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Abstract 

Orbital angular momentum of light is a new field of research which is concerned 

with the mechanical and optical effects of light with a helical phase structure. In 

this thesis we ask fundamental questions on the properties of light carrying orbital 

angular momentum. 
We discuss the uncertainty relation for angle and angular momentum on the ex­

ample of orbital angular momentum of light. The lower bound in the angular un­

certainty relation is state dependent, which requires a distinction between states sat­

isfying the equality in the uncertainty relation and states giving a minimum in the 

uncertainty product. We examine these special states and their uncertainty product. 
We show that for both kinds of states, the uncertainty product can be surprisingly 

large. 
We propose an experimentally testable criterion for an EPR paradox for orbital an­

gular momentum and azimuthal angle. The criterion is designed for an experimental 
demonstration using orbital angular momentum of light. For the interpretation of 

future experimental results from the proposed setup, we include a model for the in­

determinacies inherent to the angular position measurement. We show how angular 

apertures can be used to determine the angle, and we discuss the effects of this mea­

surement on the proposed criterion. We show that for a class of aperture functions 

a demonstration of an angular EPR paradox, according to our criterion, is to be ex­

pected. 

The quantum theory of rotation angles is generalised to non-integer values of the 

orbital angular momentum. This requires the introduction of an additional parame­

ter, the orientation of a phase discontinuity associated with fractional values of the or­

bital angular momentum. We apply our formalism to the propagation of light modes 

with fractional orbital angular momentum in the paraxial and non-paraxial regime. 

ii 



Acknowledgements 

I wish to express my gratitude to: 

My supervisors, Professor Stephen M. Barnett and Dr. Sonja Franke-Arnold, for their 

patience, support and guidance. 

Dr. Roberta Zambrini of the Universitat de las Illes Baleares, Palma de Mallorca, for 

her enthusiasm and encouragement 

Professor Miles Padgett, Dr. Eric Yao and Dr. Jonathan Leach from the University of 

Glasgow for helpful discussions and their insight on the experimental aspects of or­
bital angular momentum of light 

Dr. Paul M Radmore from the University College London for his expertise on the sub­
ject of finding approximate differential equations with exact solutions 

Professor Sir Michael Berry from the University of Bristol for his insight in light 
emerging from fractional phase steps 

Thomas Brougham, Sarah Croke, David Grant, Dr. Kieran Hunter, Dr. Graeme Mc­

Cartney, Douglas Murray, Dr. Eng-Kiang Tan, Dr. Nicholas Whitlock, who all are or 
were fellow PhD students, and with whom I had the pleasure of sharing an office, for 

discussions on, and more importantly, off physics 

Dr. Richard Martin and Dr. Andrew Scroggie, for administering the CNQO computer 

suite and for their help with computational worries 

My fiancee, for enduring the stressful times and the longest days in the desperate try 

to finish this thesis before our wedding day 

My family, for their never ending support and encouragement since my earliest days 

iii 



Contents 

I Introduction 

II Light beams carrying orbital angular momentum 

1 Introduction . . . . . . . . . . . . . . . . . . . 

2 Mechanical properties of optical fields. . . . . . 

2.1 Energy of the electromagnetic field . . . . . . . . . 

2.2 Linear momentum of the electromagnetic field " 

2.3 Angular momentum of the electromagnetic field . 

3 Wave equations . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1 Helmholtz equation . . . . . . . . . . . . . . . . . . 

3.2 Paraxial approximation ........... . 

4 Paraxial and non paraxial optics . . . . . . . . . . . 
4.1 Paraxial light beams . . . . . . . . . . . . . . 

4.2 Non-paraxial light beams . . . . . . . . . 

5 Spin and orbital angular momentum ..... . 

5.1 Angular momentum flux ...... . 

5.2 Angular momenta of light beams " . . . . . . 

5.3 Azimuthal phase structure . . . . . . . . . . . . . . 

1 

5 

5 

6 

7 

9 

10 

11 

11 

13 

16 
16 
22 

25 

25 
26 

28 
6 Generating light beams with orbital angular momentum 29 

7 Summary. . . . . . . . . . . . . . . . . . . . 31 

II.A Relativistic considerations. . . . . . . . . . . . . . . 31 

II.B Beam transformations . . . . . . . . . . . . . . . . . . . . . .. 33 

II.C Cycle average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

III Quantum formulation of angle and orbital angular momentum 

1 Introduction .......................... . 

2 Quantum theory of rotation angles . . . . . . . . . . . . . 

2.1 Angle and orbital angular momentum states . 

2.2 Commutator [4>/101 tzl .. , ............ . 
2.3 PhYSical states . . . . . . . . . . . . . . . . . 

3 Summary .................... . 

IV Special states for the angular uncertainty relation 

1 Introduction .................... . 

2 Intelligent states ................. . 

2.1 Equality condition ............ . 

2.2 

2.3 

2.4 

Wavefunction of intelligent states . . . . . . 

Angle and angular momentum uncertainty 

Orbital angular momentum distribution . . 

..... 

. ..... 

39 

39 
42 
42 
44 

45 
47 

49 
49 
51 

51 
53 

55 
59 

iv 



Contents 

3 

2.5 Limiting behaviour 

CMUP states ....... . 

3.1 Variation method. . 

3.2 Wavefunction of CMUP states 

3.3 

3.4 

Angle and angular momentum uncertainty 

Orbital angular momentum distribution . 

3.5 Limiting behaviour 

4 Conclusions . . . . . . . . . . . . . . . . . . 

lV.A Uncertainty relation ............ . 

lV.B Orbital angular momentum shift operator 

IV.C Infinite series for the complex error function 

lV.D Zero angular mean . 

V Angular EPR paradox 

1 Introduction . . . 

2 

3 

4 

Formulation of the paradox . 

2.1 EPR paradox . . . . . 

2.2 

2.3 

Indeterminacies in Preparation and Measurement . 

Criterion for an angular EPR paradox . . . 

Experimental scheme ............... . 

3.1 Conditional variances from measurement 

3.2 Measuring conditional probabilities . 

3.3 Experirnentallimitations . . . . . . . . . . '. 

Theoretical results .... . . . . . . . . . . . . . . 

4.1 

4.2 

4.3 

4.4 

Corellations for angle and orbital angular momentum 

Theoretical modelling . . . . . . 

Aperture functions . . . . . . . . 

Discussion of theoretical results 

5 Conclusion. . . . . . 

V.A Minimisation . . . . . . . 

V.B Periodic 6-function . . . . 

V.C Periodic convolution . . . . . . . 

VI Fractional Orbital Angular Momentum 

1 Introduction . . . . . . . . . . . . . 

2 Generating fractional orbital angular momentum 

2.1 Spiral phase plates ........... . 

2.2 Fractional phase steps with holograms 

3 Generalised theory for fractional OAM states . 

3.1 Construction of fractional OAM states 

3.2 Overlap of fractional OAM states . . . 

62 

70 

71 

73 

75 

79 

80 
84 

85 

86 
89 
89 

92 

92 

94 

95 

98 
99 

102 
102 

103 

106 

107 
108 
109 

109 

114 

116 

117 

118 

118 

124 

124 

125 

125 

128 
131 

131 

132 

3.3 Orbital angular momentum distribution of fractional states . 135 

3.4 Transformed basis . . . . . . . . . . . . . . 

4 Propagation of fractional modes . . . . . . . . . . . . . . . . . . . 

4.1 Bessel decomposition of fractional modes ....... . 

4.2 Comparison with Berry's result for integer phase steps .. 

139 

141 

141 

144 

v 



4.3 

4.4 

Propagated phase and intensity profiles ........ . 

Orbital angular momentum mean of propagated fields . 

5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . 

VI.A Branch cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

VI.B Rotation operator for fractional angular momentum states 

VI.C Geometric progression . . . . . . . . . . . . . 

VI.D Fourier-Bessel theorem ........... . 

VI.E Asymptotic Expansion for Bessel functions . 

VII Conclusions 

A Contour integration method to evaluate infinite sums 

Contents 

147 
154 
157 
157 
158 
159 
160 
160 

163 

166 

vi 



List of Figures 

11.1 Intensity profiles of Hermite-Gaussian beams 18 

11.2 Intensity profiles of Laguerre-Gaussian beams 20 

11.3 Intensity profiles of paraxial Bessel beams .. 23 

11.4 Azimuthal phase profiles and structure . . . . 29 

11.5 Holographic pattern for the generation of light with orbital angular 

momentum ............ . 

IV. 1 Wavefunction of intelligent states 

IV.2 Angle uncertainty for intelligent states 

IV.3 OAM uncertainty for intelligent states . 

30 

54 

56 

58 
IV.4 Uncertainty product for intelligent states 59 

IY.5 Distribution of OAM probability amplitudes for intelligent states . 61 

IV.6 Limiting behaviour of intelligent states for small angle uncertainties 63 

IV.7 Limiting behaviour of intelligent states in the perturbation approach 66 

IY.8 Limiting behaviour of intelligent states for large 6.f{J . 69 

IV.9 Wavefunction of CMUP states ...................... 75 

IV.10 The ratio of the Lagrange multipliers Il and v. . . . . . . . . . . . .. 76 

IY.11 Plot of the uncertainty product for CMUP states as a function of 6.f{J 77 

IY.12 Comparison of the wavefunction for intelligent states and CMUP states 78 

IV.13 Plot of angle uncertainty 6.f{J as function of the OAM uncertainty 6.m 

for CMUP states .............................. 79 

IV.14 Distribution of OAM probability amplitudes for CMUP states . . .. 81 

IY.15 Plot of wavefunctions for CMUP states in the large uncertainty regime 

for the exact form and the Airy approximation . . . . . . . . . . . .. 83 

IV.16 Plot of the uncertainty product calculated numerically and within the 

Airy approximation ................. . 

V.I Schematic picture of the EPR Gedankenexperiment 

V.2 Angular apertures . . . . . . . . . . . . . . . . . . . 

Y.3 Experimental scheme to measure the conditional variance for the or-

84 

95 

101 

bital angular momentum .. . . . . . . . . . . . . . . . . . . . . . .. 105 

V.4 Experimental scheme to measure the azimuthal angle. . . . . . . .. 106 

V.5 Schematic representation of the conditional measurement for the angle107 

Y.6 Probability densities for angular apertures in the rectangular case and 

the resulting conditional probability density . . . . . . . . . . . . .. 111 

Y.7 Conditional probabilities and resulting conditional variance for the 

OAM in the rectangular case . . . . . . . . . . . . . . . . . . . . . .. 112 

Y.8 Probability densities for angular apertures in form of truncated Gaus­

sians and the resulting conditional probability density . . . . . . .. 112 

vii 



List of Figures 

V.9 Conditional probabilities and resulting conditional variance for the 

orbital angular momentum for apertures in form of truncated Gaus-
sians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114 

V.lO Probability densities for angular apertures in form of super-Gaussians 

and the resulting conditional probability density. . . . . . . . . . .. 115 

V.ll Conditional probabilities and resulting conditional variance for the 
OAM for apertures in form of super-Gaussians .. 

V.l2 Graphs of the convolution of truncated Gaussians . 

VI.l Schematic picture of a spiral phase plate ..... . 

115 

119 

126 

VI.2 Phase profile for holograms with integer and fractional phase steps. 128 

VI. 3 Phase profiles for holograms with fractional phase steps . . . . . 129 

VI.4 Graph of the phase discontinuity in fractional OAM states . . . . .. 132 

VI.5 Plot of the overlap probability for two general OAM states . . . . .. 134 

VI.6 Plot of the overlap probability for two fractional OAM states with 

M = M' . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

VI.7 Plot of the OAM distribution for fractional states ..... 137 

VI.8 Plot of the OAM mean value for fractional OAM states . . 139 

VI.9 Plot of the coefficients dml (K) in the Bessel decomposition 143 

VI.10 Plot of the coefficients dm'(K) in the Bessel decomposition 143 

VI.ll Plot of the intensity profile of a wave emerging from an integer phase 

step for different propagation distances. . . . . . . . . . . . . . . .. 146 

VI.12 Intensity profiles of propagated light beams with fI:actional OAM for 

M=-1.7 .................................. 148 

VI.13 Phase profiles of propagated light beams with fractional OAM for 
M = -1.7 .................................. 149 

VI.14 Intensity profiles of propagated light beams with fractional OAM for 
M = 1.1 ................................. " 150 

VI.15 Phase profiles of propagated light beams with fractional OAM for 
M = 1.1 ................................... 151 

VI.16 Intensity profiles of propagated light beams with fractional OAM for 
M = 3.5 ................................... 152 

VI.17 Phase profiles of propagated light beams with fractional OAM for 
M = 3.5 ................................... 153 

VI.18 Plot of the difference between the analytical expression for the OAM 

mean from and numerically calculated values . . . . . . . . . . . .. 155 

Vl.19 Plot of the numerically calculated mean value of the OAM for differ-

ent propagation distances . . . . . . . . . . . . . . . . . . . . . . . .. 156 

viii 



I Chapter 

Introduction 

When a scientific work tries to define orbital angular momentum of light this is often 

done by setting it against spin angular momentum. This is a rather natural way to 

proceed because it has long been known that light posseses spin angular momentum, 

which is observable in the polarisation of the light. But this alone would not necessar­

ily explain why for light, spin angular momentum is the more familiar concept. After 

all, the total angular momentum of light within the field theory of electrodynamics 

can be derived directly from the Maxwell equations (Maxwell, 1873). But it has be­

come commonplace that the polarisation of light is widely used in experimental tests 

of the foundation of quantum mechanics (Aspect et al., 1982b) and also for optical 

implementations of quantum information processes (Bouwmeester et al., 2001). It is 

possible, for example, to create light entangled in the orthogonal polarisation states. 

