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Abstract 

Software development is a global activity and the development of a software system starts 

from some requirement that describes the problem domain. These requirements need to be 

communicated so that the software system can be fully engineered and in the majority of cases 

the communication of software requirements typically take the form of written text, which is 

difficult to transform into a model of the software system and consumes an inordinate amount 

of project effort. 

This thesis proposes and evaluates a fully automated analysis and model creation technique 

that exploits the syntactic and semantic information contained within an English natural 

language requirements specification to construct a Unified Modelling Language (UML) model 

of the software requirements. The thesis provides a detailed description of the related 

literature, a thorough description of the Common Semantic Model (CSM) and Syntactic 

Analysis Model (SAM) models, and the results of a qualitative and comparative evaluation 

given realistic requirement specifications and ideal models. 

The research findings confirm that the CSM and SAM models can identify: classes, 

relationships, multiplicities, operations, parameters and attributes all from the written natural 

language requirements specification which is subsequently transformed into a UML model. 

Furthermore, this transformation is undertaken without the need of manual intervention or 

manipulation of the requirements specification. 
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1.1 Overview 

The common approach to object-oriented design is a manual language analysis of the software 

requirements specification (SRS) typically involving domain experts to identify and create a 

model that represents the problem domain. There are a variety of standard methodologies 

used to assist the analysis process such as Noun Phrase analysis [Abo85], Use Case driven 

[JCJ+92], Common Class Patterns [RBP91, Bah99], and CRC cards [WW89, WWW90]. In 

practice, it is a combination of these methodologies that are used to complete the analysis. 

Classically this involves identifying nouns, verbs and their interrelationships, where nouns 

are considered good candidates for classes or attributes, verbs indicate relationships and 

operations that are associated with classes.  

Software development is a human intensive activity with requirements analysis and 

preliminary design consuming 55% of a project’s total effort [NIST02]. It is considered that 

this initial effort could be better spent building flexible, maintainable and reusable solutions 

aided by automated analysis and design. 

Up till now research has been seen to apply either partially or fully automated techniques in 

the pursuit of software automation with varying levels of success. Most require manipulation 

of the language used in the specification, restriction of the sentence structure, introduction of 

controlled grammars, and / or the involvement of the designer during the detection process. 

The manual intervention in these cases only serves to negate the potential benefits that 

automated analysis and design aim to deliver. 

This thesis proposes that the automated software analysis and the creation of a preliminary 

model from natural language requirements specifications without the need of manual 

intervention or requirements specification manipulation is a means to reduce the effort of the 

initial software development phases. It is therefore considered to what extent can the 

structural and semantic information contained within a natural language requirements 

specification contribute to a better preliminary design and be derived from the unrestricted 

use of semantic and syntactic information?  
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1.2 Approach & Methodology 

The thesis starts by thoroughly reviewing the related literature in the key areas of both fully 

and semi-automated techniques. It starts with an overview of traditional requirement analysis 

and modelling techniques prior to focusing on these automated techniques. The main body of 

the review is separated into two key stages that discuss both semi and fully automated works 

in their chronological ordering. The review identifies that that there is a very little difference 

between the related works and work presented here in this thesis. For the majority of related 

works there is some means of syntactic analysis, but mainly in the context of extracting key 

word groups such as Nouns, Verbs and Adjectives in a standalone context. There is also 

consideration of semantic information as well. However, the connection between both 

syntactic and semantic information within related works is limited.  

In contrast to related works, and the key differentiator, is that this thesis aims to develop the 

connection between word semantic analysis, and syntactic analysis. This has resulted in the 

creation of a prototype system, the ‘Automated Software Architect’ (ASA), which is a domain 

independent approach with no requirement for manual intervention or specification 

manipulation. 

The prototype implementation features the ‘Common Semantic Model’ (CSM) and ’Syntactic 

Analysis Model’ (SAM) techniques that are discussed in fuller detail within this thesis. The 

ASA is evaluated in the context of both the manual analysis and its most closely related works 

as identified in the evaluation [Har00, Mic96]. 

1.3 Contributions 

The work presented in this thesis makes the following contributions: 

• A means to automatically create a conceptual UML Class model from 

unrestricted/unmodified natural language requirements specifications; identifying 

common features such as Classes, Relationships, Relationship Multiplicities, 

Operations, Operation Parameters, Operation Placement and Attributes 

• Provision of a semantic and syntactic analysis model that is independent from the 

need for  manual intervention, configuration or problem domain 
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• Decision traceability links identifying in the sentence where within the specification 

features of the class model have been identified 

• Creation of flexible, maintainable and reusable design structures from semantic and 

syntactic analysis 

The techniques employed are designed not to replace the manual development/analysis 

process, but are to be used as a means to reduce cognitive effort through automated 

analysis and conceptual model generation 

1.4 Result Snapshot 

The ASA is evaluated using the key measures of recall and precision. The evaluation 

investigates the ASA’s performance in the context of the ideal model and most closely related 

works. Overall the ASA performs relatively well on its own with an average recall rate of 73% 

and precision of 60% and in the context of its most closely related works the ASA has an F-

Measure of 67% in comparison to CM-Builder with an F-Measure of 77% and NL-OOPS with 

62%. The key strengths of the ASA is its domain independence, utilisation of free form natural 

language requirements specifications, fully automated analysis aided by both CSM & SAM 

models and no user intervention. The key weaknesses of the ASA is the creation of incorrect 

class candidates, missing a minority of candidates that are actually contained within the 

specifications and poor performance when detecting candidate relationships.   

Analysis of the weaknesses has identified that context, ambiguity, missing requirements, 

domain knowledge and specification noise exacerbate the situation. Future works, addressed 

in the final chapter, aim to deliver strategies as a means to resolve the weaknesses highlighted 

with the key requirement of not imposing any additional effort onto the user. 

1.5 Thesis Structure 

Chapter 2 Approaches to Automation: This chapter presents a constructive review of the 

related literature towards fully/semi-automated software modelling techniques identified 

from natural language requirements specifications. It first presents a view of industry 

standard software design methodologies and also identifies the allocation of effort over the 
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last three decades; this is followed by an overview of the similarly standardised manual 

analysis techniques towards requirement modelling. With the scene set, the chapter proceeds 

to discusses both semi and fully automated requirement analysis techniques in the context of 

both controlled and uncontrolled natural language requirements specification documents; it 

identifies the key strengths and weaknesses of each piece of related work; what each related 

work identifies in terms of Classes, Relationships, Attributes, Operation Parameters, 

Operations, Relationship, Multiplicities and how those related works are evaluated. The 

chapter concludes by identifying the key research motivations. 

Chapter 3 Techniques towards Automation: This chapter discusses the ‘Common Semantic 

Model’ (CSM) and ‘Syntactic Analysis Model’ (SAM) used to address the key findings and 

limitations as identified in the literature review. It presents the key syntactic features of the 

natural language and identifies what these mean in the context of UML modelling. The 

chapter proceeds to discuss how both the CSM and SAM models are used to identify, extract 

and manage the information contained within a free-form and unrestricted natural language 

requirements specifications and decision-making model behind Class, Relationship, Attribute, 

Operation, Parameter and Multiplicity detection techniques. Finally, the chapter concludes 

with a discussion of the key software requirements specification issues in the context of 

automated software development, its implementation and a detailed view the architecture. 

Chapter 4 Evaluation: This chapter discusses the methodology of how the approach towards 

automated requirements analysis and design performs through the analysis measures of 

Recall, Precision and Over-Specification. The key motivation of this evaluation is to identify 

how well the approach performs in the context of both Class and Relationship detection of 

free-form natural language requirements in the context of the ideal model. The chapter 

concludes with a comparative evaluation of the most closely related works of CM-Builder 

[Har00] and NL-OOPS [Mic96].  

Chapter 5 Conclusion and Future Works: This chapter presents a summary of the work 

carried out in this research. The key limitations of the semantic and syntactic analysis 

approach of free-form natural language analysis for conceptual UML model design are 

presented and complementing research avenues are also identified and discussed within this 

chapter. 

  



21 

 

 

 

 

 

 

 

 

Chapter 2  

Approaches to Automation 
__________________________________________________________________________________ 



22 

2.1 Introduction 

This chapter reviews the related work in the field of automated software development in the 

context of natural language analysis and model generation. 

The development of software has many well-defined processes: being either an iterative or 

linear process that drives the development of the software forward.  

 
(Image Source: Wikipedia) 

Figure 2.1-1 Software Development Frameworks 

The most common frameworks are waterfall, prototyping and spiral, which have their own 

advantages and disadvantages. These frameworks can allow the successful delivery of a 

software product and all have common features such as requirements analysis, design, 

development and testing. Therefore, no matter what framework is utilised for what purpose 

or what benefit it brings, there is still the hurdle of manually analysing and modelling the 

customer requirements in an efficient and effective manner that will identify all of the relevant 

features of the described software system.  

In the majority of cases, the requirements document is written in natural language text, but 

other techniques are possible such as requirements specification languages. Moreover, natural 
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language requirement documents require analysis and transformation into a model prior to 

its implementation; this process consumes the majority of project effort [NIST02].  

The distribution of project effort has changed through time as more and more focus has been 

given to the initial phases of the software development lifecycle. This movement of effort has 

been the key goal to reducing the errors introduced because of poor software planning, but it 

comes with a substantial cost. Table 2.1-1 details the allocation of project effort over the last 

four decades. 

Table 2.1-1 Allocation of Effort [NIST02] 

 
Requirements 

Analysis 

Preliminary 

Design 

Detailed 

Design 

Coding & 

Unit 

Testing 

Integration 

& Test 

System 

Test 

1960s – 

1970s 
10% 80% 10% 

1980s 20% 60% 20% 

1990s 40% 30% 30% 

Therefore, the overall aim of the related works discussed is to reduce this allocation of effort, 

whilst preserving/enhancing the effectiveness and efficiency of the requirements analysis and 

preliminary design process. 

2.2 Requirements Analysis and Modelling Techniques 

A critical activity in the creation of software is the capture of software requirements. Arguably, 

this is the most important activity in the software development process. For most software 

systems of any size, the requirements are captured in a natural language written document, 

but can also be in other forms. This can range from a few simple paragraphs to a complex 

document detailing information regarding relevant stakeholders, functional and non-

functional requirements.  

The next challenge in the software development process is to create an initial design for the 

software system from this specification. This activity is fraught with potential problems due 

to issues such as the misunderstanding of requirements, lack of domain knowledge, analyst’s 

bias, overlooking and / or missing requirements.  



24 

In an object-oriented modelling domain, there are long-standing guidelines based on analysis 

of the specification that can aid the designer in identifying a ‘first-cut’ software design. These 

include considering nouns as potential classes and verbs as candidate operations / methods.  

Related research, Section 2.3, has seen this as an opportunity to apply automated natural 

language analysis techniques that simulate and aid the developer in constructing the initial 

design. To-date most of this work requires intervention through simplification of the natural 

language, restricting the sentence structure allowed, and / or also requiring the involvement 

of the designer before, during and after the analysis process. Even so, some of these techniques 

give automation a simpler problem to manage when detecting the relevant model features.  

2.2.1 Natural Language to Object Oriented Models 

All software requirements specification (SRS) documents require transformation into a 

software/class model prior to implementation. This is the cornerstone of object-oriented 

system design and sets the foundation upon which the state and behaviour of the system can 

be observed.  

The traditional starting point of class modelling, once the customer requirements have been 

elicited, is to transform the requirements into a model of the system prior to its 

implementation. This was originally achieved through some defined methodology such as the 

object modelling technique (OMT) or Object Oriented Software Engineering (OOSE), both a 

precursor to Unified Modelling Language (UML) [BJR00], which is utilised to extract and 

model the key components of the system. “The fundamental assumption is that object-oriented 

thinking represents a more natural and intuitive way for people to reason about reality.” [RBP91]  

Today, this model is usually defined in the UML, which offers a variety of different structural 

(Static) or behavioural (Dynamic) diagrams that define the overall view of the software system 

itself.  

Once the model of the system has been generated, it is then possible to construct and 

implement the required software from this high-level plan. However, the analysis process and 

model construction consumes the majority of project effort [NIST02] and is the source of many 

defects [Son09].  
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2.2.2 Manual Techniques for Class Modelling 

There are varieties of different manual techniques employed when transforming a natural 

language SRS document into an initial model of the defined software system. The most 

popular are identified as the Noun Phrase, Common Class Patterns, Use Cases and Class-

Responsibility-Collaborators Cards.  

These approaches allow the analyst to capture all the relevant information from the SRS 

document, which is used to build an initial model including features such as classes, 

relationships, attributes and operations. The main points of each are outlined below.  

The Noun Phrase Approach can be considered the mainstream approach towards model 

generation, where this technique help to identified the possibility of detecting design features 

directly from a natural language SRS specification [Abo85]. Additional approaches have 

refined this technique [SP99, Boo94, Mac01, RBP91, RSB93, Bah99] and in the context of 

Entity-Relationship Diagrams the grammatical features of the sentence can also aid the overall 

analysis and modelling process [Che83].  

The principle idea of noun phrase analysis requires the analyst to read through and then 

collate each of the noun phrases contained within the SRS document. Once every noun is 

identified it is then compiled into a list. Consideration of whether a noun contained within the 

list is a candidate class requires validation. Therefore, each potential class candidate is 

subsequently classified into three distinct groups defined as Relevant, Irrelevant and Fuzzy 

classes.  

Relevant classes: these typically appear frequently within the SRS documents [Mac01] and 

their inclusion as a relevant item is confirmed by the analyst’s knowledge of the problem 

domain and supporting material that may also be available during the classification phase.  

Irrelevant classes: these do not have a statement of purpose contained within the SRS or one 

cannot be formalised and they are typically outside the problem domain. The inclusion of 

irrelevant classes within the compiled list is unlikely with an experienced analyst, but is 

considered a key problem for automated analysis. 
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Fuzzy classes: these are on the fringes of being relevant or irrelevant and are a direct result of 

there not being enough information contained within the SRS to make an informed decision 

for their inclusion within the final model. 

The classifications of Relevant, Irrelevant, and Fuzzy are employed to identify what should and 

should not be included within the initial design and what candidates require further 

investigation. 

Similar to the Noun Phrase approach, the Common Class Patterns (CCP) is based upon 

classification theory, which is utilised to extract class candidates from a set of pre-defined 

classifications. These are partitioned into useful classes so that they can be reasoned about 

more efficiently and candidates identified. There are two classification themes; one proposed 

that has 5 classifications [Bah99] and the other having 6 classification types [RBP91]  see Table 

2.2-1. 

Table 2.2-1 Common Class Pattern Classifications 

CCP Classes [Bah99] CCP Classes [RBP91] 

Concept Physical 

Event Business 

Organization Logical 

People Application 

Places Computer 

 Behavioural 

Although these classifications provide a means to potentially identify the class candidates 

from an SRS document, the approach does not offer a reliable means to identify a complete set 

of class candidates for a given problem statement. It is still possible that information relevant 

to the overall analysis process may be lost due to bias, misunderstanding or may not even be 

present within the specification itself to start with. 

In the Use Case Driven approach [JCJ+92], each use-case defines an actor within the system, 

which is derived from the requirements specification. The approach can be defined by a set of 

graphical notations that depicts the behaviour of the system as it responds to requests from 

actors outside the system. In addition, each use case also has supplementary information 

which identifies its role/usage, interactions/relationships and whatever may be involved with. 

The use-cases themselves, along with this supplementary information, are used in the 

discovery of the candidate classes for the initial class model. Discovery of these use-cases 

utilises a similar technique to that of the Noun Phrase Approach. 
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Finally, ‘Class-Responsibility-Collaborators’ CRC cards [WW89, WWW90] are typically used to 

help teach object-oriented design concepts, but now are a prominent feature in ‘Extreme 

Programming’ (XP) practice as a design technique. 

All of these approaches have their own advantages and disadvantages, which will not be 

discussed, as they are well documented, [SP99, Boo94, Mac01, RBP91, RSB93, Bah99, WW89, 

WWW90, JCJ+92]. Nonetheless, none of these approaches by themselves is a complete answer 

to the overall analysis and model generation process.  

It is typically more realistic to utilise a combination of these techniques throughout the 

analysis and modelling process. In addition, Noun Phrase, Use Case, CCP and CRC techniques 

can also aid in the identification of relationships, attributes and operations, typically as a by-

product of the class detection process. Utilisation of these techniques will aid the discovery of 

a comprehensive first-cut design, but only at the expense of considerable effort expended by 

the analyst. 

2.3 Automated Approaches 

The key principle of the automated analysis of a natural language SRS document is a 

simulation of these manual processes. Natural Language Processing (NLP) techniques have 

made it possible to consider these manual techniques in the context of automation. There are 

two key branches to software automation, those being either semi or fully automated 

techniques; although for the majority of these techniques, they still require some form of 

developer involvement or transformation to assist the overall analysis process  

There are many approaches towards automating the initial phases of the software 

development lifecycle (SDLC) that all achieve the same goal of producing a model from the 

natural language specification. A state of the art review in the domain of automated 

requirements elicitation by Meth, Brhel and Meadche [MBM13] classifies potential related 

works in the domains of abstraction identification, requirements quality analysis, 

requirements identification and the most relevant requirements model generation. 

The focus in this literature review is towards how the process achieves its goal rather than 

what is achieved by the process and Table 2.3-1 reviews the current state of the art of both 

fully and semi-automated approaches. 
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Table 2.3-1 Automated Analysis Outcomes 

Reference Class Attr Rel Param Op Multi Auto Eval 

MHH89 � � �  �    

FGR+93 �  �  �    

GB94 �       � 

BV95, BR96, BV97 � � �   �   

NR95 � � �  �  �  

Mic96, MMZ02, MG02, 

KZM+04 
� � �    � � 

Mor97, JM00, JM00a � � �  �    

AG97, AG99, GN02, AG06 � � � � �    

SBB99 � �   �    

Bry00, LB02, LB02a, 

LB02b, LB02c, LB03, 

BLC+03 

� � �  �    

OLR01 � � �  �    

Per02, PKS+05 � � �  �  �  

Har00, HG02 � � �   � � � 

ZZ03 � � �   � �  

LDP04, LDP05, LDP05a � � �  �  �  

IO05, IO06, OI06a � � �  �  � � 

Kof05, Kof05a, Kof07, 

Kof07a, Kof08, Kof09 
�  �     � 

BSC06, BCA06, BSM09 � � �  �   � 

PRM+07 � � �  �  � � 

CHK07 �  �  �    

GT07, GK08         

DR08, DR09, DB09 � � �  �  �  

VAD09 � � �     � 

SOS08 �  �    �  

SRC+07        � 

The majority of these related approaches identify classes (class), relationships (rel), attributes 

(attr) and operations (op), but a minority in addition to these also identify parameters (param) 

and multiplicities (multi). Nine out of twenty-three approaches could be considered as fully 

automated (auto) but some may include minimal developer involvement at either the start or 

end of the automated analysis process. Overall, few approaches demonstrate some form of 

formal evaluation (eval) related to their techniques. 

There is a clear distinction between fully and semi-automated works. This distinction can be 

identified by how these approaches manage the detection process. Fully automated 

approaches have a set of generalised rules and or predefined knowledge bases that allow 

analysis on any specification type. Whereas, for semi-automated, there is a reliance on the 

analyst during the detection process either to specifically identify model features or build 

custom models.  
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The next major distinction is between controlled (user modified) and uncontrolled 

(original/as-is/unmodified) language analysis techniques. However, at the next level down the 

actual extraction technique such as rule based, knowledge based (KB) driven and others, the 

line between these starts to get a bit blurry as some approaches may be entirely focused on a 

rule-based approach, whereas others may utilise a combination of both.  

The split between both controlled and uncontrolled language analysis approaches for the 

semi-automated techniques is relatively even see, Table 2.3-2. This result was unexpected as 

it was thought that it would be more weighted towards uncontrolled requirements 

specification documents because of the interaction required before, during and after the 

detection process. 

Table 2.3-2 Semi-Automated (Controlled vs. Uncontrolled Language Analysis) 

Reference 
Semi-Automated (language) 

Controlled Uncontrolled 

MHH89 - � 

FGR+93 � - 

GB94 - � 

BV95, BV96, BV97 � - 

Mor97, JM00, JM00a � - 

AG97, AG99, GN02, AG06 - � 

SBB99 - � 

Bry00, LB02, LB02a, LB02b, LB02c, 

LB03, BLC+03 
- � 

OLR01 - � 

Kof05, Kof05a, Kof07, Kof08, Kof09 - � 

BSC06, BCA06, BSM09 � - 

CHK07 � - 

GT07, GK08 � - 

VAD09 � - 

Conversely, the majority of fully automated approaches use the original version 

(uncontrolled) of the requirements specification, which was also unexpected, as it was thought 

that these techniques would require more language manipulation because of less developer 

interaction and more generalised techniques, see Table 2.3-3 
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Table 2.3-3 Fully-Automated (Controlled vs. Uncontrolled Language Analysis) 

Reference 

Fully-Automated 

(Language) 

Controlled Uncontrolled 

NR95 �  

Mic96, MMZ02, MG02, KZM+04 - � 

Per02, PKS+05 - � 

Har00, HG02 - � 

ZZ03 - � 

LDP04, LDP05, LDP05a � - 

IO05, IO06, OI06 - � 

PRM+07 � - 

DR08, DR09, DB09 � - 

SOS08 �  

SRC+07  � 

Semi-Automated 

The review of the semi-automated works is split into two key sections: controlled and 

uncontrolled. Additional, groupings of related techniques is unsuitable as they either utilise a 

combination of those techniques or are solely dedicated to one method of approach. The 

following reviews are chronologically ordered. 

Controlled Language: 

Fantechi et al [FGR+93] discuss an interactive approach towards automated software 

development based on transforming natural language into a temporal logic (NL2ACTL). This 

is aided by interaction with the analyst whom will reduce/eliminate the ambiguities contained 

within the natural language specification. They are effectively modifying the specification, 

which may result in a loss of vital information. The process is iterative where automated 

transformations take place, which are subsequently validated by the analyst, and finally result 

in the development of a formal specification from an informal one. 

The approach transforms simple natural language with only one clear interpretation into 

temporal logic, which is then subsequently transformed into an extended natural language 

description again with only one interpretation. This may involve splitting a sentence into 

separate parts to achieve this format.  

For Example: ‘It is always possible to insert a coin. After the coin is inserted it is possible to have a 

tea’ 

Sentence: ‘It is always possible to insert a coin’ 
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Extended Form: ‘For all states there exists a computation path starting with the action ‘coin’’ 

NL2ACTL Transformation: AG <coin> true 

The construction of the NL2ACTL formulae is the basis of building a grammar, which 

embodies precisely the meaning without ambiguity. This grammar along with both domain 

and domain independent dictionaries are the foundations of the translation tool.  

The domain dependent dictionary contains specific terms one would reasonably expect to be 

within a conceptual model or formal specification, which are user defined and identified from 

the specification. The domain independent dictionary manages common word sets that are 

typically not related to any specific domain, but have implications for logical operations such 

as pronouns, verbs and conjunctions. As a result, any missing information can be contained 

within these dictionaries and queried interactively with the user. 

The interactive transformations create a set of entirely unambiguous specifications that can be 

used to derive testing criteria and support the actual implementation of the software system. 

Although this does come at a cost, these manual interactions can lead to a situation where the 

amount of effort expended in the process outweighs the benefits of the approach. 

Burg and Van de Riet [BV95, BV96, BV97] propose a linguistically based object-modelling 

tool that can be used during the conceptual modelling phase to construct both static and 

dynamic models from natural language specifications, where the natural language is 

manually transformed into their conceptual prototyping language (CPL).  

CPL has been specifically developed to be as close to natural language as possible thus 

allowing the requirements to be specified in a precise and unambiguous way. The CPL 

specification can therefore be automatically transformed into a series of differing logics based 

on the modality of the verb, but the resulting notation itself is difficult to work with. Therefore, 

a graphical layer, based upon the object modelling technique (OMT), has been built on top, 

which hides the resulting notation from the user so that models are easier to work with. Due 

to CPL’s formality, it is also used to generate natural language sentences which can be used 

as a means to validate the resultant model generated from the CPL specifications. 

Overall, the approach requires a manual transformation from natural language into CPL 

however, a set of rules have been developed to assist this processes. The primary rules are 
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based upon the discovery of linguistic features, where nouns identify classes/objects and 

attributes and where verbs discover relationships. 

In addition, a knowledge base is used interactively in conjunction with the primary rules for 

model feature detection. The knowledge base utilised is WordNet [Mil95], a large database of 

words, where each word has a set of senses that are semantically linked through synonym sets 

for differing contexts. Their approach is to utilise WordNet’s lexicon database interactively 

and for the user to undertake disambiguation of a given word. This ensures that the model 

will be both semantically and syntactically correct. 

Additional rules have also been identified that constrain this process for relationship 

detection, and are defined as follows: 

• Relationship types require certain class types 

• Class types cannot be related in some systems 

The first of these rules puts constraints on the type of classes that can be involved with certain 

relationships for example ‘buying-something’ would require a class type of ‘person‘. The second 

of these rules, for example ‘marry-relationship’ forbids a relationship between two different 

species.  

For example, ‘The man married the dog’ would not be allowed since ‘man’ is a decedent of 

‘person‘, whereas ‘dog‘ is a decedent of ‘animal‘. The process of detection is interactive, reliant 

on the analyst, where the knowledge base assists in governing the invocation of these rules 

ensuring that the features of the model are correctly defined in a semantic and syntactic 

context.  

Verb discovery also allows detection of specific relationship types such as generalisations, 

aggregation and attributes. These are defined as Standard Static Relationships based on the 

presence of is_a, has_a, exists and consists_of, but the onus is placed on the analyst to discover 

these relationships and features. 

In further work [BV96], the introduction of additional facts such as the sentence structure and 

define additional rules such as subjects, predicates and objects of the sentence, based on manual 

grammatical analysis. These features aid the process of making a correct decision in the 

discovery of model features and transformation into their CPL notation. 
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Additional knowledge bases are also introduced defined as domain and application specific 

models. The domain model consists of high-level concepts and the relationships between 

concepts, whereas the application model refines the domain level information into bespoke 

definitions and gives access to concepts relating to that domain, both are manually developed.  

Overall, the analyst has to create, sift, refine and understand the specification prior to 

transforming the requirements into the conceptual prototyping language and to this 

automatically being transformed into an actual model of the system. It therefore requires 

manual identification of the key concepts that play an important role, such as identifying the 

key classes and relationships, but assistance is given through the models developed and 

existing knowledge bases that may also bring additional understanding to the process. This is 

a key challenge of the approach and consumes considerable amount of effort during the 

transformation and information gathering phase. 

Juzgado and Moreno [Mor97, JM00, JM00a] propose an object oriented modelling technique 

based on the use of linguistic information taken from informal requirements specifications. 

Their key objective is to analyse this linguistic information from a semantic and syntactic 

standpoint and extract, by means of a formal procedure, the key components to develop an 

object oriented and behavioural model. 

The approach is based on Spanish language specifications. Their process relies on a subset of 

natural language, thus restricting the expressive nature of the language, but defining clearly 

the syntax of the requirements. This is achieved through their utility language, which defines 

a set of patterns where the original requirements have to be manually transformed and where 

the separation of both dynamic and static requirements is undertaken. Once transformation is 

complete, it is then possible to construct both static and behavioural models. 

The utility language gives a direct mapping between conceptual patterns allowing 

identification of classes, attributes, multiplicity, single/multiple inheritance hierarchies, 

relationships and behaviours.  

In a static context, the requirements are restructured to replace pronouns and noun phrases to 

one explicit noun. Noun Modifiers such as adjectives are discarded, but these are typically a 

key source of candidate attributes. Once the specification has been sanitised, every sentence is 

transformed to conform to a linguistic pattern defined as follows: 
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• Subject-Verb-Object (SVO),  

• Subject-Verb-Object-Complement (SVOC)  

These are simple sentence construct rules, but this restructuring makes it possible to consider 

nouns (subjects/objects/complements) as classes and verbs as relationships.  

Attribute detection is built upon the premise that if a class only participates in one relationship 

then that class will be an attribute of the other. However, it is left entirely to the developer to 

decide upon which class should be the attribute from their interpretation of the rule. 

In addition, class multiplicities are also detected during the process. The extraction is based 

only upon the presence of a determiner such as a, the and an. Determiners themselves, only 

ever express possible or definite existence of a certain thing, which identifies a single 

multiplicity for the candidate. Furthermore, multiplicities extracted only applied to the 

relationship between the classes discovered in the patterns, rather than considering each 

individual class and its role within the relation: for example, determiner type, and noun 

plurality. 

The behavioural/dynamic features of the system are also discovered by a defined pattern ‘if-

then’ structure. The requirements have to be manually transformed to conform to this pattern. 

The restructuring also follows a similar requirements normalisation to that of static 

requirements. Overall, the manual transformation requires an in-depth understanding of the 

requirements specification. 

The key challenges of the approach is the need to transform the original specification into the 

utility language, where interpretation of their rules and the prior understanding required of 

the specification make the manual transformations process difficult for the analyst. Ambiguity 

and the inconsistencies contained within the specification only exacerbate the situation and 

the majority of the effort expended is still consumed by the analyst, which is compounded by 

specification issues. However, the approach appears to achieve its goal by producing an OOM 

model, but as with many of the approaches discussed here, there is no evaluation to support 

their findings. 

Bajwa et al [BSC06, BCA06, BSM09] propose an approach towards automated requirements 

specification analysis using natural language analysis techniques. The key goal is to create 

UML models and usable software code from textual specification documents, where nouns 
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represent classes, verbs represent operations and adjectives represent attributes.  The key 

models the approach creates are Class, Activity and Sequence Diagrams. 

The key steps in their approach are defined as follows: 

1. Text Specification Acquisition 

2. Natural Language Analysis 

3. Knowledge Extraction 

4. UML Model Generation 

5. Code Generation 

During specification acquisition, the user inputs the information contained in the specification 

only using relevant information by means of simple declarative sentences e.g. The players 

dribble, pass and shoot the ball. Using only relevant information avoids one of the key challenge 

that is an issue for many approaches, ambiguity. The usage of simple declarative sentences 

also reduces the requirement for formal intervention by the user. 

Language analysis is undertaken with this input, which discovers all the relevant parts of 

speech such as nouns, verbs and adjectives; this is achieved through part-of-speech tagging. 

During this phase, the thematic role of each component contained within the sentence is also 

discovered. Thematic roles aim to uncover the Actor, the one causing the action, Co-Actor, 

Recipient and others, which is very similar to understanding what the Subject, Predicate and 

Objects of the sentence are. It is not obvious how this information is utilised during the 

knowledge extraction phase, if at all. 

The knowledge extraction step aims to uncover the classes, operations and attributes from the 

specification under consideration, which are respectively symbolised in natural language as 

nouns, verbs and adjectives each of which map to one of these definitions. Similarly, the 

generation of both UML models and code generation also relies on this mapping, where 

detected classes and other features are easily transformed into their respective formations i.e. 

classes, operations and attributes. 

One weakness of the approach that is not addressed is relationships between components. 

They do state that relationships are extracted through the presence of prepositions. However, 
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the verb can also express relational information between candidate features as well and it is 

not discussed why verbs characteristics have not been exploited.  

Given the approach and its removal of ambiguous information beforehand, its accuracy is 

relatively high from their evaluation: on average 83%. This loss in accuracy is perplexing and 

can only be attributed to loss of information during the specification acquisition phase, which 

requires the user to transform the specification into simple declarative form. It is at this point, 

where there is a high risk of information loss or misunderstanding.  

The evaluation itself is based upon four criteria: Objects/Classes, Attributes, Methods and 

Relationships. There is a maximum score definition of 25, but what this actually means or how 

the maximum has been derived is not discussed. Each of the components (classes, attributes, 

methods and relationships) are individually counted, where correct identification gives 1 point 

and an incorrect identification results in a -1 point. However, where the validated results come 

from is unknown, as is the question as to whether the results represent only one or many sets 

of evaluated data. 

Christiansen et al. [CHK07] propose an approach towards UML class diagrams through 

Definite Clause Grammar (DCG) and domain knowledge expression through Constraint 

Handling Rules (CHR).  

The key aims of the approach can be defined as follows: 

1. Capture of user requirements, in restricted natural language 

2. Development of CHR Handling Rules 

3. Transformation to DCG Clause Grammar 

4. UML Class diagram generation through GraphViz 

The approach is made possible through simple sentence constructs in the form of subject (S), 

object (O) typically nouns, and verb (V) that come together to form SVO triplets. These are 

derived from Use-Case descriptions, which are widely utilised to map customer requirements. 

The use-case descriptions, typically extracted from an initial informal specification, require an 

additional processing step to ensure simple SVO sentence construct order.  

The SVO ordered sentence constructs are then transformed into DCGs defined as follows: 



37 

• Basic Sentence 

o The basic sentence is a SV or SVO triplet, where consideration of the verb is 

the key staring point. Where both S and O represent classes and V represents 

relationships or operations. In the case of SV, it would solely represent an 

operation contained within the subject class 

• Property Sentences 

o These typically indicate properties of the subject itself that are expressed 

through possessive verbs, indicating ownership. This leads to the object, i.e. 

the noun following the verb of the sentence, becoming an instantiation 

property/attribute of the sentence’s subject only if both subject and objects are 

nouns and have been created as classes. 

• Inheritance  Sentence 

o Investigates verb is_a construct, which subsequently leads to the detection of 

sub-/super-type relationships, e.g. A student is a person, indicating a possible 

abstract/generalisation, i.e. a student is a type of person.  

• Instantiation Sentences 

o Still using is-a constructs as an identifier, but where a Proper Noun (i.e. a noun 

representing a unique entity such as London) is used instead of a noun e.g. John is 

a student. The Proper Noun in this case is taken as an instantiation of type 

student.  

• Adjectives 

o These provide more information about the noun they modify, typically being 

attributive of the noun they are attached to. Even though it is something 

consider by the technique it is subsequently ruled-out due to possible 

ambiguities it may introduce. The consideration of adjectives is defined as 

either representing a sub-class or property in terms of modelling. However, 

given the grammatical meaning of adjectives if they are attached to the noun 

then they can only be considered as a property of that noun, and not as a 

subclass type. 
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• Pronouns 

o A grammatical reference designed to manage anaphoric references, pronouns 

such as he, it, and she typically refer to some other noun which has already 

been introduced. They utilise a simple heuristic that considers the most recent 

occurrence of a single subject contained within the current or previous 

sentence. However, if there is more than one candidate subject, then 

resolution is abandoned. 

The DCGs at the lowest level are actual language constructs such as nouns, verbs, and their 

individual parts-of-speech. This allows the extraction of the sentence components that can be 

extracted by the constraint handling rules.  

The CHRs will therefore discover relevant sentence components such as nouns, and extract 

and define these according to its rules. For example, A dog is an animal, will result in the 

creation of class(dog), class(animal), and will also discover a generalisation between dog and 

animal, defined by extends(dog, animal). A separate knowledge base can also be built from CHR 

constructs and used as an additional source of information to complement analysis however, 

this is manually developed and prior to actual processing. 

The resulting output from the CHRs is then subsequently transformed into another DCG 

defined for GraphViz. As a result, the GraphViz syntax model can be used to generate the 

actual UML class diagram; this can then be presented to the user for analysis.  

Largely, the approach relies on the Use Case descriptions that have already been extracted 

from the original user specification. As a result, any missing requirements will not be analysed 

nor considered by the approach, which could lead to a situation where important design 

features could be missing from the proposed software system and is the same for any other 

system as well. Additionally, the approach has the requirement to ensure that the Use Case 

statements are in the form of SVO triplets; a manual transformation process which may also 

introduce ambiguities and lead to a loss of system specification information.  

Nonetheless, the approach does produce a result that is a step forward in automated software 

development, although this is done at the expense of an assumption; one that believes the 

majority of the information contained within the Use Case specification is relevant and finally, 

there is no evaluation of this approach. 
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Gelhausen and Tichy [GT07]; Gelhausen and Korner [GK08] present a technique towards a 

semi-automated approach for automated software development that will form the starting 

point of the Model Driven Development (MDD).  

Their approach is based upon an intermediate transformation of the specification into SENSE 

(Software Engineers Natural language Semantics Encodings) a kind of super-graph that is an 

extension of hyper-graphs, where edges not only connect to nodes, but can also connect to 

other edges. The key intention of Sense is to encode the semantics of natural language and not 

to distinguish between word order, voice or tense. In addition, SENSE carries no 

understanding of word definitions therefore all words could equally mean the same thing.  

The semantic encoding is achieved through purpose built annotations known as SALe (SENSE 

Annotation Language for English) roles. These roles can define actions (AG), message passing 

(HAB), recipients (RECP), donors (DON); that something is acted upon (PAT) and removal of 

superfluous information by attaching a (#) tag. This set of annotations allows the key aspects 

of the user specification to be identified prior to SENSE processing. 

SALe requires a manual application of these annotations to the plain text requirements 

specification. This transformation process could be considered synonymous with a typical 

software analysis approach, where the key components of the model such as classes, 

relationships and operations are discovered and annotated. The only difference being that the 

SALe document produced is then automatically processed by SENSE through a set of 

transformation rules based upon these SALe annotations. The resultant output is the super-

graph detailing all the relevant classes, operations, relationships and inheritance hierarchies, 

which can then be transformed into a UML model through a set of transformation rules. 

This approach is a human manual analysis technique, where the key decisions of what to 

include and exclude are decided upon by the analyst. There are no means to provide an 

automated detection technique based upon the linguistics or semantics of the specification. It 

is therefore possible for relevant information to be overlooked and excluded during the 

annotation process if deemed unimportant by the analyst. 

Vinay et al [VAD09] have developed the R-TOOL, designed to analyse elicited English natural 

language requirements specifications, which is used to extract classes, attributes, operations 

and relationships. This is achieved through the application of NLP and rules designed to 

analyse the specification. 
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As with other approaches, the R-TOOL performs full natural language processing 

tokenisation, pronoun resolution and part of speech detection. However, a prerequisite of the 

approach requires the specification to be written in the active voice and to be in simple 

sentence form (i.e. SVO Triplets) prior to any formal class model detection. 

The approach takes a rule-based approach similar to other techniques, where nouns identify 

candidate classes, verbs identify relationships and operations and certain noun structures 

(namely noun-noun) to find attributes.  

The noun-noun rule is an interesting approach to attribute detection, where the first noun is 

considered the class and the subsequent noun is considered its attribute. However, in terms 

of linguistic analysis, the first noun is considered as a modifier to the second noun/head noun. 

So in this case, there is a greater likelihood that the first noun is actually some kind of attribute 

rather than the second or it may even represent some form of subtype-supertype relationship. 

In addition to attribute detection, certain verb constructs are also utilised to determine 

candidate attributes through the identification of possessive verbs such as have, denote and 

identify. Furthermore, nouns preceding prepositional phrases such as cost of soup, where cost 

would be considered as the attribute, are also detected during the attribute detection phase. 

However, not all prepositional phrases may indicate attributive qualities; it is also possible 

that they identify spatial, temporal or comparative references. 

With the initial list of class candidates discovered, additional rules are also applied to prune 

the class list; rules such as, frequency analysis and candidates that have no attributes , which 

results in those being removed from the final list.  

Frequency analysis is based on an individual words frequency of occurrence count within the 

document. However, no frequency threshold is actually discussed within the approach. 

Therefore, it is difficult to establish how this is actually defined and whether or not it is user 

definable. Nonetheless, both candidates with a low frequency and those having no attributes 

will lead to them being discarded and not included in the final design. 

Finally, the approach to relationship detection can identify simple association relations 

defined by simple noun-verb-noun constructs. However, the approach also goes as far as to 

identify generalisations and aggregations as well.  
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Generalisations are discovered through a top-down search for nouns that are also composed 

with adjective modifiers, and once discovered a generalisation is created. Adjectives typically 

modify the noun that they are attached to and have several definitions depending on their 

context. Their most common usage is to be attributive to the noun they modify. The only case 

where an adjective may be considered as being or acting as a noun is in the nominal case, but 

the approach does not provide any justification or a present a mechanism to determine the 

adjective’s actual function. 

Aggregations are discovered through a simple pattern matching rule primarily defined by the 

verb of the sentence such as something [contains, is made up of, is part of] something. Therefore, 

upon detection of such constructs an aggregation relationship is utilised instead of an 

association. 

Overall, the key strengths of this approach is to utilise not just the types of language constructs 

in the discovery of class features, but to enhance their approach through rule based analysis 

as well. However, the rules applied such as frequency analysis could potentially lead to a loss 

of vital model features and discarding of class candidates. The approach towards frequency 

analysis is not fully disclosed; it is therefore difficult to infer whether this is threshold based 

or if only high-value words are considered as candidates. If so, and as said, it could lead to the 

loss of potential high-value candidates as these may only appear once or twice within a 

specification, but are ones that play a pivotal role within the specification. However, because 

of their low frequency of occurrence within the specification, also known as an under 

specification, it would require manual investigation of discarded terms to evaluate their value. 

An under specification relates to a situation where a key the feature should be included within 

the resulting model/analysis, but since it has a low frequency of occurrence within the 

specification it is ignored by the approach. 

The focus of their evaluation is qualitative, a comparison of manually collated results vs. 

features identified by automation. The evaluation is limited to only one specification and there 

is no information on how the manually identified features were collated. In addition it is 

unknown whether the specification utilised in this approach demonstrates the approach in its 

best light as the results comparison is very good. To understand how well the approach does 

perform a more extensive evaluation is needed, but one that is not available. 
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Uncontrolled Language: 

Motoshi et al [MHH89] define a technique to extract a formal specification from an informal 

one, where they extract a set of candidate nouns and verbs, from the informal specification. 

This extraction is achieved through a noun and verb dictionary that is automatically applied 

to the specification texts. The set extracted nouns and verbs are manually classified into 

product sets such as classes, attributes or actions from nouns and relational, state, action or 

action/relational from verbs. 

The key argument for manual classification rather than automated is that it is difficult for 

computers to identify what words are important and relevant to the specification. In addition, 

sentence structure is also taken into consideration during the manual classification process 

such as the subject (S), verb (V) and object (O). The subject of the sentence identifies the sender 

of a message and may strongly indicate a class. Verb patterns based within grammar such as 

S+V, identifying intransitive verbs, can allow the manual consideration of objects that modify 

their own state. The approach also demonstrates how other simple verb structures defined as 

‘action verb rules’ can also aid in the manual identification of additional design features such 

as relationships, operations and attributes.   

These rules typically result in SVO triples where the subject is joined to the object of the 

sentence via the main verb, where the verb identifies the relationship and/or operation. All of 

this extracted information can then be utilised to extract a formal specification from the 

informal one.  

The key drawback of the approach is the burden of the manual analysis activity. This is 

compounded by informal specification as it increases in size and complexity. The approach is 

entirely dependent on manual analysis, which is subject to experience, understanding and 

bias to identify the relevant features that should and must be modelled. 

Goldin and Berry [GB94] note that for many methodologies that allow the transformation 

from requirements analysis to initial design, in the majority of cases requirements are often 

ambiguous, ill defined, incomplete or just simply wrong with respect to the users’ needs.  

They have identified that abstraction identification is a key problem within requirements 

analysis process. Where an abstraction is the ability to ignore enough of the details contained within 

the specification and only capture the main ideas or concepts. Therefore, abstractions are key to 
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understanding what is actually required, but the abstractions themselves are surrounded by 

a mass of natural language texts from where they must first be discovered. 

The manual elicitation of abstractions takes the form of identifying nouns and noun phrases; 

this is aided through the identification of the grammatical subjects and objects contained 

within the sentence and most importantly, the analyst’s understanding. It is entirely a human 

thought process, where each element has to be considered for inclusion. However, as the 

document grows in size, the more complex the task becomes, the greater the chance of 

important features being overlooked and why a semi-automated approach was sought. 

Initially, automation sifts the texts through natural language analysis techniques and 

frequency analysis. The results can then validated by a human. The key benefit of automating 

this process is that it can be guaranteed that no element contained within the specification will 

be overlooked, whereas it cannot with a manual analysis approach.  

The automation process proposed is based on repetition or frequency analysis, which is the 

basis of their key assumption stating that key abstractions are discussed more often within the 

specification document. This statement can be held true with many search and retrieval 

techniques where it is possible to identify the importance or relevance of a particular term 

contained within the document itself. This assumption gives rise to a situation where 

important abstractions, which have a low frequency of occurrence, will be overlooked by this 

technique, which may indicate that these are of greater importance than the high frequency 

terms [Jon72].  

Automated linguistic classification, through utilisation of a natural language parser, discovers 

every noun and noun phrase, even if the word is derived from the same stem such as purchased 

and purchase. The frequencies are identified and added together. In addition commonly 

utilised stop-words such as a, an, or the, are ignored during analysis phase.  

Additional issues identified are acronyms. These are introduced to replace longer phrases, 

primarily only of use to an analyst, and to avoid repetition. Acronyms cannot be managed 

through threshold analysis and therefore require manual identification by the analyst and 

added to an exclusion dictionary, which then allows their identification and addition at the 

end of processing. 
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The threshold based analysis has two specific issues. A low frequency threshold increases the 

number of terms identified, but incurs a penalty through introduction of irrelevant words. 

Whereas, a threshold set too high may miss important features. 

This approach is one of the few that also have some form of validation of the approach where 

a non-domain expert using the tool was compared against three domain experts not using the 

tool, independently of each other. The key conclusion was abstraction identification 

completed the same task as these experts in one day in comparison to three months worth of 

their work and was able to identify features that the experts overlooked. 

The approach demonstrated that through means of frequency analysis and their evaluation it 

is possible to identify the key features faster and more efficiently in comparison to three 

domain experts. This is an interactive process, requiring constant involvement, consideration 

and frequency threshold re-balancing to achieve the best results, but it only identifies the key 

abstractions (candidate classes) and no more. 

Gervasi et al [AG97, AG99, GN02, AG06] present a web-based tool for requirements 

gathering, elicitation, selection and validation which is utilised to build models of a proposed 

software system. What is of interest is how they actually select and identify relevant 

components to be included within their model of the proposed software system. The model 

generated from this information is supported by an automated processing technique. This 

requires analyst support, via a costly manual activity involving development of a System 

Glossary and MAS (Model, Action, and Substitution) rules. 

The System Glossary developed contains all of the key abstractions, significant terms and 

flows of information that are contained within the requirements and are considered important 

by the user. For example, given the phrase, When the server receives from the terminal the 

password, the server stores the signature of the password in the system log, the system glossary as 

defined by the user would contain {terminal/IN/OUT, server/IN/OUT/ELAB, password/INF, 

signature/ATTR, system log/STORE}, where IN/OUT/ELAB/INF/ATTR/STORE are domain 

specific terms representing data flows. However, during automated processing the glossary 

is ignored and is more for the benefit of the user during the development of MAS rules. 

Table 2.3-4 demonstrates the MAS rules utilised by the process for the identification of model 

components. Although each requirement is manually transformed into a series of these MAS 

rules this could potentially lead to a loss, oversight or misunderstanding of the original 
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requirement and it is the analyst who is still making the decision as to what is included or not 

through development of these rules. 

Table 2.3-4 User Developed MAS Rules 

Model Action Substitution 

WHEN event/EVT action/ACT Out DEPEND $action $event - 

Receiver/IN RECEIVES data/INF FROM sender/OUT Out DFLOW $sender $data $receiver $ID/EVT 

Agent/ELAB STORES data/INF IN datastore/STORE Out DSTORE $agent $data $datastore $ID/ACT 

Attribute/ATTR OF object Out ATTR $attribute $object $ID/INF 

The rules themselves are applied through fuzzy matching, where automated processing will 

decide if a fragment, a feature identified from the requirements specification, matches one of 

the MAS rules. If so, given the model, the action is executed and the matching requirement is 

replaced by its substitution, thus generating the required design components, (but these have 

been pre-determined by manual means, automation is only processing the subsequently 

developed rules).  

 

Figure 2.3-1 Parse Tree Corresponding to Sample Requirements [AG99] 

The process itself comes into its own through its views, which allow metric applications, 

various checking and model transformations including Object Oriented, Data Flow Diagrams, 

Dynamic Models, Entity Relationships and more. This is where the real strength of this 

approach lies and all can be derived from a set of similar parse tree structures, see Figure 2.3-1. 

There is an evaluation of how well the technique performs in processing requirements (i.e. 

how fast it can process requirements) and how many lines of code the approach was written 

in but the evaluation does not provided any consideration or meaningful understanding of 

how well the actual technique performs. 

Sylvain et al [SBB99] propose a technique utilising natural language texts and semantic 

analysis towards the creation of candidate lists of classes, operations and attributes. The 
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approach is utilised during the initial stages of the analysis, which allows the engineer to 

concentrate on the collection and preparation of accurate textual descriptions of the problem 

domain. This is undertaken without having to utilise any object-oriented tools, diagrams or 

techniques during this analysis phase. 

The key to the approach is the extraction of nouns, which indicate classes, verbs that indicate 

processes, and identifying attributes from adjectives, all which is aided by their domain 

independent natural language and a semantic analysis tool. 

The domain independent parser processes each individual sentence and identifies all of the 

relevant parts of speech, and produces several parse trees; the analyst then has to select what 

they think is the correct parse structure for the sentence which is then passed on for semantic 

analysis. However, the complexity and the structure produced by automated analysis may be 

(initially) confusing, which could lead to an incorrect parse tree selection that would 

subsequently have an adverse effect on the overall analysis process. 

Nonetheless, once the parse tree has been selected, semantic analysis is undertaken by a 

separate module. The key to the semantic analysis is centred round the verb of the sentence. 

This is not a semantic analysis that generates an artificial understanding, but one which 

primarily looks towards case relations that represents semantic relationships between the 

main verb and the key sentence components (such as subjects, objects, prepositional phrases). As 

with language processing, the user has to select the relevant semantic analysis which they feel 

best represents the relation semantics of the current sentence.  

Along with both language and semantic analyses, the user is finally presented the key details 

such as, the main verb, nouns and any adjectives. It is then the responsibility of the user to 

generate candidate lists (such as classes, attributes and operations) and make the decision as to 

what are the best candidates, as a preliminary analysis step prior to full (manual) model 

creation. 

This semi-automated approach has been evaluated by means of comparing the results 

identified by the process to what is discovered by human experts. Overall, 76% of classes, with 

a majority containing their attributes, and 66% of the operations were identified in comparison 

to an expert’s preliminary model.  
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The majority of this work is manual when considering that the key decision as to what is a 

class or an operation is a human decision process. In addition, identifying the correct parse 

trees and semantic analysis is a crucial step in the process were misunderstanding the 

requirements and language constructs will have a detrimental effect on the overall process 

and outcome of the candidate lists produced. 

Lee and Bryant [Bry00, LB02, LB02a, LB02b, LB02c, LB03, BLC+03] propose a technique 

towards semi-automated software development, which is capable of generating both models 

and software code from natural language requirements specifications.  

Their approaches utilises techniques such as domain knowledge (DK) and domain specific 

knowledge (DSK) that are manually developed to assist automated analysis and extraction of 

class features. Additional supporting techniques applied to their approach include syntactic 

analysis, semantic analysis and a custom-built part of speech analyser used to identify the 

relevant language features such as nouns, verbs and adjectives.  

Syntactic analysis identifies the subject and objects contained within the sentence, based on 

the premise that the first noun discovered in the sentence is the subject and where all others 

are objects although this assumption is not entirely true when considering passive sentence 

constructs. The detection of syntactic features aims to better aid and increase the accuracy of 

their approach. Semantic analysis, aided by WordNet [Mil95], assists in co-reference 

resolution, where the semantic groupings of WordNet [Fel98], such as ‘Animal, Person’, can be 

used to find words that are a possible candidate of the co-reference. 

However, prior to any form of linguistic analysis, the requirements specification is manually 

transformed into an XML representation, which is a means to simplify what automation has 

to process, and through the definition of additional meta-information it can then guide the 

relevant execution path. The structure is derived from the common document structure by 

means of sections, sub-sections, paragraphs and individual sentences. This enhances the overall 

quality, where contextually related information is grouped together. The addition of meta-

information also included during the manual transformation of the specification helps to 

identify important sections and sentences contained in the specification. The XML 

representation is the first level of domain knowledge, known as a contextual document model. 



48 

Each of the top-level tags {section, subsection and sentence} allow management of contextual 

information, which can be used to aid user-specific queries, but primarily aims to simplify 

automated analysis.  

• The section tag is used to identify the overall context through a meta-attribute defined 

as object and a descriptive title such as ATM 

o A section tag can also contain section tags (realistically representing a 

paragraph) to maintain context and also identifies what information is 

contained within that tag for example a ‘withdrawal service’. 

With a section defined, it is possible to identify sentence-level meta-information utilising 

descriptive tags such as {head, pre-condition and sub}.  

