
1

Automated Software Development

and Model Generation by means of

Syntactic and Semantic Analysis

Mark Meiklejohn

Department of Computer & Information Sciences

University of Strathclyde

PhD

September - 2014

2

This thesis is the result of the author’s original research. It has been composed by the author

and has not been previously submitted for examination which has led to the award of a

degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due

acknowledgement must always be made of the use of any material contained in, or derived

from, this thesis.

@copyright 2014

Signed: Date:

3

Abstract

Software development is a global activity and the development of a software system starts

from some requirement that describes the problem domain. These requirements need to be

communicated so that the software system can be fully engineered and in the majority of cases

the communication of software requirements typically take the form of written text, which is

difficult to transform into a model of the software system and consumes an inordinate amount

of project effort.

This thesis proposes and evaluates a fully automated analysis and model creation technique

that exploits the syntactic and semantic information contained within an English natural

language requirements specification to construct a Unified Modelling Language (UML) model

of the software requirements. The thesis provides a detailed description of the related

literature, a thorough description of the Common Semantic Model (CSM) and Syntactic

Analysis Model (SAM) models, and the results of a qualitative and comparative evaluation

given realistic requirement specifications and ideal models.

The research findings confirm that the CSM and SAM models can identify: classes,

relationships, multiplicities, operations, parameters and attributes all from the written natural

language requirements specification which is subsequently transformed into a UML model.

Furthermore, this transformation is undertaken without the need of manual intervention or

manipulation of the requirements specification.

4

Acknowledgements

I am thrilled that I have completed this thesis and brought together my largest body of work

to date - at times this PhD has been very testing and I cannot believe I have come so far and

grown so much, it has been a true companion and I have enjoyed this enormous journey.

I owe a great gratitude to many people that have shown and given so much support, advice

and pushed me beyond all my expectations, my supervisors Dr Marc Roper and Dr Murray

Wood. I would also like to give thanks to all the Computer and Informational Sciences staff

and also to my fellow PhD colleagues, Sukumar Letchmunan, Inah Omoronyia and

Konstantinos Liaskos for their advice, friendship and support.

Lastly, but in no way least, I dedicate this thesis to my wife, Leigh Meiklejohn, without her

eternal patience, her love and commitment none of this would have been possible. I also want

to send all my love to my children Caitlin, Olivia, Bean and Ethan; my friends and family that

have also given me so much support through my PhD journey.

Mark Meiklejohn

September 2014

5

Contents

Abstract 3

Acknowledgements 4

Contents 5

List of Figures 10

List of tables 14

Chapter 1 Introduction 16

1.1 Overview 17

1.2 Approach & Methodology 18

1.3 Contributions 18

1.4 Result Snapshot 19

1.5 Thesis Structure 19

Chapter 2 Approaches to Automation 21

2.1 Introduction 22

2.2 Requirements Analysis and Modelling Techniques 23

2.2.1 Natural Language to Object Oriented Models 24

2.2.2 Manual Techniques for Class Modelling 25

2.3 Automated Approaches 27

Semi-Automated 30

2.3.1 Fully Automated 53

2.4 Conclusions 73

Chapter 3 Techniques towards Automation 77

6

3.1 Introduction 78

3.2 Approach Overview 80

3.2.1 The Common Semantic Model 81

3.2.2 The Syntactic Analysis Model 83

3.2.3 Rule Derivation 85

3.3 An Interwoven approach featuring Semantic and Syntactic Analysis for Model Extraction 86

3.3.1 Clause and Sentence Structures 86

3.3.2 The Noun Phrase 89

3.3.2.1 Class Detection and Noun Phrase Head 90

3.3.2.2 Non-Candidate Class Semantics and Noun Phrase Head 93

3.3.2.3 Determiners, Nouns & Multiplicity Mappings 96

3.3.2.4 Attributes, Class Hierarchies and State from Noun Pre-Modification 99

3.3.2.5 Relationships, Parameters & the Post-Modifier 103

3.3.3 Verb Phrase 107

3.3.3.1 Operation Class Location 111

3.3.3.2 Parameter Detection from Operational Verbs and Sentence Voice 112

3.3.3.3 Attributes from the Verb form have 113

3.3.3.4 Class to Attributes Transformation by means of Term Frequency Analysis 115

3.3.3.5 Class Type/Inheritance Hierarchies from Verb 115

3.3.3.6 Preposition Verb Phrase Attachment 116

3.4 Additional Modelling Considerations 119

3.4.1 Dependent and Independent Clauses - Relationship Detection 119

3.4.2 Additional Modelling Considerations from the Noun 121

3.4.2.1 Attribute Detection 121

3.4.2.2 Class Hierarchy Detection 122

3.5 Software Requirements Specification Issues in the Context of Automated Software

Development. 124

3.5.1 The SRS Document 124

3.5.2 Traceability 125

3.5.3 Intralinguistic Variations 125

7

3.5.4 Ambiguity 128

3.5.4.1 Syntactic Ambiguity 128

3.5.4.2 Lexical Ambiguity 129

3.5.5 Missing Requirements & Domain Knowledge 130

3.6 Implementation 131

3.6.1 Worked Example 134

3.6.2 System Architecture 138

3.7 Conclusion 141

Chapter 4 Evaluation 142

4.1 Introduction 143

4.2 Evaluation Background 144

4.3 Evaluation Methodology 145

4.3.1 Threats to Validity 149

4.3.1.1 External Threats 149

4.3.1.2 Internal Threats 149

4.4 Evaluation Corpus 150

4.5 Results 151

4.5.1 Class Detection Performance Results 152

4.5.2 Class Candidate Results Investigation 153

4.5.2.1 False Negative and Positives Issue Analysis 155

4.5.2.2 Impact of discounting missing class candidates 158

4.5.2.3 Class Detection Conclusion 159

4.5.3 Relationship Detection Performance Results 160

4.5.4 Relationship Results Investigation 161

4.5.4.1 Impact of discounting missing relationship candidates 166

4.5.4.2 Relationship Detection Conclusion 167

4.5.5 ASA Comparative Class Detection Performance Evaluation 168

4.5.5.1 ASA vs. NL-OOPS 169

8

4.5.5.2 ASA vs. CM-Builder 171

4.5.5.3 Comparative Relationship Evaluation 175

4.6 Evaluation Conclusion 178

Chapter 5 Conclusions & Future Work 181

5.1 Conclusions 182

5.1.1 Thesis Contributions 184

5.1.2 Research Findings 185

5.2 Recommendations for Future Work 187

5.2.1 Common Semantic Model 188

5.2.2 Syntactic Analysis Model 188

5.2.3 Effort Reduction Analysis 189

References 190

Summary of Rules 203

Appendix A.1 Noun/Verb Semantic Classification Tables 208

Appendix A.2 NLP Tag List 210

Appendix A.3 Preposition Semantics 211

Appendix A.4 Verb Preposition Decision Matrix 212

Appendix A.5 ASA Package Level UML Models 213

Appendix B.1 Specification Details 220

Appendix B.2 Manual Specification Classifications Data 233

Appendix B.3 UML Models Generated by the ASA 252

Appendix B.4 Class Candidate Key Issues Analysis Raw Data 260

Appendix B.5 Missing Relationship Classification Raw Data 263

Appendix B.6 Training Specifications 265

9

Appendix C.1 ASA Technical Evaluation 269

10

List of Figures

Figure 2.1-1 Software Development Frameworks ... 22

Figure 2.3-1 Parse Tree Corresponding to Sample Requirements [AG99] 45

Figure 2.3-2 Example Link Grammar [NR95] .. 54

Figure 3.2-1 Automated Software Architect Automation Process .. 80

Figure 3.2-2 Part of Speech Parse Tree using OpenNLP .. 84

Figure 3.3-1 Sentence and Clause Structure Components .. 88

Figure 3.3-2 Noun Phrase Structure to UML Mapping .. 90

Figure 3.3-3 Example Subject, Object Identification .. 91

Figure 3.3-4 Determiner & Noun Multiplicity Mappings ... 96

Figure 3.3-5 Source/Target Multiplicity Detection .. 98

Figure 3.3-6 Final Mapping for Source/Target Multiplicity Detection 98

Figure 3.3-7 Pre-Modifier to UML Mapping .. 99

Figure 3.3-8 Example Syntactic Structure .. 100

Figure 3.3-9 Noun Modifier/Head Parts .. 101

Figure 3.3-10 Automated Example Noun Phrase to UML Mapping 101

Figure 3.3-11 Passive Participle/Head Noun Parts .. 102

Figure 3.3-12 Active Participle/Head Noun Parts .. 102

Figure 3.3-13 Post-Modifier UML Mapping ... 103

Figure 3.3-14 Preposition Phrase Syntactic Structure ... 104

Figure 3.3-15 Noun Phrase Attachment Analysis .. 106

11

Figure 3.3-16 Resulting UML Model from Preposition Analysis .. 107

Figure 3.3-17 Verb Phrase to UML Mapping ... 108

Figure 3.3-18 Candidate Parameters Parse Tree (active voice) ... 112

Figure 3.3-19 Candidate Parameters Parse Tree (passive voice) ... 113

Figure 3.3-20 Attributes based on have Verb forms .. 114

Figure 3.3-21 Automated Model Analysis - Attribute from has rule 114

Figure 3.3-22 Alternative UML Model ... 114

Figure 3.3-23 Class Hierarchies based on ‘be’ Verb forms... 116

Figure 3.3-24 Verb-Preposition Example ... 118

Figure 3.3-25 Original Customer Class Hierarchy .. 118

Figure 3.3-26 Verb-Preposition Replacement Class Hierarchy .. 119

Figure 3.4-1 Dependent/Independent Clause Detection... 120

Figure 3.4-2 Dependent and Independent UML Relationship Mapping 120

Figure 3.4-3 Automated Class Hierarchy Creation ... 123

Figure 3.5-1 Library System Requirements Specification [Cal94] .. 125

Figure 3.5-2 IVM Resolution .. 127

Figure 3.5-3 Example Sentence Parse Tree .. 129

Figure 3.6-1 Automated Software Architect Automation Process 131

Figure 3.6-2 SRS to XML Document Type Definition.. 132

Figure 3.6-3 Sentence and Traceability Link Identification .. 133

Figure 3.6-4 Word Data Collection... 133

Figure 3.6-5 CARPO Graph Data Construct .. 134

12

Figure 3.6-6 Local Hospital Requirements Specification [Duf95] .. 135

Figure 3.6-7 XML representation of Requirements Specification .. 135

Figure 3.6-8 Syntactic Parse Tree Example .. 136

Figure 3.6-9 CARPO Graph Extract ... 137

Figure 3.6-10 ASA version of Local Hospital Problem .. 137

Figure 3.6-11 Automated Software Architect Automation Process 138

Figure 3.6-12 Top Level Package Diagram ... 139

Figure 3.6-13 ASA Sequence of Events .. 140

Figure 4.5-1 ASA Performance Results .. 152

Figure 4.5-2 All SRS Raw Classification Data .. 154

Figure 4.5-3 Present/Not Present False Negative Classifications .. 154

Figure 4.5-4 Key Issues Analysis of False Positives and Negatives....................................... 155

Figure 4.5-5 ASA Performance Analysis (FN (NP) Removed) ... 159

Figure 4.5-6 ASA Relationship Performance Analysis .. 160

Figure 4.5-7 ASA Raw Classifications for Relationship Detection Analysis 161

Figure 4.5-8 False Negative Classifications for Relationship Analysis 162

Figure 4.5-9 False Negative (P) Classification Analysis for Relationship Analysis 163

Figure 4.5-10 Domain Understanding Issues Analysis ... 163

Figure 4.5-11 ASA Model Issue Classifications for Candidate Relationship Detection 164

Figure 4.5-12 ASA Relationship Performance (FN (NP) Discounted) 167

Figure 4.5-13 Requirements Specification Softcom Threshold Analysis [RBP+91] 169

Figure 4.5-14 Requirements specification Library Threshold Analysis [EP98] 169

13

Figure 4.5-15 ASA vs. NL-OOPS Performance Results .. 170

Figure 4.5-16 ASA vs. NL-OOPS Comparative Analysis .. 171

Figure 4.5-17 ASA vs. CM-Builder Performance Results .. 172

Figure 4.5-18 ASA vs. CM-Builder Comparative Analysis ... 173

Figure 4.5-19 ASA vs CM-Builder - Discounting Missing Class Candidates – Boxplot 175

Figure 4.5-20 ASA vs. CM-Builder Relationships Performance .. 176

Figure 4.5-21 ASA vs CM-Builder - Discounting Missing Relationship Candidates – Boxplot

 ... 177

14

List of tables

Table 2.1-1 Allocation of Effort [NIST02] ... 23

Table 2.2-1 Common Class Pattern Classifications .. 26

Table 2.3-1 Automated Analysis Outcomes ... 28

Table 2.3-2 Semi-Automated (Controlled vs. Uncontrolled Language Analysis) 29

Table 2.3-3 Fully-Automated (Controlled vs. Uncontrolled Language Analysis) 30

Table 2.3-4 User Developed MAS Rules ... 45

Table 3.2-1 Example Noun Sense Classification ... 83

Table 3.3-1 Candidate Class Semantics .. 93

Table 3.3-2 Additional UML Model Features ... 94

Table 3.3-3 Semantic Word Count per Non-Class Candidates ... 95

Table 3.3-4 ‘Course’ Sense Definition List .. 96

Table 3.3-5 Determiner Quantification .. 97

Table 3.3-6 Noun Multiplicity Mapping ... 97

Table 3.3-7 Multiplicity Mappings for Example ... 98

Table 3.3-8 Multiplicity Mapping Conversion Rules .. 98

Table 3.3-9 Noun Phrase Semantic Analysis .. 101

Table 3.3-10 ‘as’ Dictionary Definitions ... 105

Table 3.3-11 OpenNLP Tags for Verbs ... 109

Table 3.3-12 Candidate Relationship/Operation Semantics .. 109

Table 3.3-13 Transport Verb Sense Classifications .. 110

Table 3.4-1 Class Hierarchy Subset Semantics ... 122

15

Table 3.6-1 Noun Class Candidates .. 136

Table 3.6-2 Verb Relationship/Operation Candidates ... 136

Table 3.6-3 ASA Process to Package Mapping ... 138

Table 4.4-1 Evaluation Corpus Details ... 151

Table 4.5-1 Class and Relationship Detection Performance Summary 151

Table 4.5-2 Individual SRS Performance Results .. 153

Table 4.5-3 False Negative and Positive Semantic Issues .. 156

Table 4.5-4 False Negative and Positive Associated Semantics ... 156

Table 4.5-5 NLP Issues.. 157

Table 4.5-6 Individual SRS Performance Results (with FN present only) 158

Table 4.5-7 ASA vs. ASA (FN(NP) Removed) Class Detection Raw Data 159

Table 4.5-8 Individual Relationship Detection Performance Results................................... 161

Table 4.5-9 SRS Relationship Results (with FN present only) .. 166

Table 4.5-10 ASA vs. ASA (FN(P) only) Relationship Detection Raw Data 167

Table 4.5-11 ASA and NL-OOPS Comparative Data ... 171

Table 4.5-12 ASA and CM-Builder Summary of Comparative Performance 172

Table 4.5-13 CM-Builder vs. ASA Library Specification3 [Cur95] Classifications 173

Table 4.5-14 ASA vs CM-Builder - Discounting Missing Class Candidates – Summary Data 175

Table 4.5-15 ASA and CM-Builder Relationship Summary Data .. 176

Table 4.5-16 ASA vs CM-Builder - Discounting Missing Relationship Candidate – Summary

Data .. 177

16

Chapter 1

Introduction
__

17

1.1 Overview

The common approach to object-oriented design is a manual language analysis of the software

requirements specification (SRS) typically involving domain experts to identify and create a

model that represents the problem domain. There are a variety of standard methodologies

used to assist the analysis process such as Noun Phrase analysis [Abo85], Use Case driven

[JCJ+92], Common Class Patterns [RBP91, Bah99], and CRC cards [WW89, WWW90]. In

practice, it is a combination of these methodologies that are used to complete the analysis.

Classically this involves identifying nouns, verbs and their interrelationships, where nouns

are considered good candidates for classes or attributes, verbs indicate relationships and

operations that are associated with classes.

Software development is a human intensive activity with requirements analysis and

preliminary design consuming 55% of a project’s total effort [NIST02]. It is considered that

this initial effort could be better spent building flexible, maintainable and reusable solutions

aided by automated analysis and design.

Up till now research has been seen to apply either partially or fully automated techniques in

the pursuit of software automation with varying levels of success. Most require manipulation

of the language used in the specification, restriction of the sentence structure, introduction of

controlled grammars, and / or the involvement of the designer during the detection process.

The manual intervention in these cases only serves to negate the potential benefits that

automated analysis and design aim to deliver.

This thesis proposes that the automated software analysis and the creation of a preliminary

model from natural language requirements specifications without the need of manual

intervention or requirements specification manipulation is a means to reduce the effort of the

initial software development phases. It is therefore considered to what extent can the

structural and semantic information contained within a natural language requirements

specification contribute to a better preliminary design and be derived from the unrestricted

use of semantic and syntactic information?

18

1.2 Approach & Methodology

The thesis starts by thoroughly reviewing the related literature in the key areas of both fully

and semi-automated techniques. It starts with an overview of traditional requirement analysis

and modelling techniques prior to focusing on these automated techniques. The main body of

the review is separated into two key stages that discuss both semi and fully automated works

in their chronological ordering. The review identifies that that there is a very little difference

between the related works and work presented here in this thesis. For the majority of related

works there is some means of syntactic analysis, but mainly in the context of extracting key

word groups such as Nouns, Verbs and Adjectives in a standalone context. There is also

consideration of semantic information as well. However, the connection between both

syntactic and semantic information within related works is limited.

In contrast to related works, and the key differentiator, is that this thesis aims to develop the

connection between word semantic analysis, and syntactic analysis. This has resulted in the

creation of a prototype system, the ‘Automated Software Architect’ (ASA), which is a domain

independent approach with no requirement for manual intervention or specification

manipulation.

The prototype implementation features the ‘Common Semantic Model’ (CSM) and ’Syntactic

Analysis Model’ (SAM) techniques that are discussed in fuller detail within this thesis. The

ASA is evaluated in the context of both the manual analysis and its most closely related works

as identified in the evaluation [Har00, Mic96].

1.3 Contributions

The work presented in this thesis makes the following contributions:

• A means to automatically create a conceptual UML Class model from

unrestricted/unmodified natural language requirements specifications; identifying

common features such as Classes, Relationships, Relationship Multiplicities,

Operations, Operation Parameters, Operation Placement and Attributes

• Provision of a semantic and syntactic analysis model that is independent from the

need for manual intervention, configuration or problem domain

19

• Decision traceability links identifying in the sentence where within the specification

features of the class model have been identified

• Creation of flexible, maintainable and reusable design structures from semantic and

syntactic analysis

The techniques employed are designed not to replace the manual development/analysis

process, but are to be used as a means to reduce cognitive effort through automated

analysis and conceptual model generation

1.4 Result Snapshot

The ASA is evaluated using the key measures of recall and precision. The evaluation

investigates the ASA’s performance in the context of the ideal model and most closely related

works. Overall the ASA performs relatively well on its own with an average recall rate of 73%

and precision of 60% and in the context of its most closely related works the ASA has an F-

Measure of 67% in comparison to CM-Builder with an F-Measure of 77% and NL-OOPS with

62%. The key strengths of the ASA is its domain independence, utilisation of free form natural

language requirements specifications, fully automated analysis aided by both CSM & SAM

models and no user intervention. The key weaknesses of the ASA is the creation of incorrect

class candidates, missing a minority of candidates that are actually contained within the

specifications and poor performance when detecting candidate relationships.

Analysis of the weaknesses has identified that context, ambiguity, missing requirements,

domain knowledge and specification noise exacerbate the situation. Future works, addressed

in the final chapter, aim to deliver strategies as a means to resolve the weaknesses highlighted

with the key requirement of not imposing any additional effort onto the user.

1.5 Thesis Structure

Chapter 2 Approaches to Automation: This chapter presents a constructive review of the

related literature towards fully/semi-automated software modelling techniques identified

from natural language requirements specifications. It first presents a view of industry

standard software design methodologies and also identifies the allocation of effort over the

20

last three decades; this is followed by an overview of the similarly standardised manual

analysis techniques towards requirement modelling. With the scene set, the chapter proceeds

to discusses both semi and fully automated requirement analysis techniques in the context of

both controlled and uncontrolled natural language requirements specification documents; it

identifies the key strengths and weaknesses of each piece of related work; what each related

work identifies in terms of Classes, Relationships, Attributes, Operation Parameters,

Operations, Relationship, Multiplicities and how those related works are evaluated. The

chapter concludes by identifying the key research motivations.

Chapter 3 Techniques towards Automation: This chapter discusses the ‘Common Semantic

Model’ (CSM) and ‘Syntactic Analysis Model’ (SAM) used to address the key findings and

limitations as identified in the literature review. It presents the key syntactic features of the

natural language and identifies what these mean in the context of UML modelling. The

chapter proceeds to discuss how both the CSM and SAM models are used to identify, extract

and manage the information contained within a free-form and unrestricted natural language

requirements specifications and decision-making model behind Class, Relationship, Attribute,

Operation, Parameter and Multiplicity detection techniques. Finally, the chapter concludes

with a discussion of the key software requirements specification issues in the context of

automated software development, its implementation and a detailed view the architecture.

Chapter 4 Evaluation: This chapter discusses the methodology of how the approach towards

automated requirements analysis and design performs through the analysis measures of

Recall, Precision and Over-Specification. The key motivation of this evaluation is to identify

how well the approach performs in the context of both Class and Relationship detection of

free-form natural language requirements in the context of the ideal model. The chapter

concludes with a comparative evaluation of the most closely related works of CM-Builder

[Har00] and NL-OOPS [Mic96].

Chapter 5 Conclusion and Future Works: This chapter presents a summary of the work

carried out in this research. The key limitations of the semantic and syntactic analysis

approach of free-form natural language analysis for conceptual UML model design are

presented and complementing research avenues are also identified and discussed within this

chapter.

21

Chapter 2

Approaches to Automation
__

22

2.1 Introduction

This chapter reviews the related work in the field of automated software development in the

context of natural language analysis and model generation.

The development of software has many well-defined processes: being either an iterative or

linear process that drives the development of the software forward.

(Image Source: Wikipedia)

Figure 2.1-1 Software Development Frameworks

The most common frameworks are waterfall, prototyping and spiral, which have their own

advantages and disadvantages. These frameworks can allow the successful delivery of a

software product and all have common features such as requirements analysis, design,

development and testing. Therefore, no matter what framework is utilised for what purpose

or what benefit it brings, there is still the hurdle of manually analysing and modelling the

customer requirements in an efficient and effective manner that will identify all of the relevant

features of the described software system.

In the majority of cases, the requirements document is written in natural language text, but

other techniques are possible such as requirements specification languages. Moreover, natural

23

language requirement documents require analysis and transformation into a model prior to

its implementation; this process consumes the majority of project effort [NIST02].

The distribution of project effort has changed through time as more and more focus has been

given to the initial phases of the software development lifecycle. This movement of effort has

been the key goal to reducing the errors introduced because of poor software planning, but it

comes with a substantial cost. Table 2.1-1 details the allocation of project effort over the last

four decades.

Table 2.1-1 Allocation of Effort [NIST02]

Requirements

Analysis

Preliminary

Design

Detailed

Design

Coding &

Unit

Testing

Integration

& Test

System

Test

1960s –

1970s
10% 80% 10%

1980s 20% 60% 20%

1990s 40% 30% 30%

Therefore, the overall aim of the related works discussed is to reduce this allocation of effort,

whilst preserving/enhancing the effectiveness and efficiency of the requirements analysis and

preliminary design process.

2.2 Requirements Analysis and Modelling Techniques

A critical activity in the creation of software is the capture of software requirements. Arguably,

this is the most important activity in the software development process. For most software

systems of any size, the requirements are captured in a natural language written document,

but can also be in other forms. This can range from a few simple paragraphs to a complex

document detailing information regarding relevant stakeholders, functional and non-

functional requirements.

The next challenge in the software development process is to create an initial design for the

software system from this specification. This activity is fraught with potential problems due

to issues such as the misunderstanding of requirements, lack of domain knowledge, analyst’s

bias, overlooking and / or missing requirements.

24

In an object-oriented modelling domain, there are long-standing guidelines based on analysis

of the specification that can aid the designer in identifying a ‘first-cut’ software design. These

include considering nouns as potential classes and verbs as candidate operations / methods.

Related research, Section 2.3, has seen this as an opportunity to apply automated natural

language analysis techniques that simulate and aid the developer in constructing the initial

design. To-date most of this work requires intervention through simplification of the natural

language, restricting the sentence structure allowed, and / or also requiring the involvement

of the designer before, during and after the analysis process. Even so, some of these techniques

give automation a simpler problem to manage when detecting the relevant model features.

2.2.1 Natural Language to Object Oriented Models

All software requirements specification (SRS) documents require transformation into a

software/class model prior to implementation. This is the cornerstone of object-oriented

system design and sets the foundation upon which the state and behaviour of the system can

be observed.

The traditional starting point of class modelling, once the customer requirements have been

elicited, is to transform the requirements into a model of the system prior to its

implementation. This was originally achieved through some defined methodology such as the

object modelling technique (OMT) or Object Oriented Software Engineering (OOSE), both a

precursor to Unified Modelling Language (UML) [BJR00], which is utilised to extract and

model the key components of the system. “The fundamental assumption is that object-oriented

thinking represents a more natural and intuitive way for people to reason about reality.” [RBP91]

Today, this model is usually defined in the UML, which offers a variety of different structural

(Static) or behavioural (Dynamic) diagrams that define the overall view of the software system

itself.

Once the model of the system has been generated, it is then possible to construct and

implement the required software from this high-level plan. However, the analysis process and

model construction consumes the majority of project effort [NIST02] and is the source of many

defects [Son09].

25

2.2.2 Manual Techniques for Class Modelling

There are varieties of different manual techniques employed when transforming a natural

language SRS document into an initial model of the defined software system. The most

popular are identified as the Noun Phrase, Common Class Patterns, Use Cases and Class-

Responsibility-Collaborators Cards.

These approaches allow the analyst to capture all the relevant information from the SRS

document, which is used to build an initial model including features such as classes,

relationships, attributes and operations. The main points of each are outlined below.

The Noun Phrase Approach can be considered the mainstream approach towards model

generation, where this technique help to identified the possibility of detecting design features

directly from a natural language SRS specification [Abo85]. Additional approaches have

refined this technique [SP99, Boo94, Mac01, RBP91, RSB93, Bah99] and in the context of

Entity-Relationship Diagrams the grammatical features of the sentence can also aid the overall

analysis and modelling process [Che83].

The principle idea of noun phrase analysis requires the analyst to read through and then

collate each of the noun phrases contained within the SRS document. Once every noun is

identified it is then compiled into a list. Consideration of whether a noun contained within the

list is a candidate class requires validation. Therefore, each potential class candidate is

subsequently classified into three distinct groups defined as Relevant, Irrelevant and Fuzzy

classes.

Relevant classes: these typically appear frequently within the SRS documents [Mac01] and

their inclusion as a relevant item is confirmed by the analyst’s knowledge of the problem

domain and supporting material that may also be available during the classification phase.

Irrelevant classes: these do not have a statement of purpose contained within the SRS or one

cannot be formalised and they are typically outside the problem domain. The inclusion of

irrelevant classes within the compiled list is unlikely with an experienced analyst, but is

considered a key problem for automated analysis.

26

Fuzzy classes: these are on the fringes of being relevant or irrelevant and are a direct result of

there not being enough information contained within the SRS to make an informed decision

for their inclusion within the final model.

The classifications of Relevant, Irrelevant, and Fuzzy are employed to identify what should and

should not be included within the initial design and what candidates require further

investigation.

Similar to the Noun Phrase approach, the Common Class Patterns (CCP) is based upon

classification theory, which is utilised to extract class candidates from a set of pre-defined

classifications. These are partitioned into useful classes so that they can be reasoned about

more efficiently and candidates identified. There are two classification themes; one proposed

that has 5 classifications [Bah99] and the other having 6 classification types [RBP91] see Table

2.2-1.

Table 2.2-1 Common Class Pattern Classifications

CCP Classes [Bah99] CCP Classes [RBP91]

Concept Physical

Event Business

Organization Logical

People Application

Places Computer

 Behavioural

Although these classifications provide a means to potentially identify the class candidates

from an SRS document, the approach does not offer a reliable means to identify a complete set

of class candidates for a given problem statement. It is still possible that information relevant

to the overall analysis process may be lost due to bias, misunderstanding or may not even be

present within the specification itself to start with.

In the Use Case Driven approach [JCJ+92], each use-case defines an actor within the system,

which is derived from the requirements specification. The approach can be defined by a set of

graphical notations that depicts the behaviour of the system as it responds to requests from

actors outside the system. In addition, each use case also has supplementary information

which identifies its role/usage, interactions/relationships and whatever may be involved with.

The use-cases themselves, along with this supplementary information, are used in the

discovery of the candidate classes for the initial class model. Discovery of these use-cases

utilises a similar technique to that of the Noun Phrase Approach.

27

Finally, ‘Class-Responsibility-Collaborators’ CRC cards [WW89, WWW90] are typically used to

help teach object-oriented design concepts, but now are a prominent feature in ‘Extreme

Programming’ (XP) practice as a design technique.

All of these approaches have their own advantages and disadvantages, which will not be

discussed, as they are well documented, [SP99, Boo94, Mac01, RBP91, RSB93, Bah99, WW89,

WWW90, JCJ+92]. Nonetheless, none of these approaches by themselves is a complete answer

to the overall analysis and model generation process.

It is typically more realistic to utilise a combination of these techniques throughout the

analysis and modelling process. In addition, Noun Phrase, Use Case, CCP and CRC techniques

can also aid in the identification of relationships, attributes and operations, typically as a by-

product of the class detection process. Utilisation of these techniques will aid the discovery of

a comprehensive first-cut design, but only at the expense of considerable effort expended by

the analyst.

2.3 Automated Approaches

The key principle of the automated analysis of a natural language SRS document is a

simulation of these manual processes. Natural Language Processing (NLP) techniques have

made it possible to consider these manual techniques in the context of automation. There are

two key branches to software automation, those being either semi or fully automated

techniques; although for the majority of these techniques, they still require some form of

developer involvement or transformation to assist the overall analysis process

There are many approaches towards automating the initial phases of the software

development lifecycle (SDLC) that all achieve the same goal of producing a model from the

natural language specification. A state of the art review in the domain of automated

requirements elicitation by Meth, Brhel and Meadche [MBM13] classifies potential related

works in the domains of abstraction identification, requirements quality analysis,

requirements identification and the most relevant requirements model generation.

The focus in this literature review is towards how the process achieves its goal rather than

what is achieved by the process and Table 2.3-1 reviews the current state of the art of both

fully and semi-automated approaches.

28

Table 2.3-1 Automated Analysis Outcomes

Reference Class Attr Rel Param Op Multi Auto Eval

MHH89 � � � �

FGR+93 � � �

GB94 � �

BV95, BR96, BV97 � � � �

NR95 � � � � �

Mic96, MMZ02, MG02,

KZM+04
� � � � �

Mor97, JM00, JM00a � � � �

AG97, AG99, GN02, AG06 � � � � �

SBB99 � � �

Bry00, LB02, LB02a,

LB02b, LB02c, LB03,

BLC+03

� � � �

OLR01 � � � �

Per02, PKS+05 � � � � �

Har00, HG02 � � � � � �

ZZ03 � � � � �

LDP04, LDP05, LDP05a � � � � �

IO05, IO06, OI06a � � � � � �

Kof05, Kof05a, Kof07,

Kof07a, Kof08, Kof09
� � �

BSC06, BCA06, BSM09 � � � � �

PRM+07 � � � � � �

CHK07 � � �

GT07, GK08

DR08, DR09, DB09 � � � � �

VAD09 � � � �

SOS08 � � �

SRC+07 �

The majority of these related approaches identify classes (class), relationships (rel), attributes

(attr) and operations (op), but a minority in addition to these also identify parameters (param)

and multiplicities (multi). Nine out of twenty-three approaches could be considered as fully

automated (auto) but some may include minimal developer involvement at either the start or

end of the automated analysis process. Overall, few approaches demonstrate some form of

formal evaluation (eval) related to their techniques.

There is a clear distinction between fully and semi-automated works. This distinction can be

identified by how these approaches manage the detection process. Fully automated

approaches have a set of generalised rules and or predefined knowledge bases that allow

analysis on any specification type. Whereas, for semi-automated, there is a reliance on the

analyst during the detection process either to specifically identify model features or build

custom models.

29

The next major distinction is between controlled (user modified) and uncontrolled

(original/as-is/unmodified) language analysis techniques. However, at the next level down the

actual extraction technique such as rule based, knowledge based (KB) driven and others, the

line between these starts to get a bit blurry as some approaches may be entirely focused on a

rule-based approach, whereas others may utilise a combination of both.

The split between both controlled and uncontrolled language analysis approaches for the

semi-automated techniques is relatively even see, Table 2.3-2. This result was unexpected as

it was thought that it would be more weighted towards uncontrolled requirements

specification documents because of the interaction required before, during and after the

detection process.

Table 2.3-2 Semi-Automated (Controlled vs. Uncontrolled Language Analysis)

Reference
Semi-Automated (language)

Controlled Uncontrolled

MHH89 - �

FGR+93 � -

GB94 - �

BV95, BV96, BV97 � -

Mor97, JM00, JM00a � -

AG97, AG99, GN02, AG06 - �

SBB99 - �

Bry00, LB02, LB02a, LB02b, LB02c,

LB03, BLC+03
- �

OLR01 - �

Kof05, Kof05a, Kof07, Kof08, Kof09 - �

BSC06, BCA06, BSM09 � -

CHK07 � -

GT07, GK08 � -

VAD09 � -

Conversely, the majority of fully automated approaches use the original version

(uncontrolled) of the requirements specification, which was also unexpected, as it was thought

that these techniques would require more language manipulation because of less developer

interaction and more generalised techniques, see Table 2.3-3

30

Table 2.3-3 Fully-Automated (Controlled vs. Uncontrolled Language Analysis)

Reference

Fully-Automated

(Language)

Controlled Uncontrolled

NR95 �

Mic96, MMZ02, MG02, KZM+04 - �

Per02, PKS+05 - �

Har00, HG02 - �

ZZ03 - �

LDP04, LDP05, LDP05a � -

IO05, IO06, OI06 - �

PRM+07 � -

DR08, DR09, DB09 � -

SOS08 �

SRC+07 �

Semi-Automated

The review of the semi-automated works is split into two key sections: controlled and

uncontrolled. Additional, groupings of related techniques is unsuitable as they either utilise a

combination of those techniques or are solely dedicated to one method of approach. The

following reviews are chronologically ordered.

Controlled Language:

Fantechi et al [FGR+93] discuss an interactive approach towards automated software

development based on transforming natural language into a temporal logic (NL2ACTL). This

is aided by interaction with the analyst whom will reduce/eliminate the ambiguities contained

within the natural language specification. They are effectively modifying the specification,

which may result in a loss of vital information. The process is iterative where automated

transformations take place, which are subsequently validated by the analyst, and finally result

in the development of a formal specification from an informal one.

The approach transforms simple natural language with only one clear interpretation into

temporal logic, which is then subsequently transformed into an extended natural language

description again with only one interpretation. This may involve splitting a sentence into

separate parts to achieve this format.

For Example: ‘It is always possible to insert a coin. After the coin is inserted it is possible to have a

tea’

Sentence: ‘It is always possible to insert a coin’

31

Extended Form: ‘For all states there exists a computation path starting with the action ‘coin’’

NL2ACTL Transformation: AG <coin> true

The construction of the NL2ACTL formulae is the basis of building a grammar, which

embodies precisely the meaning without ambiguity. This grammar along with both domain

and domain independent dictionaries are the foundations of the translation tool.

The domain dependent dictionary contains specific terms one would reasonably expect to be

within a conceptual model or formal specification, which are user defined and identified from

the specification. The domain independent dictionary manages common word sets that are

typically not related to any specific domain, but have implications for logical operations such

as pronouns, verbs and conjunctions. As a result, any missing information can be contained

within these dictionaries and queried interactively with the user.

The interactive transformations create a set of entirely unambiguous specifications that can be

used to derive testing criteria and support the actual implementation of the software system.

Although this does come at a cost, these manual interactions can lead to a situation where the

amount of effort expended in the process outweighs the benefits of the approach.

Burg and Van de Riet [BV95, BV96, BV97] propose a linguistically based object-modelling

tool that can be used during the conceptual modelling phase to construct both static and

dynamic models from natural language specifications, where the natural language is

manually transformed into their conceptual prototyping language (CPL).

CPL has been specifically developed to be as close to natural language as possible thus

allowing the requirements to be specified in a precise and unambiguous way. The CPL

specification can therefore be automatically transformed into a series of differing logics based

on the modality of the verb, but the resulting notation itself is difficult to work with. Therefore,

a graphical layer, based upon the object modelling technique (OMT), has been built on top,

which hides the resulting notation from the user so that models are easier to work with. Due

to CPL’s formality, it is also used to generate natural language sentences which can be used

as a means to validate the resultant model generated from the CPL specifications.

Overall, the approach requires a manual transformation from natural language into CPL

however, a set of rules have been developed to assist this processes. The primary rules are

32

based upon the discovery of linguistic features, where nouns identify classes/objects and

attributes and where verbs discover relationships.

In addition, a knowledge base is used interactively in conjunction with the primary rules for

model feature detection. The knowledge base utilised is WordNet [Mil95], a large database of

words, where each word has a set of senses that are semantically linked through synonym sets

for differing contexts. Their approach is to utilise WordNet’s lexicon database interactively

and for the user to undertake disambiguation of a given word. This ensures that the model

will be both semantically and syntactically correct.

Additional rules have also been identified that constrain this process for relationship

detection, and are defined as follows:

• Relationship types require certain class types

• Class types cannot be related in some systems

The first of these rules puts constraints on the type of classes that can be involved with certain

relationships for example ‘buying-something’ would require a class type of ‘person‘. The second

of these rules, for example ‘marry-relationship’ forbids a relationship between two different

species.

For example, ‘The man married the dog’ would not be allowed since ‘man’ is a decedent of

‘person‘, whereas ‘dog‘ is a decedent of ‘animal‘. The process of detection is interactive, reliant

on the analyst, where the knowledge base assists in governing the invocation of these rules

ensuring that the features of the model are correctly defined in a semantic and syntactic

context.

Verb discovery also allows detection of specific relationship types such as generalisations,

aggregation and attributes. These are defined as Standard Static Relationships based on the

presence of is_a, has_a, exists and consists_of, but the onus is placed on the analyst to discover

these relationships and features.

In further work [BV96], the introduction of additional facts such as the sentence structure and

define additional rules such as subjects, predicates and objects of the sentence, based on manual

grammatical analysis. These features aid the process of making a correct decision in the

discovery of model features and transformation into their CPL notation.

33

Additional knowledge bases are also introduced defined as domain and application specific

models. The domain model consists of high-level concepts and the relationships between

concepts, whereas the application model refines the domain level information into bespoke

definitions and gives access to concepts relating to that domain, both are manually developed.

Overall, the analyst has to create, sift, refine and understand the specification prior to

transforming the requirements into the conceptual prototyping language and to this

automatically being transformed into an actual model of the system. It therefore requires

manual identification of the key concepts that play an important role, such as identifying the

key classes and relationships, but assistance is given through the models developed and

existing knowledge bases that may also bring additional understanding to the process. This is

a key challenge of the approach and consumes considerable amount of effort during the

transformation and information gathering phase.

Juzgado and Moreno [Mor97, JM00, JM00a] propose an object oriented modelling technique

based on the use of linguistic information taken from informal requirements specifications.

Their key objective is to analyse this linguistic information from a semantic and syntactic

standpoint and extract, by means of a formal procedure, the key components to develop an

object oriented and behavioural model.

The approach is based on Spanish language specifications. Their process relies on a subset of

natural language, thus restricting the expressive nature of the language, but defining clearly

the syntax of the requirements. This is achieved through their utility language, which defines

a set of patterns where the original requirements have to be manually transformed and where

the separation of both dynamic and static requirements is undertaken. Once transformation is

complete, it is then possible to construct both static and behavioural models.

The utility language gives a direct mapping between conceptual patterns allowing

identification of classes, attributes, multiplicity, single/multiple inheritance hierarchies,

relationships and behaviours.

In a static context, the requirements are restructured to replace pronouns and noun phrases to

one explicit noun. Noun Modifiers such as adjectives are discarded, but these are typically a

key source of candidate attributes. Once the specification has been sanitised, every sentence is

transformed to conform to a linguistic pattern defined as follows:

34

• Subject-Verb-Object (SVO),

• Subject-Verb-Object-Complement (SVOC)

These are simple sentence construct rules, but this restructuring makes it possible to consider

nouns (subjects/objects/complements) as classes and verbs as relationships.

Attribute detection is built upon the premise that if a class only participates in one relationship

then that class will be an attribute of the other. However, it is left entirely to the developer to

decide upon which class should be the attribute from their interpretation of the rule.

In addition, class multiplicities are also detected during the process. The extraction is based

only upon the presence of a determiner such as a, the and an. Determiners themselves, only

ever express possible or definite existence of a certain thing, which identifies a single

multiplicity for the candidate. Furthermore, multiplicities extracted only applied to the

relationship between the classes discovered in the patterns, rather than considering each

individual class and its role within the relation: for example, determiner type, and noun

plurality.

The behavioural/dynamic features of the system are also discovered by a defined pattern ‘if-

then’ structure. The requirements have to be manually transformed to conform to this pattern.

The restructuring also follows a similar requirements normalisation to that of static

requirements. Overall, the manual transformation requires an in-depth understanding of the

requirements specification.

The key challenges of the approach is the need to transform the original specification into the

utility language, where interpretation of their rules and the prior understanding required of

the specification make the manual transformations process difficult for the analyst. Ambiguity

and the inconsistencies contained within the specification only exacerbate the situation and

the majority of the effort expended is still consumed by the analyst, which is compounded by

specification issues. However, the approach appears to achieve its goal by producing an OOM

model, but as with many of the approaches discussed here, there is no evaluation to support

their findings.

Bajwa et al [BSC06, BCA06, BSM09] propose an approach towards automated requirements

specification analysis using natural language analysis techniques. The key goal is to create

UML models and usable software code from textual specification documents, where nouns

35

represent classes, verbs represent operations and adjectives represent attributes. The key

models the approach creates are Class, Activity and Sequence Diagrams.

The key steps in their approach are defined as follows:

1. Text Specification Acquisition

2. Natural Language Analysis

3. Knowledge Extraction

4. UML Model Generation

5. Code Generation

During specification acquisition, the user inputs the information contained in the specification

only using relevant information by means of simple declarative sentences e.g. The players

dribble, pass and shoot the ball. Using only relevant information avoids one of the key challenge

that is an issue for many approaches, ambiguity. The usage of simple declarative sentences

also reduces the requirement for formal intervention by the user.

Language analysis is undertaken with this input, which discovers all the relevant parts of

speech such as nouns, verbs and adjectives; this is achieved through part-of-speech tagging.

During this phase, the thematic role of each component contained within the sentence is also

discovered. Thematic roles aim to uncover the Actor, the one causing the action, Co-Actor,

Recipient and others, which is very similar to understanding what the Subject, Predicate and

Objects of the sentence are. It is not obvious how this information is utilised during the

knowledge extraction phase, if at all.

The knowledge extraction step aims to uncover the classes, operations and attributes from the

specification under consideration, which are respectively symbolised in natural language as

nouns, verbs and adjectives each of which map to one of these definitions. Similarly, the

generation of both UML models and code generation also relies on this mapping, where

detected classes and other features are easily transformed into their respective formations i.e.

classes, operations and attributes.

One weakness of the approach that is not addressed is relationships between components.

They do state that relationships are extracted through the presence of prepositions. However,

36

the verb can also express relational information between candidate features as well and it is

not discussed why verbs characteristics have not been exploited.

Given the approach and its removal of ambiguous information beforehand, its accuracy is

relatively high from their evaluation: on average 83%. This loss in accuracy is perplexing and

can only be attributed to loss of information during the specification acquisition phase, which

requires the user to transform the specification into simple declarative form. It is at this point,

where there is a high risk of information loss or misunderstanding.

The evaluation itself is based upon four criteria: Objects/Classes, Attributes, Methods and

Relationships. There is a maximum score definition of 25, but what this actually means or how

the maximum has been derived is not discussed. Each of the components (classes, attributes,

methods and relationships) are individually counted, where correct identification gives 1 point

and an incorrect identification results in a -1 point. However, where the validated results come

from is unknown, as is the question as to whether the results represent only one or many sets

of evaluated data.

Christiansen et al. [CHK07] propose an approach towards UML class diagrams through

Definite Clause Grammar (DCG) and domain knowledge expression through Constraint

Handling Rules (CHR).

The key aims of the approach can be defined as follows:

1. Capture of user requirements, in restricted natural language

2. Development of CHR Handling Rules

3. Transformation to DCG Clause Grammar

4. UML Class diagram generation through GraphViz

The approach is made possible through simple sentence constructs in the form of subject (S),

object (O) typically nouns, and verb (V) that come together to form SVO triplets. These are

derived from Use-Case descriptions, which are widely utilised to map customer requirements.

The use-case descriptions, typically extracted from an initial informal specification, require an

additional processing step to ensure simple SVO sentence construct order.

The SVO ordered sentence constructs are then transformed into DCGs defined as follows:

37

• Basic Sentence

o The basic sentence is a SV or SVO triplet, where consideration of the verb is

the key staring point. Where both S and O represent classes and V represents

relationships or operations. In the case of SV, it would solely represent an

operation contained within the subject class

• Property Sentences

o These typically indicate properties of the subject itself that are expressed

through possessive verbs, indicating ownership. This leads to the object, i.e.

the noun following the verb of the sentence, becoming an instantiation

property/attribute of the sentence’s subject only if both subject and objects are

nouns and have been created as classes.

• Inheritance Sentence

o Investigates verb is_a construct, which subsequently leads to the detection of

sub-/super-type relationships, e.g. A student is a person, indicating a possible

abstract/generalisation, i.e. a student is a type of person.

• Instantiation Sentences

o Still using is-a constructs as an identifier, but where a Proper Noun (i.e. a noun

representing a unique entity such as London) is used instead of a noun e.g. John is

a student. The Proper Noun in this case is taken as an instantiation of type

student.

• Adjectives

o These provide more information about the noun they modify, typically being

attributive of the noun they are attached to. Even though it is something

consider by the technique it is subsequently ruled-out due to possible

ambiguities it may introduce. The consideration of adjectives is defined as

either representing a sub-class or property in terms of modelling. However,

given the grammatical meaning of adjectives if they are attached to the noun

then they can only be considered as a property of that noun, and not as a

subclass type.

38

• Pronouns

o A grammatical reference designed to manage anaphoric references, pronouns

such as he, it, and she typically refer to some other noun which has already

been introduced. They utilise a simple heuristic that considers the most recent

occurrence of a single subject contained within the current or previous

sentence. However, if there is more than one candidate subject, then

resolution is abandoned.

The DCGs at the lowest level are actual language constructs such as nouns, verbs, and their

individual parts-of-speech. This allows the extraction of the sentence components that can be

extracted by the constraint handling rules.

The CHRs will therefore discover relevant sentence components such as nouns, and extract

and define these according to its rules. For example, A dog is an animal, will result in the

creation of class(dog), class(animal), and will also discover a generalisation between dog and

animal, defined by extends(dog, animal). A separate knowledge base can also be built from CHR

constructs and used as an additional source of information to complement analysis however,

this is manually developed and prior to actual processing.

The resulting output from the CHRs is then subsequently transformed into another DCG

defined for GraphViz. As a result, the GraphViz syntax model can be used to generate the

actual UML class diagram; this can then be presented to the user for analysis.

Largely, the approach relies on the Use Case descriptions that have already been extracted

from the original user specification. As a result, any missing requirements will not be analysed

nor considered by the approach, which could lead to a situation where important design

features could be missing from the proposed software system and is the same for any other

system as well. Additionally, the approach has the requirement to ensure that the Use Case

statements are in the form of SVO triplets; a manual transformation process which may also

introduce ambiguities and lead to a loss of system specification information.

Nonetheless, the approach does produce a result that is a step forward in automated software

development, although this is done at the expense of an assumption; one that believes the

majority of the information contained within the Use Case specification is relevant and finally,

there is no evaluation of this approach.

39

Gelhausen and Tichy [GT07]; Gelhausen and Korner [GK08] present a technique towards a

semi-automated approach for automated software development that will form the starting

point of the Model Driven Development (MDD).

Their approach is based upon an intermediate transformation of the specification into SENSE

(Software Engineers Natural language Semantics Encodings) a kind of super-graph that is an

extension of hyper-graphs, where edges not only connect to nodes, but can also connect to

other edges. The key intention of Sense is to encode the semantics of natural language and not

to distinguish between word order, voice or tense. In addition, SENSE carries no

understanding of word definitions therefore all words could equally mean the same thing.

The semantic encoding is achieved through purpose built annotations known as SALe (SENSE

Annotation Language for English) roles. These roles can define actions (AG), message passing

(HAB), recipients (RECP), donors (DON); that something is acted upon (PAT) and removal of

superfluous information by attaching a (#) tag. This set of annotations allows the key aspects

of the user specification to be identified prior to SENSE processing.

SALe requires a manual application of these annotations to the plain text requirements

specification. This transformation process could be considered synonymous with a typical

software analysis approach, where the key components of the model such as classes,

relationships and operations are discovered and annotated. The only difference being that the

SALe document produced is then automatically processed by SENSE through a set of

transformation rules based upon these SALe annotations. The resultant output is the super-

graph detailing all the relevant classes, operations, relationships and inheritance hierarchies,

which can then be transformed into a UML model through a set of transformation rules.

This approach is a human manual analysis technique, where the key decisions of what to

include and exclude are decided upon by the analyst. There are no means to provide an

automated detection technique based upon the linguistics or semantics of the specification. It

is therefore possible for relevant information to be overlooked and excluded during the

annotation process if deemed unimportant by the analyst.

Vinay et al [VAD09] have developed the R-TOOL, designed to analyse elicited English natural

language requirements specifications, which is used to extract classes, attributes, operations

and relationships. This is achieved through the application of NLP and rules designed to

analyse the specification.

40

As with other approaches, the R-TOOL performs full natural language processing

tokenisation, pronoun resolution and part of speech detection. However, a prerequisite of the

approach requires the specification to be written in the active voice and to be in simple

sentence form (i.e. SVO Triplets) prior to any formal class model detection.

The approach takes a rule-based approach similar to other techniques, where nouns identify

candidate classes, verbs identify relationships and operations and certain noun structures

(namely noun-noun) to find attributes.

The noun-noun rule is an interesting approach to attribute detection, where the first noun is

considered the class and the subsequent noun is considered its attribute. However, in terms

of linguistic analysis, the first noun is considered as a modifier to the second noun/head noun.

So in this case, there is a greater likelihood that the first noun is actually some kind of attribute

rather than the second or it may even represent some form of subtype-supertype relationship.

In addition to attribute detection, certain verb constructs are also utilised to determine

candidate attributes through the identification of possessive verbs such as have, denote and

identify. Furthermore, nouns preceding prepositional phrases such as cost of soup, where cost

would be considered as the attribute, are also detected during the attribute detection phase.

However, not all prepositional phrases may indicate attributive qualities; it is also possible

that they identify spatial, temporal or comparative references.

With the initial list of class candidates discovered, additional rules are also applied to prune

the class list; rules such as, frequency analysis and candidates that have no attributes , which

results in those being removed from the final list.

Frequency analysis is based on an individual words frequency of occurrence count within the

document. However, no frequency threshold is actually discussed within the approach.

Therefore, it is difficult to establish how this is actually defined and whether or not it is user

definable. Nonetheless, both candidates with a low frequency and those having no attributes

will lead to them being discarded and not included in the final design.

Finally, the approach to relationship detection can identify simple association relations

defined by simple noun-verb-noun constructs. However, the approach also goes as far as to

identify generalisations and aggregations as well.

41

Generalisations are discovered through a top-down search for nouns that are also composed

with adjective modifiers, and once discovered a generalisation is created. Adjectives typically

modify the noun that they are attached to and have several definitions depending on their

context. Their most common usage is to be attributive to the noun they modify. The only case

where an adjective may be considered as being or acting as a noun is in the nominal case, but

the approach does not provide any justification or a present a mechanism to determine the

adjective’s actual function.

Aggregations are discovered through a simple pattern matching rule primarily defined by the

verb of the sentence such as something [contains, is made up of, is part of] something. Therefore,

upon detection of such constructs an aggregation relationship is utilised instead of an

association.

Overall, the key strengths of this approach is to utilise not just the types of language constructs

in the discovery of class features, but to enhance their approach through rule based analysis

as well. However, the rules applied such as frequency analysis could potentially lead to a loss

of vital model features and discarding of class candidates. The approach towards frequency

analysis is not fully disclosed; it is therefore difficult to infer whether this is threshold based

or if only high-value words are considered as candidates. If so, and as said, it could lead to the

loss of potential high-value candidates as these may only appear once or twice within a

specification, but are ones that play a pivotal role within the specification. However, because

of their low frequency of occurrence within the specification, also known as an under

specification, it would require manual investigation of discarded terms to evaluate their value.

An under specification relates to a situation where a key the feature should be included within

the resulting model/analysis, but since it has a low frequency of occurrence within the

specification it is ignored by the approach.

The focus of their evaluation is qualitative, a comparison of manually collated results vs.

features identified by automation. The evaluation is limited to only one specification and there

is no information on how the manually identified features were collated. In addition it is

unknown whether the specification utilised in this approach demonstrates the approach in its

best light as the results comparison is very good. To understand how well the approach does

perform a more extensive evaluation is needed, but one that is not available.

42

Uncontrolled Language:

Motoshi et al [MHH89] define a technique to extract a formal specification from an informal

one, where they extract a set of candidate nouns and verbs, from the informal specification.

This extraction is achieved through a noun and verb dictionary that is automatically applied

to the specification texts. The set extracted nouns and verbs are manually classified into

product sets such as classes, attributes or actions from nouns and relational, state, action or

action/relational from verbs.

The key argument for manual classification rather than automated is that it is difficult for

computers to identify what words are important and relevant to the specification. In addition,

sentence structure is also taken into consideration during the manual classification process

such as the subject (S), verb (V) and object (O). The subject of the sentence identifies the sender

of a message and may strongly indicate a class. Verb patterns based within grammar such as

S+V, identifying intransitive verbs, can allow the manual consideration of objects that modify

their own state. The approach also demonstrates how other simple verb structures defined as

‘action verb rules’ can also aid in the manual identification of additional design features such

as relationships, operations and attributes.

These rules typically result in SVO triples where the subject is joined to the object of the

sentence via the main verb, where the verb identifies the relationship and/or operation. All of

this extracted information can then be utilised to extract a formal specification from the

informal one.

The key drawback of the approach is the burden of the manual analysis activity. This is

compounded by informal specification as it increases in size and complexity. The approach is

entirely dependent on manual analysis, which is subject to experience, understanding and

bias to identify the relevant features that should and must be modelled.

Goldin and Berry [GB94] note that for many methodologies that allow the transformation

from requirements analysis to initial design, in the majority of cases requirements are often

ambiguous, ill defined, incomplete or just simply wrong with respect to the users’ needs.