This property has been used in the most accurate experiments to measure the viola­

tion of Bell inequalities (Aspect et al., 1982a). Entanglement also plays a crucial role 

in quantum information. The experimental implementations ,of protocols for quan­

tum key distribution often make use of the orthogonal polarisation states (Gisin et 

al., 2002). In other words spin angular momentum has become a piece of technology; 

it is well understood how to generate light with spin angular momentum, even for 

entangled pairs of photons, and also the measurement of spin or polarisation of light 

is well studied. It is this degree of control which makes spin angular momentum so 

widely used in quantum information applications. 

For orbital angular momentum of light this control became possible only after it 

was discovered by Allen et al. (1992) that light beams carry a well defined orbital 

angular momentum. Allen et al. (1992) showed that Laguerre-Gaussian light beams 

familiar from paraxial optics have a total angular momentum which separates into a 

spin angular momentum part, solely determined by the polarisation of the light, and 

an orbital angular momentum part, connected to the azimuthal phase structure. This 

discovery made orbital angular momentum of light subject to an intense theoretical 

and experimental study (Allen et al., 2003). The work on the theoretical part was 

focussed on understanding the separation of the total angular momentum into spin 

and orbital angular momentum, as the well-defined separation of Allen et al. (1992) 

had been derived only in the paraxial approximation. But with the introduction of the 

orbital angular momentum flux as defining quantity it became possible to extend this 

separation beyond paraxial optics (Barnett, 2002). On the experimental side Laguerre­

Gaussian beams have been used in the context of optical tweezers, a tightly focussed 

laser beam used to trap and manipulate micron sized particles in three dimensions. 

At firs~ only the annular intensity profile typical for Laguerre-Gaussian beams has 
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Chapter I 

been used to trap particles more efficiently than with conventional laser beams, but 

it became soon possible to transfer the angular momentum of the light beam to the 
particle and to set it in a spinning motion around its axis (He et al., 1995). It is also 

possible to set particles in an orbiting motion as demonstrated by O'Neil et al. (2002). 

In this respect orbital angular momentum of light has become a piece of technology 

which finds wider use in other areas of science from atomic physics to microbiology. 

Entanglement is a very puzzling property of quantum mechanics and a powerful 

tool for quantum information. It has been shown that photon pairs can be entangled 

in their orbital angular momentum states (Mair et al., 2(01). As these states span 

a discrete Hilbert space of infinite dimensions the entanglement would be multi­

dimensional rather than two-dimensional as for photons entangled in the two or­

thogonal polarisation states. Orbital angular momentum states of photons can thus 

be used as an optical implementation of quNits (Molina-Terizza et al., 2(01), that is 

states carrying quantum information in a multi-dimensional Hilbert space. Appli­

cations in quantum information and fundamental questions on the foundations of 
quantum mechanics often require experiments on a single photon level. Whereas the 

experimental techniques are well known for spin angular momentum, an efficient, in­

terferometric measurement of the angular momentum content at a single photon level 

became possible only recently (Leach et al., 2002, 2004a). A number of requirements to 

use orbital angular momentum in quantum information have thus been met. Indeed 

a free-space communication system which utilises the higher dimensions of orbital 
angular momentum has been experimentally implemented (Gibson et al., 2004). 

In principle orbital angular momentum has the potential to become as widely 

used as spin angular momentum. There are, however, some difficulties with trans­

mitting the information. So far, no way has been found to transmit different modes of 

light carrying orbital angular momentum in the same optical fibre. Also, the mechan­

ical stress in optical fibres due to bends can change the orbital angular momentum 

content. Atmospheric turbulence affects the phase structure of light beams and lim­
its the transmission range for free-space communication (Paterson, 2(05). Measure­

ments on orbital angular momentum will be more involved due to the higher dimen­

sions of the underlying Hilbert space. On the other hand, orbital angular momentum 

of light is a new field of research compared to spin angular momentum and there are 
a number of fundamental questions still to be asked. Some of these questions will be 

answered in this thesis. Although the theoretical work in this thesis is always closely 

connected to an experimental realisation, the thesis is not concerned with a particular 

application of orbital angular momentum of light. It is nevertheless the hope of the 

author that some of the discoveries from this thesis lead to future applications which 

exploit the powerful properties of orbital angular momentum of light. Only when 

orbital angular momentum has become as familiar and widely used as spin angu­

lar momentum, it will be possible to define it on its own terms rather than setting it 

against spin angular momentum. 
In CHAPTER II starting on page 5 we discuss the foundations for the orbital an­

gular momentum within classical electrodynamics. We review the concept of a con­

tinuity equation for the total angular momentum of the electromagnetic field. From 

the continuity equation we derive an expression for the angular momentum flux. We 
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introduce Laguerre-Gaussian beams and other beams carrying orbital angular mo­

mentum, and we show that the total angular momentum flux separates into a spin 

and an orbital part. 

Whereas chapter II thus covers the classical aspects of orbital angular momentum 

of light, CHAPTER III is concerned from page 39 on with the description of angle and 

angular momentum in quantum mechanics. The angle operator and its eigenstates 

require a limiting procedure to be correctly represented within the concept of Hilbert 

spaces. We therefore present the quantum theory of rotation angles and summarise 

some of the results which are relevant for the following chapters. 

In CHAPTER IV starting on page 49 we look into the uncertainty relation for an­

gular momentum and angle. In contrast to the uncertainty relation for linear posi­

tion and momentum the lower bound in the angular uncertainty relation is state­

dependant. States satisfying the equality therefore do not have to give a minimum 

in the uncertainty product. Moreover, these special states come in two varieties, with 

small and large angle uncertainty, depending on whether the angle uncertainty is 

smaller or larger than for a flat wavefunction. We discuss the four different classes of 

states by deriving the defining equations and we present their solutions. 

Some of the analytic expressions of the special states in chapter IV find their use 

also in CHAPTER V beginning on page 92. In this chapter we look into the possibility 

to demonstrate an EPR paradox for angular momentum and angle. For an experi­

mentally testable criterion we propose the use of angular apertures. The particular 

form of the aperture is determined by an angle probability density, which ties in with 

the special states from chapter IV. 

In CHAPTER VI starting on page 124 we tum our attention to fractional orbital 

angular momentum. Light with fractional orbital angular momentum is created with 

help of an edge dislocation which induces a phase discontinuity. This edge disloca­

tion destroys the rotational symmetry and light beams with fractional orbital angular 

momentum are thus characterised by a dark line in the direction of the dislocation. 

We present a quantum formulation of fractional orbital angular momentum based on 

the fundamental theory from chapter III on page 39, and we apply our formulation 

to the propagation of light with fractional orbital angular momentum. 

The thesis concludes with CHAPTER VII in which we summarise the previous 

chapters and put them into the perspective of future work. 
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II Chapter 

Light beams carrying orbital angular 

momentum 

For optical fields the notion of a total angular momentum has long been known. But 

the concept of a light beam carrying orbital angular momentum had been unfamiliar 

until it was discovered that Laguerre-Gaussian beams, within the paraxial approxi­

mation, carry a well defined orbital angular momentum. This discovery started the 
modem interest in orbital angular momentum of light. In this chapter we discuss the 

theoretical framework of orbital angular momentum of light in terms of fields and 
light beams and how to generate them. 

1 Introduction 

For Aristotle comets1 were hairy objects not travelling the heavenly spheres but 

earthly exhalations reaching the upper atmosphere. This opinion prevailed through 
the Middle Ages, though from the 16th century on astronomers observed that comets 

circle the sun on elliptical orbits. At the end of the 17th century Newton applied his 

law of gravitation to the motion of comets which provided an explanation for the ob­

served orbits. By then at the latest it was accepted that the Aristotelian hairs always 

point away from the sun and that they are not hairs but rather tails of evaporating 

material reflecting the sunlight. Even if this does not entirely conform with the mod­

em explanation of comet tails due to solar wind and radiation pressure, it shows that 

the concept of light having mechanical properties was not unthinkable for the early 

physicists. 
A quantitative treatment of the mechanical effects became possible only after light 

had been integrated into Maxwell's dynamical theory of electromagnetic waves. With 

this theory Poynting derived a continuity equation for the energy in the electromag­

netic field (Poynting, 1884). After Heaviside introduced the vectorial notation for the 

Maxwell equations this continuity equation could be written in its modem form using 

the Poynting vector. Interestingly, the linear momentum density in the electromag­

netic field is also given by the Poynting vector apart from constant factors depending 

on the chosen system of units. Poynting also derived an expression for the angu­

lar momentum of circular polarised light by means of a mechanical analogue in the 
form of a rotating shaft (Poynting, 1909). Later, Poynting's expression has been veri­

fied by measuring the torque on a quarter wave-plate due to circular polarised light 

(Beth, 1936). By this time quantum mechanics had been firmly established and Beth 

1 from Greek ~ x61l'l, the hair or xOIl~'t'lC:, long-haired 
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Chapter II 2 Mechanical properties of optical fields 

showed that the same quantitative result is obtained whether the torque is calculated 

classically or from the assumption that each photon carries an angular momentum of 

fi. 

While spin angular momentum in light beams was thus established in terms of 

circular polarised light, OAM of light beams remained an unfamiliar concept. But 

this does not mean that orbital angular momentum of light in general has not been 

studied. In particular the concept of orbital angular momentum of optical fields has 

a substantial literature. In fact, the continuity equation for the angular momentum of 

an electromagnetic field seems to suggest that there is only orbital angular momen­

tum in the electromagnetic field and no spin angular momentum (Romer & Forger, 

1993). The total angular momentum density is given by the cross product of the radial 

vector and the linear momentum density, which is a form typical for orbital angular 

momentum. This surprising result shows the difficulties in splitting the total angular 

momentum in a spin and orbital part for any non-specific form of the electromagnetic 

field. But Allen et al. (1992) discovered that light beams, familiar from paraxial op­

tics or laser theory and realisable in a laboratory, can carry a well-defined quantity of 

orbital angular momentum. This discovery started the current scientific activity on 

optical angular momentum, which has remained a lively field of research ever since. 

In this introductory chapter we review the concept of orbital angular momentum 

of light beams. Starting from the Maxwell equations we look at the continuity equa­

tion for linear and angular momentum of the electromagnetic field. We then derive 

the exact Helmholtz equation and the paraxial approximation to study light beams 

with orbital angular momentum in the paraxial and non-paraxial regime. This allows 

us to establish that light beams with a particular azimuthal phase structure have or­

bital angular momentum. At the end of this chapter we will describe some methods 

to generate these beams in a laboratory. 

2 Mechanical properties of optical fields 

The set of Maxwell equations describes the electromagnetic field including its me­

chanical properties. The conservation of the mechanical properties such as energy, 

linear and angular momentum are expressed by continuity equations. These equa­

tions describe the change of quantities in a continuum and are therefore stated in 

terms of densities. The rate of change for a density p is given by the divergence of the 

respective flux density j and the source density q: 

a a L + yo . J"a = qa at ' (11.1) 

where the superscript 'a' indicates a locally conserved quantity. The charge density p 
and the charge flux density j will be written without superscript. The source density 

for the electric charge is zero as the electric charge is globally conserved. The relevant 

continuity equation for the study of orbital angular momentum governs the local 

conversation of the total angular momentum. However, for the electromagnetic field 

the continuity equations for the mechanical quantities are intricately linked; the flux 

density of the energy is also the density for the linear momentum and the angular 

momentum densities are directly related to the linear momentum densities. In the 
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following we therefore review the continuity equations for energy, linear and angular 

momentum of the electromagnetic field. 

