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Abstract

The output from a Self-Amplified Spontaneous Emission (SASE) Free-Electron

Laser (FEL) has poor temporal coherence because the SASE process is a localised

collective interaction that occurs on a scale far smaller than the typical length of

the electron bunch used within the FEL. In this thesis a new technique, called

High-Brightness SASE [1], is described in which the temporal alignment between

radiation and electrons in the FEL is manipulated using magnetic chicanes. This

delocalises the SASE process allowing the temporal coherence length of the radi-

ation to grow exponentially and be extended by up to two orders of magnitude.

Simulations are shown which indicate the technique may generate fully transform-

limited FEL pulses in the hard X-ray at 0.15 nm. In the second part of the thesis

it is shown how the magnetic chicanes may be used to synthesise the effect of

an optical cavity with an axial mode structure, and how these axial modes may

be phase locked, using concepts from conventional lasers, to produce FEL pulses

with durations an order of magnitude shorter than those predicted by other short

pulse schemes. This technique is called the Mode-Locked Amplifier FEL [2] and

simulations are shown which predict pulse durations of approximately 20 attosec-

onds in the hard X-ray at 0.15 nm.
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Chapter 1

Introduction

The Free-Electron Laser (FEL) was first proposed by Madey in 1971 who pub-

lished the seminal theory of a small gain process in a relativistic electron beam

and undulator system [3]. The first experimental demonstrations of amplifica-

tion [4] and lasing [5] were achieved at Stanford a few years later. The historical

development of the FEL and current prospects for future development are sum-

marised in a number of recent review articles [6, 7, 8].

In the Self-Amplified Spontaneous Emission (SASE) FEL [9, 10], as will be

discussed, the cooperation length lc is a scale length for the local collective insta-

bility that develops between the relativistic electrons and the radiation as they

co-propagate through an array of alternating polarity dipole magnets called an

undulator. The cooperation length controls the coherence length of the radia-

tion output, preventing the SASE FEL from generating transform limited pulses

because the electron bunch length is much greater than the cooperation length.

In techniques for the generation of short intense pulses within the FEL, which

typically involve changing the properties of the electron bunch over a very short

section of the bunch then arranging that only that section of the bunch lases, the

cooperation length lc defines the minimum output FEL pulse length. Thus the

cooperation length is fundamental—it gives a maximum coherence length and

also a minimum pulse length. In this thesis, it is shown how both these limits

can be broken by orders of magnitude using magnetic delay sections to manipu-

late the temporal alignment between electrons and radiation—in Chapter 3 the

HB-SASE scheme [1] is described in which it may be possible to generate fully

transform limited FEL pulses in the hard X-ray, and in Chapter 4 the Mode-

Locked Amplifier FEL [2] is described which may be able to generate FEL pulses
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CHAPTER 1. INTRODUCTION 9

of duration ∼20 as in the hard X-ray, shorter than the typical cooperation length

by an order of magnitude.

In order to understand fully the motivation for this work, and to develop

a framework in which to assess the effect achieved, it is necessary to first un-

derstand the basics of the FEL interaction and how this interaction defines the

properties of the output radiation. The principle of operation of the FEL is

thus described in Chapter 2 followed by a derivation of a set of differential equa-

tions used to describe the FEL interaction within a defined set of conditions. To

briefly summarise, the FEL mechanism is an interaction between a collection of

relativistic electrons, as they propagate through a transverse magnetic field of

periodically alternating polarity, and a co-propagating electromagnetic radiation

field, as shown schematically in Figure 1.1. The transverse electric field compo-

nent couples to the transverse electron velocity allowing an exchange of energy to

occur between the electron kinetic energy and the electric field. The mean elec-

tron longitudinal velocity is less than the velocity of light c due to the fact that

the electron has a rest mass and because the transverse oscillations increase the

path length. This means that the electrons progressively slip back with respect to

the field and the distance by which an electron slips back, relative to the field, in

one period of the magnetic field, defines a resonant wavelength λr for which the

electron transverse oscillation remains in phase with the transverse electric field

component. At the resonant wavelength a sustained transfer of energy can then

occur allowing the electron and radiation systems to couple. The resonant wave-

length can be adjusted by varying the degree of transverse oscillation and hence

the velocity difference between electrons and radiation—in practice this can be

achieved by adjusting the strength of the magnetic field. As the electron bunch

continues to propagate an instability develops in the coupled electron/radiation

system which shifts the electron phase leading to a periodic electron bunching

and strong coherently enhanced emission such that the radiation power grows

exponentially.

In a SASE FEL the initial field is the spontaneous radiation emitted at the

start of the undulator. This emission is noisy, or phase-uncorrelated, due to the

random longitudinal positions of the emitting electrons, known as shot noise. The

FEL acts as a narrow band amplifier (due to the fact that it relies on a narrow

resonance to operate) so the output emission, although coherently enhanced in

power due to the fact that the electrons are bunched at the radiation wavelength
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INCOHERENT EMISSION

Electrons randomly phased

COHERENT EMISSION

Electrons bunched at

radiation wavelength

Figure 1.1: Schematic showing the principle of the free-electron laser interac-
tion. As the initially randomly phased electrons oscillate transversely within the
undulator, the electric field of the radiation couples to the electron transverse
velocity giving a sustained transfer of energy. An instability develops in the
coupled electron/radiation system which shifts the electron phase leading to a
periodic electron bunching and strong coherently enhanced emission such that
the radiation power grows exponentially.

by the interaction, is just amplified noise with the radiation phase found to be

discontinuous along the output pulse. Simple 1D analysis shows [11] that the

output comprises a series of spikes of random phase and amplitude, separated by

a maximum distance 2πlc, where lc is the slippage distance in one gain length

of the interaction. Thus the relative slippage plays an important part in the

evolution of the longitudinal coherence of the FEL output and the cooperation

length defines the scale length over which the electrons and radiation can interact

collectively. In a typical SASE FEL the electron bunch length greatly exceeds

2πlc so the output pulse comprises many spikes and is far from transform limited.

Several methods may be used to improve the temporal coherence of the SASE

FEL output. These can be divided into two general classes. In the first class, an
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externally injected source of good temporal coherence ‘seeds’ the FEL interaction

so that noise effects are reduced. This seed field may be either at the resonant

radiation wavelength, where available, or at a subharmonic which is then up-

converted within the FEL. These methods, which include High Gain Harmonic

Generation (HGHG) [12, 13, 14, 15] and Echo-Enabled Harmonic Generation

(EEHG) [16, 17], rely on a synchronised external seed at the appropriate wave-

length, pulse energy and repetition rate. In the second class, the coherence is

created by optical manipulation of the FEL radiation itself, for example by spec-

trally filtering the SASE emission at an early stage for subsequent re-amplification

to saturation in a self-seeding method [18, 19, 20, 21], or via the use of an optical

cavity [22, 23, 24, 25, 26, 27, 28, 29]. Methods in this class rely on potentially

complex material-dependent optical systems which limit the ease and range of

wavelength tuning. If an optical cavity is used, the electron source repetition

rate should also be in the MHz regime to enable a practical cavity length.

The initial aim of the work in this thesis was to develop an alternative tech-

nique for the improvement of SASE longitudinal coherence. The idea, inspired

by earlier proposals to use phase shifters to stimulate the production of higher

harmonics by disrupting the development of the fundamental [30], was to use

magnetic delay sections between modules of a long FEL undulator to repeatedly

delay the electron bunch during the FEL process. In this way the longitudinal

slippage could be greatly enhanced leading possibly to improved temporal coher-

ence. The details of this work are given in Chapter 3 where it is shown that in fact

the longitudinal coherence length can be increased beyond lc by over two orders of

magnitude leading to the enticing prospect of fully transform limited X-Ray FEL

pulses [1]. The name given to this scheme is High-Brightness SASE because the

improvement in longitudinal coherence gives a corresponding increase in spectral

brightness. In the early stages of this work it was discovered that if the delays

between undulator sections are equal then a periodic structure emerges in the ra-

diation temporal profile with period equal to the delay applied between modules

added to the natural slippage in one module. This effect hinders the develop-

ment of a smooth temporal profile in the FEL output pulse. In the frequency

domain the pulse exhibits evenly spaced spaced side-band frequencies around the

FEL resonance with no fixed phase relationship between the sidebands. In the

HB-SASE scheme this effect is removed by choosing an appropriate sequence of

unequal delays so that the supported sideband frequencies for each delay are
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unique and are thus not continually amplified to saturation. Equivalently this is

a spectral filtering of the growing radiation.

In Chapter 4 further investigation is made of the modal radiation structure

discovered during the development of HB-SASE in Chapter 3. This leads to the

concept of the Mode-Locked Amplifier FEL [2]. The idea is to retain the modal

structure by using equal delays but to add a modulation to the electron beam with

a frequency equal to the spacing between the modes. This introduces side-bands

to each mode which overlap neighbouring modes allowing them to phase-lock. In

the temporal domain this converts the previously observed periodic structure in

the radiation pulse to a train of cleanly separated phase-locked radiation spikes

with the duration of each spike dependent on the number of periods in each

undulator module, rather than the cooperation length lc, giving the possibility

of pulse durations ≪ lc. Simulations for operation in the hard X-ray predict

the production of attosecond pulse trains of GW peak power and the duration

of each pulse ∼20 as. The mode-locked FEL has been studied and developed

further, and results included in Chapter 4 include: simulations of the technique

in non-averaged codes which can access an enhanced frequency range and suggest

the possibility of producing pulse lengths in the zeptosecond regime; study of

mode-locking applied to very large energy spread beams such as those produced

by plasma based accelerators; application of mode-locking to single-spike SASE

operation using parameters of a proposed future light source facility. Other work

by the author and co-workers has produced a number of related peer-reviewed

publications. The main results of these are summarised at the end of Chapter 4

and include: application of the scheme to the direct amplification of a coherent

seed field generated in gas while retaining the attosecond pulse structure of the

seed [31]; complete start-to-end simulations using a realistically modelled electron

bunch distribution [32]; mode-locking in a oscillator FEL in the high gain and

low gain regimes [33].

Finally, Chapter 5 contains a brief conclusion and looks ahead to consider

future research possibilities and the prospects for experimental realisation of some

of the ideas presented in this thesis.



Chapter 2

FEL Theory

2.1 Introduction

A free-electron laser is a radiation source in which relativistic electrons propa-

gate along the axis of a transversely oscillating dipole magnetic field provided

by a device called an undulator. It is well known that an oscillating electron

emits electromagnetic radiation with a frequency f equal to that of the oscilla-

tion and that this radiation propagates at velocity c as an electromagnetic wave

of wavelength λ = c/f . In the rest frame of a relativistic electron moving along

the undulator axis at velocity v = βc the magnetic field of period λw is Lorentz

contracted by the factor γ = (1 − β2)−1/2 giving emission at wavelength λw/γ.

To a stationary on-axis observer the wavelength of the propagating field is fur-

ther contracted by a relativistic Doppler shift of factor γ(1 + β) giving observed

wavelength

λ =
λw

γ2(1 + β)
≃ λw

2γ2
(2.1)

where the approximation assumes the source is relativistic so that β ≃ 1. In fact,

as will be shown in the following sections, the resonant wavelength of the free-

electron laser is slightly modified by a factor (1+K2/2), where K is the undulator

deflection parameter (the maximum deflection angle of the electrons normalised

by γ) which depends on the undulator magnetic field and period. K has typical

value between 1 and 3 so this correction is relatively small and in fact K can

easily be changed by varying the gap between the undulator arrays to smoothly

tune the FEL wavelength. Equation (2.1) shows one of the most important

characteristics of the free-electron laser—because the electrons are relativistic it

13
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is easy to achieve emission at very short wavelengths. For example, for λw = 3 cm

and beam energy 2 GeV, so that γ = eE[eV]/m0c
2 ≃ 4000, the wavelength of

emission is around 1 nm, or for beam energy 6 GeV the emission is in the 1Å

regime.

In this chapter a derivation is presented of a set of differential equations that

describe the FEL interaction. The starting points for the derivation are the

Lorentz force equation and the one-dimensional wave equation which become

coupled together, and the final form of the equations is amenable to numerical

integration. In Chapters 3 and 4 these equations are solved numerically in a

simulation code which models the HB-SASE FEL and the Mode-Locked FEL.

The equations themselves can be analysed via a linearisation process to gain an

insight into the process of exponential gain. An outline of this analysis is given

together with the important results. The chapter concludes with a brief summary

of the output properties of the SASE FEL.

2.1.1 Derivation of the Resonance Condition

Electron Trajectory in the Undulator

The electron trajectory in the undulator is found from the Lorentz force equation

which gives the force on a charged particle of charge q moving in an electric field

E and magnetic field B with velocity v:

F = q(E+ v ×B). (2.2)

The relativistic momentum is given by p = γm0v with γ = (1 − v2/c2)−1/2 and

m0 the rest mass. Writing F = dp/dt, changing the independent variable t to the

propagation distance along the undulator axis z using dz = vzdt, where vz = cβz,

the Lorentz force equation (2.2) can be written

d(γm0v)

dz
=

e

cβz
(E+ v ×B). (2.3)

In the absence of a radiation field, so that E = 0, and for γ = γ0, a constant,

(2.3) becomes
dβ

dz
=

e

βzγm0c
(β×B). (2.4)
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where β = v/c. On axis the planar undulator field is given by the expression

B = Bw[0, sin(kwz), 0] so the cross product β × B = x̂βzBy + ẑβxBy. For

relativistic particles βz ≫ βx at all times during motion in the undulator so the

second term can be neglected. Taking only the x̂ component

dβx

dz
=

eBw

γm0c
sin(kwz). (2.5)

This can now be integrated to determine the transverse velocity component

βx =
eBw

γm0ckw
cos(kwz) (2.6)

which has maximum value

βx,max =
eBw

γm0ckw
. (2.7)

The maximum deflection angle θmax = βx,max/β ≃ βx,max for β ≃ 1 which can be

written

θmax =
K

γ
(2.8)

where

K =
eBw

m0ckw
(2.9)

is the undulator deflection parameter. It should be noted that the rms undulator

parameter for a helical undulator, as used in the derivation of the coupled FEL

equations later in this thesis, has the equivalent notation

āw =
eBw

m0ckw
. (2.10)

Equation (2.6) can now be expressed

βx =
K

γ
cos(kwz). (2.11)

With βx known the variation of βz with z can be determined using

β2
z = β2 − β2

x (2.12)

= 1− 1

γ2
− K2

γ2
cos2(kwz) (2.13)
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the cosine term of which can be averaged over one undulator period to give the

mean longitudinal velocity

β̄z =

[

1− 1

γ2
− K2

2γ2

]1/2

(2.14)

=

[

1− 1

γ2

(

1 +
K2

2

)]1/2

(2.15)

≃ 1− 1

2γ2

(

1 +
K2

2

)

. (2.16)

Here the approximation (1−x)n ≃ 1−nx has been used which is valid for x ≪ 1

and therefore justified because γ ≫ 1.

Interaction with Co-Propagating Wave

The next step is to consider the classical interaction between the electron and

a constant co-propagating electromagnetic wave [34]. The change in electron

energy due to the EM wave is given by

dγm0c
2

dt
= −eE · v (2.17)

The EM wave can be described as a product of a real envelope |ξ| and an oscil-

latory term:

E(z, t) = x̂Ex(z, t) = x̂|ξ|cos(kz − ωt+ φ) (2.18)

where k is the wavenumber, ω is the angular frequency and φ is the phase. The

electron has a transverse velocity component given by (2.6) and this component

couples to the transverse electric field of the EM wave. The corresponding electron

energy change is thus

dγm0c
2

dt
= −eExvx (2.19)

= −e|ξ|cos(kz − ωt+ φ)
cK

γ
cos(kwz) (2.20)

which becomes

dγm0c
2

dt
= −e|ξ|cK

2γ
(cos[(k − kw)z − ωt+ φ] + cos[(k + kw)z − ωt+ φ]) .

(2.21)
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Equation (2.21) is a superposition of a rapidly varying wave of wavenumber (k−
kw) with a slowly varying wave of wavenumber (k+kw). The slow wave is known

as the ‘ponderomotive’ wave and from the above has phase

θ = (k + kw)z − ωt+ φ. (2.22)

with (k + kw)z − ωt the phase of the electron with respect to the ponderomotive

wave and φ the radiation phase.

A continuous exchange of energy can occur when the electron longitudinal ve-

locity is matched to the phase velocity of the ponderomotive wave—in this case

the relative phases of the electron transverse velocity component and the pon-

deromotive wave remain constant as the electron and wave co-propagate through

the undulator. Depending on the value of this relative phase, energy is transferred

either from the electric field to the electron kinetic energy, or vice versa.

From the condition that the phase velocity of the slow wave ωr/(k + kw) is

matched to the electron mean longitudinal velocity cβ̄z an expression can be found

for the resonant wavelength λr of the field at which energy transfer can occur.

Using (2.16),

c

[

1− 1

2γ2

(

1 +
K2

2

)]

=
ωr

kr + kw
(2.23)

=
2πc
λr

2π
λr

+ 2π
λw

(2.24)

= c

(

1 +
λr

λw

)−1

(2.25)

≃ c

(

1− λr

λw

)

(2.26)

where in the final step the approximation is valid because (from (2.1)) λr/λw ≪ 1.

Hence rearranging gives the expression for the resonant FEL wavelength

λr =
λw

2γ2

(

1 +
K2

2

)

(2.27)

Due to the process described above an electron energy modulation is created

along the electron bunch with the direction of energy transfer dependent on the

relative phase between electron oscillation and ponderomotive wave. Half of the
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electrons gain energy and half of the electrons lose energy. This energy modula-

tion causes the electrons to start to bunch at the resonant electron wavelength

allowing a coherent interaction between electrons and radiation. In a constant

field, as assumed so far, the bunching process cannot describe any energy gain

of the radiation field due to conservation of energy. The gain process can be

described by lifting this restriction of a constant field and considering how the

electron bunching and field growth self-consistently drive each other in an expo-

nentially unstable feedback loop.

2.2 Derivation of the One-Dimensional FEL

Equations including Pulse Propagation

In the previous analysis the electron motion has been examined. The elec-

tron transverse velocity due to the magnetic field of the undulator was deter-

mined, then the coupling of this transverse velocity with the electric field of a

co-propagating electromagnetic wave was examined, leading to the derivation of

the FEL resonance condition and the description of electron bunching in a con-

stant radiation field. In order to describe the process of radiation amplification a

set of differential equations which describe self-consistently the coupling between

electrons and radiation is derived. It is necessary to extend the analysis by lifting

the restriction that the radiation field is constant and by considering the evolu-

tion of the electron longitudinal velocity. The effect of the magnetic component

of the radiation field upon the electrons is also included but shown later to be

small enough to be neglected.

The final set of equations, which are those solved numerically in the investi-

gations of the HB-SASE and mode-locked FELs, are averaged over an undulator

period. For the planar geometry considered so far (planar undulator and planar

co-propagating field) this averaging process is complicated by an oscillatory term

in the longitudinal electron motion, leading to the introduction of Bessel func-

tions in the final result. It is therefore convenient to switch to a helical geometry,

where the electrons oscillate on a helical path though a helical undulator field

with a constant longitudinal velocity. This considerably simplifies the algebra

and the final form of the equations derived can be applied to a planar geometry

by the inclusion of a Bessel function scaling factor.



CHAPTER 2. FEL THEORY 19

2.2.1 Electron Equations of Motion

The helical electric field of the radiation is defined as

E =
1√
2

(

êξ(z, t)ei(krz−ωrt) + ê∗ξ∗(z, t)e−i(krz−ωrt)
)

(2.28)

where ê is the helical unit vector

ê ≡ x̂ + iŷ√
2

(2.29)

and ξ(z, t) = |ξ|eiφ is the complex radiation field envelope specifying the ampli-

tude and phase. The magnetic field is defined as

B =
Bw√
2

(

êe−ikwz + ê∗eikwz
)

− i√
2

(

ê
ξ(z, t)

c
ei(krz−ωrt) − ê∗

ξ∗(z, t)

c
e−i(krz−ωrt)

)

(2.30)

where the second term is the magnetic field component of the radiation found

from Maxwell’s equation

∇×E = −∂B

∂t
. (2.31)

The rate of change of electron momentum is given by the Lorentz force equation

(2.2) rearranged here as

−cβzj

e

dpj

dz
= E+

1

γjm
(pj ×B) . (2.32)

Transverse Components of Lorentz Equation

The evolution of the transverse momentum can be determined by taking the

scalar product of both sides of (2.32) with the complex conjugate of the helical

unit vector, ê∗, and defining a transverse momentum component

p⊥ ≡ px − ipy (2.33)

so that

pj · ê∗ =
p⊥√
2

(2.34)

hence
−cβzj√

2e

dp⊥j

dz
=

[

E+
1

γjm
(pj ×B)

]

· ê∗ (2.35)
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giving

−cβz

e

dp⊥
dz

=
[

Exx̂+ Eyŷ +
1

γjm
(−pzjByx̂+ pzjBxŷ

+ [pxBy − pyBx]ẑ)
]

· (x̂− iŷ) (2.36)

=

[

Ex −
1

γjm
pzjBy

]

− i

[

Ey +
1

γjm
pzjBx

]

(2.37)

= (Ex − iEy)−
pzj
γjm

(By + iBx). (2.38)

Substituting in the components of the electric and magnetic fields (2.28) and

(2.30), written explicitly here as

Ex =
1

2

(

ξei(krz−ωrt) + ξ∗e−i(krz−ωrt)
)

(2.39)

Ey =
1

2

(

iξei(krz−ωrt) − iξ∗e−i(krz−ωrt)
)

(2.40)

Bx =
Bw

2

(

e−ikwz + eikwz
)

− i

2

(

ξ

c
ei(krz−ωrt) − ξ∗

c
e−i(krz−ωrt)

)

(2.41)

By =
Bw

2

(

ie−ikwz − ieikwz
)

− i

2

(

ξ

c
iei(krz−ωrt) +

ξ∗

c
ie−i(krz−ωrt)

)

(2.42)

the Lorentz equation (2.38) simplifies to

dp⊥j

dz
=

−e

βzj

[

ξei(krz−ωrt) +
pzj
γjm

(

−iBwe
−ikwz − ξ

c
ei(krz−ωrt)

)]

(2.43)

and with the final substitution pzj = γjmcβzj simplifies to:

dp⊥j

dz
= eiBwe

−ikwz +
1− βzj

βzj

eξ

c
ei(krz−ωrt) (2.44)

Longitudinal Components of Lorentz Equation

Taking the longitudinal component of (2.32) gives

−cβzj

e

dpzj
dz

=
1

γjm
(pxBy − pyBx). (2.45)

From (2.33) the px and py can be expressed in terms of p⊥ as

px =
1

2
(p⊥ + p∗⊥) py =

i

2
(p⊥ − p∗⊥) (2.46)



CHAPTER 2. FEL THEORY 21

hence

pxBy − pyBx =
1

2
(p⊥ + p∗⊥)By −

i

2
(p⊥ − p∗⊥)Bx (2.47)

=
p⊥
2
(By − iBx) +

p∗⊥
2
(By + iBx) (2.48)

=
p⊥
2
(By − iBx) + c.c. (2.49)

=
p⊥
2

(

ξ∗

c
e−i(krz−ωrt) − iBwe

ikwz

)

+ c.c (2.50)

using (2.41) and (2.42). Equation (2.44) expresses the evolution of the transverse

momentum as a function of the longitudinal velocity βzj. To complete the coupled

system the longitudinal equation (2.45) must be manipulated to give the evolution

of βzj as a function of the transverse momentum. The derivative on the LHS of

(2.45) can be expanded as

dpzj
dz

= mc
d

dz
(γjβzj) = mc

(

γj
dβzj

dz
+ βzj

dγj
dz

)

. (2.51)

Changing the independent variable from t to z equation (2.17) becomes

mc2
dγj
dz

=
−e

cβzj

E · v (2.52)

dγj
dz

=
−e

mc2βzj

E · β (2.53)

=
−e

m2c3γj
E · p (2.54)

=
−e

m2c3γj
(Expx + Eypy) (2.55)

=
−e

m2c3γj

[

1

2
(p⊥ + p∗⊥)

(

1

2
ξei(krz−ωrt) + c.c.

