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        Abstract  

Over the last decade, researchers have identified age-related (AR) DNA 

methylation (DNAm) markers, which have outperformed all other known AR 

biomarkers in estimating the chronological age of individuals with high accuracy, 

using various tissue types. Their accuracy in age estimation has led to them being 

suggested as a source of intelligence for forensic investigations, to determine the 

age of unidentified donors of biological samples left at crime scenes. Initially, in 

this research, different statistical methods have been tested in order to 

demonstrate which one of them is optimum for the identification of AR CpG sites. 

The selected method was then used to identify saliva specific AR CpG markers 

using DNAm profiles from saliva retrieved from an online genomic repository and 

assayed on the Illumina HumanMethylation450 BeadChip microarray. These AR 

CpG markers were used to build a saliva-specific age prediction model that was 

tested in silico on an independent saliva testing data set. They were shown to 

perform well in terms of age prediction, and consequently, they were further 

validated by targeted bisulfite sequencing of additional saliva samples, using the 

Illumina MiSeqÒ platform. Subsequently, a large cohort of 754 DNAm profiles from 

blood samples assayed on the newly launched Illumina MethylationEPICÒ 

BeadChip were downloaded from an online genomic repository, in order to be 

tested for the first time for age association. Novel AR CpG sites were identified 

from both the newly added probes on this chip and from probes that were found 

on older platforms, however, the prediction accuracy of the blood-specific age 

prediction model did not improve compared to models built from the older Illumina 

HumanMethylation platforms. Finally, a multi-tissue age prediction model that is 

able to predict the age across the tissues was constructed. This multi-tissue age 

prediction model will have potential applications in forensic science in assisting 

investigations to predict chronological age across different biological samples, 

regardless of the tissue(s) those samples are derived from. 
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Chapter 1: Introduction  

The development of DNA profiling for human identification has had a huge 

impact on the field of forensic science. It has been acknowledged as one of the 

greatest forensic advancements for its ability to establish a link between the 

criminal and the crime scene, and to allow the identification of the criminal. 

However, when recovered DNA evidence has no direct match with a suspect, and 

no indirect hit with a reference profile on the National DNA Database, this valuable 

evidence will be useless [1]. As such, tremendous effort has been made over the 

last ten years developing methods that can extract information about the 

externally visible characteristics of an unidentified person from their DNA. This 

has been successfully accomplished with the advancement of genome-wide 

association studies (GWAS), which test the statistical association between 

externally visible characteristics and up to a million genetic markers, which are 

usually single nucleotide polymorphisms (SNPs). SNP markers are DNA 

sequence variants that occur when a single nucleotide at a specific genomic site 

differs between individuals and can be significantly associated with a specific 

phenotype. For instance, predicting the hair and eye colour, as well as the ethnic 

background of the sample’s donor can currently be achieved with high accuracy 

using specific SNP markers [2-4]. 

However, finding an association between the alleles present at SNP 

markers and human characteristics such as the age of the sample donor is not 

currently possible. This is due to the nature of the DNA sequence, which remains 

relatively static throughout a person’s life. Furthermore, identifying the tissue 

source by using SNP markers is also not possible, as the genome of all cells in 

the body comprises an identical genetic sequence. The potential to address these 

issues has arisen after the discovery of a new layer of information that the DNA 

molecule carries, through the chemical modifications of its nucleic proteins and 

nucleotides, which can be used for tissue identification, and predicting an 
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individual’s chronological age [5-8]. The chemical modifications of the DNA and 

its chromatin, which alter the phenotypic expression of the cell, are classified 

under the overall term of epigenetics. Therefore, in the last few years there has 

been a growing interest in the analysis of epigenetics in forensic science, in order 

to overcome the limitations of using conventional genetic markers for predicting 

human characteristics. 

1.1 Epigenetics  

The term epigenetics was first introduced in the early 1940s by the British 

biologist Conrad Waddington [9]. However, only in the past ten years have 

significantly rapid advances in the field of epigenetics been seen [10]. These rapid 

advances are attributed to the significant new developments in molecular biology 

technologies [11]. The definition of epigenetics was introduced by Waddington 

(1942) as “the branch of biology which studies the causal interactions between 

genes and their products which bring the phenotype into being during 

development” [10]. This definition has undergone subsequent modifications with 

the advancement of molecular biology research, which has changed our 

understanding of epigenetics [9]. More recently, epigenetics was defined by Riggs 

et al. (1996) as “the study of mitotically and/or meiotically heritable changes in 

gene function that cannot be explained by changes in DNA sequence” [12]. In 

other words, the epigenome is an additional layer of information that does not 

strictly depend on the DNA sequence [13]. This has clarified a phenomenon that 

has confounded scientists for years, endeavouring to explain how a complex 

organism comprising of different cells and tissues with the same genetic makeup 

can come from a single fertilized egg.  

The molecular basis of epigenetics mainly involves controlling 

transcriptional activities in the cell through the activation and silencing of specific 

genes, which is reflected in the biological phenotype. The molecular mechanism 
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that controls gene expression uses various reversible modifications to the 

genome [9]. These epigenetic modifications include: DNA methylation (DNAm), 

regulatory RNAs, covalent modification of histone tails, and ATP-dependent 

remodelling of the nucleosome core (Figure 1.1). All these modifications play an 

essential role in regulating specific gene expression without altering the DNA 

sequence [14-16]. Therefore, this explains how individuals can possess a wide 

range of phenotypes but the same underlying genotype [17]. 

 

Figure 1.1 Epigenetic mechanisms used by the cell to regulate gene 
activity independently of the DNA sequence. 

The epigenetic status of  somatic cell lines is preserved during cell division, 

and thus any epigenetic defects are transmitted into newly divided somatic cells 

throughout the life of an organism [17]. In the germ line, some epigenetic 

biomarkers such as DNAm undergo epigenetic reprogramming by specific gene 
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regulatory networks in order to ‘reset’ the epigenome [18,19]. Researchers have 

speculated that this prevents inheritance of aberrant DNAm patterns that might 

adversely influence gene expression in the next generation. In contrast, chromatin 

modifications are considered to be epigenetically heritable biomarkers, as they 

can be transmitted from parents to offspring [20]. Epigenetic modifications will 

begin to take place during early foetal development in the uterus and then 

continue during an individual’s  lifetime as a response to environmental influences 

and various factors such as diet and smoking [15,17]. Despite an extensive body 

of research dedicated to understanding epigenetic modifications and their 

molecular mechanism, their regulatory role is still not fully understood [21,22].  

Nonetheless, there is evidence of the vital role of epigenetics in genomic 

imprinting, gene silencing, cell programming during embryogenesis, X-

chromosome inactivation and carcinogenesis [12,21,23]. In addition, it has been 

found that cell differentiation in many eukaryotes is mediated by DNAm [21]. Thus, 

recent stem cell research has been focusing on the effects of epigenetics during 

embryogenesis, which may help scientists to understand, prevent or treat 

developmental defects that can occur [24]. 

1.2 DNA methylation  

1.2.1 The molecular basis of DNA methylation  

DNA methylation is one of the most important epigenetic mediators playing 

a key role in the regulation of gene expression in the human genome. As the name 

suggests, DNAm involves methylation of the 5’ position of cytosine residues, 

yielding 5-methylcytosine. The methyl group (-CH3) is frequently, but not 

exclusively, added to the cytosine residues found in cytosine-guanine dinucleotide 

sequences. These repetitive linear CG dinucleotide sequences are called CpG 

sites, which are found along the genome in the 5’ to 3’ direction. There are ~ 28 

million CpG sites in the human genome and approximately 75% of these CpG 
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sites are methylated. The methylation reaction is a reversible covalent 

modification initiated by the protein family of DNA methyltransferases (DNMTs), 

which use S-adenosyl-L-methionine (SAMe) as the source of a methyl group (-

CH3), yielding S-adenosyl homocysteine (SAH) as a waste product (Figure 1.2). 

The disruption of any component of the DNAm pathway has been found to be 

associated with most, if not all, types of cancers [25]. 

 

Figure 1.2 DNA methyltrasferases (DNMTs) enzymes attach a methyl group to the 5th atom of 
the 6-atom ring of cytosine residues using S-adenosyl-L-methionine (SAMe), rendering 5-
methylcytosine and S-adenosyl homocysteine (SAH).  Illustration generated with ChemDraw 
software v15.0. 

In mammalian cells, there are three active DNMTs known as DNMT1, 

DNMT3A, and DNMT3B, and between them, these DNMTs have two major 

enzymatic activities in the cell. DNMT1 is responsible for maintaining the 

methylation pattern throughout the genome during cell division, and embryonic 

lethality has been seen in mice with mutated DNMT1 [26]. On the other hand, 

DNMT3A and DNMT3B are responsible for de novo DNAm, which plays a crucial 

role in cellular differentiation during embryonic development [16] (Figure 1.3). As 

such, DNMTs are found at high levels during embryogenesis in contrast to adult 

tissues [27]. In addition to their direct interaction with CpG sites, DNMTs can 
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combine with other gene expression repressors such as methyl CpG binding 

protein 2 (MeCP2) and histone deacetylase, which play a role in mediating gene 

silencing [28]. Studies have also shown a significant association between 

aberrant expression of DNMTs and tumour progression. For instance, DNMT1 

was found in high levels in various types of cancers such as lung hepatocellular, 

acute and chronic myelogenous leukaemia, colorectal, gastric, and breast 

cancers [29-33]. Similarly, DNMT3A, and DNMT3B with mutated promoters, have 

been linked to several haematological malignancies, and high cancer risk, 

respectively [25].  
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Figure 1.3 Schematic model depicting the role of mammalian DNA methyltransferases (DNMTs) 
in both DNAm and maintenance of already methylated CpG sites (Source: Heyward & Sweatt 
2015). 

1.2.2 DNA demethylation 

As mentioned in the previous section (1.2.2), DNAm process is a reversible 

covalent reaction. Removing the methyl group (-CH3) from 5-methylcytosine 

residues (or demethylation) along the genome, can be done through enzymatic 

reactions controlled by the biomolecular machinery of the cell, and/or stochastic 

loss during repeated rounds of cell divisions, due to the absence of methylation 
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of the newly synthesized DNA strands. The process of enzymatic demethylation 

is known as active demethylation, whereas demethylation caused by stochastic 

effects is called passive demethylation.  

Various enzymes and pathways have been proposed to function in DNA 

demethylation, although their roles are often specific to the individual biological 

system being examined [34]. Oxidation-mediated demethylation pathways have 

recently been found to be most abundant in mammalian cells. The most prominent 

intermediate in this oxidation reaction is 5-hydroxymethylcytosine (5hmC), which 

is particularly abundant in cells from early embryos and the nervous system [35]. 

The protein family that is responsible for this oxidation reaction is the ten-eleven 

trans-location (TET) protein family. 

Three TET proteins exist in vertebrates (TET1, TET2, TET3), with TET1 found in 

embryonic stem cells, TET2 in haematopoietic cells and TET3 in oocytes and 

zygotes [36,37]. Other oxidation intermediates have been found in the genomic 

DNA of various cells, namely 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC) [38,39]. These intermediates are produced by further oxidation of 5hmC 

by TET proteins. Three mechanisms have been suggested for TET-mediated 

demethylation. The first scenario is that derivatives produced by TET oxidation 

will be lost during cell replications [40]. The second scenario is that the oxidation 

derivatives are removed by DNA glycosylases such as thymine DNA glycosylase 

(TDG), followed by base excision repair (BER). Finally, demethylation by BER 

could also be triggered by deaminases of the AID/APOBEC family [35]. 

Deamination of 5mC and 5hmC will create T:G and 5hmU:G mismatches 

respectively, which directly triggers TDG and MBD4 glycosylases followed by 
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BER [41]. Figure 1.4 summarises the chemical pathways of cytosine 

demethylation.  

 

Figure 1.4 Chemical pathways of 5-methylcytosine demethylation. (Source: [35]). 

1.2.3 Physiological effects of DNA methylation 

There is evidence that methylation of DNA is a crucial step for normal 

development, and any impairment will lead to apoptosis or growth arrest in normal 

cell lines [9].  On a strand of DNA, CpG dinucleotides can be found in clusters, 

termed CpG islands, which are linked with the promoter and exonic regions of 

approximately 40% of mammalian genes [42]. In addition, CpG dinucleotides are 

disproportionately rare in the genome compared to the other dinucleotides except 

around the CpG islands that are linked with promoters’ regions of the genes. 
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Therefore, they are considered landmarks in the genome for identifying the 

location of genes. The methylated CpG sites are recognised by specific binding 

proteins associated with histone deacetylase and chromatin remodelling 

complexes that stabilise the condensed structure of chromatin. Stabilising the 

condensed structure of the chromatin causes tight compaction, which makes the 

area less accessible by transcription factors. Therefore, the expression of genes 

surrounded by the condensed chromatin structure will be repressed [43,44]. This 

is why the structure of the chromatin around the gene promoter controls the 

transcriptional activity of the gene. Moreover, methylation of CpG sites at the 

recognition site of a number of transcription factors is sufficient to block binding of 

DNA transcription factors, thus inhibiting gene expression altogether (Figure 1.5) 

[45]. This was confirmed in a study conducted by Lokk et al. [46], who found an 

inverse correlation between DNAm and gene expression in 17 human somatic 

tissues.   

 

Figure 1.5 DNAm within CpG islands associated with gene promoter regions 
inhibits gene expression. 
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The mammalian cell exploits this repression effect of DNAm on gene 

expression for several genomic phenomena. One well-studied phenomenon is X-

chromosome inactivation, which is used to compensate for the difference in gene 

dosage of X chromosomes between the sexes. A study conducted by Weber et 

al.  [47] using chromosome-wide methylation analysis, discovered that CpG 

islands associated with promoters showed hypermethylation on the inactive X-

chromosome when compared to the active X-chromosome. This significant 

difference in the methylation state of CpG islands between active and inactive X-

chromosomes suggests that DNAm plays an important role in silencing of genes 

located on the inactive X-chromosome. The fact that cells rely on DNAm for X-

chromosome inactivation further explains why the number of CpG 

islands linked to promoters of genes on the X-chromosome exceeds those linked 

to genes found on the autosomal chromosomes [48].  

Another important genomic mechanism that is found to be associated with 

DNAm is genomic imprinting. This allows monoallelic expression of a subset of 

genes and is controlled by two epigenetic modifications, DNAm and histone 

modification [49]. It has been shown that the DNAm patterns that determine the 

imprinting state of genes is inherited from parental germ cells [50]. In addition, 

DNAm has also been discovered to be responsible for the differential expression 

of genes in tissues. Although early studies proposed no role of DNAm in 

regulating genes in a tissue-specific manner, this has been disputed by research 

conducted by Song et al. [51] who found tissue-specific differentially methylated 

regions (tDMRs) that regulate genes in specific tissue types. These tDMRs were 

either in a positively- or negatively-methylated form, and they can be found on  

CpG-rich, CpG-poor sequences, and within the 5 promoter regions of the tissue 

specific genes [52].  
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1.2.4 DNA methylation and the environment  

Tremendous effort has been made by scientists to answer the question of 

whether any molecular mechanism exists that makes a fixed DNA sequence 

capable of adapting and communicating with the external environment. This 

endeavour has led to support for the hypothesis that the epigenome serves as an 

interface between the genome and the surrounding environment. External stimuli 

can be transferred from the dynamic environment to the genome by manipulating 

this second layer of information that is superimposed on the DNA sequence [53]. 

This manipulation is achieved using various epigenetic modifications such as 

DNAm, histone modifications, and chromatin remodelling. This in turn changes 

the epigenomic program that controls the gene expression profile in responsive 

cells or tissues [54]. However, in certain contexts, this alteration in genome 

function has been shown to be associated with a variety of physical and mental 

conditions (Figure 1.6).  

 

Figure 1.6 Epigenetic modification can act as an interface between environmental factors 
and the static DNA sequence, resulting in phenotypic changes (Source: Tammen et al. 
2013). 
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The environmental factors in this context can be defined as factors that 

come from the external environment and are not initiated from properties intrinsic 

to the individual. These factors can be in the form of diet, smoking, stress, 

pathogen infection, alcohol consumption, exercise, etc. [55]. The best 

experimental model that can used to demonstrate the effect of these 

environmental factors on the epigenome is monozygotic twins (MZ). Since, MZ 

twins carry identical genomes, any alteration in phenotypic traits found between 

them could be attributed to non-DNA sequence-based factors, which are mainly 

environmental factors. This twin study design has allowed various researchers to 

identify epigenetic differences that were not only associated with phenotypic 

differences, but also with certain types of diseases [56]. For instance, Fraga et al. 

[57] showed that MZ twins exhibit distinctive epigenetic patterns, especially in 

those twins who were older, had different lifestyles and who had spent less of their 

lives together. This reflects how significant environmental stimuli can be in 

translating a common genotype into a different phenotype [57]. In addition, it 

provides an explanation as to why MZ twin pairs exhibit differing susceptibility to 

diseases [58]. 

In early life, DNAm is very susceptible to stimulation from the environment. 

The reason for this is that epigenetic patterns are generated at embryogenesis 

during cellular differentiation, which is a highly programmed and organized 

process. For example, it has been found that increasing supplementation of folic 

acid in maternal diet during gestation increases DNAm of critical genes, and that 

this persists into adulthood [59]. It is noteworthy that environmental factors 

affecting the epigenome are not limited to the input of chemical or biological 

materials. Studies have shown that even social factors can cause significant 

epigenetic reprogramming in the brain of offspring [60]. For instance, individuals 

who experienced early childhood adversity and committed suicide showed 

decreased hippocampal glucocorticoid receptor (GR) expression and increased 

hypothalamic–pituitary–adrenal gland (HPA) activity [60]. Therefore, any 
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adversity in early life and during childhood could have a lasting impact on the 

epigenome.   

Other well studied external factors that have a powerful impact on the 

epigenome are cigarette smoking and alcohol consumption. Epigenome-wide 

studies (EWAS) have shown that smokers, as opposed to non-smokers, have two 

genes, namely F2RL3 (encodes a protease-activated receptor), and AHRR 

(encodes aryl hydrocarbon receptor repressor) that are significantly 

hypomethylated in three types of tissues; lungs, peripheral lymphocytes, and in 

whole blood [61-63]. Among these tissues, lungs are the most epigenetically 

affected by smoking, exhibiting a 34% greater hypomethylation effect compared 

to the other tissues [62,63]. This smoking related-hypomethylation has been 

found to alleviate the toxic effect of polycyclic aromatic hydrocarbons found in 

cigarette smoke [64]. Decreasing DNAm of the AHRR gene leads to increased 

expression of the protein it encodes, which mediates the detoxification of 

environmental pollutants such as those found in cigarettes [65]. Furthermore, 

maternal smoking during pregnancy has also been seen to cause methylation 

changes in the umbilical cord blood and placental DNA, at the AHRR and CYP1A1 

(encodes Cytochrome P450 Family 1 Subfamily A Member 1) genes, which are 

risk factors for diseases in adulthood [66,67]. 

The effect of sustained heavy use of ethanol on the human body has been 

well studied and found cause a high risk of various types of diseases, including 

cardiovascular diseases, hypertension, cancer, and liver diseases [68]. Alcohol 

consumption can cause these types of diseases either through disrupting a 

number of biochemical pathways, and/or by disrupting normal DNAm patterns in 

cells and tissues, which in turn disrupts normal gene expression that the tissues 

require in order to function properly [69]. Various EWAS studies have shown that 

the blood of alcohol dependent (AD) individuals exhibit global hypermethylation, 

and differential methylation levels at dehydrogenase 1A, ADH7, ADH3B2, 
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CYP2A13, plus five additional loci (C8orf4, HCRTR1, FLJ38379, HSA277841, 

and TSC2) [70-72]. In addition, a study conducted by Zhao et al. [73] using EWAS 

for AD-discordant siblings reported 865 hypomethylated and 716 

hypermethylated loci in the AD sibling, with the most significant hypomethylation 

and hypermethylation being found at the SSTR4, and GABRP genes respectively 

[73]. This epigenetic effect of ethanol intake has been clinically exploited as a 

useful epigenetic biomarker for the diagnosis and treatment of alcohol-related 

diseases [74]. 

1.2.5 The inheritance of DNA methylation  

Acquiring epigenetic patterns from the previous generation can be either 

through transgenerational or intergenerational transmission. The former occurs 

when the offspring inherits epigenetic changes from the parents, whereas 

intergenerational transmission results when the stimulation for the epigenetic 

alteration occurs during pregnancy and both the mother and child are 

simultaneously exposed to the external stimuli [75]. Epigenetic reprogramming is 

therefore a key mechanism in preventing the inheritance of aberrant DNAm 

patterns that might adversely influence gene expression in the offspring [18,19].  

Two major stages in epigenetic DNAm reprogramming occur during the 

mammalian life cycle. The first occurs during gametogenesis, and the second 

directly after fertilization (during embryogenesis) [75]. The reprogramming 

process involves genome-wide erasure (demethylation) of the DNAm pattern, 

followed by selective methylation of a novel set of CpG markers that are required 

for both cellular activity and cellular differentiation [76]. However, despite this 

epigenetic resetting system, it has been shown that DNAm in some genomic 

regions escapes this process and persists, getting transferred into the next 

generation.  



 

 16 

Escaping the genome-wide demethylation and/or selective methylation 

process during reprogramming can be controlled by the cell, or may occur at 

random [20]. For instance, genomic regions that are protected from demethylation 

and left hypermethylated by the cell can be found in the subtelomeric regions, 

pericentromeric satellite repeats and in single copy loci [77,78]. Moreover, regions 

associated with retrotransposable elements, and imprinting-associated DMRs 

with sex-specific methylation patterns are also protected from the demethylation 

machinery [77,79]. To date, it has not been fully elucidated how these genomic 

regions can escape the epigenetic reprogramming steps. If CpG sites with 

environmentally-acquired DNAm  patterns (from smoking and/or alcohol etc.) 

withstand these waves of demethylation/methylation steps during gametogenesis 

and embryogenesis, they will find their way into the subsequent generation [75].   

1.2.6 Detection and quantification of DNA methylation  

Determining the relationship between DNAm levels at CpG sites across the 

genome and different types of covariates was not possible without developing 

methods that can quantitatively measure DNAm levels. There are now a number 

of methods that can be used to detect and/or quantify DNAm levels. Selecting the 

appropriate method among these will depend on various factors such as the 

research goals, the nature of the samples under study, the scale of the 

assessment (genome-wide or gene-specific), and more.  

Although methylated cytosine is chemically different from unmethylated 

cytosine, the sequencing and fragment analysis methods above cannot 

differentiate between them. To overcome this issue, scientists developed three 

pre-treatments that can be implemented before analysis in order to make 

methylated cytosine detectable by the methods most frequently found in the 

molecular genetic laboratories [80,81].  These pre-treatments are:  

1. Restriction enzyme digestion. 
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2. Affinity enrichment by monoclonal antibodies. 

3. Sodium bisulfite conversion.  

The first method exploits the fact that some restriction enzymes are 

sensitive to the presence of a methyl group on cytosine residues and thus different 

digestion patterns would result from methylated and unmethylated loci. This 

method has been used to detect tDMRs and aberrantly methylated genomic 

regions in diseases such as cancer [51,82]. In the affinity enrichment method, 

methylation is detected by monoclonal antibodies and then quantified by array-

based hybridisation techniques, for example using the Methylated 

Immunoprecipitation (MeDIP) chip or by sequencing via the MeDIP-seq method 

[81].  

A key advancement in DNAm analysis has been the development of a 

chemical treatment called sodium bisulfite modification, which converts 

unmethylated cytosines to uracil, leaving methylated cytosines unchanged [83]. 

The majority of the methods used for analysing DNAm levels are based on this 

approach [84]. The oxidation of cytosine by sodium bisulfite can either be initiated 

with nucleosides (ribo- or deoxyribo-) or oligonucleotides as a substrate, but the 

reaction is highly specific to single-stranded DNA. As such, it can be used in 

single-stranded DNA studies due to its ability to differentiate between single- and 

double-stranded DNA regions. As shown in Figure 1.7, the first step in the bisulfite 

modification reaction is converting cytosine residues into a cytosine-sulphonate 

derivative. This is done by adding a sulphonate group, which subsequently leads 

to an irreversible spontaneous deamination reaction resulting in a uracil-

sulphonate derivative. The sulphonate group is then removed by alkali treatment 

with sodium hydroxide, yielding uracil (Figure 1.7).  



 

 18 

 

Figure 1.7 Sodium Bisulfite Treatment. (Diagram was produced 
using ChemDraw Software). 

The formation of cytosine sulphonate and uracil sulfonate derivatives are 

reversible reactions controlled by three factors; pH, temperature, and bisulfite 

concentration. In the first step, the sulfonation reaction equilibrium is favoured 

towards cytosine-sulfonate by low pH (below 7) and reversal towards cytosine by 

high pH. A high concentration of sodium bisulfite is required in the second step 

during the deamination reaction, which is also initiated by high temperature and 

low pH, rendering uracil sulfonate. Finally, the bisulfite adduct is removed from 

uracil-sulfonate by sodium hydroxide (high pH), giving uracil.  

At this stage, the methylation status of any genomic DNA sequence can be 



 

 19 

detected using the polymerase chain reaction (PCR). During PCR, Taq 

polymerase amplifies unmethylated cytosine as thymine, whereas 5-methyl-

cytosine is amplified as cytosine. Therefore, bisulfite treatment converts the 

chemical modification (DNAm) into DNA sequences that can be detected and 

quantified using any quantitative genotyping methods (Figure 1.8) [85].  

 

Figure 1.8 The effect of sodium bisulfite treatment on non-methylated and methylated DNA 
sequences. Only non-methylated cytosines are converted into uracil, while the methylated 
residues remain unchanged.  

Generally, the goal of most of DNAm studies is either to discover new CpG 

sites or to quantify the DNAm level at locus-specific CpG site(s). There are various 

DNAm methods that are based on sodium bisulfite treatment that can be used for 

these purposes. Detection of new methylation markers can be done using 

epigenome-wide approaches, which involve scanning the whole genome for CpG 

sites, and can also be directed to specific regions in the genome such as specific 

genes and/or CpG islands [86]. However, in order to quantify DNAm, the CpG 

markers under study must already be known, with PCR primers or probes 
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available to query the methylation level at the CpG sites under study. There are 

numerous bisulfite-based quantification assays, but only the methods used for 

forensic applications will be described here. 

1.2.6.1 EpiTectÒ MethyLight PCR 

EpiTectÒ MethyLight is a PCR-based method that can differentiate 

between methylated and unmethylated CpG sites. This is achieved by designing 

primers that specifically bind and amplify CpG sites in bisulfite-modified DNA. As 

sodium bisulfite treatment renders differences in DNA sequence between 

methylated and unmethylated cytosine, primers can be specifically designed to 

distinguish and recognise these alterations in nucleotide sequences. That is, the 

primers are designed to anneal and amplify only methylated loci, and the 

methylation level of CpG sites under study is quantified by measuring the 

amplified products using real-time PCR. The reliability of the results obtained with 

this assay type is thus dependent on primer design, so newly designed primers 

should be fully validated before they are used for analysis of DNAm patterns [87]. 

1.2.6.2 Allele-specific bisulfite sequencing  

Using this method, methylated and unmethylated alleles are amplified 

post-sodium bisulfite treatment. The methylated and unmethylated CpG sites are 

co-amplified by specifically designed primers. Following this, the amplified 

products are introduced into cloning vectors and transfected into competent cells. 

After cloning, plasmid DNA is then extracted and sequenced using the 

dideoxynucleotide chain-termination method [45]. The sequence data obtained 

represents the methylation status of a single allele, which is particularly useful in 

studying genomic imprinting. Despite the fact that this approach is widely used for 

the characterisation of allele-specific methylation, it is expensive and labour 

intensive, especially when studying a large number of loci. 
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1.2.6.3 EpiTYPER assay 

EpiTYPER is a high-resolution DNAm profiling technique, which is 

performed on Agena Bioscience's MassARRAY System. This system utilizes 

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry for quantifying the methylation level at CpG sites under study. The 

first step in using EpiTYPER is designing primers to amplify the CpG sites in a 

selected genomic region. This is can be done by using an automated online 

software called EpiDesigner, which delivers an easy-to-read graphical 

interpretation of the amplicons designed over the target regions under study, as 

well as annotating distinct CpG sites covered by the assay [88]. After PCR 

amplification of the bisulfite treated DNA, any unincorporated dNTPs are removed 

by treating the reaction mix with shrimp alkaline phosphatase (SAP). Then, an in 

vitro RNA transcription reaction is initiated using a T7-promoter tag, which is found 

in the reverse primers designed by EpiDesigner. The RNA transcription step is 

essential in order to preserve the bisulfite-induced sequence changes. The RNA 

transcripts then go through a uracil-specific cleavage using RNase A [89]. The 

rationale behind this step is that RNase A will produce two fragments that are 

identical in length, however the methylated fragment will be heavier in mass than 

the unmethylated fragment by 16 Da, with the presence of each additional methyl 

group (Figure 1.9). The resulting fragments can be differentiated using MALDI-

TOF mass spectrometry based upon their mass. It has been shown that the 

results produced by the method are highly reproducible, when compared to other 

methods [90].  
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Figure 1.9 Overview of EpiTYPER Assay. CpG sites are amplified using primers tagged with 
a T7 promoter sequence for RNA transcription. The RNA transcripts are cleaved and then 
analysed by MALDI-TOF MS. Shifts between strands by 16 Da or 32 Da mass will indicate 
methylation at one or two CpG sites respectively. The methylation level can be estimated by 
calculating peak area ratio of corresponding mass signals. (Source: Ehrlich et al. 2005) 

1.2.6.4 SNaPshot assay  

This assay is based on a single-base extension (SBE) reaction, which 

quantitatively detects methylated and unmethylated cytosine at specific CpG sites 

using bisulphite-treated and untreated samples [91]. Similar to other methods, 

SNaPshot starts with bisulfite DNA conversion and PCR clean up. Following this, 

during the SBE reaction step, primers are designed so that they anneal to 

sequences upstream of the CpG site being queried, terminating immediately at 

the 5’ end. In the presence of dye-labelled dideoxynucleosides (ddNTPs), DNA 

polymerase will extend the growing chain by a single nucleotide, and then the 

reaction will be terminated. The termination process is due to the lack of a 3’ OH 

group on the dideoxynucleoside, which is required for further chain elongation. 

Each of the four ddNTPs (ddATP, ddTTP, ddCTP and ddGTP) is labelled with a 

differently coloured fluorescent dye tag, allowing identification of the 

dideoxynucleoside incorporated.  In reality, for SNaPshot typing of CpG sites only 
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two of these bases are used, as the base present at the position in question is 

either a C (methylated) or a T (unmethylated), so either a ddGTP or a ddATP is 

incorporated [92]. The reaction amplicons are then analysed by capillary 

electrophoresis for visualization, and the dye colour used to determine the identity 

of the base at the CpG site  [93]. Furthermore, SnaPshot can be used to quantify 

the DNAm level by dividing the peak height of the C/G nucleotide (from a sodium 

bisulfite untreated sample) by the peak heights of the C/G nucleotide plus the T/A 

nucleotide (from a sodium bisulfite treated DNA sample) (Figure 1.10) [92].  

SNaPshot has been introduced to assay methylation of CpG sites due to 

its sensitivity in separating CpG loci that differ by a single base pair. The sensitivity 

and robustness of the assay is improved by increasing the amount of the starting 

bisulphite-converted genomic DNA using an amplification step before the SBE 

reaction, followed by a step to clean-up excess primers and dNTPs using 

exonuclease and shrimp alkaline phosphatase. In a single reaction, SNaPshot 

can interrogate up to 10 CpG sites from different amplicons. This multiplexing 

capability is particularly important in increasing throughput of sample processing 

and data analysis, while reducing sample consumption [94].  
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Figure 1.10 Overview of SnaPshot assay. (A) After sodium bisulfite modification, PCR 
amplification takes place using primers flanking the regions containing CpG markers. Then, the 
reaction mixture is cleaned to remove unconsumed dNTPs and primers prior to sequencing the 
methylated/unmethylated cytosine at CpG sites using a single-base extension reaction (SBE). 
(B) Finally, the sequencing results are analyzed using capillary electrophoresis. The presence 
of methylated cytosine will appear in the electropherogram in a distinctive color and the level of 
methylation will be represented by the peak height ratio. Source: (Thermo Fisher Scientific 
2014). 

1.2.6.5 Illumina Infinium assay 

The Illumina Infinium assay is a high-throughput profiling technology that 

has been implemented on various genomic platforms, with applications ranging 
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from copy number variation (CNV) detection, SNP genotyping, RNA analysis, to 

quantifying DNAm levels [95]. The Infinium assay is based on microarrays known 

as BeadChips which have much higher densities of oligonucleotide probes than 

traditional spotted microarrays [96]. As the name suggests, BeadChips consist of 

microscopic silica beads assembled on micrometre-scale wells that are randomly 

distributed on the chip. Each of these nano-silica beads is covalently coated with 

hundreds to millions of copies of oligonucleotides that target specific CpG sites in 

the genome [97]. These oligonucleotides span 50 bases and consist of two parts; 

the ‘address’ that uniquely identifies it and the ‘probe’ which targets the genomic 

query site (Figure 1.11).  

 

Figure 1.11 Illustrates A how the oligonucleotide is divided into two parts, address and probe, 
and B how oligonucleotides are attached to the silica beads that are attached to the microarray 
chip.  

Due to the fact that the beads with the oligonucleotides are randomly 

distributed on the chip, determining their locations and the types of probes they 

are carrying is important in order to correctly conduct the analysis. This is done 

by a decoding step which consists of a series of hybridisation reactions with 

decoder oligonucleotides, complementary to the address sequences, that are 
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labelled with a fluorophore and captured by the CCD camera. The image captured 

at the end of the decoding procedure will result in a map that identifies the beads 

and the type of probes they carry at each well on the microarray chip. Thus, each 

microarray chip has a specific decoder map, and this is provided by Illumina, Inc.   

1.2.6.6 Infinium HumanMethylation BeadChips 

With high demand from researchers exploring the epigenome-wide DNAm 

profiles (so-called methylome) of cells and tissues, Illumina, Inc. developed 

microarray chips based on the Infinium BeadChip technology called Infinium 

HumanMethylation BeadChip. To date, there are three different versions, all of 

them measuring DNAm using target-specific probes designed to interrogate 

individual CpG sites of bisulfite-converted genomic DNA with single base 

resolution. Thus, the Infinium HumanMethylation platforms allow direct access to 

the largest number of genomic DNA target sites without requiring any site-specific 

PCR or methylation sensitive restriction enzyme treatment to capture the 

methylated DNA [98].   

The first platform developed by Illumina, Inc. in 2008 was the Infinium 

HumanMethylation27 (HM27K), which quantifies methylation levels at 27,578 

CpG sites in the human genome that are located within the proximal promoter 

regions (1 kb upstream and 500 bp downstream) of 14,495 genes including known 

cancer-related genes [86,161]. Since its development, HM27K has played a 

pivotal role in epigenome-wide association studies and has resulted in major 

findings about the relationship between DNAm levels at different CpG sites and 

various covariates such as age, tissue type, diseases, environmental factors and 

more. Therefore, after the successful release of the HM27K, Illumina, Inc. 

developed the platform further by adding more probes, targeting more than 

450,000 CpG sites covering 99% of RefSeq genes and 96% of CpG islands, with 

additional coverage in regions a short distance from CpG islands known as island 

shores and the regions flanking them (176,112 CpG sites) [98]. This updated 
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platform is called Infinium HumanMethylation450K BeadChip (HM450K), which 

was released in 2011. Both Infinium platforms (HM27K and HM450K) can be used 

to analyse 12 samples simultaneously on a chip (arranged in six rows and two 

columns) and the methylation profiles generated are highly reproducible with 

other bisulfite-base sequencing technologies (with an average R2 of 0.95) [98].   

As described in the previous sections, there are ~28 million CpG sites in 

the human genome, and thus it is essential for our understanding about human 

development and etiology to study DNAm levels at these genomic sites. To meet 

this need, Illumina, Inc. developed a new BeadChip platform called 

MethylationEPIC (EPIC), which has 865,918 target-specific probes. In addition to 

targeting 90% of the CpG sites on the HM450K, the additional 350,000 probes 

target CpG sites in regulatory enhancers identified by the FANTOM5 and 

ENCODE projects [99,100]. This addition of new probes, especially those 

designed to target the enhancer regions, will provide a new opportunity for 

researchers to further understand the role of DNAm in human development and 

diseases [101]. Table 1.1 below summarises the differences between the three 

Infinium HumanMethylation BeadChip platforms.  
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Table 1.1 Comparison between the three Infinium BeadChip HumanMethylation platforms. 

Feature HM27K HM450K EPIC 

Probes 27,578 485,577 865,918 

Coverage 
14,495 

genes 

- ~ 90% HM27K probes 

- FANTOM 4 promoters 

- RefSeq 

- miRNA promoters 

- non CpG island sites 

- DNase hypersensitive 
sites 

- > 90% HM450K probes 

- FANTOM 5 promoters 

- RefSeq 

- ENCODE 

- miRNA promoters 

- non CpG island sites 

- DNase hypersensitive 

sites 

Infinium 
assay Infinium I Infinium I, II Infinium I, II 

Input DNA 1µg 500ng       250ng 

As they are user-friendly, have a streamlined workflow, and they need low 

amounts of DNA input, the Infinium HumanMethylation platforms became a key 

tool for many epigenome-wide DNAm studies. In addition, different consortiums 

such as the International Cancer Genome Consortium (ICGC) and the 

International Human Epigenome Consortium (IHEC) rely on the Infinium 

BeadChips to generate epigenome profiles from their reference samples [101]. 

Furthermore, there are more than 7500 epigenome profiles from over 200 

different cancer types found in The Cancer Genome Atlas (TCGA) online 

repository, and more than 1000 epigenome profiles for mother-offspring pairs in 

the online genomic repository of one of the largest epidemiological studies, ARIES 

(Accessible Resources for Integrated Epigenomic Studies), which have been 

assayed on the HM450K [102,103].  
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The first step in the procedures for Infinium HumanMethylation BeadChip 

analysis is genomic DNA extraction, bisulfite conversion, followed by whole 

genome amplification and fragmentation. The fragmented DNA is then denatured 

to form single stranded DNA and suspended on the microarray chip for 

hybridisation to the probes. A washing step is then carried out to wash away any 

unhybridised and non-specifically hybridised oligonucleotides. Then, in the 

presence of biotin-labelled ddCTP and ddGTP, and 2,4-dinitrophenol (DNP)-

labelled ddATP and ddUTP, the hybridised oligonucleotides undergo single-base 

extension by a polymerase enzyme. After the SBE step, the array is fluorescently 

stained and the intensities of the methylated and unmethylated bases are 

captured and stored in a high-resolution image and in intensity data files (idat). 

The workflow is summarised in Figure 1.12.  

 

Figure 1.12 Diagram illustrating the general workflow of Illumina InfiniumÒ 
BeadChips assay. 
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1.2.6.6.1 Probe types 

There are two types of oligonucleotide probes on the Infinium 

HumanMethylation BeadChip platforms, based on two different chemistries, 

termed Infinium I and Infinium II.  

- Infinium I  

In Infinium I, there are two probes to interrogate each CpG locus, one to 

query the unmethylated form of the CpG site and the other to query the methylated 

form of the CpG site (Figure 1.13A). The 3` terminus of each probe is designed to 

match either the protected cytosine (methylated) or the thymine (unmethylated) 

base resulting from bisulfite conversion. In case of hybridisation with either the 

methylated or unmethylated probe, single base extension will incorporate one of 

four fluorescently labelled ddNTPs. Therefore, the signal intensities of the labelled 

ddNTPs incorporated into the methylated and unmethylated probes will reflect the 

methylation level at the specific CpG site. The Infinium HM27K chip contains only 

Infinium I probes.  

- Infinium II 

In contrast, Infinium II chemistry employs only one probe per locus that 

queries both methylated and unmethylated forms of the CpG locus (Figure 1.13B). 

The 3’ terminus of the probe complements the base directly upstream of the query 

site. Analogous to the principle of the SNaPshot assay described in Section 

1.2.6.4 above, single base extension results in the addition of a labelled G (green) 

or A (red) base, complementary to either the methylated C or unmethylated T [98]. 

Therefore, there will be two distinctive colour readouts, one colour for each allele; 

green for methylated sites and red for unmethylated sites [104]. 
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Figure 1.13 Infinium I and II Methylation Assays, applied to both methylated and unmethylated 
CpG loci. A. Infinium I chemistry uses two probes to interrogate each locus. B. Infinium II 
chemistry uses one probe type to interrogate each locus. (Source: Bibikova et al. 2011)  

As the bisulfite-converted DNA fragments pass over the bead chip probes, 

each probe will bind with complementary sequences in the sample DNA, binding 

one base upstream of the locus of interest. The natural competition among the 

four bases in the single base extension reaction minimizes bias, allowing DNA 

polymerase to extend the probe with the correct base that matches the target 

DNA. At each locus, the intensity of the two possible fluorescent signals emitted 
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from the incorporated ddNTP are captured by a CCD camera; ddGTP for the C 

(methylated) allele, or ddATP for the T (unmethylated) allele.  

1.2.6.6.2  Measuring DNAm level  

The DNAm level (measured via the Beta value) is calculated by dividing 

the intensity of the methylated allele (M) over the total intensities of both 

methylated (M) and unmethylated (U) alleles, plus a fudge factor (𝜖), which 

ensures a positive denominator. Illumina, Inc. recommends 𝜖 =100, which is two 

orders of magnitude smaller than the observed intensities.   

 𝐵𝑒𝑡𝑎	(𝛽) = 	
𝑀

𝑈 +𝑀 + 	e	′ 
(1.1) 

The Beta value has an intuitive biological interpretation, that is, 0 equates 

to an unmethylated CpG site and 1 a completely methylated CpG site [104]. 

However, the main limitation of the Beta value is that it exhibits severe 

heteroscedasticity outside the middle methylation range, which imposes serious 

challenges in statistical models such as regression models [105]. Moreover, 

because it is not normally distributed, it violates the normality assumption used by 

many statistical methods, including t-test and regression analyses [105]. To 

overcome these limitations, Du et al. (2010) proposed an element-wise 

transformation of the Beta value to give an M value:   

 𝑀 = 𝑙𝑜𝑔𝑖𝑡2	
𝑀

𝑈 +𝑀 + 	e	′ = 	 log2
𝑀

𝑈 + 	e	′ 
(1.2) 

The reason why this is referred to as an M value is because it has been 

widely used in mRNA expression microarray analysis. It has been demonstrated 

by Du et al. (2010) that the M value is statistically valid and has better detection 

power and higher true positive rate (TPR) in the low and high methylation ranges 

due to its homoscedasticity [105]. However, one of the disadvantages of the M 
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value is that it does not have an intuitive biological interpretation. As such, in 

epigenome-wide DNAm analysis it is preferred to use M values for differential 

methylation analysis and then include the Beta value in final reports so the reader 

can biologically interpret the results [105,106].  

1.2.6.6.3  Normalisation  

Due to the presence of two probe designs (Infinium I and II) corresponding 

to two different chemical assays, the signal intensities between them are non-

comparable and exhibit widely different distributions [107]. The DNAm levels of 

Infinium II probes are less reproducible and if the same methylation level 

measured using both probe types, Infinium II probe would give a lower  value  

[107]. Therefore, it is necessary to apply normalisation to methylation data 

generated using Infinium II probes to render them comparable with Infinium I 

probes and reduce their technical bias, before conducting any downstream 

statistical analyses [108]. There is more than one normalisation method available 

to perform such a correction: unclosing a peak-based correction [107], subset-

quantile within array normalization (SWAN) [109], subset quantile normalization 

[85], and beta-mixture quantile dilation normalisation (BMIQ) [108]. However, it 

has been demonstrated by Marabita et al. [110] that BMIQ is that the best 

algorithm for reducing probe design bias compared to other normalisation 

methods. 

The BMIQ method fits a three-state (unmethylated-U, hemimethylated-H, 

fully methylated-M) beta mixture model to Infinium I and II probes separately. 

Then it uses state-membership probabilities to reassign the quantiles of 

unmethylated-U and fully methylated-M values for the Infinium II probes in order 

to determine the normalised values according to the Infinium I distribution. 

However, the state-membership probabilities of the hemimethylated-H values of 

Infinium II cannot be reassigned to the hemimethylated values of Infinium I, as 

they are not well described by a beta-distribution [107]. This issue can be solved 
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by using methylation-dependent dilation transformation, which preserves the 

monotonicity and continuity of the data from the endpoints that are defined by the 

maximum and minimum Beta values of Infinium II probes [108]. 

1.2.6.7 Targeted bisulfite sequencing  

Assessing the methylation level of targeted genomic regions (i.e. a 

promoter region of a single gene or a CpG island) can also be done using different 

next-generation sequencing platforms, such as the Illumina MiSeqÒ system [111]. 

Detecting methylated cytosine residues in sequenced regions is facilitated by 

bisulfite treatment, which converts any unmethylated cytosine into uracil, while 

methylated cytosine remains intact. The methylation level in the sample can 

therefore be estimated by calculating the number of reads reporting a C 

(methylated), divided by the total number of reads reporting a C or a T (uracil 

converts to thymine during post-bisulfite PCR amplification). The workflow for 

carrying out targeted bisulfite sequencing begins with bisulfite treatment of DNA, 

followed by PCR amplification of the targeted region, library construction and 

sequencing of the amplicons. Targeted regions are amplified using specifically 

designed primers that target the region of interest. While highly useful, the 

limitations to the method include low quantitative accuracy, short read length, and 

low sample throughput [112].  

1.3 Application of DNA methylation in forensics  

Recent developments in DNAm detection and quantification technologies 

have led scientists to discover new applications of epigenetics in the field of 

forensic science. These new applications focus on solving some of the limitations 

associated with STR profiling technology. For instance, predicting characteristics 

that are changing throughout a person’s life such as age, circumstances leading 

to death, or pathological states, is not possible with STR profiling. Furthermore, 



 

 35 

STR patterns are identical in all tissues, which makes it impossible to determine 

the tissue type from which a biological sample originated. However, differential 

methylation of CpG markers has been discovered across chronological ages, 

pathological states, and tissue types, and thus DNAm has become a major area 

of interest within the field of forensic science [15].  

1.3.1 Tissue identification  

Determining the type of the body fluid recovered from a crime scene, 

especially in sexual assaults, may provide important information about how the 

crime events occurred and how they are linked to the perpetrator [113]. This has 

been done to date using two techniques, either protein- or RNA-based methods. 

Both techniques are based on the detection of proteins or RNA molecules that are 

specifically expressed in certain tissues. There are three protein-based methods 

that are widely used in forensic science for the detection of semen, blood and 

saliva. These methods are acid phosphatase (AP) and prostate specific antigen 

(PSA), which are used for detecting seminal fluid, haemoglobin tests for blood 

identification, and amylase tests to identify saliva [114,115]. However, it has been 

demonstrated that the sensitivity of these tests decreases with time, to the point 

the results can no longer be considered reliable [116]. Moreover, the mode of 

detection is exclusively based on a colour change, which is hard to detect in the 

case of minute amounts of a forensic specimen or environmentally degraded 

samples, thus false negatives can be introduced, in addition to a high degree of 

subjectivity. In addition, false positives can also be obtained with specific 

compounds that interfere with these tests. As such, forensic scientists have 

endeavoured to find alternative techniques that are more sensitive and reliable, 

such as the RNA based methods.  

RNA based techniques have been utilised for tissue identification in 

forensic science. The DNA sequence does not provide any tissue specific 

information, however studying the differential expression of messenger RNA 



 

 36 

(mRNA) and microRNA (miRNA) in different tissues can be used to identify the 

origin of body fluids [117]. RNA can be co-extracted from body fluid stains along 

with genomic DNA [118]. The main technique to identify differentially expressed 

genes in tissues is genome-wide expression profiling using microarray 

technology. Using this approach, specific mRNA markers have been discovered 

for the identification of different forensically relevant tissues including blood, 

saliva, semen, vaginal secretions and menstrual blood.  These can be 

simultaneously analysed in forensic stains using multiplex reverse transcription 

endpoint PCR (RT-PCR) and quantitative PCR (RT-qPCR) assays [119]. 

Identifying the origin of mixed body fluids in a single reaction will also save the 

limited amount of genomic DNA in the forensic samples. Despite the fact that RNA 

is a vulnerable molecule and is thought to be very prone to degradation by 

ubiquitous ribonuclease (RNase) enzymes, a number of studies have shown that 

some samples stored at room temperature for more than one year contain mRNA 

suitable for RT-PCR [120]. However, the inherent instability of the molecule is a 

key disadvantage to the use of RNA for body fluid identification in forensic 

science, causing issues with the interpretation of negative results.  Finding a 

tissue identification method based on DNA should significantly outperform RNA-

based techniques due to the relatively higher long-term stability of DNA compared 

to RNA.  

1.3.1.1 Tissue identification using DNA methylation analysis 

During embryogenesis, CpG sites are differentially methylated in a tissue-

specific manner, which is a vital process for cell differentiation [121]. Thus, each 

tissue has a distinctive DNAm profile, which has been successfully used for tissue 

identification [93,122,123]. Finding tissue identifiers that are directly linked to DNA 

can be very useful, especially in cases were DNA is the only evidence that has 

been retained from the crime scene [15]. Therefore, this will help accurately 
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identify body fluids in a non-destructive manner, protecting and preserving the 

DNA evidence.  

Frumkin et al. (2011) were the first to demonstrate the possibility of 

identifying forensically relevant tissues using hypermethylated and 

hypomethylated CpG markers. Subsequent to this, An et al. (2012) successfully 

developed a tissue identification assay for blood, semen, saliva, vaginal fluids, 

and menstrual blood, using four tissue-specific differentially methylated regions 

(tDMRs) in four genes (DACT1, USP49, PRMT2, and PFN3). Moreover, they 

demonstrated that tDMRs are stable over time; regardless of the deposition time 

of the body fluid, the DNAm patterns of tDMRs remain stable [113]. This is 

consistent with previous research, which identified a set of specific DNAm 

biomarkers for bladder, colon, oesophagus, liver, lung, pancreas, stomach, brain, 

heart, kidney and spleen tissues that were collected from human autopsy [52]. 

Therefore, DNAm profiling in the near future is likely to play a key role in forensic 

cases, owing to its characteristic stability compared to other approaches to 

identify tissue type in a forensic context [6]. 

1.3.2 Age estimation  

1.3.2.1 Current and historical methods for age estimation 

In forensic science, there are multiple approaches to estimating the age of 

an unknown individual. For instance, in cases involving a deceased individual, 

morphological characteristics of the body have been used through radiological 

examination of skeletal and dental development in order to determine an age 

category [124]. The dental based method uses the developmental stages of the 

third molar(s) as evaluated using panoramic radiography, with a linear regression 

model to estimate age. The prediction accuracy of the dental based age prediction 

models is very high (two years from the actual chronological age) [125]. However, 
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this method is only reliable between 15 to 23 years old, at which point dental 

development stops, making this method impractical in cases involving adults 

[125]. Therefore, forensic scientists have redirected their attention towards 

molecular methods such as radiocarbon analysis and racemization of aspartic 

acid, which provide a better prediction accuracy compared to morphological 

based techniques.  

Age can be estimated at a molecular level using the racemization of 

aspartic acid in dentine or tooth enamel. This is one of the oldest methods that 

has been used to predict age in forensic cases [124]. The rationale behind this 

method is that amino acids in cells and tissues are normally present in L-form, but 

during the course of aging they gradually transform by racemization to D-form 

enantiomers. In order to completely transform all L-amino acids in the human body 

to D amino acids by racemization, it would take 100,000 years at 25 °C [126]. The 

rate of racemization is controlled by various factors such as pH, temperature, and 

humidity. Aspartic acid is used for age prediction because of its fast racemization 

rate and the high correlation between the ratio of L-Asp and D-Asp with age. 

However, in tissues with a high metabolic rate such as liver, and brain, D-Asp is 

undetectable, whereas D-Asp can be measured in tissues showing low metabolic 

rate, thus providing better age prediction. Tissues with a low metabolic rate such 

as the dentine and enamel of teeth are therefore used for age estimation analysis 

[124].  Despite the high prediction accuracy that can be achieved using 

racemization, inconsistencies exist among papers, which report large differences 

in the level of accuracy [124,126]. 

Another molecular based method that has been recently introduced in 

forensic science that offers more accurate age estimation compared to 

racemization method, is radiocarbon or carbon-14 (14C) analysis [127]. Unlike 

racemization analysis, radiocarbon dating predicts the birth date instead of 

chronological age of an individual, as 14C decay continues even after death. 
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However, their chronological age can be determined when the deceased’s date 

of death is known. The method is based on determining the year of tissue 

formation based on its 14C/12C ratio. 14C is naturally formed by cosmic ray 

interaction with nitrogen-14 and its presence in organic materials has remained 

stable over the past several thousand years [128]. After the oxidation of 14C atoms 

to CO2, it enters the terrestrial biosphere through assimilation into plant biomass 

via the process of photosynthesis. Then it gets incorporated into living systems 

by consumption of plants or organisms that consume plants [129]. The detonation 

of nuclear weapons during the period of the Cold War (1955-1963) has nearly 

doubled the ratio of 14C/12C in the atmosphere. However, after the nuclear test 

ban treaty in 1963, the 14C level has decreased linearly with time due to mixing 

with large marine and terrestrial carbon reservoirs. Interestingly, this steady 

decrease in 14C has created bomb curve that can be used as an isotopic 

chronometer of the past 60 years [128]. 

Therefore, forensic scientists have used 14C dating to predict the birth date 

of unknown individuals by using the upper limit of enamel formation in teeth, which 

contains the 14C/12C ratio that reflects the atmospheric ratio at the time it was 

formed. The prediction accuracy of this technique has been shown to be 

outstanding, with an overall absolute error of ±1 years [124]. However, the key 

limitation of radiocarbon dating is that it can be used to estimate the birth date if 

someone was alive after the period of the nuclear detonation, but will give false 

estimations of age if born before this period [128]. Moreover, in cases where the 

only evidence that can be obtained from the crime scene is DNA or body fluids, 

neither radiocarbon dating, nor racemization of aspartic acid are useful for age 

prediction. 

1.3.2.2 Age estimation using DNA methylation analysis 

Another potential application of DNAm is in the estimation of an individual’s 

chronological age from their DNA, using age-specific CpG markers. This has been 
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established based on numerous studies, which have shown that global 

hypomethylation of the genome and regional hypermethylation of specific genes 

occurs during aging of cells and tissues [130-133]. Most of these studies were 

involved in studying chronic age-associated pathologies such as cancer, 

atherosclerosis, Alzheimer’s disease, autoimmunity and macular degeneration 

[134-136]. For instance, in cancer patients, researchers have shown a global 

decrease in DNAm of the genome and significant hypermethylation in regulatory 

regions of the tumour-suppressor genes [28]. The main driver for this global 

decrease in DNAm is not well understood, but it could be explained by a decline 

in cellular DNMT1 with age [137]. It has been proposed that the molecular 

changes in DNAm patterns in cells and tissues during aging could be exploited to 

estimate the age of individuals for forensic application [15,124].  

The main experimental approach to studying the relationship between age 

and the overall change in DNAm profile was to determine the overall change in 

the ratio of 5-methylcytosine and cytosine with age through enzymatic hydrolysis 

of genomic DNA followed by high-resolution separation of DNA fractions [138]. 

However, the development of array-based methods of screening the genome for 

changes in methylation patterns has allowed scientists to identify and characterise 

AR CpG sites and their association with genes [139]. A study conducted by Day 

et al. (2013) confirmed the presence of common and tissue specific AR CpG sites 

in humans, which previously had been identified in various rodent tissues 

[133,140]. Tissue-specific CpG sites are frequently found within non-CpG islands 

and mostly exhibit decreasing methylation with age (negative CpG sites). In 

contrast, the majority of AR CpG sites that are common across tissues are 

positively methylated with age (positive CpG sites) and positioned within CpG 

islands. Interestingly, the negative CpG sites are generally found close to tissue-

specific transcriptional repressor binding sites in the genome [141]. Consequently, 

genes that are near negative CpG sites had higher expression levels than those 

near positive AR CpG sites. Since the effect of aging has been shown to be 
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associated with increased methylation, thus negative methylation of tissue-

specific CpG sites may be protected against common age-dependent 

methylation, in order to maintain optimum tissue-specific gene expression [142]. 

Recently, there has been an increasing amount of literature using this 

significant correlation between the level of DNAm at different CpG sites with age, 

in order to predict a person’s age [7,143,144]. The predicted age, which is referred 

to as DNAm age, can be used to address several questions in aging research, as 

well in forensic science [106]. Most of the AR CpG markers reported have been 

identified using the two genome-wide DNAm platforms, Illumina 

HumanMethylation27 (HM27K) and HumanMethylation450 (HM450K) BeadChips 

[136,143-145]. From the high-dimensional data on DNAm values generated from 

these platforms, AR markers are identified by testing the correlation of each 

marker with age either using Pearson’s or Spearman’s correlation coefficients 

[145,146]. Then, the age prediction model is built from these highly correlated 

markers by using either multivariate linear regression or quadratic regression in 

order to identify the DNAm age [8]. However, the number of highly correlated 

markers is usually large, and they cannot all be used to build the prediction model. 

For this reason, stepwise regression is used in order to construct models with all 

possible combinations of CpG sites and then evaluate their performance in order 

to select the best model with the lowest Bayesian information criterion (BIC) value. 

In contrast, penalised regression methods such elastic net regression, have the 

ability to select the most predictive markers from a pool of AR markers and 

construct prediction models without the need for reducing or filtering the data from 

the uncorrelated markers [106,136].  

The methylation levels at the AR CpG markers assayed on the Illumina 

HM27K and HM450K chips are highly reproducible in other assays such as 

SNaPshot, pyrosequencing, EpiTYPER, and EpiTect Methyl II, which have been 

used to develop age-prediction assays by many researchers [92,145,147-150]. A 
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considerable number of studies have identified tissue-specific AR CpG markers 

in various tissues such as blood, semen, saliva, and teeth, and have developed 

age prediction assays that can be used for forensic purposes. For instance, based 

on blood samples, Weidner et al. (2014), developed a pyrosequencing-based 

assay to interrogate DNAm levels at three AR CpG markers residing in the ASPA, 

EDARADD and PDE4C genes, which were previously discovered on the Illumina 

HM27K platform and have an age prediction accuracy of 5.43 years [145] (Figure 

1.14A). Moreover, a study conducted by Zbieć-Piekarska et al. (2015) developed 

a blood-based pyrosequencing assay that is based on seven AR CpG sites 

located in the promoter region of the ELOVL2 gene, which was discovered on the 

Illumina HM450K platform. This assay produced a prediction accuracy of 5.03 

years on training samples (Figure 1.14B) and ±7 years on an independent 

validation set of 124 blood samples.  

 

 

 



 

 43 

 

 

Figure 1.14 Predicted versus actual chronological ages of individuals 
used for building age-prediction models. Prediction accuracy calculated 
by mean absolute deviation (MAD) for (A) a blood-based model with 
three CpG sites and an accuracy of 5.43 years (MAD) [145]. (B) a blood-
based model with seven CpG sites and 5.03 years (MAD) accuracy [148].  

Due to differences in age ranges, methods, and statistical techniques, not 

all studies who examined the same type of tissue share the same set of AR CpG 

markers [146,149]. For example, most papers studying blood-specific AR markers 

identified different sets of CpG sites [143]. However, there are some consistent 

A 
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AR CpG markers that are found between studies that reside in the ELOVL2 gene, 

which has been linked to the photoaging response in human skin [151]. 