2.1 Energy of the electromagnetic field 

Electromagnetic energy can be converted into mechanical or thermal energy. This 

conversion of energy will be mediated through work exerted on a charge through the 

Lorentz force 

F = qE + Yfv x B, (11.2) 

which is stated here for a point charge q with velocity v. The constant Yf is determined 
by the choice of the unit system. In this chapter we will use vectorial notation along 

with notation in components. The Cartesian component of a vector a will be denoted 

by ai, where j = 1,2,3 represents the x, y or z component respectively. The Cartesian 

components of the Lorentz force may thus be we written as 

(11.3) 

where we have used the Levi-Civita symbol Eijk to write the cross product v x B in 
components. The Levi-Civita symbol is equal to 1 if the combination of the indices i jk 
is an even permutation of 123 and it is equal to -1 for an odd permutation. Otherwise 

the Levi-Civita symbol is equal to zero. We also use the convention of implicitly 

summing over doubly occurring indices. The work exerted on a point charge between 

two arbitrary times to and tl is thus given by 

(II.4) 

The magnetic field does not contribute to the exerted work as the cross product v x B 

is perpendicular to v. For a continuous distribution of charges p in a velocity field v 

the energy of the electromagnetic fields is expressed as 

E 'E • E q = -]i i = -J' , (11.5) 

where the charge flux density j is given by pv. The exerted work reduces the energy of 

the electric field which explains the minus sign in the expression above. The expres­

sion in Eq. (11.5) has the dimension of power which is lost due to exerted work. The 

loss in power is balanced by the rate of change of the energy of the electromagnetic 

field and the energy flux. But in the absence of any charged particles the continuity 

equation has no source density term and the rate of change of the energy density is 

balanced by the divergence of the energy density flux only. 

To find the expressions for the energy density and the energy flux density we 
can use the Maxwell equations for external charge and flux densities (Maxwell, 1873; 
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Jackson, 1998) 

\7.E=£", 
eo 

aB 
\7 x E = -'1at' 
\7. B = 0, 

\7 x B = '1Po (j + eo ~~) . 

(1I.6a) 

(11.6b) 

(II.6c) 

(1I.6d) 

The constant '1 has been introduced to make the set of Maxwell equations readily 

transferable from one system of units to the other (Romer & Forger, 1993). The values 

of the constants '1, Po and eo are connected by the following relation in every system: 

2 1 
'1 poeo = 2' c 

(ll.7) 

where c is the speed of light. On substituting Eq. (11.6d) into Eq. (11.5) on the preceding 

page and using Eq. (II.6b) to substitute \7 x E we find that 

. a (eo 2 1 2) ( 1 ) -J' E = - -E + -B + \7. -E x B . at 2 2po '1Po 
(11.8) 

This has the required fonn of a continuity equation for the energy of the electromag­

netic field if we identify 

pE == U = eOE2 + _1_B2 
2 21-10 

with the energy density of the electromagnetic field and 

jE == S = _l_E x B 
'1Po 

(ll.9) 

(11.10) 

with the energy flux density. The quantity S is often called the Poynting vector as 

it was Poynting who discovered the law for the transfer of energy in the electro­

magnetic field (Poynting, 1884). The continuity equation is therefore also known as 

Poynting theorem. A continuity equation does not detennine the density and flux 

density completely; the continuity equation Eq. (11.1) on page 6 is also fulfilled if the 

density and the flux density are augmented by two arbitrary vector fields C and F in 

the following way 

rl =l+ \7 ·C, 

TJE - jE - ~C + \7 x F - at . 

(I1.l1a) 

(1I.11b) 

If C falls off sufficiently quickly, both expressions for the energy density give rise 

to the same total energy. The additional tenn \7 x F appears only as a boundary 

tenn for integrals of the flux density over open surfaces. However, it is possible to 

determine the energy density uniquely within a relativistic consideration ijackson, 

1998; Landau & Lifshitz, 1975) (see App. II.A on page 31). Finally, it should be noted 

that the Poynting vector in Eq. (11.10) is not a generally valid expression for the energy 

flux density, but rather in the special case of external sources in vacuum, where the 
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electric displacement D is related to the electric field E by D = €oE and €o is the free 

space electric permittivity. Also, the magnetic induction B has to be related to the 

magnetic field H by B = 140H and 140 is the free space magnetic permittivity. For the 

propagation of light beams we will treat the electromagnetic wave as a closed system 

without any sources. In this case the expression for the energy flux density is rigorous 

(Rohrlich, 1970). 

2.2 Linear momentum of the electromagnetic field 

The linear momentum is a vector and we will use the notation in components to 

express the continuity equation for a vector quantity: 

(11.12) 

where the superscript 'a' denotes a locally preserved quantity. For the linear momen­

tum the rate of change of the momentum density and the divergence of the momen­

tum flux density are balanced by the momentum source density. It is not surprising 

that the source density is given by the Lorentz force: 

(11.13) 

On using all Maxwell equations in Eq. (11.6) on the previous page to manipulate the 

expression for the source density the continuity equation for the linear momentum 

can be formulated if we identify . 

(11.14) 

with the linear momentum density. This is identical to the energy flux density apart 

from the factor 140/ c2• The momentum flux density is given by 

(11.15) 

Whenever the momentum flux density is symmetric, the angular momentum conti­

nuity equation may be fulfilled with a density, flux density and source density which 

are given by a vectorial product of the radial position and the respective linear den­

sity. This is similar to a rigid body where the angular momentum is solely due to 

orbital angular momentum which is given by the cross product L = r x P and where 

the torque T = r x F is completely determined by the force F. In a continuum theory 

this indicates that there is no intrinsic angular momentum and no intrinsic torque, 

and that for sufficiently small volumes all angular quantities are already given by the 

corresponding linear quantity. For classical fluids this a well justified assumption, but 

circular polarised light carries spin angular momentum. This shows the difficulties in 

assigning the terms spin and orbital angular momentum to specific parts of the total 

angular momentum. For light beams this difficulty has been resolved by using the 

angular momentum flux rather than the angular momentum density itself (Barnett, 

2002). 
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2.3 Angular momentum of the electromagnetic field 

The density, flux density and source density for the angular momentum are di­

rectly related to the respective linear quantities: 

(1I.16a) 

(II.16b) 

(1I.16c) 

The given angular quantities fulfil the angular momentum continuity equation owing 

to the symmetry of the linear momentum flux density jK. The additional term in the 

divergence of the flux density 

(11.17) 

vanishes, because the terms in the sum Eijd~ are anti-symmetric in the last two indices 

and terms with j = 1 are equal to zero because of the Levi-Civita symbol. The whole 

continuity equation for the angular momentum can thus be written as 

(11.18) 

which is always fulfilled because of the validity of the continuity equation for linear 

momentum. 

For the purpose of this thesis we will be concerned with the Maxwell equations in 

free space, so that all the source densities are equal to zero. To simplify the notation 

for the calculation of the angular momentum of light beams we introduce the symbols 

1 for the angular momentum density 

(11.19) 

and M for the angular momentum flux density which has the components 

(11.20) 

where u is the energy density from Eq. (11.9) on page 8. For a light beam with an opti­

cal axis along the z direction the angular momentum flux through a plane of constant 

z is given by the integral 

Mzz == M33 = J J dx dy Mn. (11.21) 

This quantity has been shown to have a well defined spin and orbital angular mo­

mentum part even beyond the paraxial approximation (Barnett, 2002). Earlier work 

showed that the angular momentum density can be separated into a well defined spin 

and orbital angular momentum part only within the paraxial approximati0r:' (Allen 

et al., 1992; Barnett & Allen, 1994). 
With the help of these expression we are in the position to calculate the orbital 
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angular momentum of light beams. Light beams are solutions to either the exact 

wave equation or its paraxial approximation. In the next section we derive the exact 

wave equation, or Helmholtz equation, and we discuss how this wave equation can 

be approximated for well collimated beams near the axis. 

3 Wave equations 

In this section we derive the Helmholtz equation and its paraxial approximation 

for electromagnetic waves in free space. For a consistent application of the paraxial 

approximation the wave equation has to be derived for the vector potential rather 

than the electric field or the magnetic induction. 

3.1 Helmholtz equation 

We are mostly concerned with the propagation of waves carrying orbital angular 

momentum in free space and we thus do not consider the presence of charge densities 
p or flux densities j in the Maxwell equations. In this case the Maxwell equations are 

a set of homogenous differential equations for the electric field E and the magnetic 

induction B: 

'\1 . E = 0, 

aB 
'\1 x E = -1]Tt, 

'\1 . B = 0, 

aE 
'\1 x B = 1]Eoil0Tt. 

(I1.22a) 

(II.22b) 

(II.22c) 

(II.22d) 

On taking the curl of either Eq. (II.22b) or Eq. (II.22d) and substituting the other equa­

tion it is possible to derive two wave equations for E and B. For the electric field the 

double curl '\1 x ('\1 x E) may be replaced by '\1('\1 . E) - '\12E and analogously for 

the magnetic induction B. In both cases the first term is equal to zero because of the 

Maxwell equations (I1.22a) and (II.22c). We are thus left with the wave equations 

(1I.23a) 

(1I.23b) 

In the following we introduce complex electric and magnetic fields and we limit our 

attention to monochromatic beams with angular frequency w. This allows us to sepa­

rate the electric and magnetic field into a part with the spatial dependence and a time 

dependent factor exp(iwt): 

E = Re[E exp( -iwt)] and B = Re[8exp( -iwt)]. (11.24) 
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By substituting this separated ansatz into the wave equations (11.23) on the previous 

page we obtain the Helmholtz equations for e and B: 

\12e + kle = 0, 

\12B + klB = 0, 

where k = w / c is the overall wavenumber. 

(II.25a) 

(II.25b) 

As detailed later, the paraxial approximation to the Helmholtz equation (II.2Sa) 

is inconsistent with the Maxwell equation (II.22a) on the previous page (Lax et al., 

1975). To avoid these inconsistencies it is possible to use a Helmholtz equation for 

the vector potential A which is not required to have a vanishing divergence in the 

Lorentz gauge. The vector potential is defined over the magnetic induction by 

B = \1 x A. (11.26) 

On substituting the definition of the vector potential into Faraday's law in Eq. (II.22b) 

we find that the curl of the combined vector field E + '1(oA/ot) is equal to zero: 

(11.27) 

This is an indication for the existence of a scalar potential <I> defined as 

(11.28) 

The vector potential and the scalar potential are not completely determined by the 

electric field and the electric induction. The derivative of a scalar function, may be 

added to the vector potential if the time-derivative of , is subtracted from the scalar 

potential: 

A --+ A' = A + \1, I a 
<I> --+ <I> = <I> - '1-" at (11.29) 

where, is an arbitrary function of r and t. The relevant gauge for our purposes is the 

Lorentz gauge, as the Coulomb gauge requires that the divergence of the vector po­

tential is equal to zero, which would be inconsistent with the paraxial approximation 

(Davis, 1979). The Lorentz gauge is given by the condition 

1 a 
\1·A+--<I>=O. 

'1c2 at 

This also requires that the scalar function, obeys a wave equation: 

(11.30) 

(11.31) 

With the help of the Eqs. (11.26) and (11.28) it is possible to substitute the electric field 

and the magnetic induction in the Maxwell equations with the scalar and vector po­

tential. The substitution satisfies the Maxwell equations (II.22b) and (II.22c) on the 

previous page identically. The dynamic behaviour of A and <I> is determined by the 

two remaining Maxwell equations in Eq. (11.22) on the preceding page. Together with 
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the Lorentz condition in Eq. (11.30) on the previous page the two remaining Maxwell 

equations yield two wave equations for the scalar and the vector potential: 

(II.32a) 

(II.32b) 

The Helmholtz equation for the vector potential is obtained with the ansatz A = 

Re[Aexp{ -iwt)] for a monochromatic wave. With k = wlc this yields the following 

equation 

(11.33) 

Once a solution for the vector potential has been found, the electric field can be cal­

culated from the vector potential via 

(11.34) 

For this relation we have assumed the monochromatic form for the scalar and vector 

potential. The given equation follows then from the definition of the scalar potential 

in Eq. (11.28) on the preceding page and the Lorentz condition in Eq. (11.30) on the 

previous page. 
The vectorial form of the Helmholtz equation can be turned into a scalar wave 

equation by choosing a constant polarisation vector of unit modulus. We are consid­

ering the case, where the vector fields have a polarisation transverse to the optical 

axis, which is taken along the z direction. We thus write 

(11.35) 

where V stands for the electric field, the magnetic induction or the vector potential 

and t is the polarisation vector of unit modulus. With this ansatz the vector form of 

the Helmholtz equation (11.25) on the preceding page and (11.33) can be turned into a 

scalar form: 
(11.36) 

This equation is the starting point for the analysis of the exact fonn of light beams 

with orbital angular momentum. In the next section we find an approximation of the 

Helmholtz equation for beams forming a small angle with the optical axis. 

