption 

is very difficult to either verify or refute due to the lack of data on how addicts and 

needles interact with each other. The latter assumption is also open to question given 

that if an infectious needle is flushed (rendered virus free) by an initially uninfectious 

addict then all the infectious contents must enter the bloodstream of the addict which 

presumably increases the probability of HIV infection. Greenhalgh and Hay (1997) 

extend Kaplan's original model to allow infectious addicts to leave a needle virus free 

after use and incorporated a joint probability distribution between the transmission 

probability of HIV and the probability that a needle is flushed. In addition they also 

allowed for the possibility that addicts who discover that they are HIV positive stop or 

at least reduce their level of needle sharing. Greenhalgh and Hay found that assuming 

a joint probability distribution between a, the probability that a susceptible addict is 

infected with HIV in a single injection with an infectious needle and 0, the probability 

that a needle is flushed, made no difference to the long term prevalence of disease in 

the population. The effect of allowing infectious addicts to leave a needle virus free 

after use was difficult to assess due to a lack of data. They also found that if addicts 

who discover that they are HIV positive reduce their rate of sharing needles, then the 

long term prevalence of disease could be significantly reduced. This result suggests that 

introducing HIV testing for intravenous drug addicts could be potentially important 

as a control strategy, for example in conjunction with a needle exchange program. 

Kretzschmar and Wiessing (1998) also examine the effect of testing addicts for HIV 

and find that it is of very little benefit. However this result could depend heavily on the 

assumptions made by Kretzschmar and Wiessing relating to the infectivity of addicts 

during their infectious lifetime. We discuss this paper in detail later in this section. 

So far we have discussed Kaplan's basic model and realistic extensions to this model. 
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We now discuss other work not directly based on Kaplan's models. We have noted that 

heterogeneous mixing in addicts is both more realistic and gives long term prevalence 

results which differ from homogeneous models. Capasso et al. (1995) discuss a deter- 

ministic model which assumes that addicts share needles in "friendship groups", these 

are as the name suggests groups of social acquaintances. They first deal with a single 

group model derived from the basic single population SIR model. They show that for 

the disease to become endemic in the population the basic reproductive number must 

exceed unity. If the basic reproductive number is less than or equal to unity then the 

disease will die out in all addicts and all needles. Later in Capasso et al. (1995) the 

single group model is extended to cater for the multi-group case. 

Gani and Yakowitz (1993) use a random allocation model to examine the spread of 

HIV by needle sharing amongst small groups of intravenous drug users who are friends 

or relatives (buddy-users). They use a Markov chain approach to track the increase in 

the number of infectious drug users among stable groups of addicts. This model is used 

to examine the effects of the probability that addicts share needles and the probability 

of HIV transmission from an infectious needle to an addict in a single injection. Gani 

and Yakowitz later incorporate the replacement of infectious addicts from the group by 

uninfectious addicts from the general intravenous drug injecting population. 

Yakowitz (1994) explores moving from a "microcosmic IVDU model to a macro- 

cosmic HIV epidemic", (where IVDU stands for intravenous drug user). He uses a 

stochastic simulation approach to model the transmission of HIV among a population 

of drug users who meet on a periodic basis to share needles and inject drugs. This 

is the microcosmic model (which has similarities to the model discussed in Gani and 

Yakowitz (1993)). Yakowitz then extends this situation to allow for the possibility that 

IVDUs might circulate within an extended population, and be replaced by randomly 

selected individuals from that population. This represents the move from a microcosmic 

model to a macrocosmic model. He finds that this circulation model can exhibit a va- 

riety of possible behaviours and considers that due to the appreciable variability in the 

model it is not possible to find adequate deterministic approximations. Yakowitz finds 

somewhat unusually that in his model the prevalence of HIV does not reach a quasi- 

equilibrium steady state, this is contrary to the general behaviour of HIV/AIDS models 

which usually tend to a globally stable endemic equilibrium (Blower and Dowlatabadi, 

1994). 

Allard (1990) discusses a mathematical model which describes the risk of infection 
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from sharing injection equipment. He uses a probabilistic (as opposed to dynamic) 

model which examines the risk of infection from HIV each time that an addict injects 

with a shared needle. This model treats the risk of infection of HIV as a function of the 

following variables: the number of needles shared by the current addict; the probability 

that a needle is left infectious after use by an infectious addict; the probability of 

transmission of HIV from needle to addict; the number of addicts who have previously 

used each shared needle; the prevalence of HIV in the group from which the previous 

users are drawn; the number of times each needle has been used by each previous 

user and finally the number of times the current addict uses the needle. Allard claims 

that this model suggests that when each needle has been used previously by only one 

addict, the number of addicts with whom needles are shared is more important than 

the number of needles shared, and that the reverse is true when a needle has been used 

previously by many people. 

Rather than construct a model of the spread of HIV via needle sharing from first 

principles, an interesting and possibly useful analogy can be made between the spread 

of HIV via sharing infected needles and the spread of malaria via infected mosquitoes 
biting humans. Massad et al. (1994) explore this connection and develop a new ap- 

proach for the estimation of the basic reproductive number for HIV among IVDUs. This 

approach is based on an adaptation of the models proposed by Ross (1915,1916) and 

Macdonald (1950,1952,1953) for vector-borne infections. However there are several 

obvious differences between the behaviour of needles and the behaviour of mosquitoes, 

for example only a fraction of infected mosquitoes are considered to be infective and 

mosquitoes have an incubation period before becoming infective. In contrast it is 

assumed that all needles which are infected are infective and there is no intrinsic incu- 

bation period of HIV in needles. Massad et al. adjust their model to take account of 

these behavioural differences so as to reflect how HIV is spread amongst a homogeneous 

addict population. One disadvantage of using this mosquito analogy is that whilst the 

model can be adjusted to fit the behaviour of needles, the interpretation of the pa- 

rameters in this model is not as clear as in Kaplan's original model. For example it is 

convenient to be able to explicitly feature the probability that a needle is cleaned prior 

to use or flushed during use. Later in Massad et al. (1994) the model is extended to 

cover the possibility that a needle is not left infectious after use by an infectious addict 

and allows for addicts to inject at different rates. They also look briefly at interactions 

between distinct communities of IVDUs. 
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Blower et al. (1991) use a data-based mathematical model to assess the epidemiolog- 

ical consequences of heterosexual, intravenous drug use and perinatal transmission in 

New York City, USA. This is a complex model which consists of 34 ordinary differential 

equations and a large number of behavioural parameters. They use a scenario anal- 

ysis of this model to examine the relationship between heterosexual and intravenous 

drug use transmission and provide a qualitative and quantitative insight into the HIV 

epidemic in New York City. They find that the behaviour of IVDUs has important 

knock-on effects for the heterosexual transmission of HIV. The model was used to pre- 

dict the future number of adult and pediatric AIDS cases, however due to uncertainties 

in the parameter estimates in the model the confidence intervals of these predictions 

were very wide. An interesting result of this work is that Blower et al. claim that 

of the thirty or more variables in their model only a few of these were significant in 

contributing to the AIDS case prediction variability. The model suggests that accurate 

long term estimates of future numbers of AIDS cases will only be possible once accurate 

estimates of the key parameters are available. 

Blower and Dowlatabadi (1994) use the complex deterministic model in Blower et 

al. (1991) as an example of carrying out a sensitivity and uncertainty analysis in a 

complex model of disease transmission. Uncertainty analysis may be used to assess the 

variability (prediction imprecision) in the outcome variable that is due to the uncer- 

tainty in estimating the input values. A sensitivity analysis can extend an uncertainty 

analysis by identifying which parameters are important in contributing to the predic- 

tion imprecision. Blower and Dowlatabadi travel around the sample space of the input 

parameters of their model using a Latin Hypercube sampling scheme. This is an ex- 

treme version of a Latin Square experimental design. Once the input parameters have 

been chosen the model in Blower et al. (1991) is simulated and the partial rank correla- 

tion coefficient (PRCC) between each input parameter and the output parameter (the 

value we wish to predict) is estimated. The size of the PRCC gives an indication of the 

relative importance of each parameter in the model in affecting the outcome variable. 

The sensitivity analysis suggests, perhaps not surprisingly, that the HIV transmission 

probability for intravenous drug users is one of the most influential model parameters. 

An interesting theoretical feature of this paper is the decision to use a Latin Hyper- 

cube sampling scheme as this design assumes that the effect of each input parameter 

is independent of the values of all other model parameters. This seems rather unlikely 

in a complex non-linear model. 
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All the articles we have discussed so far have explored the effects of behavioural 

changes on the spread of HIV/AIDS, such as the rate at which addicts share needles, 

the frequency at which needles are cleaned prior to use and the different social groups in 

which addicts share needles. Whilst these effects are important (and the need for more 

work in this area is reflected in the current MAP provisional report recommendations) 

they ignore the potential importance of epidemiological effects such as the three stages 

of infectivity which addicts progress through during the AIDS incubation period. As 

noted in Section 1.8 this is an area which is suggested by Anderson and May (1991) 

as important in studying the dynamics of HIV infection. However work in this area 

is very sparse with many researchers simply ignoring this effect (Seitz, 1998, personal 

communication). Several articles which do explore the effect of variable infectivity over 

the lifetime of drug users are Peterson et al. (1990), Seitz and Müller (1994), Tan and 

Tang (1993) and Kretzschmar and Wiessing (1998). 

Peterson et al. (1990) use a complex Monte Carlo simulation model to investigate 

both behavioural and epidemiological effects of HIV infection in populations of intra- 

venous drug users. Their model consists of three interacting sub-models: a model of 

HIV disease progression within an infected individual; a model describing the hetero- 

geneity of intravenous drug use within needle sharing injecting communities; and a 

model of the social networks describing the pattern of needle sharing in drug addicts. 

The stochastic model of HIV progression is based on the work of Longini et al. (1989) 

who used a four state Markov model to estimate the distribution of duration in each 

phase of HIV infection. The four stages in this model were Acute Infection, Asymp- 

tomatic, Pre-AIDS Symptoms and AIDS. This is in agreement with the assertion of 

three infectious stages during the incubation period of AIDS by Anderson and May 

(1991). Using data on viral antigen recovery and epidemiological data from blood 

transfusion recipients, (Ward et al., 1987), Peterson et al. estimate that the relative 

infectivity of addicts in the stages: Acute Infection: Asymptomatic: Pre-AIDS Symp- 

toms is approximately 5: 1: 3. The second sub-model deals with the different sharing 

rates of addicts. This sub-model assumes that the lifecycle of an intravenous drug user 

starts from recruitment from the non-drug using population at large and then progresses 

sequentially into monthly, weekly and daily drug use. The final sub-model examines 

the social network that describes the relationships of people with whom a drug addict 

shares needles. This sub-model has three distinct types of needle sharing experiences: 

acquaintance sharing in small groups, random sharing with individual strangers, and 
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pooled sharing, resulting from the use of common injection equipment in a shooting 

gallery setting. 

Peterson et al. put these three sub-models together to create a stochastic simulation 

model of how HW spreads among a population of intravenous drug users. Using a 

variety of parameter estimates and simulations they report several interesting findings. 

Firstly they suggest that it is imperative that prevalence studies of HIV accurately 

report which type of drug addict is being surveyed: a heavy user or an occasional user. 

The model used by Peterson et al. suggests that the difference in prevalence between 

these two user groups can be very large indeed. Hence to get a balanced estimate of the 

prevalence of HIV in any given drug addict population care is required in differentiating 

between these two types of users. Peterson et al. also find that the initial "seeding" 

in their model has a large effect on the confidence interval of long term prevalence in 

the population. In other words how the disease initially progresses seems to play an 
important part in the long term level of disease in the population. 

Whilst Peterson et al. incorporate a three stage infectious period in HIV positive 

addicts they do not directly compare the effect of moving from a constant infectious 

period to three stage infectivity. This effect is explored by Seitz and Müller (1994) who 

model the spread of HIV in the population at large (including drug addicts, heterosexual 

and homosexual population groups). Seitz and Müller assume that the infectivity in an 

HIV positive individual has a so-called "bath-tub" shape. They justify this by arguing 

that at the onset of infection, during the first several weeks before the body develops 

an immune response, the virus is free to replicate unabated. In advanced states of the 

disease, the immune system becomes increasingly impaired and viral replication again 

accelerates. Both phases bear directly on HIV transmission because HIV infectivity 

is thought to be related to the viral load in the infected individuals bodily fluids, 

(Osmond, 1990). Hence the "bath-tub" effect represents the higher infectivity of an 

HIV positive individual at the start of the AIDS incubation period and during the final 

full blown AIDS stage. 

Seitz and Müller use a deterministic simulation model to examine the effects of mov- 

ing from the conventional assumption of constant infectivity to three stage infectivity. 

The model used is highly complex and uses many biological and behavioural parame- 

ters. A particularly interesting feature of this model is that the incubation period of 

AIDS is increased once the simulations reach 1987 to reflect better drug therapy. One 

perhaps dubious assumption in this model is that the "bath-tub" infectivity assumes 
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that the second rise in infectivity occurs at the onset of full blown AIDS (also called 

frank AIDS). This seems sensible in terms of the infectivity of an individual, however 

AIDS epidemic modellers usually assume that people with frank AIDS, who are usu- 

ally aware of their condition, do not continue to share needles or engage in unprotected 

sexual activity (Kaplan, 1995, Kaplan, 1989a, Anderson and May, 1991). 

Seitz and Müller incorporate three stages of infectivity by assigning relative infec- 

tivity factors to individuals according to how much time has elapsed since the initial 

infection with HIV. It is important to note that these infectivity factors do not only ad- 

just for the differing viral load in infected persons but also their lifestyle and behaviour. 

For example it is assumed that the infectivity of heterosexual men is 169 times greater 

after initial infection with HIV than in the later Asymptomatic stage, similarly at the 

onset of frank AIDS the infectivity is 25 times greater than in the Asymptomatic stage. 

The infectivity factor of 25 at the onset of frank AIDS is justified as a combination of 

increased viral load but decreased sexual activity through choice and reason of illness. 

Seitz and Müller simulate their model for a number of different scenarios (parameter 

choices) and compare the results with the case where the infectivity of an individual 

is constant during their infectious lifetime, and importantly where the cumulative in- 

fectivity over the infectious lifetime is the same as in the three stage infectivity case. 

The results of these comparisons are interesting in that three stage infectivity resulted 

in a greatly increased incidence of HIV and AIDS in the total population. In addition 

it appears that the dynamics of the epidemic is different under three stage infectivity 

with a large wave of HIV incidence occurring at the start of the epidemic which dies 

out as time progresses. In the constant infectivity case the disease progresses much 

more slowly among the population. This work by Seitz and Müller suggests that mov- 

ing from constant (single stage) stage infectivity to three stage infectivity could have a 
large effect on the long term prevalence of HIV and AIDS in the population. A slight 

criticism of this work is that there is a lack of transparency in the model used by Seitz 

and Müller (which is probably due to the considerable complexities of the model). It 

would have been interesting to examine more closely the effects of three stage infectivity 

in individual population groups (such as intravenous drug users) to assess more clearly 

why such a large increase in long term prevalence was observed and what particular 

assumptions were made relating to the behaviour of each population group. 

Tan and Tang (1993) develop a stochastic model for the HIV epidemic involving 

both sexual contact and intravenous drug use. Their model is formulated in terms 
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of a chain multi-nomial model which is used to derive the expected sizes of different 

population classes throughout the course of an HIV epidemic. Tan and Tang divide the 

population up according to whether individuals are susceptible, infectious with HIV 

or have developed full blown AIDS, in addition a class is reserved for individuals who 
have been infected but are not yet infectious. The class of infectious individuals is 

also partitioned into k sub-stages to allow for varying levels of infectivity during the 

infectious lifetime. The model also contains separate subgroups according to the sex- 

ual and drug use behaviour of individuals. Tan and Tang initially consider a discrete 

time stochastic model before moving on to the analogous continuous time situation. 
An interesting aspect of this work is that the expected numbers of susceptible, latent, 

infectious and AIDS infected individuals in the population under the stochastic model 

can differ markedly from the deterministic equivalent of this model. The paper con- 

cludes with a simulation study of the model using a variety of parameter estimates. The 

relative infectivity of infectious individuals and the duration of each infectious stage 

was determined by using data on clinical observations of HIV infection (Redfield and 
Burke, 1988). Tan and Tang chose a latent period of 1.25 months duration followed by a 
five stage infectious period where these stages have duration 7 months, 4.17 years, 1.67 

years, 1.67 years and 1.67 years respectively. It was assumed that the infectivity of an 
individual monotonically increases with time during the first infectious stage reaching 

a maximum infectivity after four months, after which the infectivity of an individual 

decreases to a very low level prior to entering the second infectious stage. Infectivity 

remains very low during stage two before again increasing monotonically throughout 

stages three, four and five towards the AIDS infectivity stage. 

Kretzschmar and Wiessing (1998) examine the spread of HIV among a population of 
drug users using a stochastic simulation model. The main aspects of addict behaviour 

which they examine are the social networks in which addicts share needles and the 

frequency with which needles are shared. Kretzschmar and Wiessing construct their 

model by examining the behaviour of two different populations of addicts in Holland. 

The model used distinguishes between two different types of needle sharing: "buddy" 

sharing and "stranger" sharing. When addicts share needles with a sexual partner or 
friend this is classed as "buddy" sharing, whereas when addicts visit shooting galleries 

this is classed as "stranger" sharing. Kretzschmar and Wiessing claim that the majority 

of sharing in Holland is "buddy" sharing but there does exist a small core of high 

risk users (those who have a high sharing rate with "strangers"). Their simulation 
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model allows addicts to join and leave "buddy" relationships over the course of their 

sharing lifetime and allows addicts to share needles at different rates in the different 

relationships. In addition to modelling the type of needle sharing undertaken by addicts 

the model also incorporates variability in the infectivity of addicts who are infected with 
HIV. They assume that an infectious addict progresses through two distinct phases of 
infectivity until the addict develops full blown AIDS (at which stage they are removed 

from the sharing population). Kretzschmar and Wiessing assume that during the first 

60 days after initial infection the probability of transmission is 0.5 per contact (in other 

words sharing a needle with an addict in this stage carries a 50% risk of infection). After 

60 days the infectivity of an infectious addict then drops to 0.001 per contact. The 

mean sojourn time in the population is taken to be ten years. They ensure that the 

mean infectivity of an infectious addict in their model is the same as that estimated 
by Kaplan and Heimer (1992a), namely 0.01 per contact. It is argued that the state 

of health of an addict once the viral load starts to increase prior to the development 

of full blown AIDS is such that sharing does not occur, hence a two stage infectious 

period is used rather than a three stage infectious period. 
Kretzschmar and Wiessing use their model to examine a number of prevention 

strategies. The strategies used consist of lowering the frequency at which various groups 

of addicts share needles, in particular several strategies examine the effect of testing 

addicts for HIV. If an addict tested positive then his or her frequency of sharing was 

reduced. After studying the output from their model they find that reducing sharing 

with "stranger" users is more effective than reducing the overall frequency of sharing. 

They also find that there is a threshold sharing frequency below which the epidemic 

never takes off. A particularly interesting finding is that the model suggests that per- 
forming an HIV test on 10% of addicts or even 50% of addicts a year has no appreciable 

effect on HIV incidence (a positive HIV test results in the future frequency of sharing 
being reduced by a factor of 0.5). They find that the only effective prevention strategies 

are those that reduce sharing frequencies in the entire population. It should be noted 

that, as acknowledged by Kretzschmar and Wiessing, these results depend heavily on 

the infectivity assumptions in their model, in particular the very low infectivity of an 

addict after the first 60 days of infection. For example as far as the HIV testing strat- 

egy is concerned, a reason for this strategy being ineffective is that by the time most 

addicts are tested they have already reached the low infectivity period and as such are 

of limited importance in spreading the epidemic compared to newly infectious addicts. 
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A smaller difference in the infectivity of addicts in the two infectious stages (or if the 

model included a third infectious stage as in Peterson et al. (1990)) may make HIV 

testing a more attractive prevention strategy. 

Hay (1999) examines a number of mathematical models of both a deterministic and 

stochastic nature. He first discusses a deterministic model due to Kaplan (1989a) and 

then converts this into a stochastic model. This stochastic model allows for injection 

equipment to have a varying (time dependent) level of infectivity. Hay examines the 

effect of moving from the assumption that injection equipment has a constant infectivity 

to three different infectivity assumptions. Firstly the infectivity of injection equipment 

is assumed to decrease over time according to an exponential distribution, then it is 

assumed that infectivity decreases linearly and finally that injection equipment remains 

infectious for a fixed number of days after which infectivity drops to zero. In addition 

Hay also examines the case where infectivity is split into three distinct stages in a 

similar fashion to Seitz and Müller (1994). He finds that assumptions relating to the 

infectivity of injection equipment have a significant effect on the dynamic behaviour of 

an HIV epidemic. 

1.11 A Basic Needle Sharing Model 

All the models we discuss in this thesis are extensions of the basic needle sharing model 

due to Kaplan and O'Keefe (1993). The modelling assumptions in this basic model 

are discussed in detail in the following chapter. For the moment we simply give a brief 

description of this model and state its equations together with some comment as to its 

main properties. 

Firstly we assume that the population amongst whom the disease is spreading is 

of size n, where n is large; the random variability in the fraction of infected addicts 

and needles at time t is sufficiently small to be ignored; and that addicts who leave 

the population for any reason are immediately replaced by susceptible addicts. We also 

assume that all addicts and needles mix randomly and behave according to independent 

Poisson processes. We suppose that addicts inject with shared needles at rate A per unit 

time, leave the population for non disease related reasons at rate p per unit time and 

that infected addicts develop AIDS at rate ö per unit time (at which point they leave the 

sharing, injecting population). We also assume that a needle is always left infectious 

after use by an infectious addict and the probability of HIV transmission from an 
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infectious needle to a susceptible addict in a single injection is a. In addition we suppose 

that a susceptible addict can flush (render uninfectious) an infectious needle during the 

injection process with probability 0. Finally addicts successfully clean needles prior to 

use with probability ¢ and each needle in the population is exchanged for an uninfectious 

needle at rate T per unit time. 

Using these assumptions and letting ir(t) and ß(t) respectively denote the fraction 

of addicts and needles that are infected with HIV at time t, and defining the ratio of 

addicts to needles by y= n/m, the following differential equations describe the spread 

of the disease: 

d- 
- (1- a))\ßa(1- 0) - ir(µ + ät 

and 
dQ 

(1- B)aryý -/3x7(1 - ý)(1- (1- B)(1- ¢)) - ßr. (1.2) 

Equation (1.1) states that the prevalence of infectious addicts will increase when an 

uninfectious addict injects with an infectious needle which is not cleaned prior to use 

and HIV transmission occurs, and decrease when an addict develops full blown AIDS 

or leaves the sharing, injecting population for other reasons. Equation (1.2) states that 

the prevalence of infectious needles will increase when an infectious addict injects with 

a previously uninfectious needle, and decrease when a previously infectious needle is 

used by an uninfectious addict and is either cleaned or flushed during injection, or the 

needle is exchanged. 

An endemic solution is possible in this model if and only if the parameter Ro exceeds 

unity, where 

(µ + 6)(ä + T) 
(1.3) 

Here B=1- (1 - B) (1 - 0) and f= -r/(ay). As usual, Ro has a natural biological 

interpretation: it is the total expected number of secondary infections caused by a single 

infectious addict during his or her entire infectious lifetime, after entering a population 

of uninfectious needles and otherwise susceptible addicts. In the following chapters we 

extend the model in eqns (1.1)-(1.2) to more realistically reflect the spread of HIV via 

needle sharing. 
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1.12 Summary and Comments 

From our previous review we can draw several important points. Firstly it is apparent 

that infection from HIV is a serious global problem. However the actual method of 

infection varies around the world, the disease is mainly spread via heterosexual contact 

in the developing countries in sub-Saharan Africa, and mainly through intravenous drug 

use and homosexual contact in the developed countries of Western Europe and North 

America. 

The discovery of AIDS in the early 1980's was followed by a large amount of research 

into both the biological nature of the disease and epidemiological modelling aspects. 

However twenty years on there is comparatively little interest in HIV and AIDS as in the 

developed world the disease has failed to take hold among the heterosexual population 

at large, contrary to some of the early doomsday predictions. Indeed HIV and AIDS 

is in some ways unique in that in the developed world it has so far only really affected 

minorities such as homosexual men and intravenous drug addicts. However while high 

risk populations such as intravenous drug users are comparatively small in number, it 

seems likely that if HIV was to begin to take hold among the population at large then it 

would stem from one of these minority groups. This is particularly true in some areas 

of post-communist Europe where the number of people participating in intravenous 

drug use has increased dramatically. Therefore an in-depth study of the transmission 

of HIV among populations of intravenous drug users seems a potentially important area 

of research. 

We have previously discussed a number of articles which either deal solely with the 

spread of HIV through the sharing of contaminated injection equipment, or where this 

is contained in part of the model. There are a number of important heterogeneities 

involved in modelling the spread of HIV via needle sharing. For example addicts ex- 
hibit a wide range of needle sharing rates and the efficiency of needle cleansing is 

highly variable. This is a common feature examined in many of the articles previously 
discussed. Much less common is the study of how addicts and needles interact, for 

example examining the consequences of whether infectious addicts always leave needles 
infectious after use and uninfectious addicts always leave previously infectious needles 

uninfectious after use, and the impact the latter has on the probability of HIV trans- 

mission. As discussed by Greenhalgh and Hay (1997) these interaction assumptions 

play an important part in the disease dynamics. 
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As previously mentioned medical evidence suggests that the infectivity of an in- 

fectious addict may vary substantially throughout his or her infectious lifetime. This 

again is a feature not commonly examined in the literature and moreover those articles 

which do examine this use a wide variety of different assumptions. In particular we are 

unaware of any articles which incorporate addicts of different levels of infectivity and 

also make any reference to how these respective addicts interact with either uninfec- 

tious needles or needles of different levels of infectivity. It is difficult to see how one 

could adequately examine the effect of a three stage infectious period (for example) 

while not including these possibly crucial interaction assumptions. This brings us to 

the focus of the work in this thesis. 

1.13 Thesis Overview 

A main aim of this thesis is to establish whether the inclusion of a three stage infec- 

tious period into existing models of the spread of HIV via needle sharing affects their 

behaviour. For example we wish to determine whether moving from a single stage to 

a three stage infectious period increases the long term level of disease among the pop- 

ulation. Alternatively we could ask whether the extra complexity required to model a 

three stage infectious period produces sufficiently different behaviour to warrant inclu- 

sion into a parsimonious model of HIV transmission via needle sharing. A related issue 

which we examine is the effectiveness of testing addicts for HIV as a method of reducing 

the spread of disease. We expect that an addict who knows he or she is infectious will 

reduce their level of needle sharing. Intuitively this control strategy should be directly 

affected by assumptions made relating to the infectivity of addicts. For example this 

strategy may be less effective if addicts are highly infectious after initial infection and 

then their infectivity decreases until their removal from the population, than if their 

infectivity continually increases during the AIDS incubation period. 
There are several common themes throughout this thesis. First and foremost we 

try to keep the work practically focused since the motivation for studying models of 
disease transmission is to provide insight and practical guidance into the management of 
infectious diseases. Secondly whenever possible we try to adopt an analytical approach 

supported by numerical or simulation methods. The main motivation for this is that in 

the models we study there is generally a lack of good quality data from which to estimate 

some of the model parameters. This is particularly true when trying to estimate how 
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addicts and needles interact since we are unaware of any data to assist with this. 

In Chapter 2 we discuss and extend the model due to Kaplan and O'Keefe (1993) to 

allow addicts to progress through three stages of infectivity. We refer to this model as 

the Simple Model. We conduct a stability analysis of this model and a short simulation 

study to validate our analytical results. The Simple Model assumes that while addicts 

have three different classes of infectivity, needles are still only classed as either infectious 

or not infectious. 

In Chapter 3 we extend the Simple Model to also allow needles to exist in three 

infectious classes where each class corresponds to a class of infectious addict. In order 

to split the class of infectious needles into three infectious sub-classes it is necessary to 

make assumptions relating to how addicts and needles in the various infectious classes 

interact with each other. These assumptions are referred to as addict-needle interaction 

assumptions. In extending the Simple Model it was decided first to assume that any 

needle (whether infectious or not) adopts the infectivity characteristics of the current 

user. This is a rather extreme addict-needle interaction assumption and this model 

represents a lower bound of the spread of disease under three stage infectivity. We 

refer to this model as the Optimistic Model. We conduct a stability analysis of this 

model and a short simulation study to validate our analytical results. 

In Chapter 4 we extend the Simple Model to again allow needles to exist in three 

infectious sub-classes where each class corresponds to a class of infectious addict. This 

time we extend the model by assuming that a needle always adopts the more infectious 

class between that of the needle prior to use and that of the current user. As in the 

Optimistic Model this is a rather extreme addict-needle interaction assumption but in 

this case our model represents an upper bound of the spread of disease under three 

stage infectivity. We refer to this model as the Pessimistic Model. We again conduct a 

stability analysis of this model and a short simulation study to validate our analytical 

results. 

In Chapter 5 we develop a generalisation of the extreme Optimistic and Pessimistic 

Models which uses a general probability structure to define the outcome of each addict- 

needle interaction. This model is referred to as the General Model. We then show 

a number of analytical results relating to the behaviour of this model and a short 

simulation study to explore the behaviour which could not be shown analytically. In 

Chapter 6 we discuss extending the Simple Model and the General Model to incorporate 

41 



mortality due to AIDS and the recruitment of new (susceptible) drug users from the 

population at large. In previous chapters we have assumed instead that the drug 

addict and needle populations maintain a constant size. Several local stability results 

are shown followed by a short discussion on the effect of AIDS mortality and a number 

of simulations showing both the effect on the population size of an HIV/AIDS epidemic 

and the long term prevalence level of HIV in addicts. 

In Chapter 7 we discuss the practical implications of allowing addicts and needles to 

exist in three states of infectivity. In short we explore whether our three stage models 

can offer new insight into the spread of HIV via needle sharing among intravenous drug 

users. This chapter compares the long term prevalence of HIV in the three stage models 

with single stage equivalents (such as the model used in Kaplan and O'Keefe (1993)). 

We are specifically interested in determining whether the long term prevalence of HIV 

is higher as a result of three stage infectivity (as suggested by Seitz and Miller (1994)). 

In addition the effect of control strategies such as needle exchange programs in the 

three stage models is examined along with the effect of improved needle cleaning. 

In Chapter 8 we move away from investigating the effect of a three stage infectious 

period and examine the effect of testing addicts for the presence of HIV. We first extend 

the original model due to Kaplan and O'Keefe (1993) and then perform a stability 

analysis on this model. We then compare the effect of HIV testing in this model with 

that of a simpler model discussed by Greenhalgh and Hay (1997). We finally extend the 

Optimistic and Pessimistic Models to incorporate HIV testing and examine the impact 

that different relative infectivity assumptions have on the effectiveness of this control 

measure. 

In Chapter 9 we discuss a method of sensitivity analysis suggested by Blower and 

Dowlatabadi (1994). Using the HIV test model from Chapter 8 as an example, we 

show that the sampling scheme used in this paper can produce misleading results. In 

Chapter 10 we examine stochastic equivalents to the deterministic models discussed 

in previous chapters and use simulation to ascertain whether the long term behaviour 

of these models is comparable. We also briefly look at a stochastic threshold theorem 

for the Kaplan and O'Keefe model. The thesis concludes with Chapter 11 containing 

a discussion and summary of the work in Chapters 2-10. We also discuss several 

suggestions for future work. 
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Chapter 2 

The Simple Model 

2.1 Introduction 

In this chapter we develop and investigate the basic model that we shall use to describe 

the spread of HIV among a population of intravenous drug users. We first describe 

in detail the modelling assumptions used by Kaplan and O'Keefe (1993), and extend 

these to allow addicts to progress through three different stages of infectivity prior to 

the onset of AIDS. We then derive a system of differential equations based on this 

extended set of assumptions. Next we derive an expression for the basic reproductive 

number, "Ro, and move on to investigating the behaviour of our model. In particular 

we are interested in the conditions necessary for the disease to die out or to persist 

in the population. We finally examine numerical simulations of our model in order to 

validate our previous mathematical results before concluding the chapter with a short 

summary of the main findings. 

2.2 Kaplan and O'Keefe Model 

Kaplan and O'Keefe (1993) describe a model which is itself an extension of a model 
due to Kaplan (1989a). The model featured in the later paper is significant in that it 

incorporates a needle exchange program. Such programs have been demonstrated to 

be an important measure in reducing the spread of HIV among intravenous drug users. 
Greenhalgh and Hay (1997) discuss in detail the model due to Kaplan (1989a). Kaplan 

describes a deterministic model for the spread of HIV amongst intravenous drug users, 

and it was assumed that the population amongst whom the disease is spreading is of 

size n, where n is large. He makes the following assumptions: 
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1. All sharing of drug injecting equipment occurs in shooting galleries. In the model 

a shooting gallery is defined as a location where addicts sequentially rent the 

same drug-injection equipment. There are m shooting galleries (or equivalently m 

"kits" of drug-injection equipment are in circulation) and addicts select shooting 

galleries (or "kits") at random. All addicts inject once per visit to a shooting 

gallery. 

2. Each addict visits shooting galleries in accordance with a Poisson process with 

rate A, independently of the actions of other addicts. 

3. Injection equipment always becomes infectious if it is used by an infected addict. 

When infectious injection equipment is used by an uninfected addict the act of 

injecting will replace the infectious blood in the needle with uninfectious blood 

from the addict with probability 0. When this occurs the needle is said to have 

been "flushed". Any uninfected addict who uses infectious injection equipment 

is considered to be exposed to HIV. 

4. Given exposure to HIV an addict becomes infected with probability a; a is the 

infectivity of HIV via shared injection equipment. Sharing injection equipment is 

the only means by which addicts may become infected. 

5. Infectious addicts develop full blown AIDS according to a Poisson process with 

rate b, at this stage addicts leave the sharing, injecting population. These addicts 

are immediately replaced by susceptible addicts. 

6. Infectious addicts depart the population for reasons other than developing full 

blown AIDS (for example due to death, treatment with methadone, or relocation) 

at rate µ and are immediately replaced by susceptible addicts. 

7. The random variability in the fraction of infected addicts and needles at time t 

is sufficiently small to be ignored. 

The Kaplan and O'Keefe extension to Kaplan (1989a) additionally assumes that: 

8. An addict effectively cleans (or bleaches) the injection equipment immediately 

prior to use with probability 0. 

9. Each needle is exchanged (or renewed) for an uninfected needle according to a 

Poisson process with rate r. 
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As previously discussed it has been demonstrated by Peterson et al. (1990) and 

Anderson and May (1991) that once an individual is infected with HIV, the viral load 

of HIV in the blood varies considerably over the lifetime of the individual. The viral 

load can be interpreted as the amount of HIV virus per unit volume of blood, hence 

viral load is a measure of the infectivity of an individual. The variability in viral load 

can be approximated into three distinct sequential stages: stage one - Acute Infection, 

stage two - Asymptomatic and stage three - Pre-AIDS symptoms. The Pre-AIDS 

stage is where the addict is classed as having AIDS Related Complex (ARC), following 

this stage an addict develops full blown AIDS (at which point they leave the needle 

sharing, injecting population). We now incorporate the Acute Infection, Asymptomatic 

and Pre-AIDS stages into Kaplan and O'Keefe's model by replacing Assumption 5 with 

the following model assumptions: 

5a. Immediately after the initial infection an addict is defined to be Acutely Infectious 

and enters the Asymptomatic stage according to a Poisson process with rate bl. 

5b. Asymptomatic addicts enter the Pre-AIDS stage according to a Poisson process 

with rate b2. 

5c. Pre-AIDS addicts enter the full blown AIDS stage according to a Poisson process 

with rate b3, at this point addicts leave the sharing, injecting population. 

2.3 Model Derivation 

We now derive the differential equations which define the spread of HIV among an 

intravenous drug addict population where addicts progress through three stages of in- 

fectivity prior to the onset of AIDS. We derive four equations, one for each stage of 

infectious addict and one for infectious needles. 

The number of stage one infected addicts at time t+ At 

= {number of stage one addicts at time t} 

+{(number of uninfected addicts at time t) 

x (fraction of addicts who inject in [t, t+ At) with an infectious 

needle which is not cleaned prior to use and where transmission of 

HIV occurs in a single injection)} 
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-{number of stage one infected addicts who progress into stage two 

infectivity or leave the sharing, injecting population in [t, t+ At)}. 

Thus 

n7ri (t + Ot) = niri (t) + n(1 - iri(t) - 1r2(t) - ir3(t))Ai tß(t)«(1 - q5) 

-n7rl (t)Ot(pp + ö) + o(Ot). 

Subtracting nirl(t) from both sides, dividing by nit and letting At -4 0 we deduce 

that 
dirl s 

E 7r=) Aßa(1 - c5) - (i + Si)1ri " dt 
==1 

The number of stage two infected addicts at time t+ At 

= {number of stage two addicts at time t} 

+{number of stage one addicts who enter the stage two infectious 

class in [t, t+ At)} 

-{number of stage two addicts who enter the stage three infectious 

class or leave the sharing, injecting population in [t, t+ At)}. 

Thus 

n7r2(t+At) = n7r2(t) +nirl(t)31At - nr2(t)(1-4 +82)At+o(tt). 

Subtracting n7r2 (t) from both sides, dividing by nt t and letting At --* 0 we deduce 

that 
dire 

dt = bl"1 - (µ + 52)"2. 

Similarly 
dir3_ 

1P+J3)73- dt 
b272 -/ 

The number of infected needles at time t+ At 

= {number of infected needles at time t} 

+{(number of uninfected needles at time t) x (fraction of 

needles used by infected addicts in (t, t+ At))} 

-{(number of infected needles at time t) x (fraction 
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of infected needles used by uninfectious addicts in [t, t+ At) 

and left in an uninfected state)} 

-{number of infected needles exchanged in [t, t+ At)}. 

Thus 

mß(t + At) = mß(t) + m(1- 6(t)) AAt7(7rl (t) + 7r2 (t) + 7r3 (t)) 

-mß(t)Ait7(1- zrl(t) - ir2(t) - 73(t))(1- (1 - 0)(1- 0)) 

-m, 6(t)7-Ot + o(Lt). 

Subtracting mß(t) from both sides, dividing by mOt and letting At -* 0 we deduce 

that 

33 dß 
= (1 -ß)Ary(Eiri) -ßA7(1 - Eiri)(1 - (1-0)(1- 0)) -ßT. 

i=1 i=1 

Hence the system of differential equations which describes the spread of the disease is: 

dt= (1 
-E ii) Aßa(1 - ý) - (l, + 5i )ir1, (2.1) 

d 
i=1 

d7r2 
= bl7rl 

- 
(µ + b2)ir2, (2.2) 

dt 
dt 

= 45272-(14+b3)7r3y 
(2.3) 

dt 

and Lß 
= (i-ß)Äy( E7ri) -ßa7(1-E7r; ) (1-(1-e)(1-0))-6T, (2.4) 

i=1 i=1 

with suitable initial conditions: 0< 7rl (0), ire (0), ir3 (0), ß(0) and 7r1(0) + 7r2(0) + 7r3 (0), 

ß(o) < 1. 

2.4 The Basic Reproductive Number 

The basic reproductive number is commonly defined as the expected number of sec- 

ondary infections caused by a single newly infectious individual entering a totally sus- 

ceptible population at equilibrium (Diekmann et al., 1990). This number is a function 

of the model parameters and is denoted by Ro. In many epidemiological models the 

value of Ra is of fundamental importance, in particular Ro =1 is commonly a threshold 

value which when crossed causes radically different behaviour in the model concerned. 
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When Ro <1 we expect the disease to die out, whereas if Ro >1 we expect the disease 

to take off. We now derive an explicit expression for Ro based on the model defined by 

equations (2.1)-(2.4). 

Considering a single newly infected addict entering a population containing only 

susceptible addicts and uninfectious needles at the disease-free equilibrium, the initial 

infection process can be broken down into two distinct phases. Firstly the disease 

passes from our single infectious addict to an uninfectious needle, secondly this needle 

(which is now infectious) passes on the disease to a susceptible addict. We wish to find 

the expected number of needles a single addict will infect during his or her infectious 

lifetime and the expected number of addicts each of these needles will infect. The 

product of these expected values is R0. 

Addicts progress through three infectious stages. During each stage an addict will 

leave needles infectious. Addicts inject at rate A per unit time and spend on average 

1/(µ + 5) time units in stage. one. An addict progresses from stage one to stage two 

with probability 81/(p + 5) and spends on average 1/(p + b2) time units in this stage. 

Similarly an addict progresses from stage two to stage three with probability b2/(p+b2) 

and spends on average 1/(µ + b3) time units in this stage. Hence on average an addict 

infects 

A Ail A5152 
+J1 + +aß)(µ+M + (14 +JO(A+M(P+a3) 

needles during his or her entire infectious lifetime. 

We now determine how many infections are caused by each needle until it is rendered 

virus free. Consider a single infectious needle, we want to find E(addicts infected by 

this single needle), the expected number of addicts infected by this needle. To find 

this value we first condition on the outcome of the next event, that of a needle being 

rendered virus free before the next user injects with it. We partition this event into 

two, either the needle is rendered virus free before the next injection or it is not. Let Y 

denote the number of addicts infected by a single needle, let X1 denote the event that 

the needle is rendered safe before the next injection, and let X2 denote the event that 

the needle is still infectious at next injection. Therefore we have that 

E(Y) = E(Y I X1)P(X1) + E(Y I X2)P(X2). 

If the needle is rendered safe prior to the next injection then the infected needle has 

infected zero addicts, thus E(Y I Xi) = 0. The event X2 corresponds to the needle 
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being neither cleaned nor exchanged prior to use. The probability of this event is 

A7(1 - q5)/(Ay +, r), hence 

E(Y) = E(Y 1 X2) 
X 7(1- 0) 

A, y 

We now explore E(Y I X2) by conditioning on the next event, that of a susceptible 

addict injecting with an infectious needle. This event has four outcomes. An addict 

may be infected by the needle or still remain susceptible, in addition the addict may 

leave the needle infectious or flush the needle during use. Independence of the events 

that an addict is infected by the needle and the needle is flushed is not necessary 

(Greenhalgh and Hay, 1997). Also it is not realistic either as if the needle is flushed 

the addict is more likely to be infected. 

Consider the event that a susceptible addict injects with an infectious needle, each 

of the four outcomes mentioned previously are possible and each outcome has different 

implications for the number of addicts infected by this needle. Suppose that the addict 

flushes the needle, this means that the needle cannot infect any other addicts. If the 

addict becomes infected then the total number of addicts infected from the needle is 

one, if the addict is not infected then the total number of addicts infected from the 

needle is zero. Suppose that the addict does not flush the needle, this means that the 

needle is still infectious after the addict has used it and now awaits the next user. If 

the needle is not flushed the infection process has been renewed, the needle is in the 

same state as before but now has either one or zero infections to its credit depending 

upon whether the susceptible addict was infected or not. In the former case the needle 

will infect E+1 addicts where E= E(addicts infected by a single needle), similarly if 

the addict was not infected then the needle will infect E addicts. We can express this 

as 

E= 
(ý +)T7 [P(sus. addict infected and needle left infectious) (1 + E) 

1 

+P (sus. addict infected and needle left virus free) 

-E P(sus. addict not infected and needle left infectious)E], 

- 
(1 - O)Ay [P(sus. 

addict infected) + P(needle left infectious)E], 
ary+T 

- 
(1- O)A7 

[« + (1- 9)E]. 
ary+T 

Solving for E gives 
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E= 
(1-ý)a 

T+e ' 
where f=r/aryand 6=1-(1-0)(1- 0). 

We now have the expected number of addicts infected by a single needle, multiply- 
ing this by the expected number of needles an addict infects during his or her entire 

infectious lifetime gives Ro. Hence, 

Aa(1- 0) 
1 

{�+ 51 3152 l 
(F+5ý)(+B) lý+52+(F4+a2)(P+53)J. 

(2.5) 

We now move on to investigate the properties of our model and in particular we are 

interested in what role Ro plays in determining long term behaviour. 

2.5 Analytical Results 

We now turn our attention to the behaviour of our model and use analytical results 

to illustrate key properties. We are primarily interested in the properties of the equi- 

librium solutions, in particular how many steady state solutions the model possesses 

and whether these solutions are stable or unstable. We place two restrictions on the 

values of the model parameters, firstly we assume that all parameters with the excep- 

tion of 0, the probability that an addict successfully cleans a needle prior to use, are 

strictly positive; this is necessary to avoid complications such as dividing by zero. We 

allow ¢ to take on the value zero as this represents the practically important situation 

where addicts do not practice any kind of preventative cleaning prior to injecting with 

a shared needle, we also assume that ¢ is strictly less than unity. If 0=1 then HIV 

transmission is impossible and the model is meaningless (note also that =1 implies 

that Ro = 0). 

Define the region D in R4 by D= [0,1]4. The system defined by differential 

equations (2.1)-(2.4) starts in the region D. The right-hand sides of these equations 

are differentiable with respect to in, r2,7r3 and 6, with continuous derivatives, and the 

corresponding vector points into the region D on its boundary except at the origin, 

which is clearly an equilibrium point. It is straightforward using standard techniques 

(Hale, 1969) that equations (2.1)-(2.4) with initial conditions in D, have a unique 

solution that remains in D for all time. 

Theorem 2.1 If Ra <1 the system of equations (2.1)-(2.4) has a unique equilibrium 

solution where the disease has died out in both addicts and needles. If Ro >1 then there 
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is still the equilibrium where the disease has died out, however there is also a unique 

endemic equilibrium. 

Proof. 

Suppose that iri, 7r2i 7r3 and /3* denote respectively the equilibrium values of in, 

1r2i 7r3 and ß, and 7r = ir1 + 72 + 73- From equations (2.2) and (2.3) we have that 

7r2 = (biii)/(p + b2) and 7rä = (balz)/(u + 53), so 7r* = 7ri + 7r2 + 7r3 = itL, where 
al al a2 

L= i+ý+a2 + (it +az)(M+b3)' 
From eqn (2.1) we find that 

p*_ 7r* (A + bl) 
(2.6) 

L(1- 7r*)Aa(1- 0) 

From eqn (2.4) we find that 

7r* + (1 - ir*)O + f, 
(2.7) 

Equating (2.6) and (2.7) and dividing by 7r* (assuming that lr* # 0) gives us 

Aa(1 - q)L (/-, + öi) (T + 9) 
(µ + öß)(1- B) + Aa(1 - O)L 

(i_ 

ßa(1 - ¢)L 
(2.8) 

We now know 7r*, ß is found by substitution into (2.6), hence 

(p+6i)(T+e) R1+T 
ý1 

- aa(1 - ý)L 
(2.9) 

Using the expression for Ra in eqn (2.5) we find that 

aa(1-¢)L (Ro-1) 1 Ro-1 
, Q) - (i+5)(1-B)+Aa(1-O)L\ W /'1+T( Ro 

(2.10) 

It is obvious that there can only be two equilibrium solutions, the disease-free 

solution where lr* =0 and ß* =0 and a strictly positive solution. From eqn (2.10) we 

see that if Ro <1 then the only solution is the disease-free solution, if Ro >1 then we 

also have a unique positive solution. This completes the proof.. 

Theorem 2.2 If Ro <1 then whatever the initial state the disease will die out in both 

addicts and needles. 

Proof. 

The key stage in the method of the proof is to show that limt-,, 7rl (t) = 0. We 

prove this result in several stages. Let fr1(t) = supf>t In (a), this is monotone decreasing 

in t. For all t we have that 7rl(t) < fr1(t). Hence, given e>0 there exists tl(E) such 

that 7r1(t) < irr +e for all t> tl (e) where irr = tim supt. _+ in1(t) = limt_, ý fci (t). We 

need the following results: 
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Lemma 2.1 If ir2° = Jim supt.. 7r2 (t) then 

ý00 < ii7ri 
2- 

1-1+52' 

Proof. 

From eqn (2.2) we have 

d 
dt 

[1r2 
exp[(µ + b2)t]] = eibi exp[(Fp + 52)t], 

< (7rr + 6)6i exp[(p + 52)t], Vt > ti(c) for any e>0. 

Integrating over [tl (e), t] gives 

1r2(t) < ir2(tj (E))exp[-(µ+52)(t-tl(E))]+61(irr+E) [1-exp[-(p +b2)(t-tI(E))]1 
1A+a2 

E -} 
Ji (7+° + C), Vt > t2 (e), for some t2 (e) > t1 (e) sufficiently large. 

µ+b2 

Hence 

ir2(t) < E+a1(lrio 
+c) 

µ+S2 

Letting t -+ oo we have 

00 11r1 
7r2 +E1ý 

µ-1-b2 

Vt % t2(E)- 

l 
where el _E 

14+61 +62 
_\ 

/2+a2 I 

Suppose that 7r2 > (ölirr)/(µ + b2). Since el is an arbitrary positive constant we can 

choose el =2 [i2° - (bl7r0, °)/(j. + ö2)]. This provides a contradiction and completes 

the proof.. 

Corollary 2.1 If 7r3° = limsupt, supt,,, then 

moo 
61a27r1ý 

(µ + 62) (A + 63)ý 

Proof. 

Using eqn (2.3) and following the method of Lemma 2.1 we find that 

00 
00 

52 
3 77 + 63 

The result follows directly.. 

Corollary 2.2 If ß°O = limsupti, 
Oß(t) then 

Qoo < 
7rio + Ir200 +--7r300 

lý 0 +T 
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Proof. 

Using eqn (2.4) we find that 

dQ 
dt 

< '('ri + Ire + 73) + r), 

hence 
dt [ß 

exp((. ý78 + T)t], < ry(iri + V2 + 7r3) exp[(ý7e + T)t], 

< . \ry(7ri° +r°+ i'3 + e) exp[(A'y +T)t], for t> t3(6). 

The result now follows using the method of Lemma 2.1. " 

We now use Lemma 2.1, Corollaries 2.1 and 2.2 together with eqn (2.1) to bound 

7rr above. Suppose that irr > 0. Given e>0, 

d7ri 
< (1-7rj)Aß«(1-q5)-(µ+bi)ir1, ät 

(WOO +700 i-7f3° i- El 

Vt > t4(f) using Corollary 2.2, 

:5 (1 
- ir)(1p+b1)(Ro+E2)71° - 

(14 +a1)1r1, 

where e2 = 
aa(1 - q)e 

(B+T)(/I+J1)1Cio 

< (fp+si)[(Ro+C2)7ri°-7rl(1+Ro7ri°)]. 

Hence 

d 
[in (t) exp[(µ + 5) (1 + Ro740)t]] : (ý + ai) (Ro + C2)74° exp[(µ + 6i) (1 + Roini°)t] 

alt > t4(E). 

Following the same method as in Lemma 2.1 we find that 

<E} 
1o (Ro + E2) 

_ 
R0irrr 

+ E49 7f00 
lr 

131+ Roirr 1 -- Rpif1 

where c3 is an arbitrarily small positive constant and 

7 °E2 
E4 = E3 +I+ 

Rplr? 0 

When 1> Ro >0 we have that irr + R0(rc1o°)2 > Ron'. This implies that 

00 ir 0o 
Ro i ir1 1+ Roirlo° > 0. 

However since e3 and e2 are arbitrary positive constants we can choose 

1- Roir° 
E4 _2 ý1 1+ Rp7ri°) 
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This provides a contradiction and hence Irr =0 provided that 1> Ro > 0. 

Let 1im inft,,,. irl (t) = ir1,. and note that irr > ii, 00 > 0. This implies that 

irr = irl,,,. = 0, and hence limt.,,. iri (t) = 0. By Lemma 2.1, Corollary 2.1 and 
Corollary 2.2 Irr =0 implies that 7r2° = 7r3° = ß°° =0 and ir2, o > 0,73, oo >0 and 
ß00 > 0. It follows directly that 

im 7r2(t) =l im 1r3(t) = EM ß(t) _ 0- 
t- oo t-+00 t-3 oo 

This completes the proof of global stability of the disease-free equilibrium when 1> 

Ro>o. " 

So far we have examined the behaviour of our model when Ro < 1, and as we might 
have expected we have found that this is a necessary and sufficient condition for the 

eradication of disease. We now investigate the behaviour of our model when Ro > 1. 

This is more difficult to deal with analytically and our results are less complete. We 

first demonstrate that increasing past the threshold of Ra =1 causes the disease-free 

equilibrium to become unstable. We then use this result to show that disease will now 

persist among the population indefinitely. We next show that the endemic equilibrium 

is locally asymptotically stable when Ro >1 and unstable when Ro < 1. 

Theorem 2.3 If Ro >1 then there is still the equilibrium where the disease has died 

out and this equilibrium is unstable. 

Proof. 

Consider the linearised system of eqns (2.1)-(2.4), evaluated at the disease-free 

equilibrium. This system can be represented in matrix form as 

dx 
dt-Jx, 

where xT = (7fl, 7r2,7r3i ß) and 

- 
(ý + al )0 

ai -(µ+52) 
0 b2 

A7 A7 

o aa(i - c) 
o0 

-(ý + a3) o 
ary -(aryÖ + T) 

We wish to show that at least one eigenvalue of J has a strictly positive real part. Using 

the Routh-Hurwitz conditions (May, 1973) it is sufficient to show that the constant 
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term, a4, in the characteristic equation of J, w4+alw3+a2w2+a3w+a4 = 0, is strictly 

negative. It is straightforward to show that 

a4 = lµ"ýalýlý ýý2ý1µ b3ýýýy8-}-Tý 

A27a(1-0)[(FL+52)(11+53)+Si(/A+63)+51J211 

(µ+61)(JL+a2)(µ+83)(a7e+T) J 
= (p+Jl)(p+b2)(z+a3)(a-re+T)(1-Ro). 

Hence if Ro >1 then a4 <0 and the result follows.. 

Theorem 2.4 If Ro >1 and either 7r(0) >0 or ß(0) >0 then there exists a fixed 

e>0 depending only on the model parameters and not the initial conditions such that 

for some rl >0 

7r1 ! E7C1,7r2 !c e2,7f3 ! E7r3 and ,8ýc, 
6*, Vt > Y7. `2.12) 

The proof of this result requires a number of steps. The intuitive argument is that 

7rl is the dominant component of (i1,7n2,7r3, ß) in the sense that if i1 becomes small 

then this causes all of the other components to become small. We shall show that this 

is indeed the case. From Theorem 2.3 we know that the disease-free equilibrium is 

unstable when Ro > 1, we shall further show that i1 cannot become arbitrarily close to 

zero, and from this we shall deduce that no component can become arbitrarily small. 

Let ir1(t) = inft>t 7rl (6), this is monotone increasing in t. Hence given e>0 there 

exists t5 (e) such that irl (t) > 7rl,,. -e for all t> t5 (e) where 7rl,,,, = lim infg 
.. 7rl (t). 

Lemma 2.2 If 12,00 = Jim inft-+oo 1r2(t) then 

A+52. 
7r2, oo > 

Proof. 

From eqn (2.2) we have that 

dt [7r2 
expl(Fi + 52)t, ] = iri6j exp[(pp + 52)t], 

> (iri, 
oo- e)bl exp[(J-4+ 82)t] Vt > t5(6), for any e>0. 

Integrating over [t5(e), t] gives 

72 (t) ? 1r2(t5 (E)) exp 
[- (FA+ 32)(t - t5 (f))] 
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1 -exp 
{- (µ+b2)(t-t5(E))ý 

+bl(7Cl, ý - E) , 
µ+b2 

E) 
-E Vt % t6 (E) for some t6 (E) > t5 (E), 

µ+b2 

sufficiently large. 

Hence for all t> t6(e) 

Letting t -+ oo we get 

ßf2 ýtý 1 
al 

`7r11 °O - E) 
- E. 

+ J2 

72 oo 
> 

bl 1, oo 
-el, where el =E 

al + b2 + 

' µ+b2 f=+ 2 

Suppose that 7r2,00 < (bl7rl, oo)/(µ + b2). Since el is an arbitrary positive constant we 

can choose el = (1/2)[((b1ir1,. O)/(µ + S2)) - 7r2, oo]. This provides a contradiction and 

completes the proof of Lemma 2.2. " 

Corollary 2.3 If 7r3, ß = liminft.,,,, 7r3(t) then 

ö1527r1, oo "3'°°' (1-4 + a2)(1A + JO 
Proof. 

Using eqn (2.3) and following the method of Lemma 2.2 we find that 

T3,00 ! 
b27r2, 

oo 

1-4 + 63 

and the result follows using Lemma 2.2. " 

Corollary 2.4 If ß= lim inft, , Q(t) then 

BO 1ri, oo 
- 1+B+T" 

Proof. 

Using eqn (2.4) we find that 

Hence we have that 

dQ 
= a7ir - ßayir - , eary9 + Qa79ir - ßr, ät 

++ T]. 

d[ßexp ([x'y(1 + B) + 7]t)] > aryil exp 
([A7(1 + B) + T T]t), 

and the result follows similarly to Lemma 2.2. " 
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Lemma 2.3 Provided that at least one of 7rl(t), 1r2(t), 1r3(t) and ß(t) is strictly positive 

at t=0 then 7r1(At) > 0, ir2(Ot) > 0, ir3(Ot) >0 and ß(0t) >0 for At small and 

strictly positive. 

Proof. 

We need to consider four separate initial conditions: 

1. Suppose that , ß(0) = 0. Hence ir(0) > 0. Using a Taylor expansion about t=0 

and eqns (2.1)-(2.4) we find that 

ß(At) = 1r(0)ayot + o(ot) > 0, 
and 7r(it) = 7r(0) - (pir(O) + b37r3(0))Ot + o(At) >0 (for small At). 

Let i/' =1- ir, hence 

d-0 
_ -, I, XßCY(l - 0) + p(l -'0) + 7x353. dt 

If 7r(0) <1 we must have 1i(0) > 0, hence «1 t) >0 for small enough At > 0, if 

ir(0) =1 then 0(0) =0 and 

'O(At) > mir(o)At + o(ot) > 0. 
Hence by choosing At >0 small enough and starting at t= At instead of t=0 

(if necessary) we can assume that ir(0) > 0,0(0) >0 and /B(0) > 0. If 7r1(0) =0 

then 7r1(At) = ? bb(0)Aß(0)a(1 - q)Ot + o(At) > 0, if At >0 is small enough. 

Hence again by starting at t= At if necessary we can also assume that In (0) > 0. 

If 72(0) =0 then 7r2(At) = b17rl(0)At + o(At) > 0, if At >0 is small enough. 

_ Hence we can also assume that 7r2(0) > 0. Similarly if 73(0) =0 then ir3 (At) 

S27r2(0)Ot+o(At) > 0, hence we can also assume that 7r3(0) > 0. 

2. Suppose that ir(0) = 0. Hence ß(0) > 0. Following the same method as in the 

previous case we find that 

ir(zt) = A, 8(0)a(1 - q5)Ot + o(Ot) > 0, (for small At), 

ß(Ot) = ß(0) - ('6(0)k to + ß(0)7*)zt + o(Ot) > 0, (for small At), 

and ilb(Ot) =1- . 1, ß(0)a(1 - q5)Ot + o(it) > 0, (for small At). 

Hence by choosing At small enough and starting at t= At we can assume that 

ir(O) > 0,6(0) >0 and 0(0) >0 and as in the previous case we can also assume 

without loss of generality that icl (0) > 0,7r2(0) >0 and 1r3 (0) > 0. 
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3. Suppose that ir(0) > 0, ß(0) > 0, and, 0(0) > 0. This case is trivial and follows 

directly as in Case 1. 

4. Suppose that ir(0) > 0, ß(0) > 0, and ß/i(0) = 0. This implies that 7r(0) = 1, and 
hence 

&(L t) >P At + o(Ot) > 0, for At small and strictly positive. 

Thus it follows directly that by starting at time t= At we can assume that 

7r(0) > 0, ß(0) >0 and, 0(0) >0 and the result follows by Case 1. 

This completes the proof of Lemma 2.3.9 

From Lemma 2.3 we have that there exists fixed e where 1>e>0 such that if At 

is small enough 7t(At) > cir; for i=1,2,3 and ß(Ot) > e, B*. Now either 7r1,. >2 eiri 

or else 7r1, ß <Z ctrl . Suppose first that 7r1, ß >2 e7rl . Then there exists Tl such that 

for t> T1,7rl > 4eir1, by the definition of 1r1, ß. Then by Lemma 2.2 

a1 lr1 , 00 i E5i *1 72, x'-µ+a2 >2ý+a2ý1=2Eý2. 
So arguing similarly to above there exists T2 such that for t> T2,712 i4 E7r2. Similarly 

using Corollary 2.3 we have that there exists T3 such that for t> T3i 7r3 ý ! c7r3 and 

using Corollary 2.4 

Yoo 
>_ 

7r1'°° 
> 2E7r1 

_ E1F'*e say, 
1+0+" 1+6+f 2 

E 7fi 
where El 

1+e+T, ý*' 
Hence there exists T4 such that fort > T4, ß>4 E1, ß*. Hence if T= max{Ti, T2, T3, T4} 

and E= min{4e, 4e1} the results of (2.12) hold with e replaced by E. 

Now suppose that 7r1, ß <Z ctrl, in which case there exists At where ir1(C) < 
2 en . Let to = inf{C > At, 7r1(() <2 cir }, and tl = inf{C > to, irl (ý') >2 eire }, where 

e is fixed and positive. By the definition of to we have that 7rl(to + v) < Ze7rl if v is 

small and positive, hence tl > to. By continuity Trl (to) = 7r1(ti) =2 e7ri, and therefore 

I1 is less than 2 E7ri in (to, t1) and greater than 2 e7rl just after tl. We now show that 

if 7rl becomes small then 7r2, i3 and O must become small also. 

Lemma 2.4 There exists a time Tl >0 such that if to + Tl < tl then for all tE 

[to +Tl, ti], 0< 72 < (2 + ))7r2e, where 0 and e are small and Tl depends only on the 

model parameters, 0 and e. 
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Proof. 

In [to, ti] we know that i1 < (1/2)e1rl, hence using eqn (2.2) we have that 

ät `- (1/2)e1r 51- (µ + b2)ir2, 

and dt [ir2 exp[(/z + b2)t]] < (1/2)e7i81 exp[(Fý + 52)t]" 

Integrating over [to, t] gives 

72 exp[(p + b2)t] -1r2(to) exp[(p + b2)to <1 eir*b 
et ]2 

it 
+ a2 ( xp[(ý + b2)tl - exp[(p + b2) o]), 

=1 
(exp[(Fz + b2)t] - exp[(fp + a2)to]), 

7r2 < 7r2 (to) exp[-(14 + 62) (t -to)] 
+1vr2 (1 

- exp[-(12 + 62)(t - to))), 

7r2 < exp[-(it + 62) (t - to)) +1 e7r2. 

Hence if 0 is small and positive and t is sufficiently large, say t> to + Ti where 

to + Tl < ti then the result follows.. 

We have shown that if 7rl is small then this causes iZ to also become small, we now 

show similar results for 7r3 and P. 

Corollary 2.5 There exists a time T2 >0 such that if to + Tl +TZ < tl then for all 

tE [to + Ti + T2, t1], 0< i3 < (2 + 2A)7r3 e, where 0 and e are small and T2 depends 

only on the model parameters, 0 and c. 

Proof. 

Similar method to Lemma 2.4 starting with 

dir3 
(it 

< 
(2 

+ A) E7f2J2 - lFý '+' b3)K3r 

and integrating over [to +T1, t]. " 

Corollary 2.6 There exists a time T3 >0 such that if to +T1 +T2 +T3 < ti, then for 

all tE [to +Ti +T2 +T3i t1], 0<ß< (2 + 3A), B*e1, where el = (ary7r* + Ary(1- 7r*)O + 

T)e/(A-yO+r), A and e are small and T3 depends only on the model parameters, A and 

E. 
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Proof. 

Similar method to Lemma 2.4 starting with 

dQ < Ayir - Q(aye + T), dt 

< ay (2 + 20J E7C* #(A-YO + T), fort > to + Ti + T2, 

and integrating over [to + Tl + T2, t]. For t> to + Tl + TZ sufficiently large, say 

t>to+Ti+T2+T3 we find that 

A7B+r 

However it is not necessarily true that ß(t) < (2 +30)e, B* since 

Q* = 
Ary1r* 

< 
Arr* 

Apr* +»y(1-ir*)0+T AyO+T 

If we now define 
[A y7r* + A7(1- *)Ö + T]E 

El A, y9 +T 
(note that el > c) then we can again obtain a bound of the required type as our 

argument shows that ß(t) < ((1/2) + 30)elß* for t> to +Tl +T2 +T3.. 

We have shown that if zri approaches zero then all components must also approach 

zero. We now show that Irl cannot become arbitrarily small. We do this by showing that 

tl can be bounded above by a fixed finite value dependent only on the model parameters, 

e and A. Hence I1 is not below 2 eire long enough to become arbitrarily close to zero. 

Now either 7rl is below 2 e7rl long enough for all components to become small or 7rl 

increases past Z7ri before all components become small. Hence we have that either (i) 

tl > to+max[Ti, Ti+T2iTi+T2+T3], or (ii) tl <to+max[Ti, T1+T2, Ti+T2+T3]. 

We wish to show that tl <T where T is a fixed finite value dependent only on the 

model parameters, e and A. If case (ii) is true then we are finished. Case (i) is where 

all components become small before time tl and it is this situation we now deal with. 
Since the disease-free equilibrium is unstable we can use this to show that I1 cannot 

stay small indefinitely. The following two results deal with this issue: 

Corollary 2.7 Let F1 (w, e) be an nth degree polynomial in w and e. Denote the (possi- 

bly complex) roots of Fi (w, e) =0 by wj(e) for j=1, ... , n. Then each wj(e) is defined 

and continuous in e in a neighbourhood of e=0. 
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Proof. 

F1 (w, e) is a polynomial and therefore it is analytic in a neighbourhood of (0,0), the 

result follows directly from Corollary 6.6 in Chow and Hale (1982). 9 

Our next Lemma is a key point in the argument. As previously stated we use the 

instability of the disease-free equilibrium to show that ir1 cannot stay small indefinitely 

and in fact rises again to 2eiri by a time which is finite and depends only on 0, e and 

the model parameters. 

Lemma 2.5 If 7rl(t) drops to below 2e7r1 at time to then 7rl(t) returns to 2eir1 by at 

least time ti = to +max[Ti, T1 +T2, Ti +T2 +T3, t2 +T4] where ti - to is finite and 

depends only on 0, e and the model parameters. 

Proof. 

Suppose that e2 is real and positive and 1> 62 >0 and consider the matrix 

-(f�+Ö1) 00 Aa(1-0)(1-E2) 

(E2) 
51 -(li+52) 00 

J_ 
0 ö2 -(µ + b3) 0 

Ay Ay Ay -(ay(E2 + +T) 

When e2 = 0, J(0) = J, the linearised stability matrix about the disease-free equilib- 

rium as used in the proof of Theorem 2.3. Denote the eigenvalues of J(e2) by w&2), 

w2(e2), W3 (CO and w4(c2). For M large and positive we have that J(e2) + MI is a 

non-negative irreducible matrix. Using Lemma 2.1 from Nold (1980), (the Perron- 

Froebenius Theorem), the characteristic equation of this matrix has a simple root 

equal to its spectral radius. The eigenvalues of J(62)+MI are M+wl(e2), M+w2(62), 

M+ w3 (e2) and M+ w4 (e2). Hence if M+ wi (e2) is the spectral radius of J (C2) + MI 

then M+wl(e2) is real and all other eigenvalues of J(¬2)+MI have strictly smaller real 

parts. Hence W1 (62) is real and the other eigenvalues of J(e2) have strictly smaller real 

parts. In particular this is true for e2 = 0. Moreover from Corollary 2.7 we have that 

the roots of the characteristic equation of J(e2) are continuous functions of e2, hence 

WA CO -+ w1(0) as e2 -+ 0. From the proof of Theorem 2.3 we know that wl (0) >0 

if Ro > 1. Therefore by choosing e2 small enough we can ensure that wl(e2) > 0. 

Without loss of generality we can assume that 1> e2 > 0. We can choose e small 

enough such that 

2E7fi 'i' 
(12 

+A) E7f2 + (2 +20J E7(3 < E2. 
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Hence using Lemma 2.4 and Corollary 2.5 for ti >t> to + Tl + T2 we have that 

it + 72 + 73 < e2. Let t2 = inf{( : for tl >t> to + C, ir(t) < e2}, and hence either 

t2 =0 or 7r(to + t2) = e2 and to + t2 is the last time before tl that ir(t) > e2 and note 

that t2 < Tl +T2. If tl < to +Tl +TZ then we have the desired result. Now we consider 

the case where tl >t> to + Ti + T2. From equations (2.1)-(2.4) we have that for 

t1 >t>to+A+T2 

dirl 
dt > (1 - e2)A ßa(1 - 0) - (µ + 31)1ri, 

dire 
ät -6 ir1- (µ + 6072, 
dir3 
ät - b2ir2 - (It + 53)1r3, 

and 
dQ 

_> 
»y(7ri + 72 + 7r3) - (A7(E2 + 9) + T), ß. 

Hence 

dt 

where x= (7r i, ire i ir3, ß)T . From Lemma 2.1 in Nold (1980), J (f2) has a strictly positive 
left eigenvector, e= (el, e2, e3, e4) corresponding to its spectral radius W1 (CO. Hence 

e 
dx 

>e J(e2)x = wl (e2) e x. 

Thus integrating over [to + t2, t] gives 

e. x(t) > e. x(to + t2) eXp[wl(e2)(t - to - t2)], 

(eiiri(to + t2) + e2ir2(to + t2) + e31r3(to + t2)) exp[wi(E2)(t - to - t2)], 

> ir(to + t2) min(ei, e2, ea) exp[wi (f2) (t - to - t2)]+ 

r= e2 min(ei, e2, e3) exp[wi(E2)(t - to - t2)}) if t2 > 0, 
Sl 

_> 
2 e1i min(el, e2, e3) eXp[wl (e2) (t - to - t2)], if t2 = 0. 

Therefore after a time to + t2 +T4 and provided that tl > to + t2 +T4 we have that 

e. x(t) > e. 
(ir, (I2 

+ 0) eiri (2 + 2L) c7r3,2 + 3L) E1ß*) , 
(2.13) 

where T4 depends only onel, c, A and the model parameters. We have also shown that 

provided that to <t< tl then after a time to + max[T1, Ti +T2, Ti + TZ + T3J we have 

that irl(t) <_ 2eii, 7f2(t) (2 +0)E7f2,7f3(t) (2 +ZA)eir and Q(t) < (2 +30)Elý`. 

Hence 

e. x(t) < e. 
(1 *, G 

+ 0ý ERZ, 12 + 2A) e7r3, 
(2 

+ 3L) e1i8*J . 
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Therefore if tl > to + max[Ti, Tl +T2, T1 +T2 + T3, t2 +T4] we have a contradiction to 

eqn (2.13) and hence tl < to + max[Ti, Tl + T2, Ti +T2 + T3, t2 +T41. This concludes 

the proof of Lemma 2.5. " 

We have shown that the first time i1 drops below 2 cir it must return back to this 

level after a duration of at most T= max[T1, Ti, + T2 i T1 + T2 + T3, t2 + T4] later. By 

shifting the time origin it is easy to see that the argument can be extended to cover any 

time i1 drops below 2 cir . Hence if w1 drops below 2 eiri at to then for tE [to, to + T] 

we have that 

d7rl 
dt 

> -(14+61)"1' 

Integrating we deduce that it > 
2e7ri exp[-(µ +61)(t - to)], 

>1 c7r1 exp[-(µ+51)T], 

where T is a fixed duration dependent only on e, E2,0 and the model parameters. Since 

(1/2)eirl exp[-(µ+bl)T] is strictly positive we have that ir1,,,,, > 0. Hence by the remark 

on p. 58 (2.12) is true and therefore by reducing c we have that there exists a fixed lower 

bound e>0 and q>0 such that for all t> '7,7rl (t) > e, 72(t) > e, 1r3 (t) >c and 

P(t) > c. This completes the proof of Theorem 2.4.9 

Theorem 2.5 The endemic equilibrium (iri, u'2, i3, ß) is locally stable if Ro > 1. 

Proof. 