They have identified that abstraction identification is a key problem within requirements

analysis process. Where an abstraction is the ability to ignore enough of the details contained within

the specification and only capture the main ideas or concepts. Therefore, abstractions are key to

43

understanding what is actually required, but the abstractions themselves are surrounded by

a mass of natural language texts from where they must first be discovered.

The manual elicitation of abstractions takes the form of identifying nouns and noun phrases;

this is aided through the identification of the grammatical subjects and objects contained

within the sentence and most importantly, the analyst’s understanding. It is entirely a human

thought process, where each element has to be considered for inclusion. However, as the

document grows in size, the more complex the task becomes, the greater the chance of

important features being overlooked and why a semi-automated approach was sought.

Initially, automation sifts the texts through natural language analysis techniques and

frequency analysis. The results can then validated by a human. The key benefit of automating

this process is that it can be guaranteed that no element contained within the specification will

be overlooked, whereas it cannot with a manual analysis approach.

The automation process proposed is based on repetition or frequency analysis, which is the

basis of their key assumption stating that key abstractions are discussed more often within the

specification document. This statement can be held true with many search and retrieval

techniques where it is possible to identify the importance or relevance of a particular term

contained within the document itself. This assumption gives rise to a situation where

important abstractions, which have a low frequency of occurrence, will be overlooked by this

technique, which may indicate that these are of greater importance than the high frequency

terms [Jon72].

Automated linguistic classification, through utilisation of a natural language parser, discovers

every noun and noun phrase, even if the word is derived from the same stem such as purchased

and purchase. The frequencies are identified and added together. In addition commonly

utilised stop-words such as a, an, or the, are ignored during analysis phase.

Additional issues identified are acronyms. These are introduced to replace longer phrases,

primarily only of use to an analyst, and to avoid repetition. Acronyms cannot be managed

through threshold analysis and therefore require manual identification by the analyst and

added to an exclusion dictionary, which then allows their identification and addition at the

end of processing.

44

The threshold based analysis has two specific issues. A low frequency threshold increases the

number of terms identified, but incurs a penalty through introduction of irrelevant words.

Whereas, a threshold set too high may miss important features.

This approach is one of the few that also have some form of validation of the approach where

a non-domain expert using the tool was compared against three domain experts not using the

tool, independently of each other. The key conclusion was abstraction identification

completed the same task as these experts in one day in comparison to three months worth of

their work and was able to identify features that the experts overlooked.

The approach demonstrated that through means of frequency analysis and their evaluation it

is possible to identify the key features faster and more efficiently in comparison to three

domain experts. This is an interactive process, requiring constant involvement, consideration

and frequency threshold re-balancing to achieve the best results, but it only identifies the key

abstractions (candidate classes) and no more.

Gervasi et al [AG97, AG99, GN02, AG06] present a web-based tool for requirements

gathering, elicitation, selection and validation which is utilised to build models of a proposed

software system. What is of interest is how they actually select and identify relevant

components to be included within their model of the proposed software system. The model

generated from this information is supported by an automated processing technique. This

requires analyst support, via a costly manual activity involving development of a System

Glossary and MAS (Model, Action, and Substitution) rules.

The System Glossary developed contains all of the key abstractions, significant terms and

flows of information that are contained within the requirements and are considered important

by the user. For example, given the phrase, When the server receives from the terminal the

password, the server stores the signature of the password in the system log, the system glossary as

defined by the user would contain {terminal/IN/OUT, server/IN/OUT/ELAB, password/INF,

signature/ATTR, system log/STORE}, where IN/OUT/ELAB/INF/ATTR/STORE are domain

specific terms representing data flows. However, during automated processing the glossary

is ignored and is more for the benefit of the user during the development of MAS rules.

Table 2.3-4 demonstrates the MAS rules utilised by the process for the identification of model

components. Although each requirement is manually transformed into a series of these MAS

rules this could potentially lead to a loss, oversight or misunderstanding of the original

45

requirement and it is the analyst who is still making the decision as to what is included or not

through development of these rules.

Table 2.3-4 User Developed MAS Rules

Model Action Substitution

WHEN event/EVT action/ACT Out DEPEND $action $event -

Receiver/IN RECEIVES data/INF FROM sender/OUT Out DFLOW $sender $data $receiver $ID/EVT

Agent/ELAB STORES data/INF IN datastore/STORE Out DSTORE $agent $data $datastore $ID/ACT

Attribute/ATTR OF object Out ATTR $attribute $object $ID/INF

The rules themselves are applied through fuzzy matching, where automated processing will

decide if a fragment, a feature identified from the requirements specification, matches one of

the MAS rules. If so, given the model, the action is executed and the matching requirement is

replaced by its substitution, thus generating the required design components, (but these have

been pre-determined by manual means, automation is only processing the subsequently

developed rules).

Figure 2.3-1 Parse Tree Corresponding to Sample Requirements [AG99]

The process itself comes into its own through its views, which allow metric applications,

various checking and model transformations including Object Oriented, Data Flow Diagrams,

Dynamic Models, Entity Relationships and more. This is where the real strength of this

approach lies and all can be derived from a set of similar parse tree structures, see Figure 2.3-1.

There is an evaluation of how well the technique performs in processing requirements (i.e.

how fast it can process requirements) and how many lines of code the approach was written

in but the evaluation does not provided any consideration or meaningful understanding of

how well the actual technique performs.

Sylvain et al [SBB99] propose a technique utilising natural language texts and semantic

analysis towards the creation of candidate lists of classes, operations and attributes. The

46

approach is utilised during the initial stages of the analysis, which allows the engineer to

concentrate on the collection and preparation of accurate textual descriptions of the problem

domain. This is undertaken without having to utilise any object-oriented tools, diagrams or

techniques during this analysis phase.

The key to the approach is the extraction of nouns, which indicate classes, verbs that indicate

processes, and identifying attributes from adjectives, all which is aided by their domain

independent natural language and a semantic analysis tool.

The domain independent parser processes each individual sentence and identifies all of the

relevant parts of speech, and produces several parse trees; the analyst then has to select what

they think is the correct parse structure for the sentence which is then passed on for semantic

analysis. However, the complexity and the structure produced by automated analysis may be

(initially) confusing, which could lead to an incorrect parse tree selection that would

subsequently have an adverse effect on the overall analysis process.

Nonetheless, once the parse tree has been selected, semantic analysis is undertaken by a

separate module. The key to the semantic analysis is centred round the verb of the sentence.

This is not a semantic analysis that generates an artificial understanding, but one which

primarily looks towards case relations that represents semantic relationships between the

main verb and the key sentence components (such as subjects, objects, prepositional phrases). As

with language processing, the user has to select the relevant semantic analysis which they feel

best represents the relation semantics of the current sentence.

Along with both language and semantic analyses, the user is finally presented the key details

such as, the main verb, nouns and any adjectives. It is then the responsibility of the user to

generate candidate lists (such as classes, attributes and operations) and make the decision as to

what are the best candidates, as a preliminary analysis step prior to full (manual) model

creation.

This semi-automated approach has been evaluated by means of comparing the results

identified by the process to what is discovered by human experts. Overall, 76% of classes, with

a majority containing their attributes, and 66% of the operations were identified in comparison

to an expert’s preliminary model.

47

The majority of this work is manual when considering that the key decision as to what is a

class or an operation is a human decision process. In addition, identifying the correct parse

trees and semantic analysis is a crucial step in the process were misunderstanding the

requirements and language constructs will have a detrimental effect on the overall process

and outcome of the candidate lists produced.

Lee and Bryant [Bry00, LB02, LB02a, LB02b, LB02c, LB03, BLC+03] propose a technique

towards semi-automated software development, which is capable of generating both models

and software code from natural language requirements specifications.

Their approaches utilises techniques such as domain knowledge (DK) and domain specific

knowledge (DSK) that are manually developed to assist automated analysis and extraction of

class features. Additional supporting techniques applied to their approach include syntactic

analysis, semantic analysis and a custom-built part of speech analyser used to identify the

relevant language features such as nouns, verbs and adjectives.

Syntactic analysis identifies the subject and objects contained within the sentence, based on

the premise that the first noun discovered in the sentence is the subject and where all others

are objects although this assumption is not entirely true when considering passive sentence

constructs. The detection of syntactic features aims to better aid and increase the accuracy of

their approach. Semantic analysis, aided by WordNet [Mil95], assists in co-reference

resolution, where the semantic groupings of WordNet [Fel98], such as ‘Animal, Person’, can be

used to find words that are a possible candidate of the co-reference.

However, prior to any form of linguistic analysis, the requirements specification is manually

transformed into an XML representation, which is a means to simplify what automation has

to process, and through the definition of additional meta-information it can then guide the

relevant execution path. The structure is derived from the common document structure by

means of sections, sub-sections, paragraphs and individual sentences. This enhances the overall

quality, where contextually related information is grouped together. The addition of meta-

information also included during the manual transformation of the specification helps to

identify important sections and sentences contained in the specification. The XML

representation is the first level of domain knowledge, known as a contextual document model.

48

Each of the top-level tags {section, subsection and sentence} allow management of contextual

information, which can be used to aid user-specific queries, but primarily aims to simplify

automated analysis.

• The section tag is used to identify the overall context through a meta-attribute defined

as object and a descriptive title such as ATM

o A section tag can also contain section tags (realistically representing a

paragraph) to maintain context and also identifies what information is

contained within that tag for example a ‘withdrawal service’.

With a section defined, it is possible to identify sentence-level meta-information utilising

descriptive tags such as {head, pre-condition and sub}.

• The pre-condition tag identifies conditions that must be met for each of the sentences

that are contained within sections or sub-sections i.e. bank verifies ID and PIN giving the

balance indicating that any features identified within the section/subsection must meet

the defined pre-condition

• The head tag is utilised to mark a sentence containing a function signature, for

example, ATM withdraws an amount with ID and PIN giving the balance, where function

identifies the containment of an operation i.e. withdraw

• The sub tag identifies a post-condition, which must be met after conclusion of the

operation, e.g. And then it updates the balance in the bank with ID

In addition, domain specific knowledge also has to be manually defined, also in XML, but

carries a significant amount of detailed information such as, inheritance hierarchies,

associations, compositions, attributes, types as in {integer, string}, specific values and

synonymously related words, which is defined for each concept within the domain.

The domain specific knowledge does not have to be extensive, but providing information that

is more detailed will surely ensure the success of the automated analysis process. However,

going to the extent of defining so much operational, structural and relational information,

prior to the automated analysis, is of concern. It seems rather counter-intuitive to expend the

effort manually capturing this information and it would be better spent actually creating the

49

model (on the part of the analyst), rather than defining a domain specific model for

automation.

With the domain models created, class detection is based on the rules of nouns indicating

classes, verbs implying operations and adjectives demonstrating attributes. Therefore, upon

detection of these language features, the DSK can be queried for any additional/supporting

information during the analysis phase. Furthermore, structural aspects of the sentence are also

taken into consideration when detecting a class. The structural features considered within the

sentence are subjects and objects, which support the case for class creation, since both sentence

subjects and objects identify important aspects of the sentence.

A simple rule is utilised to detect sentence subjects, where the first noun in the sentence is

always the subject and all subsequent nouns are objects. Given a passive sentence construct,

The balance was given after verification by the bank, even though balance is the subject, the true

subject of the sentence is bank, as it is the bank who is calling/performing the action verification.

This does not really affect class creation in any particular way, but it can be detrimental when

deciding which class should contain an operation. This may be resolved through their defined

knowledge bases.

In addition, cases can arise in written texts where the subject may be unknown due to pronoun

usage, such as {it, that, them, they, he}. The key approach is semantic analysis aided by WordNet

and recency constraints to undertake co-reference resolution (i.e. the last seen noun).

Their approach to co-reference resolution considers the most recently seen noun as the

candidate, which then checks its semantic definition with WordNet. If it represents a living

thing, the pronoun resolution can take place, otherwise the next most recently seen noun is

taken into consideration. This is not an endless search process, and is kept within the confines

of the contextually related section/subsection of the specification. Although a problem does

exist with this approach to co-reference resolution as the most recently seen noun may not be

the correct reference and it may not have a living thing semantic as well. Take the case of an

ATM machine, it does not have a semantic that falls within the category of livings things, but

could easily be co-referenced by a pronoun resulting in an incorrect reference.

Co-reference resolution in the approach only considers previously introduced terms. The

situation can arise where a pronoun is used for a term that has not been introduced to the

reader as yet, known as cataphoric reference, also a form of co-reference resolution. In this

50

situation, and given the approach to co-reference resolution this could lead to the situation

where a completely irrelevant term is referenced as the actual candidate.

Nevertheless, these analyses and rules are then utilised by automation to process the natural

language specification and generate a Two-Level Grammar (TLG) representation. The TLG, a

specification language defined by this technique can subsequently be translated

(automatically) into VDM++ (an OO extension of the Vienna Development Method), thereby

allowing model generation, identifying classes, relationships, operations and attributes. The

resultant TLG/VDM transformation can also be converted into a high-level programming

language such as Java or C# to allow rapid prototyping.

Overall, this approach towards automated analysis provides a robust means towards model

and actual code generation, which can be considered its key strengths; disappointingly, there

are no evaluations of any type for this technique. The keys to the approach are the document

reformulation into a contextual representation; generation of the domain and domain specific

knowledge bases and model generation rules, which guide and assist automated analysis.

However, a considerable amount of effort needs to be exerted prior to any automated analysis

to the extent where the manual analysis transforms the requirements into both domain and

domain specific XML models, which carry such a level of detail it almost makes the automated

analysis part irrelevant.

Overmyer, et al [OLR01] propose a technique for conceptual modelling through linguistic

analysis of the natural language requirements specification and have developed a tool, ‘LIDA’,

which assists the developer by automatically detecting possible features such as classes,

attributes, relationships and operations from a natural language specification.

Their methodology is defined by the extraction of language lexical features such as nouns,

verbs and adjectives, which are then compiled into candidate lists of classes, relationships,

attributes and operations. The extraction is achieved through two custom built dictionaries:

one that represents nouns and the other, verbs. The process scans the texts and pulls out

matching words that are contained within either dictionary set, which results in a candidate

list of potential class features.

With candidate lists generated, the human can then manually identify the actual candidates

for the conceptual model where through a further automated step these features are then

51

transformed into a UML diagram along with API descriptions. The API descriptions are a

reverse engineering of the resultant model generated back into natural language statements.

Even though the overall aim is to alleviate the manual identification, the approach is entirely

dependent and reliant upon the developer identifying appropriate classes, attributes,

operations and relationship from the list of all possible candidates. The approach further

assists manual analysis by providing frequency of occurrence information for each candidate

thus aiding the manual decision making process.

Kof [Kof05, Kof05a, Kof07 & Kof08] proposed an approach to requirements document

analysis through natural language processing as a means towards ontology extraction. The

ontology can then be utilised to derive models and drive further manual analysis of the

proposed software system.

The approach taken follows three key steps:

1. Individual Term Extraction

2. Term Clustering and Taxonomy Construction

3. Term Relationship Discovery

Individual term extraction is assisted through natural language analysis of the sentence and

construction of a full part-of-speech parse tree using an external tool, ASIUM [ANF98]. The

purpose of utilising the full parse tree eases the identification of sentence predicate (main verb)

and both its arguments, subjects and objects (nouns). The approach initially locates the main

verb, and then with a series of left and right traversals of the parse tree, it extracts both subjects

and objects. In addition to extracting individual terms, compound terms are also discovered

during this approach. Thus, ensuring full compound terms are extracted rather than them

being extracted individually.

In addition, during the extraction of compounds there are many structures in the form of

(Property) of (Object) e.g. failure of water level detection unit, therefore in this case the whole tree

would be extracted as one entire concept. However, of does not only indicate properties of

other objects, but can also indicate many other constructs such as direction, time and others,

which would require disambiguation to ensure correct interpretation. The approach only

considers the ‘existence’ property and does not undertake any disambiguation.

52

With all terms extracted, it is possible to start constructing the taxonomy using ASIUM.

ASIUM builds clusters of nouns discovered during the initial phrase and makes use of

contextual, lexical and syntactical similarities to decide whether two terms are similar and if

they have a high similarity score, they are grouped together. To enhance the chances of

similarity towards each of the extracted terms, they are also reduced to their base stems. A

further enhancement to the cluster results requires a manual search and discovery of

intersecting cluster, which can be manually inserted into the final taxonomy model.

Using another external tool, KAON [SA97], it is also possible to perform association mining

and identify relationships between concepts. This is achieved by means of a simple count,

identifying how many times a particular concept appears within input texts. Therefore, a

decision whether an association is important and should be included is undertaken by two

metrics and a user defined threshold.

The metrics primarily investigate how many times a set of concepts appear together within

the same sentence and within all sentences, defined respectively as support and confidence.

However, the user has the final decision on whether to include the association or not. There is

the possibility with this strategy for important association, which may only be mentioned a

minimal number of times within the texts, to be overlooked and subsequently lost during the

analysis process.

The majority of this approach is automated by means of natural language analysis and use of

other external analysis tools. Other aspects are interactive such as clustering and relationship

discovery that only require the user to confirm/validate the results. Nonetheless, the user still

requires an understanding of the requirement texts.

In addition to user understanding a set of rules were specifically developed to enhance the

process that can be applied to the specification document and are defined as follows:

• Use the same name for key concepts;

• Mark compound words with hyphens;

• Avoid compound concept conjunctions e.g. ‘stop or start message’ should be ‘stop

message or start message’;

• Do not use verbs in the form of ‘have’ or ‘be’;

53

• Avoid erroneous/supplementary information aimed particularly at the reader;

• Avoid cross sentence references e.g. ‘Message X is sent by unit Y’.

These rules effectively require a rewrite of the specification only to improve the results, which

also identifies a key limitation of the approach. The claim is that their approach will effectively

work without this step, but better results can be achieved by performing this transformation.

This passes additional burden onto the developer/analyst to have a greater understanding of

the requirements prior to the re-write taking place, and also lengthens the overall analysis

phase as well.

Overall, the results produced by this interactive process leads to a well-defined ontology. This

can subsequently be transformed into various model types such as Use Case Models or

Message Sequence Charts to aid understanding and complement the requirements analysis

phase.

The evaluation investigates the completeness of concepts extracted by the approach, but only

the concepts and not the relationships between them. The approach argues that relationships

are not explicitly defined in the text thus contradicting many of the related works that do

extract relationships from the text.

The results of the evaluation are compared against those that have been identified by the

author. They do identify this as a threat to the validity of the evaluation and state that it should

be undertaken by a domain expert. Finally, there is no analysis to bolster the key findings that

the extraction of concepts matches those of the concepts contained within the document. The

evaluation overall does not lend itself to validating the approach.

2.3.1 Fully Automated

The review of the fully automated works is similarly split in to two key sections, controlled

and uncontrolled. The following reviews are chronologically ordered.

Controlled Language:

Nanduri and Rugaber [NR95] proposed an approach that performs requirements validation

via the creation of an object model automatically from a specification. This model is then

compared against a manually developed solution, which helps to identify any missed classes,

relationships and alternative design choices. Linguistic analysis of the specification is used to

54

identify and create the relevant classes, relationships, attributes and operations automatically

from the language. This analysis is based on rules they have developed to extract the relevant

model components.

Due to language complexities such as ambiguity, inconsistency, sentence structure and

incompleteness, it is necessary to rewrite the specification document manually as a set of

simple sentence structures.

Figure 2.3-2 Example Link Grammar [NR95]

The basis of the approach is formulated within a link grammar, where each link identifies

components of the sentence that can be linked to other aspects of the sentence. For example,

both the subject and the verb of the sentence would connect through one link. Another link

could exist between both verb and any objects and more links may be present between all

three components (subject, verb and object). This is achieved through utilisation of an external

tool that automates the analysis and returns a link grammar parse tree (see Figure 2.3-2)

These links form the basis of their rules for the creation of model features and their approach

is based solely on the presence of these links and their order. This then allows the decision to

be made as whether they should be included within the design. There is no cognitive or

syntactic analysis undertaken automatically between these components of the sentence to

decide upon their inclusion.

The strength of this approach is in the creation of an alternative design choice for the developer

and the identification of any missed or overlooked features of the specification. However, the

developer still has to create a design for comparison manually. This is a time consuming

process and is common for all manual approaches. There is also the additional effort required

to rewrite the specification using a simple sentence structure, which also has the potential to

introduce inconsistencies or skew the intended interpretation of the original document.

Once rewritten, the specification is analysed by a link grammar parser, which may return

different linking requirements between the components of the sentence due to parser

inadequacies. In addition, the parser cannot process hyphenated words, idiomatic

 +----Js---+
 +-Ds-+---Ss--+--MVp-+ +--Ds-+
 | | | | | |
The cow.n jumped.v over the moon.n

55

expressions, quotation marks or undertake co-reference resolution. The resulting information

serves as input for analysis by their extraction rules, where nouns serve as classes and possible

attributes, verbs as relationships and operations. Unfortunately, there is no evaluation to

identify the quality of the approach.

Li et al. [LDP04, LDP05, LDP05a] utilise a pattern/rule-based and interactive approach

towards UML Model generation from natural language specifications. The basis of the

approach requires structured specifications typically in the form of subject-verb-object (SVO)

triplets to allow successful transformation and detection of candidate classes, relationships

and operations.

The technique developed tags each word within the sentence with their relevant part of speech

such as nouns, verbs or pronouns. This tagging is an automated process however, it is

unknown if this is a tool that has been custom built for the approach or is an external part-of-

speech tagger. Nevertheless, it is then necessary, after tagging is complete, to transform

sentences into the SVO triplet format.

Given the tagged sentence, a pattern-based approach is utilised to create the SVO triplet

structure, where the first noun is considered the subject of the sentence (S), the following verb

is considered the main verb (V) and any subsequent following nouns are considered as objects

(O). For example, The baker bakes bread and cakes, the SVO triplet would be as follows: S-V1-O1-

O2, which would be translated into two separate individual triplets so that both objects are

associated to their own subject as follows: S-V1-O1 and S-V1-O2. Given the example this

would effectively become, The baker bakes bread and The baker bakes cakes. Though a novel

technique, it is an unnecessary step splitting these into individual structures, as it is simple

enough to identify the attachment of the objects contained within the sentence

With all sentences split into their respective triplets, an initial class diagram is created

automatically detailing the candidate classes, attributes and operations, but none of the

relationships. The approach then poses questions asking the user to confirm candidates

discovered. The refinement phase is entirely user driven: one that requires a formal

understanding of the proposed software system before decisions can be made concerning

valid candidate features.

Overall, the approach produces useable UML and simple Use-Case diagrams as a precursor

to further software development activities. There is still a reliance on the user and their

56

requirement to have an understanding of the system prior to deciding whether a feature

detected by the automated approach is correct and relevant.

Popescu et al [PRM+07] propose an approach to automated UML model generation through

use of a constraining grammar, automated language analysis, transformation rules and user

intervention as a means to improve the quality of requirements specifications.

The sole purpose of the constraining grammar is to allow the concise expression of the

software requirements by means of simple sentence constructs and specifically stating the

actual requirements. It is also the goal of this constraining grammar to reduce/remove/address

ambiguities, inconsistencies and under-specifications, which may be present. This requires a

manual analysis and rewrite, which on its own could potentially introduce further

ambiguities/inconsistencies and loss of important information contained within the original

specification.

The language analysis phase makes use of an external link grammar tool, similar to that of

other approaches [NR95], which detects all relevant parts of speech and identifies the

connective relationships between the components contained within the sentence. These

linkages are then used in conjunction with transformation rules to generate a textual

description of the UML model.

In addition to the link grammar, WordNet is also utilised, but only to return words contained

within the specification to their base form i.e. transforming plural nouns to their singular form.

This helps to avoid the creation of duplicate classes, attributes, operations and relationships.

As previously stated, the link grammar identifies the key sentence features and connective

relationships between these such as the subject of the sentence, the main verb and sentence

objects and transforms the sentences into simple sentence construct in essence an SVO triplet.

A key rule of the approach considers that if a link also exists between both subject and object,

then it will result in the creation of two classes (represented by the nouns/subject and objects),

a relationship and operation defined by the sentence verb.

During the transformation process, additional consideration is given to the verb and its type.

For example, a genitive verb, indicating possession, will result in both subject and objects of

the sentence being created with an aggregation relationship, rather than a standard associate.

57

The aggregation relation is subsequently utilised during a further processing phase, where all

aggregated relationships are considered for transformation into attributes of the subject class.

During this analysis, only classes that are lacking in relationships, operations and attributes

will be considered for transformation into attributes and will be placed within the subject

class.

With the analysis undertaken, it is then the responsibility of the analyst to investigate the

diagram for ambiguities and the technique identifies areas to investigate:

1. Association relationships may indicate ambiguities and the analyst should validate

were different classes communicate with the same target type is correct otherwise

manual manipulation is required to ensure the model demonstrates the correct

communication

2. Each class should reflect one and only one concept. Thus does book and textbook

represent two different distinct concepts?

3. If a class has an attribute and it is not of primitive type, this may indicate that the

attribute is not well defined within the specification. On the other hand, it may

identify a genuine communication between class components.

4. If a class has no relationships with others in the model, it may indicate under-

specification. This though, could be a direct result of the transformational phase

undertaken prior to any automated analysis, where the original document was

rewritten into simple sentence form.

Nonetheless, the approach creates a means to automate the software modelling generated

from the restricted natural language constructs where the approach is validated using recall

and precision adapted from information retrieval techniques. Their interpretation of recall

considers information extracted by the link grammar in terms of what is contained within the

source. That is, it investigates how well the actual natural language parser performs through

extraction of nouns in comparison to the actual nouns contained in the specification, with a

similar comparison with precision. The evaluation does not consider how well recall and

precision perform in relation to a human generated model.

Strangely, the evaluation uses an intro man page of the Cygwin environment and not an actual

requirements specification document. The reasoning given is that the manual page seems to

58

be a suitable experiment source. However, the key purpose is to improve the quality of

requirements specifications through auto-generated models. Therefore, a manual page does

not appear to be an appropriate source of information, but for the purpose of the evaluation

it should suffice.

The evaluation starts with a manual identification of every noun or compound noun by the

authors, then these results are compared with the automatically extracted ones, which allow

for a quantitative analysis, where the average precision rate is 89.79% with an average recall

rate of 69.2%

The key strength of the approach can be considered to be within the transformational rules

used to detect the key features of the model classes, relationships, attributes, operations and

generalisations. However, the approach is reliant on the initial transformation process from

an uncontrolled natural language to its restricted grammar and this is the crux of the

approach.

Seresht, Ormandjieva & Sabra [SOS08] present a proof of concept that accepts a collection of

textual requirements specifications as its input and outputs the resulting static and dynamic

models of the captured software system. The objective of this work is to provide interactive

and automated assistance throughout the process of requirements elicitation and analysis.

This is achieved through three techniques: automated NLP quality assessment of the textual

requirements during the elicitation phase; NLP quality assessment of the requirements during

the development of a static UML model and dynamic Use Case models. The generation of a

graphical visualisation extracted from the requirements is presented for user validation and

feedback. There is no evaluation presented with this work.

The methodology that supports the identification of static model initially starts with a pre-

processing phase that identifies a First-Cut Structural View (FSV) that is combined with Expert

Compared Contextual (ECC) Models - domain data models which are a UML representation

of the domain. Both the FSV and ECC models are used to generate an Improved Structural

View which is subsequently transformed into a structural view.

Textual pre-processing is used to remove ambiguities and is supported by a decision-tree text

classifier that applies a quality characteristic model which is not limited to just syntactic

features such as passive verbs, but also word frequency and ambiguous keywords. In

addition, discourse features are also considered such as words per sentence, unique words

59

and frequency of ambiguous sentences. Once the ambiguities have been identified and

removed a set of heuristics are applied that focuses on SVO constructs that considers nouns

as candidate classes and verbs as relationships; no additional syntactic features are considered

in the construction of the FSV. The domain models (ECC) and the FSV are compared and a

variety of rules are applied that transform nouns to classes and verbs into relationships. The

resulting output is an Improved Structural View (ISV) which is subsequently transformed into

a static UML model.

The proof of concept controls the language by focusing on simplified language constructs and

removes ambiguities during its textual pre-processing phase. It is unclear from the work

whether these ambiguities can be resolved, but the authors do mention a validation and

feedback phase. Overall, the initial analysis creates classes/relationships from nouns and verbs

which is compared to the domain model, which is a static UML representation also detailing

classes and relationships. The domain model contains extensive information ensuring that

missing information is included within the final model. This calls into question the practice of

why the approach is undertaking specification analysis and the creation of a first structural

view when the final model created is essentially a view the domain model itself.

Deeptimahanti, Ratna & Babar [DR08, DR09 & DB09] propose a methodology towards

automated software development based on the Rational Unified Process (RUP). Their

approach, known as ‘Static UML Model Generator from Analysis of Requirements (SUGAR)’,

is used in conjunction with natural language processing (NLP) and a supporting glossary of

terms.

As with other approaches, it too requires complex sentence structures to be transformed into

simple sentence constructs such as SVO triplets. It also requires transformation of all passive

voice sentences, such as Customers are transported from one location to another into active form

thus ensuring the inclusion of main subject, i.e. Taxis transport customers from one location to

another. This ensures that the object, which is actually undertaking the action, can be

discovered.

During the reconstruction of the sentence, all prepositional phrases, adjective phrases,

determiners and adjectives are discarded if, and only if, they precede the subject of the

sentence. The exclusion of such information, even if it is only from the subject of the sentence,

60

can and will lead to the loss of information that could be used to identify possible

relationships, attributes and multiplicity during the modelling activity.

Once the specification has been reconstructed (manually), it is then possible to undertake NLP

analysis and subsequently have a parse tree returned (via the Stanford NLP Analyser

[KM03]). The parse tree contains all the relevant parts of speech for the given sentence. An

additional processing step is also undertaken by WordNet to perform morphological analysis

and transformations, where any plural word is subsequently transformed into its singular

form. This is only to ensure no duplicate classes are created during the automated analysis

aspect of the approach.

With all the pre-processing undertaken and with the suitable parse tree available, it is then

possible to undertake UML model generation. The key to the approach is a noun-phrase

approach, where nouns are considered as classes and verbs are considered as operations of

those classes.

To enhance the approach a glossary is constructed, which is used to ensure a common

vocabulary for disambiguation purposes such as client and bank client. In addition to this

disambiguation, the glossary is also utilised to remove irrelevant words that would not give

any benefit to the final model. The process of generating the glossary requires manual analysis

of the specification, probably undertaken during reconstruction of the specification into

simple sentence form. The reliance on manual transformation of the specification prior to

automated analysis and intervention still involves considerable effort on the part of the analyst

to ensure that no relevant information is accidently removed during this transformation.

Unfortunately, this cannot be guaranteed without further scrutinising the resultant

transformation process however, the approach is not supported by an evaluation.

Uncontrolled Language:

Mich et al [Mic96, MMZ02, MG02 & KZM+04] propose a case tool that generates Object

Oriented Models (OOM) from natural language requirements specification documents. Their

approach is built on the premise that it should use an uncontrolled natural language (i.e. not

a sub-set of natural language), that the analyst should not have to intervene for clarification

during the analysis and that their engagement should only be for creative purposes.

The basis of the approach is built upon LOLITA (Large-scale Object-based Linguistic

Interactor Translator Analyser [LG94]), which supports their automated OOM analysis and

61

model generation approach. LOLITA pre-processes the requirements specification to correct,

simplify and normalises them by transforming passive sentence into active sentences,

correcting spelling mistakes and ambiguity resolution via an in built inference engine.

The information is then subsequently transformed and stored in a conceptual graph known

as LOLITA’s SemNet (semantic network). This SemNet is then analysed to produce an Object

Oriented Model identifying classes, attributes, operations and relationships. This approach is

one of the few that is fully automated, only requiring minimal developer intervention.

LOLITA pre-processes texts to discover their morphology, syntax, semantics and pragmatics,

which are defined as nodes in the semantic network (SemNet). Each node contained within is

defined as either an event or entity node; simple relationships are identified as connections

between nodes and complex relationships are implemented using event nodes.

Every node also has a set of control variables, but only some of these are utilised within OOM

and are defined as rank, type and family.

• Rank gives quantification information identifying whether a node is universal,

individual or a named individual.

• Family is used to classify nodes into semantic groupings to which they belong such

as living, human, human organisation, inanimate and manmade.

• Type are where concepts are sorted into specific groupings such as entity, relation or

event, thus making additional information available to the node itself, which may

assist the development of the OOM.

Event nodes have frame-like structure that can represent the various components of the event

itself such as the subject, the action, its transitivity, and the object; all identified from the

natural language texts. This information is extracted from a deep structural analysis of the

texts.

The essential classifications identified by LOLITA for this approach are event nodes, which are

categorised in four groups: static, cyclic, dynamic and instantaneous

• Static refers to unchangeable situations;

• Cyclic represents recurrent temporal events;

62

• Dynamic correspond to events that span over a specific period of time;

• Instantaneous define events that span the shortest period of time

Overall, LOLITA undertakes all language analyses and construction of the SemNet, which

contains nodes and arcs that carry additional information. The actual OOM analysis algorithm

utilises the resulting semantic network from LOLITA, which aims to discover the classes, their

relationships, operations and attributes based on the OMT methodology [RPB91].

There are two distinct phases (context dependent and independent) during the analysis process.

The role of the context independent phase is to flag nodes that represent class candidates

where some are deleted altogether, whilst others are marked for user investigation as their

inclusion in the model is unknown.

The goal of the context independent analysis is to extract a class candidate list to pass onto

context dependent analysis, but first though it must remove or mark nodes if they are within

one of the four categories: general, superficial, system dependent or meta-knowledge:

• General knowledge rules use semantic information. Where nodes that represent spatial

or temporal knowledge and highest level semantic hierarchies such as groups,

something and things are eliminated

• Superficial knowledge represents anaphoric references, where the references have been

resolved. However, the information is no longer required by the process and is

subsequently removed

• System dependent refers to nodes that are considered as duplicates (i.e. nodes with the

same name), which are also removed

• Meta-Knowledge can give information to guide the requirements modelling and

through consideration of the node’s ‘status control’ variable (identified by LOLITA) a

decision can be made to either delete this node or consider it as a class candidate

After analysis through these filters they leave behind a candidate class list, which is then

passed to the context dependent processor, where the decisions to create attributes or

relationships are based on event node classifications {static, cyclic} and where operations are

extracted from node classifications {dynamic, instantaneous}.

63

At the root of the approach is a threshold analysis technique which can be influenced by the

user and is used to aid inclusion of candidate classes. The analysis examines the number of

events a node has and if they are below the user defined level they are not included within

the final model. Finding the correct balance between the thresholds and the model produced

is the challenging aspect, which requires additional understanding of the requirements on the

side of the user as a high threshold could lead to the introduction of irrelevant information

and conversely a low threshold could miss important aspects of the design.

Finally, this approach is one of the few that also carry an evaluation of its effectiveness. The

main hypothesis of the evaluation was to establish whether class model generation supported

by the approach would be of a higher quality than those not using the tool. The evaluation

involved a small group of students from university that were split into individual groups who

had varying degrees of experience; half of the group were exposed to the tool, where the other

half utilised traditional manual development methodologies.

The resultant output from the experiment, UML Models, was judged by experts who are

undefined as to their status. Overall, they judged the performance based on design aspects

such as classes, relationships, operations detected and on average the automated tool

produced higher quality models. However, with such a small set the results are relatively

inconclusive, although those who did utilise the tool preferred using it.

Perez-Gonzalez et al [Per02, PKS+05] discuss a technique towards automated analysis of

requirements specifications in the pursuit of generating an object model and sequence

diagrams. Their methodology is based on the proposed usage of rule posets; these are partially

ordered set of roles utilised to simulate the human analysis process whilst modelling a

problem.

The specification is transformed (automatically) into a subset of natural language called 4WL.

4WL has been designed for the approach to identify the subject (who is performing an action),

its verb (defining actions and relational aspects), an optional object (the receiver of the action)

and an optional prepositional phrase, which is to identify any possible relational information

towards some other word contained within the sentence.

The 4WL transformation could be viewed as being taking a sentence of a type, which contains

subject-verb-object-object and transforming this into subject1-verb-object1 and subject1-verb-

object2. Subsequently, this is defined as an SVO triplet, but how this transformation is achieved

64

is not discussed within any of their papers. Even though the 4WL language is only useful at

transforming declarative sentences; sentences that have a clear statement of intent or purpose,

which have clear subject, verb and object(s), it does not account for other sentence types such as

interrogative, exclamative or imperative. In addition when the approach is presented with a non-

declarative sentence type, it is not clear whether the approach will attempt any

transformations or not.

The key purpose of 4WL is to answer questions related to an object in the model:

• What does the subject do?

• Who receives the action?

• Which others participate?

• When does it happen?

With these questions answered, it is possible to then generate both class and sequence

diagrams of the proposed software system.

Once transformation is completed, automated language analysis can take place on the 4WL

statements. This process aims to identify and extract every noun and verb contained within

the sentence and then for each of these language components to have a role assigned.

Their role machine, a partially ordered set, is used to identify each part of speech and assign

roles (such as doer (subject) and patient (object)), which then make it possible to generate both

static and dynamic views of the system.

The role machine approach is based on the linguistic concept of theta-roles, and partially

ordered sets. A theta/thematic relation aims to describe the role the noun plays in terms of the

verb and identifies aspects such as the doer of the action and the patient i.e. Susan ate the apple

where Susan is the doer and the apple is the patient.

The partially ordered sets collate this information and identify the role of the noun and its

position within the each sentence. This therefore allows a decision to be made with respect to

classes and attributes, where relationships and operations are derived directly from the verb.

Even with the language simplification and set classifications, for a noun to be considered as a

class, its probability also has to be discovered by investigating its position within the sentence

65

and its frequency of appearance across all sentences. Only through user validation can a final

decision be made to create either a class or an attribute based on the accumulation of these

features.

The focus of the approach is the automated transformation of declarative sentence into their

4WL language, which then leads to automated analysis utilising their role machine to identify

the importance of specific terms contained within the specification and identify class

candidates, relationships and operations. However, what happens when the system is presented

with other sentence types such as interrogative, exclamative or imperative? It is unclear from

their work whether the sentence is manually rewritten into declarative sentence form.

The final decision to include candidates and their features (relationships, operations), which

leads to the creation of a system model that is human dependant and highlights a potential

weakness/bottleneck in the approach towards Rapid Application Development. An incorrect

decision at this key stage in the process could lead to important model components being

excluded resulting in an incomplete model being created.

Harmain et al [Har00, HG02] propose an approach to automated software development

through linguistic analysis supported by an external tool LaSIE (Large Scale Information

Extraction). Their key goal is to process uncontrolled natural language texts and generate a

model of the proposed software system via assistance of LaSIE. Along with the many other

approaches discussed, this approach is one which attempts to minimise developer

involvement by not utilising a sub-set of natural language nor does it require human

involvement in the construction of domain independent or domain specific models.

The core of their system is LaSIE, which performs all lexical pre-processing such as sentence

identification, part of speech analysis and morphological analysis prior to their application of

their object oriented analysis rules.

Semantic analysis is also undertaken as a part of LaSIE, after syntactic analysis. The semantic

analysis develops a simple predicate argument structure based around the main verb of the

sentence. A parser is used during this process, which means it may only produces a partial

parse tree and not necessarily a complete parse tree structure, but what it does create there is

high confidence that the resultant output is correct. This is primarily because the parser may

not find a full parse for all the sentence features, it will therefore return the best and most

complete parse tree that it has. The key features that semantic analysis aims to discover are

66

the subject and objects of the sentence, plurality, voice, and time which are used in

construction of a discourse model (also derived from LaSIE).

The discourse model represents a world model extract generated from each individual sentence

structure utilising the prior analysis features. This model represents a declarative knowledge

base, which contains the key background information. It identifies objects (nouns), events

(verbs) and attributes (nouns). The model itself can be either specific or general, thus giving

rise to a trade-off between weak support (general) or strong support (specific) for textual

understanding. Overall, the approach adopts the generalised model, which allows it to be

more adaptable across differing domains.

In addition, it is also possible with this model to undertake co-reference resolution and

presupposition expansion, where passive sentences may be expanded to include anonymous

objects to aid understanding.

With all this prior analysis and world knowledge, it is now possible to undertake object-

oriented analysis. Candidate class lists and relations are derived from the discourse model

based upon a set of set of rules defined for the approach. In the first instance, all nouns are

considered as candidate classes, non-copular verbs (verbs expressing actions) are considered

as candidate relationships and attributes are discovered through simple heuristic matching

based on possessive verbs (i.e. verb forms of have) and their following nouns.

The key decision to create an actual class is based upon a simple frequency of occurrence and

a user definable threshold. Therefore, any candidate class that is below this threshold and does

not participate in any relationships is subsequently discarded. This in its own right could lead

to situations where potential candidates are lost from the process because they are only stated

once within the specification.

Relationship identification (simple associations) is the case of discovering the verb and its

logical subjects and objects and then connecting both together. On the other hand, aggregation

relations are discovered through sentence patterns defined by as something is made up of

something, something is a part of something and something contains something.

Finally, the approach is also able to identify the multiplicity of the candidate classes, where

the determiners are utilised. Their approach identifies the multiplicities of ‘one’ based on the

67

presence of articles (a, an, the); ‘many’ on the presence of ‘all, each, every, many and some’ and

specific numbers on the presence of an actual number present before the noun itself.

Overall, the approach provides a robust means of automated model generation with minimal

developer input which comes in the guise of threshold manipulation. Thresholds are a

strategic aspect of the approach, which are used to decide whether to create a candidate class

or not. A high value set by the user could miss key aspects of the design, where a setting to

low could result in the introduction of additional and irrelevant information. Given that all

the prior analysis that is undertaken by the external tools and rule set; to have the final

decision as to whether an element should be created based solely on a user definable value is

risky.

The approach contains a robust evaluation, which stems from techniques utilised within the

information extraction arena. Their evaluation investigates recall, precision and a new measure,

over-specification, defined by the authors.

• Recall identifies the correct and relevant information identified by the approach;

• Precision measures its accuracy of the approach;

• Over-Specification measures additional information extracted through the process;

The corpus of software requirements specifications used in the evaluation were identified and

taken from Object-Oriented Analysis and Information System textbooks. Even though this

corpus contained 37 software specifications ranging from 100-1500 words in length, only 8

had accompanying models. From this, five were kept aside for a blind evaluation for the final

build of the system.

The results from the evaluation demonstrate that this approach achieves high-levels of both

precision (66%) and recall (73%) by comparison with a human designed model. In addition, it

also generated a high level of over-specification (62%) deemed important by the approach.

The additional information generated by over-specification and the potential loss of information

(through misplaced thresholds levels) will require additional analysis to ensure nothing

important has been overlooked. Even so, the approach gives a means to enhance the analysis

and model generation process through an unrestricted textual analysis tool and minimal

developer involvement.

68

Zhou and Zhou [ZZ03] applied natural language processing techniques to understand written

requirements using an entirely uncontrolled natural language input taken from functional

specifications. This process is aided by a manually developed knowledge base that aims to

improve the performance of class identification.

The approach aims to identify classes, relationships, attributes and multiplicities from the

written natural language texts. The key heuristic of this approach is that core classes of the

domain are always semantically connected with other classes and their attributes. This define the

foundation of the domain ontology, which aids further detection of classes, but requires a

manual identification of these core classes.

Core classes are ones that the authors themselves have a high confidence in actually being a

class (how this is established can only be considered to be through personal experience) and

will therefore be included within the knowledge base, but this is also an activity which needs

to be undertaken by an analyst. As a result, understanding of the domain would be a

requirement. In addition, the knowledge base also goes to the extremes of defining a

description of the candidate, vertical relations identifying possible instances, part-of

relationships (generalisations) or horizontal relations identifying relatedness or similarity

with other concepts contained within the domain and attributes. Essentially, the knowledge

base is defining a textual version of the model, which can be accessed by the automated

process.

The approach argues that candidate classes are mostly concerned with major noun phrases

and minor verbs. The approach defines that nouns are not equal to noun phrases, and only

considers nouns with pre-modifiers (such as a preceding noun or adjective) as candidates of

interest. This aims to simplify the construction of the knowledge base for automated analysis.

However, adjectives before a noun can be indicative of an attribute. In a similar vein, not

considering solitary nouns can also lead to the loss of potential candidates as when the noun

phrase identified the whole is considered during class detection and not any of its constituent

parts.

Initial candidates are detected by means of part of speech (POS) analysis and sentence parsing.

These candidates are then transformed into refined candidates that have been identified as

being contained within in the knowledge base and indicate key features of the specification.

POS analysis is aided by an external part of speech analysis tool, i.e. Brill Tagger [Bri94], where

69

the Brill Tagger tags each individual word with its likely POS such as Nouns, Verbs, and

others. There is an additional step utilising WordNet to refine the candidate’s name such as

removing pluralisation. Therefore, if the candidate is contained within both the knowledge

base and WordNet, it is then known as a refined candidate. Although, when the candidate is

contained within WordNet, but not within the user’s knowledge base, it is unclear whether

this would be considered as a refined candidate or not.

With the refined candidate list, it is then possible to perform relationship detection, which

utilises a link parser, where the Link Grammar Parser generates linkage information in a

similar vein to the approach by Nanduri and Rugaber, [NR95], this is also used to detect the

individual parts of speech for candidate class detection. The key to relationship detection is

linkage distance; that is, given the candidate class, how many links are there between this and

other potential candidates contained within the sentence. Therefore, a relationship is only

considered to exist when the linkage distance is less than or equal to three. This approach is

only investigating the subject of the sentence and associated objects, which connect through

the main verb of the sentence. The approach does not consider whether it is appropriate for

the relation relationship to exist or not.

The next step in their processing is consideration of attributes, which utilises a 7-tuple

linguistic pattern to determine whether the concept (class) is a property concept (attribute),

though it is unknown if this process is manual or automated. Nevertheless, the basic premise

exists that if there is only one property associated with the class then it is an attribute,

otherwise it should be a class. For example, the authors state if we are only interested in

obtaining the price, then this is just an attribute. However, if we are interested in maintaining

information about price, discount, and effective date, then price is a class.

Finally, parallel structures, which naturally exist in the language, aid identification of

additional attributes, missed relationships and classes. The parallel structures considered are

individual words such as and or and phrases such as both...and..., as well as, either or... Therefore,

if one of the elements contained within the parallel constructs has a relationship with an

already identified concept or property contained within the sentence, the other element within

the parallel construct is also considered to have has the same relationship or is considered as

an attribute but this is dependent on the concept/property under consideration.

70

The approach is entirely dependent on manual analysis to extract and identify candidates to

reside within the knowledge base. The subsequent class detection and refinement process in

conjunction with WordNet relies on the knowledge base and only considers Noun-Noun or

Adjective-Noun structures during the refinement process. As a result, there is the possibility

to overlook individual nouns that may identify a candidate. In addition, adjective pre-

modifiers attached to the noun are more than likely to indicate an attribute of a potential class

rather than representing a class itself.

However, a key strength of the approach is linkage distance utilised to discover relationships,

rather than identifying a relationship because a verb is present. Furthermore, the usage of

parallel structures to resolve or identify some the unknown/unresolved features contained

within the language is an interesting approach, but one which could lead to dubious results if

the original feature has not been correctly identified.

Finally, the approach itself does not conclude with the creation of UML models, but rather

descriptions of the features and their likely types such as classes, relationships, attributes and

there is no evaluation of the approach.

Ilirva & Ormandjieva [IO05, IO06, OI06] discuss a methodology utilising unrestricted natural

language in a three-phase approach towards a partially automated analysis. The three phases

consist of a linguistic component, semantic network and OO model generation.

The linguistic component processes each individual sentence by means of an external tool,

MBT-Tagger [DZB+06] and identifies their applicable parts of speech such as, nouns and

verbs. The information extracted from the first phase of linguistic analysis is utilised to

determine the three function roles such as subject, object or verb contained within the

sentence. The SVO triplets are also split into individual groups such as the subject predicate

and object groups through a manual process and represented in a tabular form. The purpose

of the tabular representation is to form a knowledge base, which details each individual

triplet, its language component (noun/verb) and overall sentence type (main, conditional or

conjunctive) defined as follows:

• The main sentence is likely to contain candidate classes and relationships

• The conjunctive (and/or) sentence type identifies the potential relationship between

other words.

71

• The conditional sentence may introduce pre/post conditions for candidate features

that should also be considered.

The tabular representation aids in determining the connections between the words and the

construction of a semantic model, helping to discover actual relationships between each

component. This model is also depicted in a graphical notation.

The key aim for the semantic network is to represent the features contained with specification

and tabular representations, where nodes are nouns (subjects/objects) representing classes and

relationships are represented by verbs or as arcs between the nodes. Additionally,

prepositional words and words with possessive endings are also transformed into

relationships with their respective counterpart.

The semantic network can then automatically be transformed into both Use Case and OO

representation, where nodes represent classes/actors, arcs connecting nodes represent

relationships and where verbs in active form also identify the operations of nodes.

The key strength of this approach is utilisation of unrestricted natural language (NL) and the

transformations from NL to tabular representation to a semantic model and subsequent

automated software models. However, their methodology requires involvement in the initial

transformation process to extract the SVO groups and transformation into their tabular

knowledge base. In addition, the requirement of human involvement, understanding and

effort to make the correct decisions during the transformation process between tabular and

semantic models is of utmost importance. These decisions require careful consideration as it

is the semantic network that is transformed into both software model types. An error

introduced early during transformation phase will ultimately propagate into the final models

themselves.

The approach does conclude with an evaluation; however, there is no worthwhile information

that can be extracted. They state that it has been evaluated against other similar systems that

translate natural language in a formal model, resulting in no difference between the results.

There is no indication of any imprecision or incompleteness from the analysis, but there is no

result data presented. There is no formal evaluation method presented and as a result, the

findings are considered unreliable.

72

Sampaio et al [SRC+07] introduce an approach towards automation within the domain of

aspect-oriented requirements engineering. Their tool, EA-Miner, is used to support the costly

manual analysis phase of requirements engineering through the creation of viewpoints which

could be transformed into UML Models but is a feature that is not considered nor discussed

by the authors. Furthermore, the authors also state that the goal is not to replace the

requirements engineer but to help them save time and focus upon the key information.

The approach is broken down into 4 key phases: eliciting requirements from customers,

identification of model concepts, structuring of the specification and validation/resolution of

requirements and conflicts. Phase 2 of the approach uses a combination of NLP and rule based

techniques to identify model abstractions such as viewpoints from nouns and use cases from

verbs which are automatically mined from the requirement documents. Every concept

identified by the approach is considered to be candidate. Phase 3 gives the ability to refine the

candidates identified during the previous phase where it is possible add, remove group

abstractions into identified viewpoints or use cases although it is unclear whether this is an

entirely manual process. Nevertheless, the authors do state that the approach is not aimed at

100% automation implying that that phase 3 may be partially automated. In addition, the

approach gives the ability to filter the results based upon thresholds, stemming and synonym

lists all of which aid the engineer during the refinement phase and also offers practical

guidelines and best practice as well.

NLP processing is supported by an external tool which uses a corpus based approach to

language analysis which identifies all relevant parts of speech from nouns, adjectives through

to verbs, but only nouns and verbs are considered during the creation of viewpoints/Use cases.

In addition to NLP processing, the external tool has the ability to semantically tag words and

sort them into related groups. This is achieved through analysing the context for the phrase in

which the word is used and is the core feature utilised when generating viewpoints/use cases.

Overall the approach does not create a UML model of the system but presents the viewpoints

and all related requirements to the user from which a model of the system could be manually

created. The approaches focus to considered only nouns could lead to a loss of information

that is important to other aspects of the design such as attributes, relationships and operations.

However, a novel approach is the identification of non-functional requirements from keyword

lists which is an important feature of any software system and is not considered by any of the

related works. The works concludes with an evaluation of both a time based analysis and a

73

measure of the precision and recall vs a human expert. Users that use EA-Miner to create

views were on average 130 times faster in comparison to the manual analysis resulting in a

vast time saving. When considering the accuracy of the approach and when user knowledge

of the system is not taken into consideration the approach is comparative to the human in

terms of recall but performs poorly in terms of precision. However, when the user expertise is

utilised the results both recall and precision outperform the human analysis greatly.

Nonetheless the overriding disadvantage of this technique is the lack of final model creation

and the user involvement and understanding required to achieve the best results.

2.4 Conclusions

There are many approaches which differ in complexity and novelty, but all have a common

goal to develop ways to simplify and reduce effort, and enhance the software development

process through semi/fully-automated analysis techniques.

All of these works follow well-defined steps as they are all attempting to simulate the human

analysis process, defined as follows:

1. Textual Specification Acquisition

2. Natural Language Analysis

3. Knowledge Extraction

4. Model Generation

The review of the literature explores how these steps have been semi/fully automated and

presents the key strengths and weaknesses of those approaches. It would appear that they all

perform exactly the same process, utilising some means of language analysis, where all the

relevant parts of speech are identified such as nouns, verbs and adjectives, which are then

subsequently mapped to classes, operations, relationships and attributes via some technique.

However, there are differences that set the approaches apart; the most notable can be defined

as follows:

1. Requirements Specification Manipulation (prior to semi/fully automated analysis)

o Controlled Natural Languages (CNL)

74

� Manual/Automated transformations

o Language Simplifications

� Manual

o Specification Languages

� Manual

2. Model Feature Detection Techniques (during analysis)

o Domain models

� Manually/Automatically defined

o Threshold based analysis

� Automatically defined, manually set

o Rule based analysis

o Semantic consideration

For the majority of the approaches human involvement is still a key requirement throughout

the process, which is demanding and in some cases profound. Manipulation of the

requirements specification can lead to a situation where a full rewrite is necessary or a

transformation into some controlled/specification language prior to any automated analyses

is required.

The transformation process is an error-prone task that could result in the loss/exclusion of

information because there is no procedure to validate the transformed document. The

potential loss of information is of no fault of the human, but due to the need to transform the

requirements in order to simplify the automated analysis procedure. When considering the

manual transformation process, it is also possible for a situation to arise where unconscious

bias, a common characteristic, is applied unknowingly and for information to be disregarded;

information that may be vital and that should be maintained within the specification. In

addition, automated transformations can also lend itself to this bias, not unconsciously, but by

design. They too can disregard information, such as compound-nouns, adjectives and

prepositions all of which create greater understanding of attributes and relationships towards

candidate class and their creation.

75

The sole purpose of specification manipulation is to reduce the original requirements into a

form that is tailored to the specific automated analysis technique for

class/relationship/operation/attribute detection process. Specification transformation is not a

requirement of all approaches and only a minority use the full-unadulterated specification

[Mic96, MMZ02, MG02, KZM+04, Har00, HG02, ZZ03]

Where domain models are used as a feature detection techniques, the domain models created

come in two flavours: manual or automatic. In a manual context, the models can simply be

utilised to avoid duplication of class creation or other model features, but more commonly,

they are used to the extent of defining a textual representation of the resultant model [Bry00,

LB02, LB02a, LB02b, LB02c, LB03, BLC+03, ZZ03, CHK07, IO05, IO06, OI06]. This textual

representation can detail anything from candidate classes, relationships, operations, class

hierarchical structures and attributes. All of which require an understanding of the actual

requirements and do not consider the actual manual effort required to define these models.