)

+
i

2
(p⊥ − p∗⊥)

(

i

2
ξei(krz−ωrt) − c.c.

)]

(2.56)

which simplifies after some straightforward algebra to

dγj
dz

=
−e

2m2c3γj

[

p⊥ξ
∗e−i(krz−ωrt) + p∗⊥ξe

i(krz−ωrt)
]

. (2.57)
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Equations (2.50), (2.51) and (2.57) can now be substituted into (2.45) to give

−cβzj

e
mcγj

dβzj

dz
= −−cβzj

e

mce

2m2c3γj

[

p⊥ξ
∗e−i(krz−ωrt) + p∗⊥ξe

i(krz−ωrt)
]

+
1

γjm

[

p⊥
2

(

ξ∗

c
e−i(krz−ωrt) − iBwe

ikwz

)

+ c.c.

]

(2.58)

which through simple rearrangement and manipulation becomes

−cβzj

e
mcγj

dβzj

dz
= ξ∗e−i(krz−ωrt)

p⊥
2mcγj

(1− βzj) + ξei(krz−ωrt)
p∗⊥

2mcγj
(1− βzj)

+
1

γjm

(

p∗⊥
2
iBwe

−ikwz − c.c.

)

(2.59)

leading to

dβzj

dz
=

−e

2m2c3γ2
j

[(

1− βzj

βzj

)

(

p⊥ξ
∗e−i(krz−ωrt) + c.c.

)

+
ic

βzj
(p∗⊥Bwe

−ikwz − c.c.)

]

.

(2.60)

Coupling the Transverse and Longitudinal Equations

Coupling the electron equations can be done by integrating the transverse mo-

mentum equation (2.44), holding βzj constant as assumed slowly varying on the

timescale of the fast undulator oscillations, to give the transverse momentum

p⊥j , and then substituting p⊥j into the longitudinal equation (2.60). Integrating

(2.44) gives

p⊥j = −eBw

kw
e−ikwz − 1− βzj

βzj

eξ

c

i

kr
ei(krz−ωrt) (2.61)

which when substituted into (2.60), after some lengthy but straightforward alge-

bra, gives

dβzj

dz
=

−e

2m2c3γ2
j

1− βzj

βzj

[(

−eBw

kw
− eBw

krβzj

)

(

ξei(kr+kw)z−ωt + ξ∗e−i(kr+kw)z−ωt
)

]

.

(2.62)

Recognising that kr ≫ kw the common factor eBw/krβzj which originates from

the magnetic component of the radiation field can be ignored. Using θ = (kr +

kw)z − ωt for the ponderomotive phase, the expression simplifies to

dβzj

dz
=

−e2Bw

2kwm2c3γ2
j

(

1− βzj

βzj

)

(

ξeiθ + ξ∗e−iθ
)

(2.63)
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The Universal Scaling

The universal scaling can now be applied to the electron equation, and later the

wave equation, resulting in a coupled system of equations free of constants. The

scaled coordinates are

z̄ = 2kwρz (2.64)

z̄1 =
2krρ

β̄z

(z − cβ̄zt) (2.65)

so z̄ is the scaled coordinate along the undulator axis and z̄1 is the scaled co-

ordinate in the frame moving at the velocity of the ponderomotive wave. The

parameter ρ is known as the FEL parameter, or Pierce parameter, and is defined

as

ρ =
1

γr

(

āwωp

4ckw

)
2

3

(2.66)

where

ωp =

(

e2np

ǫ0m

)
1

2

(2.67)

is the plasma frequency for peak electron number density of the electron bunch

np. The scaled complex field envelope is

A =
eε

mcωp
√
ργr

. (2.68)

It is useful to also express (krz − ωrt) and the ponderomotive phase θ = (kr +

kw)z−ωrt in terms of z̄ and z̄1. Starting from (2.65) and recalling the discussion

prior to equation (2.23) that the phase velocity of the ponderomotive wave is the

same as the mean longitudinal velocity,

ωr

kr + kw
= cβ̄z (2.69)

the relation
kw
kr

=
1− β̄z

β̄z

(2.70)
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is found and substituted into (2.65) to give

z̄1 = 2ρkr
kr + kw

kr
z − krct (2.71)

= 2ρ[(kr + kw)z − ωrt] (2.72)

therefore the scaled ponderomotive phase is

θ =
z̄1
2ρ

(2.73)

Similarly,

krz − ωrt = (kr + kw)z − kwz − ωt =
z̄1
2ρ

− z̄

2ρ
(2.74)

therefore

krz − ωrt =
z̄1 − z̄

2ρ
. (2.75)

A scaled electron energy variable p̄ is also derived as follows. Starting with the

ponderomotive phase

θj = (kw + kr)z − ωrtj(z) (2.76)

pj(z) is defined as
dθj
dz

= kw + kr − ωr
dtj
dz

≡ pj(z) (2.77)

It is now shown that p is actually the deviation of the electron energy relative to

the resonant energy. Using

dtj
dz

=
1

vj
=

1

cβzj
,

ωr

c
= kr (2.78)

equation (2.77) becomes

pj =
dθj
dz

= kw − kr

(

1− βzj

βzj

)

. (2.79)

Using (2.70) to replace kr in (2.79) gives

pj = kw

[

1−
(

β̄z

1− β̄z

)(

1− βzj

βzj

)]

. (2.80)
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The resonance condition (2.27) can be written

kw
kr

=
1 + ā2w
2γ2

r

(2.81)

so equating (2.81) and (2.70)

1− β̄z

β̄z

=
1 + ā2w
2γ2

r

. (2.82)

This expression can be perturbed away from resonance by adding a small energy

deviation ∆γ = γj − γr then examined to see the effect on βzj for an individual

electron:

1− βzj

βzj
=

1 + ā2w
2(γr +∆γ)2

(2.83)

=
1 + ā2w
2γ2

r

(

1 +
∆γ

γr

)−2

(2.84)

≃ 1 + ā2w
2γ2

r

(

1− 2
∆γ

γr

)

(2.85)

=
kw
kr

(

1− 2
∆γ

γr

)

. (2.86)

The right hand side of (2.86) can now be substituted for the final term in (2.80)

to give

pj = kw

[

1− β̄z

1− β̄z

kw
kr

(

1− 2
∆γ

γr

)]

(2.87)

= kw

[

1− kr
kw

kw
kr

(

1− 2
∆γ

γr

)]

(2.88)

= 2kw
γj − γr

γr
(2.89)

Finally the scaled energy variable is defined as

p̄j ≡
dθj
dz̄

(2.90)

which from the scalings (2.64) becomes

p̄j =
dθj
dz̄

=
1

2ρkw

dθj
dz

=
1

2ρkw
pj (2.91)
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so using (2.89) the scaled electron energy variable is

p̄j =
1

ρ

γj − γr
γr

(2.92)

Electron Equations in Scaled Form

From (2.77) and (2.78),

dpj
dz

= − d

dz

(

ωr

cβzj

)

(2.93)

= − d

dz

(

krβ
−1
zj

)

(2.94)

=
kr
β2
zj

dβzj

dz
. (2.95)

From (2.64) the differential operator transforms as

d

dz̄
=

1

2ρkw

d

dz
(2.96)

therefore

dp̄j
dz̄

=
d2θ

dz̄2
(2.97)

=
1

4ρ2k2
w

d2θ

dz2
(2.98)

=
1

4ρ2k2
w

dpj
dz

(2.99)

=
1

4ρ2k2
w

kr
β2
zj

dβzj

dz
(2.100)

using (2.95) in the final step. An expression for dβzj/dz has already been derived

(equation (2.63)), so substituting this into (2.100) gives

dp̄j
dz̄

=
1

4ρ2k2
w

kr
β2
zj

−e2Bw

2kwm2c3γ2
j

(

1− βzj

βzj

)

(

ξeiθ + ξ∗e−iθ
)

. (2.101)

This expression can now be simplified by applying the Compton limit which

implies βj ≃ 1. The assumption is also made that the common factors multiplying

the field term vary much more slowly than the field term itself. This allows the
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approximation
1− βzj

βzj
≃ 1− β̄z

β̄z

(2.102)

to be applied. Using also the definitions of the undulator parameter āw (2.10), the

ρ parameter (2.66) and the scaled field envelope A (2.68), as well as (2.70), the

expression (2.101) straightforwardly assumes its final form giving the evolution of

the scaled electron energy p̄j with scaled propagation distance z̄ in the presence

of the scaled field A:

dp̄j
dz̄

= −(A(z̄, z̄1) exp(iθj) + A∗ exp(−iθj)) (2.103)

2.2.2 Wave Equation

To complete the coupled system it is necessary to determine a suitable equation

describing the propagation of the electromagnetic wave in the presence of the

electron bunch. The derivation starts, following [35], with the one dimensional

wave equation which describes an electromagnetic wave E driven by a time-

dependent current source term J

∂2E

∂z2
− 1

c2
∂2E

∂t2
= µo

∂J⊥
∂t

. (2.104)

with the electric field defined, as in (2.28), as

E =
1√
2

(

êξ(z, t)ei(krz−ωrt) + ê∗ξ∗(z, t)e−i(krz−ωrt)
)

(2.105)

and the transverse current density given as

J⊥ = −ec

N
∑

j=1

β⊥δ(r− rj(t)) (2.106)

and N the total number of electrons in the pulse. If it is assumed that the

electron and radiation pulses have equal cross sectional areas σ and that the field

amplitude and electron density are constant across that area, then taking the

scalar product of the wave equation with ê∗ and integrating over the interaction

volume gives

[

∂2

∂z2
− 1

c2
∂2

∂t2

]

(

ξ(z, t)ei(krz−ωrt)
)

=
2

ǫ0c2σ

∂J⊥
∂t

(2.107)
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where the transverse current density is now

J⊥ = −ec

N
∑

j=1

β⊥δ(z − zj(t)). (2.108)

The scalings (2.64) and (2.65) can be applied and the left hand side of the wave

equation becomes

8ρk2
w

β̄z

1− β̄z

(

∂

∂z̄
+

∂

∂z̄1

)[

∂

∂z̄1
+

1− β̄z

2β̄z

(

∂

∂z̄
+

∂

∂z̄1

)]

(

ξ(z̄, z̄1)e
i(z̄1−z̄)/2ρ

)

(2.109)

Expanding from the opening square bracket onwards gives

ei(z̄1−z̄)/2ρ

[

∂ξ

∂z̄1
+

i

2ρ
ξ +

1− β̄z

2β̄z

(

∂ξ

∂z̄
+

∂ξ

∂z̄1

)]

. (2.110)

so the differential operator

1− β̄z

2β̄z

(

∂

∂z̄
+

∂

∂z̄1

)

(2.111)

may be neglected if

1− β̄z

2β̄z

∣

∣

∣

∣

∂ξ(z̄, z̄1)

∂z̄
+

∂ξ(z̄, z̄1)

∂z̄1

∣

∣

∣

∣

≪
∣

∣

∣

∣

i

2ρ
ξ(z̄, z̄1) +

∂ξ(z̄, z̄1)

∂z̄1

∣

∣

∣

∣

. (2.112)

Using (2.70) this inequality may be rewritten

∣

∣

∣

∣

∂ξ(z̄, z̄1)

∂z̄
+

∂ξ(z̄, z̄1)

∂z̄1

∣

∣

∣

∣

≪
∣

∣

∣

∣

2β̄z

1− β̄z

∂ξ(z̄, z̄1)

∂z̄1
+

iλwξ(z̄, z̄1)

ρλr

∣

∣

∣

∣

(2.113)

which apart from a factor 2 in the final term is identical to that derived in [36]

and which gives immediately the condition

λw ≫ λρ. (2.114)

Since in a FEL λw ≃ 2γ2λr, from (2.1), the inequality (2.114) becomes

ρ ≪ 2γ2 (2.115)
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which is easily satisfied in the Compton limit. Hence the wave equation can then

be written

∂

∂z̄1

[(

∂

∂z̄
+

∂

∂z̄1

)

[

ξ(z̄, z̄1)e
i(z1−z)/2ρ

]

+
1

2ǫ0cσρkw
J⊥

]

= 0 (2.116)

where the order of the differentiation has been reversed. The approximation

made in the derivation, following the discussion in [36], just means that the field

cannot be amplified much over an undulator period and places no constraints on

the smoothness of the envelope. For equation (2.116) to be satisfied there are

two possibilities. The first possibility is that the term in the square brackets is

a general function of z̄ plus a constant, in which case its partial derivative with

respect to z̄1 is zero. In the limit that the source term J⊥ → 0 the bracketed

term represents a wave propagating in free space therefore the general function

and constant must be zero for energy and momentum conservation. The other

remaining possibility is that the bracketed term itself is equal to zero which gives

(

∂

∂z̄
+

∂

∂z̄1

)

[

ξ(z̄, z̄1)e
i(z1−z)/2ρ

]

=
−1

2ǫ0cσρkw
J⊥ (2.117)

Performing the differentiation of the left hand side factors out the rapidly varying

field term leaving the differential operators acting only on the complex envelope,

so the LHS becomes

ei(z̄1−z̄)/2ρ

(

∂

∂z̄
+

∂

∂z̄1

)

ξ(z̄, z̄1). (2.118)

Using (2.106) with β⊥ = p⊥/(γmc) and

p⊥ =
eBw

kw
e−ikwz (2.119)

which is the first term of (2.61) (therefore ignoring the radiation field contribution

to the electron transverse momentum) and which once transformed using (2.64)

to z̄ becomes

p⊥ =
eBw

kw
e−iz̄/2ρ (2.120)

and transforming the δ-function to

δ(z − zj(t)) = 2kwρ
β̄z

1− β̄z

δ(z̄1 − z̄1j)

βzj

(2.121)
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the wave equation can eventually be written

(

∂

∂z̄
+

∂

∂z̄1

)

ξ(z̄, z̄1) =
e2Bwkr

ε0σk2
wγjmcβzj

N
∑

j=1

e−i(z̄1−z̄)/2ρe−iz̄/2ρδ(z̄1 − z̄1j). (2.122)

Now also transforming the field envelope using (2.68) and substituting the defi-

nition of the undulator parameter (2.10) some algebraic manipulation gives

(

∂

∂z̄
+

∂

∂z̄1

)

A(z̄, z̄1) =
2krρ

npσ

N
∑

j=1

e−iz̄1/2ρδ(z̄1 − z̄1j). (2.123)

The term npσ is the electron number density multiplied by the cross sectional

area, and therefore gives the number of electrons per unit length. The term 2krρ,

as seen from (2.65), is 1/lc therefore

n‖p =
npσ

2krρ
= lcnpσ (2.124)

is the peak number of electrons per unit length in z̄1. The product of the two

exponential terms in (2.122) has given exp(−iz̄1/2ρ) = exp(−iθ) with θ the pon-

deromotive phase. As a final step to convert the wave equation into a form

suitable for numerical integration, it is integrated over a regions one radiation

wavelength long z̄1 − 2πρ ≤ z̄1 ≤ z̄1 + 2πρ as follows:

∫ z̄1+2πρ

z̄1−2πρ

(

∂

∂z̄
+

∂

∂z̄1

)

A(z̄, z̄1)dz̄1 =
1

n‖p

∫ z̄1+2πρ

z̄1−2πρ

N
∑

j=1

e−iz̄1/2ρδ(z̄1 − z̄1j)dz̄1.

(2.125)

The radiation field envelope can now be replaced by a local value Ā which is

constant over the integration window Ā(z̄) = [A(z̄, z̄1 + 2πρ) +A(z̄, z̄1 − 2πρ)]/2

and the order of the integration and summation can be reversed on the RHS

giving

(

∂

∂z̄
+

∂

∂z̄1

)

Ā(z̄)

∫ z̄1+2πρ

z̄1−2πρ

dz̄1 =
1

n‖p

N
∑

j=1

∫ z̄1+2πρ

z̄1−2πρ

e−iz̄1/2ρδ(z̄1 − z̄1j)dz̄1. (2.126)

Using the δ-function sampling property

∫ T+ǫ

T−ǫ

f(t) δ(t− T ) dt = f(T ) (2.127)
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and evaluating the definite integral on the LHS the equation becomes

(

∂

∂z̄
+

∂

∂z̄1

)

Ā(z̄, z̄1)× 4πρ =
1

n‖p

Nλ
∑

j=1

e−iz̄1j/2ρ (2.128)

(

∂

∂z̄
+

∂

∂z̄1

)

Ā(z̄, z̄1) =
1

4πρn‖p

Nλ
∑

j=1

e−iz̄1j/2ρ (2.129)

=
1

Nλ

Nλ
∑

j=1

e−iθj (2.130)

where θj = z̄1j/2ρ is the ponderomotive phase of the jth electron (from (2.73)).

The sum on the RHS is now taken over the number of electrons per radiation

wavelength slice Nλ. The term on the RHS is therefore an average over a wave-

length of the electrons’ complex phasors. If all electrons have the same phase the

complex phasors all point in the same direction and the average is unity. If the

electrons have evenly distributed phases over the interval [0, 2π) the phasors all

cancel and the average is zero. The term

b(z̄, z̄1) ≡
1

Nλ

Nλ
∑

j=1

e−iθj = 〈e−iθj〉 (2.131)

therefore quantifies the ‘bunching’ of the electrons, and is referred to as the

‘bunching parameter’. The final averaged form of the wave equation is therefore

(

∂

∂z̄
+

∂

∂z̄1

)

A(z̄, z̄1) = χ (z̄1) b (z̄, z̄1) = χ (z̄1) 〈e−iθj〉 (2.132)

where the field term A is now understood to represent the average value of the

complex field envelope over a radiation period and a normalised current weighting

parameter χ(z̄1) has been introduced to allow for a current distribution that varies

along the electron bunch.
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2.3 Final Form of the Averaged FEL Equations

The final set of universally scaled one-dimensional FEL equations, which describe

self-consistently the coupled system of electrons and co-propagating wave, com-

prise equations (2.90), (2.103) and (2.132), restated here as a complete set as

dθj
dz̄

= p̄j (2.133)

dp̄j
dz̄

= − (A (z̄, z̄1) exp (iθj) + c.c.) (2.134)
(

∂

∂z̄
+

∂

∂z̄1

)

A (z̄, z̄1) = χ (z̄1) b (z̄, z̄1) = χ (z̄1) 〈e−iθ〉. (2.135)

with θj = (kw+kr)z−ωrt the electron ponderomotive phase, p̄j = (γj−γr)/ργj the

scaled electron energy, A the scaled complex field envelope, z̄ = 2kwρz the scaled

coordinate along the undulator axis, z̄1 = 2krρ(z− cβ̄zt)/β̄z the coordinate in the

frame moving at the velocity of the ponderomotive wave, χ(z̄1) the normalised

current weighting and b = 〈eiθj〉 the bunching parameter. For N electrons this is

therefore a system of 2N + 1 equations.

2.4 A Description of the FEL Mechanism

This section brings together some of the concepts discussed so far to provide

a descriptive account of the FEL mechanism, following that given in [6]. First

the steady state approximation is applied to the FEL equations (2.133–2.135).

In this approximation the assumption is made that the slippage length Nwλr is

much shorter than the electron pulse length lb, so that the current profile can be

treated as a constant χ (z̄1) = 1. It is also assumed that all other electron prop-

erties, including the bunching parameter b, do not vary along the bunch. Under

these assumptions the derivative of A with respective to z̄1 can be neglected [37],

removing the effect on the system of the relative slippage between radiation and

electron bunch (otherwise known as pulse propagation) from the analysis. The

wave equation (2.135) can then be written so that the field is expressed explicitly
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in terms of its amplitude and phase:

d

dz̄
|A|eiφ = |A|ieiφdφ

dz̄
+ eiφ

dA

dz̄
(2.136)

= eiφ
[

|A|idφ
dz̄

+
dA

dz̄

]

= 〈e−iθ〉 (2.137)

which can be rearranged to give

|A|idφ
dz̄

+
dA

dz̄
= 〈e−i(θ+φ)〉 (2.138)

= 〈cos(θ + φ)〉 − i〈sin(θ + φ)〉. (2.139)

Now equating real and imaginary parts, the evolution of the field amplitude A is

given by
dA

dz̄
= 〈cos(θ + φ)〉 (2.140)

and the evolution of the field phase φ is given by

dφ

dz̄
= − 1

|A| 〈sin(θ + φ)〉. (2.141)

Recall also equation (2.21) which described the energy transfer between an

electron and co-propagating field. This is rewritten here, neglecting the fast

varying wave and constants, leaving only the ponderomotive wave, as

dγ

dt
∝ −A cos(θ + φ). (2.142)

The free-electron laser interaction is now described with the aid of Equations

(2.140–2.142) and Figure 2.1:

• Panel (a): Consider an initial electron beam with electrons distributed

evenly in phase, propagating in the presence of a small field with A ≪ 1

and initial phase φ0 = 0. From inspection of (2.142) no energy change occurs

for θ = π/2 or θ = 3π/2. However for π < θ < 3π/2 the electrons gain

energy and for 0 ≤ θ < π/2 and 3π/2 < θ ≤ 2π the electrons lose energy.

The higher energy electrons move ahead, and the lower energy electrons

move back, giving a small bunching developing at θ = 3π/2. The forces

that bunch the electrons, represented by the red arrows, can be considered

as a series of potential wells Φ travelling at the resonant electron velocity.
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Figure 2.1: Schematic showing the principle of the FEL interaction.