Interestingly, a large and growing body of literature has suggested that DNAm at 

a single CpG site in the ELOVL2 gene promoter explains more than 70% of 

variation in human age, making it a very promising age predictor for various types 

of tissues (Figure 1.15) [136,146,152,153].  

 

 
  

 

 

 

Figure 1.15 Correlation between DNAm level and chronological age at three CpG sites located 
within the ELOV2L gene. The “cg” numbers are Illumina’s ID for the CpG sites and p is the P-
value from a Spearman’s correlation test. Data shown for A adipose tissue and B blood. (source 
[154] ).  

Tissue specific genes do not only contain tissue-specific AR CpG markers, 

but also AR CpG markers that are common with other tissues. Bekaert et al. 

(2015) identified AR CpG sites specific for teeth in the same genes that contain 

blood-specific AR CpG markers namely ASPA, ITGA2B, PDE4C, EDAR-ADD, 

and ELOVL2 [149]. Moreover, other genes have been found to contain both 

saliva- and blood-specific AR CpG markers, namely GRIA, NPTX2 and 

A ) Adipose tissue  

B ) Blood   
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EDARADD [155,156]. However, using the methylation level of one set of tissue-

specific AR markers to predict the chronological age for other tissues produces 

very low prediction accuracy. Thus, researchers have endeavoured to identify 

universal AR CpG markers that can be used across multiple tissues to predict 

chronological age. 

In the literature, two prominent studies looked for universal AR CpG 

markers across a wide range of tissues and built multi-tissue prediction models. 

By using DNAm profiles of 130 samples from five different tissues (dermis, 

epidermis, cervical smear, T-cells and monocytes) that were assayed on an 

Illumina HM27K BeadChip array, Koch and Wagner (2011) identified four 

universal AR CpG sites that are found in the vicinity of four genes, NPTX2, 

TRIM58, GRIA2 and KCNQ1DN. These four universal markers were implemented 

in a prediction model and tested on 766 independent validation samples from 

different tissues (peripheral blood, cord blood, saliva, and breast samples), which 

provided a prediction accuracy of 11.7 years [94]. This prediction accuracy was 

significantly improved when a study conducted by Horvath (2013) used DNAm 

profiles of 8,000 samples encompassing 51 healthy tissues and cell types, also 

assayed on the Illumina HM27K BeadChip array. Horvath used elastic net 

regression, which automatically selected 353 universal AR CpG markers to 

construct a multi-tissue prediction model, which gave a prediction accuracy of 3.6 

years on an independent validation set [106]. 

All of the publications found in the forensic literature are focused on the 

identification of CpGs correlated with age in a single body fluid/tissue type.  There 

is very limited research focused on the identification of universal age-related CpG 

biomarkers that are common to all of the forensically-relevant tissues, including 

blood, saliva, semen, vaginal secretions, and menstrual blood. This is very 

important in terms of estimating the age of a biological sample that is recovered 

from a crime scene, where its identity (e.g. blood, saliva, semen, etc.) may be 
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unknown. Despite the fact that Koch and Wagner (2011) proposed 19 universal 

AR CpG markers across tissues and built a multi-tissue age prediction model, 

their model-building dataset was based on five tissues (dermis, epidermis, 

cervical smear, T-cells and monocytes) assayed on Infinium HM27K BeadChips, 

none of which was from a forensically-relevant tissue type. In addition, its age 

prediction accuracy was very low when tested on multiple tissues, with an average 

difference between the predicted and chronological age of 11 years, which is not 

useful when applied in forensic science. In attempt to overcome some of the 

issues in the Koch and Wagner (2011) study, Horvath (2013) used 51 different 

tissues and cell types to build a multi-tissue age prediction model. Although the 

prediction accuracy of this model was very high (3.6 years), when it was tested 

on semen samples in an independent study conducted by Lee et al. (2015) it 

produced a very poor prediction accuracy of 13.3 years. Furthermore, due to the 

large number of CpG markers (353 markers) that Horvath’s model contains, it is 

not possible to develop a DNAm assay that includes all these markers and yet 

can be used for forensic purposes. Such an assay would be highly technical and 

expensive to be used for forensic purposes. In addition, even if there were an 

assay that could incorporate this large number of markers into a single test, the 

likelihood that forensic evidence would produce any results on such an assay 

would be very low due to the nature of these samples, which are usually low in 

quantity and quality. Highly technical and expensive  

1.4 Research objectives  

DNAm analysis presents an opportunity to take forensic genetics to a new 

level by answering questions that conventional DNA profiling techniques cannot 

answer. The potential applications of DNAm analysis in forensic science include:    

1.  Determination of the parental origin of alleles. 

2.  Authentication of DNA samples.  
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3. Discrimination between monozygotic twins. 

4. Determination of the cause and circumstances of death. 

5.  Age estimation.  

6.  Body fluid identification.   

Of these applications, this thesis is focused on age estimation using DNAm 

analysis and, in particular, on the following themes: identifying the optimum 

statistical methods for discovering AR DNAm markers, using these methods to 

build a saliva-specific age prediction model, identifying blood-specific AR DNAm 

markers using the newest Illumina microarray platform, and finally building a multi-

tissue age prediction model for forensic applications that is capable of predicting 

the age of individuals regardless of the type of tissue being used.  

To detect AR DNAm markers, researchers have used different statistical 

methods for testing the association between DNAm level and chronological age. 

However, there is no consensus as to which of these statistical methods is most 

efficient in identifying AR CpG markers. This will be explored in Chapter 3, which 

aims to establish a standard set of procedures that are optimum for selecting AR 

DNAm markers from high dimensional data generated using microarray platforms, 

in order to build highly accurate age prediction models. In the same Chapter, the 

selected statistical methods were used to enhance age prediction accuracy from 

saliva samples. This was achieved bioinformatically in silico, that is DNAm profiles 

from saliva samples assayed on the Illumina HumanMethylation450 (HM450K) 

BeadChip were downloaded from an online epigenetic data repository and then 

statistically analysed to identify AR markers for building a saliva-specific age 

prediction model. This model was then validated in silico using another 

independent set of DNAm profiles from saliva samples, assayed on the HM450K.  

In Chapter 4, the saliva-specific AR DNAm markers identified in Chapter 3 

were further validated by targeted bisulfite sequencing using the Illumina MiSeqÒ 
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platform. Their surrounding genomic regions were sequenced in order to discover 

additional CpG sites that may have a stronger association with age, which could 

be used to further enhance the accuracy of age prediction from saliva. The 

performance of the saliva-specific age prediction model constructed was 

compared with the best saliva-specific age prediction model reported in the 

literature, which was created by Hong et al. [157]. The reason for choosing saliva 

is that it constitutes a major source of DNA from various types of evidence 

collected at crime scenes, such as cigarette butts, chewing gum, toothbrushes, 

drinking/eating items, and also common in sexual offences. In addition, saliva 

sampling is non-invasive and convenient for medical screening and other 

diagnostic applications. For this reason, researchers have shown an increased 

interest in identifying AR DNAm markers for saliva samples.  

Recently, a new array, the Illumina MethylationEPICÒ (EPIC) BeadChip 

was introduced, containing over 860,000 probes. In Chapter 5 a comprehensive 

evaluation of blood-specific AR DNAm markers found on the EPIC BeadChip was 

performed, and their associated genes identified, which will provide new insights 

for researchers in various epigenetic and genetic disciplines. Enhancing the 

accuracy of DNAm based age-prediction models by searching for new AR CpG 

sites on the EPIC BeadChip with better age prediction accuracy will aid forensic 

investigations in criminal cases where biological samples of unknown origin have 

been recovered. For this reason, an age prediction model was constructed using 

the probes on the EPIC BeadChip, the performance of which was tested in 

comparison to models constructed using older Illumina microarray platforms.  

Although DNAm markers have outperformed all other known AR 

biomarkers, such as telomere length and mitochondrial dysfunction, in terms of 

the accuracy with which they estimate biological age, AR DNAm markers are 

tissue-specific, and if used on other tissues will predict age with a large margin of 

error. Identifying a universal set of AR DNAm markers that can be used across 
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tissues to predict an individual’s chronological age will therefore reduce estimation 

error as well as bypassing the necessity to first identify tissue type, a step that 

often exposes valuable DNA evidence to chemical destruction. Thus, the main 

aim of Chapter 6 was to identify a set of universal AR DNAm markers that are 

common across tissues and able to predict chronological age from body fluids 

that are frequently found at crime scenes (blood, saliva, semen, menstrual blood, 

and vaginal secretions).  
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Chapter 2: Materials & methods  
 

2.1 Overview  

Analysing DNA methylation (DNAm) level at specific age related (AR) CpG 

sites in a biological specimen recovered from a crime scene can potentially be 

used to estimate the chronological age of the unknown individual(s) who 

deposited the sample. However, identifying these AR CpG sites that can be used 

for this purpose requires managing and analysing the DNAm data sets through 

both bioinformatic protocols and statistical analyses. This section describes the 

bioinformatic pipelines and the statistical methods that have been used to identify 

the AR CpG sites from samples assayed on Illumina HumanMethylation 

BeadChips, starting from the first step of retrieving the data sets from the genomic 

repository, to the final step of building and testing the age prediction model. This 

protocol pertains to all data presented in Chapter 3, 5, and 6.     

2.2 R software 

In this thesis, R software [158], was used for downloading and processing 

of the Illumina HumanMethylation BeadChip data sets, and for all statistical 

analyses. R is a language-based environment used for statistical computing such 

as linear and nonlinear modelling, classical statistical tests, time-series analysis, 

classification, clustering, and for constructing a wide variety of graphics. Two 

terms will be frequently used throughout the thesis, which are function, and 

package. Function is a command line script that can execute a series of 

algorithms in R software, and package is a collection of functions created by a 

certain developer and stored together in code-based software that runs on R 

software. All the packages used in this thesis were downloaded from 

Bioconductor [159], which is a special electronic repository containing a broad 
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range of powerful statistical and graphical packages for the analysis of genomic 

data. 

2.3 Genomic repositories and data sets  

Identifying AR DNAm markers for building age prediction models requires 

a large sample size with a wide range of chronological ages. As described in 

Section 1.2.6.6, there are more than 117,000 epigenome profiles from a wide 

range of tissues and chronological ages that have been deposited into online 

genomic repositories, which can be exploited to answer various research 

questions in forensic science. For this reason, the Illumina HumanMethylation27 

(HM27K), HumanMethylation450 (HM450K), and MethylationEPIC (EPIC) data 

sets used in this thesis were retrieved from three different genomic repositories: 

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) [160] run by 

the National Centre for Biotechnology Information (NCBI), the Cancer Genome 

Atlas (TCGA) (http://cancergenome.nih.gov/) [161] run by the National Cancer 

Institute, and ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) [162] run by the 

European Bioinformatics Institute (EMBL-EBI). The downloaded data sets 

comprise of three components: an expression matrix, metadata (also known as 

phenotype data), and the feature annotation data frame. The expression matrix 

contains the DNAm values for each sample, and the metadata contains 

information about the experiment and samples, such as experimental platform, 

sample genders, disease status, ages, and ethnic origin. Finally, the feature 

annotation data frame contains information regarding the set of probes on the 

platform, such as the chromosomal location, associated gene(s) and/or 

associated promoter(s). In addition to the feature annotation data, there are 

always special annotation packages in R that can be download, which contain 

updated information regarding the probes.    

These three components come in a folder called ExpressionSet, which can 

be directly downloaded into R software using R packages (Figure 2.1). The 
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columns in the expression matrix represent the samples, and the rows represent 

the probes, whereas in the metadata data frame the samples are in rows and the 

covariates (such as age, sex, disease status, etc.) in columns. Finally, the 

annotation data frame contains the probe information such as chromosome 

number, chromosomal coordinates, and gene association in columns, and probe 

names in rows. Each genomic repository has its own R package that can be used 

to download the data set from its own database. For example, ExpressionSets 

from the GEO, TCGA, and ArrayExpress databases are downloaded using 

GEOquery, TCGAbiolinks, ArrayExpress packages, respectively.   

 

Figure 2.1 The diagram shows the three components that are embedded in an 
ExpressionSet when retrieved from genomic databases such as GEO, TCGA, and 
ArrayExpress directly into R software. 

2.4 Processing Illumina HumanMethylation data  

The downloaded Illumina BeadChip data (HM27K, HM450K, or EPIC) can 

either contain expression matrices with raw signal intensity values from the 

microarray instrument, or with Beta values already calculated, representing the 

DNAm levels at each probe. If required, the Beta values can be calculated from 

the raw signal intensities using equation 1.1. The processing steps of the Illumina 

HumanMethylation data are summarised in Figure  2.1, and are described further 

below.    
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Figure  2.1 The analysis pipeline for Illumina 

HumanMethylation BeadChip data. 

2.4.1 Sample and probe quality control (QC)  

Managing and processing the probes and samples was done using a 

series of custom-written scripts in R software. Probes with a detection P-value ³ 

0.05, which is the probability that the signal intensity of the probe comes from 

background noise rather than from a true biological signal, were removed prior to 

analysis. In addition, replicates with large discrepancies in methylation levels were 

removed, as were samples with missing values in more than 50% of the probes. 

Furthermore, the samples assayed on the Illumina HumanMethylation BeadChips 

platforms should have a bimodal distribution of methylation Beta values, as shown 
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in Figure 2.2. Thus, samples deviating from this pattern indicates samples are 

corrupted or are otherwise outliers and should be removed prior to analysis. 

Density graphs were plotted using the density function in R software. In addition, 

outlier samples can also be identified using Single Value Decomposition, and/or 

cluster analysis (described in Section 2.4.4).  

 

Figure 2.2 Density plot showing the bimodal distribution of the       
methylation Beta values. 

2.4.2 Normalisation  

As discussed in Section 1.2.6.6.3, it is necessary to normalise the data 

generated from Illumina HumanMethylation BeadChips in order to render the 

methylation values (Beta values) of Infinium II probes comparable with Infinium I 

probes, before conducting any downstream statistical analyses [108]. First of all, 

each downloaded data set was checked to determine whether it had been already 

normalised or not. This can be checked by viewing the density plot of the DNAm 
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levels, where normalised probes, will have Beta value distributions from Infinium 

I and II probes that are aligned with each other. For data sets with unnormalised 

probes, the Beta Mixture Quantile (BMIQ) method was performed, which is 

available in several R packages, including ChAMP [163], RnBeads [164], and 

WateRmelon [165]; the latter was used here for normalisation. The parameters 

used in the BMIQ command line were those recommend by the packages’ 

authors. After normalisation, Beta value distributions were again checked by 

examining density plots, to see if the central peaks of the two probe designs were 

aligned with each other, indicating that the data had been normalised [108].  

2.4.3 Probe filtering   

Previous findings have indicated that there are a number of non-specific 

autosomal and sex-linked probes on the Illumina HumanMethylation BeadChips 

should be removed prior to the statistical analyses. The probe filtration was 

conducted using information in an annotation file developed by Illumina, and 

updated by Price et al. [166], detailing the probes to be removed. The annotation 

file was imported in R software and probes were removed accordingly. In addition, 

any probe containing a known SNP marker was removed from the data sets, also 

using the annotation file. Furthermore, to avoid gender bias in the prediction 

model developed, all probes targeting CpG sites located on sex chromosomes 

were also removed before downstream statistical analyses.  

2.4.4 Detecting batch effects and outliers using singular value 
decomposition and cluster analysis  

In both genome- and epigenome-wide association studies (EWAS), the 

values (gene expression and DNAm levels, respectively) are significantly affected 

by certain unwanted factors (also known as covariates) such as batch, sex, cell 

type, smoking, and, in some studies, chronological age. It is important to account 

for these covariates as they may cause confounding effects in EWAS [167]. One 

way to discover the presence of covariate effects is to determine whether there is 
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an association between samples that possess a given unwanted covariate. For 

instance, in the case of data on DNAm levels at two CpG sites (two variables) for 

a set of samples, by plotting a 2D scatter plot (each variable on one-axis), samples 

that have similar values and possess the unwanted factor (have the same batch, 

cell type, sex etc.) will be close to each other on the scatter plot. In this case, the 

researcher would know the association between the samples is due to the 

covariate rather than to the factors under study. The use of scatter plots can be 

extended to look at three CpG sites by plotting their values using a 3D plot, and 

the association between the samples can still easily be examined. However, when 

the number of CpG sites gets to more than 300,000, it is too difficult to visualise 

any association between samples, and thus this high-dimensional data needs to 

be assessed in a different way. 

One of the methods used to visualise the association between samples in 

high-dimensional data is Singular Value Decomposition (SVD) [168]. The basic 

concept of SVD is similar to the principal component analysis, which reduces the 

number of variables into a small number of abstract variables known as singular 

vectors. These singular vectors are ranked from 1 to the number of variables in 

the data, however the first three singular vectors explain the most variation in the 

data and reflect the underlying structure of the data in terms of the relationships 

between the samples. By plotting the values of the 1st and 2nd singular vectors in 

a 2D scatter plot, or a 3D plot using the 3rd singular vector, the association 

between samples will appear on the scatter plot. SVD analysis can also be used 

to identify outlier samples, which can be seen as samples clustering away from 

their original sample type.  

The SVD analysis was carried out using a built-in function in R software 

called svd. The function returns the ranked singular values in a three-object list 

(v). For the purpose of examining whether each sample type will form a cluster 

based on tissue type, rather than other factors that may represent hidden 
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confounding variables in the data, the 1st and 2nd singular vectors for the samples 

were plotted against each other in a 2D scatter plot using the first and second 

columns in the v list.   

Cluster analysis was also used to discover whether there was any 

relationship between DNAm level for samples with covariates other than their 

tissue type, such as batch, or sex. In the cluster analysis the samples will be 

clustered or separated from each other based on the similarity/dissimilarity 

between samples using their DNAm patterns, which was calculated using the 

Euclidean distance between each sample, as shown in equation 2.1. The samples 

would normally cluster to their sample type. However, in case of batch or sex 

effect, samples with the same batch or sex would cluster to each other. 

𝑑(𝑥, 𝑦) = 	<=(𝑥> −	𝑦>)@
A

>BC

 (2.1) 

Where x is the DNAm level at a given CpG site in sample1, and y is the 

DNAm level in sample2. In R software, the dist function was used to calculate the 

Euclidean distance between samples based on their DNAm profiles. 

Subsequently, the hierarchical clusters were formed using hclust function in R and 

illustrated by a dendrogram which was plotted using as.dendrogram function in R.  

2.4.5 Estimating and adjusting for cell type composition  

As described in Section 1.3.1.1, there are CpG sites that are differentially 

methylated between tissues and cell types, therefore any change in the cell type 

composition in heterogenous tissues, such as blood, will also change the DNAm 

levels at some CpG sites. Since it has been demonstrated that the cellular 

constituents of blood change with aging, if the cell type composition is not 

accounted for, any AR CpG sites that are identified might be false positives. That 



 

 58 

is, the change in DNAm level at these CpG sites is due to the change in cell type 

composition rather than aging. If this is case, the cell type composition will be a 

confounding variable. In order to prevent any confounding effect from the cell type 

composition, any AR CpG sites identified in blood as part of this thesis were tested 

for any confounding effects as a result of cell type composition. This was done by 

calculating the change in the coefficient for the age term in regression equations 

before and after including cell type composition as a variable. If the change in the 

coefficient for age was within 5%, it was concluded that the cell type had no 

confounding effect and should be ignored [169]. Otherwise, the cell type was 

determined to be a confounder and therefore would need to be included in the 

regression equation to correct for this effect [106,170,171]. Blood cell composition 

in samples was estimated based on their DNAm profiles, using a regression 

calibration algorithm (model) created by Housemen et al. [172], which is 

implemented in the estimateCellCounts function in the minfi package [173]. This 

function estimates the proportion of the six blood-cell types in each sample: CD8T, 

CD4T, natural killer cell, B cell, monocyte and granulocyte.  

2.5 Identifying AR CpG sites and constructing age 
prediction models  

Direct construction of a prediction model using a high dimensional data 

such as HM27K, HM450K, or EPIC data with 27,000, 450,000, and 850,000 

probes, respectively, is not possible. Therefore, there are four major steps that 

should be implemented in order to construct a prediction model from high 

dimensional data set: 

1- Variable reduction 

2- Variable selection 

3- Building the model  

4- Testing the model 
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The variable reduction step is performed in order to substantially reduce 

the number of CpG sites into a manageable dataset that can be used in the 

downstream statistical analyses. This is done by identifying the CpG sites that are 

AR using correlation/regression tests and excluding non-AR CpG sites. Then, 

after reducing the number of CpG sites and ending up with a manageable number 

of AR CpG sites, the next step would be variable selection, during which the best 

subset of those AR CpG sites is selected for use in the building of an age 

prediction model. In the final step, the age prediction model is constructed using 

one of two regression modelling systems. Figure 2.3 summarises the steps in the 

construction of age prediction models from an expression matrix containing 

samples with DNAm values.  
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Figure 2.3 Schematic diagram illustrating the main steps in 

constructing age prediction models from high dimensional data. 

2.5.1 Variable reduction  

The number of CpG sites in the expression matrix can be reduced by 

identifying which of the sites show a relationship with age, using one of the three 

following statistical tests:  
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2.5.1.1 Pearson’s correlation test 

Pearson’s correlation test measures the relationship between two variables 

by fitting the best straight line through their points on a scatter plot [174]. The sign 

(±) of the slope value of the fitted line indicates whether the relationship is positive 

or negative. For instance, in the case of a positive slope, as the points of variable 

A increase the points of variable B increase, and vice-versa in the case of a 

negative slope. There are two requirements needed in order to implement a 

Pearson’s correlation test; the variables being analysed should be normally 

distributed, and the relationship between the two variables should be linear rather 

than monotonic [175]. The result of the correlation test is indicated by the 

correlation coefficient (r), which is an index of how close the points on the scatter 

plot fit the best-fitting straight line. The correlation coefficient can be calculated 

using the following equation:   

𝑟 =
∑𝑋𝑌 −	∑𝑋∑𝑌𝑁

I(	∑𝑋@ −	(∑𝑋)
@

𝑁 )	(∑ 𝑌@ −	(∑𝑌)
@

𝑁 	
      (2.2) 

Where, X is the values of X, Y is the values of Y, and N is the number of 

the pairwise combinations of points in the data. The numerical value of the 

correlation coefficient ranges from 0-1 with either a positive or negative sign, as 

described above. A correlation coefficient close to 0 means there is no correlation 

between the variables, whereas a value >0.5 indicates that there is a correlation 

between the two variables under study. During this project, the Pearson’s 

correlation test was conducted using custom scripts written in R, to measure the 

correlation between DNAm level (using the Beta value) at each CpG site and the 

chronological age. The correlation coefficient cut-off value for selecting CpG sites 

as being AR was for them to have an absolute (abs) r ≥ 0.5 as recommended by 

various studies [8,94,145].   
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2.5.1.2 Spearman’s rank correlation (rho)  

There are cases where Pearson’s correlation test cannot be implanted, 

such as when the relationship between the variables under study is non-linear, 

and/or when the distribution of their scores are markedly asymmetrical and do not 

approximate a normal distribution. In this case, Spearman’s rank correlation or 

Spearman’s rho can be used. It measures the monotonic relationship between 

variables and does not assume normal distribution of the variables [175]. 

Spearman’s rho is calculated using the same equation as Pearson’s correlation 

coefficient (2.2), however, the values of both variables are ranked from smallest 

to largest [174]. That is, the smallest value for variable X is given rank 1, the 

second smallest value for variable X is given rank 2, and so forth. Spearman’s 

correlation coefficient (rho) is then calculated using the following equation:  

 

𝑟ℎ𝑜 =
∑𝑋K𝑌K −	

∑𝑋K ∑𝑌K
𝑁

I(	∑𝑋K@ −	
(∑𝑋K)@
𝑁 )	(∑𝑌K@ −	

(∑𝑌K)@
𝑁 	

   (2.3) 

 

Where Xr is the rank values of X, Yr is the rank values of Y, and N is the 

number of the pairwise combinations of points in the data. A Spearman’s rank 

correlation test was carried out between DNAm level at each CpG site and the 

chronological age of the donor, using a series of custom scripts written in R 

software. The cut-off value for selecting CpG sites as being AR was abs rho ≥ 0.5.   

2.5.1.3 Simple linear regression 

Numerically, a simple linear regression coefficient (R2) is the square value 

of the correlation coefficient between two variables, which also describes the 

relationship between those variables, but in terms of how accurately the X variable 

on the x-axis can predict the value of the Y variable on the y-axis [174]. The X 

variable is called the "predictor", "explanatory" or "independent" variable, while 
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the Y variable is the "dependent", "response" or "outcome" variable. The main 

difference between correlation tests and linear regression tests is that the former 

quantifies the degree to which two variables are related, by computing the 

correlation coefficient (r) and it does not fit a line though the data points. However, 

simple linear regression finds the best fitting line through the points of the two 

variables on the scatter plot, and then uses this line to predict any value of Y from 

the corresponding X value. As illustrated in Figure 2.4, practically speaking, this 

can be done by drawing a vertical line from any value of the X variable from the 

x-axis to the regression line, and then draw a horizontal line from the regression 

line to the y-axis, which will contain the predicted Y value.  

 

Figure 2.4 Predicting the value of a Y variable from an X   
variable in the case where their relationship is linear. 

In this thesis, the DNAm value at a given AR CpG site will be the 

independent variable, and the age, which is to be predicted (DNAm age), is the 

dependent variable. The best fitting line can be drawn using the regression line 

equation:  
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𝑌 = 𝑎 + 𝛽𝑋 (2.4) 

Where Y is the predicted value, a is the y-intercept (where the regression 

line intersects with the y-axis), b is the slope, X is any known value of X, and e is 

the residual standard deviation. The slope (b) (also known as the “coefficient”) of 

the regression line is given by the following formula: 

𝛽 = 	
∑𝑋𝑌 −	L∑𝑋 ∑𝑌𝑁 M

∑𝑋@ −	(∑𝑋)
@

𝑁

     (2.5) 

Where X is the values of the independent variable on the x-axis, Y is the 

values of the dependent variable on the y-axis, and N is the number of 

observations. The intercept (a) of the regression line on the y-axis can be 

calculated as follows:  

𝑎 = 	
∑𝑌 − 𝛽∑𝑋

𝑁      (2.6) 

Therefore, by determining the values of the y-intercept and the slope we 

can predict the values of the y variable from the X variable by using the regression 

line equation. In this project, simple linear regression analysis was used to regress 

chronological age of the donors of biological samples on the DNAm level at each 

CpG site in the data set in order to select the best CpG sites for use in accurately 

predicting the chronological age. The predicted Y variable would therefore be the 

DNAm-predicted age. The lm function in R, along with a custom script written in 

house, were used to conduct linear regression analysis between the DNAm level 

at each CpG site and the chronological age of the donor of the samples.   
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2.5.1.4 False discovery rate (FDR)  

In high dimensional data sets, if the significance level of the correlation and 

regression tests is set to a P-value £0.05, then the set of significant results would 

contain 5% false positives. Thus, in genome-wide data sets, the use of this 

significance level will result in a large number of false positives, due to the large 

number of CpG sites being tested. Therefore, in order to counteract this problem 

(the multiple comparisons problem), the incidence of false positives should be 

significantly lowered by using a very low significance level, at which the rate of 

false positives is reduced to only 5% of the total false positives at the P-value 

£0.05. This false positive rate is referred to as the false discovery rate (FDR), and 

the new extreme P-value at any specific FDR is called the q-value. In this study, 

the appropriate q-value at which the FDR is £0.05 was calculated in R using the 

q-value package [176]. This was done by taking the P-values from each test used 

(Spearman, Pearson, or linear regression), storing them in a vector and passing 

them into the q-value package, along with an FDR level £0.05. After analyzing the 

P-values, the q-value package produced a vector containing only CpG markers 

that were significantly associated with age in the tested tissue.  

2.5.2 Variable selection by stepwise regression analysis 

After excluding those CpG sites that do not correlate with age, a data set 

remained that contained only AR CpG sites. After this, the next step was variable 

selection, during which the best subset of sites in the AR CpG data set for building 

an age prediction model were selected. This can be done using a stepwise 

regression analysis, which examines all possible combinations of the AR CpG 

markers selected in the previous step and identifies the best combination of those 

sites for predicting age. The criteria used to select the best set of sites is based 

on the Bayesian Information Criterion (BIC), which measures the efficiency of the 

parameterised model in terms of its ability to predict the relevant variable. 

Mathematically, BIC was calculated using the following equation:  
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𝐵𝐼𝐶 = 	−2	 ×	 log(𝐿) + 𝐷	 ×	 log(𝑁)     (2.8) 

Where L is the maximised value of the likelihood function for the estimated 

model, N is the sample size and D is the total number of the particular combination 

of the markers in the model. The model with the smallest BIC value will have the 

best prediction accuracy, with the lowest possible number of variables.  

As discussed in section 1.2.6.6.2, the Beta values produced from DNAm 

analysis are not normally distributed, and thus, they do not satisfy the normality 

assumption of regression analysis methods. For this reason, the Beta values were 

transformed into M values using the Beta2M function in the WateRmelon 

package, before conducting the stepwise regression analysis. The training data 

was prepared by including only the highly AR CpG markers, selected in the 

variable reduction step, and excluding all non-correlated CpG markers. Stepwise 

regression analysis was performed using the regsubsets function from the leap 

package in R software.  

2.5.3 Model building  

After selecting the best subset of AR CpG sites using the stepwise 

regression test, the next step is to construct the age prediction model. As 

described in Section 2.5.1.3, the equation (2.4) created by regression analysis 

describes how accurately the X variable (predictor) can predict the value of the Y 

variable (response). Therefore, the value of the X variable in the regression 

equation can be substituted by any value to predict its expected response. Thus, 

the regression equation can be used as a prediction model. The most important 

term(s) in the regression equation is the coefficient (or coefficients in the case of 

more than one predictor being used), which defines the relationship between the 

predictor(s) and the response variable. The process of defining and creating the 

values of the coefficients in the regression equation is known as training the 

model, and the samples used in this process are called training samples (or 
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training data set). Note that not all samples are used to train and test the model, 

instead the samples should be randomly split into a training and testing set. In this 

thesis, the sample function in R was used to randomly split the samples into two 

sets.  

The number of predictors being used and the type of relationship between 

the predictors and responses determines whether the regression analysis 

(modelling system) used is linear or nonlinear. The following two modelling 

systems were used to build prediction models:    

2.5.3.1 Multivariate linear regression  

As explained in Section 2.5.1.3, the main function of regression tests is to 

predict the value of the Y variable using a predictor, which is the X variable. 

However, there are cases where Y can be predicted using more than one 

predictor (X1, X2, …. Xn). The regression method that can examine more than one 

predictor is multivariate linear regression. The multivariate regression equation is 

as follows:  

𝑌	(𝐷𝑁𝐴𝑚	𝑎𝑔𝑒) = 𝑎 + 𝛽C𝑋C +	𝛽@𝑋@+	. . . +	𝛽A𝑋A   (2.9) 

Each X predictor (in this case, CpG site) in the multivariate linear equation 

has its own regression coefficient (b). For the age prediction model generated in 

this project, the specific predictors are the AR CpG sites determined in the 

stepwise regression test. After this, the multivariate linear regression model is built 

based on the training samples, which are used to calculate the coefficient values 

for each CpG site. In R software, the lm function was used to construct the age 

prediction model.  

2.5.3.2 Quadratic nonlinear regression  

While multivariate linear regression is adequate for modelling a wide range 
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of relationships in biological systems, many situations require nonlinear functions. 

There are different types of nonlinear relationships between variables that can be 

modelled using polynomial regressions. However, the nonlinear function focused 

on in this project is the monotonic relationship, which is the relationship seen when 

the response variable (Y) steadily increases (or decreases) with the independent 

variable (X) but the rate of increase (or decrease) becomes smaller and smaller, 

with the response variable reaching a plateau (Figure 2.5). This type of nonlinear 

relationship can be modelled using a type of polynomial regression known as 

quadratic regression, which is a type of multivariate regression. In the linear 

regression equation (2.4), the y variable increases (or decreases) by b units for 

each unit increase (or decrease) in the X variable. However, in a nonlinear 

relationship, estimation of the y variable can be improved by including a second 

squared term of the X variable in the multivariate linear regression analysis:    

𝑌	(𝐷𝑁𝐴𝑚	𝑎𝑔𝑒) = 𝑎 + 𝛽𝑋 + 	𝛽𝑋@  (2.10) 
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Figure 2.5 A monotonic (nonlinear) relationship between two 
variables can be captured by fitting a quadratic regression 
(red line), which is generated by adding extra squared 
values of X into the regression equation. 

In R software, the monotonic relationship between methylation level at the 

AR CpG sites and chronological age can be captured by including an extra term 

based on squared Beta values alongside the standard Beta value term for each 

CpG site, using the lm function.   

2.5.3.3 Elastic net regression  

The first three of the aforementioned steps used to build age prediction 

models from high-dimensional data can be conducted in a single step using elastic 

net regression. Elastic net regression is a penalised algorithm used for variable 

reduction, selection, and model building in a single step, which is particularly 

useful in cases where the number of variables exceeds the number of samples 

[106]. In this study, elastic net regression was conducted using the glmnet 

package in R software, to reduce the number of CpG sites, select the best subset 

of AR CpG markers, and build these into a prediction model. To select the best 
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model, elastic net regression performs what is called “ten-fold cross-validation”, 

that is, the algorithm splits the training set into ten parts, one part serves as 

training set and the rest as validation sets, and it does this ten times (ten-fold). 

Each time, the average error and standard deviation are computed, and those 

subsets of markers that have the lowest estimation error will be selected as the 

best model.    

Since elastic net regression is a penalised progression method, the 

number of CpG sites in the prediction model can be controlled by a value known 

as the lambda value. The lambda values that correspond to different numbers of 

CpG sites in the models, starting from one CpG marker to the optimum number 

of CpG markers, is provided by the cross-validation function in the glmnet 

package. The final age prediction model contains the intercept (a), and the 

coefficients (b0, b1, ..., bn) that correspond to each CpG site, which relate to the 

chronological age as follows:  

𝑦	(𝐷𝑁𝐴𝑚	𝑎𝑔𝑒) = 𝑎 + 𝛽C𝐶𝑝𝐺C + ⋯+ 𝛽A𝐶𝑝𝐺A (2.11) 

Thus, the regression model can be used to predict the age value by simply 

substituting the Beta values of the selected CpGs into the formula.  

2.5.4 Testing the model  

For unbiased assessment of a constructed age prediction model, the 

samples used to train the model should not be used again for testing the model. 

Instead, independent samples should be used to evaluate the performance of the 

constructed model. Note that the samples in the testing data set used to validate 

the age prediction model should be assayed on the same assay system that was 

used for the training data set. Testing the performance of the model was carried 

out by calculating the mean absolute deviation (MAD) from the chronological age, 

which is the absolute difference between the predicted age and the chronological 
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age for an individual donor in the data set. Using the MAD value for assessing the 

accuracy of age prediction models has now been used in various age-related 

studies [106,144,149]. For further evaluation of the obtained MAD value, 

bootstrap analysis was carried out, which involves sampling the testing set with 

replacement 10,000 times and calculating the MAD between predicted and 

chronological age in each bootstrap cohort. From the distribution of the bootstrap 

observations (Figure 2.6), the 95% confidence interval around the mean of the 

MAD value was calculated from the bootstrap distribution. Based on this, the 

bootstrap analysis provides a range of MAD values that is expected in 95% of 

samples randomly drawn from the population. The bootstrap analysis was carried 

using custom scripts written in R.   

 

Figure 2.6 Bell curve illustrating the distribution 
of MAD values calculated in different bootstrap 
cohorts. The 95% confidence interval 
represents the range of MAD values recorded 
by 95% of bootstrap cohorts. 
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2.6 Next-generation sequencing on the Illumina MiSeqÒ 
platform 

The following sections describe the steps carried out for validating the 

saliva-specific AR CpG sites that were identified in Chapter 3, by targeted bisulfite 

sequencing using the Illumina MiSeqÒ platform. The principle of using next-

generation sequencing to assess DNAm level at specific genomic regions is 

described in Section 1.2.6.7. These sections pertain to the data presented in 

Chapter 4. The sample collection, DNA extraction, DNA quantification, statistical 

analyses were carried out at University of Strathclyde. However, assessment of 

the quantity and quality of the genomic DNA (gDNA), primer design, sequencing 

of the targeted specified regions of interest (ROI), and sequence alignments were 

carried out by Zymo Research Corporation.  

2.6.1 DNA extraction using QIAampÒ DNA Mini Kit 

DNA was extracted from saliva using the QIAamp® DNA Mini Kit (Qiagen, 

Hilden, Germany) as described in the manufacturer’s standard guidelines [177]. 

For each sample, 200 μL of saliva was added to a 1.5 mL microcentrifuge tube 

containing 20 μL proteinase K. Then, 200 μL of Buffer AL was added to the sample 

and mixed by pulse-vortexing for 15 seconds. This mixture was incubated at 56°C 

for ten minutes, and then briefly centrifuged to remove any liquid from the inside 

of the lid. 200 μL ethanol (96–100%) (Sigma, Gillingham, UK) was added to the 

sample and mixed by pulse-vortexing for 15 seconds, and then briefly centrifuged 

to remove any liquid from the inside of the lid. This mixture was transferred to the 

QIAamp Mini spin column and centrifuged at 6000 x g (8000 rpm) for one minute. 

After centrifugation, the QIAamp Mini spin column was transferred into a clean 2 

mL collection tube, and the tube containing the filtrate was discarded. Then, to 

the QIAamp Mini spin column, 500 μL Buffer AW1 was added and centrifuged at 

6000 x g (8000 rpm) for one minute. Again, the QIAamp Mini spin column was 
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transferred into a clean 2 mL collection tube, and the filtrate was discarded. 500 

μL Buffer AW2 was added to the QIAamp Mini spin column and centrifuged at full 

speed (20,000 x g; 13,000 rpm) for three minutes. The filtrate from the previous 

step was discarded and the QIAamp Mini spin column was transferred into a new 

2 mL collection tube and centrifuged at full speed for one minute. Again, the filtrate 

was discarded and the QIAamp Mini spin column was transferred into a clean 1.5 

mL microcentrifuge tube. To the QIAamp Mini spin column, 25 μL Buffer AE was 

added and then incubated at room temperature (15–25 °C) for five minutes. After 

incubation, the mixture was centrifuged at 6000 x g (8000 rpm) for one minute. 

Another 25 μL Buffer AE was added to the QIAamp Mini spin column and then 

centrifuged at 6000 x g (8000 rpm) for one minute. The 50 μL eluted sample that 

contained the extracted genomic DNA (gDNA) was stored at -30 to -15°C.  

2.6.2 Quantifying DNA before outsourcing the samples  

The amount of the extracted DNA in each sample required by Zymo was 

³500 ng (ultraviolet absorbance: A260/A280 ratio > 1.7) in at least 20 μl, that is at 

least 25 ng/ μL. NanoDrop-100 Spectrophotometer (Thermo Scientific, 

Wilmington, DE, USA). In this study, the DNA samples were used only when the 

A260/A280 ratio was >1.7, with DNA concentration of ³20 ng/50μL.  

2.6.3 The quantity and quality of the extracted DNA (by Zymo)  

The concentration and quality of the gDNA was measured using the 

Genomic DNA ScreenTape system (Agilent Technologies, Germany). The quality 

of the gDNA is indicated by the DNA integrity number (DIN) and the recommended 

quantity and quality of gDNA for the next-generation sequencing on the Illumina 

MiSeq® platform are ³10ng/µL and ³3 DIN, respectively.  
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2.6.4 Primer design  

Primers were designed using Rosefinch software (Zymo Research’s 

proprietary primer design tool), to target the specified regions of interest (ROI), 

i.e. the AR CpG sites that were identified in this study (see Appendix A: 

supplementary materials). Design parameters were chosen such that PCR 

amplicons would ideally be larger than 100 bp but smaller than 300 bp. In addition, 

primers were designed to avoid annealing to CpG sites at the ROI to the maximum 

extent possible. All primers were resuspended in TE buffer at 100 μM, then mixed 

and diluted to 2 μM. All primers were tested using real-time PCR with 1 ng of 

bisulfite-converted control DNA, in duplicate individual reactions. High-resolution 

melt curve analysis was performed to confirm the presence of a single specific 

PCR product.  

2.6.5 Targeted bisulfite sequencing  

Following primer validation, gDNA from the saliva samples was bisulfite 

converted using the EZ DNA Methylation-LightningÔ Kit (Zymo Research, CA, 

USA), according to the manufacturer’s instructions. Library preparation and 

multiplex amplification of all samples using the ROI-specific primer pairs was 

performed using the Access ArrayÔ System (Fluidigm, CA, USA), according to the 

manufacturer’s instructions. The resulting amplicons were pooled for harvesting 

and subsequent barcoding according to the Fluidigm instrument guidelines. After 

barcoding, samples were purified using the ZR-96 DNA Clean & ConcentratorÔ 

Kit (Zymo Research, CA, USA), prepared for massively parallel sequencing using 

the Illumina MiSeqÒ V2 300bp Reagent Kit (Illumina, CA, USA), and then 

sequenced using a paired-end sequencing protocol, according to the MiSeq® 

manufacturer’s guidelines.   
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2.6.6 Sequence alignments  

Sequence reads were identified using standard Illumina base-calling 

software and then analysed using a Python-based analysis pipeline created by 

Zymo Research. Low quality nucleotides and adapter sequences were trimmed 

during QC processing. Sequence reads were aligned back to the reference 

genome using Bismark, which is a sequence aligner optimised for bisulfite 

sequence data and methylation calling [178]. Paired-end alignment was used as 

default, thus requiring both read 1 and read 2 to be aligned within a certain 

distance, otherwise both reads were discarded. Index files were constructed using 

the Bismark genome preparation command and the entire human reference 

genome. The non-directional parameter was applied while running Bismark and 

all other parameters were set to default. Nucleotides in primers were trimmed from 

amplicons during methylation calling. As described in Section 1.2.6.7, the 

methylation level of each sampled cytosine was estimated as the number of reads 

reporting a C, divided by the total number of reads reporting a C or a T.  
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Chapter 3: Finding the optimum statistical 
method for identifying age related CpG sites  

 

3.1 Introduction  

Recently, researchers in forensic genetics have shown an increased 

interest in the use of DNA methylation (DNAm) markers for age estimation in 

forensic casework. This has led to the introduction of various statistical methods 

that can be used to identify age related (AR) CpG sites for use in constructing 

age-prediction models. As described in Section 2.5, building an age prediction 

model from high dimensional data produced by high-throughput technologies 

such as the Illumina HumanMethylation27 (HM27K), HumanMethylation450 

(HM450K), and MethylationEPIC® (EPIC) BeadChip platforms consists of four 

main steps: variable reduction, variable selection, building the model, and finally 

testing the model. The variable reduction step is done to reduce the number of 

variables (CpG sites) in the data to a manageable size for any downstream 

statistical analyses. The second step, variable selection, involves finding the best 

subset of this reduced number of CpG sites with the highest predictive accuracy. 

Finally, the third and fourth steps involve building the model using a regression 

modelling system and then testing the prediction accuracy of the constructed 

model.   

In the variable reduction step, the majority of epigenetic age-prediction 

studies dealing with high dimensional data reduce the dimensionality of their data 

by removing CpG sites that are uncorrelated with the chronological age of the 

sample donor. The association between DNAm level at the CpG sites and 

chronological age is determined mainly using three statistical tests, namely 

Pearson’s correlation, Spearman’s rank correlation, and simple linear regression. 
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However, age-related studies have not all agreed on one standard test that is best 

for identifying age-related markers. The lack of a standard test that can be used 

as a benchmark is problematic, because it means that each study has to develop 

its own statistical methods for identifying AR markers, and this is likely to lead to 

different outcomes, as well as resulting in duplicated effort. In addition, there is no 

previous study demonstrating which of these statistical methods that can be used 

in the variable reduction step is optimum for identifying AR CpG sites for the 

purposes of building age-prediction models. Selecting a standard test of this 

nature would therefore improve the accuracy and reproducibility of the results of 

these types of studies, as well as making them more comparable.  

Another parameter in DNAm data that could alter the outcomes even when 

using the same type of statistical test is the type of DNAm measurement being 

used. As mentioned in Section 1.2.6.6.2, there are two types DNAm metrics 

commonly used in the analysis of Illumina HumanMethylation BeadChip DNAm 

data, Beta and M values. One of the major limitations of the Beta value is that it 

does not satisfy the normality assumption of regression analyses. Despite this 

limitation, a number of studies have used Beta values in linear regression 

analyses to identify AR CpG sites [92,157,179]. This issue can be easily solved 

by taking the Logit transformation of Beta values, to give M values, which will 

satisfy the normality assumption as well as reducing the heteroscedasticity of the 

data at highly methylated or highly unmethylated CpG sites [157]. A review of the 

literature revealed that there is no previous study examining the effect of using 

the two different DNAm measurements (Beta and M values) on the efficiency of 

identifying AR CpG sites. 

After identifying AR CpG markers, the next step in the process would be 

variable selection, that is, selecting the best subset of these AR CpG sites to build 

an age prediction model with the highest estimation accuracy. In the literature, 

this is usually done using stepwise regression analysis [157]. As described in 
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Section 2.5.2, this method constructs models with all possible combinations of the 

markers and then select the best one, with the highest predictive accuracy. One 

major requirement for stepwise regression analysis is that the data should be 

normally distributed. However, although Beta values are not normally distributed, 

they have been used in stepwise regression analysis in some age-prediction 

studies [108]. The outcomes of these studies could have been enhanced, if the 

most accurate statistical methods had been used, combined with the most 

appropriate DNAm measurement.  

Based on the aforementioned, age prediction accuracy can be further 

enhanced by implementing the optimum statistical method for identifying the AR 

CpG sites, and using it with the right DNAm measurement. Finally, using the 

appropriate DNAm value that satisfies the algorithmic assumptions of the 

stepwise regression analysis could also potentially enhance selection of the best 

prediction model.   

3.2 Aims 

The main aim of this preliminary study was to identify the optimum method 

in the variable reduction step for selecting AR CpG sites from high dimensional 

data generated using the HM450K BeadChip platform. Identifying such a method 

at this stage would enhance the outcomes of the upcoming studies in this thesis, 

which will aid in building age prediction models with better prediction accuracies. 

The aim of the next part of this study was to identify saliva-specific AR CpG sties 

by using the identified optimum method. 
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3.3 Objectives:  

- DNAm profiles were downloaded from an online genomic repository.  

- Three statistical methods, namely Spearman’s rank correlation, 

Pearson’s correlation, and simple (or univariate) linear regression 

were implemented to identify AR CpG sites from the downloaded 

DNAm profiles.  

- Each one of the statistical methods was tested using two DNAm 

measurements, namely Beta and M values.   

- The method that identifies the most significant AR CpG sites was 

selected as the optimum statistical method.   

- Saliva DNAm profiles were downloaded from an online genomic 

repository to identify saliva-specific AR CpG sites using the selected 

optimum statistical method.    

 

3.4 Materials and methods  

All the R codes used in this Chapter can be found in Appendix C1.  

3.4.1 Data set  

The analyses described in this study were based on a data set downloaded 

from the National Centre for Biotechnology Information (NCBI) Gene Expression 

Omnibus (GEO) database. The data set was downloaded using the GEOquery 

package, as described in Section 2.3. The accession number of the data set used 

was GSE59509 [93], and it consisted of 42 samples assayed on the Illumina 

HM450K BeadChip array. The samples were derived from 36 males and 6 
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females with ages ranging from 20 to 59 years old, and came from five different 

types of body fluids, namely blood, saliva, semen, menstrual blood, and vaginal 

secretions (Table 3.1).  

Table 3.1 Tissue types and age distribution among the 42 
samples in the GSE59509 data set 

Tissue type Age range 
(years) 

Mean age 
(years) 

Sample 
size 

Whole blood 24 – 59 40 12 
Semen 20 – 59 41 12 
Saliva 20 – 59 38 12 

Vaginal 
secretions 21 – 23 22 3 

Menstrual blood 21 – 27 24 3 

Total   42 

 

3.4.2 Processing the Illumina HM450K data set 

The pre-processing steps required for this type of data, which include 

quality assurance measures such as removing replicates with large discrepancies 

in methylation levels and probes with detection P-value >0.05 (as described in 

Section 2.4.1), had already been carried out by the authors before uploading their 

data into the online data repository [93]. Further management and processing of 

the DNAm data was done as described in Section 2.4.1. In particular, before 

conducting any downstream statistical analyses, the data set was normalised 

using the BMIQ method, as described in Section 2.4.2, in order to render the two 

types of probes (Infinium I and II) comparable with each other. After probe QC 

filtration, as described in Section 2.4.3, the number of CpG sites in the data set 

was reduced from 485,577 to 310,014 CpG probes.  
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3.4.3 Singular value decomposition and cluster analysis  

Although the authors who uploaded the data set (GSE59509) had already 

adjusted the Beta values in the data set for batch effects using the ComBat 

package, SVD and cluster analysis were also used here to assess the DNAm 

pattern in each tissue type, and how the different tissues clustered based on their 

DNAm profiles [168]. SVD and cluster analysis were carried out using the svd and 

hclust functions in R, as described in Section 2.4.4.  

3.4.4 Identifying AR CpG sites  

The performance of the two correlation tests (Spearman’s rank and 

Pearson’s) and the simple linear regression method were evaluated based on 

their ability to detect AR CpG sites from the 310,014 CpG probes across five 

tissues (whole blood, semen, saliva, menstrual blood, and vaginal secretions).   

3.4.4.1 Spearman’s rank correlation  

The Spearman’s rank correlation coefficient (rho) was calculated between 

each CpG site in the data set and the chronological age of the donor, using a 

series of custom scripts written in R software, as described in Section 2.5.1.2. In 

order to demonstrate the effect of using different DNAm metrics, the Spearman’s 

rank test was first run using Beta values, and second with M values. The cut-off 

value for selecting AR CpG sites was absolute (abs) rho ≥ 0.6, as recommended 

by a number of studies in the literature [8,94,145]. In order to detect true positive 

markers, a more stringent significance level (P-value) was used, at which the false 

discovery rate (FDR) (q-value) is ≤ 0.05. The corrected P-value was calculated in 

R using the q-value package, as described in Section 2.5.1.4 [176].  

3.4.4.2 Pearson’s correlation  

As above, the Pearson’s correlation test was conducted using a series of 

custom scripts written in R software, as described in Section 2.5.1.1, and was also 
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run twice, once with Beta values, and once with M values. The cut-off value for 

selecting positively and negatively correlated markers was abs r ≥ 0.6. Again, the 

same stringent significance value with an FDR equal to ≤ 0.05 was used to select 

the true AR CpG sites. The corrected P-value was calculated in R using the q-

value package, as described in Section 2.5.1.4 [176].  

3.4.4.3 Simple linear regression 

Finally, simple linear regression was conducted in R software, as described 

in Section 2.5.1.3, using custom-written R scripts. The chronological ages of the 

donors of the samples were linearly regressed on the DNAm level of each CpG 

marker, using Beta and M values separately, and again only CpG makers that 

passed the stringent FDR ≤0.05 condition were considered as AR CpG markers.  

3.5 Applying the identified optimum method on a saliva 
data set  

3.5.1 Data  

To assess the standard procedures that were identified for selecting AR 

CpG markers, a data set consisting of methylation data from 54 saliva samples 

was retrieved from the NCBI GEO database, as described in Section 2.3. The 

accession number of this data set was GSE92767, which was used in a study 

conducted by Hong et al. (2017) as an initial training data set to identify saliva-

specific AR CpG markers that were subsequently used for age estimation. They 

were obtained from 54 males aged from 18 to 73 years and assayed on the 

HM450K BeadChip array (Figure 3.1).  
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Figure 3.1 Age distribution of the donors of the 54 saliva 
samples in the training data set (accession number 
GSE92767). 

Low quality probes as well as those with signal intensities less than the 

mean background for negative control probes (detection P-value ≥ 0.05) had 

already been removed from the data set by the authors before uploading into the 

online repository [157]. Managing and processing the DNAm data was done as 

described in Section 2.4. Before conducting any downstream statistical analyses, 

the data set was normalised using the BMIQ method, as described in Section 

2.4.2. Figure 3.2 shows the Beta value distributions from the Infinium I and II 

probes before and after normalisation. After probe QC filtration, as described in 

Section 2.4.3, the number of CpG sites in the data set was reduced from 485,577 

to 449,042 CpG probes.  
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Figure 3.2 (A) Density plot of Beta values for 54 saliva samples (accession 
number GSE92767). The orange lines represent each of the samples in 
the data set and the height of each line represents the density of the 
methylation values found in each sample. (B) Density plot of the 
distribution of average Beta values for the two Infinium assay probes (type 
I and II). The red and blue lines represent type I and II respectively. The 
blue dotted line represents type II probes before BMIQ normalisation, and 
the blue solid line represents these probes after normalisation. 

A 

B 

(A) 

(B) 
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3.5.2 Identifying AR CpG sites and building the saliva model  

After the optimum statistical method for identifying AR CpG sites was 

selected, it was implemented on the 54 saliva DNAm profiles using a series of 

custom scripts written in R software. After this, the selected AR CpG sites were 

input in stepwise regression analysis. However, instead of using Beta values in 

this analysis, M values were used in order to satisfy the assumptions of the 

stepwise regression. For the final step, the selected subset of CpG markers were 

used to build a multivariate model for saliva specific age prediction, as described 

in Section 2.5.3.1. This model will be referred to as the saliva-specific HM450K 

model throughout this thesis.     

3.5.3 In silico validation of the saliva HM450K model   

The performance of the constructed saliva HM450K model was assessed 

in silico on an independent testing data set of saliva samples retrieved from the 

NCBI GEO database. The accession number of the data set is GSE99029 and it 

consisted of 57 saliva samples from donors (22 male, 35 female) aged from 21 to 

91, with a median age of 63 years (Figure 3.3). These samples were obtained 

from the study by Gopalan et al. [180] who collected them from African hunter-

gatherer individuals from a population known as the Khomani San living in the 

South African Kalahari Desert. This population is considered to be one of the most 

genetically diverse populations in the world, as well as due to other population 

differences in terms of nutritional subsistence, ecological environment (semi-

desert), and physical activity, compared to cosmopolitan populations. The aim of 

their study was to explore epigenetic aging across a wide range of human 

diversity, from populations living in distinct ecological systems.  

 

 



 

 86 

 

Figure 3.3 Age distribution of the donors of the 57 saliva 
samples in the testing data set (GSE99029). 

The DNAm levels for the samples were assessed for the presence of any 

outliers (Figure 3.4). The data set was processed and normalised, as described 

in Section 2.4. Predicting the chronological ages of donors based on the saliva-

specific HM450K model was conducted as described in Section 2.5.4.   
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Figure 3.4 Density plot of Beta values for 57 saliva samples 
(GSE99029). The red lines represent each of the samples 
in the data set and the height of each line represents the 
density of the methylation values found in each sample. 

3.5.4 Comparing the saliva HM450K model with Hong et al.’s model 

The saliva HM450K model that was constructed using the identified 

optimum method was compared with another saliva-specific model that was 

created by Hong et al. (2017). Their model was created using the same training 

data set that was used to build the saliva-specific HM450K model in this study. 

Thus, comparing the age prediction accuracy between them would give an 

indication of how the identified optimum methods performed. The AR CpG 

markers in the Hong et al. study were identified using simple linear regression 

based on Beta values. They identified 61 CpG markers, four of which 

(cg07547549, cg14361627, cg08928145, and cg19671120, found in the 

SLC12A5, KLF14, TSSK6, and CNGA3 genes, respectively) were selected by 

stepwise regression using Beta values as candidate markers for building an age 

prediction model. They also added three more CpG markers (cg00481951, 

cg12757011, and cg18384097, found in SST, TBR1, and PTPN7), building an 
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age prediction model with a total of seven CpG markers. This model was tested 

in their study on an independent data set of 113 saliva samples that were assayed 

using SNaPshot mini sequencing and predicted chronological age with a high 

accuracy of 3.15 years (mean absolute deviation (MAD) from the chronological 

age).   

In this study, the Hong et al. model was built using their seven AR CpG 

markers (Table 3.2) and trained on the HM450K DNAm profiles of the 54 saliva 

samples, using the same multivariate linear regression system that was 

implemented in their study. Building Hong et al.’s model was conducted as 

described in Section 2.5.3. In order to compare the age prediction accuracy of the 

Hong et al. model with the model identified in this study, the Hong et al. model 

was also validated in silico on the 57 saliva samples (GSE99029) from the 

Khomani San population, and the MAD value calculated as described in Section 

2.5.4.  

Table 3.2 The seven AR CpG markers identified by Hong et al. (2017) and included 
in their saliva-specific age-prediction model. Genomic locations are for the human 
genome assembly GRCh37, also known as hg19. 

Probe ID Gene symbol Genomic location 

cg18384097 PTPN7 chr1:202129566 
cg00481951 SST chr3:187387650 

cg19671120 CNGA3 chr2:98962974 

cg14361627 KLF14 chr7:130419116 

cg08928145 TSSK6 chr19:19625364 

cg12757011 TBR1 chr2:162281111 

cg07547549 SLC12A5 chr20:44658225 
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3.6 Results  
3.6.1 Illumina HM450K data processing  

The data set initially consisted of 42 samples coming from five different 

tissues. However, when the DNAm profiles were evaluated using density plots, 

one saliva sample (sample ID GSM1438496) showed an abnormal Beta value 

distribution, illustrated by the red line in Figure 3.5. This sample was therefore 

removed from the data set.   

 

Figure 3.5 Density plot of Beta values for 42 samples in the GSE59509 
data set. The coloured lines represent the samples in the data set and 
the height of each line represents the frequency of the methylation 
values found in each sample. 

3.6.1.1 Normalisation  

Before conducting any downstream statistical analyses, the data set was 

checked for normalisation. This was done by plotting a density plot of the Infinium 
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I and II probes in two different colours, and checking they aligned with each other. 

As can be seen from the density plot (Figure 3.6A), the raw Beta value 

distributions for the Infinium I and II probe data sets were not aligned, which 

means they were not normalised. The data were therefore normalised to render 

the Infinium II probes comparable with the Infinium I probes [108]. After performing 

the normalisation, the Beta value distributions for the two probe types were 

aligned (Figure 3.6B).   

  

Figure 3.6 Density plots of the Beta value distributions in the GSE59509 data set for the 
two Infinium probe types (A) before BMIQ normalisation and (B) after normalisation. 

For the purpose of exploring global DNAm patterns across the five forensically 

relevant tissues present in the data set, a box-plot was constructed. Figure 3.7 
illustrates that the median Beta values in each tissue type are not similar, which 

can be explained by the fact that each tissue has its own distinctive DNAm profile. 

Figure 3.7 also shows that some tissues are epigenetically close to each other, 

whereas others are not. For instance, menstrual blood and vaginal secretions 

show median methylation values that are close to saliva and whole blood 

samples. However, semen samples exhibit very low median Beta values 

compared to the other tissues. As discussed in Section 1.2.3, this is likely to be 

(A) (B) 
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due to epigenetic reprogramming in the germ line, which occurs during 

spermatogenesis [18,19]. 

 
Figure 3.7 Box-plot illustrating the distribution of Beta values across the five tissues. The 
bottom and top of the box represent the 25th and 75th percentile (the lower and upper 
quartiles, respectively), and the band near the middle of the box represents the 50th 
percentile (the median). The lower and top whiskers represent the minimum and 
maximum values in the sample, respectively.  