3.2 Paraxial approximation 

If the propagation vector k is inclined by a small at 'ole with respect to the z axis, 

this vector is paraxial. In the far field this inclination of the propagation vector corre­

sponds to the angle between light beam and optical axis. The dominant component 

of a paraxial wavevector k is the z component with 

(II.37) 
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where K = Jkt + k~ is the transverse wave number. As an ansatz for a solution to 

the scalar Helmholtz equation (11.36) on the preceding page we consider a function 

which explicitly depends on the phase factor exp(ikz): 

,(r) = u{r) exp{ikz). (11.38) 

Here, u{r) is an amplitude distribution and not to be confused with the energy den­

sity of the electric field in Eq. (II.9) on page 8. In our case the amplitude distribution 

describes the transverse profile of the light beam. This profile may change with the 

distance z owing to diffraction or propagation effects. Compared with the primary 

variation exp(ikz) these changes will be small for a well collimated beam. This is the 

reason why the primary factor exp(ikz) has been written explicitly. On substituting 
the ansatz of Eq. (11.38) into the scalar Helmholtz equation (11.36) on the previous page 

we find a partial differential equation for the amplitude distribution u: 

VfU + :2 U + 2ik;zu = O. (11.39) 

This differential equation can be approximated by neglecting the second derivative 

of U with respect to z in comparison with the other two terms. If the profile changes 

only slowly with z the transverse variation of the profile can become dominant so 

that the following relation holds: 

(11.40) 

If the paraxial approximation is applied to the Helmholtz equation for the electric 

field the relation above becomes untenable. For a free electric field the Maxwell equa­

tion (I1.22a) on page 11 requires that the divergence of the electric field vanishes iden­

tically. For the transversely polarised electric field of Eq. (11.35) on the previous page 

this requires in tum that the directional derivative in the transverse direction V tE is 

equal to zero everywhere: 

V . E = V . tE = V tE = O. (11.41) 

But this also requires that the transverse Laplacian Vf E is equal to zero, which con­

tradicts the relation in Eq. (11.40). This problem has first been noted by Lax et al. (1975) 

who, in order to analyse this shortcoming of the paraxial approximation, expanded 

the electrical field in terms of a parameter f = wall, the ratio of the beam-waist and 

the diffraction length. Using the Helmholtz equation for the vector potential in the 

Lorentz gauge avoids these inconsistencies and Davis (1979) showed that the results 

are equivalent in the lowest orders. The second estimate for the paraxial approxima­

tion is less problematic. If the profile is slowly varying in z the second derivative is 
much smaller than the first derivative multiplied by the overall wavenumber: 

, ~~, « k , ~: ,. (11.42) 
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Neglecting the second order derivative with respect to z constitutes the paraxial ap­

proximation and results in the paraxial wave equation: 

(11.43) 

Other than in the initial motivation the derivation of the paraxial approximation 

makes no use of the fact that the ratio of transverse wavenumber to overall wavenum­

ber is small for paraxial beams. It is therefore interesting to derive a systematic ex­

pansion in terms of the parameter IC / k. 

In order to do so, the whole Helmholtz equation has to be transformed with a 

Fourier transform to obtain an algebraic equation for the different wavenumbers. 
When the full Helmholtz equation (11.36) on page 13 is transformed, the result con­

firms the exact relation 
(11.44) 

between the wavenumbers in Eq. (11.37) on page 13. But if we substitute the paraxial 

ansatz ~ = u(r) exp(ikz) before transforming the full Helmholtz equation we can 

use an expansion in terms of IC / k to obtain the paraxial approximation. The Fourier 
transform of the differential equation 

(11.45) 

results in 
(1I.46) 

where ~(k) = .r{u(r) exp(ikz)} is the Fourier transform of~. This is equivalent to 

the result (_1C2 - k~ + ~)~(k) = 0 from the Fourier transformation of the Helmholtz 

equation (11.36) on page 13 without substituting~. But the difference k - kz can 

be written in terms of the parameter IC / k. Starting from the expression for kz in 

Eq. (11.37) on page 13 we can expand kz in terms of e = (K/k)2: 

kz = k ( 1 - ~ - ~ + ... ). (11.47) 

Substituting this expansion into the transformed Helmholtz equation (1I.46) shows 

that the lowest order in (k - kz)2 is e2, whereas 2k(k - kz) is of first order in e. Ne­

glecting the higher order term is equivalent to neglecting the second derivative of 

u with respect to z in Eq. (11.39) on the preceding page. This is not surprising as 

the term (k - kz)2 in the transformed Helmholtz equation (11.46) comes from the term 

(;¥u / az)2 in the Helmholtz equation (11.39) on the preceding page. The approximated 

form of the .. ansformed Helmholtz equation is given by 

(11.48) 

On applying the back transform we recover the paraxial wave equation in the form 

of Eq. (11.43). This is not straight forward to see from Eq. (11.48), but by considering a 
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Fourier transfonn of the paraxial wave equation in the fonn of 

(11.49) 

one obtains the approximated fonn in Eq. (11.48) on the previous page. The paraxial 

approximation can thus truly be seen as a small angle approximation, where the pa­
rameter f. = (K/k)2 is small. The equivalence will become most apparent in the next 

section where we consider light beams carrying orbital angular momentum. In par­

ticular Bessel beams as solutions to the Helmholtz equation or the paraxial equation 

are transfonned from one into the other by the same small angle approximation that 

transfonns the full Helmholtz equation into the approximated, paraxial fonn. 

4 Paraxial and non paraxial optics 

In this section we present light beams as solution to the paraxial and non-paraxial 

wave equation, which is the full Helmholtz equation derived earlier in this chapter. 

The orbital angular momentum (OAM) of light has first been studied in the paraxial 

approximation, as it seemed to be a well-defined quantity only within this approxi­

mation. But with the discovery of the angular momentum flux as the defining quan­
tity for angular momenta in electromagnetic fields it became possible to extend the 

analysis into the non-paraxial regime. For this thesis the non-paraxial regime will 

become important for the propagation of light with fractional mean OAM. This is 

why we present first the well established Laguerre-Gaussian beams in the paraxial 
approximation, and later we seek an extension to the non-paraxial regime. 

4.1 Paraxial light beams 

Solutions to the paraxial wave equation are well known from laser optics (Sieg­

man, 1986). In particular Hennite-Gaussian beams are common for physical systems 

with a rectangular symmetry. Hennite-Gaussian beams do not carry OAM but they 

fonn a complete set of solutions. It is therefore possible to transfonn between these 
beams and Laguerre-Gaussian beams, another set of complete solutions. Laguerre­

Gaussian beams are solutions to the paraxial wave equation in polar coordinates. In 

many respects the most simple solution are Bessel beams for which transverse parts 

and longitudinal parts are completely factorised. These beams also fonn a complete 

set of solutions, but it is the fact that Bessel beams are solutions to both the parax­

ial and the full Helmholtz equations which makes them useful for an analysis of the 

propagation of beams with OAM in the non-paraxial regime. 

4.1.1 Hennite-Gaussian beams 

In Cartesian coordinates it is possible to separate the amplitude function u (x, y, z) 
into two functions, either of which depends on one transverse variable, x or y, and 

the longitudinal variable z in the following way: 

HG ( ) _ HG ( ) HG ( ) unl x,y,z - un X,Z u/ y,z, (11.50) 
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where nand 1 give the order of the Hermite polynomial in Un or U/. Each of these 

functions obeys a paraxial wave equation in one transverse dimension. In the follow­

ing we consider only one function and we choose x as the single transverse variable. 
The paraxial equation for un(x,z) has the form: 

(
d
2

.d)HG 
dX2 +2ikaz un (x,z) = O. (11.51) 

A normalised solution to this equation is given by the product of a Gaussian with a 

Hermite polynomial in the following form: 

c
HG 

( x
2
z ) ( X2) u~G(x,z) = ?ww exp ik2(zi + Z2) exp - w2(z) 

. 1 (..fix) x exp( -l(n + Z)X(z))Hn w(z) . 

(11.52) 

Here, C!(G is a normalisation constant and Hn is the Hermite polynomial of order 
n. Owing to the orthogonality of the Hermite polynomials (Stephenson & Radmore, 

1993) the Hermite-Gaussian beams are orthonormal when integrated over the trans-

verse variable x: i: u~G(x,z) (u~G(x,z)) * dx = t5nm . (11.53) 

The width of the beam changes on propagation and is determined by the Gaussian 

spot size w(z), which gives the radial distance at which the Gaussian term falls off to 

1/ e of its value on axis: 

( )2 _ 2(zi +z2) _ 2 [1 (z )2] w z - - wo + - . 
kZR ZR 

(II.54) 

The Rayleigh range ZR is a measure for the focal region of the beam and is given by 

TrW2 

Z - 0 R-T' (11.55) 

where A is the wavelength and Wo is the beam waist at the focal point, which is also 

the origin of the z axis. The term (n + l/2)X(z) is the Gouy phase which describes 

the phase jump of rr that occurs over the focal region of any spherical converging 

wave (Gouy, 1890; Siegman, 1986). This behaviour is apparent from the form of the 

function X (z): 
Z 

~X=-· ~~ 
ZR 

In figure (11.1) on the following page the intensity profiles for a number of differ­

ent Hermite-Gaussian beams are shown. The profiles are plotted for the combined 

Hermite-Gaussian mode u~G(x,y,z). The indices nand 1 indicate the number of 

nodal lines in the respective x and y direction. 
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Figure 11.1 - Intensity profiles of Hermite-Gaussian beams. a) 11 = 1, 1 = O. b) 11 = 5,1 = O. c) 

It = 3,1 = 1. d) It = 2,1 = 4. 

4.1 .2 Laguerre-Gaussian beams 

Another complete set of beams are the Laguerre-Gaussian modes, but instead of 

the rectangular symmetry of the Hermite-Gaussian modes these beams shows a ro­

tational symmetry. Consequently, the Laguerre-Gaussian beams are solutions to the 

paraxial wave equation in cylindrical coordinates: 

( 
1 CJ CJ2 1 CJ2 . CJ) LG 
P CJp + CJp2 + p2 CJ<p2 + 21k CJz LImp = O. (11.57) 

Here, p is the radial coordinate and <p is the azimuthal or polar angle. The normalised 

form of the Laguerre-Gaussian beams is given by 

LG _ mp pY 2 P Iml 2p CLG ( M)lml 2 2 

ump(p,<p,z) - y'W(Z) w(z) exp ( - W2(zJ Lp (w2(Z) ) 

x exp (ik ( t z 2)) exp(im<p)exp(-i(2p+ Iml +l)X(z)) 
2 zR +Z 

(11.58) 

Here, L~I are the generalised Laguerre polynomials and C;,~ is the appropriate nor­

malisation constant. The Laguerre-GaUSSian beams form an orthonormal set in the 

18 



Chapter II 4 Paraxial and non paraxial optics 

mode index p when integrated over the radial coordinate: 

(11.59) 

The orthogonality is due to the properties of the generalised Laguerre polynomials 
(Abramowitz « Stegun, 1974). The profiles of the Laguerre-Gaussian modes show 

concentric rings, whose number is determined by the mode index p (see figure (11.2». 

The other mode index is contained in the azimuthal phase term exp(imtp), which 

gives rise to Iml intertwined helical wave-fronts, that is surfaces of equal phase. The 

handedness of these helixes is determined by the sign of m. This azimuthal phase 

structure is the cause for the OAM of Laguerre-Gaussian modes. The Laguerre­

Gaussian modes are also orthonormal in the azimuthal mode index m when inte­

grated over the azimuthal variable tp: 

(11.60) 

In all generality the choice of the 2rr radians interval for the angle tp is arbitrary and it 

is more general to integrate from 00 to 00 + 2rr. This will be discussed in more detail 

in the next chapter. 
Hermite-Gaussian modes and Laguerre-Gaussian modes both form complete sets 

and one family of beams can therefore be represented as a superposition of the other. 

Beijersbergen et al. (1993) published a very clear analysis of the mode conversion, but 

instead of using the indices m and p to describe the Laguerre-Gaussian modes, they 

considered indices nand 1 analogously to the Hermite-Gaussian beams. The two sets 

of indices are related by 

m = n -I and p = min(n,l). (11.61) 

Any Laguerre-Gaussian mode can now be expressed in terms of Hermite-Gaussian 

modes as follows: 

n+l 
u!;p(x,y,z) = ~)tb(n,I,t)u~~I_t,t(X,y,z). (11.62) 

t=O 

The coefficients are given by: 

b( ) (n + I)!t! 1 d
t 

(( )n ( )m 
n,l,t = 2n+ln!l! x k! ds t 1- S 1- s ) 15=0. (11.63) 

This transformation is based on earlier results by Abramochkin« Volostnikov (1991) 

(see App. II.B on page 33). Hermite-Gaussian and Laguerre-Gaussian beams can also 

be generated from a Gaussian seed function by acting on the fundamental Gaussian 

function with differential operators (Enderlein « Pampaloni, 2004). This provides 
another way of transforming one family of modes into the other. 