The bunching at phase 3π/2 cannot drive a change in the field amplitude,

because at this phase, from equation (2.140), dA/dz̄ = 0. However the

bunching can drive a change in the radiation phase because from equation

(2.141) dφ/dz̄ > 0 and quite large because A is small.

• Panel (b): Now that φ > 0 the potential well is shifted to the left and

the weakly bunched electrons are raised in potential energy. They start to

fall into the potential well, losing kinetic energy to the radiation field (from

equation (2.142)) which increases the depth of the well. They also become

more strongly bunched.

• Panel (c): The radiation phase continues to be driven rapidly and the

process of phase shifting, electron bunching and energy exchange to the
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field continues exponentially until from equation (2.141) the field becomes

large enough to slow down the phase change.

• Panel (d): The system now enters the nonlinear saturation regime where

the the strongly bunched electrons start to regain energy from the field.

In the following section the set of equations (2.133–2.135) are studied further

to obtain an analytic formulation of the expontential gain mechanism described

here.

2.5 Linear Stability Analysis of FEL Equations

The set of 2N + 1 differential equations (2.133-2.135), where N is the number of

electrons in the system, are those solved in the numerical simulation code used to

study the concepts presented in this thesis. It is not feasible however to extract

an analytic solution to such a large set of nonlinear differential equations. In

this section, the steady state approximation is applied once again, so the evolu-

tion of the field term with z̄1 can be neglected, and the equations are converted

into a set of just three linear ordinary differential equations which can then be

solved analytically to obtain a solution. This solution describes the exponential

increase in the radiation field intensity and gives some further insight into the

FEL interaction.

The process involves linearising equations (2.133–2.135) by examining their

behaviour in the presence of a small perturbation applied to the initial conditions,

then redefining the electron variables as collective variables [38] which represent

the collective behaviour of the complete set of electrons.

2.5.1 A Revised Scaling for the FEL Equations

It is convenient to introduce a slightly different scaling more suitable for the

discussion of the collective FEL instability and the high gain regime [37]. The

electron phase and energy θj and p̄j and radiation field complex amplitude A are

redefined in terms of the detuning parameter δ

θ̃j = θj − δz̄, p̃j = p̄j − δ, Ã = Aeiδz̄ (2.143)
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where

δ =
1

2ρ

〈γ〉20 − γ2
r

γ2
r

(2.144)

which for |(〈γ〉0 − γr)/〈γ〉0|≪ 1 reduces to

δ =
1

ρ

〈γ〉0 − γr
γr

. (2.145)

This scaling will later enable an examination of the dependence of the FEL expo-

nential instability on the electron energy detuning δ. Equation (2.133) transforms

as follows:

dθj
dz̄

=
d

dz̄
(θ̃j + δz̄) (2.146)

=
dθ̃j
dz̄

+ δ = p̃j + δ (2.147)

therefore
dθ̃j
dz̄

= p̃j . (2.148)

Equation (2.134) transforms as

dp̄j
dz̄

=
d

dz̄
(p̃j + δ) =

dp̃j
dz̄

= −Ãe−iδz̄ei(θ̃j+δz̄) − Ã∗eiδz̄e−i(θ̃j+δz̄) (2.149)

= −Ãeiθ̃j − Ã∗e−iθ̃j (2.150)

and finally Equation (2.135) transforms in the steady state case (∂A/∂z̄1 = 0) as

dA

dz̄
=

d

dz̄
(Ãe−iδz̄) (2.151)

=
dÃ

dz̄
e−iδz̄ − Ãiδe−iδz̄ = 〈e−i(θ̃j+δz̄)〉 (2.152)

which after multiplying through by eiδz̄ and rearranging becomes

dÃ

dz̄
= 〈e−iθ̃j〉+ iδÃ (2.153)

so the complete set of equations (2.133–2.134), remembering that in the steady

state ∂A/∂z̄1 = 0, becomes
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dθ̃j
dz̄

= p̃j (2.154)

dp̃j
dz̄

= −Ãeiθ̃j − Ã∗e−iθ̃j (2.155)

dÃ

dz̄
= 〈e−iθ̃〉+ iδ.Ã (2.156)

Compared to the original set of equations (2.133-2.135) a term iδÃ has appeared

in the final equation which represents a shift in the radiation resonant wavelength

due to the electron energy detuning δ.

2.5.2 Linearisation of the Equations

It is assumed that the initial state of the system is no field, with an unbunched,

uniform density mono-energetic electron beam. The initial conditions are thus

Ã(0) = Ã0 = 0, p̃j(0) = p̃j0, θ̃j(0) = θ̃0j (2.157)

with θ̃0j evenly distributed over the interval [0, 2π). Small perturbations are

applied to the electron variables so that

p̃j(z) = p̃0j + p̃1j (2.158)

and

θ̃j(z) = θ̃0j + θ̃1j (2.159)

where |p̃1j |≪ 1 and |θ̃1j |≪ 1. In the following the dot notation ẋ ≡ dx/dz̄ is used

for convenience.

Linearisation of ˙̃A

Substituting the perturbation (2.159) into equation (2.156) gives

˙̃A = 〈e−i(θ̃0+θ̃1)〉+ iδÃ (2.160)

= 〈e−iθ̃0e−iθ̃1〉+ iδÃ (2.161)

= 〈e−iθ̃0(1− iθ̃1)〉+ iδÃ (2.162)

= 〈e−iθ̃0〉 − 〈iθ̃1e−iθ̃0〉+ iδÃ (2.163)
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where the approximation ex ≈ 1 + x when x ≪ 1 has been applied. Before being

perturbed the electrons are initially distributed evenly over all phases [0, 2π) so

the first term 〈e−iθ̃0〉 = 0. A new collective variable

b ≡ −〈iθ̃1e−iθ̃0〉 (2.164)

can now be defined so that (2.163) becomes

˙̃A = b+ iδÃ (2.165)

with b representing the electron beam bunching.

Linearisation of ˙̃p

Substituting perturbation (2.159) into equation (2.155) gives

˙̃pj = −Ãei(θ̃0j+θ̃1j) − Ã∗e−i(θ̃0j+θ̃1j) (2.166)

= −Ã
[

eiθ̃0j (1 + iθ̃1j)
]

− Ã∗
[

−eiθ̃0j (1− iθ̃1j)
]

(2.167)

which, because Ã is small and the perturbation θ̃1j is small, can be simplified by

neglecting terms with the products Ãθ̃ij and Ã∗θ̃ij . Making this assumption and

multiplying both sides by e−iθ̃j0 gives

˙̃pje
−iθ̃j0 = −Ã− Ã∗e−2iθ̃j0 (2.168)

the second term of which again equates to zero when averaged over all electrons

giving

〈 ˙̃p e−iθ̃0〉 = −Ã. (2.169)

From (2.158) it can be seen that ˙̃pj = ˙̃p1 therefore

〈 ˙̃p1 e−iθ̃0〉 = −Ã. (2.170)

Another collective variable can now be defined as

P ≡ 〈p̃1e−iθ̃0〉 (2.171)
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which is a phase-momentum average [38] and can be interpreted as the Fourier

coefficient of the beam energy modulation. Therefore,

Ṗ = 〈 ˙̃p1e−iθ̃0〉 (2.172)

and by combining (2.170) and (2.172) it is seen that

Ṗ = −Ã. (2.173)

Linearisation of θ̇

So far two of the equations (2.154-2.156) have been linearised leading to the

definition of two new collective variables b and P and linearised equations

˙̃A = f(b, δ, Ã) (2.174)

Ṗ = f(Ã). (2.175)

To complete the set of three coupled linearised equations it is necessary to find

the equation for the evolution of b. Differentiating (2.164) gives

ḃ = −〈i ˙̃θ1e−iθ̃0〉. (2.176)

Now substituting the perturbations (2.159) and (2.158) into (2.154) gives

d

dz̄
(θ̃0j + θ̃1j) = p̃0j + p̃1j (2.177)

therefore ˙̃θ1j = p̃1j and (2.176) becomes

ḃ = −〈ip̃1e−iθ̃0〉. (2.178)

which, using (2.171), becomes

ḃ = −iP (2.179)

The complete set of linear ordinary differential equations can therefore be
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written

˙̃A = b+ iδÃ (2.180)

Ṗ = −Ã (2.181)

ḃ = −iP (2.182)

where the collective electron variables are defined as b ≡ −〈iθ̃1e−iθ̃0〉 and P ≡
〈p̃1e−iθ̃0〉.

2.5.3 Solution of Linear Equations for δ = 0

The most simple case to analyse is the case when all the electrons are injected into

the undulator at the resonant energy, so that δ = 0. The equations (2.180–2.182)

then reduce to the following:

˙̃A = b (2.183)

Ṗ = −Ã (2.184)

ḃ = −iP (2.185)

This set of three first order equations can be converted to a single third order

differential equation as follows:

˙̃A = b → ¨̃A = ḃ (2.186)

= −iP (2.187)

using (2.185). Then

...
Ã = −iṖ (2.188)
...
Ã = iÃ (2.189)

using (2.184).

A trial solution of form

Ã(z̄) = Ã0e
iλz̄ (2.190)

so that ˙̃A = iλÃ, ¨̃A = −λ2Ã and
...
Ã = −iλ3Ã, can be substituted into (2.189) to
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obtain the cubic dispersion relation λ3 + 1 = 0 so that

λ = [λ1, λ2, λ3] =

[

−1,
1

2
+

i
√
3

2
,
1

2
− i

√
3

2

]

(2.191)

and the general solution is some linear combination

Ã(z̄) = Ã0

∑

k

cke
iλk z̄. (2.192)

A full solution to the linearised system, found by a Fourier-Laplace transform,

shows that for initial conditions Ã0 6= 0, b0 = 0 and P0 = 0 the coefficients

ck = 1/3 ∀ k so that the power is distributed evenly between the three modes

[39].

Figure 2.2 shows an illustrative example with initial field Ã0 = 10−4. The

evolution of the individual terms of (2.192) are plotted. The top left panel shows

the evolution with z̄ of the real part of (Ã0/3)e
iλ1z̄. This is an oscillatory term

with period 2π. The top left panel shows |(Ã0/3)e
iλ2z̄|2. This is an exponentially

decaying term. The bottom left panel shows |(Ã0/3)e
iλ2z̄|2 which is seen to grow

exponentially and is hence the component responsible for the exponential insta-

bility in the FEL radiation power. The bottom right panel shows |Ã|2 for the

sum of the three components. It is seen that the FEL radiation power does not

grow at all until z̄ ≃ 2. This behaviour is referred to as the initial lethargy. For

z̄ ≥ 2 the field grows exponentially as

Ã(z̄) ≃ Ã0

3
e
√
3z̄/2 (2.193)

or equivalently the power grows as

|Ã(z̄)|2≃ |Ã0|2
9

e
√
3z̄ (2.194)

which is shown as the red dashed line in the bottom right panel of Figure 2.2.

The full solution of the linearised system can also be used to show the growth

of the field when the instability starts from a small initial bunching b0 ≪ 1 with

Ã0 = 0 [9, 10, 39]. The evolution of Ã with z̄ converges after z̄ ≃ 2 to the case

starting up from an initial field, showing that the FEL instability can start up

due to electron beam shot noise without the requirement of an initial field. This
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is the principle of the SASE FEL, as discussed further in Section 2.7.

In S. I. units the evolution of the power evolves with z as

Prad ∝ ez/Lg (2.195)

where Lg is the e-folding power gain length. Note that (2.194) can be expressed

using (2.64) as

|Ã(z)|2∝ e2
√
3kwρz (2.196)

therefore comparing (2.195) and (2.196) it can be seen that the power gain length

Lg =
1

2
√
3 ρkw

=
λw√
3 4πρ

=
lg√
3

(2.197)

where

lg =
1

2kwρ
=

λw

4πρ
(2.198)

is called the ‘nominal’ gain length. Thus the universal scaling (2.64) is seen to

be a scaling of the interaction length in units of lg.

2.5.4 Solution of Linear Equations for δ 6= 0

A similar procedure to that used in section 2.5.3 can be followed to reduce the

system (2.180–2.182) to a third order ODE. Starting from (2.180),

˙̃A− iδÃ− b = 0 (2.199)

∴
...
Ã − iδ ¨̃A− b̈ = 0 (2.200)

then using (2.182) ...
Ã − iδ ¨̃A− (−iṖ ) = 0 (2.201)

then using (2.181) ...
Ã − iδ ¨̃A− iÃ = 0. (2.202)

Adopting the trial solution (2.190) the following dispersion relation is easily ob-

tained:

λ3 − δλ2 + 1 = 0. (2.203)
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Figure 2.2: Solution of linearised equations for δ = 0, Ã0 = 10−4. The first three
panels show the individual components of Equation (2.192) with ck = 1/3 ∀ k.
The bottom right panel shows the full solution with all components (in blue) and
Equation (2.194) (in dashed red).

The nature of the roots of a cubic equation ax3 + bx2 + cx + d = 0 depends on

the discriminant

∆ = 18abcd− 4b3d+ b2c2 − 4ac3 − 27a2d2 (2.204)

which for (2.203) gives

∆ = 4δ3 − 27. (2.205)
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Figure 2.3: Absolute value of the imaginary part of the root of the dispersion
relation (2.203) |Im(λ)|, vs electron detuning δ.

In general, if ∆ > 0 then the cubic has three distinct real roots and the general

solution

Ã(z̄) = Ã0

∑

k

cke
iλk z̄. (2.206)

comprises only oscillatory terms and there can be no exponential instability. If

however ∆ < 0 the cubic has one real root and a pair of complex conjugate roots

and the complex conjugate root with the negative imaginary component will give

an exponentially increasing growth in the radiation field. For exponential gain

it is therefore required that 4δ3 − 27 < 0 leading to the result that the energy

detuning δ must be less than the critical detuning δT :

δ < δT = 3

√

27/4 ≃ 1.89. (2.207)

The dispersion relation (2.203) may also be solved to find the roots as a function

of detuning δ. Figure 2.3 shows the absolute value of the imaginary part of the

complex conjugate root, |Im(λ)|, vs electron detuning δ. For δ > δT ≃ 1.89 the

imaginary part of the root vanishes and there is no exponential instability, as

discussed previously. The maximum growth rate is seen to be at resonance where

δ = 0.
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2.6 FEL Output Properties

An approximate estimate of the radiation bandwidth can be made by considering

the energy bandwidth of the exponential instability [37]. The electron energy

detuning must be less than the critical detuning δT = 1.89. Therefore, from

(2.145),
1

ρ

∆γ

γr
≤ 1.89 (2.208)

and from differentiating the resonance condition (2.27) the radiation bandwidth

corresponding to a given energy bandwidth is

∣

∣

∣

∣

∆λ

λr

∣

∣

∣

∣

= 2
∆γ

γ
(2.209)

therefore combining (2.208) and (2.209) gives a full width

∣

∣

∣

∣

∆λ

λr

∣

∣

∣

∣

FW

≃ 4ρ. (2.210)

A more complete analysis can be done [37] by expanding the imaginary part of

the root (as plotted in Figure 2.3 as a function of δ) around δ = 0. This gives

Im(λ) ≃
√
3

2

(

1− δ2

9

)

(2.211)

for |δ|≪ δT which, using (2.145), (2.206) and (2.209) leads to

|Ã(z̄,∆λ/λr)|2≃
|Ã(0)|2

9
exp(

√
3z̄) exp

(

−(∆λ/λ)2

2σ2
λ

)

(2.212)

with

σλ ≃ 2ρ

√

π

z̄
(2.213)

therefore the bandwidth reduces as 1/
√
z̄. Using this result, derived from the

linear theory, an approximation can be made of the bandwidth at the end of the

linear regime as the FEL enters saturation. This typically occurs at z̄ ≈ 10 so

using this value in (2.213) gives

σλ ≃ ρ (2.214)
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The linear theory gives a good description of the start-up from initial condi-

tions and subsequent exponential field gain in the linear regime (so called because

it is described by the linear equations) but does not describe the saturation of the

FEL power which starts when the strongly bunched electrons start to re-absorb

energy from the radiation field. This process can only be described properly

through a numerical solution to the non-linearised FEL equations. It is found

that in the scaled units, at saturation the field has intensity |Ã|2sat≃ 1 [40]. This

can be shown from the set of nonlinear FEL equations (2.133-2.135) written in the

steady state approximation. Multiplying (2.135) by A∗ then adding the complex

conjugate gives

A∗dA

dz̄
+ A

dA∗

dz̄
= A∗b+ b∗A (2.215)

∴
d

dz̄
|A|2 = A∗b+ b∗A. (2.216)

Now averaging (2.134),

d〈p̄〉
dz̄

= −
(

A〈eiθ〉+ A∗〈e−iθ〉
)

(2.217)

= −(Ab∗ + A∗b) (2.218)

so adding (2.216) and (2.218) gives

d

dz̄

(

|A|2+〈p̄〉
)

= 0 (2.219)

therefore

|A|2+〈p̄〉 = constant. (2.220)

This means that for a small initial field A0 ≪ 1 the maximum field intensity is

constrained by the average change in electron energy which is of the order unity,

therefore at saturation |A|2sat≃ 1 as before.

The scaled field can be shown to satisfy the relation

|Ã|2= 1

ρ

Prad

Pbeam
(2.221)

therefore the saturation power is

Prad, sat = ρ|Ã|2satPbeam ≃ ρPbeam (2.222)
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since |Ã|2sat≃ 1. The ρ parameter thus gives the efficiency of the FEL mechanism,

or the fraction of electron beam power that is converted to radiation power [40].

2.7 Output Properties of the SASE FEL

The linear analysis of the previous sections was done in the steady-state approxi-

mation. This thesis however is particularly concerned with longitudinal effects—

with the generation of short pulses and the evolution of the temporal coherence

within the free-electron laser (and by corollary with its spectral characteristics

because these are coupled via the Fourier transform). For this reason it is neces-

sary to understand how the radiation properties change longitudinally along the

pulse. For example the temporal coherence is a function of the radiation phase

and amplitude along the photon pulse—the coherence length is in fact a measure

of the longitudinal delay over which the pulse can be made to interfere destruc-

tively with a copy of itself. This is how it can be determined experimentally via a

Michelson Interferometer and also expressed mathematically (in the units of the

universal scaling) as [41]

l̄coh =

∫ +∞

−∞
|g(τ̄1)|2dτ̄1 (2.223)

where

g(τ̄1) =
〈Ã∗(z̄1)Ã(z̄1 + τ̄1)〉

〈Ã∗(z̄1)Ã(z̄1)〉
. (2.224)

The coherence function has the property that |g(0)|2= 1 with |g(τ̄1)|2 exhibiting

a Gaussian form, as demonstrated in Figure 2.4 which shows an example of the

function for a chaotic SASE output pulse.

The evolution along the undulator of the longitudinal pulse characteristics is

also strongly dependent on the relative slippage between radiation and electron

bunch. Therefore to investigate the temporal and spectral properties of the SASE

FEL output pulse at any distance through the undulator it is necessary to remove

the constraint ∂Ã/∂z̄1 = 0 and include pulse propagation. It can be shown that

the linear system (2.183–2.185) can then be written as

∂Ã(z̄, z̄1)

∂z̄
+

∂Ã(z̄, z̄1)

∂z̄1
= b(z̄, z̄1) (2.225)

∂2b(z̄, z̄1)

∂z̄2
= iA(z̄, z̄1) (2.226)
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Figure 2.4: Typical calculated coherence function |g(τ̄1)|2 for a SASE pulse.

and the system can be solved to describe mathematically the onset of the FEL

process from a small initial bunching b0(z̄, z̄1) due to the shot noise in an electron

beam injected into the undulator [11].

An important result of this analysis is that the temporal structure of the radi-

ation pulse at saturation is a random superposition of many spikes with uncorre-

lated phases, with a maximum peak-to-peak distance 2πlc where the cooperation

length

lc ≡
λr

4πρ
. (2.227)

From the definition of the nominal gain length (2.198), the number of undulator

periods in a gain length is

Nlg =
lg
λw

=
1

4πρ
(2.228)

therefore the slippage in a gain length is

Nlgλr =
λr

4πρ
(2.229)

which from (2.227) is the cooperation length lc. On propagating through one gain

length of the undulator, a wavefront therefore propagates through the electron

beam a distance lc and the cooperation length thus defines the scale at which
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collective effects evolve throughout the electron beam, and so how the temporal

coherence of the radiation field evolves from the initially spontaneous noise. For a

sufficiently long electron beam, different regions along the beam develop from the

localised noise source autonomously and are therefore uncorrelated in phase. In

this sense, the SASE process can be considered as a ‘localised’ collective process.

Typically, in the X-ray the electron bunch length lb ≫ 2πlc, so the output

comprises a series of many phase spikes. At saturation the SASE radiation co-

herence time is [42]

τcoh ≃ 1

ρω

√

π lnNc

18
(2.230)

where Nc = I/(eρω) with I the electron bunch current. This expression can

be simplified further by noting that for a wide range of typical X-ray FELs the

square root term evaluates to ≃ 1.6, hence the coherence length

lcoh = cτcoh ≃ 3.2c

2ρω
=

3.2c

2ρ

λ

2πc
= 3.2

λ

4πρ
(2.231)

or approximately 3.2 cooperation lengths

lcoh ≃ 3.2lc. (2.232)

If however the electron bunch length lb ≤ 2πlc only one SASE spike can develop

and single spike output is possible. Such a regime is known as weak superradiance

or single-spike SASE [43, 44].

As discussed, the SASE FEL starts up from the initial shot noise in the

electron beam, which results in the small initial bunching. This shot noise has a

white spectrum and a thorough analysis of its statistical properties has been done

[45]. It is also common to refer to an equivalent shot noise input power. This is

the equivalent radiation power that would give an identical saturation length in

the absence of the initial bunching. Thus, using (2.194) and (2.195) the power

growth in the linear regime is given in S. I. units by

Prad(z) =
Prad(0)

9
ez/Lg (2.233)

and Prad(0) is the equivalent input shot noise power given by [46]

Prad(0) =
6
√
π

Nλ

√

ln(Nλ/ρ)
ρ2Pbeam (2.234)
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with Nλ the number of electrons within an optical period.

2.7.1 A Typical SASE Output Pulse

A simulation of a typical SASE output pulse at saturation is shown in Figure 2.5.