3.6.1.2 SVD and cluster analysis  

The main reason for conducting SVD and cluster analyses was to demonstrate 

how the different tissues would cluster in relation to overall DNAm pattern. The 

SVD analysis showed that the samples cluster in a distribution that is based on 

tissue type. As shown in Figure 3.8, semen has formed a distinctive cluster, which 

reflects its distinctive distribution of Beta values, which also can be seen in the 

previous box plot (Figure 3.7). Saliva, menstrual blood, and vaginal secretion 

samples are scattered along the axes of singular values 1 and 2. This may be 

explained by the fact that the oral and vaginal mucosa contain very similar cell 

types, making their epigenetic patterns similar.  
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Figure 3.8 SVD plot for all 41 samples using all 310,014 CpG 
sites. The colours on the plots represent different tissue 
types. 

As expected, similar results were obtained using hierarchical cluster 

analysis. However, the dendrogram (Figure 3.9) included an additional 

observation that saliva, menstrual blood and vaginal secretion samples are 

divided into two groups, one of which is close to the whole blood samples, the 

other of which is an independent group. If the relevant samples were analysed in 

the same batch along with the whole blood samples, this close relationship could 

be attributed to the batch effect. However, information provided by the author of 

the original study with the downloaded data indicates that the batch effect was 

removed before making the data available [93].  
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Figure 3.9 Dendrogram showing the hierarchical clustering of 41 samples using 
310,014 CpG sites. The distance between tissues is based on the Euclidean 
distance of their DNAm values. 

3.6.2 Identifying the optimum method for identifying AR CpG sites  

The purpose of this study was to determine a standard test among those 

that are frequently used in AR studies, which would be optimum for identifying AR 

CpG sites to be used for building age-prediction models. Two correlation tests 

were investigated (Spearman’s rank and Pearson’s correlation tests) and one 

simple linear regression. Before conducting the analyses, pre-processing steps 

were carried out, which resulted in removing one sample outlier, and removing 

X/Y chromosome CpG probes, probes containing SNPs, and cross-reactive 

probes. After this probe imputation, the CpG sites in the data set were reduced 
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from 485,577 to 310,014 CpG probes in samples from five types of tissue: blood, 

saliva, semen, menstrual blood, and vaginal secretions.  

3.6.2.1 Spearman’s rank correlation  

Spearman’s rank correlation between the chronological ages of the donors 

and each of the two DNAm measurements (Beta and M values) gave the same 

results. The number of CpG sites that passed the abs rho ≥ 0.6 criteria was 867, 

and among these 747 were positively correlated (hypermethylated) and 120 were 

negatively correlated (hypomethylated) with age. Furthermore, after further 

filtration with FDR ≤ 0.05, the two DNAm measurements produced the same 31 

AR CpG sites with significant age-association. Of these 31 CpG sites, 27 were 

positively correlated, and four were negatively correlated with age. These 31 sites 

were labelled as AR CpG markers. Table 3.3 shows the number of CpG sites 

detected under different FDR values. 

Table 3.3 Cumulative number of CpG sites from Spearman’s rank correlation test based on 
different FDR values. The same results were obtained for Beta values and M values. 

FDR value < 1e-04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1 
Number of 
AR CpG 

sites 
0 0 6 8 31 114 310,014 

3.6.2.2 Pearson’s correlation  

The Pearson’s correlation test between chronological age and Beta values 

resulted in 339 AR CpG sites with correlation coefficient abs r ≥ 0.6, which is 

substantially fewer than the number selected using the Spearman’s rank 

correlation test, by 544 CpG sites. Among them, there were 278 CpG sites that 

were positively correlated (hypermethylated), and 61 CpG sites that were 

negatively correlated (hypomethylated) with age. However, after applying the 

FDR cut-off value (≤ 0.05), only one CpG site passed this condition (Table 3.4). 
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The Illumina ID of this AR CpG site is cg16875637. In contrast, the results of the 

Pearson’s correlation test based on M values showed 867 CpG sites with abs r 

≥0.6. These markers were exactly the same markers that were detected by the 

Spearman’s rank correlation test. However, the Pearson’s correlation coefficient 

value and the P-value of each CpG site were different. The results showed that 

the Pearson’s correlation coefficients with M values were smaller than the 

Spearman’s rank correlation coefficient values for each site. Thus, the P-values 

of the Pearson’s test were larger than those generated by the Spearman’s rank 

correlation. As a result of this, only four CpG sites passed the FDR condition (≤ 

0.05) (Table 3.5). The Illumina IDs for these AR CpG sites were cg16875637, 

cg22971191, cg23118721, and cg27571590. The change in methylation level at 

each on these AR CpG sites with chronological age is illustrated in Figure 3.10.   

Table 3.4 Cumulative number of CpG sites from Pearson’s correlation test based on Beta 
values with different FDR values. 

FDR value < 1e-04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1 

No. of AR 

CpG site 
0 0 0 1 1 1 310,014 

 

Table 3.5 Cumulative number of CpG sites from Pearson’s correlation test based on M 
values with different FDR values. 

FDR value < 1e-04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1 

No. of AR 

CpG sites 
0 0 1 3 4 7 310,014 
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3.6.2.3 Simple linear regression 

Simple linear regression analysis was used to reduce the number of CpG 

sites by removing those with low age prediction accuracy across the tested 

tissues. The main theoretical difference between correlation tests and regression 

tests is that correlation tests describe the relationship between two variables, 

Figure 3.10 Association between DNAm level and chronological age across five tissues for 
four individual AR CpG sites identified by Pearson’s correlation test based on M values. 
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whereas regression tests describe how well one variable can predict the value of 

the other variable. From the results (Table 3.6), it can be seen that based on Beta 

values, and after FDR (≤ 0.05) filtration, only one CpG site met this condition. This 

CpG site was the same site (cg16875637) that was detected using the Pearson’s 

correlation test with Beta values. Similarly, the analysis was carried out using M 

values and identified the same four CpG sites that were identified using Pearson’s 

correlation test with M values (cg16875637, cg22971191, cg23118721, and 

cg27571590) (Table 3.7). Figure 3.11 shows a Venn diagram illustrating the 

degree of overlap between CpG sites for the different methods used for detecting 

AR CpG sites.  

Table 3.6 Cumulative number of CpG sites from simple linear regression based on Beta 
values with different cut-off FDR values.  

FDR value < 1e-04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1 

No. of AR 

CpG sites 
0 0 0 1 1 1 310,014 

 

Table 3.7 Cumulative number of CpG sites from simple linear regression based on M values 
with different cut-off FDR values.  

FDR value < 1e-04 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1 

No. of AR 

CpG sites  
0 0 1 3 4 7 310,014 

 

 

 

a
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Figure 3.11 Venn diagram showing the degree of overlap between the 
outcomes of different methods used to identify AR CpG sites. The 
background represents the probes on the Illumina HM450K 
BeadChip, the blue colour represents the outcomes of the 
Spearman’s rank correlation test, green represents the outcomes of 
both Pearson’s correlation test and simple linear regression using M 
values, and red represents the outcomes of both Pearson’s 
correlation and simple linear regression using Beta values. 

3.6.3 Identifying saliva specific AR CpG sites using the selected 
optimum methods  

From the results described above, it was found that using Spearman’s rank 

correlation test detects more significant AR CpG sites compared to other methods 

such as Pearson’s correlation and simple linear regression methods. Therefore, 

the Spearman’s rank correlation test was used to identify saliva specific AR CpG 

sites in the saliva training data set (GSE92767). The Spearman’s rho correlation 

coefficient was calculated between each CpG site in the saliva training data set 

and the chronological age of the donors, using a series of custom scripts written 

in R software. The criteria for selecting the AR CpG sites were: Spearman’s abs 
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rho ≥ 0.6, a difference in DNAm levels between samples from younger and older 

aged donors of > 0.1 (based on Beta values, as recommended by Hong et al 

(2017)), and FDR ≤ 0.05. The total number of CpG sites that passed these criteria 

was 988. As shown in Figure 3.12, the overall molecular effect of aging on the 

methylome is positive (hypermethylation). This is demonstrated by the ‘hump’ at 

a rho value of around 0.4, which represents the density of probes that are 

positively correlated with age. The number of age-associated markers retrieved 

from the correlation test is extremely large, which cannot be handled by the 

stepwise regression test in R software. Therefore, the AR CpG sites were further 

filtered by lowering the FDR value to ≤1E-7, which resulted in 49 candidate AR 

CpG markers (Error! Reference source not found.). Among these 49 candidate 

markers, three (cg00481951, cg14361627, and cg07547549) were identified and 

included in the Hong et al. model [157].   

 

Figure 3.12 Histogram of Spearman’s rank correlation coefficients (rho) 
obtained from the correlation test between DNAm level at each of 432,215 
CpG sites (Beta value) and the chronological ages of the donors of 54 
saliva samples. 
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Table 3.8 49 CpG sites that were significantly associated with age at FDR 0.00001% in the 
54 saliva samples obtained from accession number GSE92767. 

Probe 
Illumina ID 

Chromosome Co-ordinate Gene P-value 
Spearman's 
coefficient 

cg22736354 6 18122719 NHLRC1 2.30E-20 0.900 

cg00481951 3 187387650 SST 3.04E-20 0.899 

cg16867657 6 11044877 ELOVL2 3.24E-20 0.898 

cg00094518 7 130418549 KLF14 6.73E-18 0.874 

cg06493994 6 25652602 SCGN 7.68E-18 0.873 

cg11084334 3 9594264 LHFPL4 1.14E-17 0.871 

cg04875128 15 31775895 OTUD7A 8.74E-17 0.860 

cg06782035 5 16179135 unknown 1.04E-16 0.859 

cg20591472 1 110008990 SYPL2 2.37E-16 0.854 

cg14361627 7 130419116 KLF14 4.73E-16 0.849 

cg01763090 15 31775406 OTUD7A 7.16E-15 0.831 

cg06639320 2 106015739 FHL2 7.68E-15 0.831 

cg10804656 10 22623460 unknown 1.09E-14 0.828 

cg08160331 11 75140865 KLHL35 1.71E-14 0.825 

cg08097417 7 130419133 KLF14 2.02E-14 0.824 

cg14556683 19 15342982 EPHX3 2.96E-14 0.821 

cg00439658 17 72848669 GRIN2C 3.48E-14 0.820 

cg13327545 10 22623548 unknown 4.06E-14 0.818 

cg19560758 1 8086721 ERRFI1 4.71E-14 0.817 

cg18473521 12 54448265 HOXC4 4.73E-14 0.817 

cg07547549 20 44658225 SLC12A5 6.26E-14 0.815 

cg25410668 1 28241577 RPA2 1.04E-13 0.811 

cg14131273 9 135464095 BARHL1 1.13E-13 0.810 

cg14674720 2 219827930 unknown 2.15E-13 0.805 

cg07553761 3 160167977 TRIM59 2.83E-13 0.803 

cg01844642 3 51989764 GPR62 4.02E-13 0.800 

cg19802138 13 112722719 SOX1 4.26E-13 0.799 

cg07365960 17 72848535 GRIN2C 4.80E-13 0.798 

cg23606718 2 131513927 FAM123C 4.82E-13 0.798 

cg08885800 1 201084119 unknown 9.72E-13 0.792 
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cg22454769 2 106015767 FHL2 1.45E-12 0.789 

cg13954457 5 167956819 FBLL1 1.97E-12 0.786 

cg20049415 20 21377671 NKX2-4 2.69E-12 0.783 

cg05168491 14 38080446 unknown 2.71E-12 0.783 

cg05213896 19 50393653 IL4I1 3.27E-12 0.781 

cg04865692 19 50831762 KCNC3 3.99E-12 0.779 

cg25478614 3 187387866 SST 4.34E-12 0.778 

cg11705975 10 120354248 PRLHR 5.53E-12 0.776 

cg24079702 2 106015771 FHL2 5.78E-12 0.775 

cg23995914 4 10459228 ZNF518B 6.29E-12 0.775 

cg24853724 7 28997403 TRIL 6.34E-12 0.775 

cg25124276 10 25464008 GPR158 1.01E-11 0.770 

cg06279276 16 67184164 B3GNT9 1.82E-11 0.764 

cg23538901 15 46006849 unknown 3.16E-11 0.758 

cg23142799 13 26625089 SHISA2 7.05E-11 0.749 

cg18064714 7 20824556 SP8 1.04E-10 0.745 

cg05694021 12 19699504 unknown 1.01E-11 -0.770 

cg00573770 2 145278485 ZEB2 5.95E-13 -0.796 

cg10501210 1 207997020 unknown 4.19E-17 -0.864 

 

3.6.4 Building the saliva HM450K model  

Following identification of the 49 candidate AR CpG markers described 

above, stepwise regression was implemented to select the best subset of these 

markers to be used in the age-prediction model. Before conducting the stepwise 

regression, DNAm levels were converted to M values to satisfy the assumptions 

of the regression test. The stepwise regression test yielded a set of nine CpG 

markers that had the lowest BIC value, which is reasonable in terms of the number 

markers that can be used for forensic analysis (Figure 3.13). The heat map in 

Figure 3.14 shows a consistent change (either hyper- or hypomethylation) in 

DNAm level at the nine CpG sites across chronological ages, without the 
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presence of any samples with irregular methylation patterns. Table 3.8 shows the 

identity of each site and the relationship between chronological age and 

methylation level for each of these sites is shown in Figure 3.15. Instead of using 

Beta values, as in the Hong et al. (2017) study, M values were used to build a 

multivariate linear model from these nine CpG sites. The constructed saliva-

specific HM450K model explained 97.5% of the total variation in DNAm levels in 

the samples of 54 males in the training data set (GSE92767), with a mean 

absolute deviation (MAD) from the chronological age of 1.8 years (see Table 3.9 

and Figure 3.16).  

 

Figure 3.13 Bayesian Information Criterion (BIC) as a function of the number 
of markers, showing that a model with nine CpG sites has the lowest BIC 
value and thus the best predictive accuracy. 
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Figure 3.14 Heat map illustrating methylation levels at the nine AR CpG markers selected by 
stepwise regression, in samples ordered by chronological age. The methylation level is 
indicated by the Z-score, where red indicates a site is hypermethylated and blue is 
hypomethylated. Hierarchical clustering of the CpG markers is presented on the left-hand side 
of the heat map. 
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Table 3.8 Identity of the nine CpG markers selected by stepwise regression. The R2 and 
P-values are from univariate linear regression analysis between each CpG site and 
chronological ages in the training data set. 

Probe ID Chromosome Gene R2 P-value 

cg16867657 6 ELOVL2 0.77 2.7 x 10-18 

cg10501210 1 Unknown 0.77 2.4 x 10-18 

cg10804656 10 Unknown 0.72 4.7 x 10-16 

cg04875128 15 OTUD7A 0.71 1.1 x 10-15 

cg06279276 16 B3GNT9 0.63 9.8 x 10-13 

cg00573770 2 ZEB2 0.60 5.6 x 10-12 

cg07365960 17 GRIN2C 0.60 7.3 x 10-12 

cg23606718 2 FAM123C 0.59 1.1 x 10-11 

cg25124276 10 GPR158 0.59 1 x 10-11 
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Figure 3.15 Simple linear regression analysis between DNAm level at the nine CpG 
markers obtained from 54 saliva samples (GSE92767) assayed on the Infinium HM450K. 
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Table 3.9 Multivariate linear regression statistics for the age-prediction 
model containing nine AR CpG sites.  

CpG site ID P-value R2 MAD 

(Intercept) 1.2 x 10 -10 0.975 1.8 
cg00573770 0.011   
cg04875128 0.021   
cg06279276 0.021   
cg07365960 0.049   
cg10501210 9.1 x 10-9   
cg10804656 0.02   
cg16867657 5.3 x 10-5   
cg23606718 6.9 x 10-4   
cg25124276 0.05   

 

 

Figure 3.16 Chronological age against predicted age obtained from 
the multivariate linear regression model, based on the training data 
set. 



 

 107 

3.6.5 In silico validation of the saliva HM450K model  

The constructed saliva-specific HM450K model was tested on an 

independent data set consisting of 57 saliva samples from donors (22 males, 35 

females) aged from 21 to 91, collected from the Khomani San population, from 

the South African Kalahari Desert. The Khomani San individuals are genetically 

diverse and living in a distinctive ecological system compared to individuals 

coming from cosmopolitan populations. One of the samples in the data set 

(GSM2630630) had a missing DNAm value for one of the AR CpG markers 

(cg06279276). Due to the fact that the prediction analysis could not be carried out 

with a missing marker, the sample was removed from the testing data set. The 

prediction accuracy of the saliva-specific HM450K model was 5.1 years (MAD) 

(Figure 3.17). Due to the fact that the training data set (GSE92767) contains only 

male individuals, and to avoid sex bias in the prediction of age, male and female 

samples in the testing data set were separated and their MAD values were 

assessed separately, to see if the difference between them was significant. The 

t-test showed that there was a non-significant (P-value = 0.2) difference in the 

prediction accuracy for males (MAD = 4.20 years, r = 0.93) compared to females 

(MAD = 5.58, r = 0.95).  
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Figure 3.17 Chronological age against predicted age obtained from the 
multivariate linear regression model, based on the testing data set. 

3.6.6 Comparing the saliva HM450K model with the Hong et al.’s 
model 

The performance of the model containing nine CpG markers (the saliva-

specific HM450K model) built in this study was compared with the model 

containing seven CpG markers built by Hong et al. (2017). Based on the Khomani 

San data set, the Hong et al. model predicted age with an accuracy equal to 8.3 

years (MAD) (Figure 3.18), which is more than the model described here by 3.2 

years. This difference is statistically significant, as confirmed by an analysis of 

variance (ANOVA) test, which gave a P-value equal to 2.2x10-16.  
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Figure 3.18 Chronological age against predicted age obtained from Hong 
at. al.’s model based on the testing data set. The Pearson’s correlation 
coefficient (r) between predicted age and chronological age is 0.88. 
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3.7 Discussion  

In previous forensic age estimation studies using AR CpG sites, there has 

been no consensus on the type of statistical method that should be used to identify 

AR markers, especially from high dimensional data containing hundreds of 

thousands of CpG sites. This has resulted in different findings in studies using the 

same types of tissues and the same types of genome-wide platforms. These 

differences in findings are likely to be at least in part due to the different methods 

applied, rather than biological differences [144,147]. A considerable number of 

papers in the field have carried out their statistical analyses assuming a linear 

association between age and methylation level, despite the fact that there have 

been no controlled studies to support that assumption [92,144,179]. The 

relationship between DNAm level and chronological age does not necessarily 

have to be linear, because the rate at which the process of methylation or 

demethylation proceeds at AR loci may not change constantly with age. Two 

separate studies, conducted by Horvath (2013) and Xu et al. (2015), have touched 

upon this matter. The former described the rate of change in DNAm level at the 

353 CpG markers they identified across tissues as taking the form of a logarithmic 

relationship from childhood until adulthood and then changing to a linear 

relationship later in life [106]. The latter study also highlighted that a linear 

regression analysis is too simple to explain the complicated relationship between 

DNAm and chronological age [8]. Therefore, using the appropriate statistical 

method to measure the association between DNAm and chronological age 

requires a full understanding of their true relationship. 

The findings of this study showed that, despite applying the same stringent 

conditions, Spearman’s rank correlation test identified significant AR CpG sites 

than both Pearson’s correlation test and simple linear regression (Figure 3.19). 

This suggests that DNAm level increases monotonically with age, based on the 
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fact that the Spearman’s rank correlation algorithm measures the monotonic 

relationship between two continuous or ordinal variables, rather than a linear 

relationship. In contrast, the Pearson’s correlation and simple linear regression 

tests measure linear associations between variables. Using any algorithm that 

tries to detect a linear relationship where one does not exist will therefore result 

in the discarding of a significant number of candidate markers that could have 

been detected by nonlinear correlation or nonlinear regression tests. However, 

the majority of studies in the literature have applied Pearson’s correlation test or 

simple linear regression on their data instead of using the Spearman’s rank 

correlation test. For example, Koch and Wagner (2011) carried out a study that 

aimed to identify AR CpG markers across tissues using five data sets from dermis, 

epidermis, cervical smear cells, T-cells and monocytes, which had been assayed 

on the HM27K platform. The experimental design of their study was based on 

using Pearson’s correlation test with Beta values, which resulted in the 

identification of 19 CpG sites after applying stringent parameters (abs r³0.6, and 

P-value <10-13). Based on the findings presented here, more markers may have 

been obtained if the Spearman’s rank correlation test with either Beta values or 

M values, or either Pearson’s correlation test or simple linear regression with M 

values were used.  
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Figure 3.19 Schematic diagram summarising the outcomes of three statistical tests 
used to identify AR CpG sites across five tissues assayed on the Illumina HM450K 
BeadChip platform. 

Another finding of the results presented here was the significant difference 

in outcomes between the two DNAm measurements, Beta values and M values. 

As can be seen in the results, M values outperformed Beta values, in terms of the 

number of significant AR CpG sites identified, when they were used in both the 

Pearson’s correlation and simple linear regression tests to measure the 

association between DNAm level and chronological age. This indicates that, 

despite the fact that Beta values are widely used in AR studies, this has some 

limitations when parametric statistical tests are being implemented. A similar 

finding was reported by Du et al. (2010), who recommended using M values for 

conducting differential methylation analyses, as they perform better both in terms 

of the detection rate and of detecting true positives, for both highly methylated 

and unmethylated CpG sites [105]. This superior performance can be explained 
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by the fact that the Logit transformation of Beta values into M values reduces their 

heteroscedasticity [105]. That is, the resulting M values have more constant 

variation in DNAm levels in both highly methylated and unmethylated regions. 

Thus, the relationship between DNAm status and chronological age at the 

extreme values of methylation will become linear when Beta values are converted 

to M values.  

A review of the literature showed that the majority of AR methylation 

studies have not used M values in their analyses. In fact, they have used Beta 

values not only for detecting AR CpG markers, but also in linear-based age-

prediction models [89,145,157]. Consequently, this is likely to result in poor 

performance of these linear age-prediction models, as they only measure linear 

relationships rather than monotonic relationships. However, two exceptions to this 

were the studies conducted by Bekaert et al. (2015) and Xu et al. (2015) who, 

rather than using M values with linear regression analysis, used nonlinear 

(quadratic) regression methods to fit the best monotonic relationship between 

Beta values and chronological ages of donors. Furthermore, Bekaert et al. [143] 

compared the prediction accuracy of linear and nonlinear age-prediction models 

based on Beta values, and found that nonlinear (quadratic) regression had a 

better age-prediction accuracy. Our results indicate that, since linear methods 

such Pearson’s correlation and simple linear regression tests were able to capture 

the association between DNAm level based on M values rather than Beta values, 

implementing a linear regression modelling system with M values would produce 

a better result than Beta values in terms of prediction accuracy. In contrast, Beta 

values should only be implemented with nonlinear methods such as Spearman’s 

rank correlation tests and quadratic regression modelling systems.       

The objective of the second part of this study was to implement identified 

optimum methods, which are to use Spearman’s rank correlation (with either Beta 

or M values), and then using M values in stepwise regression analysis, and for 
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building the linear multivariate linear regression model. For this reason, an 

independent data set of DNAm profiles from 54 saliva samples were obtained 

from an online public repository, which have already been used to build a saliva-

specific model by Hong et al. (2017), which is the best age-prediction model 

reported in the literature to date. Therefore, their data set represented a good 

opportunity to assess the utility of different types of statistical approaches, in order 

to see whether further enhancement could be achieved in terms of the accuracy 

of the age-prediction model in saliva.  

Initially, 988 statistically significant saliva-specific AR CpG sites were 

identified using the criteria of Spearman’s rho >0.6 at FDR <0.05, which were then 

further filtered to 49 candidate markers using a more stringent FDR value (≤1e-7). 

Although the same training data set was used as that used by Hong et al. (2017), 

only seven of the 49 CpG sites overlapped with the 62 AR CpG sites they 

detected, and three of the 49 CpG sites overlapped with the seven CpG sites 

included in their model. Furthermore, their stepwise regression analysis yielded a 

model with only four AR CpG markers from the 62 markers they initially identified, 

whereas this study yielded a model containing nine AR CpG markers (Table 3.8) 

from the original 49 CpG sites (Error! Reference source not found.). This may 

be due to the fact that, in this study, M values were used rather than Beta values, 

which may have reduced the skewness of the data and the variation in DNAm 

values at AR CpG sites. This in turn may have rendered DNAm level more 

linearised with chronological age.   

The nine AR CpG markers, selected based on the data from 54 saliva 

samples assayed on the HM450K BeadChip, explained 97.5% of the variation in 

DNAm level. All of these nine markers have previously been reported in different 

AR studies, but have never been used together in a single model to predict age 

from saliva samples. Only two sites (cg25124276 and cg00573770) have 

previously been found to be associated with age in saliva, the remaining seven 
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have previously been linked to aging in blood samples [136,146,153,180-184]. 

Two markers (cg10501210 and cg10804656) were not linked to any known gene, 

and the remaining seven markers mapped to seven different genes, namely: 

ZEB2, OTUD7A, B3NT9, GRNI2C, ELOVL2, FAM123C, and GPR158. The CpG 

markers associated with these genes were found to be hypermethylated with age, 

except for one CpG site (cg00573770) linked to ZEB2, which was found to be 

hypomethylated with age. Two of the genes (OTUD7A and ELOVL2) have 

frequently been reported in AR studies, and they encode for deubiquitinising 

enzyme, and fatty acid elongase 2, respectively [146,147,179,184].  

In comparison to the original study conducted by Hong et al. (2017), it can 

be seen that both the selection of AR CpG sites and the construction of an age-

prediction model have been enhanced by using Spearman’s rank correlation test 

and M values in both stepwise regression analysis, and multivariate linear 

regression (Figure  3.20). In this study, the selected nine CpG sites explain 97.5% 

of the total variation in the training data set, as opposed to 96.9% explained by 

the seven CpG sites from the Hong et al. (2017) study. Furthermore, the 

performance of both models was tested on an African population known as the 

Khomani San, which is one of the most genetically diverse human populations in 

the world [180]. Despite the fact that the testing data set came from a genetically 

diverse population (Khomani San), the model reported here was able to predict 

their ages with an accuracy of 5.1 years (MAD), with no significant difference in 

age-prediction accuracy between the sexes. This performance is an improvement 

on the Hong et al. (2017) model, which gave an MAD value of 8.3 years on the 

same data set. These results also suggest that during the construction of an age 

prediction model, either M values should be used with a linear regression 

modelling system or Beta values used with a nonlinear (quadratic) regression 

modelling system.  
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Figure  3.20 Schematic diagram showing the comparison between the HM450K model 
constructed using the optimum method identified in this study, and Hong et al’s model. 
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3.8 Summary and conclusions  

The main goal of this preliminary study was to enable researchers carrying out 

AR DNAm studies to make a more informed decision when it comes to selecting 

the right statistical method for identifying AR DNAm markers. It was found that the 

Spearman’s rank correlation test detected a larger number of significant AR 

DNAm markers than both the Pearson’s correlation test and simple linear 

regression analysis. These findings will assist other studies in selecting the most 

appropriate test for discovering candidate CpG sites and are likely to be of 

significance to both the forensic science and medical sciences fields. 

Furthermore, an analysis was conducted to study the effect of using different 

measures of DNAm levels on the outcomes of the correlation and regression 

analysis tests. The results suggest that using either Beta or M values with 

Spearman’s correlation test is the best approach, however, Pearson’s correlation 

test and simple linear regression detected fewer AR sites based on Beta values 

compared to M values. This also suggests that the relationship between DNAm 

levels and chronological age is monotonic and that researchers should consider 

this when selecting a statistical test for identifying AR DNAm sites and building 

age prediction models.   

Taken together, the findings of this Chapter are summarised in Figure 3.21, which 

illustrates the optimum method that should be used to identify AR CpG sites with 

different DNAm measures. The first pathway is to use Spearman’s rank 

correlation test with Beta values and then a nonlinear modelling system for 

building an age-prediction model as Beta values are monotonically associated 

with chronological age. The second procedure is to use Spearman’s rank 

correlation test with M values and then a linear modelling system, as converting 

Beta values to M values will make the association between DNAm level and 

chronological age linear.  
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Figure 3.21 The optimum pathway for identifying AR CpG sites, and 
building age-prediction models using either Beta values or M values. 

From a review of the literature, the identified nine saliva AR CpG sites in 

this study are strong candidates for achieving a better age prediction accuracy 

than those already reported in the literature. Validating these AR CpG sites on 

different DNAm assays would allow samples to be tested within a forensic DNA 

laboratory workflow. To achieve this, a proper assay design should be selected 

that could be used for the types of samples that are encountered in forensic cases. 

Forensic specimens are usually found in harsh environments that predispose the 

DNA to degradation, which results in low quantity and quality DNA, and thus, the 

selected assay should be suitable for use on this type of samples. Therefore, in 
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the next chapter the nine AR CpG sites along with the seven AR CpG sites from 

Hong et al.’s model are examined using bisulfite sequencing using the Illumina 

MiSeqÒ platform.  
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Chapter 4: DNA methylation-based age 
prediction from saliva samples using next-

generation sequencing on the Illumina MiSeqÒ 
platform 

 

4.1 Introduction  

In forensic science, saliva constitutes a major source of DNA from various 

types of evidence collected at crime scenes, such as cigarette butts, chewing 

gum, toothbrushes, and drinking/eating items [185]. In addition, saliva samples 

can be taken in a non-invasive and convenient way, for medical screening and 

other diagnostic applications. For this reason, researchers have shown an 

increased interest in identifying age-related (AR) CpG markers for saliva samples 

[156,157,186]. The most promising AR CpG sites in the literature that have been 

identified for blood and other tissues have also been tested on saliva samples, in 

order to assess their ability to predict age in samples from other somatic tissues. 

Three blood-specific AR CpG sites associated with three different genes (PDE4C, 

ASPA, and ITGA2B) that were identified by Weidner et al. [145] were tested by 

Eipel et al. (2016) on 55 pyrosequencing profiles from buccal swab samples, and 

then validated on another independent data set of 55 buccal swab samples. This 

model (referred to as the “3-CpG-blood-model”) had a mean absolute deviation 

(MAD) between predicted and chronological age of 4.3 years based on the 

training data set, and 7.03 years based on the testing data set. This model was 

further enhanced by adding an additional two saliva-specific CpG markers 

(associated with the genes CD6 and SERPINB5), which, along with the three 

blood-specific CpG markers, had a MAD value of 5.12 years based on the testing 
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data set. Another two models were built by Silva et al. (2015), from two sets of AR 

CpG markers located in the GRIA2 and NPTX2 genes [155]. The first model 

(GRIA2 model), containing three CpG markers, had a MAD value of 6.9 years 

based on the training data set, and the second model (NPTX2 model) contained 

six CpG markers and had a MAD value of 9.2 years based on the training data 

set. These models were not validated on an independent set of samples (a testing 

data set). The final attempt at using AR CpG markers from other tissues was by 

Vidaki et al. (2017), who took 16 universal AR CpG markers from the pan-tissue 

model (353 CpG markers) created by Horvath et al. [106], and used them to 

predict age from saliva samples. Based on their training data set, Vidaki et al.’s 

model had a MAD value of 3.18 years, and 4 years based on an in silico testing 

data set [111].        

Since the aforementioned markers and models were identified based on 

tissues other than saliva, researchers have also tried to improve the accuracy of 

DNA methylation (DNAm) age prediction models by identifying markers that are 

specific to saliva. Bocklandt et al. (2011) were the first researchers to identify three 

saliva-specific AR CpG sites, which were mapped to promoters associated with 

three different genes, namely EDARADD, NPTX2, and TOM1L1. The DNAm 

levels at these CpG sites were obtained from samples from 22 pairs of twins, 31 

unrelated males and 29 unrelated females (aged 18–70 years), and modelled 

using multivariate linear regression, which explained 73% of the variation in the 

DNAm level. This model was able to predict age in the training data set with a 

MAD between predicted and chronological age of 5.2 years, but the model was 

not validated on an independent data set [156]. The most recent saliva-specific 

model was constructed by Hong et al. (2017), which consisted of six AR CpG 

markers (cg00481951, cg19671120, cg14361627, cg08928145, cg12757011, 

and cg07547549, mapped to the SST, CNGA3, KLF14, TSSK6, TBR1, and 

SLC12A5 genes, respectively), in addition to one non-AR CpG marker 

(cg18384097 in the PTPN7 gene) that was shown to be differentially methylated 
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in saliva samples. These markers were selected using 54 saliva samples assayed 

on the Illumina HumanMethylation450 (HM450K) BeadChip and based on a 

simple linear regression (R2) value >0.65, a false discovery rate (FDR) <0.05, and 

a difference in DNAm level (based on Beta-values) between young and old 

individuals >0.1. This model based on seven CpG sites was then validated on a 

data set of 113 independent saliva samples assayed using SNaPshot 

minisequencing, and had a MAD of 3.15 years, representing the highest age 

prediction accuracy for saliva samples reported in the literature to date [157].      

Even though these AR CpG markers have been identified and age 

prediction models built for saliva samples, there is still scope for improvement of 

the age prediction accuracy of these models. For instance, as shown in Chapter 

3, selecting Spearman’s rank correlation for identifying AR CpG sites and then 

using DNAm level measured as M values in stepwise regression for determining 

the best subset of markers produced an age prediction model with more 

significant AR CpG predictors. In addition, targeted sequencing of regions that are 

known to contain AR CpG sites could result in the discovery of adjacent CpG sites 

that could have a significantly greater association with age, which can further 

enhance the accuracy of age-prediction models [155].  

4.2 Aims 

The aim of this study was to validate the nine AR CpG sites identified in 

Chapter 3 using bisulfite sequencing on a high-resolution sequencing platform, 

the Illumina MiSeqÒ. The performance of these markers was compared with the 

seven AR CpG markers from the saliva-specific age prediction model created by 

Hong et al. (2017). The main reason for using Hong et al.’s model was because it 

is the most accurate saliva-specific model reported in the literature to date, thus 

using it as a benchmark to evaluate our model would provide an indication about 

its performance.    
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4.3 Objectives 

- Collecting saliva samples from different individuals.  

- Extracting the genomic DNA from saliva samples.  

- The DNAm level at the nine AR CpG sites along with the CpG sites 

surrounding their genomic regions were measured by bisulfite 

sequencing using Illumina MiSeqÒ. 

- Constructing saliva-specific age prediction model based on 

sequencing results.  

- Testing the constructed age prediction model on independent saliva 

samples.  

- Constructing Hong et al.’s model using their seven saliva-specific 

AR CpG sites.  

-  Testing Hong et al.’s model on independent saliva samples and 

compare the estimation accuracy with our nine AR CpG sites. 

 

4.4 Materials and methods  

The nine AR CpG markers in the HM450K model were further validated by 

targeted bisulfite sequencing using the Illumina MiSeqÒ platform. The sample 

collection, DNA extraction, and statistical analyses were carried out at University 

of Strathclyde. However, assessment of the quality/quantity of the genomic DNA 

(gDNA), primer design, sequencing of the targeted regions of interest (ROI), and 

sequence alignments were carried out by Zymo Research Corporation.  

4.4.1 Samples  

Saliva samples were collected from 192 individuals following ethical 

approval of the study by the University of Strathclyde Department of Pure and 

Applied Chemistry Departmental Ethics Committee. Prior to sample donation and 
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after receiving an information sheet explaining the study, participants signed a 

consent statement (Appendix B). The saliva samples were obtained from 88 

males and 104 females aged 12 to 96 years (Figure 4.1). The saliva samples were 

collected in small vials and stored at 4°C. DNA was extracted and the 

concentration and quality of the gDNA was measured as described in Section 

2.6.3 and 2.6.3.   

 

Figure 4.1 Age distribution for the donors of 196 saliva 
samples, including the age range, median age and 
proportion of females. 

4.4.2 Targeted bisulfite sequencing  

Primers targeting the nine AR CpG sites (Table 4.1), identified in Chapter 

3 were designed as described in Section 2.6.4. Following primer validation, gDNA 

from the saliva samples was bisulfite converted and the specified ROI were 

amplified using the primers followed by massively parallel sequencing using the 
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Illumina MiSeqÒ system, as described in Section 2.6.5. Finally, the sequence 

reads were identified and processed as described in Section 2.6.6.   

 

 

 

Table 4.1 The nine CpG markers in the saliva-specific 
HM450K model. 

Probe ID Chromosomal range Gene 

cg16867657 chr6:11044877 ELOVL2 

cg10501210 chr1:207997020 Unknown 

cg10804656 chr10:22623460 Unknown 

cg04875128 chr15:31775895 OTUD7A 

cg06279276 chr16:67184164 B3GNT9 

cg00573770 chr2:145278485 ZEB2 

cg07365960 chr17:72848535 GRIN2C 

cg23606718 chr2:131513927 FAM123C 

cg25124276 chr10:25464008 GPR158 

4.4.3 Construction of an age-prediction model from bisulfite 
sequencing profiles 

The sequenced regions of the nine candidate AR CpG sites in 192 saliva 

samples, generated using the Illumina MiSeqÒ platform, were used to retrain and 

validate the age prediction model. The samples were randomly divided using the 

sample function in R software as described in Section 2.5.3 into a training data 

set (60% of the samples) to construct the model and a testing data set (40% of 

the samples) to validate the prediction accuracy of the model. DNAm levels at the 

candidate AR CpG markers were regressed on the chronological ages of the 
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donors of the samples in the training data set using one of the options described 

in the conclusion of Chapter 3 and illustrated in Figure 3.21. The performance of 

this model was validated using samples in the independent testing data set. 

Construction and validation of the model were performed using R software, as 

described in Section 2.5.4.    

4.4.4 Construction of Hong et al.’s model from bisulfite sequencing 
profiles  

To further assess the performance of the saliva-specific HM450K model, 

the seven CpG sites (Table 4.2) from the model constructed by Hong et al. (2017) 

were also sequenced in order to compare them with the candidate markers 

selected in this study. Primer design and sequencing of the seven AR CpG 

markers were carried out as described in Section 2.6.4 and 2.6.5. The model 

constructed using the seven CpG markers was trained and tested on the same 

training and testing data sets that were used to construct and validate the saliva-

specific HM450K model.  

Table 4.2 The seven AR CpG markers identified by Hong et al. (2017) and included in 
their saliva-specific age-prediction model. Genomic locations are for the human genome 
assembly GRCh37, also known as hg19. 
Illumina’s Probe 

ID 
Chromosomal range 

Amplicon 
size (bp) 

Number of 
CpG sites  

cg18384097 chr1:202129366-202129766 95 bp 6 
cg00481951 chr3:187387450-187387850 51 bp 4 

cg19671120 chr2:98962774-98963174 85 bp 13 

cg14361627 chr7:130418916-130419316 71 bp 6 

cg08928145 chr19:19625164-19625564 82 bp 12 

cg12757011 chr2:162280911-162281311 68 bp 4 

cg07547549 chr20:44658025-44658425 82 bp 11 

 



 

 127 

4.5 Results  
4.5.1 Samples and primer QC (pre-sequencing)  

The gDNA in each of the 192 samples was quantified and assessed for 

quality. The quality of the gDNA is indicated by DNA integrity number (DIN). 

Samples with ³10ng/µL and DIN ³3 were selected for the downstream analyses. 

Because bisulfite conversion treatment has a destructive effect on the gDNA, 

having samples with lower than these values will impact the overall amount of 

intact DNA template that is available for subsequent PCR amplification. The 

number of samples that passed these criteria was 168 of 192 samples. However, 

the samples with low quantity and/or degraded DNA were also included for 

sequencing, in order to test how this would affect the accuracy of age estimation, 

given that samples of this nature are frequently encountered in a forensic context. 

Thus, primers were designed so that they targeted smaller sized amplicons, in 

order to avoid dropout in the samples that contained degraded DNA. Primer pairs 

for each of the nine CpG sites successfully passed the validation step. The 

targeted region for each candidate CpG site contained at least four additional CpG 

sites (Table 4.3).  

Table 4.3 Primer validation results for the nine saliva-specific candidate AR CpG sites. 

Probe’s ID Chromosomal range 
Amplicon size 

(bp) 
Number of CpG 

sites 
cg00573770 chr2:145278285-145278685 87 bp 4 

cg04875128 chr15:31775595-31776195 195 bp 42 

cg06279276 chr16:67183864-67184464 65 bp 11 

cg07365960 chr17:72848235-72848835 136 bp 24 

cg10501210 chr1:207996820-207997220 66 bp 9 

cg10804656 chr10:22623260-22623660 105 bp 19 

cg16867657 chr6:11044677-11045177 33 bp 9 

cg23606718 chr2:131513627-131514227 153 bp 30 

cg25124276 chr10:25463808-25464208 50 bp 9 



 

 128 

4.5.2 Sequencing results  

To study the effect of DNA quantity and quality on the sequencing results, 

the number of reads produced for each sample were plotted against the DNA 

concentration (ng/µL) and DIN value. Figure 4.2A and B show the number of reads 

with increasing DNA concentration and increasing DIN value in each sample, 

respectively. In addition, as Figure 4.2C illustrates, low intra-marker variation in 

read number was seen between samples within each maker, and high inter-

marker variation among markers. Two of the identified AR CpG markers, namely 

cg04875128 and cg23606718, failed to produce results in 37% and 89% of the 

samples, respectively. Therefore, these markers were removed before carrying 

out downstream statistical analyses.   
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Figure 4.2 Number of Illumina MiSeq® sequencing reads versus (A) DNA integrity and 
(B) DNA concentration (ng/µL) in 192 saliva samples. The red lines in both graphs are 
lines of best fit, which show that there is no change in the number of reads with either 
DIN value or DNA concentration. (C) Box plot showing the number of reads covering 
the amplified regions for each of the nine targeted CpG sites. 

4.5.3 Statistical analyses  

To ensure reliable identification of AR CpG sites, only samples that had 

DNA concentrations of ³10ng/µL (168 samples) were included in these 

C 

B A (A) (B) 

(C) 
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downstream analyses. In addition, to avoid biased selection of the makers, the 

samples were randomly split into a training data set of 100 (60% of the samples) 

and a testing data set of 68 (40% of the samples), with equal representation of 

age groups between the two data sets.  

The relationship between DNAm at the remaining seven CpG sites and 

chronological age was compared between the HM450K and MiSeqÒ platforms 

(Table 4.4), to assess whether there was any discrepancy in terms of the positive 

or negative relationship (hyper- or hypomethylation); no discrepancies were 

identified. Lower correlation coefficients (rho) were seen for the sequencing data 

compared to the data from the HM450K BeadChip. These observed differences 

are partly due to the different sample sizes and age ranges between the two 

training data sets used in the initial study and this validation study. However, three 

markers (cg06279276, cg07365960, and cg25124276) did show a significant 

reduction in correlation coefficient between the BeadChip and sequencing data, 

from rho values of ~0.8 to 0.3, 0.5, and 0.5, respectively. Thus, they were removed 

from further downstream analyses.  

 
Table 4.4 Spearman’s rank correlation test between DNAm level and chronological age at the 
seven candidate AR CpG sites, based on 54 saliva samples assayed on the HM450K 
BeadChip, and based on the training data set of 100 saliva samples sequenced on the MiSeq® 
platform. 

Illumina’s 
Probe ID 

CpG site 
position 

HM540K Spearman’s 
coefficient (rho) 

MiSeq® Spearman’s 
coefficient (rho) 

cg00573770 chr2:145278484 -0.80 -0.72 
cg06279276 chr16:67184164 0.76 0.34 
cg07365960 chr17:72848534 0.80 0.50 
cg10501210 chr1:207997020 -0.86 -0.70 
cg10804656 chr10:22623460 0.80 0.76 
cg16867657 chr6:11044877 0.90 0.76 
cg25124276 chr10:25464008 0.77 0.51 

As well as the seven-remaining target CpG sites, an additional 157 CpG 

sites found within these target regions were also included in the sequencing 
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results. All these additional CpG sites were tested for age association, in order to 

determine whether any markers had a stronger association with age than the 

original nine target sites.  

Of the additional 157 CpG sites, 28 CpG sites were found to be strongly 

associated with chronological age. These newly-identified AR CpG sites were 

located in four amplicons: cg00573770 (ZEB2), cg10501210 (unknown gene), 

cg10804656 (unknown gene), and cg16867657 (ELOVL2). To distinguish 

between the newly-identified CpG sites, they were numbered from CpG1 to 

CpG28 (Table 4.5). At this stage, the total number of AR CpG sites resulting from 

the sequencing of seven genomic regions was 32.   
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Table 4.5 Spearman’s rank correlation test between DNAm level and chronological age at the 
28 adjacent CpG sites based on 100 saliva samples (training data set) sequenced on the 
MiSeq® platform. The CpG sites were designated by number (CpG site name) for the purposes 
of identification only. 

Sequence 
amplicon 

(gene) 
CpG site 

name 
Chromosomal 

position 
Spearman’s 

coefficient (rho) P-value 

cg00573770 
(ZEB2) 

CpG1 chr2:145278476 -0.68 5.1E-15 
CpG2 chr2:145278508 -0.72 < 2.2E-16 
CpG3 chr2:145278563 -0.59 8.4E-11 

cg10501210 

(unknown) 

CpG4 chr1:207997016 -0.72 < 2.2E-16 
CpG5 chr1:207997025 -0.74 < 2.2E-16 
CpG6 chr1:207997046 -0.75 < 2.2E-16 
CpG7 chr1:207997049 -0.69 2.6E-15 
CpG8 chr1:207997059 -0.78 < 2.2E-16 

cg10804656 

(unknown) 

CpG9 chr10:22623379 0.69 1.7E-15 
CpG10 chr10:22623380 0.68 6.4E-15 
CpG11 chr10:22623391 0.74 < 2.2E-16 
CpG12 chr10:22623393 0.71 < 2.2E-16 
CpG13 chr10:22623401 0.71 < 2.2E-16 
CpG14 chr10:22623416 0.76 < 2.2E-16 
CpG15 chr10:22623429 0.73 < 2.2E-16 
CpG16 chr10:22623434 0.71 < 2.2E-16 
CpG17 chr10:22623436 0.74 < 2.2E-16 
CpG18 chr10:22623439 0.69 3.0E-15 
CpG19 chr10:22623445 0.76 < 2.2E-16 
CpG20 chr10:22623453 0.75 < 2.2E-16 
CpG21 chr10:22623479 0.75 < 2.2E-16 
CpG22 chr10:22623481 0.73 < 2.2E-16 

cg16867657 

(ELOVL2) 

CpG23 chr6:11044860 0.71 < 2.2E-16 
CpG24 chr6:11044863 0.71 < 2.2E-16 
CpG25 chr6:11044866 0.76 < 2.2E-16 
CpG26 chr6:11044872 0.74 < 2.2E-16 
CpG27 chr6:11044874 0.78 < 2.2E-16 
CpG28 chr6:11044879 0.74 < 2.2E-16 

4.5.4 Construction and validation of a saliva-specific age-prediction 
model  

Due to the fact that several of the additional adjacent CpG sites showed a 

strong association with age, they were also exploited for the purposes of building 

a saliva-specific age-prediction model. Stepwise regression analysis was 
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implemented in order to re-build the model, selecting the best subset of the 32 AR 

CpG markers (four obtained from the HM450K data, and 28 adjacent CpG sites 

obtained from MiSeq® data). As one of the recommended options in Chapter 3, 

Beta values were used with a non-linear modelling system (quadratic regression) 

in order to capture the monotonic relationship between DNAm level at the AR 

CpG sites and the chronological age of the sample donors. This was done by 

including additional squared terms of the Beta values in the model, alongside the 

standard Beta value terms included in the stepwise regression analysis. The 

algorithm selected a model composed of ten different AR CpG markers 

(cg00573770, CpG5, CpG7, CpG16, CpG17, CpG18, CpG19, CpG21, CpG24, 

and CpG27), and one additional CpG marker (cg00573770), which appears twice 

in the model using both its standard Beta value and its squared Beta value (Figure 

4.3). This quadratic model (Table 4.6) explained 92% of the total variation in 

DNAm levels in the 100 saliva samples in the training data set (R2 = 0.92), and 

showed a high correlation between predicted and chronological ages (Pearson’s 

coefficient (r) = 0.96), with a MAD value of 3.4 years (Figure 4.4A).   
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Figure 4.3 Scatter plots showing the change in DNAm level with age at ten saliva-specific AR 
CpG markers selected by stepwise regression. DNAm level was determined by targeted bisulfite 
sequencing using the Illumina MiSeq® platform. 
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Table 4.6 Quadratic regression model composed of ten AR CpG markers trained 
on methylation data obtained from Illumina MiSeq® sequencing of 100 saliva 
samples. The ^2 in the term column represents the squared Beta value of the 
marker. 

Term Coefficients P-value R-squared P-value 

Intercept 48.41 4.9E-14 0.92 1.76E-43 

CG00573770 -72.11 2.8E-3   

CpG16 -44.88 5.0E-3   

CpG17 75.57 3.2E-5   

CpG18 -49.83 2.4E-4   

CG00573770^2 81.26 2.8E-2   

CpG5^2 -12.38 1.6E-3   

CpG7^2 -17.26 1.6E-2   

CpG19^2 47.86 8.2E-4   

CpG21^2 183.09 8.7E-10   

CpG24^2 59.52 1.3E-4   

CpG27^2 25.74 3.3E-2   

Subsequently, the performance of this model was validated on an 

independent data set of DNAm levels derived from targeted bisulfite sequencing 

of 68 additional saliva samples. The overall MAD between predicted and 

chronological age based on bootstrap analysis was 5.26 years (Pearson’s 

correlation (r) = 0.88) with 95% confidence intervals of 5.24-5.27 years (Figure 

4.4B). Interestingly, the prediction accuracy for individuals aged <30 was 3.36 

years, whereas for individuals aged >40 years old it was 5.55 years. The higher 

deviation from chronological age in individuals of more advanced age has been 

observed in other DNAm-based age prediction models in different tissues 

[106,155,157].  

To avoid sex bias in age estimation, male and female samples in the testing 

data set were separated and their MAD values assessed separately. Although a 
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t-test showed a non-significant (P-value = 0.6) difference in the prediction 

accuracy between the two sexes, the difference between DNAm age and 

chronological age was slightly higher in males (MAD = 5.6 years) compared to 

females (MAD = 5 years). This result is in line with Hannum et al. (2013), who 

reported that the methylome of men appears to change with age faster than that 

of women [136]. Finally, in order to test how low quantity/quality DNA samples 

affect age estimation, the model was used to predict age for 27 independent saliva 

samples with DNA <10ng/µl and DIN value <3, resulting in a MAD value of 11.5 

years. Therefore, this suggests that carrying out age estimation on DNA samples 

with concentration <10ng/µL and DIN value <3 may give inaccurate results.    
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Figure 4.4 The performance of the quadratic regression model consisting of ten AR CpG 
markers using (A) the training data set of 100 samples and (B) the testing data set of 68 
samples. The left panel shows a histogram illustrating the age range in the relevant data 
set, and the right panel shows a scatter plot illustrating the prediction accuracy of the model. 

(A) 

(B) 
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4.5.5 Construction and validation of Hong et al.’s model  

Primer pairs for the seven CpG sites (six age-associated markers and one 

saliva-specific marker) included in the Hong et al. (2017) model successfully 

passed the validation and were sequenced on the Illumina MiSeq® platform in 

saliva samples from 192 individuals. The chronological ages of the donors of the 

100 samples in the training data set were linearly regressed on DNAm level at 

each of these seven CpG markers. Table 4.7 compares the results of linear 

regression analysis based on SNaPshot minisequencing results obtained from 

the Hong et al. (2017) study and the MiSeqÒ platform results from this present 

study. The DNAm pattern with chronological age in the six AR CpG sites can be 

seen in Figure 4.5. The model was trained on the same training data set (100 

samples) and tested on the same testing data set (68 samples) used in the 

previous section. This model (Table 4.8) explained 68% of the total variation in 

DNAm level in the 100 samples in the training data set (R2=0.68), with a relatively 

high correlation between predicted and chronological ages (Pearson’s coefficient 

(r) = 0.82), and a MAD value of 7.7 years (Figure 4.6A). In the testing data set the 

model gave a MAD value of 7.5 years, with a Pearson’s correlation coefficient of 

r = 0.74 between the predicted and chronological ages (Figure 4.6B).   

Table 4.7 The strength of linear association between DNAm level at six AR CpG markers and 
chronological age based on two different platforms, SNaPshot minisequencing and Illumina 
MiSeq®. 
Illumina Probe 

ID CpG site position SNaPshot assay R2 
(n=54) MiSeq® R2 (n=100) 

cg00481951 chr3:187387650 0.48 0.30 
cg19671120 chr2:98962974 0.29 0.45 
cg14361627 chr7:130419116 0.63 0.27 
cg08928145 chr19:19625364 0.43 0.42 
cg12757011 chr2:162281111 0.17 0.02 
cg07547549 chr20:44658225 0.55 0.12 
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Figure 4.5 Scatter plots showing the change in DNAm level with age at the six saliva-
specific AR CpG markers identified in the Hong et al. (2017) study. DNAm level was 
determined by targeted bisulfite sequencing using the Illumina MiSeq® platform. 
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Table 4.8 Regression model from the Hong et al. (2017) study composed of 
seven CpG markers trained on methylation data obtained from Illumina MiSeq® 
sequencing of 100 saliva samples. 

Term Coefficients P-value R-squared P-value 

Intercept -11.21 0.16 0.68 3.0E-20 

cg18384097 -5.90 0.38   

cg00481951 17.31 0.20   

cg19671120 121.65 0.00   

cg14361627 261.56 0.00   

cg08928145 51.55 0.00   

cg12757011 -10.38 0.44   

cg07547549 8.79 0.70   

 

  
Figure 4.6 The performance of the Hong et al. (2017) model consisting of seven CpG 
markers. The scatter plots show the prediction accuracy of the model based on (A) the 
training data set of 100 samples and (B) the testing data set of 68 samples. 
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4.6 Discussion  

In the last decade, researchers have identified AR DNAm markers for 

estimating the chronological age of individuals with high accuracy from samples 

of various tissue types, and these markers have outperformed all other known AR 

biomarkers, such as telomere shortening and mitochondrial deletions [187,188]. 

The aim of this study was to further enhance the age prediction accuracy of DNAm 

markers in saliva samples, by identifying greater numbers of AR CpG sites using 

the most appropriate statistical methods and modelling systems, which can 

capture the real relationship between DNAm level at AR CpG sites and the 

chronological age of sample donors.     

Due to the fact that not all probes found on the Illumina HM27K and 

HM450K BeadChips are designed to target CpG sites with single-nucleotide 

resolution, thus, validating the HM27K and HM450K probe requires a methylation 

capture step in order to determine the exact genomic position of the CpG site 

under study. For this reason, the genomic regions surrounding the nine AR CpG 

sites identified in Chapter 3 were sequenced using bisulfite sequencing on a high-

resolution sequencing platform, the Illumina MiSeqÒ. As expected, there were 

adjacent CpG sites that showed an association with age than the targeted CpG 

site under study. Thus, the model was re-built based on these adjacent AR CpG 

sites that showed a stronger association with age.   

The final model that was built based on the Illumina MiSeqÒ data consisted 

of ten different AR CpG sites, including one CpG site (cg00573770) that was used 

twice (terms for both its Beta value and the square of its Beta value were included 

in the model). These markers are found within four clusters of CpG sites that are 

located on four different chromosomes: 1, 2, 6, and 10. Two of these clusters are 

linked to the genes ZEB2 and ELOVL2 (chromosomes 2 and 6, respectively), and 

the other two are not linked to any known genes (chromosome 1 and 10).The 
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presence of CpG sites from the ELOVL2 gene in the final model is not surprising, 

as it is one of the most frequently included genes in age-prediction models for 

various types of tissues [148,189]. ZEB2 (Zinc Finger E-Box Binding Homeobox 

2) is a protein coding gene, which functions as a DNA-binding transcriptional 

repressor and is linked to Mowat-Wilson Syndrome and esophageal cancer [190]. 

Although they are not linked to any known genes, genomic locations 1q32.2 and 

10p12.2 seem to be important in human aging, as they contain highly significant 

AR CpG sites. The former, containing the site cg10501210, was studied by Zbieć-

Piekarska et al. [179] who used pyrosequencing in blood samples and found that 

all three of the identified CpG sites in that region were significantly associated with 

age. Finally, most of the markers (five CpG markers) in our model came from 

genomic location 10p12.2, which contains cg10804656, a site that has never been 

sequenced before but was mentioned by Florath et al. [146], who found it was 

associated with age in blood samples, based on HM450K data. The results of our 

sequencing results suggest that this region is going to be a promising location to 

focus on, as it contains a number of human age predictors.   

The quadratic model described here explained 92% of the total variation in 

DNAm levels in a data set of 100 saliva samples, with age prediction accuracy of 

3.4 years (MAD). This model was then validated on an independent data set of 

68 saliva samples, resulting in a MAD of 5.3 years. Developing an age estimation 

assay on the MiSeqÒ platform is important, as in the near future it is likely to be 

the main DNA profiling technology in use in the majority of forensic laboratories. 

Although the sequencing coverage was above the recommended number of 

reads (1000) in all loci, even those samples with low quantity and/or quality, age 

estimation appears to be most reliable in saliva samples with DNA input >10ng/µL 

and DIN values >3. This finding does not contradict other studies who found that 

the minimum requirement for age estimation is 2.5ng of DNA, as this refers to the 

amount of bisulfite converted DNA, and not the DNA input before the bisulfite 

treatment [148,157]. Thus, the low prediction accuracy in low quantity/quality 
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samples may due to the bisulfite conversion step, which requires at least 500ng-

1µg of gDNA in a maximum volume of 40µL to fully convert the unmethylated 

cytosine residues into uracil [155]. Therefore, an important step for the 

advancement of age estimation in forensic cases would be the development of a 

bisulfite treatment that is sensitive enough to deal with the small quantities of DNA 

obtained from forensic samples.  

In order to evaluate the performance of our model, the model constructed 

by Hong et al. (2017) was used as a benchmark, as it had the highest R2 (0.969), 

and the lowest MAD value (3.15 years based on testing data assayed using 

SNaPshot minisequencing) among all published saliva-specific age-prediction 

studies [157]. In this study, the seven CpG markers identified by Hong et al. (2017) 

were sequenced on the Illumina MiSeqÒ, and their model was reconstructed 

based on data from 100 saliva samples and validated on an independent data set 

of 68 saliva samples. Their model explained 68% of the total variation in DNAm 

levels, with four CpG markers (cg18384097, cg00481951, cg12757011, and 

cg07547549) being insignificant predictors of age (P-value >0.05) in the model. 

The prediction accuracy based on the 68 saliva samples was 7.5 years (MAD), 

which was 4.34 years higher than the value they reported based on the SNaPshot 

sequencing they conducted. One possible explanation for this result is that their 

CpG markers could have been over-fitted to the samples and the population being 

used for training and testing their model. Thus, when it was validated here using 

a sample that was not from this sample population, and which had a different 

sample size and age range, the deviation became more apparent. Finally, based 

on our data set of 168 saliva samples sequenced on the MiSeqÒ system, our 

model outperformed the model constructed by Hong et al. (2017), in terms of the 

amount of variation in DNAm levels explained by the model (92%), and the age 

prediction accuracy as measured by MAD (5.3 years).   
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4.7 Conclusion  

The aim of this study was to identify saliva-specific AR CpG markers by 

implementing the most appropriate statistical methods and modelling systems, in 

order to further enhance the accuracy of age-prediction models in saliva samples. 