Automatically constructed domain models [Mic96, MMZ02, MG02, KZM+04, Har00, HG02],

built from the utilisation of external tools such as LaSIE and LOLITA, aim to address the issues

associated to manual interventions. The domain models generated construct semantic

networks that can be used to reduce ambiguities and identify key features of the model

alongside other refinement techniques. The key benefit of these techniques is the absence of

human intervention and therefore does not distract the user from the task at hand. However,

in one case [Har00, HG02], the model generated is not taken advantage of during the final

decision making process, which is left to a user defined threshold analysis.

Finally, semantic analysis is a key consideration throughout the approaches as well however,

the interpretation identified in related works leads to little consideration of actual semantics

in the sense of the study of meanings. Semantic considerations that are utilised in some cases

are typically part of external tools such as LaSIE and LOLITA. In addition, the resulting

semantic analysis is typically not utilised in the final analysis step, where it would be most

crucial to consider during candidate feature detection.

In the majority cases, semantic analysis takes the form of utilising WordNet either in an

automatic or manual effort. In both automatic and manual efforts, WordNet is only utilised to

identify duplicate words or words that have similar meanings therefore, allowing the removal

of words which could result in the creation of erroneous candidate classes. However,

76

WordNet itself contains much more valuable information and if harnessed through a novel

technique it could be used to better the automated model detection process.

Despite these issues all of the approaches, in some way or another, take steps towards an

automated analysis approach with the key goal of improving the models generated through

some means of automated language analysis.

However, consideration of the term automation either fully or semi, is meant to reduce the

effort required by manual analysis, enhance quality and allow for rapid application

development, but in majority of cases this is not apparent. It is not apparent due a shortage in

quality evaluations.

The majority of evaluations undertaken only investigate the qualitative aspects of the resultant

models. This is important feature to evaluate, because producing results of a low quality

serves no purpose and will hinder the overall process. However, it is only a minority of

approaches [Mic96, MMZ02, MG02, KZM+04, Har00, HG02], which actually undertake any

meaningful form of formal evaluations. Other evaluations are limited by not having a well-

defined and or stated methodology, which makes it difficult to validate those results.

Only one of the evaluations actually investigates the actual reduction in effort offered by these

approaches [GB94], but uses a small set of domain experts and a non-domain experts using

the automated analysis tool and compares how much faster automation is. The results from

this are interesting, but are limited to only finding key abstractions contained within the

specification rather than actually creating a model from the specification.

Overall, the review of the literature has identified an important question: “To what extent does

analysis of an un-restricted natural language specification contribute to a ‘better’ first-cut design

through means of a deep syntactic and semantic analysis?”

77

Chapter 3

Techniques towards Automation
__

78

3.1 Introduction

Chapter 2 introduced the related techniques for automated software requirements

specification (SRS) analysis and model generation. This identified that these fall within two

categories: Semi or Fully Automated implementations.

The main issues identified from these approaches are as follows:

• Excessive Manual Effort

• Manual rewriting of the software requirements specification (SRS) document prior to

automated analysis such as:

o Simple Sentence Constructs (Subject Verb Object (SVO) triplets)

o Controlled Natural Language

o Specific Specification Languages

• User defined candidate extraction rules as a pre-requisite

• Manual Domain Model Generation

o Excessive Detailing; relationships, classes and attributes

• Negligible Word Semantic Consideration

• Limitations of Threshold Based Analysis

The aim of this chapter is to address these key issues through both semantic and syntactic

analysis of a free-form natural language requirements specification. The automated method

presented here will analyse the syntactic structure of every sentence; determining its clausal

structure, identifying each part of the sentence (subjects, predicates and objects) and

considering every individual part of speech.

Along with a syntactic analysis, the approach also considers the semantics of each term (i.e.

an individual word contained within a sentence), utilising a generalisable rule based and

algorithmic approach in its decision-making process. As a result, it is possible with this

technique to uncover:

79

• Classes

• Relationships

• Attributes

• Operations

• Parameters

• Multiplicities

The solution is not meant to replace the analyst/developer; it aims to allow them to concentrate

on the important aspects of the overall software design such as flexibility, evolvability,

maintainability and its implementation.

It is therefore the goal of this approach to use the techniques discussed to:

• Use unrestricted natural language requirements specifications

• Emancipate the analyst/developer from the manual analysis and model generation

process

• Aid conceptualisation of the specification, as a first step towards model generation

• Reduce excessive analysis & time effort

• Introduce maintainability features through inheritance hierarchy construction

A prototype implementation of the proposed approach has been developed which currently

identifies all these model features (classes, relationships, attributes, operations, parameters &

multiplicities) from an unrestricted natural language specification. In addition, the prototype

also includes additional features to assist understanding of the resulting analysis and

inclusion of best design practice, which can be defined as follows:

• Traceability Links

o Allowing discovery and tracking of model features from the resultant model

design back directly into the language contained within the specification, thus

enabling an understanding of from where and why the specific feature was

generated.

80

• Integration of widely accepted best design practices such as ‘programming to an

interface rather than an implementation’, introducing design flexibility

The remainder of this chapter starts with a view of the approach from a high-level and then

proceeds to discuss the approach techniques that make it possible to automatically analyse a

natural language requirements specification and create first-cut design. The chapter then

concludes with a review of the key issues that can impede the automated creation of a UML

model.

3.2 Approach Overview

The techniques discussed in the subsequent sections 3.2.1 and 3.2.2 are intertwined with one

another, where the Common Semantic Model (CSM) is reliant on the Syntactic Analysis Model

(SAM) and vice versa.

Figure 3.2-1 Automated Software Architect Automation Process

Figure 3.2-1 demonstrates a high-level view of the Automated Software Architect (ASA),

which uses a Software Requirements Specification (SRS) prior to it being transformed into a

formal SRS document, which is written in natural language. This is then processed by a

Natural Language Processing (NLP) toolkit OpenNLP and the subsequent information

obtained from this analysis is utilised by both the Common Semantic Model (CSM) and

Syntactic Analysis Model (SAM) models allowing the identification of the relevant UML

model features. The CSM is used instead of a user-defined knowledge base allowing

identification of candidate UML features, where the SAM is used to extract candidates from

the specification and is used in conjunction with the CSM Model where the CSM is reliant on

the SAM and vice versa.

81

The goal of specification modelling is to simulate the human process through collation of the

information contained within the specification on a sentence-by-sentence basis. It is similar to

the human process of software modelling by means of considering both the semantic and

syntactic features to identify model candidates. This is achieved through an intertwining of

both semantic and syntactic analyses, where word semantic classifications and the syntactic

understanding of sentence constructs/structure are utilised to extract the correct and relevant

candidate features from the written specification.

Once the information has been extracted from the specification, it is presented for analysis and

the relevant features decided upon by both the CSM and SAM models are then maintained in

local memory for later usage until sentence processing is complete. The resulting analysis is

stored within the Class, Attribute, Relationship, Parameter, Operation (CARPO) graph, which

is subsequently processed to generate the class/UML model of the proposed software system.

The CARPO graph is simple storage structure used to track all candidate features and

maintain the integrity of the approach primarily by avoiding the creation of duplicate

information. At the heart of the CARPO graph lies nodes that can represent candidate classes

or attributes. The linkages between each node can represent relationships, operations, and

identify parameters of operations; relationship links also carry additional information such as

multiplicity or the type of relationship (i.e. generalisations and associations). In addition, all

nodes and linkages carry traceability links back into the specification document. This satisfies

the requirement to identify where features of the model have been discovered and leads to a

better understanding of the automated decision making process.

The resulting UML modelling is constructed by traversing the CARPO graph through

inspection of its nodes and linkages and by utilising the UML2 plug-in for Eclipse; it is

therefore possible to transform the graph into its graphical representation.

3.2.1 The Common Semantic Model

The goal of the semantic model is to extract as much information from the text contained

within the specification, without the need for any user defined back-end domain knowledge.

The CSM technique manifests itself in terms of Common Sense Understanding (CSU), which

raises two interesting questions:

82

• What is Common sense?

• How can common sense be utilised to identify the relevant features of a class/UML model from

natural language?

Simply put, common sense is the consideration of what the general population would

commonly agree upon based upon their common understanding, similar experiences and

knowledge developed over a lifetime of everyday interaction with the world.

It therefore considers whether the features contained within the specification should be

included within the initial class/UML model. A feature can be a class, relationship, attribute or

operation and its decision for inclusion is based upon the common sense semantics of a given

word/phrase, identified through the syntactic analysis of the natural language texts.

The common sense model constructed for the ASA refers to information retrieved from the

external semantic/lexical dictionary, WordNet [Mil95]. Under the direction of George A

Miller, WordNet is a large lexical database of the English language, which is a dictionary of

nouns, verbs, adjectives and adverbs. These are grouped together as sets of cognitive synonyms,

each expressing a distinct concept. The resultant network of words and concepts are a direct

result of a manual human consideration (i.e. WordNet has been built manually rather than

automatically), where constructed synonym sets are interlinked through conceptual-semantic

and lexical relations. Even though WordNet provides a plethora of useful information, only

the semantics are utilised during the actual processing of a given phrase or term and is where

the common sense semantics are obtained.

Within WordNet, a given word may have a list of different semantics for differing contexts,

but these are ordered by their most commonly agreed upon meaning i.e. common sense

understanding. Where the first sense of the word contained within the dictionary is considered

the most commonly understood meaning. Therefore, when WordNet is queried for the

semantics of a particular word, it returns a list of all the senses associated to that term in order

of most to least commonly understood [Fel98].

For Example: a search for ‘Shelf’ yields two semantics see Table 3.2-1.

83

Table 3.2-1 Example Noun Sense Classification

Sense Semantic Term Description(sense)

1 noun.artifact Shelf A support that consists of a horizontal surface for holding objects

2 noun.object ledge#1,

shelf#2

A projecting ridge on a mountain or submerged under water

It is the only highest frequency (i.e. the most commonly understood or common sense definition of

the term) semantic, sense#1, which is used to make a decision regarding the creation of a model

feature. In contrast, a search for ledge (sense#2, ledge#1), which has a similar meaning to shelf

but contextually different, would yield a result containing only one sense - that being

noun.object. See Appendix A.1 for a list of all semantic definitions for both verbs and nouns.

Under no circumstances is any form of disambiguation or surrounding context taken into

consideration during the lookup process. This may seem counterintuitive not to consider

surrounding context and to disambiguate, but is a key issue which is addressed within section

3.5.4 in the context of the Software Requirements Specification Issues in the Context of Automated

Software Development.

3.2.2 The Syntactic Analysis Model

In addition to WordNet, the external tool OpenNLP [Mor07] is the means behind the syntactic

analysis of the natural language software requirements specification. It automatically parses

natural language texts and returns a syntactic parse tree of the sentences contained within the

software specification, which is later utilised in the automated detection process.

The OpenNLP tool is based upon Ratnaparkhi's Ph.D. dissertation [Rat98] that demonstrates

how to apply maximum entropy models to various natural language problems in pursuit of

the relevant syntactic structure. The toolkit itself has many features such as sentence

identification, tokenisation, chunking, name finding, co-reference resolution and full part of

speech (POS) tagging. However, the key features utilised by the ASA are sentence

identification, full POS parsing and co-reference resolution. OpenNLP itself has an accuracy

rate of 96% for unseen data [Rat98].

Through support from OpenNLP, the sentence structure/parse tree is obtained. For example,

given the sentence, The Company operates both individual taxis and shuttles, OpenNLP returns its

analysis of the sentence in the form of a parse tree - see Figure 3.2-2.

84

It is then possible to traverse this tree and identify individual parts of speech (POS) such as

nouns (NN), verbs (VB), prepositions (PP) and more (see Appendix A.2) from each individual

sentence. This information is then subsequently utilised to identify candidate classes, attributes,

operations, relationships and multiplicities in conjunction with the semantic analysis.

Figure 3.2-2 Part of Speech Parse Tree using OpenNLP

Along with the individual parts of speech identified each of the words within the sentence are

also reduced to their base stem. This is a feature that is not supported by the OpenNLP Library

and the Porter stemming algorithm [PRR80] is used to identify word base stems. The key

reason to reduce each word to their base stem ensures that no duplicate model feature will be

created for the same word that may be used with varying inflections. For example in Figure

3.2-2 the words ‘taxis’ and ‘shuttles’ will be reduced to the following base stems, ‘taxi’ and

‘shuttle’ thus ensuring any reference to either ‘shuttle’ or ‘ taxi’ will not result in duplication

In addition to the individual POS components and base stems, it is also possible to extract

structural information obtained from the parse tree, which aids in the discovery of additional

UML features. Features such as classes, relationships, operations (including parameters and

placement), multiplicities, class hierarchical structures and attributes are only discoverable

through the syntactic relationships

The key to the syntactic analysis is a model that identifies the grammatical constructs that we

use every day to understand and infer what is contained within written texts. This analysis

subsequently allows for the identification and creation of an initial/conceptual UML model of

85

the proposed software system, extracted just from the natural language software requirements

specification (SRS).

The following sections build upon and discuss the intertwining of both semantic and syntactic

models that extract, analyse, decide and deliver an initial UML model from a textual

requirements specification.

3.2.3 Rule Derivation

The identification of the rules that guides the ASA through its decision making process can

been considered to have its roots both within the noun phrase approach [Abo85] and common

class patterns [Bah99, RBP91]. A set of specifications was utilised during the identification of

the rules and are defined in Appendix B.6. These specifications where chosen for their domain

diversity: payroll, aircraft, video store, music store and medical systems – they do not have

any associated UML models, it is also considered that they would contain a representative

range of different syntactic and semantic features.

The syntactic analysis model acts as the basis for finding the key candidates that should be

considered as either a class, attribute, relationship, parameter operation or other UML feature

based solely on their syntactic type: nouns, verbs, and adjectives. Whereas the semantic

analysis model is charged with deciding that if the candidate exists within a specific set of

semantics then the combination of both syntactic and semantics will imply some relevant

UML model feature.

The semantics sets identified from WordNet [Mil95] which leads to UML feature discovery

were considered and identified by the author from their generalised description and domain

as they are defined within WordNet. For example the semantic domain of type artefact –

manmade objects for nouns was thought to be a group of items that would of importance to a

model and should therefore be created as class candidates.

The general strategy taken towards rule identification was to first process the each of the

training specifications utilising just the individual parts of speech such as nouns and verbs

which lead to the extraction of set of all possible candidate classes, relationships and

operations. The sets of candidates were subsequently cross-referenced against their semantic

sets which allowed candidates that where not contained within a defined semantic set to be

omitted allowing the remaining candidates to be considered as either classes, relationships or

86

operations. The initial set of rules were derived from this process. The more complex rules

associated to the identification of multiplicities, operation placement, parameters, class

hierarchies and relationships where identified from the syntactic structure and constructed

from the study of grammatical constructs [Kie09, Kie09a, Kei09b, Kei09c, QGL+]. The rules

identified for these features were then run against the set of test specifications to validate their

generalisability.

Overall, 28 core rules have been derived that best generalise the identification of the core UML

features such as classes, attributes, relationships, parameters operations and multiplicities

from their individual parts of speech, syntactic structure and semantics. The following

sections of this chapter discusses the approach at a greater depth of detail.

3.3 An Interwoven approach featuring Semantic and Syntactic

Analysis for Model Extraction

This section reports on the techniques used in generating a UML model from a natural

language specification. This will review the core components of the sentence such as the noun

and verb phrases and will undertake a top down view of each individual component

contained within those phrases, reviewing their key syntactic and semantic relationships. The

discussion will then conclude with a view of additional modelling features that can be

extracted during the process from sentences and clausal structures.

3.3.1 Clause and Sentence Structures

The main starting point of any automated analysis is the sentence itself. Every sentence has a

structure that can be classified into three distinct types; simple, compound or complex. These can

be further decomposed into clausal structures being of either dependent or independent types.

Both clausal components contain a subject and a predicate, which is a combination of different

phrases (for instance nouns can be subjects or objects) and the predicate is formed by a

combination of verbs, objects, prepositions, adjectives and/or adverbs.

In its most common form the structure of a sentence can be defined as follows: -

1. A sentence is composed of different clause types (Independent or Dependent Clauses)

where:

87

2. A clause is composed primarily of a subject and predicate where:

3. A subject contains a noun phrase and:

4. The predicate contains both a verb phrase and an object(s) where:

5. The object(s) contains a noun phrase and can be of type: direct (affected by verb’s

action) or indirect (receives the direct object).

Figure 3.3-1 demonstrates the overall structure of sentences, clauses and clause components.

88

Figure 3.3-1 Sentence and Clause Structure Components

89

3.3.2 The Noun Phrase

The noun phrase (NP) is a phrase based on a noun, pronoun or other noun-like word

(nominal). It is the most common unit in sentences and examination of the noun phrase

structure itself provides an abundance of useful information that can be extracted and directly

related to the features of a UML model.

The noun phrase such as, The PhD student, consists of a head noun - a unit of speech used to

identify any class of people, places and things (the common noun), or to name a particular one

of these (the proper noun), which can be optionally modified through pre- and post-modifiers.

Figure 3.3-2 defines the structural components of a noun phrase and its UML mapping

describing what is possible to identify, namely:

• Multiplicity (from determiners),

• Class Hierarchical Structures and Attributes (from pre-modifiers),

• Class candidate (from the head),

• Relationships, Parameters, Actions or State (from post-modifiers),

• Attributes (see 3.4 Additional Modelling Considerations) (from the noun head)

All of the above features are achievable automatically from its syntactic structure and in

conjunction with the semantic model.

The remainder of this section will concentrate on the following detection techniques:

1. Class detection and the Noun Phrase Head

2. Multiplicities from Determiners

3. Attributes, State and Class Hierarchical Structures from Pre-Modifiers

4. Relationships and Operation Parameter consideration from Post-Modifiers

90

Figure 3.3-2 Noun Phrase Structure to UML Mapping

3.3.2.1 Class Detection and Noun Phrase Head

Syntactic Considerations

The noun’s role within the sentence is variable; it can perform the function of a subject, be the

object, a complement to either the object or subject based on the verb’s definition, or if it is

contained within a prepositional phrase, the preposition’s complement. The noun is identified

through OpenNLP Part-of-Speech (POS) tags (NN (non-plural), NNS (plural form) and NNP

(proper noun)).

Subject Definition: The subject represents the actor of the sentence, i.e. the one performing

the action associated with the verb. In terms of modelling, this represents a candidate class as

it identifies people, places and things or other additional class model features such operation

placement, relationship start point and multiplicity consideration.

Object Definitions: There are two key definitions of sentence objects; the direct object which

identifies/answers What? in relation to the verb; the indirect object which identifies/answers

the questions To Whom?/ For Whom? and is the recipient of the direct object.

Subject and Object Identification: The subject of the sentence is identified by the rule based on

first introduction. That is, the first noun discovered within the sentence is considered to be the

91

subject, where all other nouns are considered as objects, without differentiating their type

(direct or indirect) - see Figure 3.3-3. This is a technique also used in related approaches as

well [Bry00, LB02, LB02a, LB02b, LB02c, LB03, BLC+03, LDP04, LDP05, LDP05a].

It is significant to note that the first noun identified in the sentence may not be the true subject

of the sentence. This occurs only when a sentence is in its passive form, which is controlled by

the verb of the sentence. The first noun syntactically is the subject of the sentence, but in its

passive form, it receives and does not perform the action of the verb. In this case, the sentence

object is performing the action. The passive construct is revisited later (Section 3.3.3) as it is

related more to the function of the verb and operation placement rather than the noun itself.

The first introduction rule implies that the first noun discovered within the sentence is considered the

most likely candidate to be the Subject of the sentence.

Figure 3.3-3 Example Subject, Object Identification

In the majority of cases, the sentence construct is Subject�Verb, where � means followed by,

but in some it is possible to have Subject-Inversion, defined by the construct Verb�Subject.

However, for each sentence that contains Subject-Inversion, it is specifically tagged by

OpenNLP (see Appendix A.2), which makes it possible to easily identify this structure. In

addition, subject-inversion still lends itself to the prior rule of first introduction, thus allowing

efficient resolution of the sentence’s key subject.

92

Semantic Considerations

With both subject and objects of the sentence identified as class candidates, the final decision

as to whether a class should be created or not is based upon two key features: the presence of

a noun detected through syntactic analysis, and the noun’s set of semantics obtained from

WordNet.

WordNet contains twenty-five noun semantics, which have been classified into groups by the

WordNet authors that best define a noun’s semantic type, given a specific context (see

Appendix A.3). As previously discussed, this is where the Common Semantic Model meets

the Syntactic Analysis Model and the two techniques come together to allow informed

decisions to be made regarding the creation of a class from the candidate noun under

evaluation.

The classification of these semantics in terms of class modelling implications has been defined

by the author through a manual consideration of the individual nouns and the semantic

descriptions defined by WordNet. The class modelling classifications allow automation to be

completely domain independent, requiring no further manual assistance in the area of domain

models or specific domain rules. This is partly due to the Common Semantic Model and the

initial manual classification of the WordNet semantics, the majority of which are tangible and

most likely define an aspect one would wish to model.

Table 3.3-1 defines the semantic, their description (defined by WordNet), and states the feature

they most likely represent within a UML model (defined by the ASA). The class modelling

classification has been achieved by reviewing the nouns contained within the semantic sets

and considering their semantic description.

In addition to the 14 semantics, some of them (animal, person, plant and shape), also identify

hierarchical structures where an abstraction construct is deemed beneficial to include within

the UML model. This means that when a noun also has one of the hierarchical semantics, an

abstraction will is also created. This is helpful to include because when the analyst is presented

with the initial model, it aims to provoke their thoughts regarding the maintainability and

flexibility of the overall design extracted from the requirements specification.

93

Table 3.3-1 Candidate Class Semantics

Noun Semantic Description

Class Modelling

Implication

Class Hierarchy

Animal Nouns denoting animals X X

Artefact Nouns denoting man-made objects X -

Body Nouns denoting body parts X -

Communication Nouns denoting communicative processes and contents X -

Food Nouns denoting foods and drinks X -

Group Nouns denoting groupings of people or objects X -

Location Nouns denoting spatial position X -

Object Nouns denoting natural objects (not man-made) X -

Person Nouns denoting people X X

Phenomenon Nouns denoting natural phenomenon X -

Plant Nouns denoting plants X X

Shape Nouns denoting two and three dimensional shapes X X

Substance Nouns denoting substances X -

Time Nouns denoting time and temporal relations X -

The rationale for utilising WordNet semantics as a means to aid class candidate detection can

be justified in terms of both the Common Class Pattern (CCP) [Bah99] and Noun Phrase

approaches [Mac01]. The key aim is to simulate these manual processes (automatically) in

conjunction with the knowledge from WordNet and with the assistance of syntactic analysis.

The manual noun phrase approach aims to identify the nouns contained within the

specification, where the candidates are sorted into classifications of Relevant, Irrelevant and

Fuzzy. Both the CCP and Noun Phrase approaches provide initial guidance and are heavily

reliant on the developers’ understanding to identify candidate classes. Therefore, utilisation

of the semantic information contained within WordNet in an automated context aims to

simulate this manual knowledge extraction process towards candidate class detection. This is

summarised in the following rule:

Rule 1 – Class Detection

If a noun’s most common semantic belongs to the set of candidate class semantics, then that noun is a

candidate class

3.3.2.2 Non-Candidate Class Semantics and Noun Phrase Head

Not all of the noun semantics imply that a class should be created – only 14 out of 25 are

considered to indicate a candidate class. For the remaining noun semantics, 10 identify

additional aspects of the design (see Table 3.3-2) that one may also wish to model with only

one semantic, feeling not representing any UML modelling feature. The non-candidate class

94

semantics have been manually classified by the author through consideration of what the

semantic description implies in terms of UML Modelling features.

Table 3.3-2 Additional UML Model Features

WordNet Semantic WordNet Description Modelling Implications

Act Nouns denoting acts or actions Operation

Possession Nouns denoting possessions and transfer of possessions Relationship

Quantity Nouns denoting quantities and units of measure Multiplicity

State Nouns denoting stable states of affairs Object State

Process Nouns denoting natural processes Algorithm

Motive Nouns denoting goals Algorithm

Relation Nouns denoting relations between people, things or ideas Relationship

Attribute Nouns denoting attributes of people and objects Class Attribute

Event Nouns denoting natural events Algorithm/Operation

Cognition Nouns denoting cognitive processes and contents Algorithm

The modelling implications identified from these semantics are currently not utilised within

the ASA, with the exception of the Attribute semantic, as they require further investigation on

how best to manage their inclusion within automated model generation. However, during

manual analysis (of the individual words) it became apparent that in some cases the semantics

listed in Table 3.3-2 could still indicate a class candidate within certain constraints. The

constraint considers nouns from the semantic groups listed in Table 3.3-2 , which also have an

artefact semantic within their set of candidate senses. An Artefact is something that is a

manmade item (by WordNet’s definition) such as a Car or a House. Therefore, the ASA

considers that an Artefact, a manmade object, will always be a high value item in terms of UML

modelling because an entity which is manmade and is contained within the specification

indicates a feature which should be considered for inclusion within the UML model.

For this reason, a noun that has a semantic contained within the set of non-class semantics, but

also contains the semantic Artefact within its set of senses (obtained from WordNet), can also

be considered as a class candidate. This is formally defined as follows:

Rule 2 – Class Detection from Non-Class Semantics

If a noun’s most common semantic belongs to the set of non-candidate class semantics, and that noun

also contains an artefact semantic, then noun is a candidate class

The inclusion of any candidate UML feature from either non-class or candidate class semantic

rules will always be scrutinised once the model has been presented to the analyst for review.

95

The usage of this data aids the discovery of candidate classes that may be overlooked but the

automated approach

Table 3.3-3 demonstrates a count of all the nouns that do not have a candidate-class semantics

and also counts those nouns that also contains an Artefact semantic as well. The usage of this

data aids the discovery of candidate class that may be overlooked by the automated approach.

Table 3.3-3 Semantic Word Count per Non-Class Candidates

Non-Class

Semantic

Total Noun Count Non-Class Count

(no artefact semantic)

Candidate Class Count

(contains artefact semantic)

Act 6762 6628 134

Possession 1302 1249 53

Quantity 1745 1674 71

State 5066 4982 84

Process 927 908 19

Motive 63 63 0

Relation 557 540 17

Attribute 3483 3408 75

Event 1167 1111 56

Cognition 3470 3355 115

The results indicate that a non-class semantic but also has an artefact semantic yields a small

set of likely candidate classes or none in one cases. The inclusion of this small set of candidates

is considered helpful to the automated analysis process by assisting in extracting additional

candidates from the natural language requirements specification.

Further justification for the inclusion of this rule can also be demonstrated by this example:

Individually tailored programs of study must not contradict the rules governing the degree, such as the

structure or prerequisite courses required so that the student can qualify for the degree's compulsory

courses.

The term in bold, courses, has act as its most common semantic implying some action (see

Table 3.3-4). This would be ignored by the Rule 1 and would not be created as a class. However,

courses and its context within the example is something that we would wish to model as a class

within the proposed software system. However, context is not considered within the ASA

therefore, consideration of both non-class semantics and the presence of an Artefact semantic

as defined by Rule 2 yields the creation of a candidate class (see

Table 3.3-4). This highlights a strong case for disambiguation which is addressed in section

3.5.

96

Table 3.3-4 ‘Course’ Sense Definition List

Sense Semantic Terms Description(sense)

1 noun.act course1#1,

course of

study#2

education imparted in a series of lessons or meetings; "he took a course in

basket weaving";

2 noun.group course#2,

line2#10

a connected series of events or actions or developments; "the government

took a firm course"

3 noun.artifact course#3,

course of

action#1

facility consisting of a circumscribed area of land or water laid out for a

sport; "the course had only nine holes"

4 noun.act course#4,

path#4,

track#1

a mode of action; "if you persist in that course you will surely fail"

5 noun.object course#5 a line or route along which something travels or moves; "the hurricane

demolished houses in its path"

6 noun.location course#6,

trend1#2

general line of orientation; "the river takes a southern course"

7 noun.food course#7 part of a meal served at one time

8 noun.artifact course#8,

row#4

(construction) a layer of masonry; "a course of bricks"

3.3.2.3 Determiners, Nouns & Multiplicity Mappings

A determiner is a modifying word that comes before the noun. The determiner references the

noun that it precedes and is either definite (specific), indefinite (general) or is quantitative.

The determiner and its corresponding noun aid the identification of a relationship’s

multiplicity (i.e. the cardinality or number of elements of some collection). This is obtained

through consideration of the determiner’s quantification, the noun’s plurality, the verb

expressing the relation and both sentence subject and objects. Figure 3.3-4 demonstrates the

multiplicity mappings for both nouns and determiners and the cardinality that they map to.

Figure 3.3-4 Determiner & Noun Multiplicity Mappings

97

Multiplicity - Start Range (Determiners): The determiner’s quantifier demonstrates an

amount and identifies the starting multiplicity range, the X of the Y in [X..Y].

Determiners themselves have types: Article demonstrates whether it is a definite or indefinite

with the most common being a, an, and the, and represents a single multiplicity; Number

represents a cardinal number (i.e. a minimum set of X); Quantifiers identify a many relationship

(many, any, all, every, some and each); finally, Demonstratives, most commonly this, that, these and

those, represent either a single or many multiplicity mapping and when no determiner is

present it indicates a zero mapping. Regardless of their type, the extraction of multiplicity

mappings is key to identifying the relationships between classes. Table 3.3-5 summaries the

determiners and their associated multiplicity mappings.

Table 3.3-5 Determiner Quantification

Determiner Quantification

a, an, another, the,

both, either, that, this

1

all, any, every, them,

these, those, each,

many, much, some

* (i.e. many)

No determiner present 0

Multiplicity - End Range (Noun Plurality): The head noun determines the end range of the

current multiplicity under consideration, the Y of the [X..Y]. Table 3.3-6 summarises the

multiplicity mappings for nouns.

Table 3.3-6 Noun Multiplicity Mapping

Noun Type Multiplicity Reference

Non-plural 1

Plural * (i.e. many)

Multiplicity Detection Process: The multiplicity range for a candidate class is constructed

during sentence analysis and is obtained for both the source (sentence Subjects) and the targets

(sentence Objects) respectively.

For example: Each student is enrolled in many seminars. Assumptions for this example includes

that Student and Seminar are classes and that the verb enrolled indicates a relationship between

Student and Seminar.

98

Figure 3.3-5 Source/Target Multiplicity Detection

The process is primarily a lookup which involves identifying the determiner (DT) contained

within the noun phrase (NP) and the plurality of the noun (NN). This information is

subsequently used to determine what multiplicities for a given noun or determiner through

the conversion rules defined in Table 3.3-5 and Table 3.3-6, where Table 3.3-7 summarises the

outcome for the example in Figure 3.3-5

Table 3.3-7 Multiplicity Mappings for Example

Multiplicity Type Determiner/Mapping Noun/Mapping

Source Each / [*] Student / [1]

Target many / [*] Seminars / [*]

With all multiplicities mapped, it is a simply case of applying conversion rules (see Table 3.3-8)

Table 3.3-8 Multiplicity Mapping Conversion Rules

Determiner Value Noun Form Range Mapping

0 Singular [0..1]

0 Plural [0..*]

1 Singular [1..1]

1 Plural [1..*]

* Singular [1..*]

* Plural [*..*]

Missing Singular [0..1]

Missing Plural [0..*]

The resulting multiplicity mapping for the example is demonstrated in Figure 3.3-6

Figure 3.3-6 Final Mapping for Source/Target Multiplicity Detection

Multiplicity Preservation: The multiplicity range is then preserved in memory for later usage

and used in conjunction with any potential relationship that maybe uncovered during the

analysis process. Since multiplicities may change from relationship to relationship they are

stored with the specific relationship discovered during its analysis rather than the class.

(ROOT

 (S

 (NP (DT Each) (NN student)) � Subject (Target Multiplicity)

 (VP (VBZ is)

 (VP (VBN enrolled)

 (PP (IN in)

 (NP (DT many) (NN seminars)))))) � Object (Source Multiplicity)

 (. .)))

Seminar 1..* *..* Student

99

The rule used to detect multiplicities can be defined as follows:

Rule 3 - Start Range Multiplicity Detection (Determiners Present)

If a determiner belongs to the set of multiplicity mappings {0, 1, *}, then the start range for

multiplicity has been found

Rule 4 – Start Range Multiplicity Detection (Missing Determiners)

If the determiner does not exist, then the start range is known as single (1)

Rule 5 - End Range Multiplicity Detection Rule (Plural Nouns)

If a noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is plural, its mapping is

known as many (*)

Rule 6 – End Range Multiplicity Detection (Non-Plural Nouns)

If the noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is not plural, then its

mapping is known as single (1)

3.3.2.4 Attributes, Class Hierarchies and State from Noun Pre-Modification

Noun pre-modification, where one or more words (adjectives, nouns or participles) are placed

before the Noun Head and further define the noun’s meaning, can express much more in

terms of UML Modelling. Figure 3.3-7 demonstrates the mappings that pre-modification can

represent.

Figure 3.3-7 Pre-Modifier to UML Mapping

The presence of a pre-modifier requires a decision of what it implies and if it should be

included within the model. The features of pre-modification are discussed in the following

sub-sections.

Adjective Pre-Modifier: The most common pre-modifier is the adjective, which precedes the

word that it modifies and typically expresses an attribute of that word. They can be grouped

100

into categories for example: colour, size, sound, taste, touch, shape but other groupings do exists.

However, unlike the rich semantic groupings for both noun and verbs, adjectives are only

represented by the types <adj.all> (all adjective clusters) and <adj.pert> (relational adjectives)

within WordNet and since there are no useful semantic groupings for adjectives a manual set

of semantics would have to be defined and classified accordingly. This would allow similar

decisions to be made in line with how the ASA manages decisions for both nouns and verbs.

The identification and consideration of adjective semantic groupings is a path that is not

currently followed by the ASA.

Noun Pre-Modifier: Based primarily on its semantics, it is possible that the noun-modifier can

represent an attribute (see Section 3.4 Additional Modelling Considerations), or a class

inheritance hierarchical structure.

For example, “The game will display the defence grid and offence grid to each player”

Figure 3.3-8 Example Syntactic Structure

Figure 3.3-8 demonstrates the syntactic structure for this example, where only the sentence

objects are only considered. During syntactic analysis any determiners are ignored, the head

noun is identified first and then modifiers are classified, defined by these rules:

• The Head Noun is the last noun contained within the noun phrase

• Modifiers are any nouns which precede the Head Noun

The phrases can be broken down to its constituent parts and their individual semantics can be

extracted, see Figure 3.3-9 and Table 3.3-9.

(ROOT

 (S

 (NP (DT The) (NN game)) � Subject

 (VP (MD will)

 (VP (VB display)

 (NP

 (NP (DT the) (NN defence) (NN grid)) � Object

 (CC and)

 (NP (NN offence) (NN grid))) � Object

 (PP (TO to)

 (NP (DT each) (NN player)))))

 (. .)))

101

Figure 3.3-9 Noun Modifier/Head Parts

The pre-modifiers defence or offence do not indicate an attribute because their semantics are not

within the set of candidate attributes. Furthermore, their semantics are outwith the set of

candidate classes Table 3.3-9 demonstrates the semantics captured from WordNet but the

semantics for the head noun are contained within this set.

Table 3.3-9 Noun Phrase Semantic Analysis

Phrase Pre Modifier Noun Pre Modifier Semantics Head Noun Semantics

Defence grid defence <noun.process> grid <noun.artefact>

Offence grid offence <noun.act> grid <noun.artefact>

Therefore, their inclusion within the noun phrase indicates some form of sub-class to super-

class mapping (i.e. type/kind-of). Even if the modifier semantics were within the set of

candidate classes, it is still possible that they represent a type/kind-of hierarchical structure,

rather than two independent classes.

The hierarchical structure rule is defined as follows:

Rule 7 – Class Hierarchy Detection Rule

Given the noun phrase, if the head noun is a candidate class as defined by Rule 1 or Rule 2 and the

head noun’s pre-modifier is also candidate class as defined by Rule 1 or Rule 2, then an interface and

abstraction is extracted based on the head noun

In both cases the head noun, grid, is within the set candidate classes and neither modifier is

within the set of attribute semantics which results in the creation of a class hierarchy (Figure

3.3-10).

Figure 3.3-10 Automated Example Noun Phrase to UML Mapping

102

The creation of this inheritance hierarchy is a point of flexibility and a point of consideration

for the developers within the overall architecture. It allows any concrete implementation of

the abstraction (IGrid) to be utilised at run-time, and allows consideration of the system to

accommodate new future grid types.

State and Participle Pre-Modifier: The participle indicates a characteristic feature of the noun

which it modifies and is a verb that comes in two forms:

• Passive Form (-ed)

o In its passive form, the participle represents a sense of completion

• Active Form (-ing)

o In its active form, the participle represents a sense of incompletion

Consider the examples:

Passive Form: ‘A sold car has a 3 year warranty’

Figure 3.3-11 Passive Participle/Head Noun Parts

Active Form: ‘The approaching train is coming from London.’

Figure 3.3-12 Active Participle/Head Noun Parts

During syntactic analysis, the participle is identified by its syntactic position within the noun

phrase (see Figure 3.3-11 and Figure 3.3-12) and is discovered by:

Rule 8 – Object State Identifier

Given the noun phrase, if the head noun is a candidate class as defined by Rule 1 or Rule 2 and the

head noun’s pre-modifier is a participle, then an object state accessor is said to exist.

In the case of modelling, a participle pre-modifier implies a state attribute of Boolean type.

This would manifest itself within the above examples as a public accessor to determine the

103

state of the candidate class via the name of the participle modifier, if a candidate class exists

as defined by the head noun. The key reason why it defines a Boolean is that the participle

modifier indicates either a sense of completion (true) or incompletion (false). It is therefore

possible with this knowledge to create said public accessor where the passive participle

modifier would be defined as has<ModifierName> and the active modifier would be defined as

is<ModifierName>.

3.3.2.5 Relationships, Parameters & the Post-Modifier

Post-modifiers, as with pre-modifiers, give additional information in relation to the head

noun. They introduce information that can express relationships, parameters, actions or state in

terms of modelling (see Figure 3.3-13). Although, for consistency, the discussion of both clausal

constructs is pushed towards the overall view at the clausal level (see 3.4 Additional Modelling

Considerations).

Figure 3.3-13 Post-Modifier UML Mapping

The most common form of modification for both verbs and nouns is the preposition, which

expresses a relationship between either of these entities.

Figure 3.3-14 details the structure of a prepositional phrase, its attachments, to what it can be

attached (either to noun or verb phrases), and what these represent when mapped to UML.

The Preposition’s complement can take the form of an adverb, noun phrase or clause. Dependent

on the complement’s type, the processing would revert to the relevant processing technique.

The most common complement is a noun phrase and the processing of this feature would be

the same as that discussed in section 3.3.2.

104

Figure 3.3-14 Preposition Phrase Syntactic Structure

Defining Prepositions Semantics: The preposition can express spatial, temporal or logical

relationships. They typically take the form of words such as at, in and on. However, the

semantics for propositions are not available through WordNet therefore, a manual custom

generalisation of the prepositions’ meaning has been established using online dictionaries

[Dic07, Wiki07, Oxf07, COL07], which can then be used in automated processing.

The first sense definition across each of the dictionary sources identifies the most common sense

of that word (see Appendix A.3). Identification of prepositional semantics uses the same

common semantic technique as defined for both candidate class and relationship detection

(see Section 3.2.1). This is then used to define its grouping (spatial, temporal or logical

relationship) including some sub-categories. In some cases, not all of the first sense definitions

within these dictionaries may be the same. In that case, a majority-rules approach is undertaken

and the Common Semantic Model (CSM) is then considered for the most appropriate

classification for that preposition (i.e. the sense with the highest average).

105

For example, the preposition as has 2 definitions

• The first definition indicates a role,

• The second definition introduces a basis of comparison.

Table 3.3-10 details the definitions obtained from each dictionary, and in the majority of cases

it defines as as indicating role.

Table 3.3-10 ‘as’ Dictionary Definitions

Dictionary Sense Role

Dic07 1. In the role, function, or status of: to act as leader.

Wiki07

1. Introducing a basis of comparison, with an object

in the objective case.

2. In the role of.

Oxf07

1. used to refer to the function or character that

someone or something has:

2. during the time of being (the thing specified):

COL07

1. in the role of, being, my task, as his physician, is to

do the best that I can,

2. as for or to with reference to,

3. as if or though as it would be if, she felt as if she

had been run over by a bulldozer,

4. as (it) is in the existing state of affairs,

Preposition Attachment Analysis: The main aspect of the syntactic analysis is to determine

to what the preposition is attached: either noun or verb phrases. Therefore, recognising what

the preposition is attached to allows the discovery of relationships that are not identifiable

through the verb of the sentence. In addition, parameters, attributes and class hierarchical

structures also become available for detection, since one of the key complements of the

preposition is a noun phrase. All of these are discussed throughout the remainder of this

section.

The syntactic rule for detecting the preposition’s attachment can be defined as follows:

Rule 9 – Noun Preposition Attachment Detection

If the prepositional phrase’s parent is a Noun Phrase, then the preposition is said to be attached to that

the noun phrase.

Rule 10 – Verb Preposition Attachment Detection

If the prepositional phrase’s parent is a Verb Phrase, then the preposition is said to be attached to that

verb phrase.

106

Both noun and verb attachments are treated differently. The preposition attached to a noun

indicates a relational aspect to what it is attached. Treatment of the verb is very different and

requires further consideration, since the preposition can express relationships, parameters,

attributes and class hierarchical constructs. Therefore, in the context of verb attachment, a

decision matrix is utilised, which is a combination of the verb and preposition semantics, and

the intersection of both semantics determines the relevant action to take be taken.

Noun Phrase Complement: Identifying relationships between the subject of the sentence and

the complement of the preposition is a technique not considered by other related works.

Relationships are typically discovered through the presence of a verb, which is preceded by a

noun. This technique overlooks candidate relationships between the subject and the

preposition complement as no verb exists between them except for the semantic connection.

In addition, this neglect is primarily due to sentence simplifications, which eliminates the

preposition sentence feature.

A preposition which is attached directly to a noun phrase can indicate an association

relationship without the presence of a verb, which is the key reason to consider potential

relationships from this syntactic structure. If the preposition attachment were not considered,

then the relationship between both the preposition’s noun complement and the head noun,

contained within the noun phrase that the preposition is attached to would be lost resulting

in the generation of an incomplete model.

A relationship is established between both noun phrase and preposition complement through

recognition of the NP�PP attachment pattern. This is discovered through a reverse search of

the syntactic structure to obtain the preposition attachment pattern.

For Example: ‘A robot with an arm will collect items from the assembly line.’

Figure 3.3-15 Noun Phrase Attachment Analysis

(ROOT
 (S
 (NP � Identifies preposition is attached to this noun phrase
 (NP (DT A) (NN robot))
 (PP (IN with)� Preposition
 (NP (DT an) (NN arm))))� Complement
 (VP (MD will)
 (VP (VB collect)� both preposition & noun attached to this verb
 (NP (NNS items))
 (PP (IN from)� Preposition
 (NP (DT the) (NN assembly) (NN line)))))� Complement
 (. .)))

107

Figure 3.3-15 details the syntactic structure for this statement. The first noun phrase of the

sentence ‘A robot with an arm’ also contains a preposition with a noun phrase complement.

There is no verb to indicate that a relationship exists. However a relationship does, and is

identified through the attachment analysis pattern recognition NP�PP and the definition of

the preposition itself. Note that in the second half of the statement, ‘will collect items from the

assembly line’, both the noun and preposition phrases are attached to the verb of the sentence.

Figure 3.3-16 demonstrates the UML model generated from this example.

Figure 3.3-16 Resulting UML Model from Preposition Analysis

The rules applied to create this model in no particular order are as follows:

• Rule 1 – Class Detection or Rule 2 – Class Detection from Non-Class Semantics

• Multiplicity Detection: ((Rule 3 or Rule 4) and (Rule 5 or Rule 6))

• Rule 9 – Noun Preposition Attachment Detection

• Rule 10 – Verb Preposition Attachment Detection

• Rule 11 – Operation Detection or Rule 12 - Relationship Detection

• Rule 13 – Subject Operation Placement or Rule 14 – Object Operation Placement

• Rule 15 – Active Voice Parameter Creation or Rule 16 – Passive Voice Parameter

Creation

3.3.3 Verb Phrase

The verb phrase is the main source for detecting candidate relationships and operations within

the UML model, but it is also possible to detect a variety of other UML-related features.

The approach towards operation and relationship detection is a by-product of the class

detection process. Verbs contained within the sentence help the analyst make decisions

regarding both operations and relationships. In addition, the analyst’s own knowledge of the

situation may also assist the detection process.

108

Figure 3.3-17 defines the structural components of a verb phrase and its UML mapping,

describing what is possible to identify such as:

• Relationships

• Parameters

• Attributes

• Operations and Boolean Operations

• Class Hierarchical Structures

Figure 3.3-17 Verb Phrase to UML Mapping

Syntactic Considerations

The verb itself comes in two key parts, the auxiliary, which holds information about mood,

modality (modals), aspect and voice and the main verb. The main verb defines the main action

of the subject contained within the sentence. The auxiliary comes before the main verb, but

does not necessarily need to be included with the main verb; voice is the only auxiliary

considered by the ASA. Voice assists in placing operations and extracting parameters but this

function is dependent on its form (either passive or active) and is considered later in this

section. The modal verb is also of interest as it can define the possibility/necessity of an action.

Aspect is also of interest to the ASA and has two forms: progressive and perfect. The progressive

expresses an incomplete action in progress at a specific time whereas perfect, typically

retrospective, indicates a completed action. Both aspect and the modal require additional

consideration of what it can be used for within modelling and how it can be incorporated

within the ASA. Finally, mood is not considered as it demonstrates the manner in which a

thought is expressed.

109

Detection of the verb is discovered via OpenNLP, which identifies the verb phrase as VP, and

all following verbs are tagged starting with VB followed by a [D, G, N, P or Z] that identifies

their type. Modal verbs are tagged as MD and are auxiliary verbs that give more information

about the main verb’s function and define the likelihood (shall) through to essential (should)

(see Table 3.3-11, for a full description of verb tags definitions).

Table 3.3-11 OpenNLP Tags for Verbs

Tag Description

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

VP Verb Phrase

MD Modal

In addition, all verbs, once their type has been identified (i.e. past and present tense, singular),

are reduced to the base form so that the creation of duplicate operations or relations is avoided.

For example, the verbs transports and transported will be reduced to their base verb transport.

Semantic Considerations

WordNet offers a set of fifteen verb semantics that can imply a relationship and/or an

operation between the classes detected in each sentence. Table 3.3-12 details and describes the

semantics obtained from the WordNet dictionary and their modelling implications.

Table 3.3-12 Candidate Relationship/Operation Semantics

WordNet

Semantic
WordNet Description

Relationship/Operation

Modelling Implications

Relationship Operation

Body Verbs of grooming, dressing and bodily care X

Change Verbs of size, temperature change, intensifying, etc X

Cognition Verbs of thinking, judging, analysis, doubting, etc X X

Communication Verbs of telling, asking, ordering, singing X X

Competition Verbs of fighting, athletic activities X X

Consumption Verbs of eating and drinking X

Contact Verbs of touching, hitting, tying, digging X X

Creation Verbs of sewing, baking, painting, performing X

Emotion Verbs of feeling X

Motion Verbs of walking, flying, swimming X X

Perception Verbs of seeing, hearing, feeling X

Possession Verbs of buying, selling, owning X X

Social Verbs of political and social activities and events X X

Stative Verbs of being, having, spatial relations X

Weather Verbs of snowing, raining, thawing, thundering X

110

The key rationale for choosing these semantic classifications of a verb is based upon the

common semantic model (see Section 3.2.1). For example, the verb transport has five different

senses and Table 3.3-13 details this common sense understanding.

Table 3.3-13 Transport Verb Sense Classifications

Sense Semantic Term Description

1 verb.motion transport#1
move something or somebody around; usually over long

distances

2 verb.contact transport#2, carry2#1

move while supporting, either in a vehicle or in one's

hands or on one's body; "You must carry your camping

gear"; "carry the suitcases to the car"

3 verb.emotion

enchant#1, enrapture#1,

transport#3, enthrall#1,

ravish#2, enthral#1,

delight2#3

hold spellbound

4 verb.motion
transport1#4, send#4,

ship#1
transport commercially

5 verb.contact
transmit#4, transfer#7,

transport1#5, channel#3,

send from one person or place to another; "transmit a

message"

It is the only most commonly understood semantic (in the example, sense #1) that is used to

make a decision regarding the inclusion of a relationship and/or operation. The semantic

motion, for example, implies movement from one location to another; that there are typically

two entities involved in the situation, i.e. the mover and something else evaluated on a sentence

by sentence basis. Therefore both a relationship and an operation will be created for this verb.

Under no circumstances is any form of disambiguation or surrounding context taken into

consideration during the lookup process.

Relationship/Operation Detection Rules: As with class detection, the technique of

relationship/operation detection is based upon the verb’s semantic classification and its

syntactic structure of connected sentence subjects and/or objects to the verb itself. These rules

can be defined as follows:

Rule 11 – Operation Detection

If a verb’s most common semantic belongs to the set of candidate operation semantics and the verb’s

semantic does not belong to the set of candidate relationship semantics, then that verb is a candidate

operation

Rule 12 - Relationship Detection

If a verb’s most common semantic belongs to the set of candidate relationship semantics then that verb

is a candidate relationship

111

The additional features of the verb such as, Parameters, Operation Class Location, Class

Hierarchies and Attributes are discussed in the following sub-sections.

3.3.3.1 Operation Class Location

The operation will be placed with the subject of the sentence. The subject of sentence identifies

the actor, the one performing the verb’s action, whereas the object of the sentence is the one

who receives this action. This clearly has implications in terms of operation class location. The

placement of an operation within a class is decided upon through recognition of sentence

voice (Passive or Active).

For example:

In syntactic terms, the key rule that identifies passive voice sentences is

1. A verb in the form of be followed by an -ed participle

Given this structure, it is possible to differentiate between passive and active voice forms.

The first example is in active voice and allows correct identification of the subject John, who is

the actor of the verb’s action and where the operation would be placed. Ball is the receiver of

the verb’s action. However, in example two ball is the subject, but it is in the passive voice,

meaning it receives the action of the verb. In this case, John is still the actor (demoted-subject)

of the action, where the operation would be placed.

Upon reflection and in the context of UML modelling, the placement of the operation with the

actor (sentence subject, depending on voice) may not be best suited as the receiver may have

their state changed as a result of the action. Therefore, it may be more appropriate to place the

operation with the receiver instead, as it could be considered that the actor is calling the action

associated with the receiver. Nonetheless, the current approach is to place the operation

within the actor depending on sentence voice as defined by these rules:

112

Rule 13 – Subject Operation Placement

If the verb is in an active form and as defined by Rule 9 is an operation and by Rule 1 or Rule 2 the

sentence subject is a class candidate, then the operation will be placed with the subject of the sentence

Rule 14 – Object Operation Placement

If the verb is in its passive form and as defined by Rule 9 is an operation and by Rule 1 or Rule 2 the

sentence object is a candidate class, then the operation will be placed with the object of the sentence

3.3.3.2 Parameter Detection from Operational Verbs and Sentence Voice

Parameters are identified from sentence objects or the prepositional complement, if they are

nouns, through a syntactic attachment analysis. The reason why sentence objects are likely

candidate parameters is founded in the function of the sentence, where objects are acted upon

via the verb’s describing action.

For example, ‘The game will display a grid.”

Figure 3.3-18 Candidate Parameters Parse Tree (active voice)

Figure 3.3-18 details the syntactic structure of the example sentence. From a bottom-up search

of the parse tree it is discovered that the object (gird) is attached to the verb (display), which

will then be created as a parameter of the function display for the class game. Thus, the

operation signature will then be defined as follows:

Game.display:(Grid grid)

This can be defined by the following rule:

Rule 15 – Active Voice Parameter Creation

If the sentence is in active voice and by Rule 9 an operation exists and by Rule 1 or Rule 2 a class

candidate exists for both sentence subjects and objects and by Rule 12 the operation is placed with the

subject of the sentence, then the object of sentence is considered as a parameter of that operation

 (ROOT
 (S
 (NP (DT The) (NN game))
 (VP (MD will)
 (VP (VB display) � Operation
 (NP (DT a) (NN defence) (NN grid)) � Candidate Parameter
 (. .)))

113

In a similar vein, as illustrated in Figure 3.3-19, when it is discovered that the same construct

is in passive voice, the subject of the sentence is then used as the parameter of the operation,

which is then placed with the demoted subject.

Figure 3.3-19 Candidate Parameters Parse Tree (passive voice)

Passive voice parameter creation is defined by the following rule:

Rule 16 – Passive Voice Parameter Creation

If the sentence is in passive voice and by Rule 9 an operation exists and by Rule 1 or Rule 2 a class

candidate exists for both sentence subjects and objects and by Rule 13 the operation is placed with the

object of the sentence, then the subject of sentence is considered as a parameter of that operation

3.3.3.3 Attributes from the Verb form have

Analysis of the verb can allow the identification of class attributes which is only apparent

through the presence of a particular verb type and not achievable through additional attribute

detection methods based on noun semantics (see Section 3.3.2.1). The verb in the form of have

and its associate forms such as has and had permits identification of attributes since the

semantics of the verb form have indicate possession/ownership. It is only sentence objects

which are considered as attributes. The subject of the sentence is considered as the class that

receives these as its attributes.

The basis of the rule that allows identification of attributes from the verb is defined as follows:

Rule 17 – Verb Derived Attribute Detection

If the verb of the sentence belongs to the set of verb forms {has, had, have} and the noun following the

verb is a class candidate as defined by Rule 1 or Rule 2, then that class is transformed into an

attribute

For example, ‘The room has a balcony and a bathroom”

 (ROOT
 (S
 (NP (DT A) (NN defence) (NN grid)) � Candidate Parameter
 (VP (VBD was)
 (VP (VBN displayed) � Operation
 (PP (IN by)
 (NP (DT the) (NN game)))))
 (. .)))

114

In Figure 3.3-20 has is the main verb of the sentence and has no preceding or following verbs.

As a result, both balcony and bathroom are therefore considered as attributes, which will be

attached to the subject of the sentence room. Note that all of these words are also candidate

classes based on their semantics.

Figure 3.3-20 Attributes based on have Verb forms

In some cases, it may not be appropriate to model these as an attributes when they are better

suited to being an actual class within the model.

Given the example: A book has a title and author

Figure 3.3-21 Automated Model Analysis - Attribute from has rule

The current rule for attribute detection would result in both author and title being created as

attributes within the class book (see Figure 3.3-21). This is entirely justifiable, it is appropriate

to say that a book has both an author and title, although it is also possible for author to be

represented as a class which may be more appropriate (see Figure 3.3-22).

Figure 3.3-22 Alternative UML Model

(ROOT
 (S
 (NP (DT The) (NN room)) � Candidate Class
 (VP (VBZ has) � Verb in form of ‘have’
 (NP
 (NP (DT a) (NN balcony)) � Candidate Attribute & Candidate Class
 (CC and)
 (NP (DT a) (NN bathroom)))) � Candidate Attribute & Candidate Class
 (. .)))

115

3.3.3.4 Class to Attributes Transformation by means of Term Frequency Analysis

The decision to transform a class into an attribute is achieved through utilisation of both

semantics and identification of the importance of a word, defined by its term frequency. Term

frequency is used to determine how important a specific word is given the average frequency

of terms within the specification, where an above average frequency indicates that it should

remain a class and below average frequency indicates an attribute. In addition, an important

factor is that the sentence must only contain one main verb which is not modified, as if it

contains a verb that is modified it could potentially alter its meaning.