The electron bunch has a Gaussian current profile. The top plot shows scaled

radiation power |A|2 vs z̄1, radiation phase φ vs z̄1 and spectrum obtained from

the Fourier transform of the complex radiation envelope. The scaled frequency ω̄

is defined

ω̄ =
1

2ρ

ω − ωr

ωr
=

1

2ρ

λr − λ

λr
. (2.235)

The bottom plot shows an inset of the same pulse, with the peaks of the SASE

spikes marked in red dots. Green dots mark the corresponding radiation phases

φ. It is clearly seen here that the SASE pulse is a series of spikes of uncorrelated

phases. The average spacing between the spikes in the inset is ∆s = 6.5 in units

of z̄1. In this scaling unity represents one cooperation length lc so the average

spike spacing is very close to the theoretical ∆s = 2πlc. The full spectral width

is |∆ω̄|FW≃ 2. From (2.235)
∆λ

λr

= 2ρω̄ (2.236)

therefore for the pulse shown (∆λ/λr)FW ≃ 4ρ in agreement with (2.210) and

similarly |∆ω̄|FWHM≃ 1 giving (∆λ/λr)FWHM ≃ 2ρ.
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Figure 2.5: Typical SASE output in scaled units. (a) Scaled power |A|2 and
radiation phase φ vs position z̄1 and normalised spectral power P (ω̄) vs scaled
frequency ω̄. (b) Scaled power and phase for an enlarged section of the pulse,
with the peaks of the SASE spikes marked in red dots and the corresponding
radiation phases φ marked in green dots.



Chapter 3

High-Brightness SASE

3.1 Introduction

The original aim of the work presented in this thesis was to explore alternatives

to existing schemes for the improvement of longitudinal coherence in SASE FELs.

As discussed in the previous chapter the development of longitudinal coherence in

the SASE FEL is driven by the relative slippage between radiation and electron

bunch. The temporal spikes in the FEL output are individually longitudinally

coherent. The SASE coherence length is about half the spike spacing, because

lcoh ≃ 3lc and the spike spacing ∆s ≃ 2πlc. Each SASE spike has evolved

independently with the coherence length dependent on the slippage—there is no

causal mechanism to establish a common radiation and bunching phase between

regions of the system separated by ≫ lc.

The proposal was therefore very simple: if the slippage is enhanced artificially

it may be possible to extend the radiation coherence length. As it is not practical

to change the velocity of light the only option is to slow down the electrons. The

mechanism for this was inspired by an earlier proposal to stimulate harmonic

lasing in an FEL amplifier by introducing regular phase shifts between electron

bunch and co-propagating radiation using a series of small electron beam delay

chicanes inserted between the sub-sections (or modules) of a long FEL undulator

[30]. In this scheme the required delay s was sub-wavelength, s ≤ λr, and could

in fact be provided by the standard phase shifters included between modules of

some FEL amplifiers for phase-matching, which is the process of compensating

for the phase drift between electron bunch and radiation that would otherwise

occur in the gap due to the fact that the electron velocity v < c. To improve

52
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the coherence much stronger chicanes would be required in order to delay the

electron bunch s ≫ λr.

3.2 Numerical Implementation

The scheme was modelled using a one-dimensional FEL code which was adapted

from a code FELO which was originally written to model oscillator FELs [47].

The code solves the Equations (2.133–2.135) by numerically integrating the sys-

tem with the standard 4th order Runge-Kutta method. After each undulator

period the field is shifted forward in z̄1 with respect to the electrons by one wave-

length. This process continues until the end of one undulator module. In the

original FELO code the field was then shifted longitudinally again (in ±z̄1) to

account for the appropriate detuning (lengthening or shortening with respect to

the synchronous value) of the FEL cavity length, before the amplitude was scaled

to account for cavity losses and outcoupling and a new electron bunch was cre-

ated. In the revised code the field amplitude remains unchanged and the electron

bunch is retained, but the field is shifted longitudinally forward with respect to

the electron bunch to represent the relative delay given to the electrons.

The chicanes delay the electrons due to the extra path length compared to

the radiation. The simplest configuration for such a chicane is a series of four

dipole magnets with on-axis field B with magnetic length LB, separated by drift

lengths LD. The path length for an electron in such a chicane depends on the

electron energy, as more energetic particles are deflected less and follow a shorter

path. This effect is referred to as longitudinal dispersion and is parameterised by

the R56 term of the linear transfer matrix for the chicane which is defined as

R56 =

∫

η(s)

ρc
ds (3.1)

where η is the dispersion, ρc is the bend radius and s is the longitudinal coordinate

along the trajectory of the reference electron. In the universally scaled system

the longitudinal dispersion of the chicane is parameterised via the D̄ parameter

[40]1 and the dispersive effect is applied to the particle phase using the mapping

θi → θi + D̄p̄i. (3.2)

1Note the parameter is notated D without bar in [40].
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The D̄ parameter is related to R56 by

D̄ =
2πρ

λr

R56. (3.3)

The R56 term for the specific case of a four-dipole chicane of equal dipole and

drift lengths, LB = LD = L, is given for small deflection angle θ by

R56 =
10

3
Lθ2. (3.4)

The delay δ due to the chicane can be shown by simple geometry to be

δ =
5

3
Lθ2 (3.5)

for small θ. Equations (3.3-3.5), combined with the conversion of δ into z̄1 units

enable the dispersion parameter D̄ for a 4-dipole chicane to be expressed in terms

of the delay δ̄1 as

D̄ = δ̄1. (3.6)

This enables the dispersive effect appropriate to the delay to be conveniently

applied in the code via the mapping of equation (3.2).

In order to model more complex chicanes with variable longitudinal dispersion,

a scaled dispersion parameter D is introduced,

D =
D̄

(5δ̄1/3)
. (3.7)

D is therefore D̄ rescaled relative to 5/3 times the dispersion in a standard four-

dipole chicane, so that for a four-dipole chicaneD = 0.6 and for a true isochronous

chicane where the longitudinal dispersion is zero, D = 0.

In the universal scaling of the simulation code, the delay imparted by the

chicane is notated δ̄1. The slippage in the undulator, of length l̄, is notated l̄1 and

it is noted that because of the relative scalings of the two frames of reference, l̄

is numerically equal to l̄1. The total slippage between electrons and radiation, in

one undulator module and one chicane, is therefore

s̄1 = l̄1 + δ̄1. (3.8)
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Figure 3.1: Schematic representation of the High Brightness SASE system. Chi-
canes are introduced between the undulator modules to delay the electron bunch
with respect to the co-propagating radiation pulse.

It also useful to define a slippage enhancement factor

Se ≡
s̄1
l̄1

(3.9)

to parameterise the system. For conventional SASE, where the delay δ̄1 = 0, it

is seen from (3.8) and (3.9) that Se = 1.

The system is shown schematically in Figure 3.1. It should be noted that

the delay chicane is represented here by four dipoles—more complex magnetic

systems would be needed to implement delays with a reduced R56 [48, 49].

3.3 First Numerical Results

The first published simulations [50] used the following parameters: the undulator

module length was l̄ = 0.5, with electron bunch length l̄b = 250. The delays were

set to be isochronous, so D = 0, and slippage enhancement from Se = 1 to Se = 4

was used. Figure 3.2 shows the pulses and spectra at saturation for increasing

Se. The features observed are as follows:

• As Se increases the spacing of the SASE spikes increases.
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• As Se increases the radiation bandwidth around the resonance at ω̄ = 0

decreases.

• For Se ≥ 2.0 a small scale modulation is visible on the radiation envelope,

and this becomes more pronounced as Se increases.

• For Se ≥ 2.5 sidebands are observed in the spectra, and as Se increases

these sidebands occur at frequencies closer to ω̄ = 0.

Clearly the technique appears to have the desired effect, as indicated by the

reduction in bandwidth as Se increases. Figure 3.3 (left) shows ∆s, the mean

distance between the SASE envelope spikes as a function of Se (red squares),

indicating good agreement with the function ∆s = 2πlcSe (black dotted line).

Figure 3.3 (right) shows the full radiation bandwidth around ω̄, ignoring the

sidebands, normalised to the bandwidth for the Se = 1 case, as a function of

Se. Here the black dashed line represents the function ∆ω̄/∆ω̄Se=1 = 1/Se. The

important results demonstrated here are therefore

• The SASE spike spacing is proportional to Se.

• The bandwidth around resonance is inversely proportionally to Se.

The unexpected results seen here were the appearance of the modulation in the

SASE envelope and the sideband frequencies. In the chronology of the research

undertaken for this thesis, further investigation of these phenomena led to the de-

velopment of the Mode-Locked Amplifier FEL, which is the subject of Chapter 4.

However some of the insight gained in this process is now applied anachronistically

to develop further the concept of High-Brightness SASE, which is the subject of

this chapter.

In the next section a simple numerical experiment is presented which can be

used to understand the appearance of the modulations in the SASE envelope.
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Figure 3.2: Pulse profiles of scaled power |A|2 vs position z̄1 and normalised
spectra P (ω̄) vs scaled frequency ω̄.
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3.4 A Numerical Experiment with Random

Numbers

As an illustrative aside, we consider in this section a simple numerical experiment

which gives insight to the unexpected observations (at least to the author) made

in the previous section. We start with a sequence A of N random numbers

uniformly distributed between 0 and 1:

A = [A1, A2, A3, . . . , AN ] Ap ∈ [0, 1] ∀ p. (3.10)

We now make a copy A′ of the sequence A, circularly shift all the elements in

this A′ by some amount s ≪ N , so that Ap → Ap+s, then add A′ to the original

sequence A. This process is performed X times and then the resulting sequence

renormalised so that
∑N

p=1Ap is unchanged from its initial value.

We then examine the new sequence. One would expect that as we have simply

taken a list of random numbers, shifted it and added it to itself a few times we

would still have a list of random numbers. Anecdotally, this is what most people

think if you ask them this question. However, this is not the case. What is

observed is that there is now a periodic modulation in the values of the elements

in the sequence. Out of noise, some order has been created.

An example of this numerical experiment is shown in Figure 3.4. The top

row, in red, shows (left to right) the original sequence A, an FFT of the sequence

to examine any periodicity, and a histogram of the values of A. The sequence

used has 400 elements, but for easier visibility only the first 100 elements are

shown. It is clear that the number sequence looks random with no evidence of

dominant periodicity. The manipulations described above are then applied, with

s = 10 and X = 20, and the results shown on the bottom row, in blue. There

is an obvious modulation with period τ = 10. This is picked out clearly in the

FFT. It is also seen that there are modulations with period τ = s/2, s/3, . . ..

Figure 3.5 shows the FFT expressed in terms of frequency ν = 1/τ . The periodic

modulation in the sequence is seen to correspond to a set of frequencies equally

spaced by ∆ν = 1/s.

This numerical example is analogous to the FEL system described so far. The

random number sequence would represent the noisy spontaneous emission from

the electron bunch in a single undulator module. In the chicane, the electron
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Figure 3.4: A numerical experiment with shifting, copying and adding random
numbers. Top: the original random sequence, FFT and histogram. Bottom: the
new sequence.
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Figure 3.5: A numerical experiment: frequency spectrum of the new sequence.

beam is delayed by s, then re-emits another pulse of spontaneous emission which

is shifted in time relative to, and overlays, the emission from the first undulator

module. Because each undulator module is short, the shot noise structure in

the electron bunch is not changed very much by propagation or emission, so the

emitted field from the second undulator module is similar to the pulse emitted

in the first undulator module. In this way, the total field comprises a sequence

of similar, but shifted, noisy spontaneous emission pulses and has temporal and

spectral properties analagous to the simple numerical example presented here— a
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modulation of the envelope with period s and a frequency spectrum with sideband

frequencies evenly spaced by 1/s.

In the next section a proper mathematical model of this process is given by

deriving the spontaneous emission spectrum of the FEL system with equal delays.

3.5 Theoretical Model Spectra

3.5.1 Spontaneous Emission Spectrum

It is possible to derive a simple expression for the spontaneous spectrum, i.e. in

the absence of FEL gain, by considering the emission due to a small source term.

Equation (2.135) can be simplified to

∂A

∂z̄
+

∂A

∂z̄1
= b0(z̄1) (3.11)

by assuming a constant current and a source term b0(z̄1) that does not evolve

with z̄. Taking the Fourier transform with respect to z̄1,

F [X(z̄, z̄1)] ≡ X̃(z̄, ω̄) =
1√
2π

∫ ∞

−∞
X(z̄, z̄1)e

−iω̄z̄1dz̄1 (3.12)

and using the Fourier transform property

F

[

dX(z̄, z̄1)

dz̄1

]

= iω̄X̃(z̄, ω̄) (3.13)

gives
dÃ

dz̄
+ iω̄Ã = b̃ (3.14)

where dependence on ω̄ and z̄ is assumed. The transform variable ω̄ is a scaled

frequency defined earlier in (2.235). Multiplying both sides of this equation by

eiω̄z̄ gives
dÃ

dz̄
eiω̄z̄ + iω̄Ãeiω̄z̄ = b̃eiω̄z̄ (3.15)

the LHS of which is simply the differential of the product Ãeiω̄z̄ so

d

dz̄

(

Ãeiω̄z̄
)

= b̃eiω̄z̄ (3.16)
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which can be integrated to give

Ãeiω̄z =
b̃

iω̄
eiω̄z + C (3.17)

and hence

Ã =
b̃

iω̄
+ Ce−iω̄z. (3.18)

With intitial condition Ã(0) = 0 the integration constant is found to be

C = − b̃

iω̄
(3.19)

so the general solution is

Ã =
b̃

iω̄

(

1− e−iω̄z̄
)

. (3.20)

Multiplying the first term by e−iω̄z̄/2 and the terms in the brackets by eiω̄z̄/2 gives

Ã =
2b̃

ω̄
e−iω̄z̄/2

(

eiω̄z̄/2 − e−iω̄z̄/2

2i

)

(3.21)

=
2b̃

ω̄
e−iω̄z̄/2 sin

( ω̄z̄

2

)

(3.22)

=
b̃z̄

(ω̄z̄/2)
e−iω̄z̄/2 sin

( ω̄z̄

2

)

(3.23)

= b̃z̄e−iω̄z̄/2sinc
( ω̄z̄

2

)

. (3.24)

For a single undulator of length l̄ the spectrum is therefore

Ã(ω̄) = b̃l̄e−iω̄l̄/2sinc

(

ω̄l̄

2

)

. (3.25)

In the frame of reference of the electrons, by the end of the undulator chain the

total field will comprise the field from the last module, added to the field from

the penultimate module but shifted by s̄1, plus the field from the module before

that, but shifted by 2s̄1, and so on. With Am the field from a single undulator

module, the total field due to the sum of N modules is

A(z̄, z̄1) = Am+Am(z̄, z̄1−s̄1)+Am(z̄, z̄1−2s̄1) · · ·+Am(z̄, z̄1−(N−1)s̄1). (3.26)
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Using the Fourier transform time-shifting relation

F [X(z̄, z̄1 − a)] = e−iaω̄X̃(z̄, ω̄) (3.27)

the transform of the total field A(z̄, z̄1) is

Ã = Ãm + e−iω̄s̄1Ãm + e−iω̄2s̄1Ãm + . . .+ e−iω̄(N−1)s̄1Ãm (3.28)

= Ãm

(

1 + e−iω̄s̄1 + e−iω̄2s̄1 + . . .+ e−iω̄(N−1)s̄1
)

(3.29)

= Ãm

(

1− e−iω̄Ns̄1

1− e−iω̄s̄1

)

(3.30)

where in the final step the standard expression for the sum of a geometric series

has been applied. Substituting from (3.25), the spontaneous emission spectrum

is therefore

Ã(ω̄) = b̃l̄sinc

(

ω̄l̄

2

)

e−iω̄l̄/2

(

1− e−iω̄Ns̄1

1− e−iω̄s̄1

)

(3.31)

and the power spectral density

|Ã(ω̄)|2 = |b̃|2l̄2sinc2
(

ω̄l̄

2

)

2− (eiω̄Ns̄1 + e−iω̄Ns̄1)

2− (eiω̄s̄1 + e−iω̄s̄1)
(3.32)

= |b̃|2l̄2sinc2
(

ω̄l̄

2

)

1− cos(Nω̄s̄1)

1− cos(ω̄s̄1)
. (3.33)

which is the single undulator module spontaneous emission spectrum multiplied

by an ‘interference’ term responsible for the sidebands observed in the spectra of

the simulation results. The normalised function (3.33) is plotted in Figure 3.6

for parameters l̄ = 0.5, s̄1 = 2.0 and N = 5. In this figure the dotted green line

shows the interference term, normalised to peak value unity. The red dashed line

shows the normalised sinc2 term and the solid black line shows the normalised

full function.

The Sinc2 Term

The sinc2 term reaches its first minimum away from ω̄ = 0 when ω̄l̄/2 = ±π or

when ω̄ = ±2π/l̄ so for the example plotted in Figure 3.6 this occurs at ω̄ = ±4π.

The full bandwidth is thus ∆ω̄ = 4π/l̄. This can be converted into non-scaled
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Figure 3.6: Normalised spontaneous emission spectrum (3.33) for parameters
l̄ = 0.5, s̄1 = 2.0 and N = 5.

units

∆ω̄ =
4π

l̄
(3.34)

∴
1

2ρ

∆λ

λ
= 4π

lg
Lw

= 4π
λw

4πρLw
(3.35)

∆λ

λ
=

2

Nw

(3.36)

so the FWHM bandwidth for the single undulator module is in agreement with

the normal expression
∣

∣

∣

∣

∆λ

λ

∣

∣

∣

∣

FWHM

≃ 1

Nw

. (3.37)

The Interference Term

The interference term is most easy to interpret by looking at the equation for

the field rather than the intensity. The numerator is a phasor of amplitude unity

rotating in the complex plane around +1 and the denominator is a phasor of

amplitude unity rotating in the complex plane N times more slowly around +1.
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The peak of the interference term corresponds to the denominator tending to zero,

which will happen whenever e−iω̄s̄1 = 1, giving the frequencies of the sidebands

to be

ω̄ =
2πn

s̄1
(3.38)

with n an integer, and the spacing of the sidebands is therefore

∆ω̄ =
2π

s̄1
. (3.39)

For the example shown in Figure 3.6 this gives ∆ω̄ = π. Destructive interference

will occur whenever the numerator is zero, which occurs whenever e−iNω̄s̄1 = 1

giving destructive interference at

ω̄ = ±2πn

Ns̄1
. (3.40)

The exception to this is the case ω̄ = 0 because here the interference term is

undetermined. Examination of the term

1− cos(Nω̄s̄1)

1− cos(ω̄s̄1)
(3.41)

in the intensity spectrum (3.33) shows that this is also undetermined at ω̄ = 0

but it can be shown using using L’Hopital’s rule that it tends to N2 as ω̄ → 0,

indicating that ω̄ = 0 corresponds to constructive interference, not destructive.

The number of sidebands Ns is approximately the full width of the sinc func-

tion divided by the mode spacing,

Ns ≃
4π/l̄

2π/s̄1
=

2s̄1
l̄

= 2Se (3.42)

The dependence of the full spectrum function on the length of the undulator

module l̄, the number of modules N and the slippage enhancement Se = s̄1/l̄ is

shown in Figure 3.7, where N = 2, and Figure 3.8, where N = 8. From these two

figures a number of observations can be made:

• For Se = 1, there are no sidebands and the spectrum is the normal un-

dulator spectrum. The width of this spectrum depends only on the total

propagation distance through the undulator system z̄ = Nl̄. For example,

for N = 2, l̄ = 2 the spectrum is identical to that for N = 8, l̄ = 0.5,
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because in each case z̄ = 4.

• For Se > 1, and for a fixed Se, as l̄ increases the sinc
2 envelope decreases as

does the sideband spacing and the width of the individual sidebands.

• For Se > 1, and for a fixed Se, as N increases the sinc2 remains constant

as does the sideband spacing, but the width of the individual sidebands

decreases.

• For fixed l̄, as Se increases the sideband spacing decreases and therefore

the number of sidebands within the envelope increases. The width of each

sideband also decreases.

From the above, it appears that in order to minimise the spectral width about

resonance, thus providing the potential to improve the longitudinal coherence,

it is necessary to increase the slippage enhancement as much as possible. Of

course, this analysis is based only on an examination of the spontaneous emission

spectrum, in the absence of any FEL gain. In the next section, the derivation

of the spontaneous emission spectrum is amended to include a simple frequency-

independent field gain term.

3.5.2 Emission Spectrum with Gain Term

A simple frequency-independent gain term can be included to investigate the

effect of field amplification. The field amplification in a single undulator module

can be represented by eα, with α an arbitrary gain coeeficient, so the transform

of the total field (3.28) can be rewritten

Ã = Ãm + eαe−iω̄s̄1Ãm + e2αe−iω̄2s̄1Ãm + . . .+ e(N−1)αe−iω̄(N−1)s̄1Ãm (3.43)

and following through the same steps as before the spectrum is found to be

Ã = b̃l̄sinc
( ω̄z̄

2

)

(

1− e−iω̄Ns̄1eNα

1− e−iω̄s̄1eα

)

e−iω̄l̄/2 (3.44)

with power spectral density

|Ã(ω̄, α)|2= |b̃|2l̄2sinc2
(

ω̄l̄

2

)

1 + e2Nα − 2eNα cos(Nω̄s̄1)

1 + e2α − 2eα cos(ω̄s̄1)
(3.45)
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|Ã
|2

s̄1 = 1

−10 0 10

s̄1 = 2

−10 0 10

s̄1 = 3

−10 0 10

s̄1 = 4

−10 0 10

|Ã
|2

ω̄

s̄1 = 2

−10 0 10
ω̄

s̄1 = 4

−10 0 10
ω̄

s̄1 = 6

−10 0 10
ω̄

s̄1 = 8

l̄ = 1.0

l̄ = 0.5

l̄ = 2.0

Se = 1.0 Se = 2.0 Se = 3.0 Se = 4.0

Figure 3.7: Spontaneous emission spectra, N = 2.
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Figure 3.8: Spontaneous emission spectra, N = 8.
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Figure 3.9: Emission spectra with gain term included, N = 8.

which for α = 0 reduces to (3.33). From examination of the interference term

of (3.44) it can be seen that the numerator is now a phasor of amplitude eNα

rotating about +1 so for α > 0 the amplitude of this phasor is always greater than

unity and hence destructive interference can never be total. Similarly, for α > 0

the denominator can never equal zero, damping the constructive interference.

Therefore the term eα responsible for field amplification also acts to damp the

interference and hence the visibility of the sidebands.

Recalling equation (2.193), in the linear regime field grows as e
√
3z̄/2 so the gain

coefficient α can be substituted by α =
√
3l̄/2. The resulting normalised spectra,

for the same parameters as shown in Figure 3.8, are shown in Figure 3.9, where

it is seen that the inclusion of the gain term acts to reduce the visibility of the

sidebands and increase the bandwidth around resonance, with the effect becoming

more pronounced as l̄ increases. The interference effect can be quantified in terms

of the sideband visibility by examining the interference term

I =
1 + e2Nα − 2eNα cos(Nω̄s̄1)

1 + e2α − 2eα cos(ω̄s̄1)
(3.46)
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Figure 3.10: Sideband visibility V vs module length l̄.

with α =
√
3l̄/2 and calculating the visibility

V =
max(I)−min(I)

max(I) + min(I)
(3.47)

This has been done as a function of module length l̄, N and s̄1. It is found that

in fact V only depends on l̄ and the dependency is shown in Figure 3.10. The

sideband visibility is seen to decay below 1/e at l̄ ≃ 2.