Initially, nine candidate markers were identified in silico using 54 DNAm profiles 

from saliva samples assayed on the Illumina HM450K BeadChip (Chapter 3), and 

then were validated by targeted bisulfite sequencing of another 192 saliva 

samples on the Illumina MiSeqÒ platform. All CpG sites on the sequenced 

amplicons were tested for age association, including sites adjacent to the target 

CpG sites, which resulted in the identification of additional AR markers with 

stronger associations with age. The best subset of these markers was selected 

by stepwise regression and then modelled using a quadratic (non-linear) 

modelling system. The model consisted of ten different AR CpG markers 

(cg00573770 in ZEB2, CpG16-CpG19, and CpG21 in genomic location 10p12.2, 

CpG5 and CpG7 in genomic location 1q32.2, and CpG24 and CpG27 in ELOVL2) 

with age prediction accuracy, based on an independent testing data set of 68 

samples, of 5.3 years (MAD). This model could therefore be useful for providing 

intelligence to forensic investigations about the age of unidentified donors of 

saliva samples left at crime scenes. The model was compared with the model 

constructed by Hong et al. (2017), which was reconstructed using the same 

samples sequenced on the Illumina MiSeqÒ (a training data set of 100 samples 

and a testing data set of 68 samples), and the results showed a lower prediction 

accuracy (MAD 7.5 years) compared to that reported based on SNaPshot 

minisequencing (MAD 3.15 years). Summary of the findings in this chapter is 

illustrated in Figure  4.7. Since next generation sequencing platforms, particularly 

the MiSeqÒ platform, are likely to dominate forensic laboratories in the future, the 

quadratic model reported here could relatively easily be integrated into forensic 

laboratories in order to estimate age from saliva samples containing at least 10ng 
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of genomic DNA. On the other hand, the model can be also used on other analysis 

platforms such EpiTYPER, and/or SNaPshot, however, this requires retraining the 

model and then retesting it on the DNAm readings from the new assay system.    

 
Figure  4.7 Schematic diagram showing the comparison between the HM450K model 

constructed using the bisulfite sequencing results using Hong et al’s model. 
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Chapter 5: Identifying blood-specific age-
related DNA methylation markers on the 

Illumina MethylationEPICÒ BeadChip  

 

5.1 Introduction  

As discussed in Section 1.2.6, technologies to analyse DNA methylation 

(DNAm) in a gene-specific and genome-wide manner have developed 

significantly in recent years. For instance, gene-specific assays such as EpiTect, 

SNaPshot, EpiTYPER and targeted bisulfite sequencing have become prevalent 

in DNAm-related studies for their sensitive and reliable quantification of the DNAm 

level [150,157,191,192]. However, genome-wide assays that provide the 

opportunity to quantify methylation level at a single base level, such as the 

Illumina Infinium HumanMethylation BeadChip technology, have become the 

main choice for many research groups carrying out epigenome-wide association 

studies (EWAS). As described in Section 1.2.6.6, the introduction of two Illumina 

HumanMethylation BeadChips, namely the HumanMethylation27 (HM27K), and 

HumanMethylation450 (HM450K) BeadChips, was crucial for identifying a huge 

number of AR CpG sites and genes, many of which have been reported in the 

literature. In addition, the public genomic databases have become a rich source 

of epigenome-wide DNAm data, from a large body of epigenetic studies based on 

different human tissues [193].  

Recently, a new array, the Illumina MethylationEPIC® (EPIC) BeadChip 

was introduced, containing over 860,000 probes, nearly double the number on 

the HM450K. Not all the probes on the HM450K BeadChip were included in the 

new EPIC BeadChip; ~90% of the HM450K probes were included, but others were 
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removed as a result of reports of poor performance [194]. As described in Section 

1.2.6.6, the newly added probes provide a higher coverage of various genomic 

regions. The EPIC BeadChip is a promising tool to further our understanding of 

DNAm mechanisms in human development, disease, and also it could aid 

forensic science in offering more reliable age estimation.    

5.2 Aims 

This overall aim of this research was to take a comprehensive evaluation 

of blood-specific AR CpG sites found on the new EPIC BeadChip, and also to 

identify the genes associated with those AR CpG sites. This will provide new 

insights for epigenetic forensic researchers, by searching for new AR CpG sites 

on the EPIC BeadChip with better age prediction accuracy, which might enhance 

the performance of DNAm based age-prediction models, aiding forensic 

investigations in criminal cases where biological samples of unknown origin have 

been recovered.  

5.3 Objectives  

- DNAm profiles assay on the EPIC BeadChip were downloaded from 

an online genomic repository.  

- Testing each probe on the EPIC BeadChip for age association using 

Spearman’s rank correlation test.  

- Developing blood-specific age prediction model from the highly AR 

CpG sites with a minimum number of CpG markers, which could 

have potential applications in forensic science.  

- Using elastic net regression to build an age prediction model with 

the maximum number of markers that can be used for clinical 

purposes.   
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5.4 Materials and methods 

All the R codes used in this Chapter can be seen in Appendix C2.  

5.4.1 EPIC data sets  

A total of 756 DNAm profiles, assayed on the EPIC BeadChip in individuals 

aged 0-88 years old, were assembled by combining three separate data sets 

retrieved from the National Centre for Biotechnology Information (NCBI) Gene 

Expression Omnibus (GEO) database using the procedures described in Section 

2.3. The accession number of each data set and a brief description of the samples 

can be found in Table  5.1. To ensure identification of AR CpG sites was not 

biased towards a specific range of chronological ages, whole cord blood samples 

were included in this study, which represent time zero in human age terms (Figure 

5.1).  

 

Table  5.1 Description of the three data sets used in this study. 

Accession 
number 

DNA origin n (Prop. female) 
Median 

Age(range) 
Citation 

GSE103189 Whole cord blood 8 (0.38) 0 (0) Dou et al. [195] 

GSE123914 Whole blood 69 (1) 59 (51-65) Zaimi et al. [196] 

GSE116339 Whole blood 679 (0.59) 53 (23-88) 
Curtis et al. 

[197] 

 



 

 149 

 

Figure 5.1 Distribution and descriptive statistics relating to the 
chronological ages of individuals who provided the samples 
used in this study. 

The first data set (GSE103189) was obtained from a study conducted by 

Dou et al. [195], which aimed to evaluate the cell composition and DNAm 

differences between cord blood buffy coat and whole cord blood samples. The 

study revealed no significant differences between these samples, and thus they 

can be analytically combined and compared. The next data set (GSE123914) was 

obtained from a longitudinal study by Zaimi et al. [196], which aimed to examine 

the variation in DNAm level over a 1-year period in whole blood samples collected 

from 35 healthy women [196]. It was shown in this study that the median 

correlation coefficient between age and DNAm level at all CpG sites was 0.19, 

which suggests a wide variation in DNAm stability over a 1-year period. The last 

data set (GSE116339) contained 679 whole blood samples, retrieved from a study 

conducted by Curtis et al. [197], which aimed to investigate whether exposure to 

polybrominated biphenyl (PBB) was associated with DNAm changes in peripheral 

blood samples. In this study, a total of 1,890 CpG sites were identified at which 

DNAm was associated with total PBB levels [197].  
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5.4.2 EPIC data processing  

The raw files of each data set were downloaded using GEOquery package, 

as described in Section 2.3. The downloaded files consisted of raw signal 

intensities from the red and green channels, which are the output from EPIC 

platform. The files were imported into R and converted into methylated and 

unmethylated signals by applying the read.metharray.exp function in the minfi 

package [173]. Although the number of CpG probes on the EPIC BeadChip is 

865,918, the raw file comes with an additional 186,782 probes (giving a total of 

1,052,641 probes). These additional probes were designed for quality control 

measures, such as background correction, negative controls, bisulfite conversion 

controls, and hybridisation controls [198].  

As was the case on the HM450K BeadChip, probes on the EPIC BeadChip 

also have two chemistry designs, Infinium I and II, which possess different DNAm 

value distributions, introducing unwanted variation into the methylation values 

[98]. Thus, the two probe designs need to be normalised to render them 

comparable to each other, which was done using subset quantile normalisation, 

implemented in the preprocessQuantile function that is specially created for EPIC 

probes and implemented in the minfi package [85]. The same function was also 

used to filter out probes that did not meet the quality control measures described 

in Section 2.4.1. In addition, the function filtered out samples with significantly 

lower values in one of the two signal intensities (red/green channels) compared 

to the other, which is a quality control measure used to identify sample outliers. 

Figure 5.2 illustrates the two quality measures that were used to assess the 

DNAm levels in each data set, as described in Section 2.4.1. Finally, probes 

associated with known SNPs were removed from downstream analysis using the 

dropLociWithSnps function in the minfi package, as described in Section 2.4.3.   
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Figure 5.2 Outcomes of two quality checks for each data set used in this study; (A) GSE103189, 
(B) GSE123914, and (C) GSE116339. The quality measures used were (left panel) based on 
the log median intensity in the methylated and unmethylated channels for each sample, where 
good samples will be on the top half (above the dashed line). The second measure (on the right 
panel) is based on the distribution of Beta values in each sample, where normal samples show 
a bimodal distribution. From the density plot in (C), there were two samples with abnormal Beta 
value distributions, and these were removed from the analysis. 

A 

B 

C 
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5.4.3 Testing for potential confounders   

Given that variation in DNAm has been found to be associated with various 

factors such as cell type, sex, alcohol intake, smoking, obesity, and certain drugs, 

it is important to account for these factors as they may cause a confounding effect 

in EWAS [167]. The Singular Value Decomposition (SVD) method was used, as 

described in Section 2.4.4, to discover any hidden relationship between the 

samples, based on batch and sex as they were supplied by the authors. After 

implementing SVD on the combined data set, segregation was found between the 

samples, which was based on sex (Figure 5.3A). For this reason, CpG probes 

targeting sex chromosomes were filtered out from the downstream statistical 

analysis (Figure 5.3B). Batch effects were removed using the Combat function in 

R and then visualised using SVD to ensure there was no hidden structure in the 

data set. Figure 5.4A and B illustrate the batch effect before and after batch 

correction, respectively.   
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Figure 5.3 SVD analysis showing the data before (A) and after (B) 
removing probes targeting CpG sites on the sex chromosomes. Sex 
information was obtained from the original authors, and it can be 
seen in (A) that there were three samples wrongly labelled by the 
original authors. 

 

 

 

(A) 
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Figure 5.4 SVD analysis showing the data before (A) and after (B) 
removing batch effect as described in section 2.4.4. 

Another potential confounder in this study was the PBB level, which was 

measured in the blood samples in the third data set (GSE116339). Since it has 

been shown that the level of PBB in blood has a significant effect on DNAm at 

1,890 CpG sites, this could also have a confounding effect if it is found to be 

associated with chronological age. Thus, regression analysis was conducted 

between PBB level and chronological ages for the third data set, to reveal any 

linear association between them. Although the P-value of the test was significant 

(P-value = 1.4x10-9), the R2 was extremely low (0.05), which indicates that age 

only explains 5% of the variation in the level of PBB in blood. Finally, batch effects 

(B) 

(A) 
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were removed in the data set using a nonparametric empirical Bayes framework 

method implemented in the Combat function within the SVR package [168,199].    

5.4.4 Estimating and adjusting for cell type composition  

The blood cell composition was estimated using the estimateCellCounts 

function in the minfi package, and the identified AR CpG sites were tested for any 

association with cell type proportion as described in Section 2.4.5.  

5.4.5 Evaluating the AR CpG sites on EPIC BeadChip 

The aim of this section was to identify and evaluate AR CpG sites from the 

newly added probes on the EPIC BeadChip. The DNAm Beta values in the data 

set were converted to M values. Spearman’s correlation coefficients between the 

DNAm level at each CpG probe and the chronological ages of the samples were 

calculated using R software as described in Section 2.5.1.2. The selection criteria 

for AR CpG probe candidates were based on two criteria: absolute (abs) 

Spearman’s rho ³0.6, and false discovery rate (FDR) at £0.05. The adjusted P-

value was as calculated as described in Section 2.5.1.4. The genomic details of 

the resulting AR CpG probes were obtained using the “Infinium MethylationEPIC 

v1.0 B4 Manifest File,” released by Illumina, which is based on the hg19/GRCh37 

human genome assembly.   

5.4.6 Building age prediction models  

The EPIC BeadChip data were then used to build an age prediction model, 

to determine whether the EPIC BeadChip CpG probes have better age estimation 

capabilities compared to those found on the older Illumina HumanMethylation 

platforms such as HM27K and HM450K. The intended downstream application of 

the age prediction model determines the type of method that should be used to 

build it. For example, if the model will be used for health applications, the number 
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of markers in the model would not need to be limited, since the DNA in the sample 

would usually be in relatively large quantities. However, for forensic applications, 

the number of markers in the model should be kept to a minimum, as the quantity 

of DNA in the majority of forensic samples is low and surveying large numbers of 

makers requires reasonably large amounts of DNA, due to the destructive 

procedures involved in DNAm analysis. Therefore, two methods were used to 

build prediction models, elastic net regression, which creates an unlimited size 

model and multivariate linear regression for the smallest possible model.    

5.4.7 Elastic net regression  

As described in Section 2.5.3, the data set was randomly split into a training 

set and a testing set, whilst maintaining equal relative representation of the 

various age groups within the sets. The number of samples in the training set was 

527, which is 70% of the original set, and 227 samples in the testing set (30%). 

Elastic net regression was performed as described in Section 2.5.3.3, to selected subset 

of CpG markers and then validated on the 227 independent testing samples.  

5.4.8 Multivariate linear regression 

To build an age prediction model with a minimum number of CpG markers 

was done in three steps as described in Section 2.5. For variable reduction, the 

age was linearly regressed on the DNAm level at each CpG site in the training 

data set, as described in Section 2.5.1.3, and then markers with R2 ³0.6 at FDR 

£0.05 were selected. The selected markers were input into a stepwise regression 

to select the best subset for use in the age prediction model. The selected CpG 

markers were then combined in a multivariate linear regression to build the model, 

and then validated on the testing data set. The model was re-evaluated by 

bootstrap analysis, to ensure its prediction robustness as described in Section 

2.5.4. 
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5.5 Results 

5.5.1 EPIC data sets 

The purpose of the work reported in this Chapter was to identify AR CpG 

markers on the EPIC BeadChip. The analysis initially included 756 samples from 

three different data sets, however two blood samples (GSM3228582, and 

GSM3228722) from data set GSE116339 had abnormal Beta value distributions, 

as shown in the density plot in Figure 5.2C, and thus were removed from the 

downstream analysis. The number of samples remaining for analysis was 754 

samples, and the number of CpG sites after probe filtration was 816,127 probes. 

Testing for confounding variables was performed by examining how PBB level 

variation can be explained by age. The results (Table 5.2) showed that age only 

explains 5% (P-value <1.4x10-9) of the variation in PBB levels in blood. Therefore, 

the PBB level was considered not to be a confounding variable and was ignored.     

Table 5.2 Linear regression between PBB level in each sample 
in the third data set and chronological age of individual donors. 

 Term Estimate     
(n = 673) 

P-value R -
squared 

P-value 

(Intercept) -2.20 0.00 0.05 0.00 

Age 0.03 0.00   

5.5.2 Estimating and adjusting for cell type composition  

The composition of different cell types in each sample was estimated and 

then tested for association with chronological age. As can be seen in Figure 5.5, 

CD4+ T cells, and natural killer (NK) cells had the strongest correlation with age 

(Spearman’s rho = -0.35 and 0.32 respectively) compared to the other cell types 

(monocytes, CD4+, granulocytes, and B-cells), which gave rho values of £0.19. 

Therefore, if not adjusted, the change in DNAm level at AR CpG sites could be 
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explained by the change in cell composition with age, rather than by aging in 

individuals. For this reason, and to avoid identifying false positive AR markers, 

each identified AR CpG site in this study was adjusted for cell composition using 

multivariate linear regression.  
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Figure 5.5 Change in blood cell composition with age. The estimated proportions of the six blood cells 
based on DNAm pattern [172]; (A) monocytes (Mono), (B) B cells, (C) natural killer (NK) cells, (D) 
granulocytes (Gran), (E) CD8+ T cells, and (F) CD4+ T cells in the samples are plotted against age. 
Spearman’s correlation coefficients are reported for each composition proportion estimate and age. The 
red lines are weighted regression (Loess) lines fitted to the data. 

A B 

C D 

E F 
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5.5.3 AR CpG markers on the EPIC BeadChip  

AR CpG sites were selected on the basis of the Spearman’s rank 

correlation test between chronological age and DNAm level, using M values. The 

cut-off value for selecting AR markers was an absolute Spearman’s coefficient 

(rho) >0.6 at FDR <0.05, as recommended by various studies [8,94,145]. A total 

of 52 AR CpG sites passed these conditions (Figure 5.6A), 19 of which were 

positively correlated (hypermethylated) and 33 negatively correlated 

(hypomethylated) with age (Table 5.3). The results of the cell type composition 

test showed that the change of DNAm level at the 52 AR CpG sites is due to aging 

rather than cell type composition.  

The AR CpG sites with the top two highest correlation coefficients, were 

located in the ELOVL2 gene, which is the most prominent gene associated with 

age in various tissues, as found in a number of studies (Figure 5.6B) 

[148,152,189]. Many of the markers identified were also identified in other studies 

that used a similar study design but using the Illumina HM450K BeadChip. For 

example, of the nine AR markers discovered by Garagnani et al. (2012), five were 

also identified in this study. However, of the remaining four sites, one was dropped 

by SNP filtration and three had abs rho <0.5. In another study, Florath et al. (2015) 

identified 162 AR CpG sites, of which ten were absent from the EPIC BeadChip, 

two were dropped after SNP filtration, and only 53 were found with abs rho >0.5. 

In comparing the correlation coefficients of the same AR probes on the HM450K 

and EPIC platforms, it was observed that the magnitude of the coefficient values 

was smaller on the EPIC platform, and for some probes their age association is 

no longer observed. For instance, nine markers identified by Xu et al. (2015) as 

highly AR CpG sites (with abs rho of at least 0.8) on the HM450K platform, were 

found to have abs rho <0.38 on the EPIC BeadChip, which is under the threshold 

for significant association with age. Finally, the results of the cell type composition 
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test, showed that the change of DNAm level at the identified 52 AR CpG sites is 

due to aging rather than cell type composition.  

 

 

   
Figure 5.6 (A) Manhattan plot of P-values from Spearman’s correlation test between DNAm 
level at each CpG site and chronological ages in the data set. (B) Scatter plots for the top three 
AR CpG sites found on the EPIC BeadChip. 
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Table 5.3 AR CpG sites found on the Illumina EPIC BeadChip, identified by Spearman’s 
rank correlation test with cut-off value of abs rho >0.6 at FDR <0.05. Probes are sorted 
from the highest positively to the highest negatively correlated with age. 

Probe ID 
UCSC1 Ref. Gene 

name 
Probe 
type 

Chr.2 Pos.3 
Spearman's 

rho 
cg16867657 ELOVL2 HM450K chr6 11044877 0.82 

cg17268658 FHL2 EPIC chr2 106015745 0.76 

cg21572722 ELOVL2 HM450K chr6 11044894 0.76 

cg06639320 FHL2 HM450K chr2 106015739 0.74 

cg22454769 FHL2 HM450K chr2 106015767 0.69 

cg17110586 unknown HM450K chr19 36454623 0.69 

cg04875128 OTUD7A HM450K chr15 31775895 0.67 

cg24866418 LHFPL4 EPIC chr3 9594082 0.66 

cg13649056 unknown HM450K chr9 136474626 0.66 

cg07547549 SLC12A5 HM450K chr20 44658225 0.66 

cg23500537 unknown HM450K chr5 140419819 0.65 

cg06493994 SCGN HM27K chr6 25652602 0.65 

cg08097417 KLF14 HM450K chr7 130419133 0.65 

cg13206721 GPR158 EPIC chr10 25463350 0.64 

cg06784991 ZYG11A HM450K chr1 53308768 0.63 

cg12841266 LHFPL4 EPIC chr3 9594093 0.63 

cg27099280 CELF6 EPIC chr15 72612204 0.63 

cg03032497 unknown HM450K chr14 61108227 0.61 

cg25410668 RPA2 HM450K chr1 28241577 0.6 

cg03650729 TAL1 EPIC chr1 47692625 -0.6 

cg18651026 COL11A2 HM450K chr6 33140660 -0.6 

cg25371036 AMOTL1 HM450K chr11 94500749 -0.6 

cg15109150 FAM65C EPIC chr20 49308830 -0.6 

cg09240238 LOC730668 EPIC chr22 46402573 -0.6 

cg16054275 F5 HM450K chr1 169556022 -0.61 

cg16789844 PDE1C EPIC chr7 32339213 -0.61 

cg01855540 DUSP16 EPIC chr12 12716653 -0.61 

cg11649376 ACSS3 HM450K chr12 81473234 -0.61 

cg26685941 ABCC4 HM450K chr13 95952902 -0.61 

cg05412028 ABCC4 HM450K chr13 95952937 -0.61 
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cg04503319 ANKRD11 HM450K chr16 89368367 -0.61 

cg17457912 C17orf91 HM450K chr17 1617102 -0.61 

cg17015290 KIAA1755 EPIC chr20 36850842 -0.61 

cg03776853 unknown EPIC chr22 36461577 -0.61 

cg23719650 unknown EPIC chr3 193988507 -0.62 

cg00876267 unknown HM450K chr9 139588516 -0.62 

cg05308819 unknown HM450K chr1 155959156 -0.63 

cg25167618 SLC12A8 EPIC chr3 124840296 -0.63 

cg11218872 unknown EPIC chr3 193988737 -0.63 

cg08587685 ABLIM1 EPIC chr10 116392206 -0.63 

cg08745595 F5 EPIC chr1 169556012 -0.64 

cg09809672 EDARADD HM27K chr1 236557682 -0.64 

cg22796704 ARHGAP22 HM450K chr10 49673534 -0.64 

cg05179292 C1R EPIC chr12 7244621 -0.64 

cg17403084 PXN EPIC chr12 120704034 -0.64 

cg03473532 MKLN1 HM450K chr7 131008743 -0.65 

cg16008966 unknown HM450K chr1 114761794 -0.67 

cg13552692 CCDC102B EPIC chr18 66389447 -0.67 

cg18933331 unknown HM450K chr1 110186418 -0.69 

cg07323488 EGFEM1P EPIC chr3 168185313 -0.69 

cg07082267 unknown HM450K chr16 85429035 -0.69 

cg10501210 unknown HM450K chr1 207997020 -0.71 
1 Based on UCSC Genome Browser database 
2 Chromosome 
3 Position based on the human assembly GRCh37, also known as hg19. 

5.5.4 Novel AR CpG sites on EPIC BeadChip  

From the 52 AR CpG sites identified in this study, 21 were from the newly 

added probes on the EPIC BeadChip, and so these can be considered novel AR 

CpG sites since they have not been reported in the literature before (Table 5.4). 

In addition, they map to 18 genes, nine of which (LHFPL4, SLC12A8, EGFEM1P, 

GPR158, TAL1, KIAA1755, LOC730668, DUSP16, and FAM65C) have also 

never been reported in the literature as being associated with age. The majority 
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of these sites (16) were hypomethylated, and five were hypermethylated with age 

(Figure 5.7). The highest positively correlated novel AR CpG site was 

cg17268658 with rho = 0.76 (P-value 1.9x10-141), associated with the FHL2 gene, 

which has been reported in many age association studies [146,179,200]. The 

highest negatively correlated CpG site was cg07323488 with rho = -0.69 (P-value 

2.6x10-106), which is linked to a pseudogene known as EGFEM1P. Scatter plots 

of age versus DNAm level for the top four most highly correlated AR CpG sites 

can be seen in Figure 5.8.  
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Table 5.4 The 21 novel AR CpG sites from the newly added probes on the Illumina 
MethylationEPIC BeadChip, identified by Spearman’s correlation test with a cut-off value of abs 
rho >0.6 at FDR <0.05. Probes are sorted from the highest positively to the highest negatively 
correlated with age. 

Probe's ID 
UCSC1 Ref. 
Gene name 

Genomic 
Location 

Chr.2 Pos.3 Spearman's rho 

cg17268658 FHL2 TSS200 chr2 106015745 0.76 

cg24866418 LHFPL4 Body chr3 9594082 0.66 

cg13206721 GPR158 TSS1500 chr10 25463350 0.64 

cg12841266 LHFPL4 Body chr3 9594093 0.63 

cg27099280 CELF6 1stExon chr15 72612204 0.63 

cg03650729 TAL1 5'UTR chr1 47692625 -0.6 

cg15109150 FAM65C TSS1500 chr20 49308830 -0.6 

cg09240238 LOC730668 Body chr22 46402573 -0.6 

cg16789844 PDE1C TSS200 chr7 32339213 -0.61 

cg01855540 DUSP16 TSS1500 chr12 12716653 -0.61 

cg17015290 KIAA1755 Exon Body chr20 36850842 -0.61 

cg03776853 unknown unknown chr22 36461577 -0.61 

cg23719650 unknown unknown chr3 193988507 -0.62 

cg25167618 SLC12A8 Body chr3 124840296 -0.63 

cg11218872 unknown unknown chr3 193988737 -0.63 

cg08587685 ABLIM1 Body chr10 116392206 -0.63 

cg08745595 F5 TSS1500 chr1 169556012 -0.64 

cg05179292 C1R Body chr12 7244621 -0.64 

cg17403084 PXN TSS1500 chr12 120704034 -0.64 

cg13552692 CCDC102B 5'UTR chr18 66389447 -0.67 

cg07323488 EGFEM1P Body chr3 168185313 -0.69 
1 Based on UCSC Genome Browser database 
2 Chromosome 
3 Position based on the human assembly GRCh37, also known as hg19. 
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Figure 5.7 Heat map illustrating methylation level at 21 novel AR CpG markers for each sample 
in the training data set, ordered by chronological age across samples. The methylation level in 
each sample is indicated by the Z-score, where red indicates a site is hypermethylated and blue 
is hypomethylated. Hierarchical clustering of the CpG markers is presented on the left-hand 
side of the heat map. 
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 Figure 5.8 Scatter plots of M values versus chronological age for the top two positively and two 
negatively correlated AR CpG sites from the newly added probes on the EPIC BeadChip.   

5.5.5 Blood specific age prediction models  

5.5.5.1 Elastic net regression model  

In several previous studies where age has been modelled as a function of 

CpG methylation status for sites in the genome, elastic net regression has been 

used to perform both feature selection and model building [106,136]. Elastic net 

regression is ideal for constructing predictive models with large number of 

markers that have high prediction accuracy [136]. Elastic net regression was 

performed on the data set of 816,127 CpG sites and automatically selected 425 
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AR CpG sites (Table A1) across 527 blood samples. From these markers, 160 

AR CpG sites were from the newly added probes on EPIC BeadChip. The 

prediction model containing the selected markers was evaluated on the training 

data set using one round of ten-fold cross-validation. The prediction accuracy of 

the model containing the 425 CpG markers based on the training data set was 

equal to 0.68 years (MAD). Furthermore, its performance was evaluated using an 

independent validation data set containing 227 blood samples, which resulted in 

an MAD of 2.6 years, and a Pearson’s correlation coefficient (r) between the 

predicted and chronological age of 0.97 (95% CI: 0.96–0.98).  

5.5.5.2 Multivariate linear regression model  

Although the model constructed using elastic net regression had very high 

prediction accuracy, the number of markers in the model (425 CpG sites) is very 

high. An assay containing this number of sites could not be implemented in a 

forensic science context, where assays with limited numbers of markers are 

required. Thus, to build an age prediction model with the minimum number of AR 

CpG markers, three steps were carried out (variable reduction, selection, and 

building the model). The first step was regressing age on DNAm level at each 

CpG site in the training data set, and then markers with R2 >0.6 at FDR £0.05 

were selected. Ten CpG markers met this condition, and only two of them were 

from the newly added probes on the EPIC BeadChip. The second step was to 

select the best subset of these sites to build an age prediction model. The 

stepwise regression selected six markers as the best subset for age prediction, 

which contained only one newly added EPIC BeadChip probe (Table 5.5). This 

model explained 81% of the total DNAm levels in the blood samples with 

prediction accuracy of 4.5 years MAD based on the training data set, and 4.6 

years based on the testing data set. The accuracy rate based on bootstrap 

analysis was 4.5 years, with 95% confidence intervals (CI) of 4.56 to 4.57 years. 

The correlation (r) between predicted age and chronological age was 0.9 (95% 
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CI: 0.88 – 0.93) (Figure 5.9). Finally, to avoid gender bias in age prediction, male 

and female samples in the testing data were separated and their MAD values 

were assessed separately, to determine whether the difference between them 

was significant. A t-test showed that there was a non-significant (P-value = 0.3) 

difference in the prediction accuracy for males (MAD = 4.4 years) compared to 

females (MAD = 4.9 years).  

Table 5.5 Multivariate linear regression analysis between DNAm 
levels at six CpG sites and age in the training data set. The CpG 
marker in bold is the only site exclusively found on the EPIC 
BeadChip. 

Term Estimate     
(n = 673) 

P-value R-squared P-value 

(Intercept) 56.10 0.00 0.81 0.00 
cg18933331 -9.86 0.00   
cg10501210 -2.68 0.00   
cg06639320 6.58 0.00   
cg24866418 5.55 0.00   
cg16867657 7.50 0.00   
cg17110586 8.14 0.00   
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Figure 5.9 Performance of the multivariate linear regression model consisting of six AR CpG 
markers. The histograms show age range in the data and the scatter plots show the accuracy 
of the model in (A) the training set of 527 samples, and (B) the testing set of 227 samples. 
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5.6 Discussion  

In this present study, 754 whole blood DNAm profiles assayed on the 

Illumina EPIC BeadChip were examined, and 52 AR CpG sites were found, of 

which 31 were from the HM27K and HM450K platforms, and 21 were novel probes 

added to the EPIC BeadChip. Apart from these 21 novel sites, all identified AR 

sites were previously found by different studies that used blood DNAm profiles 

assayed on the HM450K BeadChip. However, their correlation coefficient values 

on the EPIC BeadChip were lower compared to their values on the HM450K array. 

Although these differences between studies are expected, and may be due to 

differences in sample size, age range, and the ethnicity of individuals, an 

unexpected outcome was that some AR CpG sites with high correlation 

coefficients on the HM450K platform were not associated with age on the EPIC 

BeadChip. Probes that completely lost their association with age in this study were 

originally identified in studies with sample sizes below the recommended, which 

is 100 samples [106]. For example, the number of samples in Xu et al. (2015) was 

16 samples, and all their identified AR CpG sites were found to be weakly abs rho 

<0.38) associated with age in our study. This suggests that AR probes identified 

in studies with a small sample size would be more likely to be sample-specific 

than tissue-specific.  

The 21 novel AR CpG sites identified in this study map to 18 genes, nine 

of which have already been found to be associated with age, namely ELOVL2, 

FHL2, CELF6, F5, ABLIM1, PXN, PDE1C, C1R, and CCDC102B. This indicates 

that in some cases, adding new probes targeting different genomic locations 

within the same gene confirms the results obtained from previous EWAS, which, 

in this study, confirmed the association of these genes with age. In contrast, eight 

of the remaining nine genes (LHFPL4, SLC12A8, GPR158, TAL1, KIAA1755, 

LOC730668, DUSP16, and FAM65C) were previously targeted by probes that 

have been shown not to be associated with age. However, by targeting different 
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genomic locations within these same genes, significant age association has been 

identified. The final gene identified in this study was from a gene newly targeted 

on the EPIC BeadChip, EGFEM1P.    

From the nine newly identified AR genes, two become hypermethylated 

with age (LHFPL4 and GPR158), and seven become hypomethylated with age 

(SLC12A8, TAL1, KIAA1755, LOC730668, DUSP16, EGFEM1P and FAM65C). 

LHFPL4 is located on chromosome three and encodes a subset of the superfamily 

of tetraspan transmembrane proteins, which is a critical regulator of postsynaptic 

GABA clustering in hippocampal pyramidal neurons [201]. Its differential 

methylation has previously been found to be a biomarker for the early detection 

of cervical cancer [202]. GPR158 is located on chromosome ten and encodes a 

G protein-coupled receptor, which is implicated in many physiological and disease 

processes [203]. The protein encoded by DUSP16 on chromosome 12 is a dual 

specificity phosphatase, implicated in various cellular processes including cell 

differentiation [204]. EGFEM1P is a pseudogene located on chromosome three 

and was shown by one study to be differentially methylated in obese asthmatics, 

and by another to be significantly hypermethylated in patients with chronic 

lymphatic leukemia [205,206]. KIAA1755 encodes for an uncharacterised protein, 

and contains a SNP variant (rs6127471) that has been associated with individuals 

who have increased heart rate [207,208]. FAM65C encodes a protein that is a 

member of extracellular complex that generally regulates cellular processes in 

response to stimuli, but its main molecular function is still obscure [209]. The 

hypomethylated CpG site linked to LOC730668, which is a Dynein Heavy Chain-

Like pseudogene located on chromosome 22, has been reported in two different 

studies to be differentially hypomethylated in individuals with temporal lobe 

epilepsy, and in individuals with psoriatic epidermis [210,211].  

Studying genes without knowing how they correlate with chronological age 

could introduce false positives. Thus, if not adjusted, age could be a potential 
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confounder in case-control studies. For example, a study conducted by Fluhr et 

al. [212] found SLC12A8 (which was significantly hypermethylated with age in this 

study) to be differentially methylated in children with juvenile myelomonocytic 

leukemia (JMML). However, this study was based on children with JMML versus 

healthy adults, and the AR markers would be expected to be differentially 

methylated between children and adults regardless of JMML-status. Another 

example is the TAL1 gene located on chromosome one, which encodes a protein 

that has been associated with Precursor T-Cell Acute Lymphoblastic Leukaemia 

and T-Cell Childhood Acute Lymphocytic Leukaemia. In a study conducted by 

Musialik et al. [213], methylation levels in the promoter of the TAL1 gene were 

found to be slightly elevated in patients aged ³ ten years with Precursor B-cell 

acute lymphoblastic leukaemia, suggesting it was a potential predictor for the 

disease. Again, since methylation level was not adjusted for age, this association 

could be confounded by age.  

Recently, the search for AR CpG sites and attempts to build DNAm-based 

age prediction models with high accuracy have been of major interest within the 

fields of forensic science, and epidemiology. For this reason, this study examined 

whether the EPIC BeadChip contains AR CpG markers with a better prediction 

accuracy than those found on the previous Illumina platforms (HM27K and 

HM450K). Two methods were used to build age prediction models, elastic net 

regression and multivariate linear regression. The optimum model selected by 

elastic net regression contained a set of 425 CpG sites, 160 (38%) of which were 

probes that were newly added to the EPIC BeadChip. This model had a high 

prediction accuracy, based on the validation data set, of 2.6 years (MAD). 

Comparing this result with a study conducted by Hannum et al. (2013) that had a 

similar experimental design but used Illumina HM450K data, their prediction 

model, also selected by elastic net regression, consisted of 71 CpG markers with 

a prediction accuracy of 4.89 years (MAD). Building a prediction model for use in 

forensic investigations requires a small number of markers due to the minute 
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quantities of DNA that are frequently recovered from forensic samples [15]. A 

second model was therefore constructed using multivariate linear regression. The 

six AR CpG sites selected by this stepwise regression, which contained only one 

CpG marker that was newly added to the EPIC BeadChip, had a MAD value of 

4.6 years based on the validation set. A review of the literature shows that the 

range of MAD values achieved by forensic researchers for models based on blood 

samples was 3.2 to 7.9 years, using two to 17 CpG markers [144,214,215]. 

Therefore, the prediction accuracy of data generated using the EPIC BeadChip 

falls within the range of MAD values reported in previous studies.  

5.7 Summary and conclusions  

The purpose of the study presented here was to use blood-based Illumina 

MethylationEPIC BeadChip data to identify AR CpG markers from probes that 

were new on this platform. Fifty-two AR CpG sites were identified, 21 of which 

were novel AR CpG sites that mapped to 18 genes, nine of which have never 

been reported in the literature as being associated with age (Figure  5.10). This 

finding will provide new insights for researchers in both clinical and forensic 

epigenetics. For instance, in clinical epigenetics this will allow researchers to 

account for the aging effect of these genes, which will significantly limit the false 

positives in their genome- and epigenome-wide association studies. In addition, 

although the newly introduced probes on the EPIC BeadChip did not improve the 

accuracy of age-prediction models when compared to other models reported in 

the literature, the new genomic locations harbouring AR CpG sites can be further 

studied by forensic geneticists using targeted bisulfite sequencing, which may 

result in the discovery of additional AR sites with high age prediction accuracy, 

that can be exploited for forensic purposes.    
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Figure  5.10 Schematic diagram summarising the main findings of 
this chapter.  
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Chapter 6: A multi-tissue age prediction 
model based on DNA methylation analysis  

 

6.1 Introduction  

Age-related (AR) CpG markers can be either tissue-specific or common 

across multiple tissues. Tissue-specific AR markers have been successfully 

identified for some tissues of forensic interest, namely blood, saliva, semen, and 

teeth [89,147,157,216]. However, using the methylation level for one set of tissue-

specific AR markers to predict chronological age from other tissues has been 

shown to result in poor prediction accuracy [155,156]. Although some researchers 

have built multi-tissue age prediction models that can be used across multiple 

tissues, these models have several limitations if implemented in forensic science 

[94,106,141]. Unfortunately, the forensic literature at the time of conducting this 

research has only focused on the identification of CpGs correlated with age in 

single body fluid/tissue types, and there is no research that has focused on the 

identification of universal AR CpG biomarkers that can be used to predict age 

from tissues that are frequently recovered from the crime scenes. Constructing an 

age prediction model from these universal AR CpG markers (a multi-tissue age 

prediction model) would be beneficial in predicting the age from samples of 

unknown tissue types, which would bypass the necessity to first identify the tissue 

type, a step that is not only time-consuming but can also expose the valuable DNA 

evidence to chemical destruction.  

Developing a multi-tissue age prediction model could be very important in 

terms of estimating the age of a biological sample that is recovered from a crime 

scene, because its identity (e.g. blood, saliva, semen, etc.) may often be 

unknown. Koch and Wagner [94] proposed 19 universal AR CpG markers across 
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tissues and built a multi-tissue age prediction model based on a data set 

containing five tissues (dermis, epidermis, cervical smear cells, T-cells and 

monocytes) profiled on Illumina HumanMethylation27 (HM27K) BeadChips. 

However, this research did not incorporate tissue types of forensic interest. In 

addition, its age prediction accuracy was low when tested on multiple tissues, with 

mean absolute deviation (MAD) between predicted and chronological age of 11 

years. This level of accuracy would result in an age range that would make it very 

difficult to significantly reduce a list of suspects by age, making the assay less 

useful when applied in a forensic context. In an attempt to overcome some of the 

limitations of the Koch and Wagner (2011) study, Horvath (2013) used 51 different 

tissues to build a multi-tissue age prediction model. Although the MAD between 

predicted and chronological age for this model was very low (3.6 years), the large 

number of CpG markers that it contains (353) limits its practical application in 

forensic casework on samples that are typically low quantity and/or degraded. 

[157].  

6.2  Aims 

The aim of the current study was to identify a small subset of universal AR 

CpG sites that could be used to build a multi-tissue age prediction model to predict 

chronological age for forensic purposes, especially across tissues that are 

frequently recovered from crime scenes, such as blood, semen, saliva, menstrual 

blood, and vaginal secretions. In addition, a multi-tissue age prediction model 

would be beneficial, since using an existing tissue-specific age prediction model 

on other tissues will produce inaccurate age estimation. The reasoning behind 

restricting the number of CpG markers to the minimum was to facilitate the design 

of a PCR-based DNAm assay that only requires a small amount of starting DNA 

template, so that this method could be implemented in any forensic laboratory.  
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6.3 Objectives 

- Downloading DNAm profiles of different tissues assayed on the 

Illumina HM27K or HM450K array platforms from different genomic 

repositories.  

-  After combining all the tissues together in one large data set, elastic 

net regression was implemented to build a multi-tissue age 

prediction models with minimum and maximum number of CpG 

markers. 

- Demonstrating how the number of CpG markers in the age 

prediction model affect the prediction accuracy.  

 

6.4 Materials and methods 

All the R codes used in Chapter can be seen in Appendix C3.  

6.4.1 Training data set  

In total of 28 individual data sets (Table 6.1) assayed on the Illumina 

HM27K or HM450K BeadChip platforms were downloaded from three different 

genomic repositories; National Centre for Biotechnology Information (NCBI) Gene 

Expression Omnibus (GEO), the Cancer Genome Atlas (TCGA), and 

ArrayExpress, and compiled into one large training data set in R using the protocol 

described in Section 2.3. The training data set consisted of samples from 3,020 

healthy individuals, obtained from 22 different tissues and cell types. These 

samples were derived from 1,484 males, and 1,352 females (the remaining 184 

were from individuals of unknown gender), with ages ranging from 0 to 101 years 

old. The sample specifically excluded individuals with any known disease, 

because there are certain diseases such as cancer that affect overall DNAm 
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levels at CpG sites, which consequently will affect the prediction accuracy of the 

age prediction model [106,134,136]. Data sets retrieved from TCGA involved only 

normal tissues. 
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Table 6.1 Description of the 28 data sets used in the training data set. 

No. DNA origin Accession no. 
No. of samples 
(prop. female) 

Platform 
Median age 

(range) 
Genomic 

repository 
1 Blood GSE41037 715 (0.38) HM27K 33 (16,88) GEO 

2 Blood GSE40279 656 (0.52) HM450K 65 (19,100) GEO 

3 Blood PBMC GSE36064 78 (0) HM450K 3.1 (1,16) GEO 

4 Blood PBMC GSE32148 48 (0.52) HM450K 15 (3.5,76) GEO 

5 Cord blood GSE27317 216 (0.51) HM27K 0 (0,0) GEO 

6 Brain GSE38873 168 HM27k 45 (20,70) GEO 

7 Breast GSE32393 23 (1) HM27K 46 (19,75) GEO 

8 Buccal swab GSE25892 109 (0.61) HM27K 15 (15,15) GEO 

9 Colon GSE32146 24 (0.54) HM450K 14 (3.5,19) GEO 

10 
Dermal 

fibroblast 
GSE22595 14 (1) HM27K 20 (6,73) GEO 

11 Bone marrow GSE17448 16 (0.38) HM27K 52 (21,85) GEO 

12 Placenta GSE36642 28 (1) HM27K 0 (0,0) GEO 

13 Prostate GSE26126 70 (0) HM27K 61 (44,73) GEO 

14 Saliva GSE34035 181 (0.015) HM27K 29 (21,55) GEO 

15 Uterine Cervix GSE30758 152 (1) HM27K 25 (19,55) GEO 

16 Muscle GSE38291 22 (0.55) HM27K 66 (53,78) GEO 

17 CD4+ CD14 GSE20242 50 (0.68) HM27K 34 (16,69) GEO 

18 Sperm GSE26974 19 (1) HM27K 0 (0,0) GEO 

19 Kidney TCGA, KIRP 45 (0.3) HM450K 66 (31,83) TCGA 

20 Colon TCGA, COAD 37 (0.63) HM27K 74 (43,90) TCGA 

21 Lung TCGA, LUSC 27 (0.15) HM27K 69 (52,83) TCGA 

22 Lung TCGA, LUAD 24 (0.58) HM27K 66 (51,77) TCGA 

23 Lung TCGA, LUSC 42 (0.32) HM450K 73 (40,85) TCGA 

24 Prostate TCGA, PRAD 50 (0) HM450K 63 (44,72) TCGA 

25 Stomach TCGA, STAD 41 (0.51) HM27K 69 (43,87) TCGA 

26 Head and Neck TCGA, HNSC 50 (0.24) HM450K 62 (26,87) TCGA 

27 Breast TCGA, BRCA 27 (1) HM27K 51 (35,88) TCGA 

28 Breast TCGA, BRCA 88 (1) HM450K 57(28-90) TCGA 
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6.4.2 Illumina HumanMethylation data processing   

The data sets from the two platforms (Illumina HM27K and HM450K) in the 

training data set were merged together by focusing on only the overlapping CpG 

probes (21,368) that are present on both platforms. Although, this will result in the 

elimination of CpG probes that could be strongly associated with age, this is offset 

by the advantage of being able to combine a large number of data sets containing 

different type tissues. Each of the data sets in the training data set were 

individually tested and samples that showed abnormal DNAm levels were 

removed from downstream statistical analyses. The training set was not 

normalised as described Section 2.4.2, instead it was normalised using a 

normalisation algorithm created by Horvath (2013), which was developed to 

improve the accuracy of the resulting age prediction model constructed by elastic 

net regression [106]. For this reason, Horvath’s normalisation algorithm was 

obtained, which can be found in the supplementary materials files under the name 

of “Additional file 24” [106]. The normalisation algorithm consists of custom scripts 

that run on R software.  

6.4.3 Singular value decomposition (SVD) 

SVD was used to assess how the DNAm profiles observed in the different 

tissue types would separate them from each other, and also to identify samples 

that do not cluster with their original tissue type, which indicates possible outliers 

[168]. The SVD analysis was carried out using the svd function in R software, as 

described in Section 2.4.4.  

6.4.4 Identifying universal CpG sites and building the multi-tissue 
age prediction model 

For variable reduction and model selection, elastic net regression was 

implemented using the glmnet package in R software, as described in Section 
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2.5.3.3. Horvath (2013) found that it was advantageous to transform the 

chronological age values in the training data set before conducting elastic net 

regression, as this improves the prediction accuracy of the constructed age 

prediction model, using the following functions: 

𝐹(𝑎𝑔𝑒) = 	 log(𝑎𝑔𝑒 + 1) −	 log(20 + 1),				𝑖𝑓	𝑎𝑔𝑒	 ≤ 20	 

𝐹(𝑎𝑔𝑒) = 	
(𝑎𝑔𝑒 + 1)
(20 + 1) ,						𝑖𝑓	𝑎𝑔𝑒	 > 20 

The transformed chronological ages were regressed on Beta values for all 

CpG probes (21,368) in the training data set. The reason for using Beta values 

instead of M values, is that the process of transforming Beta to M values 

introduces infinite (Inf) values into the data set. These Inf values can be input into 

correlation and regression tests in R software, but not elastic net regression, and 

thus Beta values were used. As described in Section 2.5.3.3, the number of 

markers in the best model, which is determined by the lambda value, is 

automatically selected by elastic net regression. However, the lambda value can, 

alternatively, be controlled, and the number of markers in the final model can be 

manually selected. Since the aim of this study was to construct multi-tissue age 

prediction models for forensic purposes, lambda values that correspond to models 

containing 20 CpG markers or fewer were selected.  

6.4.5 Validating the multi-tissue age prediction model  

The constructed models were subsequently validated on ten additional 

individual data sets (Table 6.2), which were assayed on the Illumina HM27K or 

HM450K BeadChip platforms and downloaded from GEO, TCGA, and 

ArrayExpress, as described in Section 2.3. The testing data set consisted of 661 

samples derived from six body fluids, namely blood, saliva, menstrual blood, 

vaginal secretions, uterine endometrium (included as a similar cell type to vaginal 
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secretions), and semen, from individuals with ages ranging from 6 to 90 years old. 

The main reason for using these types of tissues in the testing data set is because 

these are the types of tissue commonly found at crime scenes, and the model was 

created to be applied on these types of samples.   

Table 6.2 Description of the 10 data sets used in the testing data set. 

No. DNA origin Accession no. Platform n (Prop.Female) 
Genomic 

repository 
1 Saliva GSE28746 HM27K 69 (0) GEO 

2 

Semen, blood, 

menstrual blood, 

vaginal secretions, 
and saliva 

GSE59509 HM450K 42 GEO 

3 
Menstrual and 

vaginal sect 
GSE77283 HM450K 9 (1) GEO 

4 
Uterine 

Endometrium 
TCGA, UCEC HM450K 34 (1) TCGA 

5 Buccal swab E-MTAB-6730 HM450K 179 ArrayExpress 

6 Blood GSE76169 HM450K 63 GEO 

7 Blood GSE104812 HM450K 48 GEO 

8 Buccal swab GSE94876 HM27K 120 GEO 

9 Semen GSE115920 HM450 6 (0) GEO 

10 Blood GSE41169 HM450 90 (0.28) GEO 

The data sets from the different Illumina platforms (HM27K and HM450K) 

in the testing data set were merged together by focusing on only the overlapping 

CpG probes (21,368). Similar to the training data set, each data set in the testing 

data set was individually tested and samples that showed abnormal DNAm level 

were removed from the downstream statistical analyses. The testing set was 

normalised using the normalisation algorithm developed by Horvath (2013) [106]. 

The samples in the testing data set were used to test the multi-tissue age 

prediction model created by elastic net regression, by using it to predict their 
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chronological ages, and then the MAD value calculated as described in Section 

2.5.4. 

6.5 Results  
6.5.1 Illumina HumanMethylation data processing   

The number of samples in the data sets downloaded from the genomic 

repositories for the training data set was initially 3,020 samples. However, when 

the DNAm profiles in each data set were evaluated individually, a number of 

samples did not pass the quality control measures and showed abnormal 

distribution of the methylation Beta values. Therefore, they were removed from 

downstream statistical analyses. Table 6.3 shows the number of outliers that were 

removed from each data set. After removing the outliers and combining all the 

samples in each of the data sets together, the number of samples in the training 

data set was 2,881 samples consisting of samples from 1,414 males, and 1,283 

females (the remaining 184 were from individuals of unknown gender), with ages 

ranging from 0 to 101 years old (Figure 6.1).  
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Table 6.3 The number of abnormal samples in each data set in the training data set, and the 
number of samples that passed the quality control measures. 

No.  DNA origin Accession no. 
No. of abnormal 

samples 
No. of normal 

samples 
1 Blood GSE41037 57 658 

2 Blood GSE40279 12 644 

3 Blood PBMC GSE36064 0 78 

4 Blood PBMC GSE32148 2 46 

5 Cord blood GSE27317 50 166 

6 Brain GSE38873 0 168 

7 Breast GSE32393 0 23 

8 Buccal swab GSE25892 0 109 

9 Colon GSE32146 0 24 

10 Dermal fibroblast GSE22595 0 14 

11 Bone marrow GSE17448 0 16 

12 Placenta GSE36642 0 28 

13 Prostate GSE26126 0 70 

14 Saliva GSE34035 0 181 

15 Uterine Cervix GSE30758 0 152 

16 Muscle GSE38291 0 22 

17 Blood CD4+CD14 GSE20242 0 50 

18 Sperm GSE26974 0 19 

19 Kidney TCGA, KIRP 0 45 

20 Colon TCGA, COAD 0 37 

21 Lung TCGA, LUSC 0 27 

22 Lung TCGA, LUAD 2 22 

23 Lung TCGA, LUSC 0 42 

24 Prostate TCGA, PRAD 0 50 

25 Stomach TCGA, STAD 16 25 

26 Head and Neck TCGA, HNSC 0 50 

27 Breast TCGA, BRCA 0 27 

28 Breast TCGA, BRCA 0 88 
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Figure 6.1 Age range in the training data set consisting of 2881 
samples from 22 different tissues and cell types. 

6.5.2 Singular value decomposition  

The two principle reasons for conducting SVD analysis was to further 

assess the samples in the training data set by identifying samples not clustering 

with their labelled tissue, and to examine how distinctive DNAm patterns are 

between the different types of tissue. As Figure 6.3 shows, no outlier samples 

remained after the data processing described above, and all samples clustered 

with other samples labelled as being from the same tissue. One clear pattern seen 

in the graph is that DNAm pattern is tissue specific, and the samples in each tissue 

tend to cluster together and are not mixed with samples from other tissues. 

Another interesting aspect of the data is that the semen samples clustered away 

from all other body tissues, in the top right corner of the graph. This indicates that 

semen samples have very distinctive DNAm patterns compared to other body 

tissues.  
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Figure 6.2 Singular Value Decomposition plot for 2,881 samples in the training data 
set, based on 21,368 CpG probes. The colours represent different tissue types. 
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6.5.3 Identifying universal CpG sites and building the multi-tissue 
age prediction model 

Elastic net regression was performed on the training data set, containing 

21,368 CpG sites, in 22 different tissue types. Elastic net regression constructs 

prediction models starting with single marker and then begins to add more 

markers to the model until it reaches the lowest mean squared error between the 

predicted age and chronological age, that is the best prediction accuracy. Initially 

the model was constructed without restricting the number of CpG sites that could 

be selected. The model that was automatically selected using elastic net 

regression that reached the lowest mean squared error had 267 AR CpG sites 

(Table A2) with an MAD value across all tissue types of 3.9 years (r = 0.97, P-

value<2.2x10-16 ) (Figure 6.3). Table 6.4 shows the prediction accuracy calculated 

separately for each tissue.  
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Figure 6.3 Predicted age versus chronological age in the training data set. Across all 
the samples (2,881 samples) in the training data set, the correlation between the 
predicted and chronological age is 0.97 (P-value < 2.2x10-16) and the MAD value is 3.9 
years. 
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Table 6.4 Age prediction accuracy (MAD) of the 
model selected by elastic net regression, containing 
267 AR CpG sites, for each of the different tissues 
in the training data set. 
No. DNA origin MAD value (years) 

1 Whole blood 4.1 

2 Leukocyte 0.87 

3 Umbilical cord 0.14 

4 Cerebellum 6.0 

5 Breast 5.81 

6 Buccal 1.87 

7 Colon mucosa 5.44 

8 Dermal fibroblast 11.8 

9 Bone marrow 9.1 

10 Placenta 0.21 

11 Prostate 4.56 

12 Saliva 3.32 

13 Uterine cervix 3.42 

14 Muscle 5.43 

15 CD14+ monocytes 3.46 

16 CD4+ T-cells 4.22 

17 Semen 4.44 

18 Kidney 5.23 

19 Colon 5.32 

20 Lung 4 

21 Stomach 5.52 

22 Head and neck 4.96 
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The next step in the analysis was to study the relationship between the 

number of CpG sites in the age prediction models and the corresponding MAD 

values. This was done in order to demonstrate how using a smaller subset of AR 

CpG sites in the model would affect age prediction accuracy. To achieve this, the 

MAD value for each model starting with a model based on 1 CpG site and adding 

sites up to the model based on 267 CpG sites was calculated and then plotted 

against each the number of sites. As Figure 6.4 shows, the age prediction 

accuracy across all tissues increases as the number of CpG sites in the model 

increases. However, as the number of markers in the model increases, the 

prediction accuracy reaches a plateau, and the MAD values remain steady and 

no further significant decrease is observed.  
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Figure 6.4 Age prediction accuracy of the models constructed using elastic net 
regression containing 1 to 267 CpG sites. The MAD value for each model was 
calculated based on the samples in the training data set for each of the 267 
models. 

6.5.4 The mini multi-tissue age prediction model  

As shown in the previous section, the prediction accuracy of a model 

decreases as the number of the CpG sites included in it decreases. Given that in 

the literature, the number of CpG sites in any model constructed for forensic 

purposes did not exceed 16 CpG sites, the model with the same number of CpG 

sites was selected in this study in order to build a ‘mini multi-tissue model’, 

containing a small enough number of sites that would allow the model to be 

developed into a PCR-based assay in future. The identity of the 16 CpG sites can 

be seen in Table 6.5, and the change in DNAm level with age across all tissues 
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is illustrated in Figure 6.5. The overall prediction accuracy (MAD) of these 16 CpG 

sites based on the training data set was equal to 6.39 years (r 0.94) (Figure 6.6), 

and the MAD value for each individual tissue can be seen in Table 6.6. 

Furthermore, the performance of this model was also evaluated using testing data 

set, which can be seen in the following section. 

 

Table 6.5 Identity of the 16 CpG markers selected by elastic net regression. 

No.  Illumina’s ID Gene Genomic location 
1 cg01459453 SELP chr1:169599212 

2 cg01511567 SSRP1 chr11:57103631 

3 cg06268694 CELSR1 chr22:46932642 

4 cg06493994 SCGN chr6:25652602 

5 cg07388493 NDUFS5 chr1:39491459 

6 cg07588779 GPR137 chr11:64051753 

7 cg08996521 CISH chr3:50649994 

8 cg10893437 ZNF828 chr13:115079492 

9 cg17324128 RASSF4 chr10:45455500 

10 cg17861230 PDE4C chr19:18343901 

11 cg19722847 IPO8 chr12:30849114 

12 cg21801378 BRUNOL6 chr15:72612125 

13 cg22736354 NHLRC1 chr6:18122719 

14 cg25809905 ITGA2B chr17:42467728 

15 cg26394940 C22orf26 chr22:46449461 

16 cg26614073 SCAP chr3:47517819 
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Figure 6.5 Heat map illustrating methylation level across all tissues at the 16 CpG sites selected 
by elastic net regression in the training data set, ordered by chronological age (indicated in 
green across the top of the figure). The methylation level in each sample is indicated by the Z-
score colour code, where red indicates a site is hypermethylated and blue is hypomethylated. 
The branching patterns on the left indicate hierarchical clustering of the CpG sites. 
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Figure 6.6 Predicted age versus chronological age in the training data based on a model 
containing 16 universal AR CpG sites. Across all training data samples, the correlation 
between the predicted and chronological age is 0.94 (P-value < 2.2x10-16) and the MAD 
value is 6.39 years. 
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Table 6.6 Age prediction accuracy (MAD) of the 
model selected by elastic net regression, containing 
16 AR CpG sites, for each of the different tissues in 
the training data set. 
No. DNA origin MAD value (years) 

1 Whole blood 6.2 

2 Leukocyte 2.4 

3 Umbilical cord 0.43 

4 Cerebellum 7.3 

5 Breast 8.2 

6 Buccal 6.4 

7 Colon mucosa 23 

8 Dermal fibroblast 17.4 

9 Bone marrow 19.2 

10 Placenta 0.67 

11 Prostate 7.8 

12 Saliva 5.5 

13 Uterine cervix 6.2 

14 Muscle 19 

15 CD14+ monocytes 7.2 

16 CD4+ T-cells 6.1 

17 Semen 5 

18 Kidney 6.4 

19 Colon 11 

20 Lung 6.5 

21 Stomach 12 

22 Head and neck 6.4 

6.5.5 Validating the multi-tissue age prediction model  

The number of samples in the data sets downloaded from the genomic 

repositories for the testing data set was initially 661 samples. Before conducting 

validation testing, a single saliva sample (sample ID GSM1438496 from 
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accession number GSE59509) was removed from the testing data set, as it 

showed an abnormal Beta value distribution. The remaining samples that showed 

a normal DNAm pattern were combined into one testing data set containing 660 

samples derived from six body fluids, namely blood, saliva, menstrual blood, 

vaginal secretions, uterine endometrium, and semen, from individuals with ages 

ranging from 6 to 90 years old (Figure 6.7). To further confirm how the number of 

the CpG sites in the model affected its prediction accuracy, the MAD value for 

each of the 267 models created by elastic net regression was calculated based 

on the samples in the testing data set. As expected, the MAD value for the testing 

data increased as the number of CpG sites in the model decreased (Figure 6.8).  

 

Figure 6.7 Age range in the testing data set consisting of 660 
samples from six different tissues. 
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Figure 6.8 Age prediction accuracy of the models constructed 
using elastic net regression containing 1 to 267 CpG sites. The 
MAD value for each model was calculated based on the samples 
in the testing data set for each of the 267 models. 

Given that in the literature, the number of CpG sites in any model 

constructed for forensic purposes did not exceed 16 CpG sites, the model with 

the same number of CpG sites was selected in this study in order to build a ‘mini 

multi-tissue model’, containing a small enough number of sites that would allow 

the model to be developed into a PCR-based assay in future. This model 

contained 16 universal AR CpG sites, and was validated separately on the testing 

data set. The prediction accuracy (MAD) of this model was 7.9 years (r = is 0.91, 

P-value < 2.2x10-16) across all of the six tested tissues (Figure 6.9A), however, 

the model showed very different performances on the different tissue types. For 

example, saliva samples exhibited the lowest MAD value, which was equal to 4.5 

years, whereas semen and menstrual blood samples had the highest MAD 

values, at 11.7 and 12.8 years, respectively (Figure 6.9B-H). The low prediction 

accuracy for the menstrual blood and uterine endometrium samples may be due 
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to the menstrual cycle and concomitant increases in cell proliferation. This is in 

line with the Horvath (2013) study, who classified uterine endometrium as a 

poorly-age-predicted tissue, along with breast tissue, dermal fibroblasts, and 

heart tissue [106].  