The approach can dynamically switch to create either an attribute or a class depending on the

sentence construction and the importance of the relevant sentence features and is defined by

the following rules:

Rule 18 – Dynamic Verb derived Attribute Detection

If the sentence contains a noun that is class candidate and is preceded by a verb, where the frequency

count of that noun is less than the average noun frequency for the document and there exists only one

verb within the sentence and the semantics for that verb belongs to the set of {has, had, have} forms,

then the noun is said to be an attribute

Rule 19 – Class & Relationship Detection

If both the subject and objects of the sentence are class candidates and their semantics are not within

the set of attribute semantics and their term frequencies are greater than the term frequencies for the

document average and the verb belongs to the set of {has, had, have} forms and there is only one verb,

then it is said that both subjects and objects are class candidates and an association relationship

should exists between the class candidates

3.3.3.5 Class Type/Inheritance Hierarchies from Verb

This relies on the understanding and utilisation of specific forms of be verbs, which can

indicate class type/inheritance hierarchies. The key to identifying a class type/inheritance

hierarchy can be defined as follows:

Rule 20 – Inheritance Hierarchy Detection

If the verb belongs to the set of ‘be’ forms and that verb is the only verb in the sentence and both the

subject and object of the sentence are candidate classes as defined by Rule 1 or Rule 2, then an

inheritance hierarchy is said to exist between both class candidates

116

Consider the example, A car is a vehicle.

In Figure 3.3-23 vehicle would be the super-type for the class hierarchy. Not only is it possible

to extract class hierarchies from noun pre-modifiers (see Section 3.3.2.4), it is also possible

through verb consideration as well.

Figure 3.3-23 Class Hierarchies based on ‘be’ Verb forms.

It is the presence of the verb in the form of be, and its syntactic structure (subject-verb-object)

SVO ordering, which defines a modelling is_a relationship.

3.3.3.6 Preposition Verb Phrase Attachment

Previously discussed in the context of the noun (see Section 3.3.2.5), the preposition’s

complement can take the form of an adverb, noun phrase or clause. However, in the context of

the verb phrase, it allows for the discovery of relationships, operations and class hierarchical

structures.

This is achieved by two key methods

a. Identification of syntactic attachment via the pattern PP�VP

b. A Verb - Preposition Semantic Decision Matrix defines the action defined by

the semantics of both the preposition and the verb attachment (see Appendix

A.4)

The syntactic attachment is discovered through identification of phrase markers such as PP

(preposition phrase). Once the phrase marker is found (PP), a bottom up search of the parse

tree is performed to discover its parental attachment, in this case a VP (verb phrase), which

may also be a NP (noun phrase). The item of interest is the PP � VP attachment, which is used

to look up the matrix that contains the semantics of both verbs and prepositions. Therefore, to

discover the most relevant model feature to be created, the semantics of both the verb and

preposition have to be discovered. These are available via WordNet for verbs, utilising the

most common semantic strategy, and a custom semantic model for the preposition semantics

(ROOT
 (S
 (NP (DT A) (NN car))
 (VP (VBZ is)
 (NP (DT a) (NN vehicle))) � Candidate Super-Type
 (. .)))

117

(see Section 3.3.2.5). Therefore, through an intersection of these semantics within the matrix,

it is possible to decide whether to create a relationship, parameter, attribute or a class hierarchical

structure. Once this information has been identified, the relevant feature can then be modelled

defined by the following rule:

Rule 21 – Matrix Relationship Detection

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of both the verb’s

semantic and the semantic of the preposition belongs to the set of relationship semantics, then a

relationship is said to exist between the noun and the object of the preposition

Rule 22 - Matrix Parameter Detection

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the verb is an operation as defined

by Rule 11 and the intersection of both the verb’s semantic and the semantic of the preposition also

belong to the set of parameter semantics, then the object of the preposition is said to be the parameter

of the operation

Rule 23 - Matrix Class Hierarchy Detection

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the object of preposition is also a

class candidate as defined by Rule 1 or Rule 2 and the intersection of both the verb’s semantic and the

semantic of the preposition also belong to the set of class hierarchical semantics, then it is said there

exists a class hierarchical relationship between the class candidate and the object of the preposition

Rule 24 - Matrix Attribute Detection

If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of both the verb’s

semantic and the semantic of the preposition also belong to the set of attribute semantics, then the

object of the preposition is said to be an attribute of the class candidate

The key rationale for utilising the decision matrix is founded upon phrasal verbs, which is a

combination of both prepositions and the main verb. This combination typically changes the

understanding. For example, look after, means to keep under careful scrutiny, but in separate

contexts look and after produce a different understanding.

To exemplify further, The customer is known as a member

118

Figure 3.3-24 Verb-Preposition Example

In Figure 3.3-24 it is important to identify the correct verb and preposition attachment. As

previously discussed, it is achieved by first finding the preposition (PP) and then a bottom up

search to its parental attachment, the second verb phrase (VP) in this case. From the

attachment pattern PP � VP, we discover the verb ‘known’ and the preposition ‘as’. The

semantics of the verb and preposition are as follows (‘cognition’, ‘logical.role’). Through matrix

analysis, the intersection of both verb and preposition semantics identifies the decision

contained within the matrix i.e. ‘type-of’, indicating that an inheritance hierarchy should be

created. The justification for this specific example is that if something has a role, then it is

possible to consider that it is a type-of implying a class inheritance structure, but more

importantly the ASA aims to introduce points of flexibility/maintainability through the

introduction of these hierarchical constructs. On the other hand ‘member’ could be considered

to be synonymous with ‘customer’ as it is identifying a form that a customer can represent.

However, there is no synonymous link between both ‘customer’ and ‘member’ that can be

discovered. As a result the creation of the class hierarchy serves two purposes: it allows

identification of a customer through an interface/abstraction hierarchy, but more importantly

it also introduces a key point of flexibility and reusability.

In the case of Figure 3.3-24, customer would naturally have its own class hierarchical structure

(see 3.4 Additional Modelling Considerations), based on its prior semantic analysis and would

result in Figure 3.3-25. The ASA recognises the existence of this originally identified

inheritance structure and subsequently modifies it and introduces a new member inheritance

structure, which is deemed more appropriate from the syntactic and semantic analysis (see

Figure 3.3-26).

Figure 3.3-25 Original Customer Class Hierarchy

(ROOT
 (S
 (NP (DT The) (NN customer))
 (VP (VBZ is)
 (VP (VBN known)� attachment considered here
 (PP (IN as)
 (NP (DT a) (NN member)))))
 (. .)))

119

Figure 3.3-26 Verb-Preposition Replacement Class Hierarchy

3.4 Additional Modelling Considerations

3.4.1 Dependent and Independent Clauses - Relationship Detection

In the clausal constructs (dependent/independent) which form the sentence types (simple,

compound and complex) introduced at the start of this chapter, it is the classification of clause

types that are of more interest to automated modelling. The independent clause demonstrates

a complete line of thought whereas a dependent clause exhibits an incomplete thought which

is reliant on the independent clause for its understanding. This in its own right signifies a

potential relationship between both of the subjects contained within each clause that is not

discoverable through the verb of the sentence.

Identification of clause type is assisted through OpenNLP’s syntactic analysis, where the tag

‘SBAR’ marks the introduction of a subordinate/dependent clausal structure, and where a

simple/independent clausal structure is marked by the introduction of an ‘S’ tag. Therefore

identification of the patterns S�SBAR, indicating a dependent clause, and the pattern S�NP,

indicating an independent clause, allows the identification of both dependent/independent

clausal structures.

Consider the example (Figure 3.4-1) When a vehicle arrives at a destination, the driver notifies

the company. The independent clause is in bold and upon detection of a dependent clause via

its relevant pattern the ASA has to consider either a forward or a backward search for the

independent clause also matched by its relevant pattern.

120

Figure 3.4-1 Dependent/Independent Clause Detection

Once the independent clause is sourced, the relationship between both subjects can be

identified and is constructed via this rule:

Rule 25 - Clausal Relationship Detection

If an independent clause exists and by Rule 1 or Rule 2 a class candidate exists, and if a dependent

clause exists and by Rule 1 or Rule 2 a class candidate exists, then it is said an association shall also

exist between both independent and dependent clause class candidates

This is only identifiable through this syntactic relationship and not through the verb of the

sentence, which could result in a loss of important information. The relation will be modelled

as an association relationship within UML, see Figure 3.4-2.

Figure 3.4-2 Dependent and Independent UML Relationship Mapping

The prime justification for creating an association relationship between the subjects of both

clauses is resolved through the grammatical understanding that a dependent clause cannot

stand alone and is reliant upon the independent one for its understanding. When the subjects

of both clauses are the same no relationship to itself is created.

In the example: When the company receives a call from a passenger, the company tries to schedule

a vehicle to pick up the fare. The independent clause is in bold and the subject of both clauses

(ROOT

 (S � Independent Clause Marker

 (SBAR � Dependent Clause Marker

 (WHADVP (WRB When))

 (S � Simple Clause Structure

 (NP (DT a) (NN vehicle))

 (VP (VBZ arrives)

 (PP (IN at)

 (NP (DT a) (NN destination))))))

 (, ,)

 (NP (DT the) (NN driver))

 (VP (VBZ notifies)

 (NP (DT the) (NN company)))

 (. .)))

121

is company so a relationship is not required. Furthermore, neither of the objects contained

within each clause are considered within this type of high-level relationship because they are

directly affected by the verb contained within each clause and will only have a relationship

with their direct subject in each separate clause. The detection and consideration of how these

modelling features would be detected has been addressed in Section 3.3.3, Verb Phrase.

3.4.2 Additional Modelling Considerations from the Noun

3.4.2.1 Attribute Detection

Attribute detection from nouns is based upon two differing techniques based on the presence

of an attribute semantic within the set of candidate semantics for that particular noun and a

frequency analysis of the noun’s importance to the specification.

Term Frequency (tfi,j) is a technique used within information retrieval to identify the

importance of a given word within a document defined by the formula in Equation 1; where

(i) represents the term contained within the document (j).

∑
=

jkk

ji
ji n

n
tf

,

,
,

Equation 1. Term Frequency Formula

jin , is the number of occurrences of the term (i) in the document (j) and the denominator is

the sum (k) of the occurrences of all terms contained within the document. This technique is

utilised within related works as a decision making tool for class detection [MHH89, GB94,

Per02, PKS+05, Har00, HG02, VAD09], where in some cases the threshold can be manipulated

to identify more or fewer candidate classes.

The frequencies are fixed to the document average frequency of occurrence defined by

Equation 2. This is only used to make decisions in relation to attribute detection that has a

below average term frequency within the context of the average term frequency for the

document; where (i) represents term frequencies that are contained within the document (j).

n

tf
dfa jik

ji
∑= ,

,

Equation 2 Document Frequency Average Formula

122

The numerator is the sum (k) of all the individual term frequencies (i) for the document (j) and

n is a count representing the total number of individual nouns or compound nouns contained

within the document.

The term frequency technique also considers phrases (compound nouns) as a whole rather

than individual terms/words. The key rationale is not to duplicate registration of both

individual nouns and compound nouns within the frequency analysis and therefore not give

an artificial weighting to an individual to or introduce new individual terms into the

frequency analysis, which may have knock-on consequences.

The specific rules for attribute detection are defined as follows:

• Most Common Semantic Approach: (Rule 26)

Rule 26 - Attribute Detection based on Semantics

If a noun’s semantic belongs to the set of attribute semantics, then that noun is considered as an

attribute

• Low Term Frequency Approach (Rule 27)

Rule 27 - Attribute Detection based on Semantics, Class Candidates & Term Frequencies

If a class candidate exists as defined by Rule 1 or Rule 2, and within that noun’s semantic set it also

belongs to the set of attribute semantics, and the frequency count of that noun is less than the average

noun frequency count for class candidates for that document, then the noun is said to be an attribute.

3.4.2.2 Class Hierarchy Detection

In addition to the set of class candidate semantics, a subset of four semantics also indicate that

a class hierarchical structure should be created (see Table 3.4-1). This is primarily undertaken

in an effort to give options that provide the best possibility of creating maintainable software

architectures for future development.

Table 3.4-1 Class Hierarchy Subset Semantics

Noun Semantic Description
Class Modelling Implication

Class Hierarchy

Animal Nouns denoting animals X X

Person Nouns denoting people X X

Plant Nouns denoting plants X X

Shape Nouns denoting two and three dimensional shapes X X

123

All of the semantics listed in Table 3.4-1 typically have common features, where a

class/abstraction/interface hierarchy would be considered constructive to include within the

initial model.

For example, nouns that represent people have common features, such as a name, date of birth

and address, although some of these features may not be needed for all cases. The inclusion

of hierarchies allows these commonalities to be modelled within the abstraction, and

consideration to be given to the use of a polymorphic approach giving rise to a more flexible

and maintainable design.

Figure 3.4-3 demonstrates the type of hierarchy that would be created by automation. In the

example The company will arrange a taxi, when it receives a call from a passenger This has the

concrete class Passenger, abstract class ABSPassenger and an interface IPassenger.

Figure 3.4-3 Automated Class Hierarchy Creation

The key role in the creation of this hierarchical structure is defined as follows:

Rule 28 - Semantic Class Hierarchical Detection

If a class candidate exits as defined by Rule 1 or Rule 2 and the semantics of the class candidate are

also contained within the set of candidate class hierarchical semantics, then an interface will also be

extracted for that class candidate

This approach is not saying that there are no class hierarchical structures within the remaining

ten semantics from

Table 3.3-1. However, those semantic descriptions do not generically lend themselves to this

interpretation and it would not be appropriate to model everything with this type of

hierarchical structure. For example, the word call has the most common semantic type

communication and modelling this with a concrete/abstract/interface hierarchy may not be

appropriate.

Hierarchies that are identified during the approach will be either an interface or an

interface/abstraction hierarchy. These hierarchies allow the implementation to decouple from

124

the design allowing the implementation vary. In addition, abstractions can also cater for new

functionality without impacting implementations.

3.5 Software Requirements Specification Issues in the

Context of Automated Software Development.

The concept of an entirely developer-less automated analysis process is an ambitious one.

However, there are some aspects of the SRS document that automation cannot manage and

similarly that the human may also have some issues with, which are now further discussed.

3.5.1 The SRS Document

An SRS document contains all of the customer requirements and those requirements are

elicited through various means. However, the majority start life as a narrative discussion of

the problem domain. It is this document which is transformed by an analyst into a formal SRS

document detailing both functional and non-functional requirements of the proposed

software system. However, the formal SRS document is an expression of information in a

manner that is not entirely suitable for the automated process, and the approach (discussed

previously) has been geared towards the narrative specification.

The key issues associated with SRS documents for both automation and the human can be

defined as follows:

• Ambiguity

• Missing Requirements

• Domain Knowledge

• Intralinguistic Variations (automation only)

Furthermore, during the transformation from a specification into its model representation,

there is a need to manage and trace the requirements not only for understanding, but to ensure

every requirement has also been satisfied. The approach taken, which starts from an informal

specification, makes the process of tracing requirements much more difficult due to the loss

of a formal structure. However, as a by-product of the automated analysis process, it has been

125

possible to track and tag both the requirement document and the model features generated

during analysis phase, thus allowing tracing between both the specification and the model.

All of the key issues and the feature of traceability are further discussed in the following sub-

sections.

3.5.2 Traceability

When the final UML model is created by automation, each of the model components identified

during processing (classes, relationships, operations, parameters and attributes) are tagged with an

identification number. This allows efficient retracing of the model feature back directly to the

sentence(s) from where the component was discovered. In addition, this process gives the

ability to establish the surrounding context and allows a decision to be made as to whether

the model feature should be included within the final design or not.

For example, the component Customer (see Figure 3.5-1) has five sentence references. The

traceability link allows the relevant section, paragraph and sentence to be identified. Thus,

allowing an efficient and effective means of identification and understanding of the proposed

model component. This subsequently allows the analyst/developer to make the final decision

upon the inclusion of a component generated by automation.

Figure 3.5-1 Library System Requirements Specification [Cal94]

3.5.3 Intralinguistic Variations

Prior to its transformation into a formal requirements specification, decomposition or other

means of transformation, software requirements are typically defined in narrative natural

language form, which is the document used by the ASA. This document contains all the

A library issues loan items to customers. Each customer is known as a member and is issued a membership card that shows

a unique member number. Along with the membership number, other details on a customer must be kept such as a name,

address, and date of birth.

The library is made up of a number of subject sections. Each section is denoted by a classification mark.

A loan item is uniquely identified by a bar code. There are two types of loan items, language tapes, and books. A language

tape has a title language (e.g. French), and level (e.g. beginner). A book has a title, and authors.

A customer may borrow up to a maximum of 8 items. An item can be borrowed, reserved or renewed to extend a current

loan. When an item is issued the customer's membership number is scanned via a bar code reader or entered manually. If

the membership is still valid and the number of items on loan less than 8, the book bar code is read, either via the bar code

reader or entered manually. If the item can be issued (e.g. not reserved), the item is stamped and then issued.

The library must support the facility for an item to be searched and for a daily update of records.

126

requirements of the proposed software system. However, where a word/noun, for instance

Customer, is introduced, it may then be further discussed throughout the narrative

specification, but by a different word such as member. This is a specific problem for automation

where these nouns may not necessarily be synonymously related to the original word. This

issue is defined as an intralinguistic variation which can result in the creation of

additional/erroneous classes. This is because the syntactic analysis tool is unable to identify a

link between the language variations.

An earlier technical evaluation (see Appendix C.1 – Language Inconsistency) undertaken by

the author compared the models generated by the ASA against the human model (ideal

solution) using four specifications that have been published in an Object Oriented text books

(these models are consider as the ideal solution). The performance evaluation uncovered that

each requirements specification on average contains 1.9 words that are later referenced to by

different words that are not synonymously related to the original, an intralinguistic

variations). If left unaddressed, this issue could easily propagate when considering other

design features extracted from the language such as attributes, operations and relationships.

Intralinguistic variations can refer to many concepts, but relate particularly to referencing

situations such as an endophoric reference. An endophoric reference is divided into two

distinct groupings: anaphoric or cataphoric. Anaphoric refers to something in the previous

text introduced and typically makes use of pronouns such as it, they, them, me, she or he for its

references, whereas the cataphoric refers to something within the text, which may have not

yet been identified.

For Example:

1. The library issues loan items to customers. A maximum of 8 items can be borrowed.

(cataphora)

2. The driver will notify the company when he arrives at the destination. (anaphora)

Anaphoric references are resolved automatically through OpenNLP and its co-reference

resolution toolkit. However, it is unable to resolve cataphoric references.

In some cases though, the referencing maybe a little more obscure. For example a word may

be introduced such as individual, but could then be referenced throughout by six different

terms {passenger, group, fare, them, their, they}. Even though, the term individual is obscure, it is

127

possible for the human to infer from the problem domain what is meant through manual

inspection, but difficult for automation as it cannot directly associate passenger, group or fare as

an individual. The words them, they and their are resolvable through co-reference resolution

supported by OpenNLP.

Therefore, the most effective way to resolve the issue of multiple intralinguistic variations is

to involve the developer and create a model that allows the correct referencing of multiple

words to one generic concept. Unfortunately, this is not an efficient means of minimising

initial developer involvement.

The Intralinguistic Variation Model (IVM) is designed specifically to manage the cataphoric

references problem and is entirely developer driven. In this approach, it is the responsibility

of the developer to identify the cataphoric references contained within the software

specification. The construction of the IVM model is a simple manually defined data dictionary

contained within an XML file (see Figure 3.5-2). The referent is the word to find and to be

replaced by the generalised concept with term. With this technique, compound nouns are also

permissible which may contain more than one modifier, which can also be replaced by a

compound noun. There is also a requirement to put the relevant part of speech tag with the

replacement term, because it can also manage verbs that may require consideration of

additional design features.

Figure 3.5-2 IVM Resolution

Therefore, during processing where a concept exists in the model, its replacement is easily

identified, replaced and resolved through this dictionary look-up.

A manual intervention to resolve cataphoric references seems like the only logical step

forward and one which would need to be created prior to automated analysis. This is because

there is no other efficient means to resolve a cataphoric reference, due to the natural usage of

language, where different terms are used to refer to some other term, which may or may not

be synonymously related to one another. This is a major departure from the original idea:

automation should identify all relevant model features itself, without manual intervention.

<referent name="membership number">
 <withTerm term="member number"/>
 <posType pos="noun"/>
</referent>

128

On the other hand, the only other viable solutions would be to ensure that the specification

does not contain this type of reference and that a consistent language is used throughout

beforehand. For example, where a feature such as customer is introduced, the remainder of the

document must only contain references to customer. However, this is restrictive and adds

additional effort to the process by forcing a consistent way of writing or through a rewrite of

the specification.

The solution presented to resolve the issue of intralinguistic variations is not prescriptive, but

the results produced from automated analysis will be affected in the ways discussed.

3.5.4 Ambiguity

Ambiguity is a difficult problem not just for automation to resolve but also for the human as

well. Even though the ASA does not intend to deal with or manage ambiguity, it is worthwhile

to discuss the key issues that arise from the introduction of ambiguity within a Software

Requirements Specification (SRS) document.

Ambiguity typically arises when a phrase, sentence or word can be interpreted in many

different ways or is taken out of context. There are two key types of ambiguity: syntactic and

lexical.

3.5.4.1 Syntactic Ambiguity

Syntactic ambiguity arises when the meaning of a sentence or phrase can be interpreted in

many differing ways, which affects our overall understanding of what was originally implied.

This typically occurs from the varying structures implied by the sentence and the relationship

between the components of the sentence such as clauses, phrases and words.

For example:

‘I saw the girl with the telescope’

The example can imply that either the girl had the telescope or I used the telescope to see the

girl.

The key issue associated with syntactic analysis is that there is the possibility to create

erroneous model features such as, relationships, classes, parameters, operations and attributes.

Given the syntactic structure for the example (see Figure 3.5-3), it can be easily seen how this

129

can be done. The example syntactic analysis implies that it is I who has the telescope, but it

could be the girl and here lies the specific problem.

Figure 3.5-3 Example Sentence Parse Tree

Resolution of this type of ambiguity either has to be detected by some means, which could be

possible through the logarithmic probability given during sentence analysis by OpenNLP or

removed explicitly and by clearly stating the actual requirements. During sentence processing,

it is possible to obtain from OpenNLP the logarithmic probability indicating an opportunity

for resolution. Therefore, it would be possible with this information to define a threshold

which could be used to query the user as to the intended meaning of the requirement, but

requires further consideration.

3.5.4.2 Lexical Ambiguity

Lexical ambiguity is the case where a single word or phrase may have multiple meanings

known as polysemy. For example, the word bear has a polysemy count of 2 for nouns and 13

for verbs. This does present a problem when considering its true meaning and is the primary

reason for choosing the common semantic model for the ASA discussed. For example:

‘Bear left at the end of the road’

In this example bear has two very different meanings; either the animal ‘bear’ has been left at

the end of the road, or it is an instruction to turn left at the end of the road. The ASA in this

case would create a class for bear, but it is difficult surmise if this is correct or not without

additional contextual information. Hence, it might be possible through the surrounding

context in which the word appears to find its true meaning. However, this is something this

ASA does not undertake.

Current techniques utilised to resolve the ambiguity issue is known as Word Sense

Disambiguation (WSD) [IV98], which is an open problem in natural language processing that

attempts to resolve polysemous words, but has varying degrees of accuracy.

(ROOT
 (S
 (NP (PRP I))
 (VP (VBD saw)
 (NP (DT the) (NN girl))
 (PP (IN with)
 (NP (DT the) (NN telescope))))
 (. .)))

130

The solution to syntactic ambiguity could be simpler compared to lexical ambiguity by being

vigilant in the creation of the software requirements specification and avoiding the

introduction of this issue or by means of automated detection. However, through

consideration of the model developed by automation and reviewed by the developer,

concerns of ambiguity could be identified within the model and corrected either by the

developer or through the development of a revised specification.

3.5.5 Missing Requirements & Domain Knowledge

A problem for both human and automation is the notion of both missing requirements and

domain knowledge, both of which can be interlinked. The ASA itself is entirely domain

independent, being reliant on the semantic and syntactic models for the identification of

design features as a starting point in the development process. Therefore, if there are

requirements which are missing from the specification, then the ASA will never be able to

identify these features, which is also a similar issue for a manual approach.

During the manual approach, it may or may not become apparent that there are missing

requirements, which can be rectified at a later point. If not, then it is likely that this will lead

to an incomplete software model that may require further iterations to resolve the situation.

In a similar vein, if the requirements are missing and then later discovered after automated

analysis has taken place, these can easily be included and the analysis re-run.

Personal/common knowledge of the domain can also be of benefit that can aid discovery of

additional aspects related to some feature contained within the specification, which this

approach does not benefit from. This information may not be included within the actual

specification for a variety of reasons as it may be assumed knowledge. For example, a taxi has

features that may not be discussed, but may also require modelling such as its passenger

capacity. Resolution of this specific issue can be addressed by ensuring that all the relevant

information is contained within the specification, or information discovered later can be

included and analysis re-run, but this is easier said than done which is why domain experts

are employed.

Another specific issue regarding domain knowledge are acronyms contained within

specifications, such as ATM that identifies an automatic teller machine. WordNet does

provide some information for some acronyms, although it is unlikely that it includes

131

information about industry specific acronyms (for example UML). This can be similarly

resolved through full definition of the actual acronym, but is again an expensive process.

A practical solution of these issues for both acronyms and specific domain knowledge would

require the development of a domain dictionary or ontology that would allow the ASA to

query for acronyms and knowledge that are not within the semantic model.

Even though both missing requirements and domain knowledge are not addressed during the

approach, they are worthy enough of discussion in relation to the problems that they present

and possible routes for resolution. Since the ASA is highly efficient (time-wise) in its analysis,

it is likely that these deficiencies of both domain and missing requirements would quickly

become apparent from the model produced, thus allowing manual investigation and

resolution through iterative analysis and re-processing.

3.6 Implementation

This section presents a general overview of the ASA’s software architecture (Figure 3.6-1). The

ASA is standalone application that is implemented in Java and is operated from the command

line. The ASA accepts an English natural language specification document as input and

returns a UML model in XMI format according to the OMG MOF guidelines that can then be

imported into a variety of CASE tools for review, validation and manipulation.

Figure 3.6-1 Automated Software Architect Automation Process

The ASA has two key external dependencies to ensure correct operation: the natural language

processing toolkit OpenNLP [Mor07] that aids syntactic analysis and WordNet [Mil95] a data

dictionary that assists with semantic analysis

Essentially the process is to take the original data and either perform some transformation and

or identify additional information for use within the Class, Attribute, Relationship, Parameter

132

and Operation detector (CARPOD) processor. The processes defined within CARPOD can

identify the relevant model features which are then subsequently stored in a graph data

structure which is later used by a UML processor to construct the UML model.

The implementation is split into two key stages: data gathering and detection phases; the goal

of the data gathering phase is to ensure that all relevant information is extracted and is

available for the CARPO detector.

The data gathering process can be defined as follows:

• Document Structural Analysis and Transformation

• Word Data Collection

Document structural analysis seeks to understand how the requirements specification is

structured in terms of paragraphs and sentences. This understanding allows the specification

to be transformed into an XML document which can be used to trace decisions made by the

ASA back into the requirements. The transformation process from an SRS document into a

XML document is automatic and Figure 3.6-2 defines the corresponding document type

definition (DTD).

Figure 3.6-2 SRS to XML Document Type Definition

The Document Type Definition (DTD) preserves the integrity of the document by allowing

sentences to be associated to their relevant paragraph. Each of the paragraphs and sentences

are tagged with an identifier that aids traceability. Paragraphs are identified by pattern

matching blocks of text followed by a blank line, where the natural language parser will

identify all of the individual sentences. A separate process rewrites the SRS into an XML

document. Figure 3.6-3 exemplifies an SRS that has been transformed into XML format.

<!ELEMENT document (paragraph+)>
<!ELEMENT paragraph (#PCDATA|s)*>
<!ELEMENT s (#PCDATA)>

<!ATTLIST document id CDATA #REQUIRED>
<!ATTLIST paragraph id CDATA #REQUIRED>
<!ATTLIST s id CDATA #REQUIRED>

133

Figure 3.6-3 Sentence and Traceability Link Identification

With the structure of the document identified and the parse tree constructed by OpenNLP (see

Figure 3.2-2) the approach can then start to construct the relevant syntactic and semantic

information that is needed for use within the CARPO process. Starting from the perspective

of the individual word, Figure 3.6-4 identifies the relevant information that needs to be known

prior to CARPO processing.

Figure 3.6-4 Word Data Collection

In essence, the OpenNLP parse tree is reconstructed along with the additional information

identified during word data collection, which is then made available to the CARPO detector

for processing.

The CARPO process then performs an in-order traversal of the newly constructed parse tree

and using the Common Semantic and Syntactic models, discussed throughout this chapter,

<document id='0'>
<paragraph id='1'>

<s id='p1.0'>A library issues loan items to customers.</s>
<s id='p1.1'>Each customer is known as a member and is issued a
membership card that shows a unique member number.</s>

</paragraph>

<paragraph id='2'>
<s id='p2.0'>The library is made up of a number of subject
sections.</s>

</paragraph>
</document>

134

the relevant candidate features of the model can be identified and stored within a graph

structure for transformation into XMI data format.

Figure 3.6-5 demonstrates the graph that is used to store candidate model features once they

have been identified during the detection phase. A graph node includes a trace identifier, can

have multiple edges and is used to manage candidate class, attribute or operation information;

edges represent additional information such as the relationship, operation and parameters,

multiplicity and traceability information which can be used to connect to other nodes or the

node itself.

Figure 3.6-5 CARPO Graph Data Construct

Finally, every node and edge contained within the graph maintains its own traceability

information so that decisions undertaken by the approach can be traced directly to the

sentence from where it came from. Once the graph is fully constructed it can then be traversed

and an XMI representation of the UML model can be constructed and used within a variety of

case tools for review.

3.6.1 Worked Example

This section will work through the transformation process from textual requirements

specification through to UML Model of the ASA’s approach to automation. The following

specification, Figure 3.6-6, originally identified in the related works [Har00] the specification

contains 3 paragraphs, 7 sentences and 100 words and is in domain of hospital [Duf95].

135

Figure 3.6-6 Local Hospital Requirements Specification [Duf95]

This specification is processed by the approach and transformed into the following XML

document representation, Figure 3.6-7:

Figure 3.6-7 XML representation of Requirements Specification

Once the transformation into the XML document is complete, each of the sentences contained

within the specification are processed individually to identify their relevant syntactic structure

as demonstrated within Figure 3.6-8. It is this syntactic structure that makes it possible to

extract relevant candidates and apply the rules that have been identified and discussed

throughout this thesis.

A local hospital consists of many wards, each of which is assigned many patients.

Each patient is assigned to one doctor, who has overall responsibility for the patients in

his or her care. Other doctors are assigned on an advisory basis. Each patient is

prescribed drugs by the doctor responsible for that patient.

Each nurse is assigned to a ward and nurses all patients on the ward, though is given

special responsibility for some patients. Each patient is assigned one nurse in this

position of responsibility. One of the doctors is attached to each ward as an overall

medical advisor.

<?xml version ="1.0" encoding ="UTF- 8" ?>
<! DOCTYPE document SYSTEM "RQSDTD.dtd" >
<document id ='0' >
 <paragraph id ='1' >
 <s id ='p1.1.0' >A local hospital consists of many wards, each of
which is assigned many patients. </ s>
 </ paragraph >
 <paragraph id ='2' >
 <s id ='p2.1.0' >Each patient is assigned to one doctor, who has
overall responsibility for the patients in his or h er care. </ s>
 <s id ='p2.1.1' >Other doctors are assigned on an advisory basis. </ s>
 <s id ='p2.1.2' >Each patient is prescribed drugs by the doctor
responsible for that patient. </ s>
 </ paragraph >
 < paragraph id ='3' >
 <s id ='p3.1.0' >Each nurse is assigned to a ward and nurses all
patients on the ward, though is given special respo nsibility for some
patients. </ s>
 <s id ='p3.1.1' >Each patient is assigned one nurse in this position
of responsibility. </ s>
<s id ='p3.1.2' >One of the doctors is attached to each ward as an o verall
medical advisor. </ s>
 </ paragraph >
</ document >

136

Figure 3.6-8 Syntactic Parse Tree Example

At the very lowest processing level by the ASA, it is the parse tree which is at the core which

is traversed to identify the sentence structure and apply the rules discussed throughout this

thesis where appropriately.

Both Table 3.6-1 and Table 3.6-2 identify all the candidate nouns, and verbs from the traversal

of the parse tress, their semantics and candidate UML features that they may represent from

the resulting semantic model

Table 3.6-1 Noun Class Candidates

Identified Nouns Semantic 1 Semantic 2 UML Feature(s)

Position Location Attribute Class

Patient Person - Class/Hierarchy

Basis Relation - N/A

Ward Person Artefact Class/Hierarchy

Nurse Person - Class/Hierarchy

Advisor Person - Class/Hierarchy

Care Act - N/A

Hospital Artefact - Class

Drug Artefact - Class

Responsibility Act Attribute N/A

Doctor Person - Class/Hierarchy

Table 3.6-2 Verb Relationship/Operation Candidates

Identified Verb Semantic UML Feature(s)

Are Stative Operation

Is Stative Operation

Assigned Social Relationship/Operation

Given Possession Relationship/Operation

Attached Contact Relationship/Operation

Prescribed Communication Relationship/Operation

Consist Stative Operation

The candidates contained within both tables and that are confirmed by the rule set discussed

in this thesis are subsequently added to the CARPO graph structure. Figure 3.6-9

(ROOT
 (S
 (NP (DT A) (JJ local) (NN hospital))
 (VP (VBZ consists)
 (PP (IN of)
 (NP
 (NP (JJ many) (NNS wards))
 (, ,)
 (SBAR
 (WHNP
 (NP (DT each))
 (WHPP (IN of)
 (WHNP (WDT which))))
 (S
 (VP (VBZ is)
 (VP (VBN assigned)
 (NP (JJ many) (NNS patients)))))))))
 (. .)))

137

demonstrates a textual representation of that graph for the Patient class candidate that was

identified by the ASA. It demonstrates the key class nodes and any relevant in our out edges

for that note and what those edges describe, which may be relationships, attributes,

parameters or more.

Figure 3.6-9 CARPO Graph Extract

With the candidates confirmed and the CARPO graph loaded with all the relevant information

at this point the automation process has essentially completed. All that remains now is to

transform the CARPO graph data into a UML Model, Figure 3.6-10.

Figure 3.6-10 ASA version of Local Hospital Problem

INTERFACE: IPatient :MAIN_NODE: TRACE_ID: '[p1.1.0, p2.1.0, p2.1.2, p3.1.0, p3.1.1]
INTERFACE: IPatient :RELATION:
 INTERFACE: IPatient :RELATION_IN_EDGES_FROM:
 INTERFACE: IPatient :IN_NODE: 'IDoctor' TYPE: 'in terface' EDGE_TYPE: 'Association'
 INTERFACE: IPatient :IN_NODE: 'Drug' TYPE: 'class ' EDGE_TYPE: 'Association'
 INTERFACE: IPatient :IN_NODE: 'INurse' TYPE: 'int erface' EDGE_TYPE: 'Association'
 INTERFACE: IPatient :RELATION_OUT_EDGES_TO:
 INTERFACE: IPatient :OUT_NODE: 'ABSPatient' TYPE: 'abstract' EDGE_TYPE: 'Generalisation'

ABSTRACT: ABSPatient :MAIN_NODE: TRACE_ID: '[p1.1.0 , p2.1.0, p2.1.2, p3.1.0, p3.1.1]
ABSTRACT: ABSPatient :RELATION:
 ABSTRACT: ABSPatient :RELATION_IN_EDGES_FROM:
 ABSTRACT: ABSPatient :IN_NODE: 'Responsibility' T YPE: 'attribute' EDGE_TYPE: 'attribute'
 ABSTRACT: ABSPatient :IN_NODE: 'assigned' TYPE: ' operation' EDGE_TYPE: 'operation'
 ABSTRACT: ABSPatient :RELATION_OUT_EDGES_TO:
 ABSTRACT: ABSPatient :OUT_NODE: 'Patient' TYPE: ' class' EDGE_TYPE: 'Extends'

CLASS: Patient :MAIN_NODE: TRACE_ID: '[p1.1.0, p2.1 .0, p2.1.2, p3.1.0, p3.1.1]
CLASS: Patient :RELATION:
 CLASS: Patient :RELATION_<IN-NULL>:
 CLASS: Patient :RELATION_<OUT-NULL>:

138

The creation of the UML model in Figure 3.6-10 is built using the Eclipse MDT UML2 API

[MDT14] and is constructed by traversing the CARPO graph where the information contained

within each node and edge is subsequently mapped to the corresponding UML element as

assisted by the UML. Finally, the model that is constructed is fully editable by the analyst

3.6.2 System Architecture

There is no user interface associated with Automated Software Architect and the ASA is

started from the command line with the user passing the file location of the document to be

process. The ASA will then process this document that will finally results in the creation of a

UML model. Figure 3.6-11 demonstrates a high-level view of the Automated Software

Architect (ASA) as previously discussed at the start of this chapter.

Figure 3.6-11 Automated Software Architect Automation Process

Figure 3.6-12 identifies each of the top level packages that also have a corresponding UML

Model contained within Appendix A.5. Each of the UML models details the ASAs architecture

at a greater level of detail. Table 3.6-3 maps the top level packages to the overall ASA Process

as defined previously.

Table 3.6-3 ASA Process to Package Mapping

Architecture Component Package Name Purpose

SRS Document uk.ac.strath.sd.xml

uk.ac.strath.sd.tree

Transform document to suitable

format and mange traceability links

NLP opennlp.tools.lang.english OpenNLP Toolkit Interface

SAM Model Processor uk.ac.strath.sd.nlp Detection of POS and language

process

CSM Model Processor uk.ac.strath.sd.nlu

uk.ac.strath.sd.wordnet

Application of semantic models

WordNet Interface

CARPO Detector uk.ac.strath.sd.model Application of static/dynamic

processing rules

CARPO Graph uk.ac.strath.sd.jccg Data structure managing detected

features

UML Model uk.ac.strath.sd.uml Generation of UML editable diagram

139

Figure 3.6-12 Top Level Package Diagram

Along with the UML and package models, a sequence diagram detailed in Figure 3.6-13

demonstrates the flow of processing within the ASA towards the creation of a UML model.

The process is started from the command line and is done so by passing the location of the

textual representation of the requirements specification document. This then goes through a

series of processing steps that transforms the document into a XML representation containing

its relevant paragraphs and individual sentence(s) along with their associated traceability

links.

The document is then processed and transformed at the sentence level where a tree

representing how the sentence is constructed in terms of its individual parts of speech and

semantic meanings is maintained. The information contained within the tree structure can

then be processed and the appropriate candidate model features are detected by means of the

static/dynamic rules applied by the CARPO detector and added to the CARPO graph. The

CARPO graph is subsequently traversed and the information contained within is transformed

into the final UML model for the system under analysis along with the relevant traceability

information that allows the identification from which sentence the feature was detected.

140

Figure 3.6-13 ASA Sequence of Events

141

3.7 Conclusion

This chapter has presented both the semantic and syntactic models used to analyse a narrative

natural language software specification on a sentence-by-sentence basis. This is in pursuit of

creating an initial/conceptual UML model automatically from the natural language in an

efficient and effective manner, alleviating the burdensome approach of manual analysis.

The semantic model is used to detect relationships, attributes, operations, class inheritance

hierarchies and classes and is based upon common semantic model that best imply specific

design features assisted by WordNet Classifications.

The syntactic model, in combination with the semantic model, utilises OpenNLP to retrieve

the syntactic structure of each sentence. The ASA itself has base rules used to identify classes,

attributes, relationships, operations, multiplicities, class inheritance hierarchies and

parameters from the syntactic structures. Furthermore, through analysis of the high-level

syntactic structures, it is possible to identify relationships at the clause level without the need

of a main verb.

This chapter concludes with a discussion of the key issues affecting both manual and

automated analysis in relation to the software specification document. These issues

specifically relate to ambiguity, missing requirements, domain knowledge, intralinguistic

variations and tracing requirements from specification to model and vice versa. Finally, the

chapter gives an overview of the implementation from data gathering, detection through to

final UML XMI model and a detailed view of the applications overall architecture.

142

Chapter 4

Evaluation

143

4.1 Introduction

The techniques introduced and discussed in the previous chapter endeavour to identify the

relevant model components from all the information contained within a natural language

requirements specification document. The features of the initial model, whether it be classes,

relationships, operations, attributes or parameters, require different considerations in the

context of automated syntactic and semantic analysis when being evaluated for inclusion

within the initial model. This chapter evaluates the implementation of the proposed technique

towards automated analysis and initial model creation in the context of the key model

features: classes and relationships. It does not consider operations, attributes or parameters in

this evaluation, the reason for which are discussed later in this chapter. Finally, the chapter

concludes with a comparative evaluation of its most closely related works.

One of the key issues that became apparent with related work was the lack of evaluation

within related approaches (see Chapter 2). Some of the related works’ evaluations used

techniques taken from the domain of Information Retrieval (IR) and employed metrics such

as recall and precision [Mic96, MMZ02, MG02, KZM+04, Har00, HG02]. Others utilised

simple evaluation techniques such as a comparative evaluation of what is versus what is not

created with no concrete metrics to validate the results [GB94, IO05, IO06, OI06, BSC06,

BCA06, BSM09, PRM+07, VAD09]. This evaluation will also exploit IR evaluation techniques.

The evaluations utilising these techniques only consider the class detection process and do not

evaluate other aspects of the design such as relationships, attributes, or operations. This

evaluation will only investigate class and relationship detection and will not consider

operation, parameter or attribute detection. This is because the model created by automation

is defined only as an initial model, whereas the actual (ideal) model used in the comparison

has likely been refined and where features such as operations, parameters and attributes may

have been identified by other means such as domain knowledge, personal experience that

automation does not have access to. The approach taken towards automated software

modelling has no automated refinement phase and is entirely dependent on what information

is made available at time of processing implying that if it is not in the textual specification it

will not be considered by the automated approach.

144

The evaluation undertaken herein is based upon the work by Harmain [Har00], where the

performance evaluation is broken into three distinct parts:

• Firstly, a performance evaluation utilising Precision, Recall and Over-Specification;

Over-specification, defined by Harmain, is a measurement of additional class

candidates or relationships that are not contained within the ideal model, but are

deemed useful by their context within the text and the author’s own judgement.

• Secondly, results from the performance evaluation are used to investigate and identify

any key issues that may arise from the requirements specification itself and that may

impact the automated approach towards successful identification of all relevant

model features.

• Thirdly, the evaluation will also undertake a comparative evaluation of the overall

technique in the context of the most closely related works CM-Builder developed by

Harmain [Har00] and NL-OOPS developed by Mich [Mic94].

4.2 Evaluation Background

The performance evaluation undertaken here was originally used by Harmain and

Gaizauskas [Har00, HG02] for the evaluation of their CM-Builder implementation. This

utilised a corpus of requirements specifications and also introduced a comparison between

NL-OOPS [Mic94] and CM-Builder. Furthermore, Harmain’s comparative evaluation does not

measure the performance of both approaches through the measures of recall and precision,

but is a high level review of the comparative models created by both approaches.

The evaluation undertaken here uses the same requirements specification corpus of both

Harmain and Mich. In addition, additional requirements specifications have been identified

and added to the corpus.

Harmain’s evaluation is similarly based upon the work of Hirschman and Thompson [HT95]

who identify that the evaluation of natural language processing is crucial for both system

developers as well as users. They broadly define three kinds of evaluation; Adequacy,

Diagnostic and Performance evaluations. Harmain only utilises the performance evaluation

methodology that has a well-defined structure amenable to quantitative analysis and which

145

sets out what will be evaluated, how this will be measured and how the values for the measure

will be identified

The method step within the performance evaluation asks How do we determine the appropriate

value for a given measure and a given system? To address this Harmain uses the metrics precision

and recall which are both widely accepted within the IR community and defined in Girshman

and Sundheim [GS96].

There are differences between both IR and automated requirements analysis and model

creation which Harmain and Gaizauskas [Har00, HG02] identifies as follows: An IR system

extracts specific information that is based upon a search criterion such as named entities,

partial parses and text simplification. In contrast, the approaches of CM-Builder, NL-OOPS

and the ASA do not have a pre-defined search criteria.

The key answers in IR represent correctly extracted information by a human analyst, whereas

the key answer (i.e. the original class model) represents a model of the problem domain, but

there is no way to know for sure if an accurate model of the problem domain exists.

These differences (text simplification, named entities, and key answers) identify why it is

difficult to evaluate NLP CASE tools and can possibly explain why other related works have

not attempted any form of evaluation.

4.3 Evaluation Methodology

The performance evaluation methodology (below) defined by Hirschman and Thompson

[HT95] addresses the three important aspects that must be considered by any evaluation. The

overall aim is to evaluate the performance of a system in some area of interest and the steps

are defined as follows:

• Criterion: What are we interested in evaluating?

• Measure: What specific property of the system performance will we report in an

attempt to get to the chosen criterion?

• Method: How do we determine the appropriate value for a given measure and a given

system?

146

Utilising these techniques the evaluation methodology is defined as follows:

• Criterion: The criterion applied to evaluate the ASA is to evaluate how close the

models produced by automation are in comparison to that of the human developed

model (i.e. The Ideal Solution). However, there is no ideal solution in existence for a

given problem domain as two different developers could, and can, create radically

different models based upon their own domain knowledge and expertise. Neither can

these models be considered as correct or incorrect, but they can be categorised as good

or bad. Harmain addresses this issue by simply stating that a good model is one that

has been published within an Object-Oriented text book and is therefore considered

as the ideal solution. Additionally, for the evaluation it has also been assumed online

works can be included within the definition of an ideal solution.

• Measures: The measures of Recall, Precision, F-measure and a further metric defined

by Harmain and Gaizauskas [Har00, HG02] Over-Specification are used to evaluate

the performance of both class and relationship detection.

o Over-Specification: Is a measure that addresses the inclusion of additional

class/relationships that are not contained within the Ideal Solution. The extra

elements are identified during the detection process by automation, and after

consideration of the element within the context of their passage, their

inclusion within the initial model maybe considered warranted because they

represent features of the system that a developer may wish to model. The

concept of the ideal solution used in this evaluation represents a model that

may have already been through several design iterations to realise the final

design. Therefore, it is more than probable that the Ideal Solution has already

been through this kind of over-specification phase and through design

iterations much of the additional information classified as ‘extra’ could have

already been considered and removed through this iterative design process.

• Method: All classes and relationships in the manually created model (known as the

Ideal Solution) and the automation model (known as the ASA) are compared with each

other manually. The following categories are used to manually classify each element

in the respective models.

147

o Correct/True Positive (TP):

� Class Detection: A class found by the ASA is considered correct/true

positive, if it exactly matches an element in the Ideal Solution. If no

exact match exists but by the author’s judgement an element exists in

the ASA that is synonymously related to an element in the ideal

solution, it is also therefore considered correct.

� Relationship Detection: An association relationship found by the

ASA is also considered correct/true positive if both classes are TP and

the relationship exists within the ideal model.

o Incorrect/False Positive (FP):

� Class Detection: An element found by the ASA is said to be

incorrect/false positive, if it is not in the Ideal Solution and both the

problem statement and the author’s judgement confirm that it is

wrong.

� Relationship Detection: An association relationship found by the

ASA is said to be incorrect/false positive, if either of the classes involved

within the relationship have also been identified as incorrect/false

positive or the relationship does not exist within the Ideal Solution.

o Missing/False Negative (FN): an element is said to be missing/false negative, if

it is contained within the Ideal Solution, but has not been identified by the ASA

algorithm. This stands true for both class and relationship detection.

o True Negatives (TN): represents class candidates that have been considered

and deemed irrelevant by the ASA and are not included within the Ideal

Solution.

o Extra (E): An element is said to be an extra if it is not contained within the Ideal

Solution, but by the author’s own judgement and aided by the context of the

problem statement and identified by the ASA it demonstrates a useful

concept for consideration. This stands true for both class and relationship

detection.

148

o Synonymous: An element in the ASA is said to be synonymously related to

another correct/true positive answer if, from its position within the context of

the specification, it is used as a synonym for a correct/true positive answer. This

only stands for class detection (see 3.5.3 Intralinguistic Variations). In the

context of the Ideal Solution this is assumed to be automatically considered

either consciously or unconscious bias by the domain analyst

With these method definitions defined in terms of the Ideal Solution, it is now possible to define

the following measures:

Recall is a measure related to a positive outcome, which identifies the fraction of relevant

instances that are retrieved and is defined as follows:

FNTP

TP
recall

+
=

Precision identifies the accuracy of the system in terms of the fraction of the retrieved

instances that are relevant and is defined as follows:

FPTP

TP
precision

+
=

F-measure a further measure is also utilised during this evaluation known as the F-Measure

[Rij79]. This measure is based on the harmonic mean of Precision (P) and Recall (R) and is

defined as follows:

RP

RP
measureF

+
⋅⋅=− 2

When interpreting these results the closer the score is to 1 the better the result; conversely the

closer the result is to 0, the worse the system performs in terms of Precision, Recall and its

overall effectiveness.

Over-Specification identifies the fraction of elements that are included over and above the

elements that are correctly identified by the approach, but are not contained within the ideal

model and is defined as follows:

FNTP

E

+
=

Over-Specification

149

4.3.1 Threats to Validity

4.3.1.1 External Threats

External threats to validity aims to address how the approach relates to the real world

commonly known as its generalisability. This evaluation has based itself upon the notion of

using the ideal solution where there exists a model and English requirements specification

that is published either in a reputable online source or in a book. One of the key reasons for

choosing the ideal solution is that no industrial specifications were/are typically available for

public research. In addition, if a sample of industrial specifications were obtained – with

model and specification text, it would likely not be as representative as the systems that have

been identified and utilised during this evaluation.

The specifications used within the evaluation are from a variety of differing domains such as

banking, hospital management, ticketing systems, library management, other management

systems and computer games all chosen to try and test the generalisability of the approach.

The average specification size is 273 words and therefore not representative of large scale

software systems. The largest specification is 1508 words and smallest is 65 words (see Section

4.4 for additional corpus information). Nevertheless, the evaluation remains disadvantaged

as a result of not having any industrial specifications which is a threat to the approaches

overall validity.

4.3.1.2 Internal Threats

The approach taken has two key threats to internal validity, firstly, the manual classification

of the categories Extra and Synonymous by the author. This threat does not affect the

classification of Correct, as an answer key exists to guide the classification process and

anything that is not in the answer key is hence Incorrect. Secondly, the corpus itself is of limited

size, limited domains and are text book examples.

The manual classification threat to validity concerns the notion of unconscious bias when

classifying Extra and Synonymous from those deemed as Incorrect. Unconscious bias relates

to a situation where the classification of an answer say as Incorrect, which should be classified

as Extra, can affect the outcome of the results. Therefore, both the manual classifications and

the possibility of unconscious bias could lead to a situation that may skew the overall results,

in a positive or negative manner. This issue can only be resolved through an impartial

150

classification of the results. Even though the author has a vested interest in presenting the

results in their best light, impartial as the author has tried to be, this threat persists. Therefore,

all the classifications of the method categories have been undertaken by the author in an

impartial manner as possible.

The specification corpus main threat to validity concerns the author’s selection bias of the

specifications to ones that best suit the approach. However, the majority of this bias can be

negated as 13 out of the 17 specifications have been taken from related works so that

comparative analysis of the approaches performance could be considered. The remaining

specifications that have been selected by the author but have been identified from course work

material: Gizmo Ball [MIT05] because of its size, complexity and additional non relevant

information, Cinema System [CIS08] because of its size and completeness, KWIC [Par72]

because of its small size and the ambiguities it introduces and finally Taxi [BAR12] because of

its simplicity and conciseness. Additional threats such as the size of the specifications utilised

within the evaluation (see Table 4.4-1) and the limited domain. The average number of

sentences per specification is 17 with an average word count of 273 (which for industrial

specifications is likely to be perceived as trivially small) and they cross nine different domains.

However, to allow an effective comparison to be made between the approach and the most

closely related works, utilisation of related works’ corpus specifications is a necessity.

Mitigation of these threats would be to obtain industrial specifications, but in the majority of

cases industrial specifications are unattainable due to them being covered by Non-Disclosure

Agreements.

4.4 Evaluation Corpus

The corpus utilised in this evaluation consists of a total of seventeen specifications; eight used

by CM-Builder, two used by NL-OOPS and seven identified by the author. All specifications

fall within the concept of the Ideal Solution and each has a UML model with the exception of

the NL-OOPS, which is missing one model. However, NL-OOPS does provide a key for this

model and the UML models from the remaining specifications can be used to generate the key

and evaluate the results for both Class and Relationship detection.

The specifications are all from different domains and range from 65 to 1500 words and from 3

to 94 sentences. Each specification takes the form of a narrative English description of the

151

system and its associated functionality. In addition, each of the specifications also has an

associated UML model with the exception of specification number 10. The specifications are

detailed in Appendix B.1 and Table 4.4-1 covers key information relating to the specifications.

Appendix B.2 details the individual classification results and Appendix B.3 details the UML

models created by automated analysis.

Table 4.4-1 Evaluation Corpus Details

No Specification Name Domain
Word

Count

Sentence

Count
Used by Approach Reference

1 Filing Problem
Electronic Filing

Management
231 12 ASA/CM-Builder Der95

2 Library Problem 3 Book Management 154 9 ASA/CM-Builder Cur95

3
Journal Registration

Problem

Journal/User

Management
153 7 ASA/CM-Builder Duf95

4 Hospital Problem 2 Room Management 283 23 ASA/CM-Builder Duf95

5 Hospital Problem 1 Patient Management 100 7 ASA/CM-Builder Cur95

6 Library Problem 2 Loan Management 217 15 ASA/CM-Builder Cur95

7 Organisation Problem 2 Staff Management 100 6 ASA/CM-Builder Cur95

8 ATM Problem Banking System 136 8 ASA/CM-Builder/NL-OOPS RBP+91

9 Library Problem 1 Library Loan System 193 16 ASA/NL-OOPS EP98

10 Meeting Problem
Sports League

Management
179 17 ASA/NL-OOPS RBP+91

11 Cinema Problem Seating & Ticketing 561 25 ASA CIS08

12 Gizmo Ball Computer Game 1508 94 ASA MIT05

13 Organisation Problem 1 Course Administration 130 12 ASA

14 Exam Problem Exam Marking 354 22 ASA

15 Keyword in Context Document Indexing 65 3 ASA Par72

16 Lift Problem Lift Control 181 11 ASA PRM+07

17 Taxi Problem Taxi Management 106 7 ASA BAR12

4.5 Results

This section presents the results obtained for the system under evaluation in terms of Precision

(P), Recall (R), Over-Specification (OvS) and F-Measure (FM). It is broken into two separate

sections - one for class detection and the other for relationship detection - both of which have

a comparative evaluation with related works.

Table 4.5-1 demonstrates the average performance from both class and relationship detection

evaluations.