• The pre-condition tag identifies conditions that must be met for each of the sentences 

that are contained within sections or sub-sections i.e. bank verifies ID and PIN giving the 

balance indicating that any features identified within the section/subsection must meet 

the defined pre-condition 

• The head tag is utilised to mark a sentence containing a function signature, for 

example, ATM withdraws an amount with ID and PIN giving the balance, where function 

identifies the containment of an operation i.e. withdraw 

• The sub tag identifies a post-condition, which must be met after conclusion of the 

operation, e.g. And then it updates the balance in the bank with ID 

In addition, domain specific knowledge also has to be manually defined, also in XML, but 

carries a significant amount of detailed information such as, inheritance hierarchies, 

associations, compositions, attributes, types as in {integer, string}, specific values and 

synonymously related words, which is defined for each concept within the domain.  

The domain specific knowledge does not have to be extensive, but providing information that 

is more detailed will surely ensure the success of the automated analysis process. However, 

going to the extent of defining so much operational, structural and relational information, 

prior to the automated analysis, is of concern. It seems rather counter-intuitive to expend the 

effort manually capturing this information and it would be better spent actually creating the 
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model (on the part of the analyst), rather than defining a domain specific model for 

automation.  

With the domain models created, class detection is based on the rules of nouns indicating 

classes, verbs implying operations and adjectives demonstrating attributes. Therefore, upon 

detection of these language features, the DSK can be queried for any additional/supporting 

information during the analysis phase. Furthermore, structural aspects of the sentence are also 

taken into consideration when detecting a class. The structural features considered within the 

sentence are subjects and objects, which support the case for class creation, since both sentence 

subjects and objects identify important aspects of the sentence. 

A simple rule is utilised to detect sentence subjects, where the first noun in the sentence is 

always the subject and all subsequent nouns are objects. Given a passive sentence construct, 

The balance was given after verification by the bank, even though balance is the subject, the true 

subject of the sentence is bank, as it is the bank who is calling/performing the action verification. 

This does not really affect class creation in any particular way, but it can be detrimental when 

deciding which class should contain an operation. This may be resolved through their defined 

knowledge bases.  

In addition, cases can arise in written texts where the subject may be unknown due to pronoun 

usage, such as {it, that, them, they, he}. The key approach is semantic analysis aided by WordNet 

and recency constraints to undertake co-reference resolution (i.e. the last seen noun).  

Their approach to co-reference resolution considers the most recently seen noun as the 

candidate, which then checks its semantic definition with WordNet. If it represents a living 

thing, the pronoun resolution can take place, otherwise the next most recently seen noun is 

taken into consideration. This is not an endless search process, and is kept within the confines 

of the contextually related section/subsection of the specification. Although a problem does 

exist with this approach to co-reference resolution as the most recently seen noun may not be 

the correct reference and it may not have a living thing semantic as well. Take the case of an 

ATM machine, it does not have a semantic that falls within the category of livings things, but 

could easily be co-referenced by a pronoun resulting in an incorrect reference. 

Co-reference resolution in the approach only considers previously introduced terms. The 

situation can arise where a pronoun is used for a term that has not been introduced to the 

reader as yet, known as cataphoric reference, also a form of co-reference resolution. In this 
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situation, and given the approach to co-reference resolution this could lead to the situation 

where a completely irrelevant term is referenced as the actual candidate. 

Nevertheless, these analyses and rules are then utilised by automation to process the natural 

language specification and generate a Two-Level Grammar (TLG) representation. The TLG, a 

specification language defined by this technique can subsequently be translated 

(automatically) into VDM++ (an OO extension of the Vienna Development Method), thereby 

allowing model generation, identifying classes, relationships, operations and attributes. The 

resultant TLG/VDM transformation can also be converted into a high-level programming 

language such as Java or C# to allow rapid prototyping. 

Overall, this approach towards automated analysis provides a robust means towards model 

and actual code generation, which can be considered its key strengths; disappointingly, there 

are no evaluations of any type for this technique. The keys to the approach are the document 

reformulation into a contextual representation; generation of the domain and domain specific 

knowledge bases and model generation rules, which guide and assist automated analysis. 

However, a considerable amount of effort needs to be exerted prior to any automated analysis 

to the extent where the manual analysis transforms the requirements into both domain and 

domain specific XML models, which carry such a level of detail it almost makes the automated 

analysis part irrelevant. 

Overmyer, et al [OLR01] propose a technique for conceptual modelling through linguistic 

analysis of the natural language requirements specification and have developed a tool, ‘LIDA’, 

which assists the developer by automatically detecting possible features such as classes, 

attributes, relationships and operations from a natural language specification.  

Their methodology is defined by the extraction of language lexical features such as nouns, 

verbs and adjectives, which are then compiled into candidate lists of classes, relationships, 

attributes and operations. The extraction is achieved through two custom built dictionaries: 

one that represents nouns and the other, verbs. The process scans the texts and pulls out 

matching words that are contained within either dictionary set, which results in a candidate 

list of potential class features. 

With candidate lists generated, the human can then manually identify the actual candidates 

for the conceptual model where through a further automated step these features are then 
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transformed into a UML diagram along with API descriptions. The API descriptions are a 

reverse engineering of the resultant model generated back into natural language statements. 

Even though the overall aim is to alleviate the manual identification, the approach is entirely 

dependent and reliant upon the developer identifying appropriate classes, attributes, 

operations and relationship from the list of all possible candidates. The approach further 

assists manual analysis by providing frequency of occurrence information for each candidate 

thus aiding the manual decision making process. 

Kof [Kof05, Kof05a, Kof07 & Kof08] proposed an approach to requirements document 

analysis through natural language processing as a means towards ontology extraction. The 

ontology can then be utilised to derive models and drive further manual analysis of the 

proposed software system. 

The approach taken follows three key steps: 

1. Individual Term Extraction 

2. Term Clustering and Taxonomy Construction 

3. Term Relationship Discovery 

Individual term extraction is assisted through natural language analysis of the sentence and 

construction of a full part-of-speech parse tree using an external tool, ASIUM [ANF98]. The 

purpose of utilising the full parse tree eases the identification of sentence predicate (main verb) 

and both its arguments, subjects and objects (nouns).  The approach initially locates the main 

verb, and then with a series of left and right traversals of the parse tree, it extracts both subjects 

and objects. In addition to extracting individual terms, compound terms are also discovered 

during this approach. Thus, ensuring full compound terms are extracted rather than them 

being extracted individually.  

In addition, during the extraction of compounds there are many structures in the form of 

(Property) of (Object) e.g. failure of water level detection unit, therefore in this case the whole tree 

would be extracted as one entire concept. However, of does not only indicate properties of 

other objects, but can also indicate many other constructs such as direction, time and others, 

which would require disambiguation to ensure correct interpretation. The approach only 

considers the ‘existence’ property and does not undertake any disambiguation. 
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With all terms extracted, it is possible to start constructing the taxonomy using ASIUM. 

ASIUM builds clusters of nouns discovered during the initial phrase and makes use of 

contextual, lexical and syntactical similarities to decide whether two terms are similar and if 

they have a high similarity score, they are grouped together. To enhance the chances of 

similarity towards each of the extracted terms, they are also reduced to their base stems. A 

further enhancement to the cluster results requires a manual search and discovery of 

intersecting cluster, which can be manually inserted into the final taxonomy model. 

Using another external tool, KAON [SA97], it is also possible to perform association mining 

and identify relationships between concepts. This is achieved by means of a simple count, 

identifying how many times a particular concept appears within input texts. Therefore, a 

decision whether an association is important and should be included is undertaken by two 

metrics and a user defined threshold.  

The metrics primarily investigate how many times a set of concepts appear together within 

the same sentence and within all sentences, defined respectively as support and confidence. 

However, the user has the final decision on whether to include the association or not. There is 

the possibility with this strategy for important association, which may only be mentioned a 

minimal number of times within the texts, to be overlooked and subsequently lost during the 

analysis process. 

The majority of this approach is automated by means of natural language analysis and use of 

other external analysis tools. Other aspects are interactive such as clustering and relationship 

discovery that only require the user to confirm/validate the results. Nonetheless, the user still 

requires an understanding of the requirement texts. 

In addition to user understanding a set of rules were specifically developed to enhance the 

process that can be applied to the specification document and are defined as follows: 

• Use the same name for key concepts;  

• Mark compound words with hyphens;  

• Avoid compound concept conjunctions e.g. ‘stop or start message’ should be ‘stop 

message or start message’;  

• Do not use verbs in the form of ‘have’ or ‘be’;  
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• Avoid erroneous/supplementary information aimed particularly at the reader;  

• Avoid cross sentence references e.g. ‘Message X is sent by unit Y’. 

These rules effectively require a rewrite of the specification only to improve the results, which 

also identifies a key limitation of the approach. The claim is that their approach will effectively 

work without this step, but better results can be achieved by performing this transformation. 

This passes additional burden onto the developer/analyst to have a greater understanding of 

the requirements prior to the re-write taking place, and also lengthens the overall analysis 

phase as well.  

Overall, the results produced by this interactive process leads to a well-defined ontology. This 

can subsequently be transformed into various model types such as Use Case Models or 

Message Sequence Charts to aid understanding and complement the requirements analysis 

phase.  

The evaluation investigates the completeness of concepts extracted by the approach, but only 

the concepts and not the relationships between them. The approach argues that relationships 

are not explicitly defined in the text thus contradicting many of the related works that do 

extract relationships from the text.  

The results of the evaluation are compared against those that have been identified by the 

author. They do identify this as a threat to the validity of the evaluation and state that it should 

be undertaken by a domain expert. Finally, there is no analysis to bolster the key findings that 

the extraction of concepts matches those of the concepts contained within the document. The 

evaluation overall does not lend itself to validating the approach. 

2.3.1 Fully Automated  

The review of the fully automated works is similarly split in to two key sections, controlled 

and uncontrolled. The following reviews are chronologically ordered. 

Controlled Language: 

Nanduri and Rugaber [NR95] proposed an approach that performs requirements validation 

via the creation of an object model automatically from a specification. This model is then 

compared against a manually developed solution, which helps to identify any missed classes, 

relationships and alternative design choices. Linguistic analysis of the specification is used to 
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identify and create the relevant classes, relationships, attributes and operations automatically 

from the language. This analysis is based on rules they have developed to extract the relevant 

model components.  

Due to language complexities such as ambiguity, inconsistency, sentence structure and 

incompleteness, it is necessary to rewrite the specification document manually as a set of 

simple sentence structures.  

 

Figure 2.3-2 Example Link Grammar [NR95] 

The basis of the approach is formulated within a link grammar, where each link identifies 

components of the sentence that can be linked to other aspects of the sentence. For example, 

both the subject and the verb of the sentence would connect through one link. Another link 

could exist between both verb and any objects and more links may be present between all 

three components (subject, verb and object). This is achieved through utilisation of an external 

tool that automates the analysis and returns a link grammar parse tree (see Figure 2.3-2) 

These links form the basis of their rules for the creation of model features and their approach 

is based solely on the presence of these links and their order. This then allows the decision to 

be made as whether they should be included within the design. There is no cognitive or 

syntactic analysis undertaken automatically between these components of the sentence to 

decide upon their inclusion.  

The strength of this approach is in the creation of an alternative design choice for the developer 

and the identification of any missed or overlooked features of the specification. However, the 

developer still has to create a design for comparison manually. This is a time consuming 

process and is common for all manual approaches. There is also the additional effort required 

to rewrite the specification using a simple sentence structure, which also has the potential to 

introduce inconsistencies or skew the intended interpretation of the original document.  

Once rewritten, the specification is analysed by a link grammar parser, which may return 

different linking requirements between the components of the sentence due to parser 

inadequacies. In addition, the parser cannot process hyphenated words, idiomatic 

                     +----Js---+ 
 +-Ds-+---Ss--+--MVp-+   +--Ds-+ 
 |    |       |      |   |     | 
The cow.n jumped.v over the moon.n 
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expressions, quotation marks or undertake co-reference resolution. The resulting information 

serves as input for analysis by their extraction rules, where nouns serve as classes and possible 

attributes, verbs as relationships and operations. Unfortunately, there is no evaluation to 

identify the quality of the approach.  

Li et al. [LDP04, LDP05, LDP05a] utilise a pattern/rule-based and interactive approach 

towards UML Model generation from natural language specifications. The basis of the 

approach requires structured specifications typically in the form of subject-verb-object (SVO) 

triplets to allow successful transformation and detection of candidate classes, relationships 

and operations.  

The technique developed tags each word within the sentence with their relevant part of speech 

such as nouns, verbs or pronouns. This tagging is an automated process however, it is 

unknown if this is a tool that has been custom built for the approach or is an external part-of-

speech tagger. Nevertheless, it is then necessary, after tagging is complete, to transform 

sentences into the SVO triplet format.  

Given the tagged sentence, a pattern-based approach is utilised to create the SVO triplet 

structure, where the first noun is considered the subject of the sentence (S), the following verb 

is considered the main verb (V) and any subsequent following nouns are considered as objects 

(O). For example, The baker bakes bread and cakes, the SVO triplet would be as follows: S-V1-O1-

O2, which would be translated into two separate individual triplets so that both objects are 

associated to their own subject as follows: S-V1-O1 and S-V1-O2. Given the example this 

would effectively become, The baker bakes bread and The baker bakes cakes. Though a novel 

technique, it is an unnecessary step splitting these into individual structures, as it is simple 

enough to identify the attachment of the objects contained within the sentence 

With all sentences split into their respective triplets, an initial class diagram is created 

automatically detailing the candidate classes, attributes and operations, but none of the 

relationships. The approach then poses questions asking the user to confirm candidates 

discovered. The refinement phase is entirely user driven: one that requires a formal 

understanding of the proposed software system before decisions can be made concerning 

valid candidate features. 

Overall, the approach produces useable UML and simple Use-Case diagrams as a precursor 

to further software development activities. There is still a reliance on the user and their 
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requirement to have an understanding of the system prior to deciding whether a feature 

detected by the automated approach is correct and relevant. 

Popescu et al [PRM+07] propose an approach to automated UML model generation through 

use of a constraining grammar, automated language analysis, transformation rules and user 

intervention as a means to improve the quality of requirements specifications. 

The sole purpose of the constraining grammar is to allow the concise expression of the 

software requirements by means of simple sentence constructs and specifically stating the 

actual requirements. It is also the goal of this constraining grammar to reduce/remove/address 

ambiguities, inconsistencies and under-specifications, which may be present. This requires a 

manual analysis and rewrite, which on its own could potentially introduce further 

ambiguities/inconsistencies and loss of important information contained within the original 

specification. 

The language analysis phase makes use of an external link grammar tool, similar to that of 

other approaches [NR95], which detects all relevant parts of speech and identifies the 

connective relationships between the components contained within the sentence. These 

linkages are then used in conjunction with transformation rules to generate a textual 

description of the UML model. 

In addition to the link grammar, WordNet is also utilised, but only to return words contained 

within the specification to their base form i.e. transforming plural nouns to their singular form. 

This helps to avoid the creation of duplicate classes, attributes, operations and relationships.   

As previously stated, the link grammar identifies the key sentence features and connective 

relationships between these such as the subject of the sentence, the main verb and sentence 

objects and transforms the sentences into simple sentence construct in essence an SVO triplet. 

A key rule of the approach considers that if a link also exists between both subject and object, 

then it will result in the creation of two classes (represented by the nouns/subject and objects), 

a relationship and operation defined by the sentence verb. 

During the transformation process, additional consideration is given to the verb and its type. 

For example, a genitive verb, indicating possession, will result in both subject and objects of 

the sentence being created with an aggregation relationship, rather than a standard associate.  
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The aggregation relation is subsequently utilised during a further processing phase, where all 

aggregated relationships are considered for transformation into attributes of the subject class. 

During this analysis, only classes that are lacking in relationships, operations and attributes 

will be considered for transformation into attributes and will be placed within the subject 

class.  

With the analysis undertaken, it is then the responsibility of the analyst to investigate the 

diagram for ambiguities and the technique identifies areas to investigate: 

1. Association relationships may indicate ambiguities and the analyst should validate 

were different classes communicate with the same target type is correct otherwise 

manual manipulation is required to ensure the model demonstrates the correct 

communication  

2. Each class should reflect one and only one concept. Thus does book and textbook 

represent two different distinct concepts? 

3. If a class has an attribute and it is not of primitive type, this may indicate that the 

attribute is not well defined within the specification. On the other hand, it may 

identify a genuine communication between class components. 

4. If a class has no relationships with others in the model, it may indicate under-

specification. This though, could be a direct result of the transformational phase 

undertaken prior to any automated analysis, where the original document was 

rewritten into simple sentence form. 

Nonetheless, the approach creates a means to automate the software modelling generated 

from the restricted natural language constructs where the approach is validated using recall 

and precision adapted from information retrieval techniques. Their interpretation of recall 

considers information extracted by the link grammar in terms of what is contained within the 

source. That is, it investigates how well the actual natural language parser performs through 

extraction of nouns in comparison to the actual nouns contained in the specification, with a 

similar comparison with precision. The evaluation does not consider how well recall and 

precision perform in relation to a human generated model.  

Strangely, the evaluation uses an intro man page of the Cygwin environment and not an actual 

requirements specification document. The reasoning given is that the manual page seems to 
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be a suitable experiment source. However, the key purpose is to improve the quality of 

requirements specifications through auto-generated models. Therefore, a manual page does 

not appear to be an appropriate source of information, but for the purpose of the evaluation 

it should suffice. 

The evaluation starts with a manual identification of every noun or compound noun by the 

authors, then these results are compared with the automatically extracted ones, which allow 

for a quantitative analysis, where the average precision rate is 89.79% with an average recall 

rate of 69.2% 

The key strength of the approach can be considered to be within the transformational rules 

used to detect the key features of the model classes, relationships, attributes, operations and 

generalisations. However, the approach is reliant on the initial transformation process from 

an uncontrolled natural language to its restricted grammar and this is the crux of the 

approach. 

Seresht, Ormandjieva & Sabra [SOS08] present a proof of concept that accepts a collection of 

textual requirements specifications as its input and outputs the resulting static and dynamic 

models of the captured software system. The objective of this work is to provide interactive 

and automated assistance throughout the process of requirements elicitation and analysis. 

This is achieved through three techniques: automated NLP quality assessment of the textual 

requirements during the elicitation phase; NLP quality assessment of the requirements during 

the development of a static UML model and dynamic Use Case models. The generation of a 

graphical visualisation extracted from the requirements is presented for user validation and 

feedback. There is no evaluation presented with this work. 

The methodology that supports the identification of static model initially starts with a pre-

processing phase that identifies a First-Cut Structural View (FSV) that is combined with Expert 

Compared Contextual (ECC) Models - domain data models which are a UML representation 

of the domain. Both the FSV and ECC models are used to generate an Improved Structural 

View which is subsequently transformed into a structural view.  

Textual pre-processing is used to remove ambiguities and is supported by a decision-tree text 

classifier that applies a quality characteristic model which is not limited to just syntactic 

features such as passive verbs, but also word frequency and ambiguous keywords. In 

addition, discourse features are also considered such as words per sentence, unique words 
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and frequency of ambiguous sentences. Once the ambiguities have been identified and 

removed a set of heuristics are applied that focuses on SVO constructs that considers nouns 

as candidate classes and verbs as relationships; no additional syntactic features are considered 

in the construction of the FSV. The domain models (ECC) and the FSV are compared and a 

variety of rules are applied that transform nouns to classes and verbs into relationships. The 

resulting output is an Improved Structural View (ISV) which is subsequently transformed into 

a static UML model. 

The proof of concept controls the language by focusing on simplified language constructs and 

removes ambiguities during its textual pre-processing phase. It is unclear from the work 

whether these ambiguities can be resolved, but the authors do mention a validation and 

feedback phase. Overall, the initial analysis creates classes/relationships from nouns and verbs 

which is compared to the domain model, which is a static UML representation also detailing 

classes and relationships. The domain model contains extensive information ensuring that 

missing information is included within the final model. This calls into question the practice of 

why the approach is undertaking specification analysis and the creation of a first structural 

view when the final model created is essentially a view the domain model itself.  

Deeptimahanti, Ratna & Babar [DR08, DR09 & DB09] propose a methodology towards 

automated software development based on the Rational Unified Process (RUP). Their 

approach, known as ‘Static UML Model Generator from Analysis of Requirements (SUGAR)’, 

is used in conjunction with natural language processing (NLP) and a supporting glossary of 

terms. 

As with other approaches, it too requires complex sentence structures to be transformed into 

simple sentence constructs such as SVO triplets. It also requires transformation of all passive 

voice sentences, such as Customers are transported from one location to another into active form 

thus ensuring the inclusion of main subject, i.e. Taxis transport customers from one location to 

another. This ensures that the object, which is actually undertaking the action, can be 

discovered. 

During the reconstruction of the sentence, all prepositional phrases, adjective phrases, 

determiners and adjectives are discarded if, and only if, they precede the subject of the 

sentence. The exclusion of such information, even if it is only from the subject of the sentence, 
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can and will lead to the loss of information that could be used to identify possible 

relationships, attributes and multiplicity during the modelling activity. 

Once the specification has been reconstructed (manually), it is then possible to undertake NLP 

analysis and subsequently have a parse tree returned (via the Stanford NLP Analyser 

[KM03]). The parse tree contains all the relevant parts of speech for the given sentence. An 

additional processing step is also undertaken by WordNet to perform morphological analysis 

and transformations, where any plural word is subsequently transformed into its singular 

form. This is only to ensure no duplicate classes are created during the automated analysis 

aspect of the approach. 

With all the pre-processing undertaken and with the suitable parse tree available, it is then 

possible to undertake UML model generation. The key to the approach is a noun-phrase 

approach, where nouns are considered as classes and verbs are considered as operations of 

those classes.  

To enhance the approach a glossary is constructed, which is used to ensure a common 

vocabulary for disambiguation purposes such as client and bank client. In addition to this 

disambiguation, the glossary is also utilised to remove irrelevant words that would not give 

any benefit to the final model. The process of generating the glossary requires manual analysis 

of the specification, probably undertaken during reconstruction of the specification into 

simple sentence form. The reliance on manual transformation of the specification prior to 

automated analysis and intervention still involves considerable effort on the part of the analyst 

to ensure that no relevant information is accidently removed during this transformation. 

Unfortunately, this cannot be guaranteed without further scrutinising the resultant 

transformation process however, the approach is not supported by an evaluation. 

Uncontrolled Language: 

Mich et al [Mic96, MMZ02, MG02 & KZM+04] propose a case tool that generates Object 

Oriented Models (OOM) from natural language requirements specification documents. Their 

approach is built on the premise that it should use an uncontrolled natural language (i.e. not 

a sub-set of natural language), that the analyst should not have to intervene for clarification 

during the analysis and that their engagement should only be for creative purposes. 

The basis of the approach is built upon LOLITA (Large-scale Object-based Linguistic 

Interactor Translator Analyser [LG94]), which supports their automated OOM analysis and 
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model generation approach. LOLITA pre-processes the requirements specification to correct, 

simplify and normalises them by transforming passive sentence into active sentences, 

correcting spelling mistakes and ambiguity resolution via an in built inference engine. 

The information is then subsequently transformed and stored in a conceptual graph known 

as LOLITA’s SemNet (semantic network). This SemNet is then analysed to produce an Object 

Oriented Model identifying classes, attributes, operations and relationships. This approach is 

one of the few that is fully automated, only requiring minimal developer intervention. 

LOLITA pre-processes texts to discover their morphology, syntax, semantics and pragmatics, 

which are defined as nodes in the semantic network (SemNet). Each node contained within is 

defined as either an event or entity node; simple relationships are identified as connections 

between nodes and complex relationships are implemented using event nodes. 

Every node also has a set of control variables, but only some of these are utilised within OOM 

and are defined as rank, type and family.  

• Rank gives quantification information identifying whether a node is universal, 

individual or a named individual.  

• Family is used to classify nodes into semantic groupings to which they belong such 

as living, human, human organisation, inanimate and manmade.  

• Type are where concepts are sorted into specific groupings such as entity, relation or 

event, thus making additional information available to the node itself, which may 

assist the development of the OOM. 

Event nodes have frame-like structure that can represent the various components of the event 

itself such as the subject, the action, its transitivity, and the object; all identified from the 

natural language texts. This information is extracted from a deep structural analysis of the 

texts.  

The essential classifications identified by LOLITA for this approach are event nodes, which are 

categorised in four groups: static, cyclic, dynamic and instantaneous 

• Static refers to unchangeable situations;  

• Cyclic represents recurrent temporal events;  
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• Dynamic correspond to events that span over a specific period of time;  

• Instantaneous define events that span the shortest period of time 

Overall, LOLITA undertakes all language analyses and construction of the SemNet, which 

contains nodes and arcs that carry additional information. The actual OOM analysis algorithm 

utilises the resulting semantic network from LOLITA, which aims to discover the classes, their 

relationships, operations and attributes based on the OMT methodology [RPB91].  

There are two distinct phases (context dependent and independent) during the analysis process. 

The role of the context independent phase is to flag nodes that represent class candidates 

where some are deleted altogether, whilst others are marked for user investigation as their 

inclusion in the model is unknown.  

The goal of the context independent analysis is to extract a class candidate list to pass onto 

context dependent analysis, but first though it must remove or mark nodes if they are within 

one of the four categories: general, superficial, system dependent or meta-knowledge:  

• General knowledge rules use semantic information. Where nodes that represent spatial 

or temporal knowledge and highest level semantic hierarchies such as groups, 

something and things are eliminated 

• Superficial knowledge represents anaphoric references, where the references have been 

resolved. However, the information is no longer required by the process and is 

subsequently removed 

• System dependent refers to nodes that are considered as duplicates (i.e. nodes with the 

same name), which are also removed 

• Meta-Knowledge can give information to guide the requirements modelling and 

through consideration of the node’s ‘status control’ variable (identified by LOLITA) a 

decision can be made to either delete this node or consider it as a class candidate 

After analysis through these filters they leave behind a candidate class list, which is then 

passed to the context dependent processor, where the decisions to create attributes or 

relationships are based on event node classifications {static, cyclic} and where operations are 

extracted from node classifications {dynamic, instantaneous}.  
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At the root of the approach is a threshold analysis technique which can be influenced by the 

user and is used to aid inclusion of candidate classes. The analysis examines the number of 

events a node has and if they are below the user defined level they are not included within 

the final model. Finding the correct balance between the thresholds and the model produced 

is the challenging aspect, which requires additional understanding of the requirements on the 

side of the user as a high threshold could lead to the introduction of irrelevant information 

and conversely a low threshold could miss important aspects of the design.  

Finally, this approach is one of the few that also carry an evaluation of its effectiveness. The 

main hypothesis of the evaluation was to establish whether class model generation supported 

by the approach would be of a higher quality than those not using the tool.  The evaluation 

involved a small group of students from university that were split into individual groups who 

had varying degrees of experience; half of the group were exposed to the tool, where the other 

half utilised traditional manual development methodologies.  

The resultant output from the experiment, UML Models, was judged by experts who are 

undefined as to their status. Overall, they judged the performance based on design aspects 

such as classes, relationships, operations detected and on average the automated tool 

produced higher quality models. However, with such a small set the results are relatively 

inconclusive, although those who did utilise the tool preferred using it. 

Perez-Gonzalez et al [Per02, PKS+05] discuss a technique towards automated analysis of 

requirements specifications in the pursuit of generating an object model and sequence 

diagrams. Their methodology is based on the proposed usage of rule posets; these are partially 

ordered set of roles utilised to simulate the human analysis process whilst modelling a 

problem.  

The specification is transformed (automatically) into a subset of natural language called 4WL. 

4WL has been designed for the approach to identify the subject (who is performing an action), 

its verb (defining actions and relational aspects), an optional object (the receiver of the action) 

and an optional prepositional phrase, which is to identify any possible relational information 

towards some other word contained within the sentence.  

The 4WL transformation could be viewed as being taking a sentence of a type, which contains 

subject-verb-object-object and transforming this into subject1-verb-object1 and subject1-verb-

object2. Subsequently, this is defined as an SVO triplet, but how this transformation is achieved 
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is not discussed within any of their papers. Even though the 4WL language is only useful at 

transforming declarative sentences; sentences that have a clear statement of intent or purpose, 

which have clear subject, verb and object(s), it does not account for other sentence types such as 

interrogative, exclamative or imperative. In addition when the approach is presented with a non-

declarative sentence type, it is not clear whether the approach will attempt any 

transformations or not. 

The key purpose of 4WL is to answer questions related to an object in the model:  

• What does the subject do?  

• Who receives the action?  

• Which others participate?  

• When does it happen?   

With these questions answered, it is possible to then generate both class and sequence 

diagrams of the proposed software system.  

Once transformation is completed, automated language analysis can take place on the 4WL 

statements. This process aims to identify and extract every noun and verb contained within 

the sentence and then for each of these language components to have a role assigned.  

Their role machine, a partially ordered set, is used to identify each part of speech and assign 

roles (such as doer (subject) and patient (object)), which then make it possible to generate both 

static and dynamic views of the system.  

The role machine approach is based on the linguistic concept of theta-roles, and partially 

ordered sets. A theta/thematic relation aims to describe the role the noun plays in terms of the 

verb and identifies aspects such as the doer of the action and the patient i.e. Susan ate the apple 

where Susan is the doer and the apple is the patient.  

The partially ordered sets collate this information and identify the role of the noun and its 

position within the each sentence. This therefore allows a decision to be made with respect to 

classes and attributes, where relationships and operations are derived directly from the verb. 

Even with the language simplification and set classifications, for a noun to be considered as a 

class, its probability also has to be discovered by investigating its position within the sentence 
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and its frequency of appearance across all sentences. Only through user validation can a final 

decision be made to create either a class or an attribute based on the accumulation of these 

features.  

The focus of the approach is the automated transformation of declarative sentence into their 

4WL language, which then leads to automated analysis utilising their role machine to identify 

the importance of specific terms contained within the specification and identify class 

candidates, relationships and operations. However, what happens when the system is presented 

with other sentence types such as interrogative, exclamative or imperative? It is unclear from 

their work whether the sentence is manually rewritten into declarative sentence form.  

The final decision to include candidates and their features (relationships, operations), which 

leads to the creation of a system model that is human dependant and highlights a potential 

weakness/bottleneck in the approach towards Rapid Application Development. An incorrect 

decision at this key stage in the process could lead to important model components being 

excluded resulting in an incomplete model being created. 

Harmain et al [Har00, HG02] propose an approach to automated software development 

through linguistic analysis supported by an external tool LaSIE (Large Scale Information 

Extraction). Their key goal is to process uncontrolled natural language texts and generate a 

model of the proposed software system via assistance of LaSIE. Along with the many other 

approaches discussed, this approach is one which attempts to minimise developer 

involvement by not utilising a sub-set of natural language nor does it require human 

involvement in the construction of domain independent or domain specific models. 

The core of their system is LaSIE, which performs all lexical pre-processing such as sentence 

identification, part of speech analysis and morphological analysis prior to their application of 

their object oriented analysis rules. 

Semantic analysis is also undertaken as a part of LaSIE, after syntactic analysis. The semantic 

analysis develops a simple predicate argument structure based around the main verb of the 

sentence. A parser is used during this process, which means it may only produces a partial 

parse tree and not necessarily a complete parse tree structure, but what it does create there is 

high confidence that the resultant output is correct. This is primarily because the parser may 

not find a full parse for all the sentence features, it will therefore return the best and most 

complete parse tree that it has. The key features that semantic analysis aims to discover are 
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the subject and objects of the sentence, plurality, voice, and time which are used in 

construction of a discourse model (also derived from LaSIE). 

The discourse model represents a world model extract generated from each individual sentence 

structure utilising the prior analysis features. This model represents a declarative knowledge 

base, which contains the key background information. It identifies objects (nouns), events 

(verbs) and attributes (nouns). The model itself can be either specific or general, thus giving 

rise to a trade-off between weak support (general) or strong support (specific) for textual 

understanding. Overall, the approach adopts the generalised model, which allows it to be 

more adaptable across differing domains.  

In addition, it is also possible with this model to undertake co-reference resolution and 

presupposition expansion, where passive sentences may be expanded to include anonymous 

objects to aid understanding. 

With all this prior analysis and world knowledge, it is now possible to undertake object-

oriented analysis. Candidate class lists and relations are derived from the discourse model 

based upon a set of set of rules defined for the approach. In the first instance, all nouns are 

considered as candidate classes, non-copular verbs (verbs expressing actions) are considered 

as candidate relationships and attributes are discovered through simple heuristic matching 

based on possessive verbs (i.e. verb forms of have) and their following nouns.  

The key decision to create an actual class is based upon a simple frequency of occurrence and 

a user definable threshold. Therefore, any candidate class that is below this threshold and does 

not participate in any relationships is subsequently discarded. This in its own right could lead 

to situations where potential candidates are lost from the process because they are only stated 

once within the specification. 

Relationship identification (simple associations) is the case of discovering the verb and its 

logical subjects and objects and then connecting both together. On the other hand, aggregation 

relations are discovered through sentence patterns defined by as something is made up of 

something, something is a part of something and something contains something.  

Finally, the approach is also able to identify the multiplicity of the candidate classes, where 

the determiners are utilised. Their approach identifies the multiplicities of ‘one’ based on the 
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presence of articles (a, an, the); ‘many’ on the presence of ‘all, each, every, many and some’ and 

specific numbers on the presence of an actual number present before the noun itself. 

Overall, the approach provides a robust means of automated model generation with minimal 

developer input which comes in the guise of threshold manipulation. Thresholds are a 

strategic aspect of the approach, which are used to decide whether to create a candidate class 

or not. A high value set by the user could miss key aspects of the design, where a setting to 

low could result in the introduction of additional and irrelevant information. Given that all 

the prior analysis that is undertaken by the external tools and rule set; to have the final 

decision as to whether an element should be created based solely on a user definable value is 

risky. 

The approach contains a robust evaluation, which stems from techniques utilised within the 

information extraction arena. Their evaluation investigates recall, precision and a new measure, 

over-specification, defined by the authors.  

• Recall identifies the correct and relevant information identified by the approach;  

• Precision measures its accuracy of the approach; 

• Over-Specification measures additional information extracted through the process; 

The corpus of software requirements specifications used in the evaluation were identified and 

taken from Object-Oriented Analysis and Information System textbooks. Even though this 

corpus contained 37 software specifications ranging from 100-1500 words in length, only 8 

had accompanying models. From this, five were kept aside for a blind evaluation for the final 

build of the system. 

The results from the evaluation demonstrate that this approach achieves high-levels of both 

precision (66%) and recall (73%) by comparison with a human designed model. In addition, it 

also generated a high level of over-specification (62%) deemed important by the approach. 

The additional information generated by over-specification and the potential loss of information 

(through misplaced thresholds levels) will require additional analysis to ensure nothing 

important has been overlooked. Even so, the approach gives a means to enhance the analysis 

and model generation process through an unrestricted textual analysis tool and minimal 

developer involvement. 
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Zhou and Zhou [ZZ03] applied natural language processing techniques to understand written 

requirements using an entirely uncontrolled natural language input taken from functional 

specifications. This process is aided by a manually developed knowledge base that aims to 

improve the performance of class identification.  

The approach aims to identify classes, relationships, attributes and multiplicities from the 

written natural language texts. The key heuristic of this approach is that core classes of the 

domain are always semantically connected with other classes and their attributes. This define the 

foundation of the domain ontology, which aids further detection of classes, but requires a 

manual identification of these core classes.  

Core classes are ones that the authors themselves have a high confidence in actually being a 

class (how this is established can only be considered to be through personal experience) and 

will therefore be included within the knowledge base, but this is also an activity which needs 

to be undertaken by an analyst. As a result, understanding of the domain would be a 

requirement. In addition, the knowledge base also goes to the extremes of defining a 

description of the candidate, vertical relations identifying possible instances, part-of 

relationships (generalisations) or horizontal relations identifying relatedness or similarity 

with other concepts contained within the domain and attributes. Essentially, the knowledge 

base is defining a textual version of the model, which can be accessed by the automated 

process. 

The approach argues that candidate classes are mostly concerned with major noun phrases 

and minor verbs. The approach defines that nouns are not equal to noun phrases, and only 

considers nouns with pre-modifiers (such as a preceding noun or adjective) as candidates of 

interest. This aims to simplify the construction of the knowledge base for automated analysis. 

However, adjectives before a noun can be indicative of an attribute. In a similar vein, not 

considering solitary nouns can also lead to the loss of potential candidates as when the noun 

phrase identified the whole is considered during class detection and not any of its constituent 

parts. 

Initial candidates are detected by means of part of speech (POS) analysis and sentence parsing. 

These candidates are then transformed into refined candidates that have been identified as 

being contained within in the knowledge base and indicate key features of the specification. 

POS analysis is aided by an external part of speech analysis tool, i.e. Brill Tagger [Bri94], where 
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the Brill Tagger tags each individual word with its likely POS such as Nouns, Verbs, and 

others. There is an additional step utilising WordNet to refine the candidate’s name such as 

removing pluralisation. Therefore, if the candidate is contained within both the knowledge 

base and WordNet, it is then known as a refined candidate. Although, when the candidate is 

contained within WordNet, but not within the user’s knowledge base, it is unclear whether 

this would be considered as a refined candidate or not. 

With the refined candidate list, it is then possible to perform relationship detection, which 

utilises a link parser, where the Link Grammar Parser generates linkage information in a 

similar vein to the approach by Nanduri and Rugaber, [NR95], this is also used to detect the 

individual parts of speech for candidate class detection. The key to relationship detection is 

linkage distance; that is, given the candidate class, how many links are there between this and 

other potential candidates contained within the sentence. Therefore, a relationship is only 

considered to exist when the linkage distance is less than or equal to three. This approach is 

only investigating the subject of the sentence and associated objects, which connect through 

the main verb of the sentence. The approach does not consider whether it is appropriate for 

the relation relationship to exist or not.  

The next step in their processing is consideration of attributes, which utilises a 7-tuple 

linguistic pattern to determine whether the concept (class) is a property concept (attribute), 

though it is unknown if this process is manual or automated. Nevertheless, the basic premise 

exists that if there is only one property associated with the class then it is an attribute, 

otherwise it should be a class. For example, the authors state if we are only interested in 

obtaining the price, then this is just an attribute. However, if we are interested in maintaining 

information about price, discount, and effective date, then price is a class.  

Finally, parallel structures, which naturally exist in the language, aid identification of 

additional attributes, missed relationships and classes. The parallel structures considered are 

individual words such as and or and phrases such as both...and..., as well as, either or... Therefore, 

if one of the elements contained within the parallel constructs has a relationship with an 

already identified concept or property contained within the sentence, the other element within 

the parallel construct is also considered to have has the same relationship or is considered as 

an attribute but this is dependent on the concept/property under consideration. 
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The approach is entirely dependent on manual analysis to extract and identify candidates to 

reside within the knowledge base. The subsequent class detection and refinement process in 

conjunction with WordNet relies on the knowledge base and only considers Noun-Noun or 

Adjective-Noun structures during the refinement process. As a result, there is the possibility 

to overlook individual nouns that may identify a candidate. In addition, adjective pre-

modifiers attached to the noun are more than likely to indicate an attribute of a potential class 

rather than representing a class itself.  

However, a key strength of the approach is linkage distance utilised to discover relationships, 

rather than identifying a relationship because a verb is present. Furthermore, the usage of 

parallel structures to resolve or identify some the unknown/unresolved features contained 

within the language is an interesting approach, but one which could lead to dubious results if 

the original feature has not been correctly identified. 

Finally, the approach itself does not conclude with the creation of UML models, but rather 

descriptions of the features and their likely types such as classes, relationships, attributes and 

there is no evaluation of the approach. 

Ilirva & Ormandjieva [IO05, IO06, OI06] discuss a methodology utilising unrestricted natural 

language in a three-phase approach towards a partially automated analysis. The three phases 

consist of a linguistic component, semantic network and OO model generation. 

The linguistic component processes each individual sentence by means of an external tool, 

MBT-Tagger [DZB+06] and identifies their applicable parts of speech such as, nouns and 

verbs. The information extracted from the first phase of linguistic analysis is utilised to 

determine the three function roles such as subject, object or verb contained within the 

sentence. The SVO triplets are also split into individual groups such as the subject predicate 

and object groups through a manual process and represented in a tabular form. The purpose 

of the tabular representation is to form a knowledge base, which details each individual 

triplet, its language component (noun/verb) and overall sentence type (main, conditional or 

conjunctive) defined as follows:  

• The main sentence is likely to contain candidate classes and relationships  

• The conjunctive (and/or) sentence type identifies the potential relationship between 

other words. 
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• The conditional sentence may introduce pre/post conditions for candidate features 

that should also be considered.  

The tabular representation aids in determining the connections between the words and the 

construction of a semantic model, helping to discover actual relationships between each 

component. This model is also depicted in a graphical notation.  

The key aim for the semantic network is to represent the features contained with specification 

and tabular representations, where nodes are nouns (subjects/objects) representing classes and 

relationships are represented by verbs or as arcs between the nodes. Additionally, 

prepositional words and words with possessive endings are also transformed into 

relationships with their respective counterpart. 

The semantic network can then automatically be transformed into both Use Case and OO 

representation, where nodes represent classes/actors, arcs connecting nodes represent 

relationships and where verbs in active form also identify the operations of nodes.  

The key strength of this approach is utilisation of unrestricted natural language (NL) and the 

transformations from NL to tabular representation to a semantic model and subsequent 

automated software models. However, their methodology requires involvement in the initial 

transformation process to extract the SVO groups and transformation into their tabular 

knowledge base. In addition, the requirement of human involvement, understanding and 

effort to make the correct decisions during the transformation process between tabular and 

semantic models is of utmost importance. These decisions require careful consideration as it 

is the semantic network that is transformed into both software model types. An error 

introduced early during transformation phase will ultimately propagate into the final models 

themselves. 

The approach does conclude with an evaluation; however, there is no worthwhile information 

that can be extracted. They state that it has been evaluated against other similar systems that 

translate natural language in a formal model, resulting in no difference between the results. 

There is no indication of any imprecision or incompleteness from the analysis, but there is no 

result data presented. There is no formal evaluation method presented and as a result, the 

findings are considered unreliable. 
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Sampaio et al [SRC+07] introduce an approach towards automation within the domain of 

aspect-oriented requirements engineering. Their tool, EA-Miner, is used to support the costly 

manual analysis phase of requirements engineering through the creation of viewpoints which 

could be transformed into UML Models but is a feature that is not considered nor discussed 

by the authors. Furthermore, the authors also state that the goal is not to replace the 

requirements engineer but to help them save time and focus upon the key information.  

The approach is broken down into 4 key phases: eliciting requirements from customers, 

identification of model concepts, structuring of the specification and validation/resolution of 

requirements and conflicts. Phase 2 of the approach uses a combination of NLP and rule based 

techniques to identify model abstractions such as viewpoints from nouns and use cases from 

verbs which are automatically mined from the requirement documents. Every concept 

identified by the approach is considered to be candidate. Phase 3 gives the ability to refine the 

candidates identified during the previous phase where it is possible add, remove group 

abstractions into identified viewpoints or use cases although it is unclear whether this is an 

entirely manual process. Nevertheless, the authors do state that the approach is not aimed at 

100% automation implying that that phase 3 may be partially automated. In addition, the 

approach gives the ability to filter the results based upon thresholds, stemming and synonym 

lists all of which aid the engineer during the refinement phase and also offers practical 

guidelines and best practice as well. 

NLP processing is supported by an external tool which uses a corpus based approach to 

language analysis which identifies all relevant parts of speech from nouns, adjectives through 

to verbs, but only nouns and verbs are considered during the creation of viewpoints/Use cases. 

In addition to NLP processing, the external tool has the ability to semantically tag words and 

sort them into related groups. This is achieved through analysing the context for the phrase in 

which the word is used and is the core feature utilised when generating viewpoints/use cases. 

Overall the approach does not create a UML model of the system but presents the viewpoints 

and all related requirements to the user from which a model of the system could be manually 

created. The approaches focus to considered only nouns could lead to a loss of information 

that is important to other aspects of the design such as attributes, relationships and operations. 

However, a novel approach is the identification of non-functional requirements from keyword 

lists which is an important feature of any software system and is not considered by any of the 

related works. The works concludes with an evaluation of both a time based analysis and a 
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measure of the precision and recall vs a human expert. Users that use EA-Miner to create 

views were on average 130 times faster in comparison to the manual analysis resulting in a 

vast time saving. When considering the accuracy of the approach and when user knowledge 

of the system is not taken into consideration the approach is comparative to the human in 

terms of recall but performs poorly in terms of precision. However, when the user expertise is 

utilised the results both recall and precision outperform the human analysis greatly. 

Nonetheless the overriding disadvantage of this technique is the lack of final model creation 

and the user involvement and understanding required to achieve the best results. 

2.4 Conclusions 

There are many approaches which differ in complexity and novelty, but all have a common 

goal to develop ways to simplify and reduce effort, and enhance the software development 

process through semi/fully-automated analysis techniques.  

All of these works follow well-defined steps as they are all attempting to simulate the human 

analysis process, defined as follows: 

1. Textual Specification Acquisition 

2. Natural Language Analysis 

3. Knowledge Extraction 

4. Model Generation 

The review of the literature explores how these steps have been semi/fully automated and 

presents the key strengths and weaknesses of those approaches. It would appear that they all 

perform exactly the same process, utilising some means of language analysis, where all the 

relevant parts of speech are identified such as nouns, verbs and adjectives, which are then 

subsequently mapped to classes, operations, relationships and attributes via some technique. 

However, there are differences that set the approaches apart; the most notable can be defined 

as follows:  

1. Requirements Specification Manipulation (prior to semi/fully automated analysis) 

o Controlled Natural Languages (CNL) 
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� Manual/Automated transformations 

o Language Simplifications  

� Manual 

o Specification Languages 

� Manual 

2. Model Feature Detection Techniques (during analysis) 

o Domain models  

� Manually/Automatically defined 

o Threshold based analysis 

� Automatically defined, manually set 

o Rule based analysis 

o Semantic consideration 

For the majority of the approaches human involvement is still a key requirement throughout 

the process, which is demanding and in some cases profound. Manipulation of the 

requirements specification can lead to a situation where a full rewrite is necessary or a 

transformation into some controlled/specification language prior to any automated analyses 

is required.  

The transformation process is an error-prone task that could result in the loss/exclusion of 

information because there is no procedure to validate the transformed document. The 

potential loss of information is of no fault of the human, but due to the need to transform the 

requirements in order to simplify the automated analysis procedure. When considering the 

manual transformation process, it is also possible for a situation to arise where unconscious 

bias, a common characteristic, is applied unknowingly and for information to be disregarded; 

information that may be vital and that should be maintained within the specification. In 

addition, automated transformations can also lend itself to this bias, not unconsciously, but by 

design. They too can disregard information, such as compound-nouns, adjectives and 

prepositions all of which create greater understanding of attributes and relationships towards 

candidate class and their creation.  
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The sole purpose of specification manipulation is to reduce the original requirements into a 

form that is tailored to the specific automated analysis technique for 

class/relationship/operation/attribute detection process. Specification transformation is not a 

requirement of all approaches and only a minority use the full-unadulterated specification 

[Mic96, MMZ02, MG02, KZM+04, Har00, HG02, ZZ03] 

Where domain models are used as a feature detection techniques, the domain models created 

come in two flavours: manual or automatic. In a manual context, the models can simply be 

utilised to avoid duplication of class creation or other model features, but more commonly, 

they are used to the extent of defining a textual representation of the resultant model [Bry00, 

LB02, LB02a, LB02b, LB02c, LB03, BLC+03, ZZ03, CHK07, IO05, IO06, OI06]. This textual 

representation can detail anything from candidate classes, relationships, operations, class 

hierarchical structures and attributes. All of which require an understanding of the actual 

requirements and do not consider the actual manual effort required to define these models.  

Automatically constructed domain models [Mic96, MMZ02, MG02, KZM+04, Har00, HG02], 

built from the utilisation of external tools such as LaSIE and LOLITA, aim to address the issues 

associated to manual interventions. The domain models generated construct semantic 

networks that can be used to reduce ambiguities and identify key features of the model 

alongside other refinement techniques. The key benefit of these techniques is the absence of 

human intervention and therefore does not distract the user from the task at hand. However, 

in one case [Har00, HG02], the model generated is not taken advantage of during the final 

decision making process, which is left to a user defined threshold analysis. 

Finally, semantic analysis is a key consideration throughout the approaches as well however, 

the interpretation identified in related works leads to little consideration of actual semantics 

in the sense of the study of meanings. Semantic considerations that are utilised in some cases 

are typically part of external tools such as LaSIE and LOLITA. In addition, the resulting 

semantic analysis is typically not utilised in the final analysis step, where it would be most 

crucial to consider during candidate feature detection.  

In the majority cases, semantic analysis takes the form of utilising WordNet either in an 

automatic or manual effort. In both automatic and manual efforts, WordNet is only utilised to 

identify duplicate words or words that have similar meanings therefore, allowing the removal 

of words which could result in the creation of erroneous candidate classes. However, 
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WordNet itself contains much more valuable information and if harnessed through a novel 

technique it could be used to better the automated model detection process. 

Despite these issues all of the approaches, in some way or another, take steps towards an 

automated analysis approach with the key goal of improving the models generated through 

some means of automated language analysis. 

However, consideration of the term automation either fully or semi, is meant to reduce the 

effort required by manual analysis, enhance quality and allow for rapid application 

development, but in majority of cases this is not apparent. It is not apparent due a shortage in 

quality evaluations.  

The majority of evaluations undertaken only investigate the qualitative aspects of the resultant 

models. This is important feature to evaluate, because producing results of a low quality 

serves no purpose and will hinder the overall process. However, it is only a minority of 

approaches [Mic96, MMZ02, MG02, KZM+04, Har00, HG02], which actually undertake any 

meaningful form of formal evaluations. Other evaluations are limited by not having a well-

defined and or stated methodology, which makes it difficult to validate those results.  

Only one of the evaluations actually investigates the actual reduction in effort offered by these 

approaches [GB94], but uses a small set of domain experts and a non-domain experts using 

the automated analysis tool and compares how much faster automation is. The results from 

this are interesting, but are limited to only finding key abstractions contained within the 

specification rather than actually creating a model from the specification. 

Overall, the review of the literature has identified an important question: “To what extent does 

analysis of an un-restricted natural language specification contribute to a ‘better’ first-cut design 

through means of a deep syntactic and semantic analysis?” 
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3.1 Introduction 

Chapter 2 introduced the related techniques for automated software requirements 

specification (SRS) analysis and model generation. This identified that these fall within two 

categories: Semi or Fully Automated implementations.  

The main issues identified from these approaches are as follows: 

• Excessive Manual Effort 

• Manual rewriting of the software requirements specification (SRS) document prior to 

automated analysis such as:  

o Simple Sentence Constructs (Subject Verb Object (SVO) triplets)  

o Controlled Natural Language 

o Specific Specification Languages  

• User defined candidate extraction rules as a pre-requisite 

• Manual Domain Model Generation  

o Excessive Detailing; relationships, classes and attributes 

• Negligible Word Semantic Consideration 

• Limitations of Threshold Based Analysis 

The aim of this chapter is to address these key issues through both semantic and syntactic 

analysis of a free-form natural language requirements specification. The automated method 

presented here will analyse the syntactic structure of every sentence; determining its clausal 

structure, identifying each part of the sentence (subjects, predicates and objects) and 

considering every individual part of speech.  

Along with a syntactic analysis, the approach also considers the semantics of each term (i.e. 

an individual word contained within a sentence), utilising a generalisable rule based and 

algorithmic approach in its decision-making process. As a result, it is possible with this 

technique to uncover: 
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• Classes 

• Relationships 

• Attributes 

• Operations  

• Parameters 

• Multiplicities 

The solution is not meant to replace the analyst/developer; it aims to allow them to concentrate 

on the important aspects of the overall software design such as flexibility, evolvability, 

maintainability and its implementation.  

It is therefore the goal of this approach to use the techniques discussed to: 

• Use unrestricted natural language requirements specifications 

• Emancipate the analyst/developer from the manual analysis and model generation 

process 

• Aid conceptualisation of the specification, as a first step towards model generation 

• Reduce excessive analysis & time effort 

• Introduce maintainability features through inheritance hierarchy construction 

A prototype implementation of the proposed approach has been developed which currently 

identifies all these model features (classes, relationships, attributes, operations, parameters & 

multiplicities) from an unrestricted natural language specification. In addition, the prototype 

also includes additional features to assist understanding of the resulting analysis and 

inclusion of best design practice, which can be defined as follows: 

• Traceability Links  

o Allowing discovery and tracking of model features from the resultant model 

design back directly into the language contained within the specification, thus 

enabling an understanding of from where and why the specific feature was 

generated. 
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• Integration of widely accepted best design practices such as ‘programming to an 

interface rather than an implementation’, introducing design flexibility 

The remainder of this chapter starts with a view of the approach from a high-level and then 

proceeds to discuss the approach techniques that make it possible to automatically analyse a 

natural language requirements specification and create first-cut design. The chapter then 

concludes with a review of the key issues that can impede the automated creation of a UML 

model. 