The limitation of this analysis is that it is not based on a full solution of

the coupled FEL equations. This means, for example, that the dependence on

field gain as a function of frequency ω̄ is omitted. Also, the assumption is made

that the gain is taken from the linear regime which is only valid if the FEL has

risen above the lethargy regime, that is for l̄ ≥ 2. Therefore the analysis can

only be treated as an approximation and cannot claim to give an absolute upper

limit on the acceptable undulator module length. The conclusion that can be

drawn however is that the bandwidth around resonance of the output may be

reduced, and hence the longitudinal coherence increased, by using short rather

than long undulator modules. In subsequent sections a method to remove the

sideband frequencies while maintaining a narrow bandwidth about the resonance

is described.
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3.5.3 Discussion

It has been shown that for equal delays the spectrum of the modular undulator-

chicane system comprises sidebands with spacing ∆ω̄ = 2π/s̄1, and that by ap-

plying the delays the bandwidth around the resonance at ω̄ = 0 continually

narrows. It has also been shown that by keeping the undulator modules rela-

tively short the sideband structure is not damped by the field gain and thus the

central frequency does not overlap the sidebands, i.e. the sideband frequencies

and resonance frequency are all distinct and the bandwidth at resonance is min-

imised. Consideration is now given to minimising the total bandwidth. To do

this it is necessary to remove the sideband frequencies in a way that does not

broaden the bandwidth at resonance. The idea implemented was to make each

delay different such that the sideband frequencies supported by each delay (not

removed by destructive interference) were unique for each delay. In this way the

central frequency at ω̄ = 0 would continue to narrow while the radiation pulse

envelope would be smoothed.

3.6 Numerical Results

In this section the simulation results are presented. Initially the results from a set

of ordinary SASE simulations are shown as a ‘control’ case then simulations with

equal chicane delays, followed by the results using randomised delays. A more

methodical approach was then adopted and the final section shows results using

delays based on a prime number sequence. The basic simulation parameters were

the same for each case to demonstrate the principle and allow a cross-comparison

of the results. The parameters used were as follows: monoenergetic electron

bunch with rectangular current distribution and scaled bunch length l̄b = 3000;

undulator module length l̄ = 0.5; dispersion parameter D = 0; for the calculation

of the correct shot noise only—electron bunch charge Q = 1 nC and ρ = 2×10−3.

3.6.1 SASE Control

A SASE control case was simulated initially. Figure 3.11 shows the evolution with

z̄ of the scaled radiation power |A|2 (top left), the radiation coherence length l̄coh

(top right), the rms radiation bandwidth σω̄ (bottom left) and the electron beam
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Figure 3.11: Summary data for SASE control simulations, showing scaled power
|A|2, radiation coherence length l̄coh, radiation rms spectral width σω̄ in units of
scaled frequency ω̄ and bunching parameter coherence length bcoh as a function
of scaled propagation distance z̄. The dashed black lines on the plots of l̄coh and
b̄coh indicate the total accumulated slippage due to the undulators as a function
of propagation distance z̄.

bunching coherence length b̄coh (bottom right), where

b̄coh =

∫ +∞

−∞
|g(τ̄1)|2dτ̄1 (3.48)

and

g(τ̄1) =
〈b∗(z̄1)b(z̄1 + τ̄1)〉

〈b∗(z̄1)b(z̄1)〉
. (3.49)

so that b̄coh can be calculated using the same code as used for l̄coh. The dashed

black lines on the plots of l̄coh and b̄coh indicate the total accumulated slippage

S̄ as a function of propagation distance z̄. The radiation intensity is the mean
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value over the whole pulse. The intensity saturates at |A|2= 1.1 at z̄ = 12.

At saturation the radiation coherence length is l̄coh = 3.4 in agreement with

(2.232) and the bunching coherence length is b̄coh = 2.3. The rms bandwidth at

saturation is σω̄ = 0.48, so from the definition of the scaled frequency (2.235) the

rms bandwidth σλ/λ ≃ ρ in agreement with (2.214).

The evolution of the radiation intensity profile, radiation phase and spectrum

are shown in Figure 3.12, Figure 3.13 and Figure 3.14 and are seen to be typical

of SASE. In each figure the output is shown columnwise in steps of z̄ = 0.5 from

z̄ = 0.5 to z̄ = 15.0. For clarity the scales on the y-axes are omitted, but the

convention adopted for these plots, and all subsequent equivalent plots (unless

stated otherwise) is that: the scaled power |A|2 is shown normalised to the peak

over the whole pulse, but only a small section of the whole pulse is displayed, so

the scale runs from |A|2= 0 to |A|2max; the phase is from −π to π and the spectra

are normalised to their peak values.

A Note on the Calculation of Coherence Length

The radiation and bunching coherence lengths are calculated using (2.223) and

((3.48)) where the integration limits are not taken to −∞ < τ̄1 < ∞ but re-

stricted to −2S̄ < τ̄1 < 2S̄ where S̄ =
∑

n s̄1,n is the total accumulated slippage.

The reason for this is to include only the phase correlations between sections of

the radiation pulse which are causally related through the FEL interaction. An

example is shown in Figure 3.15 of the coherence function |g(τ̄1)|2 for the FEL

radiation output at z̄ = 12. There is a peak with maximum value |g(τ̄1)|2= 1 at

τ̄1 = 0 then rapid decay to |g(τ̄1)|2∼ 10−4 at τ̄1 ≃ ±10 so most of the contribution

to the integral falls in this range. Outside this range the function is small but

non-zero so if the integration is performed over −∞ < τ̄1 < ∞ there is a small

contribution to the integral. The total slippage to saturation is S̄ = 12 so any

non-zero value in the coherence function for |τ̄1|> 12 cannot be caused by the

FEL interaction and must be due to a random phase correlation. Figure 3.16

shows how the calculated coherence length l̄coh depends on the integration limits

±R̄. It is seen that l̄coh ≃ 3.4 for 5 < R̄ < 30 but for R̄ > 30 the calculated l̄coh

continues to increase. If R̄ is chosen to be approximately twice the slippage the

calculated value of l̄coh is unsensitive to R̄ and close to the expected theoretical

value. This choice has been made for all the calculations in this thesis.
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Figure 3.12: SASE control: sub-sections of the normalised intensity profiles in
steps of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. For clarity the scale on the |A|2-axis is
omitted, but the convention adopted for this plot, and all subsequent equivalent
plots (unless stated otherwise), is that the range of the scaled power |A|2 displayed
is |A|2= 0 to |A|2max where |A|2max is the maximum over the whole simulated pulse.



CHAPTER 3. HIGH-BRIGHTNESS SASE 73

φ
φ

φ
φ

φ
φ

φ
φ

φ

2000 2200 2400

φ

z̄1

2000 2200 2400
z̄1

2000 2200 2400
z̄1

Figure 3.13: SASE control: normalised phase profiles in steps of z̄ = 0.5 in steps
of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. The φ scale is omitted for clarity, but the
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3.6.2 Equal Chicane Delays

Next, equal chicane delays were applied between the undulator modules. The

dispersion parameter was set to D = 0 to represent isochronous chicanes. This is

the ‘ideal’ case to illustrate the concept and simplify the analysis of the results.

Isochronous chicanes can be built but the challenge is to build chicanes that

are also compact and variable. This has not been studied in this thesis, although

designs for compact chicanes with very low dispersion have already been published

[48, 49]. Section 3.7.2 presents an analysis of the performance of an HB-SASE

system for D > 0 and shows that in fact absolute isochronicity is not required.

A number of simulations were performed with the delay δ̄ increasing for each

simulation. The values used were δ̄ =[5.1, 8.9, 11.2, 17.35, 23.46, 48.0]. Figure

3.17 shows the evolution in z̄ of the radiation intensity |A|2 averaged over the

pulse (top left), the radiation coherence length l̄coh (top right), the rms radiation

bandwidth σω̄ (bottom left) and the electron beam bunching coherence length b̄coh

(bottom right). The dashed lines on the plots of l̄coh and b̄coh indicate the total

accumulated slippage S̄ as a function of propagation distance z̄. For the analysis

in each case the region at the back of the pulse of length equal to the total slippage

up to saturation is trimmed so any effects due to radiation slipping into the pulse

are excluded. Each plot also shows the results from the SASE control case of

Section 3.6.1 to allow the effects of adding the delays to be clear. It is seen that

the radiation intensity growth differs little from SASE. The radiation coherence

length is improved over SASE by at most a factor of 3.3. For chicane delay δ̄ = 8.9

it is seen that the coherence length l̄coh = 11.2 compared to l̄coh = 3.4 for SASE

and in fact l̄coh differs little with δ̄. The radiation bandwidth at saturation is

σω̄ ≈ 2, a factor of four broader than SASE and again has very little dependence

on δ̄.

The evolution of the radiation intensity profile, radiation phase and spectrum,

for δ̄ = 48.0, are shown in Figure 3.19, Figure 3.20 and Figure 3.21. As for the

SASE control case, in each figure the output is shown columnwise in steps of

z̄ = 0.5. The intensities are shown normalised to the peak over the whole pulse,

but only a small section of the whole pulse is displayed. The phase is from −π

to π and the spectra are normalised. The pulse intensity shows clear repeated

temporal structure with a period of 48.5. Whereas the SASE spectra of Figure

3.14 were clearly chaotic the spectra for equal delays show the equally spaced

sidebands—an enlarged spectrum for δ̄, at a distance of z̄ = 12, is shown in
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Figure 3.18.

To conclude, the effect of adding equal delays is a moderate increase in coher-

ence length, which quickly saturates as the delays are made larger, the generation

of periodic structure in the temporal pulse profile and very broad bandwidth out-

put composed of multiple equally spaced frequency lines. These results indicate

that just increasing the slippage is not in itself sufficient to give a significant

increase in coherence length.
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Figure 3.17: Equal chicane delays. The evolution in z̄ of the radiation intensity
|A|2 averaged over the pulse (top left), the radiation coherence length l̄coh (top
right), the rms radiation bandwidth σω̄ (bottom left) and the electron beam
bunching coherence length b̄coh (bottom right). The dashed lines on the plots of
l̄coh and b̄coh indicate the total accumulated slippage S̄.
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Figure 3.18: Equal chicane delays of δ̄ = 48: normalised spectrum at z̄ = 12
showing the evenly spaced sidebands.
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Figure 3.19: Equal chicane delays of δ̄ = 48: normalised intensity profiles in
steps of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. Structure with a period of τ = 48.5 is
evident.
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Figure 3.20: Equal chicane delays of δ̄ = 48: normalised phase profiles in steps
of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. The rate of phase variation appears
qualitatively much more rapid than in the SASE results in Figure 3.13.
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Figure 3.21: Equal chicane delays of δ̄ = 48: normalised spectra in steps of
z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0.
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3.6.3 Random Chicane Delays

As motivated in Section 3.5.3 the delays were then randomised in a uniform

distribution δ̄n = [0, 2〈δ̄〉] about the mean delay 〈δ̄〉, with the mean delays set

to match the equal delays used in the previous section. Figure 3.22 shows the

evolution with z̄ of |A|2, l̄coh, σω̄ and b̄coh. Figures 3.23–3.25 show the radiation

intensity profile, radiation phase and spectra for 〈δ̄〉 = 48.0.

The behaviour is now quite different. The radiation intensity growth rate is

slightly reduced from SASE, reaching saturation at z̄ = 14 rather then z̄ = 12,

but the pulse saturates at the same intensity. The coherence length is up to two

orders of magnitude longer than SASE, depending on the delay applied. The

longest coherence length corresponds to the largest mean delay 〈δ̄〉 = 48.0 where

l̄coh = 398 at z̄ = 14, 117 times longer than the SASE value at saturation. The

total accumulated slippage in this case is S̄ = 1267. In all cases it is seen that l̄coh

never exceeds S̄. The evolution of the radiation bandwidth with z̄ is qualitatively

different from SASE—it decreases initially much more slowly, but at saturation

is reduced by a factor of up to two orders of magnitude. For 〈δ̄〉 = 48.0 the

bandwidth at saturation is σω̄ = 6.5 × 10−3. The pulse power profiles show

a slowly varying envelope developing out of the noise, and the phase profiles

show similar characteristics, with the smoothly varying phase slowly evolving out

of the initial noise. As the spectrum evolves with z̄ the sidebands away from

resonance gradually decay relative to the clear developing spike at resonance.

The spectra for the SASE control and for random chicane delays with 〈δ̄〉 = 48.0

are compared in Figure 3.26, on both a linear and a logarithmic scale, with each

spectrum independently normalised. On a linear scale the spectrum for random

delays appears as a single sharp line compared to the broad noisy SASE spectrum.

Viewed on the logarithmic scale the spectrum for random chicane delays shows

some residual sidebands but with an intensity two orders of magnitude less than

the intensity at resonance.

A Note on Bandwidth Calculation

The sudden reduction in bandwidth seen between z̄ = 13.5 and z̄ = 14 is an

artefact of the numerical calculation of the bandwidth. The spectrum of the

system is very broad at small z̄ then becomes very narrow towards saturation,

as shown in Figure 3.25. The rms calculation is very sensitive to low levels

of spectral power at frequencies a long way from the mean weighted frequency
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which increase the calculated width ‘disproportionately’. The solution is either to

artificially restrict the calculation to some window around the feature of interest,

or to threshold the power before making the calculation. It was more convenient

for these simulations, where the bandwidth changes by orders of magnitude, to

apply a threshold. The threshold was set to be 1% of the peak intensity by

studying the SASE control case to determine the threshold at which the calculated

bandwidth was independent of the frequency window width and agreed with the

theoretical value. The same threshold was used for all calculations of different

delay sequences and therefore gives a fair comparison between different schemes.

For the case discussed here, 〈δ̄〉 = 48.0, at z̄ = 13.5 there is a residual sideband

at ω̄ = −2.64 with peak normalised power level 0.012 which is then contributing

to the rms calculation, but after the next undulator module this sideband has

dropped below the threshold and is excluded, and the rms changes significantly

because the excluded sideband frequency is far from resonance.
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Figure 3.22: Random chicane delays. The evolution in z̄ of scaled power |A|2,
radiation coherence length l̄coh, rms bandwidth σω̄ and bunching coherence length
b̄coh. The radiation and bunching coherence lengths at saturation exceed that of
the SASE control case by up to two orders of magnitude, with a corresponding
reduction in bandwidth.
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Figure 3.23: Random chicane delays of 〈δ̄〉 = 48.0: normalised intensity profiles
in steps of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. By saturation at z̄ = 14.0 the pulse
profile has become a slowly varying, but noisy, envelope.
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Figure 3.24: Random chicane delays of 〈δ̄〉 = 48.0: normalised phase profiles in
steps of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. By saturation a smoothly varying
phase has evolved from the initial noise, indicating good longitudinal coherence.
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Figure 3.25: Random chicane delays of 〈δ̄〉 = 48.0: normalised spectra in steps of
z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. As the spectrum evolves with z̄ the sidebands
away from resonance gradually decay relative to the clear developing spike at
resonance.
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Figure 3.26: Comparison of normalised spectra at saturation, for SASE control
(grey) and random delays with 〈δ̄〉 = 48.0 (red). On a linear scale the spectrum
for random delays appears as a single sharp line compared to the broad noisy
SASE spectrum. Viewed on the logarithmic scale the spectrum for random chi-
cane delays shows some residual sidebands but with an intensity two orders of
magnitude less than the intensity at resonance.
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Table 3.1: Sideband frequencies ω̄i,n/(4π/l̄F ). The boxes highlight the common
frequencies.

3.6.4 Prime Number Delays

Amore methodical technique to ensure cancellation of the sidebands was adopted.

To avoid common supported sideband frequencies between any two delays in the

series a sequence based on prime number increases was used. The combined delay

s̄i = l̄ + δ̄i for the ith undulator/chicane is given by

s̄i =
Pil̄F

2
(3.50)

where P=[2, 3, 5, 7, 11, 13. . . ] is the sequence of prime numbers. F is a factor

which scales the whole sequence to change the total slippage. This definition for

s̄i is chosen such that

s̄1 =
P1l̄F

2
= l̄F (3.51)

and hence

F =
s̄1
l̄

(3.52)

so F is also the slippage enhancement factor but for the first undulator/chicane

module only. Note also that for F < 1 then s̄1 < l̄ which is unphysical because it

implies a negative delay δ̄ in the chicane, or electrons moving faster than light.

The simulation code checks this condition and sets δ̄ = 0 in this situation.

The sideband frequencies supported by the ith delay occur at

ω̄i,n = n
2π

s̄i
=

n

Pi

(

4π

l̄F

)

(3.53)
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where (3.50) has been substituted. Table 3.1 shows ω̄i,n/(4π/l̄F ). In this table

each row represents the sideband frequencies ω̄n supported by the ith delay. As

the delays increase according to the prime number sequence the frequencies sup-

ported become more closely spaced. It is seen that there is in fact a common

frequency ω̄c supported over all the delays which occurs whenever n = Pi giving

ω̄c =
4π

l̄F
. (3.54)

It has already been seen that the full gain bandwidth is given by the width of the

sinc2 envelope function which reaches its first zero at ω̄ = 2π/l̄. It is therefore

necessary that for no common frequencies to exist within the gain envelope

ω̄c =
4π

l̄F
>

2π

l̄
(3.55)

which gives a constraint on the value of the scaling factor for efficient cancelation

of the sideband frequencies

F < 2. (3.56)

No attempt has been made to circumvent this limit in the work in this thesis, and

simulations using prime delays have been performed up to a scaling of F = 4. To

increase the total slippage while satisfying F < 2 it would only be necessary to

start the prime number sequence at a higher prime number than 2.

A number of simulations were done with the scale factor F set so that the

total slippage to saturation in each case approximately matched that of the set

of simulations with random delays. The values used were F=[0.5, 0.81, 1.0, 1.5,

2.0, 4.0]. Figure 3.27 shows the evolution with z̄ of |A|2, l̄coh, σω̄ and b̄coh. Figures

3.28–3.30 show the radiation intensity profile, radiation phase and spectra for

F = 4.0 then Figures 3.31 and 3.32 show the spectra with the ω̄ axis expanded

by factors of 10 and 100 respectively.

It is observed that the radiation growth rate is very similar to the cases with

random delays, with the power reaching saturation at z̄ = 14 in all cases. The

coherence length at saturation increases with F as the delay sequence is scaled

up increasing the total slippage. The maximum is l̄coh = 514 for F = 4.0, a factor

of 150 increase over the SASE value. The minimum bandwidth at saturation

is σω = 4.2 × 10−3, a reduction of 115 compared to SASE. The evolution of

the power profiles and phases profiles are qualitatively similar to the case with
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random chicane delays, whereas the evolution of the spectrum is different—for

small z̄ the sideband modes are much wider because in this delay sequence the

initial delays are small then increase from one chicane to the next, whereas the

random delays can be large at small z̄ giving more closely spaced and narrower

sidebands. A comparison of normalised spectra at saturation, for SASE control

(grey) and prime number delays with F = 4.0 (red), is shown in Figure 3.33.

Comparison with Figure 3.26 shows that the prime number delays appear more

efficient at suppressing the sidebands than the random chicane delays.

It is also noted that for F = 4.0 the coherence length grows more slowly

initially than for all the smaller values of F , and that the bandwidth decreases

more gradually. This is likely because the criteria F < 2 is not satisfied, meaning

that there exists within the gain bandwidth a sideband frequency common to all

the modes at frequency ω̄c = ±2π (using equation (3.54)) and in fact this is clearly

visible in Figure 3.34. This figure shows a comparison, on both logarithmic and

linear scales (note the expanded y-axis on the linear plot), of normalised spectra

at saturation, for random delays with 〈δ̄〉 = 48.0 and prime delays with F = 4.0.

It is confirmed on this direct comparison that apart from the residual sidebands at

ω̄c = ±2π the prime sequence has been more effective at suppressing the sideband

frequencies either side of the resonance.
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Figure 3.27: Prime number delays. The evolution in z̄ of |A|2, l̄coh, σω̄ and b̄coh.
Similarly to the case with random chicane delays, the radiation and bunching
coherence lengths at saturation exceed that of the SASE control case by up to
two orders of magnitude, with a corresponding reduction in bandwidth.
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Figure 3.28: Prime number delays with scaling factor F = 4.0: normalised in-
tensity profiles in steps of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. Similarly to the
case with random chicane delays, by saturation at z̄ = 14.0 the pulse profile has
become a slowly varying envelope with some residual noise.
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Figure 3.29: Prime number delays with scaling factor F = 4.0: normalised phase
profiles in steps of z̄ = 0.5 from z̄ = 0.5 to z̄ = 15.0. The results are qualitatively
similar to the case with random chicane delays—by saturation a smoothly varying
phase has evolved from the initial noise, indicating good longitudinal coherence.
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Figure 3.30: Prime number delays with scaling factor F = 4.0: normalised spectra
in steps of z̄ = 0.5. The evolution of the spectrum is qualitatively different from
the case with random number delays shown in Figure 3.25. For small z̄ the
sideband modes are much wider becasue in this delay sequence the initial delays
are small then increase from one chicane to the next, whereas the random delays
can be large at small z̄ giving more closely spaced and narrower sidebands.
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Figure 3.31: Prime delays with scaling factor F = 4.0: normalised spectra in
steps of z̄ = 0.5. The ω̄ axis is expanded by a factor of 10 compared to Figure
3.30
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Figure 3.32: Prime delays with scaling factor F = 4.0: normalised spectra in
steps of z̄ = 0.5. The ω̄ axis is expanded by a factor of 100 compared to Figure
3.30
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Figure 3.33: Comparison of normalised spectra at saturation, for SASE control
(grey) and prime delays with scaling factor F = 4.0 (red).
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Figure 3.34: Comparison of normalised spectra at saturation, for random delays
with 〈δ̄〉 = 48.0 (blue) and prime delays with F = 4.0 (red). Apart from the resid-
ual sidebands at ω̄c = ±2π the prime number sequence has been more effective
at suppressing the sideband frequencies either side of the resonance.
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Figure 3.35: Comparison of effect of equal chicane delays, random chicane delays
and prime number sequence delays, showing the radiation coherence length l̄coh
and rms bandwidth σω̄ at intensity saturation as a function of the total applied
slippage S̄ =

∑

s̄n.