Table 4.5-1 Class and Relationship Detection Performance Summary

Classification Recall Precision
Over-

Specification
F-Measure

Class Detection Average Performance 0.73 0.60 0.47 0.64

Relationship Detection Average

Performance
0.26 0.33 0.68 0.28

The results for class detection demonstrate a positive step towards automated analysis of

natural language requirements specifications and even though class detection achieves a high

152

performance level in terms of recall and precision there is still room for improvement. The

results achieved for both recall and precision in the context of relationship detection are not

so encouraging. Both result sets for over specification also produce some interesting results,

especially in the context of relationship detection, which is very high. It is the key intention of

this evaluation to identify, discuss and highlight the primary reasons that may be prohibiting

the ASA approach from achieving better results in the context of both class and relationship

detection.

4.5.1 Class Detection Performance Results

Figure 4.5-1 boxplots the data contained within Table 4.5-2 and demonstrates the performance

of the automated approach.

Figure 4.5-1 ASA Performance Results

The data within Table 4.5-2 details the raw performance figures for the candidate class

detection process of the automated approach. The figures also considers the standard

deviation which is used to understand the spread of the data. In the case of the ASA’s

approach the standard deviation value should be as small as possible as this demonstrates

that the techniques employed for candidate class are not volatile and can produce consistent

and reliable results. Overall, the approach performs rather will with an average recall rate of

73% and precision of 60% but does some have key lows where specification 12 the largest

specification in terms of word and sentence count, 5 times bigger than the average

specification, used in this evaluation but also has the lowest performing result. Whereas

specification 13 (not the smallest specification overall) is 40% smaller in size when compared

0 0.2 0.4 0.6 0.8 1

Recall

Precision

OVS

FM

153

to the average sentence and word count but performs the best in terms of recall, but not so in

terms of precision. The following sections investigates the results a little deeper.

Table 4.5-2 Individual SRS Performance Results

Specification No. TP1 FN1 FP1 E1 S1 Recall Precision OVS FM

1 6 4 5 4 2 0.60 0.55 0.40 0.57

2 4 4 4 7 0 0.50 0.50 0.88 0.50

3 4 1 5 6 1 0.80 0.44 1.20 0.57

4 8 1 7 3 2 0.89 0.53 0.33 0.67

5 4 1 0 3 0 0.80 1.00 0.60 0.89

6 7 1 4 2 2 0.88 0.64 0.25 0.74

7 3 1 1 1 1 0.75 0.75 0.25 0.75

8 9 3 6 2 3 0.75 0.60 0.17 0.67

9 5 2 4 3 1 0.71 0.56 0.43 0.63

10 7 4 7 3 0 0.64 0.50 0.27 0.56

11 8 5 16 12 3 0.62 0.33 0.92 0.43

12 13 21 28 18 8 0.38 0.32 0.53 0.35

13 5 0 10 2 0 1.00 0.33 0.40 0.50

14 16 5 5 7 2 0.76 0.76 0.33 0.76

15 4 2 1 3 1 0.67 0.80 0.50 0.73

16 8 2 5 3 1 0.80 0.62 0.30 0.70

17 6 1 0 2 5 0.86 1.00 0.29 0.92

Average Performance 0.73 0.60 0.47 0.64

Standard Deviation 0.15 0.20 0.27 0.15

4.5.2 Class Candidate Results Investigation

Although the results themselves are encouraging, further investigation into the root causes of

not being able to achieve high levels of both recall and precision are sought. Given that a

software requirements specification (SRS) may contain all relevant and correct information, it

should be possible to achieve high levels for both recall and precision. Figure 4.5-2 details the

total raw data for all SRS documents processed during this evaluation. The key areas that will

be investigated further are False Negatives and False Positives as these are the key to

increasing both recall and precision.

1 TP –True Positive, FN – False Negative, FP – False Positive, E – Extra, S - Synonymous

154

Figure 4.5-2 All SRS Raw Classification Data

Before discussing the key issues analysis, it is important to address an interesting finding

associated with false negatives. The classification of a false negatives states that: an element is

considered a false negative if it is not discovered by the approach and is contained within the ideal

model’s answer key. However, in some cases the answer key in the original model contains class

candidates that are not actually defined within the requirements specification text at all. For

example, Hospital Problem 2 [Duf95] the original model has a Staff class which is not defined

in the specification texts (see Appendix B.1). This raises the question as to how this class

candidate has been discovered in the original model and it is only through deeper

investigation of false negative classifications (see Appendix B.2) has this issue come to the

forefront.

Figure 4.5-3 classifies false negatives (FN) in to two groups, FN(P) and FN(NP) where FN(P)

identifies false negatives that are present within the requirements specification text, and

FN(NP) that represents false negatives that are not present within the requirements

specification text.

Figure 4.5-3 Present/Not Present False Negative Classifications

0 50 100 150 200 250 300

False Negative

True Negative

False Positive

True Positive

0 5 10 15 20 25 30 35 40

FN(P)

FN(NP)

155

The analysis has identified that 64% of all false negatives, FN(NP), are not contained or

defined in the requirements specification text by any means and how they are being identified

within the ideal model is an unknown. Without this information contained within the textual

specification it will be impossible for automation to successfully identify all relevant class

candidates and as a result recall and precision will be negatively impacted. Since FN(NP) are

not contained in the specification text this has identified an opportunity to accurately reflect

the ASA performance by discounting FN(NP) from the performance investigation however,

the results and findings of this are discussed later in this section.

4.5.2.1 False Negative and Positives Issue Analysis

Both false positive and false negative issues are very closely related as a result they are

discussed under the one section as both groups have such similar issues in the areas of

semantics, Rule 27 and NLP. Figure 4.5-4 quantifies and identifies the root causes for false

negatives (that are present within the specification) and false positives (See Appendix B.4 for

the raw data).

Figure 4.5-4 Key Issues Analysis of False Positives and Negatives

Semantic Issues:

In the case of false negatives there are semantics that are out with the set of candidate classes

(Table 3.3-2), and for false positives the opposite - semantics that are within the set of class

candidates (

Table 3.3-1). The semantics issue for both false positives and negatives represents the majority

of their issues and in the case of false positives this is a key problem. Semantics is a core feature

0 10 20 30 40 50 60 70 80 90 100

Semantics

Rule 27

NLP

False Positives False Negatives

156

of the approach within the ASA and is used to decide what should and should not be created

as a class candidate.

Table 4.5-3 demonstrates the semantic issue for both false positives and negatives, it details

the issue type, the word used in the specification and its most common semantic used to

identify whether it’s a class candidate or not.

Table 4.5-3 False Negative and Positive Semantic Issues

Issue Type Word Most Common Semantic

False Negative transaction Action

False Negative loan Possession

False Negative competition Action

False positive description Communication

False positive platform Artefact

False positive hypotenuse Shape

In the case of false positives a class candidate is created when it should not have been and for

false negatives a candidate class should be created but is not. In both cases, the issue is related

directly to the semantics that are used to determine whether a class candidate should be

created or not.

Each word also has additional semantics for differing contexts and Table 4.5-4 details the

additional semantics that are available and whether those semantic could be used to create a

candidate class, if the approach were able to disambiguate.

Table 4.5-4 False Negative and Positive Associated Semantics

Issue Type Word Associated Semantics
Associated Semantics indicate

Class Candidate

False Negative transaction None -

False Negative loan communication Yes

False Negative competition Event, Person Yes

False positive description Communication, Cognition Yes

False positive platform Communication Yes

False positive hypotenuse None -

The majority of false negatives have a semantic that would allow the creation of a candidate

class and disambiguation could lead to a possible solution, but the same can also be said of

false positives. As a result, resolution via disambiguation may not be an optimal solution in

all cases and an alternative solution needs to be sought to address the core issue of false

positives.

157

Rule 27 Issue:

Rule 27 is a rule that is used to transform a class candidate into an attribute during the

automated analysis and model generation process which is defined as follows:

If a class candidate exists as defined by Rule 1 or Rule 2, and within that noun’s semantic set it also

belongs to the set of attribute semantics, and the frequency count of that noun is less than the average

noun frequency count for class candidates for that document, then the noun is said to be an attribute.

In the case of false negatives, the candidate classes should remain as a candidate class, but are

being transformed into attributes because they meet the criteria defined by Rule 27. Where in

the case of false positives they have a class candidate semantic and also have a high term

frequency and remain as a class candidate when they are actually better suited to being

attributes. Therefore, the frequency analysis for the Rule 27 is called into question. This process

of transforming a class candidate into an attribute may not be appropriate and employing a

different strategy, such as identifying/marking potential attributes rather than actually

transforming them into attributes, may be a better approach.

NLP Issues:

The NLP toolkit, OpenNLP, identifies all the relevant parts of speech (POS) for each word

however, in some cases the identification goes awry and the incorrect POS is identified. Table

4.5-5 gives examples of the issue, the word from the specification, the correct part of speech

and the POS identified by the NLP toolkit.

Table 4.5-5 NLP Issues

Issue Type Word Correct POS NLP Identified POS

False Positive interact Verb Noun

False Positive coarser Adjective Noun

False Negative output Verb Verb

The issue with false positives is that they are being created as candidate classes when they

should not be because WordNet identifies the incorrect part of speech. The false negative issue

only impacts one specific word, output, where in the ideal model this is identified as candidate

class, but since the word is identified as a verb it is never considered as a potential class

candidate by the approach, which is correct and the NLP toolkit is correct in its POS

identification. Further investigation reveals that the approach does process output, but creates

an action rather than a class. Whether this is correct or not is open to interpretation and the

158

problem domain. It is important to remember that the ideal models may have been already

been through many design iterations and the operation output may have been extracted as a

candidate class, which better suits the problem domain. In this case very little can be done

unless some form of domain knowledge is to be created and used along with candidate

processing.

4.5.2.2 Impact of discounting missing class candidates

The investigation of False Negatives has identified that 64% of all false negatives that are

missing are not actually defined within the specification texts. Since they are not defined

within the specification texts it is impossible for automation to create class candidates. This

has led to considering what the impact on overall performance would be if false negatives not

present within the specification deducted from the total false negative counts and whether

this give a more accurate picture of actual performance.

Table 4.5-6 details the raw analysis data, where FN(P) represents false negatives that are

actually stated within the specification document, but missed by automation. Where FN (NP)

represents false negatives that are not stated within the specification document. The

combination of both FN(P) and FN(NP) will give the original false negative count see Table

4.5-2

Table 4.5-6 Individual SRS Performance Results (with FN present only)

Specification No TP FN(P) FN(NP) FP E S Recall Precision OVS FM

1 6 2 2 5 4 2 0.75 0.55 0.50 0.63

2 4 2 2 4 7 0 0.67 0.50 1.17 0.57

3 4 0 1 5 6 1 1.00 0.44 1.50 0.62

4 8 0 1 7 3 2 1.00 0.53 0.38 0.70

5 4 0 1 0 3 0 1.00 1.00 0.75 1.00

6 7 0 1 4 2 2 1.00 0.64 0.29 0.78

7 3 1 0 1 1 1 0.75 0.75 0.25 0.75

8 9 3 0 6 2 3 0.75 0.60 0.17 0.67

9 5 2 0 4 3 1 0.71 0.56 0.43 0.63

10 7 4 0 7 3 0 0.64 0.50 0.27 0.56

11 8 4 1 16 12 3 0.67 0.33 1.00 0.44

12 13 4 17 28 18 8 0.76 0.32 1.06 0.45

13 5 0 0 10 2 0 1.00 0.33 0.40 0.50

14 16 2 3 5 7 2 0.89 0.76 0.39 0.82

15 4 1 1 1 3 1 0.80 0.80 0.60 0.80

16 8 0 2 5 3 1 1.00 0.62 0.38 0.76

17 6 0 1 0 2 5 1.00 1.00 0.33 1.00

Average Performance 0.85 0.60 0.58 0.69

STDEV 0.14 0.20 0.37 0.16

159

What is uncovered is an average performance increase across the key metrics with no

improvement in precision, an 18% improvement in recall, and a 3% increase in over-

specification is realised. Figure 4.5-5 demonstrates an analysis that compares the original

results against those that has class candidates not defined in the specification text removed

from the false negatives.

Figure 4.5-5 ASA Performance Analysis (FN (NP) Removed)

Table 4.5-7 details the raw analysis numbers for the box plots and it is clear that discounting

false negatives that are not contained within the specification FN(NP) improves standard

deviation and the average for recall overall.

Table 4.5-7 ASA vs. ASA (FN(NP) Removed) Class Detection Raw Data

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall 0.38 0.63 0.75 0.80 1 0.15 0.73

Recall (FN(NP) Removed) 0.64 0.75 0.80 1 1 0.14 0.85

Precision 0.32 0.50 0.56 0.75 1 0.20 0.60

Precision (FN(NP) Removed) 0.32 0.50 0.56 0.80 1 0.20 0.60

OVS 0.17 0.28 0.40 0.52 1.2 0.27 0.47

OVS (FN(NP) Removed) 0.17 0.30 0.40 0.80 1.50 0.37 0.58

4.5.2.3 Class Detection Conclusion

Overall the ASA’s approach towards class detection is a positive step forward out of 551

potential class candidates analysed by the approach: ~21% can be directly associated with true

positives, false negatives represents ~11%, ~19% are associated with false positives, and ~49%

are associated with true negatives.

In addition to the evaluation and issues analysis, the investigation of the results has identified

that 22% of all class candidates contained within ideal model are being identified by some

other means as those missing classes are not detailed within the actual textual requirements

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Recall (FN(NP) Removed)

Recall

Precision (FN(NP) Removed)

Precision

OVS (FN(NP) Removed)

OVS

160

specification. Furthermore, the issue of missing classes that are stated within the textual

requirements specification and contained within the ideal model represents only ~12%.

Resolution of the false negatives is key to increasing the overall recall of the approach and this

has been demonstrated by a further performance investigation that does not consider false

negatives that are not present within the specification and removed these from the calculation

process. This demonstrated a positive relative change in recall performance by 16%, but to

actually achieve this gain the missing information has to be included within the specification

document at the time of processing. Additional gains can be achieved by addressing the key

issues also identified during the evaluation. Similarly there was a small increase in precision

of 3% but to increase precision substantially false positive issues will have to be addressed as

well.

4.5.3 Relationship Detection Performance Results

The performance evaluation, in the context of the ideal model, also considers the detection

results of ASA in terms of the relationships discovered and are also evaluated through usage

of the same metrics. In addition there is also a direct comparison with CM-Builder & NL-

OOPS, even though these related works do not evaluate relationship detection themselves

citing that the identification of relationships from the specification is too variable. CM-Builder

and NL-OOPs do provide some initial system models generated by their systems, therefore it

has been possible to obtain the results from these models using exactly the same methodology

as applied to obtain the ASA results.

Figure 4.5-6 ASA Relationship Performance Analysis

0 0.5 1 1.5 2 2.5 3 3.5 4

Recall

Precision

OVS

FM

161

Table 4.5-8 identifies the overall performance for relationship detection as identified by the

approach; where Figure 4.5-6 boxplots the performance figures that have been automatically

analysed by the approach. Overall the performance is poor with an average recall of 28% and

precision of 36% and only in two cases does it achieve a recall rate of 60% or more.

Table 4.5-8 Individual Relationship Detection Performance Results

Specification No TP M FP E Recall Precision OVS F-Measure

1 2 7 3 3 0.22 0.40 0.33 0.29

2 2 5 4 7 0.29 0.33 1.00 0.31

3 1 4 4 4 0.20 0.20 0.80 0.20

4 3 4 2 5 0.43 0.60 0.71 0.50

5 3 2 0 4 0.60 1.00 0.80 0.75

6 1 2 3 1 0.33 0.25 0.33 0.29

7 2 7 6 1 0.22 0.25 0.11 0.24

8 4 13 8 4 0.24 0.33 0.24 0.28

11 1 13 16 9 0.07 0.06 0.64 0.06

12 4 34 22 27 0.11 0.15 0.71 0.13

13 2 22 12 5 0.08 0.14 0.21 0.11

14 4 2 10 2 0.67 0.29 0.33 0.40

15 0 2 1 7 0.00 0.00 3.50 0.00

16 3 14 6 9 0.18 0.33 0.53 0.23

17 5 4 0 6 0.56 1.00 0.67 0.71

9 0 7 0 0 0.00 0.00 0.00 0.00

10 0 0 0 0 No Model Available

Average Performance 0.26 0.33 0.68 0.28

Standard Deviation 0.19 0.29 0.78 0.21

The main focus of the relationship evaluation is to consider why the majority of relationships

are missing and the root cause of why there are missing relationships.

4.5.4 Relationship Results Investigation

This section of the evaluation aims to identify the root causes as to why the performance is so

bad by looking to answer the questions, Are these relationships defined within the specification?

and Does the fault lie with the technique employed in identifying relationships?

Figure 4.5-7 ASA Raw Classifications for Relationship Detection Analysis

0 20 40 60 80 100 120 140 160

True Positive

False Negative

False Positive

162

Figure 4.5-7 illustrates the total raw data for all SRS documents processed during this

evaluation. It identifies the correct identifications and a count of which relationships are

missing. False positives are present in this view, but are associated directly with the detection

of false positive class candidates, and consequently the relationship identified as a result of a

false positive class candidate is also deemed incorrect. Therefore, if the detection of false

positive class candidates can be eliminated, then the identification of the false positive

relationships will also be eliminated as well. The key area that will be investigated further will

be false negatives.

Figure 4.5-8 False Negative Classifications for Relationship Analysis

Figure 4.5-8 decomposes false negatives into relationships that are detailed within the

specification FN(P) and those that are not FN(NP), as previously defined. The detection of

false negatives that are not present within the specification also correlates to class candidates

that are not present within the specification as they are required to complete the discovery of

the actual relationship. Therefore, the investigation of false negative relationships themselves

identified as FN(NP) will not be investigated any further as it is impossible for automation to

detect something that is not present. However, as with candidate class detection, an

investigation into the actual performance that discounts false negatives will be undertaken.

Figure 4.5-9 further classifies each false negative that are present within the specification

(FN(P) that has been identified during the evaluation process into the following categories:

ASA Model and Domain Understanding (see Appendix B.5 Raw Classification Data).

0 10 20 30 40 50 60 70 80 90 100

FN(NP)

FN(P)

163

Figure 4.5-9 False Negative (P) Classification Analysis for Relationship Analysis

These classifications have been obtained by using the original UML models created by their

respective authors, and the relationships identified in those models have been used to

compare against the relationships identified by the ASA and are discussed in the remaining

sections of this chapter

Domain Understanding

Figure 4.5-10 classifies each of the domain understanding issues these are typically

hierarchical, such as interfaces and concrete implementations, missing relationships where

classes are present in the specification, but are spread across paragraphs or different sentences,

and bidirectional relationships.

Figure 4.5-10 Domain Understanding Issues Analysis

Hierarchical relationships are only associated with one specific specification. This raises the

question of whether it is an issue to be concerned about. The following examples demonstrate

the key point.

1) There are two types of loan items, language tapes, and books. [Cal94]

0 5 10 15 20 25

Domain Understanding

ASA Model

0

5

10

15

20

25

Bidirectional Relationships Heriachical Constructs Relationship Across

Paragraphs/Sentences

Issues Analysis

164

2) A passenger on m-th floor calls a lift by pressing the up or down button [PRM+07]

The approach the ASA takes to extract and identify relationships is by means of the main verb

and/or syntactic constructs, and the hierarchical relationships in the examples, language tape

and books are type of loan item and up and down buttons are a type of button are not identifiable by

this technique because there is no verb or syntactic construct that identifies the relationship.

The relationship is identified by an understanding of the problem domain which therefore

makes it difficult to identify and extract the hierarchical relationship given the current

approach taken by the ASA, but in both cases there is a pattern that emerges: x and y are a type

of z. Further investigation of these patterns could aid the discovery of additional relationships.

The final issue identified through the evaluation is associated with relationships across

paragraph and sentences. Since the ASA operates on a sentence by sentence basis, it can only

identify relationships are within that spectrum,. Given the situation where candidate

relationships are spread across sentences and/or paragraphs there is no connecting verb or

syntactic structure that is local (i.e. within the sentence) that indicates this relationship is

present. Only through understanding of the domain, context and processing larger chunks of

domain text would it possible for these relationships to be identified and extracted.

ASA Model

Figure 4.5-11 breaks the model issues into their respective issue groups. These issues relate

directly to the actual sentence that is being analysed for candidate relationships as both classes

are present, but the approach fails to identify the candidate relationship.

Figure 4.5-11 ASA Model Issue Classifications for Candidate Relationship Detection

0

2

4

6

8

10

12

14

16

verb/preposition stative verb missing connective

ASA Model Anlaysis

165

The crux of problem is associated directly with verb/preposition syntactic construct

combinations and the connection to their most closely related noun. In others, the type of verb

contained within the sentence fails to identify the relationship or the key noun has not been

discovered.

For Example:

1) Each instructor works for one department and each department has at least one instructor.

[Organisational Problem 1]

2) One of the doctors is attached to each ward as an overall medical advisor. [Cur95]

3) Documents may be filed along with keywords, authors, and/or a document description or

abstract describing the document. [Der95]

Examples 1, 2 and 3 demonstrate that the verb/preposition combinations, works for, attached to

and filed along with fail to identify the relationships between both candidate classes within the

sentence. Even though there is a mapping, Rule 21, that has been derived to aid decision

making of verb/preposition combinations, those decisions result in the creation of an action

rather than a relationship. It therefore raises the question as to whether those mappings are

correct, or that in some situations dual interpretations are possible which need to be identified

and managed.

Finally, a minority of issues surround some edge cases such as stative verbs and syntactic

constructs that have not been considered in these contexts. So this raises a question as to

whether these are actually issues as they are only present within one or two specifications.

For example:

1) Questions may have multiple parts, and partial credit may be awarded for parts correctly

answered. [Exam Problem]

2) Furthermore, it should be possible for readers to find articles which deal with topics that they

are interested in. [Cur95]

In the examples above, the elements in bold are identified as classes and have association

relationships between them. The first example contains the stative verb have, which is used by

the ASA to identify attributes and not relationships, but in this case it created a class which is

166

incorrect and is an impact of Rule 27 application (see Section 4.5.2). The second example has

no connecting verb between them because the second part which deal with topics is contained

within a subordinate clause attached to the word articles, which the ASA misses altogether.

4.5.4.1 Impact of discounting missing relationship candidates

The investigation of false negatives has identified that 63% of relationships defined within the

ideal model are missing as a result of a missing candidate classes as these candidate classes

are not actually defined within the requirements specification texts, as previously discussed.

Would excluding the relationships that are associated to class candidates that are not present

within the specification or model this demonstrate actual relationship detection performance?

Table 4.5-9 SRS Relationship Results (with FN present only)

Specification No TP FN(P) FN(NP) FP E Recall Precision OVS F-Measure

1 2 1 6 3 3 0.67 0.40 1.00 0.50

2 2 0 5 4 7 1.00 0.33 3.50 0.50

3 1 2 2 4 4 0.33 0.20 1.33 0.25

4 3 2 2 2 5 0.60 0.60 1.00 0.60

5 3 1 1 0 4 0.75 1.00 1.00 0.86

6 1 0 2 3 1 1.00 0.25 1.00 0.40

7 2 5 2 6 1 0.29 0.25 0.14 0.27

8 4 6 7 8 4 0.40 0.33 0.40 0.36

11 1 3 10 16 9 0.25 0.06 2.25 0.10

12 4 7 27 22 27 0.36 0.15 2.45 0.22

13 2 10 12 12 5 0.17 0.14 0.42 0.15

14 4 2 0 10 2 0.67 0.29 0.33 0.40

15 0 2 0 1 7 0.00 0.00 3.50 0.00

16 3 7 7 6 9 0.30 0.33 0.90 0.32

17 5 3 1 0 6 0.63 1.00 0.75 0.77

9 0 1 6 0 0 0.00 0.00 0.00 0.00

10 0 0 0 0 0 No Model Available

 Average Performance 0.46 0.33 1.25 0.36

Standard Deviation 0.28 0.29 1.05 0.23

Table 4.5-9 details the raw analysis data, where FN (P) represents false negatives that are

actually stated within the specification document, but are missed by automation. Where FN

(NP) represents false negatives that are not stated within the specification document. The

combination of both FN(P) and FN(NP) will give the original false negative count see Table

4.5-8.

Missing class candidates that are not defined within the specification do have a negative

impact on performance, and when considering what is only defined within the specification

it becomes clear that the performance of the approach is better. Recall performance increase

~179%, precision sees no performance improvement at all and over-specification increases

greatly. Figure 4.5-12 ASA Relationship Performance (FN (NP) Discounted) compares the

performance of recall, precision and over-specification when

167

Figure 4.5-12 ASA Relationship Performance (FN (NP) Discounted)

Table 4.5-10 demonstrates the raw data for the previous box plots.

Table 4.5-10 ASA vs. ASA (FN(P) only) Relationship Detection Raw Data

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall (ASA) 0.11 0.19 0.25 0.35 0.6 0.19 0.26

Recall (ASA – FN(P))) 0 0.27 0.38 0.66 1 0.28 0.46

Precision (ASA) 0.2 0.25 0.26 0.4 1 0.29 0.33

Precision (ASA – FN(P))) 0 0.15 0.27 0.35 1 0.29 0.33

OVS (ASA) 0.11 0.30 0.52 0.80 1 0.78 0.68

OVS (ASA – FN(P))) 0 0.41 1 1.56 3.5 1.05 1.25

As with candidate class detection an increase in recall is realised however, a steep increase in

standard deviation by almost ~47% is also noted when ignoring relationships that are not

defined within the specification as a result of missing candidate classes. It does demonstrate

that overall performance is being masked by the inclusion of false negatives that are not

present within the specification for both recall and over-specification, but what is not

identifiable is whether the approach would actually find the relationship if the candidate

classes were to be included.

4.5.4.2 Relationship Detection Conclusion

The relationship detection technique only identifies a very small number of relationships, and

in some of those cases the relationships are not discovered due to the class candidate being a

false negative. Even if the false negative class candidate had been correctly identified in the

first place, it does not actually demonstrate that the relationship would have been identified.

It is shown that the majority of missing relationships are not actually defined within the

specification text and are being identified by some other unknown means.

0 0.5 1 1.5 2 2.5 3 3.5 4

Recall (FN(NP) Removed)

Recall

Precision (FN(NP) Removed)

Precision

OVS (FN(NP) Removed)

OVS

168

The next key finding is domain understanding where the class candidates are present.

However, since the class candidates are spread across sentences there is no connecting verb to

relate both candidates together and as a result the relationship is not discovered by the

approach. This is related to the way the ASA the specification, on a sentence only basis for

UML model feature discovery.

The ASA Model also demonstrated some failings associated with the verb/preposition

decision matrix, which defines what the verb/preposition combination means in terms of

actions, relationships, hierarchical constructs. This is an area that requires further research and

better definition of the verb/preposition matrix design decisions.

Related works stated “the discovery of relationships by automation would be unreliable” [Har00,

HG02], but the evaluation has demonstrated that 49% of all relationships are identifiable from

the requirements specification where 51% of all other relationships are being defined by

candidate classes that are not actually contained within the requirements specification texts.

Even though a minority of relationships were actually discovered by the ASA, 21% actually

being found by the technique, the issues identified highlight the root causes associated with

those failures and provide starting points for future investigations. However, the ASA’s

approach of utilising the main verb, semantics and syntactic constructs has led to the

identification of some model relationships.

In addition a performance review was undertaken that considered the impact of discounting

missing relationships not defined within the specification. This analysis gave a filtered view

of performance and demonstrated an overall increase in recall performance, with precision

showing no such improvement. The filtered view does not address the key issues that have

been previously uncovered but does allow better understanding of the performance of the

actual technique and if the missing candidate classes were available within the specification,

it does not imply that the relationships would have been uncovered.

4.5.5 ASA Comparative Class Detection Performance Evaluation

The evaluation undertaken here is a comparative evaluation of the ASAs in comparison to the

key related works CM-Builder [Har00, HG02] and NL-OOPS [Mic96].

169

4.5.5.1 ASA vs. NL-OOPS

NL-OOPS uses a linkage threshold analysis for the detection of its class candidates. This is a

count of the number of links a candidate has with other candidates contained within its model.

Therefore, given a word contained within the specification the user can define a threshold that

the candidate linkage must satisfy which will result in the creation of a class. This threshold is

user defined and differs per specification as it is modified to obtain the best results in terms of

recall and precision. Both Figure 4.5-13 and Figure 4.5-14 show the performance results in

terms of recall, precision and over specification (OVS) for the various thresholds utilised by

NL-OOPS, defined by specification_name(threshold_value). A higher threshold returns better

recall results, but in most cases results in a lower levels of precision, a typical trade off.

Figure 4.5-13 Requirements Specification Softcom Threshold Analysis [RBP+91]

Figure 4.5-14 Requirements specification Library Threshold Analysis [EP98]

However, the choice of which threshold to use in the comparison between ASA and NL-OOPS

is difficult as one would like to obtain a fair comparison of performance. Therefore, it has been

decided that using the higher user defined threshold from each available specification and

obtaining their average would give a fair comparison; even though it has an effect on

precision, it is one that is negligible. The comparison itself is between three specifications. The

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Recall Precision OVS FM

softcom(15) softcom(10) softcom(5)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Recall Precision OVS FM

Lib(17) Lib(10) Lib(7)

170

reason the third specification is not detailed is there is only one threshold analysis given and

it doesn’t demonstrate the effect that different threshold decisions have on the overall

performance. However, for completeness, the results for the ATM specification analysed by

NL-OOPS is as follows: recall = 91%, precision = 71%, over-specification = 0%, F-Measure =

80%.

Overall the ASA performs relatively well in comparison (see Figure 4.5-15) to the NL-OOPS

approach noting that the ASA approach does not utilise a user defined threshold to obtain the

best results. NL-OOPS demonstrates a better average overall in terms of recall and over-

specification than the ASA.

Figure 4.5-15 ASA vs. NL-OOPS Performance Results

NL-OOPS has far lower over-specification average in comparison to the ASA, which is not of

any real concern since over-specification identifies candidate classes that by the authors own

judgement, and using the context of the problem statement to aid that judgement,

demonstrates a useful concept for consideration. However, NL-OOPS’s class detection process

is also user defined therefore the results can be tweaked until the desired outcome is achieved,

whereas the ASA has no means of user intervention. Therefore in light of the both techniques,

the ASA approach does well to achieve similar levels of recall and precision.

Table 4.5-11 details the raw data of the previous box plots, the average performance, the

standard deviation (STDEV) and identifies that the NL-OOPS approach has a far greater

variability in terms of all the measures used whereas ASA’s recall and precision are 79% and

69% less variable respectively. This demonstrates that the ASA approach may be more

consistent. Nevertheless, it is clear to see by comparing average performance that the NL-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall (ASA)

Recall(NL-OOPS)

Precision(ASA)

Precision(NL-OOPS)

OVS(ASA)

OVS(NL-OOPS)

171

OOPS technique does perform better than the ASA overall; but at the cost of consistency in

terms of recall and precision.

Table 4.5-11 ASA and NL-OOPS Comparative Data

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall (ASA) 0.64 0.67 0.71 0.73 0.75 0.05 0.70

Recall (NL-OOPS) 0.45 0.6818 0.91 0.9545 1.00 0.24 0.79

Precision (ASA) 0.50 0.52 0.56 0.57 0.60 0.04 0.55

Precision (NL-OOPS) 0.41 0.4559 0.5 0.6071 0.71 0.13 0.54

OVS (ASA) 0.17 0.21 0.27 0.35 0.43 0.11 0.29

OVS (NL-OOPS) 0.00 0.00 0.00 0.0455 0.09 0.04 0.03

Figure 4.5-16 details the raw analysis in context of classifications for true positives and both

false negatives and positives for both approaches. The approach of the ASA is not that far

from being as accurate as NL-OOPS as it has fewer false positives, but it is false negatives, the

candidates that the ASA does not find, that impact the ASA’s approach.

Figure 4.5-16 ASA vs. NL-OOPS Comparative Analysis

The root causes for both false positives and false negatives are the same as those previously

investigated and discussed, but it is difficult to identify the root causes for NL-OOPS false

positives and negatives.

4.5.5.2 ASA vs. CM-Builder

CM-Builder takes the approach of term frequency analysis for class detection, which is also a

threshold that the user can modify to obtain the best results. One would assume a similar

affect in relation to both recall and precision as the threshold is modified it would impact

either recall and or precision. The thresholds used for each specification within the CM-

Builder approach are unknown, not that this would make any difference to the overall results.

0

5

10

15

20

25

True Positive False Negative False Positive

NL-OOPS ASA

172

It is assumed that the thresholds used to obtain the CM-Builder results are the most efficient

in terms of both recall and precision. Figure 4.5-17 details the performance results.

Figure 4.5-17 ASA vs. CM-Builder Performance Results

This comparison is based upon 8 specifications used by CM-Builder in their evaluation that

have also been processed by the ASA. The ASA performs relatively well in comparison to

recall, precision and over-specification although, in direct comparison, the CM-Builder

approach does perform better overall.

Table 4.5-12 details a summary of the previous box plots, average performance and similarly

standard deviation.

Table 4.5-12 ASA and CM-Builder Summary of Comparative Performance

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall (ASA) 0.50 0.7125 0.78 0.8188 0.89 0.12 0.75

Recall (CM-Builder) 0.40 0.75 0.83 0.9167 1.00 0.18 0.81

Precision (ASA) 0.44 0.525 0.57 0.6648 1.00 0.17 0.63

Precision (CM-Builder) 0.57 0.6226 0.78 0.8679 1.00 0.14 0.76

OVS (ASA) 0.17 0.25 0.37 0.6688 1.20 0.34 0.51

OVS (CM-Builder) 0.17 0.5611 0.66 0.7625 0.86 0.21 0.62

The standard deviation demonstrates that the CM-Builder approach has a greater variability

in terms recall but not in precision, where the ASA is 33% less variable in terms of recall, but

is 21% more variable in terms of precision and 61% in over-specification. Overall, and as with

NL-OOPS, it is clear to see from the averages that the CM-Builder technique does outperform

the ASA at the cost of consistency in recall only.

Figure 4.5-18 demonstrates that false negatives and false positives are the key impact affecting

ASA’s overall performance as it only misses 1 true positive when compared to CM-Builder.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Recall (ASA)

Recall(CM-Builder)

Precision(ASA)

Precision(CM_Builder)

OVS(ASA)

OVS(CM-Builder)

173

Figure 4.5-18 ASA vs. CM-Builder Comparative Analysis

The root causes for both false positives and false negatives are the same as those previously

investigated and discussed, but it is difficult to identify the root causes for the CM-Builder

approach. The average of over-specification is comparable to that of the CM-Builder approach,

but it is still an area of concern and raises the question Is there a difference in the author’s

judgement when classifying a candidate as ‘Extra’ in comparison to the CM-Builder?

Table 4.5-13 CM-Builder vs. ASA Library Specification3 [Cur95] Classifications

Ideal Model CM-Builder Classification ASA Classification

Order Order Correct Missing

Invoice Invoice Correct Invoice Correct

Book Book Correct Book Correct

Note Note Correct Missing

Catalogue Note Catalogue Note Correct Catalogue Note Correct

Delivery Note Delivery Note Correct Delivery Note Correct

Enquiry Note Missing Missing

Person Missing Missing

 Delivery Incorrect Enquiry Incorrect

 Detail Incorrect Instruction Incorrect

 Store Incorrect

 Library Desk Incorrect

 Account Dept. Extra Public Extra

 Cheque Extra Accounts Dept. Extra

 File Extra File Extra

 Publisher Extra Letter Extra

 Someone Extra Publisher Extra

 Missing Library Extra

 Missing Pending File Extra

Table 4.5-13 details the candidate classes identified for Library Problem 3 [Cur95] (see

Appendix B.2) that results in a large over-specification value for ASA. What is of interest is

the classification of Extra elements and the goal is to identify why there is a difference, if any,

within these classifications.

0

5

10

15

20

25

30

35

40

45

50

True Positive False Negative False Positive

CM-Builder ASA

174

The ASA detects a slightly larger number of extra candidates that need to be considered by a

developer as they are not contained within the final UML model produced. Only one

candidate ‘Cheque’ (identified by CM-builder) is considered by ASA, but not as a class so the

option is not available to be considered as an extra item. The term ‘Someone’ also identified

by CM-Builder is not present within the specification at all and its inclusion as extra is a

quandary. Additional elements such as Library, Pending File, Letter and Public have been

identified and considered as worthy additional candidates that should be considered for

inclusion within the model that have not been identified by CM-Builder. The sentences where

these extra candidates have been identified are detailed as follows (in no particular order).

1. When a library first receives a book from a publisher it is sent, together with the accompanying

delivery note, to the library desk.

2. If no corresponding delivery note is found, the invoice is stored in a pending file.

3. On receipt of an invoice from the public the accounts department checks its store of delivery notes.

4. If no order can be found to match the note, a letter of enquiry is sent to the publishers.

The judgement for the inclusion of extra candidates is consistent with that of CM-Builder’s.

Overall the ASA’s approach towards candidate class detection performs relatively well in

comparison to the related work, which is encouraging. Even though related works do have

better results in terms of recall and precision overall, it is assumed these results have been

achieved by choosing the best user definable thresholds for frequency analysis for CM-Builder

and graph linkages for NL-OOPS. The ASA has no such user-definable thresholds and relies

solely on the syntactic and semantics of a given word as its decision making process for class

candidates.

ASA vs CM-Builder discounting missing candidate classes

In addition to earlier discussion discounting the false negatives that are not present within the

specification, it has been possible evaluate the impact during the comparative analysis as well.

Figure 4.5-19 boxplots the performance of the ASA vs CM-Builder when only considering false

negatives that are present within the specification. The key difference lies with Q1 to Q3

quartile ranges are more positively skewed in comparison to the original results Figure 4.5-17.

175

Overall, the ASA does demonstrate better consistency over the same range of specifications,

but at the cost of precision, where CM-Builder does perform more consistently overall.

Figure 4.5-19 ASA vs CM-Builder - Discounting Missing Class Candidates – Boxplot2

Table 4.5-14 details the summary data of the previous box plot, average performance and

standard deviation as before.

Table 4.5-14 ASA vs CM-Builder - Discounting Missing Class Candidates – Summary Data

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall (ASA) 0.67 0.75 0.88 1 1 0.14 0.86

Recall (CM-Builder) 0.50 0.78 0.87 1 1 0.16 0.85

Precision (ASA) 0.32 0.5 0.55 0.75 1 0.17 0.63

Precision (CM-Builder) 0.57 0.62 0.78 0.86 1 0.14 0.76

OVS (ASA) 0.17 0.33 0.40 0.75 1.5 0.45 0.62

OVS (CM-Builder) 0.17 0.56 0.78 0.83 0.88 0.23 0.67

This time the standard deviation demonstrates that the ASA approach is less variable in terms

recall by 12% but both precision and over-specification are more variable in terms of CM-

Builder by 21% and 95% respectively. After discounting false negatives not present within the

specification both approaches perform relatively similarly.

4.5.5.3 Comparative Relationship Evaluation

Neither CM-builder nor NL-OOPS undertake any evaluation into the aspects of relationship

detection and NL-OOPS does not make relation information available for comparison either.

Furthermore, the argument exists that relationship detection is variable and open to

interpretation when considering relationships discovered from the written requirements

2 Whiskers are not visible for CM Builder data because the upper quartile is equal to the maximum.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Recall (ASA)

Recall (CM_Builder)

Precision (ASA)

Precision (CM_Builder)

OVS (ASA)

OVS (CM_Builder)

176

specification. However, this could also be said of class detection as this process is also open to

interpretation.

The evaluation of the CM-Builder does provide models that detail the relationships

discovered during the evaluation of class detection, however this is not discussed further.

Therefore the classification of correct, incorrect, missing and extra have been undertaken by

the author in an unbiased manner to obtain the results detailed in Figure 4.5-20.

Figure 4.5-20 ASA vs. CM-Builder Relationships Performance

The ASA performs almost as well in comparison to the CM-Builder approach and the root

cause analysis undertaken previously identifies the ASA issues (see section 4.5.4). One of the

key issues is that the relationship information is not present within the specification.

Table 4.5-15 ASA and CM-Builder Relationship Summary Data

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall (ASA) 0.11 0.194118 0.25 0.357143 0.60 0.15 0.29

Recall (CM-Builder) 0.00 0.083333 0.20 0.6 0.75 0.28 0.31

Precision (ASA) 0.20 0.25 0.26 0.40 1.00 0.26 0.39

Precision (CM-Builder) 0.00 0.1875 0.44 0.7 1.00 0.37 0.47

OVS (ASA) 0.11 0.308824 0.52 0.8 1.00 0.30 0.54

OVS (CM-Builder) 0.40 0.686275 1.16 1.892857 2.0 0.64 1.22

Table 4.5-15 details the summary data of the previous box plots, average performance and

standard deviation as before. The standard deviation demonstrates that the CM-Builder

approach has a greater variability in terms recall and precision, where the ASA respectively

are 46% and 29% less variable in both cases respectively, but it is clear from the average

performance that the CM-Builder technique does outperform the ASA, but at the cost of

consistency.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Recall(ASA)

Recall(CM_Builder)

Precision(ASA)

Precision(CM_Builder)

OVS(ASA)

OVS(CM_Builder)

177

ASA vs CM-Builder discounting missing relationship candidates

Along with previous discussion related to discounting false negatives that are not present

within the specification texts to obtain a more accurate view of actual performance, it has also

been possible to apply the same technique to this comparative relationship evaluation.

Therefore, a missing relationship that is associated to a class that is also missing from the

requirements specification text are filtered from this comparative evaluation

Figure 4.5-21 ASA vs CM-Builder - Discounting Missing Relationship Candidates – Boxplot

Figure 4.5-21 demonstrates that discounting/filtering relationships that are uncovered by

candidate classes that are not contained within the specification texts does demonstrate an

overall improvement in performance for recall and precision.

Table 4.5-16 ASA vs CM-Builder - Discounting Missing Relationship Candidate – Summary Data

Measure Minimum Quartile 1 Median Quartile 3 Maximum STDEV Average

Recall (ASA) 0.29 0.38 0.63 0.81 1 0.26 0.63

Recall (CM-Builder) 0 0.08 0.26 0.75 1 0.37 0.39

Precision (ASA) 0.20 0.25 0.33 0.45 1 0.24 0.42

Precision (CM-Builder) 0 0.18 0.44 0.7 1 0.37 0.47

OVS (ASA) 0.14 0.85 1 1.08 3.5 0.94 1.17

OVS (CM-Builder) 0.41 0.91 1.88 2.12 2.6 0.77 1.62

Table 4.5-16 details the summary data of the previous box plots, average performance and

standard deviation and demonstrates that the CM-Builder approach has a greater variability

in terms recall and precision, where the ASA values are respectively 29% and 35% less variable

in both cases.

It is evident that candidate relationships that are associated to class candidates that are not

stated within the requirements specification texts are filtered from this comparative

evaluation. Overall, the evaluation has shown an increase in recall average performance by

0 0.5 1 1.5 2 2.5 3 3.5 4

Recall(ASA)

Recall(CM-Builder)

Precision(ASA)

Precision(CM-Builder)

OVS(ASA)

OVS(CM-Builder)

178

~161% whereas precision does not benefit in anyway and actually performs 10% worse than

the current CM-Builder approach. Even though this view may give an insight into the actually

performance of the approach by excluding missing candidate relationships as a result of

missing class candidates, it does not demonstrate whether or not the approach would actually

identify these candidates if the information where available.

4.6 Evaluation Conclusion

Overall the approach towards class detection performs relatively well, achieving an average

recall of 73%; a precision average of 60%; an over-specification average of 47% and F-measure

average of 64%. This identifies that techniques employed for automated software specification

analysis and model generation can provide a conceptual model as a key starting point to

quickly and efficiently understand the requirements of the software system.

This evaluation has investigated and identified the key areas within the ASA that are causing

the main issues in terms of loss of recall, precision and the generation of false positives. The

key issues identified are Semantics, Rule 27, NLP Toolkit and ASA prototype implementation

issues are causing the key problems, with Semantics being the biggest issue for false positives.

The remaining issues are the key issues for false negatives and missing (present within the

specification). Researching and resolving these issues would most certainly aid the approach

by helping to increase both recall and precision of class candidate detection.

The main issue discovered is that 20% of the information is not actually present within the

specification itself, that it is discovered through some means of domain knowledge or in some

other way. Further still, these insights into the design concerning missing classes may not

become apparent to the developer until after the initial model has been created, but this is

difficult to evaluate or even confirm at this stage. Even so, there is still a collection of

information contained within the documents that has not been processed by the system for

various reasons considered throughout this evaluation. The realisation and consideration of

these unprocessed classes by the approach will go some way to increasing the overall recall of

the system.

As with class detection, the approach also undertakes relationship detection although this

performs rather poorly overall. The approach itself has a recall average of 26%, a precision

179

average of 33%, an over-specification average of 68% and finally an F-measure average of 28%.

There were still a minority of relations that the approach had not processed for one reason or

another, but for the majority the relationship information was not present within the

specification.

Through consideration of relationship detection and identifying the key issues concerning

unprocessed relationships, it has been discovered that the approach is typically at fault within

three key areas. A minority of the relationships have been not processed by the approach; that

only through contextual understanding can the relationship be discovered; or the class was

missing for reasons being attributed to the approach taken for class detection. The main

finding is that even though the majority of relationships between design components are

considered to be only discoverable through domain knowledge, a below average number of

relationships are contained within the specification and it is possible for these to be extracted

through consideration of these key issues.

In comparison to related works the approach does not perform as well, but over the same

range of specifications used in the comparative evaluation the ASA approach towards class

detection is significantly less variable in terms of recall and precision when considering its

standard deviation.

Even though the most closely related works perform better in direct comparison there maybe

the possibility of creating a hybrid system that considers the techniques employed in these

related works such as linkage analysis to further enhance the results of the ASA in terms of

both recall and precision. However, these approaches employ a user-defined variable which

can be utilised to try and better the results returned whereas user involvement is a technique

purposely avoided within the ASA. It is one of the key goals of ASA to be able to process an

uncontrolled specification without the need to make adjustments and to create the best initial

class model from the information that is readily available within the specification document

and for the task of analysis to not burden the developer/analyst and allow them to work with

the produced model efficiently and effectively.

The comparative evaluation between the related work of CM-Builder and the ASA was

undertaken for relationship detection. Even though CM-Builder does not undertake this type

of evaluation citing that detection of relationships automatically is too variable, their approach

does perform marginally better than ASA and identify relationships by means of verb phrase

180

analysis. However, as with class detection the technique employed by the ASA is less variable

in terms of the recall and precision over the same range of specifications. Overall the

evaluation demonstrates that it is possible to generate comparable results without any need

for manual intervention during the analysis process nor manipulation of the requirements

specification prior to automated analysis.

181

Chapter 5

Conclusions & Future Work
__

182

5.1 Conclusions

This thesis has presented and evaluated an automated approach towards UML model

generation through the analysis of free-form natural language requirements specifications.

This has sought to answer the primary research question To what extent does analysis of an un-

restricted natural language specification contributing to a ‘better’ first-cut design through means of a

deep syntactic and semantic analysis?

Study of the manual requirement analysis methodologies to understand how candidate UML

model features are extracted the from natural language specifications was the initial starting

point. This identified that language features such as nouns, verbs, adjectives and others are

key to the identification of candidates such as classes, operations, relationships and more.

Therefore, a means to extract natural language information was also a key requirement for the

ASA as well.

The next key step in the process was to also recognise what had and hadn’t been done before

in the domain of automated requirements analysis and model generation. The assessment of

the related works uncovered two differing approaches: fully and partially automated, but it

also became apparent that even fully automated approaches required some means of user

intervention as well. Understanding of these related works has led this thesis towards an

implementation to address the key issues identified from related works, defined as follows:

1. Manual rewriting/simplification of the software requirements specification (SRS) to

cater for fully-automated analysis [NR95, LDP04, LDP05, LDP05a, PRM+07, DR08,

DR09, DB09] and semi-automated analysis [FGR+93,BV95, BV96, BV97, Mor97,

JM00, JM00a, BSC06, BCA06, BSM09, CHK07, GT07, VAD09] techniques; this may

lead to loss of key information via unconscious bias and also result in the introduction

of additional information, an increase in time/cognitive effort associated with the

modification of the requirements

2. User defined candidate extraction rules and domain model generation that identifies

key/all candidate model features and renders automated analysis and identification

irrelevant [Bry00, LB02, LB02a, LB02b, LB02c, LB03, BLC+03, ZZ03, CHK07, IO05,

IO06, OI06, Kof05, Kof05a, Kof07, Kof08, Kof09]

183

3. No fundamental usage of word semantics [Bry00, LB02, LB02a, LB02b, LB02c, LB03,

BLC+03, ZZ03, PRM+07] as a mechanism to aid identification of key model features,

but only as a process to remove duplicate word features

4. No utilisation of linguistic structures as a means to identify relational/hierarchical

model features

With these issue identified, the construction of a prototype implementation was undertaken.

The key steps of how the ASA undertakes analysis of free-form natural language requirements

specifications and automated model generation can be defined by these steps:

1. Syntactic analysis of free-form natural language requirements specifications,

identifying key features such as nouns, verbs, prepositions, phrase constructs &

sentence constructs (simple, compound, complex)

2. Semantic analysis of key features, identification of most common semantics and

consideration of semantic sets and their implications in terms of UML model features

3. Detection of UML model features such as classes, relationships, attributes, operations,

parameters and multiplicity based upon the information extracted from steps 1 and

2, which are then subsequently stored within a candidate feature graph for

preservation

4. Creation of a UML model as defined by the candidate feature graph

The ASA is assisted by two key models the Syntactic Analysis Model (SAM, Step 1) and

Common Semantic Model (CSM, Step 2) that demonstrate that it is possible to automatically

analyse and create an initial UML model that addresses the key research findings. The idea of

both SAM and CSM are not new, but what the ASA has done is to take those models to a new

level of detail. SAM uses both a syntactic and a deep structural analysis technique; syntactic

analysis identifies individual parts of speech such as nouns, verbs that can be processed along

with the CSM to identify key model features whereas deep syntactic analysis is used to

identify model features from the syntactic structure and not from semantic understanding,

this is the key benefit of deep syntactic analysis. The CSM verifies candidates uncovered by

the low-level analysis from SAM against the semantic sets that indicate what model feature to

create based upon pre-computed semantic to UML feature mappings. It is only when both

184

CSM and SAM are combined is it possible to create a fully featured model from a natural

language requirements specification.

Creation of UML models either automatically or manually will always be subjective,

dependent on the requirements specification, users’ understanding of the problem and its

domain. Therefore, the techniques discussed in this thesis may never be a faultless way of

automatically creating a precise software model. However, what it does achieve is the

conceptualisation of the proposed software system from a free-form natural language

requirements specification; not controlled or modified by any means and with less effort than

it would be through manual model generation.

5.1.1 Thesis Contributions

The ASA is a domain-less approach, that can undertake deep syntactic analysis of any given

sentence structure. It has the capacity to make the most relevant decision using this

information that has led to the creation of a technique which is based purely upon the analysis

of the syntactic and semantic features. It has also been the goal of this thesis to demonstrate

the following contributions:

1. A means to automatically create a UML model from unrestricted/unmodified natural

language requirements specifications.

2. Provision of an independent semantic and syntactic analysis model with no need for

manual intervention, configuration or problem domain specialisation.

3. Requirement Traceability: identifying the sentence(s) within the specification where

model artefacts have been identified from.

4. A reduction of overall effort associated to the manual analysis approach by means of

a fully automated specification analysis and model generation process.

All of the related works (see Table 2.3-1), including the approach discussed herein make use

of syntactic analysis, it is a key requirement, and when identifying the core contributions of

the ASA in this context it is challenging as all approaches have the same starting point. The

key differentiator and core contributions of the ASA are its semantic model which is used to

make sense of all the candidate information that has been identified and extracted from the

specification during syntactic analysis. The related works from the literature review do not

185

use such a technique to make decisions which are based either on core syntactic features

(nouns and verbs), thresholds, dictionaries, specification simplification and/or human

intervention.

The syntactic model is utilised not just to identify key candidates for the semantic model, but

is also extended to focus on the sentence constructs such as the whole verb and noun phrases

ensuring that all parts of speech are used to their full extent. In addition understanding of

sentence construction and their key dependencies aids discovery of relationships that are not

identifiable from the main sentence verb. Overall it is the unison of both the syntactic and

semantic models that gives rise to a completely user independent approach to automated

software modelling from unaltered requirements specifications.

5.1.2 Research Findings

The evaluation investigated the performance of the ASA in context of the ideal model and also

undertook a comparative evaluation against its most closely related works [Har00, HG02,

Mic96, MMZ02, MG02 & KZM+04] using the metrics Recall, Precision and F-Measure.

Overall the ASA, based on F-Measure and the ideal model, demonstrates an accuracy of 64%

for candidate class detection and 30% for relationship detection.

Even though the ASA doesn’t perform quite as well, the techniques employed do demonstrate

that its results are less variable and have greater consistency around the mean as identified by

the standard deviation measures. The ASA demonstrates average recall and precision

standard deviations outcomes are 58% and 23% less variable than both CM-Builder and NL-

OOPS outcomes when combined. This indicates that, even with manual intervention and

choosing the best result data for each of the most closely related works, the extraction and

identification of model features by the ASA has greater consistency over the same range of

related works’ data sets.

An impact analysis was also undertaken to understand what the impact is of class candidates

that are within the ideal model but are not detailed within the requirements specification. This

resulted in a total reduction on the number of false positives which in all cases improved the

performance of the ASA and related approaches in terms of both recall and precision, but also

impacted the standard deviation measures as well. The key impact of discarding classes and

186

relationships not present within the requirements specification demonstrates how well the

technique does perform when all information is available.

In addition to the performance related measures, there are a series of key limitations

associated with the ASA in the areas of ambiguity, missing requirements, domain knowledge,

intralinguistic variations, threats to validity and demonstration of effort reduction that were

identified during the evaluation.

The limitations of ambiguity and intralingusitc variations can result in the creation of either

relevant or irrelevant model features, primarily identified as false negatives during the

evaluation. This is an intrinsic issue for both the CSM and SAM models, which gives rise to

additional research areas for both of these models.

Both missing requirements and domain knowledge limitations are related, as when a

requirement is missing, the user may unconsciously access their own knowledge of the

domain, hence giving them the ability to infer new features not contained within the

requirements specification. When considering missing requirements in the context of the ASA,

it can only analyse what it is given and if requirements are not present, there is little that can

be done, which is a difficult situation to resolve.

The ASA also adopts a domain-less methodology and this is a problem for explicit domain

knowledge that the ASA has no awareness of. This is what gives the ASA its flexibility to

operate across many differing domains, but what could be a step towards resolution is a model

that feeds back and preserves changes for future use and consideration. As a result, this has

been flagged as a future follow-up item.

The most concerning threat to validity is the author’s bias during the evaluation. This only

impacts the performance analysis of the most closely related works [Har00, HG02, Mic96,

MMZ02, MG02 & KZM+04], because when evaluating the ASA in context of the ideal model

there has always been a key to validate against, apart from over-specification. Whereas, the

performance analysis provided by the related work for NL-OOPS had varying threshold

levels with varying levels of performance. The threshold and results chosen in the case of NL-

OOPS to compare to the ASA have tried to show NL-OOPs at its best. This has been

deliberately done to ensure no discrimination towards any related works or bias towards the

ASA, as already discussed in this thesis.

187

Another threat to validity is the claim of effort reduction, which it has not been possible to

validate or demonstrate in this thesis. The ASA itself maybe faster during its automated

analysis and model creation rather than manual techniques. However, this does not prove a

reduction in effort. What needs to be done is to validate whether the perceived benefits of the

ASA do translate into an effort reduction as a result this is an item that also requires further

investigation.