19 



Chapter II 4 Paraxial and non paraxial optics 

Figure II.2 - Intensity profiles of Laguerre-Gaussian beams. a) m = 1, P = O. b) m = 5, P = O. 

c) m = 2, P = 1. d) m = 2, P = 2. 

4.1.3 Complex argument form 

Both, the Hermite-Gaussian modes and the Laguerre-Gaussian modes can also be 

written with complex arguments. This is due to a freedom in the scaling parameter 

for the Hermite or Laguerre polynomials in the respective rectangular or cylindrical 

paraxial equations. In the standard form, where the polynomials have real arguments 

this scaling parameter is chosen differently from the scaling parameter of the Gaus­

sian term. This results in the known form of the Hermite-Gaussian and Laguerre­

Gaussian modes in Eqs. (11.52) on page 17 and (11.58) on page 18, where the Gaussian 

term is split into a real and complex part. The real part contains the Gaussian spot 

size w(z) and the complex part contains the radius of curvature R(z) = (z2 + z~) /z. 

This 'inelegant' difference in the scaling parameter is mended in the complex ar­

gument form, which is therefore also called the 'elegant' form. In this form the scaling 

parameter for the polynomial is chosen to be identical to the scaling parameter of the 

Gaussian term and is basically determined by a function q which is given in terms of 

the radius of curvature R(z) and and Gaussian spot size w(z): 

1 1 . A i -- = --+1 = ---q(z) R(z) nw2 (z) ZR + iz 
(11.64) 

If we use this scaling parameter the expression for the Hermite-Gaussian mode changes 
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to 

n+1 

UHG(X Z) = CHG ( ZR ) -r H ( kx
2

) ( kx
2 

) 
n' n zR +iz n 2{ZR +iz) exp 2{ZR +iz) , (11.65) 

which is of a simpler form than the standard Hermite-Gaussian modes. The Gouy 

phase of the standard form is related to the term ZR/{ZR = iz)(n+l)12 in the elegant 

form. The form of this term is also altered by the change of the scaling parameter. 

The elegant variant represents an equally valid and complete set of solutions to the 

paraxial wave equations. But, whereas the Hermite-Gaussian modes in the standard 
form are orthogonal to each other, the modes in the elegant form are biorthogonal to 

a set of adjoint functions iJ!!G given by: 

(II.66) 

The orthogonality relation is now given by 

(11.67) 

where en is an appropriate normalisation constant. 

The Laguerre-Gaussian beams can also be given in an elegant form. By replacing 

the standard argument VZp/w(z) with the complex argument J-ikfJ2/{2q{z)) the 

Laguerre polynomial has the same argument as the Gaussian. term. However, this 

also affects the Gouy phase and the term ( VZp / w{z)) Iml. The final result is given by 

(
k)lml+p+1 ( 1 )Iml+p+l 

u~~(p, cp,z) = C~ 2 pm ZR + iz exp(imcp) 

Iml ( kp2 ) ( kp2 ) 
X Lp 2{ZR + iz) exp - 2{ZR + iz) , 

(11.68) 

which is identical to the paraxial limit of a non-paraxial extension to Laguerre-Gaussian 

beams discussed by Barnett & Allen (1994). 

4.1.4 Bessel beams 

The full Helmholtz equation supports a class of solutions, whose transverse pro­

file is invariant on propagation. Consequently, these beams have been called 'diffrac­

tion-free beams' by Durnin et al. (1987). They are exact solutions to the full Helmholtz 

equation, but they have an infinitely extended transverse profile. Under laboratory 

conditions the realisation of such beams will be limited by the physical requirement 

of a finite aperture (Durnin, 1987). The radial, azimuthal and axial parts are all sepa­

rated in the Bessel beams, which have an amplitude distribution of the form: 

(11.69) 

where C~ is a normalisation constant and no summation over m is implied. Bessel 

beams have the same azimuthal phase factor exp{imtp) as the Laguerre-Gaussian 

21 



Chapter II 4 Paraxial and non paraxial optics 

modes, and hence carry also OAM. In the transition from the full Helmholtz equa­

tion to the paraxial wave equation the transverse part of the differential equation 

is left unchanged. But the relation between the different wavenumbers k, IC and kz 

changes. The ansatz for the paraxial wave equation Eq. (11.43) on page 15 is given by 

(11.70) 

where C~ is the normalisation constant in the paraxial case and kz is a reduced longi­

tudinal wave number with kz = kz - k . This is due to the separated factor exp(ikz) 
in the paraxial ansatz (see Eq. (11.39) on page 14). On comparing the paraxial wave 

equation (11.43) on page 15 with the defining differential equation for Bessel functions 

(see (Stephenson & Radmore, 1993» 

(11.71) 

one can see that u~ will be a solution of the paraxial wave equation if 

(II.72) 

This form of the longitudinal wave number looks identical to approximated form for 

smalllC/k. This is not surprising as u~ is the solution to the paraxial wave equation. 

In the next section we will see that the Bessel beams are also solutions to the full 

Helmholtz equation but with a different expression for kz. 

The transverse profiles of the Bessel beams are shown in fi~re (11.3) on the follow­

ing page. Bessel beams do not change on propagation and there is no diffraction or 

dilation of the profile. The difference between paraxial and non-paraxial Bessel beams 

is only apparent in the longitudinal factor. The transverse profiles are the same for 

both cases. 

4.2 Non-paraxial light beams 

Bessel beams are also solutions to the full Helmholtz equation which can be seen 

if we substitute the ansatz ~~ from Eq. (11.69) on the previous page into the full 

Helmholtz equation in cylindrical coordinates (see Eq. (U.25) on page 12): 

(11.73) 

To satisfy Bessel's equation (11.71) the expression for kz has to be different from the 

paraxial case and is given by exact expression in Eq. (11.37) on page 13: 

(11.74) 

Bessel modes can thus be transformed from solving the Helmholtz equation to solve 

the paraxial equation, by the same change in the expression for kz that characterises 

the paraxial approximation. Together with the completeness of the Bessel functions 

this allows us to develop a non-paraxial extension of the Laguerre-Gaussian modes. 

Using the completeness of the Bessel beams it is possible to expand the Laguerre-
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Figure II.3 - Intensity profiles of paraxial Bessel beams. a) m = 1. b) m = 2. c) m = 4. d) 

m = 6. 

Gaussian modes in the following way 

(11.75) 

The exact form of the function dmp(x) can be determined from the expression for the 

paraxial Laguerre-Gaussian beam. To transform the superposition into a solution of 

the full Helmholtz equation we have to change the longitudinal phase factor. The 

radial and the azimuthal part are left unchanged. In this way we can construct a 

non-paraxial form of the Laguerre-Gaussian beam: 

(II.76) 

The two expansions differ not only in the longitudinal part, but also in the boundaries 

of the integration. While the paraxial expansion includes all transverse wavevectors 

o :s: x < 00, the non-paraxial expansion is limited to the range 0 :s: x :s: k. For values 

of J( > k the contributions to the expansion become evanescent. The general scheme 

for obtaining a non-paraxial extension of the Laguerre-Gaussian modes is shown in 
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the following diagram: 

~«1 ~=u exp(ikz) 

To determine the function dmp{lC) we can multiply both sides of Eq. (11.75) on the 

previous page by pJm{IC'p) and integrate both sides over p. On applying the Fourier­

Bessel theorem in the form (Gray & Mathews, 1895) (see App. VI.D on page 160): 

(11.77) 

we can write the function dmp{lC) in integral form: 

It is interesting to relate this integral to a different approach of obtaining a non­

paraxial extension to the Laguerre-Gaussian modes by Barnett & Allen (1994) who 

looked into a general expression for an electric field, that is a solution to the Helm­

holtz equation and satisfies the transversality condition. In the transverse plane this 

field is also given as an expansion in Bessel functions similar to Eq. (11.76) on the 

preceding page. The beam has been constructed as a non-paraxial extension of the 

Laguerre-Gaussian beam, but in the paraxial limit the elegant form of the Laguerre­

Gaussian modes is recovered. This step involves the following integral (Gradshteyn 

& Ryzhik, 2000; Barnett & Allen, 1994): 

(11.79) 

Apart from the azimuthal phase factor exp(imq» and the normalisation constant this 

is essentially the Laguerre-Gaussian mode in its elegant form (cf. Eq. (11.68». This fact 

allows us to substitute the Laguerre-Gaussian mode u!;f (x, y, z) in the integral (II.78) 

with the elegant form u~ given by 

(11.80) 

so that it is possible to apply the Fourier-Bessel theorem in Eq. (11.78). The final result 
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has the rather simple form 

(11.81) 

On substituting this result into the expansion in Eq. (11.76) we obtain a non-paraxial 

extension of the Laguerre-Gaussian modes. Non-paraxial solutions will become im­

portant later in this thesis, when we calculate the propagation of modes with frac­

tional orbital angular momentum. 

5 Spin and orbital angular momentum 

In this section we discuss the concepts of spin angular momentum (SAM) and 

orbital angular momentum (OAM) in light beams. Previously it has been thought 

impossible to separate the total angular momentum into a spin and an angular part 

outside the paraxial approximation. But with the introduction of the angular momen­

tum flux as the defining property for the optical angular momentum it became pos­

sible to extend earlier results from the paraxial approximation into the non-paraxial 

regime. We will thus present an analysis of the SAM and OAM in terms of the angu­

lar momentum flux. To allow for circular polarisation associated with SAM of light 

we consider a vectorial electromagnetic field. 

5.1 Angular momentum flux 

In section 2.3 we have defined the angular momentum flux density and the to­

tal angular momentum flux. Here, we are discussing why this quantity provides a 

meaningful separation into SAM and OAM parts. It is interesting to note that it is 

not possible to distinguish the spin part from the orbital part by their behaviour un­

der a change of axis. As long as the total linear momentum flux through a surface is 

perpendicular to this surface, the total angular momentum flux is the same for every 

axis parallel to the beam (Barnett, 2(02). A similar result has also been derived for the 

angular momentum by Berry (1998). 

Although the expression in Eq. (11.20) on page 10 is a valid expression for the 

angular momentum flux density, it is helpful to substitute the real electric field and 

the real magnetic induction with the complex field amplitudes of a monochromatic 

beam with frequency w (see Eq. (11.24) on page 11). For the complex field amplitudes 

the Maxwell equations (11.22) on page 11 are given by 

co .2 dB 
c-j = l-fjkl:;- I, 

t/w UXk 
(1I.82a) 

B .1 d B ' = -l-f'kl- I. 
I t/w I dXk 

(II.82b) 

With help of the complex field amplitudes it is possible to calculate the cycle-averaged 

angular momentum flux density Mzz . The real field components in Eq. (11.20) on 

page 10 are expressed as sums of the complex field amplitudes and their conjugates. 

On integration over the cycle time T = 21['/ w only terms without the time-varying 

factor exp( -iwt) are left (see App. II.C). This allows us to write the cycle average of 
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the angular momentum flux as (Barnett, 2(02): 

The z components of the electric field and the magnetic induction can be eliminated 

by use of the Maxwell equations (11.82) on the previous page. The total, cycle-averaged 

angular momentum flux is obtained by integrating this quantity over the whole trans­

verse plane. By partial integration and subsequent manipulations this integral can be 

brought into the following form: 

.Mzz = €~ Re {-i ff pdpdrp [(exB; + eyB;) 

+~ ( -B; aacp ey + eya
a
cp B; - ex aacp B; + B; aacp ex) ]}, 

(11.84) 

which is given in cylindrical polar coordinates. In this form the separation of the total 

angular momentum flux into a spin and orbital part becomes most apparent. The 

spin part is given by 

(11.85) 

and depends on the polarisation of the light beam, whereas the orbital part is con­

nected to changes in the azimuthal variable: 

o orbital _ eOC
2 

R { . If d d ( B* a C' C' a B* C' a B* B* a C' )} M zz - 4w e -1 p P cp - x acp C-y + C-y drp x - C-x arp y + y acp C-x . 
(11.86) 

The physical significance of this separation follows on considering the effects of bire­

fringence on the beam. The imparted phase shift will be different for the x and y 
components but it will not incur an azimuthal phase shift. The orbital part is there­

fore left unchanged. On the other hand, if an optical element imprints an azimuthal 

phase shift all the components will change in the same way, which leaves the spin 

part unchanged. 

5.2 Angular momenta of light beams 

We are now able to calculate the spin and orbital parts of the total DAM flux of 

a light beam beyond the paraxial approximation. To this end we consider a class of 

general non-paraxial beams introduced by Barnett & Allen (1994). The components 
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of the electric field for this beam are given by 

£x = It lok dK dmp(K) exp(imcp) exp(i Jk2 - K2)Jm (Kp), (II.87a) 

£y = f3lo
k 

dK dmp(K) exp(imcp) exp(iJk2 - K2)Jm(KP), (II.87b) 

£z = (k dKdmp(K) exp(imcp) exp(iJk2 _ K2) K (II.87c) 
Jo 2Vk2 - K2 

x [(ilt - f3) exp( -icp)Jm-l (Kp) - (ilt + f3) exp( -icp)Jm+l (Kp)]. 