3.6.5 Comparison of Chicane Delay Sequences

Three different chicane delay sequences have been applied, equal delays in Section

3.6.2, delays randomised about a mean in Section 3.6.3 and delays based on a

prime number sequence in Section 3.6.4. It was seen that the effect of equal

delays on the longitudinal coherence was very limited, although this technique

might be useful for obtaining a very broad bandwidth FEL output comprising

evenly-spaced discrete frequencies. To really improve the longitudinal coherence

significantly over SASE, and give a corresponding reduction in bandwidth, it was

necessary to make the delays non-constant which in effect filters the radiation by

prohibiting the growth of the sideband frequencies. The efficacy of random delays

and prime delays is in fact quite similar—Figure 3.35 shows a comparison of effect

of equal delays, random delays, or prime number sequence delays, showing the

radiation coherence length l̄coh and rms bandwidth σω̄ at intensity saturation as

a function of the total applied slippage S̄ =
∑

s̄n. It is seen that for random and

prime delays the coherence length increases in proportion to the total slippage. It

should be noted that there has also been a proposal for a delay sequence increasing
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geometrically in powers of 2 [51]. Although no direct comparison has been made

with the delay sequences investigated here, it is postulated by the author that

such a sequence may not be as effective since it would support, and not therefore

efficiently cancel, some common sideband frequencies.

For the delay sequences using randomised and prime number delays, linear

fits to l̄coh vs S̄ are

l̄coh (Random) = 0.345 S̄ + 13 (3.57)

and

l̄coh (Prime) = 0.357 S̄ + 24 (3.58)

and similarly, linear fits to 1/σω̄ vs S̄ give

1

σω̄

(Random) = 0.126 S̄ + 10 (3.59)

and
1

σω̄

(Prime) = 0.169 S̄ + 7. (3.60)

If the intercepts are ignored then the gradients give

l̄coh(Random) ≃ S̄

3
, l̄coh(Prime) ≃ S̄

3
(3.61)

and

σω̄(Random) ≃ 8

S̄
, σω̄(Prime) ≃ 6

S̄
(3.62)

and combining these to eliminate S̄ then gives

l̄cohσω̄(Random) ≃ 2.6, l̄cohσω̄(Prime) ≃ 2.0. (3.63)

From these results, which are a very limited data set, the prime delay sequence

generates a smaller bandwidth than random delays, but the coherence lengths are

similar. More simulations are required to improve the statistical significance and

confirm this analysis or otherwise. It is interesting to compare these final results

to the theory of normal SASE, from which (using (2.214) and (2.235)) σω̄ ≃ 0.5

and (from (2.232)) l̄coh = 3.2 giving

l̄cohσω̄(SASE) ≃ 1.6 (3.64)
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3.6.6 The Development of Longitudinal Coherence

In this section the development of longitudinal coherence in the HB-SASE process

is discussed and compared with the SASE control case. An example case is used

for illustration—prime number delays with F = 4.0. This case is chosen as it is the

example shown so far with the longest coherence length at saturation. Figure 3.36

shows the development of l̄coh and b̄coh for SASE and HB-SASE (Figure 3.36a),

as well as these quantities normalised to the total accumulated slippage (Figure

3.36b). For SASE l̄coh initially develops rapidly, reaching half its saturation value

by z̄ = 3, then increases much more gradually. By comparison, l̄coh for HB-SASE

develops more slowly until z̄ = 3 and thereafter, just at the point where the SASE

l̄coh increase slows down, the HB-SASE l̄coh starts to increase rapidly. Over the

range 4 ≤ z̄ ≤ 8 the growth is exponential. A linear fit to a plot of ln(l̄coh) vs z̄

gives

l̄coh = 0.059 e(0.892z̄) (3.65)

and this is shown in Figure 3.37 with the numerical data. Over this range the

coherence length increases from l̄coh = 2 to l̄coh = 75 before the rate starts to slow

towards saturation. It should be noted that a similar period of exponential growth

in l̄coh is observed in the simulations using random delays, so is not particular

to the delay sequence and does not necessarily require delays that progressively

increase.

Figure 3.36b shows that for SASE the coherence length is always growing

more slowly than the slippage is accumulating, as indicated by the negative gra-

dient of l̄coh/S̄ vs S̄, whereas for HB-SASE and z̄ > 4 the coherence length is

growing more rapidly than the accumulating slippage. This fundamental differ-

ence indicates that the mechanisms of the two cases are different. For SASE the

radiation phase becomes locally defined early in the interaction and l̄coh saturates

eventually at a value of ≃ 3lc, just three times the slippage in a gain length.

For HB-SASE the effect of the delays is to delocalise the interaction—before the

radiation/electron interaction phase becomes fixed a delay of greater than a coop-

eration length is applied to shift the radiation to interact with a different section

of the electron bunch with a different bunching phase, and the interaction starts

afresh. This ‘delocalises’ the interaction. In this way the initial development of

phase coherence is more gradual but because of the extended communication dis-

tance within the system the final coherence length can be far greater. It can be
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Figure 3.36: Comparison of coherence development with z̄ for SASE and HB-
SASE. For SASE l̄coh grows quickly at first then saturates at l̄coh ≃ 3 because
the radiation phase becomes fixed in the localised interaction. For HB-SASE the
delays delocalise the interaction so the coherence length grows more slowly at first
then starts to increase exponentially. The bunching coherence length is always
less than the radiation coherence length, suggesting the coherence develops first
in the radiation, and implying that the filtering of the radiation through the
variable delays is an important driving factor in coherence development.
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Figure 3.37: Exponential growth of radiation coherence length l̄coh over the range
4 ≤ z̄ ≤ 8, with prime number delays and scale factor F = 4.0.

seen therefore that it is necessary for the undulator modules to be short, of l̄ ≤ 1,

so that the interaction can be repeatedly delocalised before the phase coherence

of the radiation becomes established. A study is made of the effect of undulator

module length in Section 3.7.1.

It is also interesting to look at the development of the longitudinal coherence

in the electron beam bunching phase, as quantified by b̄coh. For SASE b̄coh has an

initial value, after the first undulator module, of much less than l̄coh, and doesn’t

develop significantly for the first two gain lengths. It then increases rapidly but

never catches up with l̄coh. For HB-SASE the behaviour is qualitatively and

quantitatively different—b̄coh develops noisily initially, with a value lower than

l̄coh, then increases rapidly until b̄coh > l̄coh from 12 ≤ z̄ ≤ 14. For most of the

HB-SASE interaction (and all of the interaction for SASE) l̄coh > b̄coh, suggesting

that the coherence is developing in the radiation then transferring to the electrons.

This implies that the filtering of the radiation through the variable delays is an

important driving factor in the development of longitudinal coherence in the

complete coupled system, as seen in Section 3.6.2 where equal delays were shown

to have a very limited effect in improving the coherence.
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3.7 Numerical Parameter Range Study

3.7.1 Effect of Undulator Module Length

In this section the efficacy the HB-SASE as a function of the undulator module

length is studied. The delay sequence used is based on prime numbers, as given

by (3.50) and the scale factor is set to F = s̄1/l̄ = 2 to satisfy criteria (3.56). The

shortest undulator module used is l̄ = 0.5, in common with the results shown in

previous sections, and this is increased in steps of l̄ = 0.25 to maximum l̄ = 2.0.

The number of modules required to reach saturation is inversely proportional

to the module length, so to keep the total slippage constant the delays in the

chicanes have to be increased accordingly. This is done, while maintaining F = 2,

by starting the prime number sequence at an appropriately higher prime than

P1 = 2.

Figure 3.38 shows the evolution of |A|2, l̄coh, b̄coh and σω̄ with z̄ for the different

module lengths l̄. Clearly as l̄ increases the efficacy of HB-SASE decreases as

shown by the decreasing coherence length and increasing bandwidth at saturation.

Figure 3.39 shows the radiation spectra at saturation. For l̄ ≤ 0.75 all the spectral

power is close to resonance at ω̄ = 0 and the sideband frequencies are not visible

(on this linear scale). For l̄ = 1.0 there is a single visible sideband with normalised

peak P (ω̄) = 0.03 which increases the calculated rms bandwidth. For l̄ > 1

the suppression of the sidebands is less effective and hence the bandwidths are

significantly broader and the coherence length significantly shorter. Figure 3.40

shows coherence length l̄coh and the rms bandwidth σω̄ at saturation, with each

normalised to its respective SASE saturation value. The conclusion that can be

drawn from this figure is that to obtain a two order of magnitude increase in

l̄coh and consequent reduction in σω̄ the undulator length should be l̄ ≤ 0.75.

For undulator lengths longer than this, and for this particular total slippage to

saturation, the efficacy of HB-SASE is clearly reduced.

The degradation in performance for longer undulators is attributed to two

main factors, although there may be others not yet investigated:

1. From the spectral perspective, the suppression of the sidebands becomes

ineffective, as shown in the spectra in Figure 3.39. Reasons for this are–

• As discussed in Section 3.5.2, the sidebands broaden for longer undu-

lators. The delay sequence was scaled by changing the initial prime in



CHAPTER 3. HIGH-BRIGHTNESS SASE 106

0 5 10 15 20

10
−6

10
−4

10
−2

10
0

z̄

|A
|2

0 5 10 15 20
10

−1

10
0

10
1

10
2

10
3

z̄
l̄ c

o
h

 

 

l̄ = 0.5

l̄ = 0.75

l̄ = 1.0

l̄ = 1.25

l̄ = 1.5

l̄ = 1.75

l̄ = 2.0

0 5 10 15 20

10
−2

10
0

10
2

z̄

b̄ c
o
h

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

10
1

z̄

σ
ω̄

Figure 3.38: Prime delays, F = 2.0. Evolution of |A|2, l̄coh, b̄coh and σω̄ with
z̄ for different module lengths l̄. Clearly as l̄ increases the efficacy of HB-SASE
decreases as shown by the decreasing coherence length and increasing bandwidth
at saturation.
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Figure 3.39: Prime delays, F = 2.0. Spectra at saturation for different module
lengths l̄. As the undulator modules become longer the suppression of the side-
bands becomes less effective increasing the bandwidth and reducing the radiation
coherence length.
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ule length l̄. Right: rms bandwidth σω̄ at saturation, normalised to the SASE
bandwidth at saturation, as a function of module length l̄.

the sequence, hence for longer undulators the range of delays becomes

compressed so the frequencies of the supported sidebands are closer

together. Taken together these two effects degrade the efficiency of

the sideband suppression.

• With shorter undulators and more delays the sidebands are amplified

less and filtered more frequently.

2. From the temporal perspective, as discussed in Section 3.6.6, it is necessary

to delocalise the interaction frequently to prevent the phase of the radiation

becoming fixed and allow it to continue to evolve.

Further study is required of this topic and will be important for any practical

implementation of HB-SASE.
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3.7.2 Effect of Longitudinal Chicane Dispersion

The results presented so far have been for isochronous chicanes with longitudinal

dispersion factor D = 0. Isochronous chicanes are feasible, but require extra

quadrupoles which increase their length. However, compact chicanes with very

low dispersion are feasible and can also be designed with the ability to provide

a variable delay [48, 49]. In this section an investigation is made of the effect of

adding longitudinal dispersion over the range 0 ≤ D ≤ 1 where to recap D = 1

represents a chicane with 5/3 times the dispersion of a standard 4-dipole chicane

as described in Section 3.2.

There is already some longitudinal dispersion in the system, even with D = 0,

due to the FEL undulators which are just a series of dipole magnets. In fact this

dispersion is required by the FEL interaction—as the electron beam becomes

modulated in energy within the FEL undulators, the dispersion starts to convert

the energy modulation into a density modulation or a bunching at the FEL wave-

length. As seen from equation (2.133) the rate of change of phase depends only on

the electron energy. The energy modulation grows as the FEL process continues

until just prior to saturation the beam becomes fully bunched and emits most

strongly. At this point the rms energy spread reaches its maximum of σγ/γ0 ≃ ρ.

If the chicanes add additional dispersion the bunching process will be affected

by the chicanes—for a small energy modulation at the start of the interaction the

bunching process will be enhanced leading to stronger emission and as the energy

modulation grows the chicanes may act to ‘overbunch’ the electrons just prior to

saturation, damping somewhat the radiation emission process just at the point it

should be strongest.

An estimate can be made of the maximum dispersion parameter such that

a single chicane does not overbunch the FEL as the field intensity approaches

saturation. Restating equation (3.2), the electron phase evolves in the chicane as

θi → θi + D̄pi. (3.66)

therefore the relative phase change after the chicane ∆θ between two electrons

separated in energy by ∆p is

∆θ = D̄∆p (3.67)

For the chicane to retain the bunching in the electron beam the requirement is

that the relative phase change between the highest and lowest energy electrons
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Figure 3.41: Prime delays, F = 2.0. Evolution of |A|2, l̄coh, b̄coh and σω̄ with z̄ for a
range of dispersion parameter D. As D increases the power growth rate increases
and the saturation length decreases. The radiation coherence length saturates
at the same position as the power—after saturation the chicances debunch the
electrons and the radiation/electron system decouples.
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should be

∆θ ≤ π (3.68)

which gives a limit on D̄ of

D̄ ≤ π

∆p
(3.69)

and therefore using (3.7)
5

3
δ̄1D ≤ π

∆p
(3.70)

giving

D ≤ 3π

5∆pδ̄1
. (3.71)

At saturation the energy spread induced by the FEL is approximately σγ/γ0 =

ρ so from the scaling of p the full energy spread is ∆p ≃ 2. Therefore, the

requirement on scaled dispersion parameter D is

D ≤ 3π

10δ̄1
≃ 1

δ̄1
. (3.72)

A set of simulations were performed with the delay sequence based on prime

numbers and the scale factor F = 2 to satisfy criteria (3.56). The undulator mod-

ule length was l̄ = 0.5 and the dispersion parameter was increased approximately

logarithmically. Figure 3.41 shows the evolution of |A|2, l̄coh, b̄coh and σω̄ with z̄

for the different values of D. From Figure 3.41 it is seen that the growth rate

increases as D increases, with saturation for D = 1 occurring at z̄ = 5 compared

to z̄ = 15 for D = 0. The saturation power also decreases as D increases. The

coherence length l̄coh grows with approximately the same rate independent of D,

until approximately z̄ = 5. For each value of D, as the power saturates the coher-

ence also saturates, and because the saturation length is shorter for increasing D

the saturation coherence length is also shorter. At saturation the electron beam is

fully bunched, with the coherence length in the bunching at its maximum value.

Post saturation the dispersive chicanes start to debunch the electrons which stops

the FEL interaction proceeding—the electrons and radiation become decoupled.

As the bunching becomes degraded the bunching coherence length decays to its

initial value, with a decay rate that is faster for larger D. The evolution of the

radiation bandwidth proceeds in a similar way to the evolution of l̄coh—it changes

(reduces in this case) until the power saturates.

Figure 3.42 shows the radiation spectra at saturation. It is seen that the
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Figure 3.42: Prime delays, F = 2.0. Spectra at saturation for dispersion param-
eter increasing from D = 0 (isochronous chicanes) through D = 0.6 (standard
4-dipole chicane) to D = 1 (5/3 times the dispersion of a standard 4-dipole chi-
cane). The suppression of the sidebands is effective, but the bandwidth around
resonance becomes progressively broader as D increases.
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Figure 3.43: Prime delays, F = 2.0. Left column from top: saturation length
z̄ vs D; saturation intensity |A|2sat vs D; coherence length at z̄sat l̄coh (SAT) and
maximum coherence length l̄coh (MAX), both normalised to the SASE coherence
length at saturation, vs D; radiation bandwidth σω̄ at z̄sat, normalised to the
SASE saturation bandwidth, vs D. Right column from top: same as left column
but expanded D axis.



CHAPTER 3. HIGH-BRIGHTNESS SASE 114

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
N

o
rm

a
li
se

d
l̄ c

o
h
/
S

D
0 0.01 0.02 0.03 0.04 0.05

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
o
rm

a
li
se

d
l̄ c

o
h
/
S

D

Figure 3.44: Prime delays, F = 2.0. Coherence length l̄coh at saturation divided
by the total slippage to saturation S̄, as a function of dispersion parameter D.
The results are normalised to the case for D = 0. The right hand plot is the same
data as the left hand plot but with the scale for D enlarged.

suppression of the sidebands is effective, but that the bandwidth becomes pro-

gressively broader as D increases. Figure 3.43 shows a summary of data extracted

from Figure 3.41: the intensity saturation length z̄sat vs D; the saturation inten-

sity |A|2sat vs D; the coherence length at z̄sat and the maximum coherence length,

both normalised to the SASE coherence length, vs D; the radiation bandwidth

σω̄ at z̄sat, normalised to the SASE saturation bandwidth, vs D. For the simu-

lations shown here the delay imposed at saturation for D = 0 is δ̄1 ≃ 60. The

criterion (3.72) that an individual chicane does not overbunch the electrons at

saturation gives the requirement D ≤ 0.016. From Figure 3.43 it can be seen

that for D = 0.01, compared to D = 0, there is already a decrease in saturation

power, saturation length and coherence length and an increase in bandwidth, and

interpolating to D = 0.016 z̄sat has decreased to about 75% of its value for D = 0,

|A|2sat has decreased to around 50%, l̄coh has decreased to around 50% and the

bandwidth has increased by around 50%. This means the efficacy of HB-SASE

with D set to the threshold (3.72) has approximately halved compared to the

case with isochronous chicanes.

The degradation is partly because as D increases z̄sat decreases so the total

slippage also decreases. If the coherence length is divided by the total slippage

to saturation S̄ the decay with D is not as rapid. This is shown in Figure 3.44

where the results are normalised to those at D = 0. It is seen that for the
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threshold D = 0.016, l̄coh/S̄ is now 80% of its value at D = 0 and doesn’t decay

to 50% until D ≃ 0.025. However, the coherence length is reduced more than

the reduction in slippage alone can account for because the enhanced growth rate

due to the bunching effect of the chicanes increases the effective scaled length

of each undulator, and as shown in the previous section, this also degrades the

HB-SASE performance.

To summarise, longitudinal dispersion enhances the bunching at the start of

the FEL interaction, then degrades it approaching saturation so decoupling the

electrons and radiation. The dispersion enhances the bunching, decreasing the

saturation length and the total slippage hence the coherence length is reduced.

The enhanced growth rate may also increase the effective scaled length of each

undulator further degrading the performance. Longitudinal dispersion does not

appear to affect the process of removing the sideband frequencies which works

effectively for all values of D up to D = 1.

The fact that longitudinal dispersion (D > 0) enhances the bunching at the

start of the interaction but degrades the performance close to saturation suggests

that D could be varied for different sections of the FEL undulator to optimise

the overall performance. This may be an interesting topic for future research.
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3.8 Practical Examples

3.8.1 Hard X-Ray HB-SASE

An example is now shown of an HB-SASE simulation of a hard X-ray FEL.

The parameters used are typical of current FEL designs: resonant wavelength

λr=0.13 nm, beam energy E=14.7 GeV, peak current Ipk = 3000A, bunch charge

Q = 10 pC, undulator period λw = 30mm and ρ = 4.17 × 10−4. The same

simulation code as in the previous sections is used, the parameters converted into

the universal scaling, and the results scaled back into S. I. units for plotting.

The delay sequence is based on prime numbers and scaled via F such that at

saturation the total slippage is the FWHM electron bunch length. This gives

F = 1.08. The delays are isochronous so that D = 0. The undulator modules

have length l̄ = 0.5 equivalent to Lu = 2.85m. An equivalent SASE simulation

was done to compare the performance of HB-SASE.

Figure 3.45 shows the pulse profiles, phase profiles and spectra of SASE and

HB-SASE at saturation. The efficacy of HB-SASE is clearly demonstrated—

the SASE pulse is a chaotic sequence of phase uncorrelated spikes whereas the

HB-SASE pulse is near single spike with slowly varying phase. For SASE, the

coherence time tcoh = lcoh/c = 0.27fs, in excellent agreement with (2.230). The

rms bandwidth σλ/λ = 4.3 × 10−4 ≃ ρ, giving σωtcoh = 1.68. For HB-SASE,

tcoh = 7.0 fs and σλ/λ = 2.0 × 10−5, giving σωtcoh = 2.03. The FWHM pulse

durations and bandwidths at saturation give time-bandwidth products ∆ν∆t =

(1/λ)(∆λ/λ)c∆t = 32 for SASE and ∆ν∆t = 0.85 for HB-SASE. For comparison,

a transform limited gaussian pulse has time-bandwidth product ∆ν∆t = 0.44, so

it is seen that the HB-SASE output pulse is quite close to transform limited.

3.8.2 Soft X-ray HB-SASE

An example is shown of HB-SASE applied to a soft X-ray FEL. The parameters

are resonant wavelength λr=1.24 nm, beam energy E=2.25 GeV, peak current

Ipk = 1200A, bunch charge Q = 200 pC, undulator period λw = 30mm and FEL

parameter ρ = 8.8×10−4. These parameters are typical of a soft X-ray FEL. The

sequence of prime delays, with D = 0, is again set so that at saturation the total

slippage is equal to the FWHM electron bunch length, giving F = 1.046. The

undulator modules have length l̄ = 0.5 equivalent to a real length L = 1.35m.
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(b) HB-SASE.

Figure 3.45: Hard X-ray example at λr = 0.13 nm: the pulse profiles, phase
profiles and spectra of (a) SASE and (b) HB-SASE. The SASE pulse is a broad
bandwidth chaotic sequence of phase uncorrelated spikes whereas the HB-SASE
pulse is near single spike with slowly varying phase and narrow bandwidth.
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Figure 3.46: Soft X-ray example at λr = 1.24 nm: the pulse profiles, phase profiles
and spectra of (a) SASE and (b) HB-SASE. As in the hard X-ray example, the
SASE pulse is again a broad bandwidth chaotic sequence of phase uncorrelated
spikes whereas the HB-SASE pulse is near single spike with slowly varying phase
and narrow bandwidth.
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The results are shown scaled back into S.I. units. Figure 3.46 shows the pulse

profiles, phase profiles and spectra of SASE and HB-SASE at saturation. For

SASE the coherence time tcoh = lcoh/c is 1.47fs, close to the value of 1.23fs

predicted by (2.230), and σλ/λ = 8.5×10−4 ≃ ρ in agreement with SASE theory.

For HB-SASE tcoh = 90 fs, approximately the full duration of the pulse, with

bandwidth σλ/λ = 1.34× 10−5. The FWHM pulse duration and bandwidth give

time-bandwidth product ∆ν∆t = (1/λ)(∆λ/λ)c∆t = 0.53, close to that of a

transform-limited gaussian pulse.
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Hard X-Ray Soft X-Ray

SASE HB-SASE SASE HB-SASE

P (GW) 30 40 10 4

Ṅ (#ph/s) 2.6× 1023 2.0× 1023 6.2× 1025 2.5× 1025

σλ/λ 4.3× 10−4 2.0× 10−5 8.5× 10−4 1.3× 10−5

B (#ph/s/mm-mrad2/0.1% bw) 5.7× 1031 9.3× 1032 7.6× 1031 1.9× 1033

Table 3.2: Brightness comparison between SASE and HB-SASE for hard X-ray
and soft X-ray simulations.

