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ABSTRACT

The kinematic and kinetic characteristics of arm movement during four activities of

daily living: lifting a weight, driving a steering wheel , opening/closing a door and cutting were

investigated in this study by using a human movement analysis system comprising a 6 camera

Vicon motion analysis system, a 6 component strain-gauged transducer, a specially designed

and instrumented steering wheel simulation system, a door and a cutting plate.

The most important achievements of this study are: (1) Implementation of the residual

analysis technique into a computer program to filter the noisy kinematic data at an auto-

selected cut-off frequency for each data sequence. (2) The development of a new method of

representing the velocity and acceleration of points of interest using the phase plane

presentation.

It was found that driving is the most complicated activity investigated in this study

according to the range of arm movement. From the kinetic results, it was found that the order

of difficulty of the four activities can be arranged as cutting, door opening/closing, lifting, and

driving according to the magnitude of the maximum resultant total shoulder moment. The

difficulty of the lifting activity increased with the weight to be lifted and the height of lifting. It

was also found that the major component of the shoulder moment is the flexion/extension

moment for most of the activities except driving, therefore it is concluded that having

sufficient shoulder flexion/extension strength is most important for conducting most upper

limb activities of daily living. In addition, the results of this study provide information for

improving the understanding of the biomechanics of the upper limb activities and for clinical

reference.
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Chapter One
Introduction

Activities of daily living (ADL) are an essential part of everyone's life. The quality of

one's life is influenced by the ADL which one can undertake. Assessment of the ability of

doing ADL is one of the common practices of clinicians, physiotherapists, and rehabilitation

engineers (Law 1993, Law & Letts 1993). In the assessments, biomechanical parameters are

important factors to be considered, However, in most previous practical assessments, these

factors were often assessed qualitatively (Merbitz et al. 1989, Christiansen 1993), because the

biomechanical characteristics of most activities are still unknown especially for upper limb

activities. Precise assessment of the ability of doing ADL requires that the biomechanical

characteristics of each activity be described quantitatively, which will depend on fully

understanding the biomechanical behaviours of each activity. Some of the most important and

fundamental biome,chanical factors for describing each activity involve the range of movement

of the limb segment and joint; the linear and angular velocities and accelerations of each limb

segment; the forces and moments on the joints; the influence of inertial, gravitational effects

and external loads on the joint forces and moments. To know these factors each activity must

be investigated individually.

In industry, work related pain and musculoskeletal disorders and injuries of the shoulder

region rank the second highest occurrence in clinical frequency following low back pain

(Caillict 1981). Most of the work related injuries occur in the light manual material handling

and light manipulations in many industrial occupations. Generally, there are three main causes

of work related injuries (Bammer & Blignault 1987), rapid repetitive movements, less frequent

but more forceful movement, and static loading. The causes are usually illustrated by a

number of risk factors which may be different from one occupation to another. The

determination of the risk factors is based on the understanding of the characteristics of the

specific job. To know the characteristics of each job a biomechanical task analysis must be

performed.

The advancement of modern technology and the development of human movement

analysis methods provide an effective way of performing the activity or task analysis to give

the biomechanical information required by the clinicians, physiotherapists, rehabilitation

engineers, and ergonomists in their clinical practices and work designs for the diagnosis,
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treatment and prevention of the musculoskeletal disorders and injuries, also for the assessment

of the ability of doing of ADL.

The purpose of this study was to investigate the kinematics of arm movements, the

loads (forces and moments) which act on the upper limb joints, and the influence of different

effects on the loads of upper limb joints during some upper limb activities. A large number of

upper limb activities in daily living and in the working place need to be investigated, and it is

not realistic to investigate all of these activities in a limited period of time. Therefore selecting

some common and representative activities for investigation was necessary. In this study four

upper limb activities are investigated, lifting a weight, opening and closing a door, operating a

steering wheel, and cutting with a knife. The choice of these activities is based on the

following considerations (details are given in Chapter Two).

First the lifting of a light weight by one arm-hand to different heights is one of the most

frequently conducted activity in daily living and in various working places such as the home,

office, library, supermarket etc. However lifting activities have not been well investigated and

understood especially in the three-dimensional situation. Little biomechanical information is

known up to date.

Second, the door opening/closing activity can be characterised as pushing and pulling

which is another most frequently conducted activity in daily living and work place. Most

previous studies of pushing and pulling activities are limited to finding out the maximum

isokinetic pushing and pulling strength in various conditions (Nicholson 1989). However, the

real pushing and pulling activity is a dynamic process, and is performed below the maximum

isolcinetic strength. The dynamic characteristics of the pushing and pulling activity have not

been well understood.

Third, in the modern world, driving is becoming a more and more important part of

one's life as a daily activity or as an occupational task. The ability to drive is one of the

important concerns for disabled people such as people after stroke, handicapped people and

people with arthritis whether they wish to do shopping, get to work, visit friends or go on

holiday. On the other hand, driving as an occupational task can cause musculoskeletal

disorders (Kompier et al. 1987, Porter et al. 1992). To assess the driving ability of disabled

people and to find out the causation of musculoskeletal disorder or discomfort of driving, it is

essential to know the magnitude of control forces for driving and then to understand how the
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forces and moments act on the hand and joints of the upper limb during driving. The study of

driving performance has become one of the major areas of ergonomics and rehabilitation

engineering, but most previous studies of driving activity are related to the visual, cognitive,

and perceptive control abilities etc. The biomechanical information is very scarce in the

literature. The full, dynamic, 3-D biomechanical picture of the driving activity is still not clear

and is therefore required.

Fourth, a large portion of neck and shoulder pain occurs in sedentary work such as

electro-mechanical assembly work, office work and working at computer terminals etc

(Chaffin & Andersson 1984). Since this kind of work needs a small range of arm movement,

neck and shoulder pain are caused by maintaining static muscle contractions. Previous studies

are limited to measuring muscular activity and the biomechanical data on the joint forces and

moments are still unknown. Therefore cutting at the sitting position is investigated in this

study as one of the sedentary actions.

Finally, from the kinematic point of view, the arm movements during lifting, door

opening/closing, driving, and cutting activities can be considered as up-down, forward-

backward, rotational, and static dominated movement, respectively. Therefore the four

activities can cover the major types of arm movements occurring in daily living and in the

work place.

The thesis is presented in seven chapters including this introduction. Chapter Two

reviews the biomechanical studies of upper limb activities and some related researches.

Human movement analysis methods and measuring techniques are reviewed in Chapter Three.

Chapter Four describes the experimental works conducted in this study. The analytical

methods used in this study are given in Chapter Five. A new method developed in this study

for determining the axial rotation angles of limb segments is given in the final section of

Chapter Five. The results are presented and discussed in Chapter Six and Chapter Seven lists

the conclusions and recommendations for further work.
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Chapter Two

Literature Review on Biomechanical Studies of Upper Limb

Activities and Related Research

Upper limb activities can be divided into two categories, the activities for daily living

and the activities of occupational or industrial related. In this chapter the various methods that

are currently used in rehabilitation engineering for assessing the ability of doing daily

activities are discussed in the first section of functional assessment of activities of daily living.

The biomechanical studies of some occupational related activities are discussed in section two

as biomechanics of ergonomical problems. The discussion of some fundamental topics of

biomechanical studies such as: anthropometric data measurement, biomechanical modelling,

joint loads calculation are given in the remaining sections of this chapter.

2.1 Functional Assessment of Activities of Daily Living

Although the term activities of daily living or ADL has been in use for more than forty

years since first published by Edith Buchwald (1949), a physiotherapist in 1949, who used it

to refer to an assessment checklist, a generally accepted definition has not been found by the

author to date. The difficulty of giving a proper definition to the activities of daily living is

that a variety of people are doing a wide variety of activities daily The people can be grouped

from children, youth, adult to elderly people, from healthy people to those with disabilities,

from persons at the work place to persons at home. The activities can range from the activities

of basic living to the activities of working, from indoor activities to outdoor activities, from

activities of upper limb to activities of lower limb, from activities of the central nervous

system to the mobility of the body, from the activities for self-care to the activities for leisure.

However, the lack of an appropriate definition of ADL does not prevent its use in many

scientific fields.

The expectations of patients to improve their ability of doing ADL and from healthy

persons to improve their quality of life stimulate the ADL related studies. Many ADL related

research results are published each year in different journals by researchers from different

fields. It is tedious to make a global review on all aspects of these investigations and is

beyond the scope of this review. Since a reliable and valid assessment of the client's status
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BARTHEL INDEX

With Inde-
i	 Help pendent

1.Feeding (if food needs to be
cur up	 help)	 5	 10

2. 11oving fro" wheelchair to bed
and return (includes sitting
up in bed)	 5-10	 15

3. Personal roger (wash face, comb
hair, shaTe, clean teeth)	 0	 5

4. Getting on and off toilet (han-
dling clothes, wipe, flush)	 3	 10

5.Bathing self	 0	 5
6.Walking on level surface 	 10	 13

(or ii unable to walk, propel

	

wheelchair)	 0*	 5'
*score only if unable to walk

7.Ascend and descend stairs	 5	 10
S. Dressing (includes tying shoes.

fastening fasteners)	 3	 10
9.Controlling bowels	 5	 10

10.Controlling bladder 3 10
A patient scoring 100 81 is continent, feeds

himself, dresses himself, gets up out of bed and
chairs, bathes himself, walks at least a block, and
can ascend and descend stairs. This does not
mean that he is able to live alone: he may not
be abie to cook, keep house, and meet the public.
but he is able to get along without attendant care.

( Mahoney & Barthel 1965).

'11

PULSES Profile (Adapted)

P-Physical condition: includes diseases of the viscera (cardio-
vascular, gastrointestinal, urologic, and endocrine) and
neurologic disorders:

1. Medical problems sufficiently stable that medical or nursing
monitoring is not required more often than 3-month
intervals.

2. Medical or nurse monitoring is needed more often than 3-
month intervals but not each week.

3. Medical problems are sufficiently unstable as to require
regular medical and/or nursing attention at least weekly.

4, Medical problems require intensive medical and/or nursing
attention at least daily (excluding personal care assistance
only).

U-Upper limb functions: Self-care activities (drink/feed,
dress upper/lower, brace/prothesis, groom, wash, perineal
care) dependent mainly upon upper limb function:

1. Independent in self-care without impairment of upper limbs.
2. Independent in self-care with some impairment of upper

limbs.
3. Dependent upon assistance or supervision in self-care with

or without impairment of upper limbs.
4. Dependent totally in self-care with marked impairment of

upper limbs.

L-Lower limb functions: Mobility (transfer chair/toilet/tub
or shower, walk, stairs, wheelchair) dependent mainly
upon lower limb function:

1. Independent in mobility without impairment of lower
limbs.

2. Independent in mobility with some iznpairment in lower
limbs: such as needing ambulatory aids, a brace or pros-
thesis, or else fully independent in a wheelchair without
significant	 architectural or environmental barriers.

3. Dependent upon assistance or supervision in mobility with
or without impairment of lower limbs, or partly inde-
pendent in a wheelchair, or there are significant archi-
tectural or environmental barriers.

4. Dependent totally in mobility with marked impairment of
lower limbs.

S-Sensory components: Relating to communication (speech
and hearing) and vision:

1. Independent in communication and vision without impair-
ment.

2. Independent in communication and vision with some im-
pairment such as mild dysarthria, mild aphasia, or need for
eyeglasses or hearing aid, or needing regular eye medication.

3. Dependent upon assistance, an interpreter, or supervision
in communication or vision.

4. Dependent totally in communication or vision.

E-Excretory functions (bladder and bowel):
1. Complete voluntary control of bladder and bowel sphinc-

ters.
2. Control of sphincters allows normal social activities despite

urgency or need for catheter, appliance, suppositories, etc.
Able to care for needs without assistance.

3. Dependent upon assistance in sphincter management or
else has accidents occasionally.

4. Frequent wetting or soiling from incontinence of bladder
or bowel sphincters.

S-Support factors: Consider intellectual and emotional adapt-
ability, support from family unit, and financial ability:

1. Able to fulfill usual roles and perform customary tasks.
2. Must make some modification in usual roles and perform-

ance of customary tasks.
3. Dependent upon assistance, supervision, encouragement Of

assistance from a public or private agency due to any of
the above considerations.

4. Dependent upon long-term institutional care (chronic
hospitalization, nursing home, etc) excluding time-limited
hospital for specific evaluation, treatment, or active reha-
bilitation.

PULSE TOTAL: BEST SCORE IS 6. WORST SCORE IS 24.

(Granger et a/.1979)
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plays an extremely important role in the clinical therapeutic process, the review in this section

will be limited in the methods of evaluation and assessment of ADL. Attention will also be

given to the activities of the upper limb.

Assessment of ADL

In the field of rehabilitation engineering and occupational therapy, the activities of daily

living are commonly divided into those that are more simple, called ADL, and that are more

complex, referred to as instrumented activities of daily living (IADL). Law (1993) gives some

examples of ADLs as bathing, feeding, toileting, and transfers, and IADLs as housework,

shopping, budgeting, and cooking meals. In the following discussions, the ADL and IADL will

not be distinguished, and only ADL will be used, because in the biomechanical point of view,

it is difficult to say whether bathing or cooking is more difficult without considering the

physical conditions of individual subjects.

The ADL are often assessed by indices or scales. The first reference to an "assessment

of every day activities" was reported by Sheldon in the Journal of Health and Physical

Education in 1935 (Feinstein et a/.1986). Since that time, many indices and scales have been

developed by rehabilitation professionals and occupational therapists. Some of them are well

known and are often used such as: Barthel Index ( Mahoney & Barthel 1965), Index of ADL

(Katz et al. 1963), Klein-Bell ADL scale (Klein & Bell 1982), PULSES Profile (Granger et

a/.1979), Level of Rehabilitation Scale (LORS-II) (Carey & Posavac 1982), and Edinburgh

Rehabilitation Status Scale (Afflect et al. 1988).

Each of the indices includes a number of items which will be scored, the scores on each

item will be summed to get the total scores of assessment of the ADL. These indices or scales

have often been developed with different conceptual bases, including different items and

scaling. In order to get inside these measurements of ADL, two examples are given here.

The Barthel index, a traditional assessment of physical disability, is established on the

assessment of capacity to perform various activities of daily living. It includes ten items and

different values are assigned to different activities. The scores on the Barthel index range from

0 to 100, 0 indicating total dependence and 100 total independence in self-care and mobility.

The PULSES Profile has six components, each component is scored by a four point

rating scale from 1, intact and independent of help from another person, to 4, fully dependent,
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for each function of the component area. The total scores range from a low of 6 to a high of

24, the higher the score, the more dependent the person. A score of 6 represents essentially

unimpaired independence.

Problems exist in these measurements when occupational therapists use them in clinical

practice. Questions, which have been raised on the currently used assessment of ADL, are

summarised as follows.

First, most therapists assess and treat ADL skills, but have difficulty deciding which

assessment to employ, because so many ADL measurement scales are available. Although

most instruments are designed to quantify information for one of three general purposes:

description, prediction, or evaluation of ADL (Law & Letts 1993), each instrument has its

own specified purpose and client. Only a few indices can cover two or three of the purposes

such as the Barthel Index (Mahoney & Barthel 1965) and the PULSES Profile (Granger et

a/.1979).

Second, most measurements use summed ordinal scales, which have an inherent

problem of lack of comparability because different items and scoring systems were used in

these measurements (Merbitz et al. 1989). Problems also arise when scores are totalled and

clients are compared on the basis of totals. For example, if there are 10 items on an ADL

scale that is scored on a 4-point rating scale, one client could score 2 on each item for a total

score of 20; another client could score 4 on three items, 3 on one item, and 1 on five items and

also achieve a score of 20. Thus two persons could receive the same total score although their

functional profiles, which have important implications for occupational therapy, are quite

different. Although the use of summed ordinal scores is an attempt to create a quantitative

index of ability, the fundamental problem is that the summing of qualitative ordinal counts to

create total score does not result in a number that is a valid means of making quantitative

comparison of performance. The solution of the problem needs a real quantitative assessment

of ADL which should be based on the precise results of biomedical and biomechanical studies

of each activity.

Third, the scores of items of ADL scales are obtained by self-report by the client in a

questionnaire form, or from the direct observations of therapists on the client's performance.

The accuracy of the reports from patients may be influenced by their psychosocial conditions.

The assessment of observations from therapists may conflict with client's self-report about the
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same activities, because not only the skill or expertise are involved in these observations, but

also the client's perspective, value, and effort are not considered. Reports in the literature

provide evidence that there are significant differences between ADL scores reported by an

individual and those reported by service providers (Edwards 1990, Kivela 1984, Rubenstein et

al. 1984). A survey by Chiou and Burnett (1985) also demonstrated that patients and therapist

may value ADL functions very differently. It is still not clear how to deal with these

differences.

Fourth, the occupational therapy functional assessments can be focused on physical

performance component (PPC) evaluation or occupational performance evaluation. PPC

evaluations include neuromuscular tests (e.g. strength, range of motion, muscle tone) and

motor test (e.g. gross motor coordinate, fine dexterity, praxis). However, the evaluation of

occupational performance purposed to assess the ability of doing activities (e.g. ADL) rather

than components of the activities. In the mid-1970s, occupational therapy assessment tended

to focus on physical performance component evaluation, whereas assessment of occupational

performance played a secondary role (Mathiowetz 1993). The reasons for PPC evaluation

taking priority over occupational performance evaluation on occupational therapy assessment

and treatment was reviewed by Mathiowetz (1993). For example, the arrangement of priority

was evident in treatments, where primary focus was on remediation of PPC deficits, whereas

the remedy of occupational performance deficits was secondary. The assumption was that if

PPC deficits could be normalized, then deficits in occupational performance would also be

remedied. Another reason for the priority of PPC was the lack of occupational performance

assessment to evaluate change in functional status. The ADL evaluations of the mid-1970s

were highly subjective and assessed change qualitatively, whereas many of the PPC

assessments (e.g. strength, range of motion, and dexterity) were objective and could be

reported quantitatively. It was deemed more important by therapists to report objective data on

a related variable than to report subjective data on occupational performance.

Recently, it has been recommended that the PPC evaluation should play a secondary

role in occupational therapy assessment, and the occupational performance should play a

primary role (Mathiowetz 1993, Christiansen 1993, Fisher 1993). The reasons that support

the opinion are summarised as follows (Mathiowetz 1993):
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• The value of occupation or purposeful activity in preventing and mediating

dysfunction has been and is a core concept of occupational therapy (AOTA. 1979).

• Occupational performance is the central focus of all developing models in

occupational therapy (Reed & Sanderson 1983).

• The study of the human as an occupational being is the focus of the new discipline of

occupational science (Clark et al. 1991).

• Theoretical approaches outside the occupational therapy profession (e.g., the

ecological approach to perception and action) emphasise the study of human behaviour during

the performance of functional tasks in the natural environment (Reed 1982).

• The health care system is demanding that occupational therapy ( and rehabilitation

programs in general) document their efficiency in terms of changes in functional performance.

• School therapists must document the effectiveness of their treatment in terms of

educational or functional performance changes.

The gap existing between evaluations of performance and performance component

should be bridged. There is increasing agreement that occupational therapy's unique

contribution to function is through emphasis on occupational performance (Christiansen

1993). It needs to shift the evaluation of assessment of ADL from the functional component

domain to the performance domain. Also, it is necessary to develop new and better methods to

assess ADL to serve occupational therapy practice and researches. The questions are:

• What is the strategy for developing the new assessment?

• What is the structure of the new assessment?

• What kind of activities should be involved in the new assessment?

• How to relate the performance and components of performance in new assessment?

• How to prove the validity and reliability of the new assessment?

The answer to these questions is a great challenge to the occupational therapists,

rehabilitation professionals and related researchers, because limited research results have been

reported to identify the relationship between performance and performance component. More

efforts are required and more multidisciplanry investigations should be done, in which

biomechanical research should play an important role to find out how the movement

components contribute to the specified performance, which components dominate a specific

activity, and how much effort and energy should be consumed to complete an activity.
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To reach the goals, some initial considerations should be adopted in the future

assessment and researches.

First, the performance based assessment should involve the measurement of

performance components, because a simple activity may be conducted by the combination of a

number of performance components. For example, shopping involves the activities of going

out, accessing the supermarket (opening door), selecting an item (lifting and lowering a

weight), and counting etc. A number of arm movement components are required to conduct

these activities, such as flexion-extension, adduction-abduction, and internal-external rotation.

The combination of the performance components is an optimum process for conducting an

activity. An activity may be mainly controlled by one or two functional components and

adjusted by others. For example, one can lift a weight in the sitting position by flexing one's

arm and adjusting the hand position to the proposed site by adducting, abducting, and/or

rotating the arm. Dysfunction of some functional components may be compensated by other

functional components. For example, if you have shoulder pain and can not rotate your arm,

you still can move your body to reach your target.

Second, the upper limb activities, lower limb activities, and whole body activities

should be investigated and assessed respectively (Trombly 1993). The upper limb and lower

limb have different functions. Upper limbs provide the primary ability of transferring one's

hand from place to place to perform a multitude of tasks on which one's survival depends.

Two major functions of the lower limb are body weight supporting and locomotion. The

activities of upper limb and lower limb influence the different aspects of one's life and should

have different weight on the assessment of the ability of ADL. A wheelchair user may have a

great ability to conduct many desired activities by using the upper limbs in the sitting position

despite the difficulty of self-transportation.

Third, the activities to be assessed should be carefully selected. Both low level and high

level activities should be involved. Here, the low level activities are referred to, in the

biomechanical view, as activities which need less strength, less power to conduct and have a

small range of motion; and will be controlled by less motion components. In contrast the

activity which uses much strength, has a large range of motion and is controlled by more

motion components. is referred to as a high level activity. It is obvious that the low level
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activities are more important for disabilities and most of the healthy people than the high level

activities. The perspective of the client should also be considered.

Fourth, quantitative assessment of ADL should be based on the quantitative

descriptions of each of the performance components. Many biomechanical studies are required

in this aspect, such as how much upper limb strength is needed to lift a light weight to

different heights, to open a door, to do a simple cutting and to drive a car etc. How the loads

act on each joint of the upper limb, how the weight and the inertial effects influence the joint

loads, and how much of the range of movement of the upper limb are needed for conducting

these activities.

2. 2 Biomechanics of Ergonomic Problems

The concept of ergonomics was introduced in 1949 as a title for the interdisciplinary

teamwork between various human scientists. It was started by a group of English scientists,

primarily psychologists and physiologists, and the originator of the name was the marine

psychologist Murrell (Ivergard 1982). The word is derived from the Greek ergon meaning

work and nomos, whose nearest meaning is natural law or system. The conjunction of

ergon/nomos was also used in classical Greek times for a worker's protection law, probably

the world's first Safety at Work Act.

Ergonomics has been defined as an applied science concerned with the characteristics of

people that need to be considered in designing and arranging things that they use in order that

people and things will interact most effectively and safely (Griffin 1992). The primary aim of

ergonomics is to optimise the functioning of a system by adapting it for man's abilities and

needs. This implies attaining the best man-machine performance possible in the conditions,

without causing injury or unnecessary wear and tear, and producing working conditions which

are as comfortable and positive as possible.

2.2.1 Biomechanical Basis of Ergonomics

Originally it was known that ergonomics is based on human biological science:

anatomy, physiology, and psychology (Singleton, W. T. 1972, Tichauer, E. R. 1978). In

general terms, anatomy is concerned with the structure of the body (the size and the way it is

constructed), physiology is concerned with the function of the body (biological processes that
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maintain it), and psychology is concerned with behaviour (the adaptive responses of this

organism to its environment). With expansion of the researches of ergonomics and the

development of other scientific and technologies disciplines, a number of scientific disciplines

have made great contributions to ergonomics. The rapid progress of the researches of

biomechanics provided a number of new methods and instruments for ergonomics studies.

Some ergonomic researches are conducted by using biomechanical methods. In fact, a book by

professor E. R. Tichauer is entitled The Biomechanical Basis of Ergonomics (Tichauer,

1978). Ivergard (1982) also divided Ergonomics into two main areas, Biomechanical

Ergonomics and Information Ergonomics. Biomechanical ergonomics covers the type of

system where man's muscular power is involved.

The following discussions in this chapter will be limited to researches of biomechsnical

aspects of ergonomics, especially for the upper limb.

The researches in a number of subdisciplines of biomechanics contribute to the different

aspects of ergonomics, while the combinations of methodologies of subdisciplines of

biomechanics provide a direct way to the studies of performances of ergonomics concerned.

The subdisciplines of biomechanics involve anthropometry, lcinesiology, biomechanical

modelling etc.

Anthropometry is the empirical science that attempts to define reliable physical

measures of a person's size and form for anthropological comparison. Engineering

anthropometry stresses the application of these measurements in developing and evaluating

engineering drawings and produces mock-ups to assure that the drawings are suitable for the

intended user (Roebuck, Korea, and Thomson, 1975). Work-space designs are largely based

on such data. At present, over 300 different human size and form variables have been

statistically tabulated for US., European, and Asian populations (Webb Associates, 1978a).

The ergonomist, therefore, will use anthropometric data to ensure, quite literally, that

the measure or the environment fits the person. Whenever the human operator has to interact

with the environment it is important to have details of the dimensions of the appropriate body

part. Overall stature is an important determinant of, for example, room size, door height, or

cockpit dimensions; the dimensions of pelvis and buttocks limit the size of hatch openings or

seats; the size of the hand determines the dimensions of controls and supportive stanchions;
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while it is necessary to have details of arm reach to be able to position control consoles at

appropriate distances. The list of possible examples is almost endless.

Another use of anthropometric data is in biomechanical models. Biomechanical models

are often used in the analysis of industrial tasks. The accuracy of the analysis clearly depends

on the reliability of anthropometry measures. Without it, biomechanical models to predict

human reach and space requirements cannot be developed.

Some of the most often used anthropometry parameters in industry design and

biomechanical models include the body-segment link length, body-segment volume and weight,

body-segment mass centre locations, and body-segment inertial property. The development of

measurement methods used to acquire anthropometric data and predicting the anthropometric

data on the living body will be discussed in more detail in section 2.3.

Kinesiology is the complete study of human movement (Barham, 1978). Therefore

lcinesiology is concerned with one of the most complex of all phenomena associated with the

complex of all living organisms - the movement behaviour of the human being. 1Cinesiology

can be divided into kinematics and kinetics (Chaffin and Andersson 1984). The kinematics

describes motions of the whole body or major body segments independent of forces that cause

the movement and the kinetics describes the forces causing the movement. Kinematic variables

include angular and linear displacement, velocities and accelerations; kinetic variables include

both internal and external forces.

Kinematic and kinetic variables are widely used in the ergonomics related literature to

describe human motions in everyday activities; human performances in industry tasks;

working postures; the mobility of the human body; the range of motion of body segments;

muscle strength, endurance and fatigue. These subjects can be divided into three parts

(Barham, 1978). The first part is confined to the mechanical foundations of human motion and

is primarily concerned with the fundamental methods and principles of mechanics involved in

the kinematic and kinetic analysis of human motion. The second part, sometimes called

anatomical or structural Icinesiology, pertains to a study of the structures and mechanical

functions of the specific muscles, bones, and joints that form the movement or motor

apparatus of the human body. The third part, primarily concerned with the detailed analysis of

specific motor skills, deals with how the different body segments and joint actions are linked

together in the proper sequence for the most effective and efficient production of total body
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movements. It is too ambitious to make a review on the whole area of human movement and is

beyond the scope of this thesis. However, because the kinesiological knowledge is a

prerequisite to the development of biomechanical models and their applications, the

kinematic and kinetic analysis methods will be discussed separately in chapter three. The

researches of muscle forces and joint loads will be reviewed in section 2.5, while some

ergonomics concerned problems will be reviewed at the end of this section.

The Biomechanical Model is one of the most effective tools in biomechanical studies

which enables the researchers to get into the inside of the biomechanical system, when the

characteristics of some variables inside the system can not be determined by direct

observations or measurements. For example, internal forces at the joints can rarely be

measured directly, but by using biomechanical models it is possible to predict the internal

forces from the measured external forces. The components of the models are adjustable to fit

the environment to be described. Each time a model does not predict a system's behaviour

correctly, certain parts of the model can be rationally changed, thus gaining insight into the

complex nature of the real system.

When biomechanical models are used, they are the representations that can be

understood. Since human biomechanical system is very complex, such representation may

require gross simplifications and assumptions. The simplifications and assumptions adopted

by the biomechancial models control the range of their applications. The development of

biomechanical methods will be reviewed in detail in section 2.4.

2.2.2 Some Ergonomic Problems

Among the various ergonomic problems, occupational musculoskeletal injury due to

manual material handling is perhaps the most important one. For this reason, the

biomechanical studies of general manual material handling are discussed in the first part of

this section. The focus of the second part of this section is on the reports of epidemiological

studies of upper limb injuries. A brief review of biomechanical studies of some upper limb

activities is given in the final part of this section.
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2.2.2.1 Manual material handling

Manual material handling (MMH) remains a frequent activity in modern industries.

Many MMH tasks (lifting, pushing, pulling, and carrying) are physically demanding to the

worker. However, if the tasks are carried out incorrectly, they may result in at least

musculoskeletal disorders and discomfort or at the worst permanent disability. It was reported

(Tichauer 1973) that almost one-third of all disability injuries at work (temporary or

permanent) are related to manual handling of objects. The high incidence of musculoskeletal

disorders associated with MMH is a well recognised health problem.

The lifting activity is the major task of Manual Materials Handling. It has been a focus

of attention amongst the ergonomics and biomechanics research communities for some 20 or

more years (Buckle et al. 1992). Numerous studies have been published which describe the

epidemiological, biomechanical, physiological and psychophysiological natures of the act of

lifting. Most of the studies aimed to assess the lumbar loads because the high prevalence of

back disorders is usually found in jobs involving very frequent heavy lifting (Andersson

1981).

The early model-based analysis of typical load manipulation tasks were mainly limited

activities symmetrical to the median sagittal plane (e.g. Morris et al. 1961, Bejjani et al. 1984,

Chaffin 1969, Ayoub and El-Bassoussi 1976, Freivalds et al. 1984, Jager et al. 1984). The

symmetric lifting refers to the posture of lifting of loads by two hands in the sagittal plane

(Chaffin and Andersson 1984). Though the biomechanical analysis of the sagittal plane lifting

is the simplest and easiest, the symmetrical lifting was involved in the NIOSH (1981) Work

Practices Guide for Manual Lifting as the recommended posture of lifting, because of the

support from research findings on the safety and stability of the posture. However, the act of

lifting could not be restricted in only the sagittal plane. In actual working situations in

industry, the worker is constrained by workplace rather than by laboratory simulation and the

working postures adopted are often asymmetrical and require whole exertions in a free-style

manner. To investigate the asymmetrical lifting or the lifting that are not restricted in the

saggital plane, the three dimensional biomechanical analysis is required.

Previously, the static spatial biomechanical models have been developed by Schultz et

al. (1982), and Chaffin et al. (1977) to assess the compression forces on the L41L5 or L5/S1

intervertebral disc in different lifting postures. The problem with a static approach, noted by
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Freivalds et al. (1984) is that the actual dynamic loading can be underestimated by as much as

40%. The clear differences (Leskinen 1985, McGill amd Norman 1985) in the results

calculated with static and dynamic models show that dynamic aspects should be taken into

account when lifting work is analysed with biomechanical models (Leskinen 1985).

Recently, dynamic three-dimensional (3D) analysis on the various aspects of lifting

activities have been reported (Frigo 1990, ICromodihardjo and Mital 1987, Jager and Luttman

1992). It should be mentioned that the tasks investigated in these and the above mentioned

studies were all conducted by two hands in a standing posture. These tasks were generally

referred to as heavy manual material handling (or lifting). The intensive studies have greatly

improved our understanding of the nature of the heavy manual material handling, such as, the

action of loads on the lumbar spine and the joints of lower limb; the muscle activity; the

inertial effect on the joint loads; the stability of different lifting postures; the lifting strength

and the acceptable handling limit for different group of people at various situations etc.. The

direct results of previous efforts were reflected and condensed in a variety guidelines (NIOSH

1981, 1990, Davis and Stubbs 1980, ILO 1988, HSC 1988, Waters et al. 1993). There are

however still some limitations in these guidelines (Buckle eta!. 1992).

The other approach proposed for safer and more efficient manual handling is through

the training programme of manual handling operation which is based on biomechanical

principles and the findings of biomechanical studies. It has been proved that proper training

programmes could significantly improve the physical capacity, such as endurance time, and

static and dynamic muscular strength (Guo et al. 1992). However, there has been no

convincing evidence that such training has effected any significant reduction in low back

episodes (Rowe 1983) and much applied research needs to be done in this area (Kroemer

1992).

In industry, the contemporary wave of automated work handling has significantly

decreased the number of human tasks which require heavy muscular force. Despite this

increase in automation, human manual power is still required for different task manipulations,

especially for light manipulations. These activities involve repetitive movements, and produce

muscular tension on the shoulder and neck area, and are usually associated with

musculoskeletal disorders (MSDs) on the upper limb and neck area. The researches relevant

to upper limb musculoskeletal disorders will be reviewed in the following section.
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2.2.2.2 Epidemiological studies of musculoskeletal disorders of upper limb

Musculoskeletal disorders (MSDs) of the upper limb are the prime disablers of working

adults (Putz-Anderson 1988) in many industry professions. In literature, different names were

used to describe these work-related problems (Ranney 1993). In Australia and Canada they

are referred to as repetitive strain injures (RSI). In America they are called cumulative trauma

disorders (CTD) and in Scandinavia, occupational cervicobrachial disorders (OCD). In the

following, the term of musculoskeletal disorder or work-related injury will be used as a

general description of the problems and some specific terms such as rotator cuff (RC)

tendinitis and carpal tunnel syndrome will be used to describe the symptoms on different

areas.

The shoulder is the most frequently injured joint of the upper limb. It was recognised

that the occurrence of shoulder pain ranks second in clinical frequency to low back and neck

pain (Cailliet 1981). Recent studies have shown the prevalence of shoulder pain syndromes to

be elevated in many working populations. Herbert et al. (1984) found the prevalence of

supraspinatus tendinitis in shipyard welders to be 18.3% compared with 2% in clerks

employed by the same company. The Prevalence of rotator cuff (RC) tendinitis and/or

bicipital tendinitis in grocery store checkers was found to be 15% in contrast to a 4% level in

non-checkers (Baron et al. 1990). The prevalence of regular discomfort in the shoulder region

in a population of chicken processing workers was found to be 9% (Buckle 1987). In that

study the employees' lifetime prevalence of shoulder discomfort or pain was determined to be

42%. Punriett et al. (1985) found the prevalence of persistent shoulder discomfort in garment

workers to be 19.6%. The prevalence of discomfort or pain in the shoulder region of

newspaper employees composing and editing on computer terminals was reported to be 11%

(Burt et al. 1990). The prevalence of shoulder pain in other occupations have been reported,

such as assembly (Fine eta!. 1987), and shoemaking (Serratos-Perez eta!. 1993).

In addition to the high prevalence of discomfort in the shoulder region, many employees

in industry also suffered from elbow, wrist and hand pains. Statistics Canada (1991) reported

that in 1989 there were 20,637 work related injuries of elbow, wrists, hand and fingers. In a

review paper, Bammer & Blignault (1987) give out some examples of the prevalence of

musculoskeletal problems on the forearm and hand, such as: about 50% of Finnish butchers

were found to suffer from carpal tunnel syndrome; in a sample of 152 food packers in Finland,
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Table 2.1 Factors suggested by the Task Force on Repetition Strain Injury in Australian
Public Service (1985) to influence the incidence of RSI (Bammer & Blignault 1987).

Associated Factors

1. FEATURES OF WORK TASK
Occupation/kind of work
Physical demands of work
Job design
Design of equipment
Training in use of equipment
Opportunities for rest breaks
rate of work
Pressure of work

2. FEATURES OF WORKPLACE
Physical features of workplace
Social context of work

3. RESPONSE TO WORK AND WORKPLACE
Attitudes to the job
Stress responses to work
Method/approach to task

4. WORKER CHARACTERISTICS
Physical (age, sex, level of fitness, associated physical symptoms)
Psychological (personality, anxiety level emotional reactivity)
Work history (years of service, experience/skill in task)
Life outside work (opportunities for recuperation)

5. WIDER SOCIAL CONTEXT
Cultural attitudes to work
Economic factors
Attitudes to health and sickness
Workers' compensation

Change Factors

1. CHANGE IN DEMAND
Return to work after a break
Increase in workload
Change in equipment
Reduced tolerance to stress

2. CUMULATIVE EH-ECTS
Chronic fatigue
Response to musculoskeletal symptoms
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56% were found to have muscle-tendon syndromes of the hands and forearms; and 37% of

data processing operators in one Australian study had hand, wrist and arm pain daily. The

prevalence of MSDs can not be limited to these occupations. The syndromes are often found

on different areas of the upper limb for different persons in the same occupation or workplace.

It is difficult to write a list of each occupation in which the prevalence has been found and

how serious a problem it is. However it is evident that the occurrence of work-related injuries

of the arm has increased in recent years (Kvarnstriim 1983, Herbert et a/.1984, Louis 1990).

The cause of the musculoskeletal disorders of the upper limb is of great concern to

researchers, ergonomists, clinicians, employers, bankers (Meyer 1987), and even policy

makers of government (Kiddicoal & Ellis 1987) because of the high cost of the disorders.

There is general agreement that there are 3 main causes of work-related injuries (Bammer &

Blignault 1987): rapid repetitive movements, less frequent but more forceful movement, and

static loading (i.e. the work that muscles must do to hold the body or parts of it in certain

positions). In a statistical analysis, Stock (1991) concluded that specific disorders of tendon

and tendon sheath, together with carpal tunnel syndrome, can be found that are causally

related to repetitive forceful work. In fact, the term like RSI and CTD are not diagnoses, but

statement of causation (Ranney 1993) and imply that repetitive tasks may cause an injurious

strain. Such a term is necessary for a full diagnosis. First, the injured tissue must be identified,

then the nature of the pathology, and finally the cause (Ranney 1993).

The cause can be illustrated by a number of risk factors. Some factors suggested by the

Task Force on Repetition Strain Injury in Australian Public Service (Barmmer & Blignault

1987) are shown in Table 2.1. These factors give a general view of the problem. Each item in

Table 2.1 may involve some variables. However these factors in Table 2.1 can not be used

directly because the risk factors in one occupation may be different from another. The risk

factors corresponding to a specific job must be identified before it is used in the prevention of

work-related injuries. The determination of risk factors is based on the understandings of the

characteristics of the job. To know the characteristics of each job, some form of task analysis

must be performed to establish that the forces at work were necessary and sufficient to cause

the injury. The task analysis must show that specific structures could be injured and the

physical examination must show that these structures were injured, but not others (Ramey

1993). To do so requires some knowledge of ergonomics, tissue biomechanics, pathology,
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surface anatomy, and functional anatomy. Because the objective of this research and a number

of risk factors are biomechanically related, the biomechanical studies of upper limb activities

will be reviewed in the following.

2.2.2.3 Biomechanical studies of some upper limb activities

In modem industries, most of the light manual handling work and office work require

repetitive movements of the upper limbs. Some of the major biomechanical factors associated

with work-induced upper limb injuries include the working posture of the upper limb, the

weight of materials to be handled, the loads acting on the joints of the upper limb, the inertial

effect of the upper limb on the joint loads, the speed of movement of the upper limb and the

muscular activities. The quantitative descriptions of these biomechanical factors in different

tasks need intensive biomechanical studies of task analysis.