Positioning the ASA in context of its related works and differentiating its technique is

challenging. All related works, either fully automated [NR95, Mic96, MMZ02, MG02,

KZM+04, Per02, PKS+05, Har00, HG02, ZZ03, LDP04, LDP05, LDP05a, IO05, IO06, OI06,

PRM+07, DR08, DR09, DB09, SOS08, SRC+07] or partially automated [MHH89, FGR+93,

GB94, BV95, BV96, BV97, Mor97, JM00, JM00a,AG97, AG99, AG06, GN02, SBB99, Bry00,

LB02, LB02a, LB02b, LB02c, LB03, BLC+03, OLR01, Kof05, Kof05a, Kof07, Kof08, Kof09,

BSC06, BCA06, BSM09, CHK07, GT07, GK08, VAD09] - typically use some means of speech,

syntactic and or semantic analysis which are then subsequently translated into some form of

object/class model. The ASA also makes use of similar strategies however, it is the subtlety of

the ASA’s approach that separates it from the rest such as it being fully automated without

any need for user intervention. A key differentiator is the ASA’s enhanced syntactic analysis

that allows discovery of relational/hierarchical model features without relying on parts of

speech or semantic features. In addition, the usage of word semantics as a means to

complement and refine the model features identified by syntactic analysis is novel and aids

discovery of classes, relationships, operations, attributes, multiplicities and more. All of these

subtle techniques enables the creation of a fully featured UML model that depicts and

describes the key natural language requirements.

The approach presented in this thesis simplifies the analysis and design phase allowing the

opportunity to build upon a robust, extensible and maintainable UML design delivered by an

approach that demonstrates reliable and consist results throughout its evaluation.

5.2 Recommendations for Future Work

Future studies to follow up on the work discussed in this thesis and to address the identified

limitations are set out as follows:

188

1. Common Semantic Model

a. Disambiguation

b. Additional Semantic Consideration

2. Syntactic Analysis Model - Contextual Reasoning

3. Effort Reduction Analysis

5.2.1 Common Semantic Model

The Common Semantic Model implementation is one that utilises the most commonly

understood semantics as identified from WordNet [Mil95]. Those semantic sets have been

classified into collections that identify candidate UML model features. These semantics are

utilised throughout the ASA to aid detection of said candidate features.

Disambiguation: would serve to ensure that the correct semantic for any given word is

correctly chosen and is aimed at addressing one of the key limitations, ambiguity. It would

help by ensuring that only the appropriate semantics are identified and fed into the decision

making process for any given candidate feature. It is considered that through this technique

an increase in both recall and precision could be seen through the reduction of false negatives

and false positives identified during the evaluation. This could be achieved through creation

of additional semantic models or a domain specific model managing only the semantics for

that specification. However, this would also have the side effect of creating additional

overheads in model creation.

Additional Semantic Considerations: Given the set of all known semantics from WordNet,

only 10 out of 14 are actually used in the class detection process in the context of nouns. This

leaves a remaining 4 semantic groups that might identify additional model features such as

relationships, operations, state, algorithms or attributes. Consideration of these semantics and

what they identify could be utilised to create a more complete UML class model.

5.2.2 Syntactic Analysis Model

The Syntactic Analysis Model operates on a sentence by sentence basis which is a key

limitation as no surrounding context is considered during its analysis. Currently, it is

interested in sentence structure, whether that be simple, compound or complex, at a high level

189

or down to the individual parts of speech, phrases, and sentence components. It is the goal of

SAM to extract candidate features and along with CSM it can make the relevant decision

regarding a candidate feature.

Paragraph Contextual Reasoning: The premise of paragraph contextual reasoning (PCR) is

that additional candidate model relationships could be discovered over and above the current

techniques employed. The definition of a paragraph is a small collection of sentences typically

dealing with a single theme and begins on a new line. The interesting aspect is the ‘single

theme’ and how everything else in the paragraph relates to this theme.

Using paragraph contextual reasoning could aid identification of the relationship between the

paragraph theme and the following sentence artefacts, which could uncover new model

candidates and reduce the inclusion of additional/erroneous and contextual issues that

resulted in a high rate of false positives identified during the evaluation.

5.2.3 Effort Reduction Analysis

The idea of effort reduction analysis (ERA) is to demonstrate that automated analysis of

natural language requirements specifications does lead to a reduction of effort in the key areas

analysis and modelling, which over the last 3 decades has seen the majority of project effort

shift towards these areas. The key idea of ERA is to perform a study either commercially or

academically to identify the benefits that the ASA can bring in the context of effort reduction,

if any.

190

References

[Abo85] Abbot, R. (1985). Program Design by Informal English Description.

Communication of ACM, 882-894.

[AG97] Ambriola, V., & Gervasi, G. (1997). Processing natural language

requirements. 12th IEEE International Conference on Automated Software

Engineering, (pp. 36-45).

[AG99] Ambriola, V., & Gervasi, V. (1999). Experiences with domain-based parsing

of natural language requirements. Proceedings of the Fourth International

Conference on Applications of Natural Language to Information Systems. 129. OCG

Schriftenreihe.

[AG06] Ambriola, V., & Gervasi, V (2006). On the Systemactic Analysis of Natrual

Language Requirements with Circe. Automated Software Enineering, 107-167.

[AU06] Anandha Mala, G. S., & Uma, G. V. (2006). Object Oriented Visualization of

Natural Language Requirement Specification and NFR Preference Elicitation. IJCSNS

International Journal of Computer Science and Network Security, 6(8), 91-100.

[ANF98] Asium, C., N´Edellec, D., & Faure, D. (1998). Learning sub categorization

frames and restrictions of selection. In 10th European Conference on Machine

Learning - Workshop on Text Mining. Chemnitz.

[Bah99] Bahrami, A. (1999). Object Oriented Systems Development. Irwin McGraw-

Hill.

[BBL10] Bajwa, I. S., Bordbar, B., & Lee, M. G. (2010). OCL Constraints Generation

from Natural Language Specification. IEEE EDOC (The Enterprise Computing)

Conference, (pp. 204-213). Vitoria, Brazil.

[BCA06] Bajwa, I. S., Choudhary, M., & Abbas, M. (2006). Natural Language Processing

based Automated System for UML Diagrams Generation. Saudi 18th National

Conference on Computer Application, (pp. 171-176).

191

[BSC06] Bajwa, I. S., Siddique, M. I., & Choudhary, M. A. (2006). Rule based

Production Systems for Automatic Code Generation in Java. 1st International

Conference on Digital Information Management, (pp. 300-305).

[BSM09] Bajwa, S., Samad, A., & Mumtaz, S. (2009). Object Oriented Software

Modeling Using NLP Based Knowledge Extraction. European Journal of Scientific

Research, 22-33.

[Bar12] Barnes, D. J. (2012). Objects First with Java - A Practical Introduction using

BlueJ. Prentice Hall / Pearson Education.

[Ber08] Berry, D. M. (2008). Ambiguity in Natural Language Requirements

Documents (Extended abstract) Innovations for Requirement Analysis. From

Stakeholders’ Needs to Formal Designs. Lecture Notes in Computer Science, 5230, 1-

7.

[BL91] Berry, D. M., & Lor, K. W. (1991, December). Automatic Synthesis of SARA Design

Models from System Requirements. IEEE Transactions on Software Engineering,

1229-1240.

[Boo04] Booch, G. (2004). Object-Oriented Analysis and Design with Applications, 2nd

Ed. Benjamin Cummings.

[BJR00] Booch, G., Jacobson, I., & Rumbaugh, J. (2000). OMG Unified Modeling

Language Specification, Version 1.3 First Edition. Retrieved from

http://www.omg.org/spec/UML/

[Bri94] Brill, E. (1994). Some Advances in Transformation-Based Part of Speech

Tagging. Proceedings of the twelfth national conference on Artificial intelligence, (pp.

722 – 727).

[Bry00] Bryant, B. (2000). Object-Oriented Natural Language Requirements

Specification. 23rd Australasian Computer Science Conference.

[BLC+03] Bryant, B., Lee, B. S., Cao, F., Zhao, W., Burt, C., Gray, J., . . . Auguston, M.

(2003). From Natural Language Requirements to Executable Models of Software

Components. Proc. of the Monterey Language Requirements to Executable Models

192

of Workshop on Software Engineering for Embedded Systems: From Requirements to

Implementation, (pp. 51-58).

[BV95] Burg, J. F., & Van de Reit, R. P. (1995). Color-x: Object modelling profits from

lingusitcs. Amsterdam: Vrije University.

[BV96] Burg, J. F., & Van de Reit, R. P. (1996). Analyzing Informal Requirements

Specifications: A First Step towards Conceptual Modelling. Applications of Natural

Language to Information Systems, 15-27.

[BV97] Burg, J. F., & Van de Riet, R. P. (1997, January). The impact of linguistics on

conceptual models: consistency and understandability. Data & Knowledge

Engineering, 21(2), 131-146.

[Cal94] Callan, R. E. (1994). Building Object-Oriented Systems: An introduction from

concepts to implementation in C++. Computational Mechanics Publications.

[Che83] Chen, P. P. (1983). English Sentence Structure and Entity-Relationship

Diagrams. Information Sciences, 127-149.

[CHK07] Christiansen, H., Have, C. T., & Knut, T. (2007). From use cases to UML class

diagrams using logic grammars and constraints. Intl. Conf. Recent Adv. Nat. Lang.

Processing., (pp. 128-132).

[CIS08] CIS Dept. (2008). Cinema Operation Requirement Specification Course

Material. University of Strathclyde.

[Col07] Collins Dictionary. (2007). Collins Online Dictionary. Retrieved from

http://www.collinslanguage.com/

[Cur95] Curtis, G. (1995). Business Information systems: Analysis, Design and

Practice. Addison-Wesley Publishing Company.

[DZB+06] Daelemans, W., Zavrel, J., Berck, P., & Gillis, S. (1996). MBT: A Memory-Based

Part of Speech Tagger-Generator. In Proceedings of the 4th Workshop on Very Large

Corpora, (pp. 14-27). Copenhagen, Denmark.

[DB09] Deeptimahanti, D. K., & Babar, M. A. (2009). An Automated Tool for

Generating UML Models from Natural Language Requirements. ASE, 680-682.

193

[DR08] Deeptimahanti, D. K., & Ratna, S. (2008). Static UML Model Generator from

Analysis of Requirements (SUGAR). Advanced Software Engineering and Its

Applications, 77-84.

[DR09] Deeptimahanti, D. K., & Ratna, S. (2009). An Innovative Approach for

Generating Static UML Models from Natural Language Requirements. Advances in

Software Engineering Communications in Computer and Information Science, 147-

163.

[Der95] Derr, K. W. (1995). Applying OMT. . SIGS Books.

[Dic07] Dictionary.com. (2007). Dictionary.com. Retrieved from

http://dictionary.reference.com/

[Duf95] Duffy, D. (1995). From Chaos to Classess: Object-Oriented Software

Developmentin C++. McGraw-Hill Book Company.

[EFK98] El-Khouly, M., Far, B. H., & Koono, Z. (1998). Data Dictionary Support for

resuing components in automatic software Design. The Institutue of Electronics,

Information and communication Engineers.

[EP98] Eriksson, H. E., & Penker, M. (1998). UML Toolkit. New York: John Wiley.

[Fag89] Fagan, J. L. (1989). The effectiveness of a non-syntactic approach to

automatic phrase indexing for document retrieval. Journal of the American Society

for Information Science, 115-132.

[FGR+93] Fantechi, A., Gnesi, S., Ristori, G., Carenini, M., Vanocchi, M., & Moreschini,

P. (1993). Assisting requirement formalization by means of natural language

translation. Formal Methods in System Design, 4(3), 243-263.

[Fel98] Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Cambridge,

MA: MIT Press.

[GK08] Gelhausen, T., & Körner, Sven. (2008). Improving Automatic Model Creation

using Ontologies. Proceedings of the Twentieth International Conference on Software

Engineering & Knowledge Engineering, (pp. 691-696).

194

[GT07] Gelhausen, T., & Tichy, W. F. (2007). Thematic Role Based Generation of UML

Models from Real World Requirements. International Conference on Semantic

Computing ICSC, (pp. 282-289).

[GN02] Gervasi, V., & Nuseibeh, B. (2000). Lightweight validation of natural language

requirements. Proceedings of 4th IEEE International Conference on Requirements

Engineering (pp. 140-147). Los Alamitos, CA: IEEE CS Press.

[GB94] Goldin, L., & Berry, D. M. (1994). AbstFinder, A Prototype Natural Language

Text Abstraction Finder for Use in Requirements Elicitation. Automated Software

Engineering, 4(4), 375-412.

[HG00] Harmain, H. M., & Gaizauskas, R. J. (2000). CM-builder: An automated NL-

based CASE tool. In Automated Software Engineering, 45-54.

[Har00] Harmin, H. M. (2000). Building Object-Oriented Conceptual Models Using

Natural Language Processing Techniques. Sheffield: University of Sheffield.

[HTK93] Homayoun Far, B., Takizawa, T., & Koono, Z. (1993, October). Software

Creation: An SDL-Based Expert System for Automatic Software Design. Procedings of

the sixth SDL Forum.

[HHV+99] Hoppenbrouwers, J., Hoppenbrouwers, S., Van den Heuvel, W., & Weighand

de Troyer, H. (1999). The grammalizer: A CASE Tool based on Textual Analysis. Tilburg

University.

[IV98] Ide, N., & Véronis, J. (1998). Introduction to the Special Issue on Word Sense

Disambiguation: The State of the Art. Computational Linguistics (COLING), (pp. 1-40).

[IO05] Ilieva, M. G., & Ormandjieva, O. (2005). Automatic Transition of Natural

Language Software Requirements Specification into Formal Presentation. 10th Intl.

Conf. on Applications of Natural Language to Information Systems. Alicante, Spain.

[IO06] Ilieva, M. G., & Ormandjieva, O. (2006). Models Derived from Automatically

Analyzed Textual User Requirements. 2006. Fourth International Conference on

Software Engineering Research, Management and Applications (pp. 13-21). Seattle,

WA: IEEE.

195

[IH88] Ince, D. C., & Hekmatpour, S. (1998, March). An approach to automated software

design based on product metrics. Software Engineering Journal, 53-56.

[JCJ+92] Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. (1992). Object-

Oriented Software Engineering: A Use Case Driven Approach. Addison-Wesley.

[Jon72] Jones, K. S. (1972). A STATISTICAL INTERPRETATION OF TERM SPECIFICITY

AND ITS APPLICATION IN RETRIEVAL. Journal of Documentation, 11-21.

[JM97] Juzgado, N. J., & Moreno, A. (1997). Object Oriented Modelling focusing on

a lingustic aproach. 22nd Annual NASA Software Engineering Workshop.

[JM00] Juzgado, N. J., Moreno, A., & López, M. (2000). How to Use Linguistic

Instruments for Object-Oriented Analysis. IEEE Software, 17(3).

[KK98] Karimi, J., & Konsynsky, B. R. (1998, Febuary). An automated software design

assistant. Software Engineering, IEEE Transactions, 194-210.

[Kie09] Keis, D. (n.d.). Grammar: Words and Their Arrangement - Form and Function

of the English Clause. Retrieved from Modern English Grammar:

http://papyr.com/hypertextbooks/grammar/clause.htm

[Kie09a] Kies, D. (n.d.). Clause and Sentence - Coordination and Subordination.

Retrieved from Modern English Grammar:

http://papyr.com/hypertextbooks/grammar/complex.htm

[Kie09b] Kies, D. (n.d.). Form and Function of Word Classes in English. Retrieved from

Modern English Grammar: http://papyr.com/hypertextbooks/grammar/word.htm

[Kie09c9] Kies, D. (n.d.). The Phrase in English - Form and Function in the English Phrase.

Retrieved from Modern English Grammar:

http://papyr.com/hypertextbooks/grammar/phrase.htm

[KZM+04] Kiyavitskaya, N., Zeni, N., Mich, L., & Mylopoulos, J. (2004). Experimenting

with Linguistic Tools for Conceptual Modelling: Quality of the Models and Critical Features.

NLDB.

196

[KM03] Klein, D., & Manning, C. D. (2003). Accurate Unlexicalized Parsing.

Proceedings of the 41st Meeting of the Association for Computational Linguistics, (pp.

423-430).

[Kof05] Kof, L. (2005). An application of natural language processing to domain

modelling - two case studies. International Journal on Computer Systems Science

Engineering, 37-52.

[Kof05a] Kof, L. (2005). Natural language processing: Mature enough for requirements

documents analysis? 10th International Conference on Applications of Natural

Language to Information Systems (pp. 91-102). Alicante, Spain,: Springer.

[Kof07] Kof, L. (2007). Scenarios: Identifying missing objects and actions by means of

computational linguistics. 15th IEEE RE, (pp. 121-130).

[Kof07a] Kof, L. (2007). Treatment of Passive Voice and Conjunctions in Use Case

Documents. 12th International Conference on Applications of Natural Language to

Information Systems (pp. 181-192). Paris: Springer Berlin Heidelberg.

[Kof08] Kof, L. (2008). From Textual Scenarios to Message Sequence Charts: Inclusion

of Condition Generation and Actor Extraction. International Requirements

Engineering (pp. 331-332). Catalunya: IEEE.

[Kof09] Kof, L. (2009). Translation of Textual Specifications to Automata by Means of

Discourse Context Modeling. 15th International Working Conference, REFSQ (pp.

197-211). Amsterdam: Springer Berlin Heidelberg.

[LKK+00] Lavoie, B., Kittredge, R. I., Korelsky, T., & Rambow, O. (2000). A Framework

for MT and Multilingual NLG Systems Based on Uniform Lexico-Structural Processing.

ANLP, 60-67.

[LB02] Lee, B. S., & Bryant, B. R. (2002). Automated Conversion from Requirements

Documentation to an Object-Oriented Formal Specification Language. Proc. of ACM

Symposium on Applied Computing (SAC), 932-936.

[LB02a] Lee, B. S., & Bryant, B. R. (2002). Automation of Software System

Development Using Natural Language Processing and Two-Level Grammar. Proc.

197

2002 Monterey Workshop Radical Innovations of Software and Systems Engineering

in the Future, 244-257.

[LB02b] Lee, B. S., & Bryant, B. R. (2002). Contextual Processing and DAML for

Understanding Software Requirements Specifications. 19h Int. Conf Computational

Linguistics, (pp. 516-522).

[LB03] Lee, B. S., & Bryant, B. S. (2003). Applying XML Technology for

Implementation of Natural Language Specifications. Comp Syst., Sci. & Eng., 3-24.

[LB02c] Lee, L. S., & Bryant, B. R. (2002). Contextual Knowledge Representation for

Requirements Documents in Natural Language. 15th Int. Florida AI Research Symp,

(pp. 370-374). Florida.

[LDP04] Li, K., Dewar, R. G., & Pooley, R. J. (2004). Requirements Capture in Natural

Language Problem Statemetns. Heriot-Watt University.

[LDP05] Li, K., Dewar, R. G., & Pooley, R. J. (2005). Computer-Assisted and Customer

Oriented Requirements Elicitation. Proceedings of the 13th IEEE International

Conference on Requirements Engineering, (pp. 479-480). Edinburgh.

[LDP05a] Li, K., Dewar, R. G., & Pooley, R. J. (2005). Object-Oriented Analysis Using

Natural Language Processing. Herriot-Watt University.

[LG94] Long, D., & Gargliano, T. (1994). Reasoning by Anology and Causality: Model

and Applications. Chichester, UK: Ellis Horwood.

[Mac01] Maciaszek, L. A. (2001). Requirements Analysis & System Design, Pearson

Education Limited.

 [FMG09] Martínez-Fernández, J. L., Martínez, P., & González-Cristóbal, J. C. (2009).

Towards an Improvement of Software Development Processes through Standard

Business Rules. In Proceedings of the 2009 International Symposium on Rule

Interchange and Applications , 159-166.

[FGV+08] Martínez-Fernández, J., González, J., Villena, J., & Martínez, P. (2008). A

Preliminary Approach to the Automatic Extraction of Business Rules from

Unrestricted Text in the Banking Industry. 13th International Conference on

198

Applications of Natural Language to Information Systems (pp. 299-310). London:

Springer Berlin Heidelberg.

[MDT14] MDT/UML2. (2014, 09 04). Retrieved from MDT/UML2:

http://wiki.eclipse.org/MDT/UML2

[MBM13] Meth, Hendrick; Brhel, Manuel; Maedche, Alexander (2013). Towards an

State of the art in automated requirements elicitation. Information and Software

Technology, 1695-1709.

[Mic96] Mich, L. (1996). NL-OOPS: from natural language to object oriented

requirements using the natural langauge processing system LOLITA. Cambridge

University Press, Natural Language Engineering, pp. 161-187.

[MG02] Mich, L., & Garigliano, R. (2002). NL-OOPS: A Requirements Analysis tool

based on Natural Language Processing. In Proc. 3rd Int. Conf. On Data Mining, (pp.

321-330). Bologna.

[MFN04] Mich, L., Franch, M., & Novi Inverardi, P. L. (2004). Market Research for

Requirements Analysis Using Linguistic Tools. Requirements Eng, 40-56.

[MMZ02] Mich, L., Mylopoulos, J., & Zeni, N. (2002). Improving the Quality of

Conceptual Models with NLP Tools: An Experiment. Trento: Department of

Information and Communication Technologies, University of Trento.

[Mil95] Miller, G. A. (1995). WordNet: A Lexical Database for English.

Communications of the ACM, 39-41.

[MIT05] MIT. (2005). Gizmoball 6-170-laboratory-in-software-engineering. Retrieved

from 6-170-laboratory-in-software-engineering:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-170-

laboratory-in-software-engineering-fall-2005/projects/6_170_gizmoball.pdf

[Mor97] Moreno, A. M. (1997). Object-oriented analysis from textual specifications.

9 th International Conference on Software Engineering and Knowledge Engineering .

[Mor07] Morton, T. (2007). OpenNLP. Retrieved from OpenNLP:

http://opennlp.apache.org/

199

[MHH89] Motoshi, S., Hisayuki, H., & Hajime, E. (1989). Software development process

from natural language specification. 11th international conference on Software

engineering (ICSE '89) (pp. 64-73). New York, NY, USA: ACM.

doi:10.1145/74587.74594

[MS87] Murray, K. J., & Sheppard., S. V. (1987). Automatic model synthesis: using

automatic programming and expert systems techniques toward simulation

modeling. 19th conference on Winter simulation (WSC '87) (pp. 534-543). New York,

USA: ACM.

[NR95] Nanduri, S., & Rugaber, S. (1995). Requirements validation via automated

natural language parsing. International Conference on System Sciences, 3, pp. 362-

368.

[NIST02] NIST. (2002). The Economic Impacts of Inadequate Infrastructure for

Software Testing. National Institute of Standards & Technology. Retrieved from

http://www.nist.gov/director/prog-ofc/report02-3.pdf

[OMH04] Omar, N., Mc Kevitt, P., & Hanna, P. (2004). Heuristics-based entity-

relationship modelling through natural language processing. Fifteenth Irish

Conference on Articial Intelligence and Cognitive Science, (pp. 302-313).

[OI06] Ormandjieva, O., & Ilieva, M. (2006). Automatic Comprehension of Textual

User Requirements and their Static and Dynamic Modeling. Software Engineering

Research and Practice, 266-273.

[OLR01] Overmyer, S. P., Lavoie, B., & Rambow, O. (2001). Conceptual Modeling

through Linguistic Analysis Using LIDA. ICSE, 401-410.

[Oxf07] Oxford Dictionary. (2007). Oxford Dictionary. Retrieved from

http://oxforddictionaries.com/

[Par72] Parnas, D. L. (1972). On the criteria to be used in decomposing systems into

modules. Communication ACM, 1053-1058. doi:DOI=10.1145/361598.361623

[Per02] Perez-Gonzalez, H. G. (2002). Automatically Generating Object Models from

Natural language Analysis. Companion of the 17th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, (pp. 86-87).

200

[PRM+97] Popescu, D., Rugaber, S., Medvidovic, N., & Berry, D. M. (1997). Quality

improvement of requirements specification via automatically created object oriented

models. Retrieved from Quality improvement of requirements specification via

automatically created object oriented models:

http://www.cc.gatech.edu/projects/dowser/example_usage.html

[PRM+07] Popescu, D., Rugaber, S., Medvidovic, N., & Berry, D. M. (2007). Improving

the quality of requirements specifications via automatically created object-oriented

models. California: University of Southern California.

[PRR80] Porter, M.F., Robertson, S.E., van Rijsbergen, C.J. (1980). New models in

probabilistic information retrieval. British Library Research and Development Report,

no. 5587.

[PKS+05] Prez-Gonzlez, H. G., Kalita, J. K., Salvador Nez Varela, A., & Wiener, R. S.

(2005). GOOAL: an educational object oriented analysis laboratory. In Companion to

the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications (pp. 180-181). New York, NY, USA: ACM.

[QGL+] Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A Comprehensive

Grammar of the English Language. Longman Group Limited.

[Rat98] Ratnaparkhi, A. (1998). Maximum Entropy Models for Natural Language

Ambiguity Resolution. Pennsylvania: University of Pennsylvania. Retrieved from

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1061&context=ircs_repor

ts

[RW91] Reubenstein, H. B., & Waters, R. C. (1991, March). The Requirements

Apprentice: automated assistance for requirements acquisition. IEEE Transactions on

Software Engineering, 226-240.

[RSB93] Richardson, J. E., Schultz, R. C., & Berard, E. V. (1993). A Complete Object-

Oriented Design Example. Berard Software Engineering.

[Ric99] Richter, C. (1999). Designing Flexible Object-Oriented Systems with UML.

Macmillan Technical Publishing.

201

[RP92] Rolland, C., & Proix, C. (1992). A natural language approach for Requirements

Engineering. Lecture Notes in Computer Science, Advanced Information Systems ,

257-277.

[RKP08] Rong, P., Keqing, H., & Peng, L. (2008). Automatic System Modeling Approach

Based on Semantic Association. IEEE International Workshop on Semantic Computing

and Systems (pp. 82-88). Washington, DC, USA: IEEE Computer Society.

[Ros99] Rosenberg, D. (1999). Use Case Driven Object Modeling with UML: A Practical

Approach. Addison Wesley.

[RBP+91] Rumbaugh, S., Blaha, M., Premerlai, W., Eddy, F., & Lorensen, W. (1991).

Object-oriented Modeling and design. New Jersey: Prentice-Hall.

[SOS08] Sabra, Samer; Ormandjieva, Olga; Seresht, Shadi Moradi (2008). Automatic

Conceptual Analysis of User Requirements with the Requirements Engineering

Assistance Diagnostic (READ) Tool. Proceedings of the 2008 Sixth International

Conference on Software Engineering Research, Management and Applications (pg.

133-142).

[SRC+07] Sampaio, Américo; Rashid, Awais; Chitchyan, Ruzanna; Rayson, Paul (2007)

EA-Miner: Towards Automation in Aspect-Oriented Requirements Engineering.

Transactions on Aspect-Oriented Software Development III (pg 4-39).

[SRG02] Sawyer, P., Rayson, P., & Garside, R. (343-353). REVERE: Support for

Requirements Synthesis from Documents. Information Systems Frontiers (ISF), 2002.

[Son91] Soni, M. (2009, June). Defect Prevention: Reducing Costs and Enhancing

Quality. Retrieved from isixsigma:

http://www.isixsigma.com/index.php?option=com_k2&view=item&id=520&Itemid

=1&Itemid=1

[SA97] Srikant, R., & Agrawal, R. (1997). Mining generalized association rules. Future

Generation Computer Systems, (pp. 161-180).

[SP99] Stevens, P., & Pooley, R. (1999). Using UML: Software Engineering with

Objects and Components. Addison Wesley.

202

[SBB99] Sylvain, D., Barker, K., & Biskri, I. (1999). Object-Oriented Analysis: Getting

Help from Robust Computational Linguistic Tools. The 4th International Conference

on Applications of Natural Language to Information Systems (pp. 167-171).

Klagenfurt, Austria: OCG Schriftenreihe 129.

[VFS06] Videira, C., Ferreira, D., & Silva, A. (2006). A Linguistic Patterns Approach for

Requirements Specification. Proceedings of the 32nd EUROMICRO and Advanced

Applications, (pp. 302-309).

[VAD09] Vinay, S., Aithal, S., & Desai, P. (2009). An Approach towards Automation of

Requirements Analysis. International MultiConference of Engineers & Computer

Scientists, (p. 1080).

[Wik07] Wikitionary. (2007). Wikitionary. Retrieved from

http://en.wiktionary.org/wiki/Wiktionary:Main_Page

[WW89] Wirfs-Brock, R., & Wilkerson, B. (1989). Oject-Oriented Design: A

Responsibility-Driven Approach. OOPSLA'89 Proceedings, (pp. 71-75).

[WWW90] Wirfs-Brock, R., Wilkerson, R., Wilkerson, B., & Wiener, L. (1990). Designing

Object-Oriented Software. Prentice Hall.

[ZZ04] Zhou, N., & Zhou, X. (2004). Auto-generation of Class Diagram from Free-text

Functional Specifications and Domain Ontology. doi:10.1.1.99.2062

203

Summary of Rules

• Rule 1 – Class Detection

o If a noun’s most common semantic belongs to the set of candidate class semantics,

then that noun is a candidate class

• Rule 2 – Class Detection from Non-Class Semantics

o If a noun’s most common semantic belongs to the set of non-candidate class

semantics, and that noun also contains an artefact semantic, then noun is a

candidate class

• Rule 3 - Start Range Multiplicity Detection (Determiners Present)

o If a determiner belongs to the set of multiplicity mappings {0, 1, *}, then the start

range for multiplicity has been found

• Rule 4 – Start Range Multiplicity Detection (Missing Determiners)

o If the determiner does not exist, then the start range is known as single (1)

• Rule 5 - End Range Multiplicity Detection Rule (Plural Nouns)

o If a noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is plural,

its mapping is known as many (*)

• Rule 6 – End Range Multiplicity Detection (Non-Plural Nouns)

o If the noun is a candidate class, as defined by Rule 1 or Rule 2, and the noun is not

plural, then its mapping is known as single (1)

• Rule 7 – Class Hierarchy Detection Rule

o Given the noun phrase, if the head noun is a candidate class as defined by Rule 1 or

Rule 2 and the head noun’s pre-modifier is also candidate class as defined by Rule 1

or Rule 2, then an interface and abstraction is extracted based on the head noun

204

• Rule 8 – Object State

o Given the Noun Phrase all determiners (DT) are ignored and the participle

modifiers are anything else that precedes the Head Noun that must be within the set

of verbs defined as (VBN (past participle), VBG (present participle)). The Noun

Head is the last noun (NN) contained within the noun phrase

• Rule 9 – Noun Preposition Attachment Detection

o If the prepositional phrase’s parent is a Noun Phrase, then the preposition is said to

be attached to that the noun phrase.

• Rule 10 – Verb Preposition Attachment Detection

o If the prepositional phrase’s parent is a Verb Phrase, then the preposition is said to be

attached to that verb phrase.

• Rule 11 – Operation Detection

o If a verb’s most common semantic belongs to the set of candidate operation

semantics and the verb’s semantic does not belong to the set of candidate

relationship semantics, then that verb is a candidate operation

• Rule 12 - Relationship Detection

o If a verb’s most common semantic belongs to the set of candidate relationship

semantics then that verb is a candidate relationship

• Rule 13 – Subject Operation Placement

o If the verb is in an active form and as defined by Rule 9 is an operation and by Rule

1 or Rule 2 the sentence subject is a class candidate, then the operation will be

placed with the subject of the sentence

• Rule 14 – Object Operation Placement

o If the verb is in its passive form and as defined by Rule 9 is an operation and by Rule

1 or Rule 2 the sentence object is a candidate class, then the operation will be placed

with the object of the sentence

205

• Rule 15 – Active Voice Parameter Creation

o If the sentence is in active voice and by Rule 9 an operation exists and by Rule 1 or

Rule 2 a class candidate exists for both sentence subjects and objects and by Rule 12

the operation is placed with the subject of the sentence, then the object of sentence is

considered as a parameter of that operation

• Rule 16 – Passive Voice Parameter Creation

o If the sentence is in passive voice and by Rule 9 an operation exists and by Rule 1 or

Rule 2 a class candidate exists for both sentence subjects and objects and by Rule 13

the operation is placed with the object of the sentence, then the subject of sentence is

considered as a parameter of that operation

• Rule 17 – Verb Derived Attribute Detection

o If the verb of the sentence belongs to the set of verb forms {has, had, have} and the

noun following the verb is a class candidate as defined by Rule 1 or Rule 2, then

that class is transformed into an attribute

• Rule 18 – Dynamic Verb derived Attribute Detection

o If the sentence contains a noun that is class candidate and is preceded by a verb,

where the frequency count of that noun is less than the average noun frequency for

the document and there exists only one verb within the sentence and the semantics

for that verb belongs to the set of {has, had, have} forms, then the noun is said to be

an attribute

• Rule 19 – Class & Relationship Detection

o If both subject and objects of the sentence are class candidates as defined by Rule 1

or Rule 2 and the semantics of the subject and objects are not contained within the

set of attribute semantics and the term frequencies of both subjects and objects are

greater than the term frequencies for the document and the verb belongs to the set of

{has, had, have} forms and there is only one verb, then it is said that both subjects

and objects are class candidates and an association relationship exists between class

candidates

206

• Rule 20 – Inheritance Hierarchy Detection

o If the verb belongs to the set of ‘be’ forms and that verb is the only verb in the

sentence and both the subject and object of the sentence are candidate classes as

defined by Rule 1 or Rule 2, then an inheritance hierarchy is said to exist between

both class candidates

• Rule 21 – Matrix Relationship Detection

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of

both the verb’s semantic and the semantic of the preposition belongs to the set of

relationship semantics, then a relationship is said to exist between the noun and the

object of the preposition

• Rule 22 - Matrix Parameter Detection

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the verb is an

operation as defined by Rule 11 and the intersection of both the verb’s semantic and

the semantic of the preposition also belong to the set of parameter semantics, then the

object of the preposition is said to be the parameter of the operation

• Rule 23 - Matrix Class Hierarchy Detection

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the object of

preposition is also a class candidate as defined by Rule 1 or Rule 2 and the intersection

of both the verb’s semantic and the semantic of the preposition also belong to the set

of class hierarchical semantics, then it is said there exists a class hierarchical

relationship between the class candidate and the object of the preposition

• Rule 24 - Matrix Attribute Detection

o If the noun is a class candidate as defined by Rule 1 or Rule 2 and the intersection of

both the verb’s semantic and the semantic of the preposition also belong to the set of

attribute semantics, then the object of the preposition is said to be an attribute of the

class candidate

207

• Rule 25 - Clausal Relationship Detection

o If an independent clause exists and by Rule 1 or Rule 2 a class candidate exists, and

if a dependent clause exists and by Rule 1 or Rule 2 a class candidate exists, then it

is said an association shall also exist between both independent and dependent

clause class candidates

• Rule 26 - Attribute Detection based on Semantics

o If a noun’s semantic belongs to the set of attribute semantics, then that noun is

considered as an attribute

• Rule 27 - Attribute Detection based on Semantics, Class Candidates & Term

Frequencies

o If a class candidate exists as defined by Rule 1 or Rule 2, and within that noun’s

semantic set it also belongs to the set of attribute semantics, and the frequency count

of that noun is less than the average noun frequency count for class candidates for

that document, then the noun is said to be an attribute.

• Rule 28 - Semantic Class Hierarchical Detection

o If a class candidate exits as defined by Rule 1 or Rule 2 and the semantics of the

class candidate are also contained within the set of candidate class hierarchical

semantics, then an interface will also be extracted for that class candidate

208

Appendix A.1 Noun/Verb Semantic Classification Tables

WordNet

(noun)

Semantic

WordNet Description
Class Modelling Implication

Class Hierarchy Can Imply

1 Animal Nouns denoting animals X X

2 Artefact
Nouns denoting man-made

objects
X

3 Body Nouns denoting body parts X

4 Communication
Nouns denoting communicative

processes and contents
X

5 Food Nouns denoting foods and drinks X

6 Group
Nouns denoting groupings of

people or objects
X

7 Location Nouns denoting spatial position X

8 Object
Nouns denoting natural objects

(not man-made)
X

9 Person Nouns denoting people X X

10 Phenomenon
Nouns denoting natural

phenomenon
X

11 Plant Nouns denoting plants X X

12 Shape
Nouns denoting two and three

dimensional shapes
X X

13 Substance Nouns denoting substances X

14 Time
Nouns denoting time and

temporal relations
X

15 Act Nouns denoting acts or actions Operation

16 Possession
Nouns denoting possessions and

transfer of possessions
 Relationship

17 Quantity
Nouns denoting quantities and

units of measure
 Multiplicity

18 State
Nouns denoting stable states of

affairs
 Object State

19 Process
Nouns denoting natural

processes
 Algorithm

20 Motive Nouns denoting goals Algorithm

21 Relation
Nouns denoting relations

between people, things or ideas
 Relationship

22 Attribute
Nouns denoting attributes of

people and objects
 Class Attribute

23 Event Nouns denoting natural events Algorithm/Operation

24 Cognition
Nouns denoting cognitive

processes and contents
 Algorithm

25 Feeling
Nouns denoting feelings and

emotions
 Unknown

209

ID
Involved

Entities

WordNet

(verb)

Semantic

WordNet Description

Relationship/Operation

Modelling Implications

Relationship Operation

1 1 Body
Verbs of grooming, dressing and

bodily care
 X

2 1 Change
Verbs of size, temperature change,

intensifying, etc
 X

3 2 Cognition
Verbs of thinking, judging, analysis,

doubting, etc
X X

4 2 Communication
Verbs of telling, asking, ordering,

singing
X X

5 2 Competition Verbs of fighting, athletic activities X X

6 1 Consumption Verbs of eating and drinking X

7 2 Contact
Verbs of touching, hitting, tying,

digging
X X

8 1 Creation
Verbs of sewing, baking, painting,

performing
 X

9 1 Emotion Verbs of feeling X

10 2 Motion Verbs of walking, flying, swimming X X

11 1 Perception Verbs of seeing, hearing, feeling X

12 2 Possession Verbs of buying, selling, owning X X

13 2 Social
Verbs of political and social activities

and events
X X

14 1 Stative
Verbs of being, having, spatial

relations
 X

15 1 Weather
Verbs of snowing, raining, thawing,

thundering
 X

210

Appendix A.2 NLP Tag List

Tag Description

Clause Level

S simple declarative clause

SBAR
Clause introduced by a (possibly

empty) subordinating conjunction.

SBARQ
Direct question introduced by a wh-

word or a wh-phrase.

SINV Inverted declarative sentence,

SQ

Inverted yes/no question, or main

clause of a wh-question, following

the wh-phrase in SBARQ

Phrases Level

ADJP Adjective Phrase

ADVP Adverb Phrase.

CONJP Conjunction Phrase.

FRAG Fragment.

INTJ Interjection.

LST List marker

NAC Not a Constituent

NP Noun Phrase.

NX
Used within certain complex NPs to

mark the head of the NP

PP Prepositional Phrase.

PRN Parenthetical.

PRT Particle

QP Quantifier Phrase

RRC Reduced Relative Clause.

UCP Unlike Coordinated Phrase.

VP Verb Phrase.

WHADJP Wh-adjective Phrase.

WHAVP Wh-adverb Phrase.

WHNP Wh-noun Phrase.

WHPP Wh-prepositional Phrase.

X Unkown

Word Level

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN
Preposition or subordinating

conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Pre-determiner

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO To

UN Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP
Verb, non-3rd person singular

present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

211

Appendix A.3 Preposition

Semantics

with logical.accomp

for logical.action

lest logical.action.false

plus logical.add

than logical.comparison

albeit logical.condition

although logical.condition

because logical.condition

but logical.condition

if logical.condition

pending logical.condition

per logical.condition

providing logical.condition

save logical.condition

that logical.condition

though logical.condition

unless logical.condition

vs. logical.condition

whereas logical.condition

whether logical.condition

while logical.condition

despite logical.condition.negation

par logical.equality

so logical.event

against logical.false

except logical.false

neither logical.false

notwithstanding logical.false

without logical.false

into logical.goal

throughout logical.inclusion

via logical.precondition

virtually logical.probability

about logical.qty

minus logical.remove

as logical.role

like logical.similarity

unlike logical.similarity.negation

once logical.singleton

worth logical.value

within spatial.contains

aboard spatial.contians

above spatial.relation

across spatial.relation

along spatial.relation

alongside spatial.relation

amid spatial.relation

among spatial.relation

around spatial.relation

at spatial.relation

atop spatial.relation

behind spatial.relation

below spatial.relation

beneath spatial.relation

beside spatial.relation

besides spatial.relation

between spatial.relation

beyond spatial.relation

by spatial.relation

down spatial.relation

in spatial.relation

near spatial.relation

nearer spatial.relation

nearest spatial.relation

of spatial.relation

off spatial.relation

on spatial.relation

opposite spatial.relation

out spatial.relation

outside spatial.relation

over spatial.relation

past spatial.relation

round spatial.relation

through spatial.relation

toward spatial.relation

under spatial.relation

underneath spatial.relation

up spatial.relation

upon spatial.relation

inside spatiral.relation

next spatiral.relation

onto spatiral.relation

till temporal.duration

until temporal.duration

bout temporal.event

from temporal.event

post temporal.event

since temporal.event

then temporal.event

after temporal.future

ago temporal.past

during temproal.event

before temproal.past

212

Appendix A.4 Verb Preposition Decision Matrix

 body change cognition communication competition consumption contact creation emotion motion perception possession social stative

logical.accomp rel rel rel rel rel rel rel rel rel rel rel rel rel rel

logical.action act act act act act act act act act act act act act act

logical.action.false rel rel rel rel rel rel rel rel rel rel rel rel rel rel

logical.add rel rel rel rel rel rel rel rel rel rel rel rel rel rel

logical.comparison rel rel rel rel rel rel rel rel rel rel rel rel rel rel

logical.condition rel act rel act act rel act act rel act rel act rel rel

logical.condition.negation rel act rel act act rel act act rel act rel act rel rel

logical.equality rel act rel act act rel act act rel act rel act rel rel

logical.event rel act rel act act rel act act rel act rel act rel rel

logical.false rel act rel act act rel act act rel act rel act rel rel

logical.goal rel rel rel act rel act act act rel act rel act rel rel

logical.inclusion rel act rel act act rel act act rel act rel act rel rel

logical.precondition rel act rel act act rel act act rel act rel act rel rel

logical.probability rel act rel act act rel act act rel act rel act rel rel

logical.qty rel act rel act act rel act act rel act rel act rel rel

logical.remove rel act rel act act rel act act rel act rel act rel rel

logical.role rel rel type_of act act rel act act rel act rel rel rel rel

logical.similarity rel act rel act act rel act act rel act rel act rel rel

logical.similarity.negation rel act rel act act rel act act rel act rel act rel rel

logical.singleton rel act rel act act rel act act rel act rel act rel rel

logical.value rel act rel act act rel act act rel act rel act rel rel

logical.view rel rel attr act act rel rel act rel act rel act rel attr

spatial.contains rel rel rel rel rel rel rel rel rel rel rel rel rel rel

spatial.relation rel rel rel rel rel rel rel rel rel rel rel rel rel rel

temporal.duration rel act rel act act rel act act rel act rel act rel rel

temporal.event act act act act act act act act act act act act act act

temporal.future rel act rel act act rel act act rel act rel act rel rel

temporal.past rel act rel act act rel act act rel act rel act rel rel

to rel act rel act act rel act act rel act rel act rel rel

Key:

rel – relationship

act – action

attr – attribute

213

Appendix A.5 ASA Package Level UML Models

Package: uk.ac.strath.sd.xml

214

Package: uk.ac.strath.sd.jccg

215

Package: uk.ac.strath.sd.model

216

Package: uk.ac.strath.sd.nlp

217

Package: uk.ac.strath.sd.nlu

218

Package: uk.ac.strath.sd.tree

219

Package: uk.ac.strath.sd.uml

Package: uk.ac.strath.sd.wordnet

220

Appendix B.1 Specification Details

Keyword in Context [Par72]:

The KWIC index system accepts an ordered set of lines, each line is an ordered set of words,

and each word is an ordered set of characters. Any line may be "circularly shifted" by

repeatedly removing the first word and appending it at the end of the line. The KWIC index

system outputs a listing of all circular shifts of all lines in alphabetical order.

Organisation Problem 1:

The Course Administration System database for ABC University needs to keep track of each

Instructor with id, name, and address. Each instructor works for one department and each

department have at least one instructor. The departments have a unique id and a name.

Courses are offered by a single department and have a name, and number unique to each

department. Each course has at least one section. Store the course name, credits, and

description. A section has numbers for each course for storing the section semester, year, and

size. Students have student ids and names. Each student has a single instructor as an advisor.

Students enrol in one or more sections. A section must have five students or it is cancelled. A

section is taught by at least one instructor.

Organisation Problem 2 [Cur95]:

Each department in an organisation consists of a manager and several departmental staff. Each

manager is in charge of only one department and departmental staff are assigned to a single

department.

Several projects are attached to each department. All departmental staff are assigned to

projects, with some staff being assigned to several projects, not necessarily in the same

department. Each project is run by a management group that consists of the manager of the

department together with a selection of staff working on the project. No departmental staff

member is ever required to sit on more than one management group.

221

ATM Problem [RBPEL91]:

Design the software to support a computerised banking network including both human

cashiers and automatic teller machines (ATMs) to be shared by a consortium of banks. Each

bank provides its own computer to maintain its own accounts and process transactions against

them Cashier stations are owned by individual banks and communicate directly with their

own banks computers. Human cashiers enter account and transaction data. Automatic teller

machines communicate with a central computer which clears transactions with the

appropriate banks. An automatic teller machine accepts a cash card, interacts with the user,

communicates with the central system to carry out the transaction, dispenses cash, and prints

receipts. The system requires appropriate recordkeeping and security provisions. The system

must handle concurrent accesses to the same account correctly. The banks will provide their

own software for their own computers.

Cinema Problem [CIS08]:

The cinema leases films for screening from film distributors. Each lease is for one copy of the

film. The cinema may lease more than one copy of films that are very popular.

The cinema operation is organised around a screening schedule, which is a timetable listing

the films that will be shown on each screen each day of the week. This screening schedule is

different every week. During its release period a particular film can be shown on a number of

different screens. The same film cannot be shown on more than one screen at a time unless

there are multiple copies.

Screenings are open for ticket sales one week before the date they take place. There are two

kinds of screenings: seated and unseated ones. The main difference between the two is that

for seated screenings the customer is allocated a particular seat, while for unseated screenings

no specific seat is allocated. For each screening the total number of tickets sold should not

exceed the seating capacity for that screen. There are a number of different types of tickets

associated with each screening, which include normal tickets, concessionary tickets for

students and senior citizens, discounted family tickets, etc. The price of each type of ticket may

be different for each screening. For example, matinee screenings usually have a lower ticket

price than evening screenings, while weekend screenings usually have higher ticket prices.

222

The cinema wishes to operate a customer cinema card scheme. According to this scheme every

subscribed customer pays a monthly subscription, which allows them to buy a fixed number

of tickets for any screening during the month.

Regarding the films, information that is important includes the film's classification

(determined by the board of film classification) as well as its duration. This information is

important as it affects the scheduling process and the allocation of films to screens.

For the system to be able to support the cinema management team it should be able to produce

the following kinds of statistics: the number of ticket sales to date per film, the revenue of the

ticket sales per film, the percentage of empty seats for each screening for the current or future

weeks, the ticket sales and revenue for each screening for the current week, a listing of films

ordered by ticket sales or revenue for the current week. It should also allow the management

team to enter the new screening schedule and make changes to the current screening schedule.

Ticket sales are handled by cinema staff and payment can be made in three forms: by cash; by

credit or debit card; by using cinema membership cards. In the case where the sale is for a

seated screening the customer should be able to select the seats they most prefer from those

that are available.

Cinema cards are personal (i.e. only the person named on the card can use it) and they are

limited to a maximum of four tickets per screening. When signing up for a cinema card, the

following are required: a photograph of the customer which is taken on the spot and is

attached to the card, customer information such as name and address, and credit or debit card

details for the monthly subscription charge. The cards are valid for six months from the date

of issue and each month the customer is charged the monthly subscription.

Library Problem 1 [EP98]:

A software system to support a library is to be developed. A library lends books and

magazines to borrowers. These borrowers, books and magazines are registered in the system.

A library handles the purchase of new titles for the library. Popular titles are bought in

multiple copies. Old books and magazines are removed when they are too old or in poor

condition.

223

The librarian is an employee of the library who interacts with the borrowers and whose work

is supported by the system. A borrower can reserve a book or a magazine that is not currently

available in the library. So that, when it is returned or purchased by the library, that person is

notified.

The reservation is cancelled when the borrower checks out the book or magazine or through

an explicit cancelling procedure. The library can easily manage the information about the

books. It can create, update or delete the information. The information concerns the titles, the

borrowers, the loans and the reservations. The system can run on all popular environments

such as Windows, UNIX. It has a modern graphical user interface. The system is also easy to

extend with new functionality.

Library Problem 2 [Cal94]:

A library issues loan items to customers. Each customer is known as a member and is issued

a membership card that shows a unique member number. Along with the membership

number, other details on a customer must be kept such as a name, address, and date of birth.

The library is made up of a number of subject sections. Each section is denoted by a

classification mark.

A loan item is uniquely identified by a bar code. There are two types of loan items, language

tapes, and books. A language tape has a title language (e.g. French), and level (e.g. beginner).

A book has a title, and authors.

A customer may borrow up to a maximum of 8 items. An item can be borrowed, reserved or

renewed to extend a current loan. When an item is issued the customer's membership number

is scanned via a bar code reader or entered manually. If the membership is still valid and the

number of items on loan less than 8, the book bar code is read, either via the bar code reader

or entered manually. If the item can be issued (e.g. not reserved) the item is stamped and then

issued.

The library must support the facility for an item to be searched and for a daily update of

records.

224

Library Problem 3 [Cur95]:

When a library first receives a book from a publisher it is sent, together with the accompanying

delivery note, to the library desk. Here the delivery note is checked against a file of books

ordered. If no order can be found to match the note, a letter of enquiry is sent to the publishers.

If a matching order is found, a catalogue note is prepared from the details on the validated

delivery note.

The catalogue note, together with the book, is sent to the registration department. The

validated delivery note is sent to the accounts department, where it is stored.

On receipt of an invoice from the public the accounts department checks its store of delivery

notes. If the corresponding delivery note is found then an instruction to pay the publishers is

made, and subsequently a cheque is sent. If no corresponding delivery note is found, the

invoice is stored in a pending file.

Filing Problem [Der95]:

An electronic filing program (EFP) can be used to store and retrieve text documents. Any

document created by a word processor, editor, or other means may be stored in the electronic

filing system. Documents may be filed along with keywords, authors, and/or a document

description or abstract describing the document. Documents filed in the system may also be

removed or deleted.

Documents stored in the EFP are indexed to enable rapid retrieval. Documents are retrievable

according to convenient schemes not found in conventional classifications; e.g. users may

retrieve or locate documents based on their content, description, author or a user defined

keywords. Therefore, the document description, authors, keywords, and/or the actual text

document itself may be searched.

A user may specify a search criteria, which results in a number of documents being found that

meet the specified search criteria. The user may then continue to specify additional search

criteria, successively narrowing down the search until the required documents are found.

Documents found that meet the search criteria may then be viewed or printed.

The user is provided with the capability of specifying any extraneous or junk words which if

found in the content of the document will not be searched or indexed. The user can also specify

225

which alphanumeric characters will be indexed and searched (the filing character set), thereby

limiting the search and index to only portions of a document.

Exam Problem:

Faculty members in ABC University have to prepare exams. If they teach a course more than

one time, it makes sense to collect and reuse exams. But no two course instances are identical,

and, even if they were, there are other reasons for avoiding exact duplication of exams. Hence,

it makes sense to manage exam questions and their answers in some kind of repository and

then build custom exams to conform to specific course content. For large courses, electronic

grading of exams is desirable, implying that exams have a multiple-choice format.

A software system should be built to manage exam questions and their answers. An exam

consists of a set of multiple choice questions. There may be multiple versions of the same

exam. A question may appear in more than one version, but it will rarely appear in the same

place (i.e., the same question number). Questions may have different point values. Students

indicate an answer by providing a letter to denote one of the offered alternatives. Questions

may have multiple parts, and partial credit may be awarded for parts correctly answered.

There may be more than one correct answer to a question. The system should determine the

correctness of each answer, provide a numerical value for it, and sum the scores for the exam.

For assessment purposes, it should also be able to gather statistics about student performance

on each question regardless of the exam it appeared on.

Students provide answers to questions on a bubble sheet. Automatic processing of the answer

sheets is provided by a separate program. That program produces as output an ASCII data

file that the new program should process. The data file consists of a sequence of records. Each

record is fixed format, consisting of the student's name, student number, and a vector of

letters, one for each requested answer. When a student fails to properly bubble in an entry in

the form, a space appears in place of the letter. Moreover, if a student bubbles in more than

one selection for the same entry, then an asterisk character will appear in the corresponding

place in the record.

Personnel Problem [Duf95]:

The personnel department of a large research institute is responsible for the purchase and

dissemination of journals to readers in other departments in the organization.

226

Readers may be interested in certain specific topics relating to their research interests, while it

is also possible to be placed on a circulation list. Usually, readers get access to an issue of a

journal for a fixed period of time, typically two weeks. It is possible to have access to an issue

for a longer period of time, but permission must be granted from the personnel department.

Journals appear on a regular basis and each journal contains information on the publisher,

language and frequency of publication. The system should keep readers informed of the topics

that are of interest to them and which appear in the different journals. Furthermore, it should

be possible for readers to find articles which deal with topics that they are interested in.

Hospital Problem 1 [Cur95]:

The EDP department of a medium-sized hospital wishes to create a system which will assist

in the administration of its wards, operating theatres and private rooms. Furthermore,

information relating to patients, surgeons and nurses needs to be registered.

The following information should be present in the system:

Patients are assigned to a ward when admitted to the hospital unless they are private patients,

in which case they will be assigned to a private room and they are treated by consultants. A

consultant is a senior surgeon. Each room has a unique identification number. The attributes

of a patient are patient name, number, address, sex, date of birth and blood group.

A nurse may or may not be assigned to a ward. However, a nurse may not be assigned to more

than one ward. A ward may have many nurses assigned to it. Nurse attributes include name,

address, phone number and grade. Ward attributes include unique identification number and

its type (e.g. maternity, paediatric). A patient may undergo a number of operations.

Only one surgeon may perform an operation, while other surgeons may assist at operations.

Surgeons are coached by consultants who are experienced surgeons. A consultant may assist

or perform at an operation. Surgeon attributes include name, address and phone number.

Each consultant specializes in a certain area.

An operation is performed in only one theatre and a given theatre may be the venue for many

operations. Theatre attributes include identifying number and some may be specially

equipped for certain classes of operation.

227

A nurse may be assigned to an operating theatre. However, a nurse may not be assigned to

more than one theatre. A theatre may have many nurses assigned to it.

Hospital Problem 2 [Duf95]:

A local hospital consists of many wards, each of which is assigned many patients. Each patient

is assigned to one doctor, who has overall responsibility for the patients in his or her care.