The Jacobian matrix for our model evaluated at the endemic equilibrium (7ri, 7r2, i3, 

ß*), is 

-(p+ai)-aß*«(i-qS) 

a, 
J= 

0 

(1_ß* ()p7 

-aß*a(1-q) _. )ß*a(1-b) 

-(µ+62) 0 

b2 

(1_ß*(1-e))A7 (1-ß*(1-e))A7 

(i-n*)aa(1-4, ) 

0 

0 

If the characteristic equation of J is denoted by w4 + alw3 + a2w2 + a3w + a4 =0 then 

using the Routh-Hurwitz conditions for a quartic polynomial we require to show that 

ati >0 for i=1,2,3,4, and ala2a3 > a3 + a2a4. This is straightforward but requires a 

considerable amount of algebra, see Appendix A for details.. 
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2.5.1 Comments on Global Stability 

We have been unable to show that when Ro >1 and disease is initially present our model 

tends to the endemic equilibrium. However we can use our previous persistence result 

to derive additional sufficient conditions for global stability. The current coordinate 

system of our model is (i1, i2,7r3,, 6). We do not consider this system directly. Instead 

we use a translated form of the original coordinate system where the origin in this new 

system corresponds to (ii, 7r2, in, ß*) in the original form. This translation gives us a 

new set of model equations, 

d-ii 
- = (1 - 7r*)aýa(1 - 0) - iraßa(1 - 0) - (µ + 5i)iri, (2.14) it 

dir2 
= ölmal - (14 + bz)ý2i (2.15) 

dt 

d"3 (2.16) 

and = [1 - ß* + ß*8], \ryir - 
A, \, ([9 + (1 - 8)ir] - QT, (2.17) 

dt 

where $=Q- 
, 
B*, fr_ = iri - 7rß for i=1,2,3, and fr = f<1 + fr, 2 + ifr3. In this new 

system we wish to show that (*1 ßr2,1r3, -+ (0,0,0,0) as t -+ oo, which is equivalent 

to (irl, ir2i ßr3, Q) -+ (���ß*) as t --+ oo. We can write the system represented 

by eqns (2.14)-(2.17) in matrix form as dx/dt = V(x)x, where xT = (ir1, ire, ir3, Q), 

T X= Orý 
, fr2 , frs , Q) and 

= 
aý 

V (X) 

(i-ß*+ß*e)A7 

When x=0 we have that 

-(µ+51) 

V(O) = 
al 

0 

-Aßa(1-4) -Aßa(1-q5) (1-a*)aa(1-ý) 

-(µ+da) 00 

aa -(µ+6a) 0 

(1_ß*+ß*B)a7 (1-ß"+ß*B)a7 -(B+(i-e)ir+T)a7 

00 

-(A+S2) o 

52 

(1_ß*+ß"B)a7 (1_ß*+ß*e)A7 

(i-1r*)) Q(i-4) 
0 

0 

-ýB-ýz)a7 

where the only strictly negative entries are on the leading diagonal. We are also inter- 

ested in an additional coordinate system, that of (fr, Fr2 i 1r3, ß). This system is easily 

obtained from the (* i, ire, 7r3,4) system by adding eqns (2.14)-(2.16) and replacing Fri 
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with ir - 'r2 - ir3. Thus we have that dy/dt = W(y)y, where yT = (ir, 7r2, ir3, ß), 

yT =O r� *2,3, ß) and 

-/ý-alýa(1-ý) 0 -53 (1-x*)Aa(1-ý) 

ai -(µ+as+dl) -dl 0 

0 52 -(µ+53) 0 

(i- *+ý*e)ary 00 -(8+(i-e)ý+T)a7 

Notice that in W(y) the variables 7r(t) and ß(t) appear only on the leading diagonal. 

The two matrices V(x) and W(y) have different structures each with its own useful 

property. The V(x) form has non-negative entries except on the leading diagonal when 

x=0. The W(y) form has constant entries except on the leading diagonal. These two 

matrices share an important property shown in the following lemma. 

Lemma 2.6 V(x) and W(y) have the same eigenvalues. 

Proof. 

y= Jz where 
1110 

0100 
J= 

0010 

0001 

It is straightforward to verify that V(x) = J-1W(y)J. Thus if e is a right eigenvector 

of V(x) with corresponding eigenvalue w we must have that Je is a right eigenvector 

of W(y) with corresponding eigenvalue w. Similarly if f is a right eigenvector of W(y) 

with eigenvalue w, J-'f is a right eigenvector of V(x) with the same eigenvalue. Hence 

V(x) and W(y) have the same eigenvalues. " 

Using Theorem 2.4 we can replace the variables 7r(t) and , ß(t) in W(y) with a 

constant lower bound, e. Hence if we define 

0 -d3 (1-ý*)ýý(1-ý) 

W+ 
_ 

al -(ip+d1+52) -61 0 

If 0 62 -(µ+53) 0 

(1-B'ßß"6)ýry 00 -(9+(1-6)e - )\7 
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then note that for t> il W(y) < W+. We can write W+ as W(O) - eE where 

0000 

0000 

000 

From Lemma 2.6 the eigenvalues of W(O) are the same as those of V(O). Moreover if M 

is large enough V(0)+MI, (where I is the identity matrix) is an irreducible matrix with 

non-negative elements and has a unique strictly positive eigenvector (ii 
, 74,1s+) 

From Lemma 2.1 in Nold (1980) we find that the eigenvalue corresponding to the 

eigenvector (iri, Irr, i3, ß*) is a simple eigenvalue and is also the spectral radius of 

V(0) + MI. Hence all eigenvalues of V(O) + MI lie in a circle centered on the origin 

with radius M. Thus all eigenvalues of V(O) and hence W(O) lie in a circle centered 

on (-M, 0) with radius M. Moreover zero is a simple eigenvalue of W(0). 

Consider the characteristic equation of W+ = W(0) - eE, this is of the form 

W4 + al (E)w3 + a2(E)w2 + a3(E)W + a4(E) = O, (2.18) 

where al(e), a2(e), a3(e), a4(c) are continuous functions of E. After some algebra we 
find that 

a4(c) = 

+515253 (A7(e + (1 - O)6) + T) 
-(1- *). 1aa7(1-ý)[1-ß*+, r e][(al+a2+ß)(a3+ý)+ala2]. (2.19) 

When e=0 we have that W+ = W(0) and we know that zero is an eigenvalue of 

W(0). Let the roots of eqn (2.18) be denoted by {W1, W2, W3, W4}. When e=0 three 

eigenvalues wl, w2 and w3 say, have real parts which are strictly negative and the fourth 

eigenvalue w4 is real and lies at the origin. Now consider e>0. From Corollary 2.7 we 

know that the eigenvalues are continuous in e in a neighbourhood about the origin. By 

continuity w1, w2 and w3 must still have strictly negative real parts for e small. Now 

suppose that w4 has a non-negative real part for c small. Hence W4 must be real and 

a4 = W1W2W3W4 <0 for small c, however this is impossible since a4(0) =0 and a4(e) 
is increasing in e. Hence for e small and positive all eigenvalues of W+ have strictly 

negative real parts. So all eigenvalues of W+T also have strictly negative real parts. 

The well known theorem of Lyapunov (1892) states that all the eigenvalues of a 

matrix A have negative real parts if and only if there exists a symmetric positive 

9 
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definite matrix P such that AP + PAT is negative definite. Hence we have that there 

exists a symmetric positive definite matrix P such that W+TP + PW+ = -Q where 

Q is a positive definite matrix. This result is not sufficient for us to show global stability 

of the endemic equilibrium although we can do so if P has the form 

P11 000 

0 P22 P23 0 

0 P32 P33 0 

000 P44 

where P11 and P44 are strictly positive. If P is of this form then v= yT Py is a 

Lyapunov function for our system since v is always positive and 

dv 
= YT (W(Y)TP + PW (Y))Yº 

ät 

:5 yT(W+Tp + pW+)y, due to the form of P, 

= _T Q, 

-wmin(Q) 
IyI2, 

where w.. in(Q) is the smallest (strictly positive) eigenvalue of Q, 

- 
wmin(Q) 

yTpk, 
Wmax(P) 

where wm (P) is the largest (strictly positive) eigenvalue of P, 

_ _wmin(Q) 
wmax(P) 

u' 

and wmin(Q) and wm. (P) are both strictly positive. Hence 

0<v: 5 v(0) exp 
f- wmin(Q) t] -4 0 as t -+ oo. 
L wmax(P) J 

So as 
IYIZ YT PY 

in(P) ,y -+ 0 as t -+ oo, 
cJm 

where wm; n(P) is the smallest (strictly positive) eigenvalue of P. In particular we have 

global asymptotic stability when for some positive definite matrix Q we can choose P 

a positive diagonal matrix. Therefore we require the (generally stronger) property that 

W+ is diagonally stable rather than Lyapunov stable. 

Barker et al., (1978) discuss various stability type conditions on a matrix A related 

to the consistency of the Lyapunov equation AD + DAT =Q where D is a positive 
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diagonal matrix and Q is positive definite. In particular they show that such aD exists 
for any matrix A= (ate) where A has a positive diagonal and M (A) is a nonsingular 

M-matrix where 

Mij 
laiji if i=j, 

= 
-laijl if i rAj. 

Recall that a nonsingular M-matrix is a matrix whose off diagonal entries are less than 

or equal to zero and all its principal minors are strictly positive (Barker et al., 1978). 

By considering the matrix S= _W+T we find that 

lj+Aa(l-W)E 

0 

-a3 

-(1-a*)Aa(l-¢) 

-al 0 -(i- *+ý*B)A7 

$L+b1+42 -53 0 

-d1 µ+53 0 

00 (B+(L-B)E+T)ý'r 

We now require to show that all the principal minors are strictly positive. After some 

algebra we find that sufficient conditions for this are that det M (S) = 

{ [+i - O)e) (s + (1 -Ö)E + T) - (1-, ý* +, a*e) (1- ir*)aa(1- 0)] 

x ay[(µ+a1+s2)(p+a3)-615.1-61&253(e+(1-e)E+f)Ay>0, (2.20) 

and (14 + öl + ö2)(/c + b3) - 5152 > 0. This second condition is satisfied for most 

parameter values in the literature. It will always be true if 83 > d2 or ö3 > bi. Hence 

if these conditions are satisfied then there exists a positive diagonal matrix D such 

that W+TD + DW+ is negative definite and therefore if disease is initially present the 

system will tend to the endemic equilibrium. However unlike the sufficient condition of 

a4(e) >0 (shown in eqn (2.19)) for Lyapunov stability of W+, the inequality (2.20) is 

not satisfied near e=0 (but could be satisfied for e larger). In particular when bl =0 

W+ is both Lyapunov and diagonally stable. However when bl =0 our model simplifies 

down to the original model discussed by Kaplan and O'Keefe (1993). Intuitively we 

expect that the lower bound one will be close to zero for Ro close to one which suggests 

that our argument, while not strong enough to show that the disease tends to the unique 

endemic equilibrium if it is initially present for all values of Ro > 1, may hold true for 

larger values of Ro. 
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2.6 Simulation Study of the Simple Model 

In the previous section we discussed in detail key theoretical properties of the Simple 

Model. We used mathematical results to analyse the long term behaviour of this model 

and established the conditions necessary for the disease to die out in the population or 
become endemic. We now demonstrate the behaviour of the Simple Model graphically 

using simulation. Simulation allows us to validate our previous theoretical results 

and puts our model onto a more practical footing by demonstrating how the disease 

progresses through the population over time. 

We now use the SOLVER numerical integration package to produce estimates of 

the prevalence of disease over time given by eqns (2.1)-(2.4). However we first need 

to estimate the parameters mentioned in Assumptions 1-9. For example we require an 

estimate of the shared injection rate and the probability with which addicts successfully 

clean needles prior to use. Table 2.1 contains a summary of the parameter estimates 

we use to simulate our current model. Justifications for each of these estimates can be 

found in Appendix B. 

Table 2.1: Summary of Parameter Estimates 

Parameter Estimate 

A 246.22 per year 

7 0.90797 

a 0.00601 per shared injection 

0.1333 per year 

0.64 

0 0.0 
T 15.531 per year 

J1 4.6154 per year 

62 0.2281 per year 

63 0.1920 per year 

We are interested in demonstrating two key properties of the Simple Model. Firstly, 

if the parameter estimates are such that Ro >1 then provided that disease is initially 

present in at least one individual addict or needle, then HIV will spread among the 

population until a steady state is reached where a fraction lr* of all addicts and a 
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Figure 2.1: System Tends to Endemic Equilibrium when Ro >1 
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fraction ß* of all needles are infected with HIV. Secondly, if the parameter estimates 

are such that Ro <1 then the disease will die out in both addicts and needles and the 

system will approach the disease-free steady state. To illustrate these two properties we 

use two sets of parameter estimates, the first set gives rise to a value of Ro = 3.596 >1 

and in the second Ra = 0.903 < 1. The first set of parameter estimates are as shown 

in Table 2.1 and the second set are the same as the first except that ý, the probability 

that an addict successfully cleans a needle prior to use, is increased from 0.64 to 0.887. 

This reduces reduces Ro from 3.596 to 0.903. We now investigate the behaviour of the 

Simple Model for these two sets of parameters. 

Parameter Set One - Ro = 3.596 

We now simulate the Simple Model using a set of parameter estimates where Ro = 
3.596. Figure 2.1 shows the Simple Model simulated over forty years. At time zero 

we have assumed that one percent of the total population of addicts are in stage one 

infectivity, at this time no other addicts or needles are infectious. The lower three lines 

on the figure show the behaviour over time of the three stages of infectivity among the 

addict population, the uppermost line represents the total fraction of needles infected 

with HIV. It is clear that the fraction of addicts infected in each stage eventually 

reaches a steady state as does the fraction of infected needles. We can also observe 

that the fraction of addicts in stage one infectivity reaches a steady state first with the 
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other stages reaching a steady state later. The approximate steady state values are 
(ii, iä, is, ß) = (0.027,0.355,0.249,0.675), which correspond to 7r* = 0.6326. 

Figures 2.2-2.4 examine the behaviour of the Simple Model using the same set of 

parameters as in Figure 2.1 but with six sets of different initial conditions. The six 

starting conditions of the system were (0.3,0), (0.7,0), (1.0,0.3), (0.7,1.0), (0.3,1.0) and 
(0,0.3), where (x, y) means that ir(0) =x and /3(0) = y. In the case of the addicts it was 

assumed that all initially infectious addicts were in stage one infectivity, (i. e. ir(0) = 0.3 

means that i1(0) = 0.3). Each plot shows the progress of the total fraction of infected 

addicts and the total fraction of infected needles as time progresses for each of the 

different initial conditions. It is clear that in each case the level of disease in both 

addicts and needles reaches a steady state value and moreover this value is the same for 

each of the six initial conditions. Hence these simulations suggest that for the current 

set of parameter estimates the total long term prevalence of disease in addicts and 

needles is 0.6326 and 0.675 respectively. An interesting feature of these simulations is 

the very similar behaviour of the fraction of infected needles and the fraction of infected 

addicts. It turns out that whatever the initial conditions the prevalence of disease in 

needles appears to very quickly reach a quasi-steady state relationship determined by 

the prevalence of disease among addicts. This is a useful property which we discuss in 

the following chapter. In summary our simulations (together with others not illustrated) 

suggest that if disease is initially present then the model will tend to the unique endemic 

equilibrium. 

Parameter Set Two - Ra = 0.903 

We now simulate the Simple Model using a set of parameter estimates where Ro = 

0.903. Figure 2.5 shows the Simple Model simulated over 120 years. At time zero we 

have assumed that the population is in an endemic steady state where 2.7% of the total 

population of addicts are in stage one infectivity, 35.5% are in stage two infectivity and 

24.9% are in stage three infectivity. We also assume that 67.5% of needles are infected 

with HIV. These values correspond to the endemic steady state shown in Figure 2.1. 

We suppose that at time zero 1b has been reduced from 3.596 down to 0.903 (achieved 

by increasing 0 from 0.64 to 0.887). As in Figure 2.1 each line on the figure represents 

the spread of the various stages of infectivity among the addict population, and the 

total fraction of infected needles. It is clear from the figure that the disease dies out 

in all addicts and all needles and after about 110 years the Simple Model has almost 
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Figure 2.2: Simple Model when Ro >1 
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Figure 2.3: Simple Model when Ro >1 
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Figure 2.4: Simple Model when Ro >1 
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Figure 2.5: System Tends to Disease-Free Equilibrium when Ro <1 
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reached the disease-free equilibrium. Other simulations (not illustrated) show that for 

a variety of different parameter estimates and initial conditions the disease always dies 

out in both addicts and needles when Ro < 1. This is consistent with Theorem 2.2. 

2.7 Summary of Results for the Simple Model 

We began this chapter by extending the modelling assumptions made by Kaplan and 
O'Keefe (1993) to incorporate three types of infectious addicts. We then derived a sys- 

tem of four differential equations which encapsulated the information in this extended 

set of assumptions. We next derived an expression for Ro for this model by considering 

the impact that each type of infectious addict has on the infection process. Most of the 

remaining part of the chapter was devoted to examining the properties of the model 

equations, in particular the properties and behaviour of the equilibrium solutions. We 

showed analytically that the only condition necessary for the disease to die out in all 

addicts and all needles is Ro < 1. Similarly we showed analytically that if initially 

present the only condition necessary for disease to persist among the population (for 

all time) is Ro > 1. Moreover we demonstrated that the endemic equilibrium in our 

model is locally stable when Ro >1 and derived sufficient conditions for global sta- 
bility of this equilibrium solution. We finally illustrated the dynamic and long term 

behaviour of our model graphically using a small number of numerical simulations. 
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The model discussed in this chapter allows addicts to progress through three differ- 

ent infectious stages. Addicts move from Acute Infectivity through to Asymptomatic 

and Pre-AIDS Infectivity according to a Poisson process. The model assumes that all 

addicts leave a needle with the same level of infectivity. This is a difficult assumption 

to check biologically as it is very difficult to measure the infectivity of an infectious 

needle. However a similar assumption was made by Peterson et al. (1990) and appears 

to have been made by Seitz and Müller (1994). Therefore whilst our three stage model 

allows addicts to progress through three different stages of infectivity the basic infection 

mechanism (through injecting with a contaminated needle) in this model is the same 

as in the Kaplan and O'Keefe Model. 

It is not clear whether the assumption that all needles are equally infectious (with 

infectivity denoted by the single transmission parameter a) is biologically justified. It 

may be the case that infectivity is proportional to the level of virus in the blood. This 

would suggest that it may be more appropriate to divide the population of needles into 

three infectious classes corresponding to the infectious state of the last addict to use the 

needle. Thus we would allow addicts in stage one infectivity to leave a needle so that 

the probability of transmission of HIV from this needle is al (say), similarly addicts in 

stage two or three infectivity would leave a needle so that the probability of transmission 

of HIV from this needle is a2 and a3 respectively, where al, a2 and a3 are proportional 

to the viral load of HIV in the blood of addicts in the respective infectious stages. We 

consider viral load as denoting the "amount of virus" present, for example we consider 

the viral load of a needle as representing the amount of virus resident in the needle and 

assume that the infectivity of a needle is proportional to this. Modelling this situation 

requires a more complex model with three classes of infectious needles and importantly 

we now require information relating to how addicts and needles of different classes 

interact with each other. For example we need to know which infectious class a needle 

will be left in after use by an addict who is currently acutely infectious. Obviously the 

outcome of this event will depend on the infectivity of the needle prior to use as well as 

that of the current user. These addict-needle interaction assumptions are very difficult 

to assess and there are very few or no empirical data to support any assumptions. In 

single stage infectivity the "flushing" parameter 0 represents an assumption relating 

to how addicts and needles interact (specifically interactions of infectious needles with 

uninfectious addicts). Hence we need to generalise the "flushing" parameter in our 

addict-needle interaction assumptions. This is a difficult problem and we use three 
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separate models to investigate this. The following chapter deals with the first of these 

models. 

75 



Chapter 3 

The Optimistic Model 

3.1 Introduction 

In this chapter we develop the first of three models which incorporate three stages of 

infectivity in both addicts and needles. It is natural to assume that allowing addicts to 

progress through three stages of infectivity should also carry implications for the infec- 

tivity of needles circulating among the addict population. We first define three types 

of infectious needles, we then develop a model which incorporates these three types 

of needles. This model is constructed using a particular set of assumptions concern- 

ing how addicts and needles of different levels of infectivity interact with each other. 

It is very difficult to realistically assess addict-needle interactions, in response to this 

problem our model deliberately uses assumptions which may be more optimistic than 

might reasonably be expected. Once we have derived the model we then compute an 

expression for the basic reproductive number and conduct an equilibrium and stability 

analysis in a similar manner to the Simple Model in the previous chapter. The chapter 

concludes with a brief summary of the main findings. 

3.2 Infectious Needle Definitions 

We wish to construct a model which allows addicts to progress through three distinct 

stages of infectivity prior to the onset of full blown AIDS. By allowing addicts to 

exist in three stages of infectivity it is obviously more realistic to also allow needles to 

possess different levels of infectivity (since it is the blood in addicts which determines 

the infectiousness of needles). A natural way of splitting up the class of infectious 

needles is to use three classes, where each class corresponds to the infectivity of a type 
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of infectious addict. We now discuss how we shall define a state one, state two and 

state three infectious needle. 

Intuitively, if a previously unusedl needle is used by an addict in stage one infectivity 

then the needle will be left contaminated with the HIV virus, the concentration of which 

is dependent on the viral load in the blood of the addict. Similarly if a stage two or 

stage three infectious addict injects with a previously unused needle then each addict 

will leave a different amount of HIV virus in the needle. Let us define a state one 

infectious needle as a previously unused needle which has been used once by an addict 

in stage one infectivity. Similarly we define a state two and state three infectious needle 

as a previously unused needle which has been used once by an addict in stage two or 

stage three infectivity respectively. These definitions are sensible, the only caveat being 

that we have assumed that all addicts inject in an identical manner, this is important 

since the method of injecting could affect how much of the addicts' blood will remain in 

the needle. To the best of our knowledge this assumption has been made in all previous 

models involving needle sharing intravenous drug users. 

We have defined what we shall refer to as a state one, state two and state three 

infectious needle. However whilst our definition is sensible it is not of practical use in 

a model of needle sharing since a needle will most probably be used more than once 

before being removed from the population (therefore it is unlikely that needles will be 

devoid of fluid prior to use as in our definition). We need to modify this definition to 

provide something more realistic for use in our models. As a first step towards a more 

practical definition we extend the definition to take into account needles which have 

previously been used but are still uncontaminated. Hence we define a state one, state 

two and state three infectious needle as any uncontaminated needle which has been 

used by an addict in stage one, stage two or stage three infectivity respectively. 

Intuitively, a previously unused needle used for the first time by a susceptible addict 

will leave an amount of uncontaminated blood in the needle after use. Due to this extra 

uncontaminated blood it is possible that the HIV viral load left in the needle by the 

next infectious user would differ from the case where the infectious addict injected with 

a previously unused needle. However it is also possible that the infectious addict flushes 

the needle, this would presumably leave the HIV viral load in the needle similar to the 

case where the needle was new and unused. It is not clear which of these situations 

is more plausible, and we are not aware of any data available to assist with this. We 

'we assume that an unused needle is a needle devoid of any fluid. 
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assume that the difference between the HIV viral load left by an infectious addict in 

an unused needle and in a used but uncontaminated needle is sufficiently small to be 

ignored, and in both cases the needle is left with the same viral load as in the blood of 

the infectious addict. 

3.3 Addict-Needle Interaction Assumptions 

We have defined the three types of infectious needles that we wish to incorporate into 

our model. Now we must decide on how the four types of addicts and four types of 

needles in our model interact (we have three types of infectious addicts and needles 

and one type of uninfectious addict and needle). More exactly we must specify for 

i, j, k=0,1,2,3 what fraction pauk of needles initially in infectious state i are left in 

infectious state k after use by an addict in infectious stage j. This gives us sixty-four 

potential needle-addict interactions to specify. However for sixteen of these cases the 

answer is obvious. If i=j then the initial infectious state of the needle is equal to 

the infectious stage of the addict, hence the final infectious state of the needle must 

obviously be k=i=j. This leaves us requiring to specify forty-eight needle-addict 

interactions. To give a concrete example suppose that a state one needle is used by a 

stage three addict, we wish to determine which infectious class the needle enters after 

the addict has injected with it. Note that the outcome of this is not necessarily the 

same as the outcome of a state three needle and a stage one addict interaction. The 

reason for this is that the volume of addict's blood which is drawn into a needle is not 

necessarily the same as the volume of residual blood already left in the needle from the 

previous user, hence the HIV viral load left in the needle may differ in each case. 

It is very difficult to determine the outcome of many of these forty-eight addict- 

needle interactions. It is clear that important factors in the outcome of each interaction 

are differences in HIV viral load between the different infectious stages, the volume of 

addict's blood which is drawn into a needle and the volume of blood already in the 

needle from the previous user. Unfortunately there are no empirical data to aid with 

the problem of estimating these pick probabilities. Research has been carried out to 

ascertain the relative HIV viral load in human blood during each stage of infectivity 

(Ward et al., 1987), however to the best of our knowledge this is the extent of the 

data. Peterson et al. (1990) assume that viral loads in stages one, two and three are in 

the ratio 5: 1: 3. While this data is useful it does not assist directly in determining the 
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outcome of any of the addict needle interactions as we can only guess at the difference 

between the volume of blood drawn into a needle and the volume of residual blood left 

behind in the needle after an addict has used it. We could make an educated guess as 

to the most sensible outcome of each addict-needle interaction, however it is probably 

inevitable that whatever assumptions we make these will be inaccurate, although just 

how much so is difficult to say. 

Rather than try to guess the most realistic addict-needle interaction assumptions 

based on little hard evidence we can instead choose a set of addict-needle interaction 

assumptions for the remaining unspecified Pijk probabilities which should be more op- 

timistic than would reasonably be expected. By optimistic we mean that the incidence 

rate and prevalence of the disease should be less. In this way we can establish a lower 

bound for the prevalence of HIV among intravenous drug users under the assumption 

of a three stage infectious period. 

There is a more general way of dealing with the problem of deciding needle-addict 

interactions. Instead of adopting a particular set of assumptions we can assign an 

unspecified probability p=ik to the outcome of each addict-needle interaction. This 

approach leads us to a single, much more complex, model which is discussed in Chapter 

5. 

3.4 Optimistic Addict-Needle Interaction Assumptions 

We expect that when a needle is used by an addict then the needle is left at a level of 

infectiousness somewhere between its initial level and the level of the addict who last 

used it. For example if a state one infectious needle is used by a stage two infectious 

addict then it is reasonable to expect that the needle is left with a viral load somewhere 

between that corresponding to state one and state two, so it must be left in infectious 

state one, two or three, it cannot be left uninfected. 

We now examine a set of addict-needle interaction assumptions which give rise to a 

model which is deliberately the most optimistic possible. This is useful because we can 

hopefully use it to obtain bounds for the fraction of needles and addicts infected. We 

assume that all needles take on the relative characteristics of the last user, for example 

a state one infectious needle used by a stage two infectious addict will become a state 

two infectious needle, a state three needle used by a susceptible addict will become 

uncontaminated and so on. This will be appropriate if almost all of the blood initially 
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contained in the syringe is injected into the user and replaced by the infectious blood 

of the injecting addict. 

The mechanism by which drug users inject heroin is as follows: the drug is first 

dissolved in water and drawn into a syringe, this solution is then injected into the 

addict. There will be some residual blood left in the syringe after the initial injection 

and further blood from the addict may be drawn back into the syringe and re-injected 

in order to get the full benefit of the drug (Blower et al., 1991). This could leave 

contaminated blood in the syringe (Samuels et al., 1992). As it is not unreasonable to 

suppose that the volume of blood transferred from the addict into the syringe during 

injection is much greater than the amount of residual infected blood from the last addict 

it is possible that our optimistic assumptions may be reasonably close to reality. 

In the Simple Model it was assumed that needles could be flushed with probability 
0. From the expression for the endemic equilibrium solution for this model it is obvious 

that if all else is held constant then increasing 0 from zero to one lowers the endemic 

level of HIV in addicts. In other words flushing is a beneficial action in the model 

with a single type of infectious needle. Our optimistic assumptions generalise the case 

where 0=1 as a basis for our lower bound three stage model, and are a similar idea 

to assuming that all addicts flush all needles with probability one. 

3.5 Model Derivation 

We wish to expand the model defined by equations (2.1)-(2.4) in Chapter 2 to incor- 

porate three types of infectious needle. We do not alter the behaviour of the addicts 

and as such the addict equations are the same except that now 

dire s 

dt = 
(i 

-Z iri), \(ßiai + ß2a2 +ß3a3)(1 - 0) - (11 + bi)iri" 

We have replaced ßa with Beal + ß2a2 + ß3a3 to incorporate the fact that addicts 

can now be infected by three different types of infectious needle, each with its own 

HIV transmission probability. The probability of becoming infected with HIV in a 

single injection from a state one needle is al, and similarly the probability of becoming 

infected with HIV in a single injection from a state two or state three needle is a2 or 

a3 respectively. We now move on to the three equations which describe the behaviour 

of the needles. 
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The number of infected state one needles at time t+ At 

= {number of state one infectious needles at time t} 

+{(number of non state one needles at time t) 

x (fraction of needles used by stage one addicts in [t, t+ At))} 

-{(number of state one infected needles at time t) 

x (fraction of needles used by non stage one addicts in [t, t+ At))} 

-{number of state one infectious needles exchanged in [t, t+ At)}. 

Thus 

mßß(t+ot) = mßß(t)+mA t7irl(t)( (t)+, 83(t)+(1-f3 (t)-, fi(t)-R3(t))) 
-mAOt7ßi (7r2 (t) + 7r3 (t) + (1 - 7r1(t) - 7r2 (t) - 7r3 (t))) - mß1(t)r1 t 

+o(ot), 
= mß1(t) + m? Oty(7ri - ßi) - mß1TOt + o(Ot). 

Subtracting rnßl (t) from both sides, dividing by mA t and letting At -* 0 we deduce 

that 

d0i 
= \7(7rl - 61) - Qir. ät 

The number of infected state two needles at time t+ At 

= {number of state two infectious needles at time t} 

+{(number of non state two needles at time t) 

x (fraction of needles used by stage two addicts in [t, t+ At))} 

-{(number of state two infected needles at time t) 

x (fraction of needles used by non stage two addicts in [t, t+ At))) 

-{number of state two infectious needles exchanged in [t, t+ At)}. 

Thus 

m, Q2(t+ist) = mß2(t)+mAOt7ir2(t)(QI(t)+Q3(t)+(1-ß1(t)-ß2(t)-ß3(t))) 

-m. XOt'YQ2(ir1(t) + 7r3(t) + (1 - 7rl(t) - ir2(t) - 1r3(t))) - mß2(t)rht 

+o(ot), 
= mß2(t) + m). Ot7(1r2 - ß2) - m, 62Tt t+ o(Ot). 
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Subtracting m, ß2(t) from both sides, dividing by mtt and letting At -* 0 we deduce 

that 

d32 
=)7(1r2-ß2)-ß2T. dt 

The number of infected state three needles at time t+ At 

= {number of state three infectious needles at time t} 

+{(number of non state three needles at time t) 

x (fraction of needles used by stage three addicts in It, t+ At))} 

-{(number of state three infected needles at time t) 

x (fraction of needles used by non stage three addicts in It, t+ At))} 

-{number of state three infectious needles exchanged in It, t+ At)}. 

Thus 

mß3(t +i t) = mß3(t) +mAAt7ir3(t)(ß1(t) +ß2(t) + (1 - ß1(t) - ß2(t) - ß3(t))) 

-mAOt'Yß3\7r1(t) +1r2(t) + (1 - 7r1(t) - 1r2(t) - 7r3(t))) - mß3(t)Ttt 

+o(ot), 
= ß83(t) + maztry(7r3 - Q3) - mß3TOt + o(Ot). 

Subtracting mß3(t) from both sides, dividing by mist and letting At -+ 0 we deduce 

that 

da3 
=Ai(lr3-03) -1637. dt 

Hence the system of differential equations which describes the spread of the disease 

is: 

d7rl 3 

dt - 
(1 

-E ir')A(ß1a1 +ß2a2 +ß3a3)(1 - q) - (µ + a1)ir1, (3.1) 
i=1 

dirt 
= 51iri - 

(14 + b2)ir2, (3.2) 

dt 
d7r3 

= a2ir2 - (14 + 53)ir3, (3.3) 
dt 
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d'ß1 (3.4) dt 

T -)q(ir2-a2)-ß2r, (3.5) 
dß2 

and 
d03 

(3-6) 
dt = a7(7ß -183) -183T, 

with suitable initial conditions: 71(0), 72M, v3(0), ßl (0), 62(0) and 83(0) where 

it (0) >0 and ß3 (0) > 0, for i, j=1,2,3, irl (0) + 7r2(0) + 7r3(0) <1 and 81 (0) + 

, ß2 (0) +, 83 (0) < 1. The needle equations do not feature the parameter 0, the probabil- 

ity that an addict successfully cleans a needle prior to use. The reason for this is that 

under the assumption of full flushing we have that all the contents of a needle prior to 

use are removed by injection (into the addict) during the injection process. Hence the 

state of a needle after use is determined purely by the HIV viral load of the residual 

blood left by the current user. Thus cleaning a needle prior to use has no effect on the 

state of the needle after use. 

3.6 The Basic Reproductive Number 

As in Section 2.4 we are interested in deriving an explicit expression for the basic 

reproductive number. This time we are interested in the value of Ro based on the 

model defined by eqns (3.1)-(3.6). 

As usual we consider a single newly infectious addict entering a totally susceptible 

population of addicts and needles. The infectious addict is initially in stage one infec- 

tivity. Following a similar method as in Section 2.4 we first determine the expected 

number of needles an addict will infect during each infectious stage of his or her infec- 

tious lifetime. This time we have three types of infectious needle, the assumptions in 

our model imply that when an addict is in stage one he or she leaves needles in stage 

one infectivity, when in stage two, needles are left in stage two infectivity and when 

in stage three, needles are left in stage three infectivity. We know that on average an 

addict infects 
A 

p+ ai 

needles during his or her entire stage one lifetime, and 

aal 
(µ + b1)(µ + b2) 
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needles during his or her entire stage two lifetime, and 

A5162 
(A + 6i)(µ + 52)(P + 53) 

needles during his or her entire stage three lifetime. Hence we now know how many 

of each type of needle an addict infects during his or her entire infectious lifetime. 

We now wish to determine how many infections will be caused by each type of needle 

until it is rendered virus free. By treating each type of needle separately we can 

proceed in the same manner as for the Simple Model. Firstly we consider a single 

stage one infectious needle, using the same notation as in Section 2.4 and where El = 
E(addicts infected by a single state one needle until it is flushed), we have that 

El = 
(- O)T7 [P(sus. 

addict infected and needle flushed) 

+P(sus. addict infected and needle not flushed)(El + 1) 

+P(sus. addict not infected and needle not flushed)Ei], 

[P(sus. 
addict infected) + P( needle not flushed)Ei,. 

ary+z 

However for the Optimistic Model we have assumed that needles are always flushed, so 

solving for El simply gives 

_ 
(1 - 0)ai 

El 
T+1 

where f= T/ary. Following an identical argument for state two and state three infec- 

tious needles we find that 

E2 
_ 

(1 
- q)a2 

T+1 

and E3 = 
ý1 - O)as 

T+1 

We now know the expected number of each type of infected needle an addict creates 

during his or her entire infectious lifetime, and we know the expected number of addicts 

each of these types of infectious needle infects. Multiplying these two values gives us, 

iß(1 - ! p) a291 a361a2 l 
Ro = (N+[ai+µ+S2 + (p+b2)(Fp+ö3)J 

(3.7) 

We now move on to exploring the properties of the Optimistic Model in a similar 

manner to the Simple Model in the previous chapter. As before we are interested in 

the importance of the value of Ro in determining the long term behaviour of our model. 
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3.7 Analytical Results 

We now investigate analytically the properties of the Optimistic Model. The mathe- 

matical results in this section share a number of things in common with the results 

for the Simple Model. In particular the Optimistic and Simple Models share the same 

addict equations and this allows us to use certain results from Section 2.5 directly. As 

in the Simple Model we assume that all model parameters except q5 are strictly posi- 

tive and that ý is strictly less than unity. In addition we assume that al > a3 > a2i 

this implies that needles in state one infectivity are more infectious than those in state 

three infectivity which are more infectious than those in state two infectivity. We are 

primarily interested in the behaviour of the equilibrium solutions and in particular 

whether Ro <1 is still a necessary and sufficient condition for the disease to die out in 

all addicts and needles, and similarly whether Ro >1 is still a necessary and sufficient 

condition for the disease to persist among the population if it is present initially. 

Theorem 3.1 If Ro <1 the system of equations (3.1)-(3.6) has a unique equilibrium 

solution where the disease has died out in both addicts and needles. If Ro >1 then there 

is still the equilibrium where the disease has died out, however there is also a unique 

endemic equilibrium. 

Proof. 

Let iri, ire, i3,61*, ß2 and 63* denote the respective equilibrium proportions of 

infected addicts and infected needles in infectious stages one, two and three. Let 

7r = 7rl + iz + 1r3, the total proportion of infected addicts, ýB = , 61 + Q2 + ß3, the 

total proportion of infected needles, and L= 1+81/(p+b2)+(5162)/((p+52)(11 +Ö3)). 

Using eqns (3.1)-(3.3) we can write iri, i2 and ir3 in terms of lr* as follows, 

lr* 
7r1 = Lý 

J1 lr* 72 (1 +52)L' 

S1S2 1* 
and ßr3 = (µ + S2)(µ + S3) L. 

From eqns (3.4)-(3.6) we find that 

ßi 
L(l +T) 

(3.8) 

* 'ý*bl 
J62 

(3.9) 
L(1 + T)(µ + b2)' 
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7r*b1b2 
and - L(1+T)(µ+b2)(µ+b3)' 

(3.10) 

Substituting the expressions for , and ß3 into eqn (3.1) and substituting 7r*/L for 

irr gives 

(1 - i*)A(1- 0) 
L- 

(p 
Lal) 

where 

«1 a251 a36162 EZ+T+ 
(1 + T)(µ + ö2) 

+ (1 + T)(A + ö2) (A + bs) 

Hence 

7r* =1- ý(i )Eº 

and /3* 
+ T' using eqns (3.4)-(3.6). 

Using the expression of Ro from eqn (3.7) we find that 

(7r* 
7,6 = 

R° -1 Ro -1 (3.11) ( 
Ro Ro(1 +T) 

As in the proof of Theorem 2.1 there can only be two equilibrium solutions, the disease- 

free solution and a strictly positive solution. From eqn (3.11) it is obvious that if Ro <1 

then the only solution is the disease-free solution, and if Ro >1 then we have a unique 

endemic solution. This completes the proof of Theorem 3.1. " 

Theorem 3.2 If Ro <1 then whatever the initial state the disease will die out in both 

addicts and needles. 

Proof. 

This proof is very similar to that of Theorem 2.2. Eqns (3.2)-(3.3) are the same 

as eqns (2.2)-(2.3) thus we can use Lemma 2.1 and Corollary 2.1 directly. The form 

of eqns (3.4)-(3.6) is very similar to eqns (2.2)-(2.3), hence we have directly that if 

ßi° = lim supt-ý , , ß= (t) for i=1,2,3 then 

p00 C 7ro 
` 1+T' 

for i=1,2,3. Using Lemma 2.1 and Corollary 2.1 we find that 

al7r 00 
02 

(/. 
-1+62)(1+T)' 

J1Ö214'° 
and Qý 

(FA+ 52) (A+53)(1+T). 
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Now suppose that irr > 0. Given e>0, 

dt1 
ý (1 - ir1)A(Q1a1 +ß2a2 +Q3a3)(1 - 0) - (µ + 6i)ir 

, 

(1 
- 9C1)A(1 - c)(IBl0al +ß2°a2 +ß °a3 +f) - 

(p + al)ir1, Vt % t1(E) 

<1- 7I 
iß(1 - c) 

a+ 
a1 a2 + 

b1 b2 a3 + cll 7x00 
( 

1) 1+T 

[1 

14+62 (A+62)(A+b3) 
J1 

-(µ+al)ý1, 

E(1 + T) 

where el 00 ir1 

< (1 - ir1) (14 + bl) (Ro + e2)? ri° - (µ + Ö1)ir1, where e2 = 
A(1 - O)El 

(µ + S1)(1 + T), 

< (14 + a1)[(Ro + C2)1T °- (1 + Ro7rl°)7r1]. 

The result now follows directly using the latter part of the proof of Theorem 2.2. Once 

we have established that ýi° =0 it follows immediately that 7r2°, 7r3°, ß1°, ßZ° and 83° 

are all zero and then that 7rl (t), ire (t), 7r3 (t), ß1(t), , 62 (t) and 03(t) all tend to zero as 

t-ýoo. " 

Theorem 3.3 If Ro >1 then there is still the equilibrium where the disease has died 

out and this equilibrium is unstable. 

Proof. 

Consider the linearised system of eqns (3.1)-(3.6), evaluated at the disease-free 

equilibrium. This system can be represented in matrix form as 

dx 
dt = Jx, 

where xT = (iri, 7r2,73,161 7 Q2183) and 

-(µ + 81) 0 0 Aal(1- 0) Aa2(1- 0) . a3(1- 0) 

al -(p+52) 0 0 0 0 

0 a2 -(p+a3) 0 0 0 

ay 0 0 - (Ay + T) 0 0 

0 ay 0 0 -(ay+r) 0 

0 0 Ay 0 0 -(ay+T) 
We wish to show that at least one eigenvalue of J has a strictly positive real part. Using 

the Routh-Hurwitz conditions it is sufficient to show that the constant term, a6, in the 

characteristic equation of J, 

w6 + alw5 + a2CJ4 + agw3 + agw2 + a5w + a6 =0 
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is strictly negative. It is straightforward to show that 

a6 = (A7+T)(A7+T)(Alt +T)(14 +b1)(A+J2)(14 +b3) 

-Aa3(1 - 7)X7(A7 + 7)(A7 + r)Si52 

-Aa2(1 - 0)()7+T)Ä7+r)A7bi(fý+63) 

-ary(k7+T)(A7+r)(p+Ö2)(u+53)Aai(1 - 0), 

81)(, z+b2)(14+b3) 

X 
fl 

- 
t27al(1 - 0)iµ + 52)(P + 83) + )27«2(1 - c)ai(µ + b3) 

L (14+6i)(14 +62)(FA+63)(A7+T) 

_ 
A2703(1 - _)ala2 

+T) ill +b1)(u+a2)(FA+83)(Alf 
Substituting in the expression for Ro in eqn (3.7) we find that 

a6 = (A7+T)3(11+a1) (p+b2)(I&+b3) (1 -Ro), 

hence if Ro >1 then a6 <0 and the result follows.. 

Theorem 3.4 If I1 >1 and either ir(O) >0 or ß(0) >0 then there exists a fixed 

e>0 depending only on the model parameters and not the initial conditions such that 

for some t>0 

9f1'i E7r , 7C2 i Hfl, 73 ý: 673,161 ý Eß1,02 ! Eß2, ßý EN3f Vt ý tj. (3.12) 

As in the case of the Simple Model in the previous chapter the proof of this theorem 

requires a number of supporting arguments. The method of the proof is similar to that 

for the Simple Model, the main difference is the extra work involved in dealing with 

six rather than just four equations which describe the disease dynamics. This result 
follows the same intuitive argument as for the Simple Model, the two main parts of 

which are that i1 is the dominant component of the system and that the disease-free 

equilibrium is unstable for this model when Ro > 1. The Optimistic Model has the 

same equations for dire/dt and d7r3/dt as the Simple Model, hence we can use Lemma 

2.2 and Corollary 2.3 directly, thus we have that 

Ö17f1 
lr2'°O ,- >_ 

A+-2 
(3.13) 

and 1x3 
a1S21rl, 

oo (/3) 
, 00 >_ 

(A + 52) (A + a3) . 
14 
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From eqns (3.4)-(3.6) we find that 

dt 
(ßi 

exp[(A y+ T)t]) = 1rl ary exp[(kr + 7)t], (3.15) 

dt 
(Q2 exp[(A7 + r)t]) - 7r2A7 exp[(a7 +7 )t], (3.16) 

and 
dt (ß3 

exp[(A7 + T)t]) = ir3A7 exp[(A7 + T)t]. (3.17) 

It follows directly that 

aryýrl, ý 11,00 ý 
A7 +T' 

(3.18) 

'O° 
A71r2,00 

> 
A'Ybi7ri'°° 

(3.19) 02_> 
Try+T (ky+T)(µ+a2) 

and #3,0o > 
A77r3, °° > 

)751521r1, O0 (3.20) 
A +T (A7+T)(A+Ö2)(/-=+a3) 

From the previous results it is sufficient to show that 7r1,00 >0 since then given 

v>0 there exists C(v) such that 7rl > 7r1,. -v for t> C(v). Hence to bound the 

trajectories away from zero it is sufficient to show that ir1 > 0. Choosing v=2 ýrl, oo 
gives Trl > 21r1, 

o, for t> C(v). Inequalities (3.13)-(3.14) and (3.18)-(3.20) imply that 

72, oo, ir3,00, ßi, 0, ß2,00 and ß3,00 are all strictly positive when I1,00 >0 and hence (3.12) 

holds. 

Lemma 3.1 Provided that at least one of ir1(t), 7r2(t), ir3(t), 61(t), fi(t) and /33(t) 

is strictly positive at t=0 then 7r1(At) > 0,7r2(At) > 0, ir3(Ot) > 0, ß1(0t) > 0, 

ß2(0t) >0 and ß3(0t) >0 for At small and positive. 

Proof. 

We need to consider four separate initial conditions: 

1. Suppose that 6(0) = 0. Hence ir(0) > 0. Using a Taylor expansion about t=0 

and egns (3.1)-(3.6) we find that 

ß(At) _ 7r(0)A7ot + o(ot) > 0, 
and 7r(At) = ir(0) - (Ecir(0) + b3ir3 (0))At + o(At) >0 

(for At small and positive). 

Let c/, =1- ir, hence 

dt -IPA4(l - 0) + µ(l -' ') + 1r353, 
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where ß= ß1a1 + ß2a2 + ß303. If 7r(0) <1 then we have that 0(0) > 0, hence 

1i(Ot) >0 for small enough At. If ir(0) =1 then 0(0) =0 and 

ip(Ot) > µßt + o(Lt) >0 (for At small and positive). 

Hence by choosing At small enough and starting at t= At we can assume that 

(if necessary) 7r(0) > 0,0(0) >0 and ß(0) > 0. If 7r1(0) =0 then 7rl(Et) = 

i/i(0)aý(0) (1 - q5)Ot + o(At) > 0, hence we can also assume that ir1(0) > 0. If 

X31(0) =0 then 61 (At) = \ry7r, (0)At + o(At) >0 hence we can assume that 

, 61 (0) > 0. If 7r2(0) =0 then ire(At) = öl7rl (0)&t + o(Lt) > 0, hence we can 

also assume that 7r2 (0) > 0. If P2 (0) =0 then 02 (At) = Aryir2 (0)/t + o(At) >0 

hence we can assume that (0) > 0. Similarly we can assume that 7r3(0) >0 

and ß3 (0) > 0. 

2. Suppose that 7r(0) = 0. Hence ß(0) > 0. Following the same method as the 

previous case we find that 

ir(ot) = ae(o)(1- q5)ot + o(ot) > 0, 
ß(0t) = ß(0) - (ß(O)\ + ß(0)7-)Ot + o(Ot) > 0, (for At small enough), 

and 

O(At) =1 -) (0)(1- q5)Ot+o(Ot) > 0, (for At small enough). 

Hence by choosing At small enough and starting at t= At without loss of gener- 

ality we can assume that 7r (0) > 0, ß(0) >0 and ßi(0) >0 and as in the previous 

case we can also assume without loss of generality that it (0) > 0,81(0) > 0, 

7r2(O)>O, 2(0)>O, 7r3(O)>Oandß3(O)>O. 

3. Suppose that ir(0) > 0, ß(0) >0 and V)(0) > 0. This case is trivial and follows 

directly from the argument in Case 1. 

4. Suppose that ir(0) > 0,, 6(o) >0 and ßi(0) = 0. This implies that ir(0) = 1, hence 

ik(Ot) > µ0t + o(At) > 0, (for At small and positive). 

Thus it follows directly that without loss of generality we can assume that -r/ß(O) > 

0 and the result follows by Case 1. 

This completes the proof of Lemma 3.1. " 
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From Lemma 3.1 we have that there exists fixed e where 1>e>0 such that if At 
is small enough ir; (At) > ¬ir and ßs (At) > e, 6i* for i=1,2,3. As in the Simple Model 

suppose first that 7rl,,,, >2 Eiri. Then arguing as for the Simple Model we have that 

there exist T1, T2 and T3 such that for t> max(Ti, T2, T3), 7r1 4 eirr, 7r2 >4 eý2 and 

7r3 1 4eir . 
From equations (3.18)-(3.20) we have that 

/ý ary 1 ary7rl 
_1 

ý2 lýl, oo 
! 

Ay+T71'00' ZEi1r FT ZEIVly 

a7 al 1 »y Sirr 
= 

iýk 
AY -i T IA i- a2 ý1 ,ý2E Ary +Tµ+ SZ `2 ENZ f 

and > 
Ary 5152 

>1E 
A7 5152 

7r* =1 'Ei 
Q3,00 

A +T(P+J2)(i+a3) 1'0O 2 Ay+T(p+52)(p+a3) 2 3. 

Hence arguing again as in the Simple Model there exists T4, T5 and T6 such that for t> 

max(T4, T5, Mi 01 >_ 4 
EAi, 02 

_> 
4 

Eß2 and ß3 >4 lc 

, 
63*. So fort > max(T1, T2, T3, T4,2'5, 

T6) we have that it i 
1¬irr, 7r2 % 

gE7C2,7r3 
1 

4E7f3,61 
ý 

qE , 
ß2 > 

4Eß2 and 

, ß3 i 4E, 
ß3, in other words eqn (3.12) holds true with e replaced by c/4. 

Now suppose that Trl,,,,, <2 E7rl in which case there exists C> At such that 7r1 (C) < 
2 

E7r . 
Let to = inf{C > At, 7rl (C) <2 Eir } and tl = inf{C > to, iri (C) >2 E7r } where c is 

fixed and positive. By the definition of to we have that ir1(to+v) <2 Eii if v is small and 

positive, hence t1 > to. As in the Simple Model by continuity 7r1(to) = ir1(tl) =2 E7rl 

and irl is less than 2E7r1 in (to, t1) and greater than 2Eir1 
just after t1. We now show 

that if 7rl becomes small then all components become small. 

By again exploiting the similarities between the Optimistic and Simple Models we 

can use Lemma 2.4 and Corollary 2.5 directly. From eqns (3.4) -(3.6) we have that if 

Ti and TZ are defined as for the Simple Model and A is small and positive then 

for to E [to, ti] 

for to E [to +Ti, tl] 

and for to E [to +Ti +T2itlJ 

ddtl 
<2 Eirl. - Wr +, r), 81, 

ddt2 
< 

(2 
+ 0ý eir2ary - (a7 +'r)ß2, 

d 

wt- 
3ý (+2)e7_(7+r)ß3. 

Hence we have that there exists a time T3 such that for all t> to + T3i 0< ßl < 
(2 + L) e. Similarly there exists a time T4 such that for all t> to +Ti +-0< Q2 < 

(2+2t1)ß¬, and a time T5 such that for all t> to+Ti+TZ+T5i 0 <, B3 < (2+30)ßE. 

In each case the value of T; depends only on the Optimistic Model parameters, e and 
A. 
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We have shown that if 7rl approaches zero then all components must also approach 

zero. We now show that 7r1 cannot become arbitrarily small. We do this by showing 

that tl - to can be bounded above by a fixed finite value and hence I1 is not below 

I fir* long enough to become arbitrarily close to zero. Now either zcl remains below 

2 eii long enough for all components to become small or iri increases up past 2 elri 

before all components become small. Hence we have that either 

(i) tl>to+Max[TliTI+Täs7'syTI+T4ºTi+T2+T5b 

or (ii) tl <to+max[i; l, T, +ZiZiz+T4iTi+Tz+T51- 

We wish to show that tl <T where T is a fixed finite value dependent only on 

the model parameters, c and A. If case (ii) is true then we are finished. Case (i) is 

where all components become small and it is this situation we now deal with. Since the 

disease-free equilibrium is unstable for Ro >1 we can use this to show that 7r, cannot 

stay small indefinitely. 

Lemma 3.2 If 7r1(t) drops to below 2 eii at time to then ir1(t) returns to 2 eire by at 

least time ti = to + max[T1, T1 + 2'2, T3, T1 + T4, T1 + T2 + T5, t2 + Ts] where tl - to is 

finite and depends only on A, e and the model parameters. 

Proof. 

Suppose that e2 is real and positive and 1>e 2>0 and consider the matrix J(62) _ 

-($h-i-51) 0 0 i1Ct1(1-ý)(1-E4) )ß[Y2(1-ý)(1-c2) Xa3(1-0)(1-e2) 

61 -(µ+62) 0 0 0 0 

0 63 -(µ. +63) 0 0 0 

a7 0 0 -(A7+T) 0 0 

0 A7 0 0 -(A7+7-) 0 

0 0 a7 0 0 -(a-y-fr) 

When e2 = 0, J(0) = J, the linearised stability matrix about the disease-free equilib- 

rium as used in the proof of Theorem 3.3. Suppose that the eigenvalues of J(c2) are 

w1(e2), W2(e3), w3(62), w4(C2), w5(62) and W6 (C2). Note that the only negative entries 

in J(e2) are the ones on the leading diagonal. Arguing as in the proof of Lemma 2.5 

without loss of generality we may assume that wl(e2) is real and the other eigenvalues 

have strictly smaller real parts. In particular this is true when e2 = 0. Moreover from 

Corollary 2.7 we have that the roots of the characteristic equation of J(¬2) are contin- 

uous functions of e2i hence W&2) -+ wl (0) as e2 -+ 0. From the proof of Theorem 3.3 

92 



we know that wl(0) is strictly positive when Ro > 1. Therefore by choosing e2 small 

enough we can ensure that wl(f2) > 0. Without loss of generality we can assume that 

1> 62 > 0. We can choose e small enough such that 

2 E9fi +12+AJ E7r2 + 
(2 

+ 2E) E9f3 < E. 

Hence for tl >t> to + Ti 
\+ 

T2 we have that in + 72 + ir3 < E2 using Lemma 2.4 

and Corollary 2.5. Let t2 = inf{( : for tl >t> to + C, ir(t) < e2}, hence if t2 > 0, 

ir(to + t2) = e2 and to + t2 is the last time before tl that ir(t) > e2, and note that 

t2 < T1 +T2. If tl < to +Ti +TZ then we have the desired result. Now we consider the 

case where tl >t> to + Tl + T2. We have that 

dx 
dt 

? J(EZ)x, 

where x= (7rl, ir2i 7r3, ßl, X82, P3). From Lemma 2.1 in Nold (1980), J(e2) has a strictly 

positive left eigenvector, e= (el, e2, e3, e4, e5, e6) corresponding to the Perron Eigen- 

value w1(e2). Hence 

e 
dx 

>e J(62)x = wl (e2) e. x. 

Thus 

e. x(t) > e. x(to + t2) exp[wl (e2) (t - to - t2)], (integrating over[to + t2, t]), 

> (elirl + e2ir2 + e37r3) exp[wi (E2) (t - to - t2)]+ 

> ir(to + t2) min(ei, e2, es) eXP[wi (E2) (t - to - t2)]+ 

(= e2 min(el, e2, e3) eXp[wl (e2) (t - to - t2)], if t2 > 0, 

1> eir1 min(el, e2, e3) eXP[WI(C2)(t - to - t2)], if t2 = 0- 2 
Therefore after a time to + t2 + T6 we have that 

e. x(t) > e. 
(¬7r 

i, (2 
+A) e7r2 i 

(2 
+ 20) ¬ir , 

(2 
+A) e, ß1,12 + 2A) e, 

( +30) ¬ß 
) 

where T6 depends only on e21457 0 and the model parameters. 

We know that provided that to <t< tl then after a time to + max[D1, Di + 

TZ3T3, Ti+T4, T1+T2+T5], we have that it < 2eir1, ire < (2+p)cir2,7r3 < (2+20)E7ß, 

, Bl < (2 + A)eßl, 02 < (2 + 20)eß2 and X83 < (2 + 30)eß . Hence 

e. x(t) G e. 
(cir (+ (+ 

2L )E7f3, I 2+Aýe/ ý 

(2+2A) 
E/2, 

(2 
+3A) 
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However if tl > to + max[T1, Ti + T2, T3, Ti + T4, T1 + TZ + T5, t2 + T6] we have a 

contradiction. Hence tl < to + max[Ti, Ti + T2, T3, Ti + T4, T1 + T2 + T5, t2 + Ts]. This 

concludes the proof of Lemma 3.2.9 

As in the case of the Simple Model we have shown that the first time i1 drops below 

2cir it must return back to this level by a duration of at most T time units later, and 

as before this extends to any time that 7rl drops below Zcirl. Hence for the Optimistic 

Model we also have that if irl drops below 2 e7rl at to then for tE [to, to + T], 

dire 
dt > -(µ+ai)lri, 

7r1 
je7ri 

exp[-(14'f 
1 

> 2Exiexp[-(µ+51)T], 

where T is a fixed duration dependent only on e, c2i A and the model parameters. Since 

Zeii exp[-(p + öl)T] is strictly positive we have that 7r1,. > 0. Hence (3.12) is true 

and we have that there exists e>0 and t>0 such that for all t> i7, it(t) >e and 

ßt (t) >e for i=1,2,1 This completes the proof of Theorem 3.4. " 

3.7.1 Local Stability of Endemic Equilibrium 

Showing local stability of the endemic equilibrium in the Optimistic Model would re- 

quire examining the Routh-Hurwitz conditions for a sixth order polynomial. This is 

very complicated and we feel that while theoretically possible the work required out- 

weighs the merits of a local stability result. We instead examine local stability in 

a model which is closely related to the Optimistic Model and has the same endemic 

equilibrium solution but which has only three rather than six dimensions. 

Evidence suggests that the timescale on which addicts inject is of the order of days, 

whereas that of the other epidemiological and demographic processes is measured in 

years, and is a lot slower. We commented that this appears to be true in the Simple 

Model in the previous chapter. For example by examining Figures 2.2-2.4 we can 

see that for each of the initial conditions shown ß(t) very quickly settles down to an 

almost parallel trajectory to ir(t). By examining the needle equations (3.4)-(3.6) in our 
Optimistic Model it is obvious that if the prevalence of disease is constant among the 

addict population (at say values of it for i=1,2,3) then the prevalence of disease in 

each group of infectious needles will tend to it /(1 +T) for i=1,2,3 for state one, 

two and three infectious needles respectively. Now whilst it is not true that the it 
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values are fixed, it is true that the ßz's will respond very rapidly to slowly varying 

7r=-values, so we can approximate the dynamic relationship between it (t) and ßi(t) as 
ßi(t) = mi(t)/(1 +T) for i=1,2,3. A similar argument is used by Kaplan and O'Keefe 

(1993) to calculate the reduction in HIV incidence due to the introduction of a needle 

exchange in their model, and by Kaplan (1994,1995) to justify assuming that HIV 

prevalence amongst addicts is constant in a model examining only the dynamics of 

HIV amongst needles. We later demonstrate using simulations that this approximation 

for the prevalence of disease in needles is extremely good. It appears that for any 

initial conditions the prevalence of disease in needles very quickly settles down to the 

approximate relationship 8i (t) = it (t)/(1 +T). 

By assuming that ßi(t) = 7r; (t)/(1 +T) for i=1,2,3, we can model the prevalence 

of disease among addicts using only three variables, ir1(t), 1r2 (t) and 1r3 (t). This "addict 

only" model can be represented by the following system of equations: 

d7ri 7rlal + 72x2 + 7r3a3 
dt = (1- ýr)A(1 - ý) 

1 +T 
(µ + ai)ýi, (3.21) 

dir2 
(3.22) 

and 
dt 

= 527r2 - (p + 53)x3. (3.23) 

An important feature of eqns (3.21)-(3.23) is that by construction it has the same 

equilibrium solutions as in the full Optimistic Model. 

The Jacobian at (ir*�8*) for eqns (3.21)-(3.23) is J= (j; j) where: 

ill =1+) 
[ai(1- 21r*t7i) - 7r*r12(ai + a2) -7*113(ai + a3)] - (µ+al); (3.24) 

i12 = 
A(1 0) Ia2(1- 21r*r12) - . *'i (al + a2) - 7r*rl3(a2 + a3)]; (3.25) 

. 713 = 
)11+ 0) [a3 (1 - 27r*rls) - . *'li (ai + as) - . *M (a2 + a3)]; (3.26) 

j21 =JI; 222 = -({4 + a2); 
. 
723 = 0; 

. 
i31 = 0; 232 = a2; and j33 = -(µ + 53). Recall 

that for the Optimistic Model ir* =1- (1/Ro) and 7r; = r7s1r* for i=1,2,3. If the 

characteristic equation is denoted by w3 + aiw2 + a2w + a3 =0 then it is easy to show 

that 

al = (µ+62 -f-µ+63) -. 7iiv (3.27) 

a2 = (µ+b2)(l-9+53)-51.12-(µ+ö2+µ+63)jll, (3.28) 
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and 

a3 = -(it+a2)(It+83)911-b1(µ'ß53)712-5152 13" (3.29) 

By substituting 1- (1/Ro) for 7r* and after some simplification we find that 

+ bl A+ bl CY281 a3JI82 

a1 = (/i+b2+14+b3)+ _L (Ro-1)+ 
F ý+b2+(µ+b2)(Ec+bs) ' 

a2 = (E1+62)(14+68)+I 
Lbl(bl+p+b2+11 +b3)(Ao-1) 

+µ+ 
Y1 a251(14 +b3) 

+ asbl52 + a35152 
F( 14 +ö2 µ+b2 /4+b3 

and 

a3 = 
4L61 (6162+61(µ+63)+(4+62)(14+63))(Ro-1), 

where 

F= al + 
61a2 

+ 
alb2a3 

+a2 (1-4 +62)(µ+b3) 

It is clear that if Ro >1 then al > 0, a2 >0 and a3 > 0, moreover it is also apparent 

that there are sufficient terms in ala2 such that ala2 > a3. Hence the Routh-Hurwitz 

conditions for a cubic are satisfied and the endemic equilibrium in our "addict only" 

model is locally stable. 

It is possible to make this approximation argument more rigorous by showing that 

if A7 is large compared with the other parameters of the model apart from T, (including 

aal, aal and Aa3) then three of the roots of the characteristic equation of the Jacobian 

of the full model at the endemic equilibrium are close to -(A7+T) and the other three 

are close to the roots of the characteristic equation of the Jacobian of the "addict-only" 

model at the endemic equilibrium. See Appendix C for details. 

3.7.2 Sufficient Conditions for Global Stability of (ir*, ß*) 

We now use a similar method to that discussed in Section 2.5.1 to derive sufficient con- 

ditions for the global stability of the endemic equilibrium in the Optimistic Model. We 

again consider a translated form of our original coordinate system, (I1,7r2,7r3,61, 
#82, /j3), 

where the origin of the new system corresponds to the endemic equilibrium, (7ri, 7r2, irr, ßi, 

ß, ß), in the original form. This translation gives the following set of model equations: 

dFr 
dtl (1 - 7r*)A(1 - ý)( a1 +ß2a2 +43«3) - FrA(1 - 0)(ß1a1 +ß2a2 +ß3a3) 
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-(p + bl)-i1, (3.30) 

dir2 
= ät b1*1 - (µ + b2)fir2, (3.31) 

dir3 / 
dt 

b2i2 - lFý + t)ý3, (3.32) 

dt= 
A7(Fri - 

$i) 
-, 617-, (3.33) 

dt 

A( 

dt - A7(ir2 - ß2) - ß27,3.34) 

and 
dd 3= A7(*3 - 

43) 
- /3T, (3.35) 

where ß= = ßt - 6'', fr= = 7t - 7r= for i=1,2,3, and i= frl + ßr2 + fr3. We wish 

to show that iri -ý 0 and $ 
-* 0 for i=1,2,3, as t -+ oo. This is equivalent to 

showing that ir, -ý 7r; and ß --ý ýt for i=1,2,3, as t -> oo. The system defined 

by eqns (3.30)-(3.35) can be represented in matrix form as dx/dt = V(x)x, where 

xT = (7rI, ir2, ir3, Q1, Q2, ß3), xT = (*1, *2, ir3, $1, /2, $3) and V(x) _ 

-(iH-3 )-aj(1-ß) -AR(1-m) -Aß(1-#) (1-ir*)a«, (1-4, ) (1-lr*)aaz(1-m) (1-At)Aa3(1-4, ) 

51 -(µ+52) o o o o 

o 52 -(µ+53) 0 0 0 
ary 0 0 -(a7+T) 0 0 

0 ary 0 0 -(Jýry+i) 0 

0 0 J1ry 0 0 -(J1ry+t) 

where /= ß1a1 + /32a2 + ß3a3. When x=0 we have that V(0) = 

-(/++bi) 0 0 (1-A*)aa1(1-q5) (1-lr*)Aa2(1-0) (1-lr*)Aa3(1-4, ) 

51 -(µ+d2) 0 0 0 0 

0 62 -(µ+43) 0 0 0 

a7 0 0 -(a7+r) 0 0 

0 ay 0 0 -(ay+r) 0 

0 0 A7 0 0 -(a7+r) 

and note that the only strictly negative entries are on the leading diagonal. 

We are also interested in the additional coordinate system of (17r, '2, Fr3, / i, Q2, /33). 

As in the Simple Model the equation for dt/dt is easily derived by adding eqns (3.30)- 

(3.32). This new system can be represented in matrix form as dy/dt = W(y)y, where 
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YT - (7r, 7r2,13, i8l 1ß2) 
ß3)i jT= (jr, Fr2, Fr3,41,42,43) and W (Y) = 

0 -63 (1- *)Aai(1-ý) (1-1r*)Aa2(1-45) (1-x*)aa3(1-ý) 

dl -(µi-62+ö1) -61 0 0 0 

0 52 -(µt53) 0 0 0 

a7 -»1 -Ay -(ay+r) 0 0 

0 a7 0 0 -(1ry+r) 0 

0 0 ay 0 0 -(ary{ T) 

In this coordinate system the variable ß only appears on the leading diagonal of W(y). 

We can write y= HE where 

111000 

010000 

001000 
J= , 000100 

000010 

000001 

hence using a similar method as in the proof of Lemma 2.6 we have that V(x) and 

W(y) share the same eigenvalues. 

Using Theorem 3.4 we can replace the variable ß= ßial+02a2+ß3a3 in W(y) with 

a constant lower bound, E. Hence we have that for t>q, W(y) < W+ = W(O) - 

where 
a(1- 0) 00000 

oo0000 
000000 E 
000000 

000000 

000000 

Now following a similar argument as in the Simple Model, we now show that 

W(O) -E is Lyapunov stable. As in the proof of Lemma 2.6 the eigenvalues of 

W(0) are the same as those for V(0). As previously if M is large enough V(0) + MI 

is an irreducible matrix with non-negative elements and has a unique strictly positive 

eigenvector (cri, 7r2,7r3*, Qi, Q2, P3*). From Lemma 2.1 in Nold (1980), we find that the 

eigenvalue corresponding to the eigenvector (Irr, 7r2,7r3, ß, ß, ß3) is a simple eigenvalue 

and it is also the spectral radius of V(O) +MI. Thus all eigenvalues of V(O) and hence 
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W(0) lie in a circle centered on (-M, 0) with radius M, and zero is a simple eigenvalue 

of W(0). 

The characteristic equation of W+ = W(O) - EE, is of the form 

w6 + al(E)w5 + a2(e)W4 + ag(E)w3 + a4(e)W2 + a5(E)W + a6(E) = 0, (3.36) 

where ai (¬), for i=1.... 6, are continuous functions of E. We find that 

a6(') = 
(µ+a¬(1-0)) [(µ+bl+b2)(14 +83)+blb2](. \7+7)3+515253(»ry+T)3 

-ala(1-0)(1-7r*)A7(A7+T)2(F, +53)(/ +b2) 

-a2A(1 - ý)(1 - 7t*)A7(, X7 + r)2(IL + 63)61 
-a3A(1- 0 (1- a*)Ai(A7+r)26152" 

When E=0 we have that W+ = W(O) and we know that zero is an eigenvalue of 
W(O). When e=0 five eigenvalues have strictly negative real parts and the sixth 

eigenvalue is real and lies at the origin. Now consider the case where e>0, as in the 

Simple Model we have that the eigenvalues are continuous in e in a neighbourhood 

about the origin. By continuity wi for i=1, ... ,5 will still have strictly negative real 

parts. Now consider what happens to W6 as e increases from zero to a small positive 

value. If ws either stays on the imaginary axis or moves to the right and gains a positive 

real part then we have that a6 = w1w2w3w4w5w6 <0 however this is impossible since 

we know that a6 is strictly increasing in E and that a6(0) = 0. Hence for E>0 small 

and positive all eigenvalues of W+ have strictly negative real parts. Therefore W+ is 

Lyapunov stable. 

The forms of W(y) and W+ are similar to those discussed in Section 2.5.1 and 

therefore we again require the stronger condition that W+ is Volterra-Lyapunov stable 

(also known as diagonal stability) to guarantee that if disease is initially present then 

the system will approach the endemic equilibrium when Ro > 1. 

Recall the definition of M(A) on page 68. By considering the matrix S= _W+T 

we find that M(S) = 

µ+ae(1-ý) -5 0 -A 0 0 

0 14+52+6i -aa -a7 -A7 0 

-63 -bi I++43 -A7 0 -ary 

-(1-x*)ýal(1-ý) 0 0 \, +, r 0 0 

-(1-ýr*)aýý(1-¢) 0 0 0 ary+r 0 

-(1-lr*)Aa3(1-cb) 0 0 0 0 Jury+r 

99 



A sufficient condition for Volterra-Lyapunov stability is that all the principal minors of 
M(S) are strictly positive. By examining each of the individual principal minors it is 

straightforward to verify that (i + öl + 52) (p + b3) - 5152 >0 and det(M(S)) >0 are 

necessary and sufficient conditions for the positivity of all principal minors. We find 

that det(M(S)) _ 

-61(1- ir*), \a3(1 - 0) ()7 + r)262ary - bl (A7 + r)2(1 - ir*), \a2(1- c)A7(1. i + 53) 

-(A, y + r)2(1 - 7f*)Aal (l 
- q5)SI \ýY(S2 + E1 + S3) - S1 S2S3 (\)' + r)3 

-A7(Ary+T)2(1-1r*)Aal (1-0)[(p+b1+52)(J4+93)-5182 

+(A7 +T)3(µ + 1\s(1 - ¢))[(ß + 51 + S2)(µ + ö3) - 5152]. (3.37) 

Therefore if these conditions are satisfied and 1? >1 then provided that disease is 

initially present ir -+ lr* and Q -+, 6* as t -+ oo. As in the Simple Model the condition 
det (M (S)) >0 is a genuine condition in that it is true for some parts of the parameter 

space but not others. For example if it » b1, ö2, d3, aal then it will be true. However 

if ¬ is near zero and al > 0, a2 = a3 =0 then this condition together with (It + bl + 

52) (/' + 53) - 6182 >0 implies that 

s 

whereas the equilibrium equations imply that 

(µ+öl)Iri = (1-7r*)_al(1-ý5 
1-I- T 

so 14 < (1- 7r*) 
Aal(I 

T 
0) 

. 

We have demonstrated a number of properties of the Optimistic Model using ana- 
lytical results. We now move on to using numerical simulation to examine the dynamic 

behaviour of our model. We are also particularly interested in whether the prevalence 

of disease does indeed tend to the unique endemic equilibrium if disease is initially 

present and Ro > 1. We have been unable to show analytically that Ro >1 (with 

disease initially present) is strong enough on its own to guarantee this behaviour but 

our simulation results suggest that this will be the case. 
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3.8 Simulation Study of the Optimistic Model 

In order to validate the theoretical results of the previous sections we now demonstrate 

the behaviour of the Optimistic Model graphically using numerical 'simulations. We 

once again adopt a similar approach as for the Simple Model, we use the same parameter 

estimates (where appropriate) in our simulations and create the same kind of plots. It 

is important to note that the following simulations are not suitable for comparison with 

the Simple Model. Comparing and contrasting the characteristics of these models is 

obviously important but requires a method of calibrating the models in order to provide 

meaningful comparisons. We discuss this in Chapter 7. 

The Optimistic Model incorporates three types of infectious needles and therefore 

we need to estimate the probability of transmission of HIV in a single shared injection 

from each type of infectious needle. We have denoted the HIV transmission probabili- 

ties as al, a2 and a3 from a single injection with a needle in state one, state two and 

state three infectivity respectively. The parameter a was the equivalent parameter in 

the Simple Model. We have assumed that addicts in each infectious stage have different 

concentrations of HIV in their blood. Using data on viral antigen recovery and epidemi- 

ological data from transfusion recipients Peterson et al. (1990) estimate that the relative 

HIV viral load of addicts exists in the ratio 5: 1: 3 for Acute Infection: Asymptomatic: Pre- 

AIDS Symptoms. Hence we assume that a needle used by an addict in stage one (Acute 

Infection) will be left fives times more infectious than if the addict were in stage two 

(Asymptomatic). Similarly we assume that a needle used by an addict in stage three 

(Pre-AIDS Symptoms) will be three times more infectious than if the addict were in 

stage two. We therefore assume that al = C1a2, a3 = C3a2 and that al: a2: a3 exist in 

the ratio 5: 1: 3. Hence we only need to estimate the baseline transmission probability, 

a2. This parameter can be estimated using a similar method to that used to estimate a 

(see Appendix B for details). Table 3.1 contains a summary of the parameter estimates 

we shall use to simulate the Optimistic Model and other three stage infectivity models 

which we discuss in later chapters. 

As in the Simple Model we wish to demonstrate two key properties of the Optimistic 

Model. If the parameter estimates are such that R0 >1 then provided that the disease 

is present in at least one addict or one needle then the disease spreads among the 

population until a steady state is reached where a fraction 7r* of all addicts and a 

fraction ß* of all needles are infected with the disease where 7r* and ß* are given by eqn 
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Table 3.1: Summary of Parameter Estimates for Three Stage Models 

Parameter Estimate 

A 246.22 per year 

7 0.90797 

al 0.01412 per shared injection 

a2 0.00282 per shared injection 

a3 0.00847 per shared injection 

µ 0.1333 per year 

0.64 

z 15.531 per year 

81 4.6154 per year 

52 0.2281 per year 

ö3 0.1920 per year 

(3.11). We also wish to demonstrate that if the parameter estimates give rise to a value 

of Ro <1 then the disease will die out in both addicts and needles. We use two sets of 

parameters to illustrate these properties. The first set of parameters uses the estimates 

in Table 3.1 and gives a value for Ra of 2.200. The second set of parameters is the same 

as the first with the exception of 0 (the probability that an addict successfully cleans 

a needle prior to use) which is now 0.853, this gives a value for Ro of 0.901. 