Sedentary work

Sitting is the main working posture adopted in the electro-mechanical assembly work,

office work and working at computer terminals etc. The possibility of neck and shoulder

muscle pain arising in the kinds of sitting work posture have already been discussed (Bjelle et

al. 1979, Kvamsträm 1983). Because the arm usually moves in a small area during sedentary

work, the neck and shoulder pain of sitting workers can be caused by the maintained static

muscle contractions (Hagberg et al. 1984) or called static loading. The loads on the upper

limb joints for sitting work can be influenced by the sitting posture, the arm position, the

table height, the inclination of the working table, the arm support and ergonomic aid.

Inadequate working postures can also cause neck and shoulder pain.

In previous studies, the shoulder loads were assessed by measuring the muscular

activity through electromyographic (EMG) signals (Herberts et al. 1980, Harms-RingclAl &

Ekholm 1987, Schiildt et al. 1986, Schiildt et al. 1987). The problem with these studies is that

the EMG signal measured on one muscle may involve the activities of adjacent muscles. It is

difficult to eliminate the cross effect from the measured signals to distinguish the activities

from one muscle to another for giving a reliable relationship between the EMG signal and

single muscle force. Another problem is that different muscles were measured in these papers

and the EMG signals were given in different forms. It is therefore difficult to compare these
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on the joints of upper limb for arm lifting are also required when investigating the causation of

work-induced upper limb disorders because the joint forces and moments are likely to be

equilibrated by a muscular moment of equal dimension and is directly related to compression

forces and muscular contractions applied at the joint (Schultz et al. 1982).

Giroux et al. (1992) investigated the net shoulder joint moment (which was not clearly

defmed) and muscular activity during light weight handling at the sitting position. They found

that the vertical displacement conditions induced higher muscular loads on the shoulder than

the horizontal weight displacement conditions. It is therefore reasonable to pay more attention

to the studies of the vertical weigh lift task than the horizontal weight handling at sitting

position. However, Giroux et al. (1992) did not find any significant difference in integrated

normalised net shoulder joint moment between horizontal and vertical displacement of light

weight handling. The reason may be that only one height and weight level were tested in their

paper, and only sagittal plane shoulder moments were calculated. The weight handled in

Giroux's test was selected as 15% of the maximal lift weight, which was determined for each

subject by adding 1.14 kg increment for successive horizontal displacements until there was a

disturbance in motion such as trunk and head motions. The average handled mass was 2.04

kg, but it was not stated whether this was handled by two arms or one arm in their paper.

The full understanding of how the loads act on the shoulder joint and how the shoulder

loads are affected by the weight and height during arm lifting in the sitting position need more

intensive, three dimensional and dynamic, biomechanical studies, especially for one arm lifting

of different weights to several heights.

Driving

Driving is one of the important daily activities and occupational tasks in the modem

world, and the study of driving performance has become one of the major areas of ergonomics

and rehabilitation engineering. Many people want to drive, but safe driving needs very

sophisticated skills that require good visual, cognitive, perceptive and physical control abilities

in a highly dangerous environment using sophisticated and expensive equipment. It is therefore

essential that all drivers, both able-bodied and disabled, should be able to show that they are

capable of driving in all sorts of driving conditions and that they are physically capable of
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controlling the car. The attention of this review will be focused on the studies of the physical

and biomechanical aspects of driving activity.

The ability to drive is one of the most important concerns for disabled people, such as

people after stroke, handicapped people and people with arthritis (Lings and Jensen 1991,

Haslegrave 1991, Cornwell 1987) whether they wish to do shopping, get to work, visit friends

or go on holiday. On the other hand, driving as an occupational task could cause

musculoskeletal disorders (Kompier et al. 1987) or discomfort (Porter et al. 1992).

To assess the driving ability of disabled people and to find out the causation of disorder

or discomfort of driving, it is essential to know the magnitude of control forces for driving,

and then to understand how the forces and moments act on the hand and joints of the upper

limb during driving. This information is very scarce in the literature.

The primary controls in a vehicle are the steering wheel, brake and accelerator. The

steering force is applied to the steering wheel by the hand of the person in driving. In different

driving conditions, the steering forces can vary greatly. For instance, steering forces are

highest during low speed manoeuvres, as when parking a car, and both force and movement

are quite low for most of the time spent on the road. The driver may therefore have to be

capable of exerting higher forces and different models of cars have different ranges of steering

forces (MIRA 1979). In a study of the muscular strength required to drive a motor car,

Asmussen et al. (1964) measured 47 standard models of the more common types of cars and

found the range of control forces shown in Table 2.2, in which the mean steering force for a

stationary car is 88±26 N. These were 1963-64 models of cars and there will obviously be

different from modem cars. They were then in a position to compare these loads with the

forces which a group of disabled drivers were able to apply and to investigate the relationship

between the demand and ability in driving these cars.

Table 2.2 Control Force (N) in Range of Cars in Demmark 1963-64 (Asmussen et al. 1964)

Brake	 Clutch Gearshift Steering Wheel Handbrake
(Car stationary)

Mean load 186 167 33 88 255
Standard
deviation

58 40 17 26 90

21



21—

18"

_

_

16-

VEHICLE	 MODEL
MAX	 PARKING

FORCE, N

CHRYSLER SUNBEAM +	 +	 40
FORD	 FIESTA 370-----0

111•n• n•GK N SANKEY S3
HONDA CIVIC 44X--X

Ar---BkVAUXHALL C HEY ET TE 39
VOLVO	 66 41-.—.—..—A SO

14 _

Z
...

—1
0
1—
CC 12 —
z
0
U

0z
—cc 10 _
UJ
UJ
I-.
in
l-
a

0 8 —ta—
_1
a.
a.
4
u.1
u 6
cc
0U-

4

2

I	 I
	

I	 I
8
	

16	 24	 32
SPEED,km/ h

t	 I
40	 48	 56

Figure 2.1 Variation of steering force with speed on a 32.9m turning
circle (MIRA 1979).

21A



MIRA (1979) measured the steering forces that were applied by each of two hands at

the rim of the steering wheel of 6 models of production cars. The variation in steering force

with speed for each car is shown in Figure 2.1. The maximum load (parking force) needed to

turn the wheel from lock to lock while the car is stationary is also shown in the inset table. It

can be found that the maximum parking force on one hand for two hand driving ranged from

37-53N. Thus the maximum steering force applied by two hands for parking would be

approximately doubled to 74-106 N. These results provide a reference for assessing the

driving ability of disabled people. The steering forces obtained by MIRA (1979) were

measured by strain gauge transducers in production cars during road driving. However it is

not clear how the steering force is exerted on the rim of the steering wheel. Because the force

acting on the steering wheel is a spatial vector, both its magnitude and direction can be

changed with the turning of the steering wheel. Unfortunately the three dimensional and

continuously monitoring of steering force on a production car has not been found in the

literature.

MIRA (1979) also measured the brake force of six models of production cars, but only

one car was fitted with a hand operated control. It was found that the hand operated brake

force was in the lightest of the six cars, and it required 75 N of hand brake force to produce a

deceleration of 0.7g. The hand control is relatively simpler than the steering wheel control,

because hand control is only a push-pull activity, and hand brake force requires no more than

75% the of person's maximum strength in operation (Begh and Poulsen 1967). While the

operation of the steering wheel is more complicated than hand control, it will need the

combination of flexion-extension, abduction-adduction, and internal-external rotation of the

arm movements. It needs not only the push-pull strength but also the gripping and rotational

strength.

The next question is how the driver's capabilities can be measured and matched to the

demand of the standard car or modified controls, but relatively little research has been done in

this area. Bogh and Poulsen (1967) studied the demand-ability relation for 50 handicapped

motorists at the Polio Institute in Copenhagen by measuring their maximum isometric force

while performing movements similar to those used during actual driving. They also measured

the same movements in their subjects' own cars, and found that the handicapped motorists in a

considerable number of cars were subjected to a very high degree of stress. For instance, in
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declutching, able-bodied motorists used only 6% of their maximum strength, while some of the

handicapped motorists required as much as 65% of their maximum strength, and two-thirds

had to use between 25 and 50%. The measurements in this study were carried out with strain

gauge dynamometers attached to the controls in both the car seating mock-up and the

individual cars.

MIRA (1979) assessed the capabilities of groups of severely disabled people with

various types of handicap, measuring the maximum isometric force which they could apply to

a steering wheel and brake control applied by foot or hand. The measurements of steering

forces were made on five points around the circumference of the wheel, which provided an

assessment of each subject's ability to reach and turn the wheel throughout its full range of

travel.

In assessing the driving ability of people after stroke, Lings and Jensen (1991)

measured 46 individuals suffering from left-sided hemiparesis and 67 with right-sided

hemiparesis after stroke by means of a mock car. In their test, 11 items were measured which

involved the manual grip strength, the maximum force applied when depressing pedals, the

maximum forces applied when operating the hand brake, the maximum isometric force applied

with hands in freely chosen positions when trying to turn the steering wheel when it is locked,

the direction of steering wheel turn, and the steering wheel turning speed. The results were

then compared with 109 healthy controls.

In summary, the previous assessment of driving ability were based on the measurements

of maximum isometric force applied on the rim of the steering wheel, the grip strength and the

maximum isometric push-pull strength. These measurements give some ideas of how much the

control strength of disabled people or some kinds of patients have. The problem is that the

maximum isometric strength can not be sustained for a long time for disabled people.

Although there are few occasions for a driver to keep a high force for a long time on road

driving, the highest steering force is needed for low speed manoeuvres, but it may be difficult

for disabled people to exert a high force for even a very short period. The question is that if

the maximum isometric strength of a patient has matched some standards, can it be said that

the physical condition of the patient is suitable for driving. The question can also be asked in

another way as whether the isometric strength tested in the static condition can be used to
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assess a dynamic process. The question can not be answered, because the dynamic

measurement of steering force has not been reported in the literature.

The other problem is that previous measurements of driving ability were tested on the

mock car or simulating systems. Koppa et al. (1978) also developed a device using a simple

spring scale to measure the maximum isometric steering forces for handicapped drivers. These

devices can not be used to measure the dynamic steering force, nor simulate the driving

resistance. To measure the steering force dynamically, a new simulating system is required

which should be able to provide a resistive torque to simulate the real driving condition and be

able to measure the three dimensional forces and moments on the hand for holding the steering

wheel. The loads on the joints of the upper limb should also be considered when assessing the

driving abilities. To find out the joint loads and to consider the inertial effect of the mass of

arm, the motion of the arm should also be recorded.

Pushing and Pulling

Pushing and pulling are the most frequently used manual handling activities after

lifting. It has been of continual concern to those planning efficient use of workplaces and to

those attempting to prevent unnecessary injury and illness in industry. Unlike the act of

sagittal-plane lifting, pushing and pulling capabilities have been studied only within a very

limited scope. Furthermore, estimates of the number of injuries that occur during pushing or

pulling of loads are not complete, though approximately 20% of overexertion injuries have

been associated with pushing and pulling (NIOSH 1981).

The maximal pushing and pulling strength depends on a number of factors. It would

appear from the work of Fox (1967) and Kroemer & Robinson (1971) that the effect of

friction (.1) between foot and floor on push and pull static strength capability is of primary

importance. They collectively showed that healthy young males can only exert a mean force of

approximately 200N if tt is about 0.3. With 1.i greater than 0 6, the mean push or pull strength

capability increases to 300N for the same group, according to ICroemer & Robinson (1971).

Martin & Chaffin (1972), Ayoub & McDaniel (1974), Lee (1982), and Davis & Stubbs

(1978) reported that the vertical height of the handle against which one pushes and pulls is of

critical importance. In the experimental strength study of Ayoub and McDaniel (1974), the

elbows and rearward knee were kept straight for the exertions. This resulted in the
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recommendation that the optimal height for a handle to be pushed or pulled should be

approximately 91 to 114 cm (i.e., about hip height for males), above the floor. Davis and

Stubbs (1978) developed recommendations for pushing and pulling limits based on abdominal

pressure measurements. These experiments also disclosed a larger force capability when the

hands were at hip height than raised to shoulder or above.

Martin and Chaffin (1972) predicted that maximum push or pull forces could be

obtained on a high-traction surface with the hands in a slightly lower position (about 50 to 90

cm) from the floor. This lower posture allows a person to lean further forward when pushing,

or backward when pulling, effectively, with such extreme postures, the risk of falling forward

of backward is greatly increased if the foot suddenly slips. In this regard, Lee (1982)

performed a set of dynamic push and pull experiments and found that the predicted

compression forces were less when the hands were approximately 109 cm above the floor,

compared with either 152 cm or 66 cm.

The maximal pushing and pulling capability can also be affected by sex, age, the

distance of pushing and pulling, and the frequency of pushing and pulling (Snook 1978,

Nicholson 1989). Snook (1978) found that the maximum acceptable force was greater for

shorter pushing distances. A similar result was found by Ciriello et al. (1993) for the pulling

task. The relationship between maximum acceptable loads of pushing task and the pushing

frequency were given by Sanders and McCormick (1987) from Snook's data, which is shown

in Figure 2.2.

In some situations of manual handling, especially for light weight handling, the task has

to be handled by one hand. One hand handling, including one hand pushing and pulling, with

the loads at one side of body, is usually refereed to as asymmetric handling (Chaffin &

Andersson 1984). It is obvious that the maximum acceptable capability of asymmetric

pushing and pulling is different from that of the sagittal plane pushing and pulling. The

problem is more complicated than the symmetric handling, therefore three-dimensional

analysis is required.

A study of one handed strength in the standing position was made by Rolunert (1966).

Five healthy young males of average anthropometric dimension were used in the experiment.

Right-hand strength was measured in various positions, as indicated in Figure 2.3. Six

strengths were measured while the subject was erect with feet parallel and 30 cm apart. The
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means of the resulting strength data are shown in the Table 2.3. The results demonstrate the

complexity of asymmetric exertions, with postures and force direction interacting to create

large variations in the mean value. Clearly, if the left band and the feet were allowed to

assume different bracing configurations, the values generally would be expected to increase

and be more varied than in Table 2.3. A recent and more complex set of data can also be

found in Kuhlmann's (1986) book.

In summary, the need to understand pushing and pulling activities in industry is

recognised since many overexertion and fall injuries appear to be related to such activities. It

is also clear that many biomechanical factors interact to alter push and pull capabilities. At

present, there is only a limited amount of data and modelling of these common activities, thus

any design limits must be carefully interpreted. Asymmetrical exertions appear to be more

hanrdous to the musculoskeletal system than symmetrical exertions (Kumar 1980). It is

conceded, however, that biomechanical and epidemiological data do not exist to quantify this

belief and to define specific limits for asymmetric activities. The present data, either

incomplete or given in the complex forms, are difficult to use in industrial safety design.

Otherwise, the task analysis and daily activities analysis should be conducted to obtain more

knowledge of the loads on the joints of the upper limb in practical situations. Even more

important is the lack of knowledge regarding dynamic loading of the musculoskeletal system,

which often is concomitant with an asymmetric manual material handling.

2. 3 Anthropometry

Anthropometry is the science of the physical measurement of size, weight, and

proportions of the human body to determine differences in individuals and groups.

Anthropometric data are fundamental to occupational biomechanics. A number of

anthropometric parameters, such as the body-segment link length, the mass and mass centre of

the body segment, and the body segment inertial properties must be known before the

biomechanical models can be used.

Active interest in the mass, volume, and centre of mass of the human body and its

segments has been demonstrated by numerous investigators over the past 200 years (Clauser

et al. 1969). These investigators have developed and used a wide variety of techniques in their

studies with varying degrees of success. A complete review of the history of the development
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is beyond the scope of this thesis. In the following section, only some currently used methods

of measurements of the anthropometric parameters will be discussed.

2.3.1 Body-segment Link Length Measurement Methods

The most basic body dimension is the length of segments between each joint. The

measurement of the length of various body segments in a linkage system assumes that the

segments are connected at easily identifiable joints. Clearly this assumption is better for limbs

than for the torso, neck and head segments. Even so, the identification of segment joints for the

limbs can be difficult, because the bony landmarks are often covered by muscle and fat tissue,

especially at the shoulder and hip joint.

The location of joint centres of rotation has been estimated on dissected cadavers by

anthropometrists (Braune and Fischer 1889, Dempster 1955). Knowing the joint centres of

rotation, link lengths can be defined as the distance between the projected centres. These link

lengths have been correlated with distances measured between palpable bony landmarks

located near the joint centres-of-rotation of interest, which have been carefully defined in

literature (Webb Associate 1978b). Thus, if one is attempting to define the length of a person's

forearm link, using palpable bony landmarks at either end of the ulna or radius, an estimate

acceptable for most occupational biomechanical studies can be obtained by measuring

between these reference points and multiplying by a given proportionality factor given in

Table 2.4. The joint centre location and link definitions of the upper limb are given in Table

2 .5.

The link length data, derived on living subjects with reference to surface landmark

measurements, have also been statistically regressed onto a subject's stature. An average set of

segment lengths expressed as a percentage of body height was derived by Drillis and Contini

(1966) as shown in Figure.2.4. These segment proportions serve as a good approximation in

the absence of better data, preferably measured directly from the individual.

Table 2.4 Upper limb link length to bone length ratios (Dem ster1955)
Segment Link-to-length ratio (%)

Humerus link 89.0
Humerus length

Radius link 107.0
Radius length

Hand link (wrist centre to centre of mass) 20.6
Hand length
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Table 2.5 Joint centre locations and link definitions (Webb Associates 1978)
Glenohumeral Midregion of the palpable bony mass of the head and tuberosities of

the humerus; with the arm abducted about 45° relative to the vertebral
margin of the scapula, a line dropped perpendicular to the long axis of
the	 arm	 from	 the	 outermost	 margin	 of the	 acromion	 will
approximately bisect the joint.

Elbow Midpoint on a line between (1) the lowest palpable point on the medial
epicondyle of the humerus, and (2) a point 8 mm above the radial
(radiohumeral junction).

Wrist On the palmar side of the hand, the distal wrist crease at the palmaris
longus tendon, or the midpoint of a line between the radial styloid and
the centre of the pisiform bone; on the dorsal side of the hand, the
palpable groove between the lunata and capitate bones, on a line with
metacarpal bone III.

Upper Arm Link The straight line between the glenohumeral and elbow joint centres of
rotation.

Forearm Link The straight line between the elbow and wrist joint centres of rotation.
Hand Link The stiaight line between the wrist joint centre of rotation and the

centre of mass of the hand.

2.3.2 Body Segmental Mass

Not only are body tissues mechanically stressed by external loads carried, pushed or

pulled on the job, but the effect of gravity on the mass of the body segments creates body

weight related stress. These weight related stresses can be of considerable magnitude in certain

postures, such as in sedentary work. A simple example is holding an arm straight out. The

shoulder muscles become rapidly fatigued and the posture cannot be maintained. Knowledge

of the distribution of body mass throughout the body, therefore, is of importance in

determining the effect of gravity on various musculosketal areas.

The body segment mass can be determined by three main methods; the volumetric

method, reaction change method and coefficient method. Using the volumetric method, the

determination of the segment mass from its volume is based on the assumption that the

segment density is known or can be determined if the density of the whole body is known. The

segment mass is then proportional to the product of the volume and the density (Drillis &

Contini 1966).

The reaction change method for estimating the segment mass has been described by

Williams & Lissner (1962), Drillis & Contini (1966) and Miller & Nelson (1973). Essentially

it consists of the determination of the reaction force of a board while the subject lies at rest on

it. The board is fixed at one end and supported at the other by a scale or other type of force
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Table 2.6 Average segment mass in
percent of the total body weight (Drillis &

Contini 1966)

Head, neck and trunk
	

55.4
Extremities
	

44.6
Upper extremities
	

11.3
Upper arms
	

6.2
Forearms
	

3.6
Hands
	

1.5
Lower Extremities
	

33.3
Thighs
	

20.9
Shanks
	

9.2
Feet
	

3.2

Segments Mass in percent of
the total body mass

transducer. The reaction board provides a means to determine the segment mass by applying

the static equilibrium principle that requires the sum of moments around any point in a force

system, while in equilibrium, to be zero. By having a person assume two different positions on

the reaction board and if the location of the segment mass centre is known, one can solve for

the segment mass using a procedure described in detail by Williams and Lissner (LeVeau

1977). Figure 2.5 presents the basic procedure for determining the segment mass for the

combined shank and foot segments.

The method of coefficients (Braune & Fischer 1889) is a way of presenting the segment

mass data. The segment masses have been correlated with total body mass by a number of

investigators. Drillis and Contini (1966) measured the segment mass of twelve living subjects

by the reaction change method using a highly sensitive apparatus. The segment masses were

given in percent of the total body mass

and compared with the results of five

investigators. Finally an average

segment mass from six investigators was

given in the percent of total body mass

as shown in Table 2.6. These results of

segment mass as a ratio of total body

mass not only give a general idea of the

proportion of segment mass in the body

mass, but also provide a quick way of

finding the approximate values of

segment mass for particular subjects.

2.3.3 Determination of Mass Centre Location

In the biomechanical analysis of movements, it is necessary to know the location of the

segment mass centre which represents the point of application of the resultant force of gravity

acting on the segment.

The segment mass centre location can be measured by suspension, reaction change,

compound pendulum and segment zone methods. By the suspension method, the frozen section

was suspended from a pin that was systematically reinserted until a point of balance was
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Table 2.7 Average location of mass
centres from proximal joint in percent of
segment length (Drillis and Contini 1966)

Entire Arm
	

43.1
Upper Arm
	

46.1
Forearm and Hand
	

42.0
Forearm
	

42.5
Hand
	

43.3
Entire Leg
	

41.5
Thigh
	

42. 7
Shank and foot
	

46. 7
Shank
	

40.4
Foot (from heel)
	

44.3

Table 2.7. Although similar results have been

Segment Distance in percent
of segment length

determined. The reaction change method can also be used to determined the segment mass

centre location in cases where the segment mass is known. The compound pendulum method

has been described by Drillis et al. (1964). The segment zone or immersion method is based

on the assumption that the segment volume and mass centre are coincident, these, according

to Bernstein (1967) are in very close agreement. A simple method, as Miller and Nelson

(1973) noted, of determining the approximate centre of mass on the long axis of the segment is

to immerse the limb to its proximal end using a second catch tank to measure the volume of

water displaced. Withdraw the limb slowly until half the volume first displaced is returned.

The water level at this point on the limb,

assuming uniform segment density, bisects

the mass centre.

The segment mass centre position of

living subjects have also been obtained by

Drillis and Contini (1966) using the

segment zone-immersion method. Their

results were then combined with the

previously published data to give an overall

average value of segment mass centre

distance from the proximal joint as a

percent of the segment length as shown in

reported(Clauser et al. 1969, Contini et al. 1970) and the segment mass centre location have

been given by various regression equations, the data of Drillis and Contini (1966) are

sufficient to allow quantitative biomechanical analysis of industrial tasks.

2.3.4 Segmental Moment of Inertia

The inertial property of the segment, such as moment of inertia (second moment of

mass), must be considered in the dynamic analysis of human movement. The moment of

inertia of a segment with respect to any axis of rotation is defined as:

I = m1r12 +m2r2 2 ±...±mnr.2 	 miri2	 or .1 r 2 dm
	

(2.1)

where m, is a discrete quantity of mass, ri is the distance from the mass to the axis.
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Previously, the segmental moments of inertia of cadaver and living subjects have been

determined by a number of investigators using various methods. These investigations have

been reviewed by Berme and Cappozzo (1990). Perhaps, the most comprehensive set of data

of segment moment of inertia was that collected by Chandler et al. (1975). Their study dealt

with the determination of segment principal axes of inertia. These data provide an opportunity

to relate segment principal moment of inertia values to standard anthropometric

measurements.

Recently, the data of Chandler et al. (1975) have been re-analysed by linear and non-

linear regression equations (Hinrichs 1985, Yeadon and Morlock 1989). The non-linear

regression equations, suggested by Yeadon and Morlock (1989), for the non-torso segmental

moments of inertia /*, and I, about the longitudinal and transverse axes passing the mass

centre are given by:

= 1(4)4 h	 (2.2)

1
= —2 /, + k2p2h3	(2.3)

where linear measurements are in m and moments of inertia are in kgm2, for segments with

three perimeters the mean perimeter is calculated as p = (p1 + 2p2 + p3 ) / 4, and for the hand

p = (p1 + p2 ) I 2. The definition of anthropometric variables of the upper limb are given in

Table 2.8. The values of k1 and k2 for the upper limb are given in Table 2.9. It has been

proved that these non-linear equations are superior to the linear equations and that the non-

linear equations can provide reasonable estimates of segmental moment of inertia even when

the anthropometric measurements lie outside the sample range of Chandler et al. (1975)

(Yeadon and Morlock 1989).
Table 2.8 (Yeadon and Morlock 1989)

Segment	 Variable

Upper arm	 h

P1

P2

P3
Forearm	 h

191

P2
P3

Hand	 h

P1

P2

Definition

Length: shoulder centre to elbow centre
Perimeter below axilla
Perimeter: maximum
Perimeter: elbow
Length: elbow centre to wrist centre
Perimeter: elbow
Perimeter: maximum
Perimeter: wrist
Length: wrist centre to tip of finger III
Perimeter: wrist
Perimeter: metacarpal-phalangeal joint
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(a)
	

(b)

Figure 2.6 Whole body link-segment models
(a) 11 segments model (Riley et al. 1990)
(b) 17 segment model (Arnirouche et al. 1990)
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Table 2.9 (Yeadon and Morlock 1989)

Segment lc/ k2

Upper arm 0.979 6.11
Forearm 0.810 4.98
Hand 1.309 7.68

2.4 Biomechanical Model

Because of the impossibility of direct measurement of joint forces and moments on

living subjects, the necessity of using biomechanical models to obtain the joint forces and

moments becomes evident. The biomechanical models of dealing with the loads can be

divided into two categories, the link-segment models and the musculosekeletal models. The

link-segment model are usually used in the biomechanical studies of human movement to

obtain the inter-segment loads and kinematic information of each segment from external

loading. The musculosekeletal models try to relate muscle forces and joint forces with the

inter-segment load.

2.4.1 Link-segment Models

The link-segment models assume that the human body is composed of a number of rigid

segments which are connected at joints. In biomechanical applications, the number of

segments can be varied based on the anatomical structure, the nature of movement permitted

for each segment, the purpose of various studies and the characteristics of the problem to be

solved. The whole human body system has been modelled by 11, 15, 17 and n segments (Riley

et al. 1990, Hanavan 1964, Dapena 1981, Hatze 1980, Amirouche et al. 1990, and Marshall

et al. 1985). As an example, the 11 and 17 segments whole body models are given in Figure

2.6. The 11 segments model was used by Riley et al. (1990) for the investigation of the

relationship of posture to balance. It can be found that in this model the upper limb was

modelled as one segment. However, in the analysis of upper limb activities, the upper limb is

often modelled by three (as seen in the model of Amirouche et al.) or two segments. In two

segment models, the forearm and hand are considered as one segment, and the upper arm as

another segment. The three segment model of the upper limb considers the upper arm, forearm

and hand each as a single segment, which are connected at wrist, elbow and shoulder (with
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trunk) joints. It is clear that to find the inter-segment loads on the shoulder, elbow and wrist

during upper limb activities, the three segment upper limb model must be used.

2.4.1.1 Two-dimensional static model

The inter-segment forces and moments can be obtained by solving the equilibrium

equations of each segment. In planar static problems, there are three equilibrium equations for

each segment, therefore three unknowns can be determined from the external loads. The

external loads include the external forces on the segment and the gravitational force of the

segment acting on the mass centre. The gravitational force and mass centre location of

segment can be estimated by using the method described in section 2.3, the external forces can

be measured directly by force transducer as discussed in section 3.3.2.

2.4.1.2 Three-dimensional static model

Two dimensional coplanar models are very useful in the evaluation of many

occupational tasks. In some cases a person will use only one arm for lifting, pushing and

pulling an object, while the other arm is used to counterbalance or stabilise the rest of the

body. In such a situation the external forces acting on the body must be treated in three

dimensions and the forces are considered to be non-coplanar. In three dimensional link-

segment static models there are six equilibrium equations for each segment, therefore, six

unknowns can be determined. In three dimensional space, the joint forces and moments on

each joint can be split into three force components and three moment components on the three

orthogonal axes. Thus, by using the proceeding in sequence method, which starts the analysis

at the point of application of external loads (often hand ) and proceeds in sequence solving the

equilibrium equations for each body segment, the three force components and three moment

components can be calculated from six equilibrium equations of each segment. The

complexity of the problem is obvious. In creating the equilibrium equations, not only must the

three dimensional loads on the hand and the positions of joints in the three dimensional space

be known, but there is also the need to specify a reference axis system for each segment, in

order to properly express the joint forces and moments in anatomical axes. This requires that

the measurement of the hand forces and the recording of the joint positions and segment

directions should be done in three dimensions. The basic understanding of vector algebra is
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also necessary to solve the three dimensional force and moment system. The descriptions of

the measuring system and computing techniques will be given in the later chapters.

2.4.1.3 Dynamic model

In dynamic analysis of the joint loads, the contributions of the inertial effects of

segments must be considered. The inertial effects of segments are caused by the translational

and rotational accelerations of each segment, which are called the inertial forces and inertial

moments, respectively.

The inertial force of a segment is related to the mass of the segment and the

translational acceleration of the segment. The inertial force of a segment can be expressed by

the d'Alembert's principle as:

F inertial= - ma
	

(2.4)

where a is the acceleration vector of mass centre of the segment, Fin„va is the inertial force

vector acting at the mass centre of segment in the opposite direction to the acceleration vector

of the mass centre.

The inertial moment of a segment is related with the angular momentum of the segment

and the distribution of mass relative to the axis of rotation (mass moment of inertia of

segment). The relationship can be given by using d' Alembert's principle as:

M inertial= - H
	

(2.5)

where, Minenia is the vector of inertial moment about the mass centre of the segment, H c is

the angular momentum about the mass centre, and

H = {I} • co	 (2.6)

where {I} is the inertia tensor and co is the instantaneous angular velocity vector. At present,

the kinematic parameters in Equation 2.4 to 2.6 are mostly obtained by using the numerical

differentiation techniques on the displacement data because there is no satisfactory method to

measure the kinematic parameters directly in the multi-linkage system. The above analysis is

based on the rectangular Cartesian coordinate system fixed to the moving body segment. To

incorporate the inertial effects into the joint load, it is only necessary to consider the inertial

forces and moments as additional external loads acting on the mass centre of the segment. The

inter-segment forces and moments can be solved at each time instant as a static problem. The

method is called the inverse dynamics approach and has been widely used in the
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biomechanical analysis of human movement. Details of this method have been given by

Roberson & Schwertassek (1988) and Berme & Cappozzo (1990).

2.4.2 Musculoskeletal Model

Although the link-segment model provides an effective way of finding the inter-segment

forces and moments, there are only six independent equations for each segment. However, in

each joint system the number of unknown muscle forces, joint forces and constraint

relationships exceeds the number of available motion equations. Mathematically, this is an

indeterminate system. Thus a separate equilibrium must be satisfied at each joint, and a

number of simplifying assumptions are necessary in order to resolve the indeterminate

problems

In developing the musculoskeletal model it is necessary to firstly identify each muscle

around the joint being investigated and then determine the positions of the origin and insertion

points of each muscle. Also the muscle length, direction (muscle force line) and cross-sectional

area of the muscle should be measured. In order to determine the magnitude and direction of

each muscle force, some assumptions have been made that the muscle force acts at the origin

and insertion points along the muscle force line (between origin and insertion point) and the

magnitude of muscle force is related to its cross-sectional area. Several muscle wrapping

correction techniques have been used (Nicol 1977, Van der Helm et al. 1992, Runciman 1994)

to determine the muscle force line for the muscles passing over and around other anatomical

structures.

To reduce redundant muscle variables, muscles with similar function, anatomic

insertion and orientation can be grouped together (Paul 1967, Morrison 1967, Chao & An

1990). Most authors (e.g. HOgfors eta!. 1987, van der Helm et at. 1992, Wood et al. 1989a,

b) divide large muscles into convenient portions, which represent more or less functionally

distinguishable parts. So far, the most often used method to solve these indeterminate systems

is the optimisation technique. The determination of muscle forces by using finite element

methods have also been reported (van der Helm et al. 1992, van der Helm 1994), where the

muscles have been assumed as truss or curved-truss elements.

Among the upper limb joints, the shoulder is the most complex system from the

biomechanical point of view, as it consists of three bones (humerus, scapula, and clavicle) and
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Figure 2.7 A free-body diagram of the standard link-segment model
Fp	 Intersegmental Force at distal end of the link-segment
Mp Intersegmental Moment at distal end of the link-segment

Fd	 Intersegmental Force at proximal end of the link-segment
Md Intersegmental Moment at proximal end of the link-segment
Fg	 Gravitational force of the link-segment

Fi	 Inertial force of the link segment
Mi Inertial moment of the link-segment

Fe	 External force on the link-segment
Me External Moment on the link-segment
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more than 20 muscles. Although a number of efforts have been made to model the shoulder

complex (e.g. Poppen & Walker 1978, Pronk 1987, Engin & Tiimer 1989, Tiimer & Engin

1989, Karlsson & Petersson 1992, van der Helm et al. 1992, van der Helm 1994, Runciman

1994), to date, no biomechanical shoulder model exists that is capable of predicting all of the

musculoskeletal forces and no model exhibits the flexibility required for the dynamic analysis

of different positions and loads. The problem is that on living subjects, it is very difficult to

precisely find the three-dimensional positions and directions of scapula and clavicle relative to

the trunk and humerus by using surface markers, because of the errors caused by the skin

movement between the skin and underneath bones. The difficulties also come from the

determination of the changes of the position of muscle insertion points, the changes of muscle

force line directions and muscle length, while the arm is in motion. Therefore much effort is

needed to incorporate the link segment model and musclosekeletal model together to suit the

demand of dynamic analysis of joint loads and muscle forces. At present for the above

reasons, the link-segment models are often used in the biomechanical analysis of human

movement.

2.5 Joint Loads

To understand how the loads are transmitted through each joint and how the joint forces

and moments are generated are the major concerns of biomechanists in investigating the

human movement and musculoskeletal injuries. Knowledge of some fundamental concepts

such as net joint moment, intersegment forces, joint contact forces (bone on bone force), and

muscle forces are necessary for dealing with the interactions between the segments. The full

descriptions of the forces transmitted at the hip joint was first given by Paul (1967a, b).

2.5.1 Joint Intersegmental Forces

Joint intersegmental forces (say joint forces) are the resultant forces transmitted

between body segments, and are the resultant of all external, gravitational and inertial forces

developed on the parts of the body to one side of the joint being considered. It can be easily

illustrated by the free body diagram as shown in Figure 2.7. The relationship of the inter-
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segmental force, external, gravitational and inertial forces is expressed by the vector

equilibrium equation of the segment as:

E F1, + Fohers = 0	 (2.7)

where	 F0,, = F, + Fg + F, + Fd	 (2.8)

and Fp is the joint intersegmental force at the proximal end of the segment, Fa is the inter-

segmental force at the distal end of the segment. When the other forces (F0„,) on the segment

are known, the inter-segmental force at the proximal end can be easily found from Equation

(2.7). In the three-dimensional situation, Equation (2.7) can be expressed by a set of three

independent equations corresponding to the three axes of an orthogonal coordinate system.

This orthogonal coordinate system is usually determined according to the anatomical structure

of the segment. Therefore, the magnitude and direction of inter-segmental force can be fully

determined in a three-dimensional space.

2.5.2 Joint Intersegmental Moments

Similar to the inter-segmental force, the inter-segmental moment (net joint moment) is

the resultant moment at one end of a segment. The intersegmental moment at the proximal end

(MI) of the segment is balanced by the external moments (Me ) on the segment, the

intersegmental moment at the distal end (Md ), the inertial moment (M,) of the segment, and

the moments caused by the forces on the segment (M i,„,..). The vector moment equilibrium

equation of the segment is given as:

EMp +Me +Mi +Md +M10,.=0 	(2.9)

In the three dimensional analysis, three independent moment equilibrium equations can

be used to calculate the three components of the intersegmental moment at the proximal end of

the segment from the known forces and moments on the segment and distal end of the segment.
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Figure 3.1 Determination of a local coordinate system of rigid body in the three-
dimensional space by the coordinates of three non-collinear points on the rigid body. Where
(X, Y, Z) is the reference coordinate system. PI , P2 , and P3 are the three non-collinear points
on the rigid body.

(a) Three non-collinear points on a rigid body define the position and orientation of the
rigid body in the three-dimensional space.

(b)Two vectors /72 and /73 define a plane by their cross product, 174 is the vector normal
to this plane.

(c). The cross product of T2 and /74 define R-5 , thus giving three mutually perpendicular
vectors.
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Chapter Three

Literature Review on Human Motion Analysis Methods

In this chapter the general description of kinemaic analysis methods of rigid body

movement and its application in human movement studies is given. The various methods of

measuring the kinematic and kinetic data of human motion are also discussed.

3.1 Kinematic Analysis of Human Movement

Kinematics is the study of body motion without reference to the forces causing this

motion. The complete kinematics of any segment in a three-dimensional spatial system

requires 18 data variables (Winter 1990). These include the position vectors, linear velocity

and acceleration of the segment's centre of mass, angular orientation, angular velocity and

angular acceleration of the segment in two planes. In order to describe these kinematic

variables, a convention or coordinate system is required. Using a non-moving inertial system,

the absolute motion of the segment can be described. On the other hand, with the local

coordinates attached to each segment, relative motion between segments can be calculated.

3.1.1 Position and Orientation

The first step to describe the motion of a body is to define the location and orientation

of the body in the three-dimensional space which is usually called the reference frame. In

kinematic analysis, bodies are assumed to be rigid. That is, they do not deform, and therefore,

the distance between any two points of a body does not change. The rigid body assumption

enables the location and orientation of a rigid body to be represented by the location and

orientation of a body-fixed coordinate system which is usually called the local coordinate

system, local frame or segment frame. The local coordinate system can be easily defined by

the coordinates of three points on the rigid body in the reference frame (Alexander and

Colbourne 1980, Bernie et al. 1990). Figure 3.1 depicts how the coordinates of the three

points on the rigid body are used to find a mutually orthogonal coordinate system (local

frame) fixed to the body. This principle has been widely used in biomechanical studies of

human movement, in which the appropriate landmarks of each segment should be carefully
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Figure 3.2 Translation keeping a fixed orientation.

1
Figure 3.3 Rotation of frames with a common origin.

2

Figure 3.4 General motion composed of translation and rotation.
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chosen on the principle that the local frame defined by these landmarks coincides with the

anatomical axes of the segment.

In the following discussions the reference frame will be noted as (0 1 , e l , where 01 is

the origin of the reference frame and e l is the unit vectors of it:

e l = (I, J,K)T or (1,2,3)T 	(3.1)

Similarly, the local frame will be noted as {029 e2), and:

e2 = (i,j, k) T or (1,2,3)T 	(3.2)

The motion of the local frame with respect to a reference frame can be regarded as

composed of two simple motions called translation and rotation. Motion during which the

relative orientation of the e 2 and e l does not change is called translation as shown in Figure

3.2. When 0 2 remains in a fixed location with respect to O l the motion is called rotation as

shown in Figure 3.3 (where 0 2 =0 1 ). The most general motion of a rigid body can be

composed of these two simple motion as shown in Figure 3.4.