The high MAD value for the semen samples was also expected and is likely 

to be due to their distinctive DNAm pattern compared to the other body tissues, 

as shown in the SVD analysis in Section 6.5.2. This distinctive DNAm pattern in 

semen can be explained by the fact that germline cells go through epigenetic 

reprogramming during early development, in order to prevent the inheritance of 

aberrant DNAm patterns that might adversely influence gene expression in the 

offspring [18,19]. However, from Figure 6.9, it can be seen that there is less 

variation in the predicted DNAm ages in some tissues, especially whole blood, 

saliva, and buccal swabs, which indicates a consistency in the performance of the 

model in these tissues, across a wide range of chronological ages.  
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Figure 6.9 Predicted age versus chronological age in the training data based on a model 
containing 16 CpG sites. Across all testing data, the correlation (r) between the predicted and 
chronological age is 0.94 (P-value < 2.2x10-16) and the MAD value is 6.39 years. (A) Across all 
testing data samples, the correlation between the predicted and chronological age is 0.91 (P-
value < 2.2x10-16) and the MAD value is 7.9 years. (B) Saliva samples (r = 0.83, P-value < 
2.2x10-16, MAD = 4.5 years). (C) Menstrual blood samples (r = 0.84, P-value = 6x10-4, MAD = 
12.8 years). (D) Semen samples (r = 0.51, P-value =0.03, MAD = 11.7 years). (E) Vaginal fluid 
samples (r = 0.89, P-value =0.02, MAD = 10.5 years). (F) Whole blood samples (r = 0.86, P-
value < 2.2x10-16, MAD = 8 years). (G) Uterine endometrium samples (r = 0.3, P-value =0.1, 
MAD = 8.6 years). (H) Buccal swab samples (r = 0.96, P-value < 2.2x10-16, MAD = 8.1 years). 
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6.6 Discussion  

A number of studies have demonstrated a statistically significant 

relationship between DNAm levels at specific CpG sites and chronological age in 

human tissues [106,131,145,156]. These CpG markers have the potential to be 

used in forensic investigations to estimate the age of an individual from various 

body fluids and tissues such as blood, saliva, semen and teeth, with high 

estimation accuracy [89,92,144,149,156]. However, in many forensic cases, the 

tissue source of the DNA evidence is unknown and requires an additional pre-

processing step in order to identify the source before conducting a tissue-specific 

age prediction assay. As well as being time-consuming, this pre-processing step 

may consume a quantity of the DNA evidence, which is usually present in limited 

amounts. Thus, finding universal age-related CpG markers that can be used to 

estimate the age of an individual for forensic purposes across all types of 

forensically relevant tissues would be of major benefit.   

In the literature, there are two multi-tissue age-prediction models, however 

these two models have several limitations, including the large number of CpG 

markers (353 CpG sites), and poor prediction accuracy (11.4 years MAD) across 

tissues [94,106]. Thus, the main aim of this research was to construct a model 

containing a limited number of universal AR CpG markers, while maintaining a 

good prediction accuracy across a wide range of tissues, which could be 

implemented for forensic purposes. To achieve this, elastic net regression has been 

implemented to perform both the identification of the universal AR CpG sites and 

construction of the age prediction model using a data set containing samples from 22 

different tissue and cell types [106,136]. The reason for using a wide range of tissue and 

cell types with a wide range of chronological ages (from 0 to 101 years old), was to 

ensure the identified markers had the capability of predicting age across a wide 

range of ages, regardless of the tissue and/or cell type source.  
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The SVD analysis in Figure 6.2 showed that samples clustered together 

based on their tissue and cell type, which indicates that the DNAm patterns exhibit 

tissue-specific properties. This explains why DNAm markers, including AR CpG 

sites, perform very well in tissue-specific models, compared to models 

constructed across multiple tissues. For this reason, finding AR CpG sites that 

show similar correlations with chronological age across tissues is very 

challenging. Furthermore, the distinctive separation of semen samples from other 

body tissues confirms the phenomenon discussed in Section 1.2.5, in which the 

epigenome in the germ line is erased and reprogrammed during 

spermatogenesis, such that semen samples exhibit completely different DNAm 

patterns than samples from other tissues [18,19].  

Elastic net regression was implemented in this study because it was used to build 

the most prominent multi-tissue age prediction model in the literature [106]. 

Although this algorithm selected a prediction model with an MAD value of 3.9 

years across all tissue types in the training data set, the number of markers it 

contained (267 AR CpG sites) was very high. It would not be feasible to implement 

a PCR-based assay containing this number of sites for use on forensic samples. 

Therefore, the challenging task in this study was to select the model with the 

highest possible number of markers that could still be implemented in forensic 

laboratories. To solve this, the number of markers was selected based on the 

maximum number markers that have been used in forensic-based age prediction 

models reported in the literature, which was 16 CpG sites in a blood-specific 

model created by Vidaki et al. (2017). All of the 16 identified universal AR CpG 

sites are associated with genes (see Table 6.5) and 13 of them have been 

previously identified in the literature as being associated with age in different 

tissues. This included 11 CpG sites overlapping with the 353 CpG sites in 

Horvath’s (2013) pan-tissue model (cg01459453, cg01511567, cg06493994, 

cg07388493, cg17324128, cg19722847, cg21801378, cg22736354, 

cg25809905, cg26394940, and cg26614073), one (cg17861230) overlapping with 
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Koch and Wagner’s (2011) multi-tissue model [94,106], and one (cg08996521) 

significantly associated with neonatal gestational age [217]. The remaining three 

AR CpG sites (cg06268694, cg07588779, and cg10893437) have never 

previously been reported as being associated with age in any tissues.  

The prediction accuracy (MAD) of the selected 16 universal AR CpG sites 

across all tissues was 7.9 years, which outperformed Koch and Wagner’s (2011) 

multi-tissue model by 3.5 years (their MAD across tissues was 11.4 years). 

However, when compared to the majority of tissue-specific age prediction models, 

the multi-tissue model is less accurate, which was as expected. For example, 

using the model reported here to predict age from blood and semen samples 

resulted in MAD values of 8 and 11.7 years, respectively, whereas two blood- and 

semen-specific age prediction models reported in the literature had MAD values 

of 3.2 and 5.4 years, respectively [92,215]. However, due to the number of tissues 

and samples that were used in this study to construct the model, the MAD value 

achieved across tissues is the best prediction accuracy that any multi-tissue 

model has reached using this number of markers. The only way to improve the 

prediction accuracy of multi-tissue models for forensic applications would be to 

find an assay system that can profile a large number of sites from small/degraded 

DNA samples.   

6.7 Summary and conclusions  

The purpose of the study presented here was to use published data to 

screen the epigenome, to identify a small sub-set of universal AR CpG sites for 

age estimation across multiple forensically relevant tissues with a reasonable 

accuracy, which could potentially be incorporated into a multiplex PCR-based 

assay. This study has identified 16 universal age correlated CpG sites across 

2,881 samples from 22 different tissues retrieved from individuals aged from 0 to 

101 years old (Figure  6.10). These 16 AR markers were selected using elastic 
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net regression to build a multi-tissue age prediction model. This model displayed 

good prediction accuracy on a testing data set consisting of 660 samples from six 

body fluids, with a prediction accuracy (MAD) across tissues of 7.9 years. This 

suggests that the selected universal markers could be used for age estimation on 

the types of biological samples that are most frequently found at crime scenes, 

such as blood, semen, saliva, menstrual blood, and vaginal secretions. Although 

the results in Chapter 5 suggested that upgrading to the newer Illumina 

MethylationEPIC platform did not produce an age prediction model with better 

accuracy in blood, it might be possible to improve the multi-tissue model using 

MethylationEPIC data for a wide spectrum of tissues and a broader range of ages, 

and then develop a PCR-based assay that could easily be implemented in 

forensic laboratories.  
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Figure  6.10 Schematic diagram summarising the main 

findings of this chapter. 
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Chapter 7: General discussion, conclusions, 
and recommendations for future work  

DNA methylation (DNAm) CpG markers present a unique opportunity to 

answer a wide range of questions in forensic science that cannot be answered by 

conventional STR markers. This thesis focused on four research themes related 

to DNAm markers. Firstly, identifying the optimum statistical method for 

discovering age-related (AR) DNAm markers, and then using this method to build 

a saliva-specific age prediction model. Secondly, validating this model using next-

generation sequencing using the Illumina MiSeqÒ platform. Thirdly, identifying 

blood-specific AR DNAm markers using the newly introduced Illumina 

MethylationEPIC® BeadChip, and finally, building a multi-tissue age prediction 

model with a small number of universal CpG sites that are capable of predicting 

the age of individuals regardless of the type of tissue being used.  

In the last decade, forensic geneticists have shown an increased interest 

in the use of DNAm markers for age estimation in forensic casework. This has led 

to the introduction of various statistical methods in order to identify AR CpG sites 

for use in constructing age prediction models. Chapter 3 explored the use of three 

statistical methods, namely Spearman’s rank and Pearson correlation tests, along 

with simple linear regression, and selected a standard set of procedures that were 

optimum for identifying AR CpG sites from high dimensional data generated using 

the HumanMethylation BeadChip platforms. In addition, the performance of these 

three methods were examined based on the two different DNAm measurements, 

Beta and M values.  

The outcomes presented in Chapter 3 support the use of Spearman’s rank 

correlation test over either Pearson’s correlation or simple linear regression in 

identifying significant AR CpG sites. Based on the algorithm of the Spearman’s 
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rank correlation, which measures monotonic relationships between variables, this 

finding suggests that the DNAm level at AR CpG sites increases monotonically 

with age. This is in line with a study conducted by Horvath (2013), who described 

the rate of change in DNAm level at AR CpG markers across tissues as taking 

the form of a logarithmic relationship from childhood until adulthood and then 

changing to a linear relationship later in life [106]. Furthermore, another study 

conducted by Xu et al. (2015) also highlighted that linear tests such as Pearson’s 

correlation and linear regression are too simple to explain the complicated 

relationship between DNAm levels at AR markers and chronological age [8].  

Another significant factor that was shown in Chapter 3 to affect the 

outcomes of the statistical methods for identifying AR CpG sites was the type of 

DNAm measurement (Beta or M values) being used. The reason behind this is 

that the Logit transformation of Beta values into M values alters the relationship 

between DNAm levels at AR markers and age from a monotonic to a linear 

relationship. Thus, using M values in Pearson’s correlation and linear regression 

tests resulted in more AR markers than using Beta values. A similar finding was 

reported by Du et al. (2012) who recommended using M values with linear tests 

for conducting differential methylation analyses, as they perform better in terms 

of the detection rate and in terms of detecting true positives for both highly 

methylated and unmethylated CpG sites [105]. On the whole, the outcomes of 

Chapter 3 recommend using either Beta or M values with nonlinear methods such 

Spearman’s rank correlation and quadratic regression. However, when linear 

methods such as Pearson’s correlation and linear regression methods are 

implemented, M values should be used (Figure 3.21).   

An interesting further extension of these findings in Chapter 3 was the 

implementation of the selected statistical method on a data set of 54 saliva 

samples retrieved from the National Centre for Biotechnology Information (NCBI) 

Gene Expression Omnibus (GEO) database, which were assayed on the 
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HM450K, in order to construct a saliva-specific age prediction model that 

outperformed the models in the literature. Nine CpG markers were successfully 

identified using Spearman’s rank correlation test and selected for construction into 

a prediction model by stepwise regression. These nine markers were integrated 

into a multivariate linear regression model that explained 97.5% of the total 

variation in the data, with a prediction accuracy of 1.3 years (mean absolute 

deviation (MAD) between predicted and chronological age), which outperforms 

the best previously reported models in the literature. This model was validated in 

silico on an independent data set downloaded from NCBI repository, consisting of 

56 saliva samples that were collected from the Khomani San population living in 

the South African Kalahari Desert. The prediction accuracy of the model on this 

testing data set was 5.1 years (MAD). The identification of an optimal method for 

identification of AR DNAm markers is beneficial for researchers in many 

disciplines aiming to identify AR DNAm markers across tissues.  

In Chapter 4, the nine sites identified in Chapter 3 were then validated by 

targeted bisulfite sequencing of DNA from an additional 192 saliva samples, using 

the Illumina MiSeqÒ platform. Sequencing the nine candidate CpG sites resulted 

in the identification of neighbouring AR CpG sites with stronger association with 

age, in the genes ELOVL2 and ZEB2, as well as genomic locations 10p12.2 and 

1q32.2. The best subset of these adjacent AR CpG sites was selected by stepwise 

regression and then modelled using a quadratic modelling system. The quadratic 

model was composed of 10 different AR CpG markers, and was trained on a data 

set of 100 saliva samples (age range 13-96 years). The model explained 92% (R2 

= 0.92) of the total variation in DNAm levels, with mean absolute deviation (MAD) 

between predicted and chronological age of 3.4 years, and a Pearson’s 

correlation coefficient (r) of 0.96. Subsequently, the performance of this model 

was validated on an independent data set of 65 additional saliva samples (age 

range 13-84 years), which produced a prediction accuracy based on bootstrap 

analysis of 5.26 years (95% confidence intervals 5.24-5.27 years), and a 
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Pearson’s correlation coefficient (r) of 0.88. The performance of this model was 

further assessed by comparison with the best saliva-specific age prediction model 

reported in the literature, which was created by Hong et al. (2017) and composed 

of seven CpG markers. Based on the same training and testing sets that were 

used to build and validate the saliva-specific HM450K model, their model 

explained 68% (R2 = 0.68) of the total variation in DNAm levels, with MAD values 

of 7.7 years, and 7.5 years, respectively. Since next generation sequencing 

platforms such as the MiSeqÒ are likely to dominate forensic laboratories in the 

near future, the quadratic model reported here can be integrated into the routine 

forensic laboratory workflow in order to estimate chronological age from saliva 

samples.   

Two microarray platforms, the Illumina HumanMethylation27 (HM27K), 

and HumanMethylation450 (HM450K) BeadChips, played an important role in 

identifying a large number of AR CpG sites that have been used to build many 

age prediction models for forensic purposes. In addition, they have enriched the 

public databases of epigenome-wide DNAm profiles, which now contain samples 

from a large body of epigenetic studies based on different human tissues [193]. 

Thus, introducing a new array with over 860,000 probes, nearly double the 

number on the HM450K, will attract researchers working in the field of age 

estimation to study these probes for potential AR CpG sites that could improve 

the age prediction accuracy of models implemented in forensic science.  

This new Illumina platform is the MethylationEPIC® (EPIC) BeadChip, 

which was examined in Chapter 5, in order to identify novel blood-specific AR 

CpG sites that could potentially be used for forensic purposes. The newly-added 

probes were examined using a large cohort of 754 blood DNAm profiles assayed 

on the EPIC BeadChip, from individuals aged 0-88 years old. Interestingly, 21 

novel AR CpG sites were discovered that mapped to 18 genes, nine of which 

(LHFPL4, SLC12A8, EGFEM1P, GPR158, TAL1, KIAA1755, LOC730668, 
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DUSP16, and FAM65C) have never previously been reported in the literature to 

be associated with age. Discovering new genes harbouring AR CpG sites can aid 

forensic geneticists to further study that regions by targeted bisulfite sequencing, 

which may result in the identification of additional AR sites with high age prediction 

accuracy, which could be exploited for forensic science.     

The uses of age prediction models are not restricted to forensic science, 

but also have clinical applications. For instance, predicted age (DNAm age) has 

been found to be related to frailty [218], cognitive/physical fitness in the elderly 

[219], Parkinson’s disease, Alzheimer’s disease-related neuropathology [220], 

and can predict overall mortality in humans [221]. However, the major difference 

between models created for forensic and clinical uses, is that the former requires 

a small number of markers, due to the nature of the forensic specimens, whereas 

the former can include unlimited numbers of markers as clinical samples tend to 

be more abundant. For this reason, the data were split into a 527-sample training 

set and a 227-sample testing set, and two separate models were created based 

on EPIC DNAm profiles. One model was constructed using multivariate 

regression (using the variable reduction, selection, and model building procedures 

described in Section 2.5), which contained six AR CpG sites, and the other model 

was constructed using elastic net regression, which contained 425 AR CpG sites.   

The elastic net regression model contained 160 (38%) AR CpG sites that 

came from the newly-added probes on the EPIC BeadChip. The accuracy of this 

model based on the independent testing set was 2.6 years (MAD), which was 

highly accurate compared to other models reported in the literature. However, the 

outperformance of this model compared to other models in the literature may due 

to the number of CpG sites it contains, rather than the type of markers. For 

example, in a study conducted by Hannum et al. (2013), which had a similar 

experimental design but used Illumina HM450K data, their elastic net regression 
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model contained only 71 AR CpG markers and had a prediction accuracy of 4.89 

years (MAD).   

Building a prediction model for use in forensic investigations requires a 

small number of markers due to the minute quantities of DNA that are frequently 

recovered from forensic samples [15]. A second model was therefore constructed 

using multivariate linear regression. The six AR CpG sites selected by this 

stepwise regression, which contained only one CpG marker that was newly-added 

to the EPIC BeadChip, explained 81% of age-correlated variation in DNAm levels 

and had a MAD value of 4.6 years, with 95% confidence intervals of 4.56 to 4.57 

years, based on the testing data set. A review of the literature shows that the 

range of MAD values achieved by forensic researchers for models based on blood 

samples was 3.2 to 7.9 years, using two to 17 CpG markers [144,214,215]. 

Therefore, the prediction accuracy of data generated using the EPIC BeadChip 

falls within the range of MAD values reported in previous studies.  

Finally, one of the limitations of AR CpG sites is that they tend to be tissue 

specific and their accuracy in age estimation is highly linked to the type of tissue 

they are specific for. This means that using DNAm level for one set of tissue-specific 

AR markers to predict chronological age from other tissues has been shown to result in 

poor prediction accuracy [155,156]. Despite the fact that there are pre-processing steps 

that can be used to determine the tissue source before applying the right age prediction 

model, these steps are time-consuming, and can consume a large amount of the DNA 

evidence, which is usually present in limited amounts. In the literature, there are two 

different researchers who have built multi-tissue age prediction models that can be used 

across multiple tissues, however their models have several limitations, including the large 

number of markers (353 in Horvath’s (2013) model), which could not be implemented in a 

forensic laboratory, and poor prediction accuracy (11.4 years in Koch and Wagner’s model 

(2011)) [94,106]. The main focus of Chapter 6 was therefore on the identification of 

universal AR CpG sites that can be used to predict age from tissues that are frequently 
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recovered from crime scenes, such as blood, semen, saliva, menstrual blood, and vaginal 

secretions.   

A multi-tissue age prediction model with 16 universal AR markers was 

constructed using elastic net regression, based on a training data set containing 

2,881 samples from donors with ages ranging from 0-101, retrieved from 22 

different tissues and cell types. Training the model with this large number of 

samples with a wide age range, and a wide range of tissues and cell types was 

done in order to ensure that the identified universal markers could predict age with 

as high as possible accuracy from any tissue source and cell type. This is very 

important as in many forensic cases DNA is recovered from unidentified tissue 

sources. The multi-tissue model was validated on a testing data set of 660 

samples from six different forensically-relevant tissues (blood, saliva, semen, 

menstrual blood, vaginal secretions, and uterine endometrium), and the results 

showed a prediction accuracy (MAD) of 7.9 years. By ranking the tissues from 

high to low prediction accuracy, it was observed that age could be predicted from 

saliva with the highest accuracy (4.5 years), then blood (8 years), buccal swabs 

(8.1 years), uterine endometrium (8.6 years), vaginal secretions (10.5 years), 

semen (11.7 years), and finally menstrual blood (12.8 years).        

The results in Chapter 6 suggest that the multi-tissue age prediction model 

could be implemented for forensic purposes in cases where the tissue source is 

unknown, however the prediction accuracy (7.9 years) is not as high as the tissue-

specific age prediction models. Furthermore, one of the ways to enhance the 

multi-tissue model is by incorporating more markers, because as the number of 

markers increases the prediction accuracy of the model will also increase. In 

addition, although the results in Chapter 5 suggested that upgrading to the newer 

Illumina EPIC platform did not enhance age prediction accuracy in blood, it might 

be possible to improve the multi-tissue model using EPIC data for a wide spectrum 

of tissues and broader ages.  
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Overall, this thesis has taken a broad look at age estimation using DNAm 

AR CpG sites and their application in forensic science. The results presented 

suggest that, if the appropriate statistical method is implemented, epigenome-

wide platforms such as the Illumina HumanMethylation BeadChips (HM27K, 

HM450K, and EPIC) can provide DNAm CpG sites that are reliable biomarkers 

for age estimation (Chapter 3). Furthermore, these AR CpG markers can be 

detected by next generation sequencing using the MiSeqÒ platform (Chapter 4), 

which is a technology that is more likely to dominate forensic laboratories in the 

near future. Thus, combining both DNAm analysis for age estimation and DNA 

sequence variation for human identification in a single streamlined process using 

an NGS platform will be the next target for many forensic researchers. However, 

from the results in Chapter 5, it can be seen that the upcoming age-related studies 

will reach a certain level of age prediction accuracy beyond which they cannot 

enhance anymore. The reason for this is that, although there will be novel AR 

markers coming from the newly-added probes on the new epigenome-wide 

platforms, the strength of the age association is likely to remain within the range 

of those found on the older platforms. Thus, the only way to further enhance the 

performance of age prediction models will be by looking for other factors such 

single nucleotide polymorphism (SNP) markers, that can be incorporated along 

with AR DNAm markers and enhance their prediction ability. Finding such factors 

may help increase the prediction accuracy of multi-tissue age prediction models, 

which have less accurate estimation compared to tissue-specific models. Finally, 

the outcomes of this work are not only applicable to forensic science, but also in 

clinical research where AR CpG sites are also associated with various diseases, 

and thus can be used to study the epigenetic basis of disease.   
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Appendix A: Supplemental tables  

Amplicon quality control report 

An overview of the quality control (QC) tested assays for the 16 targeted 

regions harboring age related CpG sites. All primers were mixed and diluted to 2 

μM each. All primers were then tested using Real-Time PCR with 1 ng of bisulfite-

converted control DNA, in duplicate individual reactions. DNA melt analysis was 

performed to confirm the presence of a specific PCR product.  

Primers that passed QC:  

• Had average Cp values <40  

• Duplicate Cps do not have a Cp difference >1  

• Reached the plateau phase before the run ended at cycle 45  

• Produced melting curves in the expected range for PCR products  

• Product size matched expected values  

• Had no amplification in No Template Control (NTC) reactions  
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1- Illumina probe ID = cg00573770   

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna Range=chr2:145278285-145278685 5'pad=200 3'pad=200 
strand=+ 

CTGCCCTTTCTCTTATTGTTATTTTTTTCTTTTTAGGTACCAGAGCCAGAAAAAAAAA
TGCTGCATGGGAGCTGCATCTTAGGGCATGTGTATTAGGGTGTGTGCATGATGAATTTCTG
GACTGGATCCCAATATTAAAAAGTAGTTTGGCATTTTAATAAAGGGTCTCTAAGTAAATTAAA
ATAGAACACTCGGTTGGCCGATCTCTGAATCTCTCTACACCTCGGGGAGACCTCACTACAA
AGTAAGGGAGAGTGTGTAGGGAGGCAGGAGGAGAAACGAGAAAGGCCATAGAGAAACTTA
GCAGGGAAGGGAGAGCATGATATTAAACGGCATGGGGTCTAAGTTTTGGAGTATATATTTT
TTGATATTACAATTAAAGTAAGATTAAAAAGAAAAGA 

2- Illumina probe ID = cg04875128   

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr15:31775595-31776195 5'pad=300 3'pad=300 
strand=-  

cCGCGCAGACCGGAGACGGAGGGCGTGCCGGTCCCGGAGCGCGCCTCTCCGGG
CCCACCCACGCAGCTGGTGCTCAAGCTCAAGGAgCGgcCGagcccCGggccCGCGgcagggCGt
gCGgCGCGggCGgCGgCGggCGgcaCGgcctcccCGgggggaggCGCGCGgCGTGCGAGCGCCAG
CGGACCAGTGCCTGGCCGCAGCCCCCCGGCGCCAGCGCGCCAGAGCGTCATCCACGTGC
AGGCGTCGGGCGCGCGGGACGAGGCGTGCGCGCCGGCCGTGGGGGCGCTGCGGCCGT
GCGCCACGTACCCGCAGCAGAACCGCTCGCTGTCGTCGCAGAGCTACAgccCGgCGCGCG
cCGcCGcccTGCGCACCGTCAACACGGTCGAGTCGCTggCGCGCGCGgtgccCGgggccctacCG
ggCGCGgCGgggaCGgCGggggCGgcCGAGCACAAGTCGCAGACCTACACCAACGGCTTCGG
CGCCCTGCGCGACGGCCTGGAGTTCGCCGACGCCGACGCGCCGACCGCGCGCTCGAAC
GGTGAGTGCGGCCGTGGCGGCCCGGGGCCGGTGCAGCGGCGCTGCCAGCGCGAGAAC  
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3- Illumina probe ID = cg06279276  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr16:67183864-67184464 5'pad=300 3'pad=300 
strand=-  

GGGGAGGGCGGGGCTCGCTGCCCCCTGCTGCCGACTGCGACCCTTACAGGGGAG
GGAGGGCGCAGGCCGCGCGGAGATGAGGAGGAGGCTGCGCCTACGCAGGGACGCATTG
CTCACGCTGCTCCTTGGCGCCTCCCTGGGCCTCTTACTCTATGCGCAGCGCGACGGCGCG
GCCCCGACGGCGAGCGCGCCGCGAGGGCGAGGGAGGGCGGCACCGAGGCCCACCCCC
GGACCCCGCGCGTTCCAGTTACCCGACGCGGGTGCAGCCCCGCCGGCCTACGAAGGGGA
CACACCGGCGCCGCCCACGCCTACGGGACCCTTTGACTTCGCCCGCTATTTGCGCGCCAA
GGACCAGCGGCGGTTTCCACTGCTCATTAACCAGCCGCACAAGTGCCGCGGCGACGGCG
CACCCGGTGGCCGCCCGGACCTGCTTATTGCTGTCAAGTCGGTGGCAGAGGACTTCGAGC
GGCGCCAAGCCGTGCGCCAGACGTGGGGCGCGGAGGGTCGCGTGCAGGGGGCGCTGGT
GCGCCGCGTGTTCTTGCTGGGCGTGCCCAGGGGCGCAGGCTCGGGCGGGGCCGACGAA
GTTGGGGAGGGCGCGCG  
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4- Illumina probe ID = cg07365960   

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr17:72848235-72848835 5'pad=300 3'pad=300 
strand=+ 

CGCCAGTAGCTGTGGGCGCCCAGGGCCAGAATGGCCACGCCGTCGCGCACCTTC
TGGCGCAGGCTGAGGCGCCAGCTCTCGGTGACGACGCTGATGAGGCCCACGGGGAAGGT
GGCGGGGGGCGCATCGGTGCTGCCCAGCGCCAGGTTGGGCACCAGCCACACGTGGCCG
GGCCCCACCAGACCGGCCTGCGCCGCCTCGGCGAAGAGCACCTCGGCCTCCTCGCGCGA
GCAGTAGGCCACAAACACGGGCGCGTCGAGCTGGCGCAGCAGGCGCTGCGTGCGCGCG
CGCGGCCCTCCCGGCCCAGCTCCAGCGTGACCACGTCCAGCAGCCGCCAACTCACGTGG
CTGGCGTCGGCGACGGCGCGCACGCCCTCCAGGAAGAGCGCGTGGCCCGGGTGCAGGC
TGGTGATGACGGCGAAGGCGCTCCAGTCGTACTCTTCCAGCACCTTGAACAGCACCTGCA
GCTGCTGCTCCAGGGACACGCCCAGCTGCAGGAAGGCGGAGCCCGGCTCCTGGGGGCG
GGCGGGGCCTGAGCGGGGCGGGAGGGCCGAGCCCCTCCTCCCGCCCCTTCCCCGACCT
CGGCCCCTCCATCAGCTC  

5- Illumina probe ID = cg10501210  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr1:207996820-207997220 5'pad=200 3'pad=200 
strand=+  

CAGCTGACACTAGGGAAAAGAAATTAAAGTGGGAAAAAACCCTCCCTCAGAGAAAT
AAATAGCAAAAATCGAGAAAGAAGGTGAGAAAGACAGAGCACCCACATACACAGAGACAGC
GCCCCTGATCCCAGCAAATACATACGTGGGGGAAGAAGGGGGTTACGCCATCAAGTCCTG
AAGCCCGTCGGACCACCCATCGCCGCCTGCGCAGACCCAAATCTTGGTCCCGCCGTAAGG
TGCCGCAGTCCCGAATGTTCCAGAATTTGGTCCCATCAAACCCTCCACCGTCGCCCCACAA
CCTCTTGCTCCCACCCCTGCCCCCCACCACCACCCCACCTCCTCCCCACGGGAACCGCCC
GTGCCACCTTGCGTGTCATCTCCTAGCCTAGGCTACCCAGAGG  

 



 

 251 

6- Illumina probe ID = cg10804656  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr10:22623260-22623660 5'pad=200 3'pad=200 
strand=+ 

AAGAAACAGCCTCTCTCCTTTTCCTTATTTTCTAATTAGCATCTTACAGAGGAGTGG
AAACAGCTACAGCCCAGTCCCCTGCTCAAAACTGCGCCACCCCAGTTCGGCCCTGCTGGG
CGCGCGAGCCAAGGCCGCGGGGCACCGGGAGGCCATTTTGCGCGTGCGCTGCTCGCCTC
GCGCCGCCCTCGGCTCTGCGGACTCGGATCCCGCCAAATTTGAACGCGAGATTGTCAGGC
CCTGAGGGGCTTGAGGGGCGGGGGAACGACGCCGCTCTCCAAAGTTGGACCCCGTGGCG
AGCGGCGGCGACAGCCGGGTGCTCGCTGCCTCCCGAGGTGCTCCCTTTTCCCGCCGAAG
CCCTCCACAGCGGCAGGCCGAGGCGCAGCGACGTGTCCCTGTACCCC  

7- Illumina probe ID = cg16867657  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr6:11044677-11045177 5'pad=200 3'pad=300 
strand=+  

CGccccctctcccacAGGGGCCTCGCCGGCCGCCGCGCCAGGAGGGCGCGCGGGGGA
GGGGCGCAGGGCAAGTGAggCGgCGcccccCGcccctgCGgcctCGCGCGcccccTCCTGGGCGA
CCGACCTCGCCCTCGCGTCCGCGGCGTCCCCTGCCGGCCGGGCGGCGATTTGCAGGTCC
AGCCGGCGCCGGTTTCGCGCGGCGGCTCAACGTCCACGGAGCCCCAGGAATACCCACCC
GCTGCCCAGATCGGCAGCCGCTGCTGCGGGGAGAAGCAGTATCGTGCAGGGCGGGCACG
CTGGTCTTGCTTACAGTTGGGCTTCGGTGGGTTTGAAGCACACATTAGGGGGAAATGGCTC
TGTTCCTGCAGGTTTGCGCAGTCTGGGTTTCTTAGGTTTAGGGGGTTGGGTGGGTTTCTCT
GGGGGTGCGGTGGGAAGCGGATCAGTTCGGATAACGGCCCTGAGCAAGAGTCTCTGTCC
CGCTCCCGGCCTGACGCGGGG  
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8- Illumina probe ID = cg23606718  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr2:131513627-131514227 5'pad=300 3'pad=300 
strand=+ 

AAAGCCGGCTCGAGCGCGGCCCGAGCGGCGGCGCAGGGAGGCGGCAGCCTGGC
GGAGCAGCCCCCAcCGCGgcCGgCGCGccccctCGccacccctgCGCGccagCGcCGgccCGccccTC
CCGCTGGCCTCTGGCGGCTTAACCCTCGCCTGCCCGACCCCGCGGGGCCCCTGGAGCCG
CGGTGGGTGGGTgCGggCGcCGggcctccccctccCGgcCGCGgCGCGCGgCGcCGggAGCTGAC
CGTGGTGCTGAGCGCGGCTCGCGCTCCGACGCGGTGCCCGAGCCTGTCGCGGCCGCGC
CCTGCTGCACTGCGGGCCCCCAGCGGTAAGTCGCCAAGGCCCCGAGAGGCTGCGTTGGT
CCTGCCCCGCGGATGTGGACCCCCGGGGAGGGCAAGGATTGGGGAATTTGGTGCATTCT
CTGGCGCGATGGACGGGCTGAGGGCAGGAAGCAGGGTCGACACCCTCCACCCAGCGGTT
CCCGGCGCAGTCAGGGGCCTGGGAGCGGTGACCCTTTTAGGTCTGGGCTAGGGAAGCGG
AGAAACCCTCCGCCGGCGGATGCAGGAGCTGAGGGAGAGCCAATATCGCTGTGAGGCCC
AT 
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9- Illumina probe ID = cg25124276  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr10:25463808-25464208 5'pad=200 3'pad=200 
strand=-  

TAAGAATGTTTCGAGATTGGCCCCGGGTGGCTAAGCTACCGTGCCCGCTGCGCGA
GGGGCCGGCTGGGGATTACGCACCTCGCAGCCTGGAGCCGAGCGGGTTACATGGCCTCG
CGTCGCAGAAATCAAGTCACCTGTGGCAGCGCTGGCCGCTCCCAGCGGCTGGAGTCAGC
CCGAGTCCGTCTCTCGGCCCGGCTGCCGCCACCGCCGCTCTCATTGAGGCGCGTTCAGAA
GCTGCTGCTGCTGCTGCCGCCGCGGCCGCCGAAGACGCTGCTCCATAGTCTCACCCGCC
GCAGGTCGTTCCCGCCTCCCGGCACTGGCTCCTCCTCGACCGCTTCGCCCGGAGGCGCG
GGGCGCGCGCCCAGACCCGCACCGCGAGCGCAGCCGCGACTCCCGAGGAG  

10- Illumina probe ID = cg18384097   

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr1:202129366-202129766 5'pad=200 3'pad=200 

strand=- 

AGCTGGCTTCCTGGAGCCTTCTCAGCCCTCAAagacagacCGacagacagacagacagCTG
GCAAGAGGCAGCCTGGGGGCCACAGCTGCTTCAGTAAGTATCTGAAGGGGGGACTGGGA
GTCCTGTGGCCCCGGGGGGTGCGAACTCCGGGGATATAAGAGGGCATCTCTAGGAGGGA
GTGCGGGAGGGCGAGTGGGGCGCCACAGTGCCTGGCTGGGGTATGGGTGCTCACAGACC
TGATGTCCCCAAGACGGGGGTGAGCAGGGAAGCCACAGGGAGCTACAAGGAGAGCAGAG
GCTGAAGGGACCTTTTCTGCTACCAGAGACCCTCGCTCTACCACTCACACCTGTGCCAGGC
CCATTCTGTCCCCTCACCTCCGTCCCTGCTGCCTTGGTGATTC  
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11- Illumina probe ID = cg00481951    

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr3:187387450-187387850 5'pad=200 3'pad=200 

strand=- 

CCTTCTAAAGAGTTTTGGTGCTTTTCTGGGTCCCTCAGCTCCCGAAGCTCTTGAGA
AAACTATCAAAGGCTAGAATCCCCTTCTAACTCTTTTTTTCCCCCATGATAAGCGCAGTCGG
TCACAGTTCAGGTGAGTTCTTACTTGGCATTCAAGAAAATTACAAAATCTGGGTAGTTGTCT
GGGCACGAAGCGACAATGGCGTCTATCCCTGGTGCTGACCCTGGGAAGCGCTGACCCAG
GTGCTGAAACGCAGACCTCTGAAGCTGCTACCTCTTAGCGTACCTCACTTCCAAACGTCGG
GACTAGGGCAAAGGGGCAATCTAAAGACCGAACGCCGTATGTTTGAGATTGTGAGAAGTCT
CGTTCCCCTACAGTTTACTTGGTAAAAATGGTAAAACAAT  

12- Illumina probe ID = cg19671120    

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr2:98962774-98963174 5'pad=200 3'pad=200 

strand=+  

TGTGAACTAATGACTTCTGCCTCTTTCGGACCGCCTTTGAGGCTCCAGAGCCTCAC
CTTACTTTCCCACGGAGAGGGAGGCCACAGGCTCCTTCAGCAGTCGCCGAGCAGAGTCCT
GGGCCGGGAGCGCGGGGGAGGGAGCGAGCGGAACTGCGCCTAGGAGGCCGAGGGAGG
AGGCGCTCCGCAGACCCTGGCGCGCCGCGGAGAAGCTCAAACTTTGGCAGGGTAAGGAT
TTTTAGGGGCTCTTGAGCTGGAATTTTTTGGGGGGCGCCGGGAGGTGTGCTGGGGCCGCA
GACCCCATACAGGAGGTAAGTTAGAGAACCACACGCAGGGGAGGGATGCTGCTGCTTCCA
GGGGCGGGCGCGGCGCTGTCCGCAGCCCCCGGTGCTGAAACGGGCCGCG  
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13- Illumina probe ID = cg14361627  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr7:130418916-130419316 5'pad=200 3'pad=200 

strand=-  

GCTACAGACTTGGGGATATTTGCAATTTAGTCTGAGAGCGGCGAACGGGGAGTGA
AATGGAATTCGAGACCACTTCGCTAACAATCGCAATTATGAACCGAAAGACATGTCAGGTAT
TAGCAATTTTTTTCCTTAAAAAAAAAAAAAACTTTCTGGGACTCCGCGGGACACCCAGCTGG
CGACGGACCAGCGGGCGGCGGGCTGCGGGGAGGGGGGGCGAGGCTGCTGCAACCCAGA
AGTTCCGACTGGGGAGTTTCGCTCTGTTACCATTACCTGGCTCGCCGGCAGAAGAAAGAAC
GCGGAGACAAGATAATTTCTGAGGCTGTTAAACATGACTTAGCCGGGGGGCCGCGCGTTC
CGAGGGGGTGTCCTGCGGGCCGGGGCGGGTCTCTGCCGCCCCCGCGGGCTCCGGTGCG
TCAGGGGCGCGTCAGGCGGGGCGGGCTCCGCGCGggCGgCGgCGgcagCGgCGgctgCGgC
GgCGgCGgCGgcagcaggCGgcaggCGgCGAGCACCCGGCCTCCTGCTTCTCGCTCGCCGGCG
GCCGGGCGGTCCCAGCATGTCGGCCGCCGTGGCGTGCCTGGACTACTTCGCCGCCGAGT
G  

14- Illumina probe ID = cg08928145  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr19:19625164-19625564 5'pad=200 3'pad=200 

strand=+  

CTCGGGGCCTGGTCGCAGGGAATCGCGGATGCGCATGCGCCTCCAGCTCCCGGG
ATCGCGGGGAACGTGGATTCCGAACAAGGGCAACTGCGGACTCCCCCGTGGGAAGAAAG
GGAGGGAAGCGGAAGGGAAAAAGCGCATGTGCAGCAGCACGCGGCAGCTTCGCATATTC
CCTCGAAGCGCGCCTCTTGCGCGTGCGCCGCCCTGGCCCAGTGCCCTTGGCTGCAGGAA
TGGCTGGAACCACCCGGCTTCTAGCCGGAGTCCCCGGCGCGCAGCCAGCAGTTGCGCGC
TACCTGGCCCGCGGAGGGCCTGGCGGACGGGCTGAACTGCAGCAGCTCGGCGATCAGGG
CCTTGCAGCGCTCGGACAGCTCGAGGCCTTCGGGATAGAGCACGCCGCGTTT  
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15- Illumina probe ID = cg12757011   

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr2:162280911-162281311 5'pad=200 3'pad=200 

strand=- 

AAACTAGCCATTCGTTACAATAAATTAACACTATGTACAATCATTTCACAGGCTTTGT
TCCACTAAAATTATTAACATCCCTAccatccatccatccatccatccaCTCGGGGATAAGAAAGGACGC
GCTGGGTGGGTCCAGGTTCTAGAGTCAACATCCTATGGTTAATGTGGAGGCCGAGACTTG
GCGGGTCGGAATCGCTGCTGCCTGACAGGACTGCCCAGGTCTCCTAAAGGTGAAGAGTTT
CATTACAAGAAAGAGAAGTAGGAGGTAAGAGAAAGACGAGGGGGAGGGGAATTGTAGGAG
GATAACTCCACAGAAGAAGAGTAAGTAGGAAAACCAAAAGGTTTACAGCAAAGTTGAAGGT
CGGTGAGCTAATTGCAGAGACTGCTGTGCAAAA  

16- Illumina probe ID = cg07547549  

Dark gray = Regions not covered and not tested  
Light gray = Regions of interest that were tested and did not pass 

QC  
Light blue = Regions of interest covered by amplicons that passed 

QC  
     CG         = Targeted CpG site  
     CG         = Adjacent CpG sites  

hg19_dna range=chr20:44658025-44658425 5'pad=200 3'pad=200 

strand=-  

CACGGGTGCCTGCTCTGCGCCAGGACGCCGGGGTCCCCTGTCGGGGAAAGGAGC
CCTCCTCCCGCCGTCGAGCTCCACATCAGCCCATTCTAGGTCTTCTATCCCCTTCCCACCG
CCTCCTCGGTTTAGCTAACCCAAGTCAGCCCGAAGCCGTGGGCAGCGATAATCCCCCGGC
CCGCAGCTCTGCCCCCGGGCGCGGCGCATTCCAGCACCTTGGACAGCGCCCGGAGCATT
CCAATGGAGCTGAGCTCCAGGCTGCAACTGGCGCCCACCGCCCGGGTCAGTCCCAGCCT
CCTCTCTGAAGGAGGTGGCCCCCGCTCCGCCTCTAACCCCAGAGCTGCCTCCTCTCCTCG
CTGCCCCCTCCCCCGCCGCCCCCGGACCACAGCTTACCCGGGTTGGCT  
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Table A1 Age-related CpG sites selected by elastic net regression. The training data contained 
527 samples assayed on the Illumina EPIC BeadChip. 

Probe ID UCSC1 Ref. 
Gene name 

UCSC Ref. 
Gene group Probe type Chr.2 Pos.3 

cg12642568 CALML6 5'UTR;1stExon EPIC chr1 1846648 
cg10397932 SKI Body HM450K chr1 2166155 
cg21919596 CHD5 Body HM450K chr1 6201851 
cg05808226 unknown unknown HM450K chr1 11837939 
cg01832549 CAPZB Body HM450K chr1 19774989 
cg12646386 unknown unknown HM450K chr1 23902856 
cg08876437 RUNX3 Body HM450K chr1 25228690 
cg03987199 OPRD1 Body HM450K chr1 29189655 
cg17957967 AZIN TSS1500 EPIC chr1 33546437 
cg05336094 POU3F1 1stExon HM450K chr1 38512238 
cg09547767 BMP8A 1stExon;5'UTR HM450K chr1 39957387 
cg24248329 NFYC 1stExon;5'UTR EPIC chr1 41175132 
cg07368443 PLK3 TSS1500 HM450K chr1 45265337 
cg04501188 FOXD2 1stExon HM450K chr1 47904171 
cg00600454 unknown unknown HM450K chr1 65468017 
cg08179881 DNAJC6 5'UTR;Body EPIC chr1 65735532 
cg03140521 GNG12 TSS1500 HM450K chr1 68299388 
cg13697378 DIRAS3 Body HM450K chr1 68512845 
cg05654164 C1orf52 TSS1500;TSS

1500 HM450K chr1 85725892 
cg10631373 RBMXL1;CCB

L2 
5'UTR;5'UTR;
5'UTR;5'UTR HM450K chr1 89457642 

cg25402655 GFI1 5'UTR;TSS150

0;1stExon EPIC chr1 92952297 
cg14375944 unknown unknown HM450K chr1 94316420 
cg24150153 ARHGAP29 TSS200 HM450K chr1 94703463 
cg01527715 ARHGAP29 TSS1500 EPIC chr1 94704159 
cg03373796 AGL TSS1500 EPIC chr1 100315483 
cg03502767 NTNG1 3'UTR EPIC chr1 108023486 
cg12100751 C1orf59 1stExon;5'UTR

;5'UTR HM450K chr1 109203672 
cg13673164 SYPL2 1stExon HM450K chr1 110009509 
cg18933331 unknown unknown HM450K chr1 110186418 
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cg05132925 unknown unknown HM450K chr1 110438827 
cg01715299 unknown unknown EPIC chr1 111535465 
cg00796661 unknown unknown EPIC chr1 116856120 
cg20760394 LINC01525 Body EPIC chr1 117855183 
cg00701051 unknown unknown HM450K chr1 145385391 
cg01427957 TNRC4 TSS1500 HM450K chr1 151689979 
cg06400319 SPRR2B TSS1500 HM450K chr1 153045274 
cg08684904 SPRR2B TSS1500 EPIC chr1 153045541 
cg16256492 ZBTB7B 3'UTR HM450K chr1 154989843 
cg06208270 MEX3A 3'UTR HM450K chr1 156046344 
cg16126393 MEX3A Body EPIC chr1 156046778 
cg18593717 HDGF TSS200 HM450K chr1 156722068 
cg16761098 POU2F1 Body EPIC chr1 167302476 
cg08745595 F5 TSS1500 EPIC chr1 169556012 
cg02053850 SYT2 5'UTR HM450K chr1 202612633 
cg12586428 BTG2 TSS1500 HM450K chr1 203274421 
cg11980944 unknown unknown HM450K chr1 205399731 
cg16966520 LGTN TSS1500 HM450K chr1 206786174 
cg10501210 unknown unknown HM450K chr1 207997020 
cg11206148 unknown unknown EPIC chr1 213779248 
cg09209787 PROX1-AS1 Body EPIC chr1 214151107 
cg27530209 H3F3A;LOC44

0926 
TSS200;TSS2

00 HM450K chr1 226250384 
cg16565196 RYR2 Body EPIC chr1 237395924 
cg15123428 KLF11 Body HM450K chr2 10186139 
cg16832267 KCNS3 5'UTR HM450K chr2 18060102 
cg15712057 unknown unknown HM450K chr2 19661795 
cg26427115 C2orf70 Body HM450K chr2 26785891 
cg09153930 DPYSL5 TSS1500 HM450K chr2 27070303 
cg06952880 FAM98A TSS200 HM450K chr2 33824362 
cg00881168 QPCT TSS1500 HM450K chr2 37570604 
cg23859635 MTA3 TSS1500 HM450K chr2 42795262 
cg20707764 MTA3 Body HM450K chr2 42796178 
cg02538752 ACYP2 TSS1500 EPIC chr2 54341965 
cg11807280 unknown unknown HM450K chr2 66654644 
cg22112832 unknown unknown HM450K chr2 71098542 
cg26090072 RTKN TSS1500 HM450K chr2 74669387 
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cg25040225 LBX2 TSS200 EPIC chr2 74726734 
cg06639320 FHL2 TSS200 HM450K chr2 106015739 
cg22454769 FHL2 TSS200 HM450K chr2 106015767 
cg02872546 unknown unknown EPIC chr2 109741578 
cg16532938 FIGN Body EPIC chr2 164584635 
cg11027822 ITGA6 Body HM450K chr2 173298550 
cg25343589 FSIP2;LOC10

1927196 TSS200;Body EPIC chr2 186603311 
cg23506322 FSIP2;LOC10

1927196 TSS200;Body EPIC chr2 186603317 
cg11928668 unknown unknown EPIC chr2 206754192 
cg14947101 DYTN Body EPIC chr2 207578484 
cg09410607 4-Mar TSS1500 HM450K chr2 217237040 
cg03708443 unknown unknown EPIC chr3 5347184 
cg11084334 LHFPL4 Body HM450K chr3 9594264 
cg07279842 unknown unknown EPIC chr3 10653031 
cg12899747 unknown unknown HM450K chr3 25391527 
cg11870261 TRANK1 TSS200 HM450K chr3 36986679 
cg27440986 VILL Body EPIC chr3 38045545 
cg06911020 MYRIP TSS200 HM450K chr3 39851123 
cg06957788 SNRK 5'UTR;5'UTR EPIC chr3 43343256 
cg26614073 SCAP TSS1500 HM450K chr3 47517819 
cg00664406 GRM2 TSS1500 HM450K chr3 51740875 
cg04453050 GRM2 TSS200 HM450K chr3 51740896 
cg03607117 SFMBT1 TSS1500 HM450K chr3 53080440 
cg15051960 WNT5A TSS200 HM450K chr3 55521376 
cg13722120 ERC2 5'UTR EPIC chr3 56487225 
cg16135090 unknown unknown HM450K chr3 62934644 
cg00232107 MAGI1 Body EPIC chr3 65390065 
cg07941411 CD80 5'UTR EPIC chr3 119276686 
cg27345757 MYLK 5'UTR HM450K chr3 123602795 
cg25707924 unknown unknown HM450K chr3 127174943 
cg12943155 PODXL2 TSS200 HM450K chr3 127347978 
cg24607783 PLSCR2 5'UTR HM450K chr3 146187037 
cg16181396 ZIC1 TSS1500 HM450K chr3 147126206 
cg06306198 ZIC1 Body HM450K chr3 147128998 
cg21196581 GPR160 5'UTR HM450K chr3 169780131 
cg13473356 PEX5L TSS200 HM450K chr3 179754613 
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cg13923516 unknown unknown EPIC chr3 182389621 
cg04612016 unknown unknown EPIC chr3 197386201 
cg09414241 IQCG Body EPIC chr3 197665448 
cg06110081 UVSSA Body EPIC chr4 1350335 
cg21678540 LINC01182 Body EPIC chr4 13929921 
cg06839255 unknown unknown EPIC chr4 25704841 
cg24570371 LOC439933 TSS200 EPIC chr4 36258130 
cg26777800 UGDH TSS1500 EPIC chr4 39530705 
cg01245787 DCK 1stExon HM450K chr4 71859630 
cg15540044 RCHY1 

5'UTR;TSS200

;1stExon;5'UT
R 

HM450K chr4 76439595 
cg25428494 HPSE Body HM450K chr4 84255411 
cg17071446 unknown unknown HM450K chr4 85402497 
cg16789776 unknown unknown EPIC chr4 99700028 
cg22118416 MGST2 Body HM450K chr4 140621943 
cg06633413 unknown unknown EPIC chr4 152913773 
cg05791548 unknown unknown EPIC chr4 180033854 
cg26703534 AHRR Body HM450K chr5 377358 
cg06430753 unknown unknown HM450K chr5 958808 
cg21788281 unknown unknown EPIC chr5 2038539 
cg06393703 unknown unknown EPIC chr5 3643101 
cg24087669 unknown unknown HM450K chr5 5419515 
cg16076065 LOC10050562

5 Body EPIC chr5 6706190 
cg11584519 11-Mar Body HM450K chr5 16175867 
cg00602326 RNASEN Body HM450K chr5 31427700 
cg13039251 PDZD2 Body HM450K chr5 32018601 
cg03230469 GDNF 5'UTR EPIC chr5 37837704 
cg14558406 unknown unknown EPIC chr5 55556553 
cg17621438 RNF180 TSS1500 HM450K chr5 63461216 
cg07850154 RNF180 TSS1500 HM450K chr5 63461232 
cg13793354 MCCC2 TSS1500 HM450K chr5 70882903 
cg11423680 unknown unknown HM450K chr5 72712836 
cg25231948 CAMK4 TSS1500 EPIC chr5 110559299 
cg04991447 SEMA6A 1stExon;5'UTR EPIC chr5 115910058 
cg08790036 unknown unknown HM450K chr5 118732897 
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cg11623339 MGC29506 1stExon HM450K chr5 138725482 
cg19505546 unknown unknown HM450K chr5 139017263 
cg24648119 PCDHA6 Body; HM450K chr5 140242639 
cg21548029 PCDHB5 1stExon HM450K chr5 140515675 
cg15389519 PCDHGB4 1stExon;Body HM450K chr5 140769585 
cg01224715 PCDHGA4 Body HM450K chr5 140811520 
cg12145907 PCDHGA4 Body HM450K chr5 140864834 
cg02760293 PPP2R2B 5'UTR HM450K chr5 146258785 
cg04117508 unknown unknown EPIC chr5 155297843 
cg01485938 UNC5A Body HM450K chr5 176304609 
cg02895588 EXOC2 3'UTR HM450K chr6 485915 
cg09781987 CDYL Body EPIC chr6 4828434 
cg17619993 BMP6 Body HM450K chr6 7728888 
cg16867657 ELOVL2 TSS1500 HM450K chr6 11044877 
cg22736354 NHLRC1 1stExon HM450K chr6 18122719 
cg06493994 SCGN 1stExon;5'UTR HM450K chr6 25652602 
cg01078434 MAS1L 1stExon HM450K chr6 29455532 
cg23061027 PRRT1 3'UTR HM450K chr6 32116207 
cg14027333 PRRT1 3'UTR HM450K chr6 32116317 
cg20245641 unknown unknown EPIC chr6 32668561 
cg18824596 HLA-DOA 3'UTR HM450K chr6 32972970 
cg18468088 unknown unknown HM450K chr6 35490818 
cg26129310 MDGA1 Body HM450K chr6 37664451 
cg08125215 unknown unknown EPIC chr6 43373300 
cg11947985 TMEM63B Body HM450K chr6 44119668 
cg13523038 TNFRSF21 Body EPIC chr6 47255889 
cg02344735 B3GAT2 Body HM450K chr6 71664559 
cg17852588 FILIP1 Body HM450K chr6 76059756 
cg00230815 unknown unknown EPIC chr6 85304889 
cg01393985 GABRR1 TSS200 HM450K chr6 89927651 
cg25838080 NR2E1 TSS200 EPIC chr6 108489026 
cg02799448 OLIG3 TSS1500 HM450K chr6 137817008 
cg26413501 unknown unknown EPIC chr6 140762703 
cg18418460 ULBP3 Body HM450K chr6 150390014 
cg07979390 LOC10272383

1 Body EPIC chr6 151529514 
cg02383285 unknown unknown HM450K chr6 169286348 
cg26224354 C7orf50 Body HM450K chr7 1096374 
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cg00880477 unknown unknown EPIC chr7 7963432 
cg20238678 HDAC9 TSS1500 EPIC chr7 18548578 
cg07522171 JAZF1-AS1 TSS1500 EPIC chr7 28218686 
cg02120774 IGFBP3 TSS1500 HM450K chr7 45961473 
cg12038684 VOPP1 TSS1500 EPIC chr7 55640726 
cg21040230 unknown unknown EPIC chr7 56243786 
cg07286216 LOC650226 Body HM450K chr7 56515846 
cg21005510 unknown unknown HM450K chr7 63353570 
cg01487661 unknown unknown HM450K chr7 63643277 
cg12464817 CDK14 TSS1500 EPIC chr7 90225378 
cg25235205 unknown unknown HM450K chr7 98970792 
cg18446045 VGF TSS1500 EPIC chr7 100809055 
cg02298479 CPED1 Body EPIC chr7 120661848 
cg14175438 FAM3C TSS1500 HM450K chr7 121036729 
cg21184711 CADPS2 Body HM450K chr7 122488330 
cg02383785 unknown unknown HM450K chr7 127808848 
cg08097417 KLF14 TSS1500 HM450K chr7 130419133 
cg07955995 KLF14 TSS1500 HM450K chr7 130419159 
cg03473532 MKLN1 Body HM450K chr7 131008743 
cg05245329 TMEM178B Body EPIC chr7 141126001 
cg05076820 LOC10012469

2 Body HM450K chr7 141871176 
cg09910601 EZH2 Body EPIC chr7 148517771 
cg21714581 ZNF862 TSS1500 EPIC chr7 149535134 
cg09215510 ABCB8 TSS1500 EPIC chr7 150724046 
cg08144358 unknown unknown HM450K chr7 156889781 
cg24216326 unknown unknown EPIC chr7 158799053 
cg07872300 DLGAP2 Body HM450K chr8 1553395 
cg24214068 NEFM TSS1500 EPIC chr8 24771265 
cg21088983 CLVS1 TSS200 HM450K chr8 62200463 
cg26290632 CALB1 1stExon HM450K chr8 91094847 
cg14758256 unknown unknown EPIC chr8 94834635 
cg04517323 LAPTM4B Body HM450K chr8 98788873 
cg08081156 SNX31 TSS200 HM450K chr8 101661976 
cg16835398 unknown unknown EPIC chr8 116837434 
cg00415665 ZHX2 5'UTR HM450K chr8 123875036 
cg10302505 MYC TSS1500 HM450K chr8 128748092 
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cg07118556 unknown unknown EPIC chr8 135816995 
cg18632612 unknown unknown EPIC chr8 140116347 
cg02290284 unknown unknown EPIC chr8 144275267 
cg01951863 PLGRKT Body EPIC chr9 5376323 
cg08709434 ACER2 TSS1500 EPIC chr9 19408334 
cg02616710 ACER2 TSS1500 HM450K chr9 19408584 
cg03462868 UBE2R2 TSS1500 EPIC chr9 33816424 
cg13566023 unknown unknown EPIC chr9 93732908 
cg17759214 unknown unknown EPIC chr9 94137295 
cg00590602 SPTLC1 TSS1500 EPIC chr9 94878253 
cg25514301 GRIN3A TSS1500 EPIC chr9 104501812 
cg05330471 unknown unknown EPIC chr9 121771590 
cg04517263 TRAF1 TSS200 HM450K chr9 123689193 
cg13871695 unknown unknown HM450K chr9 126101872 
cg24765394 FAM125B;FA

M125B 
TSS1500;TSS

1500 HM450K chr9 129088647 
cg20313295 AK1 TSS1500 EPIC chr9 130640786 
cg25073708 C9orf106 5'UTR HM450K chr9 132083538 
cg08637691 unknown unknown EPIC chr9 134989631 
cg14295611 unknown unknown HM450K chr9 136876366 
cg14004197 EXD3 Body HM450K chr9 140216230 
cg25438730 CACNA1B;CA

CNA1B Body;Body EPIC chr9 141001373 
cg06557316 unknown unknown EPIC chr10 2434356 
cg10542514 unknown unknown EPIC chr10 3879115 
cg14093395 LINC00702 TSS1500 EPIC chr10 4286917 
cg04968761 unknown unknown EPIC chr10 18971200 
cg17782713 BMI1 5'UTR HM450K chr10 22613360 
cg14532839 SPAG6 ExonBnd EPIC chr10 22680650 
cg13206721 GPR158;GPR

158-AS1 
TSS1500;Bod

y EPIC chr10 25463350 
cg13612317 KIF5B TSS1500 HM450K chr10 32345864 
cg10381520 unknown unknown HM450K chr10 33396942 
cg06559368 RET;RET Body;Body HM450K chr10 43573319 
cg00418663 C10orf105;CD

H23 5'UTR;Body HM450K chr10 73491922 
cg10558013 ZNF503 Body EPIC chr10 77043088 
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cg15767361 unknown unknown EPIC chr10 94837967 
cg15298486 BLOC1S2;BL

OC1S2 
TSS1500;TSS

1500 HM450K chr10 102046690 
cg04984663 unknown unknown HM450K chr10 102632048 
cg25546535 GFRA1;GFRA

1;GFRA1 
Body;Body;Bo

dy EPIC chr10 117898052 
cg11705975 PRLHR Body HM450K chr10 120354248 
cg19979225 unknown unknown EPIC chr10 132580986 
cg22424845 unknown unknown EPIC chr11 1404022 
cg10043090 HCCA2 Body HM450K chr11 1536810 
cg25601886 