Parameter Set One - Ro = 2.200 

We now simulate the Optimistic Model using the first set of parameter estimates where 

Ro = 2.200. Figure 3.1 shows the Optimistic Model simulated over seventy years. At 

time zero we have assumed that one percent of the total population of addicts are in 

stage one infectivity, at this time no other addicts or needles are infectious. The figure 

shows the progress of each type of infectious addict and each type of infectious needle 

over time. It is clear that the fraction of infected addicts in each stage eventually reaches 

a steady state as does the fraction of infected needles in each stage. We can also observe 

that the fraction of addicts and needles in the same infectious stage behave similarly. 
We know from the previous analytical work that if needles are never exchanged (which 

corresponds to T= 0) then the fraction of infected addicts and needles in the same 
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Figure 3.1: Optimistic Model when Ro >1 
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Figure 3.2: Optimistic Model when Ro >1 (Total Prevalence) 
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Figure 3.3: Optimistic (Addict only) Model when Rc >1 
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infectious stage are equal at equilibrium. The steady state values in these simulations 

are (ir 
, irä, irä, ßi, ß, #3*) = (0.024,0.307,0.215,0.022,0.287,0.201), which correspond 

to lr* = 0.545 and , 6* = 0.510. Figure 3.2 illustrates the behaviour of the total preva- 

lence of disease in addicts using same parameter estimates as in Figure 3.1 but for 

a variety of different initial conditions. In these trajectories the initial proportion of 

stage one infectious addicts takes the value indicated and no other addicts or needles 

are initially infected. A number of other simulations were carried out using various 

initial conditions and parameter estimates (where Ro > 1). These simulations suggest 

that the Optimistic Model has a globally stable endemic equilibrium when Ro >1 and 

disease is initially present. 

Before we illustrate the behaviour of the Optimistic Model for Ro <1 we give 

a brief justification of why we believe that assuming that ß; (t) = it (t)/(1 + T) for 

i=1,2,3 is a very good approximation of our full model in certain circumstances. 

Figure 3.3 shows simulations of the total prevalence of disease in addicts and the total 

prevalence of disease in needles for both the full Optimistic Model and the "addict 

only" approximation. We have assumed that in each model initially a fraction 0.01 of 

all addicts are in stage one infectivity and that a fraction 0.00935 (= 0.01/(1+T)) of all 

needles are in state one infectivity. It is clear from the figure that the dynamic behaviour 

of these models is so similar as to be indistinguishable. While we have only illustrated 
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Figure 3.4: Optimistic Model when Rp <1 
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this for the total prevalence of disease, the same is also true of the individual components 

71 , I2, Ina,, 6i,, 62 and 83. Other simulations (not illustrated) suggest for any parameter 

estimates if these models share the same initial conditions then their behaviour is 

virtually identical. It also appears to be true that irrespective of whether these models 

share the same initial conditions they tend to the same equilibrium prevalence of disease. 

Parameter Set Two - Ro = 0.901 

We now simulate the Optimistic Model using the second set of parameter estimates 

where q5 = 0.853 which gives Ro = 0.901. Figure 3.4 shows the Optimistic Model 

simulated over 160 years. At time zero we have assumed that the population is in an 

endemic steady state where 2.4% of the total population of addicts are in stage one 

infectivity, 30.6% are in stage two infectivity and 21.5% are in stage three infectivity. 

We also assume that 2.2% of the total population of needles are in state one infectivity, 

28.6% are in state two infectivity and 20.1% are in state three infectivity. These values 

correspond to the endemic equilibrium for the Optimistic Model using the first set 

of parameters. We suppose that at time zero Ro has been reduced from 2.2 down 

to 0.9. As in Figure 3.1 each line on the figure represents the spread of the various 

stages of infectivity among the addict population and needle population. It is clear 

from the figure that the disease dies out in all addicts and all needles and after about 

150 years the Optimistic Model has almost reached the disease-free equilibrium. Other 
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simulations carried out for various initial conditions and parameter estimates suggest 

that the behaviour of our model is consistent with Theorem 3.2. 

3.9 Summary of Results for the Optimistic Model 

We began this chapter by discussing how to incorporate three types of infectious needles 

into the framework of our existing model (the Simple Model). We defined the three 

types of infectious needles which our model would contain and this led us on to the 

problem of determining addict-needle interactions, in other words determining which 

state a given type of needle is left in after use by a given type of addict. We argued that 

it is not possible to accurately assess the outcome of each addict-needle interaction and 

to overcome this problem we adopted a best case scenario. We picked a set of addict- 

needle interaction assumptions which may be more optimistic than would reasonably 

be expected. By optimistic we mean that under this set of assumptions we would 

expect the disease to travel less quickly, have a lower long term prevalence level and 

respond more favourably to control strategies than might occur in reality. We then 

derived a differential equation model which contained three types of infectious addicts 

and three types of infectious needles and this optimistic set of addict-needle interaction 

assumptions. This model represents our best case scenario. 

We computed the basic reproductive number for this model and derived analytical 

results relating to the effect of Ro on the long term behaviour of the model. We showed 

that the disease will die out in all addicts and all needles if Ro < 1. Conversely if Ro >1 

and disease is initially present then it will persist among the population indefinitely. 

We then showed that a simplified version of the Optimistic Model has an endemic 

equilibrium solution which is locally stable when Ro > 1. Moreover we showed that if 

A7 is much larger than the other model parameters (which we expect to be the case for 

realistic parameter estimates) then our full model is also locally stable when Ro > 1. 

We next discussed a number of sufficient conditions which if satisfied ensure that the 

prevalence of disease in the Optimistic Model tends to the unique endemic equilibrium 

solution. We then briefly examined a small number of simulations of our model in 

order to validate our previous analytical results, and moreover establish that Ro >1 

(and disease initially present) is the only condition necessary for global stability of the 

endemic equilibrium. 

Having examined thoroughly the behaviour of our best case scenario, the Optimistic 
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Model, we now move on to our next three stage infectivity model, the Pessimistic Model. 

As its name suggests this model represents a worst case scenario and we discuss this 

model in the following chapter. 

107 



Chapter 4 

The Pessimistic Model 

4.1 Introduction 

We use three models to investigate the effects of incorporating a three stage infectious 

period into both addicts and needles. The previous chapter dealt with the first of these 

models, the so called Optimistic Model, this chapter deals with the second model, the 

Pessimistic Model. This model adopts addict-needle interaction assumptions which 

may be more pessimistic than would reasonably be expected. We initially discuss these 

pessimistic assumptions before deriving the differential equations which represent this 

model. Once we have derived the model we then compute an expression for the basic 

reproductive number and investigate the behaviour of the Pessimistic Model in a similar 

manner to the Simple and Optimistic Models in the previous chapters. This chapter 

concludes with a brief summary of the main findings. 

4.2 Pessimistic Addict-Needle Interaction Assumptions 

The model discussed in this chapter is referred to as the Pessimistic Model due to the 

pessimistic nature of the addict-needle interaction assumptions built into it. The Opti- 

mistic Model assumed that all needles are flushed with probability one (full flushing), 

this was justified as an optimistic assumption by using an expression for the endemic 

equilibrium level of disease in the Simple Model (see p. 51). This expression showed 

that flushing decreased the value of the endemic equilibrium, hence for our Pessimistic 

Model we make the opposite assumption, namely that needles are never flushed. 

Under the assumption of full flushing, needles can only adopt the infectious state 

of the last user. If we allow needles to be flushed with a probability of less than one 

108 



it is not obvious which state the needle should be left in. Full flushing means that all 

contents of the needle prior to use are removed during the injection process. If a needle 
is not fully flushed then some of the original contents of the needle will remain after 

use together with some of the blood from the last user. Hence intuitively the needle 

should have a viral load somewhere between that of the last user and the contents of 
the needle prior to use. However it should be noted that a value of 0 (the probability 

that a needle is flushed in a single stage infectivity model) which is less than one 

does not uniquely identify a set of addict-needle interaction assumptions in a three 

stage infectivity framework. This is an important issue when comparing the differences 

between single stage infectivity models and three stage infectivity models which we 
discuss in Chapter 7. 

We wish our model to be more pessimistic than would reasonably be expected, hence 

we adopt the assumption that the state of a needle after use is taken to be that of the 

more infectious of the state of the needle prior to use and the state of current user. As 

already mentioned it is generally accepted (Peterson et al., 1990, Anderson and May, 

1991) that the viral load of an addict in stage one is greater than an addict in stage three 

which in turn is greater than an addict in stage two. Therefore we assume that a stage 

one addict will always leave needles in state one infectivity, a stage three addict will 

always leave state three, state two and uncontaminated needles in state three infectivity, 

and a stage two addict will always leave state two and uncontaminated needles in state 

two infectivity. In addition a susceptible addict cannot alter the current state of any 

infectious needle, this is analogous to 0=0 in single stage infectivity models. 

These addict-needle interaction assumptions mean that needles can only become 

more infectious over use with the exclusion of cleaning. In the Optimistic Model the 

needle equations were unaffected by cleaning, this is not the case in the Pessimistic 

Model. If an addict successfully cleans a needle prior to use then the needle becomes 

uninfectious and therefore according to our pessimistic assumptions the needle must 

adopt the infectivity characteristics of the current user. 
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4.3 Model Derivation 

The pessimistic addict-needle interaction assumptions in this model do not affect the 

addict equations, hence similarly to the Optimistic Model we have that 

d7rl 3 

dt 
(i 

-Z 7ri), \(ßiai +ß2a2 +ß3a3)(1 - 0) - (ß+bi)7riº 

i=l 

dire 

dt - 
alit - (µ + 62)7r2, 

and dt 
= 827r2 - (14 + a3)ir3. 

We now move on to the three equations which describe behaviour of the needles. 

The number of infected state one needles at time t+ At 

= {number of state one infectious needles at time t} 

+{(number of non state one needles at time t) 

x (fraction of needles used by stage one addicts in [t, t+ At))} 

-{(number of state one infected needles at time t) 

x (fraction of needles used and successfully cleaned prior to use 

by non stage one addicts in [t, t+ At))} 

-{number of state one infectious needles exchanged in [t, t+ At)}. 

Thus 

mßi (t + Ot) = mßi (t) + m) Ot7iri (t) (1 - ß1(t)) - mAOt7O(1- ir1(t))ßi (t) 

-m, Bi (t)rzt + o(Ot). 

Subtracting mß1(t) from both sides, dividing by mit and letting At --* 0 we deduce 

that 
dgl 

= »7(1- Qi)iri - ßi(1- ýrl)ýý7 - ßir. 
ät 

The number of infected state two needles at time t+ At 

= {number of state two infectious needles at time t} 

+{(number of uncontaminated needles at time t) 

x (fraction of needles used by stage two addicts in [t, t+ At))} 
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+{(number of state three and state one needles at time t) 

x (fraction of needles used and cleaned prior to use by stage two 

addicts in [t, t+ At))} 

-{(number of state two infected needles at time t) 

x (fraction of needles used by stage one or stage three 

addicts in [t, t+ At))} 

-{(number of state two infected needles at time t) 

x (fraction of needles used and cleaned prior to use by 

uninfected addicts in [t, t+ At))} 

-{number of state two infectious needles exchanged in [t, t+ At)}. 

Thus 

3 
m, 82 (t + At) = m, 02 (t) + maztryir2 (t)(1 - 

E, Bi (t)) + mALtryq, 81(t)7r2 (t) 
i=1 

+mi10t7OQ3 (t) X2 (t) - mAOt7(7r1(t) + 73 (t))ß2 (t) 
3 

-mALt7« 
(1- E iri (t)) Q2 (t) - mß2 (t)Tt t+ O(At)- 

i=l 

Subtracting mß2(t) from both sides, dividing by mLt and letting At -4 0 we deduce 

that 

dß2A (1- E ýs) ßr2 -i- Qi7r2O, Y + 637r2OX7 - i627r3l\'Y - 
627ria7 

dt 
i=1 

3 
-Q2AW 

(1- 
iri) - ß2r. 

The number of infected state three needles at time t+ At 

_ {number of state three infectious needles at time t} 

+{(number of uncontaminated and state two needles at time t) 

x (fraction of needles used by stage three addicts in [t, t+ At))} 

+{(number of state one needles at time t) 

x (fraction of needles used and cleaned prior to use by stage 

three addicts in [t, t+ At))} 

-{(number of state three infected needles at time t) 
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x (fraction of needles used by stage one addicts in [t, t+ Lit))} 

-{(number of state three infected needles at time t) 

x (fraction of needles used and cleaned prior to use by 

uninfected or stage two addicts in [t, t+ At))} 

-{number of state three infectious needles exchanged in [t, t+ At)}. 

Thus 

m, Q3(t+ist) = mß3(t) +mA t-yir3(t)(l-181(t)-R3(t))+m)tAt'y ßl(t)ir3(t) 

-mA0t'Yß3 (t)1r1 (t) - mß3 (t)A t'Yq5l1 - iri (t) - 1r3 (t)) - mß3 (t)TAt 

+o(&). 
Subtracting m, ß3 (t) from both sides, dividing by mA t and letting At -+ 0 we deduce 

that 
dß3 

=// 
lit 

A7lr3 (1 - IBl - ß3) +A 70,817r3 - )gß3ir1 - ß3A q (1 - Ir1 - 1r3) 

-63 T. 

Hence the system of differential equations which describes the spread of the disease 

is: 

dire 3 

dt - 1- Ei=1 (#I +ß2a2 +ß3«3)(1 +bi)iri, (4.1) 

i=1 I 
dr2 

= b17f1 
- 

(14 + a2)i2, (4.2) 

dt 
dr3 

= b2ir2 - (p + a3)ir3, (4.3) 
dt 
d, 6l 

-a1- it 61irl aT (4.4) 

d, ß2 3 

dt 
A7 72 + Qiir2OA7 + ß37r2q5. \7 - 82 irs? 7 - 82i'1)7 

3 

Ir; - ß2T, (4.5) 

and 
3= »ylr3(1 - Q1 - 83) + A70,81ir3 - Alf, 37r1 - ß3A7Y (1 

- I1 - 1r3) 

-ß3r, (4.6) 

with suitable initial conditions: 0< 7r1(0), 7r2(0), 73 (0), Ql (0), X82 (0), 03(0), 7rl (0) + 

ßr2(0) +7rs(0) <1 and 01(0) +ß2(0) +ß3(0) < 1. 
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4.4 The Basic Reproductive Number 

As with the previous models we wish to derive an explicit expression for the basic 

reproductive number for the model defined by eqns (4.1)-(4.6). While the Pessimistic 

Model has much more complex dynamic equations than the Optimistic Model the 

method of deriving Ro is very similar to that for the Optimistic Model. The reason for 

this similarity is that the Pessimistic Model is only more structurally complicated than 

the Optimistic Model once an epidemic has passed the initial exponential growth stage. 
At the start of an epidemic both the proportions of susceptible addicts and uninfected 

needles in the population will be sufficiently close to one that we can ignore interactions 

between infectious addicts and infectious needles. In these circumstances there is little 

difference between the Optimistic and Pessimistic Models as we shall now show. 
Again consider a single newly infectious addict entering a totally susceptible popu- 

lation of addicts and needles at equilibrium. We have from Section 3.6 that this single 

addict will on average infect 
A 

µß'8i 

needles during his or her entire stage one lifetime, and 

aal 
(µ + öi)(µ + 52) 

needles during his or her entire stage two lifetime, and 

)5152 
(µ + ai)(A + 52)(14 + b3) 

needles during his or her entire stage three lifetime. By again dealing with each type 

of infectious needle separately and using the same method and notation as in Section 

3.6 we have that, 

El = 
(1- O)Ary [P(sus. addict infected) + P(needle not flushed)Ei,. 

The Pessimistic Model assumes that a susceptible addict always leaves an infectious 

needle in the same infectious state as it was prior to use. In other words susceptible 

addicts never flush needles. Hence solving for El gives 

El _(1-0)«l T+¢ 

where T= -r/)q. Following an identical argument for state two and state three infec- 

tious needles we find that 

' 
E2-(1-)c2 
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and E3 = 
(1- O)a3 

We now have the expected number of addicts infected by a single state one, state 
two and state three infectious needle. Putting these expectations together with the 

expected number of each type of needle an addict creates during his or her entire 
infectious lifetime gives us 

Ro = 
A(1- 0) 

«1 + «261 + «39152 (4.7) (p+al)(T+T) 

L 

µ+ö2 (p+62)(A+53)J' 

Note that as mentioned previously this expression for Ro is very similar to that for the 

Optimistic Model. 

From the form of the expression in eqn (4.7) we can see that in the special case 

where addicts never successfully clean needles prior to use (¢ = 0) and needles are 

never exchanged for uncontaminated needles (T = 0), then Ro = oo. This is sensible 

since together with the assumption that addicts never flush needles we have that once a 

needle is contaminated it remains contaminated for all time. However this special case 

is unrealistic due to empirical evidence which shows that some addicts do successfully 

clean needles prior to use and moreover that needles must be exchanged or replaced 

eventually since a needle has a limited working lifetime. 

4.5 Analytical Results 

This section investigates the analytical properties of the Pessimistic Model. As with 

previous models we are mainly concerned with the global stability of the equilibrium 

solutions and in particular under what conditions the disease dies out or persists in the 

population. As in the Simple and Optimistic Models we assume that all parameters 

are strictly positive except for 0 which is less than unity. As in the Optimistic Model 

we also assume that al > a3 > a2. The Pessimistic Model is more complex than the 

Simple or Optimistic Models however the proofs in this section do still follow the same 

general arguments as in these simpler models. In particular it is no longer trivial to 

show that there exists a unique endemic equilibrium when Ro > 1. It is this result we 
deal with first. 

Theorem 4.1 If Ro <1 the system of equations (4.1)-(4.6) has a unique equilibrium 

solution where the disease has died out in both addicts and needles. If Ro >1 then there 

is still the equilibrium where the disease has died out, however there is also a unique 

endemic equilibrium. 
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Proof. 

Suppose that iri, 7r2*, 7r3*, 6i, 62* and 63* denote respectively the equilibrium values 

of 7rl, 72,1r3, ßi, ß2 and B3. Let L=1+ (51I (ß + b2)) + (5152/(pc + b2) (µ + 83)), define 

+11 = (1lL), 712 = (bl771)/(µ+82) and t)3 = (ö2112)/(µ+63). Hence from d'ý 
= dt 

d'ý 
=0 dt 

we have that irl = thlr*, 712 =r 7r* and ir3 = i737r* where lr* = -7rl + 7r2 + irr. 

Solving 
ddtl 

=0 gives 

#i 
7ri(1-0)+T+0 

where f= T/(Ary). 

Solving 
ddt3 

=0 gives 

_ 
7r3(1- (1-5)) 

(4.9) 16* 
'11(1-¢)+7r3(1-¢)+ 

now using eqn (4.8) to replace 61* gives 

is (f + q) 
(4.10) 

1B3 - (7r1(l+7f3(1-0)+T+0)(7r (l+T+0 

Solving 
dß2 

=0 gives 

724 -(1 - 0) 63*(1 - 0)) (4.11) 

now using eqns (4.8) and (4.10) to replace 61* and 63* respectively we find that 

ý2(T + q5) (4.12) fl2 
( *(1- )-f-T-f-+7r3(1-ý)-+ -+ 

Using i 7j, r12 and 713 we can now write each of 8, ß2 and 63 in terms of 7r* only. Hence 

we have that 

*_ 771 7r * (4.13) 

M7T*(T + (4.14) h82 = (ir*(1-(ýJ)+T+g5)(T+0+(f]1+773)7r* 

7737r*(T + (4.15) and Q3 = (T+0+, 7170*(1-ý))(T+0+(711+773)lr*(1-q5)) 

Now consider the equilibrium solution obtained by setting 
dtl 

= 0, 

71ý* + 81 
Qia1 +ßa2 +ß3a3 = (11 

()a(1- 
0) 

(4.16) 
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Since 7r* is a multiplicative factor in each of ßl, ß2 and ß3 we have that 7r* =0 is always 

a solution to eqn (4.16) and consequently there always exists a disease-free equilibrium 

solution. The other (non zero) solutions must satisfy 

rli(A+JO airli 
(1-ir*)A(1-0) 1717r*(1 - 0) + T+ 0 

1)2(i + 0) a2 
+ýTi 

ý'i-7f*ý1-0» (T+0'+'(171-I-773) Ic*ý1-cý) 

773 (f + 0) a3 
+ (4.17) 

(T + 0+ (771 + 173)7r*(1 - 0)(T ++ 77i7r* 

We wish to show that eqn (4.17) has only a single root in (0,1) when Ro >1 and no 

roots in (0,1) when Ro <1 and hence we have a unique endemic solution when Ro >1 

and no endemic solution when Ro < 1. We do not attempt to derive the roots explicitly 

but instead focus on the conditions necessary for the existence of only a single root in 

(0,1). Let 

nß(µ+al) F(es) 
(1-7r*)A(1-0) 

(4.18) 

It is clear that F(ir*) is strictly monotone increasing for 7r* E (0,1). We have that 

F, (0) _ 
171 (u 

_ 
bi ) 

a(1- ¢) 

and 1im, r* ,i F(ir*) = oo. Let 

G(ir*) _ 
a1+11 

+ 
(T + q5)a2ii2 

(T +0+ 7f*(l 0» (T +0+ (771 + 173)lr*(1 -q 
)) 

+ 
(T + q)a3773 

(T+0+(, 7' 173)1r*(1-cS))(T+ý+171Ir*(1-q)) 

Each term in G(ir*) is strictly monotone decreasing in 7r* for 7r* > 0. Hence G(ir*) is 

strictly monotone decreasing and G(ir*) = 0. So F(ir*) is strictly monotone 

increasing in (0,1) and G(ir*) is strictly monotone decreasing in (0,1). Moreover for f 

small and positive we have that F(1 - E) > G(1 - c). 

Now consider the initial conditions of F and G, we have three distinct cases, firstly 

if G(0) > F(0) then then the two functions must cross in (0,1) and hence eqn (4.17) has 

a unique strictly positive root, lr* E (0,1). Secondly if G(0) < F(0) then the functions 

never cross in (0,1) and eqn (4.17) has no root in (0,1). Finally if G(0) = F(0) eqn 
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(4.17) has a single root lr* = 0. Hence we are particularly interested in the first case 

where G(O) > F(O) as this condition gives rise to a unique strictly positive solution. 

We now show that for this case not only is 7r* E (0,1) but also ß* E (0,1) and hence 

we have a unique feasible endemic solution. 

Using eqns (4.8), (4.10) and (4.12) we have that 

*+* 7r1 +'r3 (4.19) ý1 Q3 
- (i1+i3)(1-0)+T+0' 

and *= 7r * (4.20) 
7r*(1 - 0) +f+ 0* 

Therefore it follows immediately that Q* E (0,1) if r* E (0,1), thus when G(0) > F(0) 

we have that lr* E (0,1) and , 6* E (0,1) and hence we have a unique endemic solution 

when (G(0)/F(0)) > 1, where 

_ 
altjl a272 (f + 0) a373(T + 0) 

G(O) 
T+0 

+ 
(T+0)2 

+ 
(T+0)2 7 

and F(O) _ 
_11(p+_i) 
a(1- 0) 

Hence 
G(0) 

__ 
X(1 - 0) (a1t71 + a2772 -i- a3i3)7 F(O) 171(P + 91)(T + 0) 

which simplifies to R0. Hence we have shown that if Ro >1 there is a unique endemic 

equilibrium with lr* >0 and ß* >0 in addition to the disease-free one, whilst if 

Ro <1 there is only the disease-free equilibrium. This completes the proof of Theorem 

4.1. " 

Theorem 4.2 If Rp <1 then whatever the initial state the disease will die out in both 

addicts and needles. 

Proof. 

This proof is similar in structure to that of Theorem 2.2. Eqns (4.1)-(4.3) are the 

same as eqns (2.1)-(2.3), hence as in the Optimistic Model we can use Lemma 2.1 and 

Corollary 2.1 directly. The needle equations in the Pessimistic Model contain more non- 

linearities than the needle equations in the Optimistic Model, however we can bound 

these more complex equations above by simple linear forms. From eqns (4.4)-(4.6) we 

have that 

dßi 
- (1 - ßi(1- 0))A71ri - ßi (, \7o+T), 

ät 
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< A7lri - ß1(A7q5 +T), (4.21) 

ddt2 
= (1 -/3(1 - 0))A772 -ß2(1 - #)A773 -ß2(1 - O)»77rl -Q2(A7b+r), 

< A7 2- A2 (AW +T )º (4.22) 

and 
ddt3 

- (1-, 6i(1- 0) -, 6s(1 - ý))A77s #3(1 

»y1r3 -183(1 ^YO+ T). (4.23) 

Hence we can express each needle equation in a form similar to that of the addict 

equations, therefore it follows similarly to the proof of Lemma 2.1 that 

"00 ýý 
T+0) 

, B2° < "2 < 
bl__ 

using Lemma 2.1, T+ (A +62)(T+0) 

and 63° < "ý < 
61 27100 

, using Corollary 2.1. 
T+¢ (A + b2)(µ + 63)(T + ¢) 

Suppose first that Irr > 0. Then from eqn (4.1) we have, given e>0, 

d'r1 
< 1-ir aa 

dt 1ý ýý1 1 -ý CY2 -F ß3a3)(1-0)-/ lid+81lt 

< (1- 7r1)) (1- (Q1°a1 +ß °a2 +ßß°[Y3 + E) - 
(14 + 61)ir1, bt ! ti(c), 

< (1 - ý1)ý(1 - ý) I 
a+ 

bla2 a3 + E1l - (+ bl)1ý 
µ+a2 (p+a2)(N+b3) J 

where el = 
(T + 

7r 00 
1 

< (1- 71) (14 + 81) (Ro + E2)7ri° - (µ + bl)ir1, where E2 = 
ElA(1 - 0) 

(µ + a1)(T + 

(14 + 5i)[(Ro + E2)7fi° - 7f1(1 + Rp7fi°)]" 

As for the Optimistic Model the result follows directly using the latter part of the proof 

of Theorem 2.2.9 

Theorem 4.3 If Ro >1 then there is still the equilibrium where the disease has died 

out and this equilibrium is unstable. 

118 



Proof. 

Consider the linearised system of eqns (4.1)-(4.6), evaluated at the disease-free 

equilibrium. This system can be represented in matrix form as 
dx 

-_ dt 
Jx, 

where xT = (ire, 7r2, xs, ß1, ß2, ßs) and 

-(14 +5) 00 Aal(1-q) Aa2(1-q) . X03(1-0) 
61 -(A+a2) 0000 

J0 
a2 -(/L+53) 000 

= 
A7 00 -(Aryq5+T) 00 

0 A7 00 -(ary¢+T) 0 

00 ary 00 -(aYO + T) 

We wish to show that at least one eigenvalue of J has a strictly positive real part. Using 

the Routh-Hurwitz conditions it is sufficient to show that the constant term, as, in the 

characteristic equation of J, 

ws + alws + a2w4 + a3w3 + a4w2 + a5w + a6 =0 

is strictly negative. By substituting aryq5 +, r for ary +T in the proof of Theorem 3.3 it 

is straightforward to show that 

a6 = (A7q5+T) 3(A+51) 
(14+b2)(A+a3) 

x1- 
A27a1(1 - 0)(i + a2)(fh + 53)+ \27a2(1 - 0)51(P + 63) 

L (I4 +61)(p+62)(p+53)(A'0 +T) 

_ 
A27a3(1 - O)aia2 

(p+51)(p+b2)(/A+bs)(A7q+r) . 

Substituting in the expression for Rp from eqn (4.7) we find that 

a6 = ýA7 + T)3ýFý + bi)(u + a2)(µ + 53)1 - )+ 

hence if Ra >1 then a6 <0 and the result follows.. 

Theorem 4.4 If Ro >1 and either 7r(0) >0 or , 6(0) >0 then there exists a fixed 

e>0 depending only on the model parameters and not the initial conditions such that 

for some T+ >0 

ýrl > e7ri, 72 > e7r2i 73 > ezr3 and PI > ¬ßi, Vt > T. (4.24) 

119 



Proof. 

The proof follows a similar method to the equivalent result the Simple and Opti- 

mistic Models. As previously we can use Lemma 2.2 and Corollary 2.3 directly, hence 

ý1 ýl, oo 7r2 00 ' µ+b2ý 

and 73, c , 
515271, oo 

(14 +62) (/+'b3) 

Using eqn (4.4) we have that 

dßi 
j= A'yiri - Qi (A q+ T) - ire Alai 

> aryiri - ßi (A7 5+ T) - k7ß1(1- ý), 

= aryiri -'0i (ary + r). 

Therefore 

dt 
[ßi 

exp[(A'Y + r)t]] > irl a7 exp[(a7 + T)t], 

and from the form of this, arguing as in the proof of Lemma 2.2 we have that 

? 
ary7rl,. 

'Vy +T 

As previously from the above results is it sufficient to show that I1,00 >0 since for t 

sufficiently large in1(t) > ini, 00 -v where v is arbitrarily small. 

Lemma 4.1 Provided at least one of ir1(t), 7r2(t), ir3(t), ßß1(t), fi(t) and 83(t) is 

strictly positive at t=0 then 7rl (it) > 0,1r2 (Lt) > 0, ßr3 (It) > 0, , 61(At) > 0, 

#2 (At) > 0, and #3 (At) >0 for At small and positive. 

Proof. 

Let 1- ir, then we have that 

dr 

dt = (1- 7r)A(1 - 
(01 al +ß2a2 +ß3a3) - µ7r - b373, 

do 
/ 

dt - -A(1 - 0) (#1a1 +ß2a2 +ß3«3e +p(1 -'+b) + b3ir3, 

and 
dý 

= Ay7r -, 6(Ay7r(1 - 5) + qAy+T). 

We need to consider four separate initial conditions: 

1. Suppose that initially , B(0) =0 which implies that 7r(0) > 0. We have that 

fl(At) = 7r(O)A yAt + o(ot) >0 

and 7r (At) = 7r (0) - (/47r (0) + 83ir3(0))At + o(ot) >0 (for At small). 
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If 7r(0) <1 this implies that 0(0) > 0, hence ip(L t) >0 for small enough At. If 

ir(0) =1 then ß/i(0) =1 and 

-r/'(iit) > Air(0)it + o(At) > 0. 

Hence by choosing At small enough and starting at t= At we can if necessary 

assume that ir(0) > 0,0(0) >0 and ß(0) > 0. If 7r1(0) =0 then 7rl(Ot) = 

O(0)A(1-¢)4(0)0t+o(Ot) > 0, hence we can additionally assume that irl(0) > 0. 

If 1r2(0) =0 then ir2(Ot) = blirl(0)Ot + o(At) > 0, hence we can also assume 

that 7r2(0) > 0. Similarly if 7r3(0) =0 then ir3 (Ot) = ä27r2 (0) LXt + o(At) >0 

and we can moreover assume that i3(0) > 0. Hence we can assume that ß(0), 

7rl (0), 7r2(0) and 7r3(0) are all strictly positive. Now if X31(0) =0 then ßl(At) = 
aryirl (0)At+o(Ot) >0 so we can additionally assume that ß (0) > 0. If 03 (0) =0 

then 

03 (At) = (1-ß1(O)(1-0))A'r7r3(0)+o(it) >0 (provided that ßl(0)(1 - 0) # 1). 

Suppose that 61(0) =1 then 

#l (At) =1- (O y(1- 7r1(0)) + T)At + o(At) < 1, 

hence we can always ensure that ßl (0) <1 by moving the origin to t= At. Thus 

for At small we can assume that #1(0)(1- 0) <1 (since 61 (1- 0) < 61). So now 

we have that 7r; (0) >O for i= 1,2,3 and ßJ >O for j=1,3. If #2(0) =0 then 

d(ot) = (1 - ß1+3(0)(1- 0))A7ir2(0)ot + o(ot) >0 
(provided that ß1+3(0)(1 - 0) 0 1). 

Suppose that /31+3 (0) = 1. Now since 

dß1+3 
= )L t7rl+3(1 - ß1+3) - ß1-F3(1 - 7r1+3)A'YO - Q1+3r, 

dt 

then 

ß1+3(i t) =1- 
(A7q(1 

- 7r1+3(O)) +T)At+o(tt) < 1, for small At. 

Therefore by shifting the origin to t= At for At small we can always ensure that 

)61+3(0) <1 which implies that 61+3(0)(1 - 0) # 1. Hence if initially P (O) =0 

and ir(0) >0 then all components are strictly positive at t= At for At small. 
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2. Suppose that ir(0) = 0, which implies that ß/i(0) =1 and ß(0) > 0. We have that 

at t=0, 

dir 
_1 dt 

A(1 - 0)(ßla1 + ß2a2 +ß3a3, 

and 
df 

+ T). 

Hence 

ir(Ot) = A(1-5)(R1ai+ß2a2+Q3a3)it+o(It)>0, 

, 6(it) = 6(0) -, 6(0) (A q+ T)Ot + o(At) > 0, for At small, 

and «ist) = 'tb(O) - Jß(1 - q5)(ß1«1 +1ß2a2 +ß3«3)0t + O(Ot) > 0, 

for At small. 

Hence we can assume that 7r(0) > 0, ß(0) >0 and i/i(0) >0 and by Case 1 we 
have that all components are strictly positive at t= At for At small and positive. 

3. Suppose that ß(0) > 0, ir(0) > 0, ip(0) > 0, then by Case 1 we have directly that 

all components are strictly positive at t= At for At small and positive. 

4. Suppose that ß(0) > 0,0(0) =0 and ir(0) = I. We have that ß(At) >0 and 

ir(Lt) >0 by continuity. When ir(0) =1 we have that d7r/dt evaluated at t=0 

is negative and hence for t= At where At is small and positive we can assume 

that O(At) >0 therefore by shifting the origin to t= At we are in Case 3 and 

hence we can assume all components are strictly positive. 

This completes the proof of Lemma 4.1.9 

From Lemma 4.1 we have that there exists fixed c where 1>e>0 such that if At 

is small enough 7ri (it) > e7rs and ß; (At) > eßt for i=1,2,3. As in the Optimistic 

Model we must have that either 7rl, w >2 cir or 7rl,. <2 e7ri. In the case where 

ni, oo >2 irr then (4.24) follows directly. Next suppose that 7r1,,, <Z e7rl in which 

case there exists > At where 7rl (S) <2 EIi . 
Let to = inf{C > At, 7rl (C) <Z cir } and 

ti = inf{C > to, 7rl(C) > 2eai} where e is fixed and positive. By the definition of to 

we have that irl (to + v) <2 eii if v is small and positive. As in previous models by 

continuity 7r1(to) = iri (tl) =2 7fi, and therefore 7ri is less than Z eir in (to, tl) and 

greater than Zerr just after tl. We now show that if Irl becomes small and remains 

small then all components eventually become small. 
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We have that in [to, t'], i1 < 2e7ri, by again exploiting the similarities between the 

Optimistic and Pessimistic Models we can use Lemma 2.4 and Corollary 2.5 directly, 

hence we have that 

72 '5 
(21 

+ A) E42 fort > to +Tl, 

and 73 < 
(2 

+ 20) e7r3, for t> to + Tl + T2, 

where Ti and T2 depend only on e, 0 and the model parameters. From eqn (4.4) 

dd 12 in [to, ti], 

and arguing as in the proof of Lemma 2.4, 
(2 

+ý)7fiE 

ß1(t) <T+ (for t sufficiently large, say t> to + T3). 

However we cannot replace ii /(T + 0) by ßi since 

Qi = 
ýi ýi 

7x1*(1-0)+T+0<T+ * 

Letting 

Cl - 

(Ir *l(' - 0) +T+O)c 
> C, 

we have that ß1(t) < (2 + A) Elßi if t is sufficiently large. 

From eqn (4.5) we have that for t> to + Ti, 

dß 
, 62 (2 

OJ i1'rE7r2 - 
(»yq + 4ß2" 

Arguing again as in Lemma 2.4 but integrating instead over [to + TI, t] we find that 

2+ 20 17x2 c 
P2 (t) \ 

T+ý/ 
fort>to+Tl+T4, 

= 
(+2)c2ß 2, fort > to + Ti + T4, 

where e2 - 
(7r*(1 - q5) +T+ ¢)(i1+3(1 - c5) +f+0 )6 

>E using eqn (4.14). 
(T + 0)2 

From eqn (4.6) we have that 

dt3 
< 

(-21 
+2A) aryE7r3-(Ayo+T)ß3, fort>to+Ti+T2. 

Arguing as above but integrating over [to+Tl+T2i t] we find that ß3(t) < (2+3L )E3ß 

fort > to +T1 +T2 +T5 where 

E3 _ 

(lr1+3(1 0) +f + 0) (9f1 (1 
- 0) +T+ 0) E>E, 

using eqn (4.15). 
(T + qS)2 

123 



Hence we have that 

(1 
/ý 

1* 
Q1+3 ý (1 +0 E1ß1 +2+ 3L) E3ß3, 

< 
(+3)f4ßý3 

, for all t> to + max(T3, T1 +T2 +T5), 

where E4 = max(El, E3). Similarly we have that ,6< 
(2 + 30)E5ß* for all t> to + 

max(T3iTi +T2 +TS, TI +T4), where c, 5 = max(E2iE4). 

Now either I1 is below 2¬ir long enough for all components to become small or 7rl 

increases past 2 ¬ir before all components become small. Hence we have either that 

(i) ti > to +max[T,, TI +Tz, T'svTl +T4iTi +TZ +TS], 

or (ii) tl < to +max[T1, Ti +T2, T3, Ti +T4, Ti +Tz +T5]. 

We wish to show that ti <T where T is a fixed finite value dependent only on the 

model parameters, f and A. In case (ii) we have already have this result, we now show 

that this case must always be true by obtaining an upper bound for tl in case (i). As in 

the previous models we use the fact that the disease-free equilibrium is unstable when 

Ro >1 to show that ir1 cannot become arbitrarily small. 

Lemma 4.2 If 7rl (t) drops to below Z eiri at time to then 7rl (t) returns to 2 eire by at 

least time t1 = to + max[T1, Ti +TZ, T3, t1 +T4, T1 +T2 +T5, t2 + T6] where ti - to is 

finite and depends only on A, e and the model parameters. 

Proof. 

Consider the coordinate system x'T = (7f1,1r2,1r3, ß1, ß, ß1+3 

dire 
_ (1 - ir)A(ß1(ai - a3) +ßa2 +ßl+3(a3 - a2))(1 - 0) - (µ + 61)ir1, 

dt 
dire 

_ dt Iriai - (p + b2)ir2, 

dir3 
_ 7r282 - 

(14 + b3)ir3, 
lt 

dß, 
= \y7r1 - 

(Aryir1(1 - 0) +Ato+T)ß1, 

dt 
dß 

0) + Ayo +, r)ß, dt 
dß1+3 

and dt = -X''7f1+3 - (-X'Ylr1+3 (1 - ýý + A110 +T )ßl+3 
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The Jacobian of this system at the disease-free equilibrium is J= 

-(rp+öz) 00 A(«ý-«s)(1-4) aa2(1-4) A(a3-a2)(1-m) 

ai -(µ+a2) 0000 

0 52 -((L+Js) 000 
A7 00 -(X7q+r) 00 

a7 A7 A7 0 -(A7q5+r) 0 

A7 0 a7 00 

If M is large enough then J+ MI is a non-negative irreducible matrix and hence the 

characteristic equation has a simple root equal to its spectral radius (Lemma 2.1 in 

Nold (1980)). If the eigenvalues of J are wl, w2i W3, W4i w5 and ws then the eigenvalues 

of J+MI are M+wl , M+w2, M+w3, M+w4, M+w5 and M+ws. Hence if M+wl 

is the spectral radius of J+ MI then wl is real and has a larger real part than any 

other eigenvalue. Now consider the previous linearised system perturbed slightly from 

the disease-free equilibrium. Arguing as in the proof of Lemma 3.2, the corresponding 

result for the Optimistic Model, given e2 >0 we can choose e small enough so that 

2E7fi +12+ OJ E7f2 -F 
(2 

+ ZA E7f3 < E2. 

Hence for tl >t> to + Tl + T2 we have that I1 + 7r2 + 1r3 < 62i using Lemma 2.4 

and Corollary 2.5. Hence after a sufficient duration we have that it < e2 and hence 

ii, lni+3 < E2. Therefore we have that 

dt1 
% (1 - e2)A1ý1(a1 - a3) + ß2a2 + ß1+3(a3 - a2))(1 - 0) - (µ + 91)ir1, 

dire 

ät - 1161- (14 +82)1r2, 
dir3 
di 7t252 - (f1 + 63)ir3, 

d1 

dt 
> )7ir1 - (, \7E2 (1 - 0) + A70 + T)ß1, 

dß 
> a7ir - (a7e2(1 - 0) + A70 +T)Q, 

and 
d3 

dt 
> a7ýi+3 - ýý7E2ý1- ý) ý7ý T)ýi+s" 
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In matrix form we now have 
dt 

> J(e2)x' where J(¬2) _ 

-(il+6i) 00 . X(al-a3)(1-0)(1-E2) )a2(1-4)(1-E2) )(a3-a2)(1-f)(1-E2) 

Si -(µ+52) 0000 

0 62 -(µ+d3) 000 

A7 00 -(A7cb+A7(1-ß)E2+r) 00 

a7 A7 1\7 0 -(a'Y0+A7(1-0)E2+r) 0 

a7 0 A7 00 -(A70+A7(1-0)E2+r) 

Denote the eigenvalues of J(E2) by Wl(E2), W2(E2), W3(E2), W4(E2), W5(E2) and w6(E2). 

Hence using a similar argument to previously, we have that Wi(E2) is real and all other 

eigenvalues have strictly smaller real parts. Moreover from Corollary 2.7 we have that 

the roots of the characteristic equation of J(E2) are continuous functions of E2i hence 

wl (E2) -4 W1 (0) as E2 -4 0. We know that from Theorem 4.3 the disease-free equilibrium 

of the Pessimistic Model is unstable when Ro > 1, therefore wl (0) is strictly positive. 

Therefore by choosing E2 small enough we can ensure that wl (E2) > 0. Without loss of 

generality we can assume that 1> E2 > 0. 

As we have previously argued, for t1 >t> t0+T1+T2 we have that 7ri+1r2+1r3 < E2. 

Let t2 = inf{C : for t1 >t> to + c, ir(t) < E2}, hence if t2 >0 then 7r (to + t2) = E2 

and to + t2 is the last time before t1 that 7r(t) > E2i and note that t2 < Tl + T2. If 

t1 < to + Tl + T2 then we have the desired result. Now we consider the case where 

t1 >t> to +T1 +T2. We have that 

dx 
dt 

> J(E2)x, 

where xT = (ir1, ire, x3,61, fit ß1+3)" From Lemma 2.1 in Nold (1980) J(E2) has a strictly 

positive left eigenvector, e= (el, e2, e3, e4, e5, e6) corresponding to its spectral radius 

W1 (Q). Hence 

e 
dx 

> eJ(e2)x = wl(e2) e. x. 

Thus 

e. x(t) > e. x(to + t2) exp[wl (e2) (t - to - t2)], (integrating over[to + t2, t]), 

> (e17r1 + e27r2 + e37t3) eXPlw1 (E2)(t - to - t2)], 

> zr(tp + t2) min(el, e2, e3) eXP[Wl (E2) (t - tp - t2)], 
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5= f2 min(el, e2, es) exp(wi (E2) (t - to - t2)], if t2 > 0, 

61r min(ei, e2, e3) exp[wi(E2)(t - to - t2)], if t2 = 0- 2 

Therefore after a time to + t2 + Ts we have that 

e. x(t) >e 11 Eri, 
(2 

+A) e7r2,12 + 2A) firs, 
(2 

+A) E1ßi, 
(-2 

+ 30) e5ß*, 

(+3)e4ß+3), 
where T6 depends only on e, 0 and the model parameters. We already know that 

provided to <t< tj then after a time to +max[T1, Tl +T2, T3, T1 +T4, Ti +TZ +T5], 

e. x(t) <e 
(I2 

c7r , 
(2 

+ A) eil, 12 + 2E) cir , 
(2 

+ 0) el, Bi, (2 
+ 3z) f5ß*, 

C2 + 30) E4ß1+3J . 

However if tl > to + max[TI, Ti +T2, T3, Tl +T4, Ti +TZ +! P5) t2 +Ts], we have a 

contradiction. This completes the proof of Lemma 4.2" 

As in the Simple and Optimistic Models we have shown that the first time 7rl drops 

below 2 cir it must return back to this level by a (fixed and finite) duration of most 
T later, and as before this is easily extended to cover any time that 71 becomes small. 

Hence for the Pessimistic Model we also have that if i1 drops below 2 eir at to then 

for tE [to, to + T], 

dire 
dt 

> -(p+bi)i'i, 

i1 >1 elri exPl-(N bi)(t - to)), 

>2 E7ri exn[-(p 

where T is a fixed duration dependent only on e, 0 and the model parameters. Since 

Ze7rl exp[-(p + 5i)T] is strictly positive we have that I1,00 > 0. Hence we have that 

(4.24) is true. 

4.5.1 Local Stability of Endemic Equilibrium 

We now examine local stability of the endemic equilibrium. As in Section 3.7.1 we 

do not show this directly as this would require examining the roots of a sixth order 

polynomial, but instead show that a model which is a close approximation to that in 
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eqns (4.1)-(4.6) (and in particular has the same endemic equilibrium solution) has a 
locally stable endemic equilibrium when Ro > 1. 

As argued previously evidence suggests that the timescale on which addicts in- 

ject is of the order of days, whereas that of the other epidemiological and demographic 

processes is measured in years. Simulations of the Simple and Optimistic Model demon- 

strated that the behaviour of needles very quickly settles down to a steady relationship 

with the level of disease among addicts. Moreover this relationship appears to be very 

close to that at equilibrium. We now use a similar method to that used in Section 3.7.1 

to approximate the full Pessimistic Model with an "addict only" model which has the 

same endemic equilibrium solution but only three rather than six dimensions. Again 

simulations suggest that this "addict only" model closely mimics the full model. 

In the Optimistic Model is was clear that if the prevalences of disease amongst 

addicts were held at constant values then the prevalences of disease amongst needles 

would tend to quasi-equilibrium values (with the quasi-equilibrium values being the 

true endemic equilibrium values if the prevalences of disease amongst addicts were at 

their endemic equilibrium values). This is also true for the Pessimistic Model. For 

example treating 7rß = iri for i=1,2,3 as constants we have 

d0i 
dt 

A7 {ri -, 81 (ri + (1 - ii) 0+ T)} , 
(4.25) 

therefore if ß1(t) = xi /(7rl + (1 - iri )o + T) is the equilibrium solution to eqn (4.25) 

then for ßl (t) < th, ß1(t) is increasing in t, and for ßl (t) > ßl, ß1(t) is decreasing in t. 

Similarly from the equations 
dfl1+3 

= A7 [7r1-F3 
- ß1+3(ir1+3 + (1 - 7r1+3)# + T)J, (4.26) 

dt 

and 
dt 

= ky[ir-Q(ir+(1-7r)0+(4.27) 

we deduce that ß1+3(t) -a ß1+3 and ß(t) where ß1+3 and $ are obtained by 

replacing iri, irr and irr by iri , irZ and i3 respectively in eqns (4.19) and (4.20). Hence 

ßt (t) -3 ßt for i=1,2,3 where j, is obtained from eqns (4.13)- (4.15) by replacing x* 
by it+. Therefore intuitively we expect that if disease among addicts spreads much 

more slowly than among needles then we can approximate the dynamic relationship 
between ßß(t) and 7r(t) for i=1,2,3 as that obtained from eqn (4.1) by expressing 

ß1a1 + ß2a2 + ß3a3 in terms of ßl, 01+3 and ß and then replacing the values of ßi, 

, 81+3 and ß by the right-hand sides of eqns (4.8), (4.19) and (4.20) respectively with it 

replaced by 7r; for i=1,2,3, together with eqns (4.2) and (4.3). 
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We can express PI al +ß2a2 +ß3a3 as ß1(a1 - a3) +ßa2 +Q1+3(a3 - a2). Using 

the equilibri um equations we assume that 

ß1(t) = 
'r1 (t) (4.28) 

ir1(t)(1- 0) +f+02 
/t 

181+31) = 
i'1+3 (t) (4.29) 

71+3 (t) (1 
- 0) +T+ 0' 

and Q(t) = 
7r (t) (4.30) 

ir(t) (1- 0) +T+0. 
This gives us the following "addict only" model: 

dirt 9r1 (al 
- a3) 7ra2 

= (1-ýc)a(1-ý) 1 
dt 7rl(1-0)+T+7r(1-0)+T+ 

ýl+3(a3 - a2) (4.31) 
]- 

(µ+bl)irlr 
1 

+ 
-! )+ý 7rl+3( 

d-7r2 
/ (4.32) 

dir3 
and d= b27r2 - (µ + 63)ir3. (4.33) 

We later demonstrate using simulations that as with our previous models this represents 

a good approximation to our full model. 

The Jacobian at (7rl, it , 7r3) for eqns (4.31)-(4.33) is J= (jij) where: 

a(1 - 0)(ai - as) *) *2 in=(ßi(1-ýi)+T+ýi)2[(1-7f (T+0)-7r1 (1-0)-ý1(T+0)]-(p+91) 

+ 
i1(1 - 0)a2 

2 
r(1 

- Ir*)(T 0) - 
0) - 7f*(T + 0)J 

(ý*(1-0)+T+ý) 

+41- 
0) (a3 - aa) f (1- X*) (T + 0) - lr 

-0)+f 
3(1 - 0) - ý3 (T + 0)] ; (4.34) (Ir1+3 (1 +0)2 ` 

X12 =* 
iß(1 - 0)a2 

2 
[(1 

- 7C*) + ý) - 7f*2 (1- 0) - 7r*(T + ¢)] (ý (1- 0) +T+ 0) 
X(1 - 0)(al - a3)7*, 

- 

ý(1 - 0)(a3 - a2)11+3, 
l 

ir 
(4.35) 

- ý) +T+ iri+3(1 - ¢) ++¢ 

2 1+3(1 - 0) 
"F' - ý1+31T 0)J i13(ir1+3(10)-F+ 

(ýý 

+* 
A(1- q)a2 

2 
r(1 

- Ir*) + 0) (1 0) Ir*(T + 0)1 
(7(1-0)+T+ý) 
A(1- _)(al - as)Ir 

, (4.36) 
7ri(1-0)+f+O 
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321 = b1; j22 = -(ii + b2); j23 = 0; j31 = 0; j32 = b2 and j33 = -(µ + b3). We require 

to show that al, a2i a3 >0 and ala2 > a3 where al, a2 and a3 are as defined in eqns 
(3.27)-(3.29). First note that 

A(i-q5)(1-ir*) 
al - a3 a2 a3 - a2 x 

ý7Ci(1-0)+T+0)2+(7r*(1-0) ±T±0)2+(lr1+3(1-0)+T+0)2 r 

= A(1-c)(1-7r*) 

x 
(al - a3)ß + a2ß* + 

(a3 - a2)ß+3 
+3(1 - 0) +T -f- 0) 

[7r1(7r1(l 

- 0) +T+ 0) 7r*(lr*(1 - 0) +T + 0) (7r * 

A(1 - OW - e) 
0) ++ 

[(al 
- a3)N1 + a2, + (CY3 

- CY2)/61+3], 

(A + 61)(T + 0) 

- 7ri(1-0)+T-+ 
Using the eqns (4.34)-(4.36) and (3.27)-(3.29) we find that 

al > µ+bl+µ+b2+p+63-IA(1-ý)(1-7r*)(T+ý) 

al - ag a2 a3 - a2 
" 

ý(ý1(1 

- ý) ++ 0)2 
+ 

(7C*(1 - 0) ++ 0)2 
+ 

(7r1+3(1 - 0) +T+ 0)2 

>_ t1+b1+µ+b2+1L+s3- 
(i_+bi)(T+0) 

7r1(1-ý)+T+0 
In a similar fashion we have that 

a2 >_ (µ+82ý(u+a3ý+(ý+alý(ý+a2ý+(ý+alý(ý+a3ý 

_6i1\(1-0)a2(1-is*)(T+0) (lt*(1 - 0) +T+ q5)2 -1 1 (14 +62+µ+b3)ß(1-0)(1- *)+ 0) 

al - a3 a2 a3 - a2 
x 

[(ßi(1 
0) ++ 0)2 0) +T+ ¢)2 + (ni+3(1 - 0) +T+ ¢)2 

(p + b2)(p + b3) + (p + al)(u + b2) + (µ + b1)(µ + b3) 

+b2+ja+bs)(tc+b1) * 
(T+ý) 

lr(1-0)+T+0 

+(µ+S2+µ+b3)a(1-ý)(1-ýr*)(T+ý)a2ý* 
Ui 

7f*(1-0)+T+0)(7r1(1-0)+-ý- ( 

JIA(1 - 0)a2(1 - ir*)(T + 0) 
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= (A+J2)(A+S3)+(iß+Ö2+A+63)(14 
+J1)7r1(1-0) 

7rl(1-0)+T+0 
A(1-0)(1-7r*)(T+O)a2 {(L-1)(µ+82+µ+J3)-bl}>o. 

(Ir*(1- ¢) +T+ 0)(ei(1- 0) +T+ 0) 
We have that 

a3 (fý+51)(14+62)(Fý+63)(N, +62)(E=+63)A(1-ý)(1-7C*)(T+ 

Cl-a3 a2 
_ 

-92 x 
(7fi (1 

- 0) -ý T+ ý)2 
+(*(1_)+q+)2+ 

ý) -I- T± 0)2J 
J 

_51(u+53)x(1- 
0)(1- *)(i +0)«2 

(7r*(1 - ¢) +. f + q5)2 

-S 6152A (1 - 0) (1 - 7r*) (f + 0) 

a2 a3 - 22 
x 

(lr*(1 
- ¢) +T+ #)2 

+ 
(lri+s(1 

- 0) +-. p + ¢)2 7 

>- (a+61)(u+a2)(ß+a3) 1- * 
T+0 

7r1(1-0)+T+ 
+(µ+a2)(P+53)a(1 - ir*)(1- 0)(T +0)a27r* 1_1 

(7f*(1-0)+f+0)(7r1(1-0)+f+0) 
\ý1 

*ý 

(14 + 62) (14 + 33), X(1 - 7r*) 
(1 - 0)(T + 0) (63 - a2)Ir1t3 11 

(irrt3(1 
- q5) +T+Q)(7f1(1 - ¢i) +T +0) 7f1 7f1t3) 

_ 

61(p+53)A(1 
- 0) (1 

- it*) (T +0)a2 

(7f*(1-0)+ T-i-l%1)(7C1(1-0)+T+0) 

- 

16162A(1 
- _)(1 - 7f*)(T + 0) a2 

+ 
a3 - a2 

Sl 
7f1(1-! ß)+T+4 7C*(1-lý)+T+ e1+3(1-ý)+T+ý ý 

- ý) 
+ b1) (µ + a2) (P + b3 ßi(1 

lr1(1 - 0) +f+0>0. 

We now wish to show that ala2 - a3 > 0. Using eqns (3.27)-(3.29) we have that 

ala2-a3 = 
{(µ+ö2+µ+b3)(µ+b3-ill)-b1i12](Ii-911) 

+52(p+a2+14 +(53)(14'+a3 -ill)+a182(j13 -i12). 
(4.37) 

From eqn (4.37) it is sufficient to show that (i) ill < 0, (ii) j13 > j12 and (iii) 

(14 + 52 +14 + b3) (µ + 83 -ill) > biji2" We first show (i): 

-i" > A+bl-{a(1-ý)(1-7r*)(T+0) 
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al - a3 + a2 a3 - a2 x+ 
i' 'i- '+' 0)2 

+ 
1ý1+3(1 - 0) -I- T -ý 0)2 

11 

7r1(1-0)+T+ 

_ 
(lh+Ji)(1- 0)ßi 

> o. 
lri(1-0)+T-}-0 

By examining the terms j13 and 212 it is obvious that j13 > j12" It is also easy to see 

that (p + ö2 +µ+ b3)(µ + S3 - ill) - 51j12 > a2 > 0. Hence (ii) and (iii) follow, 

ala2 > a3 and all the Routh-Hurwitz conditions are satisfied when Ro > 1. Therefore 

we have shown that the "addict only" approximation to the full Pessimistic Model has 

a locally stable endemic equilibrium when Ro > 1. As in the Optimistic Model it is 

possible to make this approximation argument more rigorous by showing that if »y is 

large compared with the other parameters of the model apart from T, (including aal, 

)ßa2 and . Xa3) then three of the roots of the characteristic equation of the Jacobian 

of the full model at the endemic equilibrium have strictly negative real parts and the 

other three are close to the roots of the characteristic equation of the Jacobian of the 

"addict-only" model at the endemic equilibrium. See Appendix D for details. 

4.5.2 Sufficient Conditions for Global Stability of (ir*,, B*) 

We now derive sufficient conditions for the disease to tend to the endemic equilib- 

rium if it is initially present in the Pessimistic Model using a similar method to that 

in Section 3.7.2. As in the previous models we do not use the coordinate system 
(Ii, 7r2, ir3,91, #2,, 63) directly but the translated form where the origin of the new sys- 

tem corresponds to the endemic equilibrium, (ir 
, in, 73*, Qi, ß2 

, ßs ), in the original form. 

This translation gives the following set of model equations: 

d7ý1 
_ (1- 7r*)A(1 - 0)($lal +ß2a2 +ß3a3 - 761(1 - ý)(ß1a1 +ß2a2 +ß3a3) 

ät 

-(µ + öl)fr1, (4.38) 

d-R2 
dt - 

alai - GA + b2)ir2, (4.39) 

dý3 
dt 

b2*2 - (P + a3)ý3r (4.40) 

dd 1 
= »1(1 - ß(1 - 0))F'i - (A'Yq +) ir'(1 - 0) + r)a1, (4.41) 
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dd 2- 
-a7ßä (1- O)Fr1 + A7(1- Q*(1- 0))Fr2 - ? 7ßm1 - ý)ýs 

-A f(O +T+ ir(1 - ¢))R2 - »7(1 - OrA, (4.42) 

and 
3= 

-A7(1-q5)ß3fr1+A7(1-ßl(1-0) 0))ir3 -A7(l-&3/1 Tt- 

-A7(q5 +T+ iri (1 - 0) + 73 (1 - 0))ý3º (4.43) 

where 6i = /3i - ßi*, *; _ 7r_ - 7ri for i=1,2,3, and fr1 -I- fc2 {- Fr3. The system 

represented by egns (4.38)-(4.43) can be represented in vector form as 
dx 
dt = v(x)X' 

where xT = (7f1, ir27 3, ß1,182, ß3), xT = ('k1fr2,! Fr3AA, 43) 
and V(x) _ 

-(µ+ai)-aß(1-ý) -. iß(1-ý) -aß(1-4) (1-ýr*). )al(1-ý) 

Si -(u+52) oo 

0 52 -(u+a3) 0 

ary(1-X1(1-ý)) 00 -ary(ý+T+ýý(1-ý)) 
-A7ßz(1-ý) aY(1-ß*(1-d)) 

-aryý; (1-ý) -aryýý(1-ý) 
-A7ßy*(1-0) 0 »Y(1-ýi+s(1-ý)) -arya3(1-0) 

(1-a*)Aa2(1-4') (i-a*)Aaa(1-ý) 

00 

00 

00 

0 -A7(4'+T+7ri+3(1-4')) 

where _ 81al + ß2a2 + ß3a3, ß 
+3 =6+ ß3 and 7rl+3 = 7r1 + ir3. Now consider 

YT = (Fr' ir2, *3, IB1, 
ß, Q1+3)" We can write 

dt = W(x)k, 

where yT = (7r, ir2, *3, fl1, 
IB, 

/1+3) and W(x) _ 

0 -aa (1-x*)A(ai-ßa)(1-ý) 

Si -(p+a, +al) -Si 0 

0 62 -(/++63) 0 

X7(1-ß (1-ý)) -ary(1-ßi(1-ý)) -ary(1-ß1(1-4')) -ary(4+z+si(1-c)) 

(1-ß*(1-ý))ýry 000 

ary(1-ý; +s(1-ý)) -ary(1-R; +3(1-ý)) 00 
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(1-wr*)Aa2(1-4) (1-lr*)A(as-a2)(1-4) 

00 

00 

00 

-A7(c+T+a(1-4i)) 0 

0 -a7(ß+ +1x1+3(1-sb)) 

We have that y= J2x where 

I11000 

010000 

0.0 1000 
J2 =, 

000100 

000111 

000101 

and that W(x) contains elements of x only on the leading diagonal. Using Theorem 4.4 

we can replace the variables ß, 7r1,71+3 and 7r in W(x) with a constant lower bound, 

E. Hence we have that for t> T+, W(x) < W+ = W(0) - e-E where E_ 

. X(1-0) 00000 

000000 

000000 
000 A7(1-c) 00 

0000 ay(i-ý) 0 

00000 ary(i-0) 

The form of W(x) and W+ are similar to those discussed in Section 2.5.1 and there- 

61* fore we again require that W+ is Volterra-Lyapunov stable for (7rr, ir2+ir3*+ +ß , 63*) 

to be globally stable when Ro > 1. (We can show that W+ is Lyapunov stable in a 

similar fashion to our previous models however the proof of this is rather long and can 

be found in Appendix D). By considering the matrix S= _W+T we find that ,M 
(S) _ 

+a¬(1-ý) -a, 0 -A7(1-ýý(1-ý)) -a7(i- *(1-m)) -X7(1-ýi+g(1-ý)) 
0 14+51+52 -J -. X7(1-ß (1-ý>) 0 -J17(1-lei+s(1-ý)) 

-a, -61 p+53 00 

-(1-1r*)A(a1_a3)(1-0) 00 a7(ß+7+¬(i-#)) 00 

-(1-n*)Aa2(1-0) 0000 

-(1-a*)A(aa-a2)(1-#) 0000 a7(¢+r+¬(1-ý)) 
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As with our previous models a sufficient condition for Volterra-Lyapunov stability 
is that all the principal minors of M(S) are strictly positive. Again by examining 

each of the individual principal minors it is straightforward to verify that if (p + bi + 

a2)(µ + b3) - J1 J2 >0 then det(M(S)) >0 is a necessary and sufficient condition for 

the positivity of all principal minors, where det(M(S)) _ 

-(1 - 7r*)A(a3 - a2)(1 - q5)A3ry3(0 + 'i+ E(1 - q5))2a1(p + 53) 1- ß1+3(1 - 0)) 

. -51A373(0+f +E(1-0))2(1-7r*)A(al-a3)(1-D)[52+µ+631(1-ß (1-0)) 

-A373(o +T + E(1 - c5))3515253 

-[(ii+ö1+ö2)(i4+ö3)-5152](1-7C*)A(1-0)A3ry3(O +z+q1-0))2 

xl(a3-a2)(1-N1+3(1-0))"+2(1-/6 (1-0))+(ai-a3)(1-ß (1-ß))t 

+, \373(0 '+' T+ E(1 - 0))3 (N' + \E(1 - 
0)) [(µ 

+ al + a2) (A + a3) 
- bla2] 

Therefore if these conditions are satisfied, Ro >1 and disease is initially present 

then the prevalence of disease in our model eventually tends to the endemic equilibrium 

solution. As before det(M(S)) >0 is a genuine condition, but one which is not always 

true. For example if p» 61, J2,83, aal, Aal, Aa3 then it will be true. However for e 

near zero and al >0 but a2 = a3 =0 then if (p + b1 + ö2) (µ + b3) - 51 2>0 we have 

that det(M(S)) >0 implies that 

1z(c + T) 

7ri(1 - q5) ++q 

Aa, (i-0)(1-1r*) 
So u> 7r1(i-0)+T+0 . 

However using the equilibrium equations we have that 

(/ý -F 81)ýri = 
Aal (1 - 0) (1 - 7r*)7ri 

so µ< 
a«1(1 - 0) (1 - ir*) 

and therefore det(M(S)) < 0. 

Having examined the behaviour of the Pessimistic Model analytically we now use 

simulation to examine the dynamic behaviour of our model. Also of interest is whether 
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Ro >1 on its own is a necessary and sufficient condition for the disease to tend to the 

unique endemic equilibrium if it is initially present. 

4.6 Simulation Study of the Pessimistic Model 

In order to validate the theoretical results of the previous section we now demonstrate 

the behaviour of the Pessimistic Model graphically using numerical simulations. We 

adopt a very similar approach as for the Optimistic Model and use the same param- 

eter estimates in our simulations. We wish to demonstrate two key properties of the 

Pessimistic Model. If the parameter estimates are such that Ro >1 then provided that 

the disease is present in at least one addict or one needle then it spreads among the 

population until a steady state is reached where a fraction lr* of all addicts are infected 

with proportions 7rl, i2 and 7r3 in the three infective stages and a fraction 6* of all 

needles are infected with proportions 61*, 62* and 63 in the three infective stages. We 

also wish to demonstrate that if the parameter estimates give rise to a value of Ro <1 

then the disease will die out in both addicts and needles. 

We use two sets of parameters to illustrate the properties of the Pessimistic Model. 

The first set of parameters uses the estimates from Table 3.1 and gives a value for Ro 

of 3.317 (this is not the same as in the Optimistic Model since the expression of Ro for 

the Pessimistic Model is different). The second set of parameters is the same as the 

first with the exception of 0 (the probability that an addict successfully cleans a needle 

prior to use) which is now 0.87, this gives a value for Ro of approximately 0.908. 

Figure 4.1 shows the Pessimistic Model simulated over forty years using the set 

of parameter estimates where Ro = 3.317. At time zero we have assumed that one 

percent of the total population of addicts are in stage one infectivity, at this time no 

other addicts or needles are infectious. The figure shows the progress of each type 

of infectious addict and each type of infectious needle over time. It is clear that the 

fraction of infected addicts in each stage eventually reaches a steady state as does the 

fraction of infected needles in each state. The steady state values in these simulations 

are (iri+ iz, i3, Qi , /jä, ßs) = (0.028,0.355,0.249,0.039,0.333,0.304), which correspond 

to ir* = 0.633 and ß* = 0.675. 

Figures 4.2 and 4.3 show simulations of the total prevalence of disease in addicts 

and the total prevalence of disease in needles in the Pessimistic Model for four different 

sets of initial conditions and where Ro = 3.317. In each initial condition we assumed 
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Figure 4.1: Pessimistic Model when Ro >1 
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that ir(0) = zcl(0) and 6(0) = ß1(0) with all other components starting at zero. It is 

clear that in each set of simulations the model tends to the same endemic equilibrium 

solution (which is also the same as that shown in Figure 4.1). Other simulations (not 

illustrated) suggest that for a wide variety of parameter estimates and initial conditions 

provided that disease is initially present and Ro >1 then the system will approach the 

unique endemic equilibrium. 

An interesting feature of the simulations in Figures 4.2 and 4.3 is the very fast 

initial movement of ß(t) compared to 7r(t). We have previously argued that if this 

were the case then our "addict only" approximation discussed in Section 4.5.1 may be 

appropriate. It appears that the prevalences of disease in needles very quickly settle 

down to quasi-equilibrium values which are determined by the prevalences of disease 

in addicts using the same relationships as in eqns (4.8), (4.19) and (4.20) between 

the equilibrium prevalences of disease in needles and the equilibrium prevalences of 

disease in addicts. Indeed as in the Optimistic Model we find that if we start with 

comparable initial conditions then the dynamic behaviour between the full model and 

the corresponding "addict only" approximation is indistinguishable. 

We now simulate the Pessimistic Model using the same set of parameter estimates 

as previously except that now ý=0.87 which reduces Rp to 0.908. Figure 4.4 shows 

the Pessimistic Model simulated over 160 years. At time zero we have assumed that 

the population is in an endemic steady state where 2.8% of the total population of 

addicts are in stage one infectivity, 35.5% are in stage two infectivity and 24.9% are in 

stage three infectivity. We also assume that 3.9% of the total population of needles are 

in state one infectivity, 33.2% are in state two infectivity and 30.4% are in state three 

infectivity. These values correspond to the endemic equilibrium for the Pessimistic 

Model using the first set of parameters. We now suppose that at time zero Ro has been 

reduced from 3.317 down to 0.908. As in Figure 4.1 each line on the figure represents 

the spread of the various stages of infectivity among the addict population and needle 

population. It is clear from the figure that the disease dies out in all addicts and 

all needles and after about 150 years the Pessimistic Model reaches the disease-free 

equilibrium. 

Figures 4.5 and 4.6 show the behaviour of the total prevalence of disease among 

addicts in our model for the four sets of initial conditions: 7rl (0) = 0.3 and ßl (0) = 0.0; 

7r1(0) = 0.7 and 61 (0) = 0.0; 7r1(0) = 1.0 and 81 (0) = 0.3; and '7r1(0) = 0.7 and 

ßl (0) = 1.0. In each of these cases no other types of addicts or needles are initially 
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Figure 4.4: System Tends to Disease-Free Equilibrium when Rp <1 
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infectious and Ro = 0.908. We have not illustrated the total prevalence of disease 

among needles but this behaves very similarly. It is clear that eventually the model 

reaches the disease-free equilibrium solution. Many simulations of this model were 

carried out for a variety of parameter estimates and initial conditions. In each case we 
found that if Ro <1 then disease will be eventually eradicated from the population. 
This is consistent with Theorem 4.2. 

4.7 Summary of Results for the Pessimistic Model 

We began the chapter by a discussing a set of addict-needle interaction assumptions 

which were more pessimistic than would reasonably be expected to occur in reality. 
By pessimistic we mean that under these assumptions we would expect the disease 

to travel faster, reach a higher long term prevalence level and be less responsive to 

control measures than would realistically be the case. We then derived a system of 
differential equations which contained these pessimistic assumptions and computed the 

basic reproductive number for this model. 
Once Ro had been computed we then moved on to deriving analytical results relating 

to the stability of the equilibrium solutions of our model. We showed that if Ro <1 

then the disease-free equilibrium is globally stable, and if Ro >1 and disease is initially 

present then it will persist among the population for all time. We then showed that a 

simplified version of the Pessimistic Model has an endemic equilibrium solution which 

is locally stable when Ro > 1. Moreover we showed that if . dry is much larger than the 

other model parameters apart from r, the needle exchange rate, (which we expect to 

be the case for realistic parameter estimates) then our full model is also locally stable 

when Ro > 1. We then derived sufficient conditions for the prevalence of disease to tend 

to the unique endemic equilibrium solution. We finally carried out a small number of 

simulations of our model in order to verify these results and determine whether Ro >1 

is a necessary and sufficient condition for the disease to approach the unique endemic 

equilibrium provided that it is initially present. 

In the previous chapter we investigated our best case scenario model, the Optimistic 

Model, in this chapter we examined our worst case scenario model, the Pessimistic 

Model. We have shown that these two models have qualitatively very similar theoretical 

properties, and it now remains for us to compare and contrast these models with the 

Simple Model and the original Kaplan and O'Keefe Model. However before we draw 
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conclusions as to the potential effects of three stage infectivity we first examine an 

additional three stage model, the General Model. So far our investigation into three 

stage infectivity in both addicts and needles has relied on models which have had 

fixed assumptions relating to how addicts and needles interact with each other. In the 

next chapter we examine a model which is not limited to a single set of addict-needle 

interactions assumptions but can incorporate a wide variety of different assumptions. 
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Chapter 5 

The General Mixing Model 

5.1 Introduction 

We have previously discussed the Optimistic and Pessimistic Models. These models 
include three types of infectious addicts and three types of infectious needles but assume 

that addicts and needles interact in very specific ways. The Optimistic Model assumes 

that a needle is always left in the same infectious state as the last user while the 

Pessimistic Model assumes that a needle is always left in the more infectious state 

between that of the current user and that of the needle prior to use. In this chapter 

we develop and investigate a model which has a more general addict-needle interaction 

structure than the Optimistic and Pessimistic Models and where the Optimistic and 

Pessimistic Models are special cases of this more general model. 

The fundamental difference between our previous models and the model discussed 

in this chapter is the use of a probability structure to define the outcomes of each 

addict-needle interaction. In the Optimistic and Pessimistic Models the outcome of 

each addict-needle interaction occurred with either probability one or probability zero. 

For example consider the event where an addict in stage two infectivity injects with 

a needle in state one infectivity. In the Optimistic Model this needle would be left in 

state two infectivity (with probability one) whereas in the Pessimistic Model the needle 

would remain in state one infectivity (with probability one). In contrast, in the model 
in this chapter a needle in state one infectivity (after use by an addict in stage two 

infectivity) can either remain in state one infectivity or enter state two or state three 

infectivity where each of these outcomes occurs with a given probability and where 

these three probabilities sum to one. 
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We refer to the model in this chapter as the General Model on account of the wide 

range of addict-needle interaction assumptions which it can incorporate. We investi- 

gate the General Model in a similar fashion to the Simple, Optimistic and Pessimistic 

models. We first derive the differential equations which define our model and then com- 

pute the basic reproductive number. Next we move on to deriving analytical results, 

we are particularly interested in whether the prevalence of disease tends to an endemic 

equilibrium if Ro >1 and disease is initially present and tends to the disease-free equi- 

librium if Ro < 1. We then conduct a simulation study to investigate the behaviour of 

the General Model for a variety of addict-needle interaction assumptions. The chapter 

concludes with a summary of the main points. 