The translation of a moving frame is determined by the location of its origin in the

reference frame which is expressed as r as shown in Figure 3.4. The orientation of the local

frame relative to the reference frame can be expressed by the direction cosine matrix as:

e2 = A21e1	
(3.3)

where A21 is the direction cosine matrix between the two frames. The superscripts to A denote

the frames which are connected. Equation (3.3) can be explained as that the frame e 2 can be

obtained from the el frame by a rigid rotation of the latter. The explicit form of direction

cosine matrix A21 is written as

all

"21

au
a22
a32

au
a23 1

a33

=

i•I	 i-J	 i-K
[j•I	 j•J	 j•K
k•I	 kJ	 k•K

(3.4)

Although there are nine elements in the direction cosine matrix, only three of them are

independent as the sums of squares for rows and for columns equal 1. These three independent

elements along with the three terms of the position vector comprise the six variables needed to

completely describe the physical location and orientation of the segment.

3.1.2 Rotation

Having found the orientation and location of frame e 2 relative to the reference frame

e l , the next question is how the body rotates from el to e2 , or how to describe the process of
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Figure 3.5 Canonical rotation about 1-axis

Figure 3.6 The general joint coordinate system composed of three axes. Two axes are
embedded in the two bodies where relative motion is to be described. These axes which have
unit base vectors e l and e3 , are called body fixed axes. 'The third axis, F, is the common
perpendicular to both body fixed axes. Since the common perpendicular is not fixed to either
body and moves in relation to both we call it the floating axis. The unit base vector for the
floating axis is e2 (Grood and Suntay 1983).

„

Figure 3.7 Motion a moving body from position 1 to position 2 with respect to a fixed system
can be expressed as a rotation 4) about and a translation K along a unique axis called
the screw axis.
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cos/3 0 —sin/3

2 AO =[ 0 1	 0

sin )6 0 cosfl•

(3.6)

cosy	 siny	 0

and 3 A(y) =[— sin y	 cosy	 0 (3.7)
0	 0	 1

rotation from el to e2 . Euler showed before the middle of the 18th Century that rotation is a

motion with three degrees of freedom, so it requires only three independent variables to

describe it. The most widely used parameters for this purpose are angle variables.

The simplest case is the rotation about one axis of the reference frame which is called

elementary rotation or canonical rotation. Figure 3.5 shows the rotation about the axis of el

through an angle a. The direction cosine matrix describing this rotation is denoted as:

1	 0	 0

A(a) =[0 cos a sin a
0 — sin a cosa

In this notation for canonical rotation, the superscripted prescript identifies the axis of

rotation, in this case, 1-axis, and the argument specifies the angle of rotation here a.

Analogously, rotation about 2-axis and 3-axis lead to:

(3.5)

The above three canonical rotations have been proved to be independent and the three

variables are a, p, and y. In fact if the third rotation is repeated around the first axis instead of

around the third axis, it is still an independent variable. In this case the three variables are a, 13

, a. Therefore any general rotation represented by the general direction cosine matrix can be

described by a sequence of the three elementary rotations and the general direction cosine

matrix can also be built by the multiplication of three direction cosine matrices of elementary

rotation. For example, for the a, (3, y sequence rotation, the general direction cosine matrix

can be built by 1 A(a) , 2 A (fi ) , and 3 A (y) as:

A= 3 A 0, ) 2 A(/) 1 A (a)	 (3.8)

in which the order of matrix multiplication of I il(a) , 2 A (/3), and 3 A (y) is the

opposite of the order of angles of rotation a, p, y. A complete proof of this can be found

elsewhere (Roberson & Schwertassek 1988). Knowing the direction cosine matrix A from

section 3.1, the rotation angles of a, 13, and y of the a-13-y sequence rotation can be calculated
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from equation (3.8). Other sequences can also be built. All together, there are twelve

possibilities for a sequence of three independent rotations (Roberson & Schwertassek 1988).

There is no universal standard of choice in the general literature, but some of them are widely

used which will be discussed below.

3.1.2.1 Euler and Cardan angles techniques

The rotation angles followed by the 313 sequence rotation are universally known as the

Euler anglers. This type of rotation is usually referred to as a, p, a-type rotation. Another

type of rotation is the a, p, 7-type rotation, in which each rotation occurs about an axis whose

index differs from that of all previous axes. The angles in the a, 13, y sequence are called

Cardan angles in Biomechanics and German literature (Woltring 1991, Tupling and

Pierrynowslci 1987). However, in literature, the Cardan angles were also included in the

"Euler angles" (Chao 1980, Selvik 1989).

There are several disadvantages when utilising this system of defining three-dimensional

segment and joint kinematics. Rotation angles in this technique are order dependent. Because

of this and as a result of a lack of a standardised set of rotation axes, comparison of kinematic

results between studies is often cumbersome. Visualisation of this analysis technique is

difficult especially when segment orientation is well removed from the anatomical position.

Gimbal-lock and singularity is an embedded problem of this technique, although it can be

avoided is some cases (VVoltring 1991). Perhaps the fatal disadvantage of using the Euler or

Cardan angles method is that the rotation of human segments and joints is not used in the way

prespecified by the ordered Euler or Cardan angles. Therefore, the sequence-independent

method has attempted to describe the rotation of human segments and joints and is discussed

in the following section.

3.1.2.2 Floating axis technique

Grood & Suntay (1983) developed a coordinate system with three nonorthogonal unit

base vectors, which are denoted as e 1 , e2 and e3 as shown in Figure 3.6. Two of the axes,

called body fixed axes, are embedded in the two bodies whose relative motion is to be

described. Their direction is specified by unit base vectors el in body A and e3 in body B. The

fixed axes move with the bodies so that the relationship between them changes with the

41



motion. The third axis F is the common perpendicular to the body fixed axes. Therefore its

orientation is given by the cross product of the unit base vectors, which define the orientation

of the fixed axes, e2 = e3 x e l /1e3 x e t I . The common perpendicular is referred to as the

floating axis, because it is not fixed in either body and moves in relation to both. The

coordinate system is referred to as the floating axis system. The rotation angles corresponding

to each base vector are a, p, and y. The direction and sense of the reference lines are described

by unit vectors e 1 ' and e3 ' in each body and are taken to be perpendicular to the fixed axis

also shown in Figure 3.6. The floating axis system has been used in the knee joint kinematic

analysis (Grood & Suntay 1983), where the clinical description of three-dimensional rotation

of the knee joint: flexion-extension, abduction-adduction and external-internal rotation were

described by a, 13, and y respectively.

The advantage of using this system for the description of spatial rotation of anatomical

joints is that the angular rotation does not have to refer back to the neutral position of the joint

because the rotational sequence can be totally independent and the measurement can be easily

related to anatomical structures. However, it is important to recognise that two of the

rotational axes in this system are nonorthogonal when the joint departs from its neutral

position. Consequently, the system is difficult to use in the kinetic analysis. Angular velocity

and acceleration have to be transformed into a set of inertial axes in terms of the Eulerian

angles defined (An & Chao 1984).

3.1.2.3 Screw axis technique

Regardless of how the motion takes place, the displacement of a moving body relative

to a fixed body from position 1 to position 2 can always be expressed by a rotation about, and

a translation along a unique axis in space (Chasles's Theorem). This axis is called the screw

axis or the helical axis as shown in Figure 3.7. Complete parameterization of the relative

position and orientation of a coordinate system includes: the coordinates of the screw axis

intersection with a known plane, screw axis orientation and translation along and rotation

about the screw axis of the moving coordinate system. These parameters can be determined as

long as four points are known relative to a laboratory reference system before and after a

motion. Details of the calculation can be found elsewhere (Kinzel et al. 1972a, Small et al.

1992, Bernie et al. 1990).
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There are several disadvantages with the screw axis technique. The screw axis rotation

magnitude is not comparable to other methods except in special cases. Translational

information is not directly comparable with any other system. Correlation of the analysis

parameters to clinical joint motion parameters is difficult. Also the determination of the screw

displacement axis is highly sensitive to measurement error. The ratio of error increases

exponentially with decreasing displacement (Crippen et al. 1982, Kinzel 1973).

3.1.3 Angular Velocity and Acceleration

The complete description of the kinematics of a moving body should involve the

parameters of linear and angular velocities and accelerations. These parameters are also

required in the kinetic analysis of the moving body. In classical mechanics, rigid body

kinematics principles state that the velocity of any point may be expressed with respect to the

velocity of any other point on the same body as:

=v i +To x	 (3.9)

where -6 is the angular velocity vector of the body and fy is the relative position vector

between any two points (point i and point j). Because the relative position vector on a rigid

body remains constant with time, the linear velocity v i of point j can be found by numerical

differentiation on the position data of point j which can be measured by the techniques

described in the following section. If the angular velocities are known, the velocity v, of point

i, can be easily found from the above equation. However, in principle, the procedure is not

reversible. The unique solution for To can not be found from the known velocities of two

points and the relative position between them.

Several experimental and numerical methods have been used to bypass the problem so

that the components of the angular velocity and acceleration may be determined for a rigid

body in space. Some investigators (Chao 1980, Bober et al. 1987) have used the principles of

goniometry to study relative joint motions. Triaxial goniometers allow the three-dimensional

relative angular motion of a joint to be recorded over time. The angular velocity and

acceleration of a joint may then be computed by differentiating the relative joint angles. Such a

technique may include errors due to misalignment or misplacement of the goniometer at the

joint, errors due to soft tissue motion and the possibility of discomfort when studying an

injured population. Another drawback of this method is that only angular variables are

43



recorded for the limb segment; absolute positions, linear velocities and linear accelerations

remain unknown.

Another technique occasionally used to record the motion of a body segment is the

accelerometer. Morris (1973) used six accelerometers to develop a method for defining the

motion of the shank during gait, numerically determining the position, linear velocity, angular

velocity and the associated direction cosines from the linear acceleration measurement but he

overlooked cross-sensitivity of the instruments. Padgaonlcar et al. (1975) and Mital et al.

(1979) showed that nine linear acceleration measurements were necessary to completely define

the three-dimensional motions of a rigid body. One major limitation of the accelerometer

technique is that the sensitivity of the accelerometers to extraneous noise allows the artefacts

to be included in the data due to building vibrations and soft tissue motions. The other

limitation is their sensitivity to gravity which requires knowledge of their inclination to the

vertical to correct for this. Either that or a 6 accelerometer inertial navigation system is

required. Also, the recorded linear accelerations are measured relative to the position of the

accelerometer on the limb, the absolute positions remain unknown.

Many investigators prefer using experimental techniques that record the positions of

specified targets placed on the body segments. This method of recording motion yields three-

dimensional positions, linear velocities and linear accelerations, but is hindered by the non

independence of the equations to solve for the components of angular velocity and angular

acceleration vectors. In two dimensional problems, this restriction is often overcome by

analysing planar representations of the rigid bodies in question, removing the unknown

direction of angular velocity and acceleration, leaving only the magnitude of these vectors as a

variable. In the three-dimensional case, Alexander and Colbourne (1980) developed a method

to calculate the angular velocity of a moving segment by using the relative position and

velocity vectors of two points on the segment with respect to a third point on the same

segment. The formula is:

= (v, x v 2 )/(v i . r2 ) = (v 2 xv i )/(v 2 . ri) (3.10)

where to is the angular velocity vector of the segment, r1 , r2 , v 1 , v 2 are the relative position

and velocity vectors respectively of two points with respect to the third point on the same

segment. The problem of this method is that when one relative velocity vector is perpendicular

to other relative position vector i.e. v1 r2 = v2 . = 0, singularity will occur. To avoid this
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problem, the three points on the segment should be carefully selected for the specified pattern

of motion of studied.

Verstraete & Soutas-Little (1990) used a least squares method to solve for the three-

dimensional components of the angular velocity and acceleration of a limb segment from

experimentally recorded three-dimensional position data. The calculation of this method is

complex and the accuracy of the results calculated by this method depends on the number of

targeted position points which have been measured and the number of position vector

equations to be solved. As it was concluded, a minimum of four targets, forming six relative

position vector equations, should be used to produce the best results for both the angular

velocity and angular acceleration.

Another method of finding the angular velocity and acceleration of a moving body is to

use the relationship between the time derivative of the direction cosine matrix and the angular

velocity of the moving body. This relationship is called the Poisson equation which can be

expressed as (see Roberson & Schwertassek 1988, Berme et al. 1990):

d (A 2 ' ) I dt 
= A21 =-2 53,21A 21	 (3.11)

where A 2' is the direction cosine matrix of frame 2 (body fixed frame) with respect to frame 1

(laboratory fixed reference frame), A 21 is the time derivative of A 21 . The right superscripts on

co show that the angular velocity is to be considered to be the angular velocity of frame 2 with

respect to frame 1, and left superscript indicate that the angular velocity is written in frame 2.

The Fo is just a symbol for calculation in which the components of angular velocity were

involved. The explicit expression of equation (3.11) can be written as:

00	 --a),	 c y

(A 21 )(A 21 )l = _	 co:	 0[ (3.12)

—O.)	 a)	 0y	 x

Because (A2 ' )- 1 = (A21 
)
T, then equation (3.12) become:

al 1	 al 2	 al 3 a	 a21	 a31

az	an	 (123

[ 

am	 (132	 6433

au	a22	 a32

[n

a, 3	 a23	 a33

= —

0	 —co,	 coyl

a) z	 0	 -co x

—co	 co	 0

(3.13)

From equation (3.13), the components of angular velocity of frame 2 with respect to frame 1,

written in frame 2, can be obtained as:
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co: =—(a2A31 +622632 + a2033 )

Cpy = —(a31á11 +a32á12 +633613)
	

(3.14)

co: —(anazi +a12622 +a131423)

The advantages of this method are the simplicity of its calculation and independence of

rotational sequence. Only information of the direction cosine matrix is required to calculate the

angular velocity of a moving segment, then the angular acceleration can be easily obtained by

numerical differentiation of angular velocity. The method has been used by a number of

authors (Gagnon & Gagnon 1992, Ramey & Yang 1981, Kromodihardjo & Mital 1987).

Finally, there are especially important properties of angular velocity which need to be

mentioned which state that interchanging the rotating frame and the reference frame, the

angular velocity reverses its algebraic sign, i.e. I d2 =-2 dl

3.2 Kinematic Measurement Methods

In biomechanics of human movement, measuring kinematic data is the basis of any

further kinematic and kinetic analysis. Many techniques have been used to collect the

kinematic data, among them the most frequently used photographic techniques, optoelectronic

techniques and electrogoniometer measurement are discussed in this section.

3.2.1 Photographic Technique

The earliest scientific studies of human movement were reported by Marcy in 1873 (see

Steindler 1953, and Begg et al 1989), who used serial photography to study locomotion. Using

the photographic techniques, the entire movement can be recorded on a single photographic

plate (Chronophotography), or the movement at each instant in time be recorded on separate

frames (cinematography). The pattern of movement can then be represented by the 'stick

diagram' which is obtained by photographing the subject in movement with bright reflective

strips affixed on the subject's segments (Marcy 1873, Murray 1964). In order to enhance

contrast of the pictures and smoothly identify the anatomic position of the body a number of

special markers have been used. These landmarks may be passive (e.g. bright reflectors with

stroboscope used by Murray 1964) or active (e.g. LEDs used by Cappozzo 1981).

Chronophotography is one of the most economical and simple techniques to measure

movement in human locomotion research with the advantage of providing all the information

on a single photographic plate and giving rapid assessment if a Polaroid camera is used. With
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an electric strobe of high flash frequency it is possible to record high speed movement.

However, there are several disadvantages for the chronophotographic method. Image

overlapping is a major problem when movement overlaps or when a point is more or less

stationary, strobe flash may influence the subject to produce a non-natural gait pattern, LEDs

may restrict movement.

The overlap problem can be overcome by using cinematography techniques. Using

cinematography, the movement of the human body can be filmed at pre-selected time intervals

(film rate) (Eberhart & Inman 1947, Bresler & Frankel 1950, and Paul 1967). The selection

of film rate is dependent on the camera used and the objective of the studies. It has been

suggested (Winter 1990) that for movements such as walking or for slower movements, an

inexpensive camera at 24 frames per second appears to be quite adequate. Simon (1981)

concluded that 50 frames per second was perhaps the best for analysing walking gait. For high

speed movement, such as sport, higher film rate should be used. In most studies, more than

one camera was often used (Eberhart & Inman 1947, Bresler & Frankel 1950, and Paul

1967). This enables the three-dimensional positions of landmarks to be recorded. The recorded

body segment displacements can be obtained by digitization of cinematographic film

(Sutherland & Hagy 1972). Whilst this technique may be suitable for research purposes, it is

unsuitable for routine clinical use because manual data reduction is a time consuming and

tedious process (Davis 1988). For film, the turnaround time for film development may be a

problem, also the possibility of film distortion and errors in framing.

3.2.2 Optoelectronic Techniques

Since the 1960's, various alternatives for cinematography have been developed. Among

these, a number of optoelectronic systems have become available both commercially and

academically. These systems can be interfaced directly with a computer to overcome the

disadvantages of cinematography. The digitization of image coordinates is automatic, and

some systems can also provide hardware identification of multiple landmarks. A wide range of

software is available for 2D or 3D reconstruction of stick figures etc. Some of the currently

available optoelectronic systems are discussed briefly below.
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Television or Video/computer system (VICON)

Although several television/computer systems have been developed independently

(Furnee 1967, Winter et al. 1972, Jarrett 1976), they share the same basic principles. The

spatial coordinates of markers are derived from the position in the television camera scan of

the video signal produced by markers. This depends on digitizing either the complete video

signal or the coordinates when a marker is detected in the video signal. In the latter case, two

digital counters are used to register the ordinate line number from the start of each field and

time lapse period from the start of each scan respectively. When a marker is amplitude

detected in the video signal the states of these two counters are sampled, giving a marker's

position in the TV raster.

The commercial and computerized video-system VICON (Oxford Metrics Ltd, Oxford,

UK) was first developed by Jarrett (1976) and Andrews (1981) in the University of

Strathclyde, and has been available since 1982. It can accommodate up to seven video-

cameras, and it uses retro-reflective markers which are affixed to the body, in combination

with infrared, stroboscopic illumination. A ring of IR LEDs is mounted around the lens of

each camera, and the LEDs give a short light flash at the end of each video scan. In this

fashion, image blur caused by fast movement is avoided. A comprehensive software package

(for use on PDP11 and VAX computers) is provided, allowing 3-D camera calibration, data

collection, reduction, and sorting (landmark identification) of raw image data, 3-D landmark

reconstruction, smoothing and differentiation, and graphics. Additional data channels are

available for synchronized collection of EMG and force-plate data. The number of landmarks

can be very high and is mainly limited by the disk transfer rates for data storage. A

considerable asset of the system is the passive nature of the landmarks (no wires), and the

availability of a comprehensive, well-designed software package.

It should be emphasised that, when using the VICON system, the distance between

markers should be sufficiently large so that error propagation from measured marker

coordinates to the transformation matrix is minimal. Each marker must be viewed by at least

two cameras at any moment of measurement for getting a continuous trajectory of the marker.

Disadvantages are the processing time required for reduction of data and for operator-

supervised sorting. Also installation of the system is very expensive, and it can only be used in

the laboratory under suitable conditions.
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The SELSPOT system

SELSPOT-II system (SELective light SPOT recognition, trademark of SELCOMAB,

Partille, Sweden) relies on the lateral photoeffect (Lindholm & Oberg 1974, Woltring 1975,

Woltring and Marsolais 1980) for determination of the positions of a light image on a

semiconductor photodetector. It can use up to 16 SELSPOT cameras (telemetric or

hardwired) with active light emitting diode (LED) markers attached to anatomical landmarks,

a signal processing unit and a controlling computer. The active LED markers are pulsed

sequentially from the controlling unit providing the computer with automatic identification of

markers. The advantages of SELSPOT are the (limited)) possibility to use the system in

daylight situations, the much higher spatial resolution, the high resolution in time, and

automatic landmark identification. Disadvantages are the use of active (wired) markers and

the sensitivity to marker light reflections: since the lateral detector senses the centroid of the

incident light distribution, any indirect image due to reflections on neighbouring surfaces

(adjacent limbs, ground, wall, ceiling) will influence the position estimate for the directly

observed light source.

CODA-3 system

The CODA-3, for Cartesian Optoelectronic Digital Anthropometer (trademark of

Channwood Dynamics Ltd, Loughborough, Leic, UK) use an optical scanning technique

(Giith et al. 1973, and Heinrichs 1974) and coloured retroreflective landmarks on the subject.

Two mirrors rotate about vertical axes which are spaced 1 m apart. A third mirror is

positioned halfway between these mirrors, and it rotates about a horizontal axis which

intersects the two vertical axes. A line of light is projected onto each mirror, and the reflected

lines sweep through space because of the mirror rotations. Whenever a retroreflective

landmark is hit by a light beam, colored light is reflected back into the scanning mirror. Time

and color are determined via splitting optics, diffractive gratings, and optoelectronic circuitry,

and these provide unique direction and identification information.

The advantages of the system with respect to the SELSPOT and VICON systems are

the passive nature of the landmarks, the high spatio-temporal resolution, and the real time

availability of 3-D landmark coordinates. Disadvantages are the limited number of markers

(8-12) due to difficulties in distinguishing the landmark colors, and the fixed stereobase which
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limits the depth range. A new version of this system CODA mpx30, can use up to 28 markers

at a minimum sampling rate of 200Hz, but the number of markers which can be used

decreases with the increase of the sampling rate.

3Spacerm IsotrakTm system

The 3Spacen4 IsotrakTm system (Polhemus Navigation Science Division, McDonnell

Douglas Electronics Company, Hercules Drive P.O. Box 560, Colchester, VT, 05446, USA)

is an electro-magnetic device for the measurement of the position and orientation of a sensor in

space. It consists of three components: a system Electronics Unit (SEU), a source, and a

sensor. Both source and sensor are connected to the SEU by cables. The source emits and the

sensor detects a low frequency magnetic field. The SEU contains all the analogue circuitry to

generate and sense the magnetic fields as well as the hardware and software to control the

analogue circuitry, digitise the signals, and perform the calculations to compute the position

and orientation of the sensor.

It was reported (AN et al. 1988, Hindle et al. 1990) that this system has high position

and angular resolutions, and relatively easy and simple to operate. This system has been used

to measure the back movement (Hindle et al. 1990, Buchalter et al. 1989, Buchalter et al

1986). However, since the magnetic tracking system was constructed based on the principle of

electromagnetism, any material with magnetic or electric characteristics could, therefore,

possibly affect and distort the output of the system. Systematic test to identify the effects of a

metallic object on the output of the coordinate and rotation of the sensor are required before

application of the device to kinematic analysis involving metallic artificial joint.

3.2.3 Goniometry

One of the commonly used method for kinematic measurement of human movement is

goniometry that measures the joint angle changes. Various types of goniometers are available

for example, electrogoniometers (Johnson & Smidt 1969, Chao 1980, Kinzel et al. 1972b),

Polarised light goniometers (Mitchelson 1977) and flexible electrogoniometers (Nicol 1987a,

1987b). The most obvious advantage of goniometry is that a large amount of angular

displacement data can be obtained instantaneously without tedious data reduction procedures.

Moreover, it is fairly cheap and relatively easy to use for clinical routine work. Planar rotation
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is recorded independent of the plane of joint movement. However, goniometry suffers some

disadvantages. First of all, the accuracy of the system is limited by the accuracy with which

the exoskeleton follows the movement of the internal structure. Secondly, it may require an

excessive length of time to fit and align, and the alignment over fat and muscle tissue can vary

over the time of the movement. Thirdly, if a large number of goniometers is fitted, movement

can be encumbered by the straps and cables. Finally more complex goniometers are required

for joints that do not move as hinge joints.

3.3 Kinetic Measurement Methods

Kinetic analysis of human movement during various activities requires that forces on

body segments should be determined. These forces include gravitational forces, external

forces, muscle and ligament forces. The gravitational forces can be found from a full

kinematic description and accurate anthropometric measures that have been described in

previous sections. The muscle and ligament forces can be assessed experimentally by

electromyography records (EMG) or theoretically by solving equilibrium equations of each

segment or joint. In solving these equilibrium equations, the external forces must be known.

The external forces usually act on the foot during standing, walking, or running and on the

hand during conducting various activities of daily living or on the body due to aerodynamic

wind effects. The experimental methods of measuring these external forces are discussed in

this section.

3.3.1 Ground Reaction Measurements

The force on the foot has a distribution of pressure under the foot, while the resultant of

the distributed forces can be represented by a three-dimensional force vector, called the ground

reaction force, acting at the centre of pressure.

Force plate

The external forces are usually measured by force transducers. There are many kinds of

transducers such as: strain gauge, piezoelectric, piezoresistive, capacitive. All these

transducers work on the principle that the applied force causes a certain amount of strain

within the transducer and the strain is recorded as an electrical signal proportional to the
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Figure 3.8 Triaacial hand force measurement system developed by Pinder et al. (1993), where
X, Y, Z are the x, y, z axes, H is the handle, R are ring transducers, T are thrust
bearings, and RB is the ring bearing.
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Figure 3.9 Strain gauged handle for measuring the hand forces of lifting activity. The shaded
handle is enlarged below to show detail of the gauges mounted on the handle (Danz and
Ayoub 1992).
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applied force. The force plate is a special transducer to record the ground reaction force of the

foot automatically when the foot contacts it. Among the various kinds of force plate, the

Kistler force plate is the most widely used one in which piezoelectric sensors are used. A cast

aluminium rectangular plate is supported on a platform below. At each corner there is a stack

of three quartz transducers, corresponding to vertical, fore-aft, and lateral forces, respectively.

Therefore, the forces in three orthogonal directions can be measured. From these forces, the

turning effect or moment about various axes can be derived and the centre of foot pressure can

be deduced if necessary.

At present, the force platform is a common device in gait analysis to find out the joint

forces and moments of lower extremities. Because the force platform has the advantage of

stability, accuracy and can provide the fundamental information about the three-dimensional

reaction forces, it has also been used for biomechanical studies of some upper limb activities.

de Looze et al. (1993) using the ground reaction forces measured by force platform (Kistler,

9281B) calculated the joint moments at the lower back for lifting and lowering tasks but their

study was limited to the sagittal plane. For asynunetrical lifting and lowering activities, the

triaxial net muscular moments at the L5/S1 joint were computed by Gagnon & Gagnon (1992)

from the external forces measured by two force platforms. Donkers et al. (1993) investigated

the elbow joint load during push-up exercise by measuring the location and magnitude of loads

applied to the hand using a force platform. In the investigation of muscular mechanical energy

expenditure in manual materials handling, Gagnon & Smyth (1991) using a sagittal plane

segments model calculated the shoulder and elbow joint moments from the ground reaction

force measured by force platform.

Although the force platform can be used for the study of' some upper limb activities, it

is obvious that the viability and validity of using it in a wide range of upper limb activities is

limited. First the force platform is usually fixed on the ground and upper limb activities are

rarely conducted at this level. Second, for upper limb activities, it is obvious that the external

loads are directly transferred through the hand to the upper limb joints. This process can be

easily analysed by upper limb link-segments models in cases where the external loads on the

hand are known. In contrast with this, the transfer of loads from foot to the upper limb joints

is more complicated than from hand to the upper limb joints. Although Gagnon & Smyth

(1991) used 'foot to shoulder, elbow' procedure, too many simplifications were involved in
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their study. Comparison could not be found to prove the equivalence of the 'hand to elbow,

shoulder' and the 'foot to shoulder, elbow' procedures. Therefore, the most appropriate way to

analyse the loads on upper limb joints for a variety of activities is to measure the hand loads

directly.

3.3.2 Hand Forces Measurements

Hand force is the interaction between hand and the objects to be moved or controlled by

the hand. Various methods of measurement of hand forces are used for the different kinds of

activities and different objects.

In clinical practice, the magnitude of forces that can be exerted by the hand is assessed

as the hand strength involving push/pull, pinch and grip strength which has been measured by

various dynamometers or testing devices (An et al. 1980, Jones, et al. 1985, Pronk & Niesing

1981, Forthergill et al., Clarke, et al. 1991). Most of the devices for measuring hand strength

in clinical use are single purpose, i.e. can only measure the push/pull, pinch or grip strength

respectively. Arguments still exist in whether the grip strength should be measured as a

pressure or as a force (Ellis & Cutts 1992, Kondrake 1985). In fact, hand force is a three-

dimensional action, single push/pull or grip strength information can not describe the hand

strength completely. Pinder et al. (1993) developed a triaxial force measurement system of

measuring the three components of hand force in three perpendicular directions as shown in

Figure 3.8. The handle of this system can rotate about three axes to allow the subject to move

the handle to the most preferred orientation for the direction in which he or she wishes to exert

force. This prevents the transmission of moments due to the flexion/extension,

pronation/supination or ulnar/radial deviation of the wrist. Therefore the moments exerted by

the hand can not be measured by this system. Using this system to measure hand strength,

subjects must learn to exert a force in a given testing direction (Fothergill et al. 1993). The

forearm posture of subjects can sometimes be constrained by mechanical links and the

framework that support the handles. Like other dynamometers used in clinical applications for

measuring hand strength, this system was designed for measuring isometric strength, it is

difficult to measure the hand forces dynamically for a wide range of real activities.

Strain gauge technology is the most widely used tool for force measurements, because it

is accurate, sensitive, versatile, has a linear output, is easy to use and has low cost. Strain
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gauges can be either bonded on the sets of interest of any object to be measured or bonded on

a single unit to construct a force transducer. Danz & Ayoub (1992) measured the hand forces

for a floor to knuckle lifting task by mounting two sets of four strain gauges on the handle of

the weight to be lifted (Figure 3.9). The hand forces in vertical ( in sagittal plane direction,

positive direction towards the head of the lifter) and horizontal (in the transverse plane

direction, position away from the body of the lifter) directions were measured. Because the

movement of the lift was not recorded and involved in the analysis, their results were only the

approximate results of neglecting the tilt effect of the weight. It may be appropriate to use the

strain gauged handle to measure the hand forces in the two hand, heavy weight sagittal plane

lift activity such as investigated in Danz & Ayoub's study. However, there may be problems

for using the strain gauged handle to measure the hand forces of one hand, light weight lift

activity. First, the handle may influence the real lifting postures. Second, the weight of the

handle may exert an additional load on the hand. This load may become a significant factor

when the lifted weight is relatively small.

Nicol (1977) measured the forces on the hand during a table-pull activity by using a

six-channel strain-gauged transducer (Berme et al. 1975) for the measurement of forces and

moments transmitted through lower limb prostheses. The six channels of the transducer can

measure simultaneously three components of force and three components of moment acting at

the centre of the transducer. Because of its small size and bolted endplate, it is suitable for

many applications. However additional adapters must be designed so that it can be fixed on

the different objects for use in this project. Detail of the design work will be given in section

4.2.
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Chapter Four

Experimental Work

Two main instruments were used in the experimental work of this study. A Vicon

motion analysis system was used for measuring the dynamic positions of landmarks affixed on

the body of the subject, the force transducer, and the book. The description of the Vicon

motion analysis system currently used in the biomechanics laboratory of Bioengineering Unit

is given in the first section. A force transducer was used for measuring the hand forces and

moments. The modification and calibration of a pylon transducer and the design of an end-

adapter of the transducer are given in the second section. In the third section, the design of the

force transducer instrumented steering wheel, door and cutting plate are described. The details

of the test procedure of four activities are given in the fourth section. The data acquisition and

pre-processing are described in the final section of this chapter.

4.1 Vicon Motion Analysis System

A six camera Vicon motion analysis system (Oxford Metrics Ltd, UK) was used in this

study for measuring the three-dimensional coordinates of discrete points within a

predetermined laboratory space. To accomplish this it uses 6 CCD cameras, each viewing the

measurement space from a different angle. Each camera emits pulsed infrared light at 50Hz,

and monitors the reflection of this light from retroreflective markers in its field of view. If this

information from two or more cameras with respect to the measurement space is known, the

three-dimensional coordinates of the marker centre can be calculated.

The motion analysis system operates at a predetermined operating frequency. This

results in dynamic marker movement being represented as a series of static marker positions.

Each of these sets of static marker positions is referred to as a frame of data. The frequency

used for this study was 50 Hz. Up to 40 markers can be used and each marker must be viewed

by at least two cameras to keep a continuous trace of the marker. Up to 40 additional

analogue data channels can be connected to the A-D converter and then to the system for

synchronised collection of data. The Vicon system is operated via a micro VAX 3100

computer using either the VT340 terminal or the adjacent Amstrad PC 2086/30 computer.
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Figure 4.1 Gauging diagrams of the pylon transducer

Figure 4.2 Modified pylon transducer
(1) Square endplate
(2) Impact protection cover and socket holder
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After the test, collected data can be transferred to the computer centre main frame system for

further analysis.

The use of the Vicon motion analysis system includes four steps, calibration, data

collection, reconstruction, and identification. The details of these steps used in this study are

given in the final two sections of this chapter.

4.2 The force Transducer

4.2.1 Modification of Pylon Transducer

In order to measure the hand loads during various activities a force transducer was

made. The main structure of the force transducer is the same as the 'shorter pylon transducer'

described by Berme et. al (1975) because of its small size and suitable range of load

measurements. The main part of the pylon transducer is a strain-gauged tube with 14

electrical resistance strain gauges bonded to the surface. The gauges were placed at two levels

and distributed around the circumference at different angles as shown in Figure 4.1. The

gauges forming 6 full bridges allowing the 3 forces and 3 moments to be measured by 6

nominally independent channels.

The original transducer was designed to be placed in the shank of a below or above

knee prosthesis for measuring the forces transmitted by the prosthesis. Two circular endplates

were bolted to the flanges at both ends, each providing a threaded central bolt hole for quick

and easy fitting within the prosthesis. A number of grooves were made on the surface of the

endplate. Because the principal loads transmitted by the prosthesis are the axial force and

anterior-posterior moment, the structure of the circular endplate provided an effective way of

transmitting the loads from the prosthesis to the transducer for measuring the loads. However,

for a wide range of activities investigated in this study, the hand forces may act in many

directions, for example the principal force and moment may be transmitted to the transducer

as a shear force and torque. In order to make a solid and secure means of attachment between

the transducer and other objects used in this project and to provide an effective transmission of

the loads in any directions, a pair of square endplates with a central bolt hole were designed as

shown in Figure 4.2. The outer dimension of the transducer was 58mmx73.5mmx72inm.
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4.2.2 Calibration of The Transducer

The force transducer must be calibrated before it could be used experimentally.

Generally two approaches can be used for transducer calibration, linear and non-linear. A

complete review of both techniques is presented by Magnissalis (1992). Magnissalis draws the

conclusion that a non-linear approach may be marginally more accurate but that the added

complications and expense are not justifiable for a transducer of this type.

A linear calibration approach assumes that each output signal can be expressed as a

linear combination of the applied load components. The signal for each output channel of the

transducer would then be the linear combination of the combined effects of the loading.

Mathematically this would take the form:

SFx = mil Fx + m12Fy + tnI3Fz + m14Mx + ml5My + m16Mz

SFy = m21 Fx + mnFy + m23Fz + m24Mx + m25My + m26Mz

SFz = m31 Fx + m32 Fy + m33Fz + m34Mx + m35My + m36Mz

SMx .-- M41 Fx + m42Fy + m43Fz + M44 Mx + m45My + m46Mz

SMy = M 51 Fx + m52Fy + m53Fz + ms4M.x + m55My + m56Mz

SMz = m61 Fx + m62 Fy + m63Fz + m64Mx + m65My + m66Mz

where the SFx, SFy, SF; SMx, SMy, SMz, are the six output signals, Fx, Fy, Fz are the

three force components applied along each of the three axes of the transducer coordinate

system, Mx, My, and Mz are the three moment components applied around each of the three

axes of the transducer coordinate system, and m n ... m the linear coefficients to be

determined during the calibration procedure. Equation 4.1 can be written more simply as:

[ S]=M [1-]	 (4.2)

where the [S] and [L] are column vectors representing the bridge output voltages and the input

loads, respectively. The matrix [M] is a square matrix relating the applied loads to the

measured output signals in which each diagonal element relates one loading component and its

contribution to the output signal of the corresponding channel. Non-diagonal elements

represent the cross-effects.

In normal practice, the purpose is to find the loads applied to the transducer from the

recorded output signals. From Equation 4.2 the load [L] can be expressed as :

[L]=[C][S]	 (4.3)

where [C]=[M] -1 is the inverse of matrix of [M] and is called the calibration matrix.

(4.1)
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Determining the calibration matrix involves first calculating the components of matrix

[M]. This is done by loading each of the channels of the transducer and measuring

corresponding output signal voltages. Many different loading formats have been used for

previous calibration of the pylon transducer and they were reviewed by Magnissalis (1992).

After using an Instron materials testing machine for calibration of a pylon transducer, and

comparing with other methods, Magnissalis (1992) indicated that standard dead-weights are

more appropriate for this purpose, because they rely on fewer components and the friction can

be more readily quantified.

Ideally, step-increased dead-weight loads should be applied to each transducer channel

independently, the resulting six output signals for each load could then be analysed using

linear regression to determine the corresponding 6 components of a column of matrix [M]. In

order to get the minimal cross-effects due to the misloading on non-purposed channels during

calibration a set of highly accurate loading devices is required. Alternatively, combinations of

loads on different channels have been used for calibrating the pylon transducer in the

Bioengineering Unit (Lawes 1982, and Grant-Thompson 1977, Hall 1996). These

combinations include combined shear force and bending moment, combined axial load and

bending moment, and combined shear force, bending moment and torque. A pure axial

loading, a pure torque and combined shear force and moment were used in this study.

For the purpose of calibration and later use of the transducer, the bridge voltage and the

gain of amplifier for each channel which were used are shown in Table 4.1.

Table 4.1 Parameters of the force transducer

Ch-1	 Ch-2	 Ch-3	 Ch-4 Ch-5	 Ch-6

Bridge voltage 3V	 6V	 3V	 3V	 3V	 3V

Gain of amplifier 2000	 2000	 2000	 500	 1000	 500

Axial load calibration

In axial load calibration, an axial loading frame reported by Lowe (1969) was used as

shown in Figure 4.3. The axial compression force W was loaded on the y axis of the

transducer by means of weights on the top disc. The point loading was guaranteed by the use

of two steel balls at the interface between transducer and the frame. Five loads from - 49.05N
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Figure 4.4 Calibration results of axial loading
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(5kg) to - 245.25N (17kg ) were applied. The output signals of the six channels corresponding

to each load were recorded in mV. A linear regression analysis was conducted on the output

signals of each channel against the applied loads, respectively. Six coefficients of column 2 of

matrix [M] were determined. The main effect and cross-effects of the axial loading calibration

are shown in Figure 4.4 and Figure 4.5 respectively. The regression results are given in

Table 4.2.