3.2 Approach Overview 

The techniques discussed in the subsequent sections 3.2.1 and 3.2.2 are intertwined with one 

another, where the Common Semantic Model (CSM) is reliant on the Syntactic Analysis Model 

(SAM) and vice versa.  

 

Figure 3.2-1 Automated Software Architect Automation Process 

Figure 3.2-1 demonstrates a high-level view of the Automated Software Architect (ASA), 

which uses a Software Requirements Specification (SRS) prior to it being transformed into a 

formal SRS document, which is written in natural language. This is then processed by a 

Natural Language Processing (NLP) toolkit OpenNLP and the subsequent information 

obtained from this analysis is utilised by both the Common Semantic Model (CSM) and 

Syntactic Analysis Model (SAM) models allowing the identification of the relevant UML 

model features. The CSM is used instead of a user-defined knowledge base allowing 

identification of candidate UML features, where the SAM is used to extract candidates from 

the specification and is used in conjunction with the CSM Model where the CSM is reliant on 

the SAM and vice versa.  
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The goal of specification modelling is to simulate the human process through collation of the 

information contained within the specification on a sentence-by-sentence basis. It is similar to 

the human process of software modelling by means of considering both the semantic and 

syntactic features to identify model candidates. This is achieved through an intertwining of 

both semantic and syntactic analyses, where word semantic classifications and the syntactic 

understanding of sentence constructs/structure are utilised to extract the correct and relevant 

candidate features from the written specification. 

Once the information has been extracted from the specification, it is presented for analysis and 

the relevant features decided upon by both the CSM and SAM models are then maintained in 

local memory for later usage until sentence processing is complete. The resulting analysis is 

stored within the Class, Attribute, Relationship, Parameter, Operation (CARPO) graph, which 

is subsequently processed to generate the class/UML model of the proposed software system.  

The CARPO graph is simple storage structure used to track all candidate features and 

maintain the integrity of the approach primarily by avoiding the creation of duplicate 

information. At the heart of the CARPO graph lies nodes that can represent candidate classes 

or attributes. The linkages between each node can represent relationships, operations, and 

identify parameters of operations; relationship links also carry additional information such as 

multiplicity or the type of relationship (i.e. generalisations and associations). In addition, all 

nodes and linkages carry traceability links back into the specification document. This satisfies 

the requirement to identify where features of the model have been discovered and leads to a 

better understanding of the automated decision making process. 

The resulting UML modelling is constructed by traversing the CARPO graph through 

inspection of its nodes and linkages and by utilising the UML2 plug-in for Eclipse; it is 

therefore possible to transform the graph into its graphical representation. 

3.2.1 The Common Semantic Model 

The goal of the semantic model is to extract as much information from the text contained 

within the specification, without the need for any user defined back-end domain knowledge. 

The CSM technique manifests itself in terms of Common Sense Understanding (CSU), which 

raises two interesting questions: 
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• What is Common sense? 

• How can common sense be utilised to identify the relevant features of a class/UML model from 

natural language?  

Simply put, common sense is the consideration of what the general population would 

commonly agree upon based upon their common understanding, similar experiences and 

knowledge developed over a lifetime of everyday interaction with the world.  

It therefore considers whether the features contained within the specification should be 

included within the initial class/UML model. A feature can be a class, relationship, attribute or 

operation and its decision for inclusion is based upon the common sense semantics of a given 

word/phrase, identified through the syntactic analysis of the natural language texts. 

The common sense model constructed for the ASA refers to information retrieved from the 

external semantic/lexical dictionary, WordNet [Mil95]. Under the direction of George A 

Miller, WordNet is a large lexical database of the English language, which is a dictionary of 

nouns, verbs, adjectives and adverbs. These are grouped together as sets of cognitive synonyms, 

each expressing a distinct concept. The resultant network of words and concepts are a direct 

result of a manual human consideration (i.e. WordNet has been built manually rather than 

automatically), where constructed synonym sets are interlinked through conceptual-semantic 

and lexical relations. Even though WordNet provides a plethora of useful information, only 

the semantics are utilised during the actual processing of a given phrase or term and is where 

the common sense semantics are obtained.  

Within WordNet, a given word may have a list of different semantics for differing contexts, 

but these are ordered by their most commonly agreed upon meaning i.e. common sense 

understanding. Where the first sense of the word contained within the dictionary is considered 

the most commonly understood meaning. Therefore, when WordNet is queried for the 

semantics of a particular word, it returns a list of all the senses associated to that term in order 

of most to least commonly understood [Fel98].  

For Example: a search for ‘Shelf’ yields two semantics see Table 3.2-1. 
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Table 3.2-1 Example Noun Sense Classification 

Sense Semantic Term Description(sense) 

1 noun.artifact Shelf A support that consists of a horizontal surface for holding objects 

2 noun.object ledge#1, 

shelf#2 

A projecting ridge on a mountain or submerged under water 

It is the only highest frequency (i.e. the most commonly understood or common sense definition of 

the term) semantic, sense#1, which is used to make a decision regarding the creation of a model 

feature. In contrast, a search for ledge (sense#2, ledge#1), which has a similar meaning to shelf 

but contextually different, would yield a result containing only one sense -  that being 

noun.object. See Appendix A.1 for a list of all semantic definitions for both verbs and nouns. 

Under no circumstances is any form of disambiguation or surrounding context taken into 

consideration during the lookup process. This may seem counterintuitive not to consider 

surrounding context and to disambiguate, but is a key issue which is addressed within section 

3.5.4 in the context of the Software Requirements Specification Issues in the Context of Automated 

Software Development.  

3.2.2 The Syntactic Analysis Model 

In addition to WordNet, the external tool OpenNLP [Mor07] is the means behind the syntactic 

analysis of the natural language software requirements specification. It automatically parses 

natural language texts and returns a syntactic parse tree of the sentences contained within the 

software specification, which is later utilised in the automated detection process.  

The OpenNLP tool is based upon Ratnaparkhi's Ph.D. dissertation [Rat98] that demonstrates 

how to apply maximum entropy models to various natural language problems in pursuit of 

the relevant syntactic structure. The toolkit itself has many features such as sentence 

identification, tokenisation, chunking, name finding, co-reference resolution and full part of 

speech (POS) tagging. However, the key features utilised by the ASA are sentence 

identification, full POS parsing and co-reference resolution. OpenNLP itself has an accuracy 

rate of 96% for unseen data [Rat98]. 

Through support from OpenNLP, the sentence structure/parse tree is obtained. For example, 

given the sentence, The Company operates both individual taxis and shuttles, OpenNLP returns its 

analysis of the sentence in the form of a parse tree - see Figure 3.2-2. 
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It is then possible to traverse this tree and identify individual parts of speech (POS) such as 

nouns (NN), verbs (VB), prepositions (PP) and more (see Appendix  A.2) from each individual 

sentence. This information is then subsequently utilised to identify candidate classes, attributes, 

operations, relationships and multiplicities in conjunction with the semantic analysis.  

 

Figure 3.2-2 Part of Speech Parse Tree using OpenNLP 

Along with the individual parts of speech identified each of the words within the sentence are 

also reduced to their base stem. This is a feature that is not supported by the OpenNLP Library 

and the Porter stemming algorithm [PRR80] is used to identify word base stems. The key 

reason to reduce each word to their base stem ensures that no duplicate model feature will be 

created for the same word that may be used with varying inflections. For example in Figure 

3.2-2 the words ‘taxis’ and ‘shuttles’ will be reduced to the following base stems, ‘taxi’ and 

‘shuttle’ thus ensuring any reference to either ‘shuttle’ or ‘ taxi’ will not result in duplication 

In addition to the individual POS components and base stems, it is also possible to extract 

structural information obtained from the parse tree, which aids in the discovery of additional 

UML features. Features such as classes, relationships, operations (including parameters and 

placement), multiplicities, class hierarchical structures and attributes are only discoverable 

through the syntactic relationships  

The key to the syntactic analysis is a model that identifies the grammatical constructs that we 

use every day to understand and infer what is contained within written texts. This analysis 

subsequently allows for the identification and creation of an initial/conceptual UML model of 
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the proposed software system, extracted just from the natural language software requirements 

specification (SRS). 

The following sections build upon and discuss the intertwining of both semantic and syntactic 

models that extract, analyse, decide and deliver an initial UML model from a textual 

requirements specification.  

3.2.3 Rule Derivation 

The identification of the rules that guides the ASA through its decision making process can 

been considered to have its roots both within the noun phrase approach [Abo85] and common 

class patterns [Bah99, RBP91]. A set of specifications was utilised during the identification of 

the rules and are defined in Appendix B.6. These specifications where chosen for their domain 

diversity: payroll, aircraft, video store, music store and medical systems – they do not have 

any associated UML models, it is also considered that they would contain a representative 

range of different syntactic and semantic features.  

The syntactic analysis model acts as the basis for finding the key candidates that should be 

considered as either a class, attribute, relationship, parameter operation or other UML feature 

based solely on their syntactic type: nouns, verbs, and adjectives. Whereas the semantic 

analysis model is charged with deciding that if the candidate exists within a specific set of 

semantics then the combination of both syntactic and semantics will imply some relevant 

UML model feature.  

The semantics sets identified from WordNet [Mil95] which leads to UML feature discovery 

were considered and identified by the author from their generalised description and domain 

as they are defined within WordNet. For example the semantic domain of type artefact – 

manmade objects for nouns was thought to be a group of items that would of importance to a 

model and should therefore be created as class candidates.  

The general strategy taken towards rule identification was to first process the each of the 

training specifications utilising just the individual parts of speech such as nouns and verbs 

which lead to the extraction of set of all possible candidate classes, relationships and 

operations. The sets of candidates were subsequently cross-referenced against their semantic 

sets which allowed candidates that where not contained within a defined semantic set to be 

omitted allowing the remaining candidates to be considered as either classes, relationships or 
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operations. The initial set of rules were derived from this process. The more complex rules 

associated to the identification of multiplicities, operation placement, parameters, class 

hierarchies and relationships where identified from the syntactic structure and constructed 

from the study of grammatical constructs [Kie09, Kie09a, Kei09b, Kei09c, QGL+]. The rules 

identified for these features were then run against the set of test specifications to validate their 

generalisability. 

Overall, 28 core rules have been derived that best generalise the identification of the core UML 

features such as classes, attributes, relationships, parameters operations and multiplicities 

from their individual parts of speech, syntactic structure and semantics. The following 

sections of this chapter discusses the approach at a greater depth of detail. 

3.3 An Interwoven approach featuring Semantic and Syntactic 

Analysis for Model Extraction 

This section reports on the techniques used in generating a UML model from a natural 

language specification. This will review the core components of the sentence such as the noun 

and verb phrases and will undertake a top down view of each individual component 

contained within those phrases, reviewing their key syntactic and semantic relationships. The 

discussion will then conclude with a view of additional modelling features that can be 

extracted during the process from sentences and clausal structures.  

3.3.1 Clause and Sentence Structures 

The main starting point of any automated analysis is the sentence itself. Every sentence has a 

structure that can be classified into three distinct types; simple, compound or complex. These can 

be further decomposed into clausal structures being of either dependent or independent types. 

Both clausal components contain a subject and a predicate, which is a combination of different 

phrases (for instance nouns can be subjects or objects) and the predicate is formed by a 

combination of verbs, objects, prepositions, adjectives and/or adverbs.  

In its most common form the structure of a sentence can be defined as follows: - 

1. A sentence is composed of different clause types (Independent or Dependent Clauses) 

where: 
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2. A clause is composed primarily of a subject and predicate where: 

3. A subject contains a noun phrase and: 

4. The predicate contains both a verb phrase and an object(s) where: 

5. The object(s) contains a noun phrase and can be of type: direct (affected by verb’s 

action) or indirect (receives the direct object). 

Figure 3.3-1 demonstrates the overall structure of sentences, clauses and clause components.  
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Figure 3.3-1 Sentence and Clause Structure Components 
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3.3.2 The Noun Phrase 

The noun phrase (NP) is a phrase based on a noun, pronoun or other noun-like word 

(nominal). It is the most common unit in sentences and examination of the noun phrase 

structure itself provides an abundance of useful information that can be extracted and directly 

related to the features of a UML model.  

The noun phrase such as, The PhD student, consists of a head noun - a unit of speech used to 

identify any class of people, places and things (the common noun), or to name a particular one 

of these (the proper noun), which can be optionally modified through pre- and post-modifiers.  

Figure 3.3-2 defines the structural components of a noun phrase and its UML mapping 

describing what is possible to identify, namely:  

• Multiplicity (from determiners),  

• Class Hierarchical Structures and Attributes (from pre-modifiers),  

• Class candidate (from the head),  

• Relationships, Parameters, Actions or State (from post-modifiers), 

• Attributes (see 3.4 Additional Modelling Considerations) (from the noun head) 

All of the above features are achievable automatically from its syntactic structure and in 

conjunction with the semantic model.  

The remainder of this section will concentrate on the following detection techniques: 

1. Class detection and the Noun Phrase Head 

2. Multiplicities from Determiners 

3. Attributes, State and Class Hierarchical Structures from Pre-Modifiers 

4. Relationships and Operation Parameter consideration from Post-Modifiers 
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Figure 3.3-2 Noun Phrase Structure to UML Mapping 

3.3.2.1 Class Detection and Noun Phrase Head 

Syntactic Considerations 

The noun’s role within the sentence is variable; it can perform the function of a subject, be the 

object, a complement to either the object or subject based on the verb’s definition, or if it is 

contained within a prepositional phrase, the preposition’s complement. The noun is identified 

through OpenNLP Part-of-Speech (POS) tags (NN (non-plural), NNS (plural form) and NNP 

(proper noun)). 

Subject Definition: The subject represents the actor of the sentence, i.e. the one performing 

the action associated with the verb. In terms of modelling, this represents a candidate class as 

it identifies people, places and things or other additional class model features such operation 

placement, relationship start point and multiplicity consideration. 

Object Definitions: There are two key definitions of sentence objects; the direct object which 

identifies/answers What? in relation to the verb; the indirect object which identifies/answers 

the questions To Whom?/ For Whom? and is the recipient of the direct object.  

Subject and Object Identification: The subject of the sentence is identified by the rule based on 

first introduction. That is, the first noun discovered within the sentence is considered to be the 
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subject, where all other nouns are considered as objects, without differentiating their type 

(direct or indirect) - see Figure 3.3-3. This is a technique also used in related approaches as 

well [Bry00, LB02, LB02a, LB02b, LB02c, LB03, BLC+03, LDP04, LDP05, LDP05a].  

It is significant to note that the first noun identified in the sentence may not be the true subject 

of the sentence. This occurs only when a sentence is in its passive form, which is controlled by 

the verb of the sentence. The first noun syntactically is the subject of the sentence, but in its 

passive form, it receives and does not perform the action of the verb. In this case, the sentence 

object is performing the action. The passive construct is revisited later (Section 3.3.3) as it is 

related more to the function of the verb and operation placement rather than the noun itself. 

The first introduction rule implies that the first noun discovered within the sentence is considered the 

most likely candidate to be the Subject of the sentence.  

 

Figure 3.3-3 Example Subject, Object Identification 

In the majority of cases, the sentence construct is Subject�Verb, where � means followed by, 

but in some it is possible to have Subject-Inversion, defined by the construct Verb�Subject. 

However, for each sentence that contains Subject-Inversion, it is specifically tagged by 

OpenNLP (see Appendix A.2), which makes it possible to easily identify this structure. In 

addition, subject-inversion still lends itself to the prior rule of first introduction, thus allowing 

efficient resolution of the sentence’s key subject.  
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Semantic Considerations 

With both subject and objects of the sentence identified as class candidates, the final decision 

as to whether a class should be created or not is based upon two key features: the presence of 

a noun detected through syntactic analysis, and the noun’s set of semantics obtained from 

WordNet.  

WordNet contains twenty-five noun semantics, which have been classified into groups by the 

WordNet authors that best define a noun’s semantic type, given a specific context (see 

Appendix A.3). As previously discussed, this is where the Common Semantic Model meets 

the Syntactic Analysis Model and the two techniques come together to allow informed 

decisions to be made regarding the creation of a class from the candidate noun under 

evaluation.  

The classification of these semantics in terms of class modelling implications has been defined 

by the author through a manual consideration of the individual nouns and the semantic 

descriptions defined by WordNet. The class modelling classifications allow automation to be 

completely domain independent, requiring no further manual assistance in the area of domain 

models or specific domain rules. This is partly due to the Common Semantic Model and the 

initial manual classification of the WordNet semantics, the majority of which are tangible and 

most likely define an aspect one would wish to model.  

Table 3.3-1 defines the semantic, their description (defined by WordNet), and states the feature 

they most likely represent within a UML model (defined by the ASA).  The class modelling 

classification has been achieved by reviewing the nouns contained within the semantic sets 

and considering their semantic description. 

In addition to the 14 semantics, some of them (animal, person, plant and shape), also identify 

hierarchical structures where an abstraction construct is deemed beneficial to include within 

the UML model. This means that when a noun also has one of the hierarchical semantics, an 

abstraction will is also created. This is helpful to include because when the analyst is presented 

with the initial model, it aims to provoke their thoughts regarding the maintainability and 

flexibility of the overall design extracted from the requirements specification. 
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Table 3.3-1 Candidate Class Semantics 

Noun Semantic Description 

Class Modelling 

Implication 

Class Hierarchy 

Animal Nouns denoting animals X X 

Artefact Nouns denoting man-made objects X - 

Body Nouns denoting body parts X - 

Communication Nouns denoting communicative processes and contents X - 

Food Nouns denoting foods and drinks X - 

Group Nouns denoting groupings of people or objects X - 

Location Nouns denoting spatial position X - 

Object Nouns denoting natural objects (not man-made) X - 

Person Nouns denoting people X X 

Phenomenon Nouns denoting natural phenomenon X - 

Plant Nouns denoting plants X X 

Shape Nouns denoting two and three dimensional shapes X X  

Substance Nouns denoting substances X - 

Time Nouns denoting time and temporal relations X - 

The rationale for utilising WordNet semantics as a means to aid class candidate detection can 

be justified in terms of both the Common Class Pattern (CCP) [Bah99] and Noun Phrase 

approaches [Mac01]. The key aim is to simulate these manual processes (automatically) in 

conjunction with the knowledge from WordNet and with the assistance of syntactic analysis. 

The manual noun phrase approach aims to identify the nouns contained within the 

specification, where the candidates are sorted into classifications of Relevant, Irrelevant and 

Fuzzy. Both the CCP and Noun Phrase approaches provide initial guidance and are heavily 

reliant on the developers’ understanding to identify candidate classes. Therefore, utilisation 

of the semantic information contained within WordNet in an automated context aims to 

simulate this manual knowledge extraction process towards candidate class detection. This is 

summarised in the following rule: 

Rule 1 – Class Detection 

If a noun’s most common semantic belongs to the set of candidate class semantics, then that noun is a 

candidate class 

3.3.2.2 Non-Candidate Class Semantics and Noun Phrase Head 

Not all of the noun semantics imply that a class should be created – only 14 out of 25 are 

considered to indicate a candidate class. For the remaining noun semantics, 10 identify 

additional aspects of the design (see Table 3.3-2) that one may also wish to model with only 

one semantic, feeling not representing any UML modelling feature. The non-candidate class 



94 

semantics have been manually classified by the author through consideration of what the 

semantic description implies in terms of UML Modelling features. 

Table 3.3-2 Additional UML Model Features 

WordNet Semantic WordNet Description Modelling Implications 

Act Nouns denoting acts or actions Operation 

Possession Nouns denoting possessions and transfer of possessions Relationship 

Quantity Nouns denoting quantities and units of measure Multiplicity 

State Nouns denoting stable states of affairs Object State 

Process Nouns denoting natural processes Algorithm 

Motive Nouns denoting goals Algorithm 

Relation Nouns denoting relations between people, things or ideas Relationship 

Attribute Nouns denoting attributes of people and objects Class Attribute 

Event Nouns denoting natural events Algorithm/Operation 

Cognition Nouns denoting cognitive processes and contents Algorithm 

The modelling implications identified from these semantics are currently not utilised within 

the ASA, with the exception of the Attribute semantic, as they require further investigation on 

how best to manage their inclusion within automated model generation. However, during 

manual analysis (of the individual words) it became apparent that in some cases the semantics 

listed in Table 3.3-2 could still indicate a class candidate within certain constraints. The 

constraint considers nouns from the semantic groups listed in Table 3.3-2 , which also have an 

artefact semantic within their set of candidate senses. An Artefact is something that is a 

manmade item (by WordNet’s definition) such as a Car or a House. Therefore, the ASA 

considers that an Artefact, a manmade object, will always be a high value item in terms of UML 

modelling because an entity which is manmade and is contained within the specification 

indicates a feature which should be considered for inclusion within the UML model.  

For this reason, a noun that has a semantic contained within the set of non-class semantics, but 

also contains the semantic Artefact within its set of senses (obtained from WordNet), can also 

be considered as a class candidate. This is formally defined as follows: 

Rule 2 – Class Detection from Non-Class Semantics
 

If a noun’s most common semantic belongs to the set of non-candidate class semantics, and that noun 

also contains an artefact semantic, then noun is a candidate class 

The inclusion of any candidate UML feature from either non-class or candidate class semantic 

rules will always be scrutinised once the model has been presented to the analyst for review. 
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The usage of this data aids the discovery of candidate classes that may be overlooked but the 

automated approach 

Table 3.3-3 demonstrates a count of all the nouns that do not have a candidate-class semantics 

and also counts those nouns that also contains an Artefact semantic as well. The usage of this 

data aids the discovery of candidate class that may be overlooked by the automated approach. 

Table 3.3-3 Semantic Word Count per Non-Class Candidates 

Non-Class 

Semantic 

Total Noun Count Non-Class Count  

(no artefact semantic) 

Candidate Class Count  

(contains artefact semantic) 

Act 6762 6628 134 

Possession 1302 1249 53 

Quantity 1745 1674 71 

State 5066 4982 84 

Process 927 908 19 

Motive 63 63 0 

Relation 557 540 17 

Attribute 3483 3408 75 

Event 1167 1111 56 

Cognition 3470 3355 115 

The results indicate that a non-class semantic but also has an artefact semantic yields a small 

set of likely candidate classes or none in one cases. The inclusion of this small set of candidates 

is considered helpful to the automated analysis process by assisting in extracting additional 

candidates from the natural language requirements specification. 

Further justification for the inclusion of this rule can also be demonstrated by this example: 

Individually tailored programs of study must not contradict the rules governing the degree, such as the 

structure or prerequisite courses required so that the student can qualify for the degree's compulsory 

courses.  

The term in bold, courses, has act as its most common semantic implying some action (see  

Table 3.3-4). This would be ignored by the Rule 1 and would not be created as a class. However, 

courses and its context within the example is something that we would wish to model as a class 

within the proposed software system. However, context is not considered within the ASA 

therefore, consideration of both non-class semantics and the presence of an Artefact semantic 

as defined by Rule 2 yields the creation of a candidate class (see   

Table 3.3-4).  This highlights a strong case for disambiguation which is addressed in section 

3.5.  
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Table 3.3-4 ‘Course’ Sense Definition List 

Sense Semantic Terms Description(sense) 

1 noun.act course1#1, 

course of 

study#2 

education imparted in a series of lessons or meetings; "he took a course in 

basket weaving"; 

2 noun.group course#2, 

line2#10 

a connected series of events or actions or developments; "the government 

took a firm course" 

3 noun.artifact course#3, 

course of 

action#1 

facility consisting of a circumscribed area of land or water laid out for a 

sport; "the course had only nine holes" 

4 noun.act course#4, 

path#4, 

track#1 

a mode of action; "if you persist in that course you will surely fail" 

5 noun.object course#5 a line or route along which something travels or moves; "the hurricane 

demolished houses in its path" 

6 noun.location course#6, 

trend1#2 

general line of orientation; "the river takes a southern course" 

7 noun.food course#7 part of a meal served at one time 

8 noun.artifact course#8, 

row#4 

(construction) a layer of masonry; "a course of bricks" 

3.3.2.3 Determiners, Nouns & Multiplicity Mappings 

A determiner is a modifying word that comes before the noun. The determiner references the 

noun that it precedes and is either definite (specific), indefinite (general) or is quantitative. 

The determiner and its corresponding noun aid the identification of a relationship’s 

multiplicity (i.e. the cardinality or number of elements of some collection). This is obtained 

through consideration of the determiner’s quantification, the noun’s plurality, the verb 

expressing the relation and both sentence subject and objects. Figure 3.3-4 demonstrates the 

multiplicity mappings for both nouns and determiners and the cardinality that they map to.  

 

Figure 3.3-4 Determiner & Noun Multiplicity Mappings 
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Multiplicity - Start Range (Determiners): The determiner’s quantifier demonstrates an 

amount and identifies the starting multiplicity range, the X of the Y in [X..Y].  

Determiners themselves have types: Article demonstrates whether it is a definite or indefinite 

with the most common being a, an, and the, and represents a single multiplicity; Number 

represents a cardinal number (i.e. a minimum set of X); Quantifiers identify a many relationship 

(many, any, all, every, some and each); finally, Demonstratives, most commonly this, that, these and 

those, represent either a single or many multiplicity mapping and when no determiner is 

present it indicates a zero mapping. Regardless of their type, the extraction of multiplicity 

mappings is key to identifying the relationships between classes. Table 3.3-5 summaries the 

determiners and their associated multiplicity mappings. 

Table 3.3-5 Determiner Quantification 

Determiner Quantification 

a,  an, another, the, 

both, either, that, this 

1 

all, any, every, them, 

these, those, each, 

many, much, some 

* (i.e. many) 

No determiner present 0 

Multiplicity - End Range (Noun Plurality): The head noun determines the end range of the 

current multiplicity under consideration, the Y of the [X..Y]. Table 3.3-6 summarises the 

multiplicity mappings for nouns. 

Table 3.3-6 Noun Multiplicity Mapping 

Noun Type Multiplicity Reference 

Non-plural 1 

Plural * (i.e. many) 

Multiplicity Detection Process: The multiplicity range for a candidate class is constructed 

during sentence analysis and is obtained for both the source (sentence Subjects) and the targets 

(sentence Objects) respectively.  

For example: Each student is enrolled in many seminars. Assumptions for this example includes 

that Student and Seminar are classes and that the verb enrolled indicates a relationship between 

Student and Seminar.  
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Figure 3.3-5 Source/Target Multiplicity Detection 

The process is primarily a lookup which involves identifying the determiner (DT) contained 

within the noun phrase (NP) and the plurality of the noun (NN). This information is 

subsequently used to determine what multiplicities for a given noun or determiner through 

the conversion rules defined in Table 3.3-5 and Table 3.3-6, where Table 3.3-7 summarises the 

outcome for the example in Figure 3.3-5 

Table 3.3-7 Multiplicity Mappings for Example 

Multiplicity Type Determiner/Mapping Noun/Mapping 

Source Each / [*] Student / [1] 

Target many / [*] Seminars / [*] 

With all multiplicities mapped, it is a simply case of applying conversion rules (see Table 3.3-8) 

Table 3.3-8 Multiplicity Mapping Conversion Rules 

Determiner Value Noun Form Range Mapping 

0 Singular [0..1] 

0 Plural [0..*] 

1 Singular [1..1] 

1 Plural [1..*] 

* Singular [1..*] 

* Plural [*..*] 

Missing Singular [0..1] 

Missing Plural [0..*] 

The resulting multiplicity mapping for the example is demonstrated in Figure 3.3-6 

 

Figure 3.3-6 Final Mapping for Source/Target Multiplicity Detection 

Multiplicity Preservation: The multiplicity range is then preserved in memory for later usage 

and used in conjunction with any potential relationship that maybe uncovered during the 

analysis process. Since multiplicities may change from relationship to relationship they are 

stored with the specific relationship discovered during its analysis rather than the class.  

(ROOT 

  (S 

    (NP (DT Each) (NN student)) � Subject (Target Multiplicity) 

    (VP (VBZ is) 

      (VP (VBN enrolled) 

        (PP (IN in) 

          (NP (DT many) (NN seminars)))))) � Object (Source Multiplicity) 

    (. .))) 

Seminar 1..* *..* Student 
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The rule used to detect multiplicities can be defined as follows: 

Rule 3 - Start Range Multiplicity Detection (Determiners Present) 

If a determiner belongs to the set of multiplicity mappings {0, 1, *}, then the start range for 

multiplicity has been found 

Rule 4 – Start Range Multiplicity Detection (Missing Determiners) 

If the determiner does not exist, then the start range is known as single (1) 

Rule 5 - End Range Multiplicity Detection Rule (Plural Nouns) 

If a noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is plural, its mapping is 

known as many (*) 

Rule 6 – End Range Multiplicity Detection (Non-Plural Nouns) 

If the noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is not plural, then its 

mapping is known as single (1) 

3.3.2.4 Attributes, Class Hierarchies and State from Noun Pre-Modification 

Noun pre-modification, where one or more words (adjectives, nouns or participles) are placed 

before the Noun Head and further define the noun’s meaning, can express much more in 

terms of UML Modelling. Figure 3.3-7 demonstrates the mappings that pre-modification can 

represent. 

 

Figure 3.3-7 Pre-Modifier to UML Mapping 

The presence of a pre-modifier requires a decision of what it implies and if it should be 

included within the model. The features of pre-modification are discussed in the following 

sub-sections. 

Adjective Pre-Modifier: The most common pre-modifier is the adjective, which precedes the 

word that it modifies and typically expresses an attribute of that word. They can be grouped 
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into categories for example: colour, size, sound, taste, touch, shape but other groupings do exists. 

However, unlike the rich semantic groupings for both noun and verbs, adjectives are only 

represented by the types <adj.all> (all adjective clusters) and <adj.pert> (relational adjectives) 

within WordNet and since there are no useful semantic groupings for adjectives a manual set 

of semantics would have to be defined and classified accordingly. This would allow similar 

decisions to be made in line with how the ASA manages decisions for both nouns and verbs. 

The identification and consideration of adjective semantic groupings is a path that is not 

currently followed by the ASA.  

Noun Pre-Modifier: Based primarily on its semantics, it is possible that the noun-modifier can 

represent an attribute (see Section 3.4 Additional Modelling Considerations), or a class 

inheritance hierarchical structure.  

For example, “The game will display the defence grid and offence grid to each player”  

 

Figure 3.3-8 Example Syntactic Structure 

Figure 3.3-8 demonstrates the syntactic structure for this example, where only the sentence 

objects are only considered. During syntactic analysis any determiners are ignored, the head 

noun is identified first and then modifiers are classified, defined by these rules: 

• The Head Noun is the last noun contained within the noun phrase 

• Modifiers are any nouns which precede the Head Noun 

The phrases can be broken down to its constituent parts and their individual semantics can be 

extracted, see Figure 3.3-9 and Table 3.3-9.  

(ROOT 

  (S 

    (NP (DT The) (NN game)) � Subject 

    (VP (MD will) 

      (VP (VB display) 

        (NP 

          (NP (DT the) (NN defence) (NN grid)) � Object 

          (CC and) 

          (NP (NN offence) (NN grid))) � Object 

        (PP (TO to) 

          (NP (DT each) (NN player))))) 

    (. .))) 
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Figure 3.3-9 Noun Modifier/Head Parts 

The pre-modifiers defence or offence do not indicate an attribute because their semantics are not 

within the set of candidate attributes. Furthermore, their semantics are outwith the set of 

candidate classes Table 3.3-9 demonstrates the semantics captured from WordNet but the 

semantics for the head noun are contained within this set.  

Table 3.3-9 Noun Phrase Semantic Analysis 

Phrase Pre Modifier Noun Pre Modifier Semantics Head Noun Semantics 

Defence grid defence <noun.process> grid <noun.artefact> 

Offence grid offence <noun.act> grid <noun.artefact> 

Therefore, their inclusion within the noun phrase indicates some form of sub-class to super-

class mapping (i.e. type/kind-of). Even if the modifier semantics were within the set of 

candidate classes, it is still possible that they represent a type/kind-of hierarchical structure, 

rather than two independent classes. 

The hierarchical structure rule is defined as follows: 

Rule 7 – Class Hierarchy Detection Rule 

Given the noun phrase, if the head noun is a candidate class as defined by Rule 1 or Rule 2 and the 

head noun’s pre-modifier is also candidate class as defined by Rule 1 or Rule 2, then an interface and 

abstraction is extracted based on the head noun 

In both cases the head noun, grid, is within the set candidate classes and neither modifier is 

within the set of attribute semantics which results in the creation of a class hierarchy (Figure 

3.3-10). 

 

Figure 3.3-10 Automated Example Noun Phrase to UML Mapping 
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The creation of this inheritance hierarchy is a point of flexibility and a point of consideration 

for the developers within the overall architecture. It allows any concrete implementation of 

the abstraction (IGrid) to be utilised at run-time, and allows consideration of the system to 

accommodate new future grid types. 

State and Participle Pre-Modifier: The participle indicates a characteristic feature of the noun 

which it modifies and is a verb that comes in two forms: 

• Passive Form (-ed) 

o In its passive form, the participle represents a sense of completion 

• Active Form (-ing) 

o In its active form, the participle represents a sense of incompletion 

Consider the examples: 

Passive Form: ‘A sold car has a 3 year warranty’ 

 

Figure 3.3-11 Passive Participle/Head Noun Parts 

Active Form: ‘The approaching train is coming from London.’ 

 

Figure 3.3-12 Active Participle/Head Noun Parts 

During syntactic analysis, the participle is identified by its syntactic position within the noun 

phrase (see Figure 3.3-11 and Figure 3.3-12) and is discovered by: 

Rule 8 – Object State Identifier 

Given the noun phrase, if the head noun is a candidate class as defined by Rule 1 or Rule 2 and the 

head noun’s pre-modifier is a participle, then an object state accessor is said to exist. 

In the case of modelling, a participle pre-modifier implies a state attribute of Boolean type. 

This would manifest itself within the above examples as a public accessor to determine the 
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state of the candidate class via the name of the participle modifier, if a candidate class exists 

as defined by the head noun. The key reason why it defines a Boolean is that the participle 

modifier indicates either a sense of completion (true) or incompletion (false). It is therefore 

possible with this knowledge to create said public accessor where the passive participle 

modifier would be defined as has<ModifierName> and the active modifier would be defined as 

is<ModifierName>. 

3.3.2.5 Relationships, Parameters & the Post-Modifier 

Post-modifiers, as with pre-modifiers, give additional information in relation to the head 

noun. They introduce information that can express relationships, parameters, actions or state in 

terms of modelling (see Figure 3.3-13). Although, for consistency, the discussion of both clausal 

constructs is pushed towards the overall view at the clausal level (see 3.4 Additional Modelling 

Considerations). 

 

Figure 3.3-13 Post-Modifier UML Mapping 

The most common form of modification for both verbs and nouns is the preposition, which 

expresses a relationship between either of these entities. 

Figure 3.3-14 details the structure of a prepositional phrase, its attachments, to what it can be 

attached (either to noun or verb phrases), and what these represent when mapped to UML. 

The Preposition’s complement can take the form of an adverb, noun phrase or clause. Dependent 

on the complement’s type, the processing would revert to the relevant processing technique.  

The most common complement is a noun phrase and the processing of this feature would be 

the same as that discussed in section 3.3.2.  
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Figure 3.3-14 Preposition Phrase Syntactic Structure 

Defining Prepositions Semantics: The preposition can express spatial, temporal or logical 

relationships. They typically take the form of words such as at, in and on. However, the 

semantics for propositions are not available through WordNet therefore, a manual custom 

generalisation of the prepositions’ meaning has been established using online dictionaries 

[Dic07, Wiki07, Oxf07, COL07], which can then be used in automated processing.  

The first sense definition across each of the dictionary sources identifies the most common sense 

of that word (see Appendix A.3). Identification of prepositional semantics uses the same 

common semantic technique as defined for both candidate class and relationship detection 

(see Section 3.2.1). This is then used to define its grouping (spatial, temporal or logical 

relationship) including some sub-categories. In some cases, not all of the first sense definitions 

within these dictionaries may be the same. In that case, a majority-rules approach is undertaken 

and the Common Semantic Model (CSM) is then considered for the most appropriate 

classification for that preposition (i.e. the sense with the highest average).  
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For example, the preposition as has 2 definitions 

• The first definition indicates a role,  

• The second definition introduces a basis of comparison.  

Table 3.3-10 details the definitions obtained from each dictionary, and in the majority of cases 

it defines as as indicating role.  

Table 3.3-10 ‘as’ Dictionary Definitions 

Dictionary Sense Role 

Dic07 1. In the role, function, or status of: to act as leader. 

Wiki07 

1. Introducing a basis of comparison, with an object 

in the objective case.  

2. In the role of.  

Oxf07 

1. used to refer to the function or character that 

someone or something has: 

2.  during the time of being (the thing specified): 

COL07 

1. in the role of, being, my task, as his physician, is to 

do the best that I can,  

2.  as for or to with reference to,  

3.  as if or though as it would be if, she felt as if she 

had been run over by a bulldozer,  

4.  as (it) is in the existing state of affairs, 

Preposition Attachment Analysis: The main aspect of the syntactic analysis is to determine 

to what the preposition is attached: either noun or verb phrases. Therefore, recognising what 

the preposition is attached to allows the discovery of relationships that are not identifiable 

through the verb of the sentence. In addition, parameters, attributes and class hierarchical 

structures also become available for detection, since one of the key complements of the 

preposition is a noun phrase. All of these are discussed throughout the remainder of this 

section. 

The syntactic rule for detecting the preposition’s attachment can be defined as follows: 

Rule 9 – Noun Preposition Attachment Detection 

If the prepositional phrase’s parent is a Noun Phrase, then the preposition is said to be attached to that 

the noun phrase. 

Rule 10 – Verb Preposition Attachment Detection 

If the prepositional phrase’s parent is a Verb Phrase, then the preposition is said to be attached to that 

verb phrase. 
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Both noun and verb attachments are treated differently. The preposition attached to a noun 

indicates a relational aspect to what it is attached. Treatment of the verb is very different and 

requires further consideration, since the preposition can express relationships, parameters, 

attributes and class hierarchical constructs. Therefore, in the context of verb attachment, a 

decision matrix is utilised, which is a combination of the verb and preposition semantics, and 

the intersection of both semantics determines the relevant action to take be taken. 

Noun Phrase Complement:  Identifying relationships between the subject of the sentence and 

the complement of the preposition is a technique not considered by other related works. 

Relationships are typically discovered through the presence of a verb, which is preceded by a 

noun. This technique overlooks candidate relationships between the subject and the 

preposition complement as no verb exists between them except for the semantic connection. 

In addition, this neglect is primarily due to sentence simplifications, which eliminates the 

preposition sentence feature. 

A preposition which is attached directly to a noun phrase can indicate an association 

relationship without the presence of a verb, which is the key reason to consider potential 

relationships from this syntactic structure. If the preposition attachment were not considered, 

then the relationship between both the preposition’s noun complement and the head noun, 

contained within the noun phrase that the preposition is attached to would be lost resulting 

in the generation of an incomplete model. 

A relationship is established between both noun phrase and preposition complement through 

recognition of the NP�PP attachment pattern. This is discovered through a reverse search of 

the syntactic structure to obtain the preposition attachment pattern. 

For Example: ‘A robot with an arm will collect items from the assembly line.’ 

 

Figure 3.3-15 Noun Phrase Attachment Analysis 

(ROOT 
  (S 
    (NP � Identifies preposition is attached to this noun phrase 
      (NP (DT A) (NN robot)) 
      (PP (IN with)� Preposition 
        (NP (DT an) (NN arm))))� Complement 
    (VP (MD will) 
      (VP (VB collect)� both preposition & noun attached to this verb 
        (NP (NNS items)) 
        (PP (IN from)� Preposition 
          (NP (DT the) (NN assembly) (NN line)))))� Complement 
    (. .))) 
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Figure 3.3-15 details the syntactic structure for this statement. The first noun phrase of the 

sentence ‘A robot with an arm’ also contains a preposition with a noun phrase complement. 

There is no verb to indicate that a relationship exists. However a relationship does, and is 

identified through the attachment analysis pattern recognition NP�PP and the definition of 

the preposition itself. Note that in the second half of the statement, ‘will collect items from the 

assembly line’, both the noun and preposition phrases are attached to the verb of the sentence. 

Figure 3.3-16 demonstrates the UML model generated from this example. 

 

Figure 3.3-16 Resulting UML Model from Preposition Analysis 

The rules applied to create this model in no particular order are as follows: 

• Rule 1 – Class Detection or Rule 2 – Class Detection from Non-Class Semantics 

• Multiplicity Detection: ((Rule 3 or Rule 4) and (Rule 5 or Rule 6)) 

• Rule 9 – Noun Preposition Attachment Detection 

• Rule 10 – Verb Preposition Attachment Detection  

• Rule 11 – Operation Detection or Rule 12 - Relationship Detection 

• Rule 13 – Subject Operation Placement or Rule 14 – Object Operation Placement 

• Rule 15 – Active Voice Parameter Creation or Rule 16 – Passive Voice Parameter 

Creation 

3.3.3 Verb Phrase 

The verb phrase is the main source for detecting candidate relationships and operations within 

the UML model, but it is also possible to detect a variety of other UML-related features. 

The approach towards operation and relationship detection is a by-product of the class 

detection process. Verbs contained within the sentence help the analyst make decisions 

regarding both operations and relationships. In addition, the analyst’s own knowledge of the 

situation may also assist the detection process.  
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Figure 3.3-17 defines the structural components of a verb phrase and its UML mapping, 

describing what is possible to identify such as: 

• Relationships 

• Parameters 

• Attributes 

• Operations and Boolean Operations 

• Class Hierarchical Structures 

 

Figure 3.3-17 Verb Phrase to UML Mapping 

Syntactic Considerations 

The verb itself comes in two key parts, the auxiliary, which holds information about mood, 

modality (modals), aspect and voice and the main verb.  The main verb defines the main action 

of the subject contained within the sentence. The auxiliary comes before the main verb, but 

does not necessarily need to be included with the main verb; voice is the only auxiliary 

considered by the ASA. Voice assists in placing operations and extracting parameters but this 

function is dependent on its form (either passive or active) and is considered later in this 

section. The modal verb is also of interest as it can define the possibility/necessity of an action. 

Aspect is also of interest to the ASA and has two forms: progressive and perfect. The progressive 

expresses an incomplete action in progress at a specific time whereas perfect, typically 

retrospective, indicates a completed action. Both aspect and the modal require additional 

consideration of what it can be used for within modelling and how it can be incorporated 

within the ASA. Finally, mood is not considered as it demonstrates the manner in which a 

thought is expressed.   
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Detection of the verb is discovered via OpenNLP, which identifies the verb phrase as VP, and 

all following verbs are tagged starting with VB followed by a [D, G, N, P or Z] that identifies 

their type. Modal verbs are tagged as MD and are auxiliary verbs that give more information 

about the main verb’s function and define the likelihood (shall) through to essential (should) 

(see Table 3.3-11, for a full description of verb tags definitions). 

Table 3.3-11 OpenNLP Tags for Verbs 

Tag Description 

VB Verb, base form 

VBD Verb, past tense 

VBG Verb, gerund or present participle 

VBN Verb, past participle 

VBP Verb, non-3rd person singular present 

VBZ Verb, 3rd person singular present 

VP Verb Phrase 

MD Modal 

In addition, all verbs, once their type has been identified (i.e. past and present tense, singular), 

are reduced to the base form so that the creation of duplicate operations or relations is avoided. 

For example, the verbs transports and transported will be reduced to their base verb transport. 

Semantic Considerations 

WordNet offers a set of fifteen verb semantics that can imply a relationship and/or an 

operation between the classes detected in each sentence. Table 3.3-12 details and describes the 

semantics obtained from the WordNet dictionary and their modelling implications. 

Table 3.3-12 Candidate Relationship/Operation Semantics 

WordNet 

Semantic 
WordNet Description 

Relationship/Operation 

Modelling Implications 

Relationship Operation 

Body Verbs of grooming, dressing and bodily care  X 

Change Verbs of size, temperature change, intensifying, etc  X 

Cognition Verbs of thinking, judging, analysis, doubting, etc X X 

Communication Verbs of telling, asking, ordering, singing X X 

Competition Verbs of fighting, athletic activities X X 

Consumption Verbs of eating and drinking  X 

Contact Verbs of touching, hitting, tying, digging X X 

Creation Verbs of sewing, baking, painting, performing  X 

Emotion Verbs of feeling  X 

Motion Verbs of walking, flying, swimming X X 

Perception Verbs of seeing, hearing, feeling  X 

Possession Verbs of buying, selling, owning X X 

Social Verbs of political and social activities and events X X 

Stative Verbs of being, having, spatial relations  X 

Weather Verbs of snowing, raining, thawing, thundering  X 
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The key rationale for choosing these semantic classifications of a verb is based upon the 

common semantic model (see Section 3.2.1). For example, the verb transport has five different 

senses and Table 3.3-13 details this common sense understanding.  

Table 3.3-13 Transport Verb Sense Classifications 

Sense Semantic Term Description 

1 verb.motion transport#1 
move something or somebody around; usually over long 

distances 

2 verb.contact transport#2, carry2#1 

move while supporting, either in a vehicle or in one's 

hands or on one's body; "You must carry your camping 

gear"; "carry the suitcases to the car" 

3 verb.emotion 

enchant#1, enrapture#1, 

transport#3, enthrall#1, 

ravish#2, enthral#1, 

delight2#3 

hold spellbound 

4 verb.motion 
transport1#4, send#4, 

ship#1 
transport commercially 

5 verb.contact 
transmit#4, transfer#7, 

transport1#5, channel#3,  

send from one person or place to another; "transmit a 

message" 

It is the only most commonly understood semantic (in the example, sense #1) that is used to 

make a decision regarding the inclusion of a relationship and/or operation. The semantic 

motion, for example, implies movement from one location to another; that there are typically 

two entities involved in the situation, i.e. the mover and something else evaluated on a sentence 

by sentence basis. Therefore both a relationship and an operation will be created for this verb. 

Under no circumstances is any form of disambiguation or surrounding context taken into 

consideration during the lookup process.  

Relationship/Operation Detection Rules: As with class detection, the technique of 

relationship/operation detection is based upon the verb’s semantic classification and its 

syntactic structure of connected sentence subjects and/or objects to the verb itself. These rules 

can be defined as follows: 

Rule 11 – Operation Detection
 

If a verb’s most common semantic belongs to the set of candidate operation semantics and the verb’s 

semantic does not belong to the set of candidate relationship semantics, then that verb is a candidate 

operation 

Rule 12 - Relationship Detection 

If a verb’s most common semantic belongs to the set of candidate relationship semantics then that verb 

is a candidate relationship 
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The additional features of the verb such as, Parameters, Operation Class Location, Class 

Hierarchies and Attributes are discussed in the following sub-sections. 

3.3.3.1 Operation Class Location  

The operation will be placed with the subject of the sentence. The subject of sentence identifies 

the actor, the one performing the verb’s action, whereas the object of the sentence is the one 

who receives this action. This clearly has implications in terms of operation class location. The 

placement of an operation within a class is decided upon through recognition of sentence 

voice (Passive or Active).  

For example:  

 

In syntactic terms, the key rule that identifies passive voice sentences is 

1. A verb in the form of be followed by an -ed participle 

Given this structure, it is possible to differentiate between passive and active voice forms. 

The first example is in active voice and allows correct identification of the subject John, who is 

the actor of the verb’s action and where the operation would be placed. Ball is the receiver of 

the verb’s action. However, in example two ball is the subject, but it is in the passive voice, 

meaning it receives the action of the verb. In this case, John is still the actor (demoted-subject) 

of the action, where the operation would be placed. 

Upon reflection and in the context of UML modelling, the placement of the operation with the 

actor (sentence subject, depending on voice) may not be best suited as the receiver may have 

their state changed as a result of the action. Therefore, it may be more appropriate to place the 

operation with the receiver instead, as it could be considered that the actor is calling the action 

associated with the receiver. Nonetheless, the current approach is to place the operation 

within the actor depending on sentence voice as defined by these rules: 
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Rule 13 – Subject Operation Placement 

If the verb is in an active form and as defined by Rule 9 is an operation and by Rule 1 or Rule 2 the 

sentence subject is a class candidate, then the operation will be placed with the subject of the sentence 

Rule 14 – Object Operation Placement 

If the verb is in its passive form and as defined by Rule 9 is an operation and by Rule 1 or Rule 2 the 

sentence object is a candidate class, then the operation will be placed with the object of the sentence 

3.3.3.2 Parameter Detection from Operational Verbs and Sentence Voice 

Parameters are identified from sentence objects or the prepositional complement, if they are 

nouns, through a syntactic attachment analysis. The reason why sentence objects are likely 

candidate parameters is founded in the function of the sentence, where objects are acted upon 

via the verb’s describing action.  

For example, ‘The game will display a grid.”  

 

Figure 3.3-18 Candidate Parameters Parse Tree (active voice) 

Figure 3.3-18 details the syntactic structure of the example sentence. From a bottom-up search 

of the parse tree it is discovered that the object (gird) is attached to the verb (display), which 

will then be created as a parameter of the function display for the class game. Thus, the 

operation signature will then be defined as follows:  

Game.display:(Grid grid) 

This can be defined by the following rule: 

Rule 15 – Active Voice Parameter Creation 

If the sentence is in active voice and by Rule 9 an operation exists and by Rule 1 or Rule 2 a class 

candidate exists for both sentence subjects and objects and by Rule 12 the operation is placed with the 

subject of the sentence, then the object of sentence is considered as a parameter of that operation 

 (ROOT 
  (S 
    (NP (DT The) (NN game))  
    (VP (MD will)  
      (VP (VB display) � Operation 
        (NP (DT a) (NN defence) (NN grid)) � Candidate Parameter 
    (. .)))  
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In a similar vein, as illustrated in Figure 3.3-19, when it is discovered that the same construct 

is in passive voice, the subject of the sentence is then used as the parameter of the operation, 

which is then placed with the demoted subject. 

 

Figure 3.3-19 Candidate Parameters Parse Tree (passive voice) 

Passive voice parameter creation is defined by the following rule: 

Rule 16 – Passive Voice Parameter Creation 

If the sentence is in passive voice and by Rule 9 an operation exists and by Rule 1 or Rule 2 a class 

candidate exists for both sentence subjects and objects and by Rule 13 the operation is placed with the 

object of the sentence, then the subject of sentence is considered as a parameter of that operation 

3.3.3.3 Attributes from the Verb form have 

Analysis of the verb can allow the identification of class attributes which is only apparent 

through the presence of a particular verb type and not achievable through additional attribute 

detection methods based on noun semantics (see Section 3.3.2.1). The verb in the form of have 

and its associate forms such as has and had permits identification of attributes since the 

semantics of the verb form have indicate possession/ownership. It is only sentence objects 

which are considered as attributes. The subject of the sentence is considered as the class that 

receives these as its attributes.  

The basis of the rule that allows identification of attributes from the verb is defined as follows: 

Rule 17 – Verb Derived Attribute Detection 

If the verb of the sentence belongs to the set of verb forms {has, had, have} and the noun following the 

verb is a class candidate as defined by Rule 1 or Rule 2, then that class is transformed into an 

attribute 

For example, ‘The room has a balcony and a bathroom” 

 (ROOT 
  (S 
    (NP (DT A) (NN defence) (NN grid)) � Candidate Parameter 
    (VP (VBD was) 
      (VP (VBN displayed) � Operation 
        (PP (IN by) 
          (NP (DT the) (NN game))))) 
    (. .))) 
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In Figure 3.3-20 has is the main verb of the sentence and has no preceding or following verbs. 

As a result, both balcony and bathroom are therefore considered as attributes, which will be 

attached to the subject of the sentence room. Note that all of these words are also candidate 

classes based on their semantics.  

 

Figure 3.3-20 Attributes based on have Verb forms 

In some cases, it may not be appropriate to model these as an attributes when they are better 

suited to being an actual class within the model.  

Given the example: A book has a title and author 

 

Figure 3.3-21 Automated Model Analysis - Attribute from has rule 

The current rule for attribute detection would result in both author and title being created as 

attributes within the class book (see Figure 3.3-21). This is entirely justifiable, it is appropriate 

to say that a book has both an author and title, although it is also possible for author to be 

represented as a class which may be more appropriate (see Figure 3.3-22). 

 

Figure 3.3-22 Alternative UML Model 

(ROOT 
  (S 
    (NP (DT The) (NN room)) � Candidate Class 
    (VP (VBZ has) � Verb in form of ‘have’ 
      (NP 
        (NP (DT a) (NN balcony)) � Candidate Attribute & Candidate Class 
        (CC and) 
        (NP (DT a) (NN bathroom)))) � Candidate Attribute & Candidate Class 
    (. .))) 
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3.3.3.4 Class to Attributes Transformation by means of Term Frequency Analysis 

The decision to transform a class into an attribute is achieved through utilisation of both 

semantics and identification of the importance of a word, defined by its term frequency. Term 

frequency is used to determine how important a specific word is given the average frequency 

of terms within the specification, where an above average frequency indicates that it should 

remain a class and below average frequency indicates an attribute. In addition, an important 

factor is that the sentence must only contain one main verb which is not modified, as if it 

contains a verb that is modified it could potentially alter its meaning.  