3.8.3 Brightness Comparison

The brightness of a photon source is measured in terms of the phase space density

of the photon flux, or the number of photons per unit solid angle per unit solid

area, and is typically normalised to the radiation bandwidth [52]. The simulations

performed here are one-dimensional and so the transverse properties of the photon

source are not modelled. However, under the assumption that in reality the

photon source would be close to diffraction limited (a good approximation for a

SASE FEL) the normalised brightness can be estimated using

B ≃ 4Ṅ

λ2
r

∣

∣

∣

∆λ
λr

∣

∣

∣

(3.73)

where Ṅ is the photon flux and |∆λ/λr| is the FWHM bandwidth. This calcu-

lation has been made for the SASE and HB-SASE simulations of Sections 3.8.1

and 3.8.2. The FWHM bandwidths are taken to be 2.5 times broader than the

quoted rms bandwidths. The results are shown in Table 3.2. The increase in

brightness of HB-SASE over SASE is thus a factor of 16 in the hard X-ray and a

factor of 25 in the soft X-ray. This can also be illustrated graphically by plotting

the spectra of HB-SASE and SASE on the same P (λ) scale as shown in Figure

3.47. These results show clearly that the brightness of HB-SASE far exceeds that

of SASE—hence justifying the name.



CHAPTER 3. HIGH-BRIGHTNESS SASE 121

0.1298 0.1299 0.13 0.1301 0.1302

P
(λ

)(
a
.u

.)

λ(nm)

 

 
SASE

HB−SASE

(a) Hard X-ray.

1.237 1.238 1.239 1.24 1.241 1.242 1.243

P
(λ

)(
a
.u

.)

λ(nm)

 

 
SASE

HB−SASE

(b) Soft X-ray.

Figure 3.47: Spectra of HB-SASE and SASE plotted on the same P (λ) scale to
illustrate the comparative brightness, for (a) Hard X-ray and (b) Soft X-ray.



Chapter 4

Mode-Locked Amplifier FEL

4.1 Introduction

In this Chapter further investigation is made of the modal radiation structure

discovered during the development of HB-SASE in Chapter 3. This leads to the

concept of the Mode-Locked Amplifier FEL which may produce a train of cleanly

separated, high-intensity, phase-locked radiation spikes with the duration of each

spike dependent on the number of periods in each undulator module, rather than

the cooperation length lc. This gives the possibility of generating high-intensity

FEL pulses with lengths ≪ lc.

In the X-ray region of the spectrum lc is typically a few tens of nanometers,

so a pulse of length lc would have duration in the hundreds of attoseconds. Such

pulses would enable observation and possible control of very fast phenomena at

the atomic timescale [53]. Several techniques have already been identified that

may produce FEL pulses in this regime. Selection of a short harmonic spike in a

multiple undulator harmonic cascade may be one option [54]. Other techniques

pre-modulate the electron bunch energy with an optical laser before the bunch

enters the radiator undulator. The resonant FEL wavelength is correlated to this

energy modulation and it may be possible to selectively filter [55] or amplify [56]

a narrow wavelength band to generate short pulses with widths of a fraction of

the modulation period. Other techniques rely upon similar electron bunch energy

modulation methods [57, 58]. Another approach, called E-SASE [59, 60], uses an

optical laser to modulate the electron bunch energy at an intermediate accelera-

tion stage. Regions of enhanced current are created that subsequently generate

short pulses in a final radiator undulator. A conceptually simpler method [61]

122
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‘spoils’ all but a short region of the electron bunch. Only this region subsequently

lases in the FEL to generate a short radiation pulse. More recently, a technique

using an FEL with a negative undulator taper and a pre-modulated bunch energy

has been proposed [62]. The above techniques all produce pulse durations of the

order of the cooperation length and typically predict pulse widths ∼ 100 as at a

target wavelength of ∼ 1.5 Å.

By comparison, the Mode-Locked Amplifier FEL breaks the dependence of the

pulse length on the cooperation length and may generate pulses up to an order

of magnitude shorter, with durations less than the atomic unit of time (24 as).

By applying concepts from mode-locked cavity lasers [63], the prediction is the

generation of a train of multi-GW peak power pulses, at wavelength 1.5 Å, of

width ≈ 23 as with 150 as separation. Such pulses may have sufficient power,

spatial and temporal resolution to offer a new scientific tool for observing the

dynamics of atomic-scale phenomena.

4.2 Generation of Axial Modes

In Section 3.3 numerical simulations of the HB-SASE system, using equal delays,

were presented. It was seen that sideband frequencies were generated in the

spectra which corresponded to a temporal modulation of the pulse profile. The

spectrum of the spontaneous emission was derived analytically (both without gain

and also with a simple gain term included) to give some insight into the physics

of the sideband generation. In the remainder of the Chapter efforts were made

to remove these sideband frequencies because they inhibited the development of

full longitudinal coherence—since there was no fixed phase relationship between

the discrete frequencies they produced large and irregular time variations in the

amplitude and phase of the output pulse.

The insight that enabled the development of the Mode-Locked Amplifier FEL

was the realisation that the frequency spectrum observed in the simulations and

derived for the spontaneous emission is exactly analagous to the axial mode spec-

trum of a conventional cavity laser. With this understanding it was possible to

borrow methods from laser physics to lock the axial modes together and generate

extremely short pulse output.
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4.2.1 Axial Mode Spectrum of a Laser Cavity

Following [63] closely, the circulating signal inside an oscillating laser cavity can

be described in the time domain using recirculating pulse concepts. A signal ε(t)

is considered which transits any reference plane within the cavity with period T

given by T = p/c for a ring cavity of perimeter p. The frequencies which can

oscillate within the cavity, or the axial modes, are those for which the round trip

phase shift inside the cavity is an integer multiple of 2π, or the perimeter p is an

integer number of wavelengths
p

λ
= q (4.1)

where q is an integer. The axial mode frequencies are therefore

ωq = q
2πc

p
(4.2)

and the spacing is

∆ω =
2πc

p
=

2π

T
(4.3)

If the signal ε(t) has time fluctuations in amplitude or phase that are are rapid

compared to the round trip time its spectrum Ẽ(ω) will have a spread in frequency

wider than 2π/T and hence wider than the mode spacing ∆ω. By considering a

signal comprising N repeated copies of ε(t), each delayed by T ,

ε(N)(t) ≡
N−1
∑

n=0

ε(t− nT ) (4.4)

the Fourier transform is

Ẽ(N)(ω) = Ẽ(ω)
N−1
∑

n=0

e−inTω = Ẽ(ω)
1− e−iNTω

1− e−iTω
(4.5)

with power spectral density

I(N)(ω) ≡ |Ẽ(N)(ω)|2= I(ω)
1− cos(NTω)

1− cos(Tω)
(4.6)

which is the power spectral density of the original signal multiplied by an inter-

ference term. Examination of (4.6) shows that the function displays strong peaks

at frequencies corresponding to the axial mode frequencies ωq of the cavity, and
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the interpretation of this result in [63] is that “It is the fixed time delay or time

shift T between successive round trips that gives the axial mode character to a

laser output signal, independent of the detailed waveform ε(t) or of the carrier

frequency ωc that may characterise the optical sine waves under the output signal

envelope”.

4.2.2 The Analogy Between HB-SASE and Cavity Lasers

The spontaneous emission spectrum for HB-SASE with equal delays was shown

to be (equation (3.33))

|Ã(ω̄)|2= |b̃|2l̄2sinc2
(

ω̄l̄

2

)

1− cos(Nω̄s̄1)

1− cos(ω̄s̄1)
. (4.7)

which is the single undulator spectrum multiplied by an interference term. Com-

parison of Equations (4.6) and (4.7) shows that the spontaneous spectrum for

HB-SASE with equal delays s̄1 is identical in form to that of a laser with ring

cavity of perimeter p. As an example, suppose s̄1 = 5, and the FEL is operating

in the X-ray at 0.15 nm for which typically ρ = 5×10−4, scaling s̄1 into S.I. units

gives s = 120 nm. In this case the process of repeatedly delaying the electron

bunch is acting to synthesise an X-ray laser cavity of perimeter 120 nm.

In a cavity laser the axial modes can be locked in phase to generate a single

ultrashort pulse—it was the introduction of this concept in 1964 that allowed the

pulse durations available from lasers to be reduced by orders of magnitudes over

the next decades [53]. The realisation that the effect of the delays is to synthesise

an optical cavity naturally led to the question of whether the modes in the FEL

could also be phase locked.

4.3 Locking the Modes

As discussed in [63], the axial modes generated by a pulse circulating in a laser

cavity are randomly phased with no fixed phase relationship between them, and

this is responsible for large and irregular fluctuations in the amplitude and phase

of the signal. In cavity lasers the modes can be actively locked in phase by

introducing an amplitude modulator (AM) or frequency modulator (FM) inside

the laser cavity with a modulation frequency ωm. Each of the axial modes in

the cavity then aquires modulation sidebands at frequencies ωq ± n × ωm. If
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the modulator is driven at a frequency equal to the mode spacing, ωm = ∆ω,

then the modulation sidebands of each cavity mode fall on top of adjacent cavity

modes. The modulation sidebands ‘injection lock’ the axial modes with which

they are in resonance (injection locking is a general phenomenon in which a weak

monochromatic signal is injected into a more powerful free-running oscillator and

captures the subsequent oscillation so that the oscillator becomes controlled by

the injected signal) so that each axial mode becomes coupled via the modulation

sidebands to one or more of its neighbouring modes. The result is that the axial

modes become locked in phase. What this means is that if, for example, each

of N modes is considered as a phasor of the same amplitude rotating at its own

angular frequency ωq there are some times t = t0 + nT at which all the phasors

point in the same direction and the total field amplitude is then N times the

amplitude of a single mode. At times ∆t = ±T/N on either side of these peaks

the phasors become uniformly distributed in angle and the total field amplitude

is then zero. The result is a single pulse of FWHM duration ≈ T/N every cavity

round trip period, separated by N−2 much weaker subsidiary peaks. If the mode

amplitudes are not equal but have a gaussian envelope, the subsidiary peaks are

eliminated.

In the FEL system the modulation required for locking is applied directly to

the electron beam, either via an energy modulation [2], or via a modulation to the

electron bunch current [64]. A modulation to the energy has multiple effects—

it applies a frequency modulation to the system through the FEL resonance

condition, a gain modulation because as seen in Section 2.5.4 the growth rate is a

function of the energy detuning and a further gain modulation which depends on

the local energy gradient. A modulation to the beam current will only modulate

the gain. Whichever method is used, the end result is a modulation of the coupling

between the electron beam and radiation which will cause a modulation of the

electron beam bunching. The effect of this can be understood via the spontaneous

emission spectrum (4.7). The term b̃ is the Fourier transform of the bunching term

b(z̄, z̄1) which, as seen in (2.135), is the source term driving the field development.

If a sinusoidal modulation of period s̄1 is applied to the bunching so that

b(z̄1) = b0(z̄1)

[

1 + cos

(

2πz̄1
s̄1

)]

(4.8)

= b0 +
b0
2

[

e
i 2π
s̄1

z̄1 + e
−i 2π

s̄1
z̄1
]

(4.9)
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then the Fourier transform becomes

b̃(ω̄) = b̃0(ω̄) +
1
2
b̃0(ω̄ − 2π

s̄1
) + 1

2
b̃0(ω̄ + 2π

s̄1
) (4.10)

where the Fourier transform property

F
[

e2πiaxf(x)
]

= f̃(ω − 2πa) (4.11)

has been used. The spontaneous emission spectrum then becomes

|Ã(ω̄)|2 = |b̃0(ω̄) + 1
2
b̃0(ω̄ − 2π

s̄1
) + 1

2
b̃0(ω̄ + 2π

s̄1
)|2 (4.12)

× l̄2sinc2
(

ω̄l̄

2

)

1− cos(Nω̄s̄1)

1− cos(ω̄s̄1)
. (4.13)

showing that the field A at frequency ω̄ is now driven by the bunching not just at

frequency ω̄ but also by the bunching at frequencies ω̄− 2π
s̄1

and ω̄+ 2π
s̄1
. Recalling

that the mode spacing is ∆ω̄ = 2π
s̄1

this means that the field on resonance in

now driven by the bunching at the resonant frequency and also by the bunching

at the frequencies of the adjoining modes, and in fact each mode is now driven

by the bunching at the frequencies of its nearest neighbours. The FEL is a

coupled system—from (2.134) the field drives the electron energy, from (2.133) the

electron energy drives a change in electron phase and the bunching parameter b =

〈eiθ〉 is the average over all the electron phases, so as the FEL interaction proceeds

each mode drives the electron bunching at its frequency and the bunching at this

frequency drives the radiation of the neighbouring modes. Therefore, through the

electron beam bunching, a coupling develops between neighbouring field modes,

and this then propagates to next nearest neighbours, and so on, until all the

radiation modes becomes locked in phase.

4.4 Simulation Results

In this section results are shown using the one-dimensional code used to model

HB-SASE, and then using Genesis 1.3, a well benchmarked three-dimensional

code which extends the modelling to validate the technique with the inclusion

of realistic beam transport, radiation diffraction, electron beam energy spread

and emittance. Figure 4.1 shows a schematic of the three systems modelled in
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Figure 4.1: Schematic of three regimes of FEL interaction: (a) SASE regime (b)
Chicane delays introduced with no energy modulation (c) Mode-locked via the
introduction of an energy modulation. The inset shows detail of the electron
delay.

this section—Figure 4.1(a) shows the normal SASE regime which was simulated

as a control (not shown for 1D results), Figure 4.1(b) shows the introduction of

chicane delays but no energy modulation, and Figure 4.1 (c) shows the mode-

locked system where an energy modulation has been added.

4.4.1 One-Dimensional Simulations

The parameters used for the one dimensional simulations are module length l̄ =

0.25 and delay δ̄1 = 1.5, so s̄1 = 1.75 and Se = 7. The modulation to the system
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Figure 4.2: One dimensional mode-locking simulations with energy modulation
set to ∆p̄ = 0. The left column shows the pulse intensities |A|2 vs z̄1. The scale
of |A|2 is not shown, but saturation occurs at z̄ = 12.0 where peak |A|2≃ 1.0.
The right column shows the normalised spectra.
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Figure 4.3: One dimensional mode-locking simulations with energy modulation
∆p̄ = 5. The left column shows the pulse intensities |A|2 vs z̄1. The scale of |A|2
is not shown, but saturation occurs at z̄ = 14.0 where peak |A|2≃ 1.0. The right
column shows the normalised spectra.
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was applied via an energy modulation of amplitude ∆p̄ and period s̄1, so that

p̄(z̄1) = p̄0 +∆p̄ cos

(

2πz̄1
s̄1

)

. (4.14)

First, results are shown where ∆p̄ = 0. In this case the axial mode spectrum

is generated but the modes are not phase locked. Figure 4.2 shows the pulse

intensities |A|2 vs z̄1 for different values of the propagation distance z̄. The scale

of |A|2 is not shown, but saturation occurs at z̄ = 12.0 where peak |A|2≃ 1.0.

The right column shows the normalised spectra. The mode structure is clearly

seen, with spacing ∆ω̄ = 2π/s̄1 = 3.59. In the time domain the pulse is strongly

modulated with period τ̄ = s̄1 = 1.75 but the spikes are not cleanly separated.

This is because the axial modes are randomly phased.

Next, the energy modulation is increased to ∆p̄ = 5 with all other parameters

unchanged. The results are shown in Figure 4.3. Saturation now occurs at

z̄ = 14.0. The pulse at saturation comprises a train of clearly separated spikes

each of which has FWHM length ≃ 0.25 which is one quarter of the cooperation

length and equal to the slippage in one undulator module of length l̄ = 0.25.

Analysis of the full simulated pulse of length 300 shows that the slowly varying

spike envelope has a mean peak-to-peak distance of 35 with a maximum of 42,

very close to the normal SASE maximum spike spacing multiplied by the slippage

enhancement 2π × Se = 44. The spectra show substantial differences to the case

with ∆p̄ = 0. Towards the beginning of the interaction, at z̄ = 2.0, the individual

modes appear much broader, then as z̄ increases each mode is seen to split into

two ‘sub-modes’, with the intensity of the higher frequency sub-mode gradually

increasing with respect to the lower frequency one as z̄ increases. At saturation

this sub-mode structure is still apparent. The other important observations are

that compared to the case with ∆p̄ = 0, the mode spectrum remains extended

to nearly the full single undulator bandwidth 2π/l̄ = 25 as z̄ increases and for a

given z̄ the decay in the mode intensities away from resonance is more gradual.

The differences in the spectra at saturation, for ∆p̄ = 0 and ∆p̄ = 5, are

shown more clearly in Figure 4.4 on linear and logarithmic scales. It is seen

clearly that with the energy modulation included each mode is split. Study of

simulation results using different energy modulations shows that as ∆p̄ is in-

creased the frequency split increases linearly, and that the asymmetry between
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Figure 4.4: Comparison of spectra at respective saturation points for ∆p̄ = 0 and
∆p̄ = 5 on (a) linear and (b) logarithmic scales. The coupling between the modes
introduced by the energy modulation has driven the evolution of the radiation
out to wider frequencies.
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the intensity of the split modes also increases. Study of the pulses in the time do-

main, as seen in Figure 4.3, shows that there are small sub-spikes evident between

the main spikes, with the intensity of these, relative to the intensity of the main

spikes, approximately equal to the relative intensity between the dominant and

lesser sub-modes. The interpretation of these results is that the dominant effect

of the energy modulation in the electron beam is to provide a gain modulation

which depends on the local energy gradient—as the radiation slips through the

electron bunch during the interaction in each undulator the integrated energy

spread experienced by the radiation is smallest at the maxima and minima of the

energy modulation where the local gradient is zero so the gain at these positions

is higher. The radiation spikes develop preferentially at these positions and the

result is two separate interleaved trains of pulses, with the spectral comb com-

prising the dominant sub-modes corresponding to the dominant temporal spikes,

and the spectral comb comprising the lesser sub-modes corresponding to the tem-

poral sub-spikes. As seen in Figure 2.3 there is an asymmetry in the growth rate

about resonance, so this accounts for the asymmetry between the two interleaved

frequency combs and pulse trains and for the fact that this asymmetry increases

as ∆p̄ increases.

The comparison between the spectra at saturation, for ∆p̄ = 0 and ∆p̄ = 5,

as shown in Figure 4.4, also highlights the extended width of the mode spectrum

when the energy modulation is included. For example, the mode that falls on

the single undulator full bandwidth at ω̄ = −2π/l̄ = −25.13 has a normalised

intensity of 2 × 10−8 for ∆p̄ = 0 and 1 × 10−3 for ∆p̄ = 5, a difference of a

factor of 5× 104. The interpretation of this feature is that the coupling between

the modes introduced by the energy modulation is driving the evolution of the

radiation from mode to mode out to wider frequencies.

4.4.2 Three-Dimensional Simulations

The simulations presented so far have been done with the one-dimensional simula-

tion code. This code neglects some of the physical effects which may have an effect

on the performance of the Mode-Locked FEL. In order to make a more complete

study the system was simulated using the 3-D code Genesis 1.3 [65]. Simula-

tions were done for operation at two different wavelengths, with typical realistic

parameters given in Table 4.1. The extra physics included in the Genesis 1.3

code is the inclusion of extra dimensions. In the one-dimensional code the electron
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phase space is two dimensional—each electron has an energy p and a longitudinal

position s (via a phase θ within an indexed window of length λr). In Genesis 1.3

the electron phase space is six-dimensional, with the inclusion of transverse posi-

tion and momentum in x and y. This allows the effect of beam emittance to be

properly modelled as well as the transport of the electron bunch in the presence

of focussing terms from the undulator and from external quadrupoles. In the

one-dimensional code the radiation field is represented by a complex envelope A

which is sampled once per radiation wavelength. In Genesis 1.3 the radiation

field is also sampled once per radiation wavelength but modelled over a transverse

grid which permits transverse modes to evolve and the effect of diffraction to be

included. Genesis 1.3 also has a number of other features, not used in this

work, but which are invaluable for modelling FELs for a variety of applications

including: harmonic output; the ability to add errors and misalignments; the

ability to import and export particle distributions and radiation field files and

hence interface with other codes. For these reasons Genesis 1.3 is very widely

used, with its results well benchmarked against experiment, so it was interesting

to apply it to the mode-locking scheme.

XUV Mode-Locking

The first system modelled was a typical XUV FEL design for operation at 12.4 nm,

with parameters given in Table 4.1. Fig. 4.5 shows the radiation power output

close to saturation, over a 100 fs window, for the three cases of SASE, equal

delays with no energy modulation, and mode locking with the inclusion of energy

modulation. Insets plot the power spectral density as a function of radiation

wavelength. For the SASE case the output is seen to be noisy, comprising a series

of irregularly spaced pulses with mean separation approximately 2πlc, correspond-

ing to a temporal duration 2πτcoh = λr/2cρ ≈ 8fs, with a spectrum centred at

the resonant wavelength of fractional width ≈ 2ρ. These results, as would be

expected, are typical of SASE.

In Fig. 4.5(b) 4-dipole chicanes are introduced to give delay δ = 48λr, with the

total slippage due to the undulator and delay section s = 60λr. The total slippage

time is Ts ≈ 2.48 fs, with the slippage enhancement factor Se = 5. Longitudinal

dispersion of the chicanes is included in the simulation (equivalent to D = 1 in

the 1D simulation code) which has the effect of reducing the saturation length to

around 65% of that for the SASE case. This is due to the chicanes enhancing the
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XUV X-ray

Bunch energy E(GeV) 0.75 14.3
Bunch peak current I(kA) 3 3.4
Normalised emittance ǫn(mm-mrad) 2 1.2
RMS fractional energy spread σγ/γ0 10−4 8× 10−5

Undulator period λw(cm) 3.1 3
Resonant wavelength λr(Å) 123 1.5
Undulator module length (units l/λw) 12 72
FEL parameter ρ 2.5× 10−3 5× 10−4

Chicane delay Nc = δ/λr 48 228
Modulation period (units of λr) 61 303
Modulation amplitude (MeV) 5.8 14.3
Slippage enhancement Se 5 5

Table 4.1: XUV and X-ray simulation parameters.
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Figure 4.5: Genesis 1.3 simulations in the XUV region of the spectrum at λr =
12.4 nm. The radiation power output close to saturation, over a 100fs sample,
for the three cases of (a) SASE, (b) equal delays with no energy modulation, and
(c) mode-locking with the inclusion of energy modulation. Insets plot the power
spectral density as a function of radiation wavelength.



CHAPTER 4. MODE-LOCKED AMPLIFIER FEL 136

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

P
o

w
e

r 
(G

W
)

t (as)

0.148 0.15 0.152

λ (nm)

P
(
λ

) 
(a

.u
.)

Figure 4.6: A mode-locked 1.5Å X-ray FEL example: the radiation power as a
function of time t with radiation power spectrum as a function of wavelength in
nm.

electron beam bunching rate, as seen in the simulations of HB-SASE in Section

3.7.2. The spectrum is seen to have modes with separation ∆ω = 2π/Ts, giving

wavelength separation ∆λ ≈ λ2
r/s ≈ 0.21 nm. In the temporal domain the

power comprises a series of spikes with width τp ≃ 1 fs FWHM and separation

Ts ≈ 2.48fs. The modes here are randomly phased with the relative phases

drifting along the pulse, giving the slowly evolving structure.