Calibration of torque

For applying a torque to the transducer, one end of the transducer was vertically fixed

and a special machined bar was horizontally attached on the other end of the transducer. Two

vertical forces with equal magnitude were applied in opposite directions on each end of the

bar, producing a zero resultant shear force and a pure torque on the transducer. As shown in

Figure 4.6, the upward force (on the right side of the bar) was applied to the bar by using a

pulley, cable and suspended weight system. The downward force (on the left side of the bar)

was applied by simply suspending a weight using a cable. Exchanging the position of the

pulley system with the simply suspended weight, a torque in the opposite direction was

applied. The magnitude of the applied torque is 2 .d.W. Six torques (3 in each direction)

valued ±9.81Nm, ±19.62Nm, and ±29.43Nm were applied. All six output signals were

recorded for each applied torque. Linear regression analyses were conducted on the output

signals of each channel against the torques producing six coefficients of column 5 of matrix

[M]. The calibration results and cross-effects are shown in Figure 4.7 and Figure 4.8. The

regression results are given in Table 4.2.

Calibration of shear forces and bending moments

For shear forces and bending moments calibration, a cantilever system was used as

shown in Figure 4.9 and Figure 4.14, in which the transducer was fixed at one end, and a

aluminium tube fixed to the other end constructing a cantilever system. The weight was

suspended at a distance d' and d" from the centre of the transducer applying a shear force and

a bending moment on the transducer. Two combinations are required to calibrate two shear

forces and two bending moments channels, they are Fx-Mz combination and Fz-Mx

combination.
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Table 4.2 Regression results of calibration of the force transducer
Variable
(y-x)

Correlation
coefficient

x-
coefficient

Se of x
coefficien
t.

Sc of y
extimate constant

no of
obs.

-
SFx - Fx 0.999935

-
2.084004

-

0.009727 3.411190 -2.85100 8

SFy - Fx 0.998740 0.084603 0.001735 0.608590 1.25000 8

SFz - Fx -0.996661 -0.048204 0.001612 0.565370 1.18750 8

SMx - Fx 0.0 0.0 0.0 0.0 0.0 8

SMy - Fx 0.0 0.0 0.0

_

0.0 0.0 8

SMz - Fx -0.998865 -0.049947 0.000972
r

0.341029 0.25050 8

SFx - Fy -0.866025 -0.006116 0.002039 0.316228	 , -0.30000 5

SFy - FY 0.999993 1.076453 0.002354 0.365148 -0.40000 5

SFz - FY 0.0 0.0 0.0 0.0 0.0 5

SMx - FY -0.883883 -0.010194 0.003114 0.483046 -0.90000 5

SMy - Fy -0.883883 -0.010194 0.003114 0.483046 -0.90000 5

SMz - FY 0.866025 0.006116 0.002039 0.316228 0.50000 5_

SFx - Fz -0.996801 -0.026451 0.000866 0.303657 -0.12475 8

SFy - Fz 0.989730 0.070180 0.004138 1.451196 2.60038 8

SFz - Fz 0.999993 2.080632 0.003164 1.109443 1.34406 8

- Fz., SMx 0.960807 -0.011991 0.001412 0.495356 0.34406 8

SMy - Fz

_

0.0 0.0 0.0 0.0 0.0 8

SMz - Fz 0.054873 -0.000437 0.003250 1.139792 -1.32575 8

SFx - Mx -0.999896 -1.669378 0.009846 0.170916 0.0 8

- Mx, SF', 0.998114 0.528529 0.013271 0.230386 -0.50000	 - 8

SFz - Mx 0.960003 0.123270 0.014678 _0.254796 -0.18750 8

SMx - Mx 0.999999 30.597476 0.010314 0.179044 -0.31250 8

SMy - Mx 0.0 0.0 0.0 0.0 0.0 8

SMz - Mx -0.942281 -0.127298 0.018466 0.320569 0.25000 8

SFx - MY 0.998974 0.336756 0.007633 0.396225 0.58333 6

SF', - My -0.997629 -0.642566 0.022164 1.150505 1.75 6

SFz - My 0.0 0.0 0.0 0.0 0.0 6

SMx - MY 0.483494 0.021844 0.019774 1.026436 -1.5 6

SMY - MY -0.999997 -42.19819 0.055162 2.863460 -1.16667 6

SMz - My 0.960031 0.072812 0.010614 0.550973 0.5 6

SFx - Mz -0.979359 -0.422178 0.035572 0.617517 0.99999 8

SF', - Mz -0.999896 -0.834688 0.004922 0.085451 -4.2E-06 8

SFz - Mz 0.999896 0.417344 0.002461 0.042725 2.1E-06 8

SMx - Mz 0.0 0.0 0.0 0.0 0.0 8

5M', - Mz 0.0 0.0 0.0 0.0 0.0 8

SMz - Mz 0.999993 30.583746 0.045546 0.790658 -1.74985 8

Se:Standard error
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For combined Fx and Mz calibration, the weight was suspended along the x-axis of the

transducer (Figure 4.9). From Equation 4.1, the six output signals can be expressed as:

= m 1yx+m 16M' z	 i=1,6	 (4.4)

= m 1yx+m 16M. z	 i=1,6	 (4.5)

where i denotes the channel number, S i represent the 6 measured output signals when the

weight was suspended at the distance d' from centre of the transducer, the corresponding

bending moment is M'z = - Fx•d'. Si represent the 6 measured output signals when the weight

was suspended at the distance d" from centre of the transducer and M"z = - Fx•d". The x, y, z

axes of the transducer are also shown in Figure 4.9. The signals of Si and S; involve the

combined effects of Fx and M'z (in S'1 ) and M"z (in Si). Therefore, in order to determine the

coefficients m il and m 16 , the output signals corresponding to each input load of Fx and Mz

should be found. By solving Equations 4.4 and 4.5 the following equations can be obtained:

Sil = milFx

Si6 Mi6MZ

where S i = 1 ES: -FS; Miz+Milz (S; —S;)]
1 21_	 M"z—M'z

(4.9)

Mz = M"z - M'z	 (4.10)

the Sil represent the 6 output signals corresponding to each Fx loading, S 16 represent the 6

output signals corresponding to each Mz loading, here Mz is the difference of the two bending

moments M"z and M'z applied at the centre of the transducer (Equation 4.10). From Equation

4.6 and 4.7, it can be seen that the coefficients m il and m 16 can be determined by regressing

Sil against Fx and S 16 against Mz. The regression results are given in Table 4.2.

For the complete Fx-Mz calibration, four loads were applied in each direction at two

distances from the centre of the transducer. The corresponding output signals Si and S; were

recorded. So Si6 and Mz were calculated using Equations 4.8 to 4.10. The regression

analyses were conducted on S11 against Fx and S16 against Mz obtaining 12 coefficients in

column 1 and 6 of matrix [Mt The calibration results and cross-effects for Fx and Mz loading

are given in Figure 4.10 to Figure 4.13.

(4.6)

(4.7)

(4.8)
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Figure 4.15 Calibration results of Fz
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Figure 4.18 Cross-effects of Mx
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Figure 4.22 Four extension springs were wound up on the surface of the
resistance unit to provide a reisstive torque

Figure 4.23 The set-up of the steering wheel system
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The parameters of matrix [M] are in units of mV/N or mV/Nm, and the parameters of

matrix [C] are in units of N/mV or Nm/mV.

4.2.3 The End Adapter Design

In order to fit the transducer into the driving wheel, door and cutting table, a common

intermediate part, end adapter, between the transducer and the driving wheel, door and cutting

table was designed as shown in Figure 4.19. The concave-downward bottom (1) is mounted on

the square endplate of the transducer and fixed by a bolt through hole 2 and 3. The square

hole (4) is used for connecting with a square bar onto other objects. The adapter and square

bar are fixed together by three bolts at hole 5 and 6.

4.3 Instrumentation

In this section, the design of the laboratory used driving wheel, door and cutting plate,

which were instrumented with the force transducer, are given.

4.3.1 Instrumented Driving Wheel

To design a simulating steering wheel system, a number of fundamental points should

be considered. The simulating system should be able to provide a resistive torque which

simulates the real driving conditions, should be able to measure the three dimensional forces

and moments on the hand for holding the steering wheel, should be easily fitted within the

environment of a motion analysis laboratory, and finally should be of reasonable cost.

4.3.1.1 Torque resistance unit

The first problem of providing a resistive torque to the steering wheel is to decide which

type of resistance to use. Generally, there are four primary types of resistance, static and

Coulomb friction, viscous damping, inertia, and elastic resistance. Each type of resistance

has its own characteristics, advantages and disadvantages. Static Coulomb friction is a static

resistance. The resistance is maximal at the start of movement, but drops sharply, Coulomb

(sliding) friction continues as a resistance to movement, but this friction force is not related to

either velocity or displacement, and has little precision control once the control has begun to

move. Viscous damping resistance is proportional to the velocity of the control movement.
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Figure 4.20 Three components of the torque resistance unit

Front View	 Right side view
Fig 4.21 Torque resistance Unit
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The advantage of the viscous damping resistance is good control, particularly the rate of

movement. However, good control is in the engineering sense, for human activities it is

difficult to control the speed of the movement of the human body. Inertial resistance is the

resistance to the movement caused by acceleration of the mass of the mechanism involved. A

force exerted on an inertial control will have little effect at first because it produces only an

acceleration of the control (the greater the force, the greater the acceleration). Because the

acceleration is also related to the displacement and velocity of the movement, it is more

difficult to control a precise movement. Elastic resistance varies with displacement of a

control device. The relationship may be linear or non-linear. The major advantage of elastic

resistance is that it can serve as useful feedback, combining both force and displacement in a

redundant manner. For human upper limb activities, the elastic resistance allows the arm to be

moved at any speed. For the above reasons it was decided to use an elastic resistance to

simulate the resistance of the steering wheel.

It was desired that the simulating steering wheel could be turned in either clockwise or

counter-clockwise directions and that there would be a linearly increasing resistive torque

during the turning of the wheel in each direction. For this purpose an individual part, called

the torque resistance unit, was designed.

The torque resistance unit consists of three tubular components A, B, C as shown in

Figure 4.20 and Figure 4.21. The lower component C is a stationary component and is fixed

on an aluminium tube mounted at a convenient location in the laboratory (see section 4.3.1.3).

The middle component B can rotate 90 degrees in a clockwise direction from point B" to point

C'. The upper component A can rotate 90 degrees in either a clockwise or counter-clockwise

direction. When it rotates 90 degrees in the counter-clockwise direction from A' to B', the

middle component B will remain stationary. When it rotates clockwise, it will push the middle

component B at points A" and B", so that A and B can rotate together from point B" to C' (90

degrees). The steering wheel is fitted on top of the upper component A. Therefore it can be

rotated 90 degrees in either counter-clockwise or clockwise direction. The limited 0 degrees

displacement of the steering wheel was designed so that the subjects would not have to remove

their hands from the wheel during turning (Woodsom 1970).

The resistive torque is provided by four extension springs (as shown in Figure 4.22)

which were wound over the surface of the resistance unit between point 1-1', 2-2', 3-3', and
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Figure 4.22 Four extension springs were wound up on the surface of the
resistance unit to provide a reisstive torque

Figure 4.23 The set-up of the steering wheel system

63A



4-4' (Figure 4.21). If the steering wheel is turned counter-clockwise, the two springs between

points 1-1' and 2-2' will be extended to produce an approximately linear resistive torque. The

other two springs between points 3-3' and 4-4' will produce a resistive torque to the clockwise

turning of the steering wheel.

After the torque resistance unit was fitted on the steering wheel, the complete steering

wheel system was calibrated to find the torque-angle relationship and the maximum resistive

torque. During the calibration, a set of step-increased dead weights were suspended at the rim

of the steering wheel (Figure 4.24), and the turning angle corresponding to each suspended

weight was recorded. The torques applied to the steering wheel were then calculated from the

suspended weights and the recorded angles. The results show a good linear relationship, with a

linear correlation coefficient of 0.99789, between the resistive torque and the angle of turn

(Figure 4.25). The maximum resistive torque is 19 Nm for 90 degrees of turning of the

steering wheel.

4.3.1.2 Implementation of force transducer into the steering wheel

In order to measure the hand forces during turning the steering wheel, the force

transducer was fitted between the hub and the rim of the steering wheel. The rim of the

steering wheel was cut into two parts, one part was connected with the transducer and the hub,

the other part was connected with the hub only (Figure 4.23 and 4.26). This arrangement

enables the steering wheel to be driven by two hands, while the forces on only one hand (right

hand in this study) is measured. The diameter of the steering wheel is 0.36m and the diameter

of the rim is 0.03m.

4.3.1.3 Positioning of the steering wheel system

The top end of the torque resistance unit was fixed on the steering wheel and the lower

end of the torque resistance unit was fixed on an aluminium tube constructing a complete

steering wheel system (Figure 4.23). By using a specially designed clamp, the aluminium tube

can be easily mounted on the wall of the laboratory forming an angle of 60 degrees between

the steering wheel plane and the vertical axis. The height of the centre of the steering wheel

was 0.83m from the floor. This position of the steering wheel falls into a set of recommended
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Figure 4.25 Torque-angle relationship of the steering wheel

Figure 4.26 Fitting the force transducer into the steering wheel for measuring the
forces on one hand during two hand driving.
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Figure 4.27 The design of a door used in this study

Figure 4.23 The force transducer was fitted between the handle and door
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design features for a vehicle cab (Sanders et al. 1987). After the experiment, the steering

wheel system can be easily dis-mounted from the wall.

4.3.2 Instrumented Door

To analyse the loads on the upper limb joints during the door opening/closing activity,

the forces applied on the door handle and the movements of arm must be recorded. However,

in the motion analysis laboratory, a real door will obscure the cameras from the markers on

the body of subjects. Therefore a simplified door was designed for use in the motion analysis

laboratory in this study (Figure 4.27), which is a steel frame hinged at one side with a T-type

steel bar. The T-type bar can be easily mounted on the wall of the laboratory during

experiments and dis-mounted from the wall after use. A viscous design of door closer was

used. The main part of the door closer was fixed on the door and the another end was

connected with the T-type bar (Figure 4.27). Considering that the simplified door will weigh

less than a real door, a 10kg weight was placed at the centre of the simplified door (Figure

4.27). The weight of the door will obviously influence forces on the hand. However, the

weight of the doors varies greatly and the investigation of the influence of door weight on the

opening forces is beyond the purpose of this study. Therefore only one weight setting of the

door was used in this study.

For measuring the hand loads during the door opening/closing activity, the force

transducer was fitted between the door and a cylindrical handle of diameter of 0.031m (Figure

4.28 and 4.29). Therefore, during the opening/closing of the door the loads acting on the

handle by the hand can be transmitted to the transducer to be recorded. This type and size of

handle was recommended as being most comfortable for power grip (Pheasant 1986, Cushman

& Rosenbery 1991).

The handle position (the horizontal distance from the handle to the hinged side and the

height of handle) is another influencing factor to the hand loads of opening/closing a door, and

the handle position can be varied greatly from one door to another depending on the width of

the door. After measuring the handle positions of a number of doors in the University library,

Bioengineering Unit building, and other buildings, one setting of horizontal position of 0.75m

from the hinge was chosen to be used in this study. This handle position is often seen on the

doors of 80-85cm width. The vertical holding position of the handle ranged from 0.9m to 1.3m
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Figure 4.29 The simplified door used in this study

Figure 4.30 Cutting plate instrumented with force transducer
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from the floor. Therefore the subjects can hold the handle at a self-determined comfortable

height.

4.3.3 Instrumented Cutting Plate

For measuring the hand forces during the cutting activity, a cutting plate instrumented

with the force transducer was designed. The force transducer was fitted between a table and

a cutting plate forming a cantilever system (Figure 4.30). During a cutting activity, the cutting

forces acting on the cutting plate could be transmitted to the transducer to be recorded. Since

the three dimensional position of the transducer, the band and arm can be measured by a

VICON motion analysis system, the forces and moments on the upper limb joints can then be

calculated from the transducer's signals, the positions of the transducer, and arm. The cutting

plate was 0.4m long, 0.27m wide, and positioned at a height of 0.74m. The height of the

cutting plate was designed for a sitting subject to conduct the cutting activity.

4.3.4 The Books Used for Lifting Activities

The non-instrumented objects used in this study were two books of mass lkg and 2kg

which were used as the weights to be lifted in the study of lifting activities. The books of A4

paper size (210mmx297mm) were made of wood and paper with thicknesses of 24mm and

40mm, respectively. It was considered that these thicknesses can be held comfortably by the

subjects. The masses of the books were chosen to be lifted by one hand-arm without assistance

from other parts of the body.

4.4 Test Procedures

4.4.1 Setting Up of the Measuring System

The setting up of the measuring system included the calibration of the Vicon motion

analysis system and connection of the force transducer to the amplifier and Vicon system.

Before the test, the Vicon motion analysis system was calibrated. The relative positions

between each camera and four calibration poles were determined by the calibration. During

the calibration, the coordinates of 20 calibration markers on the four calibration poles were

measured by the system and compared with their known positions in the laboratory coordinate

system. The average residuals between measured and real positions of the calibration markers
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were given corresponding to each camera. The calibration residuals are the important

parameters indicating the accuracy of the measuring system. The accuracy of the calibration

results and subsequent measurements depends mainly on the relative positions of the cameras

and the calibration poles. In this study, all calibration residuals were below 3inm which is the

allowed maximum error of the calibration of the video cameras. When some of the residunls

were greater than 3mm, the camera positions were adjusted and the system calibrated again

until the desired results were obtained.

Before tests, the force transducer was connected to the amplifier, the output of amplifier

was connected to the Vicon system through an A-D converter. The setting of the bridge

voltage and the gain of the amplifier were the same as that used in the calibration of the force

transducer (Table 4.1). The output signals were adjusted to zero before testing. Because the

test lasted about one to two hours, the drifting effects can not be avoided. To eliminate the

drifting effects a function of initial value reduction was written in the analysis software.

4.4.2 The Landmark System

The markers used in this study are made from light plastic balls of 25.4mm in diameter

covered by retro-reflective paper. These balls were affixed to bars of different lengths which

had plastic bases of 25.4mm diameter.

In order to determine the joint centre positions, the origins and orientations of the trunk,

transducer and book coordinate systems, at least three markers were attached on each body

segment, the force transducer and the book. The determinations of the joint centres and

orientations of each coordinate system from these landmarks are given in section 5.1. In

determining these landmark positions the following considerations were involved:

1) minimal movement between marker and underlying bones;

2) maximal distance between markers;

3) visible by at least two cameras during the test at any instant of time.

The Figure 4.31 shows a diagrammatic representation of the full marker system, as well

as the numbering system of the markers which indicates the order of labelling in the Vicon

motion program. A total of 19 markers were used in this study, the descriptions of their

location are listed in Table 4.5.
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Table 4.5 Marker number, labels and description

Marker number Marker labels Marker description

1 THF Higher trunk marker far from skin
2 THN Higher trunk marker near to skin
3 TL Lower Trunk marker
4 SHH Higher marker of shoulder joint
5 SHL Lower marker of shoulder joint
6 ELBF Elbow marker far from skin
7 EBBN Elbow marker near to skin
8 WR Right marker of wrist (radial side)
9 WLF Left marker of wrist far from skin (ulnar side)
10 WLN Left marker of wrist near to skin (ulnar side)
11 HAF Hand marker far from skin
12 HAN Hand marker near to skin
13 PLX1 Marker 1 on x-axis of transducer
14 PLX2 Marker 2 on x-axis of transducer
15 PLZI Marker 1 on z-axis of transducer
16 PLZ2 Marker 2 on z-axis of transducer
17 BKI Marker I of book
18 BK2 Marker 2 of book
19 BK3 Marker 3 of book

4.4.3 Measurement of Body Parameters

The body parameters required in this study are the mass, mass centre position and mass

moment of inertia of upper arm, forearm, and hand. The mass and mass centre position were

determined by using the data developed by Drillis & Contini (1966) (see Section 2.3 for

details). The mass moments of inertia were calculated by using the non-linear regression

equations (Equation 2.8 and 2.9) developed by Yeadon & Morlock (1989) (see Section 2.3 for

details). Some basic parameters of the subjects were required for calculating these body

parameters which will be used in the kinematic and kinetic analysis. These basic parameters,

listed in Table 4.6, were manually measured directly on the subjects by using tape and caliper.

In Table 4.6, parameters 12 to 15 were used with body markers for determining the joint

centre positions (described in Section 5.1), other parameters were used for determining the

mass, mass centre and moment of inertia of each segment. The radius of curvature of the hand

was measured, when the subject was holding a bar of 30mm of diameter, as the distance

between the back of hand and the centre of the cylinder bar. This information was used for

determining the centre of the hand (Section 5.1). The radius of curvature of the shoulder joint
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ball was measured as the distance from the acromial process to the estimated centre of the

glenohumeral joint.

Table 4.6 Body arameters directly measured on the subject
1 Name	 I 2 Age	 I 3 Male/Female	 I 4 Height	 I 5 Mass
6 Length of upper arm (UAL) I 7 Length of forearm (FAL) 18 Length of hand - - (HL)
9 perimeter of upper arm: 	 p 1	 perimeter - below axilla 	 	 (PU1)

-
P2	 perimeter - maximum 	  - -	 (PU2)
P3	 perimeter - elbow 	 	 (PU3)

10 Perimeters of forearm: 	 p 1 	 perimeter - elbow 	
P2	 perimeter - maximum 	
p3	 perimeter -wrist 	

(PF1)
(FF2)
(PF3)

11 Perimeters of hand: 	 p,	 perimeter - wrist 	
P2	 perimeter - metacarpal - phalangeal 	

(PH1)
(P112)

12 Radius of shoulder joint ball (ROS) 13 Thickness of elbow 	 (TOE)
14 Breadth of wrist (BOW) 15 Radius of hand (ROH)

4.4.4 Lifting a Book

The activity of lifting a light weight to several heights by one hand at the sitting position

were tested in this study. The weights lifted in this test were two books of mass lkg and 2kg

(see Section 4.3.4). The whole set of lifting activities involved lifting each book to four

different heights, table, shoulder, head, and highest height, respectively (Figure 4.32).

Altogether 8 modes were investigated in the study of lifting activities. The table height was

0.74m high from ground, the shoulder height was the height of acromial process when the

subject sat straight up on a 0.43m high chair, the head height was measured at the top of the

head when the subject sat upright on the same chair. The highest height was determined by

each subject as the highest height they could lift the book onto, when the subject's arm was

fully stretched with little forward inclination. Each height was indicated by a horizontally

placed wooden platform attached to a vertical bar. The wooden platform could be moved

along the vertical bar to a specified height. The horizontal distance between the subject and

the wooden platform was determined by the subject as the preferred distance after two or three

practice sessions.

The subject sat on a 043m high chair for conducting the lifting activities. During the

test, subjects were asked to lift a book from a 20cm height to each of the four heights. When
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Figure 4.33 A subject in the lifting test

Figure 4.34 A subject in the driving test
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Figure 4.35 A subject in the opening/closing door test

Figure 4.36 A subject in the cutting test
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the book was lifted onto the wooden platform it was then lowered back to the original height

without stopping between the lifting and lowering process. No instruction on any specified

speed of lifting and lowering was given to the subjects, therefore the lifting actions were

performed by the subjects at their own preferred speed. Only the Vicon motion analysis

system was used for recording the movements of these activities. All markers were affixed at

the appropriate sites described above. Six male subjects, all right hand dominant, were tested,

and the lifting activities were all performed by the right arm. Each mode was measured three

times for each subject. In pre-testing, each lifting was finished in 5 seconds by all subjects.

Therefore, 5 seconds of data were collected for each measurement. Figure 4.33 shows a

subject during the lifting test.

4.4.5 Driving the Steering Wheel

The test started after the setting up of the measuring system and affixing all markers to

the appropriate positions. The subjects sat on a 0.43m high chair, the distance between the

chair and steering wheel was chosen by the subject to feel comfortable for conducting the

driving activity. The activity involved rotating the steering wheel counterclockwise from the

zero degree position to 90 degrees position and then rotating clockwise from the 90 degree

position to -90 degrees, then rotating counterclockwise again back to the zero degree position.

When the steering wheel reached the 90 and -90 degrees positions the rotation was stopped by

a block on the resistance unit (Figure 4.20 and 4.21), the subject could feel the resistance and

then reverse direction of rotation. Before the beginning of the test, the subjects were asked to

practise the activity several times to get familiar with the system. No instruction on the speed

of rotation was given to the subjects who rotated the steering wheel at their self-determined

preferred speed. Six male subjects (all right handed) were tested and three sequences of this

activity were measured for each subject. In pre-testing each subject could finish the driving

activity within 6 seconds. Therefore 6 seconds of data from both Vicon and force transducer

were collected for each test. Figure 4.31 shows a subject during the driving test.

4.4.6 Door Opening and Closing

The door opening and closing activity was perfonned from a standing position. The

subjects did not move their foot during the test. The hinge of the door was on the left side of
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the subject, and the subjects used their right hand to perform the activity. The subject stood at

a distance away from the door where the arm was fully stretched. The frontal plane of the

subject's body and the door formed an angle of 30 to 45 degrees. This enabled the subject to

open the door to the largest opening without trunk movement. The whole activity involved

pulling the door to the largest opening and then pushing it back to the original (closed)

position. After the set-up of the measuring system and finding the appropriate standing

position by two or three practice sessions, the subject started performing the activity. Six

male subjects (all right handed) were tested, each subject was measured three times. Five

seconds (determined in pre-testing) of data were collected for each measurement. Figure 4.35

shows a subject performing the door opening and closing test.

4.4.7 Cutting

The cutting activity was performed in the sitting position. The subject sat on a 0.43m

high chair in front of the cutting plate performing the activity with a 0.13kg knife. The knife

had a cylinder handle of 0.03m diameter. The handle can be easily and firmly held by subjects

for efficient transmission of hand force to the knife and cutting plate and then recorded by the

force transducer instrumented with the cutting plate. Six male subjects (all right handed) were

tested. Five cutting movements were continuously performed for each test. In order to

continuously transfer the cutting force to the transducer at least one part of the knife was kept

in contact with the cutting plate during the activity, while other parts of the knife moved up or

down. Three tests were measured for each subject. Five seconds of data were collected for

each test and Figure 4.36 shows a subject in the cutting test.

4.5 Data Acquisition and Pre-processing

Excepting the data acquisition period given above, a number of parameters were

specified during the data acquisitions of this study. These parameters are listed in Table 4.7.
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Table 4.7 Data acquisition parameters

Frame intervals between samples: 1
Channels used by cameras: 	 6
Maximum capture time (s):	 6 for driving activity, 5 for other activities
Maximum TVD file (blocks): 	 100
Run automatically: 	 Yes
TV frame rate (50 60 or 200 Hz): 50
Maximum analogue channels:	 0 for lifting activity, 6 for other activities
Analogue data rate:	 1
Analogue gain:	 1

The collected data during the tests needs to be pre-processed for generating the data in a

format that could be used in the analysis program. Three steps were involved in the pre-

processing, reconstruction, identification, and .A3D file generation.

The acquired data can be easily reconstructed by the program built in the Vicon system,

only a command is required for doing the reconstruction. The most time consuming work in

the data pre-processing is the identification. Each marker must be identified manually using

the traces of markers displayed on screen. When one marker was identified on the screen, its

name (Table 4.5) is given to the computer. In the case of a marker which was not viewed by at

least two cameras for some frames the position information of this marker was lost for these

frames and the trace was broken. When the marker was viewed again by two or more

cameras, it was known as a new marker in which case the two traces were identified as one

marker. The lost data in some frames can be interpolated by the Vicon system. In this study,

the maximum number of interpolated frames is 20. The data files with more than 20 lost

frames of data were not used for further analysis. The .C3D files were generated after the

identification. However the .C3D files are not in ASCII format. In the final pre-processing of

data, the .C3D files were converted into the .A3D files with ASCII format using a program

ASCONV2 modified by S Nicol (1993). The .A3D files can then be analysed on the

computer centre main frame by the developed program.
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Chapter Five

Theoretical Aspects of the Research

The theoretical aspects of this study are given in five sections. The first section

describes the methods used for data processing and normalisation. The method of determining

the joint centres and segment coordinate systems from measured marker positions is given in

the second section. The kinematic and kinetic analysis methods are given in the third and

fourth sections, respectively. Details of a new method of determining the axial rotation angle

of limb segments is given in the final section (section 5).

5.1 Data Processing

The data collected by the Vicon motion analysis system contain additive noise from

many sources, such as electronic noise in optoelectric devices, spatial precision of TV scan

system, and marker vibration. All these will result in random errors in the coordinates of

markers and the data from the transducer. Usually the random error occurs as high frequency

components and it is of considerable importance when considering the problem of calculating

velocities and accelerations. During the differentiation of the data, the amplitude of each of

the harmonics increases with its harmonic number; for velocities they increase linearly, and

for accelerations the increase is proportional to the square of the harmonic number. Therefore

the raw data have to be processed to attenuate the higher frequency noise before being

analysed. This process is usually called data smoothing. A number of techniques have been

used for this purpose, such as polynomial, cubic spline function, Fourier series, and more

advanced digital filtering. A number of excellent reviews have appeared on the topic of the

smoothing and differentiation of data obtained from noisy measurements (Vaughan 1982,

Wood 1982, Woltring 1985). Recently, the most often used digital filter is the Butterworth

filter which is a recursive filter and has an infinite impulse response (IR). The great

advantage of the IIR filter is computational economy. A filter characteristic requiring (say)

100 or more coefficients in a nonrecursive realisation can often be obtained using just a few

recursive coefficients. However, there are two potential disadvantages (Lynn & Fuerst 1989).

First, a recursive filter may become unstable if its feedback coefficients are chosen badly.

Secondly, recursive designs can not generally provide the linear-phase responses so readily
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achieved by nonrecursive methods. In practical applications, the data require to be filtered

twice by a second order Butterworth filter, once in the forward direction of time, and once in

the reverse direction of time (Winter et al. 1974), to eliminate the phase distortion. As a result,

the data were filtered by a fourth order filter, and the real cut-off frequency was changed from

the original cut-off frequency. Therefore this effect has to be taken into account when

specifying cut-off frequency for the original filter.

5.1.1 FIR Filter Design

In this study, a low pass, nonrecursive linear-phase finite impulse response (FIR) filter

with Hamming Window was used for smoothing the raw data. The advantages of the FIR

filter over an IIR filter can be summarised as: (1) the nonrecursive filter is inherently stable.

Its transfer function is specified in terms of z-plane zero only, so there is no danger that

inaccuracies in the coefficients may lead to instability. (2) Since a nonrecursive filter has a

finite impulse response (FIR), the latter can be made symmetrical in form. This produces an

ideal linear-phase characteristic equivalent to a pure time-delay of all frequency components

passing through the filter. This is said to be no phase distortion. The format of the FIR filter

used in this study is as follows:

yn =	 bkXn_k
	 (5.1)

k=-M

where y. and x. are the output and input sequences, respectively, b k are the filter

coefficients which are simply equal to successive terms in its impulse response. The impulse

response of an ideal, zero-phase low-pass filter is derived by Fourier Transform method as:
1	 2 Irk f

h' k = —sin(	 )	 lki = 1, 2, . . . M
kir fs

h' k —> 2f. /f.	 as	 k 0

h' k =111 _k (5.2)

where h' k is the kth coefficient of the impulse response, f. is the cut-off frequency, f. is the

sampling frequency, M is the number of terms of h' k on each side of k = 0, and the total

number of terms of h' k (the filter length) is 2M+1. In order to reduce the Gibbs oscillation in

the above filter, the impulse response is multiplied by a widely used Hamming Window which

is defined as:
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\Ar k = 0.54 -F 0.46cos(kg/M)
	

-M.� k �.M

= 0 elsewhere
	

(5.3)

The resulting coefficients of impulse response are then written as:

hk =W k. wk
	 (5.4)

This impulse response has a total of 2M+1 terms, M terms on each side of b 0 , and it is

a zero-phase filter. To make the filter with a linear-phase, h k was shifted to the right and

began at k = O.

A FORTRAN program was written for calculating the coefficients of this filter and

using the filter to process the coordinate and transducer data. Two parameters of this filter had

to be determined, M and fc in this program. The value M represents the length of the filter and

it has been stated (Lynn 1989) that the goodness of fit clearly improves with increasing M

Because the length of data files collected in this study were in a range from 150-300 frames

after identifications, the filter lengths (2M+1) were selected to be equal to the number of

frames (or number of frames-1) of each data file. The determination of the second parameter,

cut-off frequency is given in the following section.

5.1.2 Choice of Cut-off Frequency — Frequency and Residual Analysis

Filtering of any signal is aimed at the selective rejection, or attenuation of certain

frequencies. This can be done by adequate choice of the cut-off frequency. Two things should

be noted in the selection of cut-off frequency. First, the higher frequency noise will be severely

reduced but not completely rejected. Second, the signal, especially in the region where the

signal and noise overlap will be slightly attenuated. This results in a slight distortion of the

signal. Thus a compromise has to be made in the selection of the cut-off frequency. If fc is set

too high, less signal distortion occurs, but too much noise is allowed to pass. Conversely, if

fc is set too low, the noise is reduced drastically, but at the expense of increased signal

distortion.

There are several ways to choose the best cut-off frequency. The first is to carry out a

harmonic analysis. By analysing the frequency spectrum and power spectrum, a decision can

be made as to how much power to accept and how much to reject. This has been done in gait

analysis to find out the frequency distribution for the movement of the lower limb (Winter et

al. 1974). However, this information for the upper limb activities is still unknown. Therefore
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frequency and power analyses were performed on the coordinate and transducer data of the

activities investigated in this study by using the Fast Fourier Transform (FFT) method. A

FORTRAN program was written for this purpose, and a FFT subroutine in the NAG package

installed in the computer centre VAX machine was used.

As an example, the frequency spectra of displacements of three markers in three axes

during lifting a 2kg book to shoulder height are given in Figure 5.1 and the frequency spectra

of transducer signals of the driving activity are given in Figure 5.2. The differences of the

frequency spectra for the different data sequences can be easily observed from the two figures.

It can be seen that the distinct signals disappear over a number of harmonics or continue to

higher frequency components. In Figure 5.1(7) and 5.1(8), there is no distinct signal above the

7th harmonic, while this point is the 15th harmonic for the data in Figure 5.1(4), (5) and (6).

However, for some data sequences, the signals with small amplitude may last to over the 30th

harmonic (Figure 5.1(1), (2), and (3)) and even higher frequency components (Figure 5.2) for

transducer signals. This phenomenon can be caused by the alignment of cameras, range of

movement of marker in different directions, and signal to noise ratios. As a result, it is

difficult to choose a cut-off frequency for a data file or a set of data files without distorting

some data sequences or retaining some noise components in the filtered signals. Therefore, it

can be concluded that to get the best filtering result, a different cut-off frequency is required

for each data sequence. However, to choose an adequate cut-off frequency for each data

sequence, it is required to inspect the frequency spectrum of each data sequence which is a

tedious task for a large number of tests and markers.

Inspection of the averaged frequency and power spectra or the frequency and power

spectra of some representative data sequences is an easier way. This is often accompanied by

an illustration of how much signal power was included below the cut-off frequency. Winter et

al. (1974) analysed frequency spectra of the vertical displacement of the toe marker for eight

subjects and found that 99.7 percent of the power was contained in the 7th harmonic and

lower, the corresponding frequency was 6Hz. The question is whether this quantity or other

value of power content can be used as a unique criterion when choosing cut-off frequency for

the data sequences of markers on other parts of body and other activities. If this criterion

exists, then it can be implemented into the computer program for automatically detecting the

cut-off frequency for each data sequence.
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Power contents below each harmonic number were calculated in this study. The power

content of the same data in Figure 5.1 and Figure 5.2 are presented in Figure 5.3. It can be

found that 99.7% of signal power is contained below the 8th harmonic for some displacement

data (Figure 5.3(b) and 5.3(c)) but the power content of the displacement data of 5-z in Figure

5.3(a) is only 99.1% at the 30th harmonic. Although the difference in power content is just

about 0.7% for these data, the harmonic number varied greatly by 20 harmonics. The

differences are even greater for the transducer signals (Figure 5.3(d)), where 98% of the

power is contained below the 8th harmonic for the Fx signal, and only 92.5% of power was

contained until the 40th harmonic for the Fy signal.

The differences of power content between each data sequence result from the amount of

small magnitude signals which exist in the low and middle frequency range. These small

magnitude signals may be either real signals or noise. It is difficult to separate the real signals

from noise in this region, because they are often overlapped. Because of this effect, it is

evident that the same value of power content, such as 99.7% or 99% of total power below a

certain frequency can not be used as a unique criterion for choosing a cut-off frequency for a

data file including a number of data sequences or a set of data files. Therefore other methods

should be considered.

An optimal method (Wood 1982) uses a residual analysis (Winter 1990) of the

difference between filtered and unfiltered signals over a wide range of cut-off frequencies. In

this way the characteristics of the filter in the transition region are reflected in the decision

process. The residual at any cut-off frequency is calculated as follows for a signal of N

sample points in time:

1 N
R(f, ) =	 E (X i — SC)2

N i.1

where X = raw data at ith sample, k i = filtered data at ith sample.

A theoretical plot of residual versus frequency is given in Figure 5.4. A full description

of this plot can be found in Winter's book (Winter 1990). Briefly, the line de represents the

best estimate of the noise residual. The intercept oa on the ordinate (at 0Hz) is nothing more

than the rms value of the noise because Sci for a 0Hz filter is nothing more than the mean of

the noise over the N samples. When the data consist of true signal plus noise, the residual will

be seen to rise above the straight (dashed) line as the cut-off frequency is reduced. This rise

above the dashed line represents the signal distortion that is taking place as the cut-off is

(5.5)
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Figure 5.4 Plot of the residual between the filtered and an unfiltered signal as a
function of the filter cut-off frequency (Winter 1990).

77A



reduced more and more. The final decision of where the cut-off frequency should be chosen is

the compromise of a balance between the amount of signal distortion versus the amount of

noise allowed through. This can be done by simply projecting a line horizontally from a to

intersect the residual line at b, the corresponding point on the abscissa could then be chosen as

the cut-off frequency.

In this study, a FORTRAN subroutine was written for calculating the residuals. For

displacement data the residuals were calculated at each of the first 20th harmonics and each

of the even harmonics from the 20th to 30th harmonic. For transducer signals the residuals

were calculated at each of the first 20 harmonics and each of the even harmonics from the

20th to 40th harmonic. As an example, the residuals of the data in Figure 5.1 and Figure 5.2

are plotted in Figure 5.5. It can be seen that all the residual curves become flat after the 15th

harmonic. Therefore the straight line de and intercept point a in Figure 5.4 can be found by

regressing the residuals above the 15th harmonics against the corresponding harmonic

numbers. This function has been written in the program for automaticaly selecting the cut-off

frequency for each data sequence. A regression subroutine in the NAG package was used to

do the regression analysis, and the regression constant (output of regression analysis) was

compared with each residual to find out the nearest residual and its corresponding harmonic

number. The cut-off frequency was then calculated from the selected harmonic number. After

finding the cut-off frequency, the data sequence was then filtered again to get the best filtering

result. For the displacement data, the regression analysis was made on the residuals from 15th

to 30th harmonics, for the transducer signals the regression were made on the residuals from

20th to 40th harmonics.

As an example, the auto-selected cut-off harmonic number and corresponding cut-off

frequency for the sequences in Figure 5.1 and 5.2 are given in Table 5.1. It is can be seen that

a different cut-off frequency has been selected for each data sequence. Generally, the cut-off

frequency for displacement data is about 2.2 Hz, which is in agreement with the fact that the

movement of the lifting activity investigated in this study is slower than walking, where the

cut-off frequency from 5 to 8 Hz was used (Winter et. al 1974, Schear 1992, Yang 1988, Li

1993). For transducer signals, the auto-selected cut-off frequency is about 3 Hz.