The approach can dynamically switch to create either an attribute or a class depending on the 

sentence construction and the importance of the relevant sentence features and is defined by 

the following rules: 

Rule 18 – Dynamic Verb derived Attribute Detection 

If the sentence contains a noun that is class candidate and is preceded by a verb, where the frequency 

count of that noun is less than the average noun frequency for the document and there exists only one 

verb within the sentence and the semantics for that verb belongs to the set of {has, had, have} forms, 

then the noun is said to be an attribute 

Rule 19 – Class & Relationship Detection 

If both the subject and objects of the sentence are class candidates and their semantics are not within 

the set of attribute semantics and their term frequencies are greater than the term frequencies for the 

document average and the verb belongs to the set of {has, had, have} forms and there is only one verb, 

then it is said that both subjects and objects are class candidates and an association relationship 

should exists between the class candidates 

3.3.3.5 Class Type/Inheritance Hierarchies from Verb  

This relies on the understanding and utilisation of specific forms of be verbs, which can 

indicate class type/inheritance hierarchies. The key to identifying a class type/inheritance 

hierarchy can be defined as follows: 

Rule 20 – Inheritance Hierarchy Detection 

If the verb belongs to the set of ‘be’ forms and that verb is the only verb in the sentence and both the 

subject and object of the sentence are candidate classes as defined by Rule 1 or Rule 2, then an 

inheritance hierarchy is said to exist between both class candidates 
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Consider the example, A car is a vehicle. 

In Figure 3.3-23 vehicle would be the super-type for the class hierarchy. Not only is it possible 

to extract class hierarchies from noun pre-modifiers (see Section 3.3.2.4), it is also possible 

through verb consideration as well.  

 

Figure 3.3-23 Class Hierarchies based on ‘be’ Verb forms. 

It is the presence of the verb in the form of be, and its syntactic structure (subject-verb-object) 

SVO ordering, which defines a modelling is_a relationship.  

3.3.3.6 Preposition Verb Phrase Attachment  

Previously discussed in the context of the noun (see Section 3.3.2.5), the preposition’s 

complement can take the form of an adverb, noun phrase or clause. However, in the context of 

the verb phrase, it allows for the discovery of relationships, operations and class hierarchical 

structures.  

This is achieved by two key methods 

a. Identification of syntactic attachment via the pattern PP�VP  

b. A Verb - Preposition Semantic Decision Matrix defines the action defined by 

the semantics of both the preposition and the verb attachment (see Appendix 

A.4) 

The syntactic attachment is discovered through identification of phrase markers such as PP 

(preposition phrase). Once the phrase marker is found (PP), a bottom up search of the parse 

tree is performed to discover its parental attachment, in this case a VP (verb phrase), which 

may also be a NP (noun phrase). The item of interest is the PP � VP attachment, which is used 

to look up the matrix that contains the semantics of both verbs and prepositions. Therefore, to 

discover the most relevant model feature to be created, the semantics of both the verb and 

preposition have to be discovered. These are available via WordNet for verbs, utilising the 

most common semantic strategy, and a custom semantic model for the preposition semantics 

(ROOT 
  (S 
    (NP (DT A) (NN car)) 
    (VP (VBZ is) 
      (NP (DT a) (NN vehicle))) � Candidate Super-Type 
    (. .))) 
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(see Section 3.3.2.5). Therefore, through an intersection of these semantics within the matrix, 

it is possible to decide whether to create a relationship, parameter, attribute or a class hierarchical 

structure. Once this information has been identified, the relevant feature can then be modelled 

defined by the following rule: 

Rule 21 – Matrix Relationship Detection 

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of both the verb’s 

semantic and the semantic of the preposition belongs to the set of relationship semantics, then a 

relationship is said to exist between the noun and the object of the preposition 

Rule 22 - Matrix Parameter Detection 

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the verb is an operation as defined 

by Rule 11 and the intersection of both the verb’s semantic and the semantic of the preposition also 

belong to the set of parameter semantics, then the object of the preposition is said to be the parameter 

of the operation 

Rule 23 - Matrix Class Hierarchy Detection 

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the object of preposition is also a 

class candidate as defined by Rule 1 or Rule 2 and the intersection of both the verb’s semantic and the 

semantic of the preposition also belong to the set of class hierarchical semantics, then it is said there 

exists a class hierarchical relationship between the class candidate and the object of the preposition 

Rule 24 - Matrix Attribute Detection 

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of both the verb’s 

semantic and the semantic of the preposition also belong to the set of attribute semantics, then the 

object of the preposition is said to be an attribute of the class candidate 

The key rationale for utilising the decision matrix is founded upon phrasal verbs, which is a 

combination of both prepositions and the main verb. This combination typically changes the 

understanding. For example, look after, means to keep under careful scrutiny, but in separate 

contexts look and after produce a different understanding.  

To exemplify further, The customer is known as a member 
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Figure 3.3-24 Verb-Preposition Example 

In Figure 3.3-24 it is important to identify the correct verb and preposition attachment. As 

previously discussed, it is achieved by first finding the preposition (PP) and then a bottom up 

search to its parental attachment, the second verb phrase (VP) in this case. From the 

attachment pattern PP � VP, we discover the verb ‘known’ and the preposition ‘as’. The 

semantics of the verb and preposition are as follows (‘cognition’, ‘logical.role’). Through matrix 

analysis, the intersection of both verb and preposition semantics identifies the decision 

contained within the matrix i.e. ‘type-of’, indicating that an inheritance hierarchy should be 

created. The justification for this specific example is that if something has a role, then it is 

possible to consider that it is a type-of implying a class inheritance structure, but more 

importantly the ASA aims to introduce points of flexibility/maintainability through the 

introduction of these hierarchical constructs. On the other hand ‘member’ could be considered 

to be synonymous with ‘customer’ as it is identifying a form that a customer can represent. 

However, there is no synonymous link between both ‘customer’ and ‘member’ that can be 

discovered. As a result the creation of the class hierarchy serves two purposes: it allows 

identification of a customer through an interface/abstraction hierarchy, but more importantly 

it also introduces a key point of flexibility and reusability. 

In the case of Figure 3.3-24, customer would naturally have its own class hierarchical structure 

(see 3.4 Additional Modelling Considerations), based on its prior semantic analysis and would 

result in Figure 3.3-25. The ASA recognises the existence of this originally identified 

inheritance structure and subsequently modifies it and introduces a new member inheritance 

structure, which is deemed more appropriate from the syntactic and semantic analysis (see 

Figure 3.3-26). 

 

Figure 3.3-25 Original Customer Class Hierarchy 

(ROOT 
  (S 
    (NP (DT The) (NN customer)) 
    (VP (VBZ is) 
      (VP (VBN known)� attachment considered here 
        (PP (IN as) 
          (NP (DT a) (NN member))))) 
    (. .))) 
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Figure 3.3-26 Verb-Preposition Replacement Class Hierarchy 

3.4 Additional Modelling Considerations 

3.4.1 Dependent and Independent Clauses - Relationship Detection 

In the clausal constructs (dependent/independent) which form the sentence types (simple, 

compound and complex) introduced at the start of this chapter, it is the classification of clause 

types that are of more interest to automated modelling. The independent clause demonstrates 

a complete line of thought whereas a dependent clause exhibits an incomplete thought which 

is reliant on the independent clause for its understanding. This in its own right signifies a 

potential relationship between both of the subjects contained within each clause that is not 

discoverable through the verb of the sentence.  

Identification of clause type is assisted through OpenNLP’s syntactic analysis, where the tag 

‘SBAR’ marks the introduction of a subordinate/dependent clausal structure, and where a 

simple/independent clausal structure is marked by the introduction of an ‘S’ tag. Therefore 

identification of the patterns S�SBAR, indicating a dependent clause, and the pattern S�NP, 

indicating an independent clause, allows the identification of both dependent/independent 

clausal structures. 

Consider the example (Figure 3.4-1) When a vehicle arrives at a destination, the driver notifies 

the company. The independent clause is in bold and upon detection of a dependent clause via 

its relevant pattern the ASA has to consider either a forward or a backward search for the 

independent clause also matched by its relevant pattern. 
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Figure 3.4-1 Dependent/Independent Clause Detection 

Once the independent clause is sourced, the relationship between both subjects can be 

identified and is constructed via this rule: 

Rule 25 - Clausal Relationship Detection 

If an independent clause exists and by Rule 1 or Rule 2 a class candidate exists, and if a dependent 

clause exists and by Rule 1 or Rule 2 a class candidate exists, then it is said an association shall also 

exist between both independent and dependent clause class candidates 

This is only identifiable through this syntactic relationship and not through the verb of the 

sentence, which could result in a loss of important information. The relation will be modelled 

as an association relationship within UML, see Figure 3.4-2. 

 

Figure 3.4-2 Dependent and Independent UML Relationship Mapping 

The prime justification for creating an association relationship between the subjects of both 

clauses is resolved through the grammatical understanding that a dependent clause cannot 

stand alone and is reliant upon the independent one for its understanding. When the subjects 

of both clauses are the same no relationship to itself is created. 

In the example: When the company receives a call from a passenger, the company tries to schedule 

a vehicle to pick up the fare. The independent clause is in bold and the subject of both clauses 

(ROOT 

  (S � Independent Clause Marker 

    (SBAR � Dependent Clause Marker 

      (WHADVP (WRB When)) 

      (S � Simple Clause Structure 

        (NP (DT a) (NN vehicle)) 

        (VP (VBZ arrives) 

          (PP (IN at) 

            (NP (DT a) (NN destination)))))) 

    (, ,) 

    (NP (DT the) (NN driver)) 

    (VP (VBZ notifies) 

      (NP (DT the) (NN company))) 

    (. .))) 
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is company so a relationship is not required. Furthermore, neither of the objects contained 

within each clause are considered within this type of high-level relationship because they are 

directly affected by the verb contained within each clause and will only have a relationship 

with their direct subject in each separate clause. The detection and consideration of how these 

modelling features would be detected has been addressed in Section 3.3.3, Verb Phrase. 

3.4.2 Additional Modelling Considerations from the Noun 

3.4.2.1 Attribute Detection 

Attribute detection from nouns is based upon two differing techniques based on the presence 

of an attribute semantic within the set of candidate semantics for that particular noun and a 

frequency analysis of the noun’s importance to the specification. 

Term Frequency (tfi,j) is a technique used within information retrieval to identify the 

importance of a given word within a document defined by the formula in Equation 1; where 

(i) represents the term contained within the document (j). 
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Equation 1. Term Frequency Formula 

jin , is the number of occurrences of the term (i) in the document (j) and the denominator is 

the sum (k) of the occurrences of all terms contained within the document. This technique is 

utilised within related works as a decision making tool for class detection [MHH89, GB94, 

Per02, PKS+05, Har00, HG02, VAD09], where in some cases the threshold can be manipulated 

to identify more or fewer candidate classes.  

The frequencies are fixed to the document average frequency of occurrence defined by 

Equation 2. This is only used to make decisions in relation to attribute detection that has a 

below average term frequency within the context of the average term frequency for the 

document; where (i) represents term frequencies that are contained within the document (j). 
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Equation 2 Document Frequency Average Formula 



122 

The numerator is the sum (k) of all the individual term frequencies (i) for the document (j) and 

n is a count representing the total number of individual nouns or compound nouns contained 

within the document. 

The term frequency technique also considers phrases (compound nouns) as a whole rather 

than individual terms/words. The key rationale is not to duplicate registration of both 

individual nouns and compound nouns within the frequency analysis and therefore not give 

an artificial weighting to an individual to or introduce new individual terms into the 

frequency analysis, which may have knock-on consequences. 

The specific rules for attribute detection are defined as follows: 

• Most Common Semantic Approach: (Rule 26) 

Rule 26 - Attribute Detection based on Semantics 

If a noun’s semantic belongs to the set of attribute semantics, then that noun is considered as an 

attribute 

• Low Term Frequency Approach (Rule 27) 

Rule 27 - Attribute Detection based on Semantics, Class Candidates & Term Frequencies 

If a class candidate exists as defined by Rule 1 or Rule 2, and within that noun’s semantic set it also 

belongs to the set of attribute semantics, and the frequency count of that noun is less than the average 

noun frequency count for class candidates for that document, then the noun is said to be an attribute. 

3.4.2.2 Class Hierarchy Detection 

In addition to the set of class candidate semantics, a subset of four semantics also indicate that 

a class hierarchical structure should be created (see Table 3.4-1). This is primarily undertaken 

in an effort to give options that provide the best possibility of creating maintainable software 

architectures for future development.  

Table 3.4-1 Class Hierarchy Subset Semantics 

Noun Semantic Description 
Class Modelling Implication 

Class Hierarchy 

Animal Nouns denoting animals X X 

Person Nouns denoting people X X 

Plant Nouns denoting plants X X 

Shape Nouns denoting two and three dimensional shapes X X  
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All of the semantics listed in Table 3.4-1 typically have common features, where a 

class/abstraction/interface hierarchy would be considered constructive to include within the 

initial model.  

For example, nouns that represent people have common features, such as a name, date of birth 

and address, although some of these features may not be needed for all cases. The inclusion 

of hierarchies allows these commonalities to be modelled within the abstraction, and 

consideration to be given to the use of a polymorphic approach giving rise to a more flexible 

and maintainable design.  

Figure 3.4-3 demonstrates the type of hierarchy that would be created by automation.  In the 

example The company will arrange a taxi, when it receives a call from a passenger This has the 

concrete class Passenger, abstract class ABSPassenger and an interface IPassenger. 

 

Figure 3.4-3 Automated Class Hierarchy Creation  

The key role in the creation of this hierarchical structure is defined as follows: 

Rule 28 - Semantic Class Hierarchical Detection 

If a class candidate exits as defined by Rule 1 or Rule 2 and the semantics of the class candidate are 

also contained within the set of candidate class hierarchical semantics, then an interface will also be 

extracted for that class candidate 

This approach is not saying that there are no class hierarchical structures within the remaining 

ten semantics from  

Table 3.3-1. However, those semantic descriptions do not generically lend themselves to this 

interpretation and it would not be appropriate to model everything with this type of 

hierarchical structure. For example, the word call has the most common semantic type 

communication and modelling this with a concrete/abstract/interface hierarchy may not be 

appropriate.  

Hierarchies that are identified during the approach will be either an interface or an 

interface/abstraction hierarchy. These hierarchies allow the implementation to decouple from 
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the design allowing the implementation vary. In addition, abstractions can also cater for new 

functionality without impacting implementations. 

3.5 Software Requirements Specification Issues in the 

Context of Automated Software Development. 

The concept of an entirely developer-less automated analysis process is an ambitious one. 

However, there are some aspects of the SRS document that automation cannot manage and 

similarly that the human may also have some issues with, which are now further discussed.  

3.5.1 The SRS Document 

An SRS document contains all of the customer requirements and those requirements are 

elicited through various means. However, the majority start life as a narrative discussion of 

the problem domain. It is this document which is transformed by an analyst into a formal SRS 

document detailing both functional and non-functional requirements of the proposed 

software system. However, the formal SRS document is an expression of information in a 

manner that is not entirely suitable for the automated process, and the approach (discussed 

previously) has been geared towards the narrative specification.  

The key issues associated with SRS documents for both automation and the human can be 

defined as follows:  

• Ambiguity 

• Missing Requirements 

• Domain Knowledge 

• Intralinguistic Variations (automation only) 

Furthermore, during the transformation from a specification into its model representation, 

there is a need to manage and trace the requirements not only for understanding, but to ensure 

every requirement has also been satisfied. The approach taken, which starts from an informal 

specification, makes the process of tracing requirements much more difficult due to the loss 

of a formal structure. However, as a by-product of the automated analysis process, it has been 
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possible to track and tag both the requirement document and the model features generated 

during analysis phase, thus allowing tracing between both the specification and the model. 

All of the key issues and the feature of traceability are further discussed in the following sub-

sections. 

3.5.2 Traceability  

When the final UML model is created by automation, each of the model components identified 

during processing (classes, relationships, operations, parameters and attributes) are tagged with an 

identification number. This allows efficient retracing of the model feature back directly to the 

sentence(s) from where the component was discovered. In addition, this process gives the 

ability to establish the surrounding context and allows a decision to be made as to whether 

the model feature should be included within the final design or not. 

For example, the component Customer (see Figure 3.5-1) has five sentence references. The 

traceability link allows the relevant section, paragraph and sentence to be identified. Thus, 

allowing an efficient and effective means of identification and understanding of the proposed 

model component. This subsequently allows the analyst/developer to make the final decision 

upon the inclusion of a component generated by automation. 

 

Figure 3.5-1 Library System Requirements Specification [Cal94] 

3.5.3 Intralinguistic Variations 

Prior to its transformation into a formal requirements specification, decomposition or other 

means of transformation, software requirements are typically defined in narrative natural 

language form, which is the document used by the ASA. This document contains all the 

A library issues loan items to customers. Each customer is known as a member and is issued a membership card that shows 

a unique member number. Along with the membership number, other details on a customer must be kept such as a name, 

address, and date of birth. 

 

The library is made up of a number of subject sections. Each section is denoted by a classification mark.  

 

A loan item is uniquely identified by a bar code. There are two types of loan items, language tapes, and books. A language 

tape has a title language (e.g. French), and level (e.g. beginner). A book has a title, and authors. 

 

A customer may borrow up to a maximum of 8 items. An item can be borrowed, reserved or renewed to extend a current 

loan. When an item is issued the customer's membership number is scanned via a bar code reader or entered manually. If 

the membership is still valid and the number of items on loan less than 8, the book bar code is read, either via the bar code 

reader or entered manually. If the item can be issued (e.g. not reserved), the item is stamped and then issued. 

 

The library must support the facility for an item to be searched and for a daily update of records. 
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requirements of the proposed software system. However, where a word/noun, for instance 

Customer, is introduced, it may then be further discussed throughout the narrative 

specification, but by a different word such as member. This is a specific problem for automation 

where these nouns may not necessarily be synonymously related to the original word. This 

issue is defined as an intralinguistic variation which can result in the creation of 

additional/erroneous classes. This is because the syntactic analysis tool is unable to identify a 

link between the language variations. 

An earlier technical evaluation (see Appendix C.1 – Language Inconsistency) undertaken by 

the author  compared the models generated by the ASA against the human model (ideal 

solution) using four specifications that have been published in an Object Oriented text books 

(these models are consider as the ideal solution). The performance evaluation uncovered that 

each requirements specification on average contains 1.9 words that are later referenced to by 

different words that are not synonymously related to the original, an intralinguistic 

variations). If left unaddressed, this issue could easily propagate when considering other 

design features extracted from the language such as attributes, operations and relationships. 

Intralinguistic variations can refer to many concepts, but relate particularly to referencing 

situations such as an endophoric reference. An endophoric reference is divided into two 

distinct groupings: anaphoric or cataphoric. Anaphoric refers to something in the previous 

text introduced and typically makes use of pronouns such as it, they, them, me, she or he for its 

references, whereas the cataphoric refers to something within the text, which may have not 

yet been identified. 

For Example: 

1. The library issues loan items to customers. A maximum of 8 items can be borrowed. 

(cataphora) 

2. The driver will notify the company when he arrives at the destination. (anaphora) 

Anaphoric references are resolved automatically through OpenNLP and its co-reference 

resolution toolkit. However, it is unable to resolve cataphoric references. 

In some cases though, the referencing maybe a little more obscure. For example a word may 

be introduced such as individual, but could then be referenced throughout by six different 

terms {passenger, group, fare, them, their, they}. Even though, the term individual is obscure, it is 
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possible for the human to infer from the problem domain what is meant through manual 

inspection, but difficult for automation as it cannot directly associate passenger, group or fare as 

an individual.  The words them, they and their are resolvable through co-reference resolution 

supported by OpenNLP. 

Therefore, the most effective way to resolve the issue of multiple intralinguistic variations is 

to involve the developer and create a model that allows the correct referencing of multiple 

words to one generic concept. Unfortunately, this is not an efficient means of minimising 

initial developer involvement. 

The Intralinguistic Variation Model (IVM) is designed specifically to manage the cataphoric 

references problem and is entirely developer driven. In this approach, it is the responsibility 

of the developer to identify the cataphoric references contained within the software 

specification. The construction of the IVM model is a simple manually defined data dictionary 

contained within an XML file (see Figure 3.5-2). The referent is the word to find and to be 

replaced by the generalised concept with term. With this technique, compound nouns are also 

permissible which may contain more than one modifier, which can also be replaced by a 

compound noun.  There is also a requirement to put the relevant part of speech tag with the 

replacement term, because it can also manage verbs that may require consideration of 

additional design features. 

 

Figure 3.5-2 IVM Resolution 

Therefore, during processing where a concept exists in the model, its replacement is easily 

identified, replaced and resolved through this dictionary look-up.  

A manual intervention to resolve cataphoric references seems like the only logical step 

forward and one which would need to be created prior to automated analysis. This is because 

there is no other efficient means to resolve a cataphoric reference, due to the natural usage of 

language, where different terms are used to refer to some other term, which may or may not 

be synonymously related to one another. This is a major departure from the original idea: 

automation should identify all relevant model features itself, without manual intervention.  

<referent name="membership number"> 
 <withTerm term="member number"/> 
 <posType pos="noun"/> 
</referent> 
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On the other hand, the only other viable solutions would be to ensure that the specification 

does not contain this type of reference and that a consistent language is used throughout 

beforehand. For example, where a feature such as customer is introduced, the remainder of the 

document must only contain references to customer. However, this is restrictive and adds 

additional effort to the process by forcing a consistent way of writing or through a rewrite of 

the specification.  

The solution presented to resolve the issue of intralinguistic variations is not prescriptive, but 

the results produced from automated analysis will be affected in the ways discussed. 

3.5.4 Ambiguity 

Ambiguity is a difficult problem not just for automation to resolve but also for the human as 

well. Even though the ASA does not intend to deal with or manage ambiguity, it is worthwhile 

to discuss the key issues that arise from the introduction of ambiguity within a Software 

Requirements Specification (SRS) document. 

Ambiguity typically arises when a phrase, sentence or word can be interpreted in many 

different ways or is taken out of context. There are two key types of ambiguity: syntactic and 

lexical.  

3.5.4.1 Syntactic Ambiguity 

Syntactic ambiguity arises when the meaning of a sentence or phrase can be interpreted in 

many differing ways, which affects our overall understanding of what was originally implied. 

This typically occurs from the varying structures implied by the sentence and the relationship 

between the components of the sentence such as clauses, phrases and words. 

For example: 

‘I saw the girl with the telescope’ 

The example can imply that either the girl had the telescope or I used the telescope to see the 

girl. 

The key issue associated with syntactic analysis is that there is the possibility to create 

erroneous model features such as, relationships, classes, parameters, operations and attributes. 

Given the syntactic structure for the example (see Figure 3.5-3), it can be easily seen how this 
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can be done. The example syntactic analysis implies that it is I who has the telescope, but it 

could be the girl and here lies the specific problem. 

 

Figure 3.5-3 Example Sentence Parse Tree 

Resolution of this type of ambiguity either has to be detected by some means, which could be 

possible through the logarithmic probability given during sentence analysis by OpenNLP or 

removed explicitly and by clearly stating the actual requirements. During sentence processing, 

it is possible to obtain from OpenNLP the logarithmic probability indicating an opportunity 

for resolution. Therefore, it would be possible with this information to define a threshold 

which could be used to query the user as to the intended meaning of the requirement, but 

requires further consideration. 

3.5.4.2 Lexical Ambiguity 

Lexical ambiguity is the case where a single word or phrase may have multiple meanings 

known as polysemy. For example, the word bear has a polysemy count of 2 for nouns and 13 

for verbs. This does present a problem when considering its true meaning and is the primary 

reason for choosing the common semantic model for the ASA discussed. For example: 

‘Bear left at the end of the road’ 

In this example bear has two very different meanings; either the animal ‘bear’ has been left at 

the end of the road, or it is an instruction to turn left at the end of the road. The ASA in this 

case would create a class for bear, but it is difficult surmise if this is correct or not without 

additional contextual information. Hence, it might be possible through the surrounding 

context in which the word appears to find its true meaning. However, this is something this 

ASA does not undertake. 

Current techniques utilised to resolve the ambiguity issue is known as Word Sense 

Disambiguation (WSD) [IV98], which is an open problem in natural language processing that 

attempts to resolve polysemous words, but has varying degrees of accuracy. 

(ROOT 
  (S 
    (NP (PRP I)) 
    (VP (VBD saw) 
      (NP (DT the) (NN girl)) 
      (PP (IN with) 
        (NP (DT the) (NN telescope)))) 
    (. .))) 
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The solution to syntactic ambiguity could be simpler compared to lexical ambiguity by being 

vigilant in the creation of the software requirements specification and avoiding the 

introduction of this issue or by means of automated detection. However, through 

consideration of the model developed by automation and reviewed by the developer, 

concerns of ambiguity could be identified within the model and corrected either by the 

developer or through the development of a revised specification. 

3.5.5 Missing Requirements & Domain Knowledge 

A problem for both human and automation is the notion of both missing requirements and 

domain knowledge, both of which can be interlinked. The ASA itself is entirely domain 

independent, being reliant on the semantic and syntactic models for the identification of 

design features as a starting point in the development process. Therefore, if there are 

requirements which are missing from the specification, then the ASA will never be able to 

identify these features, which is also a similar issue for a manual approach.  

During the manual approach, it may or may not become apparent that there are missing 

requirements, which can be rectified at a later point. If not, then it is likely that this will lead 

to an incomplete software model that may require further iterations to resolve the situation. 

In a similar vein, if the requirements are missing and then later discovered after automated 

analysis has taken place, these can easily be included and the analysis re-run.  

Personal/common knowledge of the domain can also be of benefit that can aid discovery of 

additional aspects related to some feature contained within the specification, which this 

approach does not benefit from. This information may not be included within the actual 

specification for a variety of reasons as it may be assumed knowledge. For example, a taxi has 

features that may not be discussed, but may also require modelling such as its passenger 

capacity. Resolution of this specific issue can be addressed by ensuring that all the relevant 

information is contained within the specification, or information discovered later can be 

included and analysis re-run, but this is easier said than done which is why domain experts 

are employed. 

Another specific issue regarding domain knowledge are acronyms contained within 

specifications, such as ATM that identifies an automatic teller machine. WordNet does 

provide some information for some acronyms, although it is unlikely that it includes 
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information about industry specific acronyms (for example UML). This can be similarly 

resolved through full definition of the actual acronym, but is again an expensive process. 

A practical solution of these issues for both acronyms and specific domain knowledge would 

require the development of a domain dictionary or ontology that would allow the ASA to 

query for acronyms and knowledge that are not within the semantic model. 

Even though both missing requirements and domain knowledge are not addressed during the 

approach, they are worthy enough of discussion in relation to the problems that they present 

and possible routes for resolution. Since the ASA is highly efficient (time-wise) in its analysis, 

it is likely that these deficiencies of both domain and missing requirements would quickly 

become apparent from the model produced, thus allowing manual investigation and 

resolution through iterative analysis and re-processing. 

3.6 Implementation 

This section presents a general overview of the ASA’s software architecture (Figure 3.6-1). The 

ASA is standalone application that is implemented in Java and is operated from the command 

line. The ASA accepts an English natural language specification document as input and 

returns a UML model in XMI format according to the OMG MOF guidelines that can then be 

imported into a variety of CASE tools for review, validation and manipulation.   

 

Figure 3.6-1 Automated Software Architect Automation Process 

The ASA has two key external dependencies to ensure correct operation: the natural language 

processing toolkit OpenNLP [Mor07] that aids syntactic analysis and WordNet [Mil95] a data 

dictionary that assists with semantic analysis 

Essentially the process is to take the original data and either perform some transformation and 

or identify additional information for use within the Class, Attribute, Relationship, Parameter 
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and Operation detector (CARPOD) processor. The processes defined within CARPOD can 

identify the relevant model features which are then subsequently stored in a graph data 

structure which is later used by a UML processor to construct the UML model.  

The implementation is split into two key stages: data gathering and detection phases; the goal 

of the data gathering phase is to ensure that all relevant information is extracted and is 

available for the CARPO detector.  

The data gathering process can be defined as follows:   

• Document Structural Analysis and Transformation 

• Word Data Collection 

Document structural analysis seeks to understand how the requirements specification is 

structured in terms of paragraphs and sentences. This understanding allows the specification 

to be transformed into an XML document which can be used to trace decisions made by the 

ASA back into the requirements. The transformation process from an SRS document into a 

XML document is automatic and Figure 3.6-2 defines the corresponding document type 

definition (DTD). 

 

Figure 3.6-2 SRS to XML Document Type Definition 

The Document Type Definition (DTD) preserves the integrity of the document by allowing 

sentences to be associated to their relevant paragraph. Each of the paragraphs and sentences 

are tagged with an identifier that aids traceability. Paragraphs are identified by pattern 

matching blocks of text followed by a blank line, where the natural language parser will 

identify all of the individual sentences. A separate process rewrites the SRS into an XML 

document. Figure 3.6-3 exemplifies an SRS that has been transformed into XML format.  

<!ELEMENT document (paragraph+)> 
<!ELEMENT paragraph (#PCDATA|s)*> 
<!ELEMENT s  (#PCDATA)> 
 
<!ATTLIST document  id CDATA  #REQUIRED> 
<!ATTLIST paragraph  id CDATA  #REQUIRED> 
<!ATTLIST s  id CDATA  #REQUIRED>  
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Figure 3.6-3 Sentence and Traceability Link Identification 

With the structure of the document identified and the parse tree constructed by OpenNLP (see 

Figure 3.2-2) the approach can then start to construct the relevant syntactic and semantic 

information that is needed for use within the CARPO process. Starting from the perspective 

of the individual word, Figure 3.6-4 identifies the relevant information that needs to be known 

prior to CARPO processing. 

 

Figure 3.6-4 Word Data Collection 

In essence, the OpenNLP parse tree is reconstructed along with the additional information 

identified during word data collection, which is then made available to the CARPO detector 

for processing. 

The CARPO process then performs an in-order traversal of the newly constructed parse tree 

and using the Common Semantic and Syntactic models, discussed throughout this chapter, 

<document id='0'> 
<paragraph id='1'> 

<s id='p1.0'>A library issues loan items to customers.</s> 
<s id='p1.1'>Each customer is known as a member and is issued a 
membership card that shows a unique member number.</s> 

</paragraph> 
 

<paragraph id='2'> 
<s id='p2.0'>The library is made up of a number of subject 
sections.</s> 
 

</paragraph> 
</document> 
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the relevant candidate features of the model can be identified and stored within a graph 

structure for transformation into XMI data format. 

Figure 3.6-5 demonstrates the graph that is used to store candidate model features once they 

have been identified during the detection phase. A graph node includes a trace identifier, can 

have multiple edges and is used to manage candidate class, attribute or operation information; 

edges represent additional information such as the relationship, operation and parameters, 

multiplicity and traceability information which can be used to connect to other nodes or the 

node itself. 

 

Figure 3.6-5 CARPO Graph Data Construct 

Finally, every node and edge contained within the graph maintains its own traceability 

information so that decisions undertaken by the approach can be traced directly to the 

sentence from where it came from. Once the graph is fully constructed it can then be traversed 

and an XMI representation of the UML model can be constructed and used within a variety of 

case tools for review. 

3.6.1 Worked Example 

This section will work through the transformation process from textual requirements 

specification through to UML Model of the ASA’s approach to automation. The following 

specification, Figure 3.6-6, originally identified in the related works [Har00] the specification 

contains 3 paragraphs, 7 sentences and 100 words and is in domain of hospital [Duf95]. 
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Figure 3.6-6 Local Hospital Requirements Specification [Duf95] 

This specification is processed by the approach and transformed into the following XML 

document representation, Figure 3.6-7: 

 

Figure 3.6-7 XML representation of Requirements Specification 

Once the transformation into the XML document is complete, each of the sentences contained 

within the specification are processed individually to identify their relevant syntactic structure 

as demonstrated within Figure 3.6-8. It is this syntactic structure that makes it possible to 

extract relevant candidates and apply the rules that have been identified and discussed 

throughout this thesis. 

A local hospital consists of many wards, each of which is assigned many patients.  

Each patient is assigned to one doctor, who has overall responsibility for the patients in 

his or her care. Other doctors are assigned on an advisory basis. Each patient is 

prescribed drugs by the doctor responsible for that patient. 

Each nurse is assigned to a ward and nurses all patients on the ward, though is given 

special responsibility for some patients. Each patient is assigned one nurse in this 

position of responsibility. One of the doctors is attached to each ward as an overall 

medical advisor. 

<?xml  version ="1.0"  encoding ="UTF- 8" ?> 
<! DOCTYPE document  SYSTEM "RQSDTD.dtd" > 
<document  id ='0' > 
   <paragraph  id ='1' > 
 <s id ='p1.1.0' >A local hospital consists of many wards, each of 
which is assigned many patients. </ s> 
   </ paragraph > 
   <paragraph  id ='2' > 
 <s id ='p2.1.0' >Each patient is assigned to one doctor, who has 
overall responsibility for the patients in his or h er care. </ s> 
 <s id ='p2.1.1' >Other doctors are assigned on an advisory basis. </ s> 
 <s id ='p2.1.2' >Each patient is prescribed drugs by the doctor 
responsible for that patient. </ s> 
   </ paragraph > 
   < paragraph  id ='3' > 
 <s id ='p3.1.0' >Each nurse is assigned to a ward and nurses all 
patients on the ward, though is given special respo nsibility for some 
patients. </ s> 
 <s id ='p3.1.1' >Each patient is assigned one nurse in this position  
of responsibility. </ s> 
<s id ='p3.1.2' >One of the doctors is attached to each ward as an o verall 
medical advisor. </ s> 
   </ paragraph > 
</ document > 
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Figure 3.6-8 Syntactic Parse Tree Example 

At the very lowest processing level by the ASA, it is the parse tree which is at the core which 

is traversed to identify the sentence structure and apply the rules discussed throughout this 

thesis where appropriately.  

Both Table 3.6-1 and Table 3.6-2 identify all the candidate nouns, and verbs from the traversal 

of the parse tress, their semantics and candidate UML features that they may represent from 

the resulting semantic model 

Table 3.6-1 Noun Class Candidates 

Identified Nouns Semantic 1 Semantic 2 UML Feature(s) 

Position Location Attribute Class 

Patient Person - Class/Hierarchy 

Basis Relation - N/A 

Ward Person Artefact Class/Hierarchy 

Nurse Person - Class/Hierarchy 

Advisor Person - Class/Hierarchy 

Care Act - N/A 

Hospital Artefact - Class 

Drug Artefact - Class 

Responsibility Act Attribute N/A 

Doctor Person - Class/Hierarchy 

Table 3.6-2 Verb Relationship/Operation Candidates 

Identified Verb Semantic UML Feature(s) 

Are Stative Operation 

Is Stative Operation 

Assigned Social Relationship/Operation 

Given Possession Relationship/Operation 

Attached Contact Relationship/Operation 

Prescribed Communication Relationship/Operation 

Consist Stative Operation 

The candidates contained within both tables and that are confirmed by the rule set discussed 

in this thesis are subsequently added to the CARPO graph structure. Figure 3.6-9 

(ROOT 
  (S 
    (NP (DT A) (JJ local) (NN hospital)) 
    (VP (VBZ consists) 
      (PP (IN of) 
        (NP 
          (NP (JJ many) (NNS wards)) 
          (, ,) 
          (SBAR 
            (WHNP 
              (NP (DT each)) 
              (WHPP (IN of) 
                (WHNP (WDT which)))) 
            (S 
              (VP (VBZ is) 
                (VP (VBN assigned) 
                  (NP (JJ many) (NNS patients))))))))) 
    (. .))) 
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demonstrates a textual representation of that graph for the Patient class candidate that was 

identified by the ASA.  It demonstrates the key class nodes and any relevant in our out edges 

for that note and what those edges describe, which may be relationships, attributes, 

parameters or more. 

Figure 3.6-9 CARPO Graph Extract 

 

With the candidates confirmed and the CARPO graph loaded with all the relevant information 

at this point the automation process has essentially completed. All that remains now is to 

transform the CARPO graph data into a UML Model, Figure 3.6-10.  

 

Figure 3.6-10 ASA version of Local Hospital Problem 

INTERFACE: IPatient :MAIN_NODE: TRACE_ID: '[p1.1.0,  p2.1.0, p2.1.2, p3.1.0, p3.1.1] 
INTERFACE: IPatient :RELATION:  
 INTERFACE: IPatient :RELATION_IN_EDGES_FROM:  
  INTERFACE: IPatient :IN_NODE: 'IDoctor' TYPE: 'in terface' EDGE_TYPE: 'Association'  
  INTERFACE: IPatient :IN_NODE: 'Drug' TYPE: 'class ' EDGE_TYPE: 'Association'  
  INTERFACE: IPatient :IN_NODE: 'INurse' TYPE: 'int erface' EDGE_TYPE: 'Association'   
 INTERFACE: IPatient :RELATION_OUT_EDGES_TO:  
  INTERFACE: IPatient :OUT_NODE: 'ABSPatient' TYPE:  'abstract' EDGE_TYPE: 'Generalisation'  
 
ABSTRACT: ABSPatient :MAIN_NODE: TRACE_ID: '[p1.1.0 , p2.1.0, p2.1.2, p3.1.0, p3.1.1] 
ABSTRACT: ABSPatient :RELATION:   
 ABSTRACT: ABSPatient :RELATION_IN_EDGES_FROM:  
  ABSTRACT: ABSPatient :IN_NODE: 'Responsibility' T YPE: 'attribute' EDGE_TYPE: 'attribute' 
  ABSTRACT: ABSPatient :IN_NODE: 'assigned' TYPE: ' operation' EDGE_TYPE: 'operation'  
 ABSTRACT: ABSPatient :RELATION_OUT_EDGES_TO:  
  ABSTRACT: ABSPatient :OUT_NODE: 'Patient' TYPE: ' class' EDGE_TYPE: 'Extends'  
 
CLASS: Patient :MAIN_NODE: TRACE_ID: '[p1.1.0, p2.1 .0, p2.1.2, p3.1.0, p3.1.1] 
CLASS: Patient :RELATION:  
 CLASS: Patient :RELATION_<IN-NULL>: 
 CLASS: Patient :RELATION_<OUT-NULL>: 
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The creation of the UML model in Figure 3.6-10 is built using the Eclipse MDT UML2 API 

[MDT14] and is constructed by traversing the CARPO graph where the information contained 

within each node and edge is subsequently mapped to the corresponding UML element as 

assisted by the UML. Finally, the model that is constructed is fully editable by the analyst 

3.6.2 System Architecture 

There is no user interface associated with Automated Software Architect and the ASA is 

started from the command line with the user passing the file location of the document to be 

process. The ASA will then process this document that will finally results in the creation of a 

UML model. Figure 3.6-11 demonstrates a high-level view of the Automated Software 

Architect (ASA) as previously discussed at the start of this chapter. 

 

Figure 3.6-11 Automated Software Architect Automation Process 

Figure 3.6-12 identifies each of the top level packages that also have a corresponding UML 

Model contained within Appendix A.5. Each of the UML models details the ASAs architecture 

at a greater level of detail. Table 3.6-3 maps the top level packages to the overall ASA Process 

as defined previously. 

Table 3.6-3 ASA Process to Package Mapping 

Architecture Component Package Name Purpose 

SRS Document uk.ac.strath.sd.xml 

uk.ac.strath.sd.tree 

Transform document to suitable 

format and mange traceability links 

NLP opennlp.tools.lang.english OpenNLP Toolkit Interface 

SAM Model Processor uk.ac.strath.sd.nlp Detection of POS and language 

process 

CSM Model Processor uk.ac.strath.sd.nlu 

uk.ac.strath.sd.wordnet 

Application of semantic models 

WordNet Interface 

CARPO Detector uk.ac.strath.sd.model Application of static/dynamic 

processing rules 

CARPO Graph uk.ac.strath.sd.jccg Data structure managing detected 

features 

UML Model uk.ac.strath.sd.uml Generation of UML editable diagram 
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Figure 3.6-12 Top Level Package Diagram 

Along with the UML and package models, a sequence diagram detailed in Figure 3.6-13 

demonstrates the flow of processing within the ASA towards the creation of a UML model. 

The process is started from the command line and is done so by passing the location of the 

textual representation of the requirements specification document. This then goes through a 

series of processing steps that transforms the document into a XML representation containing 

its relevant paragraphs and individual sentence(s) along with their associated traceability 

links.  

The document is then processed and transformed at the sentence level where a tree 

representing how the sentence is constructed in terms of its individual parts of speech and 

semantic meanings is maintained. The information contained within the tree structure can 

then be processed and the appropriate candidate model features are detected by means of the 

static/dynamic rules applied by the CARPO detector and added to the CARPO graph. The 

CARPO graph is subsequently traversed and the information contained within is transformed 

into the final UML model for the system under analysis along with the relevant traceability 

information that allows the identification from which sentence the feature was detected.  
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Figure 3.6-13 ASA Sequence of Events
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3.7 Conclusion 

This chapter has presented both the semantic and syntactic models used to analyse a narrative 

natural language software specification on a sentence-by-sentence basis. This is in pursuit of 

creating an initial/conceptual UML model automatically from the natural language in an 

efficient and effective manner, alleviating the burdensome approach of manual analysis.  

The semantic model is used to detect relationships, attributes, operations, class inheritance 

hierarchies and classes and is based upon common semantic model that best imply specific 

design features assisted by WordNet Classifications.  

The syntactic model, in combination with the semantic model, utilises OpenNLP to retrieve 

the syntactic structure of each sentence. The ASA itself has base rules used to identify classes, 

attributes, relationships, operations, multiplicities, class inheritance hierarchies and 

parameters from the syntactic structures. Furthermore, through analysis of the high-level 

syntactic structures, it is possible to identify relationships at the clause level without the need 

of a main verb. 

This chapter concludes with a discussion of the key issues affecting both manual and 

automated analysis in relation to the software specification document. These issues 

specifically relate to ambiguity, missing requirements, domain knowledge, intralinguistic 

variations and tracing requirements from specification to model and vice versa. Finally, the 

chapter gives an overview of the implementation from data gathering, detection through to 

final UML XMI model and a detailed view of the applications overall architecture. 
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4.1 Introduction 

The techniques introduced and discussed in the previous chapter endeavour to identify the 

relevant model components from all the information contained within a natural language 

requirements specification document. The features of the initial model, whether it be classes, 

relationships, operations, attributes or parameters, require different considerations in the 

context of automated syntactic and semantic analysis when being evaluated for inclusion 

within the initial model. This chapter evaluates the implementation of the proposed technique 

towards automated analysis and initial model creation in the context of the key model 

features: classes and relationships. It does not consider operations, attributes or parameters in 

this evaluation, the reason for which are discussed later in this chapter. Finally, the chapter 

concludes with a comparative evaluation of its most closely related works.  

One of the key issues that became apparent with related work was the lack of evaluation 

within related approaches (see Chapter 2). Some of the related works’ evaluations used 

techniques taken from the domain of Information Retrieval (IR) and employed metrics such 

as recall and precision [Mic96, MMZ02, MG02, KZM+04, Har00, HG02]. Others utilised 

simple evaluation techniques such as a comparative evaluation of what is versus what is not 

created with no concrete metrics to validate the results [GB94, IO05, IO06, OI06, BSC06, 

BCA06, BSM09, PRM+07, VAD09]. This evaluation will also exploit IR evaluation techniques. 

The evaluations utilising these techniques only consider the class detection process and do not 

evaluate other aspects of the design such as relationships, attributes, or operations. This 

evaluation will only investigate class and relationship detection and will not consider 

operation, parameter or attribute detection. This is because the model created by automation 

is defined only as an initial model, whereas the actual (ideal) model used in the comparison 

has likely been refined and where features such as operations, parameters and attributes may 

have been identified by other means such as domain knowledge, personal experience that 

automation does not have access to. The approach taken towards automated software 

modelling has no automated refinement phase and is entirely dependent on what information 

is made available at time of processing implying that if it is not in the textual specification it 

will not be considered by the automated approach.  
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The evaluation undertaken herein is based upon the work by Harmain [Har00], where the 

performance evaluation is broken into three distinct parts:  

• Firstly, a performance evaluation utilising Precision, Recall and Over-Specification; 

Over-specification, defined by Harmain, is a measurement of additional class 

candidates or relationships that are not contained within the ideal model, but are 

deemed useful by their context within the text and the author’s own judgement. 

• Secondly, results from the performance evaluation are used to investigate and identify 

any key issues that may arise from the requirements specification itself and that may 

impact the automated approach towards successful identification of all relevant 

model features.  

• Thirdly, the evaluation will also undertake a comparative evaluation of the overall 

technique in the context of the most closely related works CM-Builder developed by 

Harmain [Har00] and NL-OOPS developed by Mich [Mic94]. 

4.2 Evaluation Background 

The performance evaluation undertaken here was originally used by Harmain and 

Gaizauskas [Har00, HG02] for the evaluation of their CM-Builder implementation. This 

utilised a corpus of requirements specifications and also introduced a comparison between 

NL-OOPS [Mic94] and CM-Builder. Furthermore, Harmain’s comparative evaluation does not 

measure the performance of both approaches through the measures of recall and precision, 

but is a high level review of the comparative models created by both approaches.  

The evaluation undertaken here uses the same requirements specification corpus of both 

Harmain and Mich. In addition, additional requirements specifications have been identified 

and added to the corpus. 

Harmain’s evaluation is similarly based upon the work of Hirschman and Thompson [HT95] 

who identify that the evaluation of natural language processing is crucial for both system 

developers as well as users. They broadly define three kinds of evaluation; Adequacy, 

Diagnostic and Performance evaluations. Harmain only utilises the performance evaluation 

methodology that has a well-defined structure amenable to quantitative analysis and which 
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sets out what will be evaluated, how this will be measured and how the values for the measure 

will be identified  

The method step within the performance evaluation asks How do we determine the appropriate 

value for a given measure and a given system? To address this Harmain uses the metrics precision 

and recall which are both widely accepted within the IR community and defined in Girshman 

and Sundheim [GS96].  

There are differences between both IR and automated requirements analysis and model 

creation which Harmain and Gaizauskas [Har00, HG02] identifies as follows: An IR system 

extracts specific information that is based upon a search criterion such as named entities, 

partial parses and text simplification. In contrast, the approaches of CM-Builder, NL-OOPS 

and the ASA do not have a pre-defined search criteria. 

The key answers in IR represent correctly extracted information by a human analyst, whereas 

the key answer (i.e. the original class model) represents a model of the problem domain, but 

there is no way to know for sure if an accurate model of the problem domain exists. 

These differences (text simplification, named entities, and key answers) identify why it is 

difficult to evaluate NLP CASE tools and can possibly explain why other related works have 

not attempted any form of evaluation.  

4.3 Evaluation Methodology 

The performance evaluation methodology (below) defined by Hirschman and Thompson 

[HT95] addresses the three important aspects that must be considered by any evaluation. The 

overall aim is to evaluate the performance of a system in some area of interest and the steps 

are defined as follows: 

• Criterion: What are we interested in evaluating? 

• Measure: What specific property of the system performance will we report in an 

attempt to get to the chosen criterion? 

• Method: How do we determine the appropriate value for a given measure and a given 

system? 
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Utilising these techniques the evaluation methodology is defined as follows: 

• Criterion: The criterion applied to evaluate the ASA is to evaluate how close the 

models produced by automation are in comparison to that of the human developed 

model (i.e. The Ideal Solution). However, there is no ideal solution in existence for a 

given problem domain as two different developers could, and can, create radically 

different models based upon their own domain knowledge and expertise. Neither can 

these models be considered as correct or incorrect, but they can be categorised as good 

or bad. Harmain addresses this issue by simply stating that a good model is one that 

has been published within an Object-Oriented text book and is therefore considered 

as the ideal solution. Additionally, for the evaluation it has also been assumed online 

works can be included within the definition of an ideal solution.  

• Measures: The measures of Recall, Precision, F-measure and a further metric defined 

by Harmain and Gaizauskas [Har00, HG02] Over-Specification are used to evaluate 

the performance of both class and relationship detection.  

o Over-Specification: Is a measure that addresses the inclusion of additional 

class/relationships that are not contained within the Ideal Solution. The extra 

elements are identified during the detection process by automation, and after 

consideration of the element within the context of their passage, their 

inclusion within the initial model maybe considered warranted because they 

represent features of the system that a developer may wish to model. The 

concept of the ideal solution used in this evaluation represents a model that 

may have already been through several design iterations to realise the final 

design. Therefore, it is more than probable that the Ideal Solution has already 

been through this kind of over-specification phase and through design 

iterations much of the additional information classified as ‘extra’ could have 

already been considered and removed through this iterative design process.  

• Method: All classes and relationships in the manually created model (known as the 

Ideal Solution) and the automation model (known as the ASA) are compared with each 

other manually. The following categories are used to manually classify each element 

in the respective models. 
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o Correct/True Positive (TP):  

� Class Detection: A class found by the ASA is considered correct/true 

positive, if it exactly matches an element in the Ideal Solution. If no 

exact match exists but by the author’s judgement an element exists in 

the ASA that is synonymously related to an element in the ideal 

solution, it is also therefore considered correct.  

� Relationship Detection: An association relationship found by the 

ASA is also considered correct/true positive if both classes are TP and 

the relationship exists within the ideal model. 

o Incorrect/False Positive (FP):  

� Class Detection: An element found by the ASA is said to be 

incorrect/false positive, if it is not in the Ideal Solution and both the 

problem statement and the author’s judgement confirm that it is 

wrong.  

� Relationship Detection: An association relationship found by the 

ASA is said to be incorrect/false positive, if either of the classes involved 

within the relationship have also been identified as incorrect/false 

positive or the relationship does not exist within the Ideal Solution. 

o Missing/False Negative (FN): an element is said to be missing/false negative, if 

it is contained within the Ideal Solution, but has not been identified by the ASA 

algorithm. This stands true for both class and relationship detection. 

o True Negatives (TN): represents class candidates that have been considered 

and deemed irrelevant by the ASA and are not included within the Ideal 

Solution.  

o Extra (E): An element is said to be an extra if it is not contained within the Ideal 

Solution, but by the author’s own judgement and aided by the context of the 

problem statement and identified by the ASA it demonstrates a useful 

concept for consideration. This stands true for both class and relationship 

detection. 
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o Synonymous: An element in the ASA is said to be synonymously related to 

another correct/true positive answer if, from its position within the context of 

the specification, it is used as a synonym for a correct/true positive answer. This 

only stands for class detection (see 3.5.3 Intralinguistic Variations). In the 

context of the Ideal Solution this is assumed to be automatically considered 

either consciously or unconscious bias by the domain analyst 

With these method definitions defined in terms of the Ideal Solution, it is now possible to define 

the following measures: 

Recall is a measure related to a positive outcome, which identifies the fraction of relevant 

instances that are retrieved and is defined as follows: 

FNTP

TP
recall

+
=  

Precision identifies the accuracy of the system in terms of the fraction of the retrieved 

instances that are relevant and is defined as follows: 

FPTP

TP
precision

+
=  

F-measure a further measure is also utilised during this evaluation known as the F-Measure 

[Rij79]. This measure is based on the harmonic mean of Precision (P) and Recall (R) and is 

defined as follows: 

RP

RP
measureF

+
⋅⋅=− 2

 

When interpreting these results the closer the score is to 1 the better the result; conversely the 

closer the result is to 0, the worse the system performs in terms of Precision, Recall and its 

overall effectiveness. 

Over-Specification identifies the fraction of elements that are included over and above the 

elements that are correctly identified by the approach, but are not contained within the ideal 

model and is defined as follows: 

FNTP

E

+
=

 

Over-Specification 
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4.3.1 Threats to Validity 

4.3.1.1 External Threats 

External threats to validity aims to address how the approach relates to the real world 

commonly known as its generalisability. This evaluation has based itself upon the notion of 

using the ideal solution where there exists a model and English requirements specification 

that is published either in a reputable online source or in a book. One of the key reasons for 

choosing the ideal solution is that no industrial specifications were/are typically available for 

public research. In addition, if a sample of industrial specifications were obtained – with 

model and specification text, it would likely not be as representative as the systems that have 

been identified and utilised during this evaluation.  

The specifications used within the evaluation are from a variety of differing domains such as 

banking, hospital management, ticketing systems, library management, other management 

systems and computer games all chosen to try and test the generalisability of the approach. 

The average specification size is 273 words and therefore not representative of large scale 

software systems. The largest specification is 1508 words and smallest is 65 words (see Section 

4.4 for additional corpus information). Nevertheless, the evaluation remains disadvantaged 

as a result of not having any industrial specifications which is a threat to the approaches 

overall validity. 

4.3.1.2 Internal Threats 

The approach taken has two key threats to internal validity, firstly, the manual classification 

of the categories Extra and Synonymous by the author. This threat does not affect the 

classification of Correct, as an answer key exists to guide the classification process and 

anything that is not in the answer key is hence Incorrect. Secondly, the corpus itself is of limited 

size, limited domains and are text book examples. 