This beam is a solution to the vector form of the Helmholtz equation (II.25a) on 

page 12 and satisfies also the transversality condition in " . E = O. The complex num­

bers It and f3 are chosen such that their squared moduli sum to unity: Iltl2 + 1f312 = 1. 

The components of the magnetic induction are given by Eq. (II.82) on page 25 (see 

(Barnett, 2002)): 

B 1 (k d dmp(K) exp(iVk2 - K2Z) [ a~ - K2 imtp1 ( ) 
x = w1] Jo K .Jk2 _ K2 - t' 2 e m Kp (II.88a) 

+ : (ei(m-2)tp(ilt - f3)Jm-2(KP) - ei (m+2)tp(ilt + f3)Jm+2(KP»)] , 

_ 2..lok d dmp(K) exp(i.Jk2 - K2Z) [ 2~ - 1C
2 imtp ( ) 

By - IC .J 2 2 It 2 e 1m Kp 
W1] 0 k - K 

(II.88b) 

+ : (ei(m-2)tp( -It - if3)Jm-2(ICP) - ei (m+2)tp(1t - if3)Jm+2(KP») ] , 

1 lok ICdmp(lC) exp(i.Jk2 - 1C2z) 
Bz = - dlC 2 

W1] 0 
(II.88c) 

x [(-It + if3)ei(m+l)tp 1m+l (Kp) - (It + if3)ei(m-l)tp 1m-l (Kp)] . 

For this particular beam the total linear momentum flux has no component in the 

transverse direction. The total angular momentum flux is therefore the same for every 

axis parallel to the z direction. 

Originally, Barnett & Allen (1994) considered a specific form of the function dmp (IC) 
which is different from the result in Eq. (11.81) on page 25. But there is some degree 

of freedom in choosing this function, so that it is equally possible to use the function 

dmp(lC) given in Eq. (11.81). This particular function falls off sufficiently quickly as 

IC tends to zero, which ensures a finite energy, momentum and angular momentum 

per unit length. If we calculate now the spin and orbital part of the total angular 

momentum according to Eqs. (11.85) and (11.86) on the previous page we find 

(11.89) 

(11.90) 

Only terms for which the azimuthal factor exp(imcp) is multiplied by its conjugate 

contribute to the total flux, this also ensures that only products of Bessel functions 

with equal order have to be considered. These terms can be calculated using the 
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Fourier-Bessel theorem (see Eq. (11.77) on page 24). In the original paper on angu­

lar momentum of light Allen et a1. (1992) examined the ratio between angular mo­

mentum density and energy flux both per unit length. This established the fact that 

Laguerre-Gaussian beams, or in fact any beam with the particular azimuthal phase 

factor exp(im<p), has well defined OAM. On considering the ratio between either the 

spin or orbital part of the total angular momentum flux through the transverse plane 

and the total energy flux though the same plane we can recover the original results be­

yond the paraxial approximation. The cycle-averaged energy flux through the trans­

verse plane is given by the integral (see Eq. (11.10) on page 8): 

(11.91) 

This expression includes the same integral as the spin and orbital parts of the total 

angular momentum flux. The ratio of the respective quantities is thus given by: 

o spin 
Mzz Uz 

~=w 
Jz 

M°rbital m 
---,zz:;;::..-_ = 

l¥ w 

o 

Mzz Uz +m 
l¥ = W 

(11.92) 

Here, we have set Uz = i{txf3* - tx*f3), which determines the polarisation. For circular 

polarised light f3 = tx exp{ ±i1l 12), so that Uz takes the values ± l. 
This analysis shows that the azimuthal phase factor exp(im<p) is responsible for 

the well-defined OAM. Laguerre-Gaussian beams and Bessel beams share this phase 

factor and in the next section we are looking in more detail into the azimuthal phase 

structure of these beams. 

5.3 Azimuthal phase structure 

The previous analysis showed that beams with a phase factor exp{im<p) have a 

well defined orbital angular momentum. As the ratio of the orbital angular momen­

tum flux to the energy flux is given by m / wand the energy of a single photon is 

given by hw, this seems to suggest that each photon in a beam with the phase factor 

exp{im<p) carries an OAM of lim. But the analysis of the light beams with OAM has 

been entirely classical so far, so that this tempting conclusion remains to be supported 

by a quantum theory which will be introduced in the next chapter. 

However, it is possible to link the OAM and the associated phase factor to an 

optical vortex (Nye & Berry, 1974). Optical vortices are phase singularities of the 

optical field and hence have zero amplitude. Light beams with a phase factor of 

exp(im<p) have an optical vortex on axis with a topological charge of m. This can 

be seen more clearly from the definition of the vortex charge, which is calculated by 

integrating along a closed path around the singularity (Nye, 1999): 

Q = -.!.. f dX = -.!.. f ds . V X, 
2rr 2rr 

(11.93) 

where ds is the line element. For a azimuthal phase of X = mil' this integral results in 
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Figure Il.4 - The left panel shows plots of the phase structure associated with a phase factor 

exp(imcp) for different values of m. When propagated light beams with the depicted phase 

structures have surfaces of equal phase in form of intertwined helices. a) m = 1. b) m = - 2. c) 

m = 3. 

a vortex charge of m. The connection between the vortex charge, the azimuthal phase 

structure and the OAM content of a beam will be revisited later in this thesis, when 

we examine light beams with fractional OAM. To complete this section we show the 

phase structures for a number of different values of m in figure (llA). One can see 

that for a phase factor of exp(imcp) there are jmj phase ramps in a complete circle. 

Whether the phase ramps clockwise or anti-clockwise depends on the sign of m. This 

can be seen from the sequence of the colours in figure (ll.4). On propagation we can 

identify jmj intertwined helices as surfaces of equal phase, which are shown on the 

right panel in figure (ll.4). The handedness of these helices is determined by the sign 

ofm. 

6 Generating light beams with orbital angular momentum 

In most experimental setups the transverse field distribution of a laser beam is 

best described by a superposition of Hermite-Gaussian modes. If the laser cavity has 

rectangular symmetry this follows naturally from symmetry of the Hermite-Gaussian 

modes, but even for a cavity with circular symmetry the output mode is hardly ever a 
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Figure fI.S - Plot of the phase profile of holographic patterns for generating light carrying 
orbital angular momentum. The patterns are designed to give the emerging light an azimuthal 
phase factor of exp(imcp) in the first order diffracted beam. a) m = 1. b) m = 2. c) m = 3. 

pure Laguerre-Gaussian mode. As discussed earlier in this chapter (see section 4.1.2) 

Laguerre-Gaussian beams can be represented as superpositions of Hermite-Gaussian 

beams. In a circular cavity astigmatism breaks the frequency degeneracy between the 

constituent Hermite-Gaussian modes, so that instead of the pure Laguerre-Gaussian 

mode a so-called 'doughnut'-mode is observed. One way to generate a Laguerre­

Gaussian mode is to remove the astigmatism, either by specially designing the laser 

cavity (Tamm & Weis, 1990) or by using cylindrical lenses (Beijersbergen et aI., 1993). 

In this thesis we are more concerned with two other methods of generating La­

guerre-Gaussian modes. Rather than transforming Hermite-Gaussian modes into 

Laguerre-Gaussian modes these two methods change the orbital angular momen­

tum content within the family of Laguerre-Gaussian modes. In this way a Laguerre­

Gaussian mode with nonzero orbital angular momentum can be generated from a 

pure Gaussian mode. One way of manipulating light beams in this way is to use spi­

ral phase plates (Beijersbergen et aI., 1994). These are optical elements with an optical 

thickness that increases with the azimuthal angle, until it drops sharply after com­

pleting the circle. As a result an incident Gaussian beam emerges with a helical phase 

front. Spiral phase plates require a very small mechanical tolerance to ensure that the 

step height corresponds exactly to an integer multiple of the optical wavelength. Spi­

ral phase plates can also be deliberately designed such that the step height does not 

correspond to an integer multiple. This gives rise to the phenomenon of fractional 

OAM which will be covered in more detail in chapter VI. 

Holograms give results which are very similar to spiral phase plates. They resem­

ble diffraction gratings, but modified such that the first order diffracted beam has a 

specific phase and amplitude structure. The required diffraction grating can be pro­

duced experimentally by interfering the desired light beam with a reference beam, 

say a pure Gaussian beam. The interference pattern can be put on a holographic film 

which, once photographically developed, generates the desired beam when placed 

in the reference beam. It is also possible to calculate the required diffraction grating. 

This has the advantage that the resulting pattern can be created on a spatial light 

modulator, a commerCially available optical element which manipulates the intensity 
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or phase of the light bearn. With the help of spatial light modulators the pattern of 

the diffraction grating can be modified in real-time. This makes computer-generated 
holograms a very versatile experimental tool, which is used widely to manipulate 
light beams carrying OAM (Allen et al., 2003). In figure (11.5) on the previous page 

we show the holographic patterns designed to create light beams with an azimuthal 

phase factor exp(imqJ) for m = 1,2,3. The patterns show a characteristic fork disloca­

tion, where the number of prongs corresponds to 1 m I. 

7 Summary 

In this chapter we have given an overview of the classical aspects of light carry­

ing orbital angular momentum. Starting from the Maxwell equations we have de­

rived analytic expressions for the angular momentum density of the electromagnetic 

field and the corresponding flux density and source denSity. These expressions were 

needed to identify the angular momentum flux density as the defining quantity for 
the orbital angular momentum (OAM) of light. This is because the flux density shows 

a well defined separation into a spin and an orbital part beyond the paraxial approx­

imation. We have calculated the spin and orbital angular momentum content for a 

class of non-paraxial light beams. Contained in this class is a non-paraxial extension 

of the Laguerre-Gaussian beams, which has been derived in this chapter. This par­

ticular light beam and also other beams of light carrying OAM share the same phase 

factor exp(imtp). Such a phase factor is directly related to an optical vortex on the axis 

and is also responsible for the OAM in the beam. 

In the next chapter we will review the quantum mechanical description of the 

azimuthal angle 11', and its conjugate variable, the OAM. The classical expressions, 

and in particular the non-paraxial expansion into Bessel beams will be needed later 

in this thesis, when we examine light beams with fractional OAM. 

II.A Relativistic considerations 

In section 2 we have derived the expressions for the energy, the linear momentum 

and the angular momentum of the electromagnetic field. By using the general form 

of a continuity equation and the Maxwell equations (11.6) on page 8 it is not possible 

to determine the quantities uniquely. In the relativistic formulation this ambiguity 

is resolved. We are using Greek indices to denote the time, and the three spatial 

components of vectors and tensors. We distinguish covariant components from con­

travariant components by writing the former with a lowered index and the latter with 

a raised index. A Greek index can thus take on the values 0,1,2 and 3 and if the same 

index is used for two components, one covariant and one contravariant, a summation 

over this index is implied. Roman indices will be used to denote the spatial compo­

nents only. 
The starting point of the derivation is the rank two, anti-symmetric field strength 

tensor Oackson, 1998) 

(11.94) 

which is defined over derivatives of the relativistic four potential. This potential has 
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components AO = <1>, and the Ai are identical to the components of the vector po­

tential. The field strength tensor contains components of the electrical field and the 

magnetic induction (Romer & Forger, 1993) 

and (II.95) 

For the three-dimensional quantities Ei and Bi we do not have to distinguish between 

covariant and contravariant components and we can continue to write them with a 

lower, Roman index. The quantities of energy and linear momentum of the field are 

combined in the symmetric energy-momentum tensor: 

(II.96) 

Here, t'~ = g«~ is the diagonal metric tensor of special relativity, with elements goo = 
1 and gIl = g22 = g33 = -1. This tensor contains the energy and momentum density 

in the components 

(II.97) 

(II.98) 

The remaining components of the energy-momentum are identical to the linear mo­

mentum flux density, which is denoted by the same symbol: 

(II.99) 

The continuity equations for energy and linear momentum in the absence of any 

sources can be combined to 
~y«f3 = O. 
ox« 

(II.l00) 

In the relativistic derivation the energy and momentum densities are uniquely deter­

mined. 
The angular momentum content of the field is described by the rank three tensor 

(IT.I01) 

which is anti-symmetric in the last two indices. This tensor is also a locally conserved 

quantity and obeys the continuity equation 

(11.102) 

The angular momentum density can be derived from the rank three tensor in the 

following way: 

(11.103) 

In the continuity equation (IT.102) the angular momentum density is differentiated 
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with respect to time; the spatial derivatives thus act on components of MIJ(/3"f which 

form the angular momentum flux density: 

(II. 104) 

This is equivalent to the angular momentum flux density in Eq. (11.20) on page 10. 

n.B Beam transformations 

According to Abramochkin & Volostnikov (1991) a linear combination of products 

of Hermite polynomials for the two transverse coordinates may be turned into a La­

guerre polynomial. The connection between the two different polynomials is given 

by 

n+m 
'" ( .)k (n-k,m-k)( ) () () ~ 21 Pk 0 Hn+m-k x Hk Y = 
k=O 

= 2n+m {( -l)mm!(x + iy)(n-m) L~-m(x2 + y2) 

(-l)nn!(x + iy)(m-n) t:?-n(x2 + y2) 

n ~ m, 

m ~ n. 

where pt-k,m-k) (O) is a Jacobi polynomial defined by the equation 

p(n-k,m-k) (0) = {_l)k ~ [(1- t)n(l + t)mll_ 
k 2kk! dtk t-O· 

(11.105) 

(11.106) 

To prove the given relation we consider the following two eqUivalent expressions: 

k2 exp [_~2 -'12 + 2i{x~ + Y'1)] d~ d'1 

k,2 exp [-~2 - '12 + iz (~ - i'1) + iz* (~ + i'1 )] d~ d'1 

= rrexp ( _x2 - i), (11.107a) 

= rrexp (-zz*), (11.107b) 

where z = x + iy and z* = x - iy. In order to make use of Rodrigues' formu­

lae for Hermite and Laguerre polynomials (Abramowitz & Stegun, 1974) both lines 

are differentiated by the operators a~ay and a~a~. respectively. For the first line in 

Eq. (11.107a) this operation yields 

(2i)m+n J k,2 exp [_~2 -'12 + 2i(x~ + Y'1)] ~m'1nd~ d'1 = 

= rr aman exp (-~ - i) 
axmayn ' 

= rr{ _l)m+n exp ( _x2 - i) Hm{x)Hn{y). 