INS;INS-

IGF2;INS-

IGF2 
TSS1500;TSS

1500;TSS1500 HM450K chr11 2183420 
cg03811319 unknown unknown HM450K chr11 2884118 
cg02462487 SLC22A18AS;

SLC22A18 
Body;TSS150

0 HM450K chr11 2920350 
cg09920974 OSBPL5;OSB

PL5;OSBPL5 
5'UTR;5'UTR;

5'UTR EPIC chr11 3155992 
cg23044178 MICAL2 5'UTR HM450K chr11 12136405 
cg02452500 unknown unknown HM450K chr11 13161927 
cg25160605 NELL1 Body HM450K chr11 21087846 
cg06731443 LGR4 TSS1500 HM450K chr11 27494710 
cg16343483 unknown unknown EPIC chr11 34023105 
cg12068553 DGKZ TSS1500 EPIC chr11 46367725 
cg12189835 SYT7 Body HM450K chr11 61335071 
cg13205113 MACROD1 Body EPIC chr11 63766918 
cg20495962 CATSPER1 Body HM450K chr11 65789003 
cg00630018 MAP6;MAP6 TSS1500;TSS

1500 EPIC chr11 75379680 
cg23461714 TTC12 TSS1500 HM450K chr11 113184990 
cg16208682 unknown unknown EPIC chr11 114127631 
cg06038490 unknown unknown EPIC chr11 123324673 
cg05526578 SIAE;SIAE Body;Body EPIC chr11 124514971 
cg02046143 IGSF9B Body HM450K chr11 133797911 
cg02925805 unknown unknown HM450K chr12 298484 
cg06167456 CACNA2D4 Body EPIC chr12 1906837 
cg25049091 CACNA2D4 TSS1500 EPIC chr12 2028156 
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cg21666867 DCP1B TSS1500 EPIC chr12 2114282 
cg19056004 

LRRC23;ENO

2;LRRC23;LR

RC23 
3'UTR;TSS150
0;3'UTR;3'UT

R 
HM450K chr12 7023262 

cg14834260 
ENO2;LRRC2

3;LRRC23;LR

RC23 
TSS1500;3'UT
R;3'UTR;3'UT

R 
EPIC chr12 7023269 

cg18071806 AEBP2;AEBP

2;AEBP2 
TSS1500;TSS
1500;TSS1500 EPIC chr12 19592058 

cg22083892 KCNJ8 TSS1500 EPIC chr12 21928661 
cg19722847 IPO8 TSS1500 HM450K chr12 30849114 
cg24221490 DENND5B TSS200 EPIC chr12 31743443 
cg10695848 HDAC7;HDAC

7 Body;Body HM450K chr12 48206783 
cg19354681 unknown unknown EPIC chr12 48223130 
cg04614625 unknown unknown HM450K chr12 52262736 
cg17436656 RARG TSS1500 HM450K chr12 53627106 
cg10409297 unknown unknown EPIC chr12 57621737 
cg11649376 ACSS3 Body HM450K chr12 81473234 
cg07975200 ANKS1B Body EPIC chr12 99525034 
cg19598685 ACACB Body HM450K chr12 109592525 
cg10778288 unknown unknown HM450K chr12 113917994 
cg26682900 HIP1R Body HM450K chr12 123344689 
cg24891133 C13orf33;C13

orf33 1stExon;5'UTR HM450K chr13 31480335 
cg15782451 unknown unknown EPIC chr13 34820887 
cg18138898 STK24 Body EPIC chr13 99141075 
cg01185345 STK24 Body HM450K chr13 99218287 
cg13921483 unknown unknown HM450K chr13 108657826 
cg00593462 unknown unknown HM450K chr13 110768493 
cg10400227 COL4A1;COL

4A1;COL4A2 
TSS1500;TSS

1500;Body EPIC chr13 110960772 
cg20235099 CARKD Body HM450K chr13 111288438 
cg05183386 TEX29;TEX29 Body;Body EPIC chr13 111995758 
cg22784964 ANG;RNASE4 TSS1500;TSS

1500 HM450K chr14 21151036 
cg13138043 unknown unknown HM450K chr14 54202939 
cg03032497 unknown unknown HM450K chr14 61108227 
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cg01894498 unknown unknown HM450K chr14 61655848 
cg17740900 unknown unknown EPIC chr14 64266659 
cg22820364 unknown unknown HM450K chr14 81901540 
cg14334310 unknown unknown HM450K chr14 103558502 
cg02210934 unknown unknown HM450K chr14 105511982 
cg13836627 TJP1;TJP1 Body;Body HM450K chr15 30113723 
cg12400336 TJP1;TJP1 TSS200;TSS2

00 HM450K chr15 30114871 

cg13412433 TJP1;TJP1;TJ

P1;TJP1 
TSS1500;TSS
1500;TSS1500

;Body 
EPIC chr15 30115098 

cg26736154 C15orf41;C15

orf41 Body;Body HM450K chr15 37020592 
cg21220286 DISP2 TSS1500 HM450K chr15 40650133 
cg01770755 unknown unknown HM450K chr15 41914122 
cg01166932 CGNL1;CGNL

1 5'UTR;5'UTR EPIC chr15 57698073 
cg27167601 RORA TSS1500 HM450K chr15 61521923 
cg27099280 CELF6;CELF6 1stExon;1stEx

on EPIC chr15 72612204 
cg20809087 BRUNOL6;BR

UNOL6 5'UTR;1stExon HM450K chr15 72612221 
cg25049597 CPLX3;CPLX3 1stExon;5'UTR HM450K chr15 75119018 
cg18110140 unknown unknown EPIC chr15 75350380 
cg08329821 TMC3-AS1 Body EPIC chr15 81623305 
cg05792169 unknown unknown HM450K chr15 85874227 
cg01351822 UNC45A;UNC

45A 5'UTR;1stExon HM450K chr15 91473475 
cg09150269 RAB11FIP3 1stExon EPIC chr16 476337 
cg01960979 IFT140 Body HM450K chr16 1611342 
cg08331960 SLC9A3R2;SL

C9A3R2 
TSS1500;TSS

1500 HM450K chr16 2076597 
cg04130886 unknown unknown HM450K chr16 2723694 
cg20106684 CACNG3 Body EPIC chr16 24269504 
cg27151362 DOC2A TSS1500 HM450K chr16 30023515 
cg13901319 unknown unknown HM450K chr16 33319362 
cg12641578 ITFG1-

AS1;ITFG1-

TSS1500;TSS

1500;1stExon;
EPIC chr16 47177648 
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AS1;NETO2;N

ETO2;NETO2;

NETO2 
1stExon;5'UTR

;5'UTR 
cg00094898 unknown unknown HM450K chr16 55365950 
cg07280206 BBS2 TSS1500 HM450K chr16 56554249 
cg08787607 ADGRG1 5'UTR HM450K chr16 57684303 
cg17650822 NDRG4;NDR

G4;NDRG4 
TSS1500;TSS

200;5'UTR EPIC chr16 58497795 
cg06320982 SLC38A7 TSS200 HM450K chr16 58718767 
cg06285333 AGRP;ATP6V

0D1;AGRP 
Body;TSS150

0;Body HM450K chr16 67516546 
cg05915866 ZFHX3 5'UTR HM450K chr16 73090838 
cg12959488 unknown unknown EPIC chr16 73094343 
cg03743982 LDHD;LDHD TSS200;TSS2

00 HM450K chr16 75150833 
cg03576805 unknown unknown HM450K chr16 82259458 
cg22979810 unknown unknown EPIC chr16 85148525 
cg27430293 unknown unknown HM450K chr16 89069935 
cg03172657 ACSF3;ACSF

3;ACSF3 
Body;5'UTR;5'

UTR HM450K chr16 89163625 
cg02228185 ASPA;ASPA 1stExon;Body HM450K chr17 3379567 
cg09451903 TRPV1;TRPV

1 
TSS1500;5'UT

R HM450K chr17 3501338 
cg20717792 unknown unknown EPIC chr17 17111358 
cg03259243 unknown unknown HM450K chr17 21356007 
cg23536675 WSB1;WSB1 TSS1500;TSS

1500 HM450K chr17 25620638 
cg13029847 SEZ6;SEZ6 TSS200;TSS2

00 HM450K chr17 27333273 
cg05000339 RAB11FIP4 Body HM450K chr17 29817128 
cg26314066 CNTD1;COA3 TSS1500;Bod

y EPIC chr17 40950091 
cg16931499 DBF4B;DBF4

B Body;Body HM450K chr17 42786676 
cg22704696 PHOSPHO1;P

HOSPHO1 Body;Body HM450K chr17 47302476 
cg11071401 CACNA1G TSS1500 HM450K chr17 48637194 
cg16987606 GPRC5C TSS1500 HM450K chr17 72426469 
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cg07030794 CD300LD;C17

orf77 
TSS1500;3'UT

R HM450K chr17 72589110 
cg17697835 SEPT9;SEPT9 TSS200;Body HM450K chr17 75283832 
cg19715771 CBX4 Body HM450K chr17 77810912 
cg22353329 CBX4 TSS1500 HM450K chr17 77814357 
cg06163904 CHMP6 TSS1500 HM450K chr17 78964779 
cg24870966 C17orf55 5'UTR HM450K chr17 79282893 
cg01419914 BAHCC1 Body HM450K chr17 79374691 
cg12194745 BAHCC1 Body HM450K chr17 79423649 
cg07497327 EPB41L3 TSS200 EPIC chr18 5629057 
cg02314019 PTPRM Body EPIC chr18 7575762 
cg15820059 unknown unknown EPIC chr18 36512980 
cg24217948 SETBP1;SET

BP1 5'UTR;5'UTR HM450K chr18 42261980 
cg17243289 SMAD2;SMAD

2;SMAD2 
TSS1500;TSS

1500;TSS1500 HM450K chr18 45458021 
cg12929062 unknown unknown EPIC chr18 65965879 
cg23540632 DOK6 Body EPIC chr18 67253448 
cg27159585 

CTDP1;CTDP

1;CTDP1;CTD

P1 
5'UTR;5'UTR;

1stExon;1stEx

on 
EPIC chr18 77439862 

cg07384708 THEG;THEG Body;Body HM450K chr19 372718 
cg13393785 LASS4 Body HM450K chr19 8317932 
cg00339281 ADAMTS10 TSS1500 EPIC chr19 8676470 
cg15013019 LYL1;LYL1 5'UTR;1stExon HM450K chr19 13213451 
cg26842596 CCDC105 TSS1500 HM450K chr19 15121297 
cg13640414 AKAP8L TSS1500 HM450K chr19 15530870 
cg20119148 PDE4C 5'UTR HM450K chr19 18344195 

ch.19.2146058

5R unknown unknown HM450K chr19 21668745 
cg15761414 MAG;MAG Body;Body HM450K chr19 35801014 
cg22891287 HSPB6;C19orf

55 
TSS1500;TSS

200 HM450K chr19 36248992 
cg09083721 unknown unknown EPIC chr19 36420908 
cg09474229 RINL Body HM450K chr19 39360330 
cg09431525 DLL3;DLL3 Body;Body HM450K chr19 39993313 
cg09255748 SELV TSS1500 HM450K chr19 40004995 
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cg24726064 
HNRNPUL1;H

NRNPUL1;HN

RNPUL1 
5'UTR;TSS150

0;TSS200 EPIC chr19 41770190 

cg00841035 
TMEM91;TME

M91;TMEM91;

TMEM91;TME

M91 

TSS1500;TSS

1500;TSS1500
;TSS1500;5'U

TR 
EPIC chr19 41880968 

cg15904523 ZNF233 TSS200 HM450K chr19 44763979 
cg20579054 ZNF233;ZNF2

33;ZNF233 
TSS200;1stEx

on;5'UTR EPIC chr19 44764048 
cg19351603 unknown unknown HM450K chr19 45943663 
cg21632975 NOVA2 Body HM450K chr19 46456210 
cg02807849 GRIN2D Body HM450K chr19 48908102 
cg04731544 LMTK3 Body HM450K chr19 49004834 
cg27064907 unknown unknown EPIC chr19 50594033 
cg24481841 NCRNA00085 Body HM450K chr19 52203721 
cg03071580 

KIR3DX1;KIR3

DX1;KIR3DX1;

KIR3DX1 
Body;Body;Bo

dy;Body EPIC chr19 55045144 
cg00149708 SBK2 TSS1500 HM450K chr19 56047884 
cg04126816 CCDC106 5'UTR HM450K chr19 56159710 
cg13341864 TGM6 Body HM450K chr20 2384435 
cg03738669 SLC4A11 TSS200 HM450K chr20 3218476 
cg02949067 PCSK2 3'UTR HM450K chr20 17463831 
cg13727122 NINL TSS200 HM450K chr20 25566180 
cg17261529 unknown unknown EPIC chr20 32778060 
cg09409865 PIGU Body EPIC chr20 33169887 
cg18660345 MYL9;MYL9 TSS1500;TSS

1500 HM450K chr20 35169539 
cg23640862 unknown unknown EPIC chr20 39389353 
cg08058894 TOX2;TOX2;T

OX2 
TSS1500;Bod

y;TSS1500 HM450K chr20 42544178 
cg09753064 JPH2 Body HM450K chr20 42788303 
cg07547549 SLC12A5;SLC

12A5 Body;Body HM450K chr20 44658225 
cg06881858 unknown unknown EPIC chr20 47139682 
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cg00387658 
CASS4;CASS

4;CASS4;CAS

S4 
TSS1500;TSS

1500;TSS1500
;TSS1500 

HM450K chr20 54986793 
cg06626338 unknown unknown EPIC chr20 56678844 
cg22961457 LIME1;SLC2A

4RG 
3'UTR;TSS150

0 HM450K chr20 62370310 
cg20943769 unknown unknown EPIC chr21 25098318 
cg01573121 DNAJC28;DN

AJC28 5'UTR;5'UTR HM450K chr21 34863117 
cg18635497 unknown unknown EPIC chr21 35349128 
cg18074297 CLIC6 TSS200 HM450K chr21 36041612 

cg25992321 
TMPRSS3;TM

PRSS3;TMPR

SS3;TMPRSS

3;TMPRSS3 

TSS1500;Bod
y;Body;Body;B

ody 
EPIC chr21 43809689 

cg16501323 AIRE TSS200 HM450K chr21 45705618 
cg03208198 

COL18A1;CO

L18A1;COL18

A1 
Body;Body;Bo

dy HM450K chr21 46898048 
cg27060381 TBC1D10A TSS1500 HM450K chr22 30723363 
cg21669271 unknown unknown EPIC chr22 35850810 
cg21737444 LGALS1 TSS200 HM450K chr22 38071591 
cg19853760 LGALS1;LGAL

S1 1stExon;5'UTR HM450K chr22 38071677 
cg19855470 CACNA1I;CA

CNA1I Body HM450K chr22 40060836 
cg00058879 CACNA1I;CA

CNA1I Body HM450K chr22 40082173 
cg09875523 unknown unknown HM450K chr22 46280123 

1 Based on UCSC Genome Browser database 
2 Chromosome 
3 Position based on the human assembly GRCh37, also known as hg19. 
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Table A2 267 AR CpG sites selected by elastic net regression across all tissues in the training 
data set. The chromosome coordinate is based on human genome assembly hg18.  

Probe's ID Chr. Coordinate Gene 

cg00236832 17 35719015 RARA 

cg00398048 4 178601336 AGA 

cg00417297 3 40493746 ZNF619 

cg00431549 12 14930292 MGP 

cg00540544 1 199742920 CSRP1 

cg00577167 9 103237496 ALDOB 

cg00718748 17 16497596 ZNF624 

cg00864867 12 78609399 PAWR 

cg00945507 7 54795171 SEC61G 

cg01027739 9 130882559 DOLPP1 

cg01027805 14 20636703 ZNF219 

cg01137065 17 78070299 FOXK2 

cg01234063 11 125731217 ST3GAL4 

cg01353448 7 31693437 C7orf16 

cg01459453 1 167865836 SELP 

cg01485645 17 34115725 MLLT6 

cg01511567 11 56860207 SSRP1 

cg01626227 7 99355225 TRIM4 

cg01632825 22 17658672 CLTCL1 

cg01644850 19 62885043 ZNF551 

cg01988129 8 67507490 ADHFE1 

cg02007844 12 21819257 KCNJ8 

cg02016419 17 15185962 TEKT3 

cg02049180 1 155094826 INSRR 

cg02317907 1 68288376 DIRAS3 

cg02331561 16 2331082 ABCA3 

cg02388150 8 41284856 SFRP1 

cg02477931 11 131037931 C11orf39 

cg02780295 5 140835647 PCDHGC3 

cg02810134 20 43889329 TNNC2 

cg02827112 4 95348426 SMARCAD1 
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cg02828104 20 48204207 Kua 

cg03019000 3 51679391 TEX264 

cg03103192 4 52612028 SPATA18 

cg03294619 5 172594409 NKX2-5 

cg03305230 17 17526063 RAI1 

cg03330058 3 128875093 ABTB1 

cg03464689 4 103641461 NFKB1 

cg03565323 17 16413591 ZNF287 

cg03640148 3 49019956 WDR6 

cg03641225 1 68285127 DIRAS3 

cg03843852 15 53398391 PIGB 

cg03975694 19 42734312 ZNF540 

cg03991512 16 73707957 LDHD 

cg04084157 7 100595769 VGF 

cg04119538 20 39090865 TOP1 

cg04240200 20 3399292 ATRN 

cg04452713 6 56815646 DST 

cg04464446 11 68209421 GAL 

cg04474832 3 51983527 ABHD14A 

cg04528819 7 130068855 KLF14 

cg04833845 19 48977916 KCNN4 

cg04836038 13 98537383 DOCK9 

cg04999691 7 149657983 C7orf29 

cg05294243 19 56260918 KLK13 

cg05442902 22 19699010 P2RXL1 

cg05467458 19 38052872 SLC7A9 

cg05600717 13 51276745 FLJ13639 

cg05624932 8 76059865 CRISPLD1 

cg05675373 1 110555780 KCNC4 

cg05965402 4 24844514 PI4K2B 

cg06220958 17 10393576 MYH2 

cg06222851 10 50640364 OGDHL 

cg06493994 6 25760581 SCGN 

cg06533629 7 130069910 KLF14 

cg06580318 2 169455365 SPBC25 
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cg06597861 8 144171947 LY6E 

cg06615861 1 10193778 KIF1B 

cg06780358 11 47959641 PTPRJ 

cg06810647 16 1605095 CRAMP1L 

cg06836772 1 56882991 PRKAA2 

cg06952310 19 19188990 CSPG3 

cg07034561 21 42789228 TSGA2 

cg07071881 22 31201139 FBXO7 

cg07158339 9 70840057 FXN 

cg07360076 4 1764437 FGFR3 

cg07388493 1 39264046 NDUFS5 

cg07441272 3 188340169 RPL39L 

cg07590705 7 132417050 CHCHD3 

cg08089301 17 44010560 HOXB4 

cg08209724 17 27701251 ZNF207 

cg08331960 16 2016598 SLC9A3R2 

cg08413469 1 68735528 DEPDC1 

cg08521225 18 27425975 TTR 

cg08537652 1 2976222 PRDM16 

cg08725962 5 175725099 ARL10 

cg08785215 3 57969019 FLNB 

cg08965235 11 65081734 LTBP3 

cg09084200 11 133601073 hCAP-D3 

cg09150232 7 50817133 GRB10 

cg09310112 19 4920989 JMJD2B 

cg09462576 1 226364496 MRPL55 

cg09497789 1 118529735 SPAG17 

cg09646392 13 107719053 TNFSF13B 

cg09809672 1 234624305 EDARADD 

cg10046620 6 27883021 HIST1H2AI 

cg10294836 19 45016586 DYRK1B 

cg10377274 11 125122098 PATE 

cg10486998 18 73090775 GALR1 

cg10523019 2 227408702 RHBDD1 

cg10588377 10 124211789 HTRA1 
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cg11025793 19 13123015 STX10 

cg11126134 13 30378304 FLJ14834 

cg11170796 19 1601224 TCF3 

cg11299964 9 127509604 MAPKAP1 

cg11377136 22 45037624 PKDREJ 

cg11673969 7 100262881 EPHB4 

cg12118011 1 177529918 SOAT1 

cg12351433 2 48836461 LHCGR 

cg12373771 22 15981381 CECR6 

cg12447832 2 3362264 TTC15 

cg12478185 17 10542726 SCO1 

cg12686016 7 27102002 HOXA1 

cg12688670 16 29709103 KIF22 

cg12774845 14 73556065 ENTPD5 

cg12903171 7 50818058 GRB10 

cg12946225 19 3524751 HMG20B 

cg13164537 18 65775051 CD226 

cg13382694 17 44795202 ZNF652 

cg13460409 21 37301440 DSCR6 

cg13526007 14 41146460 LRFN5 

cg13547237 11 65444453 Bles03 

cg13552869 16 29817425 SEZ6L2 

cg13672791 19 59107977 CACNG7 

cg13682722 14 89868321 C14orf102 

cg13697378 1 68285433 DIRAS3 

cg13870494 9 71848178 MAMDC2 

cg13899108 19 18205322 PDE4C 

cg13975369 7 129867789 TSGA14 

cg14121103 3 43706977 ABHD5 

cg14155397 15 64465836 MAP2K1 

cg14163776 3 196645869 CENTB2 

cg14258236 6 29431309 OR5V1 

cg14313310 1 182273439 GLT25D2 

cg14407667 1 51757797 EPS15 

cg14797887 15 54544604 MNS1 



 

 275 

cg14892066 4 184076257 DCTD 

cg14894144 18 19524552 LAMA3 

cg14925024 1 226358328 C1orf35 

cg15032239 15 20443395 CYFIP1 

cg15188491 1 145110730 PRKAB2 

cg15201877 1 71285561 PTGER3 

cg15341340 19 12853237 DNASE2 

cg15343119 18 73090773 GALR1 

cg15377518 2 144994583 ZFHX1B 

cg15379633 22 21817586 RAB36 

cg15473868 16 55274122 MT1X 

cg15648905 9 129252778 RPL12 

cg15701111 12 50971601 KRTHB1 

cg15804973 6 137156206 MAP3K5 

cg15974053 19 54031601 DHRS10 

cg16034652 14 92868062 KIAA1409 

cg16168311 1 154828571 APOA1BP 

cg16254764 3 13496178 HDAC11 

cg16273597 6 14225459 CD83 

cg16319578 14 64077265 HSPA2 

cg16338035 3 145173959 C3orf58 

cg16421589 5 167939339 PANK3 

cg16547529 11 74818329 FLJ33790 

cg16731240 19 57083062 ZNF577 

cg16744741 4 82345049 PRKG2 

cg16832407 9 72926359 TRPM3 

cg16984944 3 101462115 TBC1D23 

cg17096191 1 160305848 NOS1AP 

cg17324128 10 44775506 RASSF4 

cg17403875 14 54666109 LGALS3 

cg17575811 11 2422985 KCNQ1 

cg17589175 11 63841913 HSPC152 

cg17655614 16 67328445 CDH1 

cg17688525 18 6404978 L3MBTL4 

cg17861230 19 18204901 PDE4C 
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cg17940013 1 9111275 GPR157 

cg17945001 1 18306705 IGSF21 

cg17966192 2 108360548 SULT1C2 

cg18031008 1 148532935 MRPS21 

cg18440048 22 22423826 ZNF70 

cg18441959 22 20929332 VPREB1 

cg18573383 12 73889668 KCNC2 

cg18674980 8 86537833 CA3 

cg18740800 11 27871510 HSPCAL3 

cg18992688 1 204389864 AVPR1B 

cg19023700 7 130662889 MKLN1 

cg19029220 2 63921326 UGP2 

cg19055231 3 36397401 STAC 

cg19237753 20 1824215 PTPNS1 

cg19464016 6 106640651 PRDM1 

cg19523029 9 81376704 TLE4 

cg19526626 19 11770408 ZNF491 

cg19709625 3 144090671 PCOLCE2 

cg19722847 12 30740381 IPO8 

cg19761273 17 77825385 CSNK1D 

cg19941758 11 82675116 MDS025 

cg19945840 1 1157899 B3GALT6 

cg20240860 11 44043999 PHACS 

cg20300246 9 138236568 LHX3 

cg20557567 6 33347672 RPS18 

cg20630655 15 73705755 RNUT1 

cg20692569 7 72486417 FZD9 

cg20695562 1 77998224 USP33 

cg20702327 20 472484 CSNK2A1 

cg20716064 10 11692956 USP6NL 

cg20761322 15 76210619 CIB2 

cg20828084 15 78857906 KIAA1199 

cg20925811 20 44071924 MMP9 

cg21081971 13 37342765 TRPC4 

cg21341271 7 39572208 C7orf36 
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cg21389884 11 119104635 PVRL1 

cg21418052 13 30671806 B3GTL 

cg21801378 15 70399179 BRUNOL6 

cg21808053 1 68285651 DIRAS3 

cg21948783 12 47658741 WNT1 

cg22143352 14 74967594 JDP2 

cg22171829 7 95063456 PDK4 

cg22289837 8 86537530 CA3 

cg22395019 2 31215196 GALNT14 

cg22541143 4 84596316 HEL308 

cg22637507 11 43858983 ALKBH3 

cg22679120 7 2319928 SNX8 

cg22723026 14 20222292 ANG 

cg22736354 6 18230698 NHLRC1 

cg22809047 2 100984693 RPL31 

cg22920873 7 138675693 HSPC268 

cg22947000 16 79829782 BCMO1 

cg23081213 2 219404716 PRKAG3 

cg23089840 21 44699314 LRRC3 

cg23124451 22 37878077 CBX7 

cg23325242 22 41374732 CYB5R3 

cg23808301 17 4656972 PLD2 

cg23837897 17 50401269 COX11 

cg23873703 3 157321319 KCNAB1 

cg24058132 14 87529619 GALC 

cg24081819 8 27404857 EPHX2 

cg24127874 2 238814598 HES6 

cg24254120 13 33290869 RFC3 

cg24384676 14 36711715 SLC25A21 

cg24638647 17 39447773 TMEM101 

cg24860534 1 225573491 CDC42BPA 

cg24888049 15 89227671 FES 

cg24958765 19 45975507 RAB4B 

cg25101936 11 113434374 ZBTB16 

cg25141720 9 88751646 GAS1 
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cg25148589 4 158361386 GRIA2 

cg25420583 2 74539110 WBP1 

cg25475443 10 125796378 GALNAC4S-6ST 

cg25655096 12 6615553 GPR92 

cg25736482 19 59369044 TMC4 

cg25771195 16 56721315 GTL3 

cg25809905 17 39823254 ITGA2B 

cg25836301 14 100362059 MEG3 

cg25894551 11 117205061 FXYD2 

cg25915982 7 50816909 GRB10 

cg26005082 19 4720660 C19orf30 

cg26069745 7 27108725 HOXA2 

cg26356176 5 53849137 SNAG1 

cg26372517 1 35811746 TFAP2E 

cg26374101 9 139620634 ARRDC1 

cg26394940 22 44828125 FLJ10945 

cg26581729 9 139059613 NPDC1 

cg26614073 3 47492823 SCAP 

cg26738080 3 52462773 TNNC1 

cg26842024 19 16297122 KLF2 

cg27015931 16 21919905 MGC50721 

cg27016307 19 54350725 HRC 

cg27169020 15 81745233 BNC1 

cg27303880 1 64012776 ROR1 

cg27486427 3 25444923 RARB 

cg27544190 21 32707305 C21orf63 
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Appendix B: Participant information sheet 
and consent forms  

B1. Participant information sheet 

 
 
 
 

Name of department: Department of Pure and Applied Chemistry 
Title of the study: Identifying age related DNA methylation markers in saliva. 

 
Introduction 

Chief Investigator: 
Name: Dr Penny Haddrill 
Status: Teaching Fellow 
Tel.: 0141 548 4337 
E-mail: penny.haddrill@strath.ac.uk 
 
Co-Investigator: 
Name: Hussain Alsaleh  
Status: PhD Student  
Tel.: 01415485992  
E-mail: hussain-alsaleh@strath.ac.uk  
 

What is the purpose of this investigation? 

At present, there is ongoing research trying to find age related DNA methylation markers 

for different types of body fluids for reliable and accurate age estimation. Methylation is a chemical 

modification found in everybody’s DNA that changes over the course of a person’s life. Such 

markers would be invaluable for forensic practices, allowing investigators to estimate the age an 
individual – for example a perpetrator who left biological sample (saliva) at a crime scene. The 

aim of this study is to develop a method for generating intelligence information from biological 

evidence, especially saliva, by estimating the age of the individual who left their sample at a crime 

scene.    

Does your child have to take part? 
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This study involves participants donating biological samples in the form of saliva. 

Participation in this research is entirely voluntary and you have the right to refuse to give consent 

for your child to participate without giving a reason; refusing to allow your child participate will not 
negatively affect you or your child in any way. You also have the right to withdraw your child’s 

participation from this research at any time up to the completion of the project (estimated to be 

around the 10th January 2019) without detriment and without giving a reason, and ask for their 

data to be destroyed.  

 

What will your child do in the project? 

Your child will be required to provide the following type of biological samples: 

§ A saliva sample (less than 5 mL), collected by the participant themselves into a sterile 

tube. 

 
DNA will be extracted from the sample and methylation profiling will be carried out on the 

DNA.  This will involve measuring the level of DNA methylation present at different positions in the 

genome, and then relating the level of methylation to the chronological age of the sample donors 
using statistical analysis. Your child will therefore also be required to provide their age when you 

agree that they can donate a sample.  

 

The sample processing will take place at both the Centre for Forensic Science, University 

of Strathclyde, Royal College Building, 204 George Street, Glasgow, G1 1XW, and the Zymo 

Research’s services labs in U.S.A. No payments will be provided for taking part in this research. 

Why has your child been invited to take part?  

In order to study the ageing of saliva, it is essential that these samples are collected from 

volunteers; these samples cannot be simulated.  All participants aged 12 and over in age are 

welcomed to participate, in order to provide the necessary biological samples. 

What are the potential risks to you in taking part? 

Handling a biological sample such as saliva may carry a small risk of infection, but 

participants will be asked only to handle their own biological samples.  

What happens to the information in the project?  
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All participants’ information will be kept confidential. In order to preserve anonymity, 

samples will be labelled with a code that does not contain any information allowing the participant 

to be identified, except for by the investigators, to allow a participant’s sample and data to be 
identified, removed and destroyed should they subsequently wish to withdraw. All data outputs 

will be stored electronically on password-protected computers only accessible by the investigators. 

Electronic data may be retained indefinitely in this form, but no information will be put onto any 

databases. All biological samples (e.g. DNA samples) will be securely disposed of within 1 month 

of the conclusion of the study, which is estimated to be around the 10th January 2019. Once the 

project is completed, the codes linking identity with samples will be deleted and after this point 

participants will no longer be able to withdraw from the study.  

 
The outcomes of this study will be written into a PhD thesis by co-investigator Hussain 

Alsaleh. In addition, it is envisaged that the outcomes of this study will be written into 

journal/conference publication(s). In neither form of publication will any information be included 

that could allow the participants to be identified.  

 

The University of Strathclyde is registered with the Information Commissioner’s Office who 

implements the Data Protection Act 1998. All personal data on participants will be processed in 
accordance with the provisions of the Data Protection Act 1998. 

 

Thank you for reading this information – please ask any questions if you are unsure about 

what is written here.  

What happens next? 

If you are happy for your child to be involved in the project after explaining the project to 

them and are happy for them to provide a sample, please sign the consent form provided to 

confirm this. The researcher will also explain the project to your child and ask them to verbally 

consent to say they are willing to participate in the project. Please note that participants will not be 

informed of the specific results of the tests.  

 

If you do not want to be involved in the project, we would like to thank you for your 

attention.  
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Researcher contact details: 
Hussain Alsaleh, PhD Student 

             Centre for Forensic Science, Department of Pure and Applied Chemistry 
             University of Strathclyde 
             Royal College, 204 George Street, Glasgow, G1 1XW 
            Telephone: 0141 958 5992 
            E-mail: hussain-alsaleh@strath.ac.uk 
 
Chief Investigator details:  

Dr Penny Haddrill, Teaching Fellow 
Centre for Forensic Science, Department of Pure and Applied Chemistry 
University of Strathclyde 
Royal College, 204 George Street, Glasgow, G1 1XW 
Telephone: 0141 548 4377 
E-mail: penny.haddrill@strath.ac.uk 
 
 

This investigation was granted ethical approval by the Department of Pure and Applied 

Chemistry Ethics Committee. 

If you have any questions/concerns, during or after the investigation, or wish to contact 

an independent person to whom any questions may be directed or further information may be 

sought from, please contact: 

 
Secretary to the University Ethics Committee 
Research & Knowledge Exchange Services 
University of Strathclyde 
Graham Hills Building 
50 George Street 
Glasgow 
G1 1QE 
Telephone: 0141 548 3707 
Email: ethics@strath.ac.uk 
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B2. Consent Form 

 

 

Name of department: Department of Pure and Applied Chemistry 

Title of the study: Identifying age related DNA methylation markers in saliva. 

§ I confirm that I have read and understood the information sheet for the above project and the 
researcher has answered any queries to my satisfaction.  

§ I understand that my participation is voluntary and that I am free to withdraw from the project 
at any time, up to the point of completion of the study, without having to give a reason and 
without any consequences. If I exercise my right to withdraw and I don’t want my data to be 
used, any data which have been collected from me will be destroyed. However, I understand 
that upon the completion of the study I will no longer be able to withdraw.   

§ I understand that any information recorded in the investigation will remain confidential and no 
information that identifies me will be made publicly available.  

§ I consent to being a participant in the project. 
§ I understand that I will be asked to donate a saliva sample, collected by myself into a tube. 
§ I consent to the DNA in my samples being analysed. 
§ I consent to the taking of biological samples from me, and understand that they will be the 

property of the University of Strathclyde.  
§ I understand that all of my biological samples will be securely destroyed within one month of 

the end of the project, which is estimated to be on the 10th of January 2019.  

Please provide the information below:  

Age :  

Gender 
: (optional)  

 

(PRINT NAME) Date: 

Signature of Participant: 
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B3. Parent’s Consent Form 

 

 

Name of department: Department of Pure and Applied Chemistry 

Title of the study: Identifying age related DNA methylation markers in saliva. 

§ I confirm that I have read and understood the information sheet for the above project and the 
researcher has answered any queries to my satisfaction.  

§ I understand that my child’s participation is voluntary and that I am free to withdraw their 
participation from the project at any time, up to the point of completion of the study, without 
having to give a reason and without any consequences. If I or my child exercise my child’s 
right to withdraw and don’t want the data to be used, any data which have been collected from 
my child will be destroyed. However, I understand that upon the completion of the study it will 
no longer be possible to withdraw.   

§ I understand that any information recorded in the investigation will remain confidential and no 
information that identifies my child will be made publicly available.  

§ I consent to my child being a participant in the project. 
§ I understand that my child will be asked to donate a saliva sample, collected by the child 

themselves into a tube. 
§ I consent to the DNA in my child’s samples being analysed. 
§ I consent to the taking of biological samples from my child, and understand that they will be 

the property of the University of Strathclyde. 
§ I understand that all of my child’s biological samples will be securely destroyed within one 

month of the end of the project, which is estimated to be on the 10th of January 2019.  

Please provide the information below:  

Age :  

Gender 
: (optional)  

 

(PRINT NAME) (PARENT) (PRINT NAME)(CHILD) 

Signature of Parent: Date: 
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Appendix C: R codes used for DNA 
methylation analysis  

Appendix C1: R codes used for Chapter 3  

This section provides the R codes used in Chapter 3, to identify the optimum 

method for identifying age related CpG sites and build a saliva-specific HM450k 

model.  

library(GEOquery) 
  
 GSE59509 <- getGEO("GSE59509",getGPL = FALSE,AnnotGPL = FALSE,GSEMatrix = TRU
E) 
 
# Storing expression data, phenotype data, and feature data 
GSE59509exprs <- as.data.frame(exprs(GSE59509[[1]])) 
GSE59509pheno<-pData(phenoData(GSE59509[[1]])) 
GSE59509feature <- read.table("/Users/husainalsaleh/AgePrediction_cache/GSE59509fe
ature.txt", header = TRUE) 

sum(is.na(GSE59509exprs)) 
# Removing NA values  
GSE59509exprs_NoNa=GSE59509exprs[complete.cases(GSE59509exprs),] 
# Check 
sum(is.na(GSE59509exprs_NoNa)) 
# The number of remaining CpG sites  
nrow(GSE59509exprs) 

colors <- terrain.colors(42, alpha = 1) 
plot(density(GSE59509exprs_NoNa[,1]), col="red",ylim=c(0,5.4) ,xlab = "DNA Methylation Le
vel -Beta values", main="Beta values in all samples") 
for (i in 2:42) {lines(density(GSE59509exprs_NoNa[,i]),col=colors[i]) } 
# or plot(density(na.omit(GSE59509exprs[,1])), col="red",ylim=c(0,5.4) ,xlab = "DNA Methylation 
Level -Beta values", main="Beta values in all samples") 

# Removing outlier  
knitr::kable(GSE59509pheno[1,c(4,10,6,13)]) 
 
GSE59509exprs_NoOut=GSE59509exprs_NoNa[,-c(1)] 
 
# New dimension of the dataset  
dim(GSE59509exprs_NoOut) 
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probeII= subset(GSE59509feature, Infinium_Design_Type == "II" , select=ID ) 
probeI= subset(GSE59509feature, Infinium_Design_Type == "I" , select=ID ) 
 
probeI=as.character(probeI$ID) 
probeII=as.character(probeII$ID) 
 
#setting type I and II infinium  
GSE59509exprsI=GSE59509exprs_NoOut[rownames(GSE59509exprs_NoOut) %in% probeI,] 
GSE59509exprsII=GSE59509exprs_NoOut[rownames(GSE59509exprs_NoOut) %in% probeII,
] 

plot(density(GSE59509exprsI[,1],from=0, to=1), col="red",ylim=c(0,7) ,xlab = "DNA Methylati
on Level (Beta values)", main=" Raw Data",cex.main=2.3, font.lab=2,cex.lab=1.5) 
for (i in 2:41) {lines(density(GSE59509exprsI[,i],from=0, to=1), col="red")} 
for (i in 1:41) { lines(density(GSE59509exprsII[,i],from=0, to=1), col="blue")} 
legend(x=0.3,y=7,c("Infinium I","Infinium II"),cex=1.6,col=c("Red","blue"),lwd=3.5,bty="n") 

 

NewGSE59509feature<-GSE59509feature[ rownames(GSE59509feature) %in% rownames(G
SE59509exprs_NoOut), ] 
Probe_design=as.character(NewGSE59509feature$Infinium_Design_Type) 
pro<-gsub("I", "1", Probe_design) 
pro<-gsub("11", "2", pro) 
pro =as.integer(pro) 
# Checking if the length of probe design is equal to number of probes in the data  
length(pro) == nrow(GSE59509exprs_NoOut) 

 

# Normalisation  
library(wateRmelon) 
GSE59509exprsList=list() 
for (i in 1:41) {GSE59509exprsList[[i]]<-BMIQ(GSE59509exprs_NoOut[,i], pro, doH = TRUE, nfit 
= 50000, th1.v = c(0.2, 0.75), th2.v = NULL, niter = 5, tol = 0.001)} 
# Joining the data togather in dataframe  
NormalGSE59509<-data.frame("1"= GSE59509exprsList[[1]]$nbeta, "2"= GSE59509exprsList[[
2]]$nbeta, "3"= GSE59509exprsList[[3]]$nbeta,"4" = GSE59509exprsList[[4]]$nbeta, "5"= GSE5
9509exprsList[[5]]$nbeta, "6"= GSE59509exprsList[[6]]$nbeta,  "7"= GSE59509exprsList[[7]]$nb
eta, "8"= GSE59509exprsList[[8]]$nbeta, "9"= GSE59509exprsList[[9]]$nbeta, "10"= GSE59509
exprsList[[10]]$nbeta,"11"= GSE59509exprsList[[11]]$nbeta,"12"=GSE59509exprsList[[12]]$nb
eta,"13"=GSE59509exprsList[[13]]$nbeta,"14"=GSE59509exprsList[[14]]$nbeta,"15"=GSE5950
9exprsList[[15]]$nbeta,"16"=GSE59509exprsList[[16]]$nbeta,"17"=GSE59509exprsList[[17]]$nb
eta,"18"=GSE59509exprsList[[18]]$nbeta,"19"=GSE59509exprsList[[19]]$nbeta,"20"=GSE5950
9exprsList[[20]]$nbeta,"21"=GSE59509exprsList[[21]]$nbeta,"22"=GSE59509exprsList[[22]]$nb
eta,"23"=GSE59509exprsList[[23]]$nbeta,"24"=GSE59509exprsList[[24]]$nbeta,"25"=GSE5950
9exprsList[[25]]$nbeta,"26"=GSE59509exprsList[[26]]$nbeta,"27"=GSE59509exprsList[[27]]$nb
eta,"28"=GSE59509exprsList[[28]]$nbeta,"29"=GSE59509exprsList[[29]]$nbeta,"30"=GSE5950
9exprsList[[30]]$nbeta,"31"=GSE59509exprsList[[31]]$nbeta,"32"=GSE59509exprsList[[32]]$nb
eta,"33"=GSE59509exprsList[[33]]$nbeta,"34"=GSE59509exprsList[[34]]$nbeta,"35"=GSE5950
9exprsList[[35]]$nbeta,"36"=GSE59509exprsList[[36]]$nbeta,"37"=GSE59509exprsList[[37]]$nb
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eta,"38"=GSE59509exprsList[[38]]$nbeta,"39"=GSE59509exprsList[[39]]$nbeta,"40"=GSE5950
9exprsList[[40]]$nbeta,"41"=GSE59509exprsList[[41]]$nbeta, row.names=(row.names(GSE595
09exprs_NoOut))) 
# Naming the samples with their original accession ID 
colnames(NormalGSE59509)<-colnames(GSE59509exprs) 

 

# Setting vectors for type I and II infinium probes for plotting  
NormalGSE59509typeI=NormalGSE59509[rownames(NormalGSE59509) %in% probeI,] 
NormalGSE59509typeII=NormalGSE59509[rownames(NormalGSE59509) %in% probeII,] 
# Ploting  
plot(density(NormalGSE59509typeI[,1],from=0,to=1), col="red",ylim=c(0,7) ,xlab = "DNA Meth
ylation Level (Beta values)", main=" Normalised Data",cex.main=2.2, font.lab=2,cex.lab=1.5
) 
for (i in 2:41) {lines(density(NormalGSE59509typeI[,i],from=0,to=1), col="red")} 
for (i in 1:41) { lines(density(NormalGSE59509typeII[,i],from=0,to=1), col="blue")} 
legend(x=0.3,y=6.5,c("Infinium I","Infinium II"),cex=1.6,col=c("Red","blue"),lwd=3.5,bty="n") 

palette(rainbow(6)) 
tissues<-(as.character(GSE59509pheno[-1,13])) 
tissues<-sub("tissue:", "", tissues) 
boxplot(NormalGSE59509[,c(1,2,3,4,5,28,29,30,31,38,39,6,7,8,9,10,11,41,40,35,34,33,32,12,1
3,14,15,16,17,18,19,20,21,22,23,24,25,26,27,37,36)],ylab = "DNA methylation level", notch=F
ALSE,las=2, main="Distribution of Beta-values Across Tissues",col=c(rep(2,11),rep(3,12),r
ep(4,3),rep(1,3),rep(5,12)), cex.axis = 0.7, names=tissues[c(1,2,3,4,5,28,29,30,31,38,39,6,7,8,9
,10,11,41,40,35,34,33,32,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,37,36)])  

 

# Probe filtration  

chr<-c("X","Y") 
t<-subset(GSE59509feature, CHR %in% chr) # where chr is character containing "X" "Y" 
sexprobes<-as.character(t$ID) 
length(sexprobes) 
xfiltered_NormalGSE59509=NormalGSE59509[!rownames(NormalGSE59509) %in% sexprobe
s, ] 
dim(xfiltered_NormalGSE59509) 

PriceAnno<-read.csv("/Users/husainalsaleh/AgePrediction_cache/PriceAno.csv", header 
= TRUE) 
names(PriceAnno) 
length(which(PriceAnno$XY_Hits == "XY_YES")) 
XY_hits<-which(PriceAnno$XY_Hits == "XY_YES") 
XY_hits_ProbeID<-as.character(PriceAnno[XY_hits,1]) 
xfiltered_XYHit_NormalGSE59509=xfiltered_NormalGSE59509[! rownames(xfiltered_NormalG
SE59509) %in% XY_hits_ProbeID, ] 
length(which(PriceAnno$Autosomal_Hits == "A_YES")) 
Autosomal_hits<-which(PriceAnno$Autosomal_Hits == "A_YES") 
Autosomal_hits_ProbeID<-as.character(PriceAnno[Autosomal_hits,1]) 
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xfiltered_XYHit_Auto_NormalGSE59509<-xfiltered_XYHit_NormalGSE59509[! rownames(xfilter
ed_XYHit_NormalGSE59509) %in% Autosomal_hits_ProbeID,] 

SNPprobes=as.character(PriceAnno$SNPprobe) 
SNPprobes=sub("","nosnp", SNPprobes) # To fecilitate the imputation of probes with SNP  
noSNP_position<-which(SNPprobes == "nosnp") 
length(noSNP_position) 
Probe_Name_No_SNP<-as.character(PriceAnno[ noSNP_position,1]) 
xfiltered_XYHit_Auto_SNP_NormalGSE59509<-xfiltered_XYHit_Auto_NormalGSE59509[rowna
mes(xfiltered_XYHit_Auto_NormalGSE59509) %in% Probe_Name_No_SNP,] 

# Rename the filtered expression data  
# NorFilter_GSE59509=xfiltered_XYHit_Auto_SNP_NormalGSE59509 
 
NorFilter_GSE59509 <- read.table("/Users/husainalsaleh/AgePrediction_cache/NorFilter_
GSE59509_Original.txt", header = TRUE) 

 

# SVD  

Row_Mean<-rowMeans(NorFilter_GSE59509) 
NorFilter_GSE59509_Centered<-NorFilter_GSE59509 - Row_Mean 
# Then preform svd analysis  
svd1=svd(NorFilter_GSE59509_Centered) 

plot(svd1$d^2/sum(svd1$d^2),main="The Precent Variance Explained by Singular Values
",ylab="Precent Explained", col="blue", cex=2, pch=19, cex.main=1.5, cex.lab=1.4,cex.axis=.9
, xlab="No. of Singular values") 

ggplot(as.data.frame(svd1$v), aes(svd1$v[,1],svd1$v[,2],color=tissues)) + geom_point(size=7
,alpha=0.7)+ggtitle("Singular Value Decomposition (SVD)") + xlab("SV1") +ylab("SV2")+la
bs(color="Tissue Type",face="bold",size=25)+ theme(plot.title = element_text(size=21,face="
bold"))+ theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_t
ext(size=15,face="bold")) 

ggplot(as.data.frame(svd1$v), aes(svd1$v[,2],svd1$v[,3],color=tissues)) + geom_point(size=7
,alpha=0.7)+ggtitle("Singular Value Decomposition (SVD)") + xlab("SV2") +ylab("SV3")+la
bs(color="Tissue Type",face="bold",size=25)+ theme(plot.title = element_text(size=21,face="
bold"))+ theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_t
ext(size=15,face="bold")) 

# Required packages for Cluster Analysis  
 
library(devtools) 
library(Biobase) 
library(dendextend) 
 
# First we add tissue type as sample's name  
NorFilter_GSE59509_Tissuenames = NorFilter_GSE59509 
colnames(NorFilter_GSE59509_Tissuenames) <- tissues 
hclust1 <- hclust(dist(t(NorFilter_GSE59509_Tissuenames))) 
dend <- as.dendrogram(hclust1) 
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dend <- color_labels(hclust1, 3, col = 1:4) 
par(mar = c(5, 5, 4, 9)) 
plot( dend, xlab = "Distance", main = "Dendrogram", horiz = T, cex.main = 2.5, cex.lab = 1.2, f
ont.lab = 2) 

 

# Spearman’s rank correlation  
cl <- makeCluster(2) 
registerDoParallel(cl) 
Cor.rvalues <- foreach (i = 1 : (ncol(Train_data_transp)-1))  %dopar% { cor(Train_data_transp[,
ncol(Train_data_transp)], Train_data_transp[,i], method = "spearman") } # Spearman  
Cor.r<-unlist(Cor.rvalues) 

cl<-makeCluster(2) 
registerDoParallel(cl) 
Cor.pvalues<- foreach (i= 1:(ncol(Train_data_transp)-1) ) %dopar% {cor.test(Train_data_trans
p[,ncol(Train_data_transp)], Train_data_transp[,i], method = "spearman")$p.value } 
Cor.p<-unlist(Cor.pvalues) 

# The qqunit.plot function has been loaded but not shown here in the report 
qqunif.plot(Cor.p) 

 objM<- qvalue(Cor.p,  pi0.method = "smoother", fdr.level= 0.05) 
summary(objM) 

plot(objM) 

# the significant probes under the fdr.level 0.05 will have TURE in obj$significant  
ProbesSigTFM<-objM$significant 
sigProbes_Cor<-(which(ProbesSigTFM == TRUE)) 
SigPvalues_Cor1<-Cor.p[sigProbes_Cor] 
SigPvalues_Cor<-unlist(SigPvalues_Cor1) 

# Spearman’s with M value  
cl <- makeCluster(2) 
registerDoParallel(cl) 
Cor.rvaluesM <- foreach (i = 1 : (ncol(Train_data_M_age)-1))  %dopar% { cor(Train_data_M_a
ge[,ncol(Train_data_M_age)], Train_data_M_age[,i], method = "spearman") } # Spearman  
Cor.rM<-unlist(Cor.rvaluesM) 

cl<-makeCluster(2) 
registerDoParallel(cl) 
Cor.pvaluesM<- foreach (i= 1:(ncol(Train_data_M_age)-1) ) %dopar% {cor.test(Train_data_M_
age[,ncol(Train_data_M_age)], Train_data_M_age[,i], method = "spearman")$p.value } 
Cor.pM<-unlist(Cor.pvaluesM) 

# The qqunit.plot function has been loaded but not shown here in the report 
qqunif.plot(Cor.pM) 

 objMM<- qvalue(Cor.pM,  pi0.method = "smoother", fdr.level= 0.05) 
summary(objMM) 

plot(objMM) 
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# the significant probes under the fdr.level 0.05 will have TURE in obj$significant  
ProbesSigTFMM<-objMM$significant 
sigProbes_CorM<-(which(ProbesSigTFMM == TRUE)) 
SigPvalues_Cor1M<-Cor.pM[sigProbes_CorM] 
SigPvalues_CorM<-unlist(SigPvalues_Cor1M) 

 

# Pearson’s correlation with Beta value  
Cor.rvaluesP <- foreach (i = 1 : (ncol(Train_data_transp)-1))  %dopar% { cor(Train_data_trans
p[,ncol(Train_data_transp)], Train_data_transp[,i], method = "pearson") } # pearson   
Cor.rP<-unlist(Cor.rvaluesP) 

 

Cor.pvaluesP<- foreach (i= 1:(ncol(Train_data_transp)-1) ) %dopar% {cor.test(Train_data_tran
sp[,ncol(Train_data_transp)], Train_data_transp[,i], method = "pearson")$p.value } 
Cor.pP<-unlist(Cor.pvaluesP) 

# The qqunit.plot function has been loaded but not shown here in the report 
qqunif.plot(Cor.pP) 

objMP<- qvalue(Cor.pP,  pi0.method = "smoother", fdr.level= 0.05) 
summary(objMP) 

# the significant probes under the fdr.level 0.05 will have TURE in obj$significant  
ProbesSigTFMP<-objMP$significant 
sigProbes_CorP<-(which(ProbesSigTFMP == TRUE)) 
SigPvalues_Cor1P<-Cor.pP[sigProbes_CorP] 
SigPvalues_CorP<-unlist(SigPvalues_Cor1P) 
 

# Pearson’s with M value  
 
Cor.rvaluesMP <- foreach (i = 1 : (ncol(Train_data_M_age)-1))  %dopar% { cor(Train_data_M_
age[,ncol(Train_data_M_age)], Train_data_M_age[,i], method = "pearson") } # Spearman  
Cor.rMP<-unlist(Cor.rvaluesMP) 

Cor.pvaluesMP<- foreach (i= 1:(ncol(Train_data_M_age)-1) ) %dopar% {cor.test(Train_data_
M_age[,ncol(Train_data_M_age)], Train_data_M_age[,i], method = "pearson")$p.value } 
Cor.pMP<-unlist(Cor.pvaluesMP) 

# The qqunit.plot function has been loaded but not shown here in the report 
qqunif.plot(Cor.pMP) 

objMMP<- qvalue(Cor.pMP,  pi0.method = "smoother", fdr.level= 0.05) 
summary(objMMP) 

# the significant probes under the fdr.level 0.05 will have TURE in obj$significant  
ProbesSigTFMMP<-objMMP$significant 
sigProbes_CorMP<-(which(ProbesSigTFMMP == TRUE)) 
SigPvalues_Cor1MP<-Cor.pMP[sigProbes_CorMP] 
SigPvalues_CorMP<-unlist(SigPvalues_Cor1MP) 
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# Simple linear regression   

CoefEsts.for = matrix(NA, nrow = (ncol(Train_data_transp)-1), ncol = 3) # this is to design matri
x for inputs  
rownames(CoefEsts.for) = colnames(Train_data_transp)[1:(ncol(Train_data_transp)-1)] 
colnames(CoefEsts.for) = c("Intercept", "Coef","Pvalue")  
for (i in 1:(ncol(Train_data_transp)-1)) { fit = lm(Train_data_transp[,ncol(Train_data_transp)]~Tr
ain_data_transp[,i]) ;CoefEsts.for[i,] = summary(fit)[[4]][c(1,2,8)] } 

# Making a vector of pvalues 
Reg.p=CoefEsts.for[,3] 
# Q-Q plot 
qqunif.plot(Reg.p) 

Reg_objM<- qvalue(Reg.p,  pi0.method = "smoother", fdr.level= 0.05) 
summary(Reg_objM) 

# the significant probes under the fdr.level 0.05 will have TURE in obj$significant  
ProbesSigReg <- Reg_objM$significant 
sigProbes_Reg <- (which(ProbesSigReg == TRUE)) 
SigPvalues_Reg1 <- Reg.p[sigProbes_Reg] 
SigPvalues_Reg <- unlist(SigPvalues_Reg1) 

ggplot(data = as.data.frame(Train_data_transp_Cor_Sig), aes(x = Train_data_transp[, ncol(Tr
ain_data_transp)], y = Train_data_transp_Cor_Sig[, names(SigPvalues_Reg)])) + geom_point(
size=1.5) + geom_smooth(method=lm, fill="pink",se=TRUE) + xlab("Chronological Age") +yl
ab("Methylation level") +ggtitle(paste(names(SigPvalues_Reg),"marker Vs. Age"))+theme(
plot.title = element_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,face
="bold"))+theme(axis.title.y=element_text(size=15,face="bold"))  

# Converting DNA methylation level from beta to M-values for simple regression 
Train_data_No_age <- as.matrix(Train_data_age[-nrow(Train_data_age), ]) 
Train_data_No_age_Mvalue <- Beta2M(Train_data_No_age) 
Train_data_age_Mvalue <- rbind(Train_data_No_age_Mvalue, Train_data_age[nrow(Train_dat
a_age), ]) 
Train_data_age_M_Transp <- t(Train_data_age_Mvalue) 
# Simple linear regression code 
CoefEsts.forM = matrix(NA, nrow = (ncol(Train_data_age_M_Transp)-1), ncol = 3) # this is to d
esign matrix for inputs  
rownames(CoefEsts.forM) = colnames(Train_data_age_M_Transp)[1:(ncol(Train_data_age_M
_Transp)-1)] 
colnames(CoefEsts.forM) = c("Intercept", "Coef","Pvalue")  
for (i in 1:(ncol(Train_data_age_M_Transp)-1)) { fit = lm(Train_data_age_M_Transp[,ncol(Train
_data_age_M_Transp)]~Train_data_age_M_Transp[,i]) ;CoefEsts.forM[i,] = summary(fit)[[4]][c(
1,2,8)] }  

# Making a vector of pvalues 
RegM.p <- CoefEsts.forM[, 3] 
# Q-Q plot 
qqunif.plot(RegM.p) 

RegM_objM<- qvalue(RegM.p,  pi0.method = "smoother", fdr.level= 0.05) 
summary(RegM_objM) 
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# the significant probes under the fdr.level 0.05 will have TURE in obj$significant  
ProbesSigRegM <- RegM_objM$significant 
sigProbes_RegM <- (which(ProbesSigRegM == TRUE)) 
SigPvalues_RegM1 <- RegM.p[sigProbes_RegM] 
SigPvalues_RegM <- unlist(SigPvalues_RegM1) 
names(SigPvalues_RegM) 

GSE92767 <- getGEO("GSE92767",getGPL = FALSE,filename = "GSE92767_series_matrix
.txt.gz") 
 
# Storing expression data, phenotype data 
GSE92767exprs <- as.data.frame(exprs(GSE92767)) 
GSE92767pheno<-pData(phenoData(GSE92767)) 
 
# Feature data  
 
GSE59509feature <-read.table("/Users/husainalsaleh/AgePrediction_cache/GSE59509fe
ature.txt", header = TRUE) 

Training_AgeDist  <-as.integer(sub("age: ","",pData(phenoData(GSE92767))[,10],fixed = TRU
E)) 
Training_AgeDist <- as.data.frame(Training_AgeDist) 
colnames(Training_AgeDist)[1]<-"Chronological age" 
 
par(mar=c(5.1 ,6.5 ,4.1 ,2.1)) 
par(bg = "gray99") 
 
hist(Training_AgeDist$`Chronological age`, 
      main="", 
      xlab="Chronological Age", ylab="Sample Size", 
      freq=TRUE, border="black" 
 , ylim=c(0,13),cex.lab=2,cex.main=3, font=2, font.lab=2) 

# Looking for any missing data (NA) 
sum(is.na(GSE92767exprs)) 

dat1 <- cbind(rownames(GSE92767exprs),GSE92767exprs)  
colnames(dat1)[1] <-"ProbeID" 
 
fastImputation= FALSE 
nSamples=dim(dat1)[[2]]-1 
nProbes= dim(dat1)[[1]]  
 
meanMethBySample =as.numeric(apply(as.matrix(dat1[,-1]),2,mean,na.rm=TRUE)) 
minMethBySample   =as.numeric(apply(as.matrix(dat1[,-1]),2,min,na.rm=TRUE)) 
maxMethBySample  =as.numeric(apply(as.matrix(dat1[,-1]),2,max,na.rm=TRUE)) 
 
datMethUsed= t(dat1[,-1]) 
colnames(datMethUsed)=as.character(dat1[,1]) 
 
 
noMissingPerSample=apply(as.matrix(is.na(datMethUsed)),1,sum) 
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table(noMissingPerSample) 
 
 
#STEP 2:  
if (! fastImputation & nSamples>1 & max(noMissingPerSample,na.rm=TRUE)<3000 ){ 
   
  # run the following code if there is at least one missing 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 ){ 
    dimnames1=dimnames(datMethUsed) 
    datMethUsed= data.frame(t(impute.knn(t(datMethUsed))$data)) 
    dimnames(datMethUsed)=dimnames1 
  } # end of if 
} # end of if (! fastImputation ) 
 
if ( max(noMissingPerSample,na.rm=TRUE)>=3000 ) fastImputation=TRUE 
 
 
if ( fastImputation | nSamples==1 ){ 
  noMissingPerSample=apply(as.matrix(is.na(datMethUsed)),1,sum) 
  table(noMissingPerSample) 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 & max(noMissingPerSample,na.rm=TRUE) >= 
3000 ) {normalizeData=FALSE} 
   