5.2 Addict-Needle Interaction Structure 

In this chapter we wish to investigate the effect of different addict-needle interaction 

assumptions on the spread of HIV via needle sharing. In order to do this sensibly 

we need to use a model which can incorporate a wide range of different addict-needle 

interaction assumptions. To achieve this we assign a probability to the outcome of 

each addict-needle interaction. In this way we can construct a model by considering 

the outcome of each addict-needle interaction and the probability that this outcome 

occurs. Let p ýk denote the probability that a needle in state i infectivity will be left 

in state k infectivity immediately after use by an addict in stage j infectivity. We 

now outline all the different events and outcomes which can arise between addicts 

and needles. Let 0,1,2 and 3 denote the infectious states: Uncontaminated, Acute 

Infectivity, Asymptomatic and Pre-AIDS Symptoms respectively. Hence there are a 

total of 16 possible addict-needle interactions each with four possible outcomes where 

each outcome occurs with probability p 
jk. 

Table 5.1 illustrates each of these events. 

Ascribing a precise numerical estimate to many of the p, jk terms in Table 5.1 is at 

best difficult, however we can argue that a number of these terms should be set to either 

zero or one. Common sense dictates that a state i infectious needle should remain a 

state i infectious needle after use by an addict in stage i infectivity, this implies that 

Poo = Pitt = P222 = P333 = 1. A further common sense criteria is that the viral load 

of a needle after use must be less than or equal to the maximum of the viral load of 

the current user and the state of the needle prior to use. For example a needle in state 

two infectivity used by an addict in stage three infectivity cannot be left in state one 
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Table 5.1: Addict-Needle Interactions 

Addict Needle Infectivity (prior to use) 
Infectivity Uninfectious Acute Asymptomatic Pre-AIDS 

Uninfectious Poo Pioo Pioo P3oo 
Addicts Pool Pio1 P201 P301 

Pä02 P102 P202 P302 

P003 P103 P203 P303 

Acute Polo P110 P210 P310 

Addicts P0*11 Pi11 P211 P311 

P012 P112 P212 P312 

P013 P113 P213 P313 

Asymptomatic Pö2o Pilo P220 P32o 

Addicts P021 P121 P221 P321 

P022 P122 e222 P322 

P023 e123 P223 P323 

Pre-AIDS PÖ30 Pi30 P230 P330 

Addicts P031 P131 P231 P331 

PO32 P132 P232 P332 

P033 P133 P233 P333 

infectivity, hence p231 = 0. In a similar fashion we should have that the viral load of a 

needle after use must be greater than or equal to the minimum of the viral load of the 

current user and the state of the needle prior to use. For example a needle in state one 

infectivity used by an addict in stage three infectivity cannot enter state two infectivity, 

hence p132 = 0. Therefore using common sense we can reduce the set of unknown p jk 
terms from 64 down to 32. This leaves us with the addict-needle interactions shown in 

Table 5.2. 

We expect the probability that a needle is left in a given infectious state will depend 

on the infectious state of the needle prior to use and the infectivity of the current 

user. Therefore intuitively there are a number of inequalities between the various ýk 
terms which should always be satisfied. For example we expect that a needle in state 

three infectivity prior to use will have a higher probability of being left in state one 
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Table 5.2: Addict-Needle Interactions with Common Sense Adjustments 

Addict Needle Infectivity (prior to use) 
Infectivity Uninfectious Acute Asymptomatic Pre-AIDS 

Uninfectious Poo =1 Pioo P2oo P3oo 
Addicts Pöol =0 Piol P2o1 =0 P3o1 =0 

Pä02 =0 P102 P202 P302 
P003 =0 P103 P203 =0 P303 

Acute P0*10 Pilo =0 P210 =0 P310 =0 

Addicts P0*11 Pill =1 P211 P311 

PO12 P112 =0 P212 P312 =0 

PO13 P113 =0 P213 P313 

Asymptomatic Pö2o Pilo =0 P220 =0 P32o =0 
Addicts PÖ21 =0 P121 P221 =0 P321 =0 

P022 P122 P222 =1 P322 

P023 =0 P123 P223 =0 P323 

Pre-AIDS PÖ30 P130 =0 P230 =0 P330 =0 

Addicts P031 =0 P131 P231 =0 P331 =0 

PO32 P132 =0 P232 P332 =0 

P033 P133 e233 P333 =1 

infectivity after use by an addict in stage one infectivity than if the needle were in 

state two infectivity prior to use by the same addict. Thus P311 > p211, and similarly 

P2ii ? Pöi1" We can determine the inequalities which should exist between the p*j ijk 
terms by considering the following four events: 

1. A needle is left in state one infectivity. 

2. A needle is left in state three or state one infectivity. 

3. A needle is left in state two or state three or state one infectivity. 

4. A needle is left in state two or state three infectivity. 

Examining each of these four events gives us the following relationships between the 
p jk terms: 

P311 P211 Poii, ý5.1ý 
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P131 ? P121 ? Pio1+ (5.2) 

P121 + Pi23 ý Pio1 + Pio3 'a P3037 (5.3) 

P211 + P213 ý Poll + e013 ý 4033, (5.4) 

Pi21 + e123 ý P323, (5.5) 

P211 + P213 ý P233, (5.6) 

P233 - P033, (5.7) 

P323 ý P303, (5.8) 

Poll + Pä12 + P013 ? P7033 + P0*32 ý P022, (5.9) 

Pio1 + Pio3 + Pio2 ? P3o3 + Pso2 ? P2o2 (5.10) 

For example the inequality pi21 + Pi23 ? Pio1 + Pio3 says that the probability that 

an Acutely Infectious needle used by an initially Asymptomatic addict is left in either 
the Acutely Infectious or Pre-AIDS state exceeds the corresponding probability for an 

uninfected addict. We expect this to be true as the blood of an Asymptomatic infected 

addict contains more virus than that of an uninfected one, so if both use an initially 

Acutely Infectious needle, the probability that the level of virus left in the needle is 

greater than or equal to any given level (in this case the level for a Pre-AIDS state 

infectivity needle) is greater for the former addict than the latter. Therefore when 

examining our model we should ensure that the above inequalities are always satisfied. 

This has the advantage of restricting the parameter space which as we discuss shortly 

assists with deriving analytical results. 

We now outline a convenient method of including needle cleaning implicitly into our 

addict-needle interaction structure. Cleaning is a very important feature in modelling 

the spread of HIV among intravenous drug users. If needles are shared then cleaning a 

needle, either prior to use or after use, provides the most direct method of preventing 

new infections. Each p jk term denotes the probability that a needle initially in state i 

is left in state k immediately after use by an addict in stage j, it is natural to include 

cleaning into this probability. So far we have considered pt- ., k as the probability of 

reaching state k by the process of "blood mixing" only. Denoting p=ik as the case 

where cleaning is also allowed we have the relationship, 

p22 P((i, j) --* kI no cleaning)P(no cleaning) + P((i, j) -+ kI cleaning)P(cleaning) 

=Pijk(l - 0) +pöjkq5" 

Hence it is easy to incorporate cleaning implicitly into our addict-needle interaction 
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structure by replacing p*ýk with Pick. Note that if E3=op ýk =1 we also have that 

Eg=o p=ik =1 and the previous inequalities still hold if they hold for the pfýk terms. 

From initially starting with 64 unknown addict-needle interaction probabilities 

(pi*jk's) we have reduced this number down to 32 and have introduced 10 sets of inequal- 

ities between the various probabilities. While this has served to simplify greatly the 

addict-needle interaction structure we still have a large number of unknown parameters. 

Before we discuss a model based on this most general set of interaction assumptions 

we first examine a slightly more restrictive model. We can simplify our general addict- 

needle interaction assumptions by making the highly plausible assumption that an 

uncontaminated needle used once by an addict in stage i infectivity becomes a state 

i infectious needle. We have made this assumption in the Optimistic and Pessimistic 

Models and almost all previous work makes the analogous assumption that an infected 

addict using an uninfected needle always leaves the needle infected (Kaplan, 1989, Pe- 

terson et al., 1990, Kaplan and O'Keefe, 1993, Seitz and Müller, 1994). This implies 

that pöll = Pä22 = Pä33 = 1. Using the inequalities (5.1) and (5.7) we additionally have 

that p211 = P3*11 = P233 = 1. This reduces the number of unknown pick terms (recall 

that these include the effect of cleaning) in our model to a much more manageable 16 

and gives us the revised set of addict-needle interaction probabilities shown in Table 

5.3. 

We can now use the terms in Table 5.3 to construct a model which can incorporate 

a variety of addict-needle interaction assumptions. It is obviously the case that by as- 

suming that pöll = Pä22 = pä33 =1 we have narrowed the scope of our model. However 

this model is significantly more flexible than either the Optimistic or Pessimistic Mod- 

els. Moreover as we discuss later the Optimistic and Pessimistic Models are important 

special cases of this (restricted) general model. 

5.3 Model Derivation 

We now derive the differential equations which define the spread of HIV among an 

intravenous drug addict population where addicts progress through three stages of in- 

fectivity and addicts and needles interact according to Table 5.3. The addict equations 

in this model are the same as those in the Optimistic and Pessimistic Models, hence 
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Table 5.3: Revised Addict-Needle Interactions 

Addict Needle Infectivity (prior to use) 
Infectivity Uninfectious Acute Asymptomatic Pre-AIDS 

Uninfectious P000 =1 P1oo P200 P300 

Addicts Pool =0 Plol P201 =0 P301 =0 

P002 =0 P102 P202 P302 

P003 =0 P103 P203 =0 P303 

Acute Polo =0 Pilo =0 P210 =0 P310 =0 

Addicts Poll =1 pill =1 P211 =1 P311 =1 
P012=0 P112=0 P212=0 P312=0 

P013 =0 P113 =0 P213 =0 P313 =0 

Asymptomatic P020 =0 P120 =0 P220 =0 P320 =0 

Addicts P021 =0 P121 P221 =0 P321 =0 
P022 =1 P122 P222 =1 P322 

P023 =0 P123 P223 =0 P323 

Pre-AIDS P030 =0 P130 =0 P230 =0 P330 =0 

Addicts P031 =0 P131 P231 =0 P331 =0 

P032 =0 P132 =0 P232 =0 P332 =0 

P033 =1 P133 P233 =1 P333 =1 

we have that 

dgl 3 

dt 
(1- 

Liri)A(ßial+ß2a2+ß3a3) 
1-0) -(P+a1)ir1, 

i=1 

dire 
dt - bi'r1 - (14 + b2)ir2, 

dir3 
and Tt = 82 ir2 - 

(i + 63 )1r3. 

Moving on to infectious needles we have that the number of state one infectious 

needles at time t+ At 

= {number of state one infectious needles at time t} 

+{number of addict-needle interactions in [t, t+ At) 

which result in a non-state one needle becoming state one} 
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-{number of addict-needle interactions in [t, t+ At) 

which result in a state one needle becoming non-state one} 

-{number of state one needles exchanged in [t, t+ At)}. 

We can use Table 5.3 to identify which addict-needle interactions we require and then 

match these with the correct types of needles and addicts. For example we match 

P211 with the number of state two needles at time t, m#2(t) and the probability that 

a randomly selected needle is used by a stage one addict in [t, t+ At), a^yMtir1(t). 

Matching all the relevant p=? k terms in this manner and writing 7r = irl + 7r2 + 1r3 gives 

us 

m, 81 (t + At) = m, Bj (t) + mAzt71r1(t) (1 - ß(t)) 

+ mAOt7', 2 (t)1rl (t) 

+ mAOtryß3 (t)7r1(t) 

- maLtryß1 (t)(1- zr(t))(1 -Plot) 

- mAOtyßl (t)12 (t) (1 
- P121) 

- mAOt7Q1(t)ir3(t)(1 -P131) 

- mßi (t)TOt + o(Ot). 

Subtracting m, 61(t) from both sides, dividing by mOt and letting At -- 0 we deduce 

that 

ät A7ii(1- JO) + A7,6271 + \7Qs7ri - \76i(1 - 7r)(1- P101) 
dgl 

= 

-)\70i1r2(1 -P121) - A7ß1ir3(1-P131) -ß1T. 

We have that the number of state two infectious needles at time t+ At 

_ {number of state two infectious needles at time t} 

+{number of addict-needle interactions in [t, t+ At) 

which result in a non-state two needle becoming state two} 

-{number of addict-needle interactions in [t, t+ At) 

which result in a state two needle becoming non-state two} 

-{number of state two needles exchanged in [t, t+ At)}. 

As for state one needles we use Table 5.3 to identify which addict-needle interactions 

we require and then match these with the correct types of needles and addicts. This 
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gives us 

mß2(t+At) =mß2(t) + mA tVr2(t)(1 -ß(t)) 

+ m. Ot7Q1(t)7r2 (t)P122 

+ mAOt'yßg (t) 7f2 (t)P322 

+ mALt'Y, 6l(t)(1 - ir(t))Pio2 

+ ma0tryß3(t)(1- 7r(t))P302 

- ma1t7ß2(t)(1 -7r(t))(1 -P202) 

- mA t7Q2(t)1ri(t) 

- mALtyß2(t)7r3(t) 

- mß2(t)rEt + o(Ot). 

Subtracting mß2(t) from both sides, dividing by mtt and letting At -+ 0 we deduce 

that 

dß2 
ät = A77r2(1 - ß) + A7ß11r2P122 + A7ß37r2P322 + »yßß(1 - ir)P102 

+A7ß3(1 - lr)P302 - ? qß2(1 - ir)(1-p202) - a7Q2ir1 

-1\7Q21r3 - ß27. 

We have that the number of state three infectious needles at time t+ At 

= {number of state three infectious needles at time t} 

+{number of addict-needle interactions in [t, t+ At) 

which result in a non-state three needle becoming state three} 

-{number of addict-needle interactions in [t, t+ At) 

which result in a state three needle becoming non-state three} 

-{number of state three needles exchanged in [t, t+ At)). 

Matching all the relevant PUk terms gives 

mß3(t+At) =mß3lt) + mAOt71r31t)(1 -ß(t)) 

+ mA0t7iß1 (t)12 
lt)p123 

mA t7ß1(t)1r3(t)p133 

+ m)L1t7ß2(t)1r3(t) 

+ mAL t7Qi(t)(1 - 7r(t))P103 
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- mAOt7ß3(t)(1 - ir(t))(1 - P303) 

- m%Ot'YQ3(t)irl(t) 

- mAOt'03(t)72(t)(1 -P323) 

- mß3 (t)rL t+ o(it). 

Subtracting m, B3(t) from both sides, dividing by mLt and letting At -4 0 we deduce 

that 

dQ3 
dt A7'r3 (1 - Q) + A7Q1ir2P123 +\ YR17r3Pl33 + )7Q2ir3 

+A7J61(1- lr)Plo3 - )qß3(1 - Ir) (1 - P303) - A7P37r1 

-A7ß31 2(1 -P323) -ß3r. 

Hence the system of differential equations which describes the spread of the disease 

is: 

dire s 

dt 
(1-Eiri)A(ßiai+ß2a2+ß3a3)(1-0)-(p+6i)iri, (5.11) 

i=1 

dire () 
dt = 81'x1 - (µ + 52)ir2i 5.12 

d7r3 (5.13) 
dt 

62ir2 - (1+53)ir3, 

dtl 
= ary7ri (1- P) + Aryß2ri + A'Y, ß3iri - »'YQi (1- 7r)(1 - pioi ) dt 

-A'Yigiir2(1 -P121) - \^t, 817r3(1 -P131) -ß1T, (5.14) 

dß2 
=a lr 1- + alr 

dt 72( ß) 7ýi 2P122 + %+ ý7Q3 2P322 + . 17ßK1 - )Pio2 

+a7ß3(1 - lr)P3o2 - A7ß2(1 - 7r) (1 -P202) - A7ß2irl 

-W27r3 - ß2T, (5.15) 

and 
d3= 

»y7r3(1 - Q) + »y#17r2P123 +\ YQ17r3P133 + A7ß27r3 

+A'YQl(1 - lr)P103 - A'Yf33(1 - ir)(1 -P303) - A103ir1 

-. ß3ir2(1 -P323) -ß3r, 
(5.16) 

with suitable initial conditions: 0< 7r1(0), 1r2 (0), 1r3 (0), ßl (0), #2 (0), ß3 (0), ir1(0) + 

7r2(0) +7r3(0) <1 and ßl (0) +, 62(0) + ß3 (0) < 1. We shall refer to the above model as 

the Restricted General Model. 
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5.3.1 Complete Generality Model 

We believe that the model in eqns (5.11)-(5.16) is interesting and useful in its own 

right and can be used to examine the impact of a three stage infectious period and 

differing addict-needle interaction assumptions. However we have made the simplifying 

assumption that pöii = P0*22 = Pö33 = 1. As mentioned above almost all previous work 

makes an analogous assumption, however this may be more pessimistic than would 

reasonably be expected since an uncontaminated needle may contain an amount of 

uninfectious blood rather than being completely devoid of any fluid. This uninfectious 

blood could serve to dilute the blood of the next infectious user and therefore pojj <1 

for j=1,2,3. In addition it may be that addicts rinse unused needles with water prior 

to use which would have a similar dilution effect. Hence it is more general and probably 

more realistic to simply assume that poi? <1 for j=1,2,3. An additional reason for 

relaxing the assumption p0*11 = Pä22 = Pö33 =1 is that this causes an inconsistency in 

our model. We have used a general "blood-mixing" structure for interactions between 

infectious needles and infectious addicts but taken the extreme approach of full flushing 

in interactions between infectious addicts and uninfectious needles. In other words we 

have not allowed for the dilution effect in the latter interactions. We now state an 

extension of the previous model which assumes a general "blood-mixing" structure in 

all addict-needle interactions. 

If we relax the assumption that pöli = Pä22 = Pö33 =1 then using the inequalities 

in eqns (5.1) and (5.7) we no longer have that p211 = All = p233 = 1. We can still 

incorporate cleaning implicitly into the p=ik terms however care is required as it is now 

the case that a number of Pick terms (after cleaning is included) which were previously 

equal to zero are no longer zero. For example P120 (with cleaning) is not necessarily 

zero since if a state one needle is cleaned prior to use by a stage two addict then 

this needle could become uncontaminated since p020 (excluding cleaning) may now be 

strictly positive. Similarly terms like pill may not equal one. It is straightforward to 

derive the equations which define this more general model in a similar fashion to the 

model in egns (5.11)-(5.16). The equations which define the fully general model are: 

dire s 

dt 
(1-E'r')A(Qiai+ß2a2+ß3a3)(1-q5)-iri(P+Si), (5.17) 

s=i 

d'r2 (5.18) 
dt 

blýl - (Fý + b2)72, 
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dir3 

ä= 
52ir2 - (1-4 + 53)1r3, (5.19) T 

da1 = wt )77r1(1 - Q)poii + a7Q2irip2i1 + A7R37rip311 - »yß1(1 - 7r)(1 -p101) 

-a7ßiir2(1 -P121) - ? 7Qiir3(1 -p131) - A76iiri(1 -pill) - ßi7', (5.20) 

02 
= dt 

)712(1- P)Po22 + A7ß17r2P122 + )'7ß31r2P322 + »7/31(1- lr)P1o2 

+A7ß3 (1 - lr)P302 + »yiri (1 - R)Po12 + X77r3 (1 - R)Po32 + A7ß1lr1P112 

+A7ß1ir3P132 + )'Yß3ir1P312 + A7ß37r3P332 - )qß2(1 - ir)(1 -P202) 

-A'YQ2ir1(1-P212) - %t7ß27r2(1 -P222) - )7R2ir3(1 -P232) -A2T, (5.21) 

and 

03 
= ýt A7ir3(1 - Q)P033 + A'0172P123 + )t7ß1lr3P133 + )7ß211P213 + A7ß27r3P233 

+A7ß1(1 - ir)P103 + A7ir1(1 - 
ß)P013 + )7Y1lr1P113 - 

A7ß3 (1 
- 7r)(1 - P303) 

-'\7ß37r1(1 -P313) - A'Yß3ir2(1 -P323) - )7ß37r3(1 -P333) - Iß3r1 
(5.22) 

again with suitable initial conditions: 0< 7r1(0), 72(0)1 73(0), 81(0), ß2 (0), ß3 (0), 

irl (0) + 1r2 (0) + 7r3 (0) <1 and ßl (0) + ß2 (0) + X63 (0) < 1. The system of eqns (5.17)- 

(5.22) could be considered a generalisation of a single stage infectivity model similar to 

the Kaplan and O'Keefe Model but where an uninfectious needle is not necessarily left 

infectious by an infectious addict. 

5.4 The Optimistic, Pessimistic and General Models 

Having derived two general mixing models, the General Model and the Restricted 

General Model, we now briefly discuss the relationship between these models and the 

Optimistic and Pessimistic Models. It is obvious that the Optimistic and Pessimistic 

Models are special cases of these general models since we can choose pijk terms to give 

the same addict-needle interactions assumptions as in these models. When we con- 

structed the Restricted General Model we made the simplifying assumption that an 

uninfectious needle used once by an addict in stage i infectivity becomes a state i infec- 

tious needle. This assumption implies that the Optimistic and Pessimistic Models are 
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in fact the best and worst cases of this general mixing model. In other words we intu- 

itively expect that for the same choice of non-Pik parameters, the long term prevalence 

of disease in the Restricted General Model will lie in between that of the Optimistic 

Model and Pessimistic Model for any choice of P Gk's such that the inequalities in eqns 
(5.1)-(5.10) are satisfied. The easiest way to see this is to examine Table 5.4 in Section 

5.7. In the ijks which we are free to adjust (the number of which is constrained due to 

the assumption that pöli = Pö 22 = Pöss = 1) we find that the most infectious outcome 

always occurs with probability one in the Pessimistic Model and the least infectious 

outcome always occurs with probability one in the Optimistic Model. 

This convenient relationship between the Restricted General Model and the Opti- 

mistic and Pessimistic Models suggests that these simpler models have practical use as 
lower and upper bounds for the spread of disease under the assumption of three stage 
infectivity. Note however that without the specific assumption that p0*11 = P022 = 

pö33 =1 this connection between the models does not hold. Intuitively the Pessimistic 

Model still represents an upper bound for the spread of disease but the Optimistic 

Model no longer represents a lower bound. To see this consider for example the inter- 

action between a stage one addict and an uninfectious needle. In the Optimistic Model 

(and the Restricted General Model) this needle will be left in state one infectivity with 

probability one. However in the General Model where we have dropped the condition 

Pöii = Pä22 = Pöss =1 it is now possible for this uninfectious needle to be left in the 

lower infectious states of state two or state three or even remain uninfectious. Hence 

we no longer expect the Optimistic Model to represent a lower bound. 

5.5 The Basic Reproductive Number 

As in the previous models we are interested in deriving the basic reproductive number 
for the General Model. The computation of Ro in this model is more complicated 

than for the earlier models. In the Optimistic and Pessimistic Models an infectious 

needle could only remain in the same infectious state or be rendered virus free by an 

uncontaminated addict. In the General Model uncontaminated addicts can lower the 

viral load of a contaminated needle so that it enters other less infectious states before 

being rendered virus free. 

As usual, consider a single newly infected addict entering a population where every- 

one else is susceptible and all needles are uninfected. We wish to calculate the expected 
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number of secondary cases produced by this single infected individual. Addicts inject at 

rate A per unit time and on average spend 1/(p+5) time units in stage one infectivity. 

Hence 
APo11 )Po12 

and 
APo13 

µ+ö1' 
an 

E6+S1 Ed+a1 

are the respective expected numbers of needles an addict leaves in state one, two and 

three infectivity during his or her stage one lifetime. An addict progresses from stage 

one to stage two with probability bl/(p + 5) and spends on average 1/(/c + b2) time 

units in this stage. On average an addict leaves 

ASIP022 
(N + bi)(A + 82)' 

needles in state two infectivity during his or her stage two lifetime. An addict progresses 

from stage two to stage three with probability S2/(/ + b2) and spends on average 

1/(µ + ö3) time units in this stage. Hence 

A5152P032 A5152P033 

(14 +61)(it+62)(P+53) 
and (14 +51)µ+52)1-4 +53) 

are the respective expected numbers of needles an addict leaves in state two and three 

infectivity during his or her stage three lifetime. We now determine how many infections 

are caused by each type of infectious needle until it is rendered virus free, where a needle 

can pass through states of lower infectivity on its way to becoming virus free. We have 

that 

E(Y) = E(Y I X1)P(X1) + E(Y I X2)P(X2), 

where Y is the number of addicts infected by a single needle, Xl is the event that 

the needle is exchanged before the next injection and X2 is the event that the needle 

is still infectious at the next injection. If the needle is exchanged prior to the next 

injection then the infected needle has infected zero addicts, thus E(Y I Xl) = 0. The 

event X2 corresponds to the needle being used rather than exchanged prior to use. The 

probability of this event is A7/(Jry + T), hence 

E(Y) = E(YI X2)Ay+T. (5.23) 

We explore E(Y I X2) by conditioning on the next event, that of a susceptible addict 

injecting with an infectious needle, we now first assume that this needle is in state two 

infectivity. This event has four outcomes given by pairs of combinations of the following 

two events. The addict is infected by the needle with probability a2(1- 0 or remains 
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susceptible with probability 1- a2(1 - 0), and also the addict can leave the needle in 

state two infectivity with probability p202 or leave the needle virus free with probability 

P200. As discussed by Greenhalgh and Hay (1997) independence of the events that an 

addict is infected by the needle and the needle is flushed is not necessary. Let E2 denote 

the unconditional total expected number of addicts infected from a needle initially in 

state two infectivity. Using eqn (5.23) we have that 

E2 = 
Ary [P(sus. 

addict infected and needle left in state 2) (1 + E2) 
A7+T 

-i- P(sus. addict infected and needle left virus free) 

+ P(sus. addict not infected and needle left in state 2)E2], 

_ 
Ay [P(sus. 

addict infected) + P(needle left in state 2)E2], 
. dry +, r 

1 
=1+T [(l - 0)C t2 +p2o2E2], 

where f= 7-/A7y. Hence solving for E2 gives us 

E 
(1 - 5)a2 

E2 - 1+T-p202 

Hence E2 is the probability that an addict is infected at the next event ((1-qS)a2)/(1+ 

T), divided by the probability that a state two needle is rendered virus free at the next 

event, 1- (p202/(1 +T)). Note that whilst we have included cleaning implicitly into the 

pick terms we still feature ý explicitly. Cleaning has two effects, firstly if susceptible 

addicts clean needles prior to use then they increase the chance that a previously 

infectious needle is rendered virus free. We have implicitly incorporated this effect in 

our definition of p=ik. The second effect of cleaning is to reduce the probability of HIV 

transmission from the infectious needle to the susceptible addict, thus cleaning reduces 

the probability of HIV transmission from a2 to a2 (1 - ¢), and correspondingly raises 

the probability that HIV is not transmitted from 1- a2 to 1- a2(1 - 0). 

Moving on to state three needles, we again wish to compute the expected number 

of addicts infected by a single infectious needle where now the needle is initially in 

state three infectivity. This time our model allows a susceptible addict to leave a 

needle initially in state three infectivity in state three or state two infectivity, as well 

as rendering it virus-free. Let E3 denote the unconditional total expected number of 
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addicts infected given the needle is initially in state three infectivity. Then arguing 

similarly to before we have 

E3 = 
A7 [P(sus. 

addict infected) + P(needle left in state two)E2 ary+T 

+ P(needle left in state three)E3,, 
1 

1+T[ 3ý1-0)+P302E2+P303E31- 

Hence 

a3(1 - 0) P302E2 E3 
__ 1"ß'T - P303 

+ 
1+ 7-P 30 32 

_ 
a3 (1 

- 0) P302 a2 (1 
- 0) 

1 '+' T- P303 
+1 

'ß"T - P303 1+T- P202' 

using our previously derived expression for E2. 

Moving on to needles in state one infectivity, let El denote the corresponding un- 

conditional total expected number of addicts infected given that the needle is initially 

in state one infectivity. Then arguing as above 

El 
1-1- 

[a1(1- 0) +pio2E2 +pio3E3 +pioiE1]. 

Solving for El gives us 

E1 = 
al(1 - 0) P1o2E2 P103E3 

1+T- plot 
+1+T 

-plot 
+1+T- 

P1o1 » 

Substituting our previously derived expressions for E2 and E3 we deduce that 

E1 = 
(1 - q5)al 

+ 
P103 (1 - q5)a3 

+ 
P302 (1 - 0)a2 

1+T-P101 1-P101+T 

[1+T-p303 

(1-P303+T) (1+T-p202)J 

P102 (1 - O)a2 
+(1 

- P101 + T) (1 +T- P202) 

At the start of this section we computed the expected number of state one, state two 

and state three infectious needles an addict creates during his or her entire infectious 

lifetime, we now have additionally the expected number of addicts infected by each of 

these three types of infectious needles. Putting these expectations together gives Ro = 

A(1 - O)P011 1 
al P103 a3 P302 a2 

(/+6 )' 1+T-plot 
+1-P1o1+T 

[1+T-P303 
+ 

(1-P303+i)(1+T-P202) 

+ 
P102 a2 

(1 -P101 +T) (1+T-p2o2) 
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+ 
A(i - 0) S1Po22 b152Po32 a2 
(p+öi) 

[P012+ 

(14+62) 
+ 

(%4+62)(14+b3)J (1+T-P2o2) 

+ 
A(1 

- 0) fP013 
+ 

6162PO33 a3 
+ 

P302 a2 

(µ + 5) L (14 + a2)(µ + a3)J L1 + P303 (1 - P303 + T) (1 + P202)] 

For the Restricted General Model this expression simplifies down to 

i1(1 - 0) al P103 a3 P302 a2 

(p+JI) I+T-p101+1-P101+T 

[1+T-P303+(1-P303+T)(1+T-P202)J 

a2 
+ 

P102 a2 
+ 

Aa - 0) Si 

(1 - P101 + T) (1 +T- p202) (p + Si) (p + 62) (1 +- P202) 

A(1 - 0) 5152 a3 P302 a2 + 
(f6+61) (14 +a2)(N4+b3) L1 +T-P303 

+ 
(1 -P303+f) (1 +T-P202)J 

Not surprisingly the expressions for Ro in the General Model and the Restricted General 

Model are more complicated than those for the Optimistic and Pessimistic Models. 

However it is easy to see that these expressions collapse down to the expressions of Ro 

for the Optimistic and Pessimistic Models given the appropriate choice of Pick terms. 

We now move on to studying the analytical properties of our model and demonstrate 

the importance of the above expression for Ro. 

5.6 Analytical Results 

We have derived two models, that defined by eqns (5.11)-(5.16) and its extension to 

complete generality defined by eqns (5.17)-(5.22). We now show a number of analytical 

properties of these systems of equations. We assume that all model parameters (apart 

from ¢ and the P: Jk parameters) are strictly positive, q is strictly less than one and 

a1 > as > a2. In addition we assume that pojj >0 for j=1,2,3 to avoid technical 

complications where disease may die out in one or more classes of needles but the disease 

is still endemic. This condition says that an addict can leave an uninfectious needle in 

their own infectious state so seems entirely reasonable. In some of the following results 

we also require that poll >_ max(P211, P311), Poll + P013 >_ P211 + P213 and P033 >_ P233, 

these are required for technical reasons rather than biological reality. These inequalities 

are always true for the simpler model in eqns (5.11)-(5.16) and together with inequalities 

(5.1)-(5.10) implies that poll = P211 = P311, P013 = P213 and P033 = P233" 

Theorem 5.1 If Ra <1 the system of equations (5.17)-(5.22) has a unique equilibrium 

solution where the disease has died out in both addicts and needles. If in addition, 
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Poll >_ max(P211, P311), Poll + P013 >_ P211 + P213 and P033 >_ P233 then whatever the 

initial state the disease will die out in all addicts and all needles. If Ra >1 there is still 

the equilibrium where the disease has died out and this is unstable, in addition there 

now also exists at least one endemic equilibrium solution with disease present in each 

class of addict and each class of needle. 

Proof. 

The proof of this theorem requires a number of stages and supporting arguments. 
We first define a function £(x) which is of central importance in our proof. For sim- 

plicity of notation we write lr1+3 = 7r1 + 73, it _ i1 + 12 + 1n3, ß1+3 = 01 +, 03 and 

Q= Qi + ß2 +, 83. Let x= (71,72,73081,01+3,0), £(x) is a scalar function of the six 

components in x given by £(x) 

ßm3 (P033 (C2 + (3) + p032 (3) 
=+ 61ß1-Fµ+2a1ß1+3+µ+b1ß+(Fý-F'b1)[n1+ 

+ 
(ý + 5) 

(P022C3 
+ (P033 ((2 + (3) +P032C3) 

µ+ a3 JJ" 
(5.24) 1 

Here 

al(1 - 0) 1 

{_a2(1 - 0) 
ý1 __ 1- pio1 +f (1- p101 + f) 1- p202 -I- T 

(1 - Pio1 +T- pio2 - Pio3) 

+ 
Lla3(1-0)-a2(1-0)(1-P303+ 

''T-P302)J {l-P1o1+-P103l 
(5.25) 

1- P202 +T1- P303 +TJ1 

a3(1 - c5) a2(1 - 0) (1 
- P303 +T- p302) 

ý2 
-1- P303 '+' T (1 - P303 '+' T) (1 - P202 + T) 7 

(5.26) 

and C3 = 
a2(1- (5.27) 

1-P202+Tý 

Lemma 5.1 Ifpo11 >- max(P211, P311), Po11+Po13 >- P211+p213 andPo33 ? P233 then the 

function £(x) is a weak Lyapunov function for the system defined by eqns (5.17)-(5. P2). 

Proof. 

Using Theorem 10.1 in Jordan and Smith (1987), we require to show that £(x) and 

its partial derivatives are continuous, £(x) is positive definite and dG(x)/dt is negative 

semidefinite. It is obvious that £(x) and its partial derivatives are continuous. We now 

show that £(x) is positive definite. It is obvious that C3 >0 always. Since a3 > a2 
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and p303 + P302 >_ P202 (from inequality (5.10)) then we have that C2 >0 always. We 

also have that 

e1 al(1 - 0) 
_11 

a2(1 - 0) (1 - P1o1 +T- P1o2 - P1o3) ß,,, a3(1 - 0) 1 -P101 +T 1 -pioi +T 1- P202 +T 

1 a2(1 -0)(1 -P303 -P302 +f) 

1-P202+T 1' 

ail - q) 
- 

a3(1 - q5) 
1- pioi +T 1- Pio1 + T' 

since P103 +P101 >_ P3o3 from eqn (5.3), 

> o, Since al > a3. 

Hence the function £(x) is positive definite. Moving on to dG(x)/dt we have that 

dG 
_ 

aC dß1 aG ß1+3 aG dß aC dirt aC dir2 aG dir3 
dt + 073 dt ' (5.28) 

dt a, Bl at + aQ1+3 dt + as at + a1rl dt + 572 

Using eqns (5.17)-(5.22) it is straightforward to compute dG/dt. After some simplifi- 

cation we have: 

ac dal 
_ 

sl 
a, 6l dt - µ+bl{A-7ri[Qi(Poii+l-pill)+j6z(Poii-Psis) 

+Iß3(poll -P311)]A7 - ir2Q1(1 -P121))t7 - ir3/j1(1-P131)A7 

-, Bir7r}º (5.29) 

where A= ? 'Y1ripoii - a7ß1(1- ir) (1 - Pioi + T), (5.30) 

aG dß13 
= 

(2 {B-A71r1[ßl(poll+P013+1-Plll-P113) 
öß1+3 dt 'i' 91 

'iß2 
(POI I+ P013 - P211 - P213) +A (p011 + P013 +1- P313 - P311)] 

-A'tir2[ß1(1 -P121 -P123) +ß3(1 -P323)] 

-A'rir3 
[ß1(P033 +1- P131 - P133) + ß2 (P033 - P233) 

+ß3(Y033 +1- P333)] - 01+37ir}, (5.31) 

where B= ary 
[7f1(pOl 

l+ P013) + 7r3P033] - (1 - 7r)ß1(1 - P101 - P103 + T) A7 

- (1 - 7r)ß3 (1 - P303 +i) A'yv (5.32) 

ÖG dß 
_ 

S3 I_ A7ir1 [#I (poll +P012 +P013 +P11o) 
ö, B dt µ+b1 l 

since P300 >_ Pioo from eqn (5.10), 
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+ß2 (Poll + Po12 + P013 + P210) + 03 (Poll + P012 + P013 + P310)] 

-A ir2 
[01(P022 + P120) + ß2 (P022 + P220) + 03 (P022 + P320)] 

-A77r3 
[01(P033 + P032 + P130) + ß2 (P032 + P033 + P230) 

+ß3(P032 +P033 +P330)] - IOT7r1, 
(5.33) 

where C= X'f [7rl (P011 + P012 + P013) + 7r2Po22 + 1r3 (P032 + P033 )] 

-(1 - ir)[Qi(Pioo + T) + ß2(p200 +f) + ß3&Y300 + T)}ary, (5.34) 

ac dire 7j 8ý1 dt ýc+bl[A(1-0)(1-ir)(ßiai+ß2a2+ß3a3)-(f4+ai)iri], 
(5.35) 

zY/ 
92 l 

1 a2 dt (p + b) (/4 + b2) 

(Po22(3 
+ (P0331C2 

"+ " C3) 
(P+63) 

x [a1ir1- (A + b2)1r2], (5.36) 

OL dir3 A7 (P033 
(C2 + (3) + P032 (3) 

and äý3 dt 
[521r2 - (µ + 53)1r3)" (5.37) 

(14+Y1)(A+b3) 

We can express dG/dt as 

at 
- [ir1Po11 - ßl (1 

- ir) (1 
- Plol + T)j 

Ary(l 
+ 

[7rl (poll + P013) + 7r3P033 

µ+61 
-(1 - ir) (ß1(1 

-P101 +T -P103) +N3(1 -P303 +T))] 
A7C2 

µ+b1 

+ [7f1(POl 
l +P012 +P013) + 7r2P022 + 1r3 (P032 +P033) 

-(1 - 7r)(ß1(1 -P101 +T -P102 -P103) +ß2(1 -P202 "}'T) 

+)63(1-P303+T-p302))J 
bbl 

+14+b1{A(1-0)(1-70 (a1Q1+a2ß2 
14 + 

A(P033((2'+' C3) +P032C3)r 
+a3ß3) - (A '+' bl)iri + (/6 + b3) `b27r2 - 

(µ + b3)lr3l 

+- 
A 

P022+(P033(c2+C3)+P032(3 )[öiiri-(A+b2)121 
) 

+a3 µ+b2 (1 
+A- + B- + C-, (5.38) 
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where OL dfli 
W, -ar =A+ A-, OL 

3d 
lt 3=B+ B- and =C+ C-, and note 

that A-, B- and C- are all negative. 

By construction we have that 

ßl(1 -P101 +T)C1 + fß1(1 
-P101 -P103 +T) +ß3(1 -P303+T)J(2 

+[ß1(1 -P101 -P102 -P103+T) +ß2(1 -P202+')+ß3(1 -P303 -P302+T)l(3t 

= (1 - 0)(, Bial +ß2a2 +ß3a3). (5.39) 

Hence eqn (5.38) simplifies down to 

dt 'i7rlI 
+bl(POII(Cl+C2+C3)+P013(C2+(3)'+'P012C3) 

+ 
Aal 

P022C3 + 
Ablb2 (P033((2 

+ ý3) +P032C3) 
(µ+ö1)(µ+ b2) (14 +aß)(14 +&2)(14 + a3) 

-11 + A- + B- + C-. (5.40) 

After some simplification we have that 

C2 +G= 
a3(1 - 

(1 
- P202 + T) + a2(1 - O)p302 

(1 - P303 + T)(1 - P202 + T) 

and 

'1 + C2 + 
al(1 - 0)(1 - P202 + T)(1 - P303 + T)+ a3(1 - O)P103(1 -P202 +T 

C3 = (1 - PIOI + T)(1 - p202 + 1)(1 -P303 + 

+ 
a2(1 c5)P102(1 - P303 +)+ a2(1 - O)P302P103 

(1 P1o1 +f (1 - p202 + T)(1 - P303 + T) 

Substituting the above expressions into eqn (5.40) and simplifying eventually gives us 

dG 
dt = -y7rl (Ro - 1) + A- + B- + C-, (5.41) 

therefore dr(x)/dt is always (at least) negative semidefinite for 11 < 1. This concludes 

the proof of Lemma 5.1. " 

Lemma 5.2 When Ro <1 the only invariant set in dG/dt =0 is (7r1, ire, ir3, Qi, ß2, Q3) 

= (0,0,0,0,0,0). 

Proof. 

For a set to be in dG/dt =0 when Ro <1 we require that A-, B- and C- are 

all equal to zero in this set. It is obvious that the only set which will give C- =0 is 

162 



the set where 7r =0 or ß=0. However if 7r =0 and 0>0 then dir/dt > 0, and if 

ir >0 and B=0 then dß/dt > 0. Hence the only invariant set is (7r, (0,0), the 

disease-free equilibrium solution.. 

Lemma 5.3 If Ro <1 and poll >_ max(p2ii, p3ii), Poll + P013 ? P211 + P213 and 

P033 ý P233 then whatever the initial state the disease will die out in both addicts and 

needles. 

Proof. 

From Lemma 5.1 we have that when Ra < 1, C(x) is a weak Lyapunov function 

for the disease-free solution of eqns (5.17)-(5.22). When Ro <1 we always have that 

dG/dt < 0. In the case where dCldt <0 for all x>0 we have that £(x) is a 

strong Lyapunov function for the disease-free solution and hence by Theorem 10.2 in 

Jordan and Smith (1987) the disease-free solution is globally asymptotically stable. 

In the case where dL /dt =0 we have from Lemma 5.2 that the only invariant set 

in dCldt =0 is the disease-free solution. By LaSalle's Invariance Principle, LaSalle 

(1976), x(t) --3 M fl C-1(c) for some c>0 where x= (ir1, ire, ir3, ßl, ß1+3, ß) and where 

M is the largest invariant set in dCldt = 0. Hence the disease-free solution is again 

globally asymptotically stable.. 

We have now proved our assertions in Theorem 5.1 for the case where ho <1 we 

now examine the properties of our model when Ra > 1. Firstly we show that the 

disease-free equilibrium is no longer stable. 

Lemma 5.4 The disease free equilibrium is unstable when Ro > 1. 

Proof. 

Consider the linearised system of egns (5.17)-(5.22), evaluated at the disease-free 

equilibrium. This system can be represented in matrix form as dx/dt = Jx, where 

xT = (lr1,1r2,73 
, 
ßl702, ß3) and J= 

-(/, +a1) o 0 a«1(1-40) 

a1 -(µ+a2) 0 0 

0 J2 -(µ+a3) 0 

a7Po11 0 0 -A7(1-P1o1+T) 

-X7P012 
A7P022 a7P032 A7P102 

A7P013 0 A7P033 a7P1o3 

Aa2(1-cS) )a3(1-ß) 

0o 

00 

00 

-) (1-Pao2+i) A7P302 

0 -)7(1-p3o3+f) 
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We wish to show that at least one eigenvalue of J has a strictly positive real part. 
Using the Routh-Hurwitz conditions it is sufficient to show that the constant term in 

the characteristic equation of J, ws + alw5 + a2w4 + a3w3 + a4w2 + a5w + a6 =0 is 

strictly negative. It is straightforward to show that a6 = 

+ bi)(µ + b2)(µ + b3)(1 - P101 + T)a3ry3(1 - P202 + 'f) (I - P303 + T) 

-aa1Poii(1 - O)(P + x2)(14 + b3)a3ry3(1 - P202+ T) (1 - P303+ T) 

-aa2(1- q5)S1(1-P101 +T)b2\373P032(1 -P303 +T) 

-Aa2 (1 - c)si (l - P101 + T)52P302PO33 \3, y3 

-Aa2(1 - ¢)5i(1 -P101 +f) -P303 + T), \3'y3 

-Aa2(1 - c5)(µ'+' 62)(14 +63)A373[P011P102(1 -P303 +T) +p013P302(1-P101 +'i) 

+P012(1 -P101 +'M1 -P303 + T) + P011P103P302] 

-) a3 (1 - c)81 ö2 (1 -P101 +f)(1 -P202 + f) A373p033 

- Aa3(1 - 0) (11 + b2)(IL + S3)(1 - P202 + T)A373[Poi1P013+ P013(l - P101+ T)]" 

By dividing each term in the above expression by the first term we get 1- R0. Hence 

a6=(N+bl)(14+a2) (t4 +a3)A3, i3(1-P101+f)(I-P202+t)(1-P303+f)(1-R0) I 

therefore it follows directly that Ro >1 implies that a6 < 0. " 

We now show that iri >0 implies that i2, ir3, ß, X02 and 63 are all strictly positive 

and hence the model has two classes of equilibrium solution, a disease-free solution and 

solutions where disease is present in each type of infectious addict and each type of 

infectious needle. 

Lemma 5.5 7rl >0 determines unique i2,7r3*, ßl, 62* and 63* >0 and moreover 

, B*<1. 

Proof. 

From eqn (5.20), eqns (5.20) and (5.22), and eqns (5.20)-(5.22) we have respectively 

that: 

7ripoii = Qi[ir (Poii+1-piu)+(1-ir*)(1-Pioi)+i2(1-P121)+iä 1-P131) 
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+T, +027ri(Po11 -P211) +ß3ii(Po11 -P311)ß (5.42) 

7r1(i'Oll +p013) + 7r3p033 
[ii (po11 + PQ13 +1- Pill - P113) + i2 (1 - P121 - P123) 

+i3 (P033 +1- P131 - P133) + (1 - 7C*) (1 - P101 - P103) + T, + 182 
[iri (POl l+ p013 

-P211 - P213) + 73 (P033 - P233)J + 03 [7fi (p011 + P013 +1- P313 - P311 

'ßi211 - P323) + 73 (p033 +1- P333) +ý1- . *) ý1- P303) + TJ (5.43) 

and 

i1(N011 +P012 +P013) +12P022 +7ß(p032 +P033) = /mal 
[ii(Po11 

+P012 +P013 +P11o) 

+7r2(t'022 + P120) + 1r (P032 + P033 +P130) +ý1- lr*)Ploo +T] +P2'% [ii (Po ll+ P012 

+P013 + P210) + 72 (P022 + P220) + 1r (P032 + P033 + P230) +ý1- 7r*)P200 + TJ 

+ß3 [i1(PO 
ll +P012 +P013 +P310) + 7r2 ('022 +P320) + 1r (p032 +P033 +P330) 

-ý 1- 7f*)P300 '-ý TJ. (5.44) 

Since ii >0 we have directly that i2 >0 and i3 >0 from eqns (5.18) and (5.19). We 

can consider eqns (5.42)-(5.44) as a linear system of equations where iri, 7r2, and 7r3* axe 
known positive constants and since this is a linear system we can solve these equations. 
We now substitute j and ki for ßi* and 7rj respectively where $=1 ß*, 

and Frj = 
for i, j=1,2,3. Note that as d, 8/dt <0 when 6=1 and dir/dt <0 when 7r =1 and 

iri >0 we cannot have that 6* =1 or ir* = 1, so we can divide by 1- ß* and 1- 7r*. 
This gives us the following system of equations in ß; and ij for i, j=1,2,3. 

Fr1P011 = Ql [1-P101+ir1(1-P111)+fr2(1-P121)+fr3(1-P131)+f] 
-$2r1P211-ß3'kiP311, 

(5.45) 

ir1(POl i +P013) + *3P033 = R1 [1 
-P101 -P103 + fr1(1 - P111 -P113) 

ß1r2(1 -P121 -P123) +7r3(1 -P131 -P133)+TJ -ß2[f'3P233+ 7i1(P211 +P213)] 

+Q3[1 -P303 +fr1(l -P313 -P311) +ir2(1 -P323) +k3 (I -p333)' T]r (5.46) 

and 

*1(p011 +P012 + P013) + ir2P022 + ir3 (P032 + P033) _ 
44100 + fr1P110 + ir2P120 
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+fr3P130 +T)+ $2 (p200 + l7r1P210 + "2P220 + g3P230 + 7) + ß3U'300 + *1P310 'i" 

1r2P320 + *3P330 + T)' (5.47) 

where f= T/(1 - ir*). We now solve this system for / i, 
fie and ß3 in terms of ir1, 

ire and i3. We use eqn (5.45) to write Ql in terms of 1B2 and X133. We then substitute 

this expression for $2 into eqn (5.46) which allows us to write #3 in terms of 02 only. 
Hence we have $2 and fi3 in terms of iß2 only and then use eqn (5.47) to get an explicit 

expression for X82. We have that 

ý1 
= 

*1(PO11+ Q2P211+ 13371311) 
(5.48) 

1 -P1o1 +ir1(l -Pill) +1r2(1 -P121) +7r3(1 -P131) +r 

We now use eqn (5.48) to substitute for $l in eqn (5.46), this gives us 

183 = A2 ýP011(P103+FriP113+Fr2P123+Fr3P133)+AIP013)+fr3AIP033+hA3Js (5.49) 

where 

Al = 1-pioi+ýriýl-Piii)+ý2ýl-pi2i)+ý3ýl-p13i)+Tý 

A2 - 
[1-P303+T+ý1(1-P313-P311)+i2(1-P323)+i3(1-P333)]Al 

+ir1P311 
[1 

- P101 -P103 + Fr1(P110 + P112) + Fr2 (P122 + P120) + *3 (P132 + P130) 'ý' T, 

and 

A3 = ir1P211 [P103 
+ Fr1P113 + *2P123 + *3P133] + Al [*1P213 + fr, 3P233] 

Note that Al and A2 are both strictly positive (since f>0 always). We now have 

expressions for / in terms of ß2 and ß3 only and Q3 in terms of ß2 only. Hence we can 

substitute these expressions into eqn (5.47) to get an explicit expression for X82. After 

some simplification equation (5.47) becomes 

E 
, 62 = D, where (5.50) 

D= Al (P200 + *1P210 + *2P220 +7 3P230 + T) + Fr1P211 (P100 + *1Puo + ! 7r2P120 

+*3P130 + T) + 
{Ai 

(P300 + Fr1P310 + 7*2P320 + *3P330 ++ *1P311 
(P100 

+i1P11o + k2P120 + ! 7r3P130 + T) J2, 
(5.51) 
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and 

-I- T]) E_ *1(A1(poll + P012 + P013) - Poll [P1oo + fr1P11o + fr2P120 + fr3P130 

+A 1*2P022 + k3 (P032 + P033)) --! -I 
[A1 (P300 + ir1P310 + *2P320 + 7r3P330 +f) 

2 

+1r1P311(P100 + 71P110 + Fr2P120 + fr3P130 + T)] 

x 
[Fr1(POli (p103 + i1P113 + ? 2P123 + ir3P133) + A1P013) + Fr3P033A1] 

1" 
(5.52) 

It is straightforward to show that 2 B2 >0 since clearly D>0 and 

Po11Al -Poll 
[P1oo + ý7r1P11o + i2P120 + *3P130 + f] 

= P011 
{P102 

+P103 + *1(P112 +P113) + ir2 (P122 +P123) + 7r31P133 +P132) 
}, 

Poll 
(P103 

+ fr1P113 + f2P123 + *3P133) 
r 

and 

A2 ý (P300 + ý7r1P310 + Fr2P320 '+' i3P330 '+' T) Al + Fr1P311 (P100 + Fr1P11o + *2P12o 

+i3P130 + f), 

from which it follows that E>0. We have that ß2 > 0, using eqn (5.49) this implies 

that ß3 > 0, and using eqn (5.48) implies that ß1 >0 also. Hence as Bt = ß; /(1 +, B) 

for i= 112,3 and ß* = Q/(1 + ý) we have that ßl, 62* and 63* are all strictly positive 

and moreover ß* < 1. This concludes the proof of Lemma 5.5. " 

We now use the previous lemma to show that when Ro >1 there exists at least one 

strictly positive endemic equilibrium solution. 

Lemma 5.6 If Rp >1 then there exists at least one endemic equilibrium solution to 

eqns (5.17)-(5.22). 

Proof. 

We have now implicitly expressed ire, 7r3,61*, 62 and , 63* in terms of iri. The equation 

which determines the endemic equilibrium value of 7rl is F(7rl) =1 where 

F(i*1) = 
A(1- 0) (ß rai + ßa2 + ßa3) 

. 
(5.53) 

ß+J, *1 

We assert that eqn (5.53) has at least one strictly positive solution. Let k2 = al/(µ+ö2) 

and k3 = (6152)/((µ + 52)(p + b3)). We have 0< 7r* <1 so 0< 7r <1k. As 
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7r1 i+kz+ka ý1 - 1w* -+ oo" We have that 0< MIal -I- 02C12 +ßa3 < al + a2 + a3, 

so F(iri) -+ 0 as 7ri 1+ 3. As ii -+ 0, fr1, *2,713 -+ 0 and from the proof of 2 +T 
Lemma 5.5 ýBl, ß2i Q3 -+ 0 also. Eqns (5.45)-(5.47) become 

FriPoii + o(Fri) = ßi(1 - Pioi + T), (5.54) 

(POll +P013 +k3P033)fr1 '+' O(ir1) = P1(1-P101 -P103 +T) +lß3(1 -P303 +T), (5.55) 

and 

(POll +P012 +p013 + k2P022 + k3(p032 +P033))lr1 + O(i1) = R1(1 -P101 -p102 

-P103 +f) +192(1 -P202 + r) + 193 (1 - P303 -P302 + T). (5.56) 

We have that 

lim F(irl) = lim 
. (1- 0) (ß ai +, ß2a2 + a3) 

wi-io *-+0 m+ öl 7r1 

lim 
a1 

1r -4op+b17f1 

x 
[01(l 

-P101 +f)(1 +[ (1 -P101 -P103 +T) +ß3(1 -P303'i' i), S2 

+{ß(1-P101-P102-P103+T)+02(1-P202+T) 

+163* /'3 
(1 

- P303 - P302 '+' T0] (3J 
v (5.57) 

by construction of (1, S2 and C3. Now 7rl --- 0a Fri -+ 0, f3 =/ /(1 +ß) =A +o(*l) 

for i=1,2,3 and f= T/(1- v*) =T+ o(, rl). Therefore limrl 
_.., o F(ii) 

A1 
= lim - IrNOµ+617*1 

+i(l 

-P101 +T)C1 + [41(1-P101 
-P103 +T) +43(1 -P303 +T), b2 

'i" 
[Q1 (P100 + T) + $2 (p200 + T) + 43 (P300 +f )} C3 + O(N1)] 1 

(5.58) 

µ+ al 
[CiPoi1 + C2(Poi1 +po13 + k3PO33) 

"ß'C3 (Y011 + P012 + P013 + k2P022 + k3 (p032 +P033))] (5.59) 

by eqns (5.54)-(5.56), 
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= Ro (after some simplification). (5.60) 

Hence F(ei) -4 0 as 7ri -+ 1+kky and F(7ri) -+ Ro as ii -+ 0. So if Ro >1 then 

F(i4) =1 has at least one root in (0,1+k2+k3) 
" The proof of Lemma 5.5 shows that 

each value of iri in (0,1+k2+k3) 
corresponds to a unique feasible endemic equilibrium 

solution of eqns (5.17)-(5.22). " 

Lemma 5.7 If Ra >1 and either ir(0) >0 or ß(0) >0 then there exists a fixed e>0 

depending only on the model parameters and not the initial conditions such that for 

some T>0, ir; (t) >e and ßj (t) >e for i, j=1,2,3, for all t> T(e). 

Proof. 

Proving the persistence of disease when Ro >1 in the General Model follows the 

same intuitive method as the equivalent results for the Simple, Optimistic and Pes- 

simistic Models. Firstly using a method similar to Lemma 4.1 it is straightforward 

to show that if initially any of 7r; (0) or ßi(0) for i=1,2,3 are strictly positive then 

7r; (At) >0 and ß (At) >0 for i=1,2,3 and At small and strictly positive. Hence 

if disease is initially present then 7r1(At) > ezri for e small enough. We now show 

that once 7r1 has increased to this level it can be bounded away from the origin for 

all t> At. Again following a similar method to previously we first show that if in (t) 

remains continuously below 2 en then all other model components also become small. 

We can use Lemma 2.4 and Corollary 2.5 directly to bound above iZ and 7r3 when 

irl, 0o <2 eznl. We also wish to show that ßi for i=1,2,3 can be bounded above when 

ir1,. <2 e7ri. By examining the General Model equations it is easy to see that 

d'l 
< a^yir -, 6r. 

ät 
Hence using method of Lemma 2.4 and the results of Lemma 2.4 and Corollary 2.5 we 

have that in [to, tl] 

dQ 
< Ay(2+20)E7r*-f-r, fort> to+Tl+TZ. 

Integrating over [to + Ti + T2, t] gives us 

ß(t) < 
(+3)63ß*, 1 fort > to +Tl +T2 +T3, 

where e, = (A7e7r*)/(rß*) is a small strictly positive fixed value and T3 is sufficiently 

large. By bounding above ß(t) we have also bounded above A (t) for i=1,2,3. There- 

fore fort > to + Ti + T2 + T3 we have that 131(t) < (2 + 3L) eißs for i=1,2,3 where 

Ei = es(ß*/ßi*) are small strictly positive fixed values. 
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Following the method of Lemma 4.2 we have that for tl >t> to + Ti + TZ, 7r <a 

where a is small and strictly positive and without loss of generality we assume that 

a<1. Using eqns (5.17)-(5.22), 

d'r1 
>1-va 1- dt 

()( 0) (ýi ai -f- /ý2 a2 -i- ßs as) - (µ + bi) ýi (5.61) 

dir2 
ät = 5i7ri - (p + 62)ir2, (5.62) 

d7r3 
di 

621r2 -+ a3)Ir3p (5.63) 

dßl 
>a a' QPori - a7Qi1- P101) - a7ßiv(1- P121) dt 7 1Poii - YRi ( 

-»YßiQ(1 -Pisa) -A7ßia(1 -Pill) -ßir, (5.64) 

d, 82 
dt 

A77r2P022 -A ßaPo22 - A7#2 (1 - P202) - »yß20 (1 - P212) 

-A'Yß20'(1 -P232) - »7ß20(1 -P222) +A'Yß1P102 -? º70ß1Pio2 

+A7ß3P302 - A'03QP302 + »11r1P012 - A7QßP012 + -\ilr3P032 

-A7aßPO32 - ß2T, (5.65) 

da3 ýt and dt 
ý A^/7r3P033 - A7QQPO33 - A^/#3 (1 - P303) - ,\ ti63a(l - P313) 

-A'yß3a(1 - P323) - AY163Q(1 -P333) +A t7rlPO13 - A7cißP013 

+A, 6lp103 - X, 8laPl03 - 037. (5.66) 

When o=0 the equations obtained by treating the inequalities in (5.61)-(5.66) as 

equalities represent the linearised form of the General Model evaluated at the disease- 

free equilibrium. As in Lemma 4.2 these equations can be written in matrix form as 

dx/dt = J(Q)x where x= (i1,7r2,1r3, ß1, ß2, ßs) and J(0) is the linearised stability 

matrix about the disease-free equilibrium given in Lemma 5.4. Hence following the 

same method as in Lemma 4.2 and using t2 and e as defined there we have that after 
a time tO + t2 + Tq, 

e. x(t) > e2AIeý3, 
(2+3L )61ß1 

, 
(2+3L)e2Q2*, 

CZ + 30) c3ß; ) , 
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where T4 depends only on e, 0 and the model parameters. From our previous results 

already know that provided that to <t< tl then after a time to +Ti +T2 +T3, 

e. x(t) <e(! c7r*j, Z(2 + 0) e7r2, 
(2 

+ 20) en*, 
(2 

+ 3z) E1,61, 
(2 

+ 30) e2 02* , 
CZ 

+ 3L) E3ß3) . 

Therefore if t> to + max[Ti + T2 + T3, t2 + T4] then we have a contradiction, from 

which it follows that 7rl only remains continuously below the level 2 irr for at most a 

(fixed and finite) duration T which depends only on e, A and the model parameters. 

Using a similar argument to that in the corresponding result for the Pessimistic Model 

we deduce that for all t> At, 7rl(t) > ZEii exp[-(p+51)T], which is strictly positive. 

We have shown that if disease is initially present in the General Model then there 

will always be some addicts in stage one infectivity present in the population. Since for 

t> At, ir1 > e+ for e+ fixed and strictly positive then 7r1, ß > 0, and Lemma 2.2 and 

Corollary 2.3 imply that 7r2, ß >0 and 7r3,. >0 so that at least for all t> 77, for some 

sufficiently large t>0, there will always be some addicts in infectious stages two and 

three present in the population. From equ (5.20), 

d, Bl 
dt 

> A77rlPoli -AY, 81 [Poll + 1- Plol + 1- P121 +1- P131 +1- P111 + T], 

therefore using the method of Lemma 2.2 we have directly that 

P011 71,00 
R1, ß P011+1-P1o1+1-P121+1-P131"ß'1-p111 

Hence we also have that if rj is sufficiently large then for all t> vi, ß1 > ei for some 

strictly positive fixed c+, so there will always be some needles which are in infectious 

state one. 

We have that 

dß 
//.., 

dt 
< ý7 [lr1(poll +P012 + P013) + 1r2P022 + 7r3 (P032 +P033)](1 - Q) -PT, 

< A7(1-0)-ßr. 

Hence writing W=1-, 6, 

dxIf 
) -A7W+r(1-W), ät 
= T-(T+)q)W. 
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It is straightforward to show that xY°° >T>0. Hence provided that t> 77 for q 

sufficiently large 1- ß> eo >0 where eö = 21 > 0. We can now use this result to 

bound ß2, m and , ß3, m below. For t> ti, 

dO3 
dý- A7ß3 [1 

- P303 '+' 1- P313 +1- P323 +1- P333 'f T, 
s 

? g7r3P03360 

and 

dß2 
dt 

A71r2P0226o -A7ß2 
[1- 

p2o2 -I-1- p212 + 1- p232 + 1- p222 + T] . 

Therefore 

j62, o 
P022e 1r2,0o 

1- P202 +1- P212 +1- P232 +1- P222 + 

and 

fl3, 
o 

P033e 7r3,00 

1- P303 +1- P313 +1- P323 +1- P333 +T" 

So we additionally have that there will always be some needles which are in infectious 

states two and three (at least for all t> r7l for 171 sufficiently large). This completes 

the proof.. 

This completes our analytical results. Unfortunately we were not able to show ana- 
lytically, uniqueness or any local or global stability results for the endemic equilibrium 

when Ro > 1, or produce specific counter-examples where the endemic equilibrium was 

not unique or not locally stable. A local stability analysis for the endemic equilibrium 

would involve looking at the roots of a sixth order polynomial so we did not attempt 

it. It would be theoretically possible to attempt a local stability analysis of a reduced 

"addict-only" model along the lines of the corresponding proofs for the Optimistic 

and Pessimistic models. This would involve looking at the roots of only a third order 

polynomial. However the algebra involved appears horrendous so we did not attempt 

it. 

5.7 Simulation Study of the General Mixing Model 

We now use simulation to examine the long term behaviour of the General Model. 

Firstly we should like to verify that when Ro <1 disease is eventually eradicated 

from the population irrespective of the initial conditions of the system and individual 
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parameter estimates. Secondly we wish to investigate whether the prevalence of disease 

tends to an endemic equilibrium solution when Ro > 1, and disease is initially present 
in at least one addict or needle, for addict-needle interaction assumptions which are 
less extreme than those in the Optimistic and Pessimistic Models. 

5.7.1 Parameter Estimates 

The main reason for constructing the General Model is to examine the effects of dif- 

ferent addict-needle interaction assumptions on the spread of HIV. Hence we are more 
interested in the behaviour of the General Model for different values of the ýk terms 

than for different values of the other model parameters. In addition whilst the param- 

eter estimates in Table 3.1 are obviously subject to a certain amount of error we do 

believe that they are reasonably realistic. On the other hand we have very little knowl- 

edge concerning likely values of the p jk terms, while we do believe that inequalities 

(5.1)-(5.10) should always be satisfied this still leaves a very large amount of uncer- 

tainty regarding the estimation of these parameters. Hence it seems more important 

to keep the non pt ijk parameter estimates fixed at the values estimated previously and 

vary the Pýik parameters in our simulations. This has the added advantage of facili- 

tating a direct comparison of our numerical results with those obtained earlier for the 

Optimistic and Pessimistic Models. 

Table 5.4 shows the sets of addict-needle interaction assumptions which we shall 

use in simulations of the Restricted General Model. It is important to note that the 

p ýk values in this table do not include cleaning. The reason for this is that it is easier 

to assess how reasonable any particular choice of p jk terms are by considering "blood 

mixing only" rather than complicating matters by including cleaning. As discussed 

previously it is easy to adjust ýk terms based on "blood mixing only" to incorporate 

cleaning. We look at the numerical implications of addicts cleaning needles prior to use 
in a later chapter. 

The second and last columns in Table 5.4 contain the addict-needle interaction 

assumptions corresponding to the Optimistic and Pessimistic Models respectively. The 

addict-needle interaction assumptions in columns 3-5 are less extreme. In moving from 

column 3 to column 5 we have tried to choose addict-needle interaction assumptions 

which progress from the infectious stage of the addict being most influential (similar 

to full flushing in single stage models) to the infectious state of the needle being most 
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Table 5.4: Addict-Needle Assumptions (No Cleaning) 

p ýk Optim A B C Pessim 

Pölo 0 0 0 0 0 

All 1 1 1 1 1 

Pä12 0 0 0 0 0 

Pä13 0 0 0 0 0 

Pö2o 0 0 0 0 0 

Pözz 1 1 1 1 1 

Pö3o 0 0 0 0 0 

Pä32 0 0 0 0 0 

PÖ33 1 1 1 1 1 

Pioo 1 0.7 0.25 0.05 0 

Piol 0 0.05 0.25 0.7 1 

Pio2 0 0.2 0.25 0.05 0 

Pio3 0 0.05 0.25 0.2 0 

P121 0 0.1 0.33 0.7 1 

Pi22 1 0.7 0.33 0.1 0 

Pi23 0 0.2 0.33 0.2 0 

Pi31 0 0.3 0.5 0.7 1 

e133 1 0.7 0.5 0.3 0 

Päoo 1 0.7 0.5 0.3 0 

AN 0 0.3 0.5 0.7 1 

All 1 1 1 1 1 

P212 0 0 0 0 0 

P213 0 0 0 0 0 

P232 0 0 0 0 0 

e233 1 1 1 1 1 

Päoo 1 0.7 0.33 0.1 0 

Pso2 0 0.2 0.33 0.2 0 

P303 0 0.1 0.33 0.7 1 

P311 1 1 1 1 1 

P313 0 0 0 0 0 

P3*22 1 0.7 0.5 0.3 0 

P323 

Lol- 
0.3 0.5 0.7 1 
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Figure 5.1: Restricted General Mixing Model (Individual Components) 
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influential (similar to no flushing in single stage models). All five sets of p*ijk values in 

Table 5.4 satisfy the inequalities (5.1)-(5.10). 

By inspecting the various columns in Table 5.4 it should be apparent that the 
Optimistic and Pessimistic Models have the most extreme addict-needles interaction 

assumptions possible. As already mentioned this is due to the assumption that pöll = 

Pö22 =Pö33 = 1. Using the inequalities in eqns (5.1) and (5.7) this additionally implies 

that p211 = 1, p233 =1 and p311 = 1. Hence the only probabilities which we have the 

freedom to alter (but which still must satisfy the inequalities in eqns (5.1)-(5.10)) are 

Piok, Pi2k, P13k, P2ok, Päok and p3*2k. For each of these events the Optimistic Model 

assumes that the needle is always left in the least infectious state with probability 

one and likewise the Pessimistic Model assumes that the needle is always left in the 

most infectious state with probability one. Hence any other choice of addict-needle 
interaction assumptions must lie between these extremes and we therefore expect the 
long term prevalence of HIV (in either needles or addicts) in a realistic model to lie 

between that of the Optimistic and Pessimistic Models. 

5.7.2 Simulations 

We now simulate the model in egns (5.11)-(5.16) using addict-needle interaction as- 

sumption B, these estimates give an Ro value of 2.6. Figure 5.1 shows the dynamic 

behaviour of the prevalence of disease in each class of infectious addict and in each class 
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Figure 5.2: Restricted General Mixing Model (Total Prevalence) 
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of infectious needle. It was initially assumed that one percent of the total addict popu- 
lation were acutely infectious and no other addicts or needle were infectious. The figure 

suggests that the model eventually reaches an endemic equilibrium state. Figure 5.2 

illustrates the corresponding total prevalence of HIV in addicts over each of the three 

infectious classes and similarly for needles. Also shown in this figure is a simulation 

of the model where now Ra = 0.85, this was achieved by increasing the probability of 

needle cleaning (denoted by ¢) from 0.64 to 0.9. In the latter simulation it was initially 

assumed that 30% of the total addict population were infectious and similarly for the 

needle population and where all infectious addicts and needles were classed as acutely 

infectious. The figure clearly shows that for this set of parameter estimates the disease 

eventually dies out in all addicts and all needles. 
Figures 5.3 and 5.4 show simulations of the total fraction of infected addicts in the 

Restricted General Model when Ro >1 for the addict-needle interaction assumptions 

Optim, A, C and Pessim. The values of Ro for these addict-needle interaction assump- 

tions are 2.200,2.362,2.948 and 3.317 respectively. Initially a proportion 0.01 of all 

addicts are infectious in the simulations in Figure 5.3 where all these addicts are in 

stage one infectivity, no other addicts or needles are initially infected. Initially a pro- 

portion 0.9 of all addicts are infectious in the simulations in Figure 5.4 where all these 

addicts are in stage one infectivity and again no other addicts or needles are initially 

infected. It is clear from each of these figures that eventually the disease reaches an en- 
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Figure 5.3: pik Selections: Optim, A, C, Pessim (ir1(0) = 0.01) 
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Figure 5.4: Pik Selections: Optim, A, C, Pessim (ir1(0) = 0.9) 
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Figure 5.5: p jk Selections: Optim, Al, B1, C1, Pessim (7r1(0) = 0.01) 
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demic steady state for each set of addict-needle interactions and each of the two initial 

conditions. Moreover for each different set of addict-needle interaction assumptions the 

endemic steady state appears to be the same for both initial conditions. We have not 

shown simulations of the corresponding total fraction of infected needles however these 

are similar in behaviour to those illustrated and eventually reach an endemic steady 

state which is independent of the initial conditions, provided of course that disease is 

initially present. These figures show that as we have previously argued the total long 

term prevalence of disease in addicts increases as we move from the assumptions in the 

Optimistic Model through to the assumptions in the Pessimistic Model. If we were to 

illustrate any set of p, *jk terms (where pöll = P022 = P033 =1 and which satisfy the 

inequalities (5.1)-(5.10)) then we would expect to find that the endemic equilibrium 

values of these simulations lie between those of the Optimistic and Pessimistic Models. 

We now illustrate simulations of the General Model using the same non-p*ýk parame- 

ters as in the previous simulations and the addict-needle interaction assumptions shown 
in Table 5.5. The p; jk's in this table are the similar to those in Table 5.4 but we have 

now dropped the (possibly pessimistic) condition that pöil = pä22 =pä33 = 1. This in 

turn no longer requires that p211 = All = p233 = 1. As for the previous sets of p*ýk 

terms the inequalities in (5.1)-(5.10) are again satisfied. Figure 5.5 shows simulations 

of the total fraction of infected addicts using the p*ýk terms in Table 5.5 where initially 

1% of the addict population are in stage one infectivity and no other addicts or needles 
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Table 5.5: Addict-Needle Assumptions (No Cleaning) 

p ýk Optim Al B1 Cl Pessim 

Pölo 0 0 0.25 0 0 

All 1 0.05 0.25 0.05 1 

Pä12 0 0.3 0.25 0.3 0 

1413 0 0.65 0.25 0.65 0 

Pä20 0 0.5 0.5 0.5 0 

pä22 1 0.5 0.5 0.5 1 

Pä30 0 0.1 0.33 0.1 0 

Pä32 0 0.4 0.33 0.4 0 

P033 1 0.5 0.33 0.5 1 

Pioo 1 0.7 0.25 0.05 0 

Piol 0 0.05 0.25 0.7 1 

e102 0 0.2 0.25 0.05 0 

Pi03 0 0.05 0.25 0.2 0 

Pi21 0 0.1 0.33 0.7 1 

Pl22 1 0.7 0.33 0.1 0 

Pi23 0 0.2 0.33 0.2 0 

pi31 0 0.3 0.5 0.7 1 

P133 1 0.7 0.5 0.3 0 

Päoo 1 0.7 0.5 0.3 0 

1402 0 0.3 0.5 0.7 1 

p211 1 0.7 0.33 0.3 1 

1412 0 0.1 0.33 0.3 0 

P2*13 0 0.2 0.33 0.4 0 

pä32 0 0.3 0.5 0.5 0 

P233 1 0.7 0.5 0.5 1 

Päoo 1 0.7 0.33 0.1 0 

P3*02 0 0.2 0.33 0.2 0 

P303 0 0.1 0.33 0.7 1 

psll 1 0.7 0.5 0.3 1 

P313 0 0.3 0.5 0.7 0 

1322 1 0.7 0.5 0.3 0 

P323 0 0.3 0.5 0.7 1 
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Figure 5.6: Pi*jk Selections: Optim, Al, B1, Cl, Pessim with Ra <1 
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are infectious. The values for Ro in these simulations are 1.38,1.20 and 1.70 for Al, B1 

and Cl respectively. This figure clearly shows that the Optimistic Model is no longer a 
lower bound and moreover these simulations suggest that different interaction assump- 

tions have a large impact on the spread of disease once the pöll = P022 = P033 =1 

condition is lifted. Figure 5.6 uses the same five sets of addict-needle interaction as- 

sumptions as in Figure 5.5 but we now take ý=0.87 which reduces Ro to less than 

unity in each simulation. For example Ro in the Pessimistic Model is now 0.908 and 

therefore the values 'of Ro for the other sets of p=ik terms will be less than 0.908. In 

Figure 5.6 we have assumed that initially each model is in the endemic steady state 

shown in Figure 5.5 and that just after t=0 years Ro is decreased to below the critical 

threshold of one. It is clear from the figure that the disease eventually dies out in all 

addicts for each different set of interaction assumptions. 
In summary, we have illustrated a small number of simulations of the Restricted 

General Model and the General Model. These simulations (together with many others 

not illustrated) suggest that when Ro >1 and disease is initially present the models 

tend to a stable endemic equilibrium and when Ro <1 disease dies out. This appears 

to be the case irrespective of the individual parameter estimates or initial conditions 

in our models. 
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5.8 Summary of Results for the General Mixing Model 

We began this chapter by deriving the Restricted General Model, a model which can 
incorporate a wide range of different addict-needle interaction assumptions but which 

still treats interactions between infectious addicts and uninfectious needles as in the Op- 

timistic and Pessimistic Models. We demonstrated that the Optimistic and Pessimistic 

Models are special cases of the Restricted General Model where the Optimistic Model 

represents the best case scenario and the Pessimistic Model the worst case scenario. 
We then stated the equations which define a model with a fully general addict-needle 
interaction structure, we referred to this model as the General Model. We derived the 

basic reproductive number for the General Model and investigated its behaviour using 

analytical results. 