The intercept values oa of the regression line on the ordinate (Figure 5.4) are also

given in Table 5.1, which indicate the noise content. It can be seen that the rms. of noise level
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is below 1.74 mm for the displacement data. This value is very close to the result of 1.8 mm

reported by Winter (1990). In Table 5.1, the noise level for the force and moment signals of

the transducer are below 2.71 N and 0.3 Nm, respectively.

It should be noted that a number of data files and data sequences have been investigated

and the above results are the representative example for illustrating the effectiveness of the

auto selecting cut-off frequency method by using the residual analysis technique. Since the

purpose is to select a cut-off frequency for each data sequence, the variation between selected

cut-off frequency is evident.

Table 5.1 Auto-selected cut-off frequency for some data sequences

data sequence harmonic number cut-off frequency oa (rms)
(Hz)

5-x 11 2.2 1.74 mm
5-y 11 2.2 1.73 mm
5-z 9 1.8 1.59 nun
7-x 11 2.2 1.67 nun
7-y 11 2.2 1.46 nun
7-z 11 2.2 1.46mm

10-x 12 2.4 1.15 mm
10-y 11 2.2 1.45 mm
10-z 11 2.2 0.96 min
Fx 16 3.17 1.69N
Fy 14 2.77 2.71N
Fz 15 2.98 1.81N

Mx 16 3.17 0.2 Nm
My 15 2.98 0.07 Nm
Mz 17 3.37 0.3 Nm

5.1.3 Time Normalisation

In this study, up to three tests were analysed for each subject and each activity. Due to

the speed variability for each test and each subject, the period (from start to stop) of each test

included different numbers of frames of data. As a result, it was not possible to average the

analysed results by a simple addition process without distorting the picture. Therefore, the full

period of each test was time normalised to a common time base. The full period of each test is

defined as from start to stop points in time. The start and stop points were detected in a

subroutine of the analysis program when the resultant velocity of a specified marker was zero

in the beginning and end regions of each data file. The beginning and end regions were
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determined after inspecting the velocity diagrams of the specified marker for a number of

data files. Marker 17 on the book and marker 13 (Figure 4.31) on the transducer were used in

this process for lifting and other activities, respectively. After defining the period of each test,

a three point interpolating method was used to normalise data between start and stop points.

The formula of three point interpolating is given as:

f(t) = 	
— t k+I )(t - tk+2 )

(t k — )(t k —tw) 
X k +

(t—tk )(t—tk+2 ) x 	 tk )(t - t k+1 )	 x	
(5.6)k+2

(t k., -4)0 104 -tk	
k+I

+2)	 Lk+2 tv)(t
k+2
 t 

k+I)

Where t k (k=1, 2, ... n) are the distinct numbers in the time axis, x k is the function value at

the instance t k , f(t) is the approximation of function value at interpolating point t. In order to

present the results in a percentage of a full cycle, first, 101 interpolating points t i (iAI,100)

were found by dividing the full period into 100 intervals. Next, the three nearest original time

points (t k ,tk#1 , t,2 ) and corresponding function values (xk xk+1 , xt+2 ) to each t were

located by the program. The normalised function value at each interpolating point t could

then be calculated from Equation 5.6.

5.2 Determination of Joint Centres and Segment Coordinate Systems

In this section, the determination of joint centre positions and segment coordinate

systems from measured landmark positions is described. This information is required for the

kinematic and kinetic analysis of the activities investigated in this study.

5.2.1 Joint Centres

In order to calculate the forces and moments at the different joints, the positions of each

joint centre, the force transducer centre and the book centre during the activities must be

determined. These centres were calculated from the positions of markers affixed at each joint,

force transducer and the book. Since the marker positions were measured in the laboratory

coordinate system, these centre positions will be described in the laboratory coordinate system.

(1) Shoulder joint centre

A double marker method developed by Nicol (1977) was used to determine the shoulder

joint centre. The double marker was placed on the acromial process. Extrapolation of the line

80



d2d1
•	 I.

Oe

6 (-1"

T	
—TU10

OE 

O9

(b)

(a)

(c)

Figure 5.6 Determination of the shoulder, elbow, wrist joints and hand centre

80A



joining the balls gives the position of such anatomical points (Figure 5.6(a)). Assuming zero

bone/skin displacement, the shoulder joint centre is calculated as:
x 	 x4 +(x5 —x4 )*(d 1 +d 2 + ROS) id,

yo, = y4 +(y 5 —y 4 )*(d 1 +d 2 + ROS)/ di.	 (5.7)

z 	 z4 +(z5 —z4 )*(d 1 +d2 +ROS)/ di

where xo„ yos , z the three coordinates of shoulder joint centre position in the

laboratory coordinate system, x 4 , y4 , z4 , x5 , y5 , and z 5 are the positions of marker 4 and

5 in the laboratory coordinate system measured by the Vicon system. The dimensions d1

d 2 (Figure 5,6(a)) were known from the details of marker construction, the ROS (radius of

shoulder ball) was directly measured on the subject (Section 4.4.3).

(2) Elbow joint centre

The method of determining the elbow joint centre is similar to the method for the

shoulder joint. A double marker affixed on the elbow joint are marker 6 and 7 (Figure 5.6(b)).

The formulae used for calculating the elbow joint centre can be written as:
x 	 x6 + (x 7 — x6 )* (d i + d 2 +0.5*TOE)/ di

YOe ":" Y6 + (y 7 — 316)*(d i ±d2 +0.5*TOE)/d1	 (5.8)

zo. = z6 + (z7 — z6 )* (d i +d2 + 0.5*TOE) / di

where the xoe , yoe , zoe , are the three coordinates of the elbow joint centre position in the

laboratory coordinate system, x 6 , y 6 , z 6 , x7 , y 7 , and z 7 are the positions of markers 6

and 7. The dimensions dl, d2 and TOE (thickness of elbow) are shown in Figure 5.6(b).

(3) Wrist joint centre

At the beginning, two single markers were placed at the radial and ulnar side of the

wrist joint, but in pre-testing they could not be identified for some frames because of the short

distance between the two markers and inappropriate camera positions. As a modification,

three markers were affixed at the wrist joint (Figure 5.6(b)), a double marker on the ulnar side

and one marker on the radial side of the wrist, so that if one marker could not be identified the

other two markers could be used. Due to the use of the modified marker system and increased

experience in positioning cameras and techniques of identification, all three markers were

identified during the pre-processing of data. Therefore only two markers (marker 8 and 10)

were used for determining the wrist joint centre. The formulae used for this purpose are given

as:
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xow = x10 +(x8 — x 18 )*(d 3 +0.5*BOW)/ (d 3 +d4 +BOW)

yo„, =y10 +(y8—Y10)*(d3+ 0.5*BOW)/ (d 3 +d4 +BOW)	 (5.9)
zow = z10 +(z 8 — z i0 )*(d 3 +0.5*BOW) / (d 3 +d4 +BOW)

where x, y, zow , are the three coordinates of the wrist joint centre position in the

laboratory coordinate system, x s , y s , z 8 , x10 , y10 , and z 10 were the positions of markers 8

and 10. The dimensions d3, d4 and BOW are shown in Figure 5.6(b).

(4) Hand centre

It was defined that the hand centre is located on the longitudinal axis of a 3cm diameter

cylindrical bar when the bar is gripped by the hand. A double marker (Marker 11 and 12) was

affixed at the middle of the hand back. The hand centre can be found by:

X0h = X II + (X12

Yoh = YI I +&12

Z011 = Z11 +(z12 —

—x„)*(d, +d 2 +ROH)/d,

— y,,)*(di +d, +ROH)/d,

zu )*(d, +d 2 +ROH)/d,

(5.10)

where x, yoh , zoh , are the three coordinates of the hand centre position in the laboratory

coordinate system, x 11 , y11 , zn , x12 , y12 , and z12 are the positions of markers 11 and 12.

The dimensions dl, d2 and ROH are shown in Figure 5.6(c).

(5) The book and force transducer centre

The book centre is defined at its mass centre which is also the origin of the book

coordinate system. Its position can be found after the book coordinate system has been

established as shown in section 5.2.2(5). The centre of the force transducer is determined

following the determination of the force transducer coordinate system in section 5.2.2(6).

5.2.2 Segment Coordinate Systems

In the biomechanical analysis, it is convenient to describe the kinematic and kinetic

parameters in the segment reference frame. In this section the trunk, upper arm, forearm, and

hand coordinate system are defined according to the anatomical structures of these segments.

The book and force transducer coordinate systems are also defined in this section. The

dynamic positions and orientations of these coordinate systems are determined by the marker
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positions and the orientations are expressed as a direction cosine matrix with respect to the

laboratory frame of reference.

(1) Trunk

The origin of the trunk coordinate system is located at the manubrium stemi where the

double marker (marker 1 and 2 in Figure 4.28) was affixed. This position is determined from

the positions of marker 1 and 2 as:
Xot = + (X 2 — x l )*(d i + d2)/di

yot y i + (y 2 — 31 1)*(d1 +d2)/d1

	

z 	 z i +(z2 —z i )*(d i +d2)1cl1

where xot , yot , zot , are the three coordinates of origin of trunk coordinate system in the

laboratory system, xl , y1 , z1 , x 2 , y 2 , z2 are the positions of marker 1 and 2. The

dimension d 1 is the distance between marker 1 and marker 2, and d 2 is the distance between

marker 2 and skin. The orientations of the trunk system are shown in Figure 5.7 , and are

defined as:

Xt: directing forward.

Yt: directing upward.

Zt: directing from left to right.

The three orthogonal unit vectors of the trunk coordinate system are calculated as:
el = (R 1 — R 2 )/111 1 —R21

et2. = (R 2 — R 3 )/1R 2 —R31

e3 = e l x er

	

t	 t	 t
	 (5.12)

	

t	 t	 t
e2 = e3 x el

(5.11)

where

e 12	 e13]

t
e

e32 et33 I

(5.13)

represent the unit vectors of Xt, Yt, Zt axes of the trunk coordinate system in the laboratory

coordinate system, respectively. R 1 , R2 , R3 are the position vectors of marker 1, 2 and 3

in the laboratory coordinate system respectively. e t2, is the unit vector directed from marker 3

to marker 2. From Equations 5.12 and 5.13 the direction cosine matrix of the trunk coordinate

system with respect to the laboratory system is constructed as:
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(5.15)

(5.16)

(5.17)

	

t	 t	 At

ell	 e ll	 ...1 3
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t	 t	
e

t.._ A

	

DT-L — '21 e 22	 23

	

A	 A

	

t	 t	 t
e31 e32 v33

(5.14)

(2) Upper arm

The upper arm coordinate system is defined as (Figure 5.8):

Origin: elbow centre

Yu: from elbow centre to shoulder centre.

Zu: from elbow centre to the right, at right angles to Yu and parallel to a line joining

the epicondyles.

Xu: from elbow centre forward, at right angles to Yu and Zu.

The three orthogonal unit vectors of the upper arm coordinate system are calculated as:
e 2" =(R —R 0 )/IR 0,3 —Rod

ellt = (R, — R 6 )/ IR, —R61

e; = eur x e2"

e;' = e 2" x e;

where

eul = [e iu1 e2 euld

eu2 = [e 2u1 eu22 eu23]

e";" =[e 1 e 2 e3]

represent the unit vectors of Xu, Yu, Zu axes of the upper arm coordinate system in the

laboratory coordinate system, respectively. R, Roe, R 6 , R7 are the position vectors of

shoulder centre, elbow centre, marker 6 and 7 in the laboratory coordinate system,

respectively. el', is the unit vector directed from marker 6 to marker 7. From Equations 5.15

and 5.16 the direction cosine matrix of the upper arm coordinate system with respect to the

laboratory system is constructed as:

e lul 	e tu2	 ell%

Dim.. = e2̀11 e2"2 e2"3

e 3" 1 e 322 e 3" 3
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(3) Forearm

The forearm coordinate system (Figure 5.9) is defined as:

Origin: wrist centre

Yf: from wrist centre to elbow centre.

Xf: at right angles to Yf, pointing forward.

Zf: at right angles to Yf and Xf.

The three orthogonal unit vectors of the forearm coordinate system are calculated as:

e2f = (Roe — Row ) /IR°. —Rowl

efy = (18 Rio) /1118 R101

e f = e f
X e f

1	 2	 3'

f	 f	 fe3 = e l x e2

(5.18)

where

pf e 2= [ 	 e3]

pf r f
`'2	 Lezi	 e22f	 ef23 ]	 (5.19)

pf [pf	 pf
=	 e3]

represent the unit vectors of Xf Yf, Zf axes of the forearm coordinate system in the

laboratory coordinate system, respectively. R, R 	 R8 , R10 are the position vectors of

wrist centre, elbow centre, marker 8 and 10 in the laboratory coordinate system, respectively.

e 3f . is the unit vector directed from marker 10 to marker 8. From Equations 5.18 and 5.19 the

direction cosine matrix of the forearm coordinate system with respect to the laboratory system

is constructed as:

e21

p, f
..,31

en

.pf

e23 (5.20)

(4) Hand

The hand coordinate system is defined as (Figure 5.10):

Origin: Wrist centre

Mr perpendicular to the palm, directed from the palm to the back of the hand.

Zh: in the plane of palm, at right angles to Xh and directed from the small finger to

the index finger.

Yh: at right angles to XII and Zh, directed from the wrist centre to the tip of the
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en

ph
...,32

where

e [4,

4 = [4,

e 3h =[e3h,

(5.22)

middle finger.

The three orthogonal unit vectors of the hand coordinate system are calculated as:

e ill = (R11 —R12)/ 1 R11 —R12I

e 2h. = (R12 —R )/1R 12 —R II
h	 h	 he, = e, x e,
h	 h	 he2 = e3 x el

(5.21)

represent the unit vectors of XII, Yh, Zh axes of the forearm coordinate system in the

laboratory coordinate system, respectively. Row , R 11 , R12 are the position vectors of wrist

centre, marker 11 and 12 in the laboratory coordinate system, respectively. e 211. is the unit

vector directed from the wrist centre to marker 12. From Equations 5.21 and 5.22 the

direction cosine matrix of the hand coordinate system with respect to the laboratory system is

constructed as:

	

h	 h Ii

[

p 1

	

e 11	 e 12	 `"13
h

=
p	 ph

D H-L e1 "22	 `'2.3	 (5.23)
p h ph ph

	

... 31	 ..... 32	 .„,33

(5) Book

The origin of the book coordinate system is at the mass centre. The orientation of each

axis is shown in Figure 5.11, and three unit vectors are determined as:

4 = (R 1 , —12 17 )/112 1 , —R171

e2b. = (R i s, — 14 18 )11R 19 —R181

b	 be3 = e2, x eb
I

e
b 

= eb 
X eb

2	 3	 1

(5.24)

where
b _ reb

e i — L ii

eh = [eh2	 21

pb _[eb
a.. 3 —	 31

C'2vi2 e;3 ]

be22 43]

e32 43]

(5.25)

represent the unit vectors of Xb, Yb, Zb axes of the book coordinate system in the laboratory
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coordinate system, respectively. R 17 , R 18 , R19 are the position vectors of marker 17, 18 and

19 in the laboratory coordinate system respectively. el; is the unit vector directed from marker

18 to marker 19. From Equations 5.24 and 5.25 the direction cosine matrix of the book

coordinate system with respect to the laboratory system is constructed as:
b

= [	

b

	

e ll	 e 12	 e 1
b
3

D	 b

	

b	 ob
B-L e 21

b
e22 '23

e31 e32 e33
b

(5.26)
b 

From the position vectors of marker 17 (or marker 18, 19) in the laboratory and book

frame, and the direction cosines given in Equation 5.26, the position of the origin of the book

coordinate system in the laboratory coordinate system can be found as:

Rob = R I, —(DB_OT • r	 (5.27)

where Rob and R17 are the position vectors of the origin of the book coordinate system and

marker 17 in the laboratory coordinate system, ( DB_L )1. is the transpose of the direction

cosine matrix of book frame with respect to laboratory frame, and r 17 is the position vector of

marker 17 in the book coordinate system which is known from the size of the book and the

arrangement of markers.

(6) Force transducer

At the beginning, three markers were placed on the transducer, but is was difficult to

fully identify these markers for some frames in the pre-testing. As a modification, four

markers were affixed on the force transducer during the tests (Figure 4.31): two markers were

on a line parallel to the x-axis and the other two markers were on a line parallel to the z-axis

of the transducer. Therefore the orientations of the transducer coordinate system (Figure 5.12)

can be determined as:

(R 14 —R 13) / 1R14 —R131

et3d = (R16 R 15) / IR I6 —R151
td	 ta	 tde2 = e3 x el

where

(5.28)
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td
e itd = [e,', e

e'd = [ td
	

td
2	 21 e22 4,3 I

td
er = [er, e32 e3̀43]

(5.29)

represent the unit vectors of Xtd, Ytd, Ztd axes of the force transducer coordinate system in

the laboratory coordinate system, respectively. R 13 , R 14 , R 15 , R16 are the position vectors of

marker 13, 14, 15 and 16 in the laboratory coordinate system respectively. From Equations

5.28 and 5.29 the direction cosine matrix of the force transducer coordinate system with

respect to the laboratory system is constructed as:

	

td	 td

	

e ll	 e 12	 e13

DTd-L = eri e 22td e 	 .30)

	

td	 td	 ptd

	

e 31	 ...32

The position of the origin of the transducer coordinate system in the laboratory frame is

found as:

ROtd = R 14 — (D Td-L)
T 

'14	 (5.31)

where the R R14 are the position vectors of the origin of the transducer coordinate

system and marker 14 in the laboratory coordinate system, 1. 14 is the position vector of marker

14 with respect to the transducer coordinate system and is known from the construction of the

force transducer and positioning of markers. (D i.d _L ) T is the transpose of the direction cosine

matrix of the transducer frame with respect to the laboratory frame. During positioning of the

markers, the lines passing through markers 13, 14 and the line passing through markers 15,

16 were designed to join the Ytd axis of the transducer frame at a point 0', 7.1min from the

origin of transducer frame (Figure 5.12).

5.3 Kinematic Analysis

The methods used in the kinematic analysis of arm movements are given in this section,

which involve the determination of joint positions in the trunk coordinate system, numerical

differentiation of displacement data, calculation of angular velocities and accelerations of limb

segments, and the determination of upper arm orientations in the trunk coordinate system and

variation of elbow angle.
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5.3.1 Joint Motion

Since the activities investigated in this study were all performed with little trunk

movement, it is easier to understand the patterns of the arm movements if the joint movements

are represented with respect to the trunk frame of reference. Having found the joint centre

positions in the laboratory frame of reference and the direction cosine matrix of the trunk

frame with respect to the laboratory frame (Section 5.2), the joint centre or other

representative marker positions in the trunk system can be calculated as:

R JT = DT-L ( RJL ROT )	 (5.32)

where

DT-L	

▪ 

direction cosine matrix of trunk system with respect to the

laboratory system

R01	 = position vector of the origin of trunk frame in laboratory frame

R,	

• 

position vectors of the joint centres or some representative markers

in trunk and laboratory frame, respectively.

The linear velocities and accelerations of these points can be calculated by numerical

differentiation techniques described in the following section.

5.3.2 Numerical Differentiation

In this study, a Newtonian numerical differentiator derived from a 4th order polynomial

was used for differentiating the coordinate data and obtaining the velocities and accelerations.

This method is known as the simplest and has been used by a number of authors (Nicol 1977,

Winter 1983, Yang 1988 and Gagnon & Smyth 1991) on digitally filtered data. The formula

for calculating the first and second order derivatives of the coordinate data are given as:
1

=12T°ci-2 
—8)( 1_ 1 +8)(1+1 — x12 )	 (5.33)

1=
12T2	

+16x1_1 —30x1 +16x1+1—X1+2)	 (5.34)

where x i is the data point under consideration, T is the time interval between two adjacent

points. In this study, T=0.02 second corresponds to the sampling frequency of 50 Hz.

5.3.3 Angular Velocity and Acceleration

Except for the linear velocity and acceleration, other important kinematic parameters

are the angular velocities and angular accelerations of segments. This information is also
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required in the kinetic analysis to calculate the inertial moments of a segment. Having

established the direction cosine matrix of each segment, the angular velocity of the segment

can be found using Poisson's equation described in Equation 3.12 as:

0	 —co z co y

(15 s-L)(D s-L1 1 =	 co ,	 0	 —co	 (5.35)

	

—co y to x	 0

where Ds_ /, is the direction cosine matrix of the segment frame of reference with respect to

laboratory frame of reference, and f)s_L is its time derivative, co, (i= x, y, z) are the angular

velocities of the segment with respect to the laboratory frame are expressed in the segment

frame, i.e. the x, y, z are the axes of the segment coordinate system. The Equation 5.35 can be

rewritten as:

6111	 C112	 C1 13 d11	 d21	 d31 0 -Ct)z a),

a21	 (122 	C123

[

 a31	 32	 a33

du d

d13	 d23	 d33

= - w.

—car

0

ol x

-co .,

0

1

(5 .3 6)

Therefore, explicitly, we have .

fox = —((121(131 + d22d32 + d23c/33 )

= - (dna' I A- d321112	 d334i1 3 )

= -(d1 1(121	 dl2a22	 dl3a23 )

(5.37)

The angular acceleration of the segment with respect to the laboratory frame of

reference can then be obtained using the numerical differentiator in Equation 5.33 as:
e x = cico x I dt

e dco I dt	 (5.38)
Y	 Y

ez = do), di

where, the angular accelerations are expressed in the segment coordinate system.

5.3.4 Angular Orientation of the Upper Arm and Elbow Angle

The orientation of the upper arm in the trunk frame are represented by the line

connecting the shoulder joint and elbow joint (y-axis of upper arm coordinate system). The

three angles about each axis of the trunk frame are calculated as:
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x  et	 St

(5.39)

where axt , ay,, a4 = upper arm angles in the trunk frame.

x., y e , z 	 coordinates of the elbow joint in the trunk frame.

, z. = coordinates of the shoulder joint in the trunk frame.

For the forearm, only the flexion angle relative to the upper arm is calculated. This

angle is called the elbow angle and is defined as the angle between the two y-axes of the upper

arm and forearm coordinate systems, and is calculated as:

af_.= 1800 — arccos(ef2 •)	 (5.40)

5.4 Kinetic Analysis

The purpose of the kinetic analysis is to find the intersegment forces and moments

acting on the upper limb joints during the activities investigated in this study. The forces and

moments arise from three sources, gravitational effects, inertial effects, and hand loads

measured by the force transducer. The determination of gravitational forces, the inertial forces

and moments, and the forces and moments measured on force transducer are given in three

separate parts. The calculations of joint intersegment forces and moments from the three

effects are presented in the final part of this section.

5.4.1 Gravitational Force

The gravitational force of a segment is due to the weight of the segment and acts

downward (along the -y direction of the laboratory reference frame) on the centre of gravity

(mass centre) of the segment. Since the joint centre location is described in the laboratory

coordinate system (section 5.2.1), the calculation of joint intersegment forces and moments

due to gravity requires that the gravitational force and mass centre of the segment are

described in the laboratory reference frame. The mass of each segment is calculated as a ratio

of the body weight based on the investigation of Drillis & Contini (1966), which is given in

Table 2.6. The centre of gravity of a segment is assumed to be fixed on the segment, and its
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location relative to the origin of the segment coordinate system is determined as a ratio of

segment length given by Drillis and Contini (1966). These ratios are shown in Table 2.7.

Therefore the centre of gravity can be described by a constant vector r, in the segment

coordinate system. Knowing the location of the origin of the segment coordinate system and

the direction cosine matrix of the segment, the location of centre of gravity of the segment in

laboratory frame can be found as:

RcoG = R. +D sT_LrcoG	 (5.41)

where:

Rcoo is the position vector of the centre of gravity of the segment in the laboratory

frame.

R.

	

	 is the position vector of the origin of the segment frame in the laboratory

frame.

DTS-L is the transpose of the direction cosine matrix of the segment frame with

respect to the laboratory frame.

Therefore the gravitational force can be applied at the centre of gravity of the segment

in the laboratory reference frame as:

Fy =(0, -mg, 0)	 (5.42)

and where the m is the mass of segment, g is the acceleration due to gravity.

5.4.2 Inertial Forces and Moments

The inertial force of a segment is related to the linear acceleration of the segment. It

may be considered to act at the mass centre (centre of gravity) of the segment, and is

computed as the product of the mass of the segment and the linear acceleration of the mass.

By D'Alembert's principle, this action is along the direction opposite to the linear acceleration

of the mass centre and can be expressed as:

F inertial	 M a COG
	 (5.43)

where, m is the mass of segment, a is the linear acceleration vector of the mass centre.

Having found the mass centre position in the laboratory frame (Equation 5.41), the

acceleration can be obtained using the numerical olifferentiator in Equation 5.34 as:

a	 = d 2R, /	 (5.44)

Since the linear acceleration is derived in the laboratory coordinate system, the inertial

force (Equation 5.43) is also expressed in the laboratory frame.
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The inertial moments of the segment are related with the moments of inertia and the

angular velocities and accelerations of the segment. For each segment, there are three principal

moments of inertia corresponding to the three mutually orthogonal coordinate axes known as

the principal axes. As mentioned in Section 5.2.2, the axes of each segment coordinate system

were defined to coincide with their principal axes. The moments of inertia of each segment are

calculated using the non-linear equations derived by Yeadon & Morlock (1989). These

equations have been detailed in Section 2.3.4 (Equations 2.2 and 2.3). Having found the

moments of inertia and angular velocities and angular accelerations (Section 5.3.3), the

inertial moments of the segment can be calculated by the D'Alembert's principle as:

= --[1.Co x + (I, —Iy)coyco]

M; = —[Iy ci) y	—Iz)(0wzi	 (5.45)

= —[I z6 z +	 Ix)(Dywx]

where M„ are the three components of inertial moment expressed in the segment

coordinate system; I, , I s,. I, are the three principal moments of inertia corresponding to the

three principal axes, x, y, z, of the segment coordinate system; co., coy , coz are the three

components of angular velocity of the segment derived by Equation 5.37; c.o.,	 6z are the

three components of angular acceleration of the segment derived by Equation 5.38.

The calculation of inter-segment forces and moments requires that these inertial

moments are expressed in the laboratory system. Therefore the inertial moments calculated by

Equation 5.45 are transformed to the laboratory coordinate system using the direction cosine

matrix of the segment as:
m iL = Di l Lm3 (5.46)

where m iL = [mLix NiLly mLa is the inertial moment vector expressed in the laboratory

frame of reference; m iS = [mSix Nely mSiz r •is the inertial moment vector expressed in the

segment frame of reference; DL is the inverse of direction cosine matrix of the segment with

respect to the laboratory frame of reference.

5.4.3 Forces and Moments Measured by Transducer

The output of transducer signals measured through the Vicon system were given as a

number (1 - 4098) in the A-D converter unit. Therefore to convert the A-D units to the

equivalent voltage signal, all analogue data were reduced by 2048 (zero signal), and then
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7.1ma

Figure 5.13 Forces and moments on the transducer

Figure 5.14 A standard link-segment model
XYZ: the laboratory coordinate system; p: the proximal joint; d: the distal joint;
COG: centre of gravity of the segment; R 9 , Rd, Rcoo are the positional vectors.
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5.4.4 Joint Intersegment Forces and Moments

Having expressed the gravitational forces, inertial forces and moments and transducer

forces and moments in the laboratory coordinate system the joint intersegment forces and

moments can be found using the standard link-segment model as shown in Figure 5.14.

According to D'Alembert's principle, the equilibrium equation of the forces is written as:
FdL	 FiL	

=0
	

(5.50)

where, Fi;' = intersegment force vector acting at the proximal joint is resolved for.

FiL = inertial force vector acting at the centre of gravity (Equation 5.43).

= intersegment force vector acting at the distal joint (known).

= gravitational force vector acting at the mass centre of the segment.

If the segment under consideration is the hand, F denotes the force vector acting at the

centre of the force transducer. Therefore the force acting at the proximal joint can be found as

FL — —FdL —FiL —FL	(5.51)

Similarly, the equilibrium equation of moments about the proximal joint for the system can be

written as:

IVI Ld +M pL +MI' +(Rd — Rp ) x + (R coo —Rp ) x (FiL — FgL ) = 0	 (5.52)

where, MpL = intersegment moment vector acting at the proximal joint.

= inertial moment vector acting at the centre of gravity (Equation 5.43).

= intersegment moment vector acting at the distal joint (known).

Therefore the intersegment moment at the proximal joint is

M I; =--	 —(Rd —R p ) x 11 —(R coo — Rp ) x	 —F;')	 (5.53)

For the lifting activities, only gravitational forces and inertial forces and moments are

considered, for other activities the gravitational forces, the inertial forces and moments, and

the forces and moments measured on the transducer are all considered in the above

calculations. The inter-segment loads obtained above are with respect to the laboratory frame

of reference. To refer them to the segment frame of reference, the direction cosine matrix is

used:
Fs = DS FL-L p

MS = D MLS-L p

The results of the above analysis are presented in the next chapter.

(5.54)
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5.5 Determination of Axial Rotation Angles of Limb Segments

One of the frequently discussed problems in biomechanics of human movement analysis

is how to properly describe angular rotation of a limb segment. A number of methods have

been proposed and used for this purpose which have been reviewed in detail in Chapter Three.

Briefly, previous methods can be divided into two categories, sequence dependent methods and

sequence independent methods. The Euler/Cardan angles belong to the first category; this

method describes the rotation of the limb segment from one attitude to another by three

ordered rotations about three orthogonal axes of the body fixed coordinate system. The

problems of this method can be summarised as follows. First it is difficult to imagine how

the rotations of the limb segment follow the sequences defined by Euler/Cardan angles in real

activities. Second, different rotation angles can be obtained by changing the sequence of

rotation, especially for finite rotations. Third there is no confident evidence to prove that the

limb segment rotates in a way described by the sequenced rotations and there is lack of

evidence to show which sequence is the best to describe the rotations of the limb segment,

because rotation patterns of the limb segment may vary with various activities.

The instantaneous screw or helical axis (ICinzel et. al 1972) is a sequence independent

method. It describes the displacement and rotation of a limb segment by using an

instantaneous axis in a three-dimensional reference frame. The movement of the segment from

one attitude to another can be expressed as a rotation about and a translation along an

instantaneous axis in a three-dimensional reference frame. In general, the direction of the

instantaneous helical axis varies with time and therefore it is difficult to visualise it in three-

dimensional space. Perhaps the major problem of this method is that 'this description of

motion is not readily understood by clinicians' (Grood and Suntay 1983) because it lacks

proper physical interpretations.

Because neither of above methods can produce fully satisfactory information on the

rotations of the limb segment, especially for axial rotation which is clinically described as the

rotation about longitudinal axis of the limb segment, to search for a new method is of interest

to most biomechanists. Chao (1980) and Grood & Suntay (1983) proposed a coordinate

system with three non orthogonal unit base vectors in which two axes are embedded in two

adjacent segments and the third axis is not fixed to any segment, the so called _floating axis.

This coordinate system has been used in the study of knee joint kinematics (Grood and Suntay
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1983), where nonsequenced rotations of the knee joint were described in the clinical

convention as flexion-extension, adduction-abduction and internal-external rotations. However

the movement information of two segments must be known in the use of this method. The

usefulness of this method in complex joints such as the shoulder joint has been questioned

(Woltering 1994, Miyazaki & Ishida 1991).

Miyazaki & Ishida (1991) proposed a mathematical definition of axial rotation, in

which the axial rotation was calculated by integration of the component of the angular velocity

vector projected onto the long axis of the body segment, but this method is Euler angles based.

In clinical practice, the movements of limb segments are always described as flexion-

extension, adduction-abduction and internal-external rotations, in which the flexion-extension,

adduction-abduction can occur in two different planes (ICapandji 1970, Shipman et. al 1985).

Physicians and physical therapists also prefer to identify the segment in terms of the angular

formula of the long axis of the segment in three orthogonal planes, such as sagittal, coronal

and transverse planes of a reference frame, such as the trunk coordinate system (Braune &

Fischer 1987). In this way, the position of the long axis of the segment can be fully determined

by two such angles, unfortunately leaving the axial rotation angle unknown. In this section a

new method is developed to determine the axial rotation angle from the known positional

information of the long axis and a known direction cosine matrix.

Method

In rigid body dynamics, the motion of a body can be described by two simple motions,

translation and rotation. In this section, the three-dimensional movement of a limb segment is

considered to be composed as a translation of and a rotation about its proximal joint. Because

the translation and rotation can be treated separately (Goldstein 1960), only rotation is

considered in the following and it is assumed that the translations of the proximal joint of the

segment are known.

Instead of describing the movement of the limb segment from one attitude to another by

a three-step rotation (Euler/Cardan angles), a one-step rotation (screw/helical axis), or a non-

step rotation (Floating axis method), this method assumes that the movement of the limb

segment from one attitude to another can be described by a two-step rotation, one is the

rotation of the long axis of the limb segment about a specific axis passing through the

97



Figure 5.15 The rotation of a limb segment can be described as a long axis
rotation 0 about axis 0'0" and an axial rotation 4) about the long axis of limb segment.
Where n i and n 2 are the unit vectors of the long axis of limb segment before and
after the long axis rotation, n is the unit vector of rotation axis 00".
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proximal joint and perpendicular to the long axis of the limb segment, and the other is an axial

rotation about the long axis (Figure 5.15). The direction of the rotation axis of the first

rotation may vary in three-dimensional space relative to the long axis rotation from time to

time. If the second rotation (axial rotation) is zero, the rotation axis of the long axis rotation

becomes the instantaneous rotation axis of the limb segment. In the general case, the second

rotation is not zero and the first rotation axis is not the real instantaneous axis. For this reason

and convenience of illustration the rotation axis of the long axis rotation is called the semi-

instantaneous rotation axis in the following.

In clinical or physical descriptions of limb segment rotation, the flexion/extension and

adduction/abduction are originally used to describe the rotation of the long axis of the limb

segment in specified planes such as flexion/extension in the sagittal plane and

abduction/adduction in the frontal or horizontal plane (Kirby & Roberts 1985). Therefore they

are two dimensional definitions and are referred to as primary rotations (ICapandji 1970). For

three-dimensional rotation of a limb segment, the position of the long axis of the segment can

be fully determined by a set of flexion/extension and adduction/abduction angles. However it

is necessary to illustrate that the flexion/extension and adduction/abduction angles used in the

three-dimensional case must not be misunderstood as rotation angles because these words are

defined as planar rotations, and can only be used to determine the position of the long axis of

the limb segment in a three-dimensional space or describe an equivalent three-dimensional

rotation. Although the three-dimensional rotation of the long axis of the limb segment from

one position to another can be simulated by two primary rotations such as a flexion/extension

followed by an adduction/abduction or reverse, it is not the real movement route performed by

the long axis of the limb segment. In fact, in real activities, the rotation of the long axis of the

limb segment goes a direct route from one position to another which can be stated in other

words as that the long axis of the limb segment rotates about a semi-instantaneous rotation

axis passing through the proximal joint of the limb segment from one position to another in the

physiological reachable range. In contrast with this, if the rotation of the long axis of the limb

segment did not go a direct way from one position to another, it may imply some functional

abnormalities.

Combining the one-step rotation of the long axis of the limb segment and the axial

rotation about the long axis, the three-dimensional rotation of the limb segment from one
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Figure 5.16 Example of the two-step rotation compared with 3-1-2 sequence Cardan
angles.

XYZ is a reference Cartesian coordinate system.
xyz is a segment fixed coordinate system, y-axis represents the long axis of the segment.

Rotation 1: Attitude A (1)	 (2) Attitude B is the 312 sequence rotation.
Attitude A (1) : 90 degrees of rotation about z-axis

(1) (2) : 90 degrees of rotation about x-axis
(2) Attitude B : 90 degrees rotation about y-axis

	

Rotation 2: Attitude A	 (3)	 Attitude B is the rotation of long axis + the axial rotation

	

Attitude A	 (3)	 : long axis (y-axis) rotate 90° about X-
axis of the reference frame

(3) Attitude B	 : 1800 axial rotation about long axis of
the segment

	

Rotation 3: Attitude A	 (4)	 Attitude B is the axial rotation + the rotation of long axis

	

Attitude A	 (4)	 : 180° axial rotation about long axis of
the segment

(4) Attitude B	 : long axis (y-axis) rotate 90° about X-
axis of the reference frame
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attitude to another in the physiological reachable range can be fully determined. The reader

can support his/her elbow on a table and move the forearm/hand around to touch or take up

and put down something in the surroundings. During this simple test, it will be found that the

two-step rotation is the real way in which this is done in daily activities. It can also be easily

found that the same result can be reached by changing the order of the two rotations (i.e.

rotation of long axis followed by axial rotation, or axial rotation followed by rotation of long

axis) or performing the two rotations simultaneously. Therefore the two-step rotation is

sequence independent. To show this, an example is given below and compared with the

rotations described by Euler/Cardan angles in 3-1-2 sequences.

Example

In Figure 5.16, XYZ is a reference Cartesian coordinate system, xyz denotes a segment

fixed Cartesian coordinate system and the y-axis represents the long axis of the segment. For

simplicity, the segment fixed coordinate system xyz is assumed to be parallel to the reference

coordinate system XYZ before rotation, and it is denoted as attitude A.

In order to create a comparable attitude, first let the segment (xyz frame) rotate from

attitude A to attitude B by three ordered rotations, +90 degrees each, following the 3-1-2

sequence used by Tupling & Pierrynowsid (1987) as shown in the top of Figure 5.16. The

two-step rotation from attitude A to attitude B by this method is shown in the middle and

bottom of the figure. First, in the middle of Figure 5.16, the long axis (y-axis) of the segment

rotates 90 degrees about the X-axis of the reference frame, then the segment axially rotates

180 degrees about the long axis (y-axis) of itself. If we change the order of the two rotations

as shown in the bottom of Figure 5.16, i.e. first let the segment rotate 180 degrees about its

long axis, then let the long axis rotate 90 degrees about X-axis of the reference frame, the

same result can be obtained. More examples corresponding to other ordered rotations can be

carried out by readers, therefore they are not repeated here.

The above example shows that the movement of a segment between any two attitudes

can be described by two rotations, a rotation of the long axis of a limb segment and a rotation

about the long axis (axial rotation). It also shows that the two rotations are sequence

independent, and that the rotation of the long axis can be uniquely determined by its initial and

final positions in the reference frame, therefore the movement of the segment between any two
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Figure 5.17 The unit vector n 1 of x-axis, which is one of the axes of the segment

fixed coordinate system and is perpendicular to the long axis n 1 , rotates to na with the long

axis rotating to n 2 , then it rotates (axial rotation) about the long axis n 2 to position fl 3.

Knowing the unit vector n a , the axial rotation angle • can be determined from the scalar

product of the unit vectors n a and n z3 . The unit vectors n i , n z1 and n 2 ,n z3 represent the
two known attitudes of the limb segment.

99A



attitudes can be uniquely described by the two sequence independent rotations. The problem is

how to determine the two rotations from two known attitudes in general three-dimensional

conditions. Details of the solution are given below.