The manual classification threat to validity concerns the notion of unconscious bias when 

classifying Extra and Synonymous from those deemed as Incorrect. Unconscious bias relates 

to a situation where the classification of an answer say as Incorrect, which should be classified 

as Extra, can affect the outcome of the results. Therefore, both the manual classifications and 

the possibility of unconscious bias could lead to a situation that may skew the overall results, 

in a positive or negative manner. This issue can only be resolved through an impartial 
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classification of the results. Even though the author has a vested interest in presenting the 

results in their best light, impartial as the author has tried to be, this threat persists. Therefore, 

all the classifications of the method categories have been undertaken by the author in an 

impartial manner as possible. 

The specification corpus main threat to validity concerns the author’s selection bias of the 

specifications to ones that best suit the approach. However, the majority of this bias can be 

negated as 13 out of the 17 specifications have been taken from related works so that 

comparative analysis of the approaches performance could be considered. The remaining 

specifications that have been selected by the author but have been identified from course work 

material: Gizmo Ball [MIT05] because of its size, complexity and additional non relevant 

information, Cinema System [CIS08] because of its size and completeness, KWIC [Par72] 

because of its small size and the ambiguities it introduces and finally Taxi [BAR12] because of 

its simplicity and conciseness. Additional threats such as the size of the specifications utilised 

within the evaluation (see Table 4.4-1) and the limited domain. The average number of 

sentences per specification is 17 with an average word count of 273 (which for industrial 

specifications is likely to be perceived as trivially small) and they cross nine different domains. 

However, to allow an effective comparison to be made between the approach and the most 

closely related works, utilisation of related works’ corpus specifications is a necessity. 

Mitigation of these threats would be to obtain industrial specifications, but in the majority of 

cases industrial specifications are unattainable due to them being covered by Non-Disclosure 

Agreements. 

4.4 Evaluation Corpus 

The corpus utilised in this evaluation consists of a total of seventeen specifications; eight used 

by CM-Builder, two used by NL-OOPS and seven identified by the author. All specifications 

fall within the concept of the Ideal Solution and each has a UML model with the exception of 

the NL-OOPS, which is missing one model. However, NL-OOPS does provide a key for this 

model and the UML models from the remaining specifications can be used to generate the key 

and evaluate the results for both Class and Relationship detection.  

The specifications are all from different domains and range from 65 to 1500 words and from 3 

to 94 sentences. Each specification takes the form of a narrative English description of the 
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system and its associated functionality. In addition, each of the specifications also has an 

associated UML model with the exception of specification number 10. The specifications are 

detailed in Appendix B.1 and Table 4.4-1 covers key information relating to the specifications. 

Appendix B.2 details the individual classification results and Appendix B.3 details the UML 

models created by automated analysis. 

Table 4.4-1 Evaluation Corpus Details 

No Specification Name Domain 
Word 

Count 

Sentence 

Count 
Used by Approach Reference 

1 Filing Problem 
Electronic Filing 

Management 
231 12 ASA/CM-Builder Der95 

2 Library Problem 3 Book Management 154 9 ASA/CM-Builder Cur95 

3 
Journal Registration 

Problem 

Journal/User 

Management 
153 7 ASA/CM-Builder Duf95 

4 Hospital Problem 2 Room Management  283 23 ASA/CM-Builder Duf95 

5 Hospital Problem 1 Patient Management  100 7 ASA/CM-Builder Cur95 

6 Library Problem 2 Loan Management 217 15 ASA/CM-Builder Cur95 

7 Organisation Problem 2 Staff Management 100 6 ASA/CM-Builder Cur95 

8 ATM Problem Banking System 136 8 ASA/CM-Builder/NL-OOPS RBP+91 

9 Library Problem 1 Library Loan System 193 16 ASA/NL-OOPS EP98 

10 Meeting Problem 
Sports League 

Management  
179 17 ASA/NL-OOPS RBP+91 

11 Cinema Problem Seating & Ticketing  561 25 ASA CIS08 

12 Gizmo Ball Computer Game 1508 94 ASA MIT05 

13 Organisation Problem 1 Course Administration 130 12 ASA  

14 Exam Problem Exam Marking 354 22 ASA  

15 Keyword in Context Document Indexing  65 3 ASA Par72 

16 Lift Problem Lift Control  181 11 ASA PRM+07 

17 Taxi Problem Taxi Management 106 7 ASA BAR12 

4.5 Results 

This section presents the results obtained for the system under evaluation in terms of Precision 

(P), Recall (R), Over-Specification (OvS) and F-Measure (FM). It is broken into two separate 

sections - one for class detection and the other for relationship detection - both of which have 

a comparative evaluation with related works.  

Table 4.5-1 demonstrates the average performance from both class and relationship detection 

evaluations. 

Table 4.5-1 Class and Relationship Detection Performance Summary 

Classification Recall Precision 
Over- 

Specification 
F-Measure 

Class Detection Average Performance 0.73 0.60 0.47 0.64 

Relationship Detection Average 

Performance 
0.26 0.33 0.68 0.28 

The results for class detection demonstrate a positive step towards automated analysis of 

natural language requirements specifications and even though class detection achieves a high 
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performance level in terms of recall and precision there is still room for improvement. The 

results achieved for both recall and precision in the context of relationship detection are not 

so encouraging. Both result sets for over specification also produce some interesting results, 

especially in the context of relationship detection, which is very high. It is the key intention of 

this evaluation to identify, discuss and highlight the primary reasons that may be prohibiting 

the ASA approach from achieving better results in the context of both class and relationship 

detection.  

4.5.1 Class Detection Performance Results 

Figure 4.5-1 boxplots the data contained within Table 4.5-2 and demonstrates the performance 

of the automated approach. 

 

Figure 4.5-1 ASA Performance Results 

The data within Table 4.5-2 details the raw performance figures for the candidate class 

detection process of the automated approach. The figures also considers the standard 

deviation which is used to understand the spread of the data.  In the case of the ASA’s 

approach the standard deviation value should be as small as possible as this demonstrates 

that the techniques employed for candidate class are not volatile and can produce consistent 

and reliable results. Overall, the approach performs rather will with an average recall rate of 

73% and precision of 60% but does some have key lows where specification 12 the largest 

specification in terms of word and sentence count, 5 times bigger than the average 

specification, used in this evaluation but also has the lowest performing result. Whereas 

specification 13 (not the smallest specification overall) is 40% smaller in size when compared 
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to the average sentence and word count but performs the best in terms of recall, but not so in 

terms of precision. The following sections investigates the results a little deeper. 

Table 4.5-2 Individual SRS Performance Results 

Specification No. TP1 FN1 FP1 E1 S1 Recall Precision OVS FM 

1 6 4 5 4 2 0.60 0.55 0.40 0.57 

2 4 4 4 7 0 0.50 0.50 0.88 0.50 

3 4 1 5 6 1 0.80 0.44 1.20 0.57 

4 8 1 7 3 2 0.89 0.53 0.33 0.67 

5 4 1 0 3 0 0.80 1.00 0.60 0.89 

6 7 1 4 2 2 0.88 0.64 0.25 0.74 

7 3 1 1 1 1 0.75 0.75 0.25 0.75 

8 9 3 6 2 3 0.75 0.60 0.17 0.67 

9 5 2 4 3 1 0.71 0.56 0.43 0.63 

10 7 4 7 3 0 0.64 0.50 0.27 0.56 

11 8 5 16 12 3 0.62 0.33 0.92 0.43 

12 13 21 28 18 8 0.38 0.32 0.53 0.35 

13 5 0 10 2 0 1.00 0.33 0.40 0.50 

14 16 5 5 7 2 0.76 0.76 0.33 0.76 

15 4 2 1 3 1 0.67 0.80 0.50 0.73 

16 8 2 5 3 1 0.80 0.62 0.30 0.70 

17 6 1 0 2 5 0.86 1.00 0.29 0.92 

Average Performance 0.73 0.60 0.47 0.64 

Standard Deviation 0.15 0.20 0.27 0.15 

4.5.2 Class Candidate Results Investigation 

Although the results themselves are encouraging, further investigation into the root causes of 

not being able to achieve high levels of both recall and precision are sought. Given that a 

software requirements specification (SRS) may contain all relevant and correct information, it 

should be possible to achieve high levels for both recall and precision. Figure 4.5-2 details the 

total raw data for all SRS documents processed during this evaluation. The key areas that will 

be investigated further are False Negatives and False Positives as these are the key to 

increasing both recall and precision.  

                                                           
1 TP –True Positive, FN – False Negative, FP – False Positive, E – Extra, S - Synonymous  
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Figure 4.5-2 All SRS Raw Classification Data 

Before discussing the key issues analysis, it is important to address an interesting finding 

associated with false negatives. The classification of a false negatives states that: an element is 

considered a false negative if it is not discovered by the approach and is contained within the ideal 

model’s answer key. However, in some cases the answer key in the original model contains class 

candidates that are not actually defined within the requirements specification text at all. For 

example, Hospital Problem 2 [Duf95] the original model has a Staff class which is not defined 

in the specification texts (see Appendix B.1). This raises the question as to how this class 

candidate has been discovered in the original model and it is only through deeper 

investigation of false negative classifications (see Appendix B.2) has this issue come to the 

forefront. 

Figure 4.5-3 classifies false negatives (FN) in to two groups, FN(P) and FN(NP) where FN(P) 

identifies false negatives that are present within the requirements specification text, and 

FN(NP) that represents false negatives that are not present within the requirements 

specification text.  

 

Figure 4.5-3 Present/Not Present False Negative Classifications 

0 50 100 150 200 250 300

False Negative

True Negative

False Positive

True Positive

0 5 10 15 20 25 30 35 40

FN(P)

FN(NP)



155 

The analysis has identified that 64% of all false negatives, FN(NP), are not contained or 

defined in the requirements specification text by any means and how they are being identified 

within the ideal model is an unknown. Without this information contained within the textual 

specification it will be impossible for automation to successfully identify all relevant class 

candidates and as a result recall and precision will be negatively impacted.  Since FN(NP) are 

not contained in the specification text this has identified an opportunity to accurately reflect 

the ASA performance by discounting FN(NP) from the performance investigation however,  

the results and findings of this are discussed later in this section. 

4.5.2.1 False Negative and Positives Issue Analysis 

Both false positive and false negative issues are very closely related as a result they are 

discussed under the one section as both groups have such similar issues in the areas of 

semantics, Rule 27 and NLP.  Figure 4.5-4 quantifies and identifies the root causes for false 

negatives (that are present within the specification) and false positives (See Appendix B.4 for 

the raw data).   

  

Figure 4.5-4 Key Issues Analysis of False Positives and Negatives 

Semantic Issues: 

In the case of false negatives there are semantics that are out with the set of candidate classes 

(Table 3.3-2), and for false positives the opposite - semantics that are within the set of class 

candidates ( 

Table 3.3-1). The semantics issue for both false positives and negatives represents the majority 

of their issues and in the case of false positives this is a key problem. Semantics is a core feature 
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of the approach within the ASA and is used to decide what should and should not be created 

as a class candidate. 

Table 4.5-3 demonstrates the semantic issue for both false positives and negatives, it details 

the issue type, the word used in the specification and its most common semantic used to 

identify whether it’s a class candidate or not.  

Table 4.5-3 False Negative and Positive Semantic Issues 

Issue Type Word Most Common Semantic 

False Negative transaction Action 

False Negative loan Possession 

False Negative competition Action 

False positive description Communication 

False positive platform Artefact 

False positive hypotenuse Shape 

In the case of false positives a class candidate is created when it should not have been and for 

false negatives a candidate class should be created but is not. In both cases, the issue is related 

directly to the semantics that are used to determine whether a class candidate should be 

created or not. 

Each word also has additional semantics for differing contexts and Table 4.5-4 details the 

additional semantics that are available and whether those semantic could be used to create a 

candidate class, if the approach were able to disambiguate. 

Table 4.5-4 False Negative and Positive Associated Semantics 

Issue Type Word Associated  Semantics 
Associated  Semantics indicate 

Class Candidate 

False Negative transaction None - 

False Negative loan communication Yes 

False Negative competition Event, Person Yes 

False positive description Communication, Cognition Yes 

False positive platform Communication Yes 

False positive hypotenuse None - 

The majority of false negatives have a semantic that would allow the creation of a candidate 

class and disambiguation could lead to a possible solution, but the same can also be said of 

false positives. As a result, resolution via disambiguation may not be an optimal solution in 

all cases and an alternative solution needs to be sought to address the core issue of false 

positives. 
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Rule 27 Issue: 

Rule 27 is a rule that is used to transform a class candidate into an attribute during the 

automated analysis and model generation process which is defined as follows: 

If a class candidate exists as defined by Rule 1 or Rule 2, and within that noun’s semantic set it also 

belongs to the set of attribute semantics, and the frequency count of that noun is less than the average 

noun frequency count for class candidates for that document, then the noun is said to be an attribute. 

In the case of false negatives, the candidate classes should remain as a candidate class, but are 

being transformed into attributes because they meet the criteria defined by Rule 27.  Where in 

the case of false positives they have a class candidate semantic and also have a high term 

frequency and remain as a class candidate when they are actually better suited to being 

attributes. Therefore, the frequency analysis for the Rule 27 is called into question. This process 

of transforming a class candidate into an attribute may not be appropriate and employing a 

different strategy, such as identifying/marking potential attributes rather than actually 

transforming them into attributes, may be a better approach. 

NLP Issues: 

The NLP toolkit, OpenNLP, identifies all the relevant parts of speech (POS) for each word 

however, in some cases the identification goes awry and the incorrect POS is identified. Table 

4.5-5 gives examples of the issue, the word from the specification, the correct part of speech 

and the POS identified by the NLP toolkit.  

Table 4.5-5 NLP Issues 

Issue Type Word Correct POS NLP Identified POS 

False Positive interact Verb Noun 

False Positive coarser Adjective Noun 

False Negative output Verb Verb 

The issue with false positives is that they are being created as candidate classes when they 

should not be because WordNet identifies the incorrect part of speech. The false negative issue 

only impacts one specific word, output, where in the ideal model this is identified as candidate 

class, but since the word is identified as a verb it is never considered as a potential class 

candidate by the approach, which is correct and the NLP toolkit is correct in its POS 

identification. Further investigation reveals that the approach does process output, but creates 

an action rather than a class. Whether this is correct or not is open to interpretation and the 
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problem domain. It is important to remember that the ideal models may have been already 

been through many design iterations and the operation output may have been extracted as a 

candidate class, which better suits the problem domain. In this case very little can be done 

unless some form of domain knowledge is to be created and used along with candidate 

processing. 

4.5.2.2 Impact of discounting missing class candidates 

The investigation of False Negatives has identified that 64% of all false negatives that are 

missing are not actually defined within the specification texts. Since they are not defined 

within the specification texts it is impossible for automation to create class candidates. This 

has led to considering what the impact on overall performance would be if false negatives not 

present within the specification deducted from the total false negative counts and whether 

this give a more accurate picture of actual performance. 

Table 4.5-6 details the raw analysis data, where FN(P) represents false negatives that are 

actually stated within the specification document, but missed by automation. Where FN (NP) 

represents false negatives that are not stated within the specification document. The 

combination of both FN(P) and FN(NP) will give the original false negative count see Table 

4.5-2 

Table 4.5-6 Individual SRS Performance Results (with FN present only) 

Specification No TP FN(P) FN(NP) FP E S Recall Precision OVS FM 

1 6 2 2 5 4 2 0.75 0.55 0.50 0.63 

2 4 2 2 4 7 0 0.67 0.50 1.17 0.57 

3 4 0 1 5 6 1 1.00 0.44 1.50 0.62 

4 8 0 1 7 3 2 1.00 0.53 0.38 0.70 

5 4 0 1 0 3 0 1.00 1.00 0.75 1.00 

6 7 0 1 4 2 2 1.00 0.64 0.29 0.78 

7 3 1 0 1 1 1 0.75 0.75 0.25 0.75 

8 9 3 0 6 2 3 0.75 0.60 0.17 0.67 

9 5 2 0 4 3 1 0.71 0.56 0.43 0.63 

10 7 4 0 7 3 0 0.64 0.50 0.27 0.56 

11 8 4 1 16 12 3 0.67 0.33 1.00 0.44 

12 13 4 17 28 18 8 0.76 0.32 1.06 0.45 

13 5 0 0 10 2 0 1.00 0.33 0.40 0.50 

14 16 2 3 5 7 2 0.89 0.76 0.39 0.82 

15 4 1 1 1 3 1 0.80 0.80 0.60 0.80 

16 8 0 2 5 3 1 1.00 0.62 0.38 0.76 

17 6 0 1 0 2 5 1.00 1.00 0.33 1.00 

Average Performance 0.85 0.60 0.58 0.69 

STDEV 0.14 0.20 0.37 0.16 
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What is uncovered is an average performance increase across the key metrics with no 

improvement in precision, an 18% improvement in recall, and a 3% increase in over-

specification is realised.  Figure 4.5-5 demonstrates an analysis that compares the original 

results against those that has class candidates not defined in the specification text removed 

from the false negatives.  

 

Figure 4.5-5 ASA Performance Analysis (FN (NP) Removed) 

Table 4.5-7 details the raw analysis numbers for the box plots and it is clear that discounting 

false negatives that are not contained within the specification FN(NP) improves standard 

deviation and the average for recall overall.  

Table 4.5-7 ASA vs. ASA (FN(NP) Removed) Class Detection Raw Data 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall  0.38 0.63 0.75 0.80 1 0.15 0.73 

Recall (FN(NP) Removed) 0.64 0.75 0.80 1 1 0.14 0.85 

Precision  0.32 0.50 0.56 0.75 1 0.20 0.60 

Precision (FN(NP) Removed) 0.32 0.50 0.56 0.80 1 0.20 0.60 

OVS  0.17 0.28 0.40 0.52 1.2 0.27 0.47 

OVS (FN(NP) Removed) 0.17 0.30 0.40 0.80 1.50 0.37 0.58 

4.5.2.3 Class Detection Conclusion 

Overall the ASA’s approach towards class detection is a positive step forward out of 551 

potential class candidates analysed by the approach: ~21% can be directly associated with true 

positives, false negatives represents ~11%, ~19% are associated with false positives, and ~49% 

are associated with true negatives. 

In addition to the evaluation and issues analysis, the investigation of the results has identified 

that 22% of all class candidates contained within ideal model are being identified by some 

other means as those missing classes are not detailed within the actual textual requirements 
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specification. Furthermore, the issue of missing classes that are stated within the textual 

requirements specification and contained within the ideal model represents only ~12%.  

Resolution of the false negatives is key to increasing the overall recall of the approach and this 

has been demonstrated by a further performance investigation that does not consider false 

negatives that are not present within the specification and removed these from the calculation 

process. This demonstrated a positive relative change in recall performance by 16%, but to 

actually achieve this gain the missing information has to be included within the specification 

document at the time of processing. Additional gains can be achieved by addressing the key 

issues also identified during the evaluation. Similarly there was a small increase in precision 

of 3% but to increase precision substantially false positive issues will have to be addressed as 

well. 

4.5.3 Relationship Detection Performance Results 

The performance evaluation, in the context of the ideal model, also considers the detection 

results of ASA in terms of the relationships discovered and are also evaluated through usage 

of the same metrics. In addition there is also a direct comparison with CM-Builder & NL-

OOPS, even though these related works do not evaluate relationship detection themselves 

citing that the identification of relationships from the specification is too variable. CM-Builder 

and NL-OOPs do provide some initial system models generated by their systems, therefore it 

has been possible to obtain the results from these models using exactly the same methodology 

as applied to obtain the ASA results.  

 

Figure 4.5-6 ASA Relationship Performance Analysis 

0 0.5 1 1.5 2 2.5 3 3.5 4

Recall

Precision

OVS

FM



161 

Table 4.5-8 identifies the overall performance for relationship detection as identified by the 

approach; where Figure 4.5-6 boxplots the performance figures that have been automatically 

analysed by the approach. Overall the performance is poor with an average recall of 28% and 

precision of 36% and only in two cases does it achieve a recall rate of 60% or more. 

Table 4.5-8 Individual Relationship Detection Performance Results 

Specification No TP M FP E Recall Precision OVS F-Measure 

1 2 7 3 3 0.22 0.40 0.33 0.29 

2 2 5 4 7 0.29 0.33 1.00 0.31 

3 1 4 4 4 0.20 0.20 0.80 0.20 

4 3 4 2 5 0.43 0.60 0.71 0.50 

5 3 2 0 4 0.60 1.00 0.80 0.75 

6 1 2 3 1 0.33 0.25 0.33 0.29 

7 2 7 6 1 0.22 0.25 0.11 0.24 

8 4 13 8 4 0.24 0.33 0.24 0.28 

11 1 13 16 9 0.07 0.06 0.64 0.06 

12 4 34 22 27 0.11 0.15 0.71 0.13 

13 2 22 12 5 0.08 0.14 0.21 0.11 

14 4 2 10 2 0.67 0.29 0.33 0.40 

15 0 2 1 7 0.00 0.00 3.50 0.00 

16 3 14 6 9 0.18 0.33 0.53 0.23 

17 5 4 0 6 0.56 1.00 0.67 0.71 

9 0 7 0 0 0.00 0.00 0.00 0.00 

10 0 0 0 0 No Model Available 

Average Performance 0.26 0.33 0.68 0.28 

Standard Deviation 0.19 0.29 0.78 0.21 

The main focus of the relationship evaluation is to consider why the majority of relationships 

are missing and the root cause of why there are missing relationships.  

4.5.4 Relationship Results Investigation 

This section of the evaluation aims to identify the root causes as to why the performance is so 

bad by looking to answer the questions, Are these relationships defined within the specification? 

and Does the fault lie with the technique employed in identifying relationships?  

 

Figure 4.5-7 ASA Raw Classifications for Relationship Detection Analysis 
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Figure 4.5-7 illustrates the total raw data for all SRS documents processed during this 

evaluation. It identifies the correct identifications and a count of which relationships are 

missing. False positives are present in this view, but are associated directly with the detection 

of false positive class candidates, and consequently the relationship identified as a result of a 

false positive class candidate is also deemed incorrect. Therefore, if the detection of false 

positive class candidates can be eliminated, then the identification of the false positive 

relationships will also be eliminated as well. The key area that will be investigated further will 

be false negatives. 

 

Figure 4.5-8 False Negative Classifications for Relationship Analysis 

Figure 4.5-8 decomposes false negatives into relationships that are detailed within the 

specification FN(P) and those that are not FN(NP), as previously defined. The detection of 

false negatives that are not present within the specification also correlates to class candidates 

that are not present within the specification as they are required to complete the discovery of 

the actual relationship. Therefore, the investigation of false negative relationships themselves 

identified as FN(NP) will not be investigated any further as it is impossible for automation to 

detect something that is not present. However, as with candidate class detection, an 

investigation into the actual performance that discounts false negatives will be undertaken. 

Figure 4.5-9 further classifies each false negative that are present within the specification 

(FN(P) that has been identified during the evaluation process into the following categories: 

ASA Model and Domain Understanding (see Appendix B.5 Raw Classification Data).   

0 10 20 30 40 50 60 70 80 90 100

FN(NP)

FN(P)



163 

 

Figure 4.5-9 False Negative (P) Classification Analysis for Relationship Analysis 

These classifications have been obtained by using the original UML models created by their 

respective authors, and the relationships identified in those models have been used to 

compare against the relationships identified by the ASA and are discussed in the remaining 

sections of this chapter 

Domain Understanding 

Figure 4.5-10 classifies each of the domain understanding issues these are typically 

hierarchical, such as interfaces and concrete implementations, missing relationships where 

classes are present in the specification, but are spread across paragraphs or different sentences, 

and bidirectional relationships. 

 

Figure 4.5-10 Domain Understanding Issues Analysis 
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2) A passenger on m-th floor calls a lift by pressing the up or down button [PRM+07] 

The approach the ASA takes to extract and identify relationships is by means of the main verb 

and/or syntactic constructs, and the hierarchical relationships in the examples, language tape 

and books are type of loan item and up and down buttons are a type of button are not identifiable by 

this technique because there is no verb or syntactic construct that identifies the relationship. 

The relationship is identified by an understanding of the problem domain which therefore 

makes it difficult to identify and extract the hierarchical relationship given the current 

approach taken by the ASA, but in both cases there is a pattern that emerges: x and y are a type 

of z. Further investigation of these patterns could aid the discovery of additional relationships. 

The final issue identified through the evaluation is associated with relationships across 

paragraph and sentences. Since the ASA operates on a sentence by sentence basis, it can only 

identify relationships are within that spectrum,. Given the situation where candidate 

relationships are spread across sentences and/or paragraphs there is no connecting verb or 

syntactic structure that is local (i.e. within the sentence) that indicates this relationship is 

present. Only through understanding of the domain, context and processing larger chunks of 

domain text would it possible for these relationships to be identified and extracted. 

ASA Model 

Figure 4.5-11 breaks the model issues into their respective issue groups. These issues relate 

directly to the actual sentence that is being analysed for candidate relationships as both classes 

are present, but the approach fails to identify the candidate relationship. 

 

Figure 4.5-11 ASA Model Issue Classifications for Candidate Relationship Detection 
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The crux of problem is associated directly with verb/preposition syntactic construct 

combinations and the connection to their most closely related noun. In others, the type of verb 

contained within the sentence fails to identify the relationship or the key noun has not been 

discovered.  

For Example: 

1) Each instructor works for one department and each department has at least one instructor. 

[Organisational Problem 1] 

2)  One of the doctors is attached to each ward as an overall medical advisor. [Cur95] 

3) Documents may be filed along with keywords, authors, and/or a document description or 

abstract describing the document. [Der95] 

Examples 1, 2 and 3 demonstrate that the verb/preposition combinations, works for, attached to 

and filed along with fail to identify the relationships between both candidate classes within the 

sentence. Even though there is a mapping, Rule 21, that has been derived to aid decision 

making of verb/preposition combinations, those decisions result in the creation of an action 

rather than a relationship. It therefore raises the question as to whether those mappings are 

correct, or that in some situations dual interpretations are possible which need to be identified 

and managed.  

Finally, a minority of issues surround some edge cases such as stative verbs and syntactic 

constructs that have not been considered in these contexts. So this raises a question as to 

whether these are actually issues as they are only present within one or two specifications.  

For example: 

1) Questions may have multiple parts, and partial credit may be awarded for parts correctly 

answered. [Exam Problem] 

2) Furthermore, it should be possible for readers to find articles which deal with topics that they 

are interested in. [Cur95] 

In the examples above, the elements in bold are identified as classes and have association 

relationships between them. The first example contains the stative verb have, which is used by 

the ASA to identify attributes and not relationships, but in this case it created a class which is 
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incorrect and is an impact of Rule 27 application (see Section 4.5.2). The second example has 

no connecting verb between them because the second part which deal with topics is contained 

within a subordinate clause attached to the word articles, which the ASA misses altogether.  

4.5.4.1 Impact of discounting missing relationship candidates  

The investigation of false negatives has identified that 63% of relationships defined within the 

ideal model are missing as a result of a missing candidate classes as these candidate classes 

are not actually defined within the requirements specification texts, as previously discussed. 

Would excluding the relationships that are associated to class candidates that are not present 

within the specification or model this demonstrate actual relationship detection performance? 

Table 4.5-9 SRS Relationship Results (with FN present only) 

Specification No TP FN(P) FN(NP) FP E Recall  Precision OVS F-Measure 

1 2 1 6 3 3 0.67 0.40 1.00 0.50 

2 2 0 5 4 7 1.00 0.33 3.50 0.50 

3 1 2 2 4 4 0.33 0.20 1.33 0.25 

4 3 2 2 2 5 0.60 0.60 1.00 0.60 

5 3 1 1 0 4 0.75 1.00 1.00 0.86 

6 1 0 2 3 1 1.00 0.25 1.00 0.40 

7 2 5 2 6 1 0.29 0.25 0.14 0.27 

8 4 6 7 8 4 0.40 0.33 0.40 0.36 

11 1 3 10 16 9 0.25 0.06 2.25 0.10 

12 4 7 27 22 27 0.36 0.15 2.45 0.22 

13 2 10 12 12 5 0.17 0.14 0.42 0.15 

14 4 2 0 10 2 0.67 0.29 0.33 0.40 

15 0 2 0 1 7 0.00 0.00 3.50 0.00 

16 3 7 7 6 9 0.30 0.33 0.90 0.32 

17 5 3 1 0 6 0.63 1.00 0.75 0.77 

9 0 1 6 0 0 0.00 0.00 0.00 0.00 

10 0 0 0 0 0 No Model Available   

  Average Performance 0.46 0.33 1.25 0.36 

Standard Deviation 0.28 0.29 1.05 0.23 

Table 4.5-9 details the raw analysis data, where FN (P) represents false negatives that are 

actually stated within the specification document, but are missed by automation. Where FN 

(NP) represents false negatives that are not stated within the specification document. The 

combination of both FN(P) and FN(NP) will give the original false negative count see Table 

4.5-8. 

Missing class candidates that are not defined within the specification do have a negative 

impact on performance, and when considering what is only defined within the specification 

it becomes clear that the performance of the approach is better. Recall performance increase 

~179%, precision sees no performance improvement at all and over-specification increases 

greatly. Figure 4.5-12 ASA Relationship Performance (FN (NP) Discounted) compares the 

performance of recall, precision and over-specification when 
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Figure 4.5-12 ASA Relationship Performance (FN (NP) Discounted) 

Table 4.5-10 demonstrates the raw data for the previous box plots.  

Table 4.5-10 ASA vs. ASA (FN(P) only) Relationship Detection Raw Data 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall (ASA) 0.11 0.19 0.25 0.35 0.6 0.19 0.26 

Recall (ASA – FN(P))) 0 0.27 0.38 0.66 1 0.28 0.46 

Precision (ASA) 0.2 0.25 0.26 0.4 1 0.29 0.33 

Precision (ASA – FN(P))) 0 0.15 0.27 0.35 1 0.29 0.33 

OVS (ASA) 0.11 0.30 0.52 0.80 1 0.78 0.68 

OVS (ASA – FN(P))) 0 0.41 1 1.56 3.5 1.05 1.25 

As with candidate class detection an increase in recall is realised however, a steep increase in 

standard deviation by almost ~47% is also noted when ignoring relationships that are not 

defined within the specification as a result of missing candidate classes. It does demonstrate 

that overall performance is being masked by the inclusion of false negatives that are not 

present within the specification for both recall and over-specification, but what is not 

identifiable is whether the approach would actually find the relationship if the candidate 

classes were to be included. 

4.5.4.2 Relationship Detection Conclusion 

The relationship detection technique only identifies a very small number of relationships, and 

in some of those cases the relationships are not discovered due to the class candidate being a 

false negative. Even if the false negative class candidate had been correctly identified in the 

first place, it does not actually demonstrate that the relationship would have been identified. 

It is shown that the majority of missing relationships are not actually defined within the 

specification text and are being identified by some other unknown means.  

0 0.5 1 1.5 2 2.5 3 3.5 4

Recall  (FN(NP) Removed)

Recall

Precision  (FN(NP) Removed)

Precision

OVS  (FN(NP) Removed)

OVS



168 

The next key finding is domain understanding where the class candidates are present. 

However, since the class candidates are spread across sentences there is no connecting verb to 

relate both candidates together and as a result the relationship is not discovered by the 

approach. This is related to the way the ASA the specification, on a sentence only basis for 

UML model feature discovery.  

The ASA Model also demonstrated some failings associated with the verb/preposition 

decision matrix, which defines what the verb/preposition combination means in terms of 

actions, relationships, hierarchical constructs. This is an area that requires further research and 

better definition of the verb/preposition matrix design decisions. 

Related works stated “the discovery of relationships by automation would be unreliable” [Har00, 

HG02], but the evaluation has demonstrated that 49% of all relationships are identifiable from 

the requirements specification where 51% of all other relationships are being defined by 

candidate classes that are not actually contained within the requirements specification texts. 

Even though a minority of relationships were actually discovered by the ASA, 21% actually 

being found by the technique, the issues identified highlight the root causes associated with 

those failures and provide starting points for future investigations. However, the ASA’s 

approach of utilising the main verb, semantics and syntactic constructs has led to the 

identification of some model relationships. 

In addition a performance review was undertaken that considered the impact of discounting 

missing relationships not defined within the specification. This analysis gave a filtered view 

of performance and demonstrated an overall increase in recall performance, with precision 

showing no such improvement. The filtered view does not address the key issues that have 

been previously uncovered but does allow better understanding of the performance of the 

actual technique and if the missing candidate classes were available within the specification, 

it does not imply that the relationships would have been uncovered.  

4.5.5 ASA Comparative Class Detection Performance Evaluation  

The evaluation undertaken here is a comparative evaluation of the ASAs in comparison to the 

key related works CM-Builder [Har00, HG02] and NL-OOPS [Mic96]. 
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4.5.5.1 ASA vs. NL-OOPS 

NL-OOPS uses a linkage threshold analysis for the detection of its class candidates. This is a 

count of the number of links a candidate has with other candidates contained within its model.  

Therefore, given a word contained within the specification the user can define a threshold that 

the candidate linkage must satisfy which will result in the creation of a class. This threshold is 

user defined and differs per specification as it is modified to obtain the best results in terms of 

recall and precision. Both Figure 4.5-13 and Figure 4.5-14 show the performance results in 

terms of recall, precision and over specification (OVS) for the various thresholds utilised by 

NL-OOPS, defined by specification_name(threshold_value). A higher threshold returns better 

recall results, but in most cases results in a lower levels of precision, a typical trade off.  

 

Figure 4.5-13 Requirements Specification Softcom Threshold Analysis [RBP+91] 

 

Figure 4.5-14 Requirements specification Library Threshold Analysis [EP98] 
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reason the third specification is not detailed is there is only one threshold analysis given and 

it doesn’t demonstrate the effect that different threshold decisions have on the overall 

performance. However, for completeness, the results for the ATM specification analysed by 

NL-OOPS is as follows: recall = 91%, precision = 71%, over-specification = 0%, F-Measure = 

80%. 

Overall the ASA performs relatively well in comparison (see Figure 4.5-15) to the NL-OOPS 

approach noting that the ASA approach does not utilise a user defined threshold to obtain the 

best results. NL-OOPS demonstrates a better average overall in terms of recall and over-

specification than the ASA.  

 

Figure 4.5-15 ASA vs. NL-OOPS Performance Results 

NL-OOPS has far lower over-specification average in comparison to the ASA, which is not of 

any real concern since over-specification identifies candidate classes that by the authors own 

judgement, and using the context of the problem statement to aid that judgement, 

demonstrates a useful concept for consideration. However, NL-OOPS’s class detection process 

is also user defined therefore the results can be tweaked until the desired outcome is achieved, 

whereas the ASA has no means of user intervention. Therefore in light of the both techniques, 

the ASA approach does well to achieve similar levels of recall and precision.  

Table 4.5-11 details the raw data of the previous box plots, the average performance, the 

standard deviation (STDEV) and identifies that the NL-OOPS approach has a far greater 

variability in terms of all the measures used whereas ASA’s recall and precision are 79% and 

69% less variable respectively. This demonstrates that the ASA approach may be more 

consistent. Nevertheless, it is clear to see by comparing average performance that the NL-
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OOPS technique does perform better than the ASA overall; but at the cost of consistency in 

terms of recall and precision. 

Table 4.5-11 ASA and NL-OOPS Comparative Data 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall (ASA) 0.64 0.67 0.71 0.73 0.75 0.05 0.70 

Recall (NL-OOPS) 0.45 0.6818 0.91 0.9545 1.00 0.24 0.79 

Precision (ASA) 0.50 0.52 0.56 0.57 0.60 0.04 0.55 

Precision (NL-OOPS) 0.41 0.4559 0.5 0.6071 0.71 0.13 0.54 

OVS (ASA) 0.17 0.21 0.27 0.35 0.43 0.11 0.29 

OVS (NL-OOPS) 0.00 0.00 0.00 0.0455 0.09 0.04 0.03 

Figure 4.5-16 details the raw analysis in context of classifications for true positives and both 

false negatives and positives for both approaches. The approach of the ASA is not that far 

from being as accurate as NL-OOPS  as it has fewer false positives, but it is false negatives, the 

candidates that the ASA does not find, that impact the ASA’s approach. 

 

Figure 4.5-16 ASA vs. NL-OOPS Comparative Analysis 

The root causes for both false positives and false negatives are the same as those previously 

investigated and discussed, but it is difficult to identify the root causes for NL-OOPS false 

positives and negatives.  

4.5.5.2 ASA vs. CM-Builder 

CM-Builder takes the approach of term frequency analysis for class detection, which is also a 

threshold that the user can modify to obtain the best results. One would assume a similar 

affect in relation to both recall and precision as the threshold is modified it would impact 

either recall and or precision. The thresholds used for each specification within the CM-

Builder approach are unknown, not that this would make any difference to the overall results. 
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It is assumed that the thresholds used to obtain the CM-Builder results are the most efficient 

in terms of both recall and precision. Figure 4.5-17  details the performance results. 

 

Figure 4.5-17 ASA vs. CM-Builder Performance Results 

This comparison is based upon 8 specifications used by CM-Builder in their evaluation that 

have also been processed by the ASA. The ASA performs relatively well in comparison to 

recall, precision and over-specification although, in direct comparison, the CM-Builder 

approach does perform better overall.  

Table 4.5-12 details a summary of the previous box plots, average performance and similarly 

standard deviation.  

Table 4.5-12 ASA and CM-Builder Summary of Comparative Performance 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall (ASA) 0.50 0.7125 0.78 0.8188 0.89 0.12 0.75 

Recall (CM-Builder) 0.40 0.75 0.83 0.9167 1.00 0.18 0.81 

Precision (ASA) 0.44 0.525 0.57 0.6648 1.00 0.17 0.63 

Precision (CM-Builder) 0.57 0.6226 0.78 0.8679 1.00 0.14 0.76 

OVS (ASA) 0.17 0.25 0.37 0.6688 1.20 0.34 0.51 

OVS (CM-Builder) 0.17 0.5611 0.66 0.7625 0.86 0.21 0.62 

The standard deviation demonstrates that the CM-Builder approach has a greater variability 

in terms recall but not in precision, where the ASA is 33% less variable in terms of recall, but 

is 21% more variable in terms of precision and  61%  in over-specification. Overall, and as with 

NL-OOPS, it is clear to see from the averages that the CM-Builder technique does outperform 

the ASA at the cost of consistency in recall only. 

Figure 4.5-18 demonstrates that false negatives and false positives are the key impact affecting 

ASA’s overall performance as it only misses 1 true positive when compared to CM-Builder. 
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Figure 4.5-18 ASA vs. CM-Builder Comparative Analysis 

The root causes for both false positives and false negatives are the same as those previously 

investigated and discussed, but it is difficult to identify the root causes for the CM-Builder 

approach. The average of over-specification is comparable to that of the CM-Builder approach, 

but it is still an area of concern and raises the question Is there a difference in the author’s 

judgement when classifying a candidate as ‘Extra’ in comparison to the CM-Builder?  

Table 4.5-13 CM-Builder vs. ASA Library Specification3 [Cur95] Classifications  

Ideal Model CM-Builder Classification ASA Classification 

Order Order Correct  Missing 

Invoice Invoice Correct Invoice Correct 

Book Book Correct Book Correct 

Note Note Correct  Missing 

Catalogue Note Catalogue Note Correct Catalogue Note Correct 

Delivery Note Delivery Note Correct Delivery Note Correct 

Enquiry Note  Missing  Missing 

Person  Missing  Missing 

 Delivery Incorrect Enquiry Incorrect 

 Detail Incorrect Instruction Incorrect 

   Store Incorrect 

   Library Desk Incorrect 

 Account Dept. Extra Public Extra 

 Cheque Extra Accounts Dept. Extra 

 File Extra File Extra 

 Publisher Extra Letter Extra 

 Someone Extra Publisher Extra 

  Missing Library Extra 

  Missing Pending File Extra 

 

Table 4.5-13 details the candidate classes identified for Library Problem 3 [Cur95] (see 

Appendix B.2) that results in a large over-specification value for ASA. What is of interest is 

the classification of Extra elements and the goal is to identify why there is a difference, if any, 

within these classifications. 
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The ASA detects a slightly larger number of extra candidates that need to be considered by a 

developer as they are not contained within the final UML model produced. Only one 

candidate ‘Cheque’ (identified by CM-builder) is considered by ASA, but not as a class so the 

option is not available to be considered as an extra item. The term ‘Someone’ also identified 

by CM-Builder is not present within the specification at all and its inclusion as extra is a 

quandary. Additional elements such as Library, Pending File, Letter and Public have been 

identified and considered as worthy additional candidates that should be considered for 

inclusion within the model that have not been identified by CM-Builder. The sentences where 

these extra candidates have been identified are detailed as follows (in no particular order). 

1. When a library first receives a book from a publisher it is sent, together with the accompanying 

delivery note, to the library desk. 

2. If no corresponding delivery note is found, the invoice is stored in a pending file. 

3. On receipt of an invoice from the public the accounts department checks its store of delivery notes. 

4. If no order can be found to match the note, a letter of enquiry is sent to the publishers. 

The judgement for the inclusion of extra candidates is consistent with that of CM-Builder’s.  

Overall the ASA’s approach towards candidate class detection performs relatively well in 

comparison to the related work, which is encouraging. Even though related works do have 

better results in terms of recall and precision overall, it is assumed these results have been 

achieved by choosing the best user definable thresholds for frequency analysis for CM-Builder 

and graph linkages for NL-OOPS. The ASA has no such user-definable thresholds and relies 

solely on the syntactic and semantics of a given word as its decision making process for class 

candidates. 

ASA vs CM-Builder discounting missing candidate classes  

In addition to earlier discussion discounting the false negatives that are not present within the 

specification, it has been possible evaluate the impact during the comparative analysis as well.  

Figure 4.5-19 boxplots the performance of the ASA vs CM-Builder when only considering false 

negatives that are present within the specification. The key difference lies with Q1 to Q3 

quartile ranges are more positively skewed in comparison to the original results Figure 4.5-17. 
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Overall, the ASA does demonstrate better consistency over the same range of specifications, 

but at the cost of precision, where CM-Builder does perform more consistently overall. 

 

Figure 4.5-19 ASA vs CM-Builder - Discounting Missing Class Candidates – Boxplot2 

Table 4.5-14 details the summary data of the previous box plot, average performance and 

standard deviation as before.  

Table 4.5-14 ASA vs CM-Builder - Discounting Missing Class Candidates – Summary Data 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall (ASA) 0.67 0.75 0.88 1 1 0.14 0.86 

Recall (CM-Builder) 0.50 0.78 0.87 1 1 0.16 0.85 

Precision (ASA) 0.32 0.5 0.55 0.75 1 0.17 0.63 

Precision (CM-Builder) 0.57 0.62 0.78 0.86 1 0.14 0.76 

OVS (ASA) 0.17 0.33 0.40 0.75 1.5 0.45 0.62 

OVS (CM-Builder) 0.17 0.56 0.78 0.83 0.88 0.23 0.67 

This time the standard deviation demonstrates that the ASA approach is less variable in terms 

recall by 12% but both precision and over-specification are more variable in terms of CM-

Builder by 21% and 95% respectively. After discounting false negatives not present within the 

specification both approaches perform relatively similarly. 

4.5.5.3 Comparative Relationship Evaluation 

Neither CM-builder nor NL-OOPS undertake any evaluation into the aspects of relationship 

detection and NL-OOPS does not make relation information available for comparison either. 

Furthermore, the argument exists that relationship detection is variable and open to 

interpretation when considering relationships discovered from the written requirements 

                                                           
2 Whiskers are not visible for CM Builder data because the upper quartile is equal to the maximum. 
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specification. However, this could also be said of class detection as this process is also open to 

interpretation.  

The evaluation of the CM-Builder does provide models that detail the relationships 

discovered during the evaluation of class detection, however this is not discussed further. 

Therefore the classification of correct, incorrect, missing and extra have been undertaken by 

the author in an unbiased manner to obtain the results detailed in Figure 4.5-20. 

 

Figure 4.5-20 ASA vs. CM-Builder Relationships Performance 

The ASA performs almost as well in comparison to the CM-Builder approach and the root 

cause analysis undertaken previously identifies the ASA issues (see section 4.5.4). One of the 

key issues is that the relationship information is not present within the specification.  

Table 4.5-15 ASA and CM-Builder Relationship Summary Data 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall (ASA) 0.11 0.194118 0.25 0.357143 0.60 0.15 0.29 

Recall (CM-Builder) 0.00 0.083333 0.20 0.6 0.75 0.28 0.31 

Precision (ASA) 0.20 0.25 0.26 0.40 1.00 0.26 0.39 

Precision (CM-Builder) 0.00 0.1875 0.44 0.7 1.00 0.37 0.47 

OVS (ASA) 0.11 0.308824 0.52 0.8 1.00 0.30 0.54 

OVS (CM-Builder) 0.40 0.686275 1.16 1.892857 2.0 0.64 1.22 

Table 4.5-15 details the summary data of the previous box plots, average performance and 

standard deviation as before. The standard deviation demonstrates that the CM-Builder 

approach has a greater variability in terms recall and precision, where the ASA respectively 

are 46% and 29% less variable in both cases respectively, but it is clear from the average 

performance that the CM-Builder technique does outperform the ASA, but at the cost of 

consistency.  
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ASA vs CM-Builder discounting missing relationship candidates  

Along with previous discussion related to discounting false negatives that are not present 

within the specification texts to obtain a more accurate view of actual performance, it has also 

been possible to apply the same technique to this comparative relationship evaluation. 

Therefore, a missing relationship that is associated to a class that is also missing from the 

requirements specification text are filtered from this comparative evaluation  

 

Figure 4.5-21 ASA vs CM-Builder - Discounting Missing Relationship Candidates – Boxplot 

Figure 4.5-21 demonstrates that discounting/filtering relationships that are uncovered by 

candidate classes that are not contained within the specification texts does demonstrate an 

overall improvement in performance for recall and precision.  

Table 4.5-16 ASA vs CM-Builder - Discounting Missing Relationship Candidate – Summary Data 

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average 

Recall (ASA) 0.29 0.38 0.63 0.81 1 0.26 0.63 

Recall (CM-Builder) 0 0.08 0.26 0.75 1 0.37 0.39 

Precision (ASA) 0.20 0.25 0.33 0.45 1 0.24 0.42 

Precision (CM-Builder) 0 0.18 0.44 0.7 1 0.37 0.47 

OVS (ASA) 0.14 0.85 1 1.08 3.5 0.94 1.17 

OVS (CM-Builder) 0.41 0.91 1.88 2.12 2.6 0.77 1.62 

Table 4.5-16 details the summary data of the previous box plots, average performance and 

standard deviation and demonstrates that the CM-Builder approach has a greater variability 

in terms recall and precision, where the ASA values are respectively 29% and 35% less variable 

in both cases. 

It is evident that candidate relationships that are associated to class candidates that are not 

stated within the requirements specification texts are filtered from this comparative 

evaluation. Overall, the evaluation has shown an increase in recall average performance by 
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~161% whereas precision does not benefit in anyway and actually performs 10% worse than 

the current CM-Builder approach. Even though this view may give an insight into the actually 

performance of the approach by excluding missing candidate relationships as a result of 

missing class candidates, it does not demonstrate whether or not the approach would actually 

identify these candidates if the information where available.  

4.6 Evaluation Conclusion 

Overall the approach towards class detection performs relatively well, achieving an average 

recall of 73%; a precision average of 60%; an over-specification average of 47% and F-measure 

average of 64%. This identifies that techniques employed for automated software specification 

analysis and model generation can provide a conceptual model as a key starting point to 

quickly and efficiently understand the requirements of the software system. 

This evaluation has investigated and identified the key areas within the ASA that are causing 

the main issues in terms of loss of recall, precision and the generation of false positives. The 

key issues identified are Semantics, Rule 27, NLP Toolkit and ASA prototype implementation 

issues are causing the key problems, with Semantics being the biggest issue for false positives. 

The remaining issues are the key issues for false negatives and missing (present within the 

specification). Researching and resolving these issues would most certainly aid the approach 

by helping to increase both recall and precision of class candidate detection.  

The main issue discovered is that 20% of the information is not actually present within the 

specification itself, that it is discovered through some means of domain knowledge or in some 

other way. Further still, these insights into the design concerning missing classes may not 

become apparent to the developer until after the initial model has been created, but this is 

difficult to evaluate or even confirm at this stage. Even so, there is still a collection of 

information contained within the documents that has not been processed by the system for 

various reasons considered throughout this evaluation. The realisation and consideration of 

these unprocessed classes by the approach will go some way to increasing the overall recall of 

the system. 

As with class detection, the approach also undertakes relationship detection although this 

performs rather poorly overall. The approach itself has a recall average of 26%, a precision 
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average of 33%, an over-specification average of 68% and finally an F-measure average of 28%. 

There were still a minority of relations that the approach had not processed for one reason or 

another, but for the majority the relationship information was not present within the 

specification.  

Through consideration of relationship detection and identifying the key issues concerning 

unprocessed relationships, it has been discovered that the approach is typically at fault within 

three key areas. A minority of the relationships have been not processed by the approach; that 

only through contextual understanding can the relationship be discovered; or the class was 

missing for reasons being attributed to the approach taken for class detection. The main 

finding is that even though the majority of relationships between design components are 

considered to be only discoverable through domain knowledge, a below average number of 

relationships are contained within the specification and it is possible for these to be extracted 

through consideration of these key issues. 

In comparison to related works the approach does not perform as well, but over the same 

range of specifications used in the comparative evaluation the ASA approach towards class 

detection is significantly less variable in terms of recall and precision when considering its 

standard deviation. 

Even though the most closely related works perform better in direct comparison there maybe 

the possibility of creating a hybrid system that considers the techniques employed in these 

related works such as linkage analysis to further enhance the results of the ASA in terms of 

both recall and precision. However, these approaches employ a user-defined variable which 

can be utilised to try and better the results returned whereas user involvement is a technique 

purposely avoided within the ASA. It is one of the key goals of ASA to be able to process an 

uncontrolled specification without the need to make adjustments and to create the best initial 

class model from the information that is readily available within the specification document 

and for the task of analysis to not burden the developer/analyst and allow them to work with 

the produced model efficiently and effectively. 

The comparative evaluation between the related work of CM-Builder and the ASA was 

undertaken for relationship detection. Even though CM-Builder does not undertake this type 

of evaluation citing that detection of relationships automatically is too variable, their approach 

does perform marginally better than ASA and identify relationships by means of verb phrase 
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analysis. However, as with class detection the technique employed by the ASA is less variable 

in terms of the recall and precision over the same range of specifications. Overall the 

evaluation demonstrates that it is possible to generate comparable results without any need 

for manual intervention during the analysis process nor manipulation of the requirements 

specification prior to automated analysis. 
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5.1 Conclusions 

This thesis has presented and evaluated an automated approach towards UML model 

generation through the analysis of free-form natural language requirements specifications. 

This has sought to answer the primary research question To what extent does analysis of an un-

restricted natural language specification contributing to a ‘better’ first-cut design through means of a 

deep syntactic and semantic analysis?  

Study of the manual requirement analysis methodologies to understand how candidate UML 

model features are extracted the from natural language specifications was the initial starting 

point. This identified that language features such as nouns, verbs, adjectives and others are 

key to the identification of candidates such as classes, operations, relationships and more. 

Therefore, a means to extract natural language information was also a key requirement for the 

ASA as well.  

The next key step in the process was to also recognise what had and hadn’t been done before 

in the domain of automated requirements analysis and model generation. The assessment of 

the related works uncovered two differing approaches: fully and partially automated, but it 

also became apparent that even fully automated approaches required some means of user 

intervention as well. Understanding of these related works has led this thesis towards an 

implementation to address the key issues identified from related works, defined as follows: 

1. Manual rewriting/simplification of the software requirements specification (SRS) to 

cater for fully-automated analysis [NR95, LDP04, LDP05, LDP05a, PRM+07, DR08, 

DR09, DB09] and semi-automated analysis [FGR+93,BV95, BV96, BV97, Mor97, 

JM00, JM00a, BSC06, BCA06, BSM09, CHK07, GT07, VAD09] techniques; this may 

lead to loss of key information via unconscious bias and also result in the introduction 

of additional information, an increase in time/cognitive effort associated with the 

modification of the requirements  

2. User defined candidate extraction rules and domain model generation that identifies 

key/all candidate model features and renders automated analysis and identification 

irrelevant [Bry00, LB02, LB02a, LB02b, LB02c, LB03, BLC+03, ZZ03, CHK07, IO05, 

IO06, OI06, Kof05, Kof05a, Kof07, Kof08, Kof09] 
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3. No fundamental usage of word semantics [Bry00, LB02, LB02a, LB02b, LB02c, LB03, 

BLC+03, ZZ03, PRM+07] as a mechanism to aid identification of key model features, 

but only as a process to remove duplicate word features 

4. No utilisation of linguistic structures as a means to identify relational/hierarchical 

model features 

With these issue identified, the construction of a prototype implementation was undertaken. 