We showed that if Ro <1 then disease will die out in all addicts and all needles in 

the Restricted General Model irrespective of the initial state of the population. This 

result was also true for the General Model subject to several necessary inequalities 

between certain p jk terms. We also showed that there exists at least one strictly 

positive endemic equilibrium solution to the General Model if Ro >1 and if initially 

present disease will persist indefinitely. We finally investigated the behaviour of the 

General Model using simulation for a range of p*ýk values. These simulations suggest 

that as in the Optimistic and Pessimistic Models the prevalence of disease tends to 

an endemic steady state when Ro > 1. These simulations also verified our assertion 
that (under certain conditions) addict-needle interaction assumptions less extreme than 

those in the Optimistic and Pessimistic Models give rise to long term HIV prevalence 
levels greater than in the Optimistic Model and less than that in the Pessimistic Model. 

Simulations also demonstrated that different addict-needle interaction assumptions can 
have a very large impact on the long term prevalence of disease. 

In Chapters 2-5 we have examined a number of models which allow addicts to 

progress through three stages of infectivity prior to the onset of full blown AIDS. In 

each of these models we have assumed that the size of the addict population is constant. 
This is a rather unrealistic assumption as it is likely that recruitment of addicts into 

the needle sharing population will occur and moreover we expect that mortality from 

AIDS may play a significant part in reducing the size of the addict population. We 

assumed that the population remained at a constant size for reasons of simplicity. In 

the following chapter we take a brief look at extending our previous models to allow 
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the total population size of addicts to vary throughout the course of an HIV epidemic. 
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Chapter 6 

Addict Recruitment and AIDS 

Mortality 

6.1 Introduction 

One of the major deficiencies in Kaplan's original model was that the total size of the 

injecting drug user population was assumed to be constant throughout the course of 

an AIDS epidemic. This assumption was primarily made for mathematical convenience 

rather than biological reality. Kaplan (1989) and Caulkins and Kaplan (1991) justify 

the assumption that addicts who leave the needle sharing population are immediately 

replaced by new susceptible addicts by saying that a similar assumption is common 

in epidemiological models where the population in question remains approximately 

constant over the time scale of the epidemic. 

Caulkins and Kaplan argue that evidence suggests that HIV prevalence saturates 

quickly among high risk users (those who have a high sharing rate with strangers) 

compared to the long incubation period (about 9.8 years) of AIDS. This suggests that 

the prevalence of HIV may reach a quasi-steady state before the inevitable population 

changes due to mortality from AIDS. However considering the needle sharing population 

as a whole the argument for ignoring demographic changes due to AIDS mortality is 

less convincing. In any case there is little doubt that allowing for the recruitment of 

new susceptible drug users and mortality from AIDS to affect the size of the addict 

population is more realistic than assuming a constant population size. 

We now investigate the effect of introducing recruitment and mortality due to AIDS 

into the Simple Model and the General Model. We do not need to consider the Op- 
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timistic and Pessimistic Models separately since they are special cases of the General 

Model. We first extend the differential equations which define the Simple Model to 

include mortality due to AIDS and allow for the influx of new susceptible drug addicts. 

We then investigate the behaviour of this model using analytical results. Next we move 

on to the General Model and in a similar fashion extend the differential equations which 

define this model to allow the total population size to vary. We then investigate the be- 

haviour of this model using analytical results. We conclude with a simulation study of 

both models and examine the effect of different addict-needle interaction assumptions 

on the long term number of addicts infected. 

We wish to establish whether the inclusion of recruitment and AIDS mortality 

affects the behaviour of our previous models. Previous studies of HIV and AIDS in 

drug users such as that by Greenhalgh (1996) suggest that allowing the population size 

to fluctuate in this manner will not effect the qualitative behaviour of our models. 

6.2 Simple Model with Recruitment and AIDS Mortality 

We now extend eqns (2.1)-(2.4) which define the Simple Model to include mortality 
due to AIDS and allow the recruitment of new susceptible drug addicts. As in Chapter 

2 we have that the number of stage one addicts at time t+ At 

= {number of stage one addicts at time t} 

+{(number of uninfected addicts at time t) 

x (fraction of addicts who inject in [t, t+ At) with 

an infectious needle which is not cleaned prior to use and 

where transmission of HIV occurs in a single injection)} 

-{number of stage one infected addicts who progress into 

stage two infectivity or leave the sharing, injecting 

population in [t, t+ it)}. 

However now we have that 

n(t+ ot)ir1(t+i t) = n(t)iri(t) + n(t)(1- ir1(t) - 7r2(t) - ira(t))Aitß(t)a(1- c) 
-n(t)7rl (t)At(µ + 5i) + o(Ot). 

Subtracting n(t)7r1(t) from both sides, dividing by At and letting At -+ 0 we deduce 
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that 
d(niri) 3 

dt = n(1- Zir; )Aßa(1- 0) - nirl(M+bi)" 
s=i 

Using the product rule we have that 

dire 
_ 

(1 
- ir). 1ßa(1 - 0) - (µ + b1)ýi - 

ir1 do 
dt 'n dt ' 

i=I 

Following a similar method it is straightforward to adjust egns (2.2)-(2.3) to include a 

variable population size. Hence we have that 

dire 
__ bl7rl - (14 +152)7r2 7r2 do 

dt n dt' 

da3 
_ 

7r3 do 
and dt 

827r2 - (ý + 63)ßs -n dt' 

The number of infectious needles at time t+ At 

= {number of infected needles at time t} 

+{(number of uninfected needles at time t) x (fraction of 

needles used by infected addicts in [t, t+i t))} 

-{(number of infected needles at time t) x (fraction 

of infected needles used by uninfectious addicts in [t, t+ At) 

and left in an uninfected state)} 

-{number of infected needles exchanged in [t, t+ At)}. 

We now have that 

m(t+At)ß(t+ist) = m(t)ß(t) +m(t)(1 -, B(t))A t7(ir1(t) +ir2(t) +7ra(t)) 

-m(t)ß(t)Aitry(1 - 7r1 (t) - ir2(t) - ir3 (t))(1 - (1 - 0) (1 - B)) 

-m(t)ß(t)7-it -}- o(Ot). 

Subtracting m(t)ß(t) from both sides, dividing by At and letting At -a 0 we deduce 

that 

d(m, ß) 
= m(1- ß). ýry( mot) - mßary(1 - irf) (1 (1 B)(1 0)) 

dt 
i_1 i=1 

We now assume that the total number of needles in the population at time t, M(t), 

is proportional to the total number of addicts in the population at time t, n(t). This 
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is a consequence of assuming a homogeneous population where all addicts behave in 

a similar way and so possess a similar number of needles. A similar assumption was 

made by Greenhalgh (1996). Letting m(t) = n(t)/-y, where -y is a constant, we have 

that 
d(n, 6) 33 

dt = n(1-ß)Ai(>1r; 
)-nßA7(1- 

7r; 
)(1-(1-6)(1-nßr, 

and using an argument similar to that in the addict equations gives us 
3 dý 3_ 

(1-ý)a7(ýýr; )-nary(1-ýý; )(1-(1-B)(1-ý))-ýT-ndt' 

In order to define dn/dt we follow previous work by Caulkins and Kaplan (1991). If 

the current drug using population is of size n then new drug users enter the population 

at a rate proportional to n", where v lies strictly between zero and one. v=0 corresponds 

to a constant recruitment rate as in the models of sexual transmission of HIV and AIDS 

among homosexuals discussed by Blythe and Anderson (1988b) and Anderson and May 

(1991). v=1 corresponds to a situation where new drug users are introduced into the 

drug injecting population by existing drug users. When addicts have developed full 

blown AIDS they leave the sharing, injecting population. Only addicts in stage three 

infectivity can develop full blown AIDS and this occurs with rate ö3. Addicts can also 

leave the sharing, injecting population for reasons other than developing AIDS, with 

rate p. Hence the system of equations which describes the spread of disease among a 

population of varying size with three types of infectious addicts and a single type of 

infectious needle is: 

d7ri 3 -7r, dn 

dt - ý1- 3 
7rß) afla(1- 0) - (14 + bl)7ri - ät' (6.1) 

dire ire do 

dt = bl"1 - (ýL + a2)1r2 -n ät' (6.2) 

dt 
b2ir2 - (µ + 63)irs 

n3 dt' 
(6.3) 

dß 
_ (1-ß)A7(Z3 

3 
vi)-ß, \ry(1-ý7r; )0)(1-ý))-ßT-ßd-, (6.4) 

`i=1 ` 
1=1 

and 

do 
= cnL - µn - 63ir3n, (6.5) 

77 

with suitable initial conditions: it (0), 7r2 (0), 7r3 (0) and ß(0) >0 with 7r1(0) + 1r2 (0) + 

7r3(0) <1 and ß(0) < 1. The parameter c in eqn (6.5) is chosen such that the population 
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size is constant in the absence of ffiV, hence c= µn01' and we also assume that 

0<v<1. 

Using eqns (6.1)-(6.5) we can make an important observation. We have that the 

equilibrium equations are identical to those for the constant population size Simple 

Model. We now have the addition of an equilibrium population size equation, however 

the values of 7rl, Irr, 7r3 and 6* are independent of this equation. This means that 

we already know that there exists a unique endemic equilibrium solution if and only 

if Ro >1 and moreover this endemic equilibrium solution will be the same as that 

in the constant population size Simple Model. However since we no longer have a 

constant population size it is not the fraction of infected addicts and infected needles at 

equilibrium that we are primarily interested in but rather the actual number of infected 

addicts and needles. In addition we have that Ro for the constant population size case 

will be identical to the variable population size case, this is because Ro is only concerned 

with the initial exponential growth stage of an epidemic and at this early stage mortality 

due to the disease is irrelevant due to the small number of infectives initially present. 

Note also that the recruitment of susceptible addicts into the population does not affect 

the value of Ra. 

We have that the variable population size Simple Model shares many of its charac- 

teristics with its simpler constant population size equivalent. However we do not yet 

know whether the stability of the equilibrium solutions in these models is the same. In 

other words does the disease always die out when Ro <1 and always tend to a unique 

endemic level when Ra >1 and disease is initially present? The variable population 

size model is much more difficult to deal with analytically than the constant popula- 

tion case. Our main analytical result for the variable population size Simple Model is 

summarised in the following theorem: 

Theorem 6.1 For the variable population size Simple Model if Ro <1 then there is 

. If only the disease free equilibrium (i1, ir2, ir3, ß, n) : -- (0,0,0,0, no) where no = (8) 1-1 

Ro >1 then as well as the disease free equilibrium there is a unique endemic equilibrium 

+, 
6*, ne), where 7ri, 7r2,7r3 and 6* are the equilibrium (i1+in2+in3, ß+n) = (iri, in2+i3 * 

1 
values for the constant population size Simple Model and ne = 

(µ+4g"s) "' . The 

disease free equilibrium is locally asymptotically stable if Rp <1 and unstable when 

Ro>1. 
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Proof. 

We have already shown the equilibrium results. We now show the local stability 

results. Substituting for dn from eqn (6.5) into eqns (6.1)-(6.4) gives us the following 

system of equations: 

dire 
dt (6.6) 

1=1 

dire / 
- 

ä17r1 
- 

(µ + 92) 7r2 - ir21 Cfl 
'-p- 

1537f3), (6.7) dt 

dir3 \ 

dt - -52 7r2 - 
({4 + 43) 113 - 713 

/1 
Cn -p- 

53113), (6.8) 

3 dß 
dt - (1- ß), \, y (E 

Ir; 
) 

- ß, \-y (1- Z Ir; 
) (1- (1- B) (1 - ¢)) - ßT 

t=1 i=1 

_ß 
(cnh-1 

-A- a31r3) 
, 

and 
dt 

= cn" - µn - b3ir3n. 

(6.9) 

(6.10) 
Consider the matrix P, the Jacobian matrix of the system represented by eqns (6.6)- 

(6.10) evaluated at (0,0,0,0, no ), 

-(µ+Sl) 0 0 Aa(1-0) 0 

Si -(p+S2) 0 0 0 

P=0 S2 -(14 + S3) 0 0 

Ary Ary A7 -(A 
O+r) 0 

0 0 -n0S3 0 vcn0*("-1) - 11 

We need to show that all roots of the characteristic equation of P have strictly negative 

real parts when Ro < 1. We know that the constant population model has a globally 

stable disease-free equilibrium if and only if Ro < 1. Global stability implies local 

stability, hence all roots of the characteristic equation of 

-(p+bi) 00 aa(1- q) 

pt _ 
bl (P + b2) 00 

0 b2 -(/z+b3) 0 

a7 a7 A7y -(aryB+T) 

must have real parts less than or equal to zero. We require that the real parts are 

strictly negative. Suppose that w=0 is a root of characteristic equation of Pt, 

w4 + alw3 + a2w2 + a3w + a4 = 0. 
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Hence we must have that a4 = 0, however from the proof of Theorem 2.3 we know that 

a4 = (14+bi)(11 +S2)(14 +83)(A79+r)(1 - Ro). 

Hence when Ra < 1, w=0 cannot be a root and hence all roots have strictly negative 

real parts. If Ro >1 then we find that a4 = wlw2w3w4 < 0. Either zero or two roots 

are complex. If all roots are real they cannot all be negative (or aq > 0), hence at 
least one root is positive. If two roots are complex then the real roots cannot both be 

negative (or a4 > 0), hence at least one is positive. To find the characteristic equation 

of P we can solve 

(vcnö(v-1) -µ- w) det (Pt - wIl = 0. (6.11) 

Hence for Ro >1 we have that at least one root of eqn (6.11) must have a strictly 

positive real part. We know that for Ro <1 four of the roots of eqn (6.11) have strictly 

negative real parts, the remaining root being 

W5 = vcn p- 147 

= p(v - 1), since n*o =fc 

Hence since v<1 all roots have strictly negative real parts when Ro < 1. This 

completes the proof Theorem 6.1.. 

We now move on to discussing the General Mixing Model with the addition of addict 

recruitment and mortality due to AIDS. We examine this model in a similar fashion to 

the previous model. 

6.3 General Model with Recruitment and AIDS Mortality 

Following a similar argument to that in Section 6.2 we now extend the General Model 

defined by eqns (5.17)-(5.22) to allow the population size to fluctuate due to mortality 
from AIDS and the recruitment of susceptible drug addicts. The following system 

of equations describes the spread of the disease among a population of varying size 

with three types of infectious addicts and three types of infectious needles and general 

addict-needle interaction assumptions: 

dir, 3 

dt 
(1-E7rI)A(ßlal+ß2a2+ß3a3(1-c)-(P+51)7r1 

1=1 

-7ri 
(cn IV-1 -14 - 537r3) 

, (6.12) 
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dire 
_ dt 

517r1 - (µ + 62)ir2 - 72 
(cn 

14 - a373), (6.13) 

dir3 
_ dt 

a2ir2 
- 

(14 + J3) N3 - 73 
(cnV-1 

- 14 - b3ir3), (6.14) 

dß1 
dt __ A77r1(1 -ß)Poiu +Aryß2ir1Pz11 +»7ß3ir1P311 - AY, 61(1 - i')(1 -P1o1) 

-A ßiir2(1-P121) - A7ß1lr3(1-P131) - A7ßilri(l -Pill) -Qi7 

-ß1 
(ev-1 

-µ- 531r3), (6.15) 

d#2 
dt = A77r2(1 - ß)Po22 +A YJ8i7r2P122 + A7ß37r2P322 + )7ßi (1 - lr)PI02 

+A'Yß3(1- ir)P302 + ary7r1(1 - J6)Po12 + A71r3(1 -#6)P032 + )7ß1ir1P112 

+A'Yß17r3P132 + ß7ß3lr1P312 + A7ß3 ir3P332 - AT62 (1 
- ir) (l 

- P202 

-A7,02ir1(1 -P212) - A'lß2ir2(1 -P222) - )7ß2ir3(1 -P232) -ß2T 

-P2 
(Cn&, -1 - 14 - 539f3), (6.16) 

03 
11 - ßP033 + A'iß17r2P123 + Alf, 6173P133 + )t7ß21r1P213 + A'Yß2ir3P233 

dt 
Aif7r3/ 

+A7ß1(1- 7)P103 + ! ß'! 7r1(1 - ß)P013 '+' A7ß17r1P113 - Aß'ß3 (1 - 70 (1 -P303) 

-A7ß37r1(1 -P313) - A71837r2(1 -P323) - A7#373 (I 
-P333) - AT 

-, 63 (ev-1 
- EL - b373), (6.17) 

and 

do 

dt = cnt' - lAn - a37r3f, (6.18 

again with suitable initial conditions: 0< irl (0), W2(0), 73(0), ßl (0), 02(0), ß3 (0), 

7ri (0) +7r2(0) +7r3(0) <1 and X61(0) +, 62(0) +, 63(0) < 1. As in the Simple Model the 

parameter c= p(n0*)1-" in eqn (6.18) is such that the population size is constant in 

the absence of HIV. 

It is clear that the equilibrium equations in the variable population size General 

Model are the same as those for the constant population size case. Hence as in Section 

6.2 we have that the equilibrium solutions in both the constant population size and 

varying population size models will be the same. However again we now have the 
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addition of a population size equation and it is the actual number of infectious addicts 

and needles which is of most interest. We now turn our attention to the stability 

of the equilibrium solutions. As in Section 6.2 the system of equations including a 

variable population size is much less tractable than the constant population size case. 
The following theorem contains the only analytical results we have been able to obtain 
for the varying population size General Model. Note that both the Optimistic and 

Pessimistic Models are special cases of the General Model: 

Theorem 6.2 For the variable population size General Model, if Ro <1 then there 

is only the disease free equilibrium (in, 1r2,7r3, X31 �82, ß3, n) = (0,0,0,0,0,0, n0*) where 

no = (C) 11. If Ro >1 then as well as the disease free equilibrium there exists an 

endemic equilibrium (7rl, w2, ir3, ß1, ß2, ß3, n) = (rri; 7rä+ 7r3*, ,,, ne), where e 1, irr, 

irr , 61*, 62* and , 63* are the equilibrium values for the constant population size General 

Model and n* = 
(µ+Jsw'*) ° 1. The disease free equilibrium is unstable if Ro >1 

and locally asymptotically stable if Ro <1 and poll >_ max(P211, P311), Poll + P013 > 

P211 +P213 and P033 ý! P233 

Proof. 

Consider the matrix W, the Jacobian matrix of eqns (6.12)-(6.18) evaluated at 
(0,0,0,0,0,0, n* O), W= 

0 0 Aa1(1-4. ) Aa2(1-4) ). 3(1-0) 0 

b1 -(p4.62) 0 0 0 0 0 

0 J3 -(14+b3) 0 0 0 0 

a7Po11 0 0 -X7(1-pjo1+T) 0 0 0 

a7Po12 A7P022 A7P032 A7P102 -A7(1-P2o2+T) a7P302 0 

a7Po13 0 A7p033 A7P103 0 -A7(1-P3o3+t) 0 

0 0 -nod 0 0 0 vcnp("-1)-µ 

We know that the constant population size General Model has a globally stable disease- 

free equilibrium if R0 <1 and poll > max(p211, P3ii), Pori + P013 >_ P211 +P213 and 

P033 % P233" Hence all roots of the characteristic equation of Wt = 
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-(µ+b1) 00 x01(1-0) )a2(1-0) )a3(1-4) 

J1 -(µ+62) 00 0 0 

0 a2 -({p+a3) 0 0 0 

A7Pou 00 -A7(1-P1oi+T) 0 0 

A7po12 A7P022 a7P032 a7P102 -A7(1-P202+T) a7P302 

AYP013 0 )7PO33 '7P103 0 -X7(1-P303+f) 

must have real parts less than or equal to zero. We require that the real parts are 

strictly negative. The characteristic equation of Wt is 

Cols + alw5 + a2w4 + a3w3 + a4w2 + a5w + ag = 0. 

From the proof of Lemma 5.4 we know that 

a6 - (ii +a1)(14+a2)(P +b3)A3ry3(1 -P101 + T)(1 -P202 + i)(1 -P303 + I)(1 - Ro). 

Hence when Ra < 1, w=0 cannot be a root and hence all roots have strictly negative 

real parts. If Ro >1 then we find that a6 = wiw2w3w4w5w6 <0 which implies that 

at least one root must have a strictly positive real part by a similar argument to 

the corresponding result for the variable population size Simple Model. To find the 

characteristic equation of W we solve 

(vcnö(v-1) -µ- w) det jWt - wIl = 0. (6.19) 

Hence for Ro >1 we have that at least one root of eqn (6.19) must have a strictly 

positive real part. We know that for R0 <1 and poll > max(r211, P311). Poll + P013 > 

P211 + P213 and P033 % P233, six of the roots of equ (6.19) have strictly negative real 

parts, the remaining root being vcn*(Y-1) v- 1). Hence since v<1 

all roots have strictly negative real parts when Ro < 1. This completes the proof of 

Theorem 6.2.9 

Theorems 6.1 and 6.2 suggest that as in the constant population size models, Ra =1 
is the critical threshold between the disease taking off or dying out. However these 

analytical results are limited to local behaviour about the disease-free equilibrium. To 

examine the global behaviour of our models we need to use numerical simulation. 
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6.4 Simulation Study 

We now conduct a brief simulation study of our two variable population size models. We 

expect that introducing recruitment and AIDS mortality will not effect the qualitative 
behaviour of our previous (constant population size) models and they will still reach an 

endemic equilibrium when Ro >1 (and disease is initially present) and the disease-free 

equilibrium when Ro < 1. We do however expect that the time taken for the disease to 

reach equilibrium will be increased due to the additional demographic processes which 

have been introduced. This behaviour is consistent with that found by Greenhalgh 

(1996) for heterogeneous needle sharing models. 
Before we can simulate our variable population size models there are two additional 

parameter estimates that we require. Firstly we require a reasonable estimate of the size 

of a population of needle sharing drug users prior to the introduction of HIV. We follow 

Kaplan and O'Keefe (1993) who estimate that the size of the needle sharing population 

in New Haven, Connecticut, USA is approximately n=2,300. It is reasonable to use 

the size of this population in our models as many of our other parameters are also based 

on the behaviour of this population. The only remaining parameter to be estimated is v, 
(recall that new drug users are recruited into the population at rate cn'). As mentioned 

above v=1 corresponds to each drug user recruiting his or her acquaintances into drug 

use whereas v=0 corresponds to a fixed proportion of the population having an innate 

propensity for a given level of drug use. We take v=0.5 as a compromise between 

these extreme situations. As mentioned previously the parameter c= pnl-' is uniquely 

determined by the values of p, n and v, hence c=6.3928 per year. 

Simple Model Simulations 

Figure 6.1 is similar to Figure 2.1 in Chapter 2 and uses the same initial conditions 

(7rl (0) =0 with all other types of addicts and needles initially zero) but now assumes 

that the initial size of the population is 2,300 drug users and as mentioned above 

v=0.5. The figure shows the progress of the various stages of HIV over time together 

with the total fraction of needles contaminated with HIV. The most striking difference 

between the behaviour of these simulations and those in Figure 2.1 is the time taken 

for the prevalence of disease in each infectious stage to reach a steady state. It takes 

about 50 or so years for the simulations in Figure 6.1 to reach a steady state compared 

with only about 25 years for similar simulations of the constant population size model. 
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Another interesting contrasting feature of the simulations in Figure 6.1 is the way the 

prevalence in each infectious stage reaches a maximum value and then decreases to a 

steady state compared to the monotonic nature of the simulations in Figure 2.1. This 

is because the epidemiological processes happen on a much faster timescale than the 

demographic ones. The fractions of the different types of addicts and the different types 

of needles settle down a lot faster than the total number of addicts in the population. 

The approximate steady state values are (irr, i2, i3, ß*) = (0.027,0.355,0.249,0.675). 

These are of course the same as for the constant population size model using the same 

parameter estimates. Figure 6.2 shows the behaviour of the total size of the population 

corresponding to the spread of disease shown by the simulations in Figure 6.1. After 

approximately seventy years the initial population size of 2,300 has been greatly reduced 

to a steady state value of approximately 1,044 drug users. 

Figures 6.3-6.5 show the behaviour of the total fraction of infected needles and 

the total fraction of infected addicts for the same six initial conditions used in Figures 

2.2-2.4 and the same parameter estimates. These figures clearly show that the preva- 

lence of disease in addicts and needles eventually reaches a steady state for each set of 

initial conditions and moreover this steady state is the same as that in Figure 6.1 of 

(ir*, ßß*) = (0.633,0.675). We have not shown the corresponding behaviour of the total 

population size, however for each of the different initial conditions the total popula- 

tion size settles down the same steady state size of 1,044 drug users shown in Figure 

6.2. These simulations suggest that if disease is initially present then the prevalence of 

disease will tend to an endemic equilibrium when Ra > 1. Simulations for a variety of 

different initial conditions and parameter estimates suggest that this is always the case. 

We have not illustrated any simulations where Ro < 1, however simulations suggest 

that in this case the disease always dies out irrespective of the initial conditions or 

individual parameter estimates and the population size tends to the unique disease-free 

equilibrium. 

6.4.1 General Model Simulations 

Having examined the effects of including a variable population size into the Simple 

Model we now look at the effect of this modification in the General Model. As in 

Chapter 5 we are mainly interested in how the General Model behaves for various dif- 

ferent choices of addict-needle interaction assumptions. We use the non-psjk parameters 
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Figure 6.1: Variable Population Size Simple Model Ro >1 
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Figure 6.2: Variable Population Size Simple Model Ro >1 
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Figure 6.3: Variable Population Size Simple Model when Ro >1 
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Figure 6.4: Variable Population Size Simple Model when Ra >1 
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Figure 6.5: Variable Population Size Simple Model when Rp >1 
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outlined in Table 3.1 together with v=0.5 and assume that initially the population 

consists of 2,300 addicts. This leaves us only requiring to choose the addict-needle 
interaction assumptions which we are interested in. To this end we use the same p jk 
terms as outlined in Table 5.4 in Chapter 5. Recall that this table contained five addict- 

needle interaction assumptions labelled Optim, A, B, C and Pessim respectively. The 

first and last of these contain the assumptions used in the Optimistic and Pessimistic 

Models respectively, those labelled A-C contain less extreme assumptions. 
Figure 6.6 shows simulations of the total fraction of infected addicts for each of 

the five addict-needle interaction assumptions. It was initially assumed that 1% of the 

addict population was in stage one infectivity and no other addicts or needles were 
infected. The figure shows that as we might expect the Pessimistic Model gives rise 
to the highest long term prevalence of disease and the Optimistic Model the lowest 

long term prevalence of disease. As in the variable population size Simple Model 

these simulations take longer to reach equilibrium than those of the Restricted General 

Model in the previous chapter. We also have that now the prevalence of disease peaks 

slightly before decreasing into an equilibrium state. Figure 6.7 shows the corresponding 
behaviour of the total population size of addicts as the epidemic spreads among the 

population. Again as seems intuitive the final equilibrium population size is lowest in 

the Pessimistic Model and highest in Optimistic Model with the other addict-needle 
interaction assumptions giving values in between these two extremes. 

Simulations for a variety of initial conditions and parameter estimates suggest that 

the General Model (both restricted and unrestricted) with addict recruitment and AIDS 

mortality has the same qualitative behaviour as the simpler constant population size 

case. We have not shown simulations where Ro <1 however it is again the case that 

disease dies out in all addicts and all needles. 

6.4.2 The Number of Addicts Infected 

We have previously illustrated simulations of the prevalence of disease and the corre- 

sponding effect on the total population size. We now examine simulations of the actual 

number of addicts infected (which is the fraction of addicts infected multiplied by the 

population size). When the population size is influenced by the spread of disease it 

is misleading to compare the prevalence of disease (for example comparing the long 

term prevalence between the Optimistic and Pessimistic Models) in isolation without 
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Figure 6.6: Total Prevalence of Disease Among Addicts 
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Figure 6.7: Total Population Size 
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Figure 6.8: Total Number of Addicts Infected (Restricted General Model) 
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examining the corresponding population sizes. For example in Figure 6.7 the long term 

prevalence in addicts varies from about 54% to 63%, however these figures relate to 

populations of different sizes. The Optimistic Model gives rise to a long term preva- 

lence of 54% among a population of 1,145 addicts whereas the Pessimistic Model gives 

a higher long term prevalence of 63% but this is among a smaller population size of 

1,044 addicts. Figure 6.8 shows the total number of infected addicts over time in the 

Optimistic and Pessimistic Models and the Restricted General Model using interaction 

assumptions A-C. It is clear from this figure that the long term number of infected 

addicts is very close in each of these models, indeed much closer than suggested by the 

simulations in Figure 6.6. Intuitively this is because the greater the spread of disease 

the higher the AIDS mortality and therefore the lower the final population size. This 

is an important distinction between our previous constant size models and those with 

recruitment and AIDS mortality. For example the simulations in Figure 6.8 suggest 

that for the current choice of parameter estimates there is little to choose between any 

of the different addict-needle interaction assumptions with respect to their effect on 

the long term total number of addicts infected. In this case we may as well opt for 

the Optimistic Model as our best three stage infectivity model since this is by far the 

simplest model. 

Figure 6.9 is similar to Figure 6.8 but illustrates the Optimistic and Pessimistic 
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Figure 6.9: Total Number of Addicts Infected (General Model) 
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Models and the General Model using addict-needle interactions Al and Cl shown 
in Table 5.5. These simulations show that as suggested in Figure 5.5 in Chapter 5, 

once the condition pöii = pö22 = pöss =1 is dropped then different addict-needle 

interaction assumptions can have a large impact on the spread of disease. Simulations 

(not illustrated) show that the long term prevalence of disease in addicts in each of 

these variable population size models is the same as illustrated in Figure 5.5. However 

Figure 6.9 shows that as discussed above, the actual number of addicts infected in 

these various models are not as different as we might have expected considering the 

large differences in the long term prevalence of disease between these models. 

6.5 Summary of Addict Recruitment and AIDS Mortality 

In this chapter we examined the effect of including mortality from AIDS and recruitment 

of new susceptible drug users into the Simple and General Models from Chapters 2 and 
5 respectively. We found that including these features does not affect the qualitative 
behaviour of these models. In particular Ro =1 is still the critical threshold between 

the disease taking off or dying out. These findings are consistent with other studies 

of variable population size models. We have noted two main effects of allowing the 

population size to fluctuate according to the spread of disease. Firstly it appears that 
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the time taken for our models to reach an endemic equilibrium has increased. Secondly 

and more importantly our simulations suggest that the effect of different addict-needle 

interaction assumptions is substantially less than in our previous models where the 

population size remained constant. 

Having examined a number of different three stage infectivity models and estab- 

lished various properties of these models we now pull together the results of Chapters 

2-6. In the following chapter we investigate the differences between our three stage 

infectivity models and conventional single stage infectivity models, in particular we are 

interested in whether three stage infectivity gives rise to a higher (or lower) long term 

prevalence of disease than in single stage models. 
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Chapter 7 

Practical Implications of Models 

7.1 Introduction 

In Chapters 2-6 we investigated the properties of various mathematical models of the 

spread of HIV via needle sharing. These models started off simply and became more 

complex as we relaxed particular assumptions in an effort to make our models more 

realistic. Our first model extended a model by Kaplan and O'Keefe to allow addicts 

infected with HIV to progress through different stages of infectivity. Our next two 

models additionally allowed needles infected with HIV to exist in different infectious 

states and assumed that the various types of infectious addicts and infectious needles 

interacted with each other in very specific ways. We then looked at the Restricted 

General Model and the General Model. These models also included three types of 

infectious addicts and three types of infectious needles but additionally allowed addicts 

and needles to interact with each other in a wide variety of ways. Finally we relaxed 

the assumption that the size of the addict population is always constant and included 

mortality due to AIDS and the recruitment of new susceptible drug users into our 

models. 

In this chapter we focus on what new information can be gained from analysing the 

models in Chapters 2-6. It is important to remember that while some of our previous 

work has been rather abstract, the main purpose in constructing these models is to 

provide information to assist in the planning and management of the spread of HIV 

and AIDS among drug using populations. There are two main areas we wish to address. 

Firstly, we wish to determine whether models which include a three stage infectious 

period give rise to different long term prevalence levels of HIV than existing single stage 
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infectivity models. This is important since many existing HIV and AIDS models in the 

literature incorporate (at least in part) the spread of HIV via needle sharing. Secondly 

we are interested in whether incorporating a needle exchange program (as advocated 
by Kaplan and O'Keefe) into our three stage models will produce a decrease in the long 

term prevalence of HW of a similar magnitude to that of single stage models. This 

is important as much of the argument for introducing needle exchange programs in 

the United States is based upon single stage infectivity models. This chapter aims to 

provide sensible and structured answers to these two important areas. 

We begin with a discussion on how our three stage infectivity models should be 

calibrated so that they provide meaningful comparisons with existing single stage in- 

fectivity models. We derive various calibration equations and comment on which are 

the most appropriate for our purposes. We then discuss the effect of flushing in single 

stage models and addict-needle interaction assumptions in our three stage models and 

the effect this has on our calibration method. We then compare the single stage Kaplan 

and O'Keefe Model with the Restricted General Model and then finally the General 

Model and comment on the resulting differences between these models. Next we move 

on to our second area of interest and examine the effect of control strategies such as 

needle exchange and improved needle cleaning in our three stage models. The chapter 

concludes with a summary of the main points. 

7.2 Calibration Method 

The model by Kaplan and O'Keefe was one of the first to deal with the spread of HIV via 

needle sharing and the first model to examine the benefits of needle exchange programs. 

This model is generally accepted as a reasonable account of how HIV spreads among 

addicts and needles in a population of intravenous drug users. We wish to examine the 

difference in the long term prevalence of HIV between Kaplan and O'Keefe's original 

model and our three stage infectivity models. We require a calibration method to ensure 

that any differences in our models are caused only by the effects of allowing addicts and 

needles to exist in three different infectious classes. There are a number of different 

potential calibrations we could use. We have shown that Ro is an important quantity 

in all our models and hence ensuring that Ro is the same in the models we wish to 

compare might be a suitable form of calibration. By equating Ro in our models we 

could then examine any differences in the steady state solutions. Alternatively another 
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calibration would be to ensure that the steady state solutions were the same in the 

models being compared which would allow us to compare Ro values. In this section 

we instead calibrate our models directly on biological grounds, however as we shall see 
later this is equivalent to using Ro as a calibration. 

We now outline several biological differences between Kaplan and O'Keefe's model 

and our three stage models. Firstly for example in Kaplan and O'Keefe's model 1/8 is 

the average AIDS incubation period, conditional on not leaving the sharing, injecting 

population during that period. For the Simple Model the corresponding quantity is 

T1 
+ 

b2 
+ 

b3, 
(7.1) 

which suggests the following calibration between these two models: 

ä=+T. (7.2) 
123 

However this is not the only possible calibration, nor even obviously the correct one. If 

leaving the sharing, injecting population for reasons other than developing full blown 

AIDS is taken into consideration then for Kaplan and O'Keefe's model the average time 

that an infected addict spends in the population is 1/(p + b). Using the parameter 

estimates in Table 2.1 (together with 5=0.101958 from Kaplan and O'Keefe, 1993) 

this means that addicts spend on average 4.25 years from becoming infected to leaving 

the population (whether due to developing full blown AIDS or other reasons). For the 

Simple Model the formula for the corresponding period for an infected addict is 

+ (?. 3 
1 bl 

+ 
bl a2 

µ+bi (ýc+bi)(P 62) (P+61)(P+b2)(µ+as)' (7.3) 

Using the parameter estimates in Table 3.1 we find that addicts in the Simple Model 

spend on average 4.79 years from becoming infected to leaving the population (due 

to developing full blown AIDS or other reasons). This suggests that an alternative 

calibration is to make these two periods equal, namely 

11 b1 8182 
(7.4) 

µ-I-b +b1 
+ (µ+b1)(NA+b2) + (14+61)(14 +62)(P+63) 

For the spread of HIV in a heterosexual population, p, the rate at which an individ- 

ual leaves the sexually mixing population for reasons other than developing full blown 

AIDS, might reasonably be assumed to be quite small as non-HIV related death rates 

are small for the age-classes where individuals are sexually mixing, so the two calibra- 

tions in eqns (7.2) and (7.4) will be approximately the same. For HIV/AIDS amongst 
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injecting drug users, p is larger and as we have seen the two calibrations are not the 

same. It is not unreasonable to require that for a sensible comparison between the 

Simple Model and the Kaplan and O'Keefe Model, the average time between an addict 

becoming infected and leaving the sharing, injecting population (whether due to devel- 

oping full blown AIDS or other reasons) should be the same which suggests that eqn 

(7.4) is the more appropriate calibration. 

To summarise we have outlined two biological differences between Kaplan and 

O'Keefe's original model and our three stage models. However we do not calibrate 

our models using either eqn (7.2) or eqn (7.4) as there is another more relevant biolog- 

ical difference between these models which we now discuss. 

We have constructed the Simple, Optimistic, Pessimistic and General Models to 

investigate the effect of allowing addicts to have a variable viral load over the course 

of their infectious lifetime. Therefore a natural calibration method is to ensure that 

the cumulative viral load over the infectious lifetime of an addict is the same in all 

models. We have assumed that the viral load in an infectious addict is the same as 

that in an infectious needle. Hence it is reasonable to assume that the HIV transmission 

probability a (or a; for the models with three types of infectious needles) should be 

proportional to the viral load of an infectious addict. From eqn (7.4) we know how long 

on average an addict spends in the sharing, injecting population in each model. Hence 

to ensure that the cumulative viral load over the infectious lifetime of a typical addict 

is the same in the Kaplan and O'Keefe Model and the Simple Model we require that 

a 
_f 

1 bl bi b2 l 
a', (7.5) 

µ+5 - Lp+5i 
+ (p+6l)(P+b2) 

+ (p+6l)(p+62)(it +53)J a, .5 

where a' denotes the probability of transmission of HIV from injecting once with an 

infectious needle in the Simple Model. In order that eqn (7.5) is satisfied we need to 

adjust at least one of the model parameters. Since our three stage models are concerned 

with allowing addicts to progress through different viral load stages it seems natural 

to adjust the value of a', which represents the viral load of an addict in the Simple 

Model. This means that we can also maintain the relationship (1/5) = (1/S1)+(1/62)+ 

(1/53). Intuitively this relationship should always hold since we are simply splitting 

up the total incubation period into three shorter periods. Therefore to calibrate the 

Kaplan and O'Keefe Model with the Simple Model we fix all our model parameters at 

their estimated values with the exception of a' which we choose such that eqn (7.5) 

is satisfied. In a similar manner we have that the calibration equation for comparing 
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the Simple Model with the General Model (including the Optimistic and Pessimistic 

Models) is 

Si 1 6182 , lý -+61 + (N + 6i)(µ + b2) + (µ + bi)(P + 45z)(µ + 83)J a 

r 
bl 

61 035152 1/) 

I`It+b1 + (FA+bl)(14+a2) + (P+bl)(µ+a2)(µ+63)1 a2,17.6 

where al = Cla2i and a3 = C3a2. In this comparison we again fix all model parameters 

at their estimated values (including C1 and (3) with the exception of a2 and adjust its 

value to satisfy eqn (7.6). 

We now have a method of calibrating our models so that we ensure the cumulative 

viral load during the infectious lifetime of a typical addict is the same in the models 

being compared. However this is not yet sufficient to allow us to identify the effect 

of moving from single stage infectivity to three stage infectivity (in particular to three 

stage infectivity in both addicts and needles). The calibration in eqns in (7.5) and (7.6) 

corrects for differences in the viral load of the addicts between our various models, 

however this does not correct for differences in how addicts and needles interact in 

the models. If assumptions relating to how addicts and needles interact with each 

other cause little difference to long term prevalence levels then we can simply compare 

the models using calibration eqns (7.5) or (7.6) as appropriate. However if different 

addict-needle interaction assumptions cause a significant difference then the calibration 

equations on their own are not sufficient to provide a meaningful comparison. We now 

examine the effects caused by different addict-needle interaction assumptions in our 

models. 

7.3 Effect of Addict-Needle Interaction Assumptions 

We can consider the flushing parameter 0 as representing how addicts and needles 

interact in the models with single stage infectious needles. In the Optimistic and 

Pessimistic Models the way addicts and needles interact are fixed. We now examine 

how the long term prevalence level of disease in addicts is affected by the choice of 

addict-needle interaction assumptions in the Kaplan and O'Keefe Model, the Simple 

Model and the Optimistic and Pessimistic Models. 

Figure 7.1 shows simulations of the total fraction of infected addicts in the Kaplan 

and O'Keefe Model using the parameter estimates from Table 2.1 (plus 8=0.101958) 

206 



Figure 7.1: Kaplan & O'Keefe 0=0v0=1 
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except for 0, which was fixed at 0=0 and 0=1. The initial conditions in the 

simulations were ir(0) = 0.01 and ß(0) = 0. It is clear from the simulations that there 

is a significant difference in long term prevalence between the case where infectious 

needles always adopt the infectious state of the last user (full flushing) and where 
infectious needles remain infectious until cleaned or exchanged (no flushing). From 

eqns (1.1)-(1.3) we have that the long term prevalence of disease in addicts and needles 

are respectively 

7r* _ 
(Ro -1) (f + e) 

(7.7) 1-e+Ro(T+e)' 

Ro 
-1), (7.8) and ý* =1+T 

(Ro_ 

where Ro = 
. a(1- 0) 

(7.9) 
(µ + ö)(r + 0) 

Recall that f= r/(a7) and B=1- (1- B)(1- 0), hence we have that lr* and ß* are 
both monotone decreasing in 0. 

Figure 7.2 shows simulations of the total fraction of infected addicts in the Simple 

Model using the parameter estimates from Table 2.1 except for 0, which was fixed at 
0=0 and 0=1. The initial conditions in the simulations were 7r1(0) = 0.01, i2(0) = 0, 

ir3(0) =0 and 6(0) = 0. As in the Kaplan and O'Keefe Model it is clear that there is a 

reasonable difference between the long term prevalence of disease in addicts under the 

assumption of full flushing and no flushing. From Chapter 2 we have that lr* and 6* 
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Figure 7.2: Simple Model 0=0v0=1 
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are both monotone decreasing in 0 since 

?r- 
(Ro-1)(i+O) (7.10) 

1-9+Ro(T+0)' 

and 6* 
1=1+T( 

Ro 
1) 

' (7.11) 

where R_ 
Aa(1- ¢)L 

(7) 
(p+öi)(f +9)' . 

12 

and Ll 
al al a2 

(7) = +µ+a2 -1' (14 +b2)(µ+d3). 
13 

Figure 7.3 shows simulations of the total fraction of infected addicts in the Op- 

timistic and Pessimistic Models using the parameter estimates from Table 3.1. The 

initial conditions in each simulation were i1(0) = 0.01 with all other types of infec- 

tious addicts and infectious needles initially zero. The simulations clearly show that 

the different addict-needle interaction assumptions in these models have a considerable 

effect on the long term prevalence of disease in addicts. We can show analytically that 

the long term prevalence of disease in both addicts and needles is always higher in the 

Pessimistic Model than in the Optimistic Model. 

Theorem 7.1 The long term prevalence of HIV in both addicts and needles is lower 

in the Optimistic model than in the Pessimistic model. 

Proof. 

Write 7r0*, Po* and g to denote the values of 7r*, ß* and 1? for the Optimistic 

Model and 4,6p* and RP o the corresponding values for the Pessimistic Model. From 
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Figure 7.3: Optimistic v Pessimistic 
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Theorem 4.1 we know that 7rp is the unique positive solution to the equation 

(1-7r*)A(i-0) - 
a1ll1 172(T '+' 0) a2 

17170*(i-0) +T+0+(T+0+7f*(1-0»(T+0+(il+173) 7f*(1-0» 

+ t73 (T + q5)a3 (7.14) 
(T +0+ (il + 173)7f*(1 - 0))(T +0+ 1717r*(1 

= (al - a3) * 
171 

(nlý (1- ý) +T + 0) 

+ («3-«Z)+T+1Il+ 
( 

(T++(r/1+r/ Ir*(1-ý))J} 

+ «2 
(T + ý) 

(T+0+7f*(1-ý))(T+ +(171+%J3)7C*(1-! ¢)) 

1 n3 (T + 0) l + 
1711r*(1-0)+T+ý 

[171+ 
(T+0+(171+173)lr*(1-j))J " (7.15) 

Recall that iri = 7r*nl, 7r* = 7r*rt2 and 7r3 = lr*r13. We have that the left hand side of 

eqn (7.14) is strictly increasing in 7r* and that the right hand side is strictly decreasing 

in 7r*. Simplifying eqn (7.15) we find that 

77l(m + al) 
= (al - a3) 

171 

(1 - ir*)A(1 - 0) 1T +0+ tu11r*(1 - 0) 

-I-(a3 - a2) 
(171 +173) 

T+ 0+ (771 +773)lr*(1 - 0) 
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1 
+«2T+0+lr*(1- 0)' (7.16) 

We have that iö = 1- (1/Rg). Substituting this expression into the left-hand side of 

eqn (7.16) gives 

*i1(p+51) 1 (p+äi)Ro° 
(1-7rä), \(1-¢) L a(1-0) ' (7.17) 

1 a251 a35152 
- L(1+7) 

L"1+µ+52 + (u+a2)(µ+a3)}' 

1 ý- T 
["1i1 

-I- a2i2 + a3173] (7.18) 

j 
1 +T 

[(a1 
- a3)v71 + (a3 - x2)(171 +173) +a2], (7.19) 

171 < (a1 - a3)T+0+1717r0*(1 
- 0) 

+(a3-a2)� 
/(171+'73) T+0+(1%1+173)1r (1-0) 

+aaq+0+ßö(1- ¢)' 
(7.20) 

At iö the right hand side of eqn (7.16) exceeds the left hand side, hence it follows by 

the argument in the proof of Theorem 4.1 that ip < 7r4. Adding egns (4.4)-(4.6) we 

have that in the Pessimistic Model 

_ 
'gyp (7.21) 

lrp*(1-0)+0+T, 
Adding eqns (3.4)-(3.6) we have that in the Optimistic Model 

ßö = 1+7rb f' 
(7.22) 

Hence we have directly that ßö <, 6p*. This completes the proof of Theorem 7.1. " 

We have shown that assumptions relating to how addicts and needles interact with 

each other have a significant effect on the long term prevalence of disease. Hence 

to identify the effect of moving from single stage infectivity to three stage infectivity 

we must ensure that the models being compared have corresponding addict-needle 

interaction assumptions in addition to satisfying the appropriate calibration equation. 

Figure 7.4 shows graphically how the various models are related. At the top we have 

the original model by Kaplan and O'Keefe, this tier represents single stage infectivity 

models. We have split this tier into three parts according to the degree of flushing in 
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Figure 7.4: Model Schematic 
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the model. The next tier shows the stage of incorporating three types of infectious 

addicts (we still treat all needles as equally infectious). This tier is also split into three 

according to the degree of flushing in the models. The final tier represents models with 
both three types of infectious addicts and infectious needles. As previously discussed, 

intuitively we expect models with less extreme addict-needle interaction assumptions 

to lie between the Optimistic and Pessimistic Models. The Restricted General Model 

can lie anywhere on this final tier (recall that the Optimistic and Pessimistic Models 

are special extreme cases of the Restricted General Model). Note that we have not 

included the (fully) General Model in Figure 7.4 and instead defer discussion of this 

model until later in the chapter. 

The first models we wish to compare are the Kaplan and O'Keefe with full flushing, 

the Simple Model with full flushing and the Optimistic Model. These models all share 

comparable addict-needle interaction assumptions and therefore by using the relevant 

calibration equations we can determine the effect of allowing addicts and needles to 

exist in three infectious states conditional on the assumption of full flushing. 

7.4 Effect of Three Stage Infectivity with Full Flushing 

Using the previous discussion on calibration we can compare the Kaplan and O'Keefe 

Model with the Simple Model and the Optimistic Model by first fixing all model pa- 

rameters except the probability of HIV transmission (denoted by a, a' and a2 in these 
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Figure 7.5: Effect of Three Stage Infectivity 
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models respectively) at their respective estimates. We then set a=0.00601 as in Table 

2.1, and solve eqn (7.5) to find a value for a' such that the Kaplan and O'Keefe Model 

and Simple Model are calibrated. We then use this value of a' in eqn (7.6) and solve 

to find a value of a2. Hence using a=0.00601 in the Kaplan and O'Keefe Model, 

a' = 0.005342 in the Simple Model and a2 = 0.002720 in the Optimistic Model ensures 

that these three models can be sensibly compared. (Recall that this calibration method 

ignores the addict-needle interaction assumptions in the models. ) 

Figure 7.5 shows simulations of the total fraction of infected addicts in the Kaplan 

and O'Keefe Model with full flushing, the Simple Model with full flushing and the 

Optimistic Model, where these models are calibrated in the manner described. It is 

clear from the figure that there is very little difference in the behaviour of these models 

for the parameter estimates used in the simulations. The initial condition in each 

model was that a fraction 0.01 of all addicts are infectious (where all these addicts are 

in stage one infectivity in the three stage models). No other addicts or needles are 

initially infectious. These simulations suggest that the long term prevalence of HIV in 

addicts is unaffected by allowing addicts and needles to exist in three infectious states. 

However it is important to remember that we are currently assuming that needles are 

always left in the same infectious state as the last user (in other words needles are 

always flushed with probability one). 

It is straightforward to show analytically that under calibration it is always true 
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that the long term prevalence of disease in addicts will be the same in the Kaplan 

and O'Keefe Model with full flushing, the Simple Model with full flushing and the 

Optimistic Model, (as suggested by Figure 7.5). Similarly we can show that the long 

term prevalence of HIV in needles is the same in each model. Using egns (1.1)-(1.2) it 

is easy to show that the endemic equilibrium in the Kaplan and O'Keefe Model with 
full flushing is 

(lr*' ß*) 
(1 

Rr 1+T 11- jWI 
), 

(7.23) 

where Rf is the basic reproductive number for the Kaplan and O'Keefe Model with 
full flushing. From Chapter 2 we have that the endemic equilibrium for the Simple 

Model with full flushing is 

Or *ý )_ 
('k-T [i; ]) , (7.24) 

where Ros is the basic reproductive number for the Simple Model with full flushing. 

From Chapter 3 we have that the endemic equilibrium for the Optimistic Model is 

11 

[1 
- °J , . 25) (ý*'ß*) 

(1 
(7.25) 

where Ro is the basic reproductive number for the Optimistic Model. We have that 

A(1- O)a 
R0 - +6)(1+T), 

(7.26) 

xis = 
)`(1- c)"' f1 

+ al + 5152 l 

(7.27) (14+5i)(1+T) 1 
(i +2) (14 +62)(P+ 3)1 

and Ro _ 
)t(1- q)a2 (I1 

+ 
al 

ai)(1T) L (p 
05152 l 

(7.28) 
(µ++ +62) 

+ (! z+J2)(14 +a3)J 

Due to the way we have calibrated these models we have directly that Rox = Rs = moo. 

Hence from eqns (7.23)-(7.25) it is always true that (zr*, %3*) will be the same in the 

Kaplan and O'Keefe Model with full flushing, the Simple Model with full flushing and 

the Optimistic Model. 

To summarise, we have shown that (under calibration) the long term prevalence of 
disease is unaffected by allowing addicts and needles to exist in three different infectious 

states when addicts and needles interact in accordance with the assumption of full 

flushing. We now examine whether this is still true for the case where addicts and 

needles interact in accordance with the assumption of no flushing. 
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Figure 7.6: Effect of Three Stage Infectivity 
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7.5 Effect of Three Stage Infectivity with No Flushing 

To examine the effect of moving from single stage infectivity to three stage infectivity 

in both addicts and needles, under the assumption that addicts and needles interact 

according to the assumption of no flushing, we need to compare the Kaplan and O'Keefe 

Model with no flushing and the Simple Model with no flushing and the Pessimistic 

Model. The calibration required to compare these three models is identical to that 

of Section 7.4. This is because as mentioned previously the calibration criteria only 

ensures that the cumulative viral load during the infectious lifetime of an addict is the 

same in the models being compared. This is independent of the assumptions relating 

to how addicts and needles interact with each other. Hence by using a=0.00601 in 

the Kaplan and O'Keefe Model with no flushing, a' = 0.005342 in the Simple Model 

with no flushing and a2 = 0.002720 in the Pessimistic Model these three models are 
directly comparable. 

Figure 7.6 shows simulations of the total fraction of infected addicts in the Kaplan 

and O'Keefe Model with no flushing, the Simple Model with no flushing and the Pes- 

simistic Model where these models are calibrated in the manner described above. The 

initial conditions in each model were that a proportion 0.01 of addicts are initially in- 

fectious (where all these addicts are in stage one infectivity in the three stage models). 

No other addicts or needles are initially infectious. The simulations in Figure 7.6 show 

214 



that the long term prevalence of disease in addicts is no longer the same in each model. 

While we acknowledge that the trajectories of the Kaplan and O'Keefe Model and the 

Simple Model are not easily distinguishable in this figure the main point of the figure 

is to show the difference between the Pessimistic Model and the other two models. The 

Kaplan and O'Keefe Model with no flushing and the Simple Model with no flushing 

appear to have the same long term prevalence levels while the Pessimistic Model has a 

higher long term prevalence level. 

It is straightforward to show that in general the Kaplan and O'Keefe Model with 

no flushing has the same long term prevalence of disease as the Simple Model with no 

flushing and that the Pessimistic Model has a higher long term prevalence. Using eqns 

(1.1)-(1.2) we have that in the Kaplan and O'Keefe Model with no flushing 

(7r*'ß*) - 
C1(Ro0 

+Rö(( +0ý)' 1+T I(7.29) 

where 4' is the basic reproductive number for the Kaplan and O'Keefe Model with no 

flushing. From Chapter 2 we have that the endemic equilibrium for the Simple Model 

with no flushing is 

(mss'_1)(T+0) 11 

J/ 
(7.30) (ý*ý )= 

(1 

_0+ Ro'(T + O)' 1+ TL 
1 Ros' ' 

where Rg' is the basic reproductive number for the Simple Model with no flushing. 

We have that 

ýK, = 
a(1- ¢)a (7.31) 

(p + (5) (T + 4)' 

and 
? (1- O)a' 11+ bl 

+ 
5152 j (7.32) 

(p + ai) (T + T) (µ + 52) (Fp + b2) (1ý + J3)] 

As in the full flushing models the way we have calibrated these models directly implies 

that Ro' = Re'. Hence from eqns (7.29)-(7.30) it is always true that i* in the Kaplan 

and O'Keefe Model with no flushing and the Simple Model with no flushing is the same 

and , B* in the Kaplan and O'Keefe Model with no flushing and the Simple Model with 

no flushing is the same. We now show that under calibration lr* and Q* are always 

higher in the Pessimistic Model than in the Kaplan and O'Keefe Model with no flushing 

or the Simple Model with no flushing. 

Theorem 7.2 Under calibration the long term prevalence of HIV in both addicts and 

needles is lower in the Kaplan and O'Keefe Model (with no flushing) than in the Pes- 

simistic model. 
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Proof. 

Write KrK to denote the value of n* for the Kaplan and O'Keefe Model with no 

flushing and 7rP to denote the value of 7r* in the Pessimistic Model. As in Theorem 7.1 

we have that i* for the Pessimistic Model is the unique positive solution to 

1li(m+ai) 
= (al-a3) 171 

(1 - ir*)A(1 - ¢) T+0+ r/i7r*(1 - ¢) 

+(a3-a2)^ 
(171+173) 

T+qS+(171+173)1r*(l-q) 

+a2T 
1 (7.33) 

+0+7r*(1-0). 

We have that the left hand side of eqn (7.33) is strictly increasing in a* E (0,1) and 

that the right hand side is strictly decreasing in 7r* E (0,1). From eqn (7.29) 

Aa _ P+O 
* 1Aa 

7 -4 (7.34) 
1-I-ß 

hence 

1- 7rK =1 
äa 

. 
(7.35) 

1+3 

Hence at 7r* the left hand side of eqn (7.33) is 

771 
ý1 +) 

(7.36) 
(1 +T) 

µ+YI- 

The right hand side of eqn (7.33) at 7cK is 

(a1 - a3) * 
771 (i11 + 173) 

1717f*(1 - 0) +T+ý+ 
(a3 - a2) (n1 + i3)ir (1 - 0) +f + 

1 
+ a2Wit(10)+f+07 

(a1 - a3)771 + (a3 
- a2) (171 + 173) + a2 

T+ 40 + 7x1{ (1 
- 0) 

- 
(al'tj1 + a2v72 + a3? 3) (7.37) 

T+0+7r*(1-ý) 

Now 

IITJ (7.38) 11+ 
T+ý+ýK(1-c5) +T)' 

and from the calibration equations (7.5) and (7.6) we have that 

al71(lý + a1) 
a117, +a2772+a3r13= (p+b) 

(7.39) 
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Hence the left hand side of eqn (7.33) at iK is strictly less than the right hand side of 

eqn (7.33) at irk. Hence it follows that iK < 1P. From eqn (7.29) we deduce that 

RK WK 
(7.40) Ký 

hence *- 7rK (7.41) QK - T+0+7fK(1-0)* 

As 7r4 > 7rK then using eqn (4.20) we have 

7r 7rK 

P(l-0) >T+0+ir (i-0) ýK" (7.42) ýPT+0+ý 

This completes the proof of Theorem 7.2. " 

To summarise, we have shown that (under calibration) the long term prevalence 

of disease is unaffected by allowing addicts to exist in three different infectious stages 
(but keeping single stage infectivity in needles) when we assume that needles are never 
flushed. However when we additionally allow needles to exist in three different levels of 
infectivity and assume that addicts and needles interact according to the assumption of 

no flushing we find that three stage infectivity does increase the long term prevalence 

of disease. 

7.6 The Impact of Recruitment and AIDS Mortality 

We have shown that allowing addicts and needles to exist in three different infectious 

states does not in itself necessarily give rise to higher long term prevalence levels. Any 

increase in the long term prevalence of disease depends additionally on the assumptions 

made relating to how addicts and needles of different infectious states interact with each 

other. 

From our previous comparisons we can draw two separate conclusions. Firstly if 

we believe that full flushing is the most realistic approximation of how addicts and 

needles interact then we should conclude that three stage infectivity has no effect on 
the long term prevalence of disease. Alternatively if we believe that an infectious 

needle cannot be flushed by an uninfectious addict then we should conclude that three 

stage infectivity does indeed increase the long term prevalence of disease compared to 

single stage infectivity. However it may be premature to draw such conclusions without 

first taking into account the more realistic addition of addict recruitment and AIDS 

mortality into our assessment of three stage infectivity. 
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In the previous chapter we showed that the long term prevalence of disease in our 

three stage models is unaffected by this modification. Similarly the long term prevalence 

of disease in the Kaplan and O'Keefe Model is also unaffected by the inclusion of 

recruitment and AIDS mortality. Hence our previous comparisons and analytical results 

are still true when we consider the more realistic case where the population size depends 

on the spread of disease. Figures 7.7 and 7.8 show simulations of the total number of 

infected addicts in the Kaplan and O'Keefe Model with full flushing and the Optimistic 

Model, and in the Kaplan and O'Keefe Model with no flushing and the Pessimistic 

Model. In all these models we now include addict recruitment and AIDS mortality 

in a similar fashion to that modelled in the previous chapter. In each simulation it 

was initially assumed that 1% of addicts are infectious (and all these are in stage one 

infectivity in the three stage models) and the initial population size is 2,300 addicts. In 

the Kaplan and O'Keefe Model we use a=0.00601, and a2 = 0.00272 in the Optimistic 

and Pessimistic Models so that we ensure these models are suitably calibrated. Dealing 

first with Figure 7.7 we can see clearly that the long term number of infected addicts in 

these models is the same. This is not surprising since we have already shown that the 

equilibrium fraction of infected addicts is the same which implies that the equilibrium 

population size will also be the same. In Figure 7.8 we can see that the while the 

Pessimistic Model still has a greater long term number of infectious addicts than in 

the Kaplan and O'Keefe Model with no flushing the difference between these models is 

very small. If we had illustrated all these simulations on a single figure it would also 

be clear that as in Figure 6.8 in Chapter 6 the difference in the long term number of 

infected addicts between models with full flushing and no flushing is small. 

7.7 Discussion of Comparison Results 

From our previous comparisons between the single stage Kaplan and O'Keefe Model and 

our three stage models it seems fair to conclude that moving to three stage infectivity 

does not cause a significant difference to the long term number of addicts infected. 

Analytically it is the case that the prevalence of disease is higher in the Pessimistic 

Model than in its single stage equivalent but in practice this increase has little effect 

on the long term number of addicts infected (at least for the parameter estimates used 

in this thesis). However there are several potential flaws in the way we have compared 

our various models. This deserves some discussion. 
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Figure 7.7: Optimistic v Kaplan and O'Keefe (0 = 1) 
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Figure 7.8: Pessimistic v Kaplan and O'Keefe (0 = 0) 
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We have claimed that the Kaplan and O'Keefe Model with no flushing is equivalent 

to the Pessimistic Model. This is a reasonable assumption since (excluding cleaning) 

in both models an uninfectious addict cannot render a previously infectious needle 

virus free. However we could argue that taking the definition of flushing literally, the 

Pessimistic Model is only one particular variant of the class of three stage infectivity 

models which correspond to no flushing in single stage infectivity. For example we 

could argue that any selection of p*ýk terms in the Restricted General Model which has 

Pj*0o =0 for i=1,2,3 corresponds to the Kaplan and O'Keefe Model with no flushing. 

The particular choice of assumptions in the Pessimistic Model satisfies this condition, 

however in addition this model contains the most extreme (or "pessimistic") choice of 

all other ýk terms. Hence we expect that any other special case of the Restricted 

General Model which has p öo =0 for i=1,2,3 will have a lower long term level of 
disease than in the Pessimistic Model. Therefore it may be the case that a three stage 

model which has p oo =0 for i=1,2,3 gives rise to a lower long term level of disease 

than in the Kaplan and O'Keefe Model with no flushing. This comparison problem 

does not affect the Optimistic Model since full flushing (the assumption that a needle 

always adopts the infectious state of the last user) uniquely identifies a set of pijk terms 

in three stage infectivity. 

There is a second related problem with our previous comparisons. So far we have 

interpreted the flushing parameter 0 in single stage models as the probability that an 

infectious needle is left uninfectious after use by an uninfectious addict. Up to now 

we have taken this definition literally, for example we treated 0=0 as equivalent to 

Pioo = P2oo = Psoo = 0. However an alternative interpretation of 0=0 is the probability 

that a needle with viral load proportional to a cannot have its viral load reduced to 

zero after use by an uninfectious addict. However in our three stage infectivity models 

we now have three types of needles. The lowest infectivity needle has a viral load 

proportional to a2 which will be lower than the viral load of an infectious needle in a 

single stage model. Hence it may be that a needle in stage two infectivity can have its 

viral load reduced to zero and this is still equivalent to 0=0 in single stage models. 

Similar interpretational problems also exist with stage one and stage three needles. 

Therefore it may be the case that perhaps we cannot match 0=0 or indeed any value 

of 0 with equivalent addict-needle interaction assumptions in three stage infectivity. 

Given the above discussion it seems plausible that we cannot match the flushing 

probability in single stage infectivity with corresponding addict-needle interaction as- 
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sumptions in three stage infectivity. However our previous comparisons still represent 

a logical basis for assessing the effect of three stage infectivity. If we cannot match 

0 and p*k terms then an alternative is to compare upper and lower bound models in 

single stage infectivity with upper and lower bound models in three stage infectivity. In 

this way we can determine whether existing best and worst case scenarios based on the 

assumption of constant (single stage) infectivity require re-assessing in light of variable 

(three stage) infectivity. It makes sense to examine both the best and worst which may 

occur in order to provide balanced information which can then be used as a basis for 

determining future levels of health provision and intervention. 

Since the endemic equilibrium prevalence of disease in addicts in the Kaplan and 

O'Keefe Model is monotone decreasing in 0 then using 0=1 gives a lower bound for 

the spread of disease and similarly 0=0 gives an upper bound. Due to the addict- 

needle interaction assumptions in the Optimistic Model we intuitively expect this model 

to represent a lower bound for the prevalence of disease among addicts in three stage 

infectivity and similarly we expect the Pessimistic Model to represent an intuitive upper 

bound for the prevalence of disease among addicts. Therefore comparing lower bound 

single stage models with lower bound three stage models, and upper bound single stage 

models with upper bound three stage models, obviously gives us exactly the same 

comparisons as before (but justified in a different way). Hence our previous conclusion 

that moving from single stage infectivity to three stage infectivity has little effect on 

the long term number of infectious addicts still stands. As a final comment before we 

discuss the General Model it is of interest to ask whether we could have reasonably 

expected this result. 

Dietz et al (1993) discuss a model of the spread of HIV and examine the impact 

of moving from constant to variable infectivity where HIV is transmitted sexually. 

In particular they include in their model the formation and separation of pairs of 

heterosexuals. Andersson and Britton (1998) examine the effect of heterogeneity using 

a more general model which does not focus on HIV and groups the population into 

household units rather than partnerships. 

Dietz et al (1993) find that under suitable calibration Ro is less when infectivity is 

considered variable as opposed to constant. They illustrate that introducing variability 

into infectivity can decrease the infection probability per partner. Intuitively a reason 

for Ro being less is that the partnerships considered by Dietz are relatively long com- 

pared to the infectious periods of an individual. Therefore while an individual may be 

221 



highly infectious he or she may be in a long term partnership and as such his or her 

high level of infectivity does not produce a signficant number of new infections. 

Andersson and Britton (1998) also discuss the impact of introducing heterogeneity 

into a homogeneous population. This paper focuses on quantifying the statement "if 

the disease is very contagious then homogenizing the population increases the size of the 

epidemic, while for a less infectious disease the largest epidemic arises in a heterogeneous 

setup". They discuss a number of models and examine the spread of disease among 

household units and among the population as a whole. It seems reasonable to consider 

the grouping of the population into households as an extension of the pair formation 

case discussed by Dietz et al (1993). 

While both Dietz et al (1993) and Andersson and Britton (1998), put forward some 

intuitive arguments for assessing the impact of moving from constant to variable infec- 

tivity it is not clear how applicable these arguments are when applied to populations of 

both addicts and needles. The vector element in our models complicates such matters. 

However these papers do suggest that the limited effect of variable infectivity in our 

models may be because the length of an addict-needle partnership is extremely short, 

and therefore the disease spreads in a similar fashion under both constant and variable 

infectivity. In Chapter 11 we mention that the spread of HIV when addict-needle part- 

nerships are longer, such as sharing needles in "social networks", is an area for future 

study. 

7.8 General Model and Single Stage Infectivity 

Up to now in this chapter we have avoided discussion of the General Model. This 

model contains a completely general addict-needle interaction structure, in particular 

we have no longer placed any restrictions on interactions between uninfectious needles 

and infectious addicts. However this increased flexibility (over the Restricted General 

Model) causes problems in comparing this model with the Kaplan and O'Keefe Model. 

The crux of the problem is that Kaplan and O'Keefe's Model (and Kaplan's original 

model) assumes that an uninfectious needle is always left infectious after use by an 

infectious addict. We have made an analogous assumption in the Simple Model and 

in the Restricted General Model (since in the latter we have assumed that pöll = 

Pä22 =p 33 = 1), however we have dropped this arguably extreme assumption in the 

General Model. This means that the General Model does not fit into a comparable 
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framework with the Kaplan and O'Keefe Model (such as that illustrated in Figure 7.4) 

since in the former, infectious addicts can leave previously uninfectious needles still 

uninfectious, whereas in the latter the same needle is always left infectious. To produce 

a fair comparison between the General Model and the Kaplan and O'Keefe Model we 

first need to extend the latter single stage model to also allow infectious addicts to leave 

previously uninfectious needles uninfectious after use. This is an analogous extension 

to that of moving from the Restricted General Model to the General Model. 

It seems intuitive that at least some (if not all) of the time an infectious addict will 

leave infectious material behind in a needle after use. Hence given the choice between 

classifying a previously uninfectious needle as infectious or uninfectious after use by an 

infectious addict, it seems only prudent to classify this needle as infectious. A similar 

argument can be used to justify 0=0 since again it seems intuitive that at least some 

infectious material will remain behind in a previously infectious needle after use by an 

uninfectious addict. Hence taking a cautious approach there is good reason for assuming 

as Kaplan and O'Keefe do that previously uninfectious needles always become infectious 

after use by infectious addicts and previously infectious needles always remain infectious 

after use by uninfectious addicts. However it is clear that in both these interactions the 

assumptions made are more pessimistic than would be realistically expected to occur, 

but in the absence of hard data (which is almost impossible to obtain) such a cautious 

approach seems sensible. We can consider this pessimism necessary as a result of the 

"broad brush" approach to modelling addict-needle interactions. 

Ideally a single stage infectivity model should have two flushing parameters, -+' 1and 

0, where c1' denotes the probability that an uninfectious needle is left infectious after use 

by an infectious addict. Greenhalgh and Hay (1997) extend Kaplan's original model 

to allow for just such an interaction structure. The Kaplan and O'Keefe Model can 

easily be extended to include both types of flushing, this gives us the following system 

of equations: 

da 
ir)Aa(1 - 0)0 - (µ + d)ir, (7.43) 

dt 

and 
dt 

= (1 - 6)A t7rýr/ý - (1 - ir)/3aye - ßr. (7.44) 

We now have a single stage model which fits into a framework similar to that in the 

General Model. However the problem remains (as discussed above) of how to choose 

a set of ýk terms which correspond to any particular set of 9 and -0 values (or vice 
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versa). There are at least two intuitive ways of doing this which we now discuss. 

7.8.1 Calibration Method One 

There are three main differences between the General Model and the model in eqns 
(7.43)-(7.44). Firstly the cumulative viral load during an addict's lifetime may be 

different. Secondly the interaction assumptions between infectious addicts and unin- 

fectious needles are dealt with differently, as are the interaction assumptions between 

uninfectious addicts and infectious needles. As already discussed the first of these dif- 

ferences can be dealt with using the calibration eqns (7.5) and (7.6). We now deal with 

the second difference; how to choose equivalent values for ,0 and the interaction terms 

pöjk for j, k=1,2,3. One possibility is that we should require that the average total 

amount of virus transmitted by a single infectious addict to needles at the disease- 

free equilibrium should be the same in both our models. This suggests the following 

calibration equation: 

_'a 
_A** 

Ail (alpoll + a2p*o12 + a3Po13) + a2P 22 
µ+b µ+bl (µ+b1)(µ+b2) 

+ 
(A + 61) (A + S2) (A + 63 ) `a20032 + a3P033) " 

(7.45) 

Clearly 0>0 for any choice of p*ýk terms and we have that 

ab« A aal A5152 
-I-ö A+ J, al + (µ -I-al)(µ-Fb2)a2+ -f b2)(, -F63)a31 

Aa 
+S' 

using eqns (7.5) and (7.6). 

Therefore we have that 0<b<1 as is sensible since ip is a probability. The above 

calibration implies that for a single stage model to be equivalent to the Restricted 

General Model (where pöii = pä22 = pö33 = 1) it must have '/i = 1. This is what we 

would expect and provides us with some confidence in the suitability of this calibration 

method. Note that we use p; ýk terms in our calibration rather than Pijk terms, this is 

natural since Ali and 0 do not include the effect of cleaning. 