Other doctors are assigned on an advisory basis. Each patient is prescribed drugs by the doctor

responsible for that patient.

Each nurse is assigned to a ward and nurses all patients on the ward, though is given special

responsibility for some patients. Each patient is assigned one nurse in this position of

responsibility. One of the doctors is attached to each ward as an overall medical advisor.

Lift Problem [PRM+07]:

A lift consists of a door, a motor, and a lift controller. The lift controller is responsible for

controlling the lift system. Passengers interact with the lift system by passing buttons on the

individual floors or on the control panel inside the lift. Normally, the lift stays on the ground

floor (0-th floor) of a building. If a passenger enters the lift and presses the button for the k-

th floor, the lift will move up to the k-th floor. When the lift arrives at requested floor (say k-

th floor), it opens the door for a certain period M seconds of time and closes them. The lift

then becomes idle.

A passenger on m-th floor calls a lift by pressing the up or down button. The lift will move to

the m-th floor and open the door on arrival. The passenger requests to go to a particular floor

by pressing the corresponding button on the control panel inside the lift. If there is no

passenger interaction on the control panel within M seconds, then the lift will return to the

ground floor.

Meeting Problem [RBP+91]:

Softcom needs a computer system to support athletic meetings for judged sports, such as

gymnastics, diving or figure skating. Meetings for these sports take place during the season.

A season goes on for several months.

228

Competitors register to take part to a meeting. They belong to teams and teams belong to

leagues. Each meeting consists of various competitions, such as routines, figures or styles.

Figures correspond to different difficulties and therefore the have different point values.

Competitors can enter many competitions. In a particular competition, competitors receive a

number which is announced and used to split them into groups. There is a panel of judges

who give a subjective score for the competitors' performance. Working from stations, the

judges can score many competitions.

A competition consists of some trials. Competitors receive a score for each trial of a

competition. The scores for the trials are read at each station. The system eliminates both the

highest and the lowest score. The other scores are then processed and the net score is

determined. Final prizes are based on the net scores.

Taxi Problem [BAR12]:

The company operates both individual taxis and shuttles. The taxis are used to transport an

individual (or small group) from one location to another. The shuttles are used to pick up

individuals from different locations and transport them to their several destinations.

When the company receives a call from; individual, hotel, entertainment venue, tourist

organization, it tries to schedule a vehicle to pick up the fare. If it has no free vehicles, it does

not operate any form of queuing system.

When a vehicle arrives at a pick up location, the driver notifies the company. Similarly, when

a passenger is dropped off at their destination, the driver notifies the company.

Gizmo-ball Problem [MIT05]:

Your implementation must support two modes of execution building and running. In building

mode, the user can add gizmos to the playing area and can modify the existing ones. In

running mode, a ball moves around the playing area and interacts with the gizmos.

To describe dimensions in the playing area, we define L be the basic distance unit, equal to

the edge length of a square bumper. Corresponding to standard usage in the graphics

community, the origin is in the upper left-hand corner with coordinates increasing to the right

and down.

229

The playing area must be at least 20 L wide by 20 L high. That is, 400 square bumpers could

be placed on the playing area without overlapping. The upper left corner is (0,0) and the lower

right corner is (20,20). When we say a gizmo is at a particular location, that means that the

gizmo's origin is at that location. The origin of each of the standard gizmos is the upper left-

hand corner of its bounding box, so the location furthest from the origin at which a gizmo may

be placed is (19,19) on a 20L x 20L board. The origin of a ball is at its center.

During building mode, Gizmos should snap to a 1 L by 1 L grid. That is, a user may only place

gizmos at locations (0,0), (0,1), (0,2), and so on.

During running mode the animation grid may be no coarser than 0.05 L by 0.05 L. Rotating

flippers can be animated somewhat more coarsely. If the ball is moving faster than the

animation grid size per frame redraw, it need not be redrawn in each animation grid position.

In building mode the user can add any of the available types of gizmos to the playing area.

An attempt to place a gizmo in such a way that it overlaps a previously placed gizmo or the

boundary of the playing area should be rejected.

Move a gizmo from one place to another on the playing area. An attempt to place a gizmo in

such a way that it overlaps a previously placed gizmo or the boundary of the playing area

should be rejected.

Apply a 90 degree clockwise rotation to any gizmo. Rotation has no effect on gizmos with

rotational symmetry. For example, circular bumpers look and act the same, no matter how

many times they have been rotated by 90 degrees.

Connect a particular gizmo's trigger to a particular gizmo's action. The standard gizmos

produce a trigger when hit by the ball, and exhibit at most one action (for example, moving a

flipper, shooting the ball out of an absorber, or changing the color of a bumper). The trigger

that a gizmo produces can be connected to the actions of many gizmos. Likewise, a gizmo's

action can be activated by many triggers. The required triggers and actions for the basic

gizmos are described below. Note that triggers do not chain. That is, when A is connected to

B and B is connected to C, a ball hitting A should only cause the action of B to be triggered.

Connect a key-press trigger to the action of a gizmo. Each keyboard key generates a unique

trigger when pressed. As with gizmo-generated triggers, key-press triggers can also be

connected to the actions of many gizmos.

230

Delete a gizmo from the playing area.

Add a ball to the playing area. The user should be able to specify a position and velocity. An

attempt to place the ball in such a way that it overlaps a previously placed gizmo or the

boundary of the playing area should be rejected (i.e., it should have no effect). There is one

exception in the standard gizmo set: a stationary ball may be placed inside an absorber.

Save to a file named by the user. You must be able to save to a file in the standard format given

in Appendix 2. You may, if you wish, define an extension to the standard format that handles

special features of your implementation. If you do so, the user must have the choice of saving

in the standard format or in your special format. The saved file must include information

about all the gizmos currently in the playing area, all of the connections between triggers and

actions, and the current position and velocity of the ball.

Load from a file named by the user. You must be able to load a game saved in the standard

format.

Switch to running mode.

Quit the application.

In running mode the user can press keys, thereby generating triggers that may be connected

to the actions of gizmos.

Switch to building mode at any time If the user requests to switch to building mode while a

flipper is in motion, it is acceptable to delay switching until the flipper has reached the end of

its trajectory. Similar short delays in order to finish transitional states of gizmos you create are

also acceptable.

Quit the application.

Provide visually smooth animation of the motion of the ball. The ball by default must have a

diameter of approximately 0.5 L. Ball velocities must range at least from 0.01 L/sec to 200 L/sec

and can cover a larger range if you wish. 0 L/sec (stationary) must also be supported. An

acceptable frame rate should be used to generate a smooth animation. We have found that 20

frames per second tends to work well across a reasonably wide range of platforms.

231

Provide intuitively reasonable interactions between the ball and the gizmos in the playing

area. That is, the ball should bounce in the direction and with the resulting velocity that you

would expect it to bounce in a physical pinball game.

Continually modify the velocity of the ball to account for the effects of gravity. You should

support the standard gravity value of 25 L/sec2, which resembles a pinball game with a

slightly tilted playing surface.

Continually modify the velocity of the ball to account for the effects of friction. You should

model friction by scaling the velocity of the ball using the frictional constants mu and mu2.

The default value of mu should be 0.025 per second. The default value of mu2 should be 0.025

per L.

There are seven standard gizmos that must be supported: bumpers (square, circular, and

triangular), flippers (left and right), absorbers, and outer walls. A coefficient of reflection of

1.0 means that the energy of the ball leaving the bumper is equal to the energy with which it

hit the bumper, but the ball is traveling in a different direction. As an extension, you may

support bumpers with coefficients above or below 1.0 as well.

A square bumper is a square shape with an edge length of 1L. Its trigger is generated

whenever the ball hits it and no action. The coefficient of reflection is 1.0.

A circular bumper is a circular shape with a diameter of 1L. Its trigger is generated whenever

the ball hits it and no action. The coefficient of reflection is 1.0.

A triangle bumper is a right-triangular shape with sides of length 1L and hypotenuse of length

Sqrt(2)L. Its trigger is generated whenever the ball hits it and no action required. The

coefficient of reflection is 1.0.

A flipper is generally rectangular rotating shape with bounding box of size 2Lx2L. Its trigger

is generated whenever the ball hits it and rotates 90 degrees. The coefficient of reflection is

0.95.

Flipper's are required to come in two different varieties, left flippers and right flippers. A left

flipper begins its rotation in a counter-clockwise and a right flipper begins its rotation in a

clockwise direction.

232

An absorber is a square shape with integral length sides. Its trigger is generated whenever the

ball hits it and shoots out a stored ball. The absorber as no coefficient of reflection, but the ball

is captured

When a ball hits an absorber, the absorber stops the ball and holds it in the bottom right-hand

corner of the absorber.

If the absorber is holding a ball, then the action of an absorber, when it is triggered, is to shoot

the ball straight upwards in the direction of the top of the playing area. By default, the initial

velocity of the ball should be 50L/sec. (With the default gravity and the default values for

friction, the value of 50L/sec gives the ball enough energy to lightly collide with the top wall,

if the bottom of the absorber is at y=20L.) If the absorber is not holding the ball, or if the

previously ejected ball has not yet left the absorber, then the absorber takes no action when it

receives a trigger signal.

Absorber's cannot be rotated.

Outer walls are impermeable barriers surrounding the playing field. Its trigger is generated

whenever the ball hits it and has no action. The coefficient of reflection is 1.0.

A Gizmoball game supports exactly one set of outer walls. The user cannot move, delete, or

rotate the outer walls. The outer walls lie just outside the playing area

233

Appendix B.2 Manual Specification Classifications Data

Organisation Problem 1:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Department(D) Department(D) X

Course(C) Course (C) X

Student(S) Student(S) X

Section(SE) Section(SE) X

Instructor(I) Instructor(I) X

 Instructor Work(IW)

 Section Semester(SS) X

 Year(Y) X

 Number(N) X

 Course Name (CN) X

 Name(NA) X

 Student ID(SI) X

 Advisor(A) X

 Description X

 Track X

 Store X

 University X

Totals 5 0 9 2 0

Relationships Detection Data

Orig Rel ASA Rel Correct Missing Incorrect Extra

D�I X

I�SE I�SE X

SE�C SE�C X

C�D X

S�I X

S�SE S�SE X X

 N�C X

 N�SE X

 C�SE X

 SS�S X

 IW�I X

 I�N X

 N�S X

 SE�Y X

 S�SI X

 S�A X

Totals 3 3 10 2

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 1.0 0.33 0.4 0.5

Relationships 0.5 0.23 0.33 0.31

234

Organisation Problem 2 [Cur95]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Department(D) Department X

Project(P) FN X

Staff(S) Staff X

Manager(M) Manager X

 Staff Member X

 Management Group X

 Charge(C) X

Totals 3 1 1 1 1

Relationships Detection Data

Orig Model Classes Correct Missing Incorrect Extra

P�S X

D�P X

D�M M�D X

 D�S X

 D�S X

 M�C X

 C�S X

Totals 1 2 3 1

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.57 0.50 0.43 0.53

Relationships 0.0 0.0 1.14 0.0

235

ATM Problem [RBPEL91]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Account (A) Account(A) X

ATM (ATM) Automatic Teller

Machine(ATM)
X

Bank (B) Bank(B) X

Cash Card (CC) Cash Card (CC) X

Cashier (C) Cashier X

Cashier Station (CS) fn X

Central Computer

(CCO)
Computer X

Remote Transaction

(RT)
fn X

Cashier Transaction

(CT)
fn X

Bank Computer (BC) Bank Computer (BC) X

Consortium(CO) Consortium(CO) X

Customer (CU) User(U) X

 Human Cashier (C) X

 Banking Network (BN) X

 Design (D) X

 ATMs) (ATM) X

 RecordKeepe (RK) X

 Teller Machine (ATM) X

 Software (S) X

 System (SY) X

 Security Provision (SP) X

 Communicate (COM) X

 Interact (I) X

Totals 9 3 6 2 3

236

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

ATM�RT X

CCO�ATM CCO�ATM X

CO�CCO X

CCO�BC X

CO�B CO�B X

BC�CS X

B�BC X

B�CS X

B�C B�C X

B�A X

RT�A X

RT�CC X

CS�CT X

A�CT X

A�CC X

A�CU X

CC�CU X

 CC�ATM X

 ATM�BN X

 CCO�S X

 B�S X

 BN�S X

 BN�C X

 C�A X

 A�SY X

 SY�SP X

 SY�COM X

 COM�I X

 I�U X

Totals 3 12 8 4

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.75 0.60 0.17 0.67

Relationships 0.20 0.27 0.27 0.23

237

Cinema Problem [CIS08]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Film(F) Film(F) X

Screen(S) Screen(S) X

Weekly Showing

Schedule (WSS)
TimeTable (TT) X

Showing(SH) Screening (SC) X

Seated

Showing(SS)
Seated Screen(SS) X

Unseated Showing

(US)
fn X

Family Ticket (FT) fn X

Ticket(T) Ticket(T) X

Sale(S) fn X

Card Sale(CS) np X

Cinema Card Sale

(CCS)
np X

Cinema Card (CC) Cinema Card (CC) X

Customer (C) Customer (C) X

 Student(ST) X

 Place (P) X

 Type(TY) X

 Number(N) X

 Citizen(CI) X

 Month(M) X

 Film Distributor(FD) X

 Seat(SE) X

 Photograph(P) X

 Cinema(CIN) X

 Copy(CO) X

 List(L) X

 Day(D) X

 Week(W) X

 Matinee Screening (MS) X

 Weekend Screening(WS) X

 Cinema Management

Team(CMT)
 X

 Management Team(MT) X

 Subscription Charge(SC) X

 Cinemas Staff(CST) X

 Person(P) X

 Release Period(RP) X

 Regard(R) X

 Followe(F) X

 Information(IN) X

 Board(B) X

 Debit Card (DC) X

 Cinema Membership Card

(CMC)
 X

 I(I) X

 Card(CA) x

 Date(DA) X

Totals 8 5 15 13 3

238

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

F�SH F�T X

S�SH X

WSS�SH X

SS�SH X

US�SS X

T�SS X

T�US X

FT�T X

FT�T X

T�S X

S�CS X

CCS�S X

CC�CCS X

CC�C X

 D�W X

 P�T X

 ST�T X

 CI�T X

 M�T X

 TY�T X

 TY�N X

 N�T X

 T�S X

 N�S X

 N�S X

 S�SS X

 FD�SE X

 C�SE X

 P�C X

 F�S X

 S�F X

 CI�F X

 CI�CO X

 F�L X

 M�CA X

 CA�I X

 CA�DA X

 F�IN X

 B�IN X

Totals 1 13 16 9

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.62 0.36 0.92 0.46

Relationships 0.07 0.06 0.64 0.06

239

KWIC [Par72]

Class Detection Data:

Original Model Classes Correct Missing Incorrect Extra SYM

Master

Control(MC)
KWIC Index System (KIS) X

Input(I) np X

Output(O) np X

Character(C) Word(W) X

Circular Shift(CS) Shift(S) X

Alphabetic

Shift(AS)
Shift(S) X

 End(E) X

 Line(LI) X

 Ordered Set (OS) X

 Set(SE) X

 List(L) X

Totals 4 2 1 3 1

Relationship Detection Data:

Original Model Relationships Correct Missing Incorrect Extra

C�CS X

CS�ASL X

 KIS�SE X

 KIS�OS X

 KIS�L X

 L�S X

 S�LI X

 SE�W X

 SE�LI X

 LI�E X

Totals 0 2 1 7

Measure Results:

 Recall Precision Over-Specification F-Measure

Classes 0.67 0.80 0.50 0.73

Relationships 0.0 0.0 3.5 0.0

240

Library Problem 1 [EP98]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Book Title(BT) Book (B) X

Borrower(BR) Borrower(BR) X

Item(I) np X

Loan(L) fn X

Magazine Title (MT) Magazine(M) X

Reservation(R) Reservation(R) X

Title(T) fn X

 OldBook (OB) X

 Copy(C) X

 Library(L) X

 Employee(E) X

 Information(IN) X

 Work(W) X

 System(S) X

 Librarian(LI) X

Totals 4 3 4 3 1

Relationship Detection Data:

Orig Model Classes Correct Missing Incorrect Extra

BR�R X

BR�L X

BR�I X

L�I X

I�T X

BT�T X

MT�T X

 B�L X

 B�L X

 L�E X

 E�LI X

 L�M X

 M�BR X

 B�BR X

 B�IN X

 R�IN X

 L�IN X

 BR�IN X

 BR�S X

 IN�S X

 W�S X

Totals 0 7 6 8

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.57 0.50 0.43 0.53

Relationships 0.0 0.0 1.14 0.0

241

Library Problem 2 [Cal94]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Book (B) Book X

Customer (C) Customer X

Language Tape (LT) Language Tape (LT) X

Library (L) Library(L) X

Loan Item (LI) Loan Item (LI) X

Section (S) Section(S) X

Member Card (MC) Membership Card

(MC)
X

Loan

Transaction(LTR)
Np X

 Record (R) X

 Update (U) X

 Type (T) X

 Birth (B) X

 Membership (M) X

 Bar Code Reader (BCR) X

 Number (N) X

 Member X

Totals 7 1 4 2 2

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

L�S X

S�LI X

L�MC X

MC�C MC�C X

C�LI LI�C X

C�LTR X

LTR�LI X

LI�LT X

LI�B X

 L�LI X

 LI�T X

 LI�N X

 N�S X

 T�B X

 T�LT X

 R�U X

Totals 2 7 6 1

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.88 0.64 0.25 0.74

Relationships 0.20 0.14 0.40 0.17

242

Library Problem 3 [Cur95]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Order (O) fn X

Invoice (I) Invoice (I) X

Book (B) Book(B) X

Note (N) fn X

Catalogue Note

(CN)
Catalogue Note (CN) X

Delivery Note (DN) Delivery Note (DN) X

Enquiry Note (EN) np X

Person (P) np X

 Enquiry (E) X

 Public (P) X

 Accounts Department

(AD)
 X

 Account (A) X

 Store (S) X

 Pending File (PF) X

 Letter (L) X

 Instruction (INS) X

 Library Desk (LD) X

 Publisher (PUB) X

 Library(LIB) X

 File(F) X

Totals 4 4 4 8 0

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

O�B X

I�B X

B�N X

B�P X

EN�N X

CN�N X

DN�N X

 LIB�B X

 LIB�PUB X

 B�F X

 F�AN X

 E�L X

 AD�A X

 AD�S X

 S�AN X

 AN�I X

 I�PF X

 I�PUB X

Totals 2 5 4 7

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.63 0.63 1.0 0.63

Relationships 0.29 0.33 1.0 0.31

243

Filing Problem [Der95]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Author (A) Author (A) X

Keyword (K) Keyword (K) X

Abstract (AB) DocumentDescription (DD) X

ASCII Character

(AC)
FilingCharacterSet(FCS) X

Junk Word (JW) JunkWord (JW) X

Text Document

(TD)
TextDocument (TD) X

Index (I) fn X

Page (P) Np X

Line (L) Np X

Word (W) np X

 SearchCriterium (SC) X

 SpecifiedSearchCriterium(SSC) X

 User (U) X

 E.g (EG) X

 EFP (E) X

 Document (DOC) X

 WordProcessor (WP) X

 Portion (P) X

 Content (C) X

 Description (D) X

 Editor (ED) X

Totals 6 4 5 4 2

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

TD�A X

TD�K X

TD�P X

P�L X

L�W X

L�JW X

W�AC X

TD�AB X

I�TD X

 U�JW X

 D�DD X

 D�WP X

 D�E X

 D�P X

 D�C X

Totals 1 8 3 3

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.6 0.54 0.4 0.57

Relationships 0.11 0.25 0.33 0.15

244

Exam Problem:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Faculty

Member(FM)
Faculty Member(FM) X

Course(C) Course(C) X

Student(S) Student(S) X

Exam(E) Exam(E) X

Item(I) np X

Choice(CH) Entry(EN) X

Scan Tron

Sheet(STS)
Bubble Sheet(BS) X

Sheet Reader(SR) NP(auto processing) X

ASCII File(AF) Data File(DF) X

Analyzer(A) np X

Part Group (PG) np X

Part(P) Part(P)(STWR) X

Record(R) Record(R) X

Letter(L) Letter(L) X

Question(Q) Question(Q) X

Answer(ANS) Answer(A) X

Repository(RE) Repository(R) X

Answers(ANSS) Answer Sheet(AS) X

Blank(B) Space(SP) X

A-Z(AZ) Requested Answer(RA) X

() FN(asterisk Character) X

 Custom Exam(CE) X

 Duplication(D) X

 Set(SE) X

 Version(V) X

 Exam Question (EQ) X

 System(SY) X

 Place(PL) X

 Bubble(B) X

 Name X

 Output X

 University X

 Course Content X

 Credit X

 Student Performance(SPE) X

Totals 16 5 5 7 2

245

Relationship Detection Data:

Orig Rel ASA Rel Correct Missing Incorrect Extra

FM�E FM�E X

FM�C X

C�S X

E�I X

STS�CH X

SR�STS X

SR�AF X

AF�A X

A�RE X

AF�R X

R�L X

L�B X

L�* X

L�AZ X

I�P X

I�PG X

PG�P X

P�Q X

P�A X

Q�ANS Q�ANS X

A�ANSS X

Q�ANSS X

ANSS�RE X

A�RE X

 E�D X

 E�SE X

 E�V X

 V�Q X

 Q�ANS X

 Q�SPE X

 Q�BS X

 ANS�S X

 S�R X

 S�L X

 L�PL X

 PL�SY X

 PL�SP X

 S�SP X

 S�B X

 B�E X

Totals 2 22 12 5

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.76 0.76 0.38 0.76

Relationships 0.08 0.14 0.21 0.11

246

Personnel Problem [Duf95]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Reader (R) Reader (R) X

Journal (J) Journal (J) X

Topic (T) Topic (T) X

Article (A) Article (A) X

Issue (I) M(np) X

 System (S) X

 Publication (P) X

 Access (AC) X

 Research Institute (RA) X

 Permission (PE) X

 Personnel Department (PD) X

 Department (D) X

 Week (W) X

 Period (PER) X

 Frequency (F) X

 Language (L) X

 Publisher (PUB) X

Totals 4 1 5 6 1

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

R�J R�J X

R�T X

T�A X

A�I X

J�I X

 RI�PD X

 PE�D X

 R�A X

 R�AC X

 J�W X

 J�PER X

 J�F X

 J�L X

Totals 1 4 4 4

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.80 0.44 1.2 0.57

Relationships 0.20 0.20 0.8 0.20

247

Hospital Problem 1 [Cur95]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Patient(P) Patient(P) X

Ward(W) Ward(W) X

Room(R) Room(R) X

Consultant(C) Consultant(C) X

Surgeon(S) Surgeon(S) X

Nurse(N) Nurse(N) X

Normal Patient(NP) Patient(P) X

Private Patient(PP) Patient(P) X X

Staff(ST) np X

 Theatre(T) X

 Operating Theatre (OT) X

 Given Theatre (GT) X

 Venue(V) X

 Number(NU) X

 Type(T) X

 Birth(B) X

 Date(D) X

 Hospital(H) X

 EDP Department(EDP) X

 Name(NA) X

 Address(A) X

Totals 8 1 7 3 2

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

NP�W X

PP�R X

ST�SU X

ST�N X

S�C X

N�W X

C�R X

 N�W X

 H�EDP X

 T�N X

 T�N X

 T�V X

 P�NU X

 P�C X

Totals 3 4 2 5

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.89 0.53 0.33 0.67

Relationships 0.43 0.6 0.71 0.50

248

Hospital Problem 2 [Duf95]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Patient(P) Patient(P) X

Ward(W) Ward(W) X

Doctor(D) Doctor(D) X

Nurse(N) Nurse(N) X

Prescription(PRE) X

 Drug(DR) X

 Hospital(H) X

 Advisor(A) X

Totals 4 1 0 3 0

Relationship Detection Data

Orig Model Relationships Correct Missing Incorrect Extra

W�D X

W�N X

N�P X

D�P X

P�PRE X

 H�W X

 W�P X

 N�P X

 P�DR X

Totals 3 2 0 4

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.80 1.0 0.60 0.89

Relationships 0.60 1.0 0.80 0.75

249

Lift Problem [PRM+07]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Down Button(DB) Button(B) X

Lift Button(LB) Button(B) X

Up Button(UB) Button(B) X

Floor Panel UI(FPU) np X

Floor Number

Button(FNB)
Button(B) X

Lift Controller(LC) Lift Controller(LC) X

Motor(M) Motor(M) X

Lift Panel UI(LPU) np X

Lift(L) Lift(L) X

Door(D) Door(D) X

 Passenger(P) X

 PassengerInteract(PI) X

 Build(BU) X

 Period(P) X

 Second(S) X

 PeriodSecond(PS) X

 ControlPanel(CP) X

 Pres(PR) X

 Floor(F) X

Totals 8 2 5 3 1

Relationship Detection Data:

Orig Rel ASA Rel Correct Missing Incorrect Extra

DB�LB X

UB�LB X

FNB�LB X

FPU�DB X

FPU�UB X

FNB�LPU X

FNB�LC X

FPU�LC X

UB�LC X

DB�LC X

LC�M X

LPU�LC X

LC�L LC�L X

M�L M�L X

LC�D X

LC�D X

L�D X

 B�P X

 P�PR X

 P�F X

 P�L X

 P�L X

 PR�F X

 L�F X

 L�F X

 L�CP X

 L�D X

 F�D X

 F�BU X

 F�P X

 S�F X

 PS�F X

Totals 2 15 6 9

250

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.90 0.75 0.20 0.82

Relationships 0.12 0.25 0.53 0.16

Meeting Problem [RBPEL91]:

Class Detection Data

Orig Model Classes Correct Missing Incorrect Extra SYM

Competition(C) fn X

Competitor(CO) Competitor(CO) X

Figure(F) fn X

Judge(J) Judge (J) X

League(L) League(L) X

Meeting(M) Meet(M) X

Score(S) fn X

Season(S) Season(S) X

Station(ST) Station(ST) X

Team(T) Team(T) X

Trial(TR) fn X

 Part(P) (STWR) X

 Place(PL) X

 Month(MO) X

 Group(G) X

 Figures

Correspond(FC)
 X

 Softcom(SC) X

 Performance(P) X

 Final Prize(FP) X

 Work(W) X

 Panel(PA) X

Totals 7 4 7 3 0

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.64 0.50 0.36 0.56

251

Taxi Problem [BAR12]:

Class Detection Data:

Orig Model Classes Correct Missing Incorrect Extra SYM

Passenger Source

(PS)
np X

Taxi Company (TC) X

Vehicle (V) X

Shuttle (S) X

Taxi (T) X

Passenger (P) X

Location (L) X

 Call (C) X

 Driver (D) X

Totals 6 1 0 2 0

Relationship Detection Data:

Orig Rel ASA Rel Correct Missing Incorrect Extra

PS�TC X

TC�V X

TC�V X

V�L X

V�L X

P�L X

P�L X

S�P X

S�L X

 S�TC X

 T�P X

 T�TC X

 D�TC X

 C�TC X

 P�TC X

Totals 5 4 0 6

Measures Results

 Recall Precision Over-Specification F-Measure

Classes 0.86 1.0 0.29 0.92

Relationships 0.55 1.0 0.67 0.71

252

Appendix B.3 UML Models Generated by the ASA

Organisation Problem 1:

Organisation Problem 2 [Cur95]:

253

ATM Problem [RBPEL91]:

Cinema Problem [CIS08]:

254

KWIC [Par72]

Library Problem 1 [EP98]:

255

Library Problem 2 [Cal94]:

Library Problem 3 [Cur95]:

256

Filing Problem [Der95]:

Exam Problem:

257

Personnel Problem [Duf95]:

Hospital Problem 1 [Cur95]:

258

Hospital Problem 2 [Duf95]:

Lift Problem [PRM+07]:

259

Meeting Problem [RBPEL91]:

Taxi Problem [BAR12]:

260

Appendix B.4 Class Candidate Key Issues Analysis Raw Data

Classification Word Core Issue

False

Negative (P)
character Rule 27

False

Negative (P)
family ticket Rule 27

False

Negative (P)
character Rule 27

False

Negative (P)
station Rule 27

False

Negative (P)
figure Rule 27

False

Negative (P)
note Rule 27

False

Negative (P)
order Rule 27

False

Negative (P)
station Rule 27

False

Negative (P)

automatic

processing(sheet

reader)

Semantics

Issue

False

Negative (P)
sale

Semantics

Issue

False

Negative (P)
transaction(remote)

Semantics

Issue

False

Negative (P)
transaction(cashier)

Semantics

Issue

False

Negative (P)
loan

Semantics

Issue

False

Negative (P)
competition

Semantics

Issue

False

Negative (P)
score

Semantics

Issue

False

Negative (P)
trial

Semantics

Issue

False

Negative (P)
index

Semantics

Issue

False

Negative (P)
project

Semantics

Issue

False

Negative (P)
flipper left Rule 27

False

Negative (P)
unseated showing

Semantics

Issue

False

Negative (P)
right flipper

Semantics

Issue

False

Negative (P)
circle bumper

Semantics

Issue

False

Negative (P)
output nlp

False

Negative (P)
title

Semantics

Issue

False

Positive
number Rule 27

False

Positive
type Rule 27

False

Positive
feature Rule 27

False

Positive
game Rule 27

False

Positive
type Rule 27

False

Positive
way Rule 27

False

Positive
press Rule 27

False

Positive
Part Rule 27

False

Positive
portion Rule 27

False

Positive
number Rule 27

False

Positive
charge Rule 27

False

Positive
interact nlp

False

Positive
interact nlp

False

Positive
bubble

Semantics

Issue

False

Positive
duplication

Semantics

Issue

False

Positive
name

Semantics

Issue

False

Positive
output

Semantics

Issue

False

Positive
place

Semantics

Issue

False

Positive
copy

Semantics

Issue

False

Positive
date

Semantics

Issue

False

Positive
day

Semantics

Issue

False

Positive
following

Semantics

Issue

False

Positive
i .e

Semantics

Issue

False

Positive
information

Semantics

Issue

False

Positive
month

Semantics

Issue

False

Positive
photograph

Semantics

Issue

False

Positive
place

Semantics

Issue

False

Positive
release period

Semantics

Issue

False

Positive
subscription charge

Semantics

Issue

False

Positive
week

Semantics

Issue

False

Positive
bottom

Semantics

Issue

False

Positive
center

Semantics

Issue

False

Positive
chain

Semantics

Issue

False

Positive
clockwise direction

Semantics

Issue

False

Positive
corner

Semantics

Issue

False

Positive
direction

Semantics

Issue

261

False

Positive
end

Semantics

Issue

False

Positive
execution building

Semantics

Issue

False

Positive
frame

Semantics

Issue

False

Positive
frame redraw

Semantics

Issue

False

Positive
graphic community

Semantics

Issue

False

Positive
hypotenuse

Semantics

Issue

False

Positive
length side

Semantics

Issue

False

Positive
platform

Semantics

Issue

False

Positive
second

Semantics

Issue

False

Positive
surface

Semantics

Issue

False

Positive
switch

Semantics

Issue

False

Positive
course name

Semantics

Issue

False

Positive
description

Semantics

Issue

False

Positive
instructor work

Semantics

Issue

False

Positive
name

Semantics

Issue

False

Positive
number

Semantics

Issue

False

Positive
section semester

Semantics

Issue

False

Positive
store

Semantics

Issue

False

Positive
student id

Semantics

Issue

False

Positive
track

Semantics

Issue

False

Positive
year

Semantics

Issue

False

Positive
end

Semantics

Issue

False

Positive
m second

Semantics

Issue

False

Positive
period m second

Semantics

Issue

False

Positive
communicate

Semantics

Issue

False

Positive
software

Semantics

Issue

False

Positive
system

Semantics

Issue

False

Positive
copy

Semantics

Issue

False

Positive
information

Semantics

Issue

False

Positive
system

Semantics

Issue

False

Positive
work

Semantics

Issue

False

Positive
month

Semantics

Issue

False

Positive
panel

Semantics

Issue

False

Positive
performance

Semantics

Issue

False

Positive
place

Semantics

Issue

False

Positive
working

Semantics

Issue

False

Positive
content

Semantics

Issue

False

Positive
word processor

Semantics

Issue

False

Positive
enquiry

Semantics

Issue

False

Positive
instruction

Semantics

Issue

False

Positive
library desk

Semantics

Issue

False

Positive
store

Semantics

Issue

False

Positive
frequency

Semantics

Issue

False

Positive
language

Semantics

Issue

False

Positive
period

Semantics

Issue

False

Positive
system

Semantics

Issue

False

Positive
week

Semantics

Issue

False

Positive
address

Semantics

Issue

False

Positive
birth

Semantics

Issue

False

Positive
date

Semantics

Issue

False

Positive
name

Semantics

Issue

False

Positive
number

Semantics

Issue

False

Positive
type

Semantics

Issue

False

Positive
venue

Semantics

Issue

False

Positive
birth

Semantics

Issue

False

Positive
type

Semantics

Issue

False

Positive
update

Semantics

Issue

False

Positive
regarding nlp

False

Positive
coarser nlp

False

Positive
continually nlp

False

Positive
corresponding nlp

False

Positive
counter-clockwise nlp

False

Positive
l/sec stationary nlp

False

Positive
location furthest nlp

False

Positive
passenger interaction

Semantics

Issue

False

Positive
design

Semantics

Issue

False

Positive
recordkeeping

Semantics

Issue

False

Positive
figure correspond nlp

262

False

Positive
e.g nlp

False

Negative

(NP)

analyzer
domain

knowledge

False

Negative

(NP)

item
domain

knowledge

False

Negative

(NP)

part group
domain

knowledge

False

Negative

(NP)

cinema card sale
domain

knowledge

False

Negative

(NP)

card sale
domain

knowledge

False

Negative

(NP)

application window
domain

knowledge

False

Negative

(NP)

application listener
domain

knowledge

False

Negative

(NP)

game window
domain

knowledge

False

Negative

(NP)

play listener
domain

knowledge

False

Negative

(NP)

build listener
domain

knowledge

False

Negative

(NP)

controller
domain

knowledge

False

Negative

(NP)

object handler
domain

knowledge

False

Negative

(NP)

movable
domain

knowledge

False

Negative

(NP)

game object
domain

knowledge

False

Negative

(NP)

saveable
domain

knowledge

False

Negative

(NP)

collideable
domain

knowledge

False

Negative

(NP)

visible
domain

knowledge

False

Negative

(NP)

triggerable
domain

knowledge

False

Negative

(NP)

still line
domain

knowledge

False

Negative

(NP)

still circle
domain

knowledge

False

Negative

(NP)

moving circle
domain

knowledge

False

Negative

(NP)

rotating edge
domain

knowledge

False

Negative

(NP)

input
domain

knowledge

False

Negative

(NP)

floor pane UI
domain

knowledge

False

Negative

(NP)

lift panel UI
domain

knowledge

False

Negative

(NP)

passenger source
domain

knowledge

False

Negative

(NP)

item
domain

knowledge

False

Negative

(NP)

page
domain

knowledge

False

Negative

(NP)

line
domain

knowledge

False

Negative

(NP)

enquiry note
domain

knowledge

False

Negative

(NP)

person
domain

knowledge

False

Negative

(NP)

issue
domain

knowledge

False

Negative

(NP)

staff
domain

knowledge

False

Negative

(NP)

loan transaction
domain

knowledge

False

Negative

(NP)

prescription
domain

knowledge

False

Negative

(NP)

build window
domain

knowledge

False

Negative

(NP)

game mode
domain

knowledge

False

Negative

(NP)

word
domain

knowledge

263

Appendix B.5 Missing Relationship Classification Raw Data

Relationship Classification

BR�L FN - Class not present

BT�T FN - Class not present

MT�T FN - Class not present

ATM�RT FN - Class not present

BC�CS FN - Class not present

B�CS FN - Class not present

RT�A FN - Class not present

RT�CC FN - Class not present

CS�CT FN - Class not present

A�CT FN - Class not present

I�TD FN - Class not present

O�B FN - Class not present

B�N FN - Class not present

P�S FN - Class not present

D�P FN - Class not present

L�* FN - Class not present

L�AZ FN - Class not present

WSS�SH FN - Class not present

US�SS FN - Class not present

T�US FN - Class not present

FT�T FN - Class not present

FT�T FN - Class not present

T�S FN - Class not present

S�CS FN - Class not present

B�A Class Present Relation across Paragraphs

A�CC Class Present Relation across Paragraphs

A�CU Class Present Relation across Paragraphs

NP�W Class Present Relation across Paragraphs

L�S Class Present Relation across Paragraphs

S�LI Class Present Relation across Paragraphs

L�MC Class Present Relation across Paragraphs

FM�C Class Present Relation across Paragraphs

C�S Class Present Relation across Paragraphs

Q�ANSS Class Present Relation across Paragraphs

ANSS�RE Class Present Relation across Paragraphs

CS�ASL Class Present Relation across Paragraphs

SS�SH Class Present Relation across Paragraphs

T�SS Class Present Relation across Paragraphs

BR�R Class Present Relation in same sentence

CO�CCO Class Present Relation in same sentence

CCO�BC Class Present Relation in same sentence

CC�CU Class Present Relation in same sentence

C�R Class Present Relation in same sentence

W�D Class Present Relation in same sentence

R�T Class Present Relation in same sentence

T�A Class Present Relation in same sentence

TD�K Class Present Relation in same sentence

LC�M Class Present Relation in same sentence

LC�D Class Present Relation in same sentence

AF�R Class Present Relation in same sentence

R�L Class Present Relation in same sentence

L�B Class Present Relation in same sentence

P�Q Class Present Relation in same sentence

D�I Class Present Relation in same sentence

C�D Class Present Relation in same sentence

C�CS Class Present Relation in same sentence

S�SH Class Present Relation in same sentence

S�L Class Present Relation in same sentence

LC�D domain knowledge - double relationship

TC�V domain knowledge - double relationship

V�L domain knowledge - double relationship

LI�LT domain understanding

LI�B domain understanding

DB�LB domain understanding

UB�LB domain understanding

UB�LC domain understanding

DB�LC domain understanding

STS�CH domain understanding

BR�I FN - class not present

L�I FN - class not present

I�T FN - class not present

ST�SU FN - class not present

ST�N FN - class not present

P�PRE FN - class not present

A�I FN - class not present

J�I FN - class not present

TD�P FN - class not present

P�L FN - class not present

L�W FN - class not present

L�JW FN - class not present

W�AC FN - class not present

264

I�B FN - class not present

B�P FN - class not present

EN�N FN - class not present

C�LTR FN - class not present

LTR�LI FN - class not present

FNB�LB FN - class not present

FPU�DB FN - class not present

FPU�UB FN - class not present

FNB�LPU FN - class not present

FNB�LC FN - class not present

FPU�LC FN - class not present

LPU�LC FN - class not present

E�I FN - class not present

SR�STS FN - class not present

SR�AF FN - class not present

AF�A FN - class not present

A�RE FN - class not present

I�P FN - class not present

I�PG FN - class not present

PG�P FN - class not present

P�A FN - class not present

A�ANSS FN - class not present

CCS�S FN - class not present

CC�CCS FN - class not present

CC�C FN - class not present

PS�TC FN - class not present

A�RE FN - class not present

265

Appendix B.6 Training Specifications

Airport Specification:

All aircraft must have a transponder. The transponder is used to transmit aircraft position to

the ground station monitor. The monitor can query an aircraft for information. The monitor

keeps a database that maintains this information. A graphics display is generated from the

current information. The ground station monitor updates the graphics display frequently. A

graphics display is generated from the current information. The ground station monitor

updates the graphics display frequently. The monitor checks for dangerous situations. The

controllers may query the monitor for additional flight information. Controllers may also

query the aircraft for this information.</paragraph>

Music Store Specification:

The musical store receives tape requests from customers. The musical store receives new tapes

from the Main office. Musical store sends overdue notice to customers. Store assistant takes

care of tape requests. Store assistant update the rental list. Store management submits the price

changes. Store management submits new tapes. Store administration produces rental reports.

Main office sends overdue notices for tapes. Customer request for a tape. Store assistant checks

the availability of requested tape. Store assistant searches for the available tape. Store assistant

searches for the rental price of available tape. Store assistant checks status of the tape to be

returned by customer. Customer can borrow if there is no delay with return of other tapes.

Store assistant records rental by updating the rental list. Store assistant asks customer for his

address.

Video Store Specification:

A new video store intends to offer rentals of video tapes and disks to the wider public. The

store management is determined to launch its operations with the support of a computer

system. The management has already sourced a number of small business software packages

that might be suitable for customisation and further development. To assist with the package

selection, the store hired a business analyst whose job is to determine and specify the

requirements.

266

The video store will initially keep stock of about a thousand video tapes, and five hundred

video disks. The inventory has already been ordered from one supplier, but mode suppliers

will be approached in the future orders. All video tapes and disks will be bar coded so that a

scanning machine integrated with the system can support the rentals and returns. The

customer membership cards will also be bar coded

Existing customers will be able to place reservations on videos to be collected at a specific date.

The system must have a flexible search engine to answer customer enquiries, including

inquiries about movies that the video store does not stock (but may order them on request).

The video store keeps in stock an extensive library of current and popular movie titles. A

particular movie may be held on video tapes or disks. Video tapes are in either 'Beta' or 'VHS'

format. Video disks are in 'DVD' format.

Each movie has a particular rental period (expressed in days), with a rental charge for that

period.

The video store must be able to answer immediately any inquiries about movie's stock

availability and how many tapes and/or disks are available for rental (the current condition of

each tape and disk must be known and recorded).

The rental charge differs depending on the video medium: tape or disk (but it is the same for

the two categories of tape: Beta and VHS).

Although the DVD disk is the only format of video disks currently kept in the store, the users

want the system to extend easily to other disk formats in the future.

The employees of the video store tend to remember the codes of the most popular movies.

They frequently use a movie code, instead of a movie title, to identify the movies. This is a

useful practice because the same movie title may have more than one release by different

directors.

Payroll Specification:

A university wishes to develop a new payroll system. The university employs both full-time

and casual lecturers.

267

Employees in the Human Resources department will use the system to maintain employee

information, record and manage annual leave, record and manage sick leave and make

payments to lecturers at the end of every month. In addition, they must be able to add new

employee records to the system (when new staff join the university) and delete employee

records when existing staff leave the university.

At the end of every month, the system must pay each lecturer the correct amount, on time,

and by the payment method requested by each lecturer (pay-cheque or bank transfer). Both

full-time and casual lecturers are able to view and modify their chosen payment method and

personal information online. However, only full-time lecturers are able to view their payment

details and leave entitlement (casual lecturers do not have leave entitlement).

Full-time lecturers are paid a flat salary, but casual lecturers work by the hour and are paid

an hourly rate. This means they must submit time-cards that show the dates and number of

hours worked each month. This information is used by the system to calculate the salary owed

to each casual lecturer. Because casual lecturers are unable to view their payment details

online, the system generates a pay slip for each casual lecturer which is then mailed to that

lecturer.

Medical Specification:

The host is powered up and all software subsystems are available. The pump software system

is now in the wait operating state. The patient with IV/pump running is placed onto the host.

The pump cable is connected to the host. The host now provides power for the pump.

268

269

Appendix C.1 ASA Technical Evaluation

Automated Software Architect Technical

Evaluation

Mark Meiklejohn

2010

Department of Computer & Information Sciences

University of Strathclyde

270

Evaluation	Methodology	

The main goal of this evaluation is to investigation the quality of the class model created by

Automated Software Architect (ASA) from a requirements specification. These results are

then compared to the human developed class model using the metrics of precision, recall

and over-specification.

It is envisaged that during this evaluation, automation will demonstrate high levels of both

recall and precision in relation to the human design. In addition, this evaluation will also

attempt to identify interesting and useful information that can also be used to better the

automated results.

This evaluation is based on the evaluation carried out by H.M. Harmain [Har00] and their

implementation of an automated software developer ‘CM-Builder’ which is most closely

related to my own work. Their evaluation utilises the metrics of both recall and precision of

information extraction (IE) systems and they have further developed a new metric ‘over-

specification.’ This metrics aims to measure how much the automatically generated model is

over-specified compared to that of the ideal solution.

Since we are using Harmain’s evaluation, it will only consider the actual classes identified and

not any of the relationships, operations or attributes detected by the solution. This in my

opinion could limit the accuracy of the evaluation, since we are not considering other aspects

of the design. Harmain’s reason why they only consider classes is threefold; 1) classes are

more prominent than relationships, 2) there are different ways to represent the same

relationship between classes and 3) software development is an iterative process. However,

I believe that it is possible using these metrics to evaluate the quality of other design

components in relation to the actual human design (ideal solution). With regard to point 2,

it is true that relationships between classes can be represented in many ways however, is it

not the point that automation can at least identify similar relationships? Although, these

relationships may not be of the correct type, these should at least be considered for the

quality of identification.

271

Criterion

The main goal is to compare both the results of automation against the human model (ideal

solution). Since, different developers can produce different models and there is no gold

standard per say, for a given requirements specification. There is no confident way to identify

whether a design is the correct or not. However, it is possible to say whether a design is good

or bad. Therefore, Harmain state that any class model that has been published in Object

Oriented text book is an ideal solution.

Measures

Harmain evaluation utilises three measures; recall, precision and over-specification, which

are defined below:

Recall

Their definition of recall reflects the completeness of the results produced by automation

versus the correct and relevant information contained within the ideal solution produced by

the human developer:

gmiscorrect

correct

NN

N
recall

sin+
=

Where
correctN , refers to the number of correct identifications made by the system, and

gmisN sin refers to classes contained within the ideal solution but not identified the automated

model.

Precision

This reflects the accuracy of the system based on how much of the extracted information is

correct:

incorrectcorrect

correct

NN

N
precision

+
=

Where
correctN , is as above and

incorrectN refers to incorrect identifications made by

automation.

272

Over-Specification

This reflects how much extra correct information automation has identified in comparison to

that of the ideal solution:

gmiscorrect

extra

NN

N
ionspecificatover

sin+
=−

Where
correctN , is as above, where

extraN is not within the ideal solution, but subsequently

considered correct for inclusion and gmisN sin is within the ideal solution but not within the

automated model.

Methodology Application

The classification of results first requires the ASA to process a specification, where an ideal

solution exists. Once automation has completed its analysis; the classification of its results is

a manual process.

The manual classification process involves reviewing each class created by automation in

comparison to that of the ideal solution and by using the below definitions determine the

relevant classification.

Correct

An element is considered correct if either it exactly matches or is synonymously relevant to

an element contained in the ideal model. The ideal model is the model produced by the

human developer.

Missing

An element is considered missing if it is contained within the ideal solution but not within the

automatically derived answer.

Incorrect

An element is considered incorrect if it is not within the ideal model and both the

specification and by our own judgement confirms that it is incorrect.

Extra

273

An element is considered extra if by our own judgment it is deemed correct, but is not

contained within the ideal solution.

Measure & Method Discussion

Both precision and over-specification metrics in particular
incorrectN and

extraN classifications

rely on our own judgment. However, these classifications could be unconsciously biased

towards producing a more positive result that over states both precision and over-

specification.

As a result of this unconscious bias there are only two solutions that could be utilised by

having an impartial review to classify the automated results, or to modify both precision and

over-specification metrics and definitions to remove the notion of bias.

Precision

In my opinion, precision represents the correct identification of relevant terms by all

returned terms within the specification. As such, the current precision metric does not

actually give an accurate picture of the results returned as it is considered within the context

of the human model. Therefore, to obtain an accurate identification of automations precision

the metric should be revised and would be best served by this new definition;

gmisall

correct

NN

N
precision

sin+
= . Where

allN represents all results returned by automation,

where
correctN and gmisN sin are as previously defined.

Over-Specification

Harmain’s justification of over-specification relies on the generally accepted OO community

definition that it is better to over specify than under (Larman, 1998; Martin and Odell, 1995;

Meyer, 1997). However, the ideal solution itself represents a model that may have gone

through several design iterations to realise the final design. Thus, the over-specification

metric contradicts the ideal solution by stating that it is not actually ideal. As a result, this

would invalidate both recall and precision metrics by its definition.

On the other hand though, it is more than probable that the ideal solution has already been

through this kind of over-specification phase and through design iterations much of the

274

additional information classified as extra by myself could have already been considered and

removed through this iterative process.

Therefore, the over-specification metric is important as it allows for the identification of

possibly overlooked classes and relationships contained within the specification. As a result

of their identification, the extra information can be presented to the developer and for them

to make the relevant decision based on their expertise within a particular domain for their

inclusion. However, this still leaves the issue of unconscious bias that can only be realistically

resolved through an impartial classification of the results.

Results Discussion

Table 0-1 details recall, precision and over-specification metric results and Appendix Two

details the actual results along with their classifications. The metric results in bold (see Table

0-1) have been used to establish the metric average. Attention must be drawn to the

additional lift and taxi specification contained within the metric results table. Since the UML

diagram for the lift specification is not available, the results and their classification have been

based on the results obtained from a different automated system ‘Dowser’ [ref]. The Dowser

system utilises a controlled grammar and therefore requires the specification to be modified

to reflect this controlled grammar. As a result, the classification has been based on the results

from two runs using the modified and original specifications. Furthermore, the taxi

specification has also had two runs one with a language inconsistency model (see Language

Inconsistency Model Effect) and one without. The reason being to determine the effect of

the language inconsistency model has on recall, precision and over-specification metrics.

Overall, both recall and precision demonstrate a high average, with both taxi and library

specifications demonstrating the highest recall and precision. However, is this elevated level

recall and precision for taxi and library specifications a result of specification led algorithm

development in relation to automation rather than a generalised algorithm development?

The definition of generalised development aims to capture the abstract essence of the

language structures, thus allowing the algorithm to process any specification without bias to

a particular style of specification. However, both of these specifications are very concise and

to the point. The lift and cinema specifications have low results for recall, these both form

parts of a system analysis and design coursework obtained from the University of Strathclyde

and the University of Minnesota, and were chosen for the reason that they contain spurious

275

information and are possibly more related to real world specifications rather than the ideal

solutions, which could explain their low metric results.

Over-specification on the other hand demonstrates an extremely high average although

concerning there are likely causes for this. The first and most prominent consideration is that

the specification being processed may contain supplementary information, which is could be

either relevant or not to the final design. Furthermore, there could also be the presence of

language inconsistencies that are not taken into consideration as with the library, lift and

cinema specifications. Another probability is the incorrect application of the dominant

semantics, which could result in erroneous classes. There has also been several different

language constructs identified that express differing properties towards either reducing or

identifying a greater probability of class inclusion. Nevertheless, over-specification by its own

nature is identified through a manual (human) classification process (see Criterion) rather

than being identified by automation, which could also account for an elevated over-

specification.

Table 0-1 Metrics Results

Specification Recall Precision Over-Specification

Taxi (without language

inconsistency model)
1 1 1.3

Taxi (with language

inconsistency model)
1 1 0.16

Lift (modified spec) 0.36 0.71 0.42

Lift (original spec) 0.36 0.83 0.36

Cinema 0.5 0.43 2.7

Library 1 0.875 1.375

Average Result 0.715 0.784 1.45

276

Language Inconsistency Model Effect

The language inconsistency model relates to the situation where a specific term is introduced

into the specification and further in the specification it is referred to not by its original term,

but by a term that could be or could not be synonymously related to it. For example, given

the situation where a ‘passenger’ is introduced, but further in the specification it is referred

to as either an ‘individual’ or ‘group’, both meaning a passenger from our contextual

understanding of it. The model itself is a simple XML document that details the inconsistent

(noun) term (in this example individual) and what its replacement is (passenger). As such,

during processing the model is checked for any of the inconsistent terms which subsequently

replaced with the correct term. This requires resolution as automation is unable to

contextually resolve the situation itself. The main benefit of the language inconsistency

model is primarily a reduction in the number of duplicate classes that are created and is

demonstrated by a ~87% reduction in over-specification for the taxi specification (see Table

0-1). The library, lift and cinema specifications do not have this model defined which could

be a factor for the elevated over-specification result.

Result Classification Analysis

Appendices Three – Six contain the UML models generated by the ASA, the human and where

possible other automated systems.

This discussion aims to justify the manual classification of extra and incorrect classes. This is

not evaluating whether automation has made the correct judgement based on its semantics

it has, but considering the term and its context within the sentence and whether my

judgement is correct for its inclusion with the final model of which is still open to

interpretation and bias. However, this evaluation shall be as impartial as possible.

The discussion process will follow the below template (see Appendix One for details):

Class Name: The name of the class created.

Trace: Where the term has been identified within the sentence which

is automatically identified by the ASA during processing.

Presence in

Specification:

Discussion of the sentence in which the class is discovered.

277

Detected by

(HFS|DS|AS):

The semantics discovered that are used to make a relevant

decision regarding class creation. See Candidate Class

Detection section for a definition of High Frequency Semantics

(HFS), Dominant Semantics (DS) and Artefact Semantic (AS)

detections.

System Impact: Investigates what impact the class would have if included in

the final design.

Original Classification: Extra – something that the developer should consider.

Although, the discovered class may not be a class but some

other component of the systems first-cut design.

Incorrect – something that should not be included in the

design.

New Classification: Correct – that it should be included in the design as a class

Extra – something that the developer should consider.

Although, the discovered class may not be a class but some

other component of the systems first-cut design.

Incorrect – something that should not be included in the

design.

Candidate Class Detection

Prior to discussing the results of these classifications, it is best to briefly discuss the detection

process. All candidate classes are nouns and the class detection algorithm bases its decision

to create a class on the semantics (see Table 0-2).

As such, if either the (noun) term’s highest frequency sense semantic (HFS) obtained from

WordNet[ref] is a frequency count of the number of times a word has been seen in that

sense. As such, it defines the most common sense understanding of a given word.

The dominant semantics (DS), which is similarly an identification of the highest frequency

count for a sense, for a given (noun) term, contained within the set of all senses for a given

(noun) term. Also obtained and calculated from WordNet.

278

If the (noun) term is within has either a HFS or DS semantics or it has an artefact semantic

(AS - (similarly obtained from WordNet)) indicating a man-made object, then a class will be

created.

Table 0-2 Candidate Class Semantics

Semantic: Description:

Animal Nouns denoting animals

Artefact Nouns denoting man-made objects

Body Nouns denoting body parts

Communication Nouns denoting communicative processes and contents

Food Nouns denoting foods and drinks

Group Nouns denoting groupings of people or objects

Location Nouns denoting spatial position

Object Nouns denoting natural objects (not man-made)

Person Nouns denoting people

Plant Nouns denoting plants

Shape Nouns denoting two and three dimensional shapes

Substance Nouns denoting substances

Time Nouns denoting time and temporal relations

Nouns that indicate something else

With the remaining semantic groups (see Table0-3Table 0-3 Functional Semantics) also

obtained from WordNet[ref] are used to determine aspects of the model that may exhibit

actions, relations, state, multiplicity, algorithms or attributes.

These candidates are identified during the detection process. However, the algorithm only

processes nouns that have an attribute semantic. As a result of this identification, it will

279

create a class attribute. The remaining semantics still require further consideration of their

properties and how they would be applied within the first-cut model.

Table 0-3 Functional Semantics

Semantic: Indicates:

Act Action

Possession Relation

Quantity Multiplicity

State State

Process Algorithm

Motive Algorithmic/Conditional-?

Relation Relationships

Attribute Class attributes

280

Evaluation Conclusion

In relation to overall candidate class detection process, the algorithm itself achieves a high

level of both recall (71%) and precision (78%) regarding the metric analysis. This

demonstrates that decisions based purely on the semantics for a given (noun) term can

detect a greater than average number of classes contained within the human model. This has

been determined by averaging metric the results obtained from Table 0-1.