The key steps of how the ASA undertakes analysis of free-form natural language requirements 

specifications and automated model generation can be defined by these steps: 

1. Syntactic analysis of free-form natural language requirements specifications, 

identifying key features such as nouns, verbs, prepositions, phrase constructs & 

sentence constructs (simple, compound, complex) 

2. Semantic analysis of key features, identification of most common semantics and 

consideration of semantic sets and their implications in terms of UML model features 

3. Detection of UML model features such as classes, relationships, attributes, operations, 

parameters and multiplicity based upon the information extracted from steps 1 and 

2, which are then subsequently stored within a candidate feature graph for  

preservation 

4. Creation of a UML model as defined by the candidate feature graph 

The ASA is assisted by two key models the Syntactic Analysis Model (SAM, Step 1) and 

Common Semantic Model (CSM, Step 2) that demonstrate that it is possible to automatically 

analyse and create an initial UML model that addresses the key research findings. The idea of 

both SAM and CSM are not new, but what the ASA has done is to take those models to a new 

level of detail. SAM uses both a syntactic and a deep structural analysis technique; syntactic 

analysis identifies individual parts of speech such as nouns, verbs that can be processed along 

with the CSM to identify key model features whereas deep syntactic analysis is used to 

identify model features from the syntactic structure and not from semantic understanding, 

this is the key benefit of deep syntactic analysis. The CSM verifies candidates uncovered by 

the low-level analysis from SAM against the semantic sets that indicate what model feature to 

create based upon pre-computed semantic to UML feature mappings. It is only when both 
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CSM and SAM are combined is it possible to create a fully featured model from a natural 

language requirements specification. 

Creation of UML models either automatically or manually will always be subjective, 

dependent on the requirements specification, users’ understanding of the problem and its 

domain. Therefore, the techniques discussed in this thesis may never be a faultless way of 

automatically creating a precise software model. However, what it does achieve is the 

conceptualisation of the proposed software system from a free-form natural language 

requirements specification; not controlled or modified by any means and with less effort than 

it would be through manual model generation. 

5.1.1 Thesis Contributions 

The ASA is a domain-less approach, that can undertake deep syntactic analysis of any given 

sentence structure. It has the capacity to make the most relevant decision using this 

information that has led to the creation of a technique which is based purely upon the analysis 

of the syntactic and semantic features. It has also been the goal of this thesis to demonstrate 

the following contributions: 

1. A means to automatically create a UML model from unrestricted/unmodified natural 

language requirements specifications.  

2. Provision of an independent semantic and syntactic analysis model with no need for 

manual intervention, configuration or problem domain specialisation. 

3. Requirement Traceability: identifying the sentence(s) within the specification where 

model artefacts have been identified from. 

4. A reduction of overall effort associated to the manual analysis approach by means of 

a fully automated specification analysis and model generation process. 

All of the related works (see Table 2.3-1), including the approach discussed herein make use 

of syntactic analysis, it is a key requirement, and when identifying the core contributions of 

the ASA in this context it is challenging as all approaches have the same starting point. The 

key differentiator and core contributions of the ASA are its semantic model which is used to 

make sense of all the candidate information that has been identified and extracted from the 

specification during syntactic analysis. The related works from the literature review do not 
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use such a technique to make decisions which are based either on core syntactic features 

(nouns and verbs), thresholds, dictionaries, specification simplification and/or human 

intervention.  

The syntactic model is utilised not just to identify key candidates for the semantic model, but 

is also extended to focus on the sentence constructs such as the whole verb and noun phrases 

ensuring that all parts of speech are used to their full extent. In addition understanding of 

sentence construction and their key dependencies aids discovery of relationships that are not 

identifiable from the main sentence verb. Overall it is the unison of both the syntactic and 

semantic models that gives rise to a completely user independent approach to automated 

software modelling from unaltered requirements specifications.  

5.1.2 Research Findings 

The evaluation investigated the performance of the ASA in context of the ideal model and also 

undertook a comparative evaluation against its most closely related works [Har00, HG02, 

Mic96, MMZ02, MG02 & KZM+04] using the metrics Recall, Precision and F-Measure. 

Overall the ASA, based on F-Measure and the ideal model, demonstrates an accuracy of 64% 

for candidate class detection and 30% for relationship detection.  

Even though the ASA doesn’t perform quite as well, the techniques employed do demonstrate 

that its results are less variable and have greater consistency around the mean as identified by 

the standard deviation measures. The ASA demonstrates average recall and precision 

standard deviations outcomes are 58% and 23% less variable than both CM-Builder and NL-

OOPS outcomes when combined. This indicates that, even with manual intervention and 

choosing the best result data for each of the most closely related works, the extraction and 

identification of model features by the ASA has greater consistency over the same range of 

related works’ data sets.  

An impact analysis was also undertaken to understand what the impact is of class candidates 

that are within the ideal model but are not detailed within the requirements specification. This 

resulted in a total reduction on the number of false positives which in all cases improved the 

performance of the ASA and related approaches in terms of both recall and precision, but also 

impacted the standard deviation measures as well. The key impact of discarding classes and 
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relationships not present within the requirements specification demonstrates how well the 

technique does perform when all information is available.  

In addition to the performance related measures, there are a series of key limitations 

associated with the ASA in the areas of ambiguity, missing requirements, domain knowledge, 

intralinguistic variations, threats to validity and demonstration of effort reduction that were 

identified during the evaluation. 

The limitations of ambiguity and intralingusitc variations can result in the creation of either 

relevant or irrelevant model features, primarily identified as false negatives during the 

evaluation. This is an intrinsic issue for both the CSM and SAM models, which gives rise to 

additional research areas for both of these models. 

Both missing requirements and domain knowledge limitations are related, as when a 

requirement is missing, the user may unconsciously access their own knowledge of the 

domain, hence giving them the ability to infer new features not contained within the 

requirements specification. When considering missing requirements in the context of the ASA, 

it can only analyse what it is given and if requirements are not present, there is little that can 

be done, which is a difficult situation to resolve.  

The ASA also adopts a domain-less methodology and this is a problem for explicit domain 

knowledge that the ASA has no awareness of. This is what gives the ASA its flexibility to 

operate across many differing domains, but what could be a step towards resolution is a model 

that feeds back and preserves changes for future use and consideration. As a result, this has 

been flagged as a future follow-up item.  

The most concerning threat to validity is the author’s bias during the evaluation. This only 

impacts the performance analysis of the most closely related works [Har00, HG02, Mic96, 

MMZ02, MG02 & KZM+04], because when evaluating the ASA in context of the ideal model 

there has always been a key to validate against, apart from over-specification. Whereas, the 

performance analysis provided by the related work for NL-OOPS had varying threshold 

levels with varying levels of performance. The threshold and results chosen in the case of NL-

OOPS to compare to the ASA have tried to show NL-OOPs at its best. This has been 

deliberately done to ensure no discrimination towards any related works or bias towards the 

ASA, as already discussed in this thesis.  



187 

Another threat to validity is the claim of effort reduction, which it has not been possible to 

validate or demonstrate in this thesis. The ASA itself maybe faster during its automated 

analysis and model creation rather than manual techniques. However, this does not prove a 

reduction in effort. What needs to be done is to validate whether the perceived benefits of the 

ASA do translate into an effort reduction as a result this is an item that also requires further 

investigation. 

Positioning the ASA in context of its related works and differentiating its technique is 

challenging. All related works, either fully automated [NR95, Mic96, MMZ02, MG02, 

KZM+04, Per02, PKS+05, Har00, HG02, ZZ03, LDP04, LDP05, LDP05a, IO05, IO06, OI06, 

PRM+07, DR08, DR09, DB09, SOS08, SRC+07] or partially automated [MHH89, FGR+93, 

GB94, BV95, BV96, BV97, Mor97, JM00, JM00a,AG97, AG99, AG06, GN02, SBB99, Bry00, 

LB02, LB02a, LB02b, LB02c, LB03, BLC+03, OLR01, Kof05, Kof05a, Kof07, Kof08, Kof09, 

BSC06, BCA06, BSM09, CHK07, GT07, GK08, VAD09]  - typically use some means of speech, 

syntactic and or semantic analysis which are then subsequently translated into some form of 

object/class model. The ASA also makes use of similar strategies however, it is the subtlety of 

the ASA’s approach that separates it from the rest such as it being fully automated without 

any need for user intervention. A key differentiator is the ASA’s enhanced syntactic analysis 

that allows discovery of relational/hierarchical model features without relying on parts of 

speech or semantic features. In addition, the usage of word semantics as a means to 

complement and refine the model features identified by syntactic analysis is novel and aids 

discovery of classes, relationships, operations, attributes, multiplicities and more. All of these 

subtle techniques enables the creation of a fully featured UML model that depicts and 

describes the key natural language requirements.  

The approach presented in this thesis simplifies the analysis and design phase allowing the 

opportunity to build upon a robust, extensible and maintainable UML design delivered by an 

approach that demonstrates reliable and consist results throughout its evaluation. 

5.2 Recommendations for Future Work  

Future studies to follow up on the work discussed in this thesis and to address the identified 

limitations are set out as follows: 
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1. Common Semantic Model   

a. Disambiguation  

b. Additional Semantic Consideration 

2. Syntactic Analysis Model - Contextual Reasoning 

3. Effort Reduction Analysis 

5.2.1 Common Semantic Model 

The Common Semantic Model implementation is one that utilises the most commonly 

understood semantics as identified from WordNet [Mil95]. Those semantic sets have been 

classified into collections that identify candidate UML model features. These semantics are 

utilised throughout the ASA to aid detection of said candidate features.  

Disambiguation: would serve to ensure that the correct semantic for any given word is 

correctly chosen and is aimed at addressing one of the key limitations, ambiguity. It would 

help by ensuring that only the appropriate semantics are identified and fed into the decision 

making process for any given candidate feature. It is considered that through this technique 

an increase in both recall and precision could be seen through the reduction of false negatives 

and false positives identified during the evaluation. This could be achieved through creation 

of additional semantic models or a domain specific model managing only the semantics for 

that specification. However, this would also have the side effect of creating additional 

overheads in model creation. 

Additional Semantic Considerations: Given the set of all known semantics from WordNet, 

only 10 out of 14 are actually used in the class detection process in the context of nouns. This 

leaves a remaining 4 semantic groups that might identify additional model features such as 

relationships, operations, state, algorithms or attributes. Consideration of these semantics and 

what they identify could be utilised to create a more complete UML class model. 

5.2.2 Syntactic Analysis Model 

The Syntactic Analysis Model operates on a sentence by sentence basis which is a key 

limitation as no surrounding context is considered during its analysis. Currently, it is 

interested in sentence structure, whether that be simple, compound or complex, at a high level 
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or down to the individual parts of speech, phrases, and sentence components. It is the goal of 

SAM to extract candidate features and along with CSM it can make the relevant decision 

regarding a candidate feature. 

Paragraph Contextual Reasoning: The premise of paragraph contextual reasoning (PCR) is 

that additional candidate model relationships could be discovered over and above the current 

techniques employed. The definition of a paragraph is a small collection of sentences typically 

dealing with a single theme and begins on a new line. The interesting aspect is the ‘single 

theme’ and how everything else in the paragraph relates to this theme. 

Using paragraph contextual reasoning could aid identification of the relationship between the 

paragraph theme and the following sentence artefacts, which could uncover new model 

candidates and reduce the inclusion of additional/erroneous and contextual issues that 

resulted in a high rate of false positives identified during the evaluation. 

5.2.3 Effort Reduction Analysis 

The idea of effort reduction analysis (ERA) is to demonstrate that automated analysis of 

natural language requirements specifications does lead to a reduction of effort in the key areas 

analysis and modelling, which over the last 3 decades has seen the majority of project effort 

shift towards these areas. The key idea of ERA is to perform a study either commercially or 

academically to identify the benefits that the ASA can bring in the context of effort reduction, 

if any. 
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Summary of Rules 

• Rule 1 – Class Detection 

o If a noun’s most common semantic belongs to the set of candidate class semantics, 

then that noun is a candidate class 

• Rule 2 – Class Detection from Non-Class Semantics 

o If a noun’s most common semantic belongs to the set of non-candidate class 

semantics, and that noun also contains an artefact semantic, then noun is a 

candidate class 

• Rule 3 - Start Range Multiplicity Detection (Determiners Present) 

o If a determiner belongs to the set of multiplicity mappings {0, 1, *}, then the start 

range for multiplicity has been found 

• Rule 4 – Start Range Multiplicity Detection (Missing Determiners) 

o If the determiner does not exist, then the start range is known as single (1) 

• Rule 5 - End Range Multiplicity Detection Rule (Plural Nouns) 

o If a noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is plural, 

its mapping is known as many (*) 

• Rule 6 – End Range Multiplicity Detection (Non-Plural Nouns) 

o If the noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is not 

plural, then its mapping is known as single (1) 

• Rule 7 – Class Hierarchy Detection Rule 

o Given the noun phrase, if the head noun is a candidate class as defined by Rule 1 or 

Rule 2 and the head noun’s pre-modifier is also candidate class as defined by Rule 1 

or Rule 2, then an interface and abstraction is extracted based on the head noun 
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• Rule 8 – Object State  

o Given the Noun Phrase all determiners (DT) are ignored and the participle 

modifiers are anything else that precedes the Head Noun that must be within the set 

of verbs defined as (VBN (past participle), VBG (present participle)). The Noun 

Head is the last noun (NN) contained within the noun phrase 

• Rule 9 – Noun Preposition Attachment Detection 

o If the prepositional phrase’s parent is a Noun Phrase, then the preposition is said to 

be attached to that the noun phrase. 

• Rule 10 – Verb Preposition Attachment Detection 

o If the prepositional phrase’s parent is a Verb Phrase, then the preposition is said to be 

attached to that verb phrase. 

• Rule 11 – Operation Detection 

o If a verb’s most common semantic belongs to the set of candidate operation 

semantics and the verb’s semantic does not belong to the set of candidate 

relationship semantics, then that verb is a candidate operation 

• Rule 12 - Relationship Detection 

o If a verb’s most common semantic belongs to the set of candidate relationship 

semantics then that verb is a candidate relationship 

• Rule 13 – Subject Operation Placement 

o If the verb is in an active form and as defined by Rule 9 is an operation and by Rule 

1 or Rule 2 the sentence subject is a class candidate, then the operation will be 

placed with the subject of the sentence 

• Rule 14 – Object Operation Placement 

o If the verb is in its passive form and as defined by Rule 9 is an operation and by Rule 

1 or Rule 2 the sentence object is a candidate class, then the operation will be placed 

with the object of the sentence 
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• Rule 15 – Active Voice Parameter Creation 

o If the sentence is in active voice and by Rule 9 an operation exists and by Rule 1 or 

Rule 2 a class candidate exists for both sentence subjects and objects and by Rule 12 

the operation is placed with the subject of the sentence, then the object of sentence is 

considered as a parameter of that operation 

• Rule 16 – Passive Voice Parameter Creation 

o If the sentence is in passive voice and by Rule 9 an operation exists and by Rule 1 or 

Rule 2 a class candidate exists for both sentence subjects and objects and by Rule 13 

the operation is placed with the object of the sentence, then the subject of sentence is 

considered as a parameter of that operation 

• Rule 17 – Verb Derived Attribute Detection 

o If the verb of the sentence belongs to the set of verb forms {has, had, have} and the 

noun following the verb is a class candidate as defined by Rule 1 or Rule 2, then 

that class is transformed into an attribute 

• Rule 18 – Dynamic Verb derived Attribute Detection 

o If the sentence contains a noun that is class candidate and is preceded by a verb, 

where the frequency count of that noun is less than the average noun frequency for 

the document and there exists only one verb within the sentence and the semantics 

for that verb belongs to the set of {has, had, have} forms, then the noun is said to be 

an attribute 

• Rule 19 – Class & Relationship Detection 

o If both subject and objects of the sentence are class candidates as defined by Rule 1 

or Rule 2 and the semantics of the subject and objects are not contained within the 

set of attribute semantics and the term frequencies of both subjects and objects are 

greater than the term frequencies for the document and the verb belongs to the set of 

{has, had, have} forms and there is only one verb, then it is said that both subjects 

and objects are class candidates and an association relationship exists between class 

candidates 
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• Rule 20 – Inheritance Hierarchy Detection 

o If the verb belongs to the set of ‘be’ forms and that verb is the only verb in the 

sentence and both the subject and object of the sentence are candidate classes as 

defined by Rule 1 or Rule 2, then an inheritance hierarchy is said to exist between 

both class candidates 

• Rule 21 – Matrix Relationship Detection 

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of 

both the verb’s semantic and the semantic of the preposition belongs to the set of 

relationship semantics, then a relationship is said to exist between the noun and the 

object of the preposition 

• Rule 22 - Matrix Parameter Detection 

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the verb is an 

operation as defined by Rule 11 and the intersection of both the verb’s semantic and 

the semantic of the preposition also belong to the set of parameter semantics, then the 

object of the preposition is said to be the parameter of the operation 

• Rule 23 - Matrix Class Hierarchy Detection 

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the object of 

preposition is also a class candidate as defined by Rule 1 or Rule 2 and the intersection 

of both the verb’s semantic and the semantic of the preposition also belong to the set 

of class hierarchical semantics, then it is said there exists a class hierarchical 

relationship between the class candidate and the object of the preposition 

• Rule 24 - Matrix Attribute Detection 

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of 

both the verb’s semantic and the semantic of the preposition also belong to the set of 

attribute semantics, then the object of the preposition is said to be an attribute of the 

class candidate 
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• Rule 25 - Clausal Relationship Detection 

o If an independent clause exists and by Rule 1 or Rule 2 a class candidate exists, and 

if a dependent clause exists and by Rule 1 or Rule 2 a class candidate exists, then it 

is said an association shall also exist between both independent and dependent 

clause class candidates 

• Rule 26 - Attribute Detection based on Semantics 

o If a noun’s semantic belongs to the set of attribute semantics, then that noun is 

considered as an attribute 

• Rule 27 - Attribute Detection based on Semantics, Class Candidates & Term 

Frequencies 

o If a class candidate exists as defined by Rule 1 or Rule 2, and within that noun’s 

semantic set it also belongs to the set of attribute semantics, and the frequency count 

of that noun is less than the average noun frequency count for class candidates for 

that document, then the noun is said to be an attribute. 

• Rule 28 - Semantic Class Hierarchical Detection 

o If a class candidate exits as defined by Rule 1 or Rule 2 and the semantics of the 

class candidate are also contained within the set of candidate class hierarchical 

semantics, then an interface will also be extracted for that class candidate 
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Appendix A.1 Noun/Verb Semantic Classification Tables 

WordNet 

(noun) 

Semantic 

WordNet Description 
Class Modelling Implication 

Class Hierarchy Can Imply 

1 Animal Nouns denoting animals X X  

2 Artefact 
Nouns denoting man-made 

objects 
X   

3 Body Nouns denoting body parts X   

4 Communication 
Nouns denoting communicative 

processes and contents 
X   

5 Food Nouns denoting foods and drinks X   

6 Group 
Nouns denoting groupings of 

people or objects 
X   

7 Location Nouns denoting spatial position X   

8 Object 
Nouns denoting natural objects 

(not man-made) 
X   

9 Person Nouns denoting people X X  

10 Phenomenon 
Nouns denoting natural 

phenomenon 
X   

11 Plant Nouns denoting plants X X  

12 Shape 
Nouns denoting two and three 

dimensional shapes 
X X  

13 Substance Nouns denoting substances X   

14 Time 
Nouns denoting time and 

temporal relations 
X   

15 Act Nouns denoting acts or actions   Operation 

16 Possession 
Nouns denoting possessions and 

transfer of possessions 
  Relationship 

17 Quantity 
Nouns denoting quantities and 

units of measure 
  Multiplicity 

18 State 
Nouns denoting stable states of 

affairs 
  Object State 

19 Process 
Nouns denoting natural 

processes 
  Algorithm 

20 Motive Nouns denoting goals   Algorithm 

21 Relation 
Nouns denoting relations 

between people, things or ideas 
  Relationship 

22 Attribute 
Nouns denoting attributes of 

people and objects 
  Class Attribute 

23 Event Nouns denoting natural events   Algorithm/Operation 

24 Cognition 
Nouns denoting cognitive 

processes and contents 
  Algorithm 

25 Feeling 
Nouns denoting feelings and 

emotions 
  Unknown 
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ID 
Involved  

Entities 

WordNet  

(verb) 

Semantic 

WordNet Description 

Relationship/Operation 

Modelling Implications 

Relationship Operation 

1 1 Body 
Verbs of grooming, dressing and 

bodily care 
 X 

2 1 Change 
Verbs of size, temperature change, 

intensifying, etc 
 X 

3 2 Cognition 
Verbs of thinking, judging, analysis, 

doubting, etc 
X X 

4 2 Communication 
Verbs of telling, asking, ordering, 

singing 
X X 

5 2 Competition Verbs of fighting, athletic activities X X 

6 1 Consumption Verbs of eating and drinking  X 

7 2 Contact 
Verbs of touching, hitting, tying, 

digging 
X X 

8 1 Creation 
Verbs of sewing, baking, painting, 

performing 
 X 

9 1 Emotion Verbs of feeling  X 

10 2 Motion Verbs of walking, flying, swimming X X 

11 1 Perception Verbs of seeing, hearing, feeling  X 

12 2 Possession Verbs of buying, selling, owning X X 

13 2 Social 
Verbs of political and social activities 

and events 
X X 

14 1 Stative 
Verbs of being, having, spatial 

relations 
 X 

15 1 Weather 
Verbs of snowing, raining, thawing, 

thundering 
 X 



210 

Appendix A.2 NLP Tag List 

Tag Description 

Clause Level 

S simple declarative clause 

SBAR 
Clause introduced by a (possibly 

empty) subordinating conjunction. 

SBARQ 
Direct question introduced by a wh-

word or a wh-phrase. 

SINV Inverted declarative sentence, 

SQ 

Inverted yes/no question, or main 

clause of a wh-question, following 

the wh-phrase in SBARQ 

Phrases Level 

ADJP Adjective Phrase 

ADVP Adverb Phrase. 

CONJP Conjunction Phrase. 

FRAG Fragment. 

INTJ Interjection. 

LST List marker 

NAC Not a Constituent 

NP Noun Phrase. 

NX 
Used within certain complex NPs to 

mark the head of the NP 

PP Prepositional Phrase. 

PRN Parenthetical. 

PRT Particle 

QP Quantifier Phrase 

RRC Reduced Relative Clause. 

UCP Unlike Coordinated Phrase. 

VP Verb Phrase. 

WHADJP Wh-adjective Phrase. 

WHAVP Wh-adverb Phrase. 

WHNP Wh-noun Phrase. 

WHPP Wh-prepositional Phrase. 

X Unkown 

Word Level 

CC Coordinating conjunction 

CD Cardinal number 

DT Determiner 

EX Existential there 

FW Foreign word 

IN 
Preposition or subordinating 

conjunction 

JJ Adjective 

JJR Adjective, comparative 

JJS Adjective, superlative 

LS List item marker 

MD Modal 

NN Noun, singular or mass 

NNS Noun, plural 

NNP Proper noun, singular 

NNPS Proper noun, plural 

PDT Pre-determiner 

POS Possessive ending 

PRP Personal pronoun 

PRP$ Possessive pronoun 

RB Adverb 

RBR Adverb, comparative 

RBS Adverb, superlative 

RP Particle 

SYM Symbol 

TO To 

UN Interjection 

VB Verb, base form 

VBD Verb, past tense 

VBG Verb, gerund or present participle 

VBN Verb, past participle 

VBP 
Verb, non-3rd person singular 

present 

VBZ Verb, 3rd person singular present 

WDT Wh-determiner 

WP Wh-pronoun 

WP$ Possessive wh-pronoun 

WRB Wh-adverb 
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Appendix A.3 Preposition 

Semantics 

with logical.accomp 

for logical.action 

lest logical.action.false 

plus logical.add 

than logical.comparison 

albeit logical.condition 

although logical.condition 

because logical.condition 

but logical.condition 

if logical.condition 

pending logical.condition 

per logical.condition 

providing logical.condition 

save logical.condition 

that logical.condition 

though logical.condition 

unless logical.condition 

vs. logical.condition 

whereas logical.condition 

whether logical.condition 

while logical.condition 

despite logical.condition.negation 

par logical.equality 

so logical.event 

against logical.false 

except logical.false 

neither logical.false 

notwithstanding logical.false 

without logical.false 

into logical.goal 

throughout logical.inclusion 

via logical.precondition 

virtually logical.probability 

about logical.qty 

minus logical.remove 

as logical.role 

like logical.similarity 

unlike logical.similarity.negation 

once logical.singleton 

worth logical.value 

within spatial.contains 

aboard spatial.contians 

above spatial.relation 

across spatial.relation 

along spatial.relation 

alongside spatial.relation 

amid spatial.relation 

among spatial.relation 

around spatial.relation 

at spatial.relation 

atop spatial.relation 

behind spatial.relation 

below spatial.relation 

beneath spatial.relation 

beside spatial.relation 

besides spatial.relation 

between spatial.relation 

beyond spatial.relation 

by spatial.relation 

down spatial.relation 

in spatial.relation 

near spatial.relation 

nearer spatial.relation 

nearest spatial.relation 

of spatial.relation 

off spatial.relation 

on spatial.relation 

opposite spatial.relation 

out spatial.relation 

outside spatial.relation 

over spatial.relation 

past spatial.relation 

round spatial.relation 

through spatial.relation 

toward spatial.relation 

under spatial.relation 

underneath spatial.relation 

up spatial.relation 

upon spatial.relation 

inside spatiral.relation 

next spatiral.relation 

onto spatiral.relation 

till temporal.duration 

until temporal.duration 

bout temporal.event 

from temporal.event 

post temporal.event 

since temporal.event 

then temporal.event 

after temporal.future 

ago temporal.past 

during temproal.event 

before temproal.past 
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Appendix A.4 Verb Preposition Decision Matrix 

 body change cognition communication competition consumption contact creation emotion motion perception possession social stative 

logical.accomp rel rel rel rel rel rel rel rel rel rel rel rel rel rel 

logical.action act act act act act act act act act act act act act act 

logical.action.false rel rel rel rel rel rel rel rel rel rel rel rel rel rel 

logical.add rel rel rel rel rel rel rel rel rel rel rel rel rel rel 

logical.comparison rel rel rel rel rel rel rel rel rel rel rel rel rel rel 

logical.condition rel act rel act act rel act act rel act rel act rel rel 

logical.condition.negation rel act rel act act rel act act rel act rel act rel rel 

logical.equality rel act rel act act rel act act rel act rel act rel rel 

logical.event rel act rel act act rel act act rel act rel act rel rel 

logical.false rel act rel act act rel act act rel act rel act rel rel 

logical.goal rel rel rel act rel act act act rel act rel act rel rel 

logical.inclusion rel act rel act act rel act act rel act rel act rel rel 

logical.precondition rel act rel act act rel act act rel act rel act rel rel 

logical.probability rel act rel act act rel act act rel act rel act rel rel 

logical.qty rel act rel act act rel act act rel act rel act rel rel 

logical.remove rel act rel act act rel act act rel act rel act rel rel 

logical.role rel rel type_of act act rel act act rel act rel rel rel rel 

logical.similarity rel act rel act act rel act act rel act rel act rel rel 

logical.similarity.negation rel act rel act act rel act act rel act rel act rel rel 

logical.singleton rel act rel act act rel act act rel act rel act rel rel 

logical.value rel act rel act act rel act act rel act rel act rel rel 

logical.view rel rel attr act act rel rel act rel act rel act rel attr 

spatial.contains rel rel rel rel rel rel rel rel rel rel rel rel rel rel 

spatial.relation rel rel rel rel rel rel rel rel rel rel rel rel rel rel 

temporal.duration rel act rel act act rel act act rel act rel act rel rel 

temporal.event act act act act act act act act act act act act act act 

temporal.future rel act rel act act rel act act rel act rel act rel rel 

temporal.past rel act rel act act rel act act rel act rel act rel rel 

to rel act rel act act rel act act rel act rel act rel rel 

 
Key: 

rel – relationship 

act – action 

attr – attribute 
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Appendix A.5 ASA Package Level UML Models 

Package: uk.ac.strath.sd.xml 
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Package: uk.ac.strath.sd.jccg 
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Package: uk.ac.strath.sd.model 
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Package: uk.ac.strath.sd.nlp 
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Package: uk.ac.strath.sd.nlu 
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Package: uk.ac.strath.sd.tree 
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Package: uk.ac.strath.sd.uml 

 

Package: uk.ac.strath.sd.wordnet 
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Appendix B.1 Specification Details 

Keyword in Context [Par72]: 

The KWIC index system accepts an ordered set of lines, each line is an ordered set of words, 

and each word is an ordered set of characters. Any line may be "circularly shifted" by 

repeatedly removing the first word and appending it at the end of the line. The KWIC index 

system outputs a listing of all circular shifts of all lines in alphabetical order. 

Organisation Problem 1: 

The Course Administration System database for ABC University needs to keep track of each 

Instructor with id, name, and address. Each instructor works for one department and each 

department have at least one instructor. The departments have a unique id and a name. 

Courses are offered by a single department and have a name, and number unique to each 

department. Each course has at least one section. Store the course name, credits, and 

description. A section has numbers for each course for storing the section semester, year, and 

size. Students have student ids and names. Each student has a single instructor as an advisor. 

Students enrol in one or more sections. A section must have five students or it is cancelled. A 

section is taught by at least one instructor. 

Organisation Problem 2 [Cur95]: 

Each department in an organisation consists of a manager and several departmental staff. Each 

manager is in charge of only one department and departmental staff are assigned to a single 

department. 

Several projects are attached to each department. All departmental staff are assigned to 

projects, with some staff being assigned to several projects, not necessarily in the same 

department. Each project is run by a management group that consists of the manager of the 

department together with a selection of staff working on the project. No departmental staff 

member is ever required to sit on more than one management group. 
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ATM Problem [RBPEL91]: 

Design the software to support a computerised banking network including both human 

cashiers and automatic teller machines (ATMs) to be shared by a consortium of banks. Each 

bank provides its own computer to maintain its own accounts and process transactions against 

them Cashier stations are owned by individual banks and communicate directly with their 

own banks computers. Human cashiers enter account and transaction data. Automatic teller 

machines communicate with a central computer which clears transactions with the 

appropriate banks. An automatic teller machine accepts a cash card, interacts with the user, 

communicates with the central system to carry out the transaction, dispenses cash, and prints 

receipts. The system requires appropriate recordkeeping and security provisions. The system 

must handle concurrent accesses to the same account correctly. The banks will provide their 

own software for their own computers. 

Cinema Problem [CIS08]: 

The cinema leases films for screening from film distributors. Each lease is for one copy of the 

film. The cinema may lease more than one copy of films that are very popular. 

The cinema operation is organised around a screening schedule, which is a timetable listing 

the films that will be shown on each screen each day of the week. This screening schedule is 

different every week. During its release period a particular film can be shown on a number of 

different screens. The same film cannot be shown on more than one screen at a time unless 

there are multiple copies. 

Screenings are open for ticket sales one week before the date they take place. There are two 

kinds of screenings: seated and unseated ones. The main difference between the two is that 

for seated screenings the customer is allocated a particular seat, while for unseated screenings 

no specific seat is allocated. For each screening the total number of tickets sold should not 

exceed the seating capacity for that screen. There are a number of different types of tickets 

associated with each screening, which include normal tickets, concessionary tickets for 

students and senior citizens, discounted family tickets, etc. The price of each type of ticket may 

be different for each screening. For example, matinee screenings usually have a lower ticket 

price than evening screenings, while weekend screenings usually have higher ticket prices. 
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The cinema wishes to operate a customer cinema card scheme. According to this scheme every 

subscribed customer pays a monthly subscription, which allows them to buy a fixed number 

of tickets for any screening during the month.  

Regarding the films, information that is important includes the film's classification 

(determined by the board of film classification) as well as its duration. This information is 

important as it affects the scheduling process and the allocation of films to screens. 

For the system to be able to support the cinema management team it should be able to produce 

the following kinds of statistics: the number of ticket sales to date per film, the revenue of the 

ticket sales per film, the percentage of empty seats for each screening for the current or future 

weeks, the ticket sales and revenue for each screening for the current week, a listing of films 

ordered by ticket sales or revenue for the current week. It should also allow the management 

team to enter the new screening schedule and make changes to the current screening schedule. 

Ticket sales are handled by cinema staff and payment can be made in three forms: by cash; by 

credit or debit card; by using cinema membership cards. In the case where the sale is for a 

seated screening the customer should be able to select the seats they most prefer from those 

that are available. 

Cinema cards are personal (i.e. only the person named on the card can use it) and they are 

limited to a maximum of four tickets per screening. When signing up for a cinema card, the 

following are required: a photograph of the customer which is taken on the spot and is 

attached to the card, customer information such as name and address, and credit or debit card 

details for the monthly subscription charge. The cards are valid for six months from the date 

of issue and each month the customer is charged the monthly subscription. 

Library Problem 1 [EP98]: 

A software system to support a library is to be developed. A library lends books and 

magazines to borrowers. These borrowers, books and magazines are registered in the system. 

A library handles the purchase of new titles for the library. Popular titles are bought in 

multiple copies. Old books and magazines are removed when they are too old or in poor 

condition. 
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The librarian is an employee of the library who interacts with the borrowers and whose work 

is supported by the system. A borrower can reserve a book or a magazine that is not currently 

available in the library. So that, when it is returned or purchased by the library, that person is 

notified. 

The reservation is cancelled when the borrower checks out the book or magazine or through 

an explicit cancelling procedure. The library can easily manage the information about the 

books. It can create, update or delete the information. The information concerns the titles, the 

borrowers, the loans and the reservations. The system can run on all popular environments 

such as Windows, UNIX. It has a modern graphical user interface. The system is also easy to 

extend with new functionality. 

Library Problem 2 [Cal94]: 

A library issues loan items to customers. Each customer is known as a member and is issued 

a membership card that shows a unique member number. Along with the membership 

number, other details on a customer must be kept such as a name, address, and date of birth. 

The library is made up of a number of subject sections. Each section is denoted by a 

classification mark.  

A loan item is uniquely identified by a bar code. There are two types of loan items, language 

tapes, and books. A language tape has a title language (e.g. French), and level (e.g. beginner). 

A book has a title, and authors. 

A customer may borrow up to a maximum of 8 items. An item can be borrowed, reserved or 

renewed to extend a current loan. When an item is issued the customer's membership number 

is scanned via a bar code reader or entered manually. If the membership is still valid and the 

number of items on loan less than 8, the book bar code is read, either via the bar code reader 

or entered manually. If the item can be issued (e.g. not reserved) the item is stamped and then 

issued. 

The library must support the facility for an item to be searched and for a daily update of 

records. 
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Library Problem 3 [Cur95]: 

When a library first receives a book from a publisher it is sent, together with the accompanying 

delivery note, to the library desk. Here the delivery note is checked against a file of books 

ordered. If no order can be found to match the note, a letter of enquiry is sent to the publishers. 

If a matching order is found, a catalogue note is prepared from the details on the validated 

delivery note. 

The catalogue note, together with the book, is sent to the registration department. The 

validated delivery note is sent to the accounts department, where it is stored. 

On receipt of an invoice from the public the accounts department checks its store of delivery 

notes. If the corresponding delivery note is found then an instruction to pay the publishers is 

made, and subsequently a cheque is sent. If no corresponding delivery note is found, the 

invoice is stored in a pending file. 

Filing Problem [Der95]: 

An electronic filing program (EFP) can be used to store and retrieve text documents. Any 

document created by a word processor, editor, or other means may be stored in the electronic 

filing system. Documents may be filed along with keywords, authors, and/or a document 

description or abstract describing the document. Documents filed in the system may also be 

removed or deleted. 

Documents stored in the EFP are indexed to enable rapid retrieval. Documents are retrievable 

according to convenient schemes not found in conventional classifications; e.g. users may 

retrieve or locate documents based on their content, description, author or a user defined 

keywords. Therefore, the document description, authors, keywords, and/or the actual text 

document itself may be searched. 

A user may specify a search criteria, which results in a number of documents being found that 

meet the specified search criteria. The user may then continue to specify additional search 

criteria, successively narrowing down the search until the required documents are found. 

Documents found that meet the search criteria may then be viewed or printed. 

The user is provided with the capability of specifying any extraneous or junk words which if 

found in the content of the document will not be searched or indexed. The user can also specify 
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which alphanumeric characters will be indexed and searched (the filing character set), thereby 

limiting the search and index to only portions of a document. 

Exam Problem: 

Faculty members in ABC University have to prepare exams. If they teach a course more than 

one time, it makes sense to collect and reuse exams. But no two course instances are identical, 

and, even if they were, there are other reasons for avoiding exact duplication of exams. Hence, 

it makes sense to manage exam questions and their answers in some kind of repository and 

then build custom exams to conform to specific course content. For large courses, electronic 

grading of exams is desirable, implying that exams have a multiple-choice format. 

A software system should be built to manage exam questions and their answers. An exam 

consists of a set of multiple choice questions. There may be multiple versions of the same 

exam. A question may appear in more than one version, but it will rarely appear in the same 

place (i.e., the same question number). Questions may have different point values. Students 

indicate an answer by providing a letter to denote one of the offered alternatives. Questions 

may have multiple parts, and partial credit may be awarded for parts correctly answered. 

There may be more than one correct answer to a question. The system should determine the 

correctness of each answer, provide a numerical value for it, and sum the scores for the exam. 

For assessment purposes, it should also be able to gather statistics about student performance 

on each question regardless of the exam it appeared on. 

Students provide answers to questions on a bubble sheet. Automatic processing of the answer 

sheets is provided by a separate program. That program produces as output an ASCII data 

file that the new program should process. The data file consists of a sequence of records. Each 

record is fixed format, consisting of the student's name, student number, and a vector of 

letters, one for each requested answer. When a student fails to properly bubble in an entry in 

the form, a space appears in place of the letter. Moreover, if a student bubbles in more than 

one selection for the same entry, then an asterisk character will appear in the corresponding 

place in the record. 

Personnel Problem [Duf95]: 

The personnel department of a large research institute is responsible for the purchase and 

dissemination of journals to readers in other departments in the organization. 
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Readers may be interested in certain specific topics relating to their research interests, while it 

is also possible to be placed on a circulation list. Usually, readers get access to an issue of a 

journal for a fixed period of time, typically two weeks. It is possible to have access to an issue 

for a longer period of time, but permission must be granted from the personnel department. 

Journals appear on a regular basis and each journal contains information on the publisher, 

language and frequency of publication. The system should keep readers informed of the topics 

that are of interest to them and which appear in the different journals. Furthermore, it should 

be possible for readers to find articles which deal with topics that they are interested in. 

Hospital Problem 1 [Cur95]: 

The EDP department of a medium-sized hospital wishes to create a system which will assist 

in the administration of its wards, operating theatres and private rooms. Furthermore, 

information relating to patients, surgeons and nurses needs to be registered. 

The following information should be present in the system: 

Patients are assigned to a ward when admitted to the hospital unless they are private patients, 

in which case they will be assigned to a private room and they are treated by consultants. A 

consultant is a senior surgeon. Each room has a unique identification number. The attributes 

of a patient are patient name, number, address, sex, date of birth and blood group. 

A nurse may or may not be assigned to a ward. However, a nurse may not be assigned to more 

than one ward. A ward may have many nurses assigned to it. Nurse attributes include name, 

address, phone number and grade. Ward attributes include unique identification number and 

its type (e.g. maternity, paediatric). A patient may undergo a number of operations. 

Only one surgeon may perform an operation, while other surgeons may assist at operations. 

Surgeons are coached by consultants who are experienced surgeons. A consultant may assist 

or perform at an operation. Surgeon attributes include name, address and phone number. 

Each consultant specializes in a certain area. 

An operation is performed in only one theatre and a given theatre may be the venue for many 

operations. Theatre attributes include identifying number and some may be specially 

equipped for certain classes of operation. 
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A nurse may be assigned to an operating theatre. However, a nurse may not be assigned to 

more than one theatre. A theatre may have many nurses assigned to it. 

Hospital Problem 2 [Duf95]: 

A local hospital consists of many wards, each of which is assigned many patients. Each patient 

is assigned to one doctor, who has overall responsibility for the patients in his or her care. 

Other doctors are assigned on an advisory basis. Each patient is prescribed drugs by the doctor 

responsible for that patient. 

Each nurse is assigned to a ward and nurses all patients on the ward, though is given special 

responsibility for some patients. Each patient is assigned one nurse in this position of 

responsibility. One of the doctors is attached to each ward as an overall medical advisor. 

Lift Problem [PRM+07]: 

A lift consists of a door, a motor, and a lift controller.  The lift controller is responsible for 

controlling the lift system.  Passengers interact with the lift system by passing buttons on the 

individual floors or on the control panel inside the lift.  Normally, the lift stays on the ground 

floor (0-th floor) of a building.  If a passenger enters the lift and presses the button for the k-

th floor, the lift will move up to the k-th floor.  When the lift arrives at requested floor (say k-

th floor), it opens the door for a certain period M seconds of time and closes them.  The lift 

then becomes idle. 

A passenger on m-th floor calls a lift by pressing the up or down button.  The lift will move to 

the m-th floor and open the door on arrival.  The passenger requests to go to a particular floor 

by pressing the corresponding button on the control panel inside the lift.  If there is no 

passenger interaction on the control panel within M seconds, then the lift will return to the 

ground floor. 

Meeting Problem [RBP+91]: 

Softcom needs a computer system to support athletic meetings for judged sports, such as 

gymnastics, diving or figure skating. Meetings for these sports take place during the season. 

A season goes on for several months. 
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Competitors register to take part to a meeting. They belong to teams and teams belong to 

leagues. Each meeting consists of various competitions, such as routines, figures or styles. 

Figures correspond to different difficulties and therefore the have different point values. 

Competitors can enter many competitions. In a particular competition, competitors receive a 

number which is announced and used to split them into groups. There is a panel of judges 

who give a subjective score for the competitors' performance. Working from stations, the 

judges can score many competitions. 

A competition consists of some trials. Competitors receive a score for each trial of a 

competition. The scores for the trials are read at each station. The system eliminates both the 

highest and the lowest score. The other scores are then processed and the net score is 

determined. Final prizes are based on the net scores. 

Taxi Problem [BAR12]: 

The company operates both individual taxis and shuttles. The taxis are used to transport an 

individual (or small group) from one location to another. The shuttles are used to pick up 

individuals from different locations and transport them to their several destinations. 

When the company receives a call from; individual, hotel, entertainment venue, tourist 

organization, it tries to schedule a vehicle to pick up the fare. If it has no free vehicles, it does 

not operate any form of queuing system. 

When a vehicle arrives at a pick up location, the driver notifies the company. Similarly, when 

a passenger is dropped off at their destination, the driver notifies the company. 

Gizmo-ball Problem [MIT05]: 

Your implementation must support two modes of execution building and running. In building 

mode, the user can add gizmos to the playing area and can modify the existing ones. In 

running mode, a ball moves around the playing area and interacts with the gizmos. 

To describe dimensions in the playing area, we define L be the basic distance unit, equal to 

the edge length of a square bumper. Corresponding to standard usage in the graphics 

community, the origin is in the upper left-hand corner with coordinates increasing to the right 

and down. 
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The playing area must be at least 20 L wide by 20 L high. That is, 400 square bumpers could 

be placed on the playing area without overlapping. The upper left corner is (0,0) and the lower 

right corner is (20,20). When we say a gizmo is at a particular location, that means that the 

gizmo's origin is at that location. The origin of each of the standard gizmos is the upper left-

hand corner of its bounding box, so the location furthest from the origin at which a gizmo may 

be placed is (19,19) on a 20L x 20L board. The origin of a ball is at its center. 

During building mode, Gizmos should snap to a 1 L by 1 L grid. That is, a user may only place 

gizmos at locations (0,0), (0,1), (0,2), and so on. 

During running mode the animation grid may be no coarser than 0.05 L by 0.05 L. Rotating 

flippers can be animated somewhat more coarsely. If the ball is moving faster than the 

animation grid size per frame redraw, it need not be redrawn in each animation grid position. 

In building mode the user can add any of the available types of gizmos to the playing area. 

An attempt to place a gizmo in such a way that it overlaps a previously placed gizmo or the 

boundary of the playing area should be rejected. 

Move a gizmo from one place to another on the playing area. An attempt to place a gizmo in 

such a way that it overlaps a previously placed gizmo or the boundary of the playing area 

should be rejected. 

Apply a 90 degree clockwise rotation to any gizmo. Rotation has no effect on gizmos with 

rotational symmetry. For example, circular bumpers look and act the same, no matter how 

many times they have been rotated by 90 degrees. 

Connect a particular gizmo's trigger to a particular gizmo's action. The standard gizmos 

produce a trigger when hit by the ball, and exhibit at most one action (for example, moving a 

flipper, shooting the ball out of an absorber, or changing the color of a bumper). The trigger 

that a gizmo produces can be connected to the actions of many gizmos. Likewise, a gizmo's 

action can be activated by many triggers. The required triggers and actions for the basic 

gizmos are described below. Note that triggers do not chain. That is, when A is connected to 

B and B is connected to C, a ball hitting A should only cause the action of B to be triggered. 

Connect a key-press trigger to the action of a gizmo. Each keyboard key generates a unique 

trigger when pressed. As with gizmo-generated triggers, key-press triggers can also be 

connected to the actions of many gizmos. 
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Delete a gizmo from the playing area. 

Add a ball to the playing area. The user should be able to specify a position and velocity. An 

attempt to place the ball in such a way that it overlaps a previously placed gizmo or the 

boundary of the playing area should be rejected (i.e., it should have no effect). There is one 

exception in the standard gizmo set: a stationary ball may be placed inside an absorber. 

Save to a file named by the user. You must be able to save to a file in the standard format given 

in Appendix 2. You may, if you wish, define an extension to the standard format that handles 

special features of your implementation. If you do so, the user must have the choice of saving 

in the standard format or in your special format. The saved file must include information 

about all the gizmos currently in the playing area, all of the connections between triggers and 

actions, and the current position and velocity of the ball. 

Load from a file named by the user. You must be able to load a game saved in the standard 

format. 

Switch to running mode. 

Quit the application. 

In running mode the user can press keys, thereby generating triggers that may be connected 

to the actions of gizmos. 

Switch to building mode at any time If the user requests to switch to building mode while a 

flipper is in motion, it is acceptable to delay switching until the flipper has reached the end of 

its trajectory. Similar short delays in order to finish transitional states of gizmos you create are 

also acceptable. 

Quit the application. 

Provide visually smooth animation of the motion of the ball. The ball by default must have a 

diameter of approximately 0.5 L. Ball velocities must range at least from 0.01 L/sec to 200 L/sec 

and can cover a larger range if you wish. 0 L/sec (stationary) must also be supported. An 

acceptable frame rate should be used to generate a smooth animation. We have found that 20 

frames per second tends to work well across a reasonably wide range of platforms. 
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Provide intuitively reasonable interactions between the ball and the gizmos in the playing 

area. That is, the ball should bounce in the direction and with the resulting velocity that you 

would expect it to bounce in a physical pinball game. 

Continually modify the velocity of the ball to account for the effects of gravity. You should 

support the standard gravity value of 25 L/sec2, which resembles a pinball game with a 

slightly tilted playing surface. 

Continually modify the velocity of the ball to account for the effects of friction. You should 

model friction by scaling the velocity of the ball using the frictional constants mu and mu2. 

The default value of mu should be 0.025 per second. The default value of mu2 should be 0.025 

per L. 

There are seven standard gizmos that must be supported: bumpers (square, circular, and 

triangular), flippers (left and right), absorbers, and outer walls. A coefficient of reflection of 

1.0 means that the energy of the ball leaving the bumper is equal to the energy with which it 

hit the bumper, but the ball is traveling in a different direction. As an extension, you may 

support bumpers with coefficients above or below 1.0 as well. 

A square bumper is a square shape with an edge length of 1L. Its trigger is generated 

whenever the ball hits it and no action. The coefficient of reflection is 1.0. 

A circular bumper is a circular shape with a diameter of 1L. Its trigger is generated whenever 

the ball hits it and no action. The coefficient of reflection is 1.0. 

A triangle bumper is a right-triangular shape with sides of length 1L and hypotenuse of length 

Sqrt(2)L. Its trigger is generated whenever the ball hits it and no action required. The 

coefficient of reflection is 1.0. 

A flipper is generally rectangular rotating shape with bounding box of size 2Lx2L. Its trigger 

is generated whenever the ball hits it and rotates 90 degrees. The coefficient of reflection is 

0.95. 

Flipper's are required to come in two different varieties, left flippers and right flippers. A left 

flipper begins its rotation in a counter-clockwise and a right flipper begins its rotation in a 

clockwise direction. 
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An absorber is a square shape with integral length sides. Its trigger is generated whenever the 

ball hits it and shoots out a stored ball. The absorber as no coefficient of reflection, but the ball 

is captured 

When a ball hits an absorber, the absorber stops the ball and holds it in the bottom right-hand 

corner of the absorber. 

If the absorber is holding a ball, then the action of an absorber, when it is triggered, is to shoot 

the ball straight upwards in the direction of the top of the playing area. By default, the initial 

velocity of the ball should be 50L/sec. (With the default gravity and the default values for 

friction, the value of 50L/sec gives the ball enough energy to lightly collide with the top wall, 

if the bottom of the absorber is at y=20L.) If the absorber is not holding the ball, or if the 

previously ejected ball has not yet left the absorber, then the absorber takes no action when it 

receives a trigger signal. 

Absorber's cannot be rotated. 

Outer walls are impermeable barriers surrounding the playing field. Its trigger is generated 

whenever the ball hits it and has no action. The coefficient of reflection is 1.0. 