(11.108) 

The Laguerre polynomial in (11.105) contains both z and its complex conjugate z* in its 

argument. For two variables Rodrigues' formula for Laguerre polynomials changes 
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into: 

d" 
L~(zz*) = d(zz*)" exp(-zz*)(zz*)m(zz*)", (1I.109a) 

1 zm+" d" 
--~--:--:------:---- exp( -zz*)(z*)m(z*)" 
n! exp( -zz*)(zz*)m z" d(z*)" , 

(1I.109b) 

1 (z*)m+" d" 
--~--:--:------:-- ...:......,.--'--,:--- - exp( -zz* )zm z" 
n! exp( -zz*)(zz*)m (z*)" dz" . 

(1I.109c) 

Therefore, the differentiation in (1I.107b) on the previous page may be expressed in 

terms of Laguerre polynomials as follows: 

ama" am 
azma(z*)" exp (-zz*) = azm (-z)" exp (-zz*), 

= (-I)"m!exp(-zz*)z"-mL~-m(zz*), forn ~ m, (11.110a) 

an ( *)n ( *) = a(z*)m -z exp -zz , 

= (-l)mn!exp(-zz*)(z*)m-"L~-"(zz*), form ~ n. (11.110b) 

By operating with a~a~. on both sides of Eq. (II.107b) on the preceding page, the left 

hand side will be transfonned, such that Eq. (11.108) on the previous page can be used. 

The right hand side can be written in tenns of Laguerre functions (see Eq. (11.110b», 

so that eventually a relation between Hermite functions and Laguerre functions is 

established. The differentiation of the left hand side of (lI.107b) on the previous page 

yields 

a~a~. f eh;2-'12+iz(~-i'1)+iz·(~+i'1)ld~ d'1 
JR2 
im+" f e[-~2-'12+iz(~-i'1)+iz·(~+i'1)1 (~- i'1)m (~+ i'1)" d~ d'1 . 

iR2 
(11.111) 

The factor (~ - i'1)m (~+ i'1)" may be expressed using a Taylor series in the following 

way: 

(~ - i'1) m (~ + i'1)" = (1 - it) m (1 + it r ~m+", 
m+n 1 ()k (11.112) 

= 2: k! atk [(1- t)"(1 + t)mllt=otk fort = -i%. 
k=O 

On substitutung the Taylor expansion into Eq. (II.111), this equation may be rewritten 

such that Eq. (11.108) on the preceding page can be used to write the integral in terms 

34 



Chapter II II.C Cycle average 

of Hermite functions: 

m+n ak 

Lim+n ;! atk [(1 - t)n(I + t)mJ It=o( _i)k 
k=O 

x k2 exp [_~2 _1]2 + iz(~ - i1]) + iz*(~ + i,,)] ~m+n-k1]kd~ d1] , 
(11.113) 

m+n . d-I)m+n (-I)k at n m 
= L (21) 2m+n 2kk! atk [(1 - t) (1 + t) J It=o7r 

k=O 

x exp ( -r - y2) Hm+n-k{X)Hn{y). 

Using the equivalence of x2 + y2 and zz*, the expression for the Jacobi polynomials 

in (11.106) on page 33 and comparing the terms with the differentiated right hand side 

of Eq. (11.111), yields finally the relation between Hermite and Laguerre functions in 

Eq. (11.105) on page 33. 

II.C Cycle average 

For a monochromatic wave with angular frequency w we can write a vector quan­

tity, such as the electric field or the magnetic induction, in the form: 

V{r, t) = Re[V{rexp{ -iwt)J = ~ [Vexp( -iwt) - V* exp{iwt)J. (11.114) 

In calculating derived quantities, such as the energy density or the momentum den­

sity of the electromagnetic field it may be advantageous to concentrate only on the 

spatial dependence and not on the periodic time variation. We therefore take the av­

erage value of a quantity during a whole cycle of period T = 27r / w. For example the 

energy density of the electromagnetic field is given by (see Eq. (IT.9) on page 8) (Born 

& Wolf, 1999): 

(IT.IIS) 

which separates into an electric and a magnetic part. The time average of the electric 

energy density is calculated according to: 

Ue = EO rT 
E2dt = EO rT 

[E2 exp( -2iwt) + 2£E* + (E*f exp{2iwt)] dt, 
2T Jo 8T Jo (11.116) 

= EOEE* 
4 

and analogously the cycle averaged magnetic energy density is ub = 88* / (41-'0). 

As an example of the cycle average of a quantity involving two different fields we 

calculate the cycle average of the Poynting vector (see Eq. (11.10) on page 8): 

o 1 1 loT 
S = - -T E x B dt, 

1]1-'0 0 

= _I_~ rT [E x 8e-2iwt + 2 Re[E x 8*J +E* x 8*e2iwt] dt, 
1]1-'0 4T Jo 

= -2 1 Re[E x 8*J. 
1]1-'0 

(11.117) 
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All cycle averages of the quantities in section II 5.1 are calculated similarly. 
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III Chapter 

Quantum formulation of angle and 

orbital angular'momentum 

The quantum mechanical description of the azimuthal rotation angle and the orbital 

angular momentum around the polar axis differs greatly from the description of posi­

tion and momentum. This has led to a controversy over the existence of a Hermitian 

angle operator in the literature. It is possible to circumvent some problems associated 
with Hermiticity of an angle operator by using trigonometric function of an angle op­

erator as a basis for the quantum mechanical description. This approach, however, 

does not allow us to study the properties of the angle operator itself. By using a 

state space of an arbitrarily large yet finite number of dimensions, it is possible to 
introduce angle and orbital angular momentum as a conjugate pair of variables both 

represented by Hermitian operators. After physical and measurable quantities have 

been calculated in this state space the number of dimensions is allowed to tend to 

infinity in a limiting procedure. 

In this thesis we have adopted the latter approach as it allows for a rigorous ex­

amination of the properties of the angle and orbital angular momentum operators. 

This chapter contains a review of the formal description of angle and orbital angular 

momentum in quantum mechanics. 

1 Introduction 

The correct description of a periodic variable such as a rotation angle or the optical 

phase has been a long standing problem in quantum mechanics. At the base of the 
problem is the question of whether the variable itself is restricted in a 2rr radian range 

or whether it evolves continuously without bound. In the latter case the periodicity 

of the system would be contained in derived physical quantities, which would be pe­

riodic in the variable. For the purpose of this thesis we are mostly concerned with 

the azimuthal rotation angle as conjugate variable to the orbital angular momentum 

(OAM) around a beam axis. The difficulties in the quantum mechanical description, 

however, are directly connected to the periodicity of the variable, and similar prob­

lems arise for the conjugate pair of photon number and optical phase. Naturally both 

settings are related to the correct description of the phase of a harmonic oscillator. 

This is why most of the literature we are referring to in this chapter covers the ques­

tion of the phase of the harmonic oscillator or equivalently the phase of a single mode 

optical field. 
If the phase of the harmonic oscillator X and the rotation angle qJ are treated as 
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Chapter III 1 Introduction 

continuously evolving variables, the classical Poisson brackets with the Hamiltonian 

H, or the OAM along the rotation axis Lz, have a standard form for a conjugate pair of 

variables (Pegg & Barnett, 1989; Barnett & Pegg, 1990). But a problem arises if these 

Poisson brackets are translated into quantum mechanical commutators according to 

the correspondence principle. Louisell (1963) noted that the commutator [X, Nl = i 
shows inconsistencies. This commutator corresponds to the Poisson bracket {X, H} 

because the Hamiltonian can be written in terms of the number operator N (Loudon, 

2000). In the number state basis {In) lnENo' where n can take on every positive integer 

value and zero, the matrix elements of the commutator are given by 

(nl[X,Nlln') = iOnn,· (111.1) 

But this requires that all diagonal matrix element of the phase operator are undefined, 

as the number states are the eigenstates of the number operator with Nln) = nln) and 

the matrix elements of the phase operator X are therefore given by 

(n' - n)(nlxln') = 0nn" (III.2) 

A similar inconsistency can be derived for OAM and angle (Barnett & Pegg, 1990). 

The commutator [tP, tzl = ih corresponding to the classical Poisson bracket {rp, Lz} = 
1 leads to undetermined diagonal matrix elements of the angle operator: 

(m' - m)(mltPlm') = iMmm" (111.3) 

where 1m), m E Z are eigenstates of Lz with eigenvalues hm. It is important to note 

that despite all similarities in the problem of finding the correct quantum mechani­

cal description for either the phase or the rotation angle, there is a difference in the 

eigenvalue spectrum of the respective conjugate variable. Whereas the angular mo­

mentum eigenstates 1m) can take on all integer values, positive, negative and zero, 

the number states In) are only defined for positive values of n and zero. 

A different commutator is obtained if one assumes that the periodic variable is 

strictly bound within a 27l' radian interval from 60 to 60 + 27l'. The angle or phase 

operator acts then not as simple multiplication, but it is modified by a series of step 

functions Gudge & Lewis, 1963): 

co co 

Y(rp) = rp - 2rr 'L e(rp - 60 - 2prr) + 2rr 'L 0{ -rp - 60 - 2p7l'), (1II.4) 
p=l p=l 

where 0(x) is the unit step function with e(x) = 0 for x < 0 and e(x) = 1 for x> O. 
The commutator [CP9

0
' tzl exhibits a series of Dirac-o functions: 

(111.5) 

where the index 60 on the angle operator tP indicates the starting angle of the 27l' ra­

dian range. The 27l'-periodic c5-function is defined in App. V.B on page 118. Similar 

results can be obtained for the periodic phase variable (Pegg & Barnett, 1997). Inter­

estingly, the correspondence between Poisson bracket and commutator is restored, if 
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the classical phase or angle variable is treated similarly (Barnett & Pegg, 1989); in­

stead of a smoothly evolving variable, the angle or the phase show discontinuities 
whenever the end of the 2rr radian is reached. 

While this approach yields correct results for the matrix elements of the angle or 

phase operator in the basis states of the conjugate variable (Pegg et al., 1990), it fails to 

give well-defined matrix elements for the OAM operator Lz or number operator N in 
the respective basis states of the angle or phase operator (Barnett & Pegg, 1989, 1990). 