  # run the following code if there is at least one missing 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 & max(noMissingPerSample,na.rm=TRUE) < 3
000 ){ 
    dimnames1=dimnames(datMethUsed) 
    for (i in which(noMissingPerSample>0) ){ 
      selectMissing1=is.na(datMethUsed[i,]) 
      datMethUsed[i,selectMissing1] = as.numeric(probeAnnotation21kdatMethUsed$goldstandar
d2[selectMissing1]) 
    } # end of for loop 
    dimnames(datMethUsed)=dimnames1 
  } # end of if 
} # end of if (! fastImputation ) 
 
 
GSE92767exprs_NoNa <- t(datMethUsed) 

colors <- terrain.colors(54, alpha = 1) 
plot(density(GSE92767exprs_NoNa[,1]), col="orange",ylim=c(0,5.4) ,xlab = "DNA Methylatio
n Level -Beta values", main="Beta values in all samples") 
for (i in 2:54) {lines(density(GSE92767exprs_NoNa[,i]),col="orange") } 

 

library(dplyr) 
 
probeII= filter(GSE59509feature, Infinium_Design_Type=="II") %>% select(ID) 
probeI= filter(GSE59509feature, Infinium_Design_Type=="I") %>% select(ID) 
 
probeI=as.character(probeI$ID) 
probeII=as.character(probeII$ID) 
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#setting type I and II infinium  
GSE92767exprsI=GSE92767exprs_NoNa[rownames(GSE92767exprs_NoNa) %in% probeI,] 
GSE92767exprsII=GSE92767exprs_NoNa[rownames(GSE92767exprs_NoNa) %in% probeII,] 

plot(density(as.matrix(rowMeans(GSE92767exprsI))[,1]), col="red",ylim=c(0,7) ,xlab = "Beta 
values", main="",cex.main=2.3, font.lab=2,cex.lab=1.5, lwd=5) 
lines(density(as.matrix(rowMeans(GSE92767exprsII))[,1]), lwd=4,col="Blue") 
 
legend(x=0.3,y=7,c("Infinium I","Infinium II"),cex=1.6,col=c("Red","blue"),lwd=3.5,bty="n") 

NewGSE59509feature<-GSE59509feature[ rownames(GSE59509feature) %in% rownames(G
SE92767exprs_NoNa), ] 
Probe_design=as.character(NewGSE59509feature$Infinium_Design_Type) 
pro<-gsub("I", "1", Probe_design) 
pro<-gsub("11", "2", pro) 
pro =as.integer(pro) 
# Checking if the length of probe design is equal to number of probes in the data  
length(pro) == nrow(GSE92767exprs_NoNa) 

plot(density(as.matrix(rowMeans(GSE92767exprsI))[,1]), col="red",ylim=c(0,7) ,xlab = "Beta 
values", main="",cex.main=2.3, font.lab=2,cex.lab=1.5, lwd=5) 
lines(density(as.matrix(rowMeans(NormalGSE92767typeII))[,1]), col="blue", lwd=5) 
lines(density(as.matrix(rowMeans(GSE92767exprsII))[,1]), col="blue", lwd=5, lty="dotted") 
legend(x=0.1,y=8.2,c("Type I","Type II (before normaliztion)", "Type II (after normaliztion)
"),cex=1.2,col=c("Red","blue", "blue"),lwd=3.5,bty="n", lty=c("solid", "dotted","solid")) 

par(mfrow=c(1,2)) 
 
boxplot(GSE92767exprs_NoNa[,1:54],names=1:54,ylab = "DNA methylation level", notch=F
ALSE,las=2, main="Distribution of Beta-values Across Tissues", cex.axis = 0.7)  
 
boxplot(NormalGSE92767[,1:54],names=1:54,ylab = "DNA methylation level", notch=FALSE,
las=2, main="Distribution of Beta-values Across Tissues", cex.axis = 0.7)  

# SVD 

Row_Mean<-rowMeans(NormalGSE92767) 
Nor_GSE92767_Centered<-NormalGSE92767 - Row_Mean 
# Then preform svd analysis  
svd1=svd(Nor_GSE92767_Centered) 

plot(svd1$d^2/sum(svd1$d^2),main="The Precent Variance Explained by Singular Values
",ylab="Precent Explained", col="blue", cex=2, pch=19, cex.main=1.5, cex.lab=1.4,cex.axis=.9
, xlab="No. of Singular values") 

ggplot(as.data.frame(svd1$v), aes(svd1$v[,1],svd1$v[,2],color="pink")) + geom_point(size=7,
alpha=0.7)+ggtitle("Singular Value Decomposition (SVD)") + xlab("SV1") +ylab("SV2")+la
bs(color="Tissue Type",face="bold",size=25)+ theme(plot.title = element_text(size=21,face="
bold"))+ theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_t
ext(size=15,face="bold"))+geom_text(aes(label=GSE92767pheno[,2]),hjust=0.9, vjust=0) 
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ggplot(as.data.frame(svd1$v), aes(svd1$v[,2],svd1$v[,3],color="pink")) + geom_point(size=7,
alpha=0.7)+ggtitle("Singular Value Decomposition (SVD)") + xlab("SV2") +ylab("SV3")+la
bs(color="Tissue Type",face="bold",size=25)+ theme(plot.title = element_text(size=21,face="
bold"))+ theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_t
ext(size=15,face="bold"))+geom_text(aes(label=GSE92767pheno[,2]),hjust=0.9, vjust=0) 

newGSE92767feature <- GSE59509feature[ rownames(GSE59509feature) %in% rownames(
NormalGSE92767), ] 
SNPprobes_10=as.character(newGSE92767feature$Probe_SNPs_10) 
SNPprobes=sub("","nosnp", SNPprobes_10, fixed = FALSE) # To fecilitate the imputation of pr
obes with SNP  
noSNP_position<-which(SNPprobes == "nosnp") 
length(noSNP_position) 
 
GSE92767exprs_Nosnp <- NormalGSE92767[noSNP_position,] 

 

library(doParallel) 
 
# Extracting age covariate from phenotype data  
Train_Age1<-gsub("age:","",as.vector(GSE92767pheno[,10]),fixed = TRUE) 
Train_Age<-as.integer(Train_Age1) 
# Preparing training dataset for correlation test 
Train_data_age=rbind(GSE92767exprs_Nosnp,Train_Age) 
Train_data_transp=t(Train_data_age) 
colnames(Train_data_transp)[ncol(Train_data_transp)]<-"age" 
# Correlation test - recording r values in Cor.rvalues for each marker  
# First parallelize the analyses 
cl <- makeCluster(2) 
registerDoParallel(cl) 
Cor.rvalues <- foreach (i = 1 : (ncol(Train_data_transp)-1))  %dopar% { cor(Train_data_transp[
,ncol(Train_data_transp)], Train_data_transp[,i], method = "spearman") } # Spearman  
Cor.r<-unlist(Cor.rvalues) 

hist(Cor.r, main=" Distribution of Spearman coefficients",cex.main=2,ylim = c(0,1.9) ,xlim=c(
-0.7,0.7),xlab=expression("r"[s]),font.lab=2 ,ylab="Density" ,breaks=80, border="pink", col="co
rnflowerblue", las=1, prob = TRUE, cex.lab=1.5) 

Cor.pvalues<- foreach (i= 1:(ncol(Train_data_transp)-1) ) %dopar% {cor.test(Train_data_trans
p[,ncol(Train_data_transp)], Train_data_transp[,i], method = "spearman")$p.value } 
Cor.p<-unlist(Cor.pvalues) 

# The qqunit.plot function has been loaded but not shown here in the report 
qqunif.plot(Cor.p) 

library(qvalue) 
objM<- qvalue(Cor.p,  pi0.method = "smoother", fdr.level= 0.00000001) 
summary(objM) 

# the significant probes under the fdr.level will have TURE in obj$significant  
ProbesSigFDR <- objM$significant 
sigProbes_FDR <- (which(ProbesSigFDR == TRUE)) 
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SigPvalues_FDR1 <- Cor.p[sigProbes_FDR] 
SigPvalues_FDR <- unlist(SigPvalues_FDR1) 
length(SigPvalues_FDR) 

 

# preparing train data with only probes passed FDR and then calculate their rho  
Train_data_FDR=t(Train_data_transp[,sigProbes_FDR]) 
Train_data_FDR_age <-rbind(Train_data_FDR, Train_data_transp[,ncol(Train_data_transp)] ) 
rownames(Train_data_FDR_age)[nrow(Train_data_FDR_age)] <-"age" 
Train_data_FDR_age_trans <- t(Train_data_FDR_age) 
 
# script to calculate rho  
cl <- makeCluster(2) 
registerDoParallel(cl) 
Cor.rvaluesFDR <- foreach (i = 1 : (ncol(Train_data_FDR_age_trans)-1))  %dopar% { cor(Trai
n_data_FDR_age_trans[,ncol(Train_data_FDR_age_trans)], Train_data_FDR_age_trans[,i], me
thod = "spearman") } # Spearman  
Cor.rFDR<-unlist(Cor.rvaluesFDR) 

length(which(Cor.rFDR >= 0.6)) 
length(which(Cor.rFDR <= - 0.6)) 
length(which(Cor.rFDR > 0.6)) + length(which(Cor.rFDR < - 0.6)) 

Train_data_No_age <- as.matrix(Train_data_FDR_age_trans[,which(Cor.rFDR > 0.6 | Cor.rFD
R < - 0.6)]) 
 
# writing script to remove the markers with less than 0.1 difference between min and max methyl
ation level 
difereFDR <-vector() 
for (i in 1:ncol(Train_data_No_age)) { difereFDR[i]<-max(Train_data_No_age[,i]) - min(Train_d
ata_No_age[,i])} 
which(difereFDR < 0.1) 
 
Train_data_No_age_Dif <- Train_data_No_age[,-c(which(difereFDR < 0.1))] 
Train_data_No_age_Mvalue <- Beta2M(Train_data_No_age_Dif) 
 
Train_data_age_Mvalue <- cbind(Train_data_No_age_Mvalue,Train_data_FDR_age_trans[,nc
ol(Train_data_FDR_age_trans)]) 
colnames(Train_data_age_Mvalue)[ncol(Train_data_age_Mvalue)]<-"age" 

#Step-wise Regression 
regfitfull_FDR=regsubsets(age~., data = as.data.frame(Train_data_age_Mvalue), nvmax = 10,
nbest=1, method = "exhaustive", really.big = T)  
reg.summary_FDR=summary(regfitfull_FDR) 
plot(reg.summary_FDR$bic, xlab="Number of variables", cex.lab=1.3,ylab="BIC stats",cex=2
, col="red",pch=20,main=" Bayesian information criterion (BIC) ",font.lab=2,cex.main=2) 
abline(v=which.min(reg.summary_FDR$bic),  lwd=2, col="blue") 

The names of the CpG sites that are included in the best model are: 

names(coef(regfitfull_FDR,(which.min(reg.summary_FDR$bic))))[-1] 
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# Prepare the data for multivariate linear regression  
Train_data_transp1<-Train_data_transp[,-449043] 
Train_data_transp2<-Beta2M(Train_data_transp1) 
Train_data_transp_M_age <- cbind(Train_data_transp2, Train_data_transp[,449043]) 
colnames(Train_data_transp_M_age)[449043]<- "age"  
 
# Regression  
Model_M_SigFDR <- lm(age~cg00573770+cg04875128+cg06279276+cg07365960+cg1050121
0+cg10804656+cg16867657+cg23606718+cg25124276, data= as.data.frame(Train_data_trans
p_M_age)) 
 
summary(Model_M_SigFDR) 

mean(abs(residuals(Model_M_SigFDR))) 

 

#Residual sum of squares: 
 
RSS_FDR <- sum(abs(Model_M_SigFDR$residuals)) 
 
#Mean squared error: 
 
MSE_FDR <- RSS_FDR / length(Model_M_SigFDR$residuals) 
 
# Root MSE: 
 
RMSE_FDR <- sqrt(MSE_FDR) 
print(RMSE_FDR) 
 
# Ploting predicted vs actual 
 
ggplot(as.data.frame(Train_data_transp_M_age), aes(x = Train_data_transp_M_age[,449043], 
y = predict(Model_M_SigFDR), color="Saliva")) + geom_point(size=4.5,alpha=0.9, color="red
")+ xlab("Actual Age") +ylab("Predicted Age")+labs(color="Tissue Type",face="bold",size=
3)+ geom_abline(slope=1, intercept=0, size=1, color="black")+theme(plot.title = element_text(
size=21,face="bold"))+ theme(axis.title.x = element_text(size=18,face="bold"))+theme(axis.titl
e.y=element_text(size=18,face="bold"))+coord_fixed(ratio=3/4) +xlim(15, 75) +ylim(15, 75) 

 

# downloading GSE99029 for validation  

GSE99029 <- getGEO("GSE99029",getGPL = FALSE,filename = "GSE99029_series_matrix
.txt.gz") 
# Storing expression data, phenotype data, and feature data 
GSE99029exprs <- as.data.frame(exprs(GSE99029)) 
GSE99029pheno<-pData(phenoData(GSE99029)) 
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dim(GSE99029exprs) 
# Showing 5 samples x 5 CpG probes 
GSE99029exprs[1:5,1:5]  
# Discriptive stats for the first four samples  
summary(GSE99029exprs[,1:4]) 

# Looking for any missing data (NA) 
sum(is.na(GSE99029exprs)) 
 
dat1 <- cbind(rownames(GSE99029exprs),GSE99029exprs)  
colnames(dat1)[1] <-"ProbeID" 
 
fastImputation= FALSE 
nSamples=dim(dat1)[[2]]-1 
nProbes= dim(dat1)[[1]]  
 
meanMethBySample =as.numeric(apply(as.matrix(dat1[,-1]),2,mean,na.rm=TRUE)) 
minMethBySample   =as.numeric(apply(as.matrix(dat1[,-1]),2,min,na.rm=TRUE)) 
maxMethBySample  =as.numeric(apply(as.matrix(dat1[,-1]),2,max,na.rm=TRUE)) 
 
datMethUsed= t(dat1[,-1]) 
colnames(datMethUsed)=as.character(dat1[,1]) 
 
 
noMissingPerSample=apply(as.matrix(is.na(datMethUsed)),1,sum) 
table(noMissingPerSample) 
 
 
#STEP 2: Imputing  
if (! fastImputation & nSamples>1 & max(noMissingPerSample,na.rm=TRUE)<3000 ){ 
   
  # run the following code if there is at least one missing 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 ){ 
    dimnames1=dimnames(datMethUsed) 
    datMethUsed= data.frame(t(impute.knn(t(datMethUsed))$data)) 
    dimnames(datMethUsed)=dimnames1 
  } # end of if 
} # end of if (! fastImputation ) 
 
if ( max(noMissingPerSample,na.rm=TRUE)>=3000 ) fastImputation=TRUE 
 
 
if ( fastImputation | nSamples==1 ){ 
  noMissingPerSample=apply(as.matrix(is.na(datMethUsed)),1,sum) 
  table(noMissingPerSample) 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 & max(noMissingPerSample,na.rm=TRUE) >= 
3000 ) {normalizeData=FALSE} 
   
  # run the following code if there is at least one missing 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 & max(noMissingPerSample,na.rm=TRUE) < 3
000 ){ 
    dimnames1=dimnames(datMethUsed) 
    for (i in which(noMissingPerSample>0) ){ 
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      selectMissing1=is.na(datMethUsed[i,]) 
      datMethUsed[i,selectMissing1] = as.numeric(probeAnnotation21kdatMethUsed$goldstandar
d2[selectMissing1]) 
    } # end of for loop 
    dimnames(datMethUsed)=dimnames1 
  } # end of if 
} # end of if (! fastImputation ) 
 
 
GSE99029exprs_NoNa <- t(datMethUsed) 

colors <- terrain.colors(57, alpha = 1) 
plot(density(GSE99029exprs_NoNa[,1]), col="red",ylim=c(0,5.4) ,xlab = "DNA Methylation Le
vel -Beta values", main="Beta values in all samples") 
for (i in 2:57) {lines(density(GSE99029exprs_NoNa[,i]),col="red") } 

Testing_AgeDist<-as.data.frame(as.integer(gsub("age:","",as.character(GSE99029pheno[,11
])))) 
colnames(Testing_AgeDist)[1]<-"Chronological age" 
rownames(Testing_AgeDist)<- rownames(GSE99029pheno) 
 
par(mar=c(5.1 ,6.5 ,4.1 ,2.1)) 
par(bg = "gray99") 
 
hist(Testing_AgeDist$`Chronological age`, 
      main="", 
      xlab="Chronological Age", ylab="Sample Size", 
      freq=TRUE, border="black" 
 , ylim=c(0,20),cex.lab=2,cex.main=3, font=2, font.lab=2) 

Testing_age <-as.integer(gsub("age:","",as.character(GSE99029pheno[,11]))) 

Gender_Distribution <- as.character(gsub("gender:","",as.character(GSE99029pheno[,10]))) 
Gender_Distribution<-gsub(" female", "female", Gender_Distribution) 
Gender_Distribution<-gsub(" male", "male", Gender_Distribution) 
 
length(which(Gender_Distribution == "female"))  
 
length(which(Gender_Distribution == "male")) 

 

probeII= subset(GSE59509feature, Infinium_Design_Type == "II" , select=ID ) 
probeI= subset(GSE59509feature, Infinium_Design_Type == "I" , select=ID ) 
 
probeI=as.character(probeI$ID) 
probeII=as.character(probeII$ID) 
 
#setting type I and II infinium  
GSE99029exprsI=GSE99029exprs_NoNa[rownames(GSE99029exprs_NoNa) %in% probeI,] 
GSE99029exprsII=GSE99029exprs_NoNa[rownames(GSE99029exprs_NoNa) %in% probeII,] 
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plot(density(as.matrix(rowMeans(GSE99029exprsI))[,1]), col="red",ylim=c(0,7) ,xlab = "Beta 
values", main="",cex.main=2.3, font.lab=2,cex.lab=1.5, lwd=5) 
lines(density(as.matrix(rowMeans(GSE99029exprsII))[,1]), lwd=4,col="Blue") 
 
legend(x=0.3,y=7,c("Infinium I","Infinium II"),cex=1.6,col=c("Red","blue"),lwd=3.5,bty="n") 

NewGSE59509feature<-GSE59509feature[ rownames(GSE59509feature) %in% rownames(G
SE99029exprs_NoNa), ] 
Probe_design=as.character(NewGSE59509feature$Infinium_Design_Type) 
pro<-gsub("I", "1", Probe_design) 
pro<-gsub("11", "2", pro) 
pro =as.integer(pro) 
# Checking if the length of probe design is equal to number of probes in the data  
length(pro) == nrow(GSE99029exprs_NoNa) 

 

# Normalisation  
GSE99029exprsList<-list() 
for (i in 1:57) {GSE99029exprsList[[i]]<-BMIQ(GSE99029exprs_NoNa[,i], pro, doH = TRUE, nfit 
= 50000, th1.v = c(0.2, 0.75), th2.v = NULL, niter = 5, tol = 0.001)} 
# Joining the data togather in dataframe  
NormalGSE99029<-data.frame("1"= GSE99029exprsList[[1]]$nbeta) 
for (i in 2:57) {NormalGSE99029[,i]<-c(GSE99029exprsList[[i]]$nbeta)  }  
 
# Naming the samples with their original accession ID and CpG markers  
dimnames(NormalGSE99029) <-dimnames(GSE99029exprs_NoNa) 

 

# Setting vectors for type I and II infinium probes for plotting  
NormalGSE99029typeI=NormalGSE99029[rownames(NormalGSE99029) %in% probeI,] 
NormalGSE99029typeII=NormalGSE99029[rownames(NormalGSE99029) %in% probeII,] 
# Ploting  
 
plot(density(as.matrix(rowMeans(NormalGSE99029typeI))[,1]), col="red",ylim=c(0,7) ,xlab = "
Beta values", main="",cex.main=2.3, font.lab=2,cex.lab=1.5, lwd=5) 
lines(density(as.matrix(rowMeans(NormalGSE99029typeII))[,1]), lwd=4,col="Blue") 
lines(density(as.matrix(rowMeans(GSE99029exprsII))[,1]), col="blue", lwd=5, lty="dotted") 
legend(x=0.1,y=8.2,c("Type I","Type II (before normalistion)", "Type II (after normalistion)
"),cex=1.2,col=c("Red","blue", "blue"),lwd=3.5,bty="n", lty=c("solid", "dotted","solid")) 

colors <- terrain.colors(57, alpha = 1) 
plot(density(NormalGSE99029[,1]), col="red",ylim=c(0,5.4) ,xlab = "DNA Methylation Level -
Beta values", main="Beta values in all samples") 
for (i in 2:57) {lines(density(NormalGSE99029[,i]),col=colors[i]) } 
# or plot(density(na.omit(GSE99029exprs[,1])), col="red",ylim=c(0,5.4) ,xlab = "DNA Methylation 
Level -Beta values", main="Beta values in all samples") 

boxplot(NormalGSE99029[,1:57],ylab = "DNA methylation level", notch=FALSE,las=2, main=
"Distribution of Beta-values Across Tissue", cex.axis = 0.7)  
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Row_Mean1<-rowMeans(NormalGSE99029) 
Nor_GSE99029_Centered<-NormalGSE99029 - Row_Mean1 
# Then preform svd analysis  
svd11=svd(Nor_GSE99029_Centered) 

plot(svd11$d^2/sum(svd11$d^2),main="The Precent Variance Explained by Singular Valu
es",ylab="Precent Explained", col="blue", cex=2, pch=19, cex.main=1.5, cex.lab=1.4,cex.axis
=.9, xlab="No. of Singular values") 

ggplot(as.data.frame(svd11$v), aes(svd11$v[,1],svd11$v[,2],color=GSE99029pheno[,12])) + g
eom_point(size=7,alpha=0.7)+ggtitle("Singular Value Decomposition (SVD)") + xlab("SV1"
) +ylab("SV2")+labs(color="Tissue Type",face="bold",size=25)+ theme(plot.title = element_t
ext(size=21,face="bold"))+ theme(axis.title.x = element_text(size=15,face="bold"))+theme(axi
s.title.y=element_text(size=15,face="bold"))+geom_text(aes(label=GSE99029pheno[,2]),hjust
=0.9, vjust=0) 
 
ggplot(as.data.frame(svd11$v), aes(svd11$v[,1],svd11$v[,2],color=GSE99029pheno[,10])) + g
eom_point(size=7,alpha=0.7)+ggtitle("Singular Value Decomposition (SVD)") + xlab("SV1"
) +ylab("SV2")+labs(color="Tissue Type",face="bold",size=25)+ theme(plot.title = element_t
ext(size=21,face="bold"))+ theme(axis.title.x = element_text(size=15,face="bold"))+theme(axi
s.title.y=element_text(size=15,face="bold"))+geom_text(aes(label=GSE99029pheno[,2]),hjust
=0.9, vjust=0) 

require(sva) 
 
mod = model.matrix(~GSE99029pheno$characteristics_ch1.2,data=GSE99029pheno) # two m
odels one with covariates and the other (below) no covariates  
mod0 = model.matrix(~1, data=GSE99029pheno) # has no covariates  
sva1 = sva(as.matrix(NormalGSE99029),mod,mod0,n.sv=1)  
summary(lm(sva1$sv ~ mod[,2]))  

# Converting Beta to M value  
 
NormalGSE99029_M <- Beta2M(NormalGSE99029) 
 
# Predicting the age using Model_Sig_M 
mean(abs(as.integer(gsub("age:","",as.character(GSE99029pheno[,11]))) - predict(Model_M
_SigFDR, as.data.frame(t(NormalGSE99029_M))))) 

Predicted_M_Sig<-predict(Model_M_SigFDR, as.data.frame(t(NormalGSE99029_M))) 
 
Testing_age <- as.integer(gsub("age:","",as.character(GSE99029pheno[,11]))) 
 
# Ploting predicted vs actual 
 
ggplot(as.data.frame(t(NormalGSE99029_M)), aes(x = Testing_age, y = Predicted_M_Sig, col
or="Saliva")) + geom_point(size=4.5,alpha=0.9, color="blue")+ xlab("Actual Age") +ylab("Pr
edicted Age")+labs(color="Tissue Type",face="bold",size=3)+ geom_abline(slope=1, interce
pt=0, size=1, color="black")+theme(plot.title = element_text(size=21,face="bold"))+ theme(axi
s.title.x = element_text(size=18,face="bold"))+theme(axis.title.y=element_text(size=18,face="
bold"))+coord_fixed(ratio=3/4) +xlim(15, 100) +ylim(15, 100) 
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cor.test(Testing_age , Predicted_M_Sig) 

Gender_Distribution <- as.character(gsub("gender:","",as.character(GSE99029pheno[,10]))) 
Gender_Distribution<-gsub(" female", "female", Gender_Distribution) 
Gender_Distribution<-gsub(" male", "male", Gender_Distribution) 
 
length(which(Gender_Distribution == "female"))  
 
length(which(Gender_Distribution == "male")) 

# female 
mean(abs( Testing_age[which(Gender_Distribution == "female")] - predict(Model_M_SigFDR, 
as.data.frame(t(NormalGSE99029_M)[which(Gender_Distribution == "female"),])))) 
 
# male 
 
mean(abs( Testing_age[which(Gender_Distribution == "male")] - predict(Model_M_SigFDR, a
s.data.frame(t(NormalGSE99029_M)[which(Gender_Distribution == "male"),])))) 
 
# t.test between male and female 
 
absPredicted_male<-abs( Testing_age[which(Gender_Distribution == "male")] - predict(Model
_M_SigFDR, as.data.frame(t(NormalGSE99029_M)[which(Gender_Distribution == "male"),]))) 
 
absPredicted_female<-abs( Testing_age[which(Gender_Distribution == "female")] - predict(M
odel_M_SigFDR, as.data.frame(t(NormalGSE99029_M)[which(Gender_Distribution == "femal
e"),]))) 
 
t.test(absPredicted_female, absPredicted_male) 
 
# cor.test 
 
cor.test(Testing_age[which(Gender_Distribution == "male")], predict(Model_M_SigFDR, as.d
ata.frame(t(NormalGSE99029_M)[which(Gender_Distribution == "male"),]))) 
 
cor.test(Testing_age[which(Gender_Distribution == "female")], predict(Model_M_SigFDR, as.
data.frame(t(NormalGSE99029_M)[which(Gender_Distribution == "female"),]))) 

 
mgsub <- function(pattern, replacement, x, ...) { 
  if (length(pattern)!=length(replacement)) { 
    stop("pattern and replacement do not have the same length.") 
  } 
  result <- x 
  for (i in 1:length(pattern)) { 
    result <- gsub(pattern[i], replacement[i], result, ...) 
  } 
  result 
} 
 
#### Bootstrap analysis for the prediction model   
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NormalGSE99029_model <- t(NormalGSE99029_M[The_model,]) 
names(Testing_age) <- rownames(GSE99029pheno) 
 
# Bootstrap function  
ss <-vector() 
for (i in 1:10000 ) {  
  n <- NormalGSE99029_model[sample(rownames(NormalGSE99029_model),57, replace = TR
UE),] 
  p<-predict(Model_M_SigFDR, as.data.frame(n));   
  trt<-as.numeric(p) 
  names(trt)<-names(p) 
  pree <- Testing_age[mgsub( c(".1",".2",".3",".4",".5"), c("","","","",""), x = names(trt), fixed = T
RUE)] 
  ss[i] <-mean(abs(pree - trt)) 
}  
 
 
t.test(ss) 
 
# Plot hist of MAD estimates  
 
par(mar=c(5, 6, 4, 2)) 
 
hist(ss,  
     main="MAD estimation by bootstrap analysis",  
     cex.main=2.5, 
     xlab="MAD values",  
     border="blue",  
     col="pink",  
     las=1, 
     cex.axis=1, 
     cex.lab=2, 
     breaks=50,  
     prob = TRUE) 
lines(density(na.omit(ss)), lwd=4) 

Model_Hwan_M <- lm(age~cg18384097+cg00481951+cg19671120+cg14361627+cg08928145
+cg12757011+cg07547549,data= as.data.frame(Train_data_transp_M_age)) 
 
summary(Model_Hwan_M) 
 
## The prediction accuracy (MAD value) of this model is equal: 
 
mean(abs(residuals(Model_Hwan_M))) 

 

#Residual sum of squares: 
 
RSS <- sum(abs(Model_Hwan_M$residuals)) 
 
#Mean squared error: 
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MSE <- RSS / length(Model_Hwan_M$residuals) 
 
# Root MSE: 
 
RMSE <- sqrt(MSE) 
print(RMSE) 

# Predicting the age  
 
mean(abs(as.integer(gsub("age:","",as.character(GSE99029pheno[,11]))) - predict(Model_H
wan_M, as.data.frame(t(NormalGSE99029_M))))) 
 
Predicted_Hwan_M_Sig <- predict(Model_Hwan_M, as.data.frame(t(NormalGSE99029_M))) 
 
# Ploting predicted vs actual 
ggplot(as.data.frame(t(NormalGSE99029_M)), aes(x = Testing_age, y = Predicted_Hwan_M_
Sig, color="Saliva")) + geom_point(size=4.5,alpha=0.9, color="orange")+ xlab("Actual Age") 
+ylab("Predicted Age")+labs(color="Tissue Type",face="bold",size=3)+ geom_abline(slope
=1, intercept=0, size=1, color="black")+theme(plot.title = element_text(size=21,face="bold"))+ 
theme(axis.title.x = element_text(size=18,face="bold"))+theme(axis.title.y=element_text(size=
18,face="bold"))+coord_fixed(ratio=3/4) +xlim(15, 100) +ylim(15, 100) 
 
cor.test(Testing_age , Predicted_Hwan_M_Sig) 

Model_Hwan_beta <- lm(age~cg18384097+cg00481951+cg19671120+cg14361627+cg089281
45+cg12757011+cg07547549,data= as.data.frame(Train_data_transp)) 
 
summary(Model_Hwan_beta) 
 
## The prediction accuracy (MAD value) of this model is equal: 
 
mean(abs(residuals(Model_Hwan_beta))) 
 
#Residual sum of squares: 
 
RSS <- sum(abs(Model_Hwan_beta$residuals)) 
 
#Mean squared error: 
 
MSE <- RSS / length(Model_Hwan_beta$residuals) 
 
# Root MSE: 
 
RMSE <- sqrt(MSE) 
print(RMSE) 
 
mean(abs(as.integer(gsub("age:","",as.character(GSE99029pheno[,11]))) - predict(Model_H
wan_beta, as.data.frame(t(NormalGSE99029)))) 
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Appendix C2: R codes used in Chapter 5  

This section provides the R codes used in Chapter 5, for the identification of blood-
specific age-related DNA methylation markers on the Illumina MethylationEPICÒ array 

library(knitr) 
library(ggplot2) 
library(wateRmelon) 
library(GEOquery) 
library(modes) 
library(impute) 
library(minfi) 
library(ChAMP) 
library(RColorBrewer) 
library("IlluminaHumanMethylationEPICmanifest") 
 

#GSE103189 

dataDirectory <- "/Users/husainalsaleh/GSE103189" 
rgSet <- read.metharray.exp(dataDirectory) 
rgSet 
sampleNames(rgSet) <- substr(sampleNames(rgSet),1,10) 
 
GSE103189 <- getGEO("GSE103189",getGPL = FALSE,AnnotGPL = FALSE,GSEMatrix = TR
UE) 
pD.all <- pData(GSE103189[[1]])  
rm(GSE103189) 
data.frame(Samples=pD.all$geo_accession,Cell_type=pD.all$characteristics_ch1.1,Sex=pD.all
$`Sex:ch1`) 

pD.all <- data.frame(Sample=pD.all$geo_accession,Age=rep(0,16),Sex= pD.all$`Sex:ch1`,Sour
ce=pD.all$`sample type:ch1`) 
pD_GSE103189 <-pD.all[which(pD.all$Source == "WholeBloodDNA"),] 
rownames(pD_GSE103189) <- pD_GSE103189$Sample 
pD_GSE103189 
 
rgSet <- rgSet[,which(pD.all$Source == "WholeBloodDNA")] 

 
test_match_order <- function(x,y) { 
   
  if (all(x==y)) print('Perfect match in same order') 
   
  if (!all(x==y) && all(sort(x)==sort(y))) print('Perfect match in wrong order') 
   
  if (!all(x==y) && !all(sort(x)==sort(y))) print('No match') 
} 
 
test_match_order(sampleNames(rgSet), pD_GSE103189$Sample) 
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pData(rgSet)[,1:3] <- pD_GSE103189[,1:3] 
rgSet 

#  Poor quality samples 
which(colMeans(detP) > 0.05) 
rm(detP) 

# QC plot based on median Meth and Unmeth signals  
rgSetGenoMethSet <- mapToGenome(rgSet) 
rgSetQC <-getQC(rgSetGenoMethSet) 
plotQC(rgSetQC, badSampleCutoff = 10.5) 
rm(rgSetGenoMethSet) 
rm(rgSetQC) 

mSetSq <- preprocessQuantile(rgSet, removeBadSamples = TRUE,badSampleCutoff = 10.5) 

mSetRaw <- preprocessRaw(rgSet) 
 
par(mfrow=c(1,2)) 
densityPlot(mSetRaw,main="Raw", legend=FALSE,pal = "red") 
 
densityPlot(getBeta(mSetSq), 
              main="Normalised", legend=FALSE,pal = "red") 
rm(mSetRaw) 

# Box plot for the blood samples  
rgSetNormBeta <- getBeta(mSetSq) 
 
boxplot(rgSetNormBeta[,1:ncol(rgSetNormBeta)], notch=TRUE,las=2, main="Distribution of B
eta-values in Blood Samples", cex.axis = 0.7) 

# Singular Value Decomposition  
rgSetNormBeta <- getBeta(mSetSq) 
Row_Mean<-rowMeans(rgSetNormBeta) 
rgSetNormBeta_Centered<-rgSetNormBeta - Row_Mean 
 
svd1=svd(rgSetNormBeta_Centered) 
 
plot(svd1$d^2/sum(svd1$d^2),main="The Precent Variance Explained by Singular Values
", 
     ylab="Precent Explained", col="blue", cex=2, pch=19, cex.main=1.5, cex.lab=1.4,cex.axis=
.9,  
     xlab="No. of Singular values") 
 
ggplot(as.data.frame(svd1$v), aes(svd1$v[,1],svd1$v[,3],color=colData(mSetSq)[1:8,3])) +  
  geom_point(size=7,alpha=0.7)+ ggtitle("Singular Value Decomposition (SVD)") + xlab("S
V1") + 
  ylab("SV2")+labs(color="Sex",face="bold",size=25)+ theme(plot.title = element_text(size=2
1,face="bold"))+  
  theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_text(size
=15, 
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  face="bold")) 
 
rm(Row_Mean) 
rm(rgSetNormBeta) 
rm(rgSetNormBeta_Centered) 
rm(svd1) 

 
# preparing the data  
# reading IDAT files using minfi package   
rgSet <- read.metharray.exp(dataDirectory) 
rgSet 
sampleNames(rgSet) <- substr(sampleNames(rgSet),1,10) 
 
rgSet <- rgSet[,sampleNames(mSetSq)] 
 
cell_counts <- estimateCellCounts(rgSet, compositeCellType = "Blood",processMethod = "aut
o") 
head(cell_counts) 
colData(mSetSq) <- DataFrame(Sample=pD_GSE103189$Sample,Age=pD_GSE103189$Age,
Sex=pD_GSE103189$Sex,cell_counts) 
colnames(mSetSq) <- sampleNames(rgSet) 
rgSet_GSE103189 <-dropLociWithSnps(mSetSq) 
pD_GSE103189_age <- pD_GSE103189[colnames(rgSet_GSE103189),2]  
 
 nrow(mSetSq) - nrow(rgSet_GSE103189) 
 rm(mSetSq) 
 rm(rgSet) 
 rm(cell_counts) 

#GSE123914  

dataDirectory <- "/Users/husainalsaleh/GSE123914/GSE123914_RAW" 
 
# reading IDAT files using minfi package   
rgSet <- read.metharray.exp(dataDirectory) 
rgSet 
 
sampleNames(rgSet) <- substr(sampleNames(rgSet),1,10) 
 
GSE123914 <- getGEO("GSE123914",getGPL = FALSE,AnnotGPL = FALSE,GSEMatrix = TR
UE) 
pD.all <- pData(GSE123914[[1]])  
rm(GSE123914) 
pD.all$`age:ch1`[which(pD.all$characteristics_ch1.1 == "year of collection: 2014")] <- as.inte
ger (pD.all$`age:ch1`)[which(pD.all$characteristics_ch1.1 == "year of collection: 2014")] +1 
 
pD_GSE123914<-data.frame(Sample=rownames(pD.all),Age=pD.all$`age:ch1`,Sex=rep("Fe
male",69)) 
rm(pD.all) 

test_match_order(sampleNames(rgSet), pD_GSE123914$Sample) 
 



 

 308 

colData(rgSet)[,1:3] <- DataFrame(pD_GSE123914) 
rgSet 

which(colMeans(detP) > 0.05) 
rm(detP) 

rgSetGenoMethSet <- mapToGenome(rgSet) 
rgSetQC <-getQC(rgSetGenoMethSet) 
plotQC(rgSetQC, badSampleCutoff = 10.5) 
rm(rgSetGenoMethSet) 
rm(rgSetQC) 

mSetSq <- preprocessQuantile(rgSet, removeBadSamples = TRUE,badSampleCutoff = 10.5) 

mSetRaw <- preprocessRaw(rgSet) 
 
par(mfrow=c(1,2)) 
densityPlot(mSetRaw,main="Raw", legend=FALSE,pal = "red") 
 
densityPlot(getBeta(mSetSq), 
              main="Normalized", legend=FALSE,pal = "red") 
rm(mSetRaw) 

rgSetNormBeta <- getBeta(mSetSq) 
 
boxplot(rgSetNormBeta[,1:ncol(rgSetNormBeta)], notch=TRUE,las=2, main="Distribution of B
eta-values in Blood Samples", cex.axis = 0.7) 

Row_Mean<-rowMeans(rgSetNormBeta) 
rgSetNormBeta_Centered<-rgSetNormBeta - Row_Mean 
 
svd1=svd(rgSetNormBeta_Centered) 
 
plot(svd1$d^2/sum(svd1$d^2),main="The Precent Variance Explained by Singular Values
", 
     ylab="Precent Explained", col="blue", cex=2, pch=19, cex.main=1.5, cex.lab=1.4,cex.axis=
.9,  
     xlab="No. of Singular values") 
 
ggplot(as.data.frame(svd1$v), aes(svd1$v[,1],svd1$v[,3],color=colData(mSetSq)[1:69,3])) +  
  geom_point(size=7,alpha=0.7)+ ggtitle("Singular Value Decomposition (SVD)") + xlab("S
V1") + 
  ylab("SV2")+labs(color="Sex",face="bold",size=25)+ theme(plot.title = element_text(size=2
1,face="bold"))+  
  theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_text(size
=15, 
  face="bold")) 
 
rm(Row_Mean) 
rm(rgSetNormBeta) 
rm(rgSetNormBeta_Centered) 
rm(svd1) 
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rgSet <- read.metharray.exp(dataDirectory) 
rgSet 
sampleNames(rgSet) <- substr(sampleNames(rgSet),1,10) 
 
rgSet <- rgSet[,sampleNames(mSetSq)] 
 
cell_counts <- estimateCellCounts(rgSet, compositeCellType = "Blood",processMethod = "aut
o") 
head(cell_counts) 
colData(mSetSq) <- DataFrame(Sample=pD_GSE123914$Sample,Age=pD_GSE123914$Age,
Sex=pD_GSE123914$Sex,cell_counts) 
colnames(mSetSq) <- sampleNames(rgSet) 

rgSet_GSE123914 <-dropLociWithSnps(mSetSq) 
rownames(pD_GSE123914) <- pD_GSE123914$Sample 
 
pD_GSE123914_age <- as.numeric(levels(pD_GSE123914$Age))[pD_GSE123914$Age]  
 
# the number of probes that has been dropped is:  
 nrow(mSetSq) - nrow(rgSet_GSE123914) 
 rm(mSetSq) 
 rm(rgSet) 
 rm(cell_counts) 

#GSE116339 

dataDirectory <- "/Users/husainalsaleh/GSE116339/GSE116339_RAW" 
 
rgSet3_1 <- read.metharray.exp(dataDirectory) 
rgSet3_1 
 
sampleNames(rgSet3_1) <- substr(sampleNames(rgSet3_1),1,10) 
 
# extracting meta data  
GSE116339 <- getGEO("GSE116339",getGPL = FALSE,AnnotGPL = FALSE,GSEMatrix = TR
UE) 
pD.all <- pData(GSE116339[[1]])  
rm(GSE116339) 
pD.all_1<-pD.all[1:100,] 
 
gender_GSE116339 <- data.frame(Sample=pD.all$geo_accession, Gender=pD.all$`gender:ch1
`) 
gender_GSE116339[,1] <- as.character(gender_GSE116339[,1]) 
 
pD_1 <- data.frame(Sample=pD.all_1$geo_accession,Age=pD.all_1$`age:ch1`, Sex=pD.all_1$`
gender:ch1`) 
rm(pD.all_1)      
 
test_match_order(sampleNames(rgSet3_1), pD_1$Sample) 
 
colData(rgSet3_1)[,1:3] <- DataFrame(pD_1) 
rgSet3_1 
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which(colMeans(detP) > 0.05) 
rm(detP) 

rgSetGenoMethSet <- mapToGenome(rgSet3_1) 
rgSetQC <-getQC(rgSetGenoMethSet) 
plotQC(rgSetQC, badSampleCutoff = 10.5) 

mSetSq3_1 <- preprocessQuantile(rgSet3_1, removeBadSamples = TRUE,badSampleCutoff 
= 10.5) 

mSetRaw3 <- preprocessRaw(rgSet3_1) 
 
# visualise what the data looks like before and after normalisation 
par(mfrow=c(1,2)) 
densityPlot(mSetRaw3,main="Raw", legend=FALSE,pal = "red") 
 
densityPlot(getBeta(mSetSq3_1), 
              main="Normalized", legend=FALSE,pal = "red") 
rm(mSetRaw3) 

mSetSq3_1 <- mSetSq3_1[,-21] 

 
# preparing the data  
# reading IDAT files using minfi package   
rgSet <- read.metharray.exp(dataDirectory) 
rgSet 
sampleNames(rgSet) <- substr(sampleNames(rgSet),1,10) 
 
rgSet <- rgSet[,sampleNames(mSetSq3_1)] 
 
cell_counts <- estimateCellCounts(rgSet, compositeCellType = "Blood",processMethod = "aut
o") 
head(cell_counts) 
colData(mSetSq3_1) <- DataFrame(Sample=colData(mSetSq3_1)[1],Age=colData(mSetSq3_
1)[2],Sex=colData(mSetSq3_1)[3],cell_counts) 
colnames(mSetSq3_1) <- sampleNames(rgSet) 
rm(rgSet) 

 
rgSetNormSnpFree3_1 <-dropLociWithSnps(mSetSq3_1) 
 
# the number of probes that has been dropped is:  
 nrow(mSetSq3_1) - nrow(rgSetNormSnpFree3_1) 
 rm(rgSet3_1) 
 rm(mSetSq3_1) 
 rm(pD_1)   

# preparing the data for the regression analysis  
GSE116339_regression <- data.frame(PBB=as.numeric(pD.all$`ln(totalpbb):ch1`[1:673]),Age=
as.numeric(pD.all$`age:ch1`[1:673])) 
 
# simple linear regression  
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summary(lm(PBB~Age, data = GSE116339_regression)) 
 
library( broom ) 
write.csv( tidy( lm(PBB~Age, data = GSE116339_regression) ) , "coefss.csv" ) 
write.csv( glance( lm(PBB~Age, data = GSE116339_regression)) , "ann.csv" ) 
 
rm(pD.all) 
rm(GSE116339_regression)  

# preparing the data  
all_cell_counts <-rbind(colData(rgSet_GSE103189)[,4:9],colData(rgSet_GSE123914)[,4:9],col
Data(rgSetNormSnpFree3_1)[,4:9],colData(rgSetNormSnpFree3_2)[,4:9],colData(rgSetNormS
npFree3_3)[,4:9],colData(rgSetNormSnpFree3_4)[,4:9],colData(rgSetNormSnpFree3_5)[,4:9],c
olData(rgSetNormSnpFree3_6)[,4:9],colData(rgSetNormSnpFree3_7)[,4:9]) 
 
# storing the chronological ages in a vector which will be used for the correlation test  
 
age <- c(pD_GSE103189_age, pD_GSE123914_age, pD_GSE116339_age) 
 
counts_age <- cbind(age,all_cell_counts) 
 
hist(age, 
      main="", 
      xlab="Chronological Age", ylab="Sample Size", 
      freq=TRUE, border="black",cex.lab=1.2,cex.main=1, font=2, font.lab=2,col="cornsilk", xlim
=c(0,100),ylim=c(0,300)) 
text(x=20,y=180,label=paste("Age range",min(age), "-",as.integer(max(age))),offset = 0.1, fon
t=2) 
text(x=20,y=160,label=paste("Median",median(age)),offset = 0.1, font=2) 
text(x=20,y=140,label=paste("Female Prop. 0.68"),offset = 0.1, font=2) 
 
plot(counts_age$age,counts_age$CD8T, xlab="Age", ylab="CD8+ Composition", pch=20, ce
x.lab=1.3, font.lab=2, col="orange") 
lines(lowess(counts_age$CD8T~counts_age$age, f=2/3),col="red", lwd=3) 
text(x=10,y=.3,"rho = - 0.35" , font=2) 
 
plot(counts_age$age,counts_age$CD4T, xlab="Age", ylab="CD4+ Composition", pch=20, ce
x.lab=1.3, font.lab=2, col="green") 
lines(lowess(counts_age$CD4T~counts_age$age, f=2/3),col="red", lwd=3) 
text(x=10,y=.3,"rho = - 0.19" , font=2) 
 
plot(counts_age$age,counts_age$NK,xlab="", ylab="NK Composition", pch=20, cex.lab=1.3, f
ont.lab=2, col="blue") 
lines(lowess(counts_age$NK~counts_age$age, f=2/3),col="red", lwd=3) 
text(x=10,y=.2,"rho = 0.32" , font=2) 
 
plot(counts_age$age,counts_age$Bcell,xlab="", ylab="B-cell Composition", pch=20, cex.lab=
1.3, font.lab=2) 
lines(lowess(counts_age$Bcell~counts_age$age, f=2/3),col="red", lwd=3) 
text(x=10,y=.2,"rho = -0.12" , font=2) 
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plot(counts_age$age,counts_age$Mono,xlab="", ylab="Mono Composition", pch=20, cex.lab=
1.3, font.lab=2, col=22) 
lines(lowess(counts_age$Mono~counts_age$age, f=2/3),col="red", lwd=3) 
text(x=10,y=.25,"rho = 0.19" , font=2) 
 
plot(counts_age$age,counts_age$Gran,xlab="", ylab="Gran Composition", pch=20, cex.lab=1
.3, font.lab=2, col="gray45") 
lines(lowess(counts_age$Gran~counts_age$age, f=2/3),col="red", lwd=3) 
text(x=10,y=.8,"rho = 0.09" , font=2) 

# using simple linear regression to test whether the cell type proportions changes with age 
a<-lm(age~., data = counts_age) 
 
library( broom ) 
write.csv( tidy( a ) , "coefs.csv" ) 
write.csv( glance( a ) , "an.csv" ) 

# extracting DNAm M-values from the data sets  
GSE103189M <- getM(rgSet_GSE103189) 
GSE123914M <- getM(rgSet_GSE123914) 
rgSet3_1M <- getM(rgSetNormSnpFree3_1) 
rgSet3_2M <- getM(rgSetNormSnpFree3_2) 
rgSet3_3M <- getM(rgSetNormSnpFree3_3) 
rgSet3_4M <- getM(rgSetNormSnpFree3_4) 
rgSet3_5M <- getM(rgSetNormSnpFree3_5) 
rgSet3_6M <- getM(rgSetNormSnpFree3_6) 
rgSet3_7M <- getM(rgSetNormSnpFree3_7) 
 
# combining the data sets  
comb_data <- cbind(GSE103189M,GSE123914M,rgSet3_1M,rgSet3_2M,rgSet3_3M,rgSet3_4
M,rgSet3_5M,rgSet3_6M,rgSet3_7M) 
 
# Get annotation EPIC  
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19") 
data(Locations) 
data(Other) 
data(Islands.UCSC) 
 
# removing sex linked CpG probes  
xy_probes <- rownames(Locations)[which(Locations$chr == "chrY" | Locations$chr == "chrX")
] 
comb_data <- comb_data[-which(rownames(comb_data) %in% xy_probes == "TRUE"),] 

Train_data=rbind(comb_data,age) 
Train_data_transp = t(Train_data) 
rm(Train_data) 
rm(comb_data) 

Cor.pvalues <-  vector() 
for (i in 1:816126) {  
 Cor.pvalues[i]<-cor.test(Train_data_transp[,816127], Train_data_transp[,i], method = "spearm
an", exact = FALSE)$p.value 



 

 313 

}  
Cor.p<-unlist(Cor.pvalues) 
 
library(brainwaver) 
pvalue.thresh<-compute.FDR(Cor.p,0.05) 

# preparing train data with only probes passed FDR0.05 and then calculate the R-square  
corTrain_data_FDR=Train_data_transp[,which(Cor.p <= pvalue.thresh)] 
corTrain_data_FDR_age <-cbind(corTrain_data_FDR, Train_data_transp[,"age"] ) 
colnames(corTrain_data_FDR_age)[ncol(corTrain_data_FDR_age)] <-"age" 
rm(corTrain_data_FDR)  

# script to calculate rho  
Cor.rvaluesFDR <-  vector() 
for (i in 1:(ncol(corTrain_data_FDR_age)-1)) {  
 Cor.rvaluesFDR[i]<-cor(corTrain_data_FDR_age[,"age"], corTrain_data_FDR_age[,i], method 
= "spearman") 
}  
Cor.rvaluesFDR<-unlist(Cor.rvaluesFDR) 
 
length(which(Cor.rvaluesFDR >= 0.5)) 
length(which(Cor.rvaluesFDR <= - 0.5)) 
length(which(Cor.rvaluesFDR > 0.6)) + length(which(Cor.rvaluesFDR < - 0.6)) 

# Manhattan plot  
library(qqman) 
manh_pval <-data.frame(CpG=colnames(Train_data_transp)[-816127],CHR=Locations[colna
mes(Train_data_transp)[-816127],1],BP=Locations[colnames(Train_data_transp)[-816127],2], 
P=Cor.p) 
manh_pval[,2] <- substr(manh_pval[,2],4,5) 
manh_pval[,2] <- as.integer(manh_pval[,2]) 
 
manhattan(manh_pval, snp = "CpG", suggestiveline = F, genomewideline = -log10(4.55016e-7
5),main = "Manhattan Plot", cex = 0.5, cex.axis = 1,col = c("blue4", "orange3")) 

probes_27k <- rownames(Other)[which(Other$Methyl27_Loci == TRUE )] 
probes_450k <- rownames(Other)[which(Other$Methyl450_Loci == TRUE )] 
probes_EPIC <- rownames(Other)[which(Other$Methyl27_Loci == "" & Other$Methyl450_Loci 
== "")] 
 
sig_probes_27k <- colnames(corTrain_data_FDR_age)[which(colnames(corTrain_data_FDR_
age) %in% probes_27k == TRUE)] 
cor_probes_27k <- Cor.rvaluesFDR[which(colnames(corTrain_data_FDR_age) %in% probes_
27k == TRUE)] 
 
sig_probes_450k <- colnames(corTrain_data_FDR_age)[which(colnames(corTrain_data_FDR
_age) %in% probes_450k == TRUE)] 
cor_probes_450k <- Cor.rvaluesFDR[which(colnames(corTrain_data_FDR_age) %in% probes
_450k == TRUE)] 
 
sig_probes_epic <- colnames(corTrain_data_FDR_age)[which(colnames(corTrain_data_FDR
_age) %in% probes_EPIC == TRUE)] 
cor_probes_epic <- Cor.rvaluesFDR[which(colnames(corTrain_data_FDR_age) %in% probes_
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EPIC == TRUE)] 
 
ooo <- c(sig_probes_27k,sig_probes_450k,sig_probes_epic) 
oioi <- c(rep("27k",length(sig_probes_27k)), rep("450k", length(sig_probes_450k)), rep("EPI
C",length(sig_probes_epic))) 
 
sig_arrayType <- data.frame(Cor=c(cor_probes_27k,cor_probes_450k,cor_probes_epic), Array
=oioi) 
rm(ooo) 
rm(oioi) 
 
ggplot(sig_arrayType) + geom_density(aes(x = abs(Cor), color = Array), size=1) + xlim(0.6,0.
8)+ylim(0,65) + xlab("abs(rho)") +ylab("Density")+ ggtitle(paste("AR CpG probes"))+theme
(plot.title = element_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,fac
e="bold"))+theme(axis.title.y=element_text(size=15,face="bold"))+ theme(plot.title = element
_text(hjust = 0.5)) 

# the ID of CpG probes with correlation coefficient above 0.6  
colnames(corTrain_data_FDR_age)[which(Cor.rvaluesFDR > 0.6 | Cor.rvaluesFDR < - 0.6)]  
 
# creating data frame contianing detailed annotation about these age related CpG sites  
sig_probes_anno <- DataFrame(Other[colnames(corTrain_data_FDR_age)[which(Cor.rvalues
FDR > 0.6 | Cor.rvaluesFDR < - 0.6)] ,c(3,5,7,25,26)], Locations[colnames(corTrain_data_FDR
_age)[which(Cor.rvaluesFDR > 0.6 | Cor.rvaluesFDR < - 0.6)],],Cor.eff=Cor.rvaluesFDR[which(
colnames(corTrain_data_FDR_age) %in% colnames(corTrain_data_FDR_age)[which(Cor.rval
uesFDR > 0.6 | Cor.rvaluesFDR < - 0.6)]  == TRUE)])  
 
# creating data frame contianing detailed annotation about the novel age related CpG sites foun
d only on EPIC array  
novel_probes_anno <- sig_probes_anno[rownames(sig_probes_anno)[which(sig_probes_anno
$Methyl27_Loci == "" & sig_probes_anno$Methyl450_Loci == "")],] 
 
novel_probes_anno 

# Heatmap  
 
library(ComplexHeatmap) 
 
trainHeat<-Train_data_transp[,c(rownames(novel_probes_anno),"age")]  
rownames(trainHeat)<-c(1:754) 
trainHeat <- M2Beta(trainHeat) 
trainHeat[,"age"] <- Train_data_transp[,"age"] 
 
zd<-trainHeat[order(trainHeat[,22] ),] 
aa<-zd[,22] 
zdd<-zd[,-22] 
zzd<-scale(zdd) # to convert to z-score scale fucntion uses (value) - (its mean) / (its sd)  
 
 
ha = HeatmapAnnotation(df = data.frame(age = aa),annotation_legend_param = list(age = lis
t(title = "Age",color_bar="continuous", legend_height = unit(4, "cm"),title_gp = gpar(fontsize = 
10,fontface = "bold")))) 
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hh=Heatmap(t(zzd),km=2,row_dend_width = unit(2,"cm"),heatmap_legend_param = list(color_
bar = "continuous"),name = "Z-score",column_title = "Samples",column_title_side = "bottom"
,column_title_gp = gpar(fontsize = 15, fontface = "bold"),row_title_gp = gpar(fontsize = 13, fontf
ace = "bold"), cluster_columns = FALSE,top_annotation = ha) 
draw(hh,row_title = "CpG markers",row_title_gp = gpar(fontsize = 22, fontface = "bold")) 

# function for plotting ggplots side by side  
 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  library(grid) 
   
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
   
  numPlots = length(plots) 
   
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                     ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
   
  if (numPlots==1) { 
    print(plots[[1]]) 
     
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
     
    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
       
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 

 
sig1 = as.matrix(Train_data_transp[,c("cg16867657")]) 
sig1 <- M2Beta(sig1) 
sig1<- data.frame(sig1,Train_data_transp[,"age"]) 
colnames(sig1)[c(1,2)] <-c("cg16867657","age") 
 
ggplot(data = as.data.frame(sig1), aes(x = sig1[,2], y = sig1[,1])) + geom_point(size=1.5) + ge
om_smooth(method=lm, fill="pink",se=TRUE) + xlab("Chronological Age") +ylab("Methylati
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on level") +ggtitle(paste(colnames(sig1)[1],"450k probe \n (ELOVL2 gene)"))+theme(plot.ti
tle = element_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,face="bol
d"))+theme(axis.title.y=element_text(size=15,face="bold")) + annotate("text", x = 20, y=0.86, l
abel ="Spearman's rho = 0.82",fontface =2,size=5) +theme(plot.title = element_text(hjust = 0.
5)) 
 
sig2 = as.matrix(Train_data_transp[,c("cg21572722")]) 
sig2 <- M2Beta(sig2) 
sig2<- data.frame(sig2,Train_data_transp[,"age"]) 
colnames(sig2)[c(1,2)] <-c("cg21572722","age") 
 
ggplot(data = as.data.frame(sig2), aes(x = sig2[,2], y = sig2[,1])) + geom_point(size=1.5) + ge
om_smooth(method=lm, fill="pink",se=TRUE) + xlab("Chronological Age") +ylab("Methylati
on level") +ggtitle(paste(colnames(sig2)[1],"450k probe \n (ELOVL2 gene)"))+theme(plot.ti
tle = element_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,face="bol
d"))+theme(axis.title.y=element_text(size=15,face="bold")) + annotate("text", x = 20, y=0.6, la
bel ="Spearman's rho = 0.76",fontface =2,size=5)+ theme(plot.title = element_text(hjust = 0.5
)) 
 
sig3 = as.matrix(Train_data_transp[,c("cg17268658")]) 
sig3 <- M2Beta(sig3) 
sig3<- data.frame(sig3,Train_data_transp[,"age"]) 
colnames(sig3)[c(1,2)] <-c("cg17268658","age")   
 
ggplot(data = as.data.frame(sig3), aes(x = sig3[,2], y = sig3[,1])) + geom_point(size=1.5) + ge
om_smooth(method=lm, fill="pink",se=TRUE) + xlab("Chronological Age") +ylab("Methylati
on level") +ggtitle(paste(colnames(sig3)[1]," EPIC probe \n (FHL2 gene)"))+theme(plot.title 
= element_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,face="bold")
)+theme(axis.title.y=element_text(size=15,face="bold")) + annotate("text", x = 20, y=0.7, label 
="Spearman's rho =  0.76",fontface =2,size=5)+ theme(plot.title = element_text(hjust = 0.5)) 

# plotting DNAm level at the top 4 (in terms of correlation coefficient) novel are related CpG sites 
found exclusively on the EPIC array 
sig1 = as.matrix(Train_data_transp[,c("cg17268658")]) 
sig1 <- M2Beta(sig1) 
sig1<- data.frame(sig1,Train_data_transp[,"age"]) 
colnames(sig1)[c(1,2)] <-c("cg17268658","age") 
 
p1= ggplot(data = as.data.frame(sig1), aes(x = sig1[,2], y = sig1[,1])) + geom_point(size=1.5) 
+ geom_smooth(method=lm, fill="pink",se=TRUE) + xlab("") +ylab("Methylation level") +ggti
tle(paste(colnames(sig1)[1],"(FHL2 gene)"))+theme(plot.title = element_text(size=20,face="b
old")) +theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element_te
xt(size=15,face="bold")) + annotate("text", x = 20, y=0.7, label ="Spearman's rho = 0.76",fon
tface =2,size=5) +theme(plot.title = element_text(hjust = 0.5)) 
 
sig2 = as.matrix(Train_data_transp[,c("cg24866418")]) 
sig2 <- M2Beta(sig2) 
sig2<- data.frame(sig2,Train_data_transp[,"age"]) 
colnames(sig2)[c(1,2)] <-c("cg24866418","age") 
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p2= ggplot(data = as.data.frame(sig2), aes(x = sig2[,2], y = sig2[,1])) + geom_point(size=1.5) 
+ geom_smooth(method=lm, fill="pink",se=TRUE) + xlab("") +ylab("Methylation level") +ggti
tle(paste(colnames(sig2)[1],"(LHFPL4 gene)"))+theme(plot.title = element_text(size=20,face
="bold")) +theme(axis.title.x = element_text(size=15,face="bold"))+theme(axis.title.y=element
_text(size=15,face="bold")) + annotate("text", x = 20, y=0.5, label ="Spearman's rho = 0.66",
fontface =2,size=5)+ theme(plot.title = element_text(hjust = 0.5)) 
 
   
  multiplot(p1,p2, cols = 2) 
 
sig3 = as.matrix(Train_data_transp[,c("cg07323488")]) 
sig3 <- M2Beta(sig3) 
sig3<- data.frame(sig3,Train_data_transp[,"age"]) 
colnames(sig3)[c(1,2)] <-c("cg07323488","age")   
 
p1= ggplot(data = as.data.frame(sig3), aes(x = sig3[,2], y = sig3[,1])) + geom_point(size=1.5) 
+ geom_smooth(method=lm, fill="pink",se=TRUE) + xlab("Chronological Age") +ylab("Meth
ylation level") +ggtitle(paste(colnames(sig3)[1],"(EGFEM1P gene)"))+theme(plot.title = ele
ment_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,face="bold"))+the
me(axis.title.y=element_text(size=15,face="bold")) + annotate("text", x = 60, y=0.7, label ="S
pearman's rho = - 0.69",fontface =2,size=5)+ theme(plot.title = element_text(hjust = 0.5)) 
 
 
sig4 = as.matrix(Train_data_transp[,c("cg13552692")]) 
sig4 <- M2Beta(sig4) 
sig4<- data.frame(sig4,Train_data_transp[,"age"]) 
colnames(sig4)[c(1,2)] <-c("cg13552692","age")   
 
p2= ggplot(data = as.data.frame(sig4), aes(x = sig4[,2], y = sig4[,1])) + geom_point(size=1.5) 
+ geom_smooth(method=lm, fill="pink",se=TRUE) + xlab("Chronological Age") +ylab("Meth
ylation level") +ggtitle(paste(colnames(sig4)[1],"(CCDC102B gene)"))+theme(plot.title = ele
ment_text(size=20,face="bold")) +theme(axis.title.x = element_text(size=15,face="bold"))+the
me(axis.title.y=element_text(size=15,face="bold")) + annotate("text", x = 60, y=0.7, label ="S
pearman's rho = - 0.67",fontface =2,size=5)+ theme(plot.title = element_text(hjust = 0.5)) 
 
  multiplot(p1,p2, cols = 2) 
 
  rm(sig1,sig2,sig3,sig4) 

cont_train<-data.frame(counts_age,Train_data_transp[,rownames(novel_probes_anno)]) 
 
summary(lm(cg17268658~age, data = as.data.frame(cont_train))) 
summary(lm(cg17268658~age+Gran, data = as.data.frame(cont_train))) 
 
summary(lm(cg24866418~age, data = as.data.frame(cont_train))) 
summary(lm(cg24866418~age+Gran+Bcell+Mono+CD8T+CD4T+NK, data = as.data.frame(co
nt_train))) 
 
summary(lm(cg13552692~age, data = as.data.frame(cont_train))) 
summary(lm(cg13552692~age+CD8T, data = as.data.frame(cont_train))) 
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# top 10 AR CpG markers from Garganani 2012  
 
GargnaniMarkers <- c("cg06639320","cg16867657","cg22454769","cg24079702","cg1641
9235","cg21572722","cg24724428","cg16219603","cg12877723") 
length(which(colnames(Train_data_transp) %in% GargnaniMarkers == TRUE)) # Only 1 drop
ped after snp filteration  
data.frame(ID=GargnaniMarkers[which(GargnaniMarkers %in% colnames(corTrain_data_FD
R_age) == TRUE )],Cor.coeffic=Cor.rvaluesFDR[which(colnames(corTrain_data_FDR_age) %i
n% GargnaniMarkers == TRUE)]) 
# how many markers were abs > 0.5  
length(which(data.frame(ID=GargnaniMarkers[which(GargnaniMarkers %in% colnames(corT
rain_data_FDR_age) == TRUE )],Cor.coeffic=abs(Cor.rvaluesFDR[which(colnames(corTrain_d
ata_FDR_age) %in% GargnaniMarkers == TRUE)]))$Cor.coeffic > 0.5))   
 
# 71 AR CpG markers which were selected by elastic net regression (Hannum et al. 2013) 
HannumMarkers <- read.table("HanumMarkers.txt", header = TRUE) 
length(which(colnames(Train_data_transp) %in% HannumMarkers$Marker == TRUE)) # 1 ma
rkers from Hannum were dropped from EPIC by SNP filteration and 11 markers were totally drop
ped from EPIC chip.  
 