Determination of rotation of long axis of segment

In modern human movement analysis, the three-dimensional movement of limb

segments can be measured by using various techniques reviewed in Chapter Three, therefore

in this section it is assumed that the three-dimensional attitudes of the limb segment have been

found. Because the rotation of the long axis can be uniquely determined by its initial and final

positions in the reference frame, we begin the analysis with the rotation of the long axis. As

shown in Figure 5.17, the positions of the long axis of the limb segment in the three-

dimensional reference frame are represented by its unit vectors n 1 and n2 for its initial and

final positions, respectively. The unit vectors n i and n2 form a plane II, in which the rotation

from n 1 to n 2 occurs. The rotation axis, designated the semi-instantaneous rotation axis, is

perpendicular to vector n 1 and n2 and plane n, and it is denoted as 0'0" with a unit vector n.

The rotation angle from n 1 to n2 is 9. Knowing the unit vector n 1 and n2 , the rotation angle

0 can be calculated as:

0= arccos(n, • n 2 )	 (5.55)

Because the rotation axis is perpendicular to both n 1 and n2 , its direction can be

determined by the cross product of unit vector n i and n2 as:

n = n 1 x n 2 /In, x n2 I	 (5.56)

Determination of axial rotation

In rigid body kinematics, the distance between any two points in the body is assumed to

be constant. Therefore the positional vector between any two points in the body with respect to

the body-fixed coordinate system remains unchanged during movement, and the rotation of the

body can be represented by the orientation of a body-fixed coordinate system. For this reason,

we now examine the movement of the x-axis, one of three axes of the segment fixed Cartesian

coordinate system, in the three-dimensional reference frame. The x-axis is perpendicular to the

long axis (y-axis) of the segment, and is represented by its unit vectors nx1 , fl 	 nx3 in

Figure 5.17. The term n.1 represents the initial position of the x-axis before rotation-,
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(5.59)

following the rotation of the long axis it moves to a position denoted as n.2 , then it rotates

about the long axis n 2 to the final position n.3 . Because the initial and final attitudes of the

segment are known, the unit vectors n. 1 and n.3 being a component of the attitude of the

segment, are known too. Therefore, if the unit vector n. 2 is found, the axial rotation from n.2

to n.3 can be determined by the scalar product of n.2 and n.3 . The relationship between nxi

and n.2 can be described as:

n.2 = R(0, n)nxi (5.57)

where R is called the transformation or rotation matrix, n is the unit vector of the semi-

instantaneous rotation axis, and 0 is the rotation angle about the semi-instantaneous rotation

axis. The Equation 5.57 describes an orientational change of the x-axis with the long axis

rotation from n x, to n x2 • The transformation matrix has been derived (see Appendix) as:

R(0, n) = cos(0)I + (I-cos(0)) nn T sin(0) [fi] (5.58)

where I is a 3x3 unit matrix, [fi I is a skew-symmetric matrix. Explicitly, n, nn T , and [ñ]

can be written in matrix form as:

n=[1 1 1 2 13]

	

112 	 114

nn T

	

= 1 2 11	 12 	 1213

	

13 1111	 1 312

22 [ 1 3

	

— 2	 11

0

1

0 —4 12

where 1 , 1 2 , 1 3 are the three components of the unit vector of the rotation axis on each axis

of the reference frame. As shown in Appendix A, n is a unit vector of an arbitrary rotation

axis in a three-dimensional reference Cartesian coordinate system and R(0, n) can be

used to transform any body-fixed unit vector from one orientation to another following the

rotation (with angle 0) about n. Therefore, knowing the unit vector n of the semi-

instantaneous rotation axis, and rotation angle 0 of the long axis about n by Equation 5.55

and 5.56, the rotation matrix R and unit vector n.2 can be determined from equation 5.58 and

5.57. The axial rotation angle can then be found from n x2 and n.3 as:

	

= arccos(n.2 n.3 )	 (5.60)

The sign of axial rotation angle 4 is defined by the right hand rule, and determined as

follows. Assuming the vector n' is the cross product of vector n x2 and n.3
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n' =
	

x n x3 / I 11 .2 x n.3 1 	(5.61)

If n' is in the direction of long axis n 2 , the axial rotation angle is positive and the scalar

product of n' and n 2 equals 1. If n' is in the opposite direction of n 2 , the axial rotation angle

is negative and the scalar product of n and n 2 equals -1. Therefore the value of +1 or -1 of

the scalar product of n' and n 2 can be theoretically used to decide the signs of axial rotation

angle. However, due to the errors in measurement, n' may not exactly coincide with n 2 , and

the scalar product is not exactly equal to +1 or -1, but may be a little smaller than 1.0 or

slightly bigger than -1.0. Fortunately the sign of the scalar product will be unaffected in this

case. Therefore, in practice, the sign of the scalar product of n' and n 2 can also be used to

show whether the axial rotation angle 4) is positive or negative. Mathematically, the sign of

axial rotation angle can be expressed as:

	

4) > 0	 if 0 < n' . n 2 5 1	 (5.62)

	

4) < 0	 if -1 5 n'• n 2 < 0	 (5.63)

In clinical terms, the sign of the axial rotation angle indicates whether the axial rotation

is an internal rotation or an external rotation. For example, if the long axis of the upper arm is

defined in the direction from the elbow joint to the shoulder joint, positive 4) by the right hand

rule will represent internal rotation and negative 4) will represent external rotation.

Numerical solution of the above example

To show the effectiveness of the method, the axial rotation angle pictorially presented in

the above example (Figure 5.16) is calculated using Equation 5.55 to 5.60. Details of the

calculation are given as follows.

	

Known variables: n i = [ 0 I 0 1 T ,	 n2 = [ 0 0 1 ]T

	

n.,=[ 1 0 0] T ,	 nx3= [-I 0 0]T

calculated results:

0 =arccos(n i • n 2 ) = arccos( 0.0) = 90°

n = n i x n 2 / I n, x n 2 I = [ 1 0 0 ] , where	 I, = 1.0; 12 =0.0; 13 =0.0
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l0
R = [0 0 —1

0 1 0

[1n x2 = Rnxi = 0
0

0 01[1	 1
0 —1110

1
= 0

1 0 0 0

6= arccos( n,a n .3 ) = arccos (-1.0) = 180°

The example proves the validity of the method. It is believed that the method can be

easily understood by clinicians and physiotherapists for its clear physical description of limb

segment rotation in nearly the same way as seen in various activities. Since no restrictive

conditions were imposed on the two known attitudes, the method can be used to describe a

finite rotation of the limb segment between any two attitudes.

Gimbal-lock problem

The only problem of the method seems that when the second unit vector n 2 of the long

axis is in the same or opposite direction of the first unit vector n 1 of the long axis (here we

denote the n 1 as the initial position of long axis), i.e. n 2 = n 1 or n 2 = - n 1 , the direction of

the semi-instantaneous axis determined by Equation 5.56 becomes undefined, consequently it

makes the calculation of the axial rotation angle impossible because the transformation matrix

(Equation 5.58 to 5.59) and unit vector nx2 in Figure 5.17 can not be found. In the first case,

n 2 = n 1 indicates that no rotation occurs of the long axis, and in the second case n 2 = -

n 1 indicates that the long axis of limb segment rotates 180 degrees from its initial position

n 1 • The phenomenon is a well-known problem called gimbal-lock in the literature (Chao

1980, Woltring 1994), but the situation is rarely met in most activities of daily living, and it

can only occur in a limited number of limb segment or joints, such as the upper arm and the

shoulder joint. If the problem occurs in some activities to be investigated it can be solved in

two ways when using the method. First the gimbal-lock points can be easily detected in the

computation. If n 2 n1 were detected, it means no long axis rotation occurred, therefore it is

not necessary to calculate the transformation matrix and to look for n 2 , because n.2 = n

in this case, and the axial rotation angle can be calculated from Equation 5.60 by substituting

nx2 with nxi. If n, = n.3 were also detected, it indicates that no movement occurred and the

calculation can be jumped over to the next data point. Second if the investigated activity
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involves the long axis of the limb segment exceeding 180 degrees rotation, it is recommended

to choose an attitude at any point in the mid period of the activity as a second initial attitude

and the unit vector of long axis at this attitude is denoted as n thus dividing the full period of

the activity into two sections. In the second section the rotation of the long axis is with respect

to the second initial attitude n . If both sections involve less than 180 degrees rotations of the

long axis of the limb segment (which can be easily reached), the gimbal-lock problem can be

avoided. Since the direction of the semi-instantaneous axis varies with time, it may be argued

that the choice of a second initial attitude may make the interpretation of long axis rotation

difficult. However the problem can be disregarded for the reason that the position of the long

axis of the limb segment can be fully determined with proper physical descriptions such as

flexion/extension and adduction/abduction by the projections of the long axis in three

orthogonal planes of reference frame. The definition of axial rotation given in this method is

the rotation about the long axis of the limb segment and no restriction was given to where the

long axis is. Therefore the determination of axial rotation can be considered as a one

dimensional problem and the additive law holds. If the axial rotation angle from the first initial

attitude n 1 to the second initial attitude n i is 4), , and from the second initial attitude to any

attitude in the second section is , then the axial rotation angle from the first initial attitude

to any attitude in the second section can be calculated as:

4)2 (01 +	 (5.64)

In fact, more than one initial attitude can be used for this purpose. If n initial attitudes

were selected, the full period would be divided into n sections, and the axial rotation angle

from the first attitude to any attitude in the final section can be expressed as:

4) 11 = .1 + .2 + 4) 3 +	 + i	 • + 4'	
(5.65)

where the 4), is the axial rotation angle from the ith initial attitude to the i+/th initial attitude,

and 4); is the axial rotation angle from the nth initial attitude to any attitude in the final

section. It is believed that the selection of one to three initial attitudes of this kind will be

enough to deal with most activities involving over 180 degrees of long axis rotation. It should

be noted that the number of initial attitudes can not be too many, if the number of initial

attitude equals nearly the number of data points, the rotation will become an infinitesimal

rotation and the errors due to noise of measurement will become a crucial problem such as

Woltring et al. (1985) indicated the direction and position of helical axis and centroid are
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Attitude (3)

Figure 5.18 Rotation from attitude (3) to attitude B was divided into two sections by

attitude C. The positive 180 degrees rotations about the long axis (y-axis) of the limb segment

from attitude (3) to attitude B can be obtained by the sum of two positive 90 degrees rotations

about the same axis from Attitude (3) to attitude C and from attitude C to attitude B.

Therefore the gimbal-lock problem is avoided.

Figure 5.19 Axial rotation angles of forearm during forearm
flexion/extension + axial rotation,

curves A and B from subject 1, and curves C, D, and E from subject 2.
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very sensitive to landmark measurement errors, particularly in the cases of small rotations.

Unless some error reduction procedure is applied, the results will become unpredictable.

However using this method, not only the gimbal-lock but also the noise problem can be

avoided by filtering the raw data and dividing the full cycle of activity into a limited number of

sections, because the method describes a real finite rotation.

The gimbal-lock problem may also occur in the determination of axial rotation angles.

When the unit vectors n.3 and n.2 are in opposite directions i.e. n.2 = - n.3 , an absolute axial

rotation angle of 180 degrees can be obtained from Equation 5.60, but the sign of the angle

can not be determined from Equation 5.61 to 5.63 because the unit vector n' in Equation 5.61

is undefined in this case. However the problem can also be resolved by dividing the full cycle

of activity into a limited number of sections described above. It is believed that if the full cycle

of activity is divided into a limited number of sections, the gimbal-lock problems in both long

axis rotation and axial rotation can be avoided at the same time.

Readers may have found that in the above graphic example (Figure 5.16), the axial

rotation from attitude (3) to attitude B and from attitude A to attitude (4) can be reached by

either a 180 degrees rotation or a -180 degrees rotation about the long axis (y-axis) of the

segment. However the above calculation example can only give an absolute rotation angle

without the sign. This is an example of the gimbal-lock problem occurring in axial rotation. In

what follows the problem is solved by dividing the full cycle into a number of sections.

Further example

In order to show how to solve the gimbal-lock problem occurring in axial rotation of the

above example, the rotation from attitude (3) to attitude B in Figure 16 is used in this

example. As shown in Figure 5.16 the rotation from attitude (3) to attitude B is a purely axial

rotation about the long axis (y-axis) of the limb segment without long axis rotation. As stated

above the axial rotation (rotation angle and its sign) can not be fully detennined from the two

attitudes due to the gimbal-lock problem. Therefore we assume that there is a number of

attitudes which have been measured between the two attitudes (attitude (3) and attitude B).

For simplicity, a special attitude C among these measured attitudes is selected as a second

initial attitude as shown in Figure 5.18, and it can be reached by a positive 90 degrees rotation

about the y-axis from attitude (3). It can be seen that the rotation from attitude C to attitude B
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can also be reached by a positive 90 degrees rotation about the y-axis. Therefore a positive

180 degrees rotation about the y-axis from attitude (3) to attitude B can be obtained by

summing the two 90 degrees rotations together. Because the two rotations, (3) to C and C to B

are all less than 180 degrees, there is no gimbal-lock problem in the two sections. The

example shows that although there is a gimbal-lock problem for the rotation from attitude (3)

to attitude B, the problem has been easily resolved by dividing the fun rotation into two less

than 180 degrees rotations. The same numerical result can also be obtained by using the

equations given above, which can be carried out by readers. In fact in order to solve the

gimbal-lock problem between two attitudes, the second initial attitude can be selected at

anywhere between the two attitudes in case the gimbal-lock point is not involved in either of

the two sections divided by it.

Experimental study

The purpose of the experiment is to show the validity of the method in analysing real

kinematics data collected by the motion analysis system. An activity involving forearm

flexion/extension and internal/external rotations was tested in the experiment. Two subjects

were tested performing the activity in the standing position with the upper arm unmoved. At

the beginning of the activity, the forearm is at the free hanging position with palm facing

backward. During the activity the forearm flexed about 90 degrees from the free hanging

position, meanwhile the forearm externally rotated to a position of palm fazing up, then

extended and internally rotated back to the free hanging position. Four retro-reflective markers

were used to define the elbow, wrist joint centres and the forearm coordinate system, in which

two markers were affixed at the medial and lateral epicondyles of the elbow joint and two

markers were affixed at the radius and ulna sides of the wrist joint. The forearm coordinate

system is defined as: y-axis (long axis) directed from wrist joint centre to elbow joint centre, z-

axis directed from ulna side to radius side of wrist joint, and x-axis was perpendicular to both

y and z axes and is determined by the cross product of unit vectors of y, z axes.

The three-dimensional positions of these markers were measured by a six camera

V1CON motion analysis system. The collected data were filtered at auto-selected cut-off

frequencies for each data sequence using the residual analysis technique (Winter 1990). Three

measurements were made for each subject, five of the six measurements were analysed, and
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the calculated axial rotation angles were normalised to a time scale of 100% of the cycle and

are given in Figure 5.19.

As shown in Figure 5.19, the axial rotation angles of the forearm are successfully

determined. The negative angles indicate that the axial rotation is external rotation

(supination). The curves denoted as A, B are from the first subject, and the curves C, D, and

E are from the second subject. It can be seen that the supination of the forearm from the first

subject starts early and stops later than the second subject, while the maximum supination

angles from the second subject are bigger than from the first. It can also be seen that the

maximum supination angles are below 180 degress. The results indicate that the forearm is not

fully supinated during the test, the reason may be that the subjects were instructed only to flex

and supinate the forearm to a comforable palm facing up position. It can be predicted that

bigger maximum supination angles can be measured if the subjects were instructed to supinate

the forearm to the maximum range.

Discussion

Although the emphasis of this section is the determination of axial rotation of limb

segments, the method describes a new way of determining the three-dimensional rotation of the

limb segment. The advantage of the two-step rotation method is that it describes the three-

dimensional rotation of the limb segment in the natural way as it is seen in daily activities. As

proved in the first example and direct observations of limb segment rotations, the two-step

rotation is sequence independent. However the determination of the two rotations from

kinematic data measured by a motion analysis system should begin with the determination of

long axis rotation, because the long axis rotation is uniquely determined by the orientations of

the long axis at the initial and final attitudes of the limb segment. Finally the gimbal-lock

problem can be easily solved when using the method. It is believed that the method can be

used not only in the biomechanics of human movement analysis for describing the three-

dimensional rotation of limb segments, but also in other fields for describing the three-

dimensional rotation of any moving object with a long axis.
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Chapter Six

Results and Discussions

A computer program was written using the principles given in the previous chapter, and

the results calculated by the program are presented in this chapter. Six normal subjects were

tested for each of the four activities. The particulars of the subjects are given in Table 6.1.

Each activity was tested three times for each subject. Different numbers of trials were

analysed for each activity for the reasons given in chapter four. All the results were

normalised in time, and the mean values are presented. The following results are grouped by

the activities, and given in four separate sections. Each section involves the results of one

activity.

Table 6.1 Subject Characteristics

Subject Age (years) Height (cm) Mass (kg)

No.1 32 175 68
No.2 35 185 70
No.3 36 174 63
No.4 38 160 60
No.5 30 174 58
No.6 27 172 60

Average (SD) 33 (4.1) 173.3 (8) 63.2 (4.8)

6.1 Lifting Activity

As mentioned in chapter four, the lifting activity involved eight modes, lifting a book of lkg

and 2kg to table, shoulder, head, and the highest heights. The number of trials analysed for

each case is given in Table 6.2. At least 1 trial for each subject and each mode are included in

the mean results. The results are given and discussed by the sequence from the kinematic

parameters to kinetic parameters. Effort has been made to put the results of each parameter

from the eight modes together for easier comparison.

Table 6.2 Number of trials analysed for liftin activities.
Table height shoulder height head height highest height

lkg 15 14 15 15
2kg 15 16 16 15
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Figure 6.1 Sagittal plane view of arm and book movement for lifting a lkg book
from 20cm height to four different heights. S. E, W, M18, M17 refer to the
shoulder, elbow, wrist joints, marker 18, and marker 17 on the book, respectively.
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6.1.1 Kinematic Results and Discussions

The kinematic results presented in this section include the regeneration of arm and book

movements by stick diagrams, the rotation angles of the upper arm about the three axes of the

trunk coordinate system, the elbow angles, the axial rotation angles of upper arm and forearm,

and the velocities and accelerations of the book mass centre in the trunk coordinate system.

6.1.1.1 Regeneration of arm movement for lifting activities

The motion of the arm during lifting activities is regenerated by a stick diagram which

is a group of straight lines connecting the shoulder, elbow, wrist joint centres, markers 18 and

17 on the book at each instant of time. The positions of these joints and markers are given in

the trunk coordinate system. The stick diagrams are presented in three anatomical planes,

namely sagittal, corona', and transverse plane. This arrangement allows the 3-D movements of

arm and book relative to the trunk to be observed. Only the lifting phase of the lifting activities

is presented by the stick diagrams.

Sagittal plane view

The major arm movement of the lifting activity occurs in the sagittal plane which is

shown in Figure 6.1, where the x-axis is forward, y-axis is upward, and the dimensions of x, y

axes are given in the same scale. It can be seen that the shoulder joint has very little movement

in the trunk coordinate system during lifting to four different heights.

The movements of the upper arm are composed of translation of the shoulder joint and

rotation around the shoulder joint. In the sagittal plane the rotation is about the transverse axis

(z-axis) of the trunk coordinate system, and is referred to as flexion and extension (ICapandji

1970). The flexion angles of the upper arm can be directly observed from Figure 6.1 and it

can seen that the flexion angle increases with the height of lifting. Results of the other rotation

angles of the upper arm are given in section 6.1.1.2.

The variations of the angle between the upper arm and forearm can also be found in

Figure 6.1. The changes of this angle represent the relative movements of the forearm with

respect to the upper arm. The decrease and increase of the angle indicate the flexion and

extension of the elbow respectively. During the lifting phase the forearm experienced both
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flexion and extension movements. The details of variations of the forearm/upper arm angle

(elbow angle) with time will be given in section 6.1.1.3.

The movements of the book are presented by the straight lines connecting marker 18

and 17 on the book. It can be seen that this line varies from a vertical line at the beginning of

lifting to a horizontal line at the end of the lifting phase. This result shows that the book was

rotated 90 degrees during lifting in order to be vertically (long side of the book in the vertical

direction) placed at the proposed height, which is indicated by a shelf. This rotation is required

because the book was held by the subject in a horizontal position before the lifting (Figure

4.32). It is noticed that the rotation of the book in the sagittal plane (Figure 6.1) was

completed by nearly half way through the lifting phase and was then moved forward during

lifting to table height. During lifting to shoulder, head, and highest height, the book moved

upward continually to the destination height after rotating 90 degrees and before moving

forward to the target. This phenomenon is more obvious for lifting to head and highest height.

By careful observation of Figure 6.1, it is can be found that the angle between the line from

the wrist joint to marker 18 and the line from marker 18 to marker 17 is nearly unchanged

during the first half of the lifting phase when the book rotated 90 degrees. This result shows

that the rotation of the book is not due to the angular movements at the wrist joint, but is a

result of forearm movements, mostly the flexion of the forearm which is discussed in section

6.1.1.3.

From the stick diagrams of lifting to head and highest heights in Figure 6.1, it can be

found that the book moved towards the body slightly (decrease of the x dimension) when it

was lifted to above the shoulder height, and the moving forward action occurs after the book

reached the chosen height. The movement towards the body is required to avoid touching the

shelf, and the movement forward is for the book to be placed onto the shelf In addition, the

action of moving towards the body reduces the distance between the book and the shoulder

joint, therefore it can reduce the moment acting on the shoulder during the lifting phase.

Frontal plane view

The frontal plane view of arm and book motions of lifting a lkg book are presented in

Figure 6.2 which shows the rotations of the upper arm about the posterior-anterior axis (x-

axis) of the trunk coordinate system. This rotation is called abduction-adduction (Kapandji
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1970). From Figure 6.2 very little abduction of the upper arm can be found for lifting to table

height, and obvious abduction can be seen for lifting to above table height. The abduction

angles increase with the height of lifting.

The book followed a nearly vertical straight line in the frontal plane as it was lifted to

table height. When the book was lifted to a height above table height its trace in the frontal

plane describes a curve. The curve is the combination of upward movement and slight

unintended medial-lateral displacement. A small rotation of the book can also be found in the

frontal plane view.

Horizontal plane view

The projections of the arm and book movement on the horizontal plane are presented in

Figure 6.3. The position of the upper arm in the horizontal plane can be reached by the

combination of flexion+abduction or extension+adduction movement according to the

definition of ICapandji (1970). Alternatively, the rotation angles of the upper arm about the

vertical axis (y-axis) of the trunk coordinate system can also be observed from its projection

in the horizontal plane. From Figure 6.3 it can be seen that the upper arm rotated

approximately the same angles during the four heights of lifting.

It should be noted that only the movements of arm and book for lifting of the lkg book

are presented in the form of stick diagrams in Figure 6.1 to 6.3. Similar results for lifting a

2kg book have been found. For this reason they are not given here.

6.1.1.2 Upper arm rotation angles about the axes of trunk coordinate system

The above results give a general view of the pattern and range of arm movement during

the lifting activity. The details of the rotation angles of the upper arm about the three axes of

the trunk frame are given in Figure 6.4 for lifting a lkg book, where the flexion and abduction

angles are measured from the position of the upper arm free hanging vertically, and the

inward rotation angles are measured from the positive direction of the transverse axis (z-axis)

of the trunk coordinate system.

It is interesting to find that during lifting to table and shoulder heights the flexion angles

of the upper arm about the transverse axis (from left to right) of the trunk system are higher
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than the abduction angles about the posterior-anterior axis, however during lifting to head and

highest heights the abduction angles are higher than the flexion angles.

It can be found that the inward rotation angles have nearly the same pattern and values

for the four heights of lifting. The inward rotation angle may be related to the target position

in the transverse axis (from left to right). From Figures 6.2 and 6.3 it is known that the book

was lifted to the position at the right side of the right shoulder joint. If the book were to be

lifted to just in front of the body or toward the left side of the body more inward rotations may

be observed.

In the study of upper arm movement, the flexion and abduction angles have been

divided into a number of phases (Kapandji 1970). For flexion there are three phases, 0 to 60

degrees, 60 to 120 degrees, and 120 to 180 degrees. For abduction there are also three phases,

0 to 90 degrees, 90 to 150 degrees, and 150 to 180 degrees. Inman (1944) found that

approximately 30 degrees of abduction or 60 degrees of flexion could occur at the

glenohtuneral joint before any upward rotation of the scapula was required, but from those

respective positions 1 degree of upward scapular movement accompanied 2 degrees of

humeral movement. Kapandji (1970) indicated that the first phase of abduction ends at 90

degrees, when the shoulder 'locks' as a result of the greater tuberosity hitting the superior

margin of the glenoid. In the third phase of flexion and abduction, movement of the spinal

column becomes necessary (ICapandji 1970). Comparing with the results in Figure 6.4 it can

be assumed that no scapular movement occurred for lifting to table height. According to

Inman (1944), ICapandji (1970), and the results in Figure 6.4, a little rotation of the scapula

may occur during lifting to shoulder height. If the lifting height is a little lower than the

shoulder, scapular rotation may be avoided. Lifting to the shoulder height may be, therefore,

at the limit of whether scapular movement is involved or not. For safety, it can be suggested

that the lifting height should be designed a little lower than shoulder height if possible.

From Figure 6.4 it can be seen that the upper arm movement during lifting to head and

highest height falls in the second abduction and flexion phases. It is evident that not only

scapular movement but also rotations of the stemo-clavicular and acromio-clavicular joints

were involved in the lifting to the two latter heights. It can also be noticed that the maximum

flexion and abduction angles for lifting to the highest height are a little lower than the upper

limits of the second flexion and abduction phases. These results indicate that there is probably
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no movement of the spinal column during lifting to the highest height, and is in agreement with

the experimental design.

It is worth mentioning that the highest height of this study was determined by the

subjects as the highest height that could be lifted comfortably without assistance of other

parts of the body. It is suggested that any design of lifting to over this height should be

carefully considered because it will cause movement of the spinal column. Although the

movement of the spinal column may provide a great assistance to the lifting activity in some

situations, the lower back of the spinal column is the most easily injured site during manual

material handling.

The mean and standard deviations of the maximum rotation angles of the upper arm for

the lifting of a lkg book are given in Table 6.3. Because the results are obtained from normal

subjects it gives a general range of upper arm movements for the lifting activities. It is

expected that these results can form a data base for clinical reference when assessment of the

functional movement of the upper arm and the ability of doing activities of daily living is

required.

Table 6.3 Mean and standard deviation of Maximum rotation angles (in degrees)
of upper arm for lifting a lkg book to four different heights.

Table (Sd) Shoulder(Sd) Head (Sd) Highest (Sd)

Flexion 37.3° (8.0) 65.2° (5.3) 100.7° (8.2) 118.7° (6.7)
Abduction 25.60 (10.3) 44.2° (11.6) 113.1° (6.6) 137.0° (7.2)
Rotation 64.6° (14.9) 66.6° (8.5) 63.6° (8.3) 63.3° (4.1)

6.1.1.3 Elbow angle

One of the important parameters describing forearm movements is the elbow angle

which is the angle between the longitudinal axes of upper arm and forearm. The calculated

elbow angles for the lifting activities are given in Figure 6.5. It can be seen that the lifting

phase can be marked from 0 to 44% (±3.4%) of the full cycle, and the lowering phase marked

the rest of the full cycle. The results show that the variation of the elbow angle is a little

quicker during the lifting phase than the lowering phase. To achieve the quicker elbow angular

movement, larger joint moments and greater muscle activity are required. The lifting phase

and lowering phase can be further divided into two sub-phases, elbow flexion phase and elbow
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extension phase. In the elbow flexion phase the elbow angle decreases and in the elbow

extension phase the elbow angle increases. During the lifting phase the forearm first flexed to

the smallest elbow angle, then extended to the end of the lifting phase reaching a peak elbow

angle at the target height. It is evident that the peak elbow angle at the end of the lifting phase

increases with the height of lifting. During the lowering phase, the forearm first flexed to the

smallest elbow angle of the lowering phase and then extended to the end of the full cycle.

It is interesting to find that the smallest elbow angle in the lowering phase decreases

with the increase of the height of lifting. The result may be explained as follows. As the book

is lifted higher, greater extension of the forearm is required during the lifting phase, which will

increase the moment lever arm between the book and the elbow and shoulder joints, and

consequently increases the moments on the elbow and shoulder joints and the muscle tensions.

Therefore, the elbow flexes more during the lowering phase and reduces the lever arm and

consequently reduces the elbow and shoulder joint moment and the tension of muscles. The

results also indicate the important effects of functional movement of the forearm in

manipulating the joint loads during the lifting activity.

6.1.1.4 Axial rotation angles of upper arm and forearm

Using the new method described in Section 5.5, the axial rotation angles of the upper

arm and forearm about their longitudinal axes were calculated and are given in Figure 6.6,

where the positive and negative values denote internal and external rotations respectively with

respect to the initial arm position at the beginning of the tests.

It can be found that the axial rotations of the upper arm and forearm have nearly the

same patterns for lifting a 1 kg book and a 2kg book. For this reason, only variations of axial

rotation angles with respect to the different heights of lifting are discussed.

The axial rotation angles of the upper arm are all negative during the full cycle of the

lifting activity, which means that the axial rotations are external rotations. In each case of

lifting, the upper arm rotated externally from the beginning to the middle of the lifting phase

then rotated internally to the end of the lifting phase. In the lowering phase, the upper arm first

rotates externally to the middle of the lowering phase then rotated internally to the original

position at the end of activity. The maximum external rotation angles in the middle of the
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lifting phase or the middle of the lowering phase increase with the height of lifting and the

maximum values for each height of lifting are given in Table 6.4 with standard deviations.

Table 6.4 Maximum external rotation an gles de ees of upner arm during lifting activity.
Table Sd Shoulder Sd Head Sd Hit est Sd

MEM
49.8	 19.3

Liftin a lk_ book 23.8 9.9 32.0 17.2 36.6 14.2
Liftin a 2k book 26.8 12.0 30.2 15.2 39.4 17.6

From Figure 6.1 to 6.5, it can be found that the increase of the maximum external

rotation angle of the upper arm is due to the increase of flexion and abduction of the upper

arm. The internal rotation angle of the upper arm in the lifting phase is due to the extension of

the forearm.

Figure 6.6 shows that the forearm axial rotation angles are all negative during lifting to

the different heights. The mean values of maximum external rotation angles of each height of

lifting are given in Table 6.5 with the standard deviations. It can be seen that the maximum

external rotation angles do not change significantly with the lifting height except for the

highest height. The results indicate that the axial rotation of the forearm has no direct

relationship with the height of lifting, which is in agreement with the fact that the forearm can

be more freely axially rotated than the upper arm.

Table 6.5 Maximum external axial rotation angles (degree) of forearm during lifting

activities.
Table Sd Shoulder Sd Head Sd Hi. est Sd

Liftin a lk book 20.4 9.3 IMBEal. 17.0 10.3 26.5 11.6
Liftin a 2k book 20.1 15.7 24.8	 16.1 21.0 13.8 28.8 (16.1

6.1.1.5 Book centre velocity and acceleration

The purpose of the lifting activity is to move the book to several heights. The effects of

the lifting can be presented by the velocities and accelerations of the book mass centre in three

dimensional space. In this section, the velocities and accelerations of the book mass centre in

the trunk reference frame are presented. Instead of giving the velocities and accelerations in a

time series, the variations of accelerations with velocities are given in phase planes in Figure

6.7a for the lifting of a lkg book, in which both lifting and lowering phases are included.
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The major movement of the book during the lifting activity is along the vertical axis (y-

axis). The vertical velocity and acceleration in Vy-Ay plane describes two loops (Figure 6.7a

[1]-[4]), one on the right side of each figure and another on the left side. The right loop

represents the lifting phase, and the left loop represents the lowering phase. It can be seen that

the right loop is bigger than the left loop which indicates that the book moves at a greater

velocity and acceleration in the lifting phase than in the lowering phase. Each vertical velocity

and acceleration loop can be further divided into two phases, the velocity increase phase on

the upper part of the loop and the velocity decrease phase on the lower part of the loop.

Comparing with Figure 6.5, it can be seen that the increase and decrease phases of vertical

velocity of the book correspond to the forearm flexion and extension phases, respectively.

Therefore, the increase of vertical velocity of the book is related to flexion of the forearm, and

the decrease of vertical velocity of the book is related to extension of the forearm.

In each increase and decrease phase of vertical velocity of the book, the acceleration

changes its direction once. From the beginning of the lifting phase, the book is accelerated to

the maximum value of acceleration at nearly the middle point of the velocity increase phase,

and from that point the book is decelerated to zero acceleration at the end of the velocity

increase phase (with maximum value of velocity). In the decrease phase of vertical velocity,

the book is accelerated in the downward direction (-Ay) to maximum negative acceleration at

the middle point of the decrease phase of vertical velocity, then decelerated to nearly zero

velocity and acceleration at the target.

Another point which can be observed from Figure 6.7a [1]44] is that the absolute value

of acceleration in the vertical velocity increase phase is greater than the corresponding value in

the vertical velocity decrease phase for the lifting to shoulder, head, and highest height. It is

interesting to find that the maximum acceleration in the vertical velocity increase phase

increases with the height of lifting, while in the decrease vertical velocity phase, the maximum

acceleration has nearly the same values for the four different height of lifting. Comparing

with the results of elbow angles in Figure 6.5, it can be concluded that the forearm flexion

phase is a much more accelerated process than the forearm extension phase, especially when

the lifting height is increased. Also, flexion of the forearm results in greater vertical

acceleration on the book mass centre than the extension of the forearm. The exception to this

result occurred during the lifting to table height, where the accelerations in both increase and
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decrease phases of vertical velocity have nearly the same values, which may be related to the

small flexion angles during the lifting to table height.

In the lowering phase, the book vertical velocities and accelerations have the same

patterns as in the lifting phase, except smaller values and opposite direction. The smaller

velocities and accelerations in the lowering phase are in agreement with the finding in section

6.1.13 that the lifting phase is shorter than the lowering phase. The results indicate that in

order to overcome the gravity of arm and book in the lifting phase, more muscle tension is

required to accelerate the book for reducing the duration of the gravitational force and moment

which acted on the elbow and shoulder joints. It has been found that the lifting phase is shorter

than the lowering phase in section 6.1.1.3 (Figure 6.5).

The velocities and accelerations in the posterior-anterior direction are given in the Vx-

Ax plane (Figure 6.7a [5]-[8]), where the right side of the Ax axis represents the lifting phase,

and the left side represents the lowering phase. Two major differences can be found by

comparing the Figure 6.7a [5]48] with the Figures 6.7a [11441 First the posterior-anterior

velocities and accelerations are smaller than the vertical velocities and accelerations. Second,

there are two loops (generally) in each lifting and lowering phase, respectively.

The double loops in each lifting and lowering phase in Vx-Ax plane imply that the book

mass centre changed its direction of displacement in the posterior-anterior direction. This

result is in agreement with the observations from the stick diagram of Figure 6.1. The changes

of the direction of displacement are observed as the backward movement in the lifting phase

and the forward movement in the lowering phase. The backward and forward movement of the

book seem to contradict the purpose of lifting and lowering, because the purpose of lifting is

to move the book upward and forward to the target, while the lowering is to move the book

downward and backward to the starting position. However, the backward and forward

movements of the book are required. If it is assumed that any human movement is performed

in an optimum way as it is performed most comfortably, then according to the above results

the optimum idea can not be understood as an optimum route of the displacement. The

optimum route should be the nearest route from the starting to the end position. In the lifting

and lowering phases this route should involve the straight forward and sti	 :light backward

movements, respectively. In the study of human walking, Inman (1981) stated: the human

body will integrate the motions of the various segments and control the activity of muscles
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so that the metabolic energy required for a given distance walked is minimised. For lifting,

the backward and forward displacement in the lifting and lowering phases can be assumed to

be controlling the joint moments and muscle activity in order to minimise the energy

consumption.

As is seen in Figure 6.7a [9]-[12] the transverse velocities and accelerations in the Vz-

Az plane have the most complex shapes. Generally a number of loops with very small

magnitude describe the variation of transverse velocity and acceleration. This result indicates

that the book experienced a number of changes of acceleration and deceleration in the

transverse direction. Because the transverse displacement of the book is not the major

movement of the lifting activity, the oscillation of velocity and acceleration of the book centre

in the transverse direction can be explained as an adjustment of the transverse movement for

keeping a stable and smooth movement of the book in the major directions.

The Vy-Ay and Vx-Ax loops for the lifting a 2kg book in Figure 6.7b [1]-[8] are

smaller than the corresponding loops in Figure 6.7a [1]-[8]. The result indicates that the 2kg

book is lifted at smaller velocity and acceleration than the lkg book in the two major

directions of movement for lifting to the same height. Other characteristics of the results in

Figure 6.7b are similar with that in Figure 6.7a, therefore they are not discussed again.

6.1.2 Kinetic Results and Discussions I - Shoulder Forces and Moments

The kinetic results given in this section are the shoulder forces and moments which are

considered to act on the proximal end of the upper arm segment and are expressed in the trunk

coordinate system defined in Section 5.2.2.

The contributions to the shoulder forces and moments during the lifting activities can be

divided into the inertial and gravitational effects or the arm and book (the weight) effects. In

order to investigate how the different factors influence the shoulder loads, not only the total

shoulder forces and moments but also the shoulder forces and moments due to each factor are

given and discussed in this section by the following arrangements: three-dimensional shoulder

forces; inertial and gravitational effects on the shoulder forces; the three-dimensional shoulder

moments; three-dimensional inertial moments on shoulder; inertial to total shoulder moment

ratios; arm and book effects on shoulder moments.
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(a)

(b)

Figure 6.8 Forces and moments on the shoulder and elbow joints
(a) The shoulder forces and moments at the proximal end of the upper arm are

given in the trunk coordinate system
(b) The elbow forces and moments at the proximal end of the forearm are

given in the upper arm coordinate system
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6.1.2.1 Three-dimensional shoulder forces

The three-dimensional shoulder forces during the lifting activities are given in Figure

6.9, where positive Fx, Fy, and Fz direct forward, upward and from left to right, respectively

(Figure 6.8a).

The results show that the vertical force Fy is dominant and positive during the full

period of the lifting activity primarily due to gravity. The wave form of Fy is due to the

vertical inertial forces on the arm and book, because the directions of vertical inertial forces

vary with time. It can be seen that the maximum Fy increases with the height of lifting.

It can also be found that the anterior-posterior and left-right forces (Fx and Fz) are of

low magnitude and change their signs during the activity. Only the inertial forces of the arm

and book act in the anterior-posterior and left-right directions, therefore the result is in

agreement with the low accelerations in the two directions. Quantitative results show that the

maximum magnitude of Fx and Fz are all below 15% and 12%, respectively, of maximum Fy

during the lifting activities.

6.1.2.2 Gravitational and inertial effects on shoulder forces

The resultant inertial and gravitational forces (Fi and Fg) on the shoulder are given in

Figure 6.10 with the resultant total shoulder force (Fr). It can be seen that gravitational forces

are dominant for each case of lifting and the gravitational forces do not vary with time and

lifting height.

The magnitude of the resultant inertial force Fi on the shoulder is much lower than the

magnitude of the resultant gravitational force. The maximum magnitude of inertial force

occurs during the lifting to the highest height and values as 29% and 27% of the gravitational

force for the lifting of a lkg and a 2kg book, respectively.