The process also demonstrated a very high over-specification on average of 145%. These

identifications allow the developer to investigate other features of the system that have been

detected and to make a decision regarding their inclusion within the final design. The

detection algorithm identifies the creation of each design component and tracks it through

traceability links. Thus, allowing the developer to go directly to the part of the specification

where the decision was made. As a result, allowing a decision to be made quickly and

effectively, regarding the inclusion of additional components within the final model.

The results classification analysis focused on the additional information (over-specification

and incorrect classifications) detected as candidate classes by automation, which is not

inclusive of the final (human) design. This raises an issue regarding the semantics used in

detection of candidate classes. Since, the decision is based on an ‘or-ing’ of the Highest

Frequency (HFS), Dominant (DS) and Artefact (AS) semantics. Where the decision to create a

class component is based on the DS and when the HFS is not within the candidate set could

this represent a possible problem with the dominant semantics definition, when there is a

failing to identify a design component based on the HFS or AS semantics.

The classification analysis also identified some misguided classifications, that should be

changed from either extra to incorrect or correct and from incorrect to extra or correct (see

Criterion). The overall impact that this would have would either increase in precision and a

decrease in over-specification metric results or vice versa. However, consideration must also

be given to the fact that some choices to change a classification from extra to correct. Would

result in invalidating the ideal solution and could be an issue of interpretation. As a result of

this identification, a consideration of what the affect would be still has to be considered.

Each of the classifications were originally considered and identified by myself. Each additional

candidate (extra and incorrect classifications) was assessed for their suitability to be included

281

within the first-cut design by an unbiased group discussion consisting of Mark Meiklejohn, Dr

Marc Roper and Dr Murray Wood.

To briefly highlight, the additional information indicate either attributes in the majority cases;

probable under-specifications; marker words introducing important class components; class

hierarchical structures; parser miss-interpretations; language inconsistency/synonymous

terms and the identification of system boundary classes or actors.

Table 4 identifies the main issues, their type, associated problems, the main finding,

examples of their usage and their average frequency of occurrence. The frequency of

occurrence was established by evaluating the commonality of these issues that arose across

the specifications used in this evaluation and is an indication of the probability of these

occurring in unseen specifications (see Appendix Seven: Frequency of Occurrence).

These discussions identified that not all of the additional information considered as extra or

incorrect are relevant and should be created as a classes, but can indicate other aspects of

the design (such as attributes, operations or class hierarchical structures) or are either just

irrelevant to the specification and should not be included in the final design.

A common pattern was the identification related to specific linguistic structures that have a

high frequency of occurrence throughout the specification document. The main issues of

these structures are that the components/terms are managed individually rather than being

considered as a whole, within the confines of the structure. Therefore, consideration of how

these could be used and how they can assist in the creation of an enhanced first-cut design

should be sought.

Of those that are not associated with linguistic structures, there are some cases where

automation will fail with respect to under-specifications/boundary classes. Under-

specification itself has been identified through consideration of the results obtained from

automation. This typically refers to the situation where some potential design component

demonstrates limited functionality, but infers that there is possibly more functionality is

associated with it, but has not defined within the specification. Whereas boundary classes

have similarly been identified in this way, but identify components that exhibit limited if not

no behaviour associated with them and represent external components to the system itself.

As such, there is no option but to have human intervention regarding these components.

282

Since, automation itself does not have the relevant knowledge to make a specific decision

regarding their inclusion.

Furthermore, under-specification/boundary classes can indicate probable actors within the

system that are fuzzy with regards to whether they should be included in the design or not.

In addition, some describe the system themselves (i.e. the library, the taxi company) which

could result in the creation of god classes.

The algorithm itself relies solely on the semantics of the term for its decision making process

regarding class creation and does so in an effective manner by creating a greater than

average number of classes that are contained within the ideal solution. However, relying on

these semantics alone may not be enough for class creation and inclusion within the first-cut

design.

The issues (see Table 0-4) fit nicely within our research questions and contributions to extract

more information from the structure of the language, to understand what is being expressed

in an abstract way to better create a first-cut design.

Key Problems to be tackled

• Linguistic Structures:

o Since, ‘X of Y’ is dealt with independently of each other, when there is a

probable relation between the components?

� Considerations

• Is Y some super type or focus of this structure?

• Is X specific to Y but not within the confines of that type?

o ‘Has’ Structure

� Differentiation between attribute and class types.

• Could this be achieved by considering term frequencies?

o Verb & Preposition Linkages

� A solution to this issue is through the use of a prepositional-verb

decision matrix, where the intersection gives the relevant decision

to take as a result of their combination.

� Abstraction of the semantics for a given preposition should allow

o Consideration of existential sentence and their high probability of

introducing classes.

• Language inconsistency/Synonymous Terms

o These typically resulting in the creation of duplicate classes.

283

� The simplest route is to manually create a language inconsistency

model to identify the synonymous terms and replace them during

specification processing.

• Under-Specification/Boundary classes

o Used to infer and identify possible actors, external components, or areas of

the specification that requires further investigation.

o Some resolution could be achieved through consideration of the semantics

related to actors of the system, but others would require possible human

intervention.

• General & common phrases terms

o This could be resolved through the manual development of a data dictionary

that could be used to perform a key word/phrase analysis to identify these

terms.

� Therefore indicating the likelihood of some new feature of the

system being introduced. This could be achieved by identifying these

terms and could be given special consideration during the creation

of the first-cut design.

• Relationship detection

o Although this feature is partially operational and is focused on the verb of

the sentence for its identification. There still exist many relationships

through the structure of the language that is currently not implemented.

Such as preposition and verb constructs and the relationships between

different clause types that identify implied relationships.

• Attribute detection

o Currently only the algorithm only considers nouns that have attribute

semantics, but consideration of attributive adjectives must also be

considered as well to ensure that a well-formed first-cut design is produced.

Furthermore, the placement of attributes is not implemented and

consideration of this issue requires resolution.

• Operation & Parameter Detection

o Although implemented the voice of sentence still requires consideration. As

it will affect the placement of the operation and its parameters.

• Over-Specification

o In the majority of cases, over-specification itself is aimed to be resolved

through the resolution of these key problems. It is not that over-specification

will disappear. Although it is considered that through consideration of these

problems will give supporting evidence for the inclusion of design

components that may otherwise go unconsidered by developer. Therefore,

there may still be some developer interaction with the final model and

consideration of new design components.

• Class detection based on semantics alone.

o A consideration is that are semantics alone enough to identify all the

relevant classes contained within the specification.

284

o A solution to the issues could also include other factors. Such as, the

frequency of occurrence within the specification and consideration of a

weighting, given a term and its relative position within the sentence? On the

other hand, rather than relying on frequencies and weightings; could the

linguistic structures be used to help identify potential classes, attributes and

operations from nouns?

 Table 0-4 Identified Issues

Issue: Linguistic Structure Type: ‘X of Y’ Average Frequency

Count: 7.75

Examples:

1. ‘Each elevator has a set of buttons, one button for each floor.’

2. ‘All requests for floors within elevators must be serviced eventually, with floors being

serviced sequentially in the direction of travel.’

3. ‘Along with the membership number, other details on a customer must be kept such as

a name, address, and date of birth.’

4. ‘There are two types of loan items, language tapes, and books.’

5. ‘A customer may borrow up to a maximum of 8 items.’

6. ‘If the membership is still valid and the number of items on loan less than 8, the book

bar code is read, either via the bar code reader or entered manually.’

Associated Problems:

There are twelve senses[ref] regarding ‘X of Y’ combinations and the disambiguation of

these within the context of the sentence is an arduous and error prone task for

automation.

Additionally each component (‘X’ and ‘Y’) are handled individually of each other when

they should be considered as a whole

Findings:

Of theses 12 sense, not all may be relevant when considering the language of a

requirements specification document.

When investigating the structure of ‘X of Y’ combinations, they take the following form:

where ‘Y’ is in the majority of cases is a prepositional phrase and ‘X’ is either a noun or

verb phrase. Similarly, in the majority of cases ‘X’ is typically a noun phrase. Since, a

285

prepositional phrase indicates a relationship between the complement of the

prepositional phrase and some other component contained in the sentence.

Therefore, in the case where ‘X’ is a noun, does this indicate that the complement of the

Y is a candidate class? Similarly where the ‘X’ is a verb phrase, does the ‘Y’ indicate an

attribute of some class?

Issue: Linguistic Structure Type: Verb & Prepositions Average Frequency

Count: 7

Examples:

1. During its release period a particular film can be shown on a number of different

screens.

2. When a vehicle arrives at a pick up location, the driver notifies the company.

3. Each customer is known as a member and is issued a membership card that shows a

unique member number

4. Along with the membership number, other details on a customer must be kept such as

a name, address, and date of birth.

Associated Problems:

A similar theme throughout, as these they are managed individually. When they should

be considered as a whole.

Findings:

Prepositions themselves typically indicate a relationship between the object of the

preposition and some component contained within the sentence. However, this may not

be entirely true when considering some of these cases.

Example three ‘is known as’ indicates that customer is a type of member. Therefore, we

would want to remove all references to customer and replace them with member.

Example four ‘must be kept’ indicates a possessive relation between ‘customer’ and the

objects of the preposition.

Examples one and two indicate relationships between the object of the preposition and

subject of the sentence.

286

Issue: Linguistic Structure Type: Has Average Frequency

Count: 2

Examples:

1. The elevator has a set of buttons.

2. A language tape has a title language (e.g. French), and level (e.g. beginner).

3. A book has a title, and authors.

4. For example, matinee screenings usually have a lower ticket price than evening

screenings, while weekend screenings usually have higher ticket prices.

5. The hotel Bolzano has a restaurant, a private car park and a garden.

6. It has 15 double rooms and 5 single rooms.

7. All rooms have balcony.

8. If it has no free vehicles, it does not operate any form of queuing system

Associated Problems:

The main issue raised here is being able to distinguish between what should be modelled

and what shouldn’t be in terms of being either an attribute or a class within the design.

Furthermore, some of these identified problems could be linked. In example one we have

an ‘X of Y’ combination, as well as the ‘has’ structure.

Findings:

In UML modelling, a ‘has a’ relationship indicates an aggregation relationship between

classes. However, in the above examples this may not be entirely true.

Examples 2, 3, 4, 7 and 8 all indicate attributes of the subject. Whilst examples 1 and 6

are attributes of the subject, but also imply that they should also be modelled as a class.

However, this is understood from experience, not from the actual model itself.

Additionally, examples 3 and 5 also demonstrate a combination of attributes and

potential classes.

However, considering that the ‘has’ structure has a greater probability of introducing

attributes rather than classes has to be considered.

A possible resolution to this problem could be addressed by considering if any of the

following objects have an attribute semantic set. However, there are still problems with

this consideration which could result in the creation of erroneous classes.

287

Issue: Linguistic Structure Type: Existential Average Frequency

Count: 1

Examples:

1. There are three hotels in the chain.
2. There are two kinds of degrees, pass degrees and honours degrees.
3. There are seven standard gizmos that must be supported: bumpers (square, circular,

and triangular), flippers (left and right), absorbers, and outer walls.
4. There are two kinds of screenings: seated and unseated ones.
5. There are two types of loan items, language tapes, and books.
6. There may also be junior and senior competitions.

Associated Problems:

There are no associated problems with the identification, but rather an observation

identified during the discussion process related to this structure.

Findings:

An existential sentence indicates the existence of some element contained within the

sentence. This structure therefore identifies a high probability of candidate classes

relating to its structure and definition.

Issue: General/Common/Irrelevant

Terms/phrases (HFS|DS)

Average Frequency Count: 2.75

Examples:

1. Information (communication|communication)

a. Regarding the films, information that is important includes the film’s

classification (determined by the board of film classification) as well as its

duration.

2. Details (cognition|group)

a. Along with the membership number, other details on a customer must be kept

such as a name, address, and date of birth.

3. Type (cognition|communication)

a. There are two types of loan items, language tapes and books,

4. Addition (artefact|act)

a. In addition to running the individual meets, the league prepares the schedule

of meets for the season, ensures that qualified judges are assigned, registers

teams and gymnasts, and publishes seasonal standings.

Associated Problems:

288

Class creation is decided solely by its semantics and is the primary reason as to why these

are created as classes.

Examples two and three both have Highest Frequency Semantics (HFS) of (cognition), but

the Dominant Semantics (DS) are within the set of possible candidates and identifies why

they are created as classes. On the other hand is this a failing of the dominant semantics?

As examples one and four are the opposite, their HFS are within the set of candidates,

whereas the dominant semantics for example four’s DS is not.

Findings:

Although these terms themselves are irrelevant to the specification, do these terms act

as markers that introduce potential design components that have a greater than average

chance of inclusion within the final design?

Additionally, consideration and further analysis of the (HFS|DS) semantics may also aid

in reducing this type of problem.

The creation of marker word ontology could signify special behaviour for consideration.

Furthermore, some of these markers are also tied up with the language structures and

consideration of these could also aid this problem.

Issue: Language inconsistency/Synonymous Average Frequency Count: 3

Examples:

1. Original/Concept (Screenings)

a. Language inconsistency: Ones

2. Original/Concept (Loan Item)

a. Language inconsistency: item

3. Original/Concept (Passenger)

a. Language inconsistency: Group, individual, Hotel, Tourist Organisation

4. Original/Concept (Customer)

a. Language inconsistency: Member

Associated Problems:

The main problem with language inconsistency/synonymous terms is that they create

duplicate classes. In addition the creation of these classes would also effect the creation

of any operations, as parameters of the operation would be of the language

inconsistency type and not the overall concept.

289

Findings:

To limit the introduction of duplicate classes. The only feasible way to manage the

situation is to create (manually) a language inconsistency model. The language

inconsistency model would require the developer to read the specification and construct

a simple XML file mapping between the concept and its synonymous terms. This defeats

the whole purpose of the system by being able to through any specification without any

special pre-processing requirements.

Although this creates an initial overhead for the developer in essence, they are creating

a domain dictionary to resolve this particular issue. Furthermore, this language

inconsistency model/domain dictionary is something that could be possibly reused for

similar domains.

Issue: Under-Specification/System Boundary Average Frequency Count: 2

Examples:

1. Bar Code Reader

2. Control Mechanism

3. Driver

4. Call

5. Film Distributor

6. Cinema Management Team

7. Cinema Staff

8. Photograph

Associated Problems:

System boundary classes and probable under-specifications although lead to the creation

of classes that can indicate actors within the system, interfacing with external devices or

areas that require further investigation. Its not that this is a specific problem, but more

of an observation that requires resolution.

Findings:

With regard to class creation, this issue cannot be readily resolved. The classes created

have the correct semantics for class creation. However, it is considered helpful to the

developer that these have been identified and created. Allowing them the opportunity

to consider any relationships or operations that may be created as a result of their

290

identification for their inclusion within the final design. As such these would typically be

left to the developer to make a relevant decision regarding their inclusion within the first-

cut design.

Issue: Common Phrases Average Frequency Count: 0.25

Examples:

1. date of birth

2. date of issue

Associated Problems:

Similarly, they are managed as individual parts rather than being considered as a whole.

As such, this allows for the creation of additional classes when something else if

specifically meant by these types of phrases. Although the examples here indicate

probable attributes rather than classes.

Findings:

Common phrases can have an inferred meaning that is difficult if not impossible for

automation to extract from the phrase alone.

291

Appendix One - Result Classification Analysis Details

Taxi Specification (with language inconsistency model – see Appendix

Four)

Out of all the specifications analysed; the taxi specification is the only one which had a

language inconsistency model defined. The taxi specification had two runs one with the

language inconsistency model and the other without to determine its effect. As a result it

only affects over-specification metric which is demonstrated by a 114% reduction in over-

specification. Given this result it allows the clear identification of what is possibly extra

information contained within the specification.

Briefly, the taxi specification discusses the operation and functions of a taxi service.

Class Name: Driver

Trace: [p3.1.0] When a vehicle arrives at a pick up location, the driver

notifies the company.

[p3.1.1] Similarly, when a passenger is dropped off at their

destination, the driver notifies the company.

Presence in

Specification:

Both sentences describe an algorithmic process of causality of

what should happen when a vehicle either drops off or picks

up a passenger.

Detected by

(HFS|DS|AS):

Person Person False

System Impact The inclusion of this class would allow the modelling of a

driver, their association between them, a vehicle and the

company. Additionally, there is the discovery of a notification

operation between the driver and the company.

Original Classification: Extra

New Classification: Correct

292

Class Name: Call

Trace: [p2.1.0] When the company receives a call from an individual,

hotel, entertainment venue, or tourist organization, it tries to

schedule a vehicle to pick up the fare.

Presence in

Specification:

The sentence identifies an algorithmic process describing the

actions that take place as a result of receiving a call.

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact The inclusion of this class within the model would have little

impact on the actual final model as it forms part of an operation

(recevieCall) and not actually a class.

Original Classification: Extra

New Classification: Extra

Library Specification (see Appendix Three)

The library specification details and discusses the operations and features of a library service.

Class Name: Author

Trace: [p2.1.3] A book has a title, and authors.

Presence in

Specification:

This term is in the situation where it is being described as an

attribute of a book rather than an actual class.

Detected by

(HFS|DS|AS):

Person Person False

System Impact: By allowing author to exist as a class would be beneficial as an

author would be associated with many books and could

provide a facility for searches to be run for a particular author.

Original Classification: Extra

293

New Classification: Extra

Class Name: Member

Trace: [p1.1.1] Each customer is known as a member and is issued a

membership card that shows a unique member number.

Presence in

Specification:

This is being used to indicate that the customer is a type of

member through some form of hierarchical relationship.

Detected by

(HFS|DS|AS):

Person Body False

System Impact: The ASA algorithm itself, through its relational processor,

identifies that customer is a type of member. As such a

member interface and abstraction is created with a concrete

type of customer is defined.

Original Classification: Extra

New Classification: Extra

Class Name: Membership

Trace: [p3.1.3] If the membership is still valid and the number of items

on loan less than 8, the book bar code is read, either via the

bar code reader or entered manually.

Presence in

Specification:

This term forms part of a discussion regarding the issuing of

loan items and ensures that the customers membership is still

valid and the introduction of preconditions prior to a loan.

Detected by

(HFS|DS|AS):

Group Group False

294

System Impact: The identification has no impact on the system as it is used as

a synonymous towards customer/member. If a language

inconsistency model had been created then this issue would

not have arisen.

Original Classification: Extra

New Classification: Extra

Class Name: Birth

Trace: [p1.1.2] Along with the membership number, other details on

a customer must be kept such as a name, address, and date of

birth.

Presence in

Specification:

Forms part of a discussion regarding information that should

be retained for a customer. Furthermore, ‘birth’ forms part of

a statement ‘date of birth’

Detected by

(HFS|DS|AS):

Time Time False

System Impact: The inclusion of this class has no benefit towards the system

as a whole and should be an attribute.

Original Classification: Extra

New Classification: Extra

Class Name: Date

Trace: [p1.1.2] Along with the membership number, other details on

a customer must be kept such as a name, address, and date of

birth.

295

Presence in

Specification:

Forms part of a discussion regarding information that should

be retained for a customer. Similarly, forms part of the

statement ‘date of birth’.

Detected by

(HFS|DS|AS):

Time Time False

System Impact: The inclusion of this class has no benefit towards the system

as a whole and should be an attribute.

Original Classification: Extra

New Classification: Extra

Class Name: Name

Trace: [p1.1.2] Along with the membership number, other details on a

customer must be kept such as a name, address, and date of

birth.

Presence in

Specification:

Forms part of a discussion regarding information that should be

retained for a customer.

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: The inclusion of this class has no benefit towards the system as

a whole and should be an attribute.

Original Classification: Extra

New Classification: Extra

Class Name: Update

296

Trace: [p4.1.0] The library must support the facility for an item to be

searched and for a daily update of records.

Presence in

Specification:

Forms part of a statement “a daily update of records” that

discusses the facilities that the library system must offer

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: Has no benefit towards the overall final design and would be

best suited as some form of operation contained within the

library class.

Original Classification: Extra

New Classification: Incorrect

Class Name: Record

Trace: [p4.1.0] The library must support the facility for an item to be

searched and for a daily update of records.

Presence in

Specification:

Similarly, forms part of a statement “a daily update of records”

that discusses the facilities that the library system must offer

Detected by

(HFS|DS|AS):

Communication Communication True

System Impact: Similarly, as update would form part of an operation

Original Classification: Extra

New Classification: Extra

Class Name: Type

297

Trace: [p2.1.1] There are two types of loan items, language tapes, and

books.

Presence in

Specification:

This appears in a sentence which is discussing the existence of

two forms of loan items namely books and language tapes.

Detected by

(HFS|DS|AS):

Cognition Communication True

System Impact: This class identification would have no impact within the

system and is completely erroneous.

Original Classification: Extra

New Classification: Incorrect

Class Name: Bar Code Reader

Trace: [p3.1.2] When an item is issued the customer's membership

number is scanned via a bar code reader or entered manually.

[p3.1.3] If the membership is still valid and the number of items

on loan less than 8, the book bar code is read, either via the bar

code reader or entered manually.

Presence in

Specification:

Forms part of an algorithmic process on how the reader is

utilised during the processing of a loan item(s) and customer

details.

Detected by

(HFS|DS|AS):

Artefact Artefact True

Communication Communication False

Person Person False

298

System Impact: This class although standalone identifies the requirement of an

interface between two separate systems; the library system and

the bar code reader.

Original Classification: Extra

New Classification: Extra

Class Name: Item

Trace: [p3.1.0] A customer may borrow up to a maximum of 8 items.

[p3.1.1] An item can be borrowed, reserved or renewed to

extend a current loan.

[p3.1.2] When an item is issued the customer's membership

number is scanned via a bar code reader or entered manually.

[p3.1.3] If the membership is still valid and the number of items

on loan less than 8, the book bar code is read, either via the bar

code reader or entered manually.

[p3.1.4] If the item can be issued (e.g. not reserved) the item is

stamped and then issued.

[p4.1.0] The library must support the facility for an item to be

searched and for a daily update of records.

Presence in

Specification:

A synonymous towards loan item

Detected by

(HFS|DS|AS):

Communication Communication True

System Impact: The identification has no impact on the system as it is used as a

synonym towards loan item. If a language inconsistency model

had been created then this issue would not have arisen.

299

Original Classification: Extra

New Classification: Extra

Class Name: Detail

Trace: [p1.1.2] Along with the membership number, other details on

a customer must be kept such as a name, address, and date of

birth.

Presence in

Specification:

Highlights the important information that should be retained

for a customer.

Detected by

(HFS|DS|AS):

Cognition Group False

System Impact: None; should not be included in the model.

Original Classification: Incorrect

New Classification: Incorrect

Lift Specification (see Appendix Six)

To give a short overview, the lift specification discusses the operation and feature of a lift

service.

Class Name: Control Mechanism

Trace: [p1.1.1] The elevators and the control mechanism are supplied

by a manufacturer.

Presence in

Specification:

This sentence is discussing parts of the system that is supplied

by the manufacturer of which is not stated.

Detected by

(HFS|DS|AS):

Attribute Attribute True

Process Process True

300

System Impact: The inclusion of this class within in the model provides no

benefit to the system at all. There are no relationships with any

other component contained within the model.

Original Classification: Extra

New Classification: Incorrect

Class Name: Manufacturer

Trace: [p1.1.1] The elevators and the control mechanism are supplied

by a manufacturer.

Presence in

Specification:

Similarly, as above, identifies who supplies the relevant parts

that are required the installation of a lift within a building.

Detected by

(HFS|DS|AS):

Group Group False

System Impact: Similarly, as above, the inclusion of this class serves has no

benefit in the final model.

Original Classification: Extra

New Classification: Incorrect

Class Name: Direction

Trace: [p3.1.2] The buttons are cancelled when an elevator visits the

floor and is either travelling the desired direction, or visiting a

floor with no requests outstanding.

[p4.1.2] All requests for floors within elevators must be

serviced eventually, with floors being serviced sequentially in

the direction of travel.

301

Presence in

Specification:

Sentence p3.1.2 is discussing the operation of buttons and

what happens as a result of the lift travelling a particular

direction. Similarly, sentence p4.1.2 discusses the operation of

requests and how they should be served.

Detected by

(HFS|DS|AS):

Location Communication False

System Impact: As a class it has no real impact on the overall model and would

be best suited as an attribute of the elevator class.

Original Classification: Extra

New Classification: Extra

Class Name: Floor Request Button

Trace: [p3.1.3] In the latter case, if both floor request buttons are

illuminated, only one should be cancelled.

Presence in

Specification:

Introduces a conditional argument related to the previous

sentence [p3.1.2] regarding the cancelation of the floor button

illumination if both have been pressed. The decision is based on

the direction of lift travel.

Detected by

(HFS|DS|AS):

Artefact Artefact True

Communication Communication False

Artefact Artefact True

System Impact: Introduces a specific type of button and condition that is

associated to a particular floor contained within the building.

Original Classification: Extra

New Classification: Correct

302

Class Name: Destination

Trace: [p4.1.0] When an elevator has no requests to service, it should

remain at its final destination with its doors closed and await

further requests.

Presence in

Specification:

Introduces an algorithmic process regarding what should

happen when a lift has no requests to service. That is to remain

at its current destination.

Detected by

(HFS|DS|AS):

Location Location False

System Impact: This class has no additional benefit regarding the final model.

As such should not be included within the final design.

Original Classification: Incorrect

New Classification: Incorrect

Class Name: Set

Trace: [p2.1.0] Each elevator has a set of buttons, one button for each

floor.

Presence in

Specification:

This sentence identifies the components contained within the

lift. Furthermore, ‘Set’ is part of the statement ‘set of buttons’

indicating that the elevator has a set of buttons.

Detected by

(HFS|DS|AS):

Group Group True

System Impact: The inclusion of this class indicates some form of data

structure to manage the collection buttons that a lift has.

303

However, it has no real benefit to the final model but its

identification should be considered within the system.

Original Classification: Incorrect

New Classification: Extra

Cinema Specification (see Appendix Five)

Extra Classifications:

Class Name: Date

Trace: [p3.1.0] Screenings are open for ticket sales one week before

the date they take place.

[p6.1.0] For the system to be able to support the cinema

management team it should be able to produce the following

kinds of statistics: the number of ticket sales to date per film,

the revenue of the ticket sales per film, the percentage of

empty seats for each screening for the current or future weeks,

the ticket sales and revenue for each screening for the current

week, a listing of films ordered by ticket sales or revenue for

the current week.

[p8.1.2] The cards are valid for six months from the date of

issue and each month the customer is charged the monthly

subscription.

Presence in

Specification:

Date is used indifferent ways throughout the specification. In

[p3.1.0] date is referring to when tickets can be sold for a

screening. In [p6.1.0] date is referring to statistical information

regarding ticket sales and in [p8.1.2] date refers to the validity

period of a cinema card.

304

Detected by

(HFS|DS|AS):

Time Time False

System Impact: For two of the cases [p3.1.0, p8.1.2] ‘date’ would be best

served as an attribute of a particular class and with [p6.1.0]

date would infer that it is part of a calendar application which

allows the selection of particular dates to generate relevant

statistical information.

Original Classification: Extra

New Classification: Extra

Class Name: Day

Trace: [p2.1.0] The cinema operation is organised around a screening

schedule, which is a timetable listing the films that will be

shown on each screen each day of the week.

Presence in

Specification:

Used to identify a particular day and what films will be shown

on that date.

Detected by

(HFS|DS|AS):

Time Time False

System Impact: The inclusion of this class would allow the identification of

which film is shown when. However, the class ‘day’ infers that

it is part of a separate application. Such as a calendar

application which is used in conjunction with the cinema

application. This class on its own would have little relevance to

the cinema application itself.

Original Classification: Extra

New Classification: Extra

305

Class Name: Debit Card

Trace: [p7.1.0] Ticket sales are handled by cinema staff and payment

can be made in three forms: by cash; by credit or debit card; by

using cinema membership cards.

Presence in

Specification:

Infers one of three payment types that the cinema can accept.

Detected by

(HFS|DS|AS):

Possession Possession False

Artefact Communication True

System Impact: The inclusion of this class would allow the modelling of this

form of payment type along with others that are also present.

Furthermore, the human design has a ‘CardSale’ class that

could be synonymous with this class. The modelling of this class

could be important in that some debit and credit cards have

different information compared to other such as issues

numbers. However, this would not require the modelling of a

separate class but be handled through attributes of a card class

implementation.

Original Classification: Extra

New Classification: Correct

Class Name: Credit

Trace: [p7.1.0] Ticket sales are handled by cinema staff and payment

can be made in three forms: by cash; by credit or debit card; by

using cinema membership cards.

[p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

306

name and address, and credit or debit card details for the

monthly subscription charge.

Presence in

Specification:

Infers a payment type.

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: Similarly as previously discussed for ‘debit card’ Furthermore,

the algorithm does not detect that this term is of the same type

as ‘debit card’. Hence why there is no reference to card for this

class detection.

Original Classification: Extra

New Classification: Correct

Class Name: Evening Screening

Trace: [p3.1.6] For example, matinee screenings usually have a lower

ticket price than evening screenings, while weekend screenings

usually have higher ticket prices.

Presence in

Specification:

This is used within the specification to identify relevant ticket

prices for showings at different times of the day.

Detected by

(HFS|DS|AS):

Time Time false

Communication Act True

System Impact: The inclusion of this class would allow for the modelling of

different types of screenings with different ticket prices.

Furthermore, the inclusion of this hierarchical structure creates

an area of flexibility that can allow the inclusion of different

types of screenings.

307

Original Classification: Extra

New Classification: Correct

Class Name: Weekend Screening

Trace: [p3.1.6] For example, matinee screenings usually have a lower

ticket price than evening screenings, while weekend screenings

usually have higher ticket prices.

Presence in

Specification:

See evening screening discussion

Detected by

(HFS|DS|AS):

Time Time False

Communication Act True

System Impact: See evening screening discussion

Original Classification: Extra

New Classification: Correct

Class Name: Matinee Screening

Trace: [p3.1.6] For example, matinee screenings usually have a lower

ticket price than evening screenings, while weekend screenings

usually have higher ticket prices.

Presence in

Specification:

See evening screening discussion

Detected by

(HFS|DS|AS):

Communication Communication False

Communication Act True

308

System Impact: See evening screening discussion

Original Classification: Extra

New Classification: Correct

Class Name: Board

Trace: [p5.1.0] Regarding the films, information that is important

includes the film's classification (determined by the board of

film classification) as well as its duration.

[p5.1.1] This information is important as it affects the

scheduling process and the allocation of films to screens.

Presence in

Specification:

This class identification demonstrates where the film’s

classification has been obtained

Detected by

(HFS|DS|AS):

Group Artefact True

System Impact: This class is not relevant to the final class design.

Original Classification: Extra

New Classification: Incorrect

Class Name: Information

Trace: [p5.1.0] Regarding the films, information that is important

includes the film's classification (determined by the board of

film classification) as well as its duration.

[p5.1.1] This information is important as it affects the

scheduling process and the allocation of films to screens.

309

Presence in

Specification:

Used as a synonym for the attributes classification and duration

related to a film.

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: This identification has no benefit towards the final design.

Original Classification: Extra

New Classification: Incorrect

Class Name: Cinema Membership Card

Trace: [p7.1.0] Ticket sales are handled by cinema staff and payment

can be made in three forms: by cash; by credit or debit card; by

using cinema membership cards.

Presence in

Specification:

As with debit and credit cards, ‘cinema membership card’ is also

identified as a payment type. Furthermore, this term is also a

synonym toward ‘cinema card’.

Detected by

(HFS|DS|AS):

Communication Communication True

Group Group False

Artefact Communication True

System Impact: Allows for the modelling of cinema members

Original Classification: Extra

New Classification: Correct

Class Name: Film Distributor

310

Trace: [p1.1.0] The cinema leases films for screening from film

distributors.

Presence in

Specification:

This identifies the source of where the films are obtained from.

Detected by

(HFS|DS|AS):

Communication Artefact True

Person Person True

System Impact: The inclusion of this class would allow the modelling of where

films are obtained from and their contact details. Due to the

hierarchical structure that is developed as a result of its

identification would also allow for the inclusion of other

distributors not discussed within the specification. Its impact

on the model as a whole is insignificant in the grand scheme of

what the specification is expressing.

Original Classification: Extra

New Classification: Extra

Class Name: Listing

Trace: [p6.1.0] For the system to be able to support the cinema

management team it should be able to produce the following

kinds of statistics: the number of ticket sales to date per film,

the revenue of the ticket sales per film, the percentage of empty

seats for each screening for the current or future weeks, the

ticket sales and revenue for each screening for the current

week, a listing of films ordered by ticket sales or revenue for the

current week.

Presence in

Specification:

Listing in the specification is expressing an ordering of films with

regard to some constraint.

311

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: The inclusion of this class has little benefit to the overall system.

It is highly unlikely that the focus of this application would

require a ‘listing’ class.

Original Classification: Extra

New Classification: Incorrect

Class Name: Cinema Management Team

Trace: [p6.1.0] For the system to be able to support the cinema

management team it should be able to produce the following

kinds of statistics: the number of ticket sales to date per film,

the revenue of the ticket sales per film, the percentage of empty

seats for each screening for the current or future weeks, the

ticket sales and revenue for each screening for the current

week, a listing of films ordered by ticket sales or revenue for the

current week.

Presence in

Specification:

Identifying a user of the system that can obtain some relevant

statistics regarding films.

Detected by

(HFS|DS|AS):

Communication Communication True

Act Act False

Group Group False

System Impact: The inclusion of this class within the system would be beneficial

as it would allow the modelling of this type of user.

Original Classification: Extra

New Classification: Extra

312

Class Name: Management Team

Trace: [p6.1.1] It should also allow the management team to enter

the new screening schedule and make changes to the current

screening schedule.

Presence in

Specification:

As before a synonym for ‘Cinema Management Team’, but also

refers to particular privileges that the manager of the cinema

has regarding access to the computer system.

Detected by

(HFS|DS|AS):

Act Act False

Group Group False

System Impact: As before,

Original Classification: Extra

New Classification: Extra

Class Name: Cinema Staff

Trace: [p7.1.0] Ticket sales are handled by cinema staff and payment

can be made in three forms: by cash; by credit or debit card; by

using cinema membership cards.

Presence in

Specification:

Identifies a user of the system.

Detected by

(HFS|DS|AS):

Communication Communication False

Group Group True

System Impact: The inclusion of staff members will allow a clear separation

between the identification of this and the management team.

313

Furthermore, being able to track who has handled a ticket sale

or more is important to the operation of the cinema.

Original Classification: Extra

New Classification: Extra

Class Name: Month

Trace: [p4.1.1] According to this scheme every subscribed customer

pays a monthly subscription, which allows them to buy a fixed

number of tickets for any screening during the month.

[p8.1.2] The cards are valid for six months from the date of

issue and each month the customer is charged the monthly

subscription.

Presence in

Specification:

Month is used in three ways; firstly it is used to refer to a

monthly subscription free, the number of tickets that can be

purchased during a month and the validity period of the

cinema membership card. (where the term ‘card’ in [p8.1.2] is

being used to refer to cinema membership card’)

Detected by

(HFS|DS|AS):

Time Time False

System Impact: The inclusion of month as a class has no benefit towards the

final design. In most cases the term ‘month’ is best suited to

being an attribute rather than class or some operation that is

performed once a month.

Original Classification: Extra

New Classification: Extra

314

Class Name: Card

Trace: [p8.1.0] Cinema cards are personal (i.e. only the person named

on the card can use it) and they are limited to a maximum of

four tickets per screening.

[p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

name and address, and credit or debit card details for the

monthly subscription charge.

[p8.1.2] The cards are valid for six months from the date of

issue and each month the customer is charged the monthly

subscription.

Presence in

Specification:

This term is being used as a synonym toward ‘cinema card’ as

such would be resolved by the language inconsistency model.

Detected by

(HFS|DS|AS):

Artefact Communication True

System Impact: Cinema cards has already been identified as part of the final

design therefore its inclusion is important

Original Classification: Extra

New Classification: Correct

Class Name: Person

Trace: [p8.1.0] Cinema cards are personal (i.e. only the person named

on the card can use it) and they are limited to a maximum of

four tickets per screening.

315

Presence in

Specification:

Is used to define the term ‘personal’, that it is only one

particular person that can actually use the card, that is its

owner.

Detected by

(HFS|DS|AS):

Body Body False

System Impact: This class is as a particular type of customer who pays a

subscription charge to the cinema. The inclusion of this class

would be incorrect

Original Classification: Extra

New Classification: Extra

Class Name: Student

Trace: [p3.1.4] There are a number of different types of tickets

associated with each screening, which include normal tickets,

concessionary tickets for students and senior citizens,

discounted family tickets, etc.

Presence in

Specification:

Student a particular type of customer is being referred to as

some whom can receive a special type.

Detected by

(HFS|DS|AS):

Person Person False

System Impact: The inclusion of this type would allow the modelling of a

particular type of customer of which a particular type of ticket

is available for. Furthermore, the specification stops short at

defining any more information regarding ticket types and what

else maybe on offer.

Original Classification: Extra

316

New Classification: Extra

Class Name: Citizen

Trace: [p3.1.4] There are a number of different types of tickets

associated with each screening, which include normal tickets,

concessionary tickets for students and senior citizens,

discounted family tickets, etc.

Presence in

Specification:

Similarly, as previous, a kind of customer.

Detected by

(HFS|DS|AS):

Person Person False

System Impact: Similarly, as previous defined for ‘Student’

Original Classification: Extra

New Classification: Extra

Class Name: Photograph

Trace: [p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

name and address, and credit or debit card details for the

monthly subscription charge.

Presence in

Specification:

The photograph of the customer is used as a visual

identification as their ownership of a cinema card

Detected by

(HFS|DS|AS):

Artefact Artefact True

317

System Impact: This has no additional benefit to the final design as it would if

it were to be included. This class if created would more than

probably be a data class which holds a reference to the actual

picture held on file.

Original Classification: Extra

New Classification: Incorrect

Class Name: Place

Trace: [p3.1.0] Screenings are open for ticket sales one week before

the date they take place.

Presence in

Specification:

Place is referred to in the specification as a particular time

period in which tickets can be purchased for a particular

screening.

Detected by

(HFS|DS|AS):

Location Location False

System Impact: The inclusion of this within final model has no benefit to the

final design nor does it have any benefit as an attribute of any

class.

Original Classification: Extra

New Classification: Incorrect

Class Name: Release Period

Trace: [p2.1.2] During its release period a particular film can be shown

on a number of different screens.

318

Presence in

Specification:

This is basically stating what can happen for a given release

period of a film.

Detected by

(HFS|DS|AS):

Artefact Act True

Time Time False

System Impact: The term is more suited to being an attribute of a film since it

provides no additional benefit as being a class.

Original Classification: Extra

New Classification: Extra

Class Name: Screening

Trace: [p1.1.0] The cinema leases films for screening from film

distributors.

[p2.1.2] During its release period a particular film can be shown

on a number of different screens.

[p3.1.1] There are two kinds of screenings: seated and

unseated ones.

[p3.1.2] The main difference between the two is that for seated

screenings the customer is allocated a particular seat, while for

unseated screenings no specific seat is allocated.

[p3.1.3] For each screening the total number of tickets sold

should not exceed the seating capacity for that screen.

[p3.1.4] There are a number of different types of tickets

associated with each screening, which include normal tickets,

concessionary tickets for students and senior citizens,

discounted family tickets, etc.

319

[p3.1.5] The price of each type of ticket may be different for

each screening.

[p4.1.1] According to this scheme every subscribed customer

pays a monthly subscription, which allows them to buy a fixed

number of tickets for any screening during the month.

[p6.1.0] For the system to be able to support the cinema

management team it should be able to produce the following

kinds of statistics: the number of ticket sales to date per film,

the revenue of the ticket sales per film, the percentage of

empty seats for each screening for the current or future weeks,

the ticket sales and revenue for each screening for the current

week, a listing of films ordered by ticket sales or revenue for

the current week.

[p7.1.1] In the case where the sale is for a seated screening the

customer should be able to select the seats they most prefer

from those that are available.

[p8.1.0] Cinema cards are personal (i.e. only the person named

on the card can use it) and they are limited to a maximum of

four tickets per screening.

Presence in

Specification:

This term is used throughout the specification to refer to

different aspects of the system. Some giving specific

information regarding a screening others regarding

information to be obtained about a screening.

Detected by

(HFS|DS|AS):

Communication Act True

System Impact: This class is actually in the human model but under a different

term of ‘showing’. Within the human model the term ‘showing’

must have been considered a better descriptive name rather

than ‘screening’.

320

Original Classification: Extra

New Classification: Correct

Class Name: Seat

Trace: [p3.1.2] The main difference between the two is that for seated

screenings the customer is allocated a particular seat, while for

unseated screenings no specific seat is allocated.

[p6.1.0] For the system to be able to support the cinema

management team it should be able to produce the following

kinds of statistics: the number of ticket sales to date per film,

the revenue of the ticket sales per film, the percentage of

empty seats for each screening for the current or future weeks,

the ticket sales and revenue for each screening for the current

week, a listing of films ordered by ticket sales or revenue for

the current week.

[p7.1.1] In the case where the sale is for a seated screening the

customer should be able to select the seats they most prefer

from those that are available.

Presence in

Specification:

It is utilised in two-ways, one where it allows a customer to

book a seat and the other that can be used to identify some

statistics related to a particular screening.

Detected by

(HFS|DS|AS):

Location Artefact True

System Impact: This is already defined within the human model as a particular

type of screening and also has an attribute to cover the

discussion in [p6.1.0]. Furthermore, a seat for a particular

screen may have more information related to it than is

discussed in the specification.

321

Original Classification: Extra

New Classification: Correct

Class Name: Subscription Charge

Trace: [p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

name and address, and credit or debit card details for the

monthly subscription charge.

Presence in

Specification:

This only identifies that there is a subscription charge but does

not provide any other additional information regarding this.

Only that a credit or debit card details are required but never

expanded upon.

Detected by

(HFS|DS|AS):

Possession Act False

Communication Communication True

System Impact: The inclusion of this class would allow the management of the

subscription charges for many customers over many time

periods.

Original Classification: Extra

New Classification: Extra

Class Name: Cinema

Trace: [p1.1.0] The cinema leases films for screening from film

distributors.

322

[p1.1.2] The cinema may lease more than one copy of films that

are very popular.

[p4.1.0] The cinema wishes to operate a customer cinema card

scheme.

Presence in

Specification:

The term cinema is used to demonstrate relationships between

films.

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: The inclusion of this class would only server to identify a cinema

within a chain of cinemas, which is not explored any further

within the specification. From the specification, it is apparent

that it refers only to the operation of a cinema not many. As

such, its inclusion would have no additional benefit to the final

model.

Original Classification: Extra

New Classification: Extra

Class Name: Type

Trace: [p3.1.4] There are a number of different types of tickets

associated with each screening, which include normal tickets,

concessionary tickets for students and senior citizens,

discounted family tickets, etc.

[p3.1.5] The price of each type of ticket may be different for

each screening.

Presence in

Specification:

The term ‘type’ is used to refer/introduce different types of

tickets. Such as, normal, concessionary and family tickets.

323

Detected by

(HFS|DS|AS):

Cognition Communication True

System Impact: The inclusion of the class ‘type’ clearly has no reason to be

included in the design.

Original Classification: Extra

New Classification: Incorrect

Class Name: Week

Trace: [p2.1.0] The cinema operation is organised around a screening

schedule, which is a timetable listing the films that will be

shown on each screen each day of the week.

[p2.1.1] This screening schedule is different every week.

[p3.1.0] Screenings are open for ticket sales one week before

the date they take place.

[p6.1.0] For the system to be able to support the cinema

management team it should be able to produce the following

kinds of statistics: the number of ticket sales to date per film,

the revenue of the ticket sales per film, the percentage of

empty seats for each screening for the current or future weeks,

the ticket sales and revenue for each screening for the current

week, a listing of films ordered by ticket sales or revenue for

the current week.

Presence in

Specification:

This is referring to how the cinema is operated, when some

action can take place and the kinds of statistics that could be

generated

Detected by

(HFS|DS|AS):

Time Time False

324

System Impact: The introduction of the class week would have no benefit on

the overall final design. In most cases it appears that week is

an attribute of some other class or that it is part of a separate

application which manages date which other classes take

advantage of.

Original Classification: Extra

New Classification: Extra

Class Name: Copy

Trace: [p1.1.1] Each lease is for one copy of the film.

[p1.1.2] The cinema may lease more than one copy of films that

are very popular.

[p2.1.3] The same film cannot be shown on more than one

screen at a time unless there are multiple copies.

Presence in

Specification:

Indicates what a copy is and identifies that a cinema can have

multiple copies of a film.

Detected by

(HFS|DS|AS):

Communication Communication True

System Impact: This should be an attribute rather than a class. As it has no

benefit to the final model.

Original Classification: Extra

New Classification: Extra

Class Name: Debit Card Detail

325

Trace: [p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

name and address, and credit or debit card details for the

monthly subscription charge.

Presence in

Specification:

Refers to the relevant credit or debit card details but does

actually state what that information is. Furthermore, this noun

phrase although correct in its identification, the head of the

noun ‘detail’ has no additional m

Detected by

(HFS|DS|AS):

Possession Possession False

Artefact Communication True

Cognition Group False

System Impact: The inclusion of this class as is ‘debit card detail’ would be

incorrect and should be considered as a synonym toward ‘Card

Sale’ that has already been defined in the human model.

Original Classification: Incorrect

New Classification: Extra

Class Name: Following

Trace: [p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

name and address, and credit or debit card details for the

monthly subscription charge.

Presence in

Specification:

Details what important information is required for the setting

up of a cinema card

326

Detected by

(HFS|DS|AS):

Group Group False

System Impact: Has no benefit in any way towards the final design.

Original Classification: Incorrect

New Classification: Incorrect

Class Name: I

Trace: [p8.1.0] Cinema cards are personal (i.e. only the person named

on the card can use it) and they are limited to a maximum of

four tickets per screening.

Presence in

Specification:

A miss-identification stems from (i.e.).

Detected by

(HFS|DS|AS):

Substance Substance False

System Impact: None – Should not be included

Original Classification: Incorrect

New Classification: Incorrect

Class Name: Issue

Trace: [p8.1.2] The cards are valid for six months from the date of

issue and each month the customer is charged the monthly

subscription.

Presence in

Specification:

Forms part of the statement ‘date of issue’ indicating a start

period for some type of card.

327

Detected by

(HFS|DS|AS):

Cognition Cognition True

System Impact: Would be best suited as an attribute rather than a class.

Original Classification: Incorrect

New Classification: Extra

Class Name: Name

Trace: [p8.1.1] When signing up for a cinema card, the following are

required: a photograph of the customer which is taken on the

spot and is attached to the card, customer information such as

name and address, and credit or debit card details for the

monthly subscription charge.

Presence in

Specification:

Takes form as an attribute of a customer

Detected by

(HFS|DS|AS):

Communication Communication False

System Impact: Would have no benefit to the final model, should be an attribute

of customer.

Original Classification: Incorrect

New Classification: Extra

Class Name: Number

Trace: [p2.1.2] During its release period a particular film can be shown

on a number of different screens.

328

[p3.1.3] (algorithmic) For each screening the total number of

tickets sold should not exceed the seating capacity for that

screen.

[p3.1.4] (Existential) There are a number of different types of

tickets associated with each screening, which include normal

tickets, concessionary tickets for students and senior citizens,

discounted family tickets, etc.

[p4.1.1] According to this scheme every subscribed customer

pays a monthly subscription, which allows them to buy a fixed

number of tickets for any screening during the month.

[p6.1.0] (algorithmic) For the system to be able to support the

cinema management team it should be able to produce the

following kinds of statistics: the number of ticket sales to date

per film, the revenue of the ticket sales per film, the percentage

of empty seats for each screening for the current or future

weeks, the ticket sales and revenue for each screening for the

current week, a listing of films ordered by ticket sales or

revenue for the current week.

Presence in

Specification:

In some cases the term number is part of some statement

‘number-of’. This appears to take the role of either indicating

multiplicity or an attribute of a particular class.

Detected by

(HFS|DS|AS):

Attribute Communication True

System Impact: As a class this has no benefit to the overall design. However, it

does exhibit multiplicity or attributive qualities.

Original Classification: Incorrect

New Classification: Incorrect

329

Appendix Two - Results Data:

Lift Specification Results:

Table 1 Lift Specification Results

Ideal Solution

(automated)

Automated

Solution

(Original-Spec)

Classification

Automated

Solution

(Mod-Spec)

Classification

Button Button Correct Button Correct

Door Door Correct Missing

Elevator Elevator Correct Elevator Correct

Elevator System Missing Missing

Floor Floor Correct Floor Correct

Request Request Correct Request Correct

Building Missing Building Correct

Down elevator Missing Missing

Up elevator Missing Missing

Waiting time Missing Missing

User Missing Missing

Down button Missing Missing

Up button Missing Missing

Illumination Missing Missing

 Destination Extra Destination Extra

 Control Mechanism Extra Extra

 Manufacturer Extra Extra

 Set Incorrect Extra

 Floor Request Button Extra Extra

 Direction Extra Direction Extra

 Ground Incorrect

 UserPress Incorrect

Table 1a Lift Specification Results - Original Specification

Correct Incorrect Missing Extra

5 1 9 5

36.0
95

5 =
+

=recall

83.0
15

5 =
+

=precision

36.0
95

5 =
+

=− ionspecificatover

New Metrics Application:

330

25.0
911

5 =
+

=precision

Table 1b Lift Specification Results - Modified Specification

Correct Incorrect Missing Extra

5 2 9 6

36.0
95

5 =
+

=recall

71.0
25

5 =
+

=precision

42.0
95

6 =
+

=− ionspecificatover

New Metrics Application:

28.0
99

5 =
+

=precision

331

Library Specification Results:

Table 2 Library Specification Results

Ideal Solution
Automated

Solution
Classification CM Builder Results Classification

Book Book Correct Book Correct

Customer Customer Correct Customer Correct

Language Tape Language Tape Correct Language Tape Correct

Library Library Correct Library Correct

Loan Item Loan item Correct Loan item Correct

Section Section Correct Section Correct

Member Card Membership Card Correct Missing

 Author Extra Membership number

 Member Extra Bar code reader Incorrect

 Membership Extra Item Extra

 Birth Extra Member Extra

 Name Extra Loan Extra

 Record Extra Subject section Extra

 Date Extra Someone Extra

 Type Extra

 Update Extra

 Bar Code Reader Extra

 Detail Incorrect

 Item Extra

Table 2a Library Specification Results

Correct Incorrect Missing Extra

7 1 0 11

1
07

7 =
+

=recall

875.0
17

7 =
+

=precision

375.1
17

11 =
+

=− ionspecificatover

New Metrics Application:

037.
019

7 =
+

=precision

332

Table 2b CM Builder Library Specification Results

Correct Incorrect Missing Extra

6 1 1 5

86.0
16

6 =
+

=recall

86.0
16

6 =
+

=precision

71.0
16

5 =
+

=− ionspecificatover

New Metrics Application:

042.
113

6 =
+

=precision

333

Cinema Specification Results:

Table 3 Cinema Specification Results

Ideal Solution Automated Solution Classification

Film Film Correct

Screen Screen Correct

Weekly Showing Schedule Timetable Correct

Cinema Card Cinema Card Correct

Customer Customer Correct

Family Ticket Missing

Ticket Ticket Correct

Sale Missing

Card Sale Missing

Seated Showing Missing

Unseated Showing Missing

Cinema Card Sale Missing

 Date Extra

 Day Extra

 Debit Card Extra

 DebitCardDetail Incorrect

 Evening Screening Extra

 Cinema Membership Card Extra

 Board Extra

 Film Distributor Extra

 Following Incorrect

 I Incorrect

 Issue Incorrect

 Listing Extra

 Management Team Extra

 Month Extra

 Name Incorrect

 Person Extra

 Photograph Extra

 Place Extra

 Release Period Extra

 Card Extra

 Screening Extra

 Seat Extra

 Matinee Screening Extra

 Student Extra

 Subscription Charge Extra

 Cinema Staff Extra

 Cinema Extra

 Type Extra

 Week Extra

 Weekend Screening Extra

 Cinema Management Team Extra

 Information Incorrect

334

 Citizen Extra

 Copy Extra

 Credit Extra

 Type Incorrect

 Number Incorrect

Table 3a Cinema Specification Results

Correct Incorrect Missing Extra

6 8 6 29

NOTE: need to change extra to 29 counted ‘week’, ‘cinema’ & ‘cinema membership card’

twice.

5.0
66

6 =
+

=recall

43.0
86

6 =
+

=precision

42.2
66

29 =
+

=− ionspecificatover

New Metrics Application:

11.0
646

6 =
+

=precision

335

Taxi Specification Results:

Table 4 Taxi Specification Results

Ideal Solution

Automated Solution

(without language

inconsistency model)

Classification

Automated Solution

(with language

inconsistency model)

Classification

Taxi Company Company Correct Company Correct

Passenger Passenger Correct Passenger Correct

Location Location Correct Location Correct

Shuttle Shuttle Correct Shuttle Correct

Taxi Taxi Correct Taxi Correct

Vehicle Vehicle Correct Vehicle Correct

 Driver Extra Driver Extra

 Pick Extra

 Call Extra Call Extra

 Destination Extra

 Entertainment Venue Extra

 Group Extra

 Hotel Extra

 Individual Extra

Table 4a Taxi Specification Results – (Without Language inconsistency Model)

Correct Incorrect Missing Extra

6 0 0 8

1
06

6 =
+

=recall

1
06

6 =
+

=precision

1
06

8 =
+

=− ionspecificatover

New Metrics Application:

43.0
014

6 =
+

=precision

Table 4b Taxi Specification Results - (With Language inconsistency Model)

Correct Incorrect Missing Extra

6 0 0 2

336

1
06

6 =
+

=recall

1
06

6
=

+
=precision

16.0
06

1 =
+

=− ionspecificatover

New Metrics Application:

75.0
08

6 =
+

=precision

337

Appendix Three: Taxi Models

Taxi Model (Automated):

338

Taxi Model (Human):

339

Appendix Four: Library Models

Library Model (Automation):

340

Library Model (Human Model):

341

Library Model (CM-Builder):

342

Appendix Five: Lift Models

Lift Model (Automation):

343

Lift Model (Drowser Automation):

344

Appendix Six: Cinema Models

Cinema Model (Automation):

345

Cinema Model (Human):

This image cannot currently be displayed.

346

Appendix Seven: Frequency of Occurrence

Frequency of Occurrence:

Specification Library Cinema Taxi Lift Average

Count
Type

‘X of Y’ 7 21 1 2 7.75

Boundary/Under-

Specification

1 6 1 0 2

Synonym 2 3 7 0 3

Common Phrase 1 0 0 0.25

‘Has’ 2 2 1 3 2

VP && PP 8 14 2 4 7

Existential 1 3 0 0 1

General -

Introductory -

Irrelevant Terms

2 7 0 2 2.75

347

References:

Craig Larman, editor. Applying UML and Patterns: An introduction to Object-Oriented

Analysis and Design. Prentice-Hall PTR, 1998

J. Martin and James Odell. Object-Oriented Methods: A Foundation. Prentice-Hall,

Englewood Clifs, New Jesey. 1995

Bertrand Meyer. Object-Oriented Software Construction. ISE Inc., second edition, 1997.