# the correlation coefficient of Hannum markers resulted in our analysis  
data.frame(ID=HannumMarkers$Marker[which(HannumMarkers$Marker %in% colnames(corT
rain_data_FDR_age) == TRUE )],Cor.coeffic=Cor.rvaluesFDR[which(colnames(corTrain_data_
FDR_age) %in% HannumMarkers$Marker == TRUE)]) 
 
# how many markers were abs > 0.5  
length(which(data.frame(ID=HannumMarkers$Marker[which(HannumMarkers$Marker %in% 
colnames(corTrain_data_FDR_age) == TRUE )],Cor.coeffic=abs(Cor.rvaluesFDR[which(colna
mes(corTrain_data_FDR_age) %in% HannumMarkers$Marker == TRUE)]))$Cor.coeffic > 0.5)) 
 
# 11 markers were found by Xu et al. (2015) (450K and linear regression test were used to identi
fication) 
XuMarkers <- read.table("XuMarkers.txt", header = TRUE)  
 
length(which(colnames(corTrain_data_FDR_age) %in% XuMarkers$ID == TRUE)) # 1 marker 
has been dropped from EPIC chip, and 1 marker was dropped by SNP filteration.   
 
# the correlation coefficients resulted in our analysis  
data.frame(ID=XuMarkers$ID[which(XuMarkers$ID %in% colnames(corTrain_data_FDR_age) 
== TRUE )],Cor.coeffic=Cor.rvaluesFDR[which(colnames(corTrain_data_FDR_age) %in% Xu
Markers$ID == TRUE)]) 
 
# 162 markers found by Florath et al. (2014) (the coefficients value were not included in the supp
l materials) 
FlorathMarkers <- read.table("FlorathMarkers.txt", header = TRUE)  
 
length(which(colnames(corTrain_data_FDR_age) %in% FlorathMarkers$ID == TRUE)) # 10 
markers were dropped from EPIC chip and 2 markers from SNP filteration  
 
# the correlation coefficient from our analysis  
data.frame(ID=FlorathMarkers$ID[which(FlorathMarkers$ID %in% colnames(corTrain_data_F
DR_age) == TRUE )],Cor.coeffic=Cor.rvaluesFDR[which(colnames(corTrain_data_FDR_age) 
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%in% FlorathMarkers$ID == TRUE)]) 
 
# 102 markers were found by Weidner et al. (2014) (from 27K Pearson's test) 
WeidnerMarkers <- read.table("WeidnerMarkers.txt", header = TRUE)  
 
length(which(colnames(corTrain_data_FDR_age) %in% WeidnerMarkers$ID == TRUE)) # 1 
marker dropped from EPIC and 1 from SNP filteration  
 
# the correlation coefficient from our analysis  
ourWeidner<-data.frame(ID=WeidnerMarkers$ID[which(WeidnerMarkers$ID %in% colnames(
corTrain_data_FDR_age) == TRUE )],Cor.coeffic=Cor.rvaluesFDR[which(colnames(corTrain_d
ata_FDR_age) %in% WeidnerMarkers$ID == TRUE)]) 

## 80% will be training and 20% testing data  
smp_size <- floor(0.7 * nrow(Train_data_transp)) 
 
## set the seed to make your partition reproducible 
set.seed(123) 
train_ind <- sample(seq_len(nrow(Train_data_transp)), size = smp_size) 
 
train <- Train_data_transp[train_ind, ] 
test <- Train_data_transp[-train_ind, ] 
 
hist(train[,"age"], 
      main="Training set \n (n=527)", 
      xlab="Age (years)", ylab="Frequency", 
      freq=TRUE, border="black",cex.lab=1.2,cex.main=1.3, font=2, font.lab=2,col="gray", ylim=c
(0,200), xlim=c(0,100)) 
 
hist(test[,"age"], 
      main="Testing set \n (n=227)", 
      xlab="Age (years)", ylab="Frequency", 
      freq=TRUE, border="black",cex.lab=1.2,cex.main=1.3, font=2, font.lab=2,col="gray", ylim=c
(0,100), xlim=c(0,100)) 

library(glmnet) 
 
# use 10 fold cross validation to estimate the lambda parameter in the 
# training data 
 
glmnet.Training.CV <- cv.glmnet(as.matrix(train[, 1:(ncol(train) -1)]), train[,"age"], nfolds = 10,  
                                alpha = 0.5, family = "gaussian") 
 
# The definition of the lambda parameter: 
lambda.glmnet.Training <- glmnet.Training.CV$lambda.min 
 
# Fit the elastic net predictor to the training data 
glmnet.Training <- glmnet(as.matrix(train[, 1:(ncol(train))-1]), train[, "age"], alpha = 0.5, family 
= "gaussian", nlambda = 100) 
 
 
# predicting age of the samples in the training set  
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DNAmAge_Training <- predict(glmnet.Training, as.matrix(train[, 1:(ncol(train)) - 1]), type="res
ponse", s=lambda.glmnet.Training) 
 
# Calculating MAD value 
glm_Predicted_Age <- DNAmAge_Training[, 1] 
Actual_Age <- train[, "age"] 
 
# The prediction accuracy is 
mean(abs(Actual_Age - glm_Predicted_Age)) 
 
plot(glmnet.Training.CV) 
 
 
library(broom) 
tidied.cv<-as.data.frame(tidy(glmnet.Training.CV)) 
tidied.cv 
 
glmnet.Training.CV$lambda.min 

# Ploting predicted vs actual 
t<-data.frame(Actual_Age,glm_Predicted_Age) 
ggplot(as.data.frame(t), aes(x = Actual_Age, y = glm_Predicted_Age, color="Blood")) +              
geom_point(size=4.5,alpha=0.9, color="orange")+ xlab("Actual Age")+ylab("Predicted Age"
)+labs(color="Tissue Type",face="bold",size=3)+ geom_abline(slope=1,  
intercept=0, size=1, color="black")+theme(plot.title = element_text(size=21,face="bold"))+  
theme(axis.title.x = element_text(size=18,face="bold"))+theme(axis.title.y=element_text(size=
18,face="bold"))+coord_fixed(ratio=3/4) +xlim(15, 70) +ylim(15, 70) 
 
cor.test(Actual_Age , glm_Predicted_Age) 

# extracting the IDs of the CpG probes that have been selected by elastic net regression and cre
ating data frame containing annotation details:  
 
trainWithIntercept=cbind(rep(0,836), Train_data_transp)  
colnames(trainWithIntercept)[1]<-"Intercept"  
 
elastic_probes_anno <- data.frame(Other[colnames(trainWithIntercept)[which(coef(glmnet.Tra
ining.CV, s = 0.2260869) != 0)][-1],c(3,5,7,25,26)], Locations[colnames(trainWithIntercept)[whic
h(coef(glmnet.Training.CV, s = 0.2260869) != 0)][-1],]) 
 
# the number of probes that are coming from each BeadChip array  
# The number of probes from 27K  
length(which(elastic_probes_anno$Methyl27_Loci == "TRUE")) 
# The number of probes from 450K 
length(which(elastic_probes_anno$Methyl450_Loci == "TRUE")) 
# The number of probes from EPIC  
length(which(elastic_probes_anno$Methyl450_Loci == "" & elastic_probes_anno$Methyl27_Lo
ci == "")) 
 
rm(trainWithIntercept) 
rm(Other) 
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rm(Locations) 
rm(Islands.UCSC) 

# Validating the model using independent data set  
 
# Validating the model with the randomly selected samples  
DNAmAge_Testing <- predict(glmnet.Training, as.matrix(test[, 1:(ncol(test)) - 1]), type="respo
nse", s=lambda.glmnet.Training) 
 
# Calculating MAD value 
test_Predicted_Age <- DNAmAge_Testing[, 1] 
test_Actual_Age <- test[, "age"] 
 
# The prediction accuracy is 
mean(abs(test_Actual_Age - test_Predicted_Age)) 

s <- data.frame(test_Actual_Age,test_Predicted_Age ) 
 
ggplot(as.data.frame(s), aes(x = test_Actual_Age, y =test_Predicted_Age))+geom_point(size=
2.8,alpha=0.9)+ 
                        ggtitle("") + xlab("Actual age") + 
                        ylab("Predicted age")+geom_abline(slope=1,intercept=0,size=1,color="red")
+ 
                        theme(plot.title=element_text(size=21,face="bold"))+ 
                        theme(axis.title.x=element_text(size=18,face="bold"))+ 
                        theme(axis.title.y=element_text(size=18,face="bold"))+coord_fixed(ratio=3/4)
+ 
                        theme(plot.title = element_text(hjust = 0.5)) 

no_markers <- tidied.cv$nzero[-1] 
lamd <- tidied.cv$lambda[-1] 
mad_models <- vector() 
for (i in 61:98) { DNAge <- predict(glmnet.Training, as.matrix(test[, 1:(ncol(test)) - 1]), type="re
sponse", s=lamd[i]) 
tes_P_Age <- DNAge[, 1] 
mad_models[i] <-mean(abs(test_Actual_Age - tes_P_Age)) 
rm(DNAge) 
}  
 
no_markers1 <- no_markers[-which(duplicated(no_markers) == TRUE)]  
mad_models <- mad_models[-which(duplicated(no_markers) == TRUE)] 
 
y <- data.frame(Model=no_markers1, MAD=mad_models) 
 
ggplot(as.data.frame(y), aes(x = Model, y = MAD)) +geom_line(size=1) + xlab("Number of C
pG sites")+ 
                         ylab("MAD (years)")+labs(face="bold",size=3) +         
                        theme(plot.title=element_text(size=21,face="bold"))+ 
                        theme(axis.title.x=element_text(size=18,face="bold"))+ 
                        theme(axis.title.y=element_text(size=18,face="bold"))+ 
                        coord_fixed(ratio=4/0.1)+scale_y_discrete(limits=c(seq(1,12,1)))  
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# Simple linear regression code 
CoefEsts.forM = matrix(NA, nrow = (ncol(train)-1), ncol = 4) # this is to design matrix for inputs  
rownames(CoefEsts.forM) = colnames(train)[1:(ncol(train)-1)] 
colnames(CoefEsts.forM) = c("Intercept", "Coef","Pvalue","Rsquare")  
for (i in 1:(ncol(train)-1)) { fit = lm(train[,ncol(train)]~train[,i]) ;CoefEsts.forM[i,c(1,2,3)] = summ
ary(fit)[[4]][c(1,2,8)]; CoefEsts.forM[i,4] = summary(fit)[[8]] }  
 
Reg.p <- CoefEsts.forM[,3] 
library(brainwaver) 
 
Rpvalue.thresh<-compute.FDR(Reg.p,0.05) 
 
CoefEsts.forM[which(CoefEsts.forM[,4] > 0.6),] 

# step-wise regression 
library(leaps) 
train <- as.data.frame(train) 
train <- train[,rownames(CoefEsts.forM[which(CoefEsts.forM[,4] > 0.5),])] 
train <- cbind( train, age[train_ind]) 
colnames(train)[ncol(train)] <- "age" 
 
regfitfull=regsubsets(age~., data = train, nvmax = 10,nbest=1, method = "exhaustive")  
reg.summary=summary(regfitfull) 
plot(reg.summary$bic, xlab="Number of variables", cex.lab=1.3,ylab="BIC stats",cex=2, col=
"red",pch=20,main=" Bayesian information criterion (BIC) ",font.lab=2,cex.main=2) 
 
abline(v=which.min(reg.summary$bic),  lwd=2, col="blue")  

# Based on Bayesian Information Criterion (BIC) algorithm, the best CpG markers combination i
s at  
which.min(reg.summary$bic) 
 
# The names of the CpG sites that are included in the best model are   
names(coef(regfitfull,(which.min(reg.summary$bic))))[-1] 

#Multiple linear regression - CpG markers from the model that has the lowest BIC value 
Model_M_Sig <- lm(age~cg18933331+cg10501210+cg06639320+cg24866418+cg16867657+c
g17110586, data = as.data.frame(train)) 
 
Predicted_M_Sig <- fitted(Model_M_Sig) # predicted values 
 
k <- cbind(Actual_age=train[,"age"], sig_predicted_train=Predicted_M_Sig) 
 
ggplot(as.data.frame(k), aes(x = Actual_age, y =sig_predicted_train))+geom_point(size=2.8,al
pha=0.9)+ 
                        ggtitle("") + xlab("Actual age") + 
                        ylab("Predicted age")+geom_abline(slope=1,intercept=0,size=1,color="red")
+ 
                        theme(plot.title=element_text(size=21,face="bold"))+ 
                        theme(axis.title.x=element_text(size=18,face="bold"))+ 
                        theme(axis.title.y=element_text(size=18,face="bold"))+coord_fixed(ratio=3/4)
+  
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                        theme(plot.title = element_text(hjust = 0.5)) + 
            annotate("text", x = 20, y=80, label =" Training data \n MAD = 4.5 years \n r = 0.9",
fontface=2,size=5) 
 
 
write.csv( tidy( lm(age~cg18933331+cg10501210+cg06639320+cg24866418+cg16867657+cg
17110586, data = as.data.frame(train)) ) , "train6.csv" ) 
write.csv( glance( lm(age~cg18933331+cg10501210+cg06639320+cg24866418+cg16867657
+cg17110586, data = as.data.frame(train))) , "ann.csv" ) 

test <- test[,names(coef(regfitfull,(which.min(reg.summary$bic))))[-1]]  
test <- cbind(test, age=age[-train_ind]) 
 
sig_predicted_test <- predict(Model_M_Sig, as.data.frame(test)) 
 
mean(abs(test[,"age"] - sig_predicted_test)) 
 
l <- data.frame(Actual_age=test[,"age"], Predicted_age=sig_predicted_test) 
 
ggplot(as.data.frame(l), aes(x = Actual_age, y =sig_predicted_test))+geom_point(size=2.8,alp
ha=0.9)+ 
                        ggtitle("") + xlab("Actual age") + 
                        ylab("Predicted age")+geom_abline(slope=1,intercept=0,size=1,color="red")
+ 
                        theme(plot.title=element_text(size=21,face="bold"))+ 
                        theme(axis.title.x=element_text(size=18,face="bold"))+ 
                        theme(axis.title.y=element_text(size=18,face="bold"))+coord_fixed(ratio=3/4)
+ 
              annotate("text", x = 20, y=65, label =" Testing data \n MAD = 4.6 years \n r = 0.9",
fontface=2,size=5) 

# Bootstrap function  
library(mgsub) 
ss <-vector() 
for (i in 1:10000 ) {  
  nx <- test[sample(rownames(test),227, replace = TRUE),] 
  px<-predict(Model_M_Sig, as.data.frame(nx)) 
  trt<-as.numeric(px) 
  names(trt)<-names(px) 
  pree <- test_Actual_Age[mgsub( string=names(trt), pattern=c(".1",".2",".3",".4",".5",".6"), repl
acement=c("","","","","",""), fixed = TRUE)] 
  ss[i] <-mean(abs(pree - trt)) 
} 
 
t.test(ss) 
 
# Plot hist of MAD estimates  
 
par(mar=c(5, 6, 4, 2)) 
 
hist(ss,  
     main="MAD estimation by bootstrap analysis",  
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     cex.main=2.5, 
     xlab="MAD values",  
     border="blue",  
     col="pink",  
     las=1, 
     cex.axis=1, 
     cex.lab=2, 
     breaks=50,  
     prob = TRUE) 
lines(density(na.omit(ss)), lwd=4) 

gender_GSE116339<-gender_GSE116339[which(gender_GSE116339[,1] %in% rownames(Tr
ain_data_transp) == TRUE),] 
gender_GSE116339[,2] <- as.character(gender_GSE116339[,2]) 
 
gender_data <- c("Male","Male", "Female", "Female", "Male" ,"Female", "Male", "Male", re
p("Female",69)) 
gender_data <- c(gender_data, gender_GSE116339[,2]) 
names(gender_data) <- rownames(Train_data_transp)  
 
test_gender <- gender_data[which(names(gender_data) %in% rownames(test) == TRUE)] 

# female 
mean(abs( test[which(test_gender == "Female"),"age"] - predict(Model_M_Sig, as.data.fram
e(test[which(test_gender == "Female"),])))) 
 
# male 
 
mean(abs( test[which(test_gender == "Male"),"age"] - predict(Model_M_Sig, as.data.frame(t
est[which(test_gender == "Male"),])))) 
 
# t.test between male and female 
 
absPredicted_male<-abs( test[which(test_gender == "Male"),"age"] - predict(Model_M_Sig, a
s.data.frame(test[which(test_gender == "Male"),]))) 
 
absPredicted_female<-abs( test[which(test_gender == "Female"),"age"] - predict(Model_M_S
ig, as.data.frame(test[which(test_gender == "Female"),]))) 
 
t.test(absPredicted_female, absPredicted_male) 
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Appendix C3: R codes used for Chapter 6  

This section provides the R codes used in Chapter 6, to normalise the DNA 
methylation profiles assayed on Illumina HumanMethylation27 and 
HumanMethylation450 based on Horvath’s algorithm.  

library(GEOquery)  
 
# Downloading the data set  
exprss <- getGEO("GSE-data",getGPL = FALSE,AnnotGPL = FALSE,GSEMatrix = TRUE) 
 
# Extracting the DNAm data, samples' meta-data, and features annotation  
expression_data <- as.data.frame(exprs(exprss[[1]])) 
meta_data<-pData(phenoData(exprss[[1]])) 
feature_annotation <- pData(featureData(exprss[[1]])) 

dat0 <- cbind(rownames(expression_data),expression_data)  
colnames(dat0)[1] <-"ProbeID" 
 
probeAnnotation27k=read.csv("datMiniAnnotation27k.csv") 
probeAnnotation21kdatMethUsed=read.csv("probeAnnotation21kdatMethUsed.csv")  
 
nSamples=dim(dat0)[[2]]-1 
nProbes= dim(dat0)[[1]] 
# the following command may not be needed. But it is sometimes useful when you use read.csv.
sql 
dat0[,1]= gsub(x=dat0 [,1],pattern="\"",replacement="")  
#Create a log file which will be output into your directory 
# The code looks a bit complicated because it serves to create a log file (for error checks etc). 
# It will automatically create a log file. 
file.remove("LogFile.txt") 
file.create("LogFile.txt") 
DoNotProceed=FALSE 
cat(paste( "The methylation data set contains", nSamples, "samples (e.g. arrays) and ", n
Probes, " probes."),file="LogFile.txt") 
if (nSamples==0) {DoNotProceed=TRUE; cat(paste( "\n ERROR: There must be a data inp
ut error since there seem to be no samples.\n Make sure that you input a comma delimi
ted file (.csv file)\n that can be read using the R command read.csv.sql . Samples corre
spond to columns in that file  ."), file="LogFile.txt",append=TRUE) }  
if (nProbes==0) {DoNotProceed=TRUE; cat(paste( "\n ERROR: There must be a data input 
error since there seem to be zero probes.\n Make sure that you input a comma delimite
d file (.csv file)\n that can be read using the R command read.csv.sql  CpGs correspond 
to rows.")   , file="LogFile.txt",append=TRUE) }  
if (  nSamples > nProbes  ) { cat(paste( "\n MAJOR WARNING: It worries me a lot that ther
e are more samples than CpG probes.\n Make sure that probes correspond to rows and 
samples to columns.\n I wonder whether you want to first transpose the data and then r
esubmit them? In any event, I will proceed with the analysis."),file="LogFile.txt",append=T
RUE) } 
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if (  is.numeric(dat0[,1]) ) { DoNotProceed=TRUE; cat(paste( "\n Error: The first column doe
s not seem to contain probe identifiers (cg numbers from Illumina) since these entries ar
e numeric values. Make sure that the first column of the file contains probe identifiers su
ch as cg00000292. Instead it contains ", dat0[1:3,1]  ),file="LogFile.txt",append=TRUE)  }  
if (  !is.character(dat0[,1]) ) {  cat(paste( "\n Major Warning: The first column does not see
m to contain probe identifiers (cg numbers from Illumina) since these entries are numeri
c values. Make sure that the first column of the file contains CpG probe identifiers such 
as cg00000292. Instead it contains ", dat0[1:3,1]  ),file="LogFile.txt",append=TRUE)  }  
datout=data.frame(Error=c("Input error. Please check the log file for details","Please read 
the instructions carefully."), Comment=c("", "email Steve Horvath.")) 
 
if ( ! DoNotProceed ) { 
nonNumericColumn=rep(FALSE, dim(dat0)[[2]]-1) 
for (i in 2:dim(dat0)[[2]] ){ nonNumericColumn[i-1]=! is.numeric(dat0[,i]) } 
if (  sum(nonNumericColumn) >0 ) { cat(paste( "\n MAJOR WARNING: Possible input error. 
The following samples contain non-numeric beta values: ", colnames(dat0)[-1][ nonNumeri
cColumn], "\n Hint: Maybe you use the wrong symbols for missing data. Make sure to co
de missing values as NA in the Excel file. To proceed, I will force the entries into numeri
c values but make sure this makes sense.\n" ),file="LogFile.txt",append=TRUE)  }  
XchromosomalCpGs=as.character(probeAnnotation27k$Name[probeAnnotation27k$Chr=="X"]
) 
selectXchromosome=is.element(dat0[,1], XchromosomalCpGs ) 
selectXchromosome[is.na(selectXchromosome)]=FALSE 
meanXchromosome=rep(NA, dim(dat0)[[2]]-1) 
if (   sum(selectXchromosome) >=500 )  { 
meanXchromosome= as.numeric(apply( as.matrix(dat0[selectXchromosome,-1]),2,mean,na.r
m=TRUE)) } 
if (  sum(is.na(meanXchromosome)) >0 ) { cat(paste( "\n \n Comment: There are lots of mis
sing values for X chromosomal probes for some of the samples. This is not a problem w
hen it comes to estimating age but I cannot predict the gender of these samples.\n " ),fil
e="LogFile.txt",append=TRUE)  }  
 
match1=match(probeAnnotation21kdatMethUsed$Name , dat0[,1]) 
if  ( sum( is.na(match1))>0 ) {  
missingProbes= probeAnnotation21kdatMethUsed$Name[!is.element( probeAnnotation21kdat
MethUsed$Name , dat0[,1])]     
DoNotProceed=TRUE; cat(paste( "\n \n Input error: You forgot to include the following ", le
ngth(missingProbes), " CpG probes (or probe names):\n ", paste( missingProbes, sep="",col
lapse=", ")),file="LogFile.txt",append=TRUE)  }}  
 
#STEP 2: Restrict the data to 21k probes and ensure they are numeric 
match1=match(probeAnnotation21kdatMethUsed$Name , dat0[,1]) 
if  ( sum( is.na(match1))>0 ) stop(paste(sum( is.na(match1)), "CpG probes cannot be matc
hed")) 
dat1= dat0[match1,] 
asnumeric1=function(x) {as.numeric(as.character(x))} 
dat1[,-1]=apply(as.matrix(dat1[,-1]),2,asnumeric1) 

plot(density(dat1[,2],na.rm=TRUE,from=0,to=1), col="red" ,xlab = "DNA Methylation Level - 
Beta values", main="Density plot") 
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for (i in 3:ncol(dat1)) {lines(density(dat1[,i], na.rm=TRUE,from=0,to=1),col="red") } 
 

require(RPMM); 
library("dynamicTreeCut") 
library(WGCNA) 
 
betaEst2=function (y, w, weights)  
{ 
  yobs = !is.na(y) 
  if (sum(yobs) <= 1)  
    return(c(1, 1)) 
  y = y[yobs] 
  w = w[yobs] 
  weights = weights[yobs] 
  N = sum(weights * w) 
  p = sum(weights * w * y)/N 
  v = sum(weights * w * y * y)/N - p * p 
  logab = log(c(p, 1 - p)) + log(pmax(1e-06, p * (1 - p)/v -  
                                        1)) 
  if (sum(yobs) == 2)  
    return(exp(logab)) 
  opt = try(optim(logab, betaObjf, ydata = y, wdata = w, weights = weights,  
                  method = "Nelder-Mead",control=list(maxit=50) ), silent = TRUE) 
  if (inherits(opt, "try-error"))  
    return(c(1, 1)) 
  exp(opt$par) 
} # end of function betaEst 
 
blc2=function (Y, w, maxiter = 25, tol = 1e-06, weights = NULL, verbose = TRUE)  
{ 
  Ymn = min(Y[Y > 0], na.rm = TRUE) 
  Ymx = max(Y[Y < 1], na.rm = TRUE) 
  Y = pmax(Y, Ymn/2) 
  Y = pmin(Y, 1 - (1 - Ymx)/2) 
  Yobs = !is.na(Y) 
  J = dim(Y)[2] 
  K = dim(w)[2] 
  n = dim(w)[1] 
  if (n != dim(Y)[1])  
    stop("Dimensions of w and Y do not agree") 
  if (is.null(weights))  
    weights = rep(1, n) 
  mu = a = b = matrix(Inf, K, J) 
  crit = Inf 
  for (i in 1:maxiter) { 
    warn0 = options()$warn 
    options(warn = -1) 
    eta = apply(weights * w, 2, sum)/sum(weights) 
    mu0 = mu 
    for (k in 1:K) { 
      for (j in 1:J) { 
        ab = betaEst2(Y[, j], w[, k], weights) 
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        a[k, j] = ab[1] 
        b[k, j] = ab[2] 
        mu[k, j] = ab[1]/sum(ab) 
      } 
    } 
    ww = array(0, dim = c(n, J, K)) 
    for (k in 1:K) { 
      for (j in 1:J) { 
        ww[Yobs[, j], j, k] = dbeta(Y[Yobs[, j], j],  
                                    a[k, j], b[k, j], log = TRUE) 
      } 
    } 
    options(warn = warn0) 
    w = apply(ww, c(1, 3), sum, na.rm = TRUE) 
    wmax = apply(w, 1, max) 
    for (k in 1:K) w[, k] = w[, k] - wmax 
    w = t(eta * t(exp(w))) 
    like = apply(w, 1, sum) 
    w = (1/like) * w 
    llike = weights * (log(like) + wmax) 
    crit = max(abs(mu - mu0)) 
    if (verbose)  
      print(crit) 
    if (crit < tol)  
      break 
  } 
  return(list(a = a, b = b, eta = eta, mu = mu, w = w, llike = sum(llike))) 
} 
 
 
# The function BMIQcalibration was created by Steve Horvath by heavily recycling code 
# from A. Teschendorff's BMIQ function. 
# BMIQ stands for beta mixture quantile normalization. 
# Explanation: datM is a data frame with Illumina beta values (rows are samples, colums are Cp
Gs. 
# goldstandard is a numeric vector with beta values that is used as gold standard for calibrating t
he columns of datM. 
# The length of goldstandard has to equal the number of columns of datM. 
# Example code: First we impute missing values. 
# library(WGCNA); dimnames1=dimnames(datMeth) 
# datMeth= data.frame(t(impute.knn(as.matrix(t(datMeth)))$data)) 
# dimnames(datMeth)=dimnames1 
# gold.mean=as.numeric(apply(datMeth,2,mean,na.rm=TRUE)) 
#datMethCalibrated=BMIQcalibration(datM=datMeth,goldstandard.beta=gold.mean) 
 
BMIQcalibration=function(datM,goldstandard.beta,nL=3,doH=TRUE,nfit=20000,th1.v=c(0.2,0.7
5),th2.v=NULL,niter=5,tol=0.001,plots=FALSE,calibrateUnitInterval=TRUE){ 
  if (length(goldstandard.beta) !=dim(datM)[[2]] ) {stop("Error in function arguments length(g
oldstandard.beta) !=dim(datM)[[2]]. Consider transposing datM.")} 
  if (plots ) {par(mfrow=c(2,2))} 
  beta1.v = goldstandard.beta 
   
  if (calibrateUnitInterval ) {datM=CalibrateUnitInterval(datM)} 
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  ### estimate initial weight matrix from type1 distribution 
  w0.m = matrix(0,nrow=length(beta1.v),ncol=nL); 
  w0.m[which(beta1.v <= th1.v[1]),1] = 1; 
  w0.m[intersect(which(beta1.v > th1.v[1]),which(beta1.v <= th1.v[2])),2] = 1; 
  w0.m[which(beta1.v > th1.v[2]),3] = 1; 
  ### fit type1 
  print("Fitting EM beta mixture to goldstandard probes"); 
  set.seed(1) 
  rand.idx = sample(1:length(beta1.v),min(c(nfit, length(beta1.v))  )   ,replace=FALSE) 
  em1.o = blc(matrix(beta1.v[rand.idx],ncol=1),w=w0.m[rand.idx,],maxiter=niter,tol=tol); 
  subsetclass1.v = apply(em1.o$w,1,which.max); 
  subsetth1.v = c(mean(max(beta1.v[rand.idx[subsetclass1.v==1]]),min(beta1.v[rand.idx[subset
class1.v==2]])),mean(max(beta1.v[rand.idx[subsetclass1.v==2]]),min(beta1.v[rand.idx[subsetcla
ss1.v==3]]))); 
  class1.v = rep(2,length(beta1.v)); 
  class1.v[which(beta1.v < subsetth1.v[1])] = 1; 
  class1.v[which(beta1.v > subsetth1.v[2])] = 3; 
  nth1.v = subsetth1.v; 
  print("Done"); 
   
  ### generate plot from estimated mixture 
  if(plots){ 
    print("Check"); 
    tmpL.v = as.vector(rmultinom(1:nL,length(beta1.v),prob=em1.o$eta)); 
    tmpB.v = vector(); 
    for(l in 1:nL){ 
      tmpB.v = c(tmpB.v,rbeta(tmpL.v[l],em1.o$a[l,1],em1.o$b[l,1])); 
    } 
    plot(density(beta1.v),main= paste("Type1fit-", sep="")); 
    d.o = density(tmpB.v); 
    points(d.o$x,d.o$y,col="green",type="l") 
    legend(x=0.5,y=3,legend=c("obs","fit"),fill=c("black","green"),bty="n"); 
  } 
   
  ### Estimate Modes  
  if (  sum(class1.v==1)==1 ){ mod1U= beta1.v[class1.v==1]} 
  if (  sum(class1.v==3)==1 ){ mod1M= beta1.v[class1.v==3]} 
  if (  sum(class1.v==1) >1){  
    d1U.o = density(beta1.v[class1.v==1]) 
    mod1U = d1U.o$x[which.max(d1U.o$y)] 
  } 
  if (  sum(class1.v==3)>1 ){  
    d1M.o = density(beta1.v[class1.v==3]) 
    mod1M = d1M.o$x[which.max(d1M.o$y)] 
  } 
   
  ### BETA 2 
  for (ii in 1:dim(datM)[[1]] ){ 
    printFlush(paste("ii=",ii)) 
    sampleID=ii 
    beta2.v = as.numeric(datM[ii,]) 
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    d2U.o = density(beta2.v[which(beta2.v<0.4)]); 
    d2M.o = density(beta2.v[which(beta2.v>0.6)]); 
    mod2U = d2U.o$x[which.max(d2U.o$y)] 
    mod2M = d2M.o$x[which.max(d2M.o$y)] 
     
    ### now deal with type2 fit 
    th2.v = vector(); 
    th2.v[1] = nth1.v[1] + (mod2U-mod1U); 
    th2.v[2] = nth1.v[2] + (mod2M-mod1M); 
     
    ### estimate initial weight matrix  
    w0.m = matrix(0,nrow=length(beta2.v),ncol=nL); 
    w0.m[which(beta2.v <= th2.v[1]),1] = 1; 
    w0.m[intersect(which(beta2.v > th2.v[1]),which(beta2.v <= th2.v[2])),2] = 1; 
    w0.m[which(beta2.v > th2.v[2]),3] = 1; 
     
    print("Fitting EM beta mixture to input probes"); 
    # I fixed an error in the following line (replaced beta1 by beta2) 
    set.seed(1) 
    rand.idx = sample(1:length(beta2.v),min(c(nfit, length(beta2.v)),na.rm=TRUE)   ,replace=FA
LSE) 
    em2.o = blc2(Y=matrix(beta2.v[rand.idx],ncol=1),w=w0.m[rand.idx,],maxiter=niter,tol=tol,verb
ose=TRUE); 
    print("Done"); 
     
    ### for type II probes assign to state (unmethylated, hemi or full methylation) 
    subsetclass2.v = apply(em2.o$w,1,which.max); 
     
     
    if (sum(subsetclass2.v==2)>0 ){ 
      subsetth2.v = c(mean(max(beta2.v[rand.idx[subsetclass2.v==1]]),min(beta2.v[rand.idx[subs
etclass2.v==2]])), 
                      mean(max(beta2.v[rand.idx[subsetclass2.v==2]]),min(beta2.v[rand.idx[subsetclas
s2.v==3]]))); 
    } 
    if (sum(subsetclass2.v==2)==0 ){ 
      subsetth2.v = c(1/2*max(beta2.v[rand.idx[subsetclass2.v==1]])+ 1/2*mean(beta2.v[rand.idx[
subsetclass2.v==3]]), 1/3*max(beta2.v[rand.idx[subsetclass2.v==1]])+ 2/3*mean(beta2.v[rand.id
x[subsetclass2.v==3]])); 
    } 
     
    class2.v = rep(2,length(beta2.v)); 
    class2.v[which(beta2.v <= subsetth2.v[1])] = 1; 
    class2.v[which(beta2.v >= subsetth2.v[2])] = 3; 
     
    ### generate plot 
    if(plots){ 
      tmpL.v = as.vector(rmultinom(1:nL,length(beta2.v),prob=em2.o$eta)); 
      tmpB.v = vector(); 
      for(lt in 1:nL){ 
        tmpB.v = c(tmpB.v,rbeta(tmpL.v[lt],em2.o$a[lt,1],em2.o$b[lt,1])); 
      } 
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      plot(density(beta2.v),  main= paste("Type2fit-",sampleID,sep="")  ); 
      d.o = density(tmpB.v); 
      points(d.o$x,d.o$y,col="green",type="l") 
      legend(x=0.5,y=3,legend=c("obs","fit"),fill=c("black","green"),bty="n"); 
    } 
     
    classAV1.v = vector();classAV2.v = vector(); 
    for(l in 1:nL){ 
      classAV1.v[l] =  em1.o$mu[l,1]; 
      classAV2.v[l] =  em2.o$mu[l,1]; 
    } 
     
    ### start normalising input probes 
    print("Start normalising input probes"); 
    nbeta2.v = beta2.v; 
    ### select U probes 
    lt = 1; 
    selU.idx = which(class2.v==lt); 
    selUR.idx = selU.idx[which(beta2.v[selU.idx] > classAV2.v[lt])]; 
    selUL.idx = selU.idx[which(beta2.v[selU.idx] < classAV2.v[lt])]; 
    ### find prob according to typeII distribution 
    p.v = pbeta(beta2.v[selUR.idx],em2.o$a[lt,1],em2.o$b[lt,1],lower.tail=FALSE); 
    ### find corresponding quantile in type I distribution 
    q.v = qbeta(p.v,em1.o$a[lt,1],em1.o$b[lt,1],lower.tail=FALSE); 
    nbeta2.v[selUR.idx] = q.v; 
    p.v = pbeta(beta2.v[selUL.idx],em2.o$a[lt,1],em2.o$b[lt,1],lower.tail=TRUE); 
    ### find corresponding quantile in type I distribution 
    q.v = qbeta(p.v,em1.o$a[lt,1],em1.o$b[lt,1],lower.tail=TRUE); 
    nbeta2.v[selUL.idx] = q.v; 
     
    ### select M probes 
    lt = 3; 
    selM.idx = which(class2.v==lt); 
    selMR.idx = selM.idx[which(beta2.v[selM.idx] > classAV2.v[lt])]; 
    selML.idx = selM.idx[which(beta2.v[selM.idx] < classAV2.v[lt])]; 
    ### find prob according to typeII distribution 
    p.v = pbeta(beta2.v[selMR.idx],em2.o$a[lt,1],em2.o$b[lt,1],lower.tail=FALSE); 
    ### find corresponding quantile in type I distribution 
    q.v = qbeta(p.v,em1.o$a[lt,1],em1.o$b[lt,1],lower.tail=FALSE); 
    nbeta2.v[selMR.idx] = q.v; 
     
     
    if(doH){ ### if TRUE also correct type2 hemimethylated probes 
      ### select H probes and include ML probes (left ML tail is not well described by a beta-distri
bution). 
      lt = 2; 
      selH.idx = c(which(class2.v==lt),selML.idx); 
      minH = min(beta2.v[selH.idx],na.rm=TRUE) 
      maxH = max(beta2.v[selH.idx],na.rm=TRUE) 
      deltaH = maxH - minH; 
      #### need to do some patching 
      deltaUH = -max(beta2.v[selU.idx],na.rm=TRUE) + min(beta2.v[selH.idx],na.rm=TRUE) 
      deltaHM = -max(beta2.v[selH.idx],na.rm=TRUE) + min(beta2.v[selMR.idx],na.rm=TRUE) 
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      ## new maximum of H probes should be 
      nmaxH = min(nbeta2.v[selMR.idx],na.rm=TRUE) - deltaHM; 
      ## new minimum of H probes should be 
      nminH = max(nbeta2.v[selU.idx],na.rm=TRUE) + deltaUH; 
      ndeltaH = nmaxH - nminH; 
       
      ### perform conformal transformation (shift+dilation) 
      ## new_beta_H(i) = a + hf*(beta_H(i)-minH); 
      hf = ndeltaH/deltaH ; 
      ### fix lower point first 
      nbeta2.v[selH.idx] = nminH + hf*(beta2.v[selH.idx]-minH); 
       
    } 
     
    ### generate final plot to check normalisation 
    if(plots){ 
      print("Generating final plot"); 
      d1.o = density(beta1.v); 
      d2.o = density(beta2.v); 
      d2n.o = density(nbeta2.v); 
      ymax = max(d2.o$y,d1.o$y,d2n.o$y); 
      plot(density(beta2.v),type="l",ylim=c(0,ymax),xlim=c(0,1), main=paste("CheckBMIQ-",sa
mpleID,sep="") ); 
      points(d1.o$x,d1.o$y,col="red",type="l"); 
      points(d2n.o$x,d2n.o$y,col="blue",type="l"); 
      legend(x=0.5,y=ymax,legend=c("type1","type2","type2-BMIQ"),bty="n",fill=c("red","black
","blue")); 
    } 
     
    datM[ii,]= nbeta2.v ; 
  } # end of for (ii=1 loop 
  datM 
} # end of function BMIQcalibration 
 
BMIQ = function(beta.v,design.v,nL=3,doH=TRUE,nfit=50000,th1.v=c(0.2,0.75),th2.v=NULL,nit
er=5,tol=0.001,plots=TRUE,sampleID=1,calibrateUnitInterval=TRUE){ 
   
  if (calibrateUnitInterval) { 
    rangeBySample=range(beta.v,na.rm=TRUE) 
    minBySample=rangeBySample[1] 
    maxBySample=rangeBySample[2] 
    if ( (minBySample<0 | maxBySample>1) & !is.na(minBySample) & !is.na(maxBySample) ) { 
      y1=c(0.001,.999)  
      x1=c(minBySample,maxBySample) 
      lm1=lm( y1 ~ x1 ) 
      intercept1=coef(lm1)[[1]] 
      slope1=coef(lm1)[[2]] 
      beta.v=intercept1+slope1*beta.v 
    } # end of if 
  } # end of if (calibrateUnitInterval 
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  type1.idx = which(design.v==1); 
  type2.idx = which(design.v==2); 
   
  beta1.v = beta.v[type1.idx]; 
  beta2.v = beta.v[type2.idx]; 
   
  ### estimate initial weight matrix from type1 distribution 
  w0.m = matrix(0,nrow=length(beta1.v),ncol=nL); 
  w0.m[which(beta1.v <= th1.v[1]),1] = 1; 
  w0.m[intersect(which(beta1.v > th1.v[1]),which(beta1.v <= th1.v[2])),2] = 1; 
  w0.m[which(beta1.v > th1.v[2]),3] = 1; 
   
  ### fit type1 
  print("Fitting EM beta mixture to goldstandard probes"); 
  set.seed(1) 
  rand.idx = sample(1:length(beta1.v),min(c(nfit, length(beta1.v))  )   ,replace=FALSE) 
  em1.o = blc2(Y=matrix(beta1.v[rand.idx],ncol=1),w=w0.m[rand.idx,],maxiter=niter,tol=tol); 
  subsetclass1.v = apply(em1.o$w,1,which.max); 
  subsetth1.v = c(mean(max(beta1.v[rand.idx[subsetclass1.v==1]]),min(beta1.v[rand.idx[subset
class1.v==2]])),mean(max(beta1.v[rand.idx[subsetclass1.v==2]]),min(beta1.v[rand.idx[subsetcla
ss1.v==3]],na.rm=TRUE))); 
  class1.v = rep(2,length(beta1.v)); 
  class1.v[which(beta1.v < subsetth1.v[1])] = 1; 
  class1.v[which(beta1.v > subsetth1.v[2])] = 3; 
  nth1.v = subsetth1.v; 
  print("Done"); 
   
  ### generate plot from estimated mixture 
  if(plots){ 
    print("Check"); 
    tmpL.v = as.vector(rmultinom(1:nL,length(beta1.v),prob=em1.o$eta)); 
    tmpB.v = vector(); 
    for(l in 1:nL){ 
      tmpB.v = c(tmpB.v,rbeta(tmpL.v[l],em1.o$a[l,1],em1.o$b[l,1])); 
    } 
     
    pdf(paste("Type1fit-",sampleID,".pdf",sep=""),width=6,height=4); 
    plot(density(beta1.v)); 
    d.o = density(tmpB.v); 
    points(d.o$x,d.o$y,col="green",type="l") 
    legend(x=0.5,y=3,legend=c("obs","fit"),fill=c("black","green"),bty="n"); 
    dev.off(); 
  } 
   
  ### Estimate Modes  
  if (  sum(class1.v==1)==1 ){ mod1U= beta1.v[class1.v==1]} 
  if (  sum(class1.v==3)==1 ){ mod1M= beta1.v[class1.v==3]} 
  if (  sum(class1.v==1) >1){  
    d1U.o = density(beta1.v[class1.v==1]) 
    mod1U = d1U.o$x[which.max(d1U.o$y)] 
  } 
  if (  sum(class1.v==3)>1 ){  
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    d1M.o = density(beta1.v[class1.v==3]) 
    mod1M = d1M.o$x[which.max(d1M.o$y)] 
  } 
   
   
  d2U.o = density(beta2.v[which(beta2.v<0.4)]); 
  d2M.o = density(beta2.v[which(beta2.v>0.6)]); 
  mod2U = d2U.o$x[which.max(d2U.o$y)] 
  mod2M = d2M.o$x[which.max(d2M.o$y)] 
    
  ### now deal with type2 fit 
  th2.v = vector(); 
  th2.v[1] = nth1.v[1] + (mod2U-mod1U); 
  th2.v[2] = nth1.v[2] + (mod2M-mod1M); 
   
  ### estimate initial weight matrix  
  w0.m = matrix(0,nrow=length(beta2.v),ncol=nL); 
  w0.m[which(beta2.v <= th2.v[1]),1] = 1; 
  w0.m[intersect(which(beta2.v > th2.v[1]),which(beta2.v <= th2.v[2])),2] = 1; 
  w0.m[which(beta2.v > th2.v[2]),3] = 1; 
   
  print("Fitting EM beta mixture to input probes"); 
  set.seed(1) 
  rand.idx = sample(1:length(beta2.v),min(c(nfit, length(beta2.v)),na.rm=TRUE)   ,replace=FAL
SE) 
  em2.o = blc2(Y=matrix(beta2.v[rand.idx],ncol=1),w=w0.m[rand.idx,],maxiter=niter,tol=tol); 
  print("Done"); 
   
  ### for type II probes assign to state (unmethylated, hemi or full methylation) 
  subsetclass2.v = apply(em2.o$w,1,which.max); 
   
  if (sum(subsetclass2.v==2)>0 ){ 
    subsetth2.v = c(mean(max(beta2.v[rand.idx[subsetclass2.v==1]]),min(beta2.v[rand.idx[subse
tclass2.v==2]])), 
                    mean(max(beta2.v[rand.idx[subsetclass2.v==2]]),min(beta2.v[rand.idx[subsetclass
2.v==3]]))); 
  } 
  if (sum(subsetclass2.v==2)==0 ){ 
    subsetth2.v = c(1/2*max(beta2.v[rand.idx[subsetclass2.v==1]])+ 1/2*mean(beta2.v[rand.idx[s
ubsetclass2.v==3]]), 1/3*max(beta2.v[rand.idx[subsetclass2.v==1]])+ 2/3*mean(beta2.v[rand.idx
[subsetclass2.v==3]])); 
  } 
   
  class2.v = rep(2,length(beta2.v)); 
  class2.v[which(beta2.v <= subsetth2.v[1])] = 1; 
  class2.v[which(beta2.v >= subsetth2.v[2])] = 3; 
   
  ### generate plot 
  if(plots){ 
    tmpL.v = as.vector(rmultinom(1:nL,length(beta2.v),prob=em2.o$eta)); 
    tmpB.v = vector(); 
    for(lt in 1:nL){ 
      tmpB.v = c(tmpB.v,rbeta(tmpL.v[lt],em2.o$a[lt,1],em2.o$b[lt,1])); 
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    } 
    pdf(paste("Type2fit-",sampleID,".pdf",sep=""),width=6,height=4); 
    plot(density(beta2.v)); 
    d.o = density(tmpB.v); 
    points(d.o$x,d.o$y,col="green",type="l") 
    legend(x=0.5,y=3,legend=c("obs","fit"),fill=c("black","green"),bty="n"); 
    dev.off(); 
  } 
   
  classAV1.v = vector();classAV2.v = vector(); 
  for(l in 1:nL){ 
    classAV1.v[l] =  em1.o$mu[l,1]; 
    classAV2.v[l] =  em2.o$mu[l,1]; 
  } 
   
  ### start normalising input probes 
  print("Start normalising input probes"); 
  nbeta2.v = beta2.v; 
  ### select U probes 
  lt = 1; 
  selU.idx = which(class2.v==lt); 
  selUR.idx = selU.idx[which(beta2.v[selU.idx] > classAV2.v[lt])]; 
  selUL.idx = selU.idx[which(beta2.v[selU.idx] < classAV2.v[lt])]; 
  ### find prob according to typeII distribution 
  p.v = pbeta(beta2.v[selUR.idx],em2.o$a[lt,1],em2.o$b[lt,1],lower.tail=FALSE); 
  ### find corresponding quantile in type I distribution 
  q.v = qbeta(p.v,em1.o$a[lt,1],em1.o$b[lt,1],lower.tail=FALSE); 
  nbeta2.v[selUR.idx] = q.v; 
  p.v = pbeta(beta2.v[selUL.idx],em2.o$a[lt,1],em2.o$b[lt,1],lower.tail=TRUE); 
  ### find corresponding quantile in type I distribution 
  q.v = qbeta(p.v,em1.o$a[lt,1],em1.o$b[lt,1],lower.tail=TRUE); 
  nbeta2.v[selUL.idx] = q.v; 
   
  ### select M probes 
  lt = 3; 
  selM.idx = which(class2.v==lt); 
  selMR.idx = selM.idx[which(beta2.v[selM.idx] > classAV2.v[lt])]; 
  selML.idx = selM.idx[which(beta2.v[selM.idx] < classAV2.v[lt])]; 
  ### find prob according to typeII distribution 
  p.v = pbeta(beta2.v[selMR.idx],em2.o$a[lt,1],em2.o$b[lt,1],lower.tail=FALSE); 
  ### find corresponding quantile in type I distribution 
  q.v = qbeta(p.v,em1.o$a[lt,1],em1.o$b[lt,1],lower.tail=FALSE); 
  nbeta2.v[selMR.idx] = q.v; 
   
   
  if(doH){ ### if TRUE also correct type2 hemimethylated probes 
    ### select H probes and include ML probes (left ML tail is not well described by a beta-distrib
ution). 
    lt = 2; 
    selH.idx = c(which(class2.v==lt),selML.idx); 
    minH = min(beta2.v[selH.idx],na.rm=TRUE) 
    maxH = max(beta2.v[selH.idx],na.rm=TRUE) 
    deltaH = maxH - minH; 
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    #### need to do some patching 
    deltaUH = -max(beta2.v[selU.idx],na.rm=TRUE) + min(beta2.v[selH.idx],na.rm=TRUE) 
    deltaHM = -max(beta2.v[selH.idx],na.rm=TRUE) + min(beta2.v[selMR.idx],na.rm=TRUE) 
     
    ## new maximum of H probes should be 
    nmaxH = min(nbeta2.v[selMR.idx],na.rm=TRUE) - deltaHM; 
    ## new minimum of H probes should be 
    nminH = max(nbeta2.v[selU.idx],na.rm=TRUE) + deltaUH; 
    ndeltaH = nmaxH - nminH; 
     
    ### perform conformal transformation (shift+dilation) 
    ## new_beta_H(i) = a + hf*(beta_H(i)-minH); 
    hf = ndeltaH/deltaH ; 
    ### fix lower point first 
    nbeta2.v[selH.idx] = nminH + hf*(beta2.v[selH.idx]-minH); 
     
  } 
   
  pnbeta.v = beta.v; 
  pnbeta.v[type1.idx] = beta1.v; 
  pnbeta.v[type2.idx] = nbeta2.v; 
   
  ### generate final plot to check normalisation 
  if(plots){ 
    print("Generating final plot"); 
    d1.o = density(beta1.v); 
    d2.o = density(beta2.v); 
    d2n.o = density(nbeta2.v); 
    ymax = max(d2.o$y,d1.o$y,d2n.o$y); 
    pdf(paste("CheckBMIQ-",sampleID,".pdf",sep=""),width=6,height=4) 
    plot(density(beta2.v),type="l",ylim=c(0,ymax),xlim=c(0,1)); 
    points(d1.o$x,d1.o$y,col="red",type="l"); 
    points(d2n.o$x,d2n.o$y,col="blue",type="l"); 
    legend(x=0.5,y=ymax,legend=c("type1","type2","type2-BMIQ"),bty="n",fill=c("red","black",
"blue")); 
    dev.off(); 
  } 
   
  print(paste("Finished for sample ",sampleID,sep="")); 
   
  return(list(nbeta=pnbeta.v,class1=class1.v,class2=class2.v,av1=classAV1.v,av2=classAV2.v,
hf=hf,th1=nth1.v,th2=th2.v)); 
   
} 
 
CheckBMIQ = function(beta.v,design.v,pnbeta.v){### pnbeta is BMIQ normalised profile 
   
  type1.idx = which(design.v==1); 
  type2.idx = which(design.v==2); 
   beta1.v = beta.v[type1.idx]; 
  beta2.v = beta.v[type2.idx]; 
  pnbeta2.v = pnbeta.v[type2.idx]; 



 

 337 

   
} # end of function CheckBMIQ 
 
CalibrateUnitInterval=function(datM,onlyIfOutside=TRUE){ 
   
  rangeBySample=data.frame(lapply(data.frame(t(datM)),range,na.rm=TRUE)) 
  minBySample=as.numeric(rangeBySample[1,]) 
  maxBySample=as.numeric(rangeBySample[2,]) 
  if (onlyIfOutside) { indexSamples=which((minBySample<0 | maxBySample>1) & !is.na(minBy
Sample) & !is.na(maxBySample)) 
  } 
  if (!onlyIfOutside) { indexSamples=1:length(minBySample)} 
  if ( length(indexSamples)>=1 ){ 
    for ( i in indexSamples) { 
      y1=c(0.001,0.999)  
      x1=c(minBySample[i],maxBySample[i]) 
      lm1=lm( y1 ~ x1 ) 
      intercept1=coef(lm1)[[1]] 
      slope1=coef(lm1)[[2]] 
      datM[i,]=intercept1+slope1*datM[i,] 
    } # end of for loop 
  } 
  datM 
} #end of function for calibrating to [0,1] 

 
 
fastImputation= FALSE 
nSamples=dim(dat1)[[2]]-1 
nProbes= dim(dat1)[[1]]  
 
meanMethBySample =as.numeric(apply(as.matrix(dat1[,-1]),2,mean,na.rm=TRUE)) 
minMethBySample   =as.numeric(apply(as.matrix(dat1[,-1]),2,min,na.rm=TRUE)) 
maxMethBySample  =as.numeric(apply(as.matrix(dat1[,-1]),2,max,na.rm=TRUE)) 
 
datMethUsed= t(dat1[,-1]) 
colnames(datMethUsed)=as.character(dat1[,1]) 
 
noMissingPerSample=apply(as.matrix(is.na(datMethUsed)),1,sum) 
table(noMissingPerSample) 
 
#STEP 2: Imputing  
if (! fastImputation & nSamples>1 & max(noMissingPerSample,na.rm=TRUE)<3000 ){ 
   
  # run the following code if there is at least one missing 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 ){ 
    dimnames1=dimnames(datMethUsed) 
    datMethUsed= data.frame(t(impute.knn(t(datMethUsed))$data)) 
    dimnames(datMethUsed)=dimnames1 
  } # end of if 
} # end of if (! fastImputation ) 
 
if ( max(noMissingPerSample,na.rm=TRUE)>=3000 ) fastImputation=TRUE 
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if ( fastImputation | nSamples==1 ){ 
  noMissingPerSample=apply(as.matrix(is.na(datMethUsed)),1,sum) 
  table(noMissingPerSample) 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 & max(noMissingPerSample,na.rm=TRUE) >= 
3000 ) {normalizeData=FALSE} 
   
  # run the following code if there is at least one missing 
  if ( max(noMissingPerSample,na.rm=TRUE)>0 & max(noMissingPerSample,na.rm=TRUE) < 3
000 ){ 
    dimnames1=dimnames(datMethUsed) 
    for (i in which(noMissingPerSample>0) ){ 
      selectMissing1=is.na(datMethUsed[i,]) 
      datMethUsed[i,selectMissing1] = as.numeric(probeAnnotation21kdatMethUsed$goldstandar
d2[selectMissing1]) 
    } # end of for loop 
    dimnames(datMethUsed)=dimnames1 
  } # end of if 
} # end of if (! fastImputation ) 

normalizeData <- as.logical(TRUE) 
#gold.mean=as.numeric(apply(datMethUsed,2,mean,na.rm=TRUE)) 
gold.mean=probeAnnotation21kdatMethUsed$goldstandard2 
 
if (normalizeData ){ 
  datMethUsedNormalized=BMIQcalibration(datM=datMethUsed,goldstandard.beta= gold.mean
,plots=FALSE) 
} 
if (!normalizeData ){ datMethUsedNormalized=datMethUsed } 

 

 

 

 

 

 

 