It is seen that the resultant total shoulder forces are combined by the inertial and

gravitational forces. Since the gravitational force does not vary with time and lifting height,

the maximum total shoulder force coincides in time with the maximum inertial force, and

increases with the height of lifting. The ratios of the maximum inertial force to the maximum

total force are given in Table 6.6. The results indicate that the inertial shoulder force can reach

between 14% to 23% of the total shoulder force for the lifting of a lkg or 2kg weight.
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Fr: resultant total force; Fi: resultant inertial force; Fg: resultant gravitational force.
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Table 6.6 The maximum resultant inertial shoulder force to the maximum
resultant total shoulder force ratios.

Table height Shoulder height Head height Highest height
0.228Lifting a 1 kg book 0.135 0.172 0.186

Lifting a 2kg book 0.144 0.174 0.196 0.217

6.1.2.3 Three-dimensional shoulder moments

The resultant shoulder moments and their components about the three axes of the trunk

coordinate system for the lifting of a lkg and 2kg book are given in the Figure 6.11. The

positive/negative signs of Mx, My and Mz represent the adduction/abduction, internal/external

rotation and flexion/extension moments on shoulder joint, respectively according to the

movement of the upper arm it may cause (Figure 6.8a).

A number of general features can be found from these figures. The flexion-extension

moment has a similar pattern with the resultant moment and its magnitude is a little lower

than the magnitude of the resultant moment. The flexion-extension moments are always

positive during the full cycle of the lifting, which illustrates that only a flexion moment acts on

the shoulder joint in the sagittal plane. The results indicate that the dominant moment on the

shoulder joint for lifting is the flexion moment which is in agreement with the fact that the

major movement of the arm during lifting is flexion. In contrast with this, the

adduction/abduction moments are always negative, which indicates that only an abduction

moment acts on the shoulder joint in the coronal plane. To generate the flexion and abduction

moments, the activities of prime humeral elevators, deltoid and supraspinatus are required.

The internal-external rotation moment on the shoulder about the vertical axis of the trunk

coordinate system varies around zero.

Since the resultant and flexion moments have nearly the same patterns and values, the

results of resultant and flexion moments are discussed together. The resultant and flexion

moments have three peak values in the full cycle of the lifting activity. The first and third peak

values occur in the lifting and lowering phases respectively, the second high peak value is in

the middle of the full cycle when the book is lifted to the target height.

The second peak resultant and flexion moments on the shoulder is mainly due to gravity

of the arm and book, because when the book is lifted to the target, its vertical acceleration is

reduced to nearly zero (Figure 6.7a and 6.7b). Therefore the inertial effect on the shoulder

moment nearly vanishes at this point.
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It can be seen (Figure 6.11) that the first high peak of the resultant/flexion moment

occurs at about 10% of full cycle. Looking at Figure 6.5 and 6.7a, it can be seen that this

point is just within the forearm flexion and the book vertical velocity increase phases when the

book is accelerated. Therefore, the first peak resultant/flexion shoulder moment is mainly due

to the inertial effect of the arm and book. For the same reason the third peak resultant/flexion

moment in the lowering phase is also due to the inertial effects of the arm and book.

During the lifting of a lkg book to table height, the first and second peak

resultant/flexion moments have nearly the same values, while the differences between the first

and the second peak resultant/flexion moments increase with the height of Lifting, which is

mainly due to the increase of the first peak values. The increase of the first peak

resultant/flexion moment is related to the vertical accelerations of the book and arm, which

increase with the height of lifting. Therefore, it can be concluded that for the lifting to above

the table height, the maximum resultant/flexion shoulder moments increase with the height of

lifting due to the contributions of the inertial effect (further discussion are given Section

6.1.2.5).

When the weight is increased, such as the lifting of a 2kg book (Figure 6.11[5], [6]),

the maximum resultant/flexion shoulder moments during the lifting to table and shoulder

heights occur at the second peak value instead of at the first peak value in the case of lifting a

lkg book to the same heights (Figure 6.11[1], [2]). As discussed above the second peak

resultant/flexion moment is mostly due to the gravitational effect of the arm and book,

therefore the result indicates that the lifted mass has a significant effect on the shoulder

moment for the lifting to table and shoulder height.

For the lifting of a 2kg book to the head and highest heights, the maximum

resultant/flexion shoulder moment occurs at the first peak value again but the difference

between the first and second peak value is smaller than the lifting of a lkg book. This result

indicates that the contribution of the inertial effect decreases with the increase of the lifted

mass. This can be easily understood, for example, a light weight can be easily lifted at a

higher velocity and acceleration than a heavy weight.
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6.1.2.4 Three-dimensional inertial moments on the shoulder.

The three-dimensional inertial moments involving the combined inertial effects of arm

and book on the shoulder are given in Figure 6.12. These inertial moments are expressed in the

trunk coordinate system and the conventions are the same as those used in above section.

It can be seen that the dominant inertial moments on the shoulder during the lifting

activities are the flexion-extension moments (+Mz) where the highest values occur in each

case of the lifting. Peak inertial flexion moment (+Mz) occurs in the early lifting phase which

corresponds to the vertical velocity increase phase of the book (Figure 6.7 and Figure 6.8).

The peak flexion moments increase with the height of lifting. Significant increase of the peak

flexion moment can be observed for lifting to the height below and above shoulder. Following

the peak flexion moment, there is a peak extension moment (-Mz) in the lifting phase, which is

related to the accelerations in the vertical velocity decrease phase of the book in Figure 6.7

and 6.8, and increases with the height of lifting.

In the lowering phase, there is also a peak flexion and a peak extension moment but

with smaller values than the corresponding points in the lifting phase, because of the lower

accelerations in the lowering phase than in the lifting phase observed in section 6.1.1.5.

It is interesting to find that there is no significant difference on the peak

flexion/extension moments between lifting a lkg and a 2kg book. This result is due to the fact

that the heavier mass (2kg book) is lifted at lower accelerations than the light weight (lkg

book). Because the inertial moment is proportional to the mass (and moment of inertial) and

accelerations (linear and angular) of the segment and the lifted mass, the result may be further

explained by an assumption that the decrease of acceleration is a trade-off with the increase

of the lifted weight to keep an equivalent inertial moment. However, because only two levels

of mass were tested in this study, further investigations are required on more levels of mass to

testify whether the assumption is true for the general lifting activity.

The results also show that the magnitude of the inertial adduction/abduction moment

(+Mx/-Mx) is lower than the inertial flexion/extension moment, and the abduction moment (-

Mx) at the early lifting phase increase with the height of lifting which can be ranked as the

second major inertial shoulder moment for lifting to above shoulder height. As with the

flexion/extension inertial moments, there is no significant difference on the inertial
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Figure 6.12 Inertial moments on shoulder during lifting activity

Mx: add-abduction moment; My: inward-outward moment; Mz: flexion-extension moment
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adduction/abduction moments between the lifting a 1 kg book and a 2kg book, and the inertial

adduction/abduction moments in the lowering phase are lower than in the lifting phase.

The inward/outward rotational moment (My) on the shoulder about the vertical axis of

the trunk coordinate system does not seem to be vary with the either the mass of lifting or the

height of lifting. The result is in agreement with the inward/outward rotations of the upper arm

about the y-axis of trunk coordinate system, which varies little with the height of lifting

(Figure 6.4). However the peak inward rotational inertial moment (+My) can be ranked as the

second highest inertial moments during the lifting to below and involving shoulder height. The

result reflects the important contribution of the inward/outward rotational inertial moment to

the resultant inertial moment but the contribution decreases during the lifting to above

shoulder height because of the increase of adduction/abduction moments.

6.1.2.5 Inertial to total shoulder moment ratios.

The resultant inertial shoulder moment to resultant total shoulder moment ratios at each

instance of time are given in Figure 6.13(1) and 6.13(2), which vary greatly with time. In

order to estimate the overall influence of inertial effects on the shoulder moment, the ratios in

Figure 6.13(1) and 6.13(2) are averaged over time and the results are given in Figure 6.13(3).

It can be seen that the averaged inertial to total shoulder moment ratio increases with the

height of lifting, and the ratios are higher for lifting a lkg book than lifting a 2kg book. The

maximum ratio reaches 0.47 (47%) during the lifting of a lkg book to the highest height, and

the minimum ratio is 0.25 (25%) during the lifting of a 2kg book to the table height. The

results indicate that the higher the mass to be lifted, the greater the inertial effect will

contribute to the total shoulder moments, and the contributions of inertial effects to the total

shoulder moment will decrease with the increase of lifted mass. Neglecting inertial effects in

the biomechanical analysis of lifting activities will result in up to 47% (average) under

estimating of the resultant shoulder moment for lifting a lkg book to the highest height, and at

least 30% lower (average) estimating of the resultant shoulder moment for lifting a lkg book

to table height. For the lifting of a 2kg book, the corresponding values are the 36% and 25 %

respectively.
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6.1.2.6 Arm and book effects on shoulder moments

In order to investigate the influence of the lifted mass on shoulder moments during the

lifting activity, the resultant shoulder moments caused by arm and book effects (Mra and

Mrb) involving both inertial and gravitational effects were calculated and are given in Figure

6.14 with the resultant total shoulder moments (Mr).

It is interesting to find that the magnitude of resultant shoulder moment caused by the

lkg book is lower than that caused by the arm, while the magnitude of resultant moment

caused by the 2kg book is higher than that caused by the arm. In order to quantitatively

describe the effects of different mass on the shoulder moment, the ratios of resultant shoulder

moment caused by the book to the resultant shoulder moment caused by the arm (Mb/Ma)

were calculated at each instance of time, and the averaged ratios over the full period of time

are given in Figure 6.15.

The results show that the ratios decrease with increase of lifting height, and the highest

ratio occurs at lifting to table height. The lkg book can produce a moment on the shoulder

with values from at least 0.8 times to a maximum of 0.86 times the shoulder moment caused

by raising the arm without any mass on the hand. The shoulder moment generated while lifting

the 2kg book can increase from at least 1.6 times to a maximum of 1.8 times of the moment

caused by raising the arm only.

The above results are useful information for clinicians and physiotherapists to design a

training program for patients with upper limb disorders. For example, if a patient lifts a lkg

object to table height, it will cause 86% of additional shoulder moment than raising only the

arm to the same height without any load. When lifting a 2kg object to table height, 181% of

additional moment will act on the shoulder than raising the arm to table height without any

object in the hand.

It should be noted that the arm effects on the shoulder moments may vary between

subjects. For example a shorter or higher subject may cause a smaller or greater shoulder

moment. However the book effects on the shoulder moment may also be varied with subject, a

shorter or higher subject may have a shorter or longer lever arm from the book to shoulder

joint, which can cause a smaller or greater shoulder moments. Since only six subjects and two

masses were tested in this study, further investigations on more subjects and masses are

required to find out how the two factors interact in a wider range of subjects.
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6.1.3 Kinetic Results and Discussions II - Elbow Forces and Moments

The calculated results of elbow forces and moments are given and discussed in this

section as follows: three-dimensional elbow forces; inertial and gravitational effects on elbow

forces; three-dimensional elbow moments; inertial and gravitational effects on elbow moments;

inertial to total elbow moment ratios; and arm and book effects on elbow moments. The 3D

elbow forces and moments are considered to act at the proximal end of the forearm segment

and are expressed in the upper arm coordinate system, defined in section 5.2.2.

6.1.3.1 Three-dimensional elbow forces

The three-dimensional elbow forces are given in Figure 6.16, where the positive Fx

directs forward when the forearm and upper arm are in the free hanging position with the palm

facing forward, the positive and negative of Fy denote the tension and compression along the

long axis of the upper arm, and the positive Fz directs from medial epicondyle to lateral

epicondyle of the right arm (Figure 6.8b).

It can be seen that Fy increases from an initial positive value at the beginning of the

activity to a maximum positive peak value in the early lifting phase, then it decreases to the

minimum value at the end of the lifting phase. The maximum positive Fy increases with the

height of lifting due to the inertial effects of the arm and the book. During the lifting to below

shoulder height (table and shoulder heights) the minimum values are positive. However the

minimum value becomes negative and increases in the negative side of zero during the lifting

to above shoulder height (head and highest heights).

The Fy is generated mainly by the projections of gravitational and inertial forces of the

forearm-hand and the book on the longitudinal axis of the upper arm, which changes its

direction during the lifting activity. Because gravitational forces are constant in the vertical

direction the changes of Fy are due to the directional variation of the long axis of the upper

arm and the decrease of Fy may relates to the increase of the flexion and abduction angles of

the upper arm.

It has been found in section 6.1.1.2 that the maximum flexion and abduction angles of

the upper arm are about 65 and 44 degrees during the lifting to the shoulder height, which

indicates that the elbow joint is lower than the shoulder joint during the lifting to below the

125

i



40

( 1 ) Table height

•	 Fx

40

( 6 ) Table height

ION=
I—0 Fy

n 1- r	
,, 

11111 11111111M •	 Fx

gIJIr 2 lk
7-,	 , 0111 11111111 11111 1111 11111

0 20 ,oill IIIIIII 1 111111111 1MM
••	 FL 0

1_
11111 111 ' . 	 11111111- 0 Fy

2 FV11111111111111111111111i111111111111101011'

2 4•0444„,,..........""t oodiftewrio
2
2 odaras•wor.".4411144•

•	 Fz

I	 I-

40	 60	 80	 100 40	 60	 80	 100

.201 Time In % of cycle - Time in % of cycle

60
( 2 ) Shoulder height

60
( 6 ) Shoulder height

40

2.. iiirrL
•	 Fx 2

40
..7
irr-

dill ', 1111111 .7%	
1.=71%	 L.

•	 Fx

0 Fy
0
•

IIIIIII iiiiiiIiiiiiii•

ra.	
,	 gi 0 Fy CD

U
"Ik _	 .12'

II"	 •	 rL'I

L. .	 innriiiiiiiiiviiii 	
4.0,0001rptip 2 '	 111111111111 11 ;4 jill ii •	 Fz

•	 Fz

20	 40	 60	 80	 100 20	 40	 60	 80	 100

-20 Time in % of cycle - Time in % of cycle

( 3 ) Head height ( 7 ) Head height

40 40 111

2. Lig
•Fx

2
.V	 ,%	 Oh ill,Hir.

=L
..	 =

•	 Fx
,..L	 ad 111111111

111111.
•
•

•	 20u
•	 L•f I. 0 Fy 0

0,
o

PI 0 Fy

•	 Fz U.-

-
A%OZIL......

;._I.%	 . •	 Fz

.;111 ip. 1 111111111111t 	 80	 100 IrTT7711101111K-11

mi; ..'111 11111 In- ;. 8	 80	 100

-20 Time in % of cycle _ Time in % of cycle

( 4 ) Highest height ( 8 ) Highest height
60 60

40

2,..,	 ,L.•
6gr

!=

•	 Fx

2

40 Lir!.
ii.-	 n 	

t 41 DIIIIII•

•	 IL,-'L
•	 r7
IN	 -_

•• Fx

m20
IL)

;	
leimmilhm

0 Pi m

2 1:1 Fy

2 0u_ •t.'
17	

.

r	 r
7	 L
1 b=	 40	 4,	 100

•	 Fz
•	 •	 -r•	 rr•	 rs •
-	

40	 6	 100
1	

L
c

I I=

•	 Fz

_ _

,

144

Time in % of cycle Time in % of cycle

Lifting a lkg book	 Lifting a 21cg book
Figure 6.16 3-D elbow forces expressed in upper arm system

125A



( 1 ) Table height ( 5 ) Table height
50 50

-,41,
oFr —z,....— 30 , '0;

..n••:. OR
Z 30 41,,r?'‘	 '1;718ne. o Fr

o20u_
"1111r,•"	 .. -,

"Fg
8
6	 20u_

OR

-Fg

10 10

Ã.-411111....__ •AL&n.	 _AI: -	 .
0	 20	 40 6080 100 0	 20	 40	 60	 80	 100

Time in % of cycle Time In % of cycle

( 2 ) Shoulder height ( 6 ) Shoulder height
50 50

40 40 AP:.
2' 30 OFr 2 30 ...	

•	 ..- 0 Fr

8 ....
'

—'"- o R 8 on
tt 	 20 .• .Fg Lt	 20 .Fg

10

..'

10 •

ikANIII..‘ ''	 —Al\ al...

0	 20	 40	 60 80 100 0	 20	 40	 60	 80	 100

Time in % of cycle Time In % of cycle

( 3 ) Head height ( 7 ) Head height
50 50

40 40
...t.:AL

n

3° ztlii%.
OFr F WI

----	 ---,

S

••• 0 Fr
OA

020
u_ . FFg 20 .Fg

10
10 ,	 ,,

IAAllhln _ nnnn, 4n..--I-- -s--- •
0	 29	 40	 60

lime in % of cycle

80 100 0	 50	 100

lime in % of cycle

( 4 ) Highest height ( 8 ) Highest height
50 50

4..1... ,:.

F .1-1;.,
:k.;,, Fr

Z.:, 30 ,log.

IIIkM.
.

... 0 8 ,.; ..,.., oFr
20

•,,, ..-l• OR 20it OR
u_ -Fg .Fg

10

o

:',,

0	 20	 40	 60
1---
80

•
100

10

0

Adik_
' — Alk_41.•

20	 40	 60	 80	 100

Time ln % of cycle Time In % of cycle

Lifting a lkg book	 Lifting a 2kg book
Figure 6.17 Inertial and gravitational effects on elbow forces

Fr: resultant total force; Fi: resultant inertial force; Fg: resultant gravitational force.

125B



shoulder heights. Therefore the minimum Fy is positive, which is an axial extension on the

upper arm. When the flexion angle of the upper am increases to over 90 degrees (lifting

above shoulder height), the elbow joint is higher than the shoulder joint and the negative Fy

becomes axial compression on the upper arm, which increases with the height of lifting as

shown in Figure 6.16 (3), (4), (7), (8).

In contrast with the decrease of Fy in the lifting phase, Fx increases from zero at the

beginning of the activity to the maximum value at the end of lifting phase, then it decreases in

the lowering phase to zero at the end of activity. Because Fx also changes its magnitude with

the position of the upper arm it is difficult to relate Fx to any single component of the arm

movement. However the results show that the maximum Fx on the elbow occurs during the

lifting to the shoulder height and it reaches 64% and 68% of the maximum Fy, the dominant

component of elbow force, for the lifting of a lkg and 2kg books, respectively. The result

shows that Fx is a significant action at the elbow joint during the lifting activity.

The Fz on the elbow is positive, which directs from medial epicondyle to lateral

epicondyle all the time. Although the maximum Fz is the smallest among the three components

of elbow force, the action of Fz is not negligible because it varies little with time.

6.1.3.2 Inertial and gravitational effects on elbow forces

The resultant inertial and gravitational forces on the elbow are given in Figure 6.17

with the resultant total forces on the elbow.

It can be seen that the gravitational forces are dominant in each case of the lifting

activities, and the gravitational forces do not vary. The maximum magnitude of inertial elbow

force occurs during lifting to the highest height.

It can also be seen that the resultant elbow forces are the combined results of the inertial

and the gravitational elbow forces. The maximum total elbow force coincides in time with the

maximum inertial elbow force and increases with the height of lifting and the inertial effects.

The ratios of the maximum resultant inertial elbow force to the maximum resultant total elbow

force for each height and weight of lifting are given in Table 6.7. The results show the

significance of the inertial effects on elbow forces.

126



Table 6.7 The maximum resultant inertial elbow force to the maximum resultant
total elbow force ratios

Table height Shoulder height Head height Highest height
0.316Lifting a 1kg book 0.202 0.249 0.255

Lifting a 2kg book 0.196 0.231 0.259 0.291

6.1.3.3 Three-dimensional elbow moments

Three components of elbow moments about the three-axes of the upper arm coordinate

system for the lifting activities are given in Figure 6.18.

Mz is the dominant elbow moment for each case of the lifting. The positive Mz is a

flexion moment corresponding to elbow flexion. The maximum values of Mz in the lifting

phase are higher than that in the lowering phase, and increase with the height of lifting.

Mx and My are negative during the full cycle of the activity. When the forearm is fully

extended with 180 degrees of elbow angle, the negative Mx and My correspond to the

abduction and external rotation moments of the forearm, respectively. If the forearm is flexed

90 degrees, negative Mx and My become external axial rotation and abduction moments

respectively. When the forearm moves to anywhere different with the two positions, such as

that occurred in the lifting activity, it is difficult to relate the two components expressed in the

upper arm coordinate system to the clinical descriptions of forearm movements.

An alternative way is to represent the elbow moment in the forearm coordinate system.

The problem is that flexion of the forearm about the z-axis of the upper arm coordinate system

is often accompanioned by axial rotation of the forearm about its longitudinal axis. In this

case, it is difficult to tell whether flexion of the forearm about the upper arm (z-axis) is a

flexion-extension or adduction-abduction about the z-axis or x-axis of the forearm coordinate

system.

As a recommendation, it is benefical to express the elbow moments in both upper arm

and forearm coordinate systems by two components, one is the flexion-extension moment

about the upper arm (z-axis), and the other is the axial rotation moment of the foreann.

6.1.3.4 Inertial and gravitational effects on elbow moments

Resultant elbow moments caused by inertial and gravitational effects are given in

Figure 6.19 together with the resultant total elbow moment.

127



15

to

E

5
§	 r2

-10

( 1 ) Table height

•	 tvbc

0 My

Ir 111111111171M7 	 ' 	 or	 Mzquit_	 •	 1110, 4 , ll 0/101 1 14iiiiii II	 • ,	 •

Time in % of cycle

E
S
5
E
0
2

15

to

0

_5

-10

( 5 ) Table height

q*+ s
%

,..- s,	 111111ri oil! 1 iii l'" !; 1 1 IN 111 1 rit„	 011.,
!Hilt_	 111101

Time in % of cycle

•	 mx

0 my

•	 Mz

15

10

?

S 5

5
§	 0

-10

i-

( 2 ) Shoulder height

t	 • mx
if	

1.16.44 441.1441.4C I *I%	

0 My

,, iii ,,avisiew
;de 11.11111 ii il11 . 1, , 1 11 „ iii 1 . 1. 1 ,	 0	 ii , 	 •	 PAZ.4101,.	 '1110411110	 .

Time in % of cycle

E
S
.C.
$1.)
§

2

15

10

0

_5

-10

( 6 ) Shoulder height

p
I / Mx

0 My

•n 	 MZ
1,7
w lik,,,,,,	

I	 ,i-:
"Pliv„,„Iiiiii'll'Fri--,_	 'IA'Liintt,

' 411

mein%ofcycleTi

15

10

E
Z

5
E2	 i_.„

ga

-10

( 3 ) Head height

•	 tvu

0 my

,r„,,o, it1111 1111,tiliii 144. ,uli	 . 1! iiiilltvir 	;,„ owl 'PI- ,	 •	 Mt
'11;	 f tm 1 11 il

Time in % of cycle

E
Z
..a'coE
02

( 7 ) Head height
15 T

10 tilk

X.
•	 Mx

0 MY

•	 MZ
o

, .

-10

,0114r	 .	 .	 us-	 ,	 1.,.-	 11 , lb 1 Ili i 140111 I

r-
II L-

Time in % of cycle

15

E	
to

S 5 •

6E	 o
0	 i-

-10

(4) Highest height

4
:•

• •	 At(

o my
„,..,,	 N fi llin 1 aill r—u-111,1111111t;	 ill.g , 	

00
l
1ie ...	 • m,

' I I Ifq 0	 WI

Time In % of cycle

E
Z

V0
E
0
2

15

10

5

0

-10

( 8 ) Highest height
a
n•	 •
•	 ••	 •

•	 I'
••

011111114i w11111 II t? L''	 .,-._	 _

L	 '	 Itill
1 -	 r=	 i_II? ILL--	 L,

1706-

Time in % of cycle

•	 Mx

o My

•	 mz

Lifting a lkg book	 Lifting a 2kg book
Figure 6.18 Three-dimensional elbow moments expressed in the upper arm system

127A



20
( 1 ) Table height

20
( 5 ) Table height

g 15 '.-6 15
0 Mr

0 Mr
...a.0)	 10
Eo

5 0= 	•	 .
"r,8•Irt

AY -	 ....a.- .

0 Mi

-mg
79

E
0

10

.'

,,,
)116,tratt	 .01...?	 "'"„10146., .

7:T.:-:

AVAL	
•

0 m i
-mg

0	 50 100 0	 50	 100

Time in % of cycle Time in % of cycle

( 2 ) Shoulder height ( 6 ) Shoulder height
20

'..6 	 15 'as 15 . 0 Mr
0 Mr 0mi

E. 	 10 ,
C 0 Mi t 10 01 -Mg

E

r, Az % 04.111111‘ "
- Mg E

0 I* -.,..71,,rz,

ik,
	 •

Fitiisr. ". . ,Alln 	 Ai'..	 .

0	 50 100 0	 50	 100

Time in % of cycle Time In % of cycle

( 3 ) Head height ( 7 ) Head height
20 20-

E 	 15 E'	 15-,
•	 6.

E. 	10 -, 0 Mr •a‘
03

10 Alik..:	 ''•	 '•:. 0 Mr

1	 .* eN,,,
r, 1.....	 ..	 .,_.....„

4) MI E0
••i ....	 /	 '-'•:,15.::

0 MI
_Mg

.: •-, :...v41111‘"•	 ... ,	 . .1S. - .4 •
•	 "	

:,411L..'.	 ..•

0	 50 100 0	 50	 100

Time in % of cycle Time in % of cycle

( 4 ) Highest height ( 8 ) Highest height
20

I' 15 -a' 15 ,1::

"E	 1 o	 ..t
..

= •• 0Mr
V
0

1 o

•	 ••	 •
•
:	 .1-N,,, 0 mr

g
0	 •

.	
,

*
•	 ..	 A:41'k%

,:	 .

0
%	

e

./n..'...

Mg

o	 so loo 0	 so	 100

Time in % of cycle Time in % of cycle

Lifting a lkg book	 Lifting a 2kg book
Figure 6.19 Inertial and gravtational effects on elbow moments

Mr: resultant total moment; Mi: resultant inertial moment; Mg: resultant gravitational momen

127B



The elbow moment caused by gravitational effects is higher than that caused by inertial

effects, and the differences are greater for lifting a 2kg book than a lkg book. The results

indicate the significant contribution of gravitational effects on the total elbow moment when

the lifted mass is increased. The elbow gravitational moment varies greatly and has three peak

values in the full cycle of the activity. Since the elbow joint moves greatly with the rotations of

the upper arm during the lifting activities, the changes of the elbow gravitational moment is

not only due to the displacements of mass centres of forearm-hand and book but also due to

the movement of elbow joint.

6.1.3.5 Inertial to total elbow moment ratios

In order to quantitatively describe the inertial effects on the elbow moment, the resultant

inertial elbow moment to the resultant total elbow moment ratios at each instance of time are

given in Figure 6.20(1)-(2), and the averaged ratios over time are given in Figure 6.20(3).

It can be seen that the averaged inertial to total elbow moment ratio increases with the

height of lifting, and the ratios are higher for lifting a lkg book than lifting a 2kg book. The

maximum ratio reaches 0.49 during the lifting of a lkg book to the highest height and the

minimum ratio is 0.19 during the lifting of a 2kg book to the table height. The results indicate

that the contributions of inertial effects to the total elbow moment decrease with the increase

of lifted mass and increase with the height of lifting. Neglecting inertial effects in the

biomechanical analysis of lifting activities will results in up to 49% (average) lower estimating

of the resultant total elbow moment for lifting a lkg object to the highest height, and at least

24% lower (average) estimating of the resultant total elbow moment for lifting a lkg book to

table height. For lifting a 2kg book the corresponding values are 35% and 19%, respectively.

6.1.3.6 Arm and book effects on elbow moments

In order to investigate the influence of the lifted mass on the elbow moments during the

lifting activity, the resultant elbow moment caused by the arm and book (Ma and Mb)

involving both inertial and gravitational effects were calculated and are given in Figure 6.21

with the resultant total elbow moments (Mr).

It can be seen that the resultant elbow moments caused by the forearm-hand have nearly

the same patterns during the lifting of a lkg and 2kg book to the different heights, and the
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maximum Ma increases slightly with the lifting height. Since Ma is produced by the

gravitational and inertial effects of the forearm-hand, the results indicate that the forearm-

hand experiences a similar movement during the lifting activities.

It can also be seen that the resultant elbow moments caused by the book (Mb), are all

higher than the corresponding Ma for the lifting of the lkg and the 2kg book to the different

heights, and the difference between Mb and Ma during the lifting of a 2kg book is bigger than

that during the lifting of a lkg book. The results are obvious because the book is at the distal

end of the forearm-hand segment, and the moment lever arm from the book centre to the elbow

joint is longer than that from the mass centre of forearm-hand segment to the elbow joint.

Therefore, if the lifted weight is the same as (or nearly same as) the mass of forearm-hand

segment, the lifted weight will produce a bigger elbow moment than the forearm-hand

segment. Although Ma can be influenced by the body build (height and weight) of the

subjects, Mb can also be influenced by the characteristics of the subjects because the taller

subject usually has a longer forearm-hand, i.e. a longer moment lever arm from the lifted mass

to the elbow joint. For these reasons, it is difficult to say how much lifted mass can produce

an equivalent elbow moment as raising the arm only. From Figure 6.21 it can be found that

the maximum Mb is a little higher than the maximiun Ma during the liffing of a llcg book to

the four different heights. The result indicates that for the subjects of this study, the maximum

resultant elbow moment caused by the lkg book is nearly the same as the maximum resultant

elbow moment caused by the forearm-hand segment without load on the hand during the lifting

to the four different heights.

In order to quantitatively describe the effects of lifted mass on the elbow moment, the

ratios of the resultant elbow moment caused by the lifted book to that caused by the forearm-

hand were calculated at each instance of time and the averaged ratios over time are given in

Figure 6.22. The results show that the highest ratio occurs at lifting to the shoulder height,

while the lowest ratio occurs at lifting to the highest height. The results are different with the

same ratios for the shoulder moment which decrease with the height of lifting. Also the

Mb/Ma ratios of elbow moment in Figure 6.22 are much higher than the same ratios for the

shoulder moment in Figure 6.15, and vary from 2.1 to 2.6 for the lifting of a lkg book and 4.1

to 5.5 for the lifting of a 2kg book. Therefore more attention should be given to the elbow than

the shoulder in this aspect. Since only two lifted masses were tested in this study further
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investigations on more masses are required in order to give a full picture of the influence of

the lifted mass on the elbow moment.

6.2 Door Opening and Closing Activity

Thirteen trials were analysed for the door opening/closing activity and the mean

kinematic and kinetic results are given in the following.

6.2.1 Kinematic Results and Discussions

The kinematic results given in this section involve the stick diagram presentation of ann

movement (Fig. 6.23), upper arm rotation angles with respect to the axes of the trunk

coordinate system (Fig. 6.24), variation of elbow angle (Fig. 6.25), axial rotation angles of

upper ann and forearm (Fig. 6.26), and the 3-D velocities and accelerations of the hand centre

(Fig. 6.27).

The major arm movement occurs in the sagittal plane (Fig.6. 23(1)). It was found that

the flexion/extension angle of the upper arm varies from 53 degrees of flexion to 33 degrees of

extension. The outward rotation angle of the upper arm changes from 16 degrees at the

beginning of the activity to 142 degrees when the door is at the largest opening (Fig. 6.24),

while the abduction angle is nearly unchanged.

The elbow angle decreases from 159 degrees to 67 degrees during the pulling phase

(Fig. 6.25). Comparing Fig. 6.25 with Fig. 6.23(1) shows that the decrease of the elbow angle

is mostly due to the extension of the upper arm, but less due to the movement of the forearm.

It was also found that both upper arm and forearm rotate (axially) externally during the

pulling phase when opening the door. The forearm axial rotation angle is very small with a

maximum value of 6.5 degrees, which is reasonable since holding the handle by the hand

limits the axial rotation of the forearm.

Similar to the lifting activity, the velocity and acceleration (Vx, Ax) of the hand centre

in the major direction of movement (posterior-anterior) describe two loops, while the velocities

and accelerations in the vertical and transverse directions describe more than two loops which

means that the hand experienced a number of accelerations and decelerations in the two

directions during the activity.
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Figure 6.24 Upper arm rotation angles about the axes of trunk frame
during the door opening/closing activity

Figure 6.25
	

Elbow angle during door opening activity

Figure 6.26 Axial rotation angles of upper arm and forearm
during door opening/closing activity. Positive and negative values
refer to the internal and external rotation angles, respectively.
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6.2.2 Kinetic Results and Discussions

The kinetic results given in this section are the 3-D forces and moments on the hand

centre, shoulder and elbow.

The three-dimensional hand forces and moments measured by the force transducer are

given in Fig. 6.28. The forces and moments act on the hand centre at the distal end of the

forearm-hand segment and are expressed in terms of the three-axes of the hand coordinate

system (Fig. 6.28(3)). Figure 6.28(1) shows that Fy is dominant where a positive Fy is a

pulling force and is related to the resistance provided by the door closer. The magnitude of Fy

in the pushing phase, when the door is being pushed to close, is much lower than that in the

pulling phase. The result is mainly due to the auto-close function of the door closer. At the

beginning of the pushing phase, a small pushing force (-Fy) is required to start the process,

but when the door is being closed, the function of the door closer is working, it causes a quick

closing of the door in the later pushing phase. The quick closing action is even quicker than

expected by the subject, and produces a pulling force (+Fy) on the hand of the subject. The

maximum resultant hand force Fr is 23N.

The highest component of hand moment is flexion (+Mz)/extension (-Mz) moment with

a maximum value of 2.4Nm. The maximum resultant hand moment is 2.8Nm.

The shoulder forces given in Fig. 6.29 show that the shoulder forces are mainly due to

the gravitational force of the arm and the hand load, while the inertial effect plays a less

important role.

The 3-D total shoulder moments and the 3-D shoulder moment caused by each effect

are given in Fig. 6.30. It was found that the flexion moment (+Mz in Fig. 6.30(1)) causing the

flexion of the upper arm is the dominant shoulder moment. The flexion moment is due to the

gravitational effect (Fig. 6.30(2)). It can be seen that the flexion moment (+Mx) decreases

sharply in the early pulling phase, and increases from the later pulling phase to the maximum

magnitude of 9.87Nm. The decrease of flexion moment in the early pulling phase is due to the

decrease of Mgz caused by the gravitational effects when the arm moves backward, and the

flexion moment Mhz (Fig. 6.30(4)) caused by the hand loads. Since the Mgz and Mhz are

positive, the flexion moment Mz at the end of the activity is higher than that at the beginning

of the activity. The results show that the magnitude of flexion shoulder moment depends on

the posture and geometry of the upper arm relative to the door. It can be predicted that if the
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(5) Resultant elbow force
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(5) Resultant elbow moment
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door is pushed to open, Mhz will become positive and the total flexion moment Mz at the

beginning of the activity will be much higher than Mz in Fig. 6.30(1) when the door is pulled

to open. Therefore it can be concluded that pulling to open a door is easier than pushing to

open a door because less shoulder flexion moment is required in the case of the activity being

conducted by the arm only without assistance of other parts of the body.

The second major shoulder moment is the abduction moment (-Mx in Fig. 6.30(1)) with

a maximum magnitude of 4.15Nm. The maximum My is only 1.76Nm, the lowest among the

three components of total shoulder moment.

Figure 6.30(5) shows that the major contributor to the resultant total shoulder moment

is the gravitational effect (Mg). The peak value of Mg is 7.93Nm. The second major

contribution to the total shoulder moment is that caused by the hand loads Mh with a

maximum value of 4.07Nin, a little higher than half of the maximum Mg. The resultant

inertial shoulder moment is the lowest of the three contributions, and the maximum Mi is only

2.32Nm. The ratio of the maximum resultant inertial shoulder moment to the maximum

resultant total shoulder moment is 0.23, which is much lower than the same ratios of the

lifting activity. The peak resultant total shoulder moment Mr is 10.06Nm.

The elbow forces (Fig. 6.31) and moments (Fig. 6.32) are expressed in the upper arm

coordinate system in the same way as for the lifting activity. The dominant component of

elbow force is Fy with a maximum value of 34N. The maximum magnitude of the second

major component of elbow force Fx is 14.3N, and the maximum value of Fz is only 9N.

Considering the relative position of the upper arm to the door and trunk it was found that in

the early part of the pulling phase the maximum elbow force is along the long axis of the

upper arm, while in the later pulling phase the pulling force acting along the long axis of the

forearm becomes significant.

It can be seen (Fig. 6.31(5)) that the maximum resultant elbow force due to the hand

load Fh is much higher than the gravitational force Fg, and the maximum resultant total force

Ft is mostly due to the hand load. Therefore it can be concluded that the action of the hand

load is more important than the action of gravity on the elbow. This result is a major

difference from the shoulder force where the gravitational effect is more important than the

effect of the hand load in this activity. The inertial elbow force Fi is low in magnitude and the

numerical results show that the maximum resultant inertial elbow force is only 6.9% of the
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maximum total elbow force, which becomes the major difference between the door

opening/closing (pushing/pulling) activity and the lifting activity where the inertial effect is

dominant as discussed in pervious sections. The maximum resultant total elbow force is 34N

which is lower than the maximum resultant total shoulder force of 48N. It can be predicated

that greater muscle force is required on the shoulder than on the elbow for conducting door

opening/closing activity in the way specified in this study.

The flexion moment (+Mz in Fig. 6.32(1)) is the dominant elbow moment and the

maximum Mz is 4.5Nm. The resultant maximum elbow moments (Fig. 6.32(5)) caused by the

gravitational effect and hand loads are of the same level. The maximum Mg is 2.06Nm and

maximum Mh is 2.51Nm. The results indicate that the gravitational effect and hand load

effect are equally important to the resultant total elbow moment. The resultant inertial elbow

moment Mi is of very low magnitude with a maximum of 0.63Nm. The ratio of the maximum

Mi to maximum Mt is only 0.13 and at the point of maximum Mt the ratio Mi/Mt is even

lower. Therefore neglecting inertial effects will not cause a significant difference to the

estimated maximum resultant total elbow moment for the door opening/closing activity.

6.3 Driving Activity

Six subjects were tested for the driving activity and 14 trials were analysed. The mean

results are given in this section in the same way as for the door opening/closing activity.

At the beginning of the driving activity the hand is at about the 4 o'clock position as

shown in Fig. 6.33. The turning angles of the steering wheel during the activity were

calculated and are given in Fig. 6.34, where the increase and decrease of the steering wheel

angle represent anticlockwise and clockwise rotation respectively. As shown in Fig. 6.34, the

steering wheel was rotated anticlockwise from the beginning of the activity to about 90

degrees position, then rotated 180 degrees clockwise to about -90 degrees position followed by

anticlockwise rotation to the original position. For simplicity, the rotation of the steering wheel

is referred to as anticlockwise turning when the rotation angle of the steering wheel is positive,

or clockwise turning when the rotation angle is negative in the following.
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Transducer

Figure 6.33	 Subject holding the steering wheel
at the beginning of the driving activity
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6.3.1 Kinematic Results and Discussions

A general view of the arm movements (represented by the line connecting shoulder,

elbow, wrist joint centres and hand centre) for turning the steering wheel from 90 degrees to

-90 degrees are given in Fig. 6.35. In the sagittal plane view, a decrease of flexion angle of the

upper arm during clockwise turning of the steering wheel can be observed, while a small

rotation of the forearm about z-axis of trunk coordinate system can also be found. In the

frontal plane view, the hand centre and wrist joint describe a half circle, but the band and wrist

at the highest and lowest points (y-coordinate) are not on the same vertical line. The reason for

this result is that when the steering wheel is rotated to the 90 degrees position (12 o'clock

position) the hand is at about the 1 o'clock position, while when the steering wheel is at the -90

degrees position (6 o'clock position) the hand is at about the 7 o'clock position. Fig. 6.35(3)

shows that the upper arm moved from an outward rotation angle about the y-axis of the trunk

frame to an inward rotation angle position.