The final difference between our models is similar to that just discussed but for 

interactions between infectious needles and uninfectious addicts. We can choose equiv- 

alent values for B and the interaction terms p ök for i, k=1,2,3 by requiring that the 

average total amount of virus removed from all secondary infectious needles on their 

first use by a susceptible addict at the disease-free equilibrium should be the same in 
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both our models. This suggests the following calibration equation: 

aýiaB 
_A1I µ+b lý -ý b1ýPo11 

(aiPioo + (al - a2)Pi02 + (al - a3)P1o3) 

+ j3) Pö32) a2P2oo + ýFý + 5) 
(P012 + 

b2 Pöa2 + (ý + ßb) G2 

Jl J2 (P13 
+ 

2)(/ 
P033l (a3P300 + (a3 - a2)P302)" (7.46) 

(A-T al) (P+b)(/-4+b3) / 

For example the average number of needles left in state one infectivity during the 

infectious lifetime of an addict is (Ap0*11)/(p + öl ), and each of these needles has a viral 

load proportional to al. However the amount of virus in each of these needles can 

be reduced due to use by an uninfectious addict, therefore the average total amount 

of virus removed at the first injection from all these state one needles by uninfectious 

addicts is 

+ bl)poll 
(a1Pioo + (al - a2)Pio2 + (a1 - a3)Pi03) 

The other terms in eqn (7.46) follow similarly but are for the amount of virus contained 

in state two and state three infectious needles. From eqn (7.46) it is clear that 0>0, 

we also have that 

a_/ia_ AA Sl 5152 
µ (µ + al)Pöiial + G4 ai) 

(P12 
+ Ö2 P022 + (t4 + 52 )(N + 53)P032) a2 

a 6162 
a3 v + 

ýiý + bl) 

(3+ 

(lý + b2) (N + b3) p033 

Aoa 
using eqn (7.45). 

A+a 

Therefore we must have that 0<0<1 which again is sensible since 0 is a probability. 

Since the Optimistic and Pessimistic Models are special cases of the Restricted General 

Model we have from eqn (7.45) that 0=1 in both these models. Substituting into eqn 

(7.46) the p jk terms for the Optimistic Model we find that 

)/a9 
_A 

AS1 AS152 
It+J µ+51a1+ (P+S1)(ic+Ö2)a2'+' (µ+al)(11+d2)(i4+a3)a31 

which implies that 0=1 since we require that eqns (7.5) and (7.6) are satisfied. 

Similarly for the Pessimistic Model we find that Ao0/(µ + 5) = 0, which implies that 

0=0. As before these results are sensible and provide confidence in our calibration 

method. 

Hence to calibrate the General Model and the Kaplan and O'Keefe Model (with 

0<b<1 and 0<0< 1) and therefore quantify the effect of three stage infectivity 
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we do the following: First we estimate all the parameters in each of our models with 

the exception of ili and 0 in the single stage model and al, a2 and a3 in the General 

Model. We then use eqns (7.5) and (7.6) to find the appropriate value of a2 (which 

also gives al and a3) in the General Model. We next use eqn (7.45) to find the value 

of Ali which corresponds to the current set of p !., k terms in the General Model. Finally 

having found t we can then use eqn (7.46) to find the corresponding value of 0. 

We now illustrate an example of this calibration using the sets of ýk terms in Table 

7.1. These p, *jk values have been deliberately chosen to be fairly moderate in that the 

final state of the needle is not particularly biased towards either its state prior to use or 

that of the current user. Using eqns (7.5) and (7.6) we again require that a2 = 0.00272, 

al = 0.0136 and a3 = 0.00816. Using the polk terms in Table 7.1 together with eqn 
(7.45) we find that sets A2-C2 correspond to 0=0.52,0.42 and 0.53 respectively. Using 

these values of together with eqn (7.46) we additionally find that sets A2-C2 also 

correspond to 0=0.78,0.53 and 0.26 respectively. 
An additional complication of comparing single stage and three stage models is that 

in three stage infectivity we have interactions between addicts who and needles which 

are all infectious but are currently in different infectious classes. This does not occur 

in single stage infectivity since we only have a single class of infectious needle and a 

single class of infectious addict. Hence we can use any values for the p jk terms where 

i, j, k=1,2,3 (such that the inequalities (5.1)-(5.10) are satisfied) and still have that 

the General Model and the Kaplan and O'Keefe Model (with 0<0<1 and 0 <'/i < 1) 

are correctly calibrated. 

Figure 7.9 shows simulations of the total fraction of infected addicts using the 

Kaplan and O'Keefe Model for the values of ' 1' and 0 mentioned above and the General 

Model using p jk sets A2-C2 in Table 7.1. It was initially assumed that 1% of addicts 

are in stage one infectivity and no other addicts or needles are infectious. It is not 

clear from these simulations whether moving to three stage infectivity either increases 

or decreases the long term prevalence of disease. For example the single stage model 

corresponding to set C2 suggests a higher level of disease while the model corresponding 

to set B2 has a lower level of disease. As mentioned above an additional complication 

in assessing the effect of three stage infectivity is that a different choice of p, *k terms 

(where i, j, k=1,2,3) may cause an increase or decrease in the long term prevalence 

illustrated. In any case our simulations suggest that a simple summary of the effect of 

three stage infectivity is not appropriate, and that this effect depends on the particular 
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Table 7.1: Addict-Needle Assumptions (No Cleaning) 

pick A2 B2 C2 

Pöio 0.0 0.25 0.0 

P ii 0.05 0.25 0.3 

Pä12 0.3 0.25 0.5 

P0*13 0.65 0.25 0.2 

P020 0.5 0.5 0.5 

P0*22 0.5 0.5 0.5 

PO30 0.1 0.33 0.1 

Pä32 0.4 0.33 0.4 

PÖ33 0.5 0.33 0.5 

Pioo 0.7 0.25 0.05 

Pioi 0.05 0.25 0.7 

Pio2 0.2 0.25 0.05 

Pi03 0.05 0.25 0.2 

Pi21 0.1 0.33 0.7 

Pi22 0.7 0.33 0.1 

P123 0.2 0.33 0.2 

Pi31 0.3 0.5 0.7 

P133 0.7 0.5 0.3 

Poo 0.7 0.5 0.3 

P202 0.3 0.5 0.7 

p211 0.7 0.33 0.3 

P212 0.1 0.33 0.3 

p213 0.2 0.33 0.4 

P2*32 0.3 0.5 0.5 

P233 0.7 0.5 0.5 

Päoo 0.7 0.33 0.1 

P13o2 0.2 0.33 0.2 

P3o3 0.1 0.33 0.7 

All 0.7 0.5 0.3 

P313 0.3 0.5 0.7 

P3*22 0.7 0.5 0.3 

P323 0.3 0.5 0.7 
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Figure 7.9: Single Stage v Three Stage (Fully General) : Calibration Method One 
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addict-needle interaction assumptions in our models. 

7.8.2 Calibration Method Two 

We now discuss another intuitive criteria for calibrating our three stage and single stage 

models. We have shown previously that the basic reproductive number is fundamental 

in determining the behaviour of both single stage and three stage models. Therefore 

a natural calibration criteria is to ensure that R0 is the same in both types of models. 

For the Kaplan and O'Keefe Model with 0<0<1 we have that 

4- a (7.47) 
(A+a)B' 

when interventions such as needle cleaning and needle exchange do not occur. It seems 

sensible to exclude external interventions such as these from the calibration method as 

we wish to calibrate the models on purely biological grounds. In the General Model we 

have that 

RGEN _ 
ApÖ11 al 

, {� 
P103 f a3 

,+ 
p302 a2 1 

"0 (14 +61) 1 -p101 1 -P101 1 -p303 
(1 

-P303) (1 -p202) 

+ 
P102 a2 

(*)(j* o2) 

A* a1pö22 5152P 
32 a2 

+ 
(p + 61) 

{P12 
+ 

(A + a2) 
+ 

(14 + 52) (p + 53)] (1 
-P o2) 
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[POrl3 
+ 

6162P033 1r a3 
+ 

P302 a2 1 
47.48) 

+ö1) (I1+b2)(N+b3)] L1 -P303 (1 -P303) (1 -P202)J 

in the absence of needle exchange and needle cleaning. Therefore 

*A * a1 b2PÖ32 1 GEN p> 
ýPo11 

al + 
{P12+ 122 

"(+bl) (/+61) (11+52) (14 +a2)(/ß+63)1 

A 5152PÖ33 
+ zý -+41) 

* 
[PON+ 

(14 + 62) (14 + b3) J 
a3 

A, o 
_ 

it +a using eqn (7.45), 

= R0Kn. 

Therefore again we have that 0<0<1 as should be the case. Equating RK and R? EN 

and substituting in the ýk values corresponding to the Pessimistic Model implies that 

0=0. Similarly using the interaction assumptions in the Optimistic Model requires 

that 

Aoa 
_A 

öl a2 5152a3 
(Fp+ö)B µ+bl 

[al+l4+ö2 
+ (µ+a2)(f4+as) 

Using eqns (7.5) and (7.6) to equate the viral load in these models reduces our calibra- 

tion to requiring that 

lp 
= 1, 

B 

in the single stage model. This is what we would expect since the Optimistic Model 

is an extension of the case where 0=B=1. Again these consistent results suggest 

that this calibration method is sensible, however note that equating 4 and ROGEN 

does not uniquely identify individual values of ib and 0 but rather only the value of 

i, b/B. However this is not a problem as we can determine a unique value for 0 as in the 

previous calibration method by using eqn (7.45). For example to use this calibration 

method for any given set of interaction assumptions we first estimate the parameters in 

each of our models with the exception of il' and B in the single stage model, and al, a2 

and a3 in the General Model. We then use eqns (7.5) and (7.6) to find the appropriate 

value of 02 (which also gives al and a3) in the General Model. We then use eqn (7.45) 

to find the value of 0 corresponding to the set of polk terms for j, k=1,2,3 in the 

General Model and use this together with R' = ROGEN to find the corresponding value 

of 0 in the single stage model. 
We now illustrate our current calibration method using the p ýk values in Table 

7.1. As before we require that a2 = 0.00272, al = 0.0136 and a3 = 0.00816 and sets 
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Figure 7.10: Single Stage v Three Stage (Fully General) : Calibration Method Two 
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A2-C2 correspond to i/i values of 0.52,0.42 and 0.53 respectively (using eqn (7.45) as 

previously). Equating RI' and ROGEN we find that sets A2-C2 correspond to 0 values 

of 0.69,0.48 and 0.24 respectively. We therefore have that sets A2-C2 correspond to 

(0.52,0.69), (0.42,0.48) and (0.53,0.24) for (0,0) respectively. These (0,0) pairs are 

similar but not identical to those used earlier. We now illustrate simulations of our 

calibrated models in a similar fashion to Figure 7.9 in the previous section. Figure 7.10 

shows a similar pattern of behaviour to that in Figure 7.9 with the main difference 

being that rather than the three stage model using set A2 having a slightly higher long 

term prevalence level than its single stage equivalent, it now has a slightly lower long 

term prevalence level. However the main observation from these simulations is again 

the lack of a simple summary to describe the comparison between our three stage and 

single stage models. As previously we find that whether or not three stage infectivity 

increases the prevalence of disease depends on the individual addict-needle interaction 

assumptions in our models. 

7.9 Addict-Needle Interactions: A Final Remark 

Our main purpose for comparing the prevalence of HIV suggested by our various three 

stage models with existing single stage models has been to establish whether or not a 
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three stage infectious period increases the level of disease among addicts. Unfortunately 

the previous sections have shown that moving to a three stage infectious period alone 
does not imply that an increase or decrease in prevalence will occur, but rather shows 

that assumptions relating to how addicts and needles interact must also be taken into 

account. From a practical point of view this is less than ideal since of all the param- 

eters in our single stage and three stage models, those concerned with addict-needle 

interactions are the most difficult to accurately estimate. This is a particular problem 

in the General Model where we have so many p jk terms. 

We have previously argued that a number of intuitive inequalities should exist 
between the p*ýk terms in the General Model. The more constraints and conditions 

we have between the p*ýk terms the more we can narrow down the parameter space. 
By considering the single stage model in eqns (7.43)-(7.44) and the calibration method 
discussed in Section 7.8.2 we can argue for an additional condition between a number of 

the p*ýk terms. Consider the terms B and v0. We have denoted by 0 the probability that 

an infectious needle adopts the infectivity characteristics of the current uninfectious 

user. We have denoted by 0 the probability that an uninfectious needle adopts the 

infectivity characteristics of the current infectious user. These two probabilities refer 

to biologically similar events, namely that a needle adopts the infectivity of the current 

user. Since a needle can only be either infectious or uninfectious it then follows that 

in order to treat interactions between uninfectious needles and infectious addicts and 

infectious needles and uninfectious addicts consistently we should have that 0 ='O. 

We can use the assumption that 0= ip to construct a constraint which allows us 

to choose consistent values for some of the p ýk terms in the General Model. Using 

R? EN we have that 

Aa APÖll al Plo3 a3 P3o2 a2 

/4+6 (a+51) 1 -Pio1 
+1 

-Piol L1 -P3o3 
+ 

(1 -P3o3) (1 -P2o2)J 

+ Pio2 a2 
ý1 - Pioi) (1 - P202) 

A PO. 
12 

b1Pö22 5152Po32 a2 + 
ý+ai) (A 

4142P033 1 a3 p302 a2 
+ 

(ý'ý bl) 

[P13+ 

(i= ý" a2)(lý b3)J 1 -P303 
+ 

C1 -P303) Cl -p202)i 

(7.49) 
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We have already shown above that the Optimistic Model satisfies eqn (7.49). This is 

sensible since by construction this model treats interactions between infectious addicts 

and uninfectious needles, and uninfectious addicts and infectious needles in the same 

fashion. Since we expect eqns (7.5) and (7.6) also to be satisfied we require that 

I al a251 a36162 

A+sI + (A+60(14 +b2) + (µ+61)(14 +az)(14 +a3)ý 
All a1 P103 f a3 P302 a2 

-Pio1 
+1 

-Pio1 L1 -P303 
+ 

ý1 -P303) (1 -P2o2)J 

+ 
Pio2 a2 

ý1 - Pioi) (1 - P2o2) 

+1 
[A12 

+ 
a1P022 

+ 
'5152Pä32 1 a2* 

ýfl +al) (14+62) (N+a2)(A+Y3) 
1 (1-P202) 

+ 
{Pl3+(ýo2)(+o3)j bl62P33 1r a3 

+ 
P0a2 1 

(p + öl) 1- P303* (1 
- P303) (1 

- P2*02)J 

(7.50) 

where a2 (and therefore al and a3) are chosen to satisfy the calibration eqns (7.5) 

and (7.6). Hence we can use eqn (7.50) as a guide to choosing ýk values such that 

interactions between uninfectious addicts and infectious needles, and infectious addicts 

and uninfectious needles are treated consistently in the General Model. 

Hence to summarise, if we believe that 0= i/i is an appropriate assumption in single 

stage infectivity models then we can use this fact together with the various calibration 

equations shown above to further narrow down the parameter space of our General 

Model. This concludes our comparisons between the long term prevalence of disease 

in our three stage and single stage models. We now move on to briefly examining the 

effect that different control strategies have on the spread of HIV. 

7.10 Three Stage Infectivity and Control Strategies 

We now investigate the effect of control strategies such as needle exchange programs 

and improved needle cleaning when we move from single stage infectivity to three stage 

infectivity. We are interested in both the size and nature of the effect caused by these 

interventions and also whether they are as effective as suggested by the original Kaplan 

and O'Keefe Model. However before we do this we first make a brief comment as to 
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the impact of the gallery ratio, that is the ratio of addicts to needles, on our various 

models. 

Intuitively we might expect that the gallery ratio, denoted in our models by 7, would 

have a significant impact on the long term level of disease. For example if ry is large 

then each individual needle is used (or shared) among more addicts and therefore we 

might expect that this would increase the spread of disease. Kaplan (1989a) examines 

the effect of ry in a simple homogeneous model of needle sharing and finds that while 

this parameter does have an impact on the speed at which the disease spreads it has no 

effect on either Ro or the endemic equilibrium level of disease (this parameter cancels 

out in these expressions). We do not illustrate simulations of our three stage models 

for different values of ry, however we also found that while ry does not cancel out in the 

expressions of either Ro or the endemic equilibrium solutions in our models it has only 

a very minor quantitative effect (at least over the range of values which we examined). 

In the previous chapters we have demonstrated two main aspects of our models. 

Firstly there exists a critical threshold parameter which determines whether or not an 

epidemic takes off, and secondly when an epidemic does occur the prevalence of disease 

tends to an endemic steady state. Hence it seems natural to use the critical threshold 

parameter, R0, and the endemic equilibrium solution in our various models to assess 

the impact on the spread of disease caused by introducing a formal needle exchange 

program and improved needle cleansing practices. 

We first examine the qualitative impact on the long term prevalence of disease in 

our models caused by improved needle cleaning and the implementation of a needle 

exchange program. Figure 7.11 illustrates simultaneously the effect of cleaning and 

needle exchange on the behaviour of the total long term prevalence of disease among 

addicts in the Simple Model (denoted by ir*). This is of practical interest as needle 

exchange programs do not only allow needles to be exchanged but also offer guidance 

and advice on risk reduction practices (such as reducing the sharing of needles and 

cleaning needles prior to use). Therefore it may be that by participating in such 

a program addicts increase both the rate at which needles are exchanged and the 

frequency with which they clean needles prior to injection. In Figure 7.11 we have 

assumed that addicts clean needles prior to use with a probability of between 0 and 

1.0, (we have denoted this probability by 0), and needles are exchanged between 0 and 

125 times a year on average (we have denoted the needle exchange rate by r). All other 

model parameters are as in Table 2.1. From the figure the relationship between 7r* and 
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Figure 7.11: Impact of 0 and r on the Long Term Prevalence in Addicts (Simple Model) 
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ý appears to be non-linear with 7r* much more sensitive to changes in 0 for 0 large, 

whereas the relationship between 7r* and T appears to be linear (as expected from eqn 
(2.8) in Chapter 2). In both cases we have that increasing the probability of cleaning 

or the needle exchange rate decreases ir* as intuitively must be the case (again this also 
follows from eqn (2.8)). 

Figure 7.12 is similar to Figure 7.11 but shows the behaviour of the total prevalence 

of disease among needles in the Simple Model for the previous ranges of 0 and r. This 

figure suggests that ß* is much more sensitive to changes in q' and T when both of 

these are small, in other words when addicts do not clean needles or needles are never 

exchanged. Apart from this interaction effect it appears that the relationship between 

cleaning and 6* is broadly similar to that with 7r*. However this figure suggests that 

increasing r reduces the value of ß* more than it reduces the value of 7r* (all other 

things being equal). For example if we fix 0=0.64 and r= 15.53 per year we find that 

7r* = 0.633 and ß* = 0.675. If we now increase r to 121.7 per year (which corresponds 

to a mean needle circulation time of 3 days, as estimated by Kaplan, 1995) we find 

that now 7r* = 0.471 and ß* = 0.348, a decrease of 26% and 49% respectively. Hence 

needle exchange has a much greater impact on the level of disease among needles 

than among addicts. Simulations of our other three stage models using a variety of 

different parameter estimates suggest that this is the case in general. Kaplan (1995) 

demonstrated that introducing a needle exchange scheme could cause a decrease of up 
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Figure 7.12: Impact of 0 and T on the Long Term Prevalence in Needles (Simple Model) 
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to 33% in the prevalence of disease among needles. Kaplan then implied that this would 

correspond to a similar decrease of 33% in the prevalence of disease among addicts. Our 

models suggest that may not be the case and that the corresponding decrease in the 

prevalence of disease among addicts may be much more modest. 

Figures 7.13-7.15 show the relationship between the total long term prevalence 

of disease in addicts and needles for the parameters T and 0 using the Pessimistic, 

Optimistic and General Models (where the latter uses p jk set Cl). We assume that 

T= 15.53 per year when varying 0 and that 0=0.64 when varying r, all other 

model parameters are as in Table 3.1. These figures show a number of interesting 

features. Firstly as was the case in the Simple Model it appears that needle exchange 

is approximately linearly related to the long term prevalence of disease in both addicts 

and needles. In fact by examining the expressions for the equilibrium prevalence of 
disease amongst addicts and needles in the Optimistic Model it is straightforward to 

show that these are linearly related to the needle exchange rate r. Similarly we find that 

the probability of needle cleaning is related non-linearly to the long term prevalence of 
disease in both addicts and needles with changes in 0 for ¢ close to one having relatively 

more impact. 

It is interesting to note that the relationship between r and the long term prevalence 

of disease in needles and does not necessarily mimic that of the relationship between r 

and the long term prevalence of disease in addicts. Moreover it appears that (at least 
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Figure 7.13: (7r*, ß*) in Pessimistic Model: 7r* = Solid, /3* = Dashed 
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Figure 7.14: (ir*�B*) in Optimistic Model: 7r* = Solid, ß* = Dashed 
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Figure 7.15: (ir*, ß*) in General Model (using Cl): .*= Solid, ß* = Dashed 
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in the Pessimistic and Optimistic Models) the relative decrease in ß* due increasing the 

rate of needle exchange is larger than that observed in lr*. This is consistent with our 

previous discussion regarding the Simple Model, therefore we have again that needle 

exchange is more effective in reducing the level of disease among needles than that 

among addicts. 

To get an idea as to the level of quantitative decrease we might expect given the 

introduction of the previous control strategies into a variable infectivity needle sharing 

environment we can use the Restricted General Model together with the five sets of p, *jk 

terms in Table 5.4. Table 7.2 shows the relative decrease in the long term prevalence 

of disease in addicts caused by increasing the needle exchange rate. The percentage 

Table 7.2: Relative Reduction in ir* due to Needle Exchange 

Mean Needle Circulation Time 

p ýk Selection 23.5 Days 5 Days 4 Days 3 Days 

Optim 0.0% 20.0% 26.4% 37.0% 

A 0.0% 18.9% 25.0% 35.0% 

B 0.0% 17.8% 23.4% 32.8% 

C 0.0% 16.6% 21.8% 30.6% 

Pessim 0.0% 15.8% 20.7% 29.1% 

reduction in Table 7.2 uses a mean needle circulation time of 23.5 days as the baseline, 

this corresponds to a natural needle turnover rate of 15.53 per year as estimated by 

Kaplan (1995). As already mentioned Kaplan estimates that once a formal needle 

exchange scheme has been established the mean needle circulation time can drop to 

between 3 and 5 days. Table 7.2 shows that as the addict-needle interaction assumptions 

move from the Optimistic Model to the Pessimistic Model the relative effectiveness of 

needle exchange decreases. Examining the relative decrease in lr* in Table 7.2 for sets 
A-C it seems reasonable to conclude that a needle exchange scheme, which reduces 

the mean needle circulation time to three days (on average), will reduce the long term 

prevalence of disease in addicts by between 30%-35%. This is very similar to the 

decrease claimed by Kaplan and O'Keefe (1993) and Kaplan (1995) using single stage 

infectivity models. This is further good evidence that as a control strategy to prevent 

the spread of HIV, needle exchange programs are highly beneficial. 
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We now examine the effect of improved cleaning on the long term prevalence of HIV 

in addicts. Table 7.3 is similar to Table 7.2 but instead of increasing r in the Restricted 

General Model we now increase ¢. The percentage reduction in Table 7.3 uses 0=0.64 

Table 7.3: Relative Reduction in lr* due to Cleaning 

Probability Needle Cleaned prior to use 

pick Selection 0.64 0.707 0.773 0.84 

Optim 0.0% 18.9% 48.9% 100.0% 

A 0.0% 17.9% 46.4% 98.6% 

B 0.0% 16.8% 43.4% 92.3% 

C 0.0% 15.7% 40.5% 86.0% 

Pessim 0.0% 14.8% 38.4% 82.6% 

as the baseline, in other words we assume that normally 64% of addicts successfully 

clean needles prior to use. It is difficult to estimate the actual level of cleaning which 

occurs in practice so the values in Table 7.3 are just a guide to show the size of effect 

which improved cleaning can produce. The main point of interest in the table is the very 
large decrease in 7r* caused by a relatively small increase in ¢. Intuitively the reason 
for this is that cleaning is the most direct form of intervention to reduce the spread of 
HIV via needle sharing. For example, if some uninfected addicts always successfully 

clean needles prior to use, then they themselves will remain uninfectious and moreover 

they increase the amount of uncontaminated needles in circulation (since these addicts 

will always leave needles in an uncontaminated state). 

We have briefly examined the qualitative and quantitative relationship between the 

long term prevalence of disease and the introduction of improved needle cleaning and 

needle exchange. We now look at the relationship between these control measures and 
Ro. This quantity is fundamental in determining whether or not an epidemic occurs 

and moreover when Ro is relatively small it also has a basic influence on the long 

term level of disease in the population. For example in the Optimistic Model we have 

explicitly that ir* =1- (1/Rc). Even though this is one of the simplest of our three 

stage infectivity models numerical studies suggest that very similar relationships hold 

between Ro and ir* for all our other models. In particular it appears to be the case 

that when Ro is close to the critical threshold of unity i* is very sensitive to changes 
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Figure 7.16: Critical Threshold of Ro(q, rr) =1 for Varying A and p ýk 
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in this parameter. 

Using eqns (3.7) and (4.7) respectively and writing 1Zo =1o (O, rr) it is straightfor- 

ward to show that to eradicate the disease using needle exchange if the probability of 

needle cleaning 0 is fixed we require that 

T! TO = A7O(Ro (0r0) 
- 1), 

where 0=1 in the Optimistic Model and 0=0 in the Pessimistic Model. Similarly 

to eradicate the disease in the Optimistic and Pessimistic Models using cleaning if the 

needle exchange rate r is fixed we require that 

>_ Oo = 
Ro(O, r) -1 

i Ro(O T) + -e ' 

where again B=1 in the Optimistic Model and B=¢ in the Pessimistic Model. In 

principal we could use the expression for Ro in the General Model to show similar 

results for the Restricted General and General Models, however separating out the r 

and 0 terms in this expression is very much more difficult and we did not attempt it. 

Figure 7.16 shows the degree of needle exchange and needle cleaning required to 

reduce Ro in the Optimistic, Pessimistic and selected cases of the General Model down 

to the critical threshold of unity. Apart from 0 and r all other parameters are fixed 
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Figure 7.17: Critical Threshold of Ro (0,, r) =1 for Varying A and P*ijk 
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at the values in Table 3.1. Each curve divides the (g6, T) plane into two with disease 

persistence on the side with the lower values of (¢, T) and disease eradication on the 

other side. As we might have expected from Figure 5.5 in Chapter 5 more intervention is 

required to reduce Ro down to unity in the Pessimistic Model followed by the Optimistic 

Model and then the General Model with C1, Al then 131. The figure suggests that if 

¢=0.64 as previously estimated then introducing a needle exchange scheme which 

increases T to approximately 121.7 per year on average will eradicate disease in the 

General Model with B1 and Al but none of the other models shown. Figure 7.17 is 

similar to Figure 7.16 but now the rate at which addicts inject, A, has been decreased 

down to 100 per year. It is now clear that with ¢=0.64 and T= 121.7 per year then 

disease can be eradicated in each of the models shown. This is an important point 

as this illustrates clearly the importance of lowering the rate at which addicts inject 

irrespective of the current level of needle exchange and cleaning. 

7.10.1 Summary of Control Strategies 

We have found that the effect of introducing a needle exchange program into our three 

stage infectivity models is broadly similar to that suggested by the single stage Kaplan 

and O'Keefe Model. This is not surprising as whether or not a needle is exchanged 
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should not depend on what stage of infectivity the addict exchanging the needle is 

currently in, or the infectious state of the needle being exchanged. However we do find 

that the effectiveness of this control policy in reducing the prevalence of disease among 

addicts does to some extent depend on assumptions made relating to how addicts and 

needles of different infectivity levels interact. More importantly we also found that 

while needle exchange is very effective in reducing the level of disease among needles 

the resulting reduction in the level of disease among addicts may be much smaller. We 

demonstrated that improved needle cleaning can substantially decrease the prevalence 

of disease among addicts, however we have commented that this policy may be relatively 

more effective when introduced into a population where some degree of cleaning already 

occurs. 

With the parameter estimates used in this thesis it is unlikely that needle exchange 

and improved needle cleaning alone could eradicate the disease completely in all our 

models; we require additional measures such as a reduction in the rate at which needles 

are shared. As previously mentioned when addicts participate in an exchange program 

they can receive counselling on their risk taking practices which may help in lowering 

the rate at which addicts share needles. An additional measure which may prove useful 

would be to run an HIV testing program in conjunction with an existing needle exchange 

program. The motivation behind such a program is that addicts who test positive for 

HIV will hopefully substantially reduce the rate at which they share needles. We 

examine the impact of HIV testing in Chapter 8. 

7.11 Summary of Practical Implications 

In this chapter we examined what new information can be obtained from comparing 

our three stage infectivity models with existing single stage infectivity models. We 

first compared the long term prevalence of HIV in single stage models with that of 

equivalent three stage models. We noted that it is not straightforward to compare 

single stage and three stage models in order to isolate the effect of splitting infectious 

addicts and infectious needles each into three infectious classes. The way addicts and 

needles interact is a major complication in this process. We compared the Kaplan 

and O'Keefe Model with the Restricted General Model and found that these models 

have comparable upper and lower bounds for the long term prevalence of disease. We 

also compared an extended version of the Kaplan and O'Keefe Model with the General 
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Model. We found that in general, moving to three stage infectivity can either increase or 

decrease the long term prevalence of disease, depending on the particular addict-needle 

interaction assumptions in our models. 

We briefly considered the effect of control strategies such as needle exchange pro- 

grams and improved needle cleaning in three stage infectivity models compared to single 

stage infectivity models. We found that these control measures were just as effective 

as in single stage models, in particular the well publicised claim (Kaplan and O'Keefe, 

1993, Kaplan, 1994, and Kaplan, 1995) that introducing a formal needle exchange can 

reduce the long term prevalence of disease by approximately 33% still appears to hold. 

However we did note that assumptions relating to how addicts and needles of different 

infectivity levels interact do have an impact on the effectiveness of this control strategy. 

This chapter concludes our direct interest in three stage infectivity models. We 

now move on to another area of interest in the modelling of HIV among intravenous 

drug users. It has been suggested by Greenhalgh and Hay (1997) that testing addicts 

for HIV might be a worthwhile control strategy. However in contrast Kretzschmar 

and Wiessing (1998) claim that HIV testing is of limited use in reducing the spread 

of HIV. The following chapter investigates the behaviour of models which incorporate 

HIV testing and examines whether this could be an effective control strategy. 
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Chapter 8 

The Effect of Testing Addicts for 

the Presence of HIV 

8.1 Introduction 

In Greenhalgh and Hay (1997) an original model due to Kaplan (1989a) is extended 

to include a variety of additional features, in particular the testing of addicts for HIV. 

Greenhalgh and Hay found that if addicts who are aware of their HIV positive status 

(through participating in an HIV test) reduce the rate at which they share needles, 

then this can dramatically reduce both the speed at which the disease spreads, and 

the equilibrium level of disease incidence. While this result has potentially important 

practical significance, Greenhalgh and Hay acknowledge that the treatment of HIV 

testing in their model could be improved and suggest a method of doing so. 

In this chapter we first discuss a model similar to that examined by Greenhalgh 

and Hay (1997). We then extend this model to deal with HIV testing in more realistic 

fashion and study the behaviour of this more complex model using both simulation and 

analytical results. We later compare the original Greenhalgh and Hay Model with this 

extended model (which we shall refer to as the HIV Test Model) to ascertain whether 

our more realistic treatment of HIV testing has any effect on the long term prevalence 

of disease compared to the original model. We then briefly use our model to examine 

whether HIV testing could be an effective control strategy against the spread of HIV 

among injecting drug users. Next we extend our model to incorporate a three stage 

infectious period using the Optimistic and Pessimistic Models discussed in Chapters 3 

and 4 respectively. We conduct a brief study of the behaviour of these models before 
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investigating the effect that different addict-needle interaction assumptions and relative 

infectivity assumptions have on the effectiveness of HIV testing. The chapter concludes 

with a summary of the main points. 

8.2 The Greenhalgh and Hay Model 

We now outline the approach to HIV testing used by Greenhalgh and Hay (1997). Using. 

the Kaplan and O'Keefe Model illustrated in eqns (1.1)-(1.2) as a starting point, the 

simplest way of incorporating HIV testing is to split the population of infectious addicts 

into two groups, those who have tested positive for HIV and those who have not. This is 

the approach adopted by Greenhalgh and Hay. They assumed that at all times a fixed 

proportion p of the infected addict population are aware of their infectious status. The 

remaining proportion 1-p of infected addicts are not aware of their infectious status. 

It is assumed that addicts who are not aware of their infectious status have a shared 

injection rate of al per unit time, the same sharing rate as for susceptible addicts, 

whereas those addicts who have tested positive for HIV have a shared injection rate of 

. 12 per unit time. The motivation for HIV testing comes from the fact that we expect 

Al to be greater than a2. It is easy to modify the Kaplan and O'Keefe Model in egns 

(1.1)-(1.2) to include this treatment of HIV testing, hence we have that 

dir 
= (1 - ir)Alßa(1 - 0) - 7(I+ b), (8.1) 

ät 

and dQ 
= (1- )7ý(1 -P). \ +pý2]ý - ýaý7(1- ý)(1- (1- B)(1- ý)) 

-ßr. (8.2) 

Examining eqns (8.1) and (8.2) suggests that they do not differ substantially in structure 

from Kaplan and O'Keefe's original model. However as we shall discuss in due course 

these equations are less easy to deal with mathematically than those in Kaplan and 

O'Keefe's original model or indeed the systems of equations in the Simple, Optimistic 

or Pessimistic Models. 

Greenhalgh and Hay (1997) examine the behaviour of a model very similar to that 

defined by eqns (8.1)-(8.2). They show analytically that there exists a unique endemic 

equilibrium if and only if 1o > 1. They show global stability results for the disease- 

free equilibrium if Ro <1 and local stability results for the disease-free and endemic 

equilibria if R0 > 1. In the case where Ro >1 and (1-p)A1 +pA2 > Al they also show 
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global stability results for the endemic equilibrium. In their model they assume that 

needles circulate among the population indefinitely, (which implies that r= 0). In the 

model defined above we have made the more realistic assumption that needles must 

be replaced eventually (and therefore T> 0), this is entirely reasonable since at the 

very least needles have a limited working lifetime. In addition the model defined above 

assumes that addicts clean needles prior to use rather than after use as in Greenhalgh 

and Hay (1997). This again is a more realistic assumption as cleaning a needle after use 

(rather than prior to use) does not serve to protect the current user but rather cleans 

the needle for the next user. These two modifications are minor and the analytical 

results demonstrated by Greenhalgh and Hay can easily be extended to cater for these 

two small extensions. 

Greenhalgh and Hay suggest that a more realistic method of modelling the effect of 

HIV testing would be to assume that all newly infected addicts enter a class where they 

are unaware of their HIV status, and are subsequently tested for HIV at a constant rate 

per unit time, after this they enter a second class of infectious addicts who are aware 

of their HIV status, and this class has a different shared injection rate from the first. 

In effect this approach allows the proportion of infectious addicts who know their HIV 

status to fluctuate as the disease spreads among the population rather than remaining 

static as in the model in eqns (8.1)-(8.2). Therefore rather than a fixed proportion p of 

infectious addicts being aware of their HIV positive status we now have that at time 

ta proportion p(t) of infectious addicts are aware that they are infected with HIV. 

This is a more realistic method of dealing with HIV testing and it is this which we now 

examine. 

8.3 Model Derivation 

We now derive the differential equations which define the spread of I1IV among an 

intravenous drug addict population where addicts are tested for HIV at rate bt per unit 

time and a positive test results in a change of the needle sharing rate from al per unit 

time to A2 per unit time. HIV positive addicts develop AIDS at per capita rate b per 

unit time and on developing AIDS they immediately leave the sharing, injecting pop- 

ulation. We derive three equations: one for infectious addicts who have not yet tested 

positive for HIV; one for infectious addicts who have tested positive for HIV; and one 

for the infectious needles used by both types of addicts. We shall refer to infectious 
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addicts who have not yet tested positive for HIV as type one addicts and those who 
have tested positive as type two addicts. 

The number of type one infected addicts at time t+ At 

_ {number of type one infected addicts at time t} 

+{(number of uninfected addicts at time t) 

x (fraction of addicts who inject in [t, t+ At) with an infectious 

needle which is not cleaned prior to use and where transmission of 

HIV occurs in a single injection)} 

-{number of type one infected addicts who test positive for HIV, 

develop AIDS or leave the sharing, injecting population for other 

reasons in [t, t+ At) }. 

Thus 

nirl(t+At) = niri(t)+n(1-ir1(t)-irz(t))Aiot, B(t)a(1-0)-niri(t)ot(a+St+a) 
+o(ot). 

Subtracting nirl(t) from both sides, dividing by nEt and letting At -+ 0 we deduce 

that 
dire 
dt = (1 - Trl - ir2)A1ßa(1- 5) -irl (t4 + bt + b). 

The number of type two infected addicts at time t+ At 

_ {number of type two infected addicts at time t} 

+{number of type one infected addicts who test positive 

for HIV in [t, t+ At)} 

-{number of type two infected addicts who develop AIDS 

or leave the sharing, injecting population for other reasons 

in [t, t+At)}. 

Thus 

nlr2 (t + ot) _ nlr2 (t) + nir1(t)atot - nir2 (t) (q + a)ot + o(ot). 
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Subtracting nlr2(t) from both sides, dividing by nft and letting At -+ 0 we deduce 

that 
dire 
dt - 8t7rl - (u + b)ir2. 

The number of infected needles at time t+ At 

_ {number of infected needles at time t} 

+{(number of uninfected needles at time t) x (fraction of 

needles used by infected addicts in [t, t+ At))} 

-{(number of infected needles at time t) x (fraction 

of infectious needles used by uninfected addicts in [t, t+ At) 

and left in an uninfected state)} 

-{number of infected needles exchanged in [t, t+ At)). 

Thus 

mß(t + At) = m, 6(t) + m(1- ß(t))Ot7(ir1(t)AI + ir2(t)A2) 

-ma(t)Aii ty(1- 7r1(t) - 72(t))(1- (1- 0)(1- 0)) 
-mß(t)rht + o(Ot). 

Subtracting maß(t) from both sides, dividing by mzt and letting At -+ 0 we deduce 

that 

dß 
= (1 - ß)7(iriAi + ir2A2) - ßAi7(1 - Ir1 - 1r2)(1 - (1 - 0)(1 - 0)) - ßr. 

Hence the system of differential equations which describes the spread of the disease 

is: 

dire 
ät = (1 - 7r1- ir2)aißa(1- 0) - (ß + bt + b)irl, (8.3) 

dire 

dt = atlrl - (u + a)7r2, (8.4) 

and dt _ (1 - ß)7(ir1Al + 7r2, \2) - ßA17(1 - 7r1 - 1r2)(1 - (1 - 6) (1 - c)) - ßT, 

(8.5) 

with suitable initial conditions: 0< irl (0), 7r2 (0), ß(0) and 7rl (0) +72(0), ß(0) < 1. 
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8.4 Equilibrium and Stability Results 

We wish to use the model defined by eqns (8.3)-(8.5) to examine the impact of testing 

addicts for the presence of HIV. A natural performance measure of the effect of HIV 

testing is the long term (equilibrium) prevalence of disease predicted by our model. 
Additionally we are interested in whether our model possess a critical threshold pa- 

rameter which will predict whether or not the disease will take off if initially present. 
If so this parameter will give an indication of whether HIV testing alone could produce 

an effect big enough to eventually eradicate disease among the population. First we 
define 

. tla(1 - ¢) _2ac 

(p+it+5)(t1+ale) 
[A1 +(ti + (8.6) 

where Tl = r/ry and B=1- (1 - ¢)(1 - 0). We now investigate the behaviour of our 

model and our results are summarised in the following theorem: 

Theorem 8.1 There is always the unique equilibrium where there is no disease present 
in either addicts or needles. If Ro <1 then irrespective of the state of the current 

epidemic the disease will eventually die out among addicts and needles. If Ra >1 

and if at least one addict or one needle is initially infected then disease will remain 

persistent among the population indefinitely, moreover there now also exists a unique 

endemic equilibrium solution which is locally stable. 

Proof 

It is obvious that the disease-free equilibrium is always a solution to eqns (8.3)- 

(8.5). We now show that an endemic solution exists if and only if I? > 1. Note that 

we assume that all model parameters with the exception of 0 are strictly positive and 

that 0<1. From eqns (8.3)-(8.5) we have that 

(1- 7r*)Aia(1 - 0)ß* =L (it + öt + ö)ý (8.7) 

and (1 - ß*)7(lr , \i + ir2A2) _ ß, \i7(1 - 7r*)B + ß*T, (8.8) 

where (7r1,7r2, ß*) is an equilibrium solution to eqns (8.3)-(8.5), lr* = 7rl + it ,6= 
1- (1 - 0)(1 - ¢) and L=1+ (at/(i + 5)). Using eqn (8.4) we have that iri = 7r*r7l 

and 7r2 = 7r*r12 where ill = 1/L and r72 = (bt/(p + b))i i. Hence eqn (8.8) becomes 

Q_ 
(A1171 + A2? 72)ir* (8.9) 

h' (A1171+ \2172)lr*+ý1(1 -7C*)e+Tl, 
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and from eqn (8.7) we have that 

Ir*(µ + at + a) (8.10) (1- 7r*)Ala(1 - q)L. 

Equating egns (8.9) and (8.10) and simplifying we find that if ir* >0 then 

ä, \-µ(AiO+Ti) 
ÄA 

-A, \lö+&Ä 
(8.11) 

= 
aA (1 µ(a19+Ti)) (8.12) 

äµ-µa18+ää ää J 

where ä= . \la(1 - cb)L, ä= alr/1 +A2772 and µ=u+ St + S. Now substituting the 

expression for ir* in eqn (8.12) into eqn (8.10) and simplifying we have that 

ß,. _ 
«ä-Aa, e+Tl 

«(ä+71) 
(8.13) 

+ 

T1)1 
. (8.14) _Ai 

(1- i(AiB+ 
T ää /J 

Using eqn (8.6) we have directly that 

(7r**) 
ää (1- 1 (1 

-1 (8.15) 
' 

(µä 

- µa19 + &A Ro 'A+ T1 Ro 

Hence if R, e <1 then the only equilibrium solution to eqns (8.3)-(8.5) is the disease- 

free solution. If Ro >1 then there still exists the disease-free solution but now we also 

have a unique endemic equilibrium solution. This completes the equilibrium results of 

Theorem 8.1. " 

We now show that the disease-free equilibrium is globally stable when Ra <1 and 

therefore disease is always eventually eradicated when lip < 1. Let x= (7rl, 7r2, ß) and 

u(x) =0+ cl7rl + c27r2 where 

,y 
Cl 

a(1 - 0) 

and C2 =1t (04 + 8t + 8) Cl - A17). (8.17) 

Note that cl >0 always and when Ro < 1, c2 > 0. Hence u(x) is positive definite on 

x>0. Using eqns (8.3)-(8.5) it is straightforward to compute du/dt, we have that 

du 
72 

(A+b)(li+öt+d)ry(B+ 
-7)2_ +T) 

dt dta(1 c5) 
-ßir2 

(A27 + r) (8.18) 
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When Ro <1 all coefficients in du/dt are strictly negative and therefore du/dt is at 
least negative semi-definite on x>0. When du/dt < 0, u(x) is a strong Lyapunov 

function for the disease-free solution and hence by Theorem 10.2 in Jordan and Smith 

(1987) the disease-free solution is globally asymptotically stable in x>0. We now show 

that when du/dt =0 and Ro <1 the only invariant set is the disease-free solution. 

When Ro =1 then the ire coefficient in du/dt equals zero. Hence du/dt =0 is satisfied 

when either ß>0 and ir =0 or 8=0 and r>0, however dir/dt >0 when ß>0 and 

7r =0 and dß/dt >0 when /B =0 and ir > 0. Therefore the only invariant set when 
Ro =1 is the disease-free solution. When Ro <1 then we must have that 1r2 = 0, and 

either ,B=0 and 7rl > 0, or /ß >0 and I1 = 0. By a similar argument to the case where 

Ro =1 the only invariant set in du/dt =0 is the disease-free solution. By LaSalle's 

Invariance Principle, (La Salle, 1976), x(t) -+ M fl u'1(c) for some c>0 where M 

is the largest invariant set in du/dt = 0. Hence the disease-free solution is globally 

asymptotically stable in x>0. 

We now show that when Ro >1 the disease-free equilibrium is no longer stable 

and extend this result to show that if initially present then disease will persist for all 

time. Consider the linearised system of eqns (8.3)-(8.5), evaluated at the disease-free 

equilibrium. This system can be represented in matrix form as 

dx 
= Jx, 

dt 

where xT = (ir1, ire, ß) and 

-(µ+öt+b) 0 )ia(1-¢) 

bt -(ii + a) 0 

A17 Aal -A170 -T 
We wish to show that at least one eigenvalue of J has a strictly positive real part. If 

the characteristic equation of J is 

w3 + alw2 + a2w + a3 = 0, (8.19) 
then using the Routh-Hurwitz conditions we wish to show that at least one of al > 0, 

a2 > 0, a3 >0 and ala2 > a3 is not true when ho>1. It is easy to show that 

a3 = (µ + b) (lý + bt + b) (iii + T) - btala(1- ý)7ý2 - 7ýia(1- ý) (, + b), 
r ýi7a(1- c5)(A2bt + Jºi(, i + b)) 

_ (ý+b)(lý+bt+b)(ai7e+T)I1- 
(Ft+b)(µ+bt+MAI 7©+T) 

_ (µ+b)(ýc+bt+b)(a1ryB+T)(Ll-Ro), 
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using eqn (8.6). Hence a3 <0 when Ro >1 and therefore the disease-free equilibrium 

is unstable when Ro > 1. We can now use this result to show the following lemma: 

Lemma 8.1 There is a small (fixed) number c>0 such that if Ro >1 and disease is 

initially present then there exists some v>0 such that for t>v, 7r1(t) > e, 7r2(t) >e 

and ß(t) > e, where c depends on the model parameters but not the initial conditions. 

Proof. 

Firstly we show that if any of 7r1(0), 7r2 (0) or 6(0) are strictly positive then ir1(At) > 

0,7r2(At) >0 and ß(Ot) >0 for At small and strictly positive. Following a similar 

method to Lemma 2.3 we need to consider four initial conditions. 

1. Suppose that ß(0) = 0. Hence 7r(0) > 0. Using eqn (8.5) we find that 

ß(ot) _ (ire (0) Al + ire (0)A2)7ot + o(ot) > 0, 
and 7r(At) > 0, by continuity for small At. 

Let 1- ir, hence 

d, O 
dt -' 1ßa (1- 0) + (µ + J)(1 - 0). 

If ir(0) <1 we must have ßi(0) > 0, hence O(At) >0 for small enough At > 0. If 

ir(0) =1 then ifi(O) =0 and 

ip(Ot) > (p + ö)Ot + o(At) > 0, for At small and strictly positive. 

By choosing At >0 small enough and starting at t= At instead of t=0 

we can assume that 7r(0) > 0,0(0) >0 and Q(0) > 0. If al(0) =0 then 

7r1 (At) = , O(0)a1iB(0)a(1-O)At+o(Ot) > 0, if At >0 is small enough. Hence we 

can also assume that 7r, (0) > 0. If 7r2(0) =0 then 7r2 (At) = ötirl (0)At+o(Ot) > 0, 

if At >0 is small enough. Therefore we can also assume that 7r2(0) >0 

2. Suppose that 7r(0) = 0. Hence ß(0) > 0. Following the same method as in the 

previous case we find that 

7r(At) = \10(0)a(1 - q)Ot + o(Ot) > 0, for small At, 

#(At) > 0, by continuity for small At, 

and 1'(At) > 0, also by continuity for small At. 
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Therefore by choosing At small enough and starting at t= At we can assume 

that ir(0) > 0, ß(0) >0 and iP(O) >0 and arguing as in the previous case we can 

also assume without loss of generality that 7r1(0) >0 and 7r2(0) > 0. 

3. Suppose that ir(0) > 0, ß(0) >0 and 0(0) > 0. This case is trivial and follows 

directly as in Case 1. 

4. Suppose that ir(0) > 0, ß(0) >0 and 0(0) = 0. This implies that ir(0) = 1, and 

hence 

1p(At) > (µ + a)ot + o(At) > 0. 
Thus it follows directly that by starting at time t= At where At is sufficiently 

small we can assume that ii(O) >0 and the result follows by Case 3. 

Hence we can assume that if any of In , In2 or 0 are initially strictly positive then 

after a short duration all components are strictly positive. Therefore we have that 

there exists fixed 1>e>0 such that if At is small enough and strictly positive then 

7rl (At) > eiri, 7r2 (At) > ei2 and #(At) > e, B*. We now show that once this occurs each 

component can be bounded below by a similar form of bound for all time. We must 

have that either 7r,, 00 >Z eii or else lr1, ¬ <Z e7ri. Suppose first that 7rl, ý >Z 

From the definition of lr1, ý we have that there exists Ti such that i1 > irr for all 

t> T1. From Lemma 2.2 we have directly that 

> 
aeri'°° 

> 2Eatý1 = 
1E7r* 

7r2,00 2 

Hence there exists T2 such that 7r2 >4 eire for all t> TZ. Using eqn (8.5) we have that 

dfl 
> alyýi - ý[ýiy(1 + e) + T), 

dt 

and following the method of Lemma 2.2 we have directly that 

A. ? 
Alry7rl'O (8.20) 

Ai7(1 + B) +T 

So we have that there exists T3 such that p>4 qß* for all t> T3 where 

EA1'Y 7r1 
El 

A1y(1+9)+TQ*" 

Therefore for t>T= max(T1, T2iT3) we have that the disease persists in addicts and 

needles, and ir1(t) > e21r1,7r2(t) ? e21ä and ß(t) > ¬2ß* where e2 =ä min(e, cl). 

Now suppose that 1rl, ,o<2 eir in which case there exists S> At where 7r1(() < 

1 cir . 
Let to = inf{C > At, 7rl ([, ) <Z girl }, and tl = inf{S > to, 7rl (C) >2 eir }, where e 
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is fixed and positive. By the definition of to we have that ir1(to + v) <2 eiri if v is small 

and positive, hence tl > to. Suppose that tl < oo. By continuity 7rl(to) = 7r1(ti) _ 
2 67r* l' and therefore I1 is less than Z eirl in (to, tl) and greater than 2 eire just after t1. 

to is the first time after At that 7rl goes below 2eiri, tl the next time after to that 71 

rises above it. The basic idea is the same as in the proof of the corresponding result for 

the Simple Model. We shall show that I1 being small forces i2 and ß to become small. 

Using the instability of the disease-free equilibrium we deduce that if e is small enough 

then 7rl, i2 and ß all being small forces i1 to rise above 2 eai, and moreover the total 

time for which 7rl remains continuously below 2 earl can be bounded above by a bound 

that depends only on e and the model parameters. From Lemma 2.4 there exists a time 

Tl >0 such that if to +Tl < tl then for all tE [to +T1i tl], 0< 7r2 < (2 +i)7r2e, where 

A is small and Tl depends only on the model parameters, A and e. We have that 

d, O 
< alry7r-ßr, ät 
< A17 (Z 

+D E7f* - 
ßr, for tl >t> to + Ti, 

and using the method of Lemma 2.4 we have directly that 

Al-y(7' +2ýýE7C* /1 
ß<T=( +2 0) E1ß* for is >t> to + ! fl + T2, 

where ei = (e)ºlryir*)/(Tß*) and where T2 also depends only on the model parameters, 0 

and c. We must have that either tl > to+max[T1, Ti+T2] or tl < to+max[Tj, T1+T2]. 

We have that for tl >t> to +Ti we can choose e small enough such that 2e7r1 +(+ 

0)e72 < e2 for e2 arbitrarily small and positive. Now let t2 = inf{C : for tl >t> 

to + C, ir(t) < e2}, and hence if t2 > 0, then zr(to + t2) = e2 and to + t2 is the last time 

after to but before tl that 7r(t) > e2 and note that t2 < TI. For tl >t> to + t2 using 

eqns (8.3)-(8.5) we find that 

ät1 ? (i - E2)al«(1- A6 - (14 + at + a)irl, (8.21) 
dir2 (8.22) 
dt 

atýl - (µ + ö)ßr2, 

>_ 7(iriai + ir2)2) - i8(1\170 + T) - (Al +. 2)7E2ß" (8.23) and dt 

We can write this in vector form as 

dx 
> J(e2)x, ät 
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where xT = (7r1,7r2, ß) and 

- (µ + at + a) 0 Aa (1- 0) (1- E2) 
J(E2) = at -(14+6) 0 

A17 A27 -(A17(¬2 + B) + )'27e2 + T) 

When e2 = 0, J(0) = J, the linearised stability matrix about the disease-free equilib- 

rium. We have already shown that when Ra >1 this equilibrium is unstable. Hence 

following the method of Lemma 2.5 we have that J(e2) has a strictly positive left eigen- 

vector corresponding to a strictly positive eigenvalue for e2 sufficiently small. It follows 

as in the proof of Lemma 2.5 that tl < to + max[Tj, T, + T27 t2 + T31 where T3 is a fixed 

time dependent only on the model parameters, e2 and A. Therefore arguing as in the 

corresponding result for the Simple Model in Chapter 2 we have that if lip >1 and 
disease is initially present then there exists a fixed c>0 and v>0 such that for all 
t>v, 7rl(t) > c, 7r2(t) > c, and ß(t) > e. Moreover e and v depend only on the model 

parameters. This completes the proof of Lemma 8.1. " 

We have shown that if Ro >1 and disease is initially present then disease will persist 
indefinitely among the population. We now show that the unique endemic equilibrium 
is locally stable. We find that the Jacobian matrix of the system (8.3)-(8.5) evaluated 

at the endemic equilibrium is 

-al a(i-m)ß* -(u+at+a) 

(i-ß*+ß*e)A17 

-aia(i-ý)ß* (1-W*)Aia(1-ý) 

-(p+a) o 
((1-Q*)a2+ß*)1B)' -7[AiÖ+aiai(1-9)+r (a2-)1B)]-r 

Suppose that the characteristic equation of this matrix is w3 + ß1w2 + dew + ä3 = 0. 

We now show that the Routh-Hurwitz conditions ill > 0, ä2 > 0, a3 >0 and 11162 > a3 

are satisfied when Ro > 1. It is easy to show that 

a1 = ry[. 18(1-7r*)+7riAi+7r2a2]+T+AIa(1-AB*+(µ+be+b)+A+ 

and hence a1 > 0. We find that 

ä2 = (ala(1 - 5)Q* + ýc + bt + b)ry ýa1B(1- *) + n. *)t + ý2a2 + Tiý 

+7 
[Aid(1 

- 7f*) + it .1+ 7f2A2 + fl] (P + a) 

+(Ala(1 - O)ß* +p+ öt + b) (p + ö) + Ala(1 - 0)ß*öt 

-x17(1 - ß*(1 - 
9))(1 

- ir*)ala(1 - 0). (8.24) 
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We wish to express the positive terms in such a way as to eliminate the negative term. 

First note that we can cancel out the -a17/3*9(1- ir*)ala(1- 0) term leaving us with 

-A11(1 -, 6*)(1- ir*)ala(1 - ¢). We have that 

-x17(1 - )(1 - 7r*)Aia(1 - ¢) = -ai7(l 
;! *)7r*t11(p 

+ öt + b), 

using eqn (8.7), 

_ +bt+5)[al*(1-7r*)B+T] 
'rte (aII71 + AM) 

using eqn (8.8), 

- 
-Ai'1 i (µ + St + ö) [A1Y(1 -1r*)9 + T]. %>1171 + A2172 

In ä2 we have a positive term (p+bt+b)[ryý1B(1- *)+T] and since A1r/1/(tirli+A2t72) < 

1 then it follows directly that ßs2 > 0. We now move on to ä3, we have that 

a3 = 

+bt. \l«(1 - 0), 8*7[ id(1 - 7r*) + 7r*(Alii + A2t72) + T1] 

-6t(1- ir*)al«(1- 0)7[x2(1- Q'') +ß`ale] 

-, \1-y(1 -, 6*(l - 
B))(1 

- *)ala(1 - 0) (14 + 5). 

This expression fora simplifies down to 

d3 = Ala(1 - 5)ß(1+ J)7[lr*(AII71 + A2172) + Ti] 

+(p + at +a)(11 +a) [a10(i - lr*) + 1T*(aln1 +? 2772) + Tß]7 

+atAi«(1 - O), 7[ß*(A + A27j2) + Til 

-(i -, B*)(i - 7r*)al«(1- 4)7[btA2 + (u + ö)All- 

In a similar fashion to the ä2 >0 calculation we find that 

-(i - Q*)(1- *)al«(1- 0)'r[5gA2 + (1 + 5)1\11 

_ -(/4 + at + ö)(14 + 6)[AJ7(l - 7r*)e +T]. 

Hence we can cancel out the negative term in d3 using part of 

(N + at + 6)(1-4 + 6) [AlO(1 
- 7f*) + Ti + 7r* (Alt + )2t72)]7, 
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and therefore ä3 > 0. We now show the condition of ä02 > ä3. This follows a 

similar method to the previous manipulations but contains more complicated terms. 
4152 - d3 = 

(Al«(1- O)ß* +µ+ st + 5)y2 {a1e(i - *) + . *(A + a2+ß) + Tlj 2 (8.25) 

+ (II + 5)72 I Ale(1 
- 7f*) + e(A1i1 + A2772) + fl] 

2 

+ (Aia(1- c)ß* +p+ at + b)2y [AlO(1- lr*) + lr*(Al, 71 + a2) + fl] (8.26) 

+ 2(Ala(1 - 5), 6* +, a +bt+ ö) (µ + b) [)º10(1 
- lr*) + lr*()\i, 7l + A2t72) + Tl]'y 

+ (Ala(1-¢) +µ+öt+b)2(µ+a) 

+ (z + a)27ýa1e(i - lr*) + ir*(Aitii + A2i72) + Ti] 

-I- ()ia(1-c)Q*+µ+bt+S)(µ+ö)2 

- alry2(1 - Q*(1 - B))(1 - ir*)ala(1 - 0)[a1B(1 - lr*) + 7r*(ait7i + . \2112) + fl] 

(8.27) 

+ (a1a(1- ý)ß* +µ+ at + ö)btala(1- ¢)ýB' 

- (al«(i - ý)ß* +, ý + at + a)a17(i -, a*(i - e)) (i - *)al«(i - ý) (8.28) 

+ (/ý + b)btala(1 - ý) i- ßt(1- *)ala(1 - ý)7ýý2(1 - *) +ý*ý18,. (8.29) 

We now collect the terms in expressions (8.25) and (8.27) and the terms in expressions 

(8.26) and (8.28), this gives us that ä012 - äs = 

ýýi7B(1 
- *) ++ A2 2) + r) 

{- 
al-r(i - ß*(i - e))(1- lr*)A a(1- 0) 

+(Aia(l - Aß* +p+ bt + a) (al7e(i - 7r*) + 7r*7(alnl + A27) + T) 
1 

+(al«(1- 0)ß* +p+ st + b) {- x17(1- ß*(1 - 
9))(1 

- 7r*), Xi«(1 - 0) 

+(ala(i - ý)ß* +µ+ at + a) (al-re(i - 7r*) + lr*7(Ai i+ A2112) +r) I 

+ other strictly positive terms. 
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Consider the terms inside the {... } pair, we can cancel out the -Alryß*O(1-7r*)Ala(1- 
0) term leaving us with -alj(1 -ß*)(1- 7r*)Ala(1- 0) plus other positive terms. We 
have already shown that 

, \1'Y(1 - /3*) (1- ir*)A a(1- 0) < (u + at + a)[A17e(1- lr*) +T], 
and since (µ + bt + b) [Al yd(1- 7r*) + T] is an unused part of the positive terms inside 
{... } we have that a02 > k. This completes the local stability results for the endemic 

equilibrium and the proof of Theorem 8.1.. 

8.4.1 Interpretation of Ra 

We find that there exists a critical threshold parameter which governs whether or not 
disease dies out or takes off in our HIV Test Model. We now show that as usual 
this critical threshold parameter represents the basic reproductive number. Consider a 

single newly infected addict entering a population containing only susceptible addicts 

and uninfected needles. On average a single infectious addict remains in the population 

unaware of his or her infectious status for 1/(j + 5t + b) time units and during this 

period shares needles at rate Al per unit time. Hence Al/(µ + at + b) is the expected 

number of needles that are left infectious prior to the addict being tested for HIV. The 

probability that an addict receives an HIV test during his or her infectious lifetime is 

bt/(µ+St+ö). Hence an addict becomes aware of his or her HIV status with probability 
bt/(p+St+b) and now shares needles at rate A2 per unit time for the remainder of his or 
her infectious lifetime. On average a single infectious addict remains in the population 

after an HIV test for 1/(p+5) time units. Therefore A2/(p+3) is the expected number 

of needles that are left infectious by the addict once the addict has tested positive 
for HIV. Hence the total expected number of needles a single infectious addict leaves 

infectious during his or her infectious lifetime is 

1+ A26 

+at+a 
IA 

µ+a]' 
We now know how many needles an addict infects during his or her infectious 

lifetime, we next wish to determine how many infections are caused by each needle 

until it is rendered virus free. Consider a single infectious needle, this needle is rendered 

virus free if a susceptible addict flushes or cleans the needle. In addition a needle can be 

rendered virus free by being exchanged. Hence the total rate at which a single infectious 
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needle is rendered virus free is Aj y(1- (1 - 0)(1- 0)) +T, therefore an infected needle 

spends on average 
1 

Ai-t(1 - (1 - 0)(1 - B)) + T' 
time units in an infectious state. Hence the expected number of susceptible addicts 
infected by this single infectious needle is 

. \i7a(1- 0) 
Ai7(1 - (1 - ¢)(1 - B)) +T . 

We now have the expected number of addicts infected by a single infectious needle, 

putting this together with the expected number of needles an addict infects throughout 

his or her lifetime gives Ra. Hence, 

1 Ala(1 - ý) ýý A2 8t 

R0 (. +it+s)(Tý+ale) ý+ý+aJ' (8.30) 

and therefore we have that the critical threshold parameter in Theorem 8.1 is indeed 

the basic reproductive number. As usual Ra also has an alternative interpretation as 

the expected number of secondary needles infected by a single infected needle entering 

an entirely susceptible population at the disease-free equilibrium. 

8.5 Stability using Simulation 

Before we can simulate the HIV Test Model we first need to estimate values for the 

parameters in this model. Where appropriate we again use the parameter estimates 

discussed in Appendix B and illustrated in Table 2.1, we additionally need to estimate 

1\1, e\2 and bt. Whatever values we use for Al and A2 it seems intuitive that al > , 12, 

as addicts who know they are infected should reduce the rate at which they share 

needles. Kaplan and O'Keefe (1993) estimate that the mean shared injection rate 

for the population of intravenous drug users in New Haven, Connecticut, USA, is 

approximately 246.22 per year. As discussed in Appendix B this estimate is higher 

than that suggested by other authors such as Goldberg et al. (1995) in Greenhalgh 

(1996) who estimate that addicts in Glasgow, Scotland, share needles only 72 times a 

year on average. However this distribution of needle sharing is very skew with many 

addicts sharing infrequently and a small minority who share equipment up to between 

900 and 1800 times a year. It could be argued that it makes sense to overestimate 

rather than underestimate this parameter since a small minority of very high risk users 

could have a disproportionally large effect on the spread of the disease. We therefore 
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Figure 8.1: HIV Test Model Tends to Endemic Equilibrium when Ro >1 
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suppose that addicts who have not yet tested positive for HIV inject with a shared 

needle 250 times per year on average. Kretzschmar and Wiessing (1997) discuss a 
drop of 50% in the shared injection rate once an addict has received a positive HIV 

test. In the following simulations we assume that once aware of their infectious status, 

addicts have a mean shared injection rate of 150 per year. The Center for Disease 

Control in the United States estimates that if anonymous HIV testing is available then 

individuals who consider themselves at risk will participate in an I1IV test at least once 

a year (CDC, 1998), therefore we assume that öt =1 per year. 

Figure 8.1 shows simulations of the fraction of infected addicts who are not yet aware 

of their infectious status, the fraction of infected addicts who have tested positive for 

HIV and the fraction of infectious needles circulating among the total addict population. 

These simulations initially assume that a fraction 0.01 of all addicts are infectious where 

none of these addicts have yet tested positive for HIV and no other addicts or needles 

are initially infectious. In these simulations we assumed that Al = 250 per year, 
-'2 = 150 per year and St =1 per year (hence addicts are tested for HIV on average 

once a year). The value of R0 for these parameter estimates is 2.36 and the endemic 

equilibrium values are (Irr, i2,, 6*) = (0.101,0.431,0.495). The simulations clearly show 

that after approximately 30 years the model reaches a steady state corresponding to 

these equilibrium values. 

Figure 8.2 again shows simulations of the fraction of infected addicts who are not yet 
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Figure 8.2: HIV Test Model Tends to Disease-Free Equilibrium when Ra <1 
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aware of their infectious status, the fraction of infected addicts who have tested positive 
for HIV and the fraction of infectious needles circulating among the total addict popula- 

tion. These simulations initially assume that (ii (0), 12 (0), , B(0)) = (0.101,0.431,0.495), 

the endemic equilibrium values for the parameter estimates used in Figure 8.1. At time 

zero we have used the following parameter values: Al = 150; A2 = 50; St = 1, these 

give an Ro value of 0.84. It is clear from the simulations that eventually disease dies 

out in all addicts and all needles. 

We simulated the HIV Test Model for a variety of different initial conditions and 

parameter estimates. In each case we found that if Ro <1 then disease eventually dies 

out in all addicts and all needles. When disease was initially present and IO >1 then 

in each case the model tended to the endemic equilibrium solution. 

8.6 The HIV Test Model and the Greenhalgh and Hay 

Model 

We now examine the differences in behaviour between our HIV Test Model and the 

model discussed in Greenhalgh and Hay (1997). It has been demonstrated that in 

both these models if Rp <1 then the disease will die out in all addicts and all needles 

and if Ro >1 then the prevalence of disease appears to tend to the unique endemic 

equilibrium solution. We are interested in whether allowing addicts to be tested for 
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HIV at a constant rate per unit time (at which point addicts then change their needle 

sharing rate from ai to A2) gives rise to a different long term prevalence of disease 

compared to the simpler situation where it is assumed that a constant proportion p of 

infectious addicts inject at rate A2 and a constant proportion 1-p of infectious addicts 

inject at rate A. We now compare the endemic equilibrium solution of the HIV Test 

Model with that of the Greenhalgh and Hay Model. As in Chapter 7 we cannot sensibly 

compare these models without first making some adjustments such that we have a fair 

comparison. 

8.6.1 HIV Model Calibration 

We wish to adjust our two models such that the only difference between them is that 

in one, the proportion of addicts who inject at rate )2 is constant, and in the other the 

proportion of addicts who inject at rate A2 varies as the epidemic spreads among the 

addict population. In the Greenhalgh and Häy Model a fraction p of all addicts inject 

at rate A2 and a fraction 1-p inject at rate A,. In the HIV Test Model each addict 

spends on average 
1 

+bt+a 

time units injecting at rate Al and on average 

1 it 
µ+5t+bµ+a 

time units injecting at rate A2. At equilibrium the expected number of addicts in each 

of these two categories is inversely proportional to the time spent in each category, 

hence the ratio of type two to type one addicts is in the ratio 

it 
, 4a 

Hence one way to calibrate these two models is to require the same ratio of addicts in 

each of these two categories for both models so 

p it 

1-p /c+aSolving 

for p gives, 

it 
p+at+a' 

It is natural to set p= St/(p + St + S) since this represents the long term proportion of 

addicts in the HIV Test Model who share needles at rate A2. Hence with this choice of 
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pand5 

1-p 
_1 µ+b µ+ac+S' 

(8.31) 

and p_ bt 1 

µ+S µ+St+6µT6' 
(8.32) 

Theorem 8.2 Under calibration the HIV Test Model has the same endemic equilibrium 

solution as the model due to Greenhalgh and Hay (1997). 

Proof. 

We first rewrite eqns (8.1)-(8.2) as 

d, 8 
_ 7ra(1 -, B) - (1 - 7r)Pß - rß, (8.33) 

dir 
dt_ 

(1 - 7r)vß - (p + ö)7r, (8.34) 

where v= Al (1 - ¢)a, (8.35) 

p= a17B, (8.36) 

and v= 7{(1 - p) Al + pA2] . (8.37) 

From eqn (8.34) and eqn (8.33) we have that 

ß* _ 
(p + 6)ir* 

(8.38) 
(1- lr*)v' 

air* 
and - p(1- 7r*) +r+ v7r* 

(8.39) 

Equating eqns (8.38) and (8.39) and simplifying gives us 

*_ va 
(p+ö)(Q-p)+av 1 

RWH] 
(8.40) 

where 

Ica _ 
Al (1 - q)a[(1 - p)A1 + p) 2]7 (8.41) 

(p + 6)(Ai'Ö+ r) 
is the basic reproductive number of the Greenhalgh and Hay Model. Substituting in 

the expression for 7r* in eqn (8.40) into eqn (8.38) gives us 

Q+T 

[1- 

7cII 

] 
(8.42) 
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Using eqns (8.31) and (8.32) we have that RW H= Ro where Ro is the basic reproduc- 
tive number of the HIV Test Model. After a little simplification we find that under 

calibration 

va 
_ 

ää 
µ(jß - a1B) äA' 

(8.43) 
(p+ Ma - p) +au + 

01 and 
+T 

(8.44) 
+ Ti 

Hence the result follows directly from eqn (8.15). This completes the proof of Theorem 

8.2.. 

We now simulate the Greenhalgh and Hay Model with p and St chosen as described 

previously and compare these simulations with the HIV Test Model such that these 

models are calibrated. Figures 8.3-8.5 show comparisons of the total fraction of infected 

addicts, the total fraction of infected needles and the fraction of infectious addicts who 
have been tested for HIV. It is clear from the figures that as we expect from Theorem 

8.2 the long term prevalence of disease in addicts is the same in the HIV Test Model 

as in the Greenhalgh and Hay Model and similarly for the long term prevalence of 
disease in needles. However note that the speed at which the disease spreads is less 

when HIV testing is viewed as a static process. An explanation for this is offered 

in Figure 8.5 which suggests that at the start of an epidemic the static assumption 

greatly overestimates the number of infectious addicts who have tested positive for HIV. 

However Figure 8.5 also shows that eventually the proportion of infectious addicts who 
have been tested for HIV reaches a steady state value which is the same as that of the 

constant p in the Greenhalgh and Hay Model. 

To summarise, we have that under calibration the proportion of infectious addicts 

who have been tested for HIV and therefore inject at rate A2 is eventually the same in 

the Greenhalgh and Hay Model and the HIV Test Model. When this is the case we 
have that the endemic equilibrium solution in both models is the same and therefore 

we can conclude that modelling HIV testing by allowing addicts to flow from one class 

into the other, although it is more realistic, makes no quantitative long-term difference 

to the results of the simpler method used by Greenhalgh and Hay. 
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Figure 8.3: Infectious Addict Comparison 
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Figure 8.4: Infectious Needle Comparison 

Al = 250, A2 = 150 and St =1 Al = 200, A2 = 150 and bt = 10 
1 

0.8 

0.6 

0.4 

0.2 

0 

Greenhalgh & Hay=solid 

0 10 20 30 40 50 60 0 

Time (Years) 

1 

x 0. s 
0. s 

Eý 0.4 

0.2 

0 

10 20 30 40 50 60 
Time (Years) 

Figure 8.5: Proportion of Infectious Addicts Tested for HIV 
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8.7 Performance Measures of HIV Testing 

We now briefly examine the effect on the long term prevalence of disease in addicts 

caused by introducing an HIV testing program. It was decided to examine the effect 

on 7r* for al = 250 and A2 in the range of 250 to 50 shared injections per year and 

where addicts are tested for HIV from between once every ten years to once every year 
(on average). These estimates are consistent with those in Kretzschmar and Wiessing 

(1998) and CDC (1998). 

Table 8.1 shows the total long term prevalence of HIV in addicts suggested by 

Table 8.1: Long Term Prevalence in Addicts 

Injection HIV Testing Rate (St) 

Rate (A2) 0.1 0.2 } 0.3 0.4 0.5 1.0 

250 59.8% 59.8% 
_ 
59.8% 59.8% 59.8% 59.8% 

200 59.1% 58.5% 58.3% 58.0% 57.8% 57.4% 

150 58.1% 56.9% 56.0% 55.4% 54.8% 53.2% 

100 57.0% 54.7% 52.8% 51.1% 49.7% 44.9% 

50 55.7% 51.6% 47.5% 43.4% 39.3% 19.5% 

the HIV Test Model for the range of parameters mentioned above. There are two 

contrasting points of interest in this table. Firstly note the very small effect caused 

by testing addicts if they are tested less than once a year and after being made aware 

of their infectious status still inject with shared needles more than 100 times a year. 

In contrast note the very significant decrease in prevalence when addicts are tested on 

average once every two years or once every year and only share needles up to 50 times 

a year. Therefore a fair summary of the effect of testing addicts for HIV is that this 

strategy will be effective only provided that addicts are tested regularly for HIV, say 

once a year, and moreover those addicts who have received a positive test must be 

encouraged to greatly reduce the rate at which they inject with shared needles. 

We have previously shown that the basic reproductive number is fundamental in 

determining whether the disease becomes endemic or dies out. Moreover using eqn 

(8.15) together with simulations it is clear that Ro also has a significant influence on 

the initial speed at which disease spreads and the long term prevalence of disease. Hence 

Ro can also be used as a performance measure of the effectiveness of HIV testing. Figure 
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Figure 8.6: Ro as a Performance Measure 
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8.6 illustrates Ro as a function of the HIV testing rate for values of A2 from 200 shared 
injections per year to 50 shared injections per year. All other parameter estimates are 

as previously stated. The figure shows a similar behaviour to that suggested in Table 

8.1 in that Ro only becomes close to one (the critical threshold point) if both addicts 

are tested frequently and the post-test shared injection rate is very low. 