A Gizmoball game supports exactly one set of outer walls. The user cannot move, delete, or 

rotate the outer walls. The outer walls lie just outside the playing area 
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Appendix B.2 Manual Specification Classifications Data 

Organisation Problem 1: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Department(D) Department(D) X     

Course(C) Course (C) X     

Student(S) Student(S) X     

Section(SE) Section(SE) X     

Instructor(I) Instructor(I) X     

 Instructor Work(IW)      

 Section Semester(SS)   X   

 Year(Y)   X   

 Number(N)   X   

 Course Name (CN)   X   

 Name(NA)   X   

 Student ID(SI)   X   

 Advisor(A)    X  

 Description   X   

 Track   X   

 Store   X   

 University    X  

Totals  5 0 9 2 0 

 

Relationships Detection Data 

Orig Rel ASA Rel Correct Missing Incorrect Extra 

D�I   X   

I�SE I�SE X    

SE�C SE�C X    

C�D   X   

S�I   X   

S�SE S�SE X  X  

 N�C   X  

 N�SE   X  

 C�SE   X  

 SS�S   X  

 IW�I   X  

 I�N   X  

 N�S   X  

 SE�Y   X  

 S�SI   X  

 S�A    X 

Totals  3 3 10 2 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 1.0 0.33 0.4 0.5 

Relationships 0.5 0.23 0.33 0.31 
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Organisation Problem 2 [Cur95]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Department(D) Department X     

Project(P) FN  X    

Staff(S) Staff X     

Manager(M) Manager X     

 Staff Member     X 

 Management Group    X  

 Charge(C)   X   

Totals  3 1 1 1 1 

 

Relationships Detection Data 

Orig Model Classes Correct Missing Incorrect Extra 

P�S   X   

D�P   X   

D�M M�D X    

 D�S   X  

 D�S    X 

 M�C   X  

 C�S   X  

Totals  1 2 3 1 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.57 0.50 0.43 0.53 

Relationships 0.0 0.0 1.14 0.0 
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ATM Problem [RBPEL91]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Account (A) Account(A) X     

ATM (ATM) Automatic Teller 

Machine(ATM) 
X    

 

Bank (B) Bank(B) X     

Cash Card (CC) Cash Card (CC) X     

Cashier (C) Cashier X     

Cashier Station (CS) fn  X    

Central Computer 

(CCO) 
Computer X    

 

Remote Transaction 

(RT) 
fn  X   

 

Cashier Transaction 

(CT) 
fn  X   

 

Bank Computer (BC) Bank Computer (BC) X     

Consortium(CO) Consortium(CO) X     

Customer (CU) User(U) X     

 Human Cashier (C)     X 

 Banking Network (BN)    X  

 Design (D)   X   

 ATMs) (ATM)     X 

 RecordKeepe (RK)   X   

 Teller Machine (ATM)     X 

 Software (S)   X   

 System (SY)   X   

 Security Provision (SP)    X  

 Communicate (COM)   X   

 Interact (I)   X   

       

Totals  9 3 6 2 3 
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Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

ATM�RT   X   

CCO�ATM CCO�ATM X    

CO�CCO   X   

CCO�BC   X   

CO�B CO�B X    

BC�CS   X   

B�BC   X   

B�CS   X   

B�C B�C X    

B�A   X   

RT�A   X   

RT�CC   X   

CS�CT   X   

A�CT   X   

A�CC   X   

A�CU   X   

CC�CU   X   

 CC�ATM    X 

 ATM�BN    X 

 CCO�S   X  

 B�S   X  

 BN�S   X  

 BN�C    X 

 C�A    X 

 A�SY   X  

 SY�SP   X  

 SY�COM   X  

 COM�I   X  

 I�U   X  

Totals  3 12 8 4 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.75 0.60 0.17 0.67 

Relationships 0.20 0.27 0.27 0.23 
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Cinema Problem [CIS08]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Film(F) Film(F) X     

Screen(S) Screen(S) X     

Weekly Showing 

Schedule (WSS) 
TimeTable (TT) X    

 

Showing(SH) Screening (SC) X     

Seated 

Showing(SS) 
Seated Screen(SS) X    

 

Unseated Showing 

(US) 
fn  X   

 

Family Ticket (FT) fn  X    

Ticket(T) Ticket(T) X     

Sale(S) fn  X    

Card Sale(CS) np  X    

Cinema Card Sale 

(CCS) 
np  X   

 

Cinema Card (CC) Cinema Card (CC) X     

Customer (C) Customer (C) X     

 Student(ST)    X  

 Place (P)   X   

 Type(TY)   X   

 Number(N)   X   

 Citizen(CI)    X  

 Month(M)   X   

 Film Distributor(FD)    X  

 Seat(SE)    X  

 Photograph(P)   X   

 Cinema(CIN)    X  

 Copy(CO)   X   

 List(L)    X  

 Day(D)   X   

 Week(W)   X   

 Matinee Screening (MS)    X  

 Weekend Screening(WS)    X  

 Cinema Management 

Team(CMT) 
   X 

 

 Management Team(MT)     X 

 Subscription Charge(SC)   X   

 Cinemas Staff(CST)    X  

 Person(P)     X 

 Release Period(RP)   X   

 Regard(R)   X   

 Followe(F)   X   

 Information(IN)   X   

 Board(B)    X  

 Debit Card (DC)    X  

 Cinema Membership Card 

(CMC) 
    X 

 I(I)   X   

 Card(CA)    x  

 Date(DA)   X   

Totals  8 5 15 13 3 
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Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

F�SH F�T X    

S�SH   X   

WSS�SH   X   

SS�SH   X   

US�SS   X   

T�SS   X   

T�US   X   

FT�T   X   

FT�T   X   

T�S   X   

S�CS   X   

CCS�S   X   

CC�CCS   X   

CC�C   X   

 D�W   X  

 P�T   X  

 ST�T    X 

 CI�T    X 

 M�T   X  

 TY�T   X  

 TY�N   X  

 N�T   X  

 T�S    X 

 N�S   X  

 N�S   X  

 S�SS    X 

 FD�SE   X  

 C�SE    X 

 P�C   X  

 F�S    X 

 S�F    X 

 CI�F    X 

 CI�CO   X  

 F�L   X  

 M�CA    X 

 CA�I   X  

 CA�DA   X  

 F�IN   X  

 B�IN   X  

Totals  1 13 16 9 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.62 0.36 0.92 0.46 

Relationships 0.07 0.06 0.64 0.06 
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KWIC [Par72] 

Class Detection Data: 

Original Model Classes Correct Missing Incorrect Extra SYM 

Master 

Control(MC) 
KWIC Index System (KIS) X     

Input(I) np  X    

Output(O) np  X    

Character(C) Word(W) X     

Circular Shift(CS) Shift(S) X     

Alphabetic 

Shift(AS) 
Shift(S) X     

 End(E)   X   

 Line(LI)    X  

 Ordered Set (OS)     X 

 Set(SE)    X  

 List(L)    X  

Totals  4 2 1 3 1 

 

Relationship Detection Data: 

Original Model Relationships Correct Missing Incorrect Extra 

C�CS   X   

CS�ASL   X   

 KIS�SE    X 

 KIS�OS    X 

 KIS�L    X 

 L�S    X 

 S�LI    X 

 SE�W    X 

 SE�LI    X 

 LI�E   X  

Totals  0 2 1 7 

 

Measure Results: 

 Recall Precision Over-Specification F-Measure 

Classes 0.67 0.80 0.50 0.73 

Relationships 0.0 0.0 3.5 0.0 
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Library Problem 1 [EP98]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Book Title(BT) Book (B) X     

Borrower(BR) Borrower(BR) X     

Item(I) np  X    

Loan(L) fn  X    

Magazine Title (MT) Magazine(M) X     

Reservation(R) Reservation(R) X     

Title(T) fn  X    

 OldBook (OB)     X 

 Copy(C)   X   

 Library(L)    X  

 Employee(E)    X  

 Information(IN)   X   

 Work(W)   X   

 System(S)   X   

 Librarian(LI)    X  

Totals  4 3 4 3 1 

Relationship Detection Data: 

Orig Model Classes Correct Missing Incorrect Extra 

BR�R   X   

BR�L   X   

BR�I   X   

L�I   X   

I�T   X   

BT�T   X   

MT�T   X   

 B�L    X 

 B�L    X 

 L�E    X 

 E�LI    X 

 L�M    X 

 M�BR    X 

 B�BR    X 

 B�IN   X  

 R�IN   X  

 L�IN   X  

 BR�IN   X  

 BR�S    X 

 IN�S   X  

 W�S   X  

      

Totals  0 7 6 8 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.57 0.50 0.43 0.53 

Relationships 0.0 0.0 1.14 0.0 
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Library Problem 2 [Cal94]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Book (B) Book X     

Customer (C) Customer X     

Language Tape (LT) Language Tape (LT) X     

Library (L) Library(L) X     

Loan Item (LI) Loan Item (LI) X     

Section (S) Section(S) X     

Member Card (MC) Membership Card 

(MC) 
X    

 

Loan 

Transaction(LTR) 
Np  X   

 

 Record (R)    X  

 Update (U)   X   

 Type (T)   X   

 Birth (B)   X   

 Membership (M)     X 

 Bar Code Reader (BCR)    X  

 Number (N)   X   

 Member     X 

Totals  7 1 4 2 2 

 

Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

L�S   X   

S�LI   X   

L�MC   X   

MC�C MC�C X    

C�LI LI�C X    

C�LTR   X   

LTR�LI   X   

LI�LT   X   

LI�B   X   

 L�LI    X 

 LI�T   X  

 LI�N   X  

 N�S   X  

 T�B   X  

 T�LT   X  

 R�U   X  

Totals  2 7 6 1 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.88 0.64 0.25 0.74 

Relationships 0.20 0.14 0.40 0.17 
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Library Problem 3 [Cur95]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Order (O) fn  X    

Invoice (I) Invoice (I) X     

Book (B) Book(B) X     

Note (N) fn  X    

Catalogue Note 

(CN) 
Catalogue Note (CN) X    

 

Delivery Note (DN) Delivery Note (DN) X     

Enquiry Note (EN) np  X    

Person (P) np  X    

 Enquiry (E)   X   

 Public (P)    X  

 Accounts Department 

(AD) 
   X 

 

 Account (A)    X  

 Store (S)   X   

 Pending File (PF)    X  

 Letter (L)    X  

 Instruction (INS)   X   

 Library Desk (LD)   X   

 Publisher (PUB)    X  

 Library(LIB)    X  

 File(F)    X  

Totals  4 4 4 8 0 

 

Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

O�B   X   

I�B   X   

B�N   X   

B�P   X   

EN�N   X   

CN�N  X    

DN�N  X    

 LIB�B    X 

 LIB�PUB    X 

 B�F    X 

 F�AN    X 

 E�L   X  

 AD�A    X 

 AD�S   X  

 S�AN   X  

 AN�I    X 

 I�PF    X 

 I�PUB   X  

Totals  2 5 4 7 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.63 0.63 1.0 0.63 

Relationships 0.29 0.33 1.0 0.31 
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Filing Problem [Der95]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Author (A) Author (A) X     

Keyword (K) Keyword (K) X     

Abstract (AB) DocumentDescription (DD) X     

ASCII Character 

(AC) 
FilingCharacterSet(FCS) X    

 

Junk Word (JW) JunkWord (JW) X     

Text Document 

(TD) 
TextDocument (TD) X    

 

Index (I) fn  X    

Page (P) Np  X    

Line (L) Np  X    

Word (W) np  X    

 SearchCriterium (SC)    X  

 SpecifiedSearchCriterium(SSC)     X 

 User (U)    X  

 E.g (EG)   X   

 EFP (E)   X   

 Document (DOC)    X  

 WordProcessor (WP)   X   

 Portion (P)   X   

 Content (C)   X   

 Description (D)     X 

 Editor (ED)    X  

Totals  6 4 5 4 2 

Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

TD�A   X   

TD�K   X   

TD�P   X   

P�L   X   

L�W   X   

L�JW   X   

W�AC   X   

TD�AB  X    

I�TD   X   

 U�JW    X 

 D�DD    X 

 D�WP   X  

 D�E    X 

 D�P   X  

 D�C   X  

Totals  1 8 3 3 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.6 0.54 0.4 0.57 

Relationships 0.11 0.25 0.33 0.15 
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Exam Problem: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Faculty 

Member(FM) 
Faculty Member(FM) X    

 

Course(C) Course(C) X     

Student(S) Student(S) X     

Exam(E) Exam(E) X     

Item(I) np  X    

Choice(CH) Entry(EN) X     

Scan Tron 

Sheet(STS) 
Bubble Sheet(BS) X    

 

Sheet Reader(SR) NP(auto processing)  X    

ASCII File(AF) Data File(DF) X     

Analyzer(A) np  X    

Part Group (PG) np  X    

Part(P) Part(P)(STWR) X     

Record(R) Record(R) X     

Letter(L) Letter(L) X     

Question(Q) Question(Q) X     

Answer(ANS) Answer(A) X     

Repository(RE) Repository(R) X     

Answers(ANSS) Answer Sheet(AS) X     

Blank(B) Space(SP) X     

A-Z(AZ) Requested Answer(RA) X     

*(*) FN(asterisk Character)  X    

 Custom Exam(CE)    X  

 Duplication(D)   X   

 Set(SE)     X 

 Version(V)    X  

 Exam Question (EQ)     X 

 System(SY)    X  

 Place(PL)   X   

 Bubble(B)   X   

 Name   X   

 Output   X   

 University    X  

 Course Content    X  

 Credit    X  

 Student Performance(SPE)    X  

Totals  16 5 5 7 2 
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Relationship Detection Data: 

Orig Rel ASA Rel Correct Missing Incorrect Extra 

FM�E FM�E X    

FM�C   X   

C�S   X   

E�I   X   

STS�CH   X   

SR�STS   X   

SR�AF   X   

AF�A   X   

A�RE   X   

AF�R   X   

R�L   X   

L�B   X   

L�*   X   

L�AZ   X   

I�P   X   

I�PG   X   

PG�P   X   

P�Q   X   

P�A   X   

Q�ANS Q�ANS X    

A�ANSS   X   

Q�ANSS   X   

ANSS�RE   X   

A�RE   X   

 E�D   X  

 E�SE    X 

 E�V    X 

 V�Q   X  

 Q�ANS    X 

 Q�SPE   X  

 Q�BS    X 

 ANS�S   X  

 S�R    X 

 S�L   X  

 L�PL   X  

 PL�SY   X  

 PL�SP   X  

 S�SP   X  

 S�B   X  

 B�E   X  

Totals  2 22 12 5 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.76 0.76 0.38 0.76 

Relationships 0.08 0.14 0.21 0.11 
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Personnel Problem [Duf95]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Reader (R) Reader (R) X     

Journal (J) Journal (J) X     

Topic (T) Topic (T) X     

Article (A) Article (A) X     

Issue (I) M(np)  X    

 System (S)   X   

 Publication (P)    X  

 Access (AC)    X  

 Research Institute (RA)    X  

 Permission (PE)     X 

 Personnel Department (PD)    X  

 Department (D)    X  

 Week (W)   X   

 Period (PER)   X   

 Frequency (F)   X   

 Language (L)   X   

 Publisher (PUB)    X  

Totals  4 1 5 6 1 

 

Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

R�J R�J X    

R�T   X   

T�A   X   

A�I   X   

J�I   X   

 RI�PD    X 

 PE�D    X 

 R�A    X 

 R�AC    X 

 J�W   X  

 J�PER   X  

 J�F   X  

 J�L   X  

Totals  1 4 4 4 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.80 0.44 1.2 0.57 

Relationships 0.20 0.20 0.8 0.20 
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Hospital Problem 1 [Cur95]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Patient(P) Patient(P) X     

Ward(W) Ward(W) X     

Room(R) Room(R) X     

Consultant(C) Consultant(C) X     

Surgeon(S) Surgeon(S) X     

Nurse(N) Nurse(N) X     

Normal Patient(NP) Patient(P) X     

Private Patient(PP) Patient(P) X X    

Staff(ST) np  X    

 Theatre(T)    X  

 Operating Theatre (OT)     X 

 Given Theatre (GT)     X 

 Venue(V)   X   

 Number(NU)   X   

 Type(T)   X   

 Birth(B)   X   

 Date(D)   X   

 Hospital(H)    X  

 EDP Department(EDP)    X  

 Name(NA)   X   

 Address(A)   X   

Totals  8 1 7 3 2 

 

Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

NP�W   X   

PP�R  X    

ST�SU   X   

ST�N   X   

S�C  X    

N�W  X    

C�R   X   

 N�W    X 

 H�EDP    X 

 T�N    X 

 T�N    X 

 T�V   X  

 P�NU   X  

 P�C    X 

Totals  3 4 2 5 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.89 0.53 0.33 0.67 

Relationships 0.43 0.6 0.71 0.50 
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Hospital Problem 2 [Duf95]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Patient(P) Patient(P) X     

Ward(W) Ward(W) X     

Doctor(D) Doctor(D) X     

Nurse(N) Nurse(N) X     

Prescription(PRE)   X    

 Drug(DR)    X  

 Hospital(H)    X  

 Advisor(A)    X  

Totals  4 1 0 3 0 

 

Relationship Detection Data 

Orig Model Relationships Correct Missing Incorrect Extra 

W�D   X   

W�N  X    

N�P  X    

D�P  X    

P�PRE   X   

 H�W    X 

 W�P    X 

 N�P    X 

 P�DR    X 

Totals  3 2 0 4 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.80 1.0 0.60 0.89 

Relationships 0.60 1.0 0.80 0.75 
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Lift Problem [PRM+07]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Down Button(DB) Button(B) X     

Lift Button(LB) Button(B) X     

Up Button(UB) Button(B) X     

Floor Panel UI(FPU) np  X    

Floor Number 

Button(FNB) 
Button(B) X    

 

Lift Controller(LC) Lift Controller(LC) X     

Motor(M) Motor(M) X     

Lift Panel UI(LPU) np  X    

Lift(L) Lift(L) X     

Door(D) Door(D) X     

 Passenger(P)    X  

 PassengerInteract(PI)   X   

 Build(BU)    X  

 Period(P)   X   

 Second(S)   X   

 PeriodSecond(PS)   X   

 ControlPanel(CP)     X 

 Pres(PR)   X   

 Floor(F)    X  

Totals  8 2 5 3 1 

Relationship Detection Data: 

Orig Rel ASA Rel Correct Missing Incorrect Extra 

DB�LB   X   

UB�LB   X   

FNB�LB   X   

FPU�DB   X   

FPU�UB   X   

FNB�LPU   X   

FNB�LC   X   

FPU�LC   X   

UB�LC   X   

DB�LC   X   

LC�M   X   

LPU�LC   X   

LC�L LC�L X    

M�L M�L X    

LC�D   X   

LC�D   X   

L�D   X   

 B�P    X 

 P�PR   X  

 P�F    X 

 P�L    X 

 P�L    X 

 PR�F   X  

 L�F    X 

 L�F    X 

 L�CP    X 

 L�D    X 

 F�D   X  

 F�BU    X 

 F�P   X  

 S�F   X  

 PS�F   X  

Totals  2 15 6 9 
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Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.90 0.75 0.20 0.82 

Relationships 0.12 0.25 0.53 0.16 

 

Meeting Problem [RBPEL91]: 

Class Detection Data 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Competition(C) fn  X    

Competitor(CO) Competitor(CO) X     

Figure(F) fn  X    

Judge(J) Judge (J) X     

League(L) League(L) X     

Meeting(M) Meet(M) X     

Score(S) fn  X    

Season(S) Season(S) X     

Station(ST) Station(ST) X     

Team(T) Team(T) X     

Trial(TR) fn  X    

 Part(P) (STWR)   X   

 Place(PL)   X   

 Month(MO)   X   

 Group(G)    X  

 Figures 

Correspond(FC) 
  X  

 

 Softcom(SC)    X  

 Performance(P)   X   

 Final Prize(FP)    X  

 Work(W)   X   

       

 Panel(PA)   X   

Totals  7 4 7 3 0 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.64 0.50 0.36 0.56 
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Taxi Problem [BAR12]: 

Class Detection Data: 

Orig Model Classes Correct Missing Incorrect Extra SYM 

Passenger Source 

(PS) 
np  X   

 

Taxi Company (TC)  X     

Vehicle (V)  X     

Shuttle (S)  X     

Taxi (T)  X     

Passenger (P)  X     

Location (L)  X     

 Call (C)    X  

 Driver (D)    X  

Totals  6 1 0 2 0 

 

Relationship Detection Data:  

Orig Rel ASA Rel Correct Missing Incorrect Extra 

PS�TC   X   

TC�V  X    

TC�V   X   

V�L  X    

V�L   X   

P�L  X    

P�L  X    

S�P  X    

S�L   X   

 S�TC    X 

 T�P    X 

 T�TC    X 

 D�TC    X 

 C�TC    X 

 P�TC    X 

Totals  5 4 0 6 

 

Measures Results 

 Recall Precision Over-Specification F-Measure 

Classes 0.86 1.0 0.29 0.92 

Relationships 0.55 1.0 0.67 0.71 
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Appendix B.3 UML Models Generated by the ASA 

Organisation Problem 1: 

 

Organisation Problem 2 [Cur95]: 
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ATM Problem [RBPEL91]: 

 

Cinema Problem [CIS08]: 
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KWIC [Par72] 

 

 

Library Problem 1 [EP98]: 
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Library Problem 2 [Cal94]: 

 

Library Problem 3 [Cur95]: 
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Filing Problem [Der95]: 

 

Exam Problem: 
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Personnel Problem [Duf95]: 

 

Hospital Problem 1 [Cur95]: 
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Hospital Problem 2 [Duf95]: 

 

 

Lift Problem [PRM+07]: 
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Meeting Problem [RBPEL91]: 

 

Taxi Problem [BAR12]: 
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Appendix B.4 Class Candidate Key Issues Analysis Raw Data

Classification Word Core Issue 

False 

Negative (P) 
character Rule 27 

False 

Negative (P) 
family ticket Rule 27 

False 

Negative (P) 
character Rule 27 

False 

Negative (P) 
station Rule 27 

False 

Negative (P) 
figure Rule 27 

False 

Negative (P) 
note Rule 27 

False 

Negative (P) 
order Rule 27 

False 

Negative (P) 
station Rule 27 

False 

Negative (P) 

automatic 

processing(sheet 

reader) 

Semantics 

Issue 

False 

Negative (P) 
sale 

Semantics 

Issue 

False 

Negative (P) 
transaction(remote) 

Semantics 

Issue 

False 

Negative (P) 
transaction(cashier) 

Semantics 

Issue 

False 

Negative (P) 
loan 

Semantics 

Issue 

False 

Negative (P) 
competition 

Semantics 

Issue 

False 

Negative (P) 
score 

Semantics 

Issue 

False 

Negative (P) 
trial 

Semantics 

Issue 

False 

Negative (P) 
index 

Semantics 

Issue 

False 

Negative (P) 
project 

Semantics 

Issue 

False 

Negative (P) 
flipper left Rule 27 

False 

Negative (P) 
unseated showing 

Semantics 

Issue 

False 

Negative (P) 
right flipper 

Semantics 

Issue 

False 

Negative (P) 
circle bumper 

Semantics 

Issue 

False 

Negative (P) 
output nlp 

False 

Negative (P) 
title 

Semantics 

Issue 

False 

Positive 
number Rule 27 

False 

Positive 
type Rule 27 

False 

Positive 
feature Rule 27 

False 

Positive 
game Rule 27 

False 

Positive 
type Rule 27 

False 

Positive 
way Rule 27 

False 

Positive 
press Rule 27 

False 

Positive 
Part Rule 27 

False 

Positive 
portion Rule 27 

False 

Positive 
number Rule 27 

False 

Positive 
charge Rule 27 

False 

Positive 
interact nlp 

False 

Positive 
interact nlp 

False 

Positive 
bubble 

Semantics 

Issue 

False 

Positive 
duplication 

Semantics 

Issue 

False 

Positive 
name 

Semantics 

Issue 

False 

Positive 
output 

Semantics 

Issue 

False 

Positive 
place 

Semantics 

Issue 

False 

Positive 
copy 

Semantics 

Issue 

False 

Positive 
date 

Semantics 

Issue 

False 

Positive 
day 

Semantics 

Issue 

False 

Positive 
following 

Semantics 

Issue 

False 

Positive 
i .e 

Semantics 

Issue 

False 

Positive 
information 

Semantics 

Issue 

False 

Positive 
month 

Semantics 

Issue 

False 

Positive 
photograph 

Semantics 

Issue 

False 

Positive 
place 

Semantics 

Issue 

False 

Positive 
release period 

Semantics 

Issue 

False 

Positive 
subscription charge 

Semantics 

Issue 

False 

Positive 
week 

Semantics 

Issue 

False 

Positive 
bottom 

Semantics 

Issue 

False 

Positive 
center 

Semantics 

Issue 

False 

Positive 
chain 

Semantics 

Issue 

False 

Positive 
clockwise direction 

Semantics 

Issue 

False 

Positive 
corner 

Semantics 

Issue 

False 

Positive 
direction 

Semantics 

Issue 
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False 

Positive 
end 

Semantics 

Issue 

False 

Positive 
execution building 

Semantics 

Issue 

False 

Positive 
frame 

Semantics 

Issue 

False 

Positive 
frame redraw 

Semantics 

Issue 

False 

Positive 
graphic community 

Semantics 

Issue 

False 

Positive 
hypotenuse 

Semantics 

Issue 

False 

Positive 
length side 

Semantics 

Issue 

False 

Positive 
platform 

Semantics 

Issue 

False 

Positive 
second 

Semantics 

Issue 

False 

Positive 
surface 

Semantics 

Issue 

False 

Positive 
switch 

Semantics 

Issue 

False 

Positive 
course name 

Semantics 

Issue 

False 

Positive 
description 

Semantics 

Issue 

False 

Positive 
instructor work 

Semantics 

Issue 

False 

Positive 
name 

Semantics 

Issue 

False 

Positive 
number 

Semantics 

Issue 

False 

Positive 
section semester 

Semantics 

Issue 

False 

Positive 
store 

Semantics 

Issue 

False 

Positive 
student id 

Semantics 

Issue 

False 

Positive 
track 

Semantics 

Issue 

False 

Positive 
year 

Semantics 

Issue 

False 

Positive 
end 

Semantics 

Issue 

False 

Positive 
m second 

Semantics 

Issue 

False 

Positive 
period m second 

Semantics 

Issue 

False 

Positive 
communicate 

Semantics 

Issue 

False 

Positive 
software 

Semantics 

Issue 

False 

Positive 
system 

Semantics 

Issue 

False 

Positive 
copy 

Semantics 

Issue 

False 

Positive 
information 

Semantics 

Issue 

False 

Positive 
system 

Semantics 

Issue 

False 

Positive 
work 

Semantics 

Issue 

False 

Positive 
month 

Semantics 

Issue 

False 

Positive 
panel 

Semantics 

Issue 

False 

Positive 
performance 

Semantics 

Issue 

False 

Positive 
place 

Semantics 

Issue 

False 

Positive 
working 

Semantics 

Issue 

False 

Positive 
content 

Semantics 

Issue 

False 

Positive 
word processor 

Semantics 

Issue 

False 

Positive 
enquiry 

Semantics 

Issue 

False 

Positive 
instruction 

Semantics 

Issue 

False 

Positive 
library desk 

Semantics 

Issue 

False 

Positive 
store 

Semantics 

Issue 

False 

Positive 
frequency 

Semantics 

Issue 

False 

Positive 
language 

Semantics 

Issue 

False 

Positive 
period 

Semantics 

Issue 

False 

Positive 
system 

Semantics 

Issue 

False 

Positive 
week 

Semantics 

Issue 

False 

Positive 
address 

Semantics 

Issue 

False 

Positive 
birth 

Semantics 

Issue 

False 

Positive 
date 

Semantics 

Issue 

False 

Positive 
name 

Semantics 

Issue 

False 

Positive 
number 

Semantics 

Issue 

False 

Positive 
type 

Semantics 

Issue 

False 

Positive 
venue 

Semantics 

Issue 

False 

Positive 
birth 

Semantics 

Issue 

False 

Positive 
type 

Semantics 

Issue 

False 

Positive 
update 

Semantics 

Issue 

False 

Positive 
regarding nlp 

False 

Positive 
coarser nlp 

False 

Positive 
continually nlp 

False 

Positive 
corresponding nlp 

False 

Positive 
counter-clockwise nlp 

False 

Positive 
l/sec stationary nlp 

False 

Positive 
location furthest nlp 

False 

Positive 
passenger interaction 

Semantics 

Issue 

False 

Positive 
design 

Semantics 

Issue 

False 

Positive 
recordkeeping 

Semantics 

Issue 

False 

Positive 
figure correspond nlp 



262 

False 

Positive 
e.g nlp 

False 

Negative 

(NP) 

analyzer 
domain 

knowledge 

False 

Negative 

(NP) 

item 
domain 

knowledge 

False 

Negative 

(NP) 

part group 
domain 

knowledge 

False 

Negative 

(NP) 

cinema card sale 
domain 

knowledge 

False 

Negative 

(NP) 

card sale 
domain 

knowledge 

False 

Negative 

(NP) 

application window 
domain 

knowledge 

False 

Negative 

(NP) 

application listener 
domain 

knowledge 

False 

Negative 

(NP) 

game window 
domain 

knowledge 

False 

Negative 

(NP) 

play listener 
domain 

knowledge 

False 

Negative 

(NP) 

build listener 
domain 

knowledge 

False 

Negative 

(NP) 

controller 
domain 

knowledge 

False 

Negative 

(NP) 

object handler 
domain 

knowledge 

False 

Negative 

(NP) 

movable 
domain 

knowledge 

False 

Negative 

(NP) 

game object 
domain 

knowledge 

False 

Negative 

(NP) 

saveable 
domain 

knowledge 

False 

Negative 

(NP) 

collideable 
domain 

knowledge 

False 

Negative 

(NP) 

visible 
domain 

knowledge 

False 

Negative 

(NP) 

triggerable 
domain 

knowledge 

False 

Negative 

(NP) 

still line 
domain 

knowledge 

False 

Negative 

(NP) 

still circle 
domain 

knowledge 

False 

Negative 

(NP) 

moving circle 
domain 

knowledge 

False 

Negative 

(NP) 

rotating edge 
domain 

knowledge 

False 

Negative 

(NP) 

input 
domain 

knowledge 

False 

Negative 

(NP) 

floor pane UI 
domain 

knowledge 

False 

Negative 

(NP) 

lift panel UI 
domain 

knowledge 

False 

Negative 

(NP) 

passenger source 
domain 

knowledge 

False 

Negative 

(NP) 

item 
domain 

knowledge 

False 

Negative 

(NP) 

page 
domain 

knowledge 

False 

Negative 

(NP) 

line 
domain 

knowledge 

False 

Negative 

(NP) 

enquiry note 
domain 

knowledge 

False 

Negative 

(NP) 

person 
domain 

knowledge 

False 

Negative 

(NP) 

issue 
domain 

knowledge 

False 

Negative 

(NP) 

staff 
domain 

knowledge 

False 

Negative 

(NP) 

loan transaction 
domain 

knowledge 

False 

Negative 

(NP) 

prescription 
domain 

knowledge 

False 

Negative 

(NP) 

build window 
domain 

knowledge 

False 

Negative 

(NP) 

game mode 
domain 

knowledge 

False 

Negative 

(NP) 

word 
domain 

knowledge 
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Appendix B.5 Missing Relationship Classification Raw Data

Relationship Classification 

BR�L FN - Class not present 

BT�T FN - Class not present 

MT�T FN - Class not present 

ATM�RT FN - Class not present 

BC�CS FN - Class not present 

B�CS FN - Class not present 

RT�A FN - Class not present 

RT�CC FN - Class not present 

CS�CT FN - Class not present 

A�CT FN - Class not present 

I�TD FN - Class not present 

O�B FN - Class not present 

B�N FN - Class not present 

P�S FN - Class not present 

D�P FN - Class not present 

L�* FN - Class not present 

L�AZ FN - Class not present 

WSS�SH FN - Class not present 

US�SS FN - Class not present 

T�US FN - Class not present 

FT�T FN - Class not present 

FT�T FN - Class not present 

T�S FN - Class not present 

S�CS FN - Class not present 

B�A Class Present Relation across Paragraphs 

A�CC Class Present Relation across Paragraphs 

A�CU Class Present Relation across Paragraphs 

NP�W Class Present Relation across Paragraphs 

L�S Class Present Relation across Paragraphs 

S�LI Class Present Relation across Paragraphs 

L�MC Class Present Relation across Paragraphs 

FM�C Class Present Relation across Paragraphs 

C�S Class Present Relation across Paragraphs 

Q�ANSS Class Present Relation across Paragraphs 

ANSS�RE Class Present Relation across Paragraphs 

CS�ASL Class Present Relation across Paragraphs 

SS�SH Class Present Relation across Paragraphs 

T�SS Class Present Relation across Paragraphs 

BR�R Class Present Relation in same sentence 

CO�CCO Class Present Relation in same sentence 

CCO�BC Class Present Relation in same sentence 

CC�CU Class Present Relation in same sentence 

C�R Class Present Relation in same sentence 

W�D Class Present Relation in same sentence 

R�T Class Present Relation in same sentence 

T�A Class Present Relation in same sentence 

TD�K Class Present Relation in same sentence 

LC�M Class Present Relation in same sentence 

LC�D Class Present Relation in same sentence 

AF�R Class Present Relation in same sentence 

R�L Class Present Relation in same sentence 

L�B Class Present Relation in same sentence 

P�Q Class Present Relation in same sentence 

D�I Class Present Relation in same sentence 

C�D Class Present Relation in same sentence 

C�CS Class Present Relation in same sentence 

S�SH Class Present Relation in same sentence 

S�L Class Present Relation in same sentence 

LC�D domain knowledge - double relationship 

TC�V domain knowledge - double relationship 

V�L domain knowledge - double relationship 

LI�LT domain understanding 

LI�B domain understanding 

DB�LB domain understanding 

UB�LB domain understanding 

UB�LC domain understanding 

DB�LC domain understanding 

STS�CH domain understanding 

BR�I FN - class not present 

L�I FN - class not present 

I�T FN - class not present 

ST�SU FN - class not present 

ST�N FN - class not present 

P�PRE FN - class not present 

A�I FN - class not present 

J�I FN - class not present 

TD�P FN - class not present 

P�L FN - class not present 

L�W FN - class not present 

L�JW FN - class not present 

W�AC FN - class not present 
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I�B FN - class not present 

B�P FN - class not present 

EN�N FN - class not present 

C�LTR FN - class not present 

LTR�LI FN - class not present 

FNB�LB FN - class not present 

FPU�DB FN - class not present 

FPU�UB FN - class not present 

FNB�LPU FN - class not present 

FNB�LC FN - class not present 

FPU�LC FN - class not present 

LPU�LC FN - class not present 

E�I FN - class not present 

SR�STS FN - class not present 

SR�AF FN - class not present 

AF�A FN - class not present 

A�RE FN - class not present 

I�P FN - class not present 

I�PG FN - class not present 

PG�P FN - class not present 

P�A FN - class not present 

A�ANSS FN - class not present 

CCS�S FN - class not present 

CC�CCS FN - class not present 

CC�C FN - class not present 

PS�TC FN - class not present 

A�RE FN - class not present 
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Appendix B.6 Training Specifications 

Airport Specification: 

All aircraft must have a transponder. The transponder is used to transmit aircraft position to 

the ground station monitor. The monitor can query an aircraft for information. The monitor 

keeps a database that maintains this information. A graphics display is generated from the 

current information. The ground station monitor updates the graphics display frequently. A 

graphics display is generated from the current information. The ground station monitor 

updates the graphics display frequently. The monitor checks for dangerous situations. The 

controllers may query the monitor for additional flight information. Controllers may also 

query the aircraft for this information.</paragraph> 

Music Store Specification: 

The musical store receives tape requests from customers. The musical store receives new tapes 

from the Main office. Musical store sends overdue notice to customers. Store assistant takes 

care of tape requests. Store assistant update the rental list. Store management submits the price 

changes. Store management submits new tapes. Store administration produces rental reports. 

Main office sends overdue notices for tapes. Customer request for a tape. Store assistant checks 

the availability of requested tape. Store assistant searches for the available tape. Store assistant 

searches for the rental price of available tape. Store assistant checks status of the tape to be 

returned by customer. Customer can borrow if there is no delay with return of other tapes. 

Store assistant records rental by updating the rental list. Store assistant asks customer for his 

address. 

Video Store Specification: 

A new video store intends to offer rentals of video tapes and disks to the wider public. The 

store management is determined to launch its operations with the support of a computer 

system. The management has already sourced a number of small business software packages 

that might be suitable for customisation and further development. To assist with the package 

selection, the store hired a business analyst whose job is to determine and specify the 

requirements. 
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The video store will initially keep stock of about a thousand video tapes, and five hundred 

video disks. The inventory has already been ordered from one supplier, but mode suppliers 

will be approached in the future orders. All video tapes and disks will be bar coded so that a 

scanning machine integrated with the system can support the rentals and returns. The 

customer membership cards will also be bar coded 

Existing customers will be able to place reservations on videos to be collected at a specific date. 

The system must have a flexible search engine to answer customer enquiries, including 

inquiries about movies that the video store does not stock (but may order them on request). 

The video store keeps in stock an extensive library of current and popular movie titles. A 

particular movie may be held on video tapes or disks. Video tapes are in either 'Beta' or 'VHS' 

format. Video disks are in 'DVD' format. 

Each movie has a particular rental period (expressed in days), with a rental charge for that 

period. 

The video store must be able to answer immediately any inquiries about movie's stock 

availability and how many tapes and/or disks are available for rental (the current condition of 

each tape and disk must be known and recorded). 

The rental charge differs depending on the video medium: tape or disk (but it is the same for 

the two categories of tape: Beta and VHS). 

Although the DVD disk is the only format of video disks currently kept in the store, the users 

want the system to extend easily to other disk formats in the future. 

The employees of the video store tend to remember the codes of the most popular movies. 

They frequently use a movie code, instead of a movie title, to identify the movies. This is a 

useful practice because the same movie title may have more than one release by different 

directors. 

Payroll Specification: 

A university wishes to develop a new payroll system. The university employs both full-time 

and casual lecturers. 
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Employees in the Human Resources department will use the system to maintain employee 

information, record and manage annual leave, record and manage sick leave and make 

payments to lecturers at the end of every month. In addition, they must be able to add new 

employee records to the system (when new staff join the university) and delete employee 

records when existing staff leave the university. 

At the end of every month, the system must pay each lecturer the correct amount, on time, 

and by the payment method requested by each lecturer (pay-cheque or bank transfer). Both 

full-time and casual lecturers are able to view and modify their chosen payment method and 

personal information online. However, only full-time lecturers are able to view their payment 

details and leave entitlement (casual lecturers do not have leave entitlement). 

Full-time lecturers are paid a flat salary, but casual lecturers work by the hour and are paid 

an hourly rate. This means they must submit time-cards that show the dates and number of 

hours worked each month. This information is used by the system to calculate the salary owed 

to each casual lecturer. Because casual lecturers are unable to view their payment details 

online, the system generates a pay slip for each casual lecturer which is then mailed to that 

lecturer. 

Medical Specification:  

The host is powered up and all software subsystems are available. The pump software system 

is now in the wait operating state. The patient with IV/pump running is placed onto the host. 

The pump cable is connected to the host. The host now provides power for the pump. 
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Appendix C.1 ASA Technical Evaluation 
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Evaluation	Methodology	

The main goal of this evaluation is to investigation the quality of the class model created by 

Automated Software Architect (ASA) from a requirements specification. These results are 

then compared to the human developed class model using the metrics of precision, recall 

and over-specification.  

It is envisaged that during this evaluation, automation will demonstrate high levels of both 

recall and precision in relation to the human design. In addition, this evaluation will also 

attempt to identify interesting and useful information that can also be used to better the 

automated results. 

This evaluation is based on the evaluation carried out by H.M. Harmain [Har00] and their 

implementation of an automated software developer ‘CM-Builder’ which is most closely 

related to my own work. Their evaluation utilises the metrics of both recall and precision of 

information extraction (IE) systems and they have further developed a new metric ‘over-

specification.’ This metrics aims to measure how much the automatically generated model is 

over-specified compared to that of the ideal solution.  

Since we are using Harmain’s evaluation, it will only consider the actual classes identified and 

not any of the relationships, operations or attributes detected by the solution. This in my 

opinion could limit the accuracy of the evaluation, since we are not considering other aspects 

of the design. Harmain’s reason why they only consider classes is threefold; 1) classes are 

more prominent than relationships, 2) there are different ways to represent the same 

relationship between classes and 3) software development is an iterative process. However, 

I believe that it is possible using these metrics to evaluate the quality of other design 

components in relation to the actual human design (ideal solution). With regard to point 2, 

it is true that relationships between classes can be represented in many ways however, is it 

not the point that automation can at least identify similar relationships? Although, these 

relationships may not be of the correct type, these should at least be considered for the 

quality of identification. 
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Criterion 

The main goal is to compare both the results of automation against the human model (ideal 

solution). Since, different developers can produce different models and there is no gold 

standard per say, for a given requirements specification. There is no confident way to identify 

whether a design is the correct or not. However, it is possible to say whether a design is good 

or bad. Therefore, Harmain state that any class model that has been published in Object 

Oriented text book is an ideal solution. 

Measures 

Harmain evaluation utilises three measures; recall, precision and over-specification, which 

are defined below: 

Recall 

Their definition of recall reflects the completeness of the results produced by automation 

versus the correct and relevant information contained within the ideal solution produced by 

the human developer: 

gmiscorrect

correct

NN

N
recall

sin+
=  

Where 
correctN , refers to the number of correct identifications made by the system, and  

gmisN sin refers to classes contained within the ideal solution but not identified the automated 

model. 

Precision 

This reflects the accuracy of the system based on how much of the extracted information is 

correct: 

incorrectcorrect

correct

NN

N
precision

+
=  

Where 
correctN , is as above and 

incorrectN refers to incorrect identifications made by 

automation. 
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Over-Specification 

This reflects how much extra correct information automation has identified in comparison to 

that of the ideal solution:  

gmiscorrect

extra

NN

N
ionspecificatover

sin+
=−  

Where 
correctN , is as above, where 

extraN  is not within the ideal solution, but subsequently 

considered correct for inclusion and gmisN sin  is within the ideal solution but not within the 

automated model.  

Methodology Application 

The classification of results first requires the ASA to process a specification, where an ideal 

solution exists. Once automation has completed its analysis; the classification of its results is 

a manual process.  

The manual classification process involves reviewing each class created by automation in 

comparison to that of the ideal solution and by using the below definitions determine the 

relevant classification. 

Correct 

An element is considered correct if either it exactly matches or is synonymously relevant to 

an element contained in the ideal model. The ideal model is the model produced by the 

human developer. 

Missing 

An element is considered missing if it is contained within the ideal solution but not within the 

automatically derived answer. 

Incorrect 

An element is considered incorrect if it is not within the ideal model and both the 

specification and by our own judgement confirms that it is incorrect. 

Extra 
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An element is considered extra if by our own judgment it is deemed correct, but is not 

contained within the ideal solution. 

Measure & Method Discussion 

Both precision and over-specification metrics in particular 
incorrectN  and 

extraN  classifications 

rely on our own judgment. However, these classifications could be unconsciously biased 

towards producing a more positive result that over states both precision and over-

specification.  

As a result of this unconscious bias there are only two solutions that could be utilised by 

having an impartial review to classify the automated results, or to modify both precision and 

over-specification metrics and definitions to remove the notion of bias.  

Precision 

In my opinion, precision represents the correct identification of relevant terms by all 

returned terms within the specification. As such, the current precision metric does not 

actually give an accurate picture of the results returned as it is considered within the context 

of the human model. Therefore, to obtain an accurate identification of automations precision 

the metric should be revised and would be best served by this new definition; 

gmisall

correct

NN

N
precision

sin+
= . Where 

allN  represents all results returned by automation, 

where 
correctN  and gmisN sin are as previously defined.

 

Over-Specification 

Harmain’s justification of over-specification relies on the generally accepted OO community 

definition that it is better to over specify than under (Larman, 1998; Martin and Odell, 1995; 

Meyer, 1997). However, the ideal solution itself represents a model that may have gone 

through several design iterations to realise the final design. Thus, the over-specification 

metric contradicts the ideal solution by stating that it is not actually ideal. As a result, this 

would invalidate both recall and precision metrics by its definition. 

On the other hand though, it is more than probable that the ideal solution has already been 

through this kind of over-specification phase and through design iterations much of the 
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additional information classified as extra by myself could have already been considered and 

removed through this iterative process. 

Therefore, the over-specification metric is important as it allows for the identification of 

possibly overlooked classes and relationships contained within the specification. As a result 

of their identification, the extra information can be presented to the developer and for them 

to make the relevant decision based on their expertise within a particular domain for their 

inclusion. However, this still leaves the issue of unconscious bias that can only be realistically 

resolved through an impartial classification of the results. 

Results Discussion 

Table 0-1 details recall, precision and over-specification metric results and Appendix Two 

details the actual results along with their classifications. The metric results in bold (see Table 

0-1) have been used to establish the metric average.  Attention must be drawn to the 

additional lift and taxi specification contained within the metric results table. Since the UML 

diagram for the lift specification is not available, the results and their classification have been 

based on the results obtained from a different automated system ‘Dowser’ [ref]. The Dowser 

system utilises a controlled grammar and therefore requires the specification to be modified 

to reflect this controlled grammar. As a result, the classification has been based on the results 

from two runs using the modified and original specifications. Furthermore, the taxi 

specification has also had two runs one with a language inconsistency model (see Language 

Inconsistency Model Effect) and one without. The reason being to determine the effect of 

the language inconsistency model has on recall, precision and over-specification metrics.  

Overall, both recall and precision demonstrate a high average, with both taxi and library 

specifications demonstrating the highest recall and precision. However, is this elevated level 

recall and precision for taxi and library specifications a result of specification led algorithm 

development in relation to automation rather than a generalised algorithm development? 

The definition of generalised development aims to capture the abstract essence of the 

language structures, thus allowing the algorithm to process any specification without bias to 

a particular style of specification. However, both of these specifications are very concise and 

to the point. The lift and cinema specifications have low results for recall, these both form 

parts of a system analysis and design coursework obtained from the University of Strathclyde 

and the University of Minnesota, and were chosen for the reason that they contain spurious 
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information and are possibly more related to real world specifications rather than the ideal 

solutions, which could explain their low metric results.  

Over-specification on the other hand demonstrates an extremely high average although 

concerning there are likely causes for this. The first and most prominent consideration is that 

the specification being processed may contain supplementary information, which is could be 

either relevant or not to the final design. Furthermore, there could also be the presence of 

language inconsistencies that are not taken into consideration as with the library, lift and 

cinema specifications. Another probability is the incorrect application of the dominant 

semantics, which could result in erroneous classes. There has also been several different 

language constructs identified that express differing properties towards either reducing or 

identifying a greater probability of class inclusion. Nevertheless, over-specification by its own 

nature is identified through a manual (human) classification process (see Criterion) rather 

than being identified by automation, which could also account for an elevated over-

specification. 

Table 0-1 Metrics Results 

Specification Recall Precision Over-Specification 

Taxi (without language 

inconsistency model) 
1 1 1.3 

Taxi (with language 

inconsistency model) 
1 1 0.16 

Lift (modified spec) 0.36 0.71 0.42 

Lift (original spec) 0.36 0.83 0.36 

Cinema 0.5 0.43 2.7 

Library 1 0.875 1.375 

Average Result 0.715 0.784 1.45 



276 

Language Inconsistency Model Effect 

The language inconsistency model relates to the situation where a specific term is introduced 

into the specification and further in the specification it is referred to not by its original term, 

but by a term that could be or could not be synonymously related to it. For example, given 

the situation where a ‘passenger’ is introduced, but further in the specification it is referred 

to as either an ‘individual’ or ‘group’, both meaning a passenger from our contextual 

understanding of it. The model itself is a simple XML document that details the inconsistent 

(noun) term (in this example individual) and what its replacement is (passenger). As such, 

during processing the model is checked for any of the inconsistent terms which subsequently 

replaced with the correct term. This requires resolution as automation is unable to 

contextually resolve the situation itself. The main benefit of the language inconsistency 

model is primarily a reduction in the number of duplicate classes that are created and is 

demonstrated by a ~87% reduction in over-specification for the taxi specification (see Table 

0-1 ). The library, lift and cinema specifications do not have this model defined which could 

be a factor for the elevated over-specification result. 

Result Classification Analysis 

Appendices Three – Six contain the UML models generated by the ASA, the human and where 

possible other automated systems.  

This discussion aims to justify the manual classification of extra and incorrect classes. This is 

not evaluating whether automation has made the correct judgement based on its semantics 

it has, but considering the term and its context within the sentence and whether my 

judgement is correct for its inclusion with the final model of which is still open to 

interpretation and bias. However, this evaluation shall be as impartial as possible.  

The discussion process will follow the below template (see Appendix One for details): 

Class Name:  The name of the class created. 

Trace:  Where the term has been identified within the sentence which 

is automatically identified by the ASA during processing. 

Presence in 

Specification: 

Discussion of the sentence in which the class is discovered. 
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Detected by 

(HFS|DS|AS): 

The semantics discovered that are used to make a relevant 

decision regarding class creation. See Candidate Class 

Detection section for a definition of High Frequency Semantics 

(HFS), Dominant Semantics (DS) and Artefact Semantic (AS) 

detections. 

System Impact: Investigates what impact the class would have if included in 

the final design. 

Original Classification: Extra – something that the developer should consider. 

Although, the discovered class may not be a class but some 

other component of the systems first-cut design. 

Incorrect – something that should not be included in the 

design. 

New Classification: Correct – that it should be included in the design as a class 

Extra – something that the developer should consider. 

Although, the discovered class may not be a class but some 

other component of the systems first-cut design. 

Incorrect – something that should not be included in the 

design. 

Candidate Class Detection 

Prior to discussing the results of these classifications, it is best to briefly discuss the detection 

process. All candidate classes are nouns and the class detection algorithm bases its decision 

to create a class on the semantics (see Table 0-2).  

As such, if either the (noun) term’s highest frequency sense semantic (HFS) obtained from 

WordNet[ref] is a frequency count of the number of times a word has been seen in that 

sense. As such, it defines the most common sense understanding of a given word.  

The dominant semantics (DS), which is similarly an identification of the highest frequency 

count for a sense, for a given (noun) term, contained within the set of all senses for a given 

(noun) term. Also obtained and calculated from WordNet. 



278 

If the (noun) term is within has either a HFS or DS semantics or it has an artefact semantic 

(AS - (similarly obtained from WordNet)) indicating a man-made object, then a class will be 

created.  

Table 0-2  Candidate Class Semantics 

Semantic: Description: 

Animal Nouns denoting animals 

Artefact Nouns denoting man-made objects 

Body Nouns denoting body parts 

Communication Nouns denoting communicative processes and contents 

Food Nouns denoting foods and drinks 

Group Nouns denoting groupings of people or objects 

Location Nouns denoting spatial position 

Object Nouns denoting natural objects (not man-made) 

Person Nouns denoting people 

Plant Nouns denoting plants 

Shape Nouns denoting two and three dimensional shapes 

Substance Nouns denoting substances 

Time Nouns denoting time and temporal relations 

Nouns that indicate something else 

With the remaining semantic groups (see Table0-3Table 0-3 Functional Semantics) also 

obtained from WordNet[ref] are used to determine aspects of the model that may exhibit 

actions, relations, state, multiplicity, algorithms or attributes. 

These candidates are identified during the detection process. However, the algorithm only 

processes nouns that have an attribute semantic. As a result of this identification, it will 
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create a class attribute. The remaining semantics still require further consideration of their 

properties and how they would be applied within the first-cut model. 

Table 0-3 Functional Semantics 

Semantic: Indicates: 

Act Action 

Possession Relation 

Quantity Multiplicity 

State State 

Process Algorithm 

Motive Algorithmic/Conditional-? 

Relation Relationships 

Attribute Class attributes 
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Evaluation Conclusion 

In relation to overall candidate class detection process, the algorithm itself achieves a high 

level of both recall (71%) and precision (78%) regarding the metric analysis. This 

demonstrates that decisions based purely on the semantics for a given (noun) term can 

detect a greater than average number of classes contained within the human model. This has 

been determined by averaging metric the results obtained from Table 0-1.  

The process also demonstrated a very high over-specification on average of 145%. These 

identifications allow the developer to investigate other features of the system that have been 

detected and to make a decision regarding their inclusion within the final design. The 

detection algorithm identifies the creation of each design component and tracks it through 

traceability links. Thus, allowing the developer to go directly to the part of the specification 

where the decision was made. As a result, allowing a decision to be made quickly and 

effectively, regarding the inclusion of additional components within the final model. 

The results classification analysis focused on the additional information (over-specification 

and incorrect classifications) detected as candidate classes by automation, which is not 

inclusive of the final (human) design. This raises an issue regarding the semantics used in 

detection of candidate classes. Since, the decision is based on an ‘or-ing’ of the Highest 

Frequency (HFS), Dominant (DS) and Artefact (AS) semantics. Where the decision to create a 

class component is based on the DS and when the HFS is not within the candidate set could 

this represent a possible problem with the dominant semantics definition, when there is a 

failing to identify a design component based on the HFS or AS semantics.  

The classification analysis also identified some misguided classifications, that should be 

changed from either extra to incorrect or correct and from incorrect to extra or correct (see 

Criterion). The overall impact that this would have would either increase in precision and a 

decrease in over-specification metric results or vice versa. However, consideration must also 

be given to the fact that some choices to change a classification from extra to correct. Would 

result in invalidating the ideal solution and could be an issue of interpretation. As a result of 

this identification, a consideration of what the affect would be still has to be considered. 

Each of the classifications were originally considered and identified by myself. Each additional 

candidate (extra and incorrect classifications) was assessed for their suitability to be included 
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within the first-cut design by an unbiased group discussion consisting of Mark Meiklejohn, Dr 

Marc Roper and Dr Murray Wood.  

To briefly highlight, the additional information indicate either attributes in the majority cases; 

probable under-specifications; marker words introducing important class components; class 

hierarchical structures; parser miss-interpretations; language inconsistency/synonymous 

terms and the identification of system boundary classes or actors.  

Table 4 identifies the main issues, their type, associated problems, the main finding, 

examples of their usage and their average frequency of occurrence. The frequency of 

occurrence was established by evaluating the commonality of these issues that arose across 

the specifications used in this evaluation and is an indication of the probability of these 

occurring in unseen specifications (see Appendix Seven: Frequency of Occurrence).  

These discussions identified that not all of the additional information considered as extra or 

incorrect are relevant and should be created as a classes, but can indicate other aspects of 

the design (such as attributes, operations or class hierarchical structures) or are either just 

irrelevant to the specification and should not be included in the final design.  

A common pattern was the identification related to specific linguistic structures that have a 

high frequency of occurrence throughout the specification document. The main issues of 

these structures are that the components/terms are managed individually rather than being 

considered as a whole, within the confines of the structure. Therefore, consideration of how 

these could be used and how they can assist in the creation of an enhanced first-cut design 

should be sought.  

Of those that are not associated with linguistic structures, there are some cases where 

automation will fail with respect to under-specifications/boundary classes. Under-

specification itself has been identified through consideration of the results obtained from 

automation. This typically refers to the situation where some potential design component 

demonstrates limited functionality, but infers that there is possibly more functionality is 

associated with it, but has not defined within the specification. Whereas boundary classes 

have similarly been identified in this way, but identify components that exhibit limited if not 

no behaviour associated with them and represent external components to the system itself. 

As such, there is no option but to have human intervention regarding these components. 
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Since, automation itself does not have the relevant knowledge to make a specific decision 

regarding their inclusion.  

Furthermore, under-specification/boundary classes can indicate probable actors within the 

system that are fuzzy with regards to whether they should be included in the design or not. 

In addition, some describe the system themselves (i.e. the library, the taxi company) which 

could result in the creation of god classes.  

The algorithm itself relies solely on the semantics of the term for its decision making process 

regarding class creation and does so in an effective manner by creating a greater than 

average number of classes that are contained within the ideal solution. However, relying on 

these semantics alone may not be enough for class creation and inclusion within the first-cut 

design.  