When the beam energy is modulated at the mode separation frequency ∆ω

the radiation modes are seen to phase lock over the entire bunch. A modulation

amplitude of 5.8 MeV was used. This was obtained by modelling in Genesis 1.3

a 10 period modulator undulator, λw = 75mm, seeded with a 230 MW 755 nm

laser. From Fig. 4.5(c) it is seen that mode-locking occurs, dramatically im-

proving the temporal pulse structure to give a train of pulses, evenly spaced by

Ts ≈ 2.48fs, of constant width τp ≈ 400as and peak power . 1.4GW. The contrast

ratio between the peak power of the spikes and the background is > 100. The

only remnant of the SASE noise is the slowly varying envelope of mean period

2πτcoh ≈ 27fs.

Hard X-ray Mode-Locking

The second system demonstrates the FEL mode-locking technique scaled to shorter

wavelengths. Fig. 4.6 shows saturated output power in the X-ray at 1.5Å for

Se = 5 and other parameters similar to LCLS [66] and given in Table 4.1. The

pulse train consists of ≈ 23 as pulses separated by Ts ≈ 150 as with peak powers

up to 6 GW and a contrast ratio ≈ 60.
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From (3.42) the number of modes under the central peak of the spontaneous

spectrum is Ns ≃ 2Se = 10. From Fig. 4.5 and Fig. 4.6 the number of observed

modes N0 ≈ 8 in the XUV and N0 ≈ 9 in the X-ray, indicating that the mode

spectrum bandwidth is nearly as broad as the single undulator bandwidth. The

output pulse width of a homogeneously broadened mode-locked cavity laser is

given by [63]

τp ≈
0.5√
N0fm

(4.15)

where N0 is the number of oscillating modes in the cavity and fm the modulation

frequency. Equation (4.15) can be translated into the parameters of the mode-

locked FEL as

τp ≈
0.5NwλrSe√

N0c
(4.16)

which gives pulse lengths τp ≈ 440as in the XUV and τp ≈ 25as in the X-ray, in

good agreement with the values from the simulations of τp ≈ 400as and τp ≈ 23as

respectively. This result strengthens the analogy with the results of conventional

mode-locked cavity lasers and indicates that the modes are indeed phase-locked.
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4.5 Assessment of Tolerances

An assessment has been made of the required system parameter tolerances for a

mode-locked SASE FEL system. The criteria derived, together with their numeri-

cal values for the XUV and X-ray systems modelled, are summarised in Table 4.2.

4.5.1 Energy Spread

High-gain optical klystron theory [67] gives a criterion for operation which relates

the electron beam energy spread to the dispersive strength of the chicane:

σ̄γ ≡ σγ

ργ
.

1

D̄
, (4.17)

where D̄ = 2πρR56/λr, as given in (3.3), and from (3.4) and (3.5) the momentum

compaction factor

R56 ≃ 2δ (4.18)

with δ the chicane delay in unscaled units. This gives

σγ

γ
.

λr

4πδ
. (4.19)

Defining Nδ = δ/λr gives
σγ

γ
.

1

4πNδ
. (4.20)

For the generation of a modal structure in the spontaneous emission spectrum

the radiation pulses emitted from each of the first few undulator sections must

have similar phases, which only occurs if the evolution of the bunching parameter

|b(z̄, z̄1)| with respect to z̄, the propagation distance through the undulator, is

‘slow’. Any initial bunching would decay [68] as

|b(z̄, z̄1)|≈ |b0(z̄1)|e−z̄2σ̄2
γ/2 (4.21)

where

σ̄γ ≡ 1

ρ

σγ

γ
(4.22)

and

z̄ = 4πρNw. (4.23)
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To satisfy b ≈ b0

z̄2σ̄2
γ ≪ 1 (4.24)

so that
1

ρ

σγ

γ
4πρNw ≪ 1 (4.25)

giving an energy spread criterion:

σγ

γ
≪ 1

4πNw
. (4.26)

Equations (4.20) and (4.26) have similar forms: in (4.20) Nδ is the delay in the

chicane in units of the resonant wavelength and in (4.26) Nw is the delay in

the undulator in units of the resonant wavelength. The overall energy spread

requirement to maintain bunching through the undulator and the chicane can

therefore be stated as approximately

σγ

γ
≪ 1

4π(Nw +Nδ)
=

1

4πNwSe
(4.27)

where Se = (Nδ +Nw)/Nw.

4.5.2 Magnet Stability

Recall from (3.5) that the delay in a 4-dipole chicane with equal magnet and drift

lengths L may be written as

δ =
5

3
Lθ2 (4.28)

where θ is the deflection angle which is assumed to be small. For a relativistic

beam the deflection angle in a single dipole of length L and field strength B is

θ =
LBc

E
(4.29)

where E is the beam energy in units of eV. Therefore from (4.28)

δ =
5

3

L3B2c2

E2
. (4.30)

Taking the differential

dδ =
10L3Bc2

3E2
dB =

10δ

3

dB

B
(4.31)
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XUV X-ray

σγ/γ < 1/(4πNwSe) 1.3× 10−3 2.2× 10−4

∆B/B < 1/(3Nδ

√
N) 1.3× 10−3 2.7× 10−4

Table 4.2: Required tolerances for mode-locking, for the XUV and X-ray cases.

and applying the requirement for sub-wavelength phase matching dδ < λ the

tolerance on the magnetic field is obtained:

dB

B
<

3λ

10δ
≃ 1

3Nδ
(4.32)

If the chicanes are powered independently the errors will add as in a random walk

so that the tolerance over N modules will be reduced by 1/
√
N to give

dB

B
<

1

3Nδ

√
N
. (4.33)

4.5.3 Energy Stability

The effect of shot-to-shot electron bunch energy fluctuation on the development

of the synthesised axial modes is considered. The chicane delay is given by (4.30).

As the resonant wavelength is given by

λ =
λw

2γ2
(1 + a2w) (4.34)

where γ = E/E0 for a relativistic beam, the delay in units of resonant wavelengths

is then given by
δ

λ
=

10L3B2c2

3λwE
2
0(1 + a2w)

which is independent of the beam energy so that if the beam energy fluctuates

the chicanes always delay by exactly the same number of resonant wavelengths.

This means that although the resonant wavelength may vary the development of

the axial mode structure is unaffected.

4.5.4 Conclusion

The tolerances derived, and shown in Table 4.2 for the XUV and X-ray examples

simulated, are achievable with current technology.
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4.6 Further Mode-Locking Development

4.6.1 Non-Averaged Code Simulations

In previous sections the mode-locked FEL has been modelled in a one-dimensional

code and in a three-dimensional code. Both of these codes are averaged codes—

this means the equations they solve are averaged over a radiation wavelength,

which restricts the scale of features which can be modelled and the accessible

bandwidth. The minimum interval between sample points of the field is one

radiation period, so the sampling rate is ∆ts = f−1
r , the inverse of the resonant

frequency. The Nyquist frequency, fN = 1/(2∆ts), determines the bandwidth

of frequencies that the field can contain without the effects of aliasing. Hence

the range of frequencies that can be simulated by the averaged codes without

aliasing effects is fr/2 < fr < 3fr/2. As seen in the simulation results so far the

bandwidth of the output is the single undulator full bandwidth, which although

for the parameters used so far is adequately modelled by the averaged codes,

could not be modelled properly if reducing the number of undulator periods per

module to explore the minimum pulse durations possible.

A further limitation of the codes applied so far (in the versions used) is that

the electrons are confined to their initial slices, each of a wavelength long, and

no movement along the bunch can be modelled because each slice has periodic

boundary conditions imposed. For the mode-locked FEL, the mode-locking is

achieved by applying a sinusoidal energy modulation to the electron beam, with

a period of many wavelengths. As the beam passes through the dispersive chi-

canes this sinusoidal energy variation will become sheared in longitudinal phase

space, with the most and least energetic electrons moving through the beam by

many resonant radiation wavelengths, and the energy modulation will evolve into

a current modulation. This effect cannot be modelled in codes in which the

electrons are confined to their initial slices.

The validity of the mode-locked simulations was therefore investigated by

modelling the same system in a one-dimensional non-averaged code in which a

far broader frequency range is accessible and the electrons are not confined to their

buckets [69]. Some example results are shown in Figure 4.7. In this simulation

the parameters are equivalent to that of the 12.4 nm Genesis 1.3 simulations,

including beam energy spread, the results of which are shown in Figure 4.5. The

top plot shows the pulse temporal profile and the bottom plot shows the spectrum.
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Figure 4.7: Simulation result from one-dimensional non-averaged code, for pa-
rameters equivalent to the 12.4 nm Genesis 1.3 mode-locking simulations. The
FWHM spike length scales to 57 as.

Note that in this plot the resonant frequency corresponds to f = 1. Converting

the output to SI units gives peak power ∼1 GW with full variation in the spike-to-

spike peak power ∆P/P ≃ 20%. The peak power is slightly reduced compared to

the Genesis 1.3 simulations, but the variation is much reduced. The small sub-

spikes seen between the main spikes in the Genesis 1.3 simulations are entirely

absent, and the number of visible (on this linear scale) mode frequencies is about

50 over a very broad bandwidth, compared to around 9 in the Genesis 1.3

simulations. Modes are visible outside the bandwidth fr/2 < fr < 3fr/2 that

can be modelled in the averaged codes and outside the full bandwidth of the

undulator module—the sinc function envelope can be seen in Figure 4.7 and

there are modes visible beyond the first minimum of this envelope. The spike

lengths are correspondingly shorter: in this case the FWHM spike width is 57 as,

which is 8 times shorter than in the Genesis 1.3 case, with the base width around
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450 as which is the same as in the Genesis 1.3 case. At 12.4 nm wavelength,

57 as is only 1.4 optical cycles. Scaling to shorter wavelengths, for a resonant

wavelength of 0.15 nm a 1.4 optical cycle pulse would have a FWHM duration of

700 zs and an rms length of 300 zs.

Studying the evolution of the electron bunch longitudinal phase space shows

the sinusoidal energy modulation gradually sheering and developing into a current

modulation. The positions of the radiation spikes are initially aligned with the

bottom of the energy modulation, for small z̄, and as the interaction progresses

and the energy modulation evolves into a current modulation the spikes shift to

realign with the regions of enhanced peak current. The initial interpretation,

which will be subject to further analysis, is that locking is achieved at first via

the energy modulation, which gives a combined frequency and gain modulation to

the system, then the gain modulation due to the current enhancement becomes

dominant. This is the reason that the small sub-spikes between the dominant

spikes are not evident, and why the frequency modes show no evidence of splitting.

This simulation shows that the process of mode-locking in the amplifier FEL

is robust to the evolution of the beam energy modulation through the chicanes,

and that this process ultimately provides a cleaner output pulse both temporally

and spectrally. It also shows that the frequency bandwidth of the mode-locked

FEL is far broader than originally thought, and that features with duration close

to a single-cycle of the resonant wavelength are present in the output. It is clear

therefore that non-averaged codes will be essential tools for further study of the

mode-locked FEL.

4.6.2 Mode-Locking with Very Large Energy Spread Beam

The energy spread criterion (4.27), when applied to the 12.4 nm simulation case,

gives σγ/γ < 8 × 10−4. This is consistent with experience using Genesis 1.3

when it was found that for σγ/γ = 10−3 the modal structure did not develop,

but reducing the energy spread to σγ/γ = 10−4 allowed the modal structure to

emerge. However, simulations using the non-averaged code show clear mode-

locking, although at reduced peak power, for significantly greater energy spread.

An example is shown in Fig 4.8. Here the rms energy spread is σγ/γ = 4× 10−3

(so the full energy spread is ≃ 2.4%) which exceeds the criterion above, yet

the growth of the modal structure and attosecond temporal structure is clear,

with FWHM spike width of 192 as at 12.4 nm. However, the peak intensity
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Figure 4.8: Simulation result from one-dimensional non-averaged code, for pa-
rameters equivalent to the 12.4 nm Genesis 1.3 mode-locking simulations, but
with the energy spread increased to σγ/γ = 4 × 10−3. The FWHM spike length
scales to 192 as.

is significantly reduced, to |A|2≃ 0.013 equivalent to ≃60 MW for the 12.4 nm

case. The bandwidth of the radiation is extremely broad with modes visible at

f < fr/2, that is, outside the bandwidth that can be modelled in averaged codes.

The question of how the attosecond structure develops in the non-averaged

simulation when the energy spread is far larger than the derived criterion is one

for further study. However, these results indicate the potential for the mode-

locking technique to be exploited on large energy spread electron beams, such

as those produced by plasma-based accelerators which have demonstrated energy

spreads of around 1%. A feature of the plasma beams is the extremely high peak

current, in the tens of kA. If the results shown here are scaled to real powers

assuming a 30kA electron beam, the peak power would be 0.6 GW. It is possible

that it is the extremely broad bandwidth of the mode-locked FEL that allows it
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Parameter Value

Charge Q 1 pC
Energy E 1.7 GeV
Undulator Period λw 1.5 cm
FEL Wavelength λr 1 nm
Bunch Duration σb 1 fs
Energy Spread σE/E 10−4

Normalised Emittance εn 0.1 mm-mrad
Average β-function 〈β〉 5 m
FEL Parameter ρ 8.4× 10−4

Table 4.3: Parameters for a potential low-charge mode of operation for the NGLS.

to couple with a large energy spread electron beam. This too is a topic for future

study.

4.6.3 Mode-Locked Single-Spike SASE

Single-Spike SASE, as discussed in Section 2.7, is the regime of operation where

the electron bunch length lb ≤ 2πlc, in which case only a single SASE spike can

develop. Some unpublished work has been done to assess the application of mode-

locking to this regime, using as a parameter set a possible low-charge mode of

operation for the Next Generation Light Source proposal by Lawrence Berkeley

National Laboratory in the USA. The aim was to break the single SASE spike

into a train of phase-locked attosecond pulses. The parameters of the FEL are

listed in Table 4.3.

Figure 4.9(a) shows a typical single-spike SASE output pulse, simulated in

the averaged one dimensional code used for most of the work in this thesis. The

peak power is 600 MW, and the FWHM pulse duration 1.15 fs. The pulse is

shown at saturation after an undulator length of 15 m. Figure 4.9(b) shows

the results with mode-locking applied. The undulator modules have 50 periods,

and the delay in the chicanes is 200 wavelengths, giving Se = 5. A modulation of

period 250 wavelengths has been applied to the electron beam energy of amplitude

∆E/E = ρ. The pulse is shown after 10 m of undulator—the peak power is

reduced by an order of magnitude compared to the SASE control case, because

the slippage rate is enhanced and the radiation slips out of the electron bunch

more quickly restricting the possible amplification, but the mode-locking has
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(a) Single Spike SASE Control.

(b) Mode-Locking.

Figure 4.9: Mode-Locking applied to single spike SASE.
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split the SASE pulse into a train of separate spikes, each of FWHM duration

τp = 120as.

4.6.4 Other Developments

The study of mode-locking in the FEL has been extended in a number of publi-

cations by the author and co-workers. The main results are briefly summarised

here and the published papers are reproduced at the end of the thesis.

Attosecond Pulse Train Amplification

It was shown using three-dimensional simulations that the temporal structure of

an attosecond pulse train, such as that generated via High Harmonic Generation

(HHG) in noble gases, may be retained in a free electron laser amplifier through

to saturation using a mode-locked configuration [31, 70]. At wavelength 12 nm,

a train of attosecond pulses of widths ≈300 as with peak powers in excess of

1 GW were predicted, which is an amplification by a factor of 300 of the input

field. No pre-conditioning of the electron beam (for example energy or current

modulation) was required. The only requirement was that the mode-spacing of

the FEL system matched the frequency comb spectrum of the HHG seed source.

Start-to-End Simulations

The mode-locked FEL was simulated in Genesis 1.3 using a realistic electron

bunch distribution incorporating the full physics of the generation, acceleration

and transport of the beam from the cathode to the entrance of the undulator

through a recirculating linac accelerator designed as a possible solution for the

UK’s New Light Source proposal [32, 71]. These simulations demonstrated that

the mode-locked FEL is compatible with the present generation of radiofrequency

accelerator designs. A study was made of the role of the electron beam energy

modulation and it was shown how the pulses within the train align with the

minima of the modulation. A relatively simple method of seeding the mode-

locked FEL with a filtered HH source was shown to control the envelope and

phase of the mode-locked pulse train. The limitations of averaged simulation

codes were discussed, leading to the development of a criteria for the validity of

these codes when simulating a system with an electron beam energy modulation.

Finally, the use of coherent spontaneous emission in a mode-locked configuration
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was discussed as this may offer a new method of generating short pulse trains of

coherent, high power radiation without the need to rely upon the FEL interaction.

Mode-Locking in Oscillator FELs

An investigation was made of the application of the mode-locking concept to

an oscillator free-electron laser [33]. A high-gain low-feedback oscillator utilising

broadband mirrors, otherwise known as Regenerative Amplifier FEL (RAFEL),

was shown in simulations to produce a mode-locked pulse at saturation with

excellent pulse-to-pulse stability. The example shown, operating in the soft-X-

ray, gave individual pulses conservatively estimated at ≈200 as duration at a

wavelength of 3 nm. Scaled to the X-ray with wavelength λr = 0.15 nm, with

ρ = 5 × 104, such pulses are 24 as in duration. Such a system would require a

method of modulating the electron bunch energy at the very high repetition rate

required to match the cavity round trip time of the optical pulse, which may be

challenging using a conventional seed source. One possibility would be to use

a longer wavelength FEL as a beam modulator prior to the shorter wavelength

mode-locked FEL, but as yet no real study has been made of this idea.

A feasibility study of demonstrating the mode-locked oscillator on a low gain

FEL was also done, using the parameters of the ALICE IR-FEL [72] at Dares-

bury Laboratory as an example. The potential appeared very promising with

simulations demonstrating clear evidence of mode generation and locking.
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Conclusions and Further Work

The original idea for the work presented in this thesis was to add delay chicanes

along the FEL undulator to increase the slippage and improve the longitudinal

coherence of SASE. The first results were published in 2010 [50] and the idea led

eventually, through substantial simulation work solving the standard FEL equa-

tions (for which a full derivation is given in Chapter 2) and through some inter-

pretation and simple theoretical analysis, to the technique called High-Brightness

SASE described in Chapter 3. It was found in fact that to really improve the

longitudinal coherence, to the point where it may be possible to generate a fully

transform-limited FEL pulse in the hard X-ray, it is not sufficient to simply add

chicanes to enhance the slippage. The important realisation was that repeatedly

delaying the bunch creates interference effects in the FEL radiation, in the form

of sidebands which can be quite widely separated from the FEL resonant fre-

quency, and that because these sidebands have no fixed phase relationship they

create a noisy periodic modulation in the output signal which limits its temporal

coherence. To overcome this the delays must be made unequal which filters out

the sidebands leaving a narrow bandwidth at resonance. Studies were made of

the output properties of the HB-SASE radiation as a function of the length of

the undulator modules and it was seen that the scheme is most effective when the

undulator modules are shorter than a gain length. Comparisons were also made

of the evolution of the radiation coherence length for normal SASE compared to

HB-SASE and it was seen that the two systems were qualitatively different. In

normal SASE, which is a local collective process between the coupled system of

electrons and radiation, the coherence length was seen to saturate quite early in

the interaction, at a value of around 3 cooperation lengths. For HB-SASE the

149
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coherence length was seen to grow slowly at first, then just at the same position

in the undulator where the SASE coherence length saturates, the HB-SASE co-

herence length enters a period of exponential growth. The explanation, which is

consistent with HB-SASE working more effectively for shorter undulator modules,

is that the HB-SASE technique is delocalising the collective FEL interaction.

The discovery of the sidebands in the spectrum was serendipitous because it

was realised that the spectrum was analogous to the axial mode spectrum of a

cavity laser. Adding equal delays in the chicanes has the effect of synthesising

a very short optical cavity in the single pass amplifier FEL which allows tech-

niques from conventional lasers to be applied analogously in the FEL to phase-

lock the synthesised modes and generate extremely short pulses. This technique

was called the Mode-Locked Amplifier FEL and was the subject of Chapter 4.

Simulations of the technique for realistic parameters, using a well benchmarked

three-dimensional code suggest pulse durations in the hard X-ray of around 23

attoseconds which is shorter than the atomic unit of time. Further study of the

technique using a non-averaged code with wider bandwidth and sub-wavelength

temporal resolution showed that the time structure of the FEL pulses could in

fact be even shorter than this.

New codes are now available, such as a release of Genesis 1.3 which incor-

porates electron movement along the beam (i.e. not confined to slices) and a fully

three-dimensional, parallelised, non-averaged code called Puffin [73] which also

incorporates variable polarisation within a single undulator lattice. These codes

will now be used to improve the modelling of the HB-SASE and Mode-Locked

FELs and their unique new features may allow new tricks to be played. For

example new methods of locking the axial modes or broadening the bandwidth

could be considered, such as alternating the undulator parameter from module

to module to hop between the modes, or varying the polarisation in a periodic

sequence. It may be possible to couple the modes to higher harmonics of the

resonance as a way of stimulating harmonic emission and lasing at shorter wave-

lengths. Further study of some of some of the areas already identified, such as

large energy spread beams, can also be done.

The development of a complete analytic theory describing HB-SASE and

mode-locking is also an aim. Much progress has already been made using the

linearisation techniques discussed in Chapter 2 [74] but plenty remains to be
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done. Looking further ahead, experimental verification of some of the ideas pre-

sented in this thesis is a possibility. In fact, there has already been a proof of

principle demonstration at LCLS of a scheme conceptually identical to HB-SASE.

This is called iSASE [75] and the experiment used detuned LCLS undulators as

delay sections to enhance the slippage—a factor of three reduction in linewidth

was observed in agreement with expectation for the limited parameter range

available [76]. Related theoretical work proposes the use of chicanes as delays.

Another proposal uses subharmonic undulators as ‘slippage boosted’ sections [77].

There has also been a recent proposal for a mode-locked afterburner [78] in which

the electron beam is ‘prepared’ within a standard FEL amplifier then injected

into a much shorter afterburner comprising chicane delays and few-period undu-

lator sections. Simulations of this scheme predict sub-attosecond pulses in the

hard X-ray and the scheme has the attractive feature of being relatively easy to

implement on an existing FEL facility. The other possibility is proof-of-principle

demonstration on a low energy FEL test facility, such as the proposed CLARA

accelerator at Daresbury Laboratory [79]. Both HB-SASE and Mode-Locking

have been shown to be feasible on CLARA, with a Conceptual Design Report

due out soon, so if funding becomes available experimental results may not be

too far behind.
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