Figures 8.7 and 8.8 demonstrate how Ro and the long term prevalence of HIV 

among addicts respond to changes in needle exchange rate, (the remaining parameter 

estimates are as in Figure 8.1). Kaplan (1995) estimates that prior to the introduction 

of a formal needle exchange program, needles are exchanged 15.53 times a year on 

average. As discussed in Chapter 7 once a formal program has become established 

he estimates that this will increase to between 73 and 121.7 times a year on average. 
From the figures it is clear that once the needle exchange rate becomes sufficiently large 

disease no longer remains endemic among the population. We have that 

[0)A1 Ro<1 if and onlyifr>ro= al«+(1 
ac - +a +A+b]ry-A1Bry. 

For the parameter estimates used in the figures we have that if r> 207.8 per year then 

the disease will die out. It seems reasonable to expect that the reduction in the spread 

of HIV due to implementing both HIV testing and needle exchange together will be at 
least equal to (and possibly much more) than using either control measure on its own. 

Evidence from our HIV Test Model suggests that HIV testing may work well as a 

control strategy but only if addicts are both tested regularly and significantly reduce 
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Figure 8.7: Effect of Needle Exchange on Ra 
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their needle sharing rate after a positive HIV test. It would seem that the most effective 

method of combating the spread of HIV among an intravenous drug using population 

would be to combine both needle exchange and HIV testing into one cohesive scheme. 

This would make sense since a needle exchange scheme (as described by Kaplan and 

O'Keefe, 1993) involves addicts regularly attending an outreach centre or something of 

a similar nature where addicts can exchange needles and receive counselling and advice 

on their risk taking behaviour. A needle exchange scheme also keeps a track of who has 

attended the scheme and at what date they exchanged needles. It is easy to see that 

this information could be useful in conjunction with an HIV testing scheme so that 

addicts could be tested on a regular basis. It also makes sense from an economic and 

practical point of view to run HIV testing from the same premises as a needle exchange 

scheme. 

8.8 Three Stage Infectivity and HIV Testing 

We now examine the impact of testing addicts for HIV when the infectivity of an 

addict varies throughout his or her infectious lifetime. Kretzschmar and Wiessing 

(1998) investigate the effect of HIV testing in a model which assumes that addicts 

progress through two stages of infectivity prior to the development of full blown AIDS. 

They assume that after infection addicts initially enter a brief period of only 60 days 

duration, during which time sharing a needle with this addict carries a 50% chance of 

HIV infection. After this stage it is assumed that for the remainder of their infectious 

lifetime (approximately 10 years) sharing a needle with this addict carries only a 1% 

chance of infection. Under these assumptions Kretzschmar and Wiessing find that 

HIV testing is of very little benefit. An obvious reason for this is that by the time 

the vast majority of infectious addicts are tested they have already entered the very 

low infectivity phase, and as such are of relatively little importance in causing new 

infections. If Kretzschmar and Wiessing had used a three stage infectious period where 

addict's infectivity increases prior to their departure from the population (as suggested 

by Peterson et al., 1990) then the effect of HW testing may have been very different. 

Our main objective of this section is to examine the effect of HIV testing using 

a variety of different infectivity assumptions. To do this we use the Optimistic and 

Pessimistic Models discussed in Chapters 3 and 4 extended to cater for HIV testing in 

a similar fashion to the model discussed in Section 8.3. There is a case for using instead 
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the General Model extended to include HIV testing as this is a more flexible model, 
however the drawback with this is that we do not know or have any way of estimating 

realistic addict-needle interaction assumptions. Instead by using the Optimistic and 
Pessimistic Models, we can get an idea of the best and worst that we can expect from 

HIV testing as a control strategy. 

8.8.1 Ra and Model Derivation 

We first derive an expression for Ro based on the assumptions in both the Optimistic 

HIV Test Model and the Pessimistic HIV Test Model. We know from Chapters 3 and 
4 that the expected number of addicts infected by a needle in state i infectivity is 

\iai(1 - 0) 

\7 
+X18) s 

for i=1,2,3 where B=1 in the Optimistic Model and B=¢ in the Pessimistic Model. 

These quantities are the same in our current models, the more complex part of these 

models comes from the fact that addicts can move permanently from injecting at a rate 
Al per unit time to a rate A2 per unit time at rate St at any time during their infectious 

lifetime. After an addict is initially infected he or she enters stage one infectivity and 

at this time will visit shooting galleries and share needles at rate A1. As usual consider 

a newly infected addict entering a population consisting entirely of uninfected addicts 

and uninfected needles. The addict remains in stage one infectivity injecting at rate Al 

for on average 1/(p + ö1-ß bt) time units, during this period 

Al 
/ý+51+St' 

needles are infected into stage one infectivity. An addict leaves this state and enters the 

class of stage one infectivity whose injection rate is A2 with probability öt/(1C+bl +Jt). 

Once the addict has changed injection rates this is permanent and the addict moves 

through to stage two and stage three infectivity just as in the Optimistic or Pessimistic 

Models. Hence the total number of needles of infectivity levels one, two and three which 

the addict subsequently infects are 

A2 AA 
and 

A2d1b2 
respectively. 

14+ai , (/A +51)(it+a2) (µ+61)(14+S2)(14 +a3) 

An addict can also move from stage one infectivity with injection rate Al to stage two 

infectivity (still with injection rate al), this occurs with probability 91/(µ+al+Jt). An 
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addict remains in stage two infectivity injecting at rate al for on average 1/(µ+b2+bt) 

time units and therefore infects 
al 

p+5 +bt' 
needles while in this class. An addict can then leave this class to join the class where 

addicts are in stage two infectivity but inject at rate A2 with probability bt/(µ+b2+ö'). 

As previously this move is permanent and hence the total expected number of needles 

of infectivity levels two and three subsequently infected are 

A2 
and 

A282 
respectively. 

IA +52 (p+b2)(µ+53) 

Alternatively the addict can remain injecting at rate al and moves into stage three 

infectivity with probability 82/(p + S2 + bt). As previously the addict infects 

Al 

/ý+63+Öt 
needles while in this class and moves to injecting at rate A2 with probability 8t/(µ + 

ö3 + bt). The addict remains in this class until leaving the population and therefore 

subsequently infects 
A2 

f4+b3 

needles on average into state three infectivity. Therefore the total expected number of 

previously uninfectious needles left in state one infectivity by an addict during his or 

her infectious lifetime is 

Al 
+ 

it 1\z 
/ý+öi +bt µ+81 +8tµ+61' 

the total expected number of previously uninfectious needles left in state two infectivity 

is 

(/1+Öt+al)(Fl+61)(14+b2) 
+ 

+61+Öt)(14+(52+ot) 

ölatA2 +(/-6+J1 
+at)(A+a2 +st)(14+a2)' 

and the total expected number of previously uninfectious needles left in state three 

infectivity is 

at)'25152 + alatA2a2 
(µ+51 +at)(u+JI)(p+a2)(µ+a3) (µ+al +JO (u+a2+at)(14 +a2)(A+d3) 

6162 Al 6 A2 +(µ+al+at)(14 +a2+at) 
III 

+b3+at + (p+s3+aO (p+a3)]' 
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As already mentioned the expected number of addicts infected by each of these 

three types of infectious needle is the same as in the Optimistic and Pessimistic Models 

respectively. Therefore 

Ro = 
Aiai(1 - 0) Al it A2 

(Z+Ale) 
ip+bl+öt+ýt+öl+atu+öl 

+ aý«2(1- ý) J A261 
+ aik 

ry +a1Oý (µ+öl+bt)(µ+ai)(lý+aa) (14+81 +60 (14+62+öt) 

S16ta2 +(µ+o 
+bt)(14+62+öt)(P+ 52) 

5tA25i52 
ý7+a1O) (p+bi+5t)(µ+bi)(ý+a2)(µ+bs) 

515 A252 
+(/G+al 

+at)(/4+b2 + fl (F4+62)(14 +a3) 

5152 Al +(ý + ata2 
+al +at)(u+a2+at) [, +a3+at J (14 +a3+ fl(14 +a3)J 

with B=1 in the Optimistic HIV Test Model and B=c in the Pessimistic HIV Test 

Model. 

We now state the differential equations which define our three stage HIV testing 

models. Equations (3.1)-(3.6) can easily be extended to include HIV testing by intro- 

ducing three additional classes of addicts; one class for addicts who are in stage one 

infectivity but inject at rate a2; one class for addicts who are in stage two infectivity 

but inject at rate A2 and similarly for addicts in stage three infectivity. We denote 

the fraction of addicts in stage i infectivity who inject at rate Al by 7r; and those who 
inject at rate A2 by 7r; r. Each addict in the population is tested for I1IV according to a 
Poisson process with rate öt, therefore addicts in any infectious class move from inject- 

ing at a rate al to injecting at a rate A2 with rate öt. Therefore the addict equations 
in the Optimistic and Pessimistic HIV testing models are: 

I 

dt1 - 
(1-ir)! \1(ß1a1+ß2a2+ß3a3)(1-c5)-(p+S1+öt)iri, 

ät = al1rl - (/ + a2 + at)7 , 
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I 

dt = 5212 
- 

ýp+Ö3 +bt)ir3L 

dir 7ri 
dt 

at'ri - ýlý + bi )7riI 

II dad 
_ 6tifI + a17f1` - (p + b2)ýZr, 

dirll 
and dt = bt7r3 + 527211 - lFý + E3)lr3Iý 

where 7r = 7ri + ý2 + 7r3 + ßi1 + 7r11 + ý3I. It now remains for us to derive the needle 

equations for these models according to the different addict-needle interaction assump- 

tions in the Optimistic and Pessimistic Models. Dealing with the Optimistic Model 

case first, we have the simple assumption that a needle always adopts the infectivity 

characteristics of the current user. Therefore a needle enters state i infectivity if used 
by an addict in stage i infectivity and leaves state j infectivity if used by an addict who 
is not in stage j infectivity, in addition a needle can be exchanged. We now have that 

addicts in stage i infectivity visit needles at rate ry(Allrti + A27r; 1) rather than simply 

7A7r=. Note also that a needle is used by an uninfectious addict at rate Aj y(1 - ir). 

Therefore 

dß1 
- (Ai7iri + A27iri! ) (1- ßi) - ßi (Ai7i2 + A277211 + alryý3 + A277r ) 

dt 

7ri - mil - 7r2 - 7rI - ý3 - 73 -, 61, r, 

= 7Ai(ri - Qi) + A2lri'y + ßi'Y(Ai - A2)irt[ _ ßir, 

where irll = iril + ir2I + ire. The other needle equations, dß2/dt and dß3/dt have a 

similar form. Hence the system of equations which defines the spread of disease where 

addicts and needles exist in three infectious states, interact according to the assumption 

of full flushing, and addicts participate in an HIV testing program is: 

I 

dtl = (1- ir), Xi (ßiai +ß2a2 +ß3a3)(1 - 0) - (P + öl + 3t)ir1, (8.45) 

r dr2 
= dt 

517r - (µ + b2 + 5t)1Z, (8.46) 

dt= 
52'42 - (Ir + ö3 + öt)Ir3 (8.47) 

dt 

II ddt 
= b: iri - (t4 + 5)4', (8.48) 
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dirt 
= 8t7ri + 5111 - (µ + 52)lr4r, (8.49) dt 

dlrtr 
dt = 5t7r3 + 5272' 

- (A + 53)4', (8.50) 

dd 1 = -yA1(7ri - ß1) + A2irir7 + #817(A1 - A2)lrrl - ß1T, (8.51) 

dd12 
= 7ý1(ý2 - , ß2) + )t2ý2r7 + ß27(A1 - A2)1rrr - ß2r, (8.52) 

and 
d3= 

7A1(73 - Q3) + )t2ý3r7 + ß37O1 -? 2)1rrr - 
ß3r. (8.53) 

In a similar fashion it is straightforward to derive the system of equations which 
defines an equivalent model to that above but where addicts and needles interact ac- 

cording to the assumptions in the Pessimistic Model. The needle equations are similar 

to those in (4.4)-(4.6) except that as above we now have that addicts in stage i visit 

needles at rate y(Al7rir +. X21r I) and a needle is used by an uninfectious addict at rate 
Al-y(1 - ir). Needles enter state one infectivity after use by an addict in stage one 
infectivity. Needles leave state one infectivity after use by an addict who is in stage 

two infectivity, stage three infectivity or is uninfectious and cleans the needle prior to 

use, in addition needles may be exchanged. Hence 

dß1 
_1 

11 
Ci 

7(1-Q1)(A1ir1+A2ir1II)-01(A1i2I +A27r2 II)*-#1(A1ir3I +-\27r3 )0i 

-ßi(1 - 7f)A107 - ß1T. 

The equations for needles in state two and three infectivity follow in a similar manner 

by replacing the terms in eqns (4.5)-(4.6) with the new visiting rates. Therefore the 

system of equations which defines the spread of disease where addicts and needles 

exist in three infectious states, interact according to the assumptions in the Pessimistic 

Model, and addicts participate in an HIV testing program is: 

I ir, 
dt = (1-ir)Ai(#jai+ß2a2+183«3)(1-0)-04+51+S=)irf, (8.54) 

r 

dt = al l- (14 + 52 + 5t)7r2r (8.55) 

I 

dt 
522- (14 +53+ 5t)7ß, (8.56) 

d7r rr 

dt = at7ri - (ir + Si)iril, (8.57) 
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darr 
dt - 5t7r + blrir - (A+ 62)7r2r, (8.58) 

d7rrr T 11 
dt = J06 + S27r2 - (14 + b3)7r3r (8.59) 

d, 61 
= (1-61)(Aiir +A2irir)7-ß1(\lýi+A21ir)»7-61(e\173+)21 )57 

dt 

-fii (1- 7r)Al07 - ßir, (8.60) 

dß2 
- dt 

(1 - Ai - 02 - Qs)(-\i7ri + A27211)7 + . 
8i(Al7ri + A27ri1)07 

+ß3(\1ý2 + A272I)07 - #2('\17c3 + A27r3I) Y -182(e\17r1 + A27r11ý i' 

-Q2(1- ir)Ai7# - ß27, (8.61) 

and 

dt3 
- (1 - #1 - I63) 

(ý117f3 + )t213I)7 + 16110173 + 0\27r3I)70 -'Yß3 (A1lri +: 12761) ät 

-ß3(A112 + A27r2I )'YO -. 83 (1 - lr)7Y I\l - ß3T" (8.62) 

The systems of equations in (8.45)-(8.53) and (8.54)-(8.62) are sufficiently complex 

that it seems appropriate to limit our study of these models to the use of numerical 

integration. We are interested in two main aspects of these models, the first and more 

important of these is the effect that different relative infectivity assumptions have on 

the long term prevalence of disease when addicts are regularly tested for HIV. Secondly 

and to a lesser extent we are are also interested in whether Ro =1 is still the critical 

threshold criteria between the disease-free and endemic states in our models. Given 

that this was the case in the Optimistic, Pessimistic and HIV Test Models it seems 

highly likely that this will be the case here also. 

8.8.2 Simulations 

We now simulate the Optimistic and Pessimistic HIV testing models using Al = 250 per 

year, A2 = 150 per year and where addicts are tested on average once every ten years 
(5 = 0.1). The other parameter estimates are as in Table 3.1 in Chapter 3. Figures 8.9 

and 8.10 show simulations of the total fraction of infected addicts and the total fraction 

of infected needles in the Optimistic and Pessimistic HIV Test Models respectively. In 

each figure it was assumed that initially 1% of all addicts were infectious and all these 
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Figure 8.9: Three Stage Infectivity and HIV Testing: Optimistic (R0 > 1) 
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Figure 8.10: Three Stage Infectivity and HIV Testing: Pessimistic (Ro > 1) 
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addicts were in stage one infectivity and were unaware of their HIV positive status. 
These simulations suggest that as in all our previous models the prevalence of disease 

in both addicts and needles eventually reaches an endemic steady state. The values for 

Ro in each of these models using the current set of parameter estimates are 1.95 and 
2.94 for the Optimistic and Pessimistic HIV Test Models respectively and the steady 

state solutions are (7r*, ß*) = (0.517,0.453) and (7r*,, 6*) = (0.619,0.636) respectively. 

We do not illustrate any more simulations of the Optimistic and Pessimistic HIV 

Test Models, however many simulations of these models were carried out using a variety 

of different parameter estimates and initial conditions. In each case we found that if 

Ro >1 (and disease is initially present) then the disease tends to an endemic steady 

state and if Ro <1 then the disease eventually dies out in all addicts and all needles. 

Having demonstrated that our two models exhibit similar long term behaviour to all our 

previous models we now focus on the main objective of this section, namely determining 

what effect different relative infectivity assumptions have on the long term prevalence 

of disease when addicts are tested regularly for HIV. 

8.8.3 Relative Infectivity Assumptions 

We now examine the long term prevalence of HIV in our two models using a variety of 

different relative infectivity assumptions. The relative infectivity of an addict in each 

of the three infectious stages is denoted by the HIV transmission probabilities al, a2 

and a3 respectively. By adjusting the values of these three parameters we can vary the 

relative infectivity of addicts in each of the three infectious stages. If we are to use 

different infectivity assumptions then the values of al, a2 and a3 require some form of 

standardisation in order to produce fair comparisons. 

In order to estimate the HIV transmission probability a in Kaplan and O'Keefe 

(1993) a model based estimation technique was used. This method assumed that the 

model under study was a reasonable approximation to reality and therefore the endemic 

equilibrium solution of this model should be close to the observed prevalence of infec- 

tious addicts and needles (assuming of course that the population under study is at 

equilibrium). Hence if all other model parameters have been estimated then a can be 

estimated by solving for a in the equation ß* = fit (where ß* is a known function of the 

model parameters and ßt the observed prevalence of disease in needles). This method 

was used by Kaplan and O'Keefe (1993) who were able to estimate the prevalence of 
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Table 8.2: Relative Infectivity Ratios and HIV Transmission Estimates 

al: a2: a3 al a2 a 

40: 1 : 10 0.03300 0.00083 0.00825 

30: 1 : 20 0.01610 0.00054 0.01072 

10: 1 :5 0.01813 0.00181 0.00906 

5: 1 :3 0.01412 0.00282 0.00847 

169: 1 : 25 0.04743 0.00028 0.00702 

infectious needles circulating among the addict population using data from the New 

Haven needle exchange program. An obvious problem with this method is that the 

estimated value of a will vary depending on the model used, however in the absence of 

a better alternative this method seems appropriate. We used a similar method to esti- 

mate a2 in our three stage models (see Appendix B for details). We estimated all other 

model parameters (including (i and S3 where al = Slat and a3 = (3a2) and solved to 

find an estimate of a2 which gave rise to ß* = fit (using the Pessimistic Model from 

Chapter 4). Kaplan and O'Keefe (1993) estimate that fit = 0.675 for the drug using 

population in New Haven, Connecticut, USA, prior to the introduction of a formal 

needle exchange program. Using this estimation method for various different choices of 
C1 and C3 will provide us with estimates of al, a2 and a3 which are standardised. The 

standardisation is that each set of values of al, a2 and a3 gives rise to an equilibrium 

prevalence of 6* = 0.675 in the Pessimistic Model (without HIV testing but including 

needle cleaning and a natural turnover rate of needles). 

We now examine the prevalence of HIV in addicts in our two models using five 

different relative infectivity assumptions. These assumptions are shown in Table 8.2. 

We always assume that stage two infectivity is the least infectious followed by stage 

three then stage one. Our five infectivity ratios have been chosen to provide a varied 

range of assumptions. The penultimate infectivity assumption of 5: 1: 3 was the one 

used by Peterson et al. (1990) and the final infectivity assumption is similar to that 

suggested by Seitz and Müller (1994). However note that while Seitz and Müller use a 

three stage infectious period in their model their third stage of infectivity refers to full 

blown AIDS rather than Pre-AIDS symptoms. We additionally assume that on average 

an addict spends 2.6 months in stage one, 52.6 months in stage two and 62.5 months in 
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Figure 8.11: Pessimistic Assumptions: A2 = 150 per year 

w 
A 

v 

cd 

H 
Z9 

64 

63 

62 

61 

60 

59 

58 

57 

56 

55 

54 

........... 

x bi, ý: ý'' 
% 

0 0.5 
HIV Test Rate (per year) 

40: 1: 10 I 10: 1: 5 --)IE-- 169: 1: 25 -"3-- 30: 1: 20 --X-- 5: 1: 3 "-"-D "". 

12 

stage three (as estimated by Peterson et al. (1990) and used in our previous models). 
Figures 8.11 and 8.12 show the total long term prevalence of HIV among addicts 

for the five infectivity assumptions detailed in Table 8.2 and for addict HIV test rates 

of 0.0,0.1,0.2,0.3,0.4,0.5,1.0 and 12.0 per year. In each case we assume that addicts 

who have not yet tested positive for HIV have a shared injection rate of Al = 250 per 

year and those who are aware of their HIV positive status inject with a shared needle 

on average A2 = 150 times per year. All other model parameters are as detailed in 

Table 3.1 in Chapter 3. Figure 8.11 shows the long term prevalence in the Pessimistic 

HIV Test Model and Figure 8.12 is equivalent but uses the Optimistic HIV Test Model. 

The first point of interest in these figures is that the relative infectivity ratio of 
30: 1: 20 appears to be the most affected by HIV testing in both models and at all testing 

rates. This is not surprising as this assumption is the most heavily loaded towards the 

end of the AIDS incubation period. Therefore HIV testing has the most to offer by 

removing addicts prior to entering stage three infectivity. Perhaps more surprising is 

that infectivity assumptions which have a higher prevalence in the pessimistic model 

do not necessarily have a higher prevalence in the optimistic model. Furthermore there 

appears to be a large difference in the effectiveness of HIV testing between these two 

models. This suggests that addict-needle interaction assumptions may have a significant 

influence on the endemic equilibrium prevalence of disease irrespective of any particular 
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Figure 8.12: Optimistic Assumptions: A2 = 150 per year 
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Perhaps the most interesting feature in Figures 8.11 and 8.12 is the rather modest 

effect which HIV testing has in each of the five infectivity assumptions. In particular 

the reduction in disease in the Pessimistic HIV Test Model is very small even when 

addicts are tested as frequently as monthly. The Optimistic HIV Test Model is more 

responsive but even in this case the relative reduction in the long term prevalence of 
disease is not great. In summary, it seems that for the current values of Al and A2 and 

our five relative infectivity assumptions, the testing of addicts for HIV will not produce 

a substantial decrease in the level of disease. 

In Section 8.7 we argued that both the HIV test rate and the post-test shared 

injection rate must be low for this control strategy to provide a significant decrease 

in the level of disease. Therefore we now examine the long term prevalence in HIV in 

our two models in a similar manner to previously but now we assume that once aware 

of their infectious status addicts only inject about A2 = 50 times a year on average. 
Figures 8.13 and 8.14 were constructed in a similar fashion to Figures 8.11 and 8.12 but 

where A2 = 50 per year. The most obvious difference between the previous figures and 

Figures 8.13 and 8.14 is that now when the HIV test rate is increased there is a large 

drop in the prevalence of disease, in particular the disease dies out for each infectivity 

assumption in the Pessimistic HIV Test Model when addicts are tested on average once 
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Figure 8.13: Pessimistic Assumptions: A2 = 50 per year 
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Figure 8.14: Optimistic Assumptions: A2 = 50 per year 
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a month. In the Optimistic HIV Test Model the disease can die out at an HIV test 

rate of only 0.4 per year. These figures again illustrate that for HIV testing to be an 

effective control strategy we require that addicts are tested regularly and moreover that 

once tested the shared injection rate must be very substantially reduced. In Figures 

8.13 and 8.14 it is now also much clearer as to which infectivity assumptions are the 

most affected by HIV testing. As previously we have that the infectivity ratio 30: 1: 20 

is the most affected, the figures now also suggest that the ratios next most affected are 

10: 1: 5 followed by 5: 1: 3 then 40: 1: 10 and finally 169: 1: 25. This order seems sensible 

since 10: 1: 5 and 5: 1: 3 have proportionally more infectivity in stage three than in 40: 1: 10 

which in turn has more infectivity in stage three than 169: 1: 25. 

8.9 Summary of Results for the HIV Testing Models 

We first briefly discussed a model by Greenhalgh and Hay (1997) which examined the 

effect of HIV testing, but which assumed that the proportion of infectious addicts who 
have tested positive for HIV is constant throughout the duration of an HIV epidemic. 

We extended this model to allow for addicts to be tested for HIV at a constant rate 

per unit time, where a positive test results in an addict changing the rate at which he 

or she shares needles. Incorporating HIV testing in this fashion allows the proportion 

of infectious addicts who have tested positive for HIV to vary throughout the course 

of an HIV epidemic which is the more realistic situation. After deriving this extended 

model we then examined its long term behaviour and computed an expression for the 

basic reproductive number. We showed that if Ro <1 then disease will eventually die 

out in all addicts and all needles. If Ro >1 then the endemic equilibrium is locally 

stable to small perturbations, and moreover if disease is initially present then it will 

persist indefinitely among the population. We then used simulation to confirm that 

if Ra <1 then the disease-free equilibrium is globally stable and examined the long 

term behaviour of the model when R, > 1. Simulations suggest that when Ra >1 the 

prevalence of disease always tends to the endemic equilibrium solution. 

We next compared the behaviour of our extended model with the original model 
due to Greenhalgh and Hay. By using a suitable calibration method we showed that the 

long term prevalence of disease in both models is identical, however simulations suggest 

that the disease spreads more slowly in the original model. We then demonstrated that 

for HIV testing to be an effective control strategy in our model it is necessary that 
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addicts are both tested frequently for HIV, and once aware of their infectious status 

they substantially reduce the rate at which they inject with shared needles. 

We finished off this chapter with a brief look at combining the three stage infectiv- 

ity models discussed in Chapters 3 and 4 with HIV testing. We stated the differential 

equations which defined these two models and derived an expression for the basic re- 

productive number. Simulations suggest that again Ro =1 is the critical threshold 

between the disease-free and endemic states. Simulations also suggest that as with our 

previous models if Ro >1 then the prevalence of disease tends to the endemic equilib- 

rium solution. We investigated the effect that different relative infectivity assumptions 

have on the long term prevalence of disease when addicts are tested regularly for HIV. 

We found three main points of interest. Firstly for HIV testing to be an effective 

control strategy we require that addicts are tested frequently and once aware of their 

infectious status addicts must share needles very infrequently. Secondly it appears that 

addict-needle interaction assumptions can have a significant impact on the effectiveness 

of HIV testing. For example HIV testing appears to be very much more effective when 

addicts and needles interact as in the Optimistic Model compared to the interaction 

assumptions in the Pessimistic Model. Thirdly and finally, the choice of relative infec- 

tivity assumptions also has a significant impact on the effectiveness of HIV testing. We 

find that those infectivity assumptions which result in addicts having a relatively high 

viral load immediately prior to developing full blown AIDS result in the largest benefit 

from HIV testing. 
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Chapter 9 

Sensitivity Analysis of 

Deterministic Models 

9.1 Introduction 

The aim of studying models of HIV transmission is to provide information which can as- 

sist public health officials and others to develop policies for disease control and highlight 

beneficial areas of future research. We have spent considerable effort in the previous 

chapters establishing that the spread of HIV among drug users is governed by a thresh- 

old effect (threshold Ro = 1) when addicts are allowed to progress through three stages 

of infectivity. The most immediate practical use of this information is that it provides 

a goal for any control strategy, in that reducing Ra to less than unity will (eventu- 

ally) eradicate HIV. While this information is useful and adds to the numerous other 

examples of epidemiological models which have Ro =1 as a threshold condition, we 

would also like to use our models to extract more specific information. For example, it 

would be useful for us to be able to determine which model parameters are the most 
influential in affecting the spread of HIV. This information could then be used to focus 

control strategies on areas which can deliver the most benefit. Ideally we should also 
like to be able to use our HIV transmission models to assist in predicting the future 

number of cases of HIV and AIDS. Unfortunately, as has been noted by several authors 
(Blower et al., 1991, Anderson and May, 1991) in order for HIV transmission models 

to provide useful estimates of the future number of IIIV and AIDS cases very accurate 

data are required, and as yet such data are not available. 

In this chapter we discuss a method proposed by Blower and Dowlatabadi (1994) 
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to determine which model parameters are the most influential in affecting the spread of 

HIV, and use the HIV Test Model as an illustration. Ideally we should like to carry out 

a thorough sensitivity analysis on all the models we have discussed in this thesis, how- 

ever due to a lack of data, specifically data relating to the sampling distributions of the 

parameters in our previous models, we limit our study to examining the methodology 

proposed by Blower and Dowlatabadi. What is of particular interest is that from an ex- 

perimental design perspective this method requires some care in order that meaningful 

results are obtained. 

We first discuss an analogy between experimental trials and the sensitivity analy- 

sis of epidemiological models. We then give some background information on several 

common types of experimental design and discuss the differences between these de- 

signs. We next outline the Latin Hypercube sampling scheme proposed by Blower and 

Dowlatabadi (1994) and we discuss the appropriateness of this design. We then con- 

duct a limited sensitivity analysis on the HIV Test Model to illustrate the potential 

problems of using Latin Hypercube sampling to determine which model parameters are 

the most influential in affecting the spread of HIV. We conclude with a discussion on 

how the method by Blower and Dowlatabadi can still be used to good effect if several 

factors are taken into consideration. 

9.2 Experimental Design Analogy 

Suppose that we have a complex HIV transmission model with many parameters. Sup- 

pose also that surveys have been conducted so that we have preliminary information 

about each parameter in our model and moreover we have a rough estimate of the 

sampling distribution of each parameter. For example suppose that we have surveyed a 

number of different groups of addicts and have collected estimates of the mean shared 

injection rate in each of these different groups. From this we have an estimate of the 

sampling distribution of A and a point estimate of A (the mean of the sampling dis- 

tribution, say). We now wish to simulate our model to determine which parameters 

are the most influential in affecting the future number of cases of HIV. This situation 

is very similar to that of an agricultural researcher (say) with a field of crops who 

wishes to determine which fertiliser (or combination of fertilisers) causes the greatest 

increase in crop yield. In this analogy the crop yield represents the future prevalence 

of HIV, the different types of fertiliser the different parameters in our model, and the 
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size of the field represents the number of simulations of our model. This agricultural 

analogy has been studied very extensively and the design and analysis of experiments 

to determine which treatments (or fertilisers) are the most effective represents a large 

body of work pioneered by R. A. Fisher at the Rothamstead Institute (see Fisher and 

Bennett, 1990). Hence it seems natural to use some of this research to assist in devising 

a suitable method from which to assess the importance of each of the parameters in a 

model of HIV transmission. 

Whilst the aim of a sensitivity analysis and an agricultural trial are very simi- 

lar there are several important differences in the framework of these two approaches. 

Firstly consider an agricultural trial. The researcher has a field of crops and he or she 

decides which treatments or combinations of treatments to apply to each area of the 

crop. We can consider the crop yield in any particular part of the field as a function 

of the treatments which have been applied. It is also appropriate to assume that the 

response (the crop yield) from any particular combination of treatments is a random 

variable. Now consider a sensitivity analysis. We have that each input parameter 

follows a particular sampling distribution. If we are using a deterministic HIV trans- 

mission model then the response variable (the future number of HIV cases, say) can 

be thought of as simply a deterministic mapping from the k parameter estimates in 

the model to a single number. In each case we wish to determine which treatments 

(parameters) have the largest effect on the response variable. The main difference be- 

tween these two analogies is that in an agricultural trial the inputs are fixed by the 

experimenter and the output is a random response of these fixed inputs. In contrast, 

in a sensitivity analysis the inputs are not fixed but are chosen according to the sam- 

pling distributions of the various model parameters and the response is a deterministic 

function of the inputs. Hence it could be argued that the theoretical framework for a 

sensitivity analysis is actually back-to-front from that of a conventional experimental 

trial. Blower and Dowlatabadi (1994) argue that a sensitivity analysis can be consid- 

ered in a similar statistical framework to experimental trials and it is on this basis that 

we now proceed. 

9.3 Experimental Design Choice 

We now discuss several elementary experimental designs and how these designs can 

be used to deliver information relating to the relative importance of different factors. 
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Experimental designs can be split into two broad categories, those concerned with one 
factor of interest and those concerned with multiple factors of interest. Consider the 

agricultural analogy described above. Suppose that we want to investigate whether 
different concentrations of a particular fertiliser affect the crop yield. In this situation 

we could use an experimental design which has only one factor of interest with a 

number of different treatment levels (our one factor being the single type of fertiliser 

used). Using an equivalent sensitivity analysis analogy we have a single parameter 

which we divide into distinct subgroups. We then investigate whether the difference in 

the crop yield (or equivalently the long term prevalence of HIV) between each of the 

treatment levels is statistically significant. These are examples of experiments where 

a single factor is of interest. Suppose now that we have two different fertilisers each 

with four concentration (treatment) levels and we wish to determine which fertiliser 

or combination of fertiliser causes the greatest increase in crop yield. In this situation 

we should employ a multiple factor of interest experimental design. An equivalent 

sensitivity analysis analogy is that we now have two parameters each of which has been 

split into four subgroups. We now discuss in some detail designs for single and multiple 
factor experiments. This discussion leads us on to describing the experimental method 

advocated by Blower and Dowlatabadi and the potential problems of using this method. 

Single Factor and Multiple Factor Experiments 

Each experimental design corresponds to the fitting of a general linear model (g. l. m. ) to 

the response variable. The fundamental difference between a single factor and multiple 
factor experiment is in the form of g. l. m. that we use to model the data. The simplest 

form of g. l. m. is the following: 

�ij =p+ CYi -F'Eij, ý9.1) 

where yij represents the jth observation of the response variable at treatment level i, µ 
is the overall mean of the observed data, a; is the (mean) effect from treatment level i, 

and cj is a random error term. This g. l. m. corresponds to a number of scenarios, for 

example we might want to investigate whether altering the concentration of a particular 
fertiliser treatment has a significant effect on the crop yield and if so which concentra- 

tion is the most effective. Hence we wish to establish whether there is a statistically 

significant difference in the response variable between treatments levels (concentrations 

of fertiliser). This situation represents an experiment where only one factor is of inter- 
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est, that of the effect on the crop yield of the concentration of fertiliser being applied. 
We investigate this effect by determining whether any a; terms for i=1,2,3,4 (using 

four treatment levels) in the above g. l. m. are statistically significant. This is achieved 
by examining the variation in the observed data between treatment levels compared to 

the variation within treatment levels. This is a standard method referred to as analysis 

of variance (ANOVA). If the variation between treatment levels is large enough com- 

pared to the variation within each treatment level then we have a statistically significant 

treatment effect, in other words we find that varying the concentration of fertiliser does 

have a statistically significant effect on crop yield. 
Suppose that we carried out the above experiment and found that the treatment 

effect was not statistically significant. The reason for this could be that the variation 
in the observed data within each treatment level (the residual variation in the data) 

was so large that an effect due to altering the treatment level could not be detected. 

Our previous design assumed that our field of crops was homogeneous, however this is 

unlikely in real life. For example some parts of our field may have access to a water 

source such as an underground spring, while some parts may be protected from the 

wind by a shelter belt of trees. It is reasonable to assume that these two extra factors 

may have caused a substantial increase in the variability of the crop yield throughout 

our field and as such reduced the power of our previous statistical test. We could 

express this as "not being able to see the wood for the trees". 

The three factors in our experimental trial are now the fertiliser treatment, the 

water source and the shelter belt. We can use a very common experimental design, the 

Latin Square design, to effectively investigate this more complex situation. By using 

this design we are assuming that 

Vijk = 14 + ai + ßj +'Yk + Eijkº (9.2) 

where Yijk represents the yield from using treatment i in row j and column k of the 

(square) field, p is the overall mean yield, a; is the (mean) effect from treatment i, ßj 

is the (mean) effect from being in row j, yk is the (mean) effect from being in column 

k and finally e; jk is a random error term. It is important to note carefully the form of 

this model, it assumes that the effect on crop yield due to access to the water source 

(the row effect, ßj) is the same irrespective of how close to the shelter belt the crop 

resides. Similarly the effect on crop yield from being sheltered from the wind (the 

column effect, yk) is the same irrespective of how close the crop is to the water source, 

287 



and finally the effect due to the fertiliser treatment level (a; ) is the same irrespective 

of the location of the crop to either the shelter belt or the water source. Hence this 

design and corresponding g. l. m. assumes that each of the three effects (or factors) on 
the response variable act independently of each other, we have no interaction effect 
between the various factors in our model. 

In our example we have introduced the water source and shelter factors purely to 

reduce the residual variation in our observed data and improve the assessment of our 

single factor of interest, the effect due to changing treatment levels. In this experiment 

the factors, water source and shelter, are referred to as blocking factors, factors intro- 

duced purely to reduce the residual (background) variation in the observed data and 

thus give a better fitting model, which allows for a more accurate assessment of the 

factor of interest. In effect the total variation in the data can be broken down into the 

variation due to the water source, shelter and the fertiliser treatment. By removing the 

former two sources of variation we can greatly improve the accuracy of our statistical 

test for the effect due to changing treatment levels. 

To summarise, a single factor experiment represents the situation where the response 

variable is simply the sum of independent effects (plus a random error term). We have 

one main factor of interest and the remaining factors are present to remove residual 

variation in the data and improve the fit of the g. l. m. We now discuss the more complex 

situation of a multiple factor experiment. In this case we no longer assume that the 

effects of the experimental factors act independently but that interaction may occur 

between these factors. Hence again using the agricultural analogy, we now allow for 

the effect due to treatment level i to depend also on how much shelter the crop receives 

and how much water the crop has access to. 

In deciding whether to conduct a single or multiple factor experiment it is first 

necessary to establish whether it is reasonable for an interaction affect to occur between 

the various experimental factors. In the above agricultural example it is probably 

quite satisfactory to assume that the factors act independently and use a single factor 

(Latin Square) design. However now suppose that the researcher has two types of 
fertiliser which can each be applied at four concentrations, and wishes to determine 

which combinations of fertiliser are the most promising for further research. In this 

experiment it is wiser to at least initially assume that the effect due to each fertiliser 

may not act independently. A standard way of conducting this experiment would 
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be to use a 24 factorial design. This design involves applying each fertiliser at four 

concentrations and each part of the field is treated with a different combination of 
fertilisers so that all sixteen permutations have been tried. In addition we treat at least 

two plots with each treatment combination. In terms of a model this design assumes 
the following: 

Yijk = /A + a= + ßj + (a, ß), ß + 6ijk, (9.3) 

where Yijk represents the response in factor one level i and factor two level j and k 

denotes the observation number in cell (i, j) (in our example each cell has at least two 

observations). As above we have that p is the overall mean response, ai is the effect 
from factor one at level i, ßj is the effect from factor two at level j, and eijk is a 

random error term. The (aß)=ß term represents the interaction effect between factor 

one and factor two at level i and j respectively. Since we tested at least two plots with 

each treatment combination we can use ANOVA in a similar manner as in the Latin 

Square design to test for the statistical significance of each of the terms in our g. 1. m. 
In particular we first test to see whether the interaction term is significant, if this term 

is not significant then we could if desired repeat the experiment with a single factor 

of interest design and not lose any accuracy, as the data suggests that the factors do 

act independently. The inclusion of an interaction factor is the fundamental difference 

between a single factor and multiple factor design. 

We have illustrated several experimental designs and the general linear models which 

correspond to these designs. It should be clear that how we expect the experimental 

factors to affect the response variable governs the choice of whether to use a simpler 

single factor design or a more complex multiple factor design. In other words if we 

strongly believe that the experimental factors will act independently of each other then 

a single factor design should be used, if this is not the case then it is more appropriate 

to use a multiple factor design. The main practical disadvantage of using multiple 

factor designs (for example factorial designs) is that a large number of observations are 

required in order that the interaction terms in the g. l. m. can be tested. A common 

method of dealing with experiments with many different factors is to initially use a full 

factorial scheme with each factor limited to only two levels. The resulting observations 

are then studied and the factors or combinations of factors which are not statistically 

significant are then dropped from the g. l. m. and a more detailed experiment is carried 

out using only the factors which have been shown to be more important. 
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The aim of a sensitivity analysis is to determine which parameters are most in- 

fluential in affecting the outcome variable. A fundamental question in the context of 
this chapter is whether we expect the model parameters in complex models of disease 

transmission to each act independently on the outcome variable. It seems reasonable 
to argue that this will not be the case. It seems more likely that the level of disease 

in the population at any time will be a possibly very complex non-linear function of 

the model parameters, and as such the effect of increasing or decreasing any one model 

parameter will also depend heavily on the current values of other model parameters. 
Hence it would seem appropriate that a sensitivity analysis should be conducted using a 

multiple factor experimental design. We now discuss in detail the experimental design 

proposed by Blower and Dowlatabadi (1994). 

9.4 Latin Hypercube Design 

Blower and Dowlatabadi propose the use of a Latin Hypercube (LHC) design together 

with partial rank correlation coefficients (PRCC) to determine the most influential 

model parameters in complex HIV transmission models. A Latin Hypercube design is 

an extreme version of the Latin Square design discussed previously (which we showed 

to be a single factor of interest design). We now outline the stages of conducting a 

LHC design and the subsequent computation of PRCC's. 

Suppose that we have information such that we have a reasonably accurate idea of 

the sampling distributions of each of the k parameters in our HIV transmission model. 
We now split the range of each of these k distributions into n non-overlapping intervals 

where the probability that the parameter lies in any given one of these n intervals is 

(1/n) for each given interval. Hence we now have n equally likely sampling intervals for 

each of our k parameters. For each of the k parameters we now assign an index integer 

from 1 to n to each of the n intervals. We now randomly select one of the equally likely 

intervals (noting its index number) from each of the k parameters in turn. We repeat 

this procedure n times without replacement. This allows us to create a matrix which 

contains k columns and n rows where each row represents an index number from each 

of the k model parameters and each column contains the indices 1 to n inclusive. For 

example suppose that we have three model parameters and n=5. This could give us 

the following array of indices: 
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123 

234 

345 

451 

512. 

The first row in this array says that we chose the interval with index number 1 for the 

first model parameter together with the interval with index number 2 for the second 

model parameter and the interval with index number 3 in the third model parameter. 
Once the index array has been chosen we progress through each row in turn and ran- 
domly select a parameter value from each of the equally likely intervals according to 

the index number chosen. In our example we would randomly select a value for the 

first parameter from the interval with index number 1 and similarly for the second and 
third model parameters. Having now chosen a random vector which contains a value 
for each of the k model parameters we can now compute the output variable, the long 

term prevalence of HIV. We repeat this procedure for each of the n rows in the index 

array and thus we create a new array which has k+1 columns (one column for each 

model parameter and one for the output variable) and n rows. Each row in this new 

array contains a value for each model parameter and the corresponding output variable. 

For example we may have the following array of three parameters and output variable 

(the final column) from the array of indices: 

228.53 137.36 4.39 0.510 

204.67 89.23 1.97 0.324 

289.19 109.20 2.74 0.521 

278.28 
, 

104.97 3.35 0.496 

255.41 126.57 0.56 0.522. 

It is at this stage that we now investigate the relationship between the parameter 

values and the output variable. Using PRCC's we examine the relationship between 

the columns containing the parameter estimates and the output variable. 

Before we discuss the criteria which Blower and Dowlatabadi use to establish which 

model parameters are the most influential the design outlined above requires some 

comment. The Latin Hypercube design used to select the array of indices for each 

model parameter assumes fundamentally that the value of the output variable depends 

simply on a independent contribution from each model parameter. To see this it is 
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sufficient to note that we simply selected one treatment level from each factor in turn 

and computed that corresponding value of the output variable. Unlike a factorial design 

we do not systematically visit all permutations of the different levels of each model 

parameter. The Latin Hypercube design uses very little data since each parameter is 

sampled at each level (index number) only once. However this means that this design 

does not fit into the standard g. l. m. framework as it is not possible to estimate and 

test the significance of the individual parameters in such a model since we only have 

one observation at each level of each parameter (to see this note that in each column of 

the indices array each integer from 1 to n appears only once). For example unlike in a 

Latin Square Design we cannot separate the effect due to treatment level i of parameter 

one from treatment level j of parameter two, since these treatment levels appear only 

once in each parameter. 

The motivation behind the Latin Hypercube design is that it can deal with a large 

number of parameters (factors) using the bare minimum of observations. Blower and 

Dowlatabadi claim that the LHC is an extremely efficient sampling scheme, however in 

some ways this misses the point in that it is only efficient if one assumes that the model 

parameters all act independently. If this is not the case then it is less clear that this 

design is obviously better than other more traditional experimental designs. A useful 

aspect of the LHC design is that it is very easy to repeat the design using an increased 

level of aggregation in the input parameter distributions. We shall discuss shortly why 

this feature is useful in order that a sensitivity analysis based on LHC produces sensible 

results when interaction effects exist between the model parameters. Before discussing 

this we now briefly outline the use of PRCC's to determine which model parameters 

are the most influential. 

Once the data have been collected (in other words we have sampled the model pa- 

rameters and calculated the corresponding values of the output variable) the next stage 

is to decide which parameters are the most influential. To do this we replace each of 

the parameter values and output variable estimates with their relative ranks amongst 

the other parameter values and output variable estimates. For example replacing the 

array given above with ranks it becomes 
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2553 

1121 

5334 

4242 

3415. 

Blower and Dowlatabadi examine the relationship between each model parameter and 

the output variable using partial rank correlation coefficients (PRCC's). In our ex- 

ample the PRCC for parameter one is a measure of the relationship between column 

one (parameter one) and column four (output variable) with any correlation between 

column one and columns two and three removed. The PRCC's for parameter two and 

parameter three have similar interpretations. The calculation of PRCC's enables the 

determination of the statistical relationships between each input parameter and each 

output variable while keeping all other input parameters constant at their expected 

value (Conover, 1980). This procedure enables the independent effects of each param- 

eter to be determined, even when the parameters are correlated. A PRCC indicates 

the degree of monotonicity between a specific input variable and a particular output 

variable. The computation of PRCC's is complicated and full details are given in Ap- 

pendix A in Blower and Dowlatabadi (1994). Once a PRCC has been computed for 

each model parameter we can then compute the following test statistic 

= PRCC -2 
1-nPRCC ý' 

where the distribution of t approximates a Student's t with n-2 degrees of freedom 

(Blower and Dowlatabadi, 1994). This test statistic determines the significance of a 

nonzero value of PRCC. In order to determine which model parameters are the most 

influential the number of treatment levels is fixed (the value of n) and then PRCC's 

are computed for each model parameter together with the value of the test statistic. 

Those parameters with the most extreme values of t, and hence the most statistically 

significant are deemed to be the parameters which are most influential in determining 

the output variable. 
Given that the LHC design assumes that each parameter acts independently then 

the PRCC is a convenient way to measure the influence of each model parameter. 

However the problem still remains that the LHC design (and the subsequent PRCC) 

does not take into account interaction effects between the model parameters. We now 

discuss what problems this may cause to the conclusions of a sensitivity analysis. 
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9.5 The Value of n 

We have briefly outlined the Latin Hypercube (LHC) method proposed by Blower and 
Dowlatabadi and we have demonstrated that this approach is analogous to a single 
factor of interest experimental design. We mentioned previously that a sensitivity 

analysis should be treated as a multiple factor experiment so is it natural to ask what 

problems arise from using the Latin Hypercube design in place of, for example, a full 

factorial design. Theoretically it seems more appropriate to use a factorial design and 

then use PRCC's. If an interaction effect is not present between the model parameters 

then the method proposed by Blower and Dowlatabadi seems very efficient, however if 

interaction is present this this may cause a problem. For example it may be the case 

that repeating the LHC with a different random array of indices may produce markedly 

different results, since for some combinations of parameters a large interaction effect 

may occur (later we illustrate this using the HIV Test Model as an example). The 

result of this means that it would be unwise to judge the merits of any parameter 

using only a single value of PRCC and its associated test statistic, as this test statistic 

may be unreliable since it does not incorporate the extra variability due to interaction 

effects. It seems intuitive that as we increase the number of treatment levels (relative to 

the number of parameters) in the LHC then this problem should decrease. With more 

observations the PRCC should be able to give a balanced account of the influence of each 

model parameter by taking into account parts of the sample space where interaction 

occurs. Hence it seems reasonable that while theoretically the LHC design is not ideal 

as a basis for a sensitivity analysis of a complex model of HIV transmission this can 

be compensated for by increasing the size of n relative to k. Blower and Dowlatabadi 

state that an exact formula to calculate n does not exist in the literature and the size 

of n for any specific analysis should be determined by the significance level required in 

the PRCC significance test. In light of our previous discussion in seems that it is not 

only the significance level which should guide the choice of n but also the amount of 
interaction present in any particular analysis. However this presents difficulties as it is 

often hard to assess the amount of interaction present. 

We have illustrated that the method proposed by Blower and Dowlatabadi requires 

some care in choosing the size of n in order that the results are accurate. For example 

an indication that n is too small is if the method is repeated and PRCC's which were 

significant are no longer significant. We now illustrate the use of the sensitivity analysis 
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proposed by Blower and Dowlatabadi using the HIV Test Model. 

9.6 HIV Test Model Example 

We now conduct a limited sensitivity analysis on the HIV Test Model discussed in the 

previous chapter. We examine this model as there are good reasons for arguing that 

interaction effects may exist between several parameters in this model. For simplicity 

we assume that the only model parameters which are subject to variation are A,, 

A2 and bt. We are particularly interested in these parameters as we have already 
demonstrated that the effect on the long term prevalence of disease due to changing 

the value of A or A2 is heavily dependent on the current value of öt. Hence it would 

seem reasonable to expect that this model possesses a significant interaction effect 
between A and St, and A2 and 8t. Before we can conduct a sensitivity analysis we 
first need to estimate a sampling distribution for each of these three parameters. It was 
decided to use uniform distributions since we do not have any data available to estimate 

these distributions and for the purpose of this example the parameter distributions 

are of secondary importance. We decided to use Al - U(150,300), A2 - U(50,150) 

and bt N U(0.1,5), where U(a, b) denotes the uniform distribution on [a, b]. Strictly 

speaking it may be more appropriate to use a joint distribution for Al and A2, however 

for illustration purposes these simple distributions are sufficient. 

We now conduct a sensitivity analysis on these three parameters. We are particu- 

larly interested in whether repeating the analysis for a different random set of parameter 

estimates gives us the same conclusion as to the relative importance of the parame- 

ters. Table 9.1 contains a summary of results for the HIV Test Model using only the 

three parameters, A1, A2 and t5 with n=6 and we have repeated the analysis for two 

different sets of parameter estimates (two different arrays of indices). Table 9.1 sug- 

gests that when n=6 there is an interaction effect which causes problems in deciding 

which parameters are statistically significant from zero, in this case we have different 

conclusions as to the importance of A2 or bt. If we carried out only the first trial then 

we would conclude that A2 was the most influential parameter whereas the second trial 

suggests that Al is the most important. It is important to note that while n=6 is small 

it is not the absolute value of n which is important but the size relative to k, in this 

example k=3. If we have more model parameters then there may exist a number of 

complex interaction relationships and so n must be sufficiently large to ensure that the 
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Table 9.1: Sensitivity Analysis with n=6 

Trial Number Parameter 2.5% t-stat 97.5% PRCC Significant 

One Al -2.78 4.19 2.78 0.84 yes 

A2 -2.78 6.03 2.78 0.91 yes 

it -2.78 -0.27 2.78 -0.124 no 

Two Al -2.78 13.90 2.78 0.98 yes 

A2 -2.78 -0.17 2.78 -0.09 no 
it -2.78 3.71 2.78 0.81 yes 

sensitivity analysis takes into account these relationships when evaluating the influence 

of each individual parameter. It is worth noting that Blower and Dowlatabadi sug- 

gest that the LHC method is particularly useful in large, complex models, however it 

seems reasonable that it is these kinds of models which will contain interaction effects. 

Moreover as the differential equation models commonly used are non-linear it seems 

plausible that interaction effects will occur. 

We have shown a trivial example of where the LHC method gives unreliable results. 

We suggested earlier that two ways of overcoming this problem are by making n suf- 

ficiently large and conducting several trials so that we can get an idea as to typical 

values of the test statistic. Figures 9.1-9.3 show values of the t test statistic for al, A2 

and bt for n= 30 with the sensitivity analysis repeated 8 times. The horizontal lines 

on the plot are the upper and lower significance limits at 97.5% and 2.5% respectively 

for a Student's t distribution with 28 degrees of freedom. From these figures it is clear 

that the PRCC's for Al and A2 are statistically different from zero when n= 30, it is 

less clear from Figure 9.3 whether this is the case for St. While obviously the value of 

the test statistic is subject to variation the spread of values of this statistic gives a good 

idea as to which model parameters are the most influential. Examining the values of 

the test statistics in the figures it seems reasonable to conclude that out of the these 

three parameters A2 is the most influential closely followed by Al and finally 8t. We 

mentioned earlier that rather than repeat the sensitivity analysis a number of times we 

could simply increase n and use a single trial. The problem with this method is that 

we do not know how large to choose n such that we draw the correct conclusion. For 

example with n= 100 in the HIV Test Model we still have that one out of ten test 
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Figure 9.1: Test Statistic for Al 
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statistics still gives the wrong conclusion (at a 5% significance level) as to the relative 
importance of Al and A2. From the previous figures it seems reasonable that we should 

conclude that A2 is the most influential parameter. Hence it may be the case that it is 

better at any value of n to repeat the analysis a number of times to avoid misleading 

conclusions. 

9.7 Summary of Sensitivity Analysis 

In this chapter we have examined in detail the method of sensitivity analysis proposed 
by Blower and Dowlatabadi (1994). We first discussed the similarities between exper- 
imental trials and a sensitivity analysis, and outlined several common experimental 

designs and commented on their relation to the Latin Hypercube (LHC) design pro- 

posed by Blower and Dowlatabadi. We stated that on theoretical grounds the LHC 

design was not ideal for a sensitivity analysis as this design assumes that the affect of 

changing one model parameter is independent of the values of the other model param- 

eter. In other words the LHC design does not take into account the interaction effects 

between the different model parameters. We used the HIV Test Model from Chapter 8 

to illustrate the potential problems of using the LHC design together with partial rank 

correlation coefficients (PRCC's) when an interaction effect is present, and we showed 

that this can lead to unreliable conclusions as to which are the most influential model 

parameters. We next discussed ways of using the LHC design such that sensible results 

are obtained when interaction effects are present. We suggested that a suitable method 

was to repeat the LHC design a number of times, and compare the resulting PRCC 

t-test statistics for the various model parameters. In general the parameters which have 

the most extreme test statistics are those which are most influential in affecting the 

output variable. 
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Chapter 10 

Stochastic Models of Needle 

Sharing 

All the models we have examined in Chapters 2-8 have been deterministic in nature. A 

main advantage of using deterministic models (as opposed to stochastic models) is that 

they are generally more tractable than the stochastic alternative. The flip-side of this 

is that a deterministic approach may not capture the true behaviour of an epidemic. 

The real world is highly stochastic, particularly where the behaviour of humans is 

concerned. In this penultimate chapter we examine a number of comparisons between 

the models we have studied previously and their more realistic stochastic equivalents. 

We are interested in whether the conditions necessary for the disease to take off or die 

out are the same as in the deterministic case and in particular whether the long term 

prevalence of disease is comparable. 

We first discuss several fundamental differences between stochastic and determinis- 

tic models. We then examine a comparison of the Kaplan and O'Keefe Model defined 

by eqns (1.1)-(1.2) with its stochastic equivalent. This leads on to a study of the prob- 

ability of extinction in stochastic needle sharing models. We next briefly compare the 

Simple, Optimistic and Pessimistic Models with their stochastic equivalents. Finally 

we examine a stochastic alternative to the HIV Test Model and its extension to three 

stage infectivity. The chapter concludes with a short summary. 
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10.1 Stochastic and Deterministic Models 

There are two fundamental questions regarding the spread of an infectious disease. 

Firstly, what is the likelihood that an epidemic will occur, and secondly, if an epidemic 
does occur what is the likely impact on the population? Epidemiological models can 
be valuable in providing answers to these questions. Deterministic models are used ex- 

tensively in epidemiology and have been shown to provide useful insight in many areas. 

Their use is commonly justified by arguing that this approach is a good approximation 

to the equivalent stochastic process when the population size is large. However except 
in trivial cases there are no analytical results to support the similarity of deterministic 

and stochastic models. 

Stochastic and deterministic models provide different answers to the two questions 

posed above. Suppose for example that we are in the common situation where a critical 

threshold exists between the disease dying out or taking off. In a deterministic model, 
if the estimates of the model parameters give rise to a value greater than the critical 

threshold, then if initially present in at least one addict or one needle the disease will 

take off. However in a stochastic model (which allows for the random nature of disease 

transmission) even if the parameters give a value greater than the critical threshold 

an epidemic may not occur and the disease could simply infect a small number of 

individuals before dying out. This is an important distinction between deterministic 

and stochastic models. 

We now turn to the case where an epidemic does occur and we wish to estimate 

the long term prevalence of disease. It is possible for deterministic models to reach a 

state of equilibrium where disease remains forever present in the population. This may 

be through the disease remaining at a constant level equal to an endemic equilibrium 

solution, (we have demonstrated that this situation is approached for all the models we 
have so far discussed). Alternatively it may be that the disease is always present and 

exhibits cyclical behaviour. In either case the deterministic system can be thought of 

as having reached equilibrium. This is not so in a stochastic system, where the system 

usually represents a continuous time Markov chain. Obviously in such a situation we 
have that the disease-free state is an absorbing state, hence this zero state is persistent 

non-null (the probability of the chain eventually reaching this state equals unity and 

the expected time for this to occur is finite), and all other states are transient (the 

probability of the chain ever returning to one of these states given that it starts in that 
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state is strictly less than unity). This chain is not irreducible but there exists a unique 

stationary distribution where no addicts and no needles are infected. 

The Markov chain described above can be thought of as a fluctuating sequence 
denoting the number of people infected at time t. Either this sequence becomes so 
large that it escapes to infinity or it is absorbed at zero during one of its fluctuations. 

Since we are interested in the application of this chain to the spread of disease among 

a real population, we have only a finite state space and therefore the number of people 

infected by the disease cannot become so large that it escapes to infinity. Therefore we 
have that eventually the disease must die out. For example if we were to simulate such 

a chain 100 times then after a sufficiently large duration we expect that each of these 

simulations will have been absorbed at the disease-free state. 

At the start of an epidemic when the number of infected addicts and infected nee- 
dles is small then we expect the probability that the chain will reach the absorbing 

state to be particularly high. However once the disease has become more established 
(for example after a stage of exponential growth) then it may settle down to a quasi- 

equilibrium state (Renshaw, 1991, Hay, 1999), this is where the disease appears to 

fluctuate about a steady-state. For the reasons mentioned above this is not a true 

equilibrium state (or stationary distribution), however as discussed by Hay (1999) and 

Renshaw (1991) the time taken for the chain to reach the absorbing state once this 

quasi-equilibrium state has been reached may be biologically irrelevant to the system 

under consideration (for example it may take thousands of years). This means that 

comparing the quasi-equilibrium of a Markov chain with an equilibrium solution of an 

equivalent deterministic model is a sensible comparison. 

As a remark on the merits of using stochastic models over deterministic models 

or vice versa, Mollison (1991) suggests the use of linearised deterministic models and 

non-linear stochastic models. In this paper Mollison specifically examines population 

velocities in various types of spatial epidemic models, however a number of the points 

he raises carry over to non spatial models. Essentially he argues that the spread of 

disease in a non-linear differential equation model should be bounded above by its 

linearisation. Therefore simple linearised models provide a convenient basis from which 

to investigate the criteria necessary for an epidemic to occur. Mollison argues that (at 

least in a spatial context) non-linear stochastic models should be used to investigate the 

long term behaviour of disease, as non-linear deterministic models offer little advantage 

over linear deterministic and linear stochastic models. 
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As mentioned above non-linear stochastic and non-linear deterministic models need 

not behave in a similar fashion, for example they may not suggest the same long term 

prevalence of disease. Therefore it is of interest to establish whether the deterministic 

models which we have spent considerable time examining in the previous chapters 

behave in a similar fashion to their more realistic stochastic equivalents. 

10.2 Simulation Aspects 

Stochastic simulation is a common technique, and as such we do not give in depth 

details of the practical workings of the simulation method. However a brief discussion 

is pertinent. The computer based simulations in this chapter were written using a 

computer program in C. In essence this program treats each member of the population 

(each addict) as a separate entity who makes his or her own decisions independently of 

any other addict. Each addict is allowed to make a number of decisions, for example 

when he or she will next inject with a shared needle and whether or not they will clean 

this needle prior to use. In addition certain external forces act on each of the addicts, for 

example addicts can be removed from the population and can develop full blown AIDS 

(at which point they also leave the population). We feel that this method of simulating 

the population is as good a mimic of real life as possible within the framework of our 

model assumptions. 

In terms of practicalities the simulation programs in this section are very compu- 

tationally intensive and require considerable computing time. For this reason all sim- 

ulations illustrated in this chapter use a relatively small population size of 91 addicts 

and 100 needles (this ensures we have the "gallery ratio" as estimated in Table 2.1). 

The computation time for 100 simulations of this population size for a duration of 200 

years is between 12 and 36 hours (for most of the models in this chapter). Using larger 

populations increases this time considerably, and we expect that for large populations 

the stochastic model is close to the behaviour of the corresponding deterministic model, 

hence there is little advantage in increasing the addict population size. However most 

models in this chapter were simulated over 400 years using population sizes from 50 to 

300 addicts in order to identify whether the behaviour of the models was dependent 

on population size. Simulations suggest that this is not the case and a population size 

of 91 addicts and 100 needles is representative of the behaviour of the disease among 

larger populations. It should be noted that since we are using a population size of 91 
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addicts the simulations in this chapter are obviously not as smooth as the numerical 

approximations to the deterministic models of previous chapters. The smallest change 

in prevalence in the stochastic models is 1/91 compared to a precision of 16 significant 

digits in the deterministic models. 

10.3 The Kaplan and O'Keefe Model 

Bearing in mind the discussion in Section 10.1 we now compare the behaviour of the 

Kaplan and O'Keefe Model with its stochastic equivalent. We do not aim to present a 

rigorous comparison between stochastic and deterministic models. We simply focus on 

whether the deterministic Kaplan and O'Keefe Model provides a good approximation 

to the behaviour of a simulated stochastic epidemic based on the same behavioural 

assumptions. Using Assumptions 1 to 9 in Section 2.2 it is straightforward to construct 

a computer-based simulation model which represents a stochastic equivalent of the 

deterministic Kaplan and O'Keefe Model. 

Figure 10.1 shows a single simulation of the fraction of addicts infected over time in 

the stochastic model for a population size of 91 addicts and 100 needles with initially 

only a single infectious addict in the population. The figure also shows a numerical 

simulation of the Kaplan and O'Keefe Model (using the same parameter estimates as in 

the stochastic model) where initially a fraction 0.011 (1/91) of the addict population was 

infectious and no needles were initially infectious. The value of Re for both these models 

is 3.19. It could be argued that after the initial growth stage the stochastic realisation 

does tend to fluctuate about the endemic equilibrium level of the Kaplan and O'Keefe 

Model. While we have illustrated the behaviour of the stochastic model over a duration 

of only 150 years, simulations of this model over 600 years show similar fluctuations 

about the endemic equilibrium level of the deterministic Kaplan and O'Keefe Model. 

Moreover we find that increasing the population size to three hundred addicts (with the 

ratio of addicts to needles kept constant) does not appear to decrease the amplitude 

of these stochastic fluctuations. We do not illustrate simulations of the Kaplan and 

O'Keefe Model when Ro <1 but we find that the disease dies out in all addicts and 

all needles and moreover this occurs on a biologically realistic time frame (less than 

200 years). This is good evidence that as in the deterministic model when Ro <1 the 

disease dies out among the population. 

Figure 10.2 was constructed by simulating the stochastic model 100 times using the 
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Figure 10.1: Single Simulation of Stochastic Model (Ro > 1) 
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same parameter estimates as in Figure 10.1 and in each simulation we stored the number 

of infectious addicts at t=5,10,15 and 150 years. It was initially assumed that only a 
single addict was infectious and no needles were initially infectious and the total (fixed) 

population size was 91 addicts and 100 needles. The figure shows that even though 
Ro = 3.19 >1 the disease dies out in a minority of simulations. After approximately 
15 years has passed no more simulations die out, this suggests that if disease is still 

present after 15 years then it will tend an endemic state. However given our previous 

comments this is not a true equilibrium state but rather a quasi-equilibrium state. 
It appears that the criteria for the disease to take off is the same in the Kaplan 

and O'Keefe Model and its stochastic equivalent, however as previously mentioned the 
disease can also die out in the stochastic case. We are now interested in whether the long 

term prevalence of disease given that an epidemic does actually occur is similar to that 

of the deterministic Kaplan and O'Keefe Model. An appropriate method of comparing 
these models is to compare the expected value of the stochastic model conditional on 
the disease not dying out, with the long term prevalence in the Kaplan and O'Keefe 

Model. It seems more appropriate to use conditional expectation since the long term 

prevalence of disease is of interest only provided that an epidemic does in fact occur. 
Indeed the motivation for studying HIV and AIDS models is that this disease has been 

shown to take off among particular population classes, for example among intravenous 

drug users. 

Figure 10.3 shows the average fraction of addicts infected out of N= 100 simulations 

of a population of 91 addicts and 100 needles conditional that the epidemic takes off. 
The initial condition in each simulation was one infectious addict and no infectious 

needles. This expected value is based on 63 out of 100 simulations since in 37 of these 

the disease dies out (as shown in Figure 10.2). From the figure it appears that the 

Kaplan and O'Keefe Model is a very good approximation of the conditional mean of 
the stochastic process and not only in terms of long term prevalence, the dynamic 

behaviour is also very similar. For larger population sizes (not illustrated) the Kaplan 

and O'Keefe Model is also an excellent approximation to the conditional mean of the 

stochastic equivalent. 

305 



Figure 10.3: Kaplan and O'Keefe Model Comparison 
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10.3.1 Probability of Extinction in the Kaplan and O'Keefe Model 

In the previous section we demonstrated that the disease dies out in a minority of 

simulations when Ro > 1. We now use a similar argument to that used by Bartlett 

(1955) to derive an expression for the probability of extinction of disease (or equivalently 

the probability of a major outbreak) based on the modelling assumptions made by 

Kaplan and O'Keefe (1993) which we discussed in detail in Chapter 2. 

Consider the general stochastic epidemic model without vital dynamics, where ini- 

tially there are n susceptibles and a infectives, and a is small. Bartlett (1955) points 

out that when n is large, the population of infectives is approximately subject to a 

birth and death process with birth and death rates fin and y respectively. Now the 

chance of ultimate extinction for such a process is R° if Rb >1 and 1 if lip < 1, where 

Ro = 8n/7, y is the per capita removal rate and ß is the rate at which each infected 

individual and each susceptible individual make potentially infectious contacts so that 

if there are x susceptibles and y infectives then the transmission term is ßxy. Hence 

intuitively we expect a minor epidemic outbreak to occur with probability Rý ° and a 

major epidemic outbreak with probability 1- Rp ° if Ro > 1. For &<1 the epidemic 

outbreak is always minor. 

Whittle (1955) makes this intuitive argument more rigorous by bounding the process 

above and below by two birth and death processes for which the probability of extinction 
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can be explicitly calculated. The ideas of Whittle's argument are explained clearly by 

Bailey (1975). If 7rt denotes the chance that not more than a proportion i of the n 

susceptibles are eventually attacked then Whittle shows that: 

(i) If 
(ii) If 

(iii) If 

Ro > (1- i)-1, then 

(1 - i)-1 > Ro > 1, then 

Ro < 1, then 

Rp-a < 7ri < (Ro/(1 - i))-'; 

Rp-a < 7ri < 

7r; =1. 

In this section we outline a similar intuitive branching process argument to calculate 

the probability of a major epidemic outbreak for our model of HIV among injecting in- 

travenous drug users. Our method is based on a similar approximation to that suggested 

by Bartlett in that the start of our epidemic is approximated by a branching process 

which ignores small initial changes in the number of infected addicts and the number of 
infected needles. We do not obtain a rigorous bound for this probability as in Whittle's 

Theorem. We feel that it would be possible to do this using Whittle's method but 

the details would be very technical and we wish to concentrate on the practical result. 

Recall that R0 = A(1-ý)a/((µ+ 5)(O+T)). We define p= a(1-B)/(T+B+a(1-B)). 

If we consider a single infectious needle entering a population at the disease-free equi- 

librium then p represents the probability that at least one addict who does not flush 

the needle is infected by it. 

Theorem 10.1 Suppose that there are initially n+a addicts of whom a are infected 

and m+b needles of which b are infected and n and m are large and a and b are small. 

Then a large outbreak of HIV will occur with probability zero if Ro < 1, and probability 

1- (PÄPs), if Ro > 1, where 

PA 
p+Ro(l-p) 

and PB=1+ýýA (1-P)(1-Ro)" 

Proof. 

Let X denote the number of needles infected by a single infectious addict during 

his or her infectious lifetime in an otherwise entirely susceptible addict population with 

no infectious needles (a = 1, b= 0), Z denote the number of secondary addicts infected 

in the same situation and Y be the number of addicts infected by a single infectious 

needle during its infectious lifetime in an entirely susceptible addict population with 

no other infectious needles (a = 0, b= 1). Denote the probability generating functions 

(p. g. f. 's) of X, Y and Z by Gx(s), Gy(s) and Gz(s) respectively. 
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We have that 

P(X=O) = 1-4, 

P(X = 1) = q(1 - q), 

so in general P X= x) q(for x=01... where qA 

Therefore 

GX (s) E(sX) 
qs 

We now derive an expression for Gy(s). Each time that a susceptible addict uses an 
infectious needle he or she is either infected by it or not, and the needle is either flushed 

or not. For simplicity we assume that flushing and HIV transmission are independent, 

this is not necessarily true but (as discussed previously) Greenhalgh and Hay (1997) 

demonstrated that this assumption does not affect the number of secondary infections. 

Since we are assuming the Markov property in all addict-needle interactions the state 

of a needle after use can be treated as a renewal process. 

Firstly consider the probability that an infectious needle does not infect any addicts 
during its infectious lifetime. A needle can be exchanged or cleaned prior to use, 
in either case the needle will fail to infect any addicts, this occurs with probability 
(0+T)/(1+T). The probability that a needle is neither cleaned nor exchanged prior to 

use and therefore still infectious at the start of the injection process is (1 - ý)/(1 + T). 

During injection transmission does not occur and the needle is flushed with probability 
(1 - a)O, or transmission does not occur and the needle is not flushed with probability 
(1 - a) (1 - 0). Therefore denoting P(Y = y) = Py we have that 

po - 
(1-ý)((1-a)B+(1-a)(i-e)Poý+ý+T 

1+f 1+f* 
Solving this equation for Po we have that 

C 
Po = 1-1- , P 

where 

_ 
a(1- 9) 

p T+B+a(1-B) 

and c_ 
a(1 - ¢)(T+B) 

(T+B+a(1-B))2" 

Moving on to Pl we require that a total of one addict is infected by a single infectious 

needle during its infectious lifetime. Hence we require that the needle is neither cleaned 
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nor exchanged prior to the current injection, this occurs with probability (17-0)/(1+T). 

Therefore in a similar fashion to above we find that 

Pi 
(1+0)[a9+a(1-O)Po+(1-a)(1-O)Pj I. 

Solving this equation for PI we find that 

Pl = c. 

It follows similarly that the probability of exactly two addicts becoming infected by a 

single infectious needle during its infectious lifetime is 

P2 = 
(1 

+ 
0) 1a(1- 9)Pl + (1- a) (1 - 9)P2]. 

Solving this equation we deduce that 

Pz = cp" 

In general we find that 

Ac = 1-1- 
P 

and PP = cpb-1, for y=1,2,..., 

from which it is straightforward to show that 

Gy(s) = E(s ') = 1- 
1C+1c P Ps 

We have so far derived the p. g. f for X, the number of needles infected by a single 

infectious addict and Y, the number of addicts infected by a single infectious needle. 

Now suppose that a=1 and b=0 so that initially there is only a single infectious 

addict in the population and all other addicts and needles are uninfectious. During his 

or her time in the population this single infectious addict infects X=x uninfectious 

needles for x=0,1,... . The probability generating function of Z, the number of 

secondary addicts infected from this single infectious addict is 

Gz(s) = E(sz), 
00 

= 
1: E(sZI X= x)P(X = x), 
x=0 
00 

= 
EE(s'1 '2+... +YvIX=x)P(X=x), 

x=0 
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where Y is the number of secondary addicts infected by the i'th needle. As the Y; 's 

are independent and identically distributed: 

00 
Gz(s) _E 

(E(sy))xp(X 
= x), 

s=o 
00 

=> Gy(s)ZP(X = x), 
x=0 

= E[Gy(s)x], 

= Gx(Gy(s)), 
1-q 

1- gGy(s)' 
1-q 

=1- 
q(l - l'p + 1P8 

The probability of extinction is the smallest root, sÄ, of s= Gz(s) in [0,1). The 

equation 

S= Gz (S) 

can be written as 

s-qs 1-1c +cs = 1-q. 
P 1Ps 

This can be re-expressed as the quadratic 

8 2\cq+p(1-q+1cq 
p) 

-s(P(1-q)+ 
(l-q+1cq 

p) 
+1-q = 0. 