The issues (see Table 0-4) fit nicely within our research questions and contributions to extract 

more information from the structure of the language, to understand what is being expressed 

in an abstract way to better create a first-cut design. 

Key Problems to be tackled 

• Linguistic Structures: 

o Since, ‘X of Y’ is dealt with independently of each other, when there is a 

probable relation between the components? 

� Considerations 

• Is Y some super type or focus of this structure? 

• Is X specific to Y but not within the confines of that type? 

o ‘Has’ Structure 

� Differentiation between attribute and class types. 

• Could this be achieved by considering term frequencies? 

o Verb & Preposition Linkages 

� A solution to this issue is through the use of a prepositional-verb 

decision matrix, where the intersection gives the relevant decision 

to take as a result of their combination. 

� Abstraction of the semantics for a given preposition should allow  

o Consideration of existential sentence and their high probability of 

introducing classes. 

• Language inconsistency/Synonymous Terms 

o These typically resulting in the creation of duplicate classes.  
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� The simplest route is to manually create a language inconsistency 

model to identify the synonymous terms and replace them during 

specification processing. 

• Under-Specification/Boundary classes 

o Used to infer and identify possible actors, external components, or areas of 

the specification that requires further investigation. 

o Some resolution could be achieved through consideration of the semantics 

related to actors of the system, but others would require possible human 

intervention. 

• General & common phrases terms 

o This could be resolved through the manual development of a data dictionary 

that could be used to perform a key word/phrase analysis to identify these 

terms.  

� Therefore indicating the likelihood of some new feature of the 

system being introduced. This could be achieved by identifying these 

terms and could be given special consideration during the creation 

of the first-cut design. 

• Relationship detection 

o Although this feature is partially operational and is focused on the verb of 

the sentence for its identification. There still exist many relationships 

through the structure of the language that is currently not implemented. 

Such as preposition and verb constructs and the relationships between 

different clause types that identify implied relationships. 

• Attribute detection 

o Currently only the algorithm only considers nouns that have attribute 

semantics, but consideration of attributive adjectives must also be 

considered as well to ensure that a well-formed first-cut design is produced. 

Furthermore, the placement of attributes is not implemented and 

consideration of this issue requires resolution. 

• Operation & Parameter Detection 

o Although implemented the voice of sentence still requires consideration. As 

it will affect the placement of the operation and its parameters. 

• Over-Specification  

o In the majority of cases, over-specification itself is aimed to be resolved 

through the resolution of these key problems. It is not that over-specification 

will disappear. Although it is considered that through consideration of these 

problems will give supporting evidence for the inclusion of design 

components that may otherwise go unconsidered by developer. Therefore, 

there may still be some developer interaction with the final model and 

consideration of new design components. 

• Class detection based on semantics alone. 

o A consideration is that are semantics alone enough to identify all the 

relevant classes contained within the specification. 
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o A solution to the issues could also include other factors. Such as, the 

frequency of occurrence within the specification and consideration of a 

weighting, given a term and its relative position within the sentence? On the 

other hand, rather than relying on frequencies and weightings; could the 

linguistic structures be used to help identify potential classes, attributes and 

operations from nouns? 

 

 Table 0-4 Identified Issues 

Issue: Linguistic Structure Type: ‘X of Y’ Average Frequency 

Count: 7.75 

Examples: 

1. ‘Each elevator has a set of buttons, one button for each floor.’ 

2. ‘All requests for floors within elevators must be serviced eventually, with floors being 

serviced sequentially in the direction of travel.’ 

3. ‘Along with the membership number, other details on a customer must be kept such as 

a name, address, and date of birth.’ 

4. ‘There are two types of loan items, language tapes, and books.’ 

5. ‘A customer may borrow up to a maximum of 8 items.’ 

6. ‘If the membership is still valid and the number of items on loan less than 8, the book 

bar code is read, either via the bar code reader or entered manually.’ 

Associated Problems: 

There are twelve senses[ref] regarding ‘X of Y’ combinations and the disambiguation of 

these within the context of the sentence is an arduous and error prone task for 

automation.  

Additionally each component (‘X’ and ‘Y’) are handled individually of each other when 

they should be considered as a whole 

Findings: 

Of theses 12 sense, not all may be relevant when considering the language of a 

requirements specification document.  

When investigating the structure of ‘X of Y’ combinations, they take the following form: 

where ‘Y’ is in the majority of cases is a prepositional phrase and ‘X’ is either a noun or 

verb phrase. Similarly, in the majority of cases ‘X’ is typically a noun phrase. Since, a 
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prepositional phrase indicates a relationship between the complement of the 

prepositional phrase and some other component contained in the sentence.  

Therefore, in the case where ‘X’ is a noun, does this indicate that the complement of the 

Y is a candidate class? Similarly where the ‘X’ is a verb phrase, does the ‘Y’ indicate an 

attribute of some class? 

Issue: Linguistic Structure Type: Verb & Prepositions Average Frequency 

Count: 7 

Examples: 

1. During its release period a particular film can be shown on a number of different 

screens. 

2. When a vehicle arrives at a pick up location, the driver notifies the company. 

3. Each customer is known as a member and is issued a membership card that shows a 

unique member number 

4. Along with the membership number, other details on a customer must be kept such as 

a name, address, and date of birth. 

Associated Problems: 

A similar theme throughout, as these they are managed individually. When they should 

be considered as a whole. 

Findings: 

Prepositions themselves typically indicate a relationship between the object of the 

preposition and some component contained within the sentence. However, this may not 

be entirely true when considering some of these cases.  

Example three ‘is known as’ indicates that customer is a type of member. Therefore, we 

would want to remove all references to customer and replace them with member.  

Example four ‘must be kept’ indicates a possessive relation between ‘customer’ and the 

objects of the preposition. 

Examples one and two indicate relationships between the object of the preposition and 

subject of the sentence. 
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Issue: Linguistic Structure Type: Has Average Frequency 

Count: 2 

Examples: 

1. The elevator has a set of buttons. 

2. A language tape has a title language (e.g. French), and level (e.g. beginner). 

3. A book has a title, and authors. 

4. For example, matinee screenings usually have a lower ticket price than evening 

screenings, while weekend screenings usually have higher ticket prices. 

5. The hotel Bolzano has a restaurant, a private car park and a garden. 

6. It has 15 double rooms and 5 single rooms. 

7. All rooms have balcony. 

8. If it has no free vehicles, it does not operate any form of queuing system 

Associated Problems: 

The main issue raised here is being able to distinguish between what should be modelled 

and what shouldn’t be in terms of being either an attribute or a class within the design. 

Furthermore, some of these identified problems could be linked. In example one we have 

an ‘X of Y’ combination, as well as the ‘has’ structure. 

Findings: 

In UML modelling, a ‘has a’ relationship indicates an aggregation relationship between 

classes. However, in the above examples this may not be entirely true.  

Examples 2, 3, 4, 7 and 8 all indicate attributes of the subject. Whilst examples 1 and 6 

are attributes of the subject, but also imply that they should also be modelled as a class. 

However, this is understood from experience, not from the actual model itself. 

Additionally, examples 3 and 5 also demonstrate a combination of attributes and 

potential classes.  

However, considering that the ‘has’ structure has a greater probability of introducing 

attributes rather than classes has to be considered. 

A possible resolution to this problem could be addressed by considering if any of the 

following objects have an attribute semantic set. However, there are still problems with 

this consideration which could result in the creation of erroneous classes.  
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Issue: Linguistic Structure Type: Existential  Average Frequency 

Count: 1 

Examples: 

1. There are three hotels in the chain. 
2. There are two kinds of degrees, pass degrees and honours degrees. 
3. There are seven standard gizmos that must be supported: bumpers (square, circular, 

and triangular), flippers (left and right), absorbers, and outer walls. 
4. There are two kinds of screenings: seated and unseated ones. 
5. There are two types of loan items, language tapes, and books. 
6. There may also be junior and senior competitions. 

Associated Problems: 

There are no associated problems with the identification, but rather an observation 

identified during the discussion process related to this structure. 

Findings: 

An existential sentence indicates the existence of some element contained within the 

sentence. This structure therefore identifies a high probability of candidate classes 

relating to its structure and definition.  

Issue: General/Common/Irrelevant 

Terms/phrases (HFS|DS) 

Average Frequency Count: 2.75 

Examples: 

1. Information (communication|communication) 

a. Regarding the films, information that is important includes the film’s 

classification (determined by the board of film classification) as well as its 

duration. 

2. Details (cognition|group) 

a. Along with the membership number, other details on a customer must be kept 

such as a name, address, and date of birth. 

3. Type (cognition|communication) 

a. There are two types of loan items, language tapes and books, 

4. Addition (artefact|act) 

a. In addition to running the individual meets, the league prepares the schedule 

of meets for the season, ensures that qualified judges are assigned, registers 

teams and gymnasts, and publishes seasonal standings. 

Associated Problems: 
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Class creation is decided solely by its semantics and is the primary reason as to why these 

are created as classes.  

Examples two and three both have Highest Frequency Semantics (HFS) of (cognition), but 

the Dominant Semantics (DS) are within the set of possible candidates and identifies why 

they are created as classes. On the other hand is this a failing of the dominant semantics? 

As examples one and four are the opposite, their HFS are within the set of candidates, 

whereas the dominant semantics for example four’s DS is not. 

Findings: 

Although these terms themselves are irrelevant to the specification, do these terms act 

as markers that introduce potential design components that have a greater than average 

chance of inclusion within the final design?  

Additionally, consideration and further analysis of the (HFS|DS) semantics may also aid 

in reducing this type of problem.  

The creation of marker word ontology could signify special behaviour for consideration. 

Furthermore, some of these markers are also tied up with the language structures and 

consideration of these could also aid this problem. 

Issue: Language inconsistency/Synonymous Average Frequency Count: 3 

Examples: 

1. Original/Concept (Screenings) 

a. Language inconsistency: Ones 

2. Original/Concept (Loan Item) 

a. Language inconsistency: item 

3. Original/Concept (Passenger) 

a. Language inconsistency: Group, individual, Hotel, Tourist Organisation 

4. Original/Concept (Customer)  

a. Language inconsistency: Member  

Associated Problems: 

The main problem with language inconsistency/synonymous terms is that they create 

duplicate classes. In addition the creation of these classes would also effect the creation 

of any operations, as parameters of the operation would be of the language 

inconsistency type and not the overall concept. 
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Findings: 

To limit the introduction of duplicate classes. The only feasible way to manage the 

situation is to create (manually) a language inconsistency model. The language 

inconsistency model would require the developer to read the specification and construct 

a simple XML file mapping between the concept and its synonymous terms. This defeats 

the whole purpose of the system by being able to through any specification without any 

special pre-processing requirements.  

Although this creates an initial overhead for the developer in essence, they are creating 

a domain dictionary to resolve this particular issue. Furthermore, this language 

inconsistency model/domain dictionary is something that could be possibly reused for 

similar domains. 

Issue: Under-Specification/System Boundary  Average Frequency Count: 2 

Examples: 

1. Bar Code Reader 

2. Control Mechanism 

3. Driver 

4. Call 

5. Film Distributor 

6. Cinema Management Team 

7. Cinema Staff 

8. Photograph 

Associated Problems: 

System boundary classes and probable under-specifications although lead to the creation 

of classes that can indicate actors within the system, interfacing with external devices or 

areas that require further investigation. Its not that this is a specific problem, but more 

of an observation that requires resolution. 

Findings: 

With regard to class creation, this issue cannot be readily resolved. The classes created 

have the correct semantics for class creation. However, it is considered helpful to the 

developer that these have been identified and created. Allowing them the opportunity 

to consider any relationships or operations that may be created as a result of their 
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identification for their inclusion within the final design. As such these would typically be 

left to the developer to make a relevant decision regarding their inclusion within the first-

cut design. 

Issue: Common Phrases Average Frequency Count: 0.25 

Examples: 

1. date of birth 

2. date of issue 

Associated Problems: 

Similarly, they are managed as individual parts rather than being considered as a whole. 

As such, this allows for the creation of additional classes when something else if 

specifically meant by these types of phrases. Although the examples here indicate 

probable attributes rather than classes.  

Findings: 

Common phrases can have an inferred meaning that is difficult if not impossible for 

automation to extract from the phrase alone. 
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Appendix One - Result Classification Analysis Details 

Taxi Specification (with language inconsistency model – see Appendix 

Four) 

Out of all the specifications analysed; the taxi specification is the only one which had a 

language inconsistency model defined. The taxi specification had two runs one with the 

language inconsistency model and the other without to determine its effect. As a result it 

only affects over-specification metric which is demonstrated by a 114% reduction in over-

specification. Given this result it allows the clear identification of what is possibly extra 

information contained within the specification. 

Briefly, the taxi specification discusses the operation and functions of a taxi service. 

Class Name:  Driver 

Trace:  [p3.1.0] When a vehicle arrives at a pick up location, the driver 

notifies the company. 

[p3.1.1] Similarly, when a passenger is dropped off at their 

destination, the driver notifies the company. 

Presence in 

Specification: 

Both sentences describe an algorithmic process of causality of 

what should happen when a vehicle either drops off or picks 

up a passenger. 

Detected by 

(HFS|DS|AS): 

Person Person False 

System Impact The inclusion of this class would allow the modelling of a 

driver, their association between them, a vehicle and the 

company. Additionally, there is the discovery of a notification 

operation between the driver and the company. 

Original Classification: Extra 

New Classification: Correct 
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Class Name:  Call 

Trace:  [p2.1.0] When the company receives a call from an individual, 

hotel, entertainment venue, or tourist organization, it tries to 

schedule a vehicle to pick up the fare. 

Presence in 

Specification: 

The sentence identifies an algorithmic process describing the 

actions that take place as a result of receiving a call. 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact The inclusion of this class within the model would have little 

impact on the actual final model as it forms part of an operation 

(recevieCall) and not actually a class. 

Original Classification: Extra 

New Classification: Extra 

Library Specification (see Appendix Three) 

The library specification details and discusses the operations and features of a library service. 

Class Name:  Author 

Trace:  [p2.1.3] A book has a title, and authors. 

Presence in 

Specification: 

This term is in the situation where it is being described as an 

attribute of a book rather than an actual class. 

Detected by 

(HFS|DS|AS): 

Person Person False 

System Impact: By allowing author to exist as a class would be beneficial as an 

author would be associated with many books and could 

provide a facility for searches to be run for a particular author. 

Original Classification: Extra 
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New Classification: Extra 

 

Class Name:  Member 

Trace:  [p1.1.1] Each customer is known as a member and is issued a 

membership card that shows a unique member number. 

Presence in 

Specification: 

This is being used to indicate that the customer is a type of 

member through some form of hierarchical relationship. 

Detected by 

(HFS|DS|AS): 

Person Body False 

System Impact: The ASA algorithm itself, through its relational processor, 

identifies that customer is a type of member. As such a 

member interface and abstraction is created with a concrete 

type of customer is defined. 

Original Classification: Extra 

New Classification: Extra  

 

Class Name:  Membership 

Trace:  [p3.1.3] If the membership is still valid and the number of items 

on loan less than 8, the book bar code is read, either via the 

bar code reader or entered manually. 

Presence in 

Specification: 

This term forms part of a discussion regarding the issuing of 

loan items and ensures that the customers membership is still 

valid and the introduction of preconditions prior to a loan. 

Detected by 

(HFS|DS|AS): 

Group Group False 
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System Impact: The identification has no impact on the system as it is used as 

a synonymous towards customer/member. If a language 

inconsistency model had been created then this issue would 

not have arisen. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Birth 

Trace:  [p1.1.2] Along with the membership number, other details on 

a customer must be kept such as a name, address, and date of 

birth. 

Presence in 

Specification: 

Forms part of a discussion regarding information that should 

be retained for a customer. Furthermore, ‘birth’ forms part of 

a statement ‘date of birth’ 

Detected by 

(HFS|DS|AS): 

Time Time False 

System Impact: The inclusion of this class has no benefit towards the system 

as a whole and should be an attribute. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Date 

Trace:  [p1.1.2] Along with the membership number, other details on 

a customer must be kept such as a name, address, and date of 

birth.  
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Presence in 

Specification: 

Forms part of a discussion regarding information that should 

be retained for a customer. Similarly, forms part of the 

statement ‘date of birth’. 

Detected by 

(HFS|DS|AS): 

Time Time False 

System Impact: The inclusion of this class has no benefit towards the system 

as a whole and should be an attribute. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Name 

Trace:  [p1.1.2] Along with the membership number, other details on a 

customer must be kept such as a name, address, and date of 

birth. 

Presence in 

Specification: 

Forms part of a discussion regarding information that should be 

retained for a customer. 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: The inclusion of this class has no benefit towards the system as 

a whole and should be an attribute. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Update 
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Trace:  [p4.1.0] The library must support the facility for an item to be 

searched and for a daily update of records. 

Presence in 

Specification: 

Forms part of a statement “a daily update of records” that 

discusses the facilities that the library system must offer 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: Has no benefit towards the overall final design and would be 

best suited as some form of operation contained within the 

library class. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Record 

Trace:  [p4.1.0] The library must support the facility for an item to be 

searched and for a daily update of records. 

Presence in 

Specification: 

Similarly, forms part of a statement “a daily update of records” 

that discusses the facilities that the library system must offer 

Detected by 

(HFS|DS|AS): 

Communication Communication True 

System Impact: Similarly, as update would form part of an operation 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Type 
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Trace:  [p2.1.1] There are two types of loan items, language tapes, and 

books. 

Presence in 

Specification: 

This appears in a sentence which is discussing the existence of 

two forms of loan items namely books and language tapes. 

Detected by 

(HFS|DS|AS): 

Cognition Communication True 

System Impact: This class identification would have no impact within the 

system and is completely erroneous. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Bar Code Reader 

Trace:  [p3.1.2] When an item is issued the customer's membership 

number is scanned via a bar code reader or entered manually. 

[p3.1.3] If the membership is still valid and the number of items 

on loan less than 8, the book bar code is read, either via the bar 

code reader or entered manually. 

Presence in 

Specification: 

Forms part of an algorithmic process on how the reader is 

utilised during the processing of a loan item(s) and customer 

details. 

Detected by 

(HFS|DS|AS): 

Artefact Artefact True 

Communication Communication False 

Person Person False 
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System Impact: This class although standalone identifies the requirement of an 

interface between two separate systems; the library system and 

the bar code reader.  

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Item 

Trace:  [p3.1.0] A customer may borrow up to a maximum of 8 items. 

[p3.1.1] An item can be borrowed, reserved or renewed to 

extend a current loan. 

[p3.1.2] When an item is issued the customer's membership 

number is scanned via a bar code reader or entered manually.  

[p3.1.3] If the membership is still valid and the number of items 

on loan less than 8, the book bar code is read, either via the bar 

code reader or entered manually. 

[p3.1.4] If the item can be issued (e.g. not reserved) the item is 

stamped and then issued. 

[p4.1.0] The library must support the facility for an item to be 

searched and for a daily update of records. 

Presence in 

Specification: 

A synonymous towards loan item 

Detected by 

(HFS|DS|AS): 

Communication Communication True 

System Impact: The identification has no impact on the system as it is used as a 

synonym towards loan item. If a language inconsistency model 

had been created then this issue would not have arisen. 
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Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Detail 

Trace:  [p1.1.2] Along with the membership number, other details on 

a customer must be kept such as a name, address, and date of 

birth. 

Presence in 

Specification: 

Highlights the important information that should be retained 

for a customer. 

Detected by 

(HFS|DS|AS): 

Cognition Group False 

System Impact: None; should not be included in the model. 

Original Classification: Incorrect 

New Classification: Incorrect 

Lift Specification (see Appendix Six) 

To give a short overview, the lift specification discusses the operation and feature of a lift 

service. 

Class Name:  Control Mechanism 

Trace:  [p1.1.1] The elevators and the control mechanism are supplied 

by a manufacturer. 

Presence in 

Specification: 

This sentence is discussing parts of the system that is supplied 

by the manufacturer of which is not stated. 

Detected by 

(HFS|DS|AS): 

Attribute Attribute True 

Process Process True 
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System Impact: The inclusion of this class within in the model provides no 

benefit to the system at all. There are no relationships with any 

other component contained within the model. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Manufacturer 

Trace:  [p1.1.1] The elevators and the control mechanism are supplied 

by a manufacturer. 

Presence in 

Specification: 

Similarly, as above, identifies who supplies the relevant parts 

that are required the installation of a lift within a building. 

Detected by 

(HFS|DS|AS): 

Group Group False 

System Impact: Similarly, as above, the inclusion of this class serves has no 

benefit in the final model. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Direction 

Trace:  [p3.1.2] The buttons are cancelled when an elevator visits the 

floor and is either travelling the desired direction, or visiting a 

floor with no requests outstanding. 

[p4.1.2] All requests for floors within elevators must be 

serviced eventually, with floors being serviced sequentially in 

the direction of travel. 
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Presence in 

Specification: 

Sentence p3.1.2 is discussing the operation of buttons and 

what happens as a result of the lift travelling a particular 

direction. Similarly, sentence p4.1.2 discusses the operation of 

requests and how they should be served. 

Detected by 

(HFS|DS|AS): 

Location Communication False 

System Impact: As a class it has no real impact on the overall model and would 

be best suited as an attribute of the elevator class. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Floor Request Button 

Trace:  [p3.1.3] In the latter case, if both floor request buttons are 

illuminated, only one should be cancelled. 

Presence in 

Specification: 

Introduces a conditional argument related to the previous 

sentence [p3.1.2] regarding the cancelation of the floor button 

illumination if both have been pressed. The decision is based on 

the direction of lift travel. 

Detected by 

(HFS|DS|AS): 

Artefact Artefact True 

Communication Communication False 

Artefact Artefact True 

System Impact: Introduces a specific type of button and condition that is 

associated to a particular floor contained within the building. 

Original Classification: Extra 

New Classification: Correct 
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Class Name:  Destination 

Trace:  [p4.1.0] When an elevator has no requests to service, it should 

remain at its final destination with its doors closed and await 

further requests. 

Presence in 

Specification: 

Introduces an algorithmic process regarding what should 

happen when a lift has no requests to service. That is to remain 

at its current destination. 

Detected by 

(HFS|DS|AS): 

Location Location False 

System Impact: This class has no additional benefit regarding the final model. 

As such should not be included within the final design. 

Original Classification: Incorrect 

New Classification: Incorrect 

 

Class Name:  Set 

Trace:  [p2.1.0] Each elevator has a set of buttons, one button for each 

floor. 

Presence in 

Specification: 

This sentence identifies the components contained within the 

lift. Furthermore, ‘Set’ is part of the statement ‘set of buttons’ 

indicating that the elevator has a set of buttons. 

Detected by 

(HFS|DS|AS): 

Group Group True 

System Impact: The inclusion of this class indicates some form of data 

structure to manage the collection buttons that a lift has. 
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However, it has no real benefit to the final model but its 

identification should be considered within the system.  

Original Classification: Incorrect 

New Classification: Extra 

 

Cinema Specification (see Appendix Five) 

Extra Classifications: 

Class Name:  Date 

Trace:  [p3.1.0] Screenings are open for ticket sales one week before 

the date they take place. 

[p6.1.0] For the system to be able to support the cinema 

management team it should be able to produce the following 

kinds of statistics: the number of ticket sales to date per film, 

the revenue of the ticket sales per film, the percentage of 

empty seats for each screening for the current or future weeks, 

the ticket sales and revenue for each screening for the current 

week, a listing of films ordered by ticket sales or revenue for 

the current week. 

[p8.1.2] The cards are valid for six months from the date of 

issue and each month the customer is charged the monthly 

subscription. 

Presence in 

Specification: 

Date is used indifferent ways throughout the specification. In 

[p3.1.0] date is referring to when tickets can be sold for a 

screening. In [p6.1.0] date is referring to statistical information 

regarding ticket sales and in [p8.1.2] date refers to the validity 

period of a cinema card. 
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Detected by 

(HFS|DS|AS): 

Time Time False 

System Impact: For two of the cases [p3.1.0, p8.1.2] ‘date’ would be best 

served as an attribute of a particular class and with [p6.1.0] 

date would infer that it is part of a calendar application which 

allows the selection of particular dates to generate relevant 

statistical information. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Day 

Trace:  [p2.1.0] The cinema operation is organised around a screening 

schedule, which is a timetable listing the films that will be 

shown on each screen each day of the week. 

Presence in 

Specification: 

Used to identify a particular day and what films will be shown 

on that date. 

Detected by 

(HFS|DS|AS): 

Time Time False 

System Impact: The inclusion of this class would allow the identification of 

which film is shown when. However, the class ‘day’ infers that 

it is part of a separate application. Such as a calendar 

application which is used in conjunction with the cinema 

application. This class on its own would have little relevance to 

the cinema application itself. 

Original Classification: Extra 

New Classification: Extra 
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Class Name:  Debit Card 

Trace:  [p7.1.0] Ticket sales are handled by cinema staff and payment 

can be made in three forms: by cash; by credit or debit card; by 

using cinema membership cards. 

Presence in 

Specification: 

Infers one of three payment types that the cinema can accept. 

Detected by 

(HFS|DS|AS): 

Possession Possession False 

Artefact Communication True 

System Impact: The inclusion of this class would allow the modelling of this 

form of payment type along with others that are also present. 

Furthermore, the human design has a ‘CardSale’ class that 

could be synonymous with this class. The modelling of this class 

could be important in that some debit and credit cards have 

different information compared to other such as issues 

numbers. However, this would not require the modelling of a 

separate class but be handled through attributes of a card class 

implementation. 

Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Credit 

Trace:  [p7.1.0] Ticket sales are handled by cinema staff and payment 

can be made in three forms: by cash; by credit or debit card; by 

using cinema membership cards. 

[p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 
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name and address, and credit or debit card details for the 

monthly subscription charge. 

Presence in 

Specification: 

Infers a payment type. 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: Similarly as previously discussed for ‘debit card’ Furthermore, 

the algorithm does not detect that this term is of the same type 

as ‘debit card’. Hence why there is no reference to card for this 

class detection. 

Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Evening Screening 

Trace:  [p3.1.6] For example, matinee screenings usually have a lower 

ticket price than evening screenings, while weekend screenings 

usually have higher ticket prices. 

Presence in 

Specification: 

This is used within the specification to identify relevant ticket 

prices for showings at different times of the day. 

Detected by 

(HFS|DS|AS): 

Time Time false 

Communication Act True 

System Impact: The inclusion of this class would allow for the modelling of 

different types of screenings with different ticket prices. 

Furthermore, the inclusion of this hierarchical structure creates 

an area of flexibility that can allow the inclusion of different 

types of screenings.  
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Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Weekend Screening 

Trace:  [p3.1.6] For example, matinee screenings usually have a lower 

ticket price than evening screenings, while weekend screenings 

usually have higher ticket prices. 

Presence in 

Specification: 

See evening screening discussion 

Detected by 

(HFS|DS|AS): 

Time Time False 

Communication Act True 

System Impact: See evening screening discussion 

Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Matinee Screening 

Trace:  [p3.1.6] For example, matinee screenings usually have a lower 

ticket price than evening screenings, while weekend screenings 

usually have higher ticket prices. 

Presence in 

Specification: 

See evening screening discussion 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

Communication Act True 
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System Impact: See evening screening discussion 

Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Board 

Trace:  [p5.1.0] Regarding the films, information that is important 

includes the film's classification (determined by the board of 

film classification) as well as its duration. 

[p5.1.1] This information is important as it affects the 

scheduling process and the allocation of films to screens. 

Presence in 

Specification: 

This class identification demonstrates where the film’s 

classification has been obtained 

Detected by 

(HFS|DS|AS): 

Group Artefact True 

System Impact: This class is not relevant to the final class design. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Information 

Trace:  [p5.1.0] Regarding the films, information that is important 

includes the film's classification (determined by the board of 

film classification) as well as its duration. 

[p5.1.1] This information is important as it affects the 

scheduling process and the allocation of films to screens. 
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Presence in 

Specification: 

Used as a synonym for the attributes classification and duration 

related to a film. 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: This identification has no benefit towards the final design. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Cinema Membership Card 

Trace:  [p7.1.0] Ticket sales are handled by cinema staff and payment 

can be made in three forms: by cash; by credit or debit card; by 

using cinema membership cards. 

Presence in 

Specification: 

As with debit and credit cards, ‘cinema membership card’ is also 

identified as a payment type. Furthermore, this term is also a 

synonym toward ‘cinema card’. 

Detected by 

(HFS|DS|AS): 

Communication Communication True 

Group Group False 

Artefact Communication True 

System Impact: Allows for the modelling of cinema members 

Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Film Distributor 
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Trace:  [p1.1.0] The cinema leases films for screening from film 

distributors. 

Presence in 

Specification: 

This identifies the source of where the films are obtained from. 

Detected by 

(HFS|DS|AS): 

Communication Artefact True 

Person Person True 

System Impact: The inclusion of this class would allow the modelling of where 

films are obtained from and their contact details. Due to the 

hierarchical structure that is developed as a result of its 

identification would also allow for the inclusion of other 

distributors not discussed within the specification. Its impact 

on the model as a whole is insignificant in the grand scheme of 

what the specification is expressing. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Listing 

Trace:  [p6.1.0] For the system to be able to support the cinema 

management team it should be able to produce the following 

kinds of statistics: the number of ticket sales to date per film, 

the revenue of the ticket sales per film, the percentage of empty 

seats for each screening for the current or future weeks, the 

ticket sales and revenue for each screening for the current 

week, a listing of films ordered by ticket sales or revenue for the 

current week. 

Presence in 

Specification: 

Listing in the specification is expressing an ordering of films with 

regard to some constraint. 
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Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: The inclusion of this class has little benefit to the overall system. 

It is highly unlikely that the focus of this application would 

require a ‘listing’ class. 

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Cinema Management Team 

Trace:  [p6.1.0] For the system to be able to support the cinema 

management team it should be able to produce the following 

kinds of statistics: the number of ticket sales to date per film, 

the revenue of the ticket sales per film, the percentage of empty 

seats for each screening for the current or future weeks, the 

ticket sales and revenue for each screening for the current 

week, a listing of films ordered by ticket sales or revenue for the 

current week. 

Presence in 

Specification: 

Identifying a user of the system that can obtain some relevant 

statistics regarding films. 

Detected by 

(HFS|DS|AS): 

Communication Communication True 

Act Act False 

Group Group False 

System Impact: The inclusion of this class within the system would be beneficial 

as it would allow the modelling of this type of user.  

Original Classification: Extra 

New Classification: Extra 
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Class Name:  Management Team 

Trace:  [p6.1.1] It should also allow the management team to enter 

the new screening schedule and make changes to the current 

screening schedule. 

Presence in 

Specification: 

As before a synonym for ‘Cinema Management Team’, but also 

refers to particular privileges that the manager of the cinema 

has regarding access to the computer system.  

Detected by 

(HFS|DS|AS): 

Act Act False 

Group Group False 

System Impact: As before,  

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Cinema Staff 

Trace:  [p7.1.0] Ticket sales are handled by cinema staff and payment 

can be made in three forms: by cash; by credit or debit card; by 

using cinema membership cards. 

Presence in 

Specification: 

Identifies a user of the system. 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

Group Group True 

System Impact: The inclusion of staff members will allow a clear separation 

between the identification of this and the management team. 
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Furthermore, being able to track who has handled a ticket sale 

or more is important to the operation of the cinema. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Month 

Trace:  [p4.1.1] According to this scheme every subscribed customer 

pays a monthly subscription, which allows them to buy a fixed 

number of tickets for any screening during the month. 

[p8.1.2] The cards are valid for six months from the date of 

issue and each month the customer is charged the monthly 

subscription. 

Presence in 

Specification: 

Month is used in three ways; firstly it is used to refer to a 

monthly subscription free, the number of tickets that can be 

purchased during a month and the validity period of the 

cinema membership card. (where the term ‘card’ in [p8.1.2] is 

being used to refer to cinema membership card’) 

Detected by 

(HFS|DS|AS): 

Time Time False 

System Impact: The inclusion of month as a class has no benefit towards the 

final design. In most cases the term ‘month’ is best suited to 

being an attribute rather than class or some operation that is 

performed once a month. 

Original Classification: Extra 

New Classification: Extra 
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Class Name:  Card 

Trace:  [p8.1.0] Cinema cards are personal (i.e. only the person named 

on the card can use it) and they are limited to a maximum of 

four tickets per screening. 

[p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 

name and address, and credit or debit card details for the 

monthly subscription charge. 

[p8.1.2] The cards are valid for six months from the date of 

issue and each month the customer is charged the monthly 

subscription. 

Presence in 

Specification: 

This term is being used as a synonym toward ‘cinema card’ as 

such would be resolved by the language inconsistency model. 

Detected by 

(HFS|DS|AS): 

Artefact Communication True 

System Impact: Cinema cards has already been identified as part of the final 

design therefore its inclusion is important 

Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Person 

Trace:  [p8.1.0] Cinema cards are personal (i.e. only the person named 

on the card can use it) and they are limited to a maximum of 

four tickets per screening. 
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Presence in 

Specification: 

Is used to define the term ‘personal’, that it is only one 

particular person that can actually use the card, that is its 

owner.  

Detected by 

(HFS|DS|AS): 

Body Body False 

System Impact: This class is as a particular type of customer who pays a 

subscription charge to the cinema. The inclusion of this class 

would be incorrect 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Student 

Trace:  [p3.1.4] There are a number of different types of tickets 

associated with each screening, which include normal tickets, 

concessionary tickets for students and senior citizens, 

discounted family tickets, etc. 

Presence in 

Specification: 

Student a particular type of customer is being referred to as 

some whom can receive a special type. 

Detected by 

(HFS|DS|AS): 

Person Person False 

System Impact: The inclusion of this type would allow the modelling of a 

particular type of customer of which a particular type of ticket 

is available for. Furthermore, the specification stops short at 

defining any more information regarding ticket types and what 

else maybe on offer. 

Original Classification: Extra 
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New Classification: Extra 

 

Class Name:  Citizen 

Trace:  [p3.1.4] There are a number of different types of tickets 

associated with each screening, which include normal tickets, 

concessionary tickets for students and senior citizens, 

discounted family tickets, etc. 

Presence in 

Specification: 

Similarly, as previous, a kind of customer. 

Detected by 

(HFS|DS|AS): 

Person Person False 

System Impact: Similarly, as previous defined for ‘Student’  

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Photograph 

Trace:  [p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 

name and address, and credit or debit card details for the 

monthly subscription charge. 

Presence in 

Specification: 

The photograph of the customer is used as a visual 

identification as their ownership of a cinema card 

Detected by 

(HFS|DS|AS): 

Artefact Artefact True 
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System Impact: This has no additional benefit to the final design as it would if 

it were to be included. This class if created would more than 

probably be a data class which holds a reference to the actual 

picture held on file.  

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Place 

Trace:  [p3.1.0] Screenings are open for ticket sales one week before 

the date they take place. 

Presence in 

Specification: 

Place is referred to in the specification as a particular time 

period in which tickets can be purchased for a particular 

screening. 

Detected by 

(HFS|DS|AS): 

Location Location False 

System Impact: The inclusion of this within final model has no benefit to the 

final design nor does it have any benefit as an attribute of any 

class.  

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Release Period 

Trace:  [p2.1.2] During its release period a particular film can be shown 

on a number of different screens. 
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Presence in 

Specification: 

This is basically stating what can happen for a given release 

period of a film. 

Detected by 

(HFS|DS|AS): 

Artefact Act True 

Time Time False 

System Impact: The term is more suited to being an attribute of a film since it 

provides no additional benefit as being a class. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Screening 

Trace:  [p1.1.0] The cinema leases films for screening from film 

distributors. 

[p2.1.2] During its release period a particular film can be shown 

on a number of different screens. 

[p3.1.1] There are two kinds of screenings: seated and 

unseated ones. 

[p3.1.2] The main difference between the two is that for seated 

screenings the customer is allocated a particular seat, while for 

unseated screenings no specific seat is allocated. 

[p3.1.3] For each screening the total number of tickets sold 

should not exceed the seating capacity for that screen. 

[p3.1.4] There are a number of different types of tickets 

associated with each screening, which include normal tickets, 

concessionary tickets for students and senior citizens, 

discounted family tickets, etc. 
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[p3.1.5] The price of each type of ticket may be different for 

each screening. 

[p4.1.1] According to this scheme every subscribed customer 

pays a monthly subscription, which allows them to buy a fixed 

number of tickets for any screening during the month. 

[p6.1.0] For the system to be able to support the cinema 

management team it should be able to produce the following 

kinds of statistics: the number of ticket sales to date per film, 

the revenue of the ticket sales per film, the percentage of 

empty seats for each screening for the current or future weeks, 

the ticket sales and revenue for each screening for the current 

week, a listing of films ordered by ticket sales or revenue for 

the current week. 

[p7.1.1] In the case where the sale is for a seated screening the 

customer should be able to select the seats they most prefer 

from those that are available. 

[p8.1.0] Cinema cards are personal (i.e. only the person named 

on the card can use it) and they are limited to a maximum of 

four tickets per screening. 

Presence in 

Specification: 

This term is used throughout the specification to refer to 

different aspects of the system. Some giving specific 

information regarding a screening others regarding 

information to be obtained about a screening. 

Detected by 

(HFS|DS|AS): 

Communication Act True 

System Impact: This class is actually in the human model but under a different 

term of ‘showing’. Within the human model the term ‘showing’ 

must have been considered a better descriptive name rather 

than ‘screening’.  
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Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Seat 

Trace:  [p3.1.2] The main difference between the two is that for seated 

screenings the customer is allocated a particular seat, while for 

unseated screenings no specific seat is allocated. 

[p6.1.0] For the system to be able to support the cinema 

management team it should be able to produce the following 

kinds of statistics: the number of ticket sales to date per film, 

the revenue of the ticket sales per film, the percentage of 

empty seats for each screening for the current or future weeks, 

the ticket sales and revenue for each screening for the current 

week, a listing of films ordered by ticket sales or revenue for 

the current week. 

[p7.1.1] In the case where the sale is for a seated screening the 

customer should be able to select the seats they most prefer 

from those that are available. 

Presence in 

Specification: 

It is utilised in two-ways, one where it allows a customer to 

book a seat and the other that can be used to identify some 

statistics related to a particular screening. 

Detected by 

(HFS|DS|AS): 

Location Artefact True 

System Impact: This is already defined within the human model as a particular 

type of screening and also has an attribute to cover the 

discussion in [p6.1.0]. Furthermore, a seat for a particular 

screen may have more information related to it than is 

discussed in the specification. 
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Original Classification: Extra 

New Classification: Correct 

 

Class Name:  Subscription Charge 

Trace:  [p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 

name and address, and credit or debit card details for the 

monthly subscription charge. 

Presence in 

Specification: 

This only identifies that there is a subscription charge but does 

not provide any other additional information regarding this. 

Only that a credit or debit card details are required but never 

expanded upon. 

Detected by 

(HFS|DS|AS): 

Possession Act False 

Communication Communication True 

System Impact: The inclusion of this class would allow the management of the 

subscription charges for many customers over many time 

periods. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Cinema 

Trace:  [p1.1.0] The cinema leases films for screening from film 

distributors. 
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[p1.1.2] The cinema may lease more than one copy of films that 

are very popular. 

[p4.1.0] The cinema wishes to operate a customer cinema card 

scheme. 

Presence in 

Specification: 

The term cinema is used to demonstrate relationships between 

films. 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: The inclusion of this class would only server to identify a cinema 

within a chain of cinemas, which is not explored any further 

within the specification. From the specification, it is apparent 

that it refers only to the operation of a cinema not many. As 

such, its inclusion would have no additional benefit to the final 

model. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Type 

Trace:  [p3.1.4] There are a number of different types of tickets 

associated with each screening, which include normal tickets, 

concessionary tickets for students and senior citizens, 

discounted family tickets, etc. 

[p3.1.5] The price of each type of ticket may be different for 

each screening. 

Presence in 

Specification: 

The term ‘type’ is used to refer/introduce different types of 

tickets.  Such as, normal, concessionary and family tickets. 
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Detected by 

(HFS|DS|AS): 

Cognition Communication True 

System Impact: The inclusion of the class ‘type’ clearly has no reason to be 

included in the design.  

Original Classification: Extra 

New Classification: Incorrect 

 

Class Name:  Week 

Trace:  [p2.1.0] The cinema operation is organised around a screening 

schedule, which is a timetable listing the films that will be 

shown on each screen each day of the week. 

[p2.1.1] This screening schedule is different every week. 

[p3.1.0] Screenings are open for ticket sales one week before 

the date they take place. 

[p6.1.0] For the system to be able to support the cinema 

management team it should be able to produce the following 

kinds of statistics: the number of ticket sales to date per film, 

the revenue of the ticket sales per film, the percentage of 

empty seats for each screening for the current or future weeks, 

the ticket sales and revenue for each screening for the current 

week, a listing of films ordered by ticket sales or revenue for 

the current week. 

Presence in 

Specification: 

This is referring to how the cinema is operated, when some 

action can take place and the kinds of statistics that could be 

generated 

Detected by 

(HFS|DS|AS): 

Time Time False 
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System Impact: The introduction of the class week would have no benefit on 

the overall final design. In most cases it appears that week is 

an attribute of some other class or that it is part of a separate 

application which manages date which other classes take 

advantage of.  

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Copy 

Trace:  [p1.1.1] Each lease is for one copy of the film. 

[p1.1.2] The cinema may lease more than one copy of films that 

are very popular. 

[p2.1.3] The same film cannot be shown on more than one 

screen at a time unless there are multiple copies. 

Presence in 

Specification: 

Indicates what a copy is and identifies that a cinema can have 

multiple copies of a film. 

Detected by 

(HFS|DS|AS): 

Communication Communication True 

System Impact: This should be an attribute rather than a class. As it has no 

benefit to the final model. 

Original Classification: Extra 

New Classification: Extra 

 

Class Name:  Debit Card Detail 
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Trace:  [p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 

name and address, and credit or debit card details for the 

monthly subscription charge. 

Presence in 

Specification: 

Refers to the relevant credit or debit card details but does 

actually state what that information is. Furthermore, this noun 

phrase although correct in its identification, the head of the 

noun ‘detail’ has no additional m 

Detected by 

(HFS|DS|AS): 

Possession Possession False 

Artefact Communication True 

Cognition Group False 

System Impact: The inclusion of this class as is ‘debit card detail’ would be 

incorrect and should be considered as a synonym toward ‘Card 

Sale’ that has already been defined in the human model.  

Original Classification: Incorrect 

New Classification: Extra 

 

Class Name:  Following 

Trace:  [p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 

name and address, and credit or debit card details for the 

monthly subscription charge. 

Presence in 

Specification: 

Details what important information is required for the setting 

up of a cinema card 
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Detected by 

(HFS|DS|AS): 

Group Group False 

System Impact: Has no benefit in any way towards the final design. 

Original Classification: Incorrect 

New Classification: Incorrect 

 

Class Name:  I 

Trace:  [p8.1.0] Cinema cards are personal (i.e. only the person named 

on the card can use it) and they are limited to a maximum of 

four tickets per screening. 

Presence in 

Specification: 

A miss-identification stems from (i.e.). 

Detected by 

(HFS|DS|AS): 

Substance Substance False 

System Impact: None – Should not be included 

Original Classification: Incorrect 

New Classification: Incorrect 

 

Class Name:  Issue 

Trace:  [p8.1.2] The cards are valid for six months from the date of 

issue and each month the customer is charged the monthly 

subscription. 

Presence in 

Specification: 

Forms part of the statement ‘date of issue’ indicating a start 

period for some type of card. 
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Detected by 

(HFS|DS|AS): 

Cognition Cognition True 

System Impact: Would be best suited as an attribute rather than a class. 

Original Classification: Incorrect 

New Classification: Extra 

 

Class Name:  Name 

Trace:  [p8.1.1] When signing up for a cinema card, the following are 

required: a photograph of the customer which is taken on the 

spot and is attached to the card, customer information such as 

name and address, and credit or debit card details for the 

monthly subscription charge. 

Presence in 

Specification: 

Takes form as an attribute of a customer 

Detected by 

(HFS|DS|AS): 

Communication Communication False 

System Impact: Would have no benefit to the final model, should be an attribute 

of customer. 

Original Classification: Incorrect 

New Classification: Extra 

 

Class Name:  Number 

Trace:  [p2.1.2] During its release period a particular film can be shown 

on a number of different screens. 
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[p3.1.3] (algorithmic) For each screening the total number of 

tickets sold should not exceed the seating capacity for that 

screen. 

[p3.1.4] (Existential) There are a number of different types of 

tickets associated with each screening, which include normal 

tickets, concessionary tickets for students and senior citizens, 

discounted family tickets, etc. 

[p4.1.1] According to this scheme every subscribed customer 

pays a monthly subscription, which allows them to buy a fixed 

number of tickets for any screening during the month. 

[p6.1.0] (algorithmic) For the system to be able to support the 

cinema management team it should be able to produce the 

following kinds of statistics: the number of ticket sales to date 

per film, the revenue of the ticket sales per film, the percentage 

of empty seats for each screening for the current or future 

weeks, the ticket sales and revenue for each screening for the 

current week, a listing of films ordered by ticket sales or 

revenue for the current week. 

Presence in 

Specification: 

In some cases the term number is part of some statement 

‘number-of’. This appears to take the role of either indicating 

multiplicity or an attribute of a particular class. 

Detected by 

(HFS|DS|AS): 

Attribute Communication True 

System Impact: As a class this has no benefit to the overall design. However, it 

does exhibit multiplicity or attributive qualities. 

Original Classification: Incorrect 

New Classification: Incorrect 
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Appendix Two - Results Data: 

Lift Specification Results: 

Table 1 Lift Specification Results 

Ideal Solution 

(automated) 

Automated 

Solution  

(Original-Spec) 

Classification 

Automated 

Solution  

(Mod-Spec) 

Classification 

Button Button Correct Button Correct 

Door Door Correct  Missing 

Elevator Elevator Correct Elevator Correct 

Elevator System  Missing  Missing 

Floor Floor Correct Floor Correct 

Request Request Correct Request Correct 

Building  Missing Building Correct 

Down elevator  Missing  Missing 

Up elevator  Missing  Missing 

Waiting time  Missing  Missing 

User  Missing  Missing 

Down button  Missing  Missing 

Up button  Missing  Missing 

Illumination  Missing  Missing 

 Destination Extra Destination Extra 

 Control Mechanism Extra  Extra 

 Manufacturer Extra  Extra 

 Set Incorrect  Extra 

 Floor Request Button Extra  Extra 

 Direction Extra Direction Extra 

   Ground Incorrect 

   UserPress Incorrect 

 

Table 1a Lift Specification Results - Original Specification 

Correct Incorrect Missing Extra 

5 1 9 5 

 

36.0
95

5 =
+

=recall
 

83.0
15

5 =
+

=precision

 

36.0
95

5 =
+

=− ionspecificatover  

New Metrics Application: 
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25.0
911

5 =
+

=precision  

Table 1b Lift Specification Results - Modified Specification 

Correct Incorrect Missing Extra 

5 2 9 6 

 

36.0
95

5 =
+

=recall
 

71.0
25

5 =
+

=precision

 

42.0
95

6 =
+

=− ionspecificatover  

 

New Metrics Application: 

28.0
99

5 =
+

=precision  
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Library Specification Results: 

Table 2 Library Specification Results 

Ideal Solution 
Automated 

Solution 
Classification CM Builder Results Classification 

Book Book Correct Book Correct 

Customer Customer  Correct Customer  Correct 

Language Tape Language Tape  Correct Language Tape  Correct 

Library Library Correct Library Correct 

Loan Item Loan item  Correct Loan item  Correct 

Section Section Correct Section Correct 

Member Card Membership Card  Correct  Missing 

 Author Extra Membership number  

 Member Extra Bar code reader Incorrect 

 Membership Extra Item Extra 

 Birth Extra Member Extra 

 Name Extra Loan Extra 

 Record Extra Subject section Extra 

 Date Extra Someone Extra 

 Type Extra   

 Update Extra   

 Bar Code Reader Extra   

 Detail Incorrect   

 Item Extra   

 

Table 2a Library Specification Results 

Correct Incorrect Missing Extra 

7 1 0 11 

 

1
07

7 =
+

=recall
 

875.0
17

7 =
+

=precision

 

375.1
17

11 =
+

=− ionspecificatover  

New Metrics Application: 

037.
019

7 =
+

=precision  

 



332 

Table 2b CM Builder Library Specification Results 

Correct Incorrect Missing Extra 

6 1 1 5 

 

86.0
16

6 =
+

=recall
 

86.0
16

6 =
+

=precision

 

71.0
16

5 =
+

=− ionspecificatover  

New Metrics Application: 

042.
113

6 =
+

=precision  
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Cinema Specification Results: 

Table 3 Cinema Specification Results 

Ideal Solution Automated Solution Classification 

Film Film Correct 

Screen Screen  Correct 

Weekly Showing Schedule Timetable  Correct 

Cinema Card Cinema Card Correct 

Customer Customer  Correct 

Family Ticket  Missing 

Ticket Ticket  Correct 

Sale  Missing 

Card Sale  Missing 

Seated Showing  Missing 

Unseated Showing  Missing 

Cinema Card Sale  Missing 

 Date Extra 

 Day Extra 

 Debit Card Extra 

 DebitCardDetail Incorrect 

 Evening Screening Extra 

 Cinema Membership Card Extra 

 Board Extra 

 Film Distributor Extra 

 Following Incorrect 

 I Incorrect 

 Issue Incorrect 

 Listing Extra 

 Management Team Extra 

 Month Extra 

 Name Incorrect 

 Person Extra 

 Photograph Extra 

 Place Extra 

 Release Period Extra 

 Card Extra 

 Screening Extra 

 Seat Extra 

 Matinee Screening Extra 

 Student Extra 

 Subscription Charge Extra 

 Cinema Staff Extra 

 Cinema Extra 

 Type Extra 

 Week Extra 

 Weekend Screening Extra 

 Cinema Management Team Extra 

 Information Incorrect 
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 Citizen Extra 

 Copy Extra 

 Credit Extra 

 Type Incorrect 

 Number Incorrect 

 

Table 3a Cinema Specification Results 

Correct Incorrect Missing Extra 

6 8 6 29 

 

NOTE: need to change extra to 29 counted ‘week’, ‘cinema’ & ‘cinema membership card’ 

twice. 

5.0
66

6 =
+

=recall
 

43.0
86

6 =
+

=precision

 

42.2
66

29 =
+

=− ionspecificatover  

New Metrics Application: 

11.0
646

6 =
+

=precision  
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Taxi Specification Results: 

Table 4 Taxi Specification Results 

Ideal Solution 

Automated Solution 

(without language 

inconsistency model) 

Classification 

Automated Solution 

(with language 

inconsistency model) 

Classification 

Taxi Company Company Correct Company Correct 

Passenger Passenger Correct Passenger  Correct 

Location Location Correct Location Correct 

Shuttle Shuttle Correct Shuttle Correct 

Taxi Taxi Correct Taxi Correct 

Vehicle Vehicle Correct Vehicle Correct 

 Driver Extra Driver Extra 

 Pick Extra   

 Call Extra Call Extra 

 Destination Extra   

 Entertainment Venue Extra   

 Group Extra   

 Hotel Extra   

 Individual Extra   

 

Table 4a Taxi Specification Results – (Without Language inconsistency Model) 

Correct Incorrect Missing Extra 

6 0 0 8 

 

1
06

6 =
+

=recall
 

1
06

6 =
+

=precision

 

1
06

8 =
+

=− ionspecificatover  

New Metrics Application: 

43.0
014

6 =
+

=precision  

Table 4b Taxi Specification Results - (With Language inconsistency Model) 

Correct Incorrect Missing Extra 

6 0 0 2 
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1
06

6 =
+

=recall
 

1
06

6
=

+
=precision

 

16.0
06

1 =
+

=− ionspecificatover  

New Metrics Application: 

75.0
08

6 =
+

=precision  
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Appendix Three: Taxi Models 

Taxi Model (Automated): 
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Taxi Model (Human): 
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Appendix Four: Library Models 

Library Model (Automation): 
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Library Model (Human Model): 
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Library Model (CM-Builder): 
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Appendix Five: Lift Models 

Lift Model (Automation): 
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Lift Model (Drowser Automation): 
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Appendix Six: Cinema Models 

Cinema Model (Automation): 
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Cinema Model (Human): 

This image cannot currently be displayed.
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Appendix Seven: Frequency of Occurrence 

Frequency of Occurrence: 

Specification Library Cinema Taxi Lift Average 

Count 
Type 

‘X of Y’ 7 21 1 2 7.75 

Boundary/Under-

Specification 

1 6 1 0 2 

Synonym 2 3 7 0 3 

Common Phrase 1  0 0 0.25 

‘Has’ 2 2 1 3 2 

VP && PP 8 14 2 4 7 

Existential 1 3 0 0 1 

General - 

Introductory - 

Irrelevant Terms 

2 7 0 2 2.75 
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