The variations of upper arm angles with respect to the axes of the trunk coordinate

system are shown in Fig. 6.36, where the ab(positive)/adduction(negative) and flexion angles

are measured from the upper arm at the free banging position and the

inward(negative)/outward(positive) angles are measured from a position where the arm is fully

stretched out and the long axis of the upper ann is parallel with the posterior-anterior axis of

the trunk coordinate system. The most significant changes among the three position angles of

the upper arm is the ad/abduction angle, which varies from 80.5 degrees abduction to 23.8

degrees adduction. The maximum and minimum flexion angles are 90.5 and 43.8 degrees

respectively. The inward/outward rotation angle varies between -23.8 degrees to 20.6 degrees

during the driving activity. Comparing Fig. 6.36 with Fig. 6.4 and Fig. 6.24, it can be found

that the adduction and inward rotation angles of the upper arm are observed only in the

driving activity. The results indicate that driving is much more complicated than the lifting and

door opening/closing activities in terms of upper arm movement, and that the upper arm needs

to move to the medial side of the shoulder joint which is not required during the lifting and

door opening/closing activities.

The maximum elbow angle is 151 degrees when the steering wheel is turned to 90

degrees anticlockwise and the minimum angle is 132 degrees when the steering wheel is turned

to -90 degrees position. The elbow angle during the driving activity can be influenced by the
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Figure 6.36 Upper ann rotation angles about the axex of trunk frame

Figure 6.37 Elbow angle during driving activity

Figure 6.38 Axial rotation angles of upper arm and forearm during the driving activity
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sitting posture of the subject (mainly the distance between subject and steering wheel). Since

the distance between the steering wheel and subject was decided by the subject as the most

comfortable position, the above results represent a normal range of elbow angle for the driving

activity.

A maximum of 70 degrees of forearm internal (positive, pronation) rotation angle (Fig.

6.37) and maximum of 73.5 degrees of forearm external (negative, supination) rotation angle

were found for the driving activity. The result is much greater than that found in the lifting

and door opening/closing activities. The maximum value of upper arm axial rotation is 20.2

degrees (positive, internal rotation), which is much lower than the maximum forearm axial

rotation angle. Therefore good flexibility of forearm axial rotation is required during driving.

6.3.2 Kinetic Results and Discussions

The major component of hand force (Fig. 6.39(1)) is Fz acting along the transverse

direction of the hand (Fig. 6.28), which is greater during anticlockwise turning than clockwise

turning of the steering wheel. The transverse force Fz on the hand can also be considered as

the force acting on the rim of steering wheel along the tangential direction. The second major

component of hand force is Fx acting in the direction perpendicular to the palm, and the

lowest component (Fy) of hand force is on the pushing and pulling direction. As shown in Fig.

6.39(1), the resultant hand force Fr follows the pattern of Fz, which indicates the importance

of the transverse hand force during the driving activity. However the transverse hand force has

received little attention in the functional assessment of driving ability. Most previous

assessments of driving ability were made on assessing the pushing/pulling or grip strength as

reviewed in chapter 2, however according to the above results very low push/pull force is

required during the driving activity, and the transverse force Fz is most important.

The resultant hand moments Mr (Fig. 6.39(2)) have similar forms with supination

moment (+My) and radial deviation moment (+Mx) during anticlockwise and clockwise

turning of the steering wheel, respectively. The maximum resultant hand moment is 4.92Nm

and occurs in the clockwise turning of the steering wheel. The results show that the ability to

generate a hand radial/ulna deviation moment (Mx) is more important than the

pronation/supination (My) and flexion/extension (Mz) moments for the driving activity.
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(5) Resultant Forces
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(5) Resultant moment35
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Both Fy and Fz on the shoulder (Fig. 6.40(1)) are of high magnitude but they are

caused by different effects, Fy mainly by the gravitational effect of the arm (Fgy in Fig.

6.40(2)) and Fz mainly by the hand loads (Fhz in Fig 6.40(4)). Therefore the gravitational

effect and hand loads are all important contributions to the total shoulder force Ft (Fig.

6.40(5)). The maximum Fh of 52.8N is slightly higher than the maximum Ft of 51.9N. The

maximum Fi is 3.2N, only 6% of the maximum Ft, therefore neglecting inertial effects will not

cause much difference on the estimated maximum total shoulder force of the driving activity.

It is interesting to find that the resultant shoulder force Fh in Fig. 6.40(5) is greater for

anticlockwise turning than for clockwise turning of the steering and its major component Mhz

(Fig. 6.40(4)) has the same sign in each direction of turning.

In contrast to the lifting and door opening/closing activities, the major component of

total shoulder moment during driving is My (Fig. 6.41(1)), the inward (positive) rotation

moment in both turning directions of the steering wheel due to the hand load (Fig. 6.41(4)).

Therefore turning a steering wheel requires a high inward rotation strength on the shoulder

rather than flexion/extension strength required for lifting and door opening/closing activities.

The maximum magnitude of Mx, My, Mz on the shoulder are 7.19Nin, 29.51Nm, and

16.45Nin, respectively. The contribution of hand load to the resultant total shoulder moment is

much higher than the other effects. The maximumMh and Mt (Fig. 6.41(5)) are 33.25Nm and

30.63Nm, respectively. The magnitude of Mg varies at a level about 1/3 of the maximum

magnitude of Mh and Mt with a maximum value of 9.19Nm. The resultant inertial shoulder

moment Mi is at a very low level of magnitude with a maximum value of 2.15Nrn, about 7%

of the maximum Mt and 6.5% of the maximum Mh.

The elbow forces and moments during driving are given in Fig. 6.42 and Fig. 6.43

where the effect on the total and resultant elbow forces and moments can be observed.

Comparisons of these results with that of other activities are given in section 6.5.

6.4 Cutting Activity

Six subjects were tested for the cutting activity and 14 trials were analysed. Three

cuttings in each trial were normalised to a 100% of time base, and the mean results of 14 trials

are given. Since the arm has a very small range of movement during the cutting activity, only
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kinetic results are presented in the following in the same way as for the door opening/closing

and driving activities.

6.4.1 Kinetic Results and Discussions

The major component of hand force (Fig. 6.44(1)) is Fx, which is perpendicular to the

palm and positive Fx directs from palm to the back of hand. The maximum Fx is 9.3N, and

maximum Fr, the resultant hand force, is 10.1N. The three components of hand moment (Fig.

6.44(2)) during the cutting activity are similar in level of magnitude. The maximum magnitude

of Mx, My, Mz, and resultant hand moment Mr are 1.02Nin, 0.74Nm, 1.15Nzn, and 1.56Nm,

respectively.

As shown in Fig. 6.45(1), Fy is high in magnitude and is a major component of

shoulder force for the cutting activity, while Fx and Fz are all of low magnitude. The

maximum magnitude of Fx, Fy, and Fz are 7.1N, 35.1N, and 5.9N, respectively. It is

interesting to find that the resultant total shoulder force Ft (Fig. 6.45(5)) is lower than the

resultant shoulder force Fy caused by the gravitational effect at most of the data points. The

reason for this can be found from Fig. 6.45(2) and Fig. 6.45(4), where all three components of

shoulder force caused by the hand loads are in the opposite direction to the corresponding

components of shoulder force caused by the gravitational effect. Therefore the resultant

shoulder force decreases with the increase of cutting force. The maximum Ft, Fg, Fh and Fi

are 35.8N, 35.5N, 10.7N, and 4.1N, respectively.

It can be seen that shoulder moments Mgz (Fig. 6.46(2)) and Mhz (Fig. 6.46(4)) are in

opposite directions, which causes the flexion moment Mz (Fig. 6.46(1)) to be lower than Mgz,

a reduction of gravitational effect on the shoulder flexion moment. If a greater cutting force

were exerted, a greater reduction of gravitational effect on shoulder flexion moment would

resulted. If the cutting force increases to a certain magnitude the gravitational effect will be

fully balanced out and produce an extension moment on shoulder. Since Mgx and Mhx are

also in opposite directions, the negative Mx, an adduction moment, can be stated as dominated

by the gravitational effect during the cutting activity. However it should be noted that the

gravitational effect on the adduction/abduction shoulder moment can be greatly changed by
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(5) Resultant forces
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(5) Resultant moments
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(5) Resultant forces
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the arm position during the cutting activity. The maximum magnitudes of Mx, My, and Mz on

the shoulder are 3.75Nm, 2.67Nrn, and 6.11Nni, respectively.

The magnitude of Mg (Fig. 6.46(5)) is higher than the magnitude of Mi and Mb which

are of similar level of magnitude. The results show that the gravitational effect is more

important than the inertial effect and the hand load effect to the total shoulder moment for the

cutting activity. The inertial effect produced mult-peak values in the resultant total shoulder

moment Mt (Fig. 6.46(5)) and its components (Fig. 6.46(1)) since the inertial shoulder

moment and the shoulder moments caused by gravitational effect and hand loads are in similar

level of magnitude. Special attention should also be paid to the inertial effect and hand load

effect which can be changed greatly by the speed of cutting and the magnitude of cutting force

exerted during the activity. The maximum Mt, Mg, Mi, and Mh are 7.14Nin, 5.72Ntn,

3.47Nin, and 3.43Nm, respectively.

As with shoulder forces and moments, the elbow forces Fgy and Fgz (Fig. 6.47(2))

caused by the gravitational effect are greatly reduced by the hand load effect Thy, Fhz (Fig.

6.47(4)), which cause the resultant total elbow force Ft (Fig. 6.47(5)) to be much lower than

Fg the resultant gravitational elbow force. The maximum magnitude of Fh is much higher than

that of Fi (Fig. 6.47(5)). The maximum magnitude of the three components of total elbow

force Fx, Fy, Fz (Fig. 6.47(1)) are 4.0N, 11.4N, and 10.0N, respectively. The maximum

magnitude of Ft, Fg, Fi, and Fh are 15N, 14.9N, 3.5N, and 10.1N, respectively.

The highest elbow moment is Mz (Fig. 6.48(1)), the flexion (positive) moment, which is

mostly due to the gravitational effect Mgz (Fig. 6.48(2)). The inertial effect Miz (Fig. 6.48(3))

also results in an increase of the elbow flexion moment. Although the Mhy (Fig. 6.48(4)) is

high in magnitude, the negative Mgy (Fig. 6.48(2)) and Miy (Fig. 6.48(3)) cause the

magnitude of My (Fig. 6.48(1) to be lower than that of Mx and Mz. The maximum magnitude

of the three components of elbow moment Mx, My, and Mz are 1.50Nm, 1.27Nm, and

1.90Nin, respectively. The highest resultant elbow moment is Mh (Fig. 6.48(5)) caused by the

hand load, and Mg is also high in magnitude. Although the resultant inertial elbow moment Mi

(Fig. 6.48(5)) is the lowest among the three effects, its magnitude relative to Mt is much

higher than that of the door opening/closing, and driving activities presented in previous

sections. The maximum magnitudes of elbow moment Mt, Mg, Mi, and Mh are 2.25Nm,

2.17Nm, 1.47Nm, and 1.39Nin, respectively.
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6.5 Summary of Shoulder and Elbow Moments of Different Activities.

For the purpose of comparing the loads on the shoulder and elbow joints during

different activities, the mean values of the maximum shoulder and elbow moments are

represented and discussed in this section in two parts. The mean values and standard

deviations of maximum moment are .calculated from the maximum moments of each trial

before time normalisation. It should be noted that the method of calculating the mean values of

the maximum moments is different with the method used in previous sections where the

maximum moment is obtained from the means of normalised results. Therefore it is easier to

understand that the results given below will be greater in value than the corresponding part in

previous sections. There are two reasons for choosing the method to present the results of

maximum moment, first it can avoid lower estimation of the maximum moments, second the

standard deviations reflect the differences between maximum moments. Appendix C shows the

repeatability of shoulder moments for all subjects during the lifting activity.

6.5.1 Summary of Shoulder Moments of Different Activities

The summary of shoulder moments of different activities are given in two parts. The

first part summarises the 3-D results and the second part summarises the results by different

effects.

3-D maximum shoulder moments

In Figure 6.49, Mr represents the mean values of the maximum resultant shoulder

moment, and Mx, My, and Mz represent the mean values of the maximum shoulder moment

about each axis of the trunk coordinate system. For simplicity, Mx, My and Mz given in

Figure 6.49 are absolute values without considering the signs. Details of the results are given

numerically in Table 6.8 with sign (Max, Min) and standard deviations.

It can be seen that the flexion/extension moment Mz is the major component of the

shoulder moment for most activities investigated in this study, the only exception being the

driving activity in which the inward/outward rotation moment is the major component of

shoulder moment and is caused by the big moment lever arm (Fig. 6.35(3)) and hand force

(Fig. 6.39(1)). The results indicate that having enough shoulder flexion/extension strength is

most important for conducting most upper limb activities of daily living, although the
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Driving
Highest 2kg

Head 2kg
Shoulder 2kg

Table 2kg
Highest 1 kg

Head lkg
Shoulder Ikg

Figure 6.49 3-D mean values of the maximum shoulder moment of different activities
Mc resultant moment; 	 Mx: Adduction/abduction moment
My: Inward/outward rotation moment; 	 Mz: Flexion/extension moment

Figure 6.50 Mean values of the maximum resultant shoulder moment by different effects
Mt: resultant total moment 	 Mr: resultant moment by gravitational effect
Mi: resultant moment by inertial effect	 Mh: resultant moment by hand loads

Note: In Figure 6.49 to Figure 6.52, the table, shoulder, head, and highest refer
to the height of the book lilt.
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movement patterns and the purposes of the activities may be different. For example the

purpose of the lifting activity is to move an object upward and downward, the door

opening/closing can be considered as moving an object forward and backward and the cutting

activity can be performed with a small range of arm movement.

The second major component of the shoulder moment is Mx, the adduction/abduction

moment, for most activities except driving. This result indicates that possessing sufficient

adduction/abduction shoulder strength is also an important condition for the execution of most

upper limb activities of daily living. It has been found in previous sections that significant

adduction/abduction of the upper arm always accompanies flexion/extension. This is why the

adduction/abduction shoulder strength is also important for performing upper limb activities

of daily living. The results also indicate that 3-D biomechanical analysis is required for fully

understanding the load patterns on the shoulder joint during various activities of daily living.

As shown in Figure 6.49, the maximum resultant shoulder moment Mr and maximum

magnitude of the major components Mz and Mx of the lifting activity increase with the

increase of the weight to be lifted and the increase of lifting height. The maximum values of

Mr, Mx, My and Mz of the door opening/closing and cutting activities are lower than the

corresponding part of lifting a 1 kg book to table height. It can also be seen that the highest

magnitude of shoulder moment occurs during the driving activity. These results provide a

general image of how much moment acts on the shoulder joint for different activities. The

information is very important for the assessment of loads acting on the shoulder and can be

used to quantitatively grade the difficulty of each activity by the magnitude of shoulder

moment. Since the shoulder moment must be generated by the muscle around shoulder joint,

the information can also be used to assess the patient's ability of performing the activities of

daily living.

Therefore according to the magnitude of shoulder moments (Fig. 6.49) the cutting is the

easiest activity investigated in this study, and the door opening/closing is the second easiest

activity. The most difficult activity is driving, it not only requires a high flexion/extension

shoulder moment (Mz) but also needs a high inward/outward rotation shoulder moment (My)

which is also the highest component of the shoulder moment among all the activities

investigated in this study. For the lifting activity, it is obvious that difficulty increases with the

increase of the weight to be lifted and the height of lifting.
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Maximum resultant shoulder moments caused by different effects

The mean values of the maximum resultant total shoulder moment Mt and resultant

shoulder moment from each effect are given in Figure 6.50. The data used in Figure 6.50 are

given in Table 6.8 with standard deviations.

The activities investigated in this study can be divided into two groups, the activities

without external loads on the hand (such as lifting), and the activities with external hand loads

on hand (driving, door opening/closing and cutting).

Since there are no external loads on hand , the shoulder moments are only influenced by

gravitational and inertial effects during lifting activity. The gravitational and inertial shoulder

moments (Mg and Mi) are similar in magnitude, and Mg is slightly higher than Mi for the

lifting of a 1 kg book. When the lifted weight was increased, the gravitational shoulder

moments (Mg) increased greatly but the inertial shoulder moments increased only slightly.

Because the lifting of lkg or below can be considered as a light weight, it can be concluded

that during light weight lifting both gravitational and inertial effect are important factors for

the assessment of shoulder moments. Relative to the gravitational effect the inertial effect to

shoulder moment decreases with the increase of lifted weight. This finding is in agreement

with the results obtained in section 6.1.

During the activities of door opening/closing, driving and cutting, not only the inertial

and gravitational effects but also the hand loads will influence the shoulder moment. As shown

in Figure 6.50 the shoulder moment caused by the hand loads during the driving activity is the

highest shoulder moment. This result reflects the important effect of hand loads on the

shoulder moment during driving and indicates that driving is more difficult than the other

activities.

Compared to the driving activity, the shoulder moments caused by hand loads for the

cutting and door opening/closing activities are quite low, but it is still ranked highest and

second highest among the three effects for the cutting and door opening/closing activity,

respectively. The difference between Mg, Mi and Mb is quite small for the cutting activity and

the magnitude of Mi for the door opening/closing activity is very low. Therefore it can be

concluded that all three effects are important for the assessment of shoulder moment of the
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Figure 631 3-D mean values of the maximum elbow moment of different activities
Mr: resultant moment; Mx, My, Mz are expressed in upper arm coordiante system

Figure 6.52 Mean values of the maximum elbow moment by different effects
Mt total ; Mg: by gravitational effect; Mi: by inertial effect; Mh: by hand loads
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cutting activity, while the inertial effect on the shoulder moment is less important for the door

opening/closing and driving activities.

6.5.2 Summary of Elbow Moments of Different Activities.

The elbow moments of the different activities are summarised in this section (Fig. 6.51,

Fig. 6.52, and Table 6.9) in the same way as for the summary of shoulder moment.

3-D Maximum elbow moments

As shown in Figure 6.51, the flexion/extension elbow moment Mz (Fig. 6.51) is the

major component of the elbow moment for all the activities despite the movement patterns and

purposes of the activities being different as stated in above section. This indicates that

sufficient elbow flexion/extension strength is required for performing most upper limb

activities of daily living. The results are also in agreement with the fact that flexion/extension

of the forearm is the major function of elbow joint.

It is interesting to find that Mx and My are at nearly same level of magnitude for all the

activities except driving. Since most of the activities were performed with free style, except the

driving activity in which the hand moves in a specified route, the results can be explained as

that the subject adopted consciously or unconsciously a style of movement to load the major

elbow moment on the z-axis (directing from medial epicondlye to lateral epicondyle) and to

enable the moments on the x-axis and y-axis of the upper arm coordinate system to be as low

as possible. This load pattern for the elbow may be the optimal distribution of elbow moment.

Maximum resultant elbow moments caused by different effects

As shown in Figure 6.52, for the activities with external band loads (driving, door

opening/closing and cutting) the elbow moment (Mh) caused by hand loads is higher than the

elbow moments caused by gravitational and inertial effects (Mg and Mi). For the driving

activity Mh is so high that the influences of Mi on the total elbow moment can be neglected in

the estimation of total elbow moment. Therefore it can be concluded that the hand load is a

major contributor to the elbow moment for the activities with external hand loads.

For activities without measured external hand loads, such as lifting, the gravitational

elbow moment Mg and inertial elbow moment Mi are at similar levels of magnitude for the
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lifting of a lkg weight, and Mg is higher than Mi for the lifting of a 21cg weight. Therefore it

can be concluded that the gravitational elbow moment increases with increase of the lifted

weight, in contrast with this the inertial effect on elbow moment will increase if the lifted

weight were to be reduced.

Finally, it should be noted that the above results were obtained under test conditions

with the preferred style which each subject adopted while performing the activities of this

study. It is clear, however, that the shoulder (or elbow) moments will be changed if the test

conditions were different or the activities were performed in a specified style. For example if

the relative position between the shoulder and hand (or equipment i.e. the door, steering wheel

and cutting table) were different from that of this study, the shoulder moments will be changed

accordingly. While the changes of shoulder moments due to this reason can be determined

using Eq. B.10 in Appendix B. Generally, according to Eq. B.10, 1 cm difference in x-

direction (forward/backward) will cause a change of - 0.01Fz Nm in My (inward/outward

rotation moment) and 0.01Fy Nm in Mz (flexion/extension moment) respectively, where the

Fy and Fz are the components of hand force expressed in the trunk coordinate system. In the

case of the door opening/closing activity, the maximum hand force of-3.405N, -23.153N, and

8.14'7N along the three axes of the hand coordinate system occurred at the early pilling phase

when the hand coordinate system was approximately parallel to the trunk coordinate system

and the X, y, z axes of the hand frame correspond to the Z, X, Y axes of the trunk frame.

Therefore the three components of hand force in the trunk coordinate system are -23.153N,

8.147N, and -3.045N, respectively. If the change of the relative position of the shoulder and

hand in the vertical direction is 1 cm (dy = 0.01m in Eq. B.10), each of the three components

of shoulder moment changes -0.0314m, 0.0Nm, and 0.23Nm, respectively. The changes of

shoulder and elbow moments in other cases can also be estimated in the same way, but further

investigations are beyond the purpose of this study.
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Chapter Seven

Conclusions and Recommendations

7.1 Conclusions

Although the purpose of this study is to investigate the biomechanical characteristics of

four upper limb activities, the most significant achievement of this study is the implementation

of the residual analysis technique into the computer program which allows noisy kinematic

data collected by the motion analysis system to be filtered at the auto-selected cut-off

frequency for each data sequence. It therefore avoids the problems of over-filtering (cut-off

frequency is too low) or allowing too much noise to pass (cut-off frequency is too high) which

often occurs when using a fixed cut-off frequency for a data file or a set of data files. The

expense of using this method is that it uses more computer time for selecting the cut-off

frequency for each data sequence than using a fixed cut-off frequency, however it can save a

lot of time for the frequency analysis during the exercise of choosing a fixed cut-off frequency,

especially for users who are unfamiliar with the frequency analysis technique.

The second methodological achievement of this study is the development of the new

method of representing the velocity and acceleration of points of interest in a phase plane. This

method can provide more information than the conventional method of representing the

velocity and acceleration in a time domain. It has proved that this method is an effective, easy

and clear way of investigating the velocities and accelerations of the lifted book in the lifting

activities and of the hand centre in the door opening/closing activity.

The results obtained in Chapter Six provide a lot of useful information for improving

the understanding of the biomechanical nature of the four activities and for clinical reference.

The information and the conclusions drawn form the results are given in the following.

Lifting activity

It was found that the upper arm rotates externally during the lifting phase and rotates

internally during the lowering phase. The maximum axial rotation angle of the upper arm

increased with the height of lifting.
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The kinematic results show that the book moves at greater velocity and acceleration in

the lifting phase than in the lowering phase, and the 2kg book was lifted at smaller velocity

and acceleration than the 1 kg book in the principal direction of the movement.

From the observed upper arm rotation angles it is suggested that the lifting height

should be arranged a little lower than the shoulder height for minimising the scapular

movement, any design of lifting to over the highest height should also be carefully considered

because it may cause movement of the spinal column.

It was found that the flexion moment is the major component of the shoulder moment

for the lifting activity, and the abduction moment is the second. The maximum resultant total

shoulder moment and flexion shoulder moment increase with the height of lifting.

The inertial effect has a significant contribution to the total shoulder moment during the

lifting activity, and the contribution increases with the height of lifting. Neglecting inertial

effects in the biomechanical analysis of the lifting activity will result in up to 47% (averaged)

lower estimating of the resultant shoulder moment for the lifting of a lkg book to the highest

height, and at least 30% lower (averaged) estimating of the resultant total shoulder moment

for the lifting of a 1 kg book to table height. For the lifting of a 2kg book the corresponding

values are 36% and 25%, respectively. Results also show that the inertial to total shoulder

moment ratios decrease with the increase of the lifted mass, therefore the contribution of the

inertial effects to the total shoulder moment decrease with the increase of the lifted mass.

The shoulder moments are higher in the lifting phase than in the lowering phase.

The major component of elbow force is along the long axis of the upper arm., and the

major component of the elbow moment is the flexion moment.

Due to the increase of the inertial effects the maximum resultant elbow moment

increases with the height of lifting.

It was found that the contribution of the inertial effect to the elbow moment is similar to

the contribution of inertial effect to the shoulder moment. The averaged inertial to total elbow

moment ratio increases with the height of lifting and decreases with the increase of the mass to

be lifted. It is concluded that neglecting inertial effects in a biomechanical analysis of the

lifting activity will result in up to 49% (averaged) lower estimating the resultant total elbow

moment for the lifting of a lkg book to the highest height, and at least 24% lower estimating
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the resultant total elbow moment for the lifting of a lkg book to the table height. For the

lifting of a 2kg book the corresponding values are 36% and 19% respectively

Door opening/closing activity

The major component of the 3-D shoulder moment during the door opening/closing

activity is the flexion moment. The highest flexion and resultant total shoulder moments occur

at the beginning and end of the door opening/closing activity. The second major component of

the shoulder moment is the abduction moment. The highest abduction moment occurs at the

middle of the activity. Therefore it can be concluded that 3-D analysis of the shoulder moment

is required for the door opening/closing activity or pushing/pulling activities in general.

Among the three effects (hand load, gravitational and inertial effects), the weight of the

arm is the major contributor to the shoulder moment. The second major contributor to the

shoulder moment is the hand load. Due to the influence of these effects, it is concluded that

pulling to open a door will reduce the resultant shoulder moment, while pushing to opening a

door will increase the resultant shoulder moment.

It was also found that the three components of gravitational elbow force are equally

distributed along the three axes of the upper arm coordinate system at the beginning and end

of the door opening/closing activity when the arm is fully stretched to hold the door handle.

In the early pulling phase the maximum elbow force is along the long axis of upper

arm, while in the later pulling phase the maximum elbow force is along the long axis of

forearm.

The action of hand loads on elbow moment is more important than the action of gravity,

which is a major difference with the shoulder force where the gravitational effect is more

important than the effect of hand loads.

The flexion moment is the major component of 3-D elbow moment. The gravitational

effect and hand load effect are equally important to the resultant elbow moment. The inertial

effect of forearm-hand has little contribution to the resultant total elbow moment. Therefore,

to neglect the inertial effect of the forearm-hand will not cause a significant difference on the

estimated maximum resultant total elbow moment for the door opening/closing activity.

Driving activity
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From the kinematic point of view, driving is the most complicated activity investigated

in this study, because it is the only activity which requires upper arm adduction, upper ann

inward rotation and a large range of forearm axial rotation.

The major component of hand force during driving acts along the transverse direction

(z-axis in Figure 6.28(3)). Therefore in the assessment of driving ability more attention should

be paid to the transverse hand force rather than to the grip and pushing/pulling strengths.

Among the three effects (hand load, gravitational effect and inertial effect), the hand

load is the most important contributor to the forces and moments on the upper limb joints, the

gravitational effect is the second, while the inertial effect can be neglected for the normal

speed of turning of the steering wheel.

During driving the right hand exerts a bigger resultant force for the anticlockwise

turning than the clockwise turning of the steering wheel, and the resultant forces and moments

on the elbow and shoulder joints have similar patterns.

Due to the hand loads, the major component of the 3-D shoulder force acts along the

lateral to medial direction. The major component of the 3-D shoulder moment is the inward

rotation moment about the vertical axis of trunk coordinate system.

The major component of the elbow moment is the flexion moment.

Cutting activity

The resultant total shoulder force decreases with the increase of the cutting force,

because the cutting and gravitational shoulder forces are in opposite directions. The cutting

force also results in a reduction of the resultant total shoulder moment, due to the fact that the

shoulder moments caused by the cutting force and the gravitational effect are in opposite

directions. Although the gravitational effect is the major contributor to the total shoulder

moment, the inertial and hand load effect also have a significant influence on the total shoulder

moment.

The elbow force is dominated by the gravitational effect under the test conditions of this

study. The inertial effect has little influence on the total elbow force.

All three components of the elbow moment are in the low level of magnitude.
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Summary

According to the magnitude of the maximum resultant total shoulder moment, the

difficulty of the four activities can be graded as cutting, door opening/closing, lifting, and

driving. For the lifting activity the difficulty increases with the increase of the mass to be lifted

and the height of lifting.

The major component of the shoulder moment is the flexion/extension moment for most

of the activities except driving, therefore it is concluded that having adequate shoulder

flexion/extension strength is most important for conducting most upper limb activities of daily

living.

The above conclusions indicate that the biomechanical characteristics of arm movement

can be used as the parameters for the assessment of the ability of doing the ADL, and that

biomechanical analysis is an effective way to determine these parameters.

7.2 Recommendations For Further Work

Since only four upper limb activities were investigated in this project, more

biomechanical studies on a wider range of activities are required in order to construct a data

base for the assessment of the ability of performing ADL and clinical reference. The

investigations can also be extended to the lower limb and whole body activities using the same

method. Further investigations on the individual activity can be conducted in the following

aspects.

For the lifting activity, the study of more lifted weight levels is required to find out the

relationships between the loads on upper limb joints and the lifted weight. The relationship

may be non-linear and is very important information for the task and work design of

prevention of upper limb disorders.

For the driving activities, the loads on both hands and upper limb joints need to be

investigated to find out the difference and correlation between the loads on the left arm joints

and the right arm joints, because the patient may have one arm with disorders and one normal

arm.

During the door opening/closing activity, the subject usually walks to the door and uses

the movement of the trunk and lower extremities to assist the pulling/pushing actions of the

upper limb. This assistance is extremely important for the patient with upper limb disorders,
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therefore further investigations of the influence of movement of trunk and lower extremities on

the load of upper limb joints is required. This investigation should involve the analysis of the

whole body movement and forceplate data measured under the foot.

Finally, investigations of mechanical energy expenditure, mechanical energy

transformation at joints, and muscle activities during the activities are required for the

complete understanding of the biomechanical nature of these activities.
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Appendix A

Derivation of Equation 5.58

The derivation of equation of 5.58 begins with the description of the rotation of a rigid

body about an arbitrary axis of rotation in a three-dimensional reference frame. Instead of

starting the description of the rigid body rotation by the positional changes of a particle in the

rigid body as usually used in classical mechanics, the following analysis is based on the

positional changes of a unit vector fixed in the rigid body. The reason is that the relative

position between any two particles in the rigid body remains unchanged during the rotation of

the rigid body, and the positions of the two particles form a unique vector which moves in

three-dimensional space with the whole body rotation. The positional changes of a body-fixed

vector with the rotation of the body can be described as a translation with its starting point

and a rotation about an axis passing through the starting point and parallel to the axis of

whole body rotation. If the starting point of the body-fixed vector is on the axis of whole body

rotation, the translation of the vector vanishes and the rotation of the vector is the same as the

whole body rotation. Therefore the rotation of a rigid body about an axis of rotation can be

determined by the rotation of a body-fixed vector with starting point on the axis of rotation (or

intersecting with the axis of rotation). The concept is of fundamental importance, it allows any

body-fixed vector to be translated onto the axis of the whole body rotation for the analytical

purpose of investigating the rotation of the rigid body without losing generality, because the

translation of a vector does not change the orientation of the vector.

In Figure A.1, xyz is a reference Cartesian coordinate system with base vector

e=[ i j k ]T is the axis of rotation and n is its unit vector. AB and AC represent

the positions of a body-fixed unit vector n 1 and n 2 before and after rotation, respectively.

DB is perpendicular to AD, E is the mid point of BC and DE is perpendicular to BC. A is the

starting point of the body-fixed vector on the axis of rotation. e is the rotation angle.

The purpose of the following analysis is to find n 2 from the known n, n 1 and rotation

angle 0 . First some geometrical relations in Figure A.1 can be obtained by vector operations

as:

BC = n 2 - n 1	(A.1)

AE = ( n 2 + )/ 2	 (A.2)
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0'

Figure A.1 The rotation of a body-fixed unit vector about an arbitrary axis
(0'0") in a three-dimensional reference frame (xyz). The n is the unit vector of the
rotation axis 00",; and n2 are the body-fixed vector before and after the rotation,
9 is the rotation angle. The body-fixed unit vector has been transformed onto the
rotation axis for the analytical purpose.
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IBC' = 2 IDEI Tan(0/2)	 (A.3)

Because BC is perpendicular to both n and DE, it can be expressed as:

BC = a i n x DE	 (A.4)

where a l is a constant to be determined. The magnitude of vector BC is:

IBCI = al n I IDEI sin (7t12 ) = a l IDEI	 (A.5)

because n is a unit vector. From Equation A.3 and A.5, a l can be found as:

a l = 2 Tan(0/2)	 (A.6)

Thus

BC = 2 Tan(0/2) n x DE

= 2 Tan(0/2) n x (AE - AD)

=2 Tan(0/2) n x AE
	

(A.7)

because n and AD are parallel. Combining Equations A.1, A.2, and A.7, it can be found that:

n 2 - n l = Tan(0/2) n x ( n 2 + n i ) (A.8)

The equation A.8 describes the relation between n, n 1 , n 2 and 0, but it needs to be solved to

find unit vector n 2 . For simplicity equation A.8 is written as:

n 2 - n i = a x (n 2 +n i )	 (A.9)

where	 a = Tan(0/2) n	 (A.10)

In order to solve the equation A.9, n 2 is assumed to have the following form:

n 2 =C 1 n 1 +c2 a+c 3 axn 1 (A.11)

where c l , c 2 , and c 3 are constants to be determined. Substituting Equation A.11, into A.9

and comparing the coefficients of corresponding vector, c 1 2 c 2 2 and c 3 can be found.

Finally n 2 is obtained as:

n 2 = cos(0) n 1 + (1-cos(0))( n• n 1 ) n +sin(0) n x n i (A.12)

The equation is important. Knowing the unit vector of the axis of rotation n, the rotation

angle 0, a body-fixed unit vector n 1 before rotation, the orientation of the body-fixed unit

vector n 2 after rotation can be determined. The equation can also be expressed in matrix form

by the following procedure. First the unit vectors n, n i , and n 2 are expressed in matrix

forms as:

n=[n]T[e]=[ l 1 2 1 3 ][e]	 (A.13)

n i =[n i ] T [e] = [n i n2 n3 ][e]	 (A.14)

n2 = [n2 ] r [ e]= [ni2 n22 n32 [ e	 (A.15)
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[e]= [ i j k] T	 (A.16)

where [ e ] is the base vector of the reference Cartesian coordinate system and

9 12, 13	

• 

three components of unit vector n in the reference frame

n i	 n	 n i
, 2	 3 ,

• 

three components of unit vector n i in the reference frame

n2 n2 n 2
1 1 2 t 3 , = three components of unit vector n 2 in the reference frame

Then by vector operation on the second term of the right hand side of equation A.12

becomes

(n- n, )n=(([n] T [e])•([ni ] r [e])) []T [e]

=([n]T([e]•[e]T)[ni ])[n] T [e]

=[n] T [n i ][n]T[e]

=[ni ]T[n][n]T[e] (A.17)

in which matrix transpose properties were used. The vector product in the last term of

Equation A.12 is

n x n1 =[n1 i T [it- ]rEei (A.18)

where [ ii ] T is the transpose of Skew-symmetric matrix [ ii ] and

[ 0 

—13 12

[fi ] = 13	0	 —11

—12 	 11	0

Substituting Equations A.13 to A.18 into equation A.12, then equation A.12 becomes:

[n2 
]

T [e]=cos(0)[n i ] T [e]+(1-cos(0))[ni ] T [n][n] T [e]+sin(0)[n 1 ] T Fii] l. [e] (A.20)

Removing [e] on each side of the above equation, it becomes:

[n 2 ] T =cos(0)[n 1 ] T +(1-cos(0))[ n 1 I T [n][n] T +sin(0)[n 1 ] T [ñ ] TT	 (A.21)

Then transposing each side of Equation A.21, it is written as:

[n 2 ]=cos(0)[n i ]+(1-cos(0))[n][n]T [n i 14-sin(0)[ii ][n l ]	 (A.22)

For simplicity, remove the square brackets and rewrite the equation in matrix and vector form

as:

n 2 = A(0, n) n 1 	 (A.23)

where

A(0, n) = cos(e) I + (1- cos(0)) n n T sin(0)[n] (A.24)

is the transformation matrix, I is a unit matrix, [ii] has been given in equation A.19, and n

n T can be explicitly written as:

(A.19)
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1
(A.25)n T_

/1

[12

/3

}II	 12

13) [
11 11	 11 12

1211	 1212

13 11	13 12

11 13

1213

1313

The n 1 and n 2 in equation A.23 can be considered as column vectors. It can be seen

that the transformation matrix A(0, n) is only related with the rotation axis n and rotation

angle 0, therefore the orientation of any body-fixed vector n 2 after rotation can be determined

from its orientation directed by n 1 before rotation, the transformation matrix A and using

Equation A.23. An alternative approach to derivation of the Eq. 5.58 and Eq. A.24 can be

found in Bisshopp (1969).

Appendix B

The purpose of this Appendix is to formulate the changes of shoulder (or elbow)

moments with a small shoulder displacement relative to the band where a constant force is

acted.

Considering the arm as a rigid segment, the relative position between shoulder and hand

is

r = [x y zir
	

(B.1)

and the hand force is:

F =[Fx Fy Fz]T
	

(B.2)

Then the shoulder moment is:

M=rxF	 (B.3)

=Mxi+Myj + Mzk
	

(B.4)

which can be written in matrix form as:

M= [Mx My Mz]T = [yFz — zFy, zFx — xFz, xFy,—yFxf
	

(B.5)

The changes of the shoulder moment is assumed as:

dM= clltlx i+ ch'vlyj+ chllzk
	

(B.6)

In case the shoulder joint has a small displacement relative to the hand:

dr = cixi+ dyj+ dzk
	

(B-7)

then each component of dM in Eq. B.6 can be written as:
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°Mx °Mx d + °Mx dzdMx =	 dx+ Try7 y

dMy °MY °MY d + aMY dz=	 dx+ _ y
Ox	 OY	 Oz

OMz eMz OMz
dMz = - dx+	 dz

Ox	 ÜP'y	
az

From Eq. B.5, the partial derivatives in Eq. B.8 can be derived as:
0Mx	 0 Mx	 0Mx 

= 0
'
	= Fz, 	 = Fy

Ox	 Oy	 Oz

°MY = Fz
' °

MY = 0 °MY = Fx
O x	 Oy	 ' 0 z

OMz	 OMz, OMz ,
= Fy,	 = r x

'
 - = v

Ox	 0 y 	 0 z

Then considering Eq. B.7 and Eq. B.8, Eq. B.6 can be written in matrix form as:

	

dM =[

dMx	 0 Fz -Fyldx
dMy1=[-Fz 0 Fx dyl=p1dr

	

dMz	 Fy -Fx 0 dz

(B.8)

(B.9)

(B.10)

From above equation the increment of shoulder moment due to the increment of relative

position between shoulder and hand can be determined, when the hand force F is constant. The

dM, F, and dr in Eq. B.10 are all expressed in the same coordinate system therefore if the

hand force and shoulder moment are measured or expressed in different coordinate systems a

coordinate transformation is required before using Eq. B.10.
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Appendix C
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