Since st =1 must be a root we find that the other root is 

1-q 
2 

cq+p(1-q+j 
)' 

(1-q)(1-p) 

cq ß'p(1 -p)(1 -q)' 
1 

P+ 1-p 1-9 

1 

p+Ro(1 -p)' 

as Ro = E(X)E(Y) = cq/((1 - p)2(1 - q)). Hence if Ro <1 and there is initially 

only one infectious addict in the population then sÄ =1 and the disease dies out in all 

addicts and all needles. If Ro >1 then under the branching process approximation the 

disease dies out in all addicts and all needles with probability sÄ = sz < 1. 

Now consider the case where initially only a single needle is infectious and all addicts 

are susceptible. During the time for which this single needle is infectious it infects Y=y 
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susceptible addicts for y=0,1,2,... . Let 2 denote the number of secondary infectious 

needles attributable to this single infectious needle. Then 

G2 (s) = E(sZ), 
00 

_E E(szlY = y)P(Y = b), 
Y=O 
00 

_E E(sxi+xs+... +xy IY = y)P(Y = y), 
Y=O 

where X; is the number of secondary needles infected by the i'th addict. As the Xi's 

are independent and identically distributed, in a similar fashion to previously we have 

that: 

GZ(s) = GY(Gx(s)), 
c c(1 - q) ) 

- 1-1-p+1-qs-p(1-q)' (10.1 

The probability of eventual extinction of disease is the smallest root, sB, of s= G2(s) 

in [0,1). Solving s= G2(s) using G2(s) from eqn (10.1) we require the smallest root 

of 

gs2+s(p(1-q)-1-q+1ýq p) 
+1-p(1-q)-1_p = 0. 

Since we again have that s1 =1 is a root it follows directly that the other root is 

S2 = 
q[1-p(1-q)-lip], 

l+(µ+b)(1-P)(1-Ro). 
A 

Hence if Ro <1 and there is initially only one infectious needle in the population then 

sB =1 and the disease dies out in all addicts and all needles. If Rq >1 then the 

disease dies out in all addicts and all needles with probability sB = s2 < 1. If initially 

there are n susceptible and a infected addicts and m infected and b uninfected needles, 

where a and b are small and n and m are large then under the branching process 

approximation we can regard the a infected addicts and b infected needles as starting 

independent branching processes and the probability that the disease dies out in all of 

them is (sA)a(s8)b. This completes the proof of Theorem 10.1.9 
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Figure 10.4: 1- PÄPB for varying a and b (Kaplan and O'Keefe Model) 
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Practical Implications 

Having derived expressions for the probability that a large outbreak of HIV will occur 

we now examine which factors are the most significant in contributing towards such 

an outbreak. We first illustrate the importance of the initial conditions in our model, 
in particular the difference between when addicts are initially infectious and when 

needles are initially infectious. In the subsequent figures we use the parameter estimates 
detailed previously in Table 2.1 together with b=0.101957 per year (Peterson et al., 
1990). 

Figure 10.4 illustrates the probability of a large outbreak of HIV when there are 
initially only a small number a of addicts and a small number b of needles infected. As 

Ro = 3.19 >1 for the parameters used this is given by the formula 1-PÄPB. The figure 

shows clearly that the number of addicts initially infectious has a far greater influence 

on the probability of a major epidemic outbreak than the number of needles initially 

infectious. For example if four or more addicts (and no needles) are initially infectious 

then it is almost certain that a major epidemic outbreak will occur. In contrast if ten 

needles (and no addicts) are initially infectious then the probability of a major epidemic 

outbreak is only 0.02. This relationship is intuitively sensible as infected addicts remain 
in the population a lot longer than infected needles. 

We now examine the impact of control measures such as needle exchange programs 

and improved needle cleaning in reducing the value of 1- PÄPB. Figure 10.5 shows the 
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Figure 10.5: Impact of Control Measures on 1- PA 
A= 246.22 per year 
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probability of a large outbreak of disease for various values of the needle exchange rate 

and the needle cleaning probability when a single addict and no needles are initially 

infectious. Kaplan (1995) estimates that once established a formal needle exchange 

program could increase the (average) needle exchange rate to 121.7 per year. We have 

previously estimated that without external intervention addicts clean needles prior to 

use approximately 64% of the time. The figure suggests that using interventions such 

as improved needle cleaning and needle exchange together could reduce the probability 

of a major epidemic outbreak to a very low level. However this would require that 

addicts both exchange needles on a regular basis (such as every few days) and that 

shared needles are cleaned prior to injection very often (for example over 80% of the 

time). 

Figure 10.6 is similar to Figure 10.5 but where the shared injection rate, A, has been 

lowered from 246.22 per year down to 100.0 per year. It is clear that interventions such 

as needle cleaning and needle exchange are now much more influential in reducing the 

likelihood of a major epidemic. For example if addicts clean needles prior to use only 
64% of the time (as previously estimated) then the introduction of a needle exchange 

program on its own could reduce the probability of a major epidemic outbreak down to 

virtually zero, even if this program increased the needle turnover rate by only a small 
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Figure 10.6: Impact of Control Measures on 1- PA 
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amount. Such a reduction in the needle sharing rate may be possible if counselling 

and HIV testing are included as part of a needle exchange program. As discussed in 

Chapter 8 the motivation for such additions is that by being made aware of the risks 

involved addicts may reduce the rate at which they share needles and similarly infected 

addicts who are made aware of their positive HIV status (through taking an HIV test) 

would hopefully substantially reduce the rate at which they shared needles. 

10.4 The Simple Model 

Having discussed in detail the Kaplan and O'Keefe Model and its stochastic equivalent 

we now briefly take a similar look at the Simple Model. We examine the long term 

prevalence of disease in the stochastic and deterministic models and as usual use the 

parameter estimates from Table 3.1. Using an extension of the method in Theorem 

10.1 it is possible to compute numerically the probability of extinction of disease in the 

Simple Model, and we conclude this section with a brief comparison of this probability 

and corresponding values for the Kaplan and O'Keefe Model. 

Figure 10.7 shows the mean of-the stochastic Simple Model conditional on the dis- 

ease not dying out during the duration of the simulation period and the deterministic 

Simple Model. In the stochastic model it was assumed initially that one addict and 
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Figure 10.7: Simple Model Comparison 
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no needles were infectious where this single addict was assumed to be in stage one 

infectivity. In the deterministic model we assumed that 1.1% of the total addict pop- 

ulation were infectious and no needles were infectious and again all initially infectious 

addicts were in stage one infectivity. It is clear from the figure that the long term 

prevalence of disease is very similar in both models. Figure 10.8 is similar to Figure 

10.7 but shows the behaviour of the conditional mean of the stochastic Simple Model 

using three different initial conditions. The three simulations in this figure assume that 

initially 1,27 and 64 addicts (among a total population of 91 addicts and 100 needles) 

are in stage one infectivity, this is approximately equivalent to initial prevalences of 

1%, 30% and 70%. These simulations suggest that the quasi-equilibrium prevalence of 
disease in addicts is unaffected by the initial state of the disease (provided of course 

that disease is present in at least one addict or needle). This is again similar to the 

behaviour of the deterministic Simple Model. 

We conclude our simulations of the stochastic Simple Model with an illustration of 
the effect of reducing the basic reproductive number to less than unity. Figure 10.9 

shows a simulation of the unconditional mean of the Simple Model where initially one 

addict is in stage one infectivity and addicts clean needles prior to use with a probability 

of 0.64. We have assumed that after 25 years duration all addicts instantaneously 
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Figure 10.8: Simple Model Global Stability 
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Figure 10.9: Simple Model with Cleaning Intervention 
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increase the probability of cleaning a needle prior to use from 0.64 to 0.89. This has 

the effect of reducing Ro from 3.6 down to 0.9 at t= 25 years. We can see from the 

figure that the disease quickly reaches a quasi-endemic state before rapidly dying out 
due to the reduction of Ro to less than the critical threshold value of 1o = 1. Having 

illustrated that as with the Kaplan and O'Keefe Model, the stochastic Simple Model 

behaves in a similar fashion to its deterministic equivalent we now briefly examine the 

probability of extinction in the latter model in a similar manner to previously. 

10.4.1 Probability of Extinction in the Simple Model 

Using a branching process approximation similar to that used in Section 10.3.1, but this 

time based on the Simple Model, it is straightforward to prove the following theorem, 

analogous to Theorem 10.1 for the Kaplan and O'Keefe Model: 

Theorem 10.2 Suppose that there are initially n+a addicts of whom a are infected 

and m+b needles of which b are infected, n and m are large, and a and b are small. 

Then a large outbreak of HIV will occur with probability zero if Ro <1 and probability 

1-PÄPBif Ro>1, where: 

4i =A for i=1,2,3, 

1- ql Gxýýs) -1- 
qls' 

Gxz () = I` al r1- g2 s 
µ+öl 

+µ+öi 
\1-q2s 

s() 
5152 alb2 (1 - 93 l 

and GX s= 1- 
(F4+5i)(µ+b2) 

+ (p+öl)(F4+62) \1-g38)' 

; Gx (s) = Gxi(s)Gxs(s)Gx3(s) and Gy-(s) = 1- 
1cP+ I- 

cs 
ps 

Gz(s) = Gx(GY(s)); 

G2(s) = Gy(Gx(s)); 

1> PA >0 is the unique root of s= Gz(s) in [0,1) and 1> PB >0 is the unique root 

of s= G2(s) in [0,1). 
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Proof. 

Let X denote the total number of needles infected by a single infectious addict 

during his or her entire infectious lifetime upon entering a population of n susceptible 

addicts and m uninfected needles. Therefore the random variable X= X1, + X2 + X3, 

where for i=1,2,3, X; denotes the number of needles infected by a single infectious 

addict during his or her entire stage i infectious lifetime. Hence the p. g. f. of X is 

GX (s) = Gxl (s)GX2 (s)Gx3 (s) and the proof of this result follows very similarly to 

that of Theorem 10.1. If Ro >1 then the uniqueness of PA and PB follows by standard 

results in the theory of branching processes.. 

Practical Implications 

We find that the behaviour of the probability of a major epidemic outbreak in the 

Simple Model is qualitatively very similar to that of the Kaplan and O'Keefe Model. 

In particular it appears that as previously, while combining control measures such as 

needle exchange and needle cleaning can significantly reduce the probability of a major 

outbreak of disease, either measure is very much more effective if the needle sharing 

rate is also substantially reduced. Given our previous comparisons of single stage and 

three stage models in Chapter 7 it is of interest whether the probability of a major 

outbreak of disease is increased when we move to three stage infectivity in addicts. 

Figure 10.10 is similar to Figure 10.4 but uses a value for the probability of HIV 

transmission in a single injection of a=0.005342 rather than a=0.00601. As discussed 

at length in Sections 7.2 and 7.5, using this value of a ensures that our three stage model 

and the Kaplan and O'Keefe Model are suitably calibrated in that we have that the 

cumulative viral load during an addict's infectious lifetime is the same in both models. 

All other parameters are as detailed in Table 2.1. From Figure 10.10 we again have that 

the number of initially infectious addicts has a very strong influence on the probability 

of a major outbreak and the number of initially infectious needles has a very limited 

effect. Moreover this figure also suggests that for any particular given combination of 

initially infectious addicts and needles the probability of a major outbreak is higher in 

the three stage model (under calibration). 
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Figure 10.10: 1- PÄPB for varying a and b (Three Stage Simple Model) 
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10.5 The Optimistic, Pessimistic and General Models 

We now move on to comparing the Optimistic and Pessimistic Models with their 

stochastic equivalents. Figure 10.11 was constructed similarly to Figure 10.7 but fea- 

tures the deterministic Optimistic and Pessimistic Models and their stochastic equiv- 

alents. It is clear that the quasi-endemic equilibrium in the stochastic models is very 

similar to the endemic equilibrium suggested by the deterministic models. Simulations 

using a variety of different parameter estimates suggest that the deterministic models 

are good approximations of their more realistic stochastic equivalents. Figure 10.12 

shows the impact of introducing a needle exchange program into our simulated popula- 

tion of addicts and needles where addicts and needles interact according to assumptions 

first in the Optimistic Model and then the Pessimistic Model. We expect from our pre- 

vious discussion of the effect of needle exchange that increasing the needle exchange 

rate from r= 15.53 per year (the natural needle turnover rate) to r= 121.7 per year 
(the increased exchange rate resulting from the introduction of a formal exchange pro- 

gram) should produce a reasonably large decrease in the prevalence of disease. Figure 

10.12 shows the conditional mean in the stochastic Optimistic and Pessimistic Models 

where we have initially assumed that 1.1% of all addicts are in stage one infectivity 

and needles are replaced with unused needles on average every 23.5 days (as estimated 

by Kaplan, 1995). We further assume that at t= 50 years a formal needle exchange 
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Figure 10.11: Optimistic and Pessimistic Model Comparison 
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Figure 10.12: Optimistic and Pessimistic Models: Needle Exchange Intervention 
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Figure 10.13: Equally Likely General Model 
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program has been established which decreases the average needle circulation time down 

to only 3 days. The simulations show a comparative level of decrease to that suggested 

by our deterministic models in Chapter 7. 

We conclude our three stage infectivity model comparisons with a brief look at 

simulations of the (fully) General Model. Figure 10.13 shows the conditional mean for 

the General Model using the set of p*ýk terms denoted by B1 in Table 5.5 (the "equally 

likely" model). From Figure 5.5 in Chapter 5 we expect that this model will take a 

considerable amount of time to reach equilibrium. To reduce the computing time for 

this model we have assumed that initially nine addicts are in stage one infectivity and 

similarly that nine needles are in state one infectivity, the remaining addicts and needles 
being uninfectious, this means that the model should take less time to reach a steady 

state (since from the deterministic model we expect this model to tend to a prevalence 
in addicts of about 15% or equivalently about 14 addicts). From Figure 10.13 we can 

see that the conditional mean of the stochastic model is close to that of the equivalent 
deterministic model, however the conditional mean appears more variable than in some 

of our previous models (for example the Optimistic and Pessimistic Models). It was 

plausible that this could have been caused by the artificial starting conditions used in 

which the proportions of infected addicts and infected needles are out of phase with 
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the equilibrium solution, causing initial large transient fluctuations in the prevalences 

of disease in addicts and needles. However individual simulations of this model did 

not appear to exhibit such initial fluctuations and the increased variability is more 

likely to have been due to the relatively low spread of disease suggested by this model 

together with the small total population size of 91 addicts and 100 needles used in our 

simulations. Using a much larger population size (and more simulation runs) would 

probably result in less variability, however this model is particularly computationally 

intensive taking 48 hours to produce the data shown in Figure 10.13. For this reason 

we do not illustrate simulations of this model for larger population sizes, but we found 

that while our simulations exhibit some additional variability they still suggest that 

the deterministic model is a good approximation of the equivalent stochastic process. 

We have taken a brief look at comparing some of the three stage infectivity models 

which we have studied previously with their stochastic equivalents. We have found 

(perhaps not unexpectedly) that the criterion for an epidemic to take off or die out is 

the same, moreover our simulations suggest that given that disease take off actually 

occurs our deterministic models are very good approximations of their more realistic 

stochastic equivalents. 

10.6 HIV Test Model 

We now examine the behaviour of a stochastic model based on the same assumptions 

used to construct the HIV Test Model examined in Chapter 8. We examine this model 

in a similar fashion to those previously and again use a population size of n= 91 addicts 

and m= 100 needles. We are interested in any differences in long term behaviour and 

whether the deterministic model is a good approximation to the conditional expected 

value of the stochastic process. Figure 10.14 illustrates a single simulation of the 

stochastic HIV Test Model with Al = 250 per year, A2 = 150 per year and where addicts 

are tested on average once every ten years (8t = 0.1 per year) and where initially only a 

single addict was infectious and this addict injects at rate al. Also shown in this figure 

is a numerical simulation of the deterministic HIV Test Model using the same parameter 

estimates where initially a fraction 0.011 of the addict population are infectious and 

unaware of their infectious status and all other addicts and needles are uninfectious. 

The figure shows that eventually the disease takes off and a considerable proportion 

of the addict population are infected. The prevalence of disease appears to reach a 
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Figure 10.14: Single Realisation (HIV Test Rate=0.1 per year) 
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quasi-equilibrium state after about 30 years at which time the long term prevalence in 

the deterministic simulation seems to be an adequate description of the underlying level 

of disease (the level about which the stochastic process is fluctuating). A particularly 

interesting feature of the stochastic simulation is the initial behaviour of the disease. 

The disease remains almost dormant in the population for many years (between 15 and 

16 years) before taking off very rapidly. It is important to note that this rapid take off 

is not caused by any change in behaviour of the population under study but is purely 

due to the random nature of disease transmission. While this behaviour only occurs in 

a small minority of the simulations of the HIV Test Model a similar phenomenon also 

occurs in a small minority of simulations of each of the stochastic models we have so 

far examined in this chapter. That is not to say that we expect this to occur in reality 

but it is clear that this behaviour could occur. For example it is conceivable (though 

admittedly unlikely) that a population in a particular country or region of the world 

may escape a major AIDS epidemic for many years even though a small amount of 
HIV was present in the population and then for no apparent reason a major epidemic 

occurs. 

Figure 10.15 is similar to Figure 10.14 but the stochastic and deterministic models 
both assume that addicts are tested for HIV on average once a year. In this realisation 

we have again that the disease does not take off immediately but remains low for about 
ten years before taking off in earnest. Again this figure suggests that the deterministic 
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Figure 10.15: Single Realisation (HIV Test Rate=1.0 per year) 
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model is a good representation of the quasi-equilibrium state of the stochastic process. 

In addition this figure demonstrates clearly the large variability in the prevalence of 

HIV once the disease has passed the initial stage of rapid growth. For example at 

about 45 years the stochastic model reaches a prevalence of about 40% which for the 

next 15 years or so rapidly climbs to a prevalence of about 70%. It not difficult to see 

the problems that this level of variability can cause to public health policy decisions. 

If a steady increase in prevalence is observed then it is natural to assume that this 

sudden increase (or decrease) must have a specific cause, whether it be a new increased 

availability of cheap high quality heroin or some other external factor. However, as our 

simulations suggest, even an apparent sustained increase or decrease in the prevalence 

of disease may simply be due to the random nature of the epidemic and not the result 

of new behaviour or newly implemented control strategies. 

We have examined several single simulations of the stochastic HIV Test Model, while 

these are useful and demonstrate the level of variability which may occur during an 

epidemic they are only one possible version of events. As in our previous models we now 
look at the conditional mean of the stochastic model as this represents our best estimate 

of how the disease may behave (given than an epidemic does in fact occur). Figure 

10.16 shows the conditional mean based on 100 realisations of the stochastic process for 

the same parameter estimates and initial conditions used in Figures 10.14 and 10.15. 

We have also shown simulations of the deterministic HIV Test Model again using the 
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Figure 10.16: HIV Test Model: Deterministic v Stochastic 
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same parameter estimates as in these previous figures. It is clear that the deterministic 

model is a very good approximation to the conditional mean of the equivalent stochastic 

process. Simulations of the stochastic HIV Test Model suggest that Ro =1 is again the 

critical threshold point for this model between the disease dying out and taking off. 

10.7 HIV Testing and Three Stage Infectivity 

In a similar fashion to the previous sections we now examine the behaviour of stochastic 

equivalents to the Optimistic HIV Test Model and the Pessimistic HIV Test Model. As 

with our previous stochastic comparisons we find that the critical threshold (between 

the disease taking off or dying out), lip = 1, in the deterministic models is again the 

same for the stochastic models. Figure 10.17 shows a comparison of the Optimistic 

HIV Test Model with the equivalent stochastic process (where we use the conditional 

mean of this process as in our previous models). These simulations assume that prior 
to being tested for HIV addicts have a shared injection rate of 250 per year which 
drops to 150 per year upon receipt of a positive I1IV test. We show two simulations 

of this model, in the first instance we have assumed that addicts are tested on average 

once every ten years. It is clear from the figure that the deterministic model is a good 

approximation to the conditional mean of this process for these parameter estimates. 
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Figure 10.17: Optimistic HIV Test Model (St = 0.1,1-0) 
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Figure 10.18: Pessimistic HIV Test Model (bt = 0.1,1.0) 
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The other simulation in the figure assumes that addicts are tested on average once a 
year, again it appears that the deterministic model is a good approximation to the long 

term prevalence level in the stochastic process. 

Figure 10.18 is similar to Figure 10.17 but shows simulations of the Pessimistic 

HIV Test model. Again we have assumed that Al = 250, A2 = 150 and öt = 0.1 

and 1.0. The figure suggests that the deterministic Pessimistic HIV Test Model is a 

good approximation to the conditional mean of the equivalent stochastic process. Other 

simulations (not illustrated) of the Pessimistic HIV Test Model for a variety of different 

parameter estimates suggest that this behaviour is typical. 

10.8 Summary 

In this chapter we have taken a brief look at comparing the deterministic models studied 
in detail in previous chapters, with stochastic models based on the same behavioural as- 

sumptions. We first outlined several of the fundamental differences between stochastic 

and deterministic models. We then examined the original Kaplan and O'Keefe Model 

and compared its behaviour with an equivalent stochastic process. We compared these 

models graphically using computer based simulations and then examined the probabil- 
ity of eventual extinction in this model using a branching process. We found that the 

basic reproductive number has a strong influence on the probability that the disease 

takes off, however this probability is not the reciprocal of the basic reproductive num- 

ber as might have been expected from Whittle's Stochastic Threshold Theorem for the 

general epidemic model without vital dynamics. 

Later we compared deterministic and stochastic equivalents of the Simple, Opti- 

mistic and Pessimistic Models together with a special case of the General Model. In 

each of these stochastic models we found that the critical threshold between -the dis- 

ease taking off and the disease dying out was the same as in the deterministic models, 

namely Ro = 1. Of particular interest was whether the long term prevalence of disease 

suggested by our deterministic models was comparable with that of their more realistic 

stochastic alternatives. We found that the deterministic models were good approxima- 
tions to the mean of the equivalent stochastic process conditional on the disease not 
dying out during the duration of the simulation period. 

After comparing our deterministic three stage infectivity models we moved on to 

our models which included HIV testing. Simulations suggest that again the determin- 

327 



istic models are good approximations to their equivalent stochastic processes. We also 

examined several single realisations of the HIV Test Model. These suggest that the 

prevalence of disease can be highly variable once a quasi-equilibrium state has been 

reached. We commented that this high level of variability was true of all the stochastic 

models examined in this chapter and that this could pose considerable problems in 

evaluating the impact of control measures. 
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Chapter 11 

Summary and Future Work 

11.1 Summary 

HIV and AIDS represents a serious health risk to populations of intravenous drug 

users. The sharing of injection equipment allows this virus to be transmitted among 

these populations with relative ease, compared to the population at large. A number 

of heterogeneous features have been shown to be important in affecting the spread 

of HIV through needle sharing. For example Greenhalgh (1996,1997) has illustrated 

the importance of heterogeneity in the needle sharing rate and the efficiency of needle 

cleansing. The social networks in which addicts share needles have also been identified 

as potentially important features. Seitz and Müller (1994) have argued that variable 

infectivity can have a substantial effect on the spread of HIV among both drug users 

and the general population. In this thesis we have focused on examining the impact of 

variable infectivity specifically on the spread of HIV through needle sharing. 

We first extended an established single stage infectivity model due to Kaplan and 

O'Keefe (1993) to allow addicts to progress through three distinct stages of infectivity. 

The basic infection mechanism in the Kaplan and O'Keefe Model was unaffected by 

this extension as we still maintained only a single type of infectious needle. This 

three stage model exhibited the same qualitative behaviour as the original, with the 

basic reproductive number as usual determining whether an epidemic takes off and the 

prevalence of disease reaches an endemic steady state or the disease dies out. Moreover 

we found that under suitable calibration, the long term quantitative behaviour of these 

models will always be the same. This is an intuitive result, although our extended 

model allows addicts to move through three stages of infectivity, we have assumed that 
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the infectivity of a needle used by an infectious addict is always the same irrespective 

of the infectivity of the addict. 

If addicts progress through different stages of infectivity, it is obviously more re- 

alistic to suppose that the needles used by each of these types of addicts will contain 
different amounts of virus, and therefore represent different levels of risk to the next 

uninfectious addict to share any of these needles. Hence to model the transmission of 

HIV through needle sharing when addicts move through three stages of infectivity we 

should also incorporate three types of infectious needles, one for each type of infectious 

addict. This presents a problem since we are now required to specify how addicts and 

needles of different levels of infectivity interact with each other. In a single stage model 

we are required to determine the probability that a previously uninfectious needle be- 

comes infectious after use by an infectious addict, and similarly the probability that a 

previously infectious needle becomes uninfectious after use by an uninfectious addict. 
Kaplan and O'Keefe estimate that the former probability equals unity and the latter 

probability equals zero. In a model with three types of infectious addicts and three 

types of infectious needles we have to specify similar probabilities, however there are 

now many more of these (64 in total). Moreover we are unaware of any data to assist 

in estimating many of these interaction probabilities. 

Given the considerable problem of estimating how addicts and needles interact in 

a three stage infectivity framework, we derived models which represented intuitive 

upper and lower bounds of spread of disease. Our lower bound model was based on a 

generalisation of the case where an infectious needle is always left virus free after use by 

an uninfectious addict. Similarly our upper bound case was based on a generalisation of 

the case where an infectious needle is never left virus free by an uninfectious addict. We 

referred to our upper and lower bound models as the Pessimistic and Optimistic Models 

respectively. We demonstrated that again the basic reproductive number determines 

whether the disease dies out or reaches a unique endemic equilibrium. Using a suitable 

calibration method we compared the long term prevalence of disease in our upper 

and lower bound three stage models with equivalent upper and lower bound single 

stage models. We found that the lower bound models give rise to the same long term 

prevalence of disease in addicts and similarly for needles. The upper bound three 

stage model gives rise to a slightly higher long term prevalence of disease than in the 

equivalent single stage model. Hence from the comparisons so far it seems appropriate 

to conclude that three stage infectivity has little effect on the long term prevalence of 
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disease. 

Estimating how addicts and needles of different levels of infectivity interact is dif- 

ficult. While the Optimistic and Pessimistic Models are useful in assessing the effect 

of moving to three stage infectivity, they do assume that addicts and needles inter- 

act in very specific ways. To examine the impact of allowing addicts and needles to 

interact more broadly, we developed two generalised models of our simpler upper and 

lower bound models. These were the Restricted General Model and the General Model. 

These models contained many interaction parameters which we could not estimate pre- 

cisely. However using analytical results it was possible to demonstrate that as in our 

previous models, if the basic reproductive number was less than unity then disease will 

die out in all addicts and all needles irrespective of how addicts and needles interact. 

Moreover in the Restricted General Model, the Pessimistic and Optimistic Models still 

represent special case upper and lower bounds. We examined a second general mixing 

model, the General Model which is a further generalisation of the first and removes a 

number of important restrictions regarding how addicts and needles interact. Specif- 

ically this model has a completely general addict-needle interaction structure and as 

such the Optimistic Model no longer represents a lower bound for the spread of disease, 

however the Pessimistic Model is still an upper bound. 

To determine whether moving from single to three stage infectivity in general causes 

an increase in the long term prevalence of disease, we used various different calibration 

criteria to compare the spread of disease in our general mixing models with equivalent 

single stage models. We found that in general moving from single stage to three stage 

infectivity can result in either a significant increase in the prevalence of disease or a 

significant decrease in the prevalence of disease. Which of these occurs depends on the 

addict-needle interaction assumptions in our models. Two different calibration methods 

were used and both gave comparable results. Hence our models suggest that claiming, 

as Seitz and Müller do, that variable infectivity increases the prevalence of disease is not 

accurate, any increase (or decrease) additionally depends on how addicts and needles 
interact. As mentioned we are unaware of any data available to either justify or refute 

any particular set of addict-needle interaction assumptions. 

In our three stage models we assumed that the size of the addict and needle popula- 

tions remained constant throughout the course of an I1IV epidemic. This is unrealistic 

as mortality from AIDS will reduce the number of addicts in the sharing, injecting 

population. In addition some recruitment of new susceptible addicts will undoubtably 
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occur, increasing the population size. It is highly unlikely that these two effects will 

always balance exactly to keep the population size constant. It was straightforward to 

extend our previous models to allow the population size to fluctuate in this manner. 
We found that this does not affect either the qualitative behaviour of our models, or 
the long term prevalence of disease among addicts and needles. However in this case it 

is the actual number of infectious addicts which is primarily of interest. In the general 

mixing models we found that different addict-needle interaction assumptions have less 

impact on the long term number of addicts infected than on the long term prevalence 

of disease among addicts. The simple reason for this is that in our variable population 

size models if the spread of disease is greater then so is AIDS mortality, and therefore 

while the prevalence of disease may be higher the difference between the actual number 

of addicts infected at equilibrium is reduced. 

Once we had examined the impact of moving to three stage infectivity, we investi- 

gated different but related models which incorporated the testing of addicts for HIV. 

We first examined the behaviour of a model which was a more realistic extension of 

that discussed by Greenhalgh and Hay (1997). In this extended model we assumed 

that once infected, addicts were tested regularly for the presence of HIV. If an addict 

tested positive then he or she would share needles with a lower frequency than before. 

This model was more realistic than that examined by Greenhalgh and Hay, however 

on comparing these models we found that they had the same qualitative behaviour. 

Again the long term behaviour of our model was determined by the basic reproductive 

number. Moreover we showed that under suitable calibration these models were also 

quantitatively the same, in that they had the same endemic equilibrium solution. 

Intuitively, the effectiveness of HIV testing as a control strategy should be closely 

linked to assumptions made relating to the variable infectivity of addicts during the 

long AIDS incubation period. For example suppose that addicts are highly infectious 

for only a few weeks after initial infection, and thereafter infectivity is very low until 

the development of full blown AIDS. In this case we would expect that HIV testing 

would not be a particularly effective control measure since by the time an addict has 

been tested, then he or she will probably be in the low infectivity state and as such 
be of relatively little importance in causing new infections. To investigate the impact 

that different relative infectivity assumptions had on the effectiveness of HIV testing we 

extended the three stage infectivity upper and lower bound Pessimistic and Optimistic 

Models discussed above to include HIV testing. 
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We found that the impact of HW testing was significantly affected by different 

infectivity assumptions. As seems reasonable we found that the effect of HIV testing 

is greater for those assumptions in which more infectivity is concentrated in the latter 

part of the incubation period. We also found that for HIV testing to be at all effective, 

addicts need to be tested regularly and once aware of their infectious status greatly 

reduce the rate at which they share needles. Our models also suggest that addict- 

needle interaction assumptions have a significant impact on the effectiveness of HIV 

testing. Finally we suggested that the optimal use of HIV testing would be to combine 

it with a needle exchange program (as pioneered by Kaplan and O'Keefe). We believe 

that taken together these measures would provide a potentially very effective control 

strategy. 

In Chapter 9 we moved away from our previous models and examined a method 

of sensitivity analysis for deterministic models. We discussed a method proposed by 

Blower and Dowlatabadi (1994) for determining the most influential parameters in 

complex models of disease transmission. We discussed a number of experimental designs 

and argued that the method chosen by Blower and Dowlatabadi had potential problems. 

Specifically they assume that the impact of any one model parameter is independent of 

the values of any other model parameter. This seems unlikely in a complex non-linear 

model. We argued that a better alternative was to repeat the method suggested by 

Blower and Dowlatabadi a number of times to get a fair idea of the importance of each 

model parameter, but that it was difficult to assess the number of repetitions required. 

In Chapter 10 we briefly examined a number of stochastic alternatives to our previ- 

ous deterministic models and computed an expression for the probability of extinction 

in the original Kaplan and O'Keefe Model. We found that the probability of extinction 

in the Kaplan and O'Keefe Model is not in general equal to 1/Ro as might have been 

expected from Whittle's Stochastic Threshold Theorem. Using extensive simulations 

we found that, perhaps surprisingly, given that a major outbreak of disease actually 

occurred all our deterministic models were very good approximations to the long term 

prevalence of disease suggested by the more realistic stochastic models. This is very 

encouraging as analysing the behaviour of stochastic models is much more difficult 

than for deterministic models. They are difficult analytically and require much more 

computational effort. This is particularly useful since the output from deterministic 

models is generally easier for non-specialists to understand. This is important when 

using models to justify policy decisions such as the introduction of HIV testing, needle 
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exchange and the promotion of needle cleaning. 

11.2 Future Work 

In this thesis we have examined in detail several aspects of the transmission of HW 

among injecting drug users. This work has highlighted a number of interesting and 

possibly important areas of future work. Firstly it would be interesting to examine the 

effectiveness of control strategies such as needle exchange and HIV testing when only 

part of the population take up these measures. Taking this further and expanding on 

the work in Greenhalgh (1996), it would be interesting to see how the spread of disease 

is affected when the population consists of a small group of very high risk users, who 

practice little needle cleaning, frequently share needles and do not participate in any 

control measures. One interesting question to ask is how effective control measures 

would be in these circumstances when this small group (who will be mainly infectious) 

keep spreading disease among the remainder of the population. Another important way 

in which the work in this thesis could be extended would be to look more explicitly at 

the implications of needle sharing among groups of friends and social acquaintances as 

well as the sharing in shooting galleries on which Kaplan's original models were based. 

Moving on to the larger picture it would interesting to see whether the claim by 

UNAIDS (1999), that intravenous drug use plays a fundamental role in the spread of 

HIV among the population at large is true. Or more specifically under what assump- 

tions might this be true. For example using deterministic models of HIV transmission 

we could explore the mixing between drug using populations and heterosexual popula- 

tions. This would determine how much and what kind of interaction between these two 

populations needs to occur for an epidemic to take place among the heterosexual pop- 

ulation. This is an important practical issue as for many people in developed Western 

countries, such as those who are heterosexual and do not use intravenous drugs, HIV 

and AIDS is something which happens to others and these people perceive no risk to 

themselves. In worldwide terms the number of people newly infected with HIV is grow- 
ing steadily, as is the number of individuals abusing intravenous drugs such as heroin. 

It seems plausible that if AIDS was to become the plague affecting all sectors of the 

population that was once predicted, then the spread of HIV among intravenous users 

and their interaction with the heterosexual population at large may be a crucial factor, 

particularly in developed countries and Second World countries such as the Russian 
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Federation, and it would be interesting to look at modelling this. 
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Appendix A 

Proof of Theorem 2.5 

Simplifying det(J - wI) =0 and collecting terms in w3 gives 

al = p+öl+aa, ß*(1-0)+ary[T+B+7r*(1-B)]+µ+62+µ+631 

=µ+ öl +p+ S2 +µ+ b3 + ayQ* + \ap*(1- 

since from eqn (2.7) we can replace ß*(f +0+ ir*(1- B)) with e. Similarly collecting 

terms in w2 gives 

a2 = Aal - OW [öi 
-h µ -f- 82 -f- 1C -h J3] 

+A++e+lr*(1-e)](µ+81+µ+ö2+It +b3) 

+(/, &+bl)({A+a2)+(A+b2)(µ+M+(P+b3)(A+81) 

+a«(1- ¢), B ̀ary (T +B+ lr*(1- e)J 

-(1- ß*(1- B))A'y(1 - ir*)Aa(1 - 0). 

Again from eqn (2.7) we can replace (f +9+ 7r*(1 - 
8)) with 7r*/ß* and similarly we 

can replace [1 - /3* (1 - B)](1 - ir*) with 1- ß*(1 +i). From eqns (2.6) and (2.7) we 

can also replace (p + 61) (T +B+ ir*(1- B)) with L(1- 7r*)aa(1 - 0). Replacing these 

various terms and after some simplification we find that 

a2 = Aa(1 - q5), B*Ibi +µ+ b2 +µ+ 53] (A. 2) 

+, \'yi [/L + a2 + 14 + 531 (A. 3) 

+ary, \a(1 - ¢)ß*(1 +T) (A. 4) 

+(/A 61)(14ý'd2)+ (14+ M (14 '+'a3)'+'(F4"f'83)(14+ 81) (A. 5) 

+ ýIL+a2 + (i+52)(p+a3)ý (i - *)aa(1 -¢)ary. (A. s) 
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Collecting terms in w gives 

a3 =- [1- ß*(1- 9), X7(1- 7r*). Aa(1- 0) [öl +µ+ S2 +µ+ ö3] 

+Aß*«(1-cb)L(, t+ö2)(p+ 63)+(s+al)(a+52)(/i+63) 

+(µ+52)(/A+MAI( (T+e+lr*(1- B» +61aß*a(1- 0)ay(T+e+7r*(1-O» 

+[µ+Sl+aaß*(1-¢), ary(T+B+r*(1-B))[µ+52+µ+53]. 

In a similar manner to the a2 term above we find that 

a3 = Aß*a(l - O)L(p + a2) (p+ a3) + (p + Si) (F4 + b2) (µ + a3) 

i(/t+62)(N+ä3)A7 +ayA1a(1-c)[ 1+µ+92+µ+53ß 
(1 +i) 

114 b152 týl82 5l (14 + 63 ) 

+a3 3 P+J2 
ý+a2 

and finally the constant term in the characteristic equation is 

a4 =- 
[1- i (1 - 

9)ý a7(i - *)a«(i - ý)L(ý + ýý) (ý + a3) 

+aaß*(1 - ¢)ary [T +o ýr*(1 - 9), L(µ +452)(p + 53) 

+(µ+61)(P+ 62)(A+63)0\ryIf +6+lr*(1 -B)). (A. 8) 

Again making substitutions similar to those in the previous a; terms we find that 

a4 = a-yAa(1 - q5)L(fp + 52) (u + 53)Q *(1 + T). (A. 9) 

From eqn (2.10) we have that 6*(1 +T) =1- (1/R4), hence a4 >0 if Ro > 1. It is 

clear that for al, a2 and a3 to be strictly positive it is sufficient that (ir*, , ß*) is strictly 

positive which is true when Ro > 1. 

We now consider ala2 - a3, this can be written as 

Aa, B*(1- ¢) [(A. 2) + (A. 3) + (A. 4) + (A. 6) + µ(ßc + ös) + p(ji + Ji + 52)] 

+(p+öl+µ+b2+1c+b3)[(A. 2)+(A. 3)+(/. c+bl)(µ+S2)+(µ+bl)(µ+53)] 

+µ(A. 4)+(µ+52)(p+b3)(µ+b2+/. c+63) 

+ +JI)1A+a2 + (p+aa)(J+b3)] +al] (1-7r*)a«(1- O)ary 

+kyý {(A. 2)+(A. 3)+(A. 4)+(A. 6)+(14 +bl)(µ+62)+(p+bl)(µ+b3)]. 
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Therefore ala2 - a3 > 0. We require to show that (ala2 - a3)a3 > a2ja4. Since ß*(1+T) 

is a factor of a2 ja4 we shall base our argument around showing that (ala2 - a3)a3 has 

sufficient terms containing, 6*(1 +7) such that (ala2 - a3)a3 > aia4. It is sufficient to 

show that 

[ 
(1- *)Aa(1-O)a7+(A. 2)AYQ*+(Fý+bi)(µ+b2+µ+as)aryý*J 

x(14+51)(f4+52)(P+53)} 

+ 
[rß*(i 

- ¢) +µ +» J ß*(1 +T)Aa(1 - 0), \7 

x (a3 - »yAa(1- 0) [51 +µ+a2 + p+a3]ß(1 +T» 
1 

+(ala2 - a3)(bi +P+ b2 +P + ö3), B*(1 + T)Aa(1 - O)A7 

> ai 
ý(fý 

"i S2)(l, + b3) +jl(14 + a3) F Sib2], Q''(1-I- T)Aa(1 - ¢)Ary. (A. 10) 

Consider the term in the first square bracket in inequality (A. 10) 

al(1-ir*)Aa(1-q5)ary+, gryaa(1-0)(öl+ti +b2+µ+5 )7r* 

+(µ+a2+ti +53)a7(µ 
= aa(1-c5)A7{51(1-7r*)+(61+µ+6 +µ+S3)lr*+(µ+ö2+µ+ös)L(1-ý*), 

> as(1-ý)ary(81+µ+b2+µ+b3)ß*(1+T), asß*(1+T)<1. (A. 11) 

Hence using inequality (A. 11) it is sufficient to show that 

(51 +11 +a2 +M+63)(P+bß)(µ+62)(11 +a3) 

+ 
ý. 

ýaý*(1 - ý) +m+ »r 
) (a3 c)[S1 +µ+ b2 +µ+ 63]Q*(1 + T)/ 

+(ala2 - a3)(61 +µ+ 62 + 11 + 53) (A. 12) 

> {(µ+b2)(ß+a3)+aý(ý+a3)+ala2} x 
{(A +a1+p+52+µ+53)2 (A. 13) 

+ 
(, \y'r*) 2 

(A. 14) 

+[Xaß*(1 - g2 (A. 15) 
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+2(µ+al+p+a2+p+83)ýý (A. 16) 

+2(µ+61+It +S2+p+S3)Aaß*(1-0) (A. 17) 

+2ary7r*Aa(1 - 0)}. (A. 18) 

It is straightforward to show that 

(bl +IL+b2+1l+53)(IA+a1) 1N2'+'a2)(IA+b3) +A(A'+'b1)lIA +all(IL+a3) 

+04 +451 +1-4+ö2+14+83)(14+öl)(P+ö2+µ+b3)(al +14 +b2+/A+ö3) 

+(14'f'82)(14+83)(A+b2+A +63) (a1 +/4+a2+p+b3I 

> (ji+b1+µ+452+µ+b3)2[(fp+x2)(14+53)+a1(µ+a3)+o1 2]. (A. 19) 

Hence the term in (A. 13) can be cancelled by the terms in (A. 12) containing only p, 
51, ö2 and b3. Similarly 

(14+52)(14+b3)+(11 +52+14 +53)(51+1L+b2+p+b3) 

> [(µ + 62) (p + 63) + a1(µ + a3) + ö152] , (A. 20) 
and (A. 14) can be cancelled by the terms in (A. 12) containing (air*/, B*)2. The term 

in (A. 15) can be found explicitly in (A. 12). Moreover (A. 16) can be cancelled by the 

terms in (A. 12) containing aryir*/ßß* as 

(/4+81)(14+a2)(14+63)+14 (/A +a2) (A+63) 

+(sl+14+a2+11+b3)(P+ai+µ+b2+/J+as)(I4+62+µ+s3) 

+(ö1 +14 +62+14 +63)(1z+6l)(14+62+ip+63 

J 2(11+J1+14+62+14+63)[(/i'+452)(/P+S3)+8l(61+62+63)]. (A. 21) 

In a similar fashion 

()U+a1+/4+62+1, +63)(bl+/, +a2+µ+Ög)2 

J 2(E1+bl+14+a2+p+43)[(P=+b2)(1z+a3) +a1(N4+a3)'+'a1a2,. (A. 22) 

Hence (A. 17) can be cancelled by the terms in (A. 12) containing Aa(1- ¢)ß*. Finally 

the terms in (A. 12) containing ary7r*, \a(1 - q) will cancel (A. 18) as 

(p+S2)(p+b3)L+(p+Ö2+p+53)(5'+p+a2+p+33)+(Öl+p1+52+, 1+53)2 

351 



2[(z +52)(p+53) + Sl lid "} 8S) '+' 5152, (A. 23) 

Hence ala2a3 > a3 + aia4 and all the Routh-Hurwitz conditions are satisfied for Ro > 

1. " 
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Appendix B 

Parameter Estimation 

We do not possess our own source of data from which to estimate the parameters in our 

various models. We instead rely on estimates from existing published work and adapt 

these for our own purposes. In their paper, Kaplan and O'Keefe estimate values for all 
the parameters in their model, however we do not use all these original estimates as 
later work by various authors (particularly Kaplan) provides some improved estimates. 

It is fair to say that there does not appear to be a generic set of parameter estimates 

available relating to the behaviour of intravenous drug addicts. There have been many 

studies covering the lifestyle and addiction habits of drug users, (for example Barnard 

and Frischer, 1995), unfortunately different studies produce markedly different param- 

eter estimates. To compound this problem it is very difficult to assess the reliability 

of data from drug addicts. Much of the data available comes from self assessment 

questionnaires which the addicts complete while receiving counselling from outreach 

workers or health clinics. 

The problem of subjective parameter estimates was discussed in Kaplan (1995) who 

proposed a solution to this problem by using a much simplified model of the infection 

process. The proposed model was very simple but had the advantage that all the 

parameters contained in this model could be estimated using objective data collected by 

a needle exchange scheme, such as the average duration a needle remains in circulation 

and the fraction of needles which are HIV positive when exchanged. The parameters in 

this model can be thought of as aggregate forms of some of the parameters contained 
in our models. By breaking these aggregate forms down into their constituent parts we 

arrive at some of the estimates that we need. 

In early models of the spread of HIV among intravenous drug users, (Kaplan, 1989a), 

the probability that an infectious needle was flushed by an uninfectious addict was 

featured explicitly. However in later work (Kaplan and Heimer, 1992a) it was assumed 
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that this event could never occur. We follow the latter work and take 0=0. Whilst it 

is not really known whether flushing occurs assuming that it does not will ensure that 

our models do not underestimate the prevalence of HIV infection. Also authors other 
than Kaplan do not include flushing in their models (Peterson et at., 1990, Blower 

et at., 1991, Kretzschmar and Wiessing, 1998). Further supporting evidence for the 

assumption that 0=0 is given by Kaplan (private communication, 1996) who states 

that HIV can be detected in syringes used by infectious addicts in which the blood 

remaining in the syringe after the addict has used it has been very greatly diluted. 

Estimating the fraction of addicts who successfully clean needles prior to use is 

difficult. The difficulty arises not due to lack of data but to the very varied data 

available, for example at the lower end of the estimates we have Goldberg et at. (1995) 

who estimate that ¢=0.44 from a survey of drug users in Glasgow, UK. At the higher 

end of the estimates we have Kaplan and O'Keefe's estimate of ¢=0.84. This estimate 

was calculated from questionnaire data from attenders at a needle exchange. This is an 

environment where addicts are subject to messages about cleaning their needles before 

use so it is not clear how reliable the estimate is. Kaplan and O'Keefe express concern 

that this estimate may be too high and their sensitivity analyses suggest 0 in the range 

of 0.42-0.84. In the absence of a more rigorous approach we adopt the middle ground 

and take ¢=0.64. 

Kaplan and O'Keefe (1993), Kaplan (1994) and related papers contain data derived 

from the New Haven needle exchange program. In Kaplan and O'Keefe (1993) it 

was assumed that in the absence of a formal exchange program needles circulated 

indefinitely. We wish to estimate the natural needle turnover rate, that is the rate at 

which needles are exchanged in the absence of a formal needle exchange program. It is 

unrealistic to assume that needles remain in circulation for all time since at the very 

least they have a limited working lifetime. Using data collected from the New Haven 

needle exchange program Kaplan (1995) estimates that the natural needle turnover 

rate is r= 15.53 per year, so the working lifetime of a needle is 23.50 days. 

The homogeneous shared needle injection rate is one of the main deficiencies of 
the basic Kaplan and O'Keefe model. For simplicity it was assumed that all addicts 
inject at the same rate, this assumption is contrary to observed evidence which suggests 

that addicts inject at a wide variety of different rates, (see Greenhalgh (1996,1997) 

for models which incorporate heterogeneity in the needle sharing rate). Kaplan and 

O'Keefe (1993) estimate the shared injection rate for New Haven addicts to be X= 
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246.22 per year. Data from Goldberg et al. (1995) suggest a mean shared injection rate 
of only A= 72.48 per year for drug addicts in Glasgow. However Goldberg et al. report 
that the distribution of needle sharing is highly skew in that many addicts do not share 

at all, whilst a small minority share equipment between 900-1800 times a year. Also 

Goldberg et al. obtain their information on all drug users in Glasgow whilst Kaplan 

and O'Keefe consider attenders at a needle exchange scheme and the latter group may 

well share needles more frequently. Given this wide range of sharing rates it seems 

that Kaplan and O'Keefe's estimate is not unreasonable. Intuitively it makes sense to 

overestimate rather than underestimate this parameter since it easy to argue that a 

small minority of very high risk users will have a disproportionally large effect on the 

spread of the disease. This intuition is confirmed by analytical results (Greenhalgh, 

1996,1997). We again follow Kaplan and O'Keefe and take \= 246.22 per year. 
Kaplan (1995) uses a model which deals only with infectious needles and where 

the parameters can be estimated entirely from objective data. Kaplan estimates that 

the rate at which uncontaminated needles become contaminated, ä, is 0.3675 per day, 

and the rate at which contaminated needles become uncontaminated, ji, is 0.1665 per 
day. Note that these estimates assume that needles are never exchanged (a similar 

assumption was made in Kaplan and O'Keefe, 1993). In our notation we have that 

A= (A/365)ry7r* = 0.3675, (B. 1) 

and µ= (A/365)7(1 - *)O = 0.1665. (B. 2) 

Eqn (B. 1) corresponds to the event where an infected addict injects with a randomly 

chosen needle and leaves it contaminated (where the population is in equilibrium). Eqn 

(B. 2) corresponds to the event where a contaminated needle is used by an uninfected 

addict and is cleaned prior to use, rendering the needle uncontaminated. We have 

assumed that 0, the probability that an uninfected addict flushes a needle, is zero as 

previously estimated. Equating eqns (B. 1)-(B. 2) gives us 

W* 
= 2.21. (B. 3) (1- it*)O 

Kaplan (1995) estimates that the prevalence of HIV in the population prior to any 

external intervention (such as needle exchange) is approximately 0.6. We have already 

estimated that addicts successfully clean needles prior to use with probability 0.64. 

Substituting these values into the left hand side of eqn (B. 3) gives us a value of 2.34 
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which is close to the observed value of 2.21 which is a reasonable assurance that our 
individual estimates of lr* = 0.6 and 0=0.64 are realistic. Now consider eqn (B. 1), 

using our estimate of lr* we find that ay = 223.5625, we estimate that A= 246.22 

which implies that the gallery ratio, ry, is approximately 0.908. This means that we 
have roughly 908 addicts for every 1000 needles. Note that this estimate is five times 

greater than the estimate of 0.1675 given in Kaplan and O'Keefe (1993). However we 

believe that our estimate is probably more accurate than the Kaplan and O'Keefe value 

as the latter estimate is based on needle exchange data collected over a relatively short 

period from November 1990-February 1991, whereas the estimates in Kaplan (1995) 

are based on data over a considerably longer period from November 1990-June 1992. 

Longini et al. (1991) estimate that the average duration of the AIDS incubation 

period is 117.7 months (9.808 years). Hence we take 5=0.1020 per year. They also 

estimate that the average durations an addict spends in state one (Acute Infection), 

state two (Asymptomatic) and state three (Pre-AIDS Symptoms) are 2.6,52.6 and 

62.5 months respectively. Hence the average durations in each stage in years are 0.2166, 

4.3833 and 5.2083 respectively, taking the reciprocal of these values gives us J, = 4.6154 

per year, b2 = 0.2281 per year and J3 = 0.192 per year. In our models the parameter 

p represents the rate at which addicts leave the needle sharing population for reasons 

other than developing full blown AIDS. We follow Caulkins and Kaplan (1991) who 

estimate that p=0.1333 per year. 

We also wish to estimate the probability of being infected by HIV after injecting 

once with a contaminated needle. The has already been dealt with in the literature, 

again by Kaplan and O'Keefe (1993) who estimate a=0.0066. The particular difficulty 

with estimating this parameter is the lack of data, the only data available relating to 

this subject is the level of "needle-stick injuries". These are accidents involving the 

infection of health workers from contaminated needles in their possession. The fraction 

of these accidents which resulted in the worker becoming infected with HIV was in the 

region of 0.003-0.005, (Kaplan and O'Keefe, 1993). This estimate can only serve as a 
lower bound on the value of a since the risk of transmission is certainly much greater to 

addicts who inject with a contaminated needle rather than merely pricking themselves 

by accident, as the volume of blood transferred in a needlestick injury is typically much 

smaller than that transferred when an addict injects with a previously used syringe. 

To overcome this problem Kaplan and O'Keefe used a model based estimation 

technique to compute a. They estimated all model parameters with the exception 
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of a, they also estimated the prevalence of contaminated needles in circulation, this 

value could be estimated accurately using needle exchange scheme data. Under the 

assumption that the population is in a steady state and that the model is a good 

representation of reality then the endemic equilibrium level of needles should be equal 

to the observed value. In other words Kaplan and O'Keefe set the expression for the 

endemic level of needles in their model equal to the observed value and solved to find a. 

An obvious problem with this method is that a different model will produce a different 

estimate of a, which is not ideal, however in the absence of a better alternative we 

adopt the same method as Kaplan and O'Keefe to estimate a. 

Consider the Simple Model, from the equilibrium version of eqn (2.4) we have that 

(B. 4) 

From eqn (2.6) we find that 

lr*(14 91) a (1-*)a, 8*(1- 0)L' B. 5) 

hence we have that 

_ 
(6 + 7) (µ + Si) 

(B) a [1 -, 6*(1 + T)]A(1 - #)L. .6 

We know all parameters on the right hand side of equation (B. 6) and we take #* = 0.675 

as estimated by Kaplan and O'Keefe. Using the estimates outlined previously we arrive 

at a value of a=0.00601. 
Using data on viral antigen recovery and epidemiological data from transfusion 

recipients Peterson et al. (1990) estimate that the relative viral load of addicts exists in 

the ratio 5: 1: 3 for Acute Infection: Asymptomatic: Pre-AIDS Symptoms. There has been 

some recent work (Koopman et al., 1997, Hyman and Stanley, 1999) which suggests 

more extreme ratios, however we use Peterson's estimates as they seem well founded 

on medical literature. Hence we assume that a needle used by an addict in stage one 

(Acute Infection) will be left fives times more infectious than if the addict were in stage 

two (Asymptomatic). Similarly we assume that a needle used by an addict in stage 

three (Pre-AIDS Symptoms) will be three times more infectious than if the addict were 

in stage two. We therefore assume that al = C1a2, a3 = C3a2 and that al: a2: a3 

exist in the ratio 5: 1: 3. Hence we only need to estimate the baseline transmission 

probability, a2. We use the same method as that used to estimate a in the Simple 

Model in Chapter 2. We estimate all other model parameters and the endemic fraction 
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of infected needles and solve for a2 in the expression for ß*. An additional complication 

compared to the Simple Model case is that we are using three models, the Optimistic 

Model, the Pessimistic Model and the General Model to examine the effect of three stage 

infectivity. The method of estimation depends on the model being used, therefore using 

the Optimistic Model to estimate a2 will give us a different estimate from using the 

Pessimistic Model or the General Model to estimate a2. This is obviously not sensible 

as a2 has the same physical interpretation in all three of our models and therefore we 

should use the same estimate in simulations of each model. 

It was decided to use the Pessimistic Model rather than the Optimistic Model or 

General Model to estimate a2. The reason for this is that we feel it is more realistic to 

assume that a susceptible addict never flushes a needle than always flushing a needle, 

which suggests that the Pessimistic Model may be more realistic than the Optimistic 

Model. However in truth neither the Optimistic or. Pessimistic Model is ideal for the 

purpose of estimating a2 since by construction both models will give a biased estimate 

of the true value. Ideally we should use the General Model (which is discussed in 

Chapter 5), however this is not straightforward as this model is much more complex 

than the Optimistic and Pessimistic Models and contains a number of parameters which 

we cannot estimate with any kind of accuracy. Hence we settle for the Pessimistic Model 

as our most practical method of estimating a realistic value for a2. Proceeding with 

the Pessimistic Model we find that 

*= 
fi*(ß+T) (B. 7) 

1- ß*(1 - ¢)' 

and " (B. 8) ßl = (1 _ ý)ir*+L(cb+ i), 

using eqns (4.4)-(4.6) and replacing it with lr*/L in eqn (4.4). Using eqn (B. 7) to 

replace lr* in eqn (B. 8) gives us 

(B. 9) 1= #*(1 _ ý) + L[1 - ß*(1 

Adding eqns (4.4) and (4.6) we get 

01+3 = (1 - O))-i7r1+3 + (OA`i' + T) s 

+ 
(B. 11) 

ß*(1 - b) 
-' (11+62A11+63) 

by using eqn (B. 7) to replace 7r*. From the equilibrium version of equ (4.1) and again 
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substituting in the expression for lr* from eqn (B. 7) we have that 

a2 
+ T)(µ + ö') 

(B. 12) 
[1-, B*(1 +T)]ß(1- ý)( (Sl - S3) +JO* + +3(C3 -1))L' 

where al = C1a2 and a3 = (3a2. Substituting in the previous expressions for , 61* and 
ß1+3 gives us 

(0 + T)(z + 5l) 

a2 __ L[1- /3*(1 +T)]A(1 - ¢){1 +X +Y}' 
(B"13) 

where 
X_ 

C1-C3 
(B. 14) 

#*(1 - 0) + L[1 - ß*(1 - 0)]' 

and Y= 
53-1 (B. 15) 

*(1 - 0) j 1+ 
M+ 2 -+ g 

The expression in eqn (B. 13) is complicated but using the parameter estimates from 

Table 3.1 we know the values of all the component parts and , B* = 0.675, hence we have 

an estimate of a2 = 0.002824. Using the estimates of <1 =5 and C3 =3 we have that 

al = 0.014121 and a3 = 0.008473. 
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Appendix C 

Endemic Stability in the Optimistic Model 

We briefly demonstrate that if A7 is large compared with the other parameters of the 

model apart from r, (including aal, aal and . \a3) then the endemic equilibrium in the 

Optimistic Model is locally stable. Firstly the characteristic equation of the Jacobian 

matrix in the full Optimistic Model about the endemic equilibrium is det A=0 where 

A= 

-(µ+a, )-A*(1-#)-w - *(1-ý) -aý*(1-#) (1-lr*)Aai(1-cS) 

bl -(µ+52)-w 00 

0 52 -(1++83)-w 0 

ary 00 -(A'Y+'r)-w 

0 AY 00 

00 ary 0 

(1-, r*)aaz (1-0) (1-x*)aas (1-4) 

00 

00 

00 

-(A'Y+T)-m 0 

0 -(a7+T)-w 

and 4* = ßal + ßa2 + ßa3. Now since this determinant is unaffected by row and 

column operations we have that det A= det Al where Al is A with column i now 

replaced by column i+ {column (i + 3)}/(1 +'r) for i=1,2,3. Columns 4,5 and 6 in 

Al are the same as in A. 
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Hence A1= 

-ý{L+Ölý-ý*ýl-ýý+ýalýll})fl 
ý*)ý 

-ý*ý1-ýý+ýa2ý11})fl 
**) 

-ýýtýl-ýýý'aa3ý11})ýl 
**) 

al 
-ýp+52) -W 0 

0 52 

00 
l+f 

0 0- l+ 

00- l+f 

(i-, r*)aai (1-ýt) (i-x*)a«a(1-ýS) (i-, r*)aaa(1-ý) 
oo0 

000 

-(Ay+r)-w 00 

0 -(A7+ )-w 0 

00 -(a7+r)-w 

We have that det Al = (ary +, r + w)3 det B1 plus terms involving at most two factors 

(A7 +r+ w)2, where det B1 =0 represents the characteristic equation of the "addict 

only" Optimistic Model about its endemic equilibrium. So if ary -4 oo with 7= r/(ary) 
fixed then 

det Al 
--3 1. 

(dry+T+w)3detBi 

Therefore the roots of the characteristic equation of the full model about its endemic 

equilibrium tend to -(A7+T), -(A7+T), -(A7+T) and the roots of the characteristic 

equation of the "addict only" model. Hence if ary is large enough then all eigenvalues 

have strictly negative real parts and the endemic equilibrium in the full model is locally 

stable when Ro > 1. 
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Appendix D 

Endemic Stability in the Pessimistic Model 

D. 1 Local Stability 

We first show that as in the Optimistic Model if . dry is large compared with the other 

parameters of the model apart from r, (including aal, aal and A a3) then the endemic 

equilibrium in the Pessimistic Model is locally stable. Using the coordinate system 

(71,72,73,0106,01+0 the characteristic equation of the Jacobian matrix in the full 

Pessimistic Model about the endemic equilibrium is det A=0 where A= 

-J1(1-ß)ßt-(/++al)-ý -J1(1-ý)Qt -A(1-qS)Qt A(1-ý)(a1-a3)(1-A*) 

0 0 

o aZ -(/A+as)-td o 

ýry(1-ýi (1-ý)) 0 0 

0 J1y(1-ß*(1-ý)) 0 0 

0 0 ýry(1-ýi+s(1-ý)) 0 

Aa2(1-0)(1-7r") A(a3-a2)(1-0)(1-7r 

00 

00 

00 

-a7(ß*(1-ý)týtý)-m 0 

0 -ý7(ýi+s(1-ý)tý+F)-w 

and fit = 61*(ctl - a3) +ßa2 + Qi+3(a3 - a2). As in the corresponding result for 

the Optimistic Model we wish to construct a matrix A1, where det(A) = det(A1) and 

where rows 1-3 and columns 1-3 in Al correspond to the Jacobian in the "addict only" 

Pessimistic Model. First considering the top left term in A, all, we have that 

all = -A(1-0)ßt-(µ+bi)-w, 
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_ -a(1 - 0) i1(ai - a3) 
+ 

lr*a2 
+ 

lt1+3(a3 - a2) 

7fi(1-0)+T+0 7C*(1-0)+T+0 lfl+3(1-0) +T+ 

_(µ+bl) _w, 

- 10 
_ --\(1 - 0) 

{ 
ý1(a (lri 

(1 

)[ 

0) +T 
ai) 

0)2 

+ 0] 
+ 

(ý*(1*(10) +T+ 

0)2ý) 

+'r1+3 
(a3 * a2) 171+3 

(1 - 0) T+ 01 1 
(p + JI) W. (ý1F3(1-0)+T+0) 1 

The top left entry in the Jacobian of eqns (4.31)-(4.33) (the "addict only" pessimistic 

model) at (7rl, 7r2, ir3) is ill. Using eqn (4.34) we find that 

a(1 - 95) (al - a3)(1 - ir*)(T + q) 
_ 

ý(1 -ß)a2(1 - ir*)(T + 
all-ýW = 711- (irr(1-0)+T+q)2 (7r*(1-0)+T-j-0)2 

A(1 - 0) (a3 - a2)(1 - 7r*) (T + 
(i1+3 (1 -0)+f +0)2 

Therefore we can construct a matrix Al where the top left entry equals jll -w by 

performing the following column operations on A: 

coil = coil + coM x 
(T +0) 

+ co15 x 
(T +0) 

(7r1(I 
- 0) +T+ 0)2 (7f*(1 

- 0) +T+ 0)2 

+co16 x 
(f + ¢) 

(Ir1+3(1 - 0) +T -} 0)2. 

In a very similar manner we can produce entries in Al corresponding to j12 and j13 in 

eqns (4.35) and (4.36) respectively by performing the following column operations on 

A: 

co12 = co12 + co15 x 
(T + ý) 

and 

co13 = co13 -I- co15 x ýlr*ýl 
(f +0) 

+T+ 0)2 -I- co16 x0 )+f+ ,0) 
This gives us Al = 

iii-w 712 113 
. 
ý(1-ý)(al-X3)(1-7fi) 

51 -(µ+J2)-w 0 0 

0 62 -(µ+ba)-w o 

0 - 
++ W 0 0 

c*"cl-mý+t+mý 
ý'ý1+S(3-m)+4+m)Z 

363 



'r*)A(a3-a4)(1-ý) 

00 

00 

00 

0 

0 -'\7(Ai+3(1-0)+O+ß)-w 

Using a similar argument as in the corresponding result for the Optimistic Model we 
have that if A'y -+ oo with f= T/(A-y) fixed then the roots of the characteristic equation 

of the full Pessimistic Model about its endemic equilibrium tend to -. \ry(ii (1- ¢) +T+ 

0), -ary(7r*(1- 0) +T +0), -ary(7ri+3 (1- 0) +T + 0) and the roots of the characteristic 

equation of the "addict only" model. Hence if A -y is large enough then all eigenvalues 
have strictly negative real parts and the endemic equilibrium in the full model is locally 

stable when R0 > 1. 

D. 2 Lyapunov Stability 

We now show that by using different lower bounds to construct the matrix W+ in 

the Pessimistic Model (as defined on page 134) we can show that it has eigenvalues 

whose real parts are all strictly negative, which is true if and only if W+ is Lyapunov 

stable. Using Theorem 4.4 we can replace we can replace the variables , 
B, 71,71+3 and 

it in W(x) with lower bounds of kQ, kja, k2o and k3a respectively, where a is a small 

strictly positive fixed value. Note that for a sufficiently small we can choose k, k1, k2 

and k3 to be any positive values. We shall denote this alternative form of W+ as W+ j, 
hence we have that for t>T, +, W(x) < Wi = W(O) - aEl where El = 

a(1-¢)k 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 \ry(1-O)kl 0 0 

0 0 0 0 \ry(1-4)k2 0 

0 0 0 0 0 Ary(1-oO)k9 

Consider the co-ordinate system x' = (*1, ? r2,13,41 , A, ß1+3). We have that 

d' 

ät - v'(")jE" 
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where xlT = (iri, jr2, jr3, fii, $ 
l+3) and V'(x 

-(p+öi)-aß(1-ý) -aß(1-ý) -AQ(1-ý) (1-ar*)A(ai-a3)(1-4) 

bi -(µ+bs) 0 0 

0 52 -&i+53) 0 

a7(1-ßi(1--0)) 0 0 -. 17(ß+T Fýi(1-ý)) 

X7(1-Q*(1-ý)) ) (1-ß*(1-q5)) A7(1-Q*(1-ý)) 0 

X7(1-lýl+s(1-ý)) 0 a7(1-ßi+s(1-c)) 0 

(1-lr*)aas(1-ý) (1-a*)A(as-as)(1-Q5) 

00 

00 

00 

-a7(4+T+1r(1-ý)) 0 

We have that x' = J1 where 

100000 

010000 

001000 
J1 =. 

000100 

000111 

000101 

It is straightforward to show that J1V = V'J1, hence if Ve = we, V'Jie = wJle so any 

eigenvalue of V is an eigenvalue of V. Similarly any eigenvalue of V is an eigenvalue 

of V, so V and V have the same eigenvalues. In the same way J2V = WJ2 and V and 
W have the same eigenvalues. Moreover we have that V'(0) has non-negative elements 

except on the leading diagonal. For o, =0 the eigenvalues of W(0) are the same as those 

of V'(0). Furthermore if M is large enough V'(0) + MI is an irreducible matrix with 

non-negative elements and has an eigenvector (cri, i2, i3, Qi+ + Q1+3) which is strictly 
positive and has eigenvalue M. Hence this is the unique positive eigenvector and 
corresponds to a simple real eigenvalue which is also the spectral radius of V'(0) +MI. 
Therefore all eigenvalues of V'(0) + MI lie in a circle centre the origin with radius M. 

Thus all eigenvalues of V'(0) and hence W(0) lie in the circle centre (-M, 0) with 

radius M. Moreover zero is a simple eigenvalue of W(O). 
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The characteristic equation of Wi = W(O) - oEl, is of the form 

w6 + al(u)w5 + a2(a)W4 + a3(cr)W3 + a4(U)W2 + a5(a)w + ag(a) = 

where ai (o), for i=1, ... , 6, are continuous functions of a. When a=0 we have that 

Wi = W(0) and we already know that zero is an eigenvalue of W(O). Now consider 

the case where a is small and positive, we have that the eigenvalues are continuous in a 

in a neighbourhood about the origin. Hence for a small we have that by continuity five 

eigenvalues will still have strictly negative real parts. We now examine the behaviour 

of the eigenvalue at the origin, say w6(a), when a is small and positive. 

Lemma D. 1 If k1, k2, k3 >0 and k>0 are chosen appropriately then the constant 

term, a6 (a). in the characteristic equation of Wi is strictly increasing in a for a small 

and positive. 

Proof. 

We wish to compute det Wi , this is equivalent to det V when ß, r1,7r2,7r3 are 

replaced by their respective lower bounds kv, k1a, k2a and k3o. Denote this value of 

V by Va. As J2 -V = W. J2, V and W are reachable from one another using elementary 

row and column operations so det Wi = det V(,. Computing an expression for a6 (a) 

is straightforward but requires a large amount of algebra. Working along the second 

row of VQ gives us two 5x5 determinants to compute, these in turn break down into 

the following 4x4 determinants: 

aiA7(q5+T+kia(1-4)) x 

-aka(1-ý) -. \%v(1-0) (1-ir*)Xa2(1-4) (1-a*)Aa3(1-cS) 

152 -(l++ds) 00 

X7(1-ß*(1-4)) -lýs(1-#)Ai -A'Y(4k+r"+k1+2+3a(1-0)) -A7k2°(1-. b) 

o ary(1-Qi+s(1-ý)) o -a7(ß+F+ki+30(1-q')) 

+ 
(µ + 62)(p + a3) X 

-(li+di)-)ýki(1-ý) (1-ýr")aai(1-q5) 

»7(1-ßi (1-4)) -a7(ß+ý+k1o(1-¢)) 

-ßz(1-ß)a7 -A7kso(1-ý) 

-a7ß3 (1-m) -. A7k3o(1-4) 

(1-ir*)) 2(1-0) 

0 

(1-a*)ans(1-ý) 

0 

-a7(0+T+k1+2+30(1-45)) -, \7k20 (1-ß) 

0 -A7(OTf+ki+so(1-m)) 
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Note that we have denoted kl + k2 + k3 as kl+2+3 and kl + k3 as kl+3. Expanding out 
these two determinants eventually gives us that a6 (a) =A+B+C+D+E+F+G 

where 

A= -5251A7& +T + k1a(1 - ý))ý7(1 - ýi+s(1 - ý)) x 

[(1 
- 7t*). 1as(1- 4)»'y(o +T+ kl+2+3a(1- 0)) - (1 - it*)Aa2(1 - O). \7k2o (1- 0)] 

B= b2biAry(o +f+ kla(1- ý))ky(q +T+ kl+3a(1- ¢)) x 

[AI 
i(1 - q5))7(q5 +T+ ki+2+3a(1- 0)) + (1 - eMa2(1- A 62M - 0) A71 I 

C=51A7(ý+T+kia(1-ý))(Fý+53)A7(ß+T+kl+sß(1-0) X 

[Ako(1 
- c)A7(0 +T+ kl+2+sa(1- 0) - ß'Y(1- (1- 0)) (1 - 7r*)Aa2(1 - 0)], 

D=(µ+b2)(lý+b3)ý7(1-ßi(1-ý))ý7ksý(1-ý) X 

[(1 
- 7r*)Aas(1 - c5)A7(O +T+ k1+2+sv(1 - 0) - (1 - W*)aa2(1 - c)k2a(1 - 0)], 

E= (14 + a2) (p + bs)»7(1 - ß(1 - 0))A"(c5 +T+ ki+3a(1 - 0)) X 

[(1 
- 7r*)Aa2(1 - q5)aryk2a(1- 0) - (1 - 7r*)aai(1 - q5)A (q5 +T + kl+2+3a(1 - 0))] 1 

F= (u + 52)(! 2 + ös)A (q5 +T+ kla(1 - 0))Qs(1 - 0)A7 x 

[(1 
- 7r*)aas(1- q5)A y(o +f+ ki+2+3o (1- A- (1 - lr*)Aa2(1- O)kyk2a(1- 0)] 1 

and 

G= (fi+52)(p+ö3)A-/(O+T +kla(1 - ý)) q(5+T+kl+3a(1 - 4k)) X 

[(p+bl+A cr(1-c))A7(c+T+k1+2+3a(l-4))+ß(1-ý)a'Y(1-1r*)aa2(1-¢),. 

Unlike in the Simple Model and the Optimistic Models it is far from clear by examining 

the above expression whether a6 (o) is strictly increasing in or. We have constructed the 

lower bounds such that we can choose k1, k2, k3 and k to be any positive constants. 

Hence all we require to show is that a6 (a) is monotone increasing in any one of the four 

directions, k1a, k2a, k30' or %v. Let a6 (Or) = Y(kia, k2a, k3o,, kc). It is easy to identify 
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aY 

a(kQ) using the expressions A-G, hence we have that 

öY 
ö(kQ) = 

{ö2ä1 
7(0 +T + klv(1- 0)))7(0 +T + ki+30'(1- 0)) x 

+T+ ki+2+3Q(1 - 0))]J + 

}b1ý7(ý+T+k1Q(1-ý))(µýa3)ý7(ý+T+k1+30(1-ý)) x 

[X27(1 
- c)(# +T+ ki+2+3U(1 - 0))]1 + 

{ 
(/- + 52)(P -i- tS3)A'y( -- T+ k10(1 

- q))A7(cb +z+ k1+3a(1 - ý)) x 

[X27(1 
- 0)(0 +T+ ki+2+3Q(1 - M] 

1>0. 
We wish to show that Y(kio, k2o, k3Q, k a) >0 for o small and positive. Using a Taylor 

series expansion about (0,0,0,0) we have that 

Y(k1Q, k2v, k3Q, kv) = Y(0,0,00)+ + '9y kiu + 
aY k2a + 

ay 
k3o, a(k1Q) a(k2Q) a(k3Q) 

+aý 
a) 

kQ. (D. 2) 

We have shown above that 
aY 

ka > 0. By construction we can choose kl, k2i k3 to be 

any positive values hence we can ensure that eqn (D. 2) is strictly positive by choosing 

k1, k2, k3 sufficiently small relative to k. This completes the proof of Lemma D. 1.9 

Suppose that w6 (o) has a non-negative real part for a small and positive, therefore 

as (Q) = WI(a)W2(a)W3(a)W4(a)W5(a)W6(U) < 0. However from Lemma D. 1 this is 

impossible since we have that a6 is strictly increasing in a and a6(0) = 0. Hence with 

our choices of k, k1, k2 and k3 for a small and positive all eigenvalues of Wi must have 

strictly negative real parts. 
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