For the matrix elements of the number operator N in the phase state basis this is due 

to the missing negative numbers in the spectrum of the number operator (Pegg & 

Barnett, 1997). But even in the presence of negative quantum numbers, as in the case 

of the OAM operator Lz, a careful analysis shows that the matrix elements in the angle 
state basis are undefined (Barnett & Pegg, 1990). This is because phase and angle 

states, as eigenstates of a Hermitian phase or angle operator, cannot be represented 

in an infinite dimensional Hilbert space. This shortCOming of the Hilbert space to 

accommodate angle or phase states has been seen as an indication that a Hermitian 

angle or phase operator does not exist. However, eigenstates of the linear momentum 

and position operator also are not elements of the Hilbert space L2( -00,00), on which 

their wavefunctions in position or momentum representation is defined. The usual 

identification as generalised functions in the form of Dirac c5-distributions involves 

no difficulties in most cases. 
The search for a quantum mechanical description of the angle or phase operator 

has attracted some controversy (see (Pegg & Barnett, 1997) and the extensive bibliog­

raphy therein). A very different approach exists which does not consider a Hermitian 

phase operator, but trigonometric operators (Susskind & Glogower, 1964): 

00 

exp(iX) = Lln)(n+11, (III.6a) 
n=O 

00 

exp( -iX) = Lin + 1) (nl· (III.6b) 
n=O 

This approach has been developed for the phase variable. For a unique determina­

tion in the form given above Susskind & Glogower had to add the postulate that the 

projector onto the vacuum state I1/') (01 is absent in the expressions in Eq. (III.6). These 

operators are not unitary and do not commute. It is therefore not possible to deduce 

the existence of a unique phase operator in this approach, as the operators in Eq. (III.6) 

cannot be functions of a common phase operator. The approach by Susskind & GI­

ogower can also be applied to angle and CAM (Carruthers & Nieto, 1968). In this 

case the operators are unitary, because of the inclusion of negative quantum numbers 
for the CAM. However, the angle operator deduced from the exponential operator 

acts on the infinite dimensional space and the pair of angle and CAM operator in this 
approach suffers from the same difficulties with the indefiniteness of matrix elements 

as mentioned above. 
The problem with a phase or angle operator is that their eigenstates cannot be 

accommodated in an infinite dimensional space. It is, however, possible to define a 

Hermitian phase and angle operator on a finite dimensional space. To this end, Bar­

nett & Pegg (1989, 1990) introduced a state space 'f of 2L + 1 dimensions, where L 
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is arbitrary but finite. Within this state space the eigenstates of the operators form 

an orthonormal basis and all matrix elements are well defined. The operators are 

Hermitian and owing to the finite dimension also self-adjoint. After physical results 
have been calculated, such as expectation values of matrix elements, L is allowed to 

tend to infinity, restoring an infinite, but countable set of DAM or number states and 

a respective dense set of angle or phase states. The limiting procedure of starting in 
a space with a finite number of dimensions, which is allowed to tend to infinity only 

after measurable results have been calculated, is therefore crucial to the approach by 

Barnett & Pegg (1989). The mathematical reasoning behind this approach is that the 

convergence behaviour for operators is different from that of matrix elements or ex­

pectation values. The former are defined by their actions on elements of a Hilbert 

space whereas the latter are elements of the space of complex numbers. The question 

of convergence of the phase operator has been addressed by Vaccaro (1995) who in­

troduced an infinite Hilbert space on which a unitary and Hermitian phase operator 

can be defined. The phase operator introduced by Barnett & Pegg (1989) converges 

strongly on this particular Hilbert space. 

In the following we present the quantum mechanical description of rotation an­

gles in the approach by Barnett & Pegg (1990) in more detail. This is a very elegant 

formulation which allows us to investigate properties of the angle and OAM opera­

tors directly. In the remainder of the thesis we will refer to this chapter repeatedly. 

2 Quantum theory of rotation angles 

The elegance in the finite dimensional approach lies in the fact that all desired 

properties of a pair of conjugate operators occur naturally within this method. An­

gle and OAM are complementary variables, they act as mutual generators and they 

also give the correct commutator analogous to Eq. (III.5) on page 40. Obviously an 

elegant formulation alone is not a proof for the validity of a theory. A consistent 

formulation though is a necessary requirement and in this section we show that the 

finite-dimensional approach by Barnett & Pegg (1990) describes angle and OAM con­

sistently. 
In this section we look first at the definition of angle and OAM states in the finite 

dimensional state space. With these states we can then proceed to calculate the com­

mutator for angle and OAM. Angle states cannot be prepared in an experiment, and 

we therefore review the concept of physical states at the end of this section. 

2.1 Angle and orbital angular momentum states 

The finite-dimensional space state 'I' is spanned by 2L + 1 eigenstates 1m) of the 

OAM operator Lz. The action of Lz on one of the eigenstates is defined by Lzlm) = 

mh\m). The positive integer L is arbitrary and the quantum number m takes on the 

values - L, - L + I, ... ,L. Angle states can be unambiguously decomposed in the 

basis of the OAM states by writing: 

1 L 
IqJ) = J2[TI L exp(-imqJ) 1m). 

2L + 1 m=-L 
(III.7) 
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In this form angle states have a periodic structure; the state I qJ) is the same as I qJ + Zrr). 

This is only natural, as rotation angles differing by Zrr radians are indistinguishable 

from each other. All distinct angle states are therefore contained in an interval ranging 

from an arbitrary starting angle 00 up to, but not including, 00 + Zrr, that is qJ E 

[00,00 + 2rr). This interval includes an infinite number of angle states which are not 

all mutually orthogonal: 

( I ') = _1_sin[(2L + l)(qJ' - qJ)/2] 
qJ qJ 2L + 1 sin[(qJ' - qJ)/2] 

(III.B) 

The states lIP) and IqJ/) are orthogonal if the difference cp' - qJ is a nonzero, integer 

multiple of Zrr/(2L + I}. It is thus possible to form an orthonormal basis of 2L + 1 

angle states IOn) by selecting values IOn) as 

27rn 
On = 00 + 2L + l' n = 0,1, ... ,2L. (III.9) 

With this choice for the allowed angles all states in the set {IOn) In=0 ..... 2L are orthonor­

mal to each other: 

(111.10) 

It is very important to note that the choice of 00 is arbitrary and determines the partic­

ular basis set. Angle states from two different basis sets, with two different values for 

00, will not be orthogonal in general. The choice of 00 determines a particular angle 

operator which will not commute with other angle operators for a different starting 

angle 90' The angle operator tPBo thus has to be labelled with the starting angle 90 

indicating that the eigenvalues are given by Eq. (III.9): 

(III.ll) 

Angle and DAM are both defined on a space of 2L + 1 dimensions. In this formulation 

both basis sets can be used to represent any element of the state space 'f' equally well. 

In particular the angle basis can be represented in the basis states of the OAM opera­

tor and vice versa. It is perhaps surprising that in the finite-dimensional approach the 

angle and DAM bases span the same state space, while the two state spaces for OAM 

and angle are different in character when working directly in infinite dimensions. 

There, the DAM is characterised as a discrete and unbounded variable, while the an­

gle is bounded and continuous. However, in mathematics a number of projections 

are known which map an unbounded domain on to a compact range. For example 

the whole complex plane can be projected onto a Riemann sphere (Silverman, 1984). 

With an increasing L the interval for m E [-L, L 1 is expanded, while the interval for 

the angle On E [90,90 + 2rr] remains the same. The spacing of two consecutive angles, 

however, decreases with an increasing L. In the limit of L --+ 00 the OAM eigenval­

ues take on all numbers m E Z, while the angle eigenvalues form a dense set on the 

circle [90,00 + 27r]. The starting angle 00 retains its importance in the limit of L --+ 00. 

As mentioned above, 90 determines a particular angle operator and the uncertainty 

and variance of this operator will be different from other angle operators for different 
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values of 00 , 

2.2 Commutator [cp80' Lzl 
The expectation value of the commutator determines the uncertainty relation, 

which will be studied in more detail in the next chapter. We therefore derive the 

commutator for the angle and DAM operator in both representations. In order to ex­

press the angle operator in the OAM basis we have to calculate the matrix elements 

in the expansion 
L 

cfJeo = L Im')(m'lcfJeolm)(ml· (III.12) 
m,m'=-L 

On using the completeness of the angle states we can calculate the matrix elements 

(m'l cfJeo 1m) as a sum over exponentials: 

2L 1 2L 

(m'lcfJ9olm) = LOn(m'IOn)(Onlm) = 2L+1 LOnexp[i{m-m')Onl· 
n=O n=O 

(III.13) 

The diagonal matrix elements involve a summation of the positive integer n from 

zero to 2L. This sum is given by {2L + I)L, which allows us to evaluate the diagonal 

matrix elements to: 
2rrL 

(mlcfJeol m) = 00 + 2L + l' (III.14) 

For the off-diagonal elements geometric progression (see App. VI.C on page 159) can 

be used to calculate the sum: 

, 2rr exp[i{m - m')OoJ 
(m IcfJ9olm) = 2L+lexp[i{m-m')2rr/{2L+l)J -1' 

(III. IS) 

With the help of these matrix elements we can express the angle operator in the OAM 

basis as 

2rr (L ~ eXP[i{m-m')OOllm,)(m l ] 
cfJeo = 00 + 2L + 1 + m,;'-:-L exp[i{m - m')271/{2L + 1)J -1 . 

mi'm' 

(111.16) 

Using the expression of the angle operator in the DAM basis in Eq. (III.16) we can 

write the commutator in the same basis as 

A L _ 2711i L (m - m') exp[i{m - m')OoJ 1m') (ml 
[lPeo' zl - 2L + 1 L exp[i{m - m')2rr/{2L + I)J -1 . 

m,m'=-L 
mi'm' 

(III.17) 

To express the commutator in the angle state basis we can use the representation of 

1m) in terms of angle states: 

2L 1 2L 

1m) = L 10n)(Onlm) = J2[TI L exp(imOn) IOn), 
n=O 2L + 1 n=O 

(III. IS) 
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Chapter III 2 Quantum theory of rotation angles 

to write the OAM operator in the angle state basis: 

1.z; = _~ 2L (-1)n-n'19n,){9nl 
2 ~ sin[(n - n')rr/(2L + 1)]" 

n,n =0 
nFn' 

The commutator can then be written in the angle state basis as: 

A A • nrr ~ (n - n')(-1)n-n'19n,)(9nl 
[q>90 ,Lz] =1 2L + 1 L: sin[(n-n')rr/(2L+1)1' 

n,n =0 
n#n' 

(III. 19) 

(III.20) 

The commutator has well defined matrix elements and does not suffer from the diffi­
culties mentioned in the introduction to this chapter. 

2.3 Physical states 

Angle states are impossible to realise experimentally. For all practical purposes it 

is more interesting to consider physical states Ip) for which all the moments of the 
OAM operator 1.z are finite. Within the finite state space 'f this condition seems to be 

fulfilled trivially. As long as the sum of the coefficients (mlp) in the decomposition of 

Ip} into the angular momentum basis 

L 

Ip) = L (mlp) 1m} (III.21) 
m=-L 

is finite, any finite moment (pl1.~lp),n EN will be finite. But a moment of an opera­
tor is a physical quantity for which we can allow L to tend to infinity. If we require all 

moments to be finite even in the limit of L -- 00, the coefficients have to fall off suf­

ficiently qUickly. Such states may be approximated to any degree by an expansion in 

the form of Eq. (III.21) where the coefficients (mlp) are zero for Iml > M. The bound 

M is as large as required for the desired accuracy in the approximation but less than 
L. If we restrict the domain of tP90 to physical states, we can employ a physical angle 

operator in the limit of large L by expanding the exponential in the denominator: 

(tP90)p = 90 + rr - i L exp[i~m_-m~')eo1Im'}{ml. 
m,m 

mFm' 

(III.22) 

We should stress that this is a deviation from the rule that the limit of L --+ 00 is only 

to be taken after physical results have been calculated. This is why the approximated 

form in Eq. (111.22) can only replace tP90 when operating on physical states, and not 
on the angle states themselves, which cannot be approximated in the same way as 

physical states. Using the physical form of the angle operator we can also give a 

specialised expression for the commutator when acting on physical states: 

[tP9o'1.z;]p = -iii L exp[i(m - m')901lm'} {mi. 
m,m' 
mFm' 

(111.23) 
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Chapter III 2 Quantum theory of rotation angles 

It is possible to calculate matrix elements for this physical commutator without an­

other limiting procedure. Again, this is a deviation from the normal procedure, where 

the limit is taken only after expectation values and matrix elements have been calcu­

lated. But for the matrix elements in the OAM basis the relevant limit has been ap­

plied already by forming the physical angle operator. The physical commutator has 

matrix elements given by 

(III. 24) 

Orbital angular momentum eigenstates are physical states and this is why we can use 

the physical form of the commutator to calculate the matrix elements in Eq. (III.24). 

However, the coefficients in the decomposition of an OAM eigenstate into the angle 

basis do not fall off. Therefore the commutator in Eq. (III.20) on the previous page 

needs to contain values of n - n' up to 2L + 1. It is possible to substitute the definition 

of angle states in terms of OAM states (see Eq. (III.7) on page 42) 

1 L 
IOn) = y'2[+1 '" exp(-imOn)lm) 

2L+ 1 m7::L 
into the expression for the physical commutator in the OAM basis: 

For any physical state Ip) the expectation value of the commutator will be 

(111.25) 

(III.26) 

(III. 27) 

If we introduce an angle probability distribution P(On) within the finite state space 

'1', the probability that the angle is found within 60 from On is given by P(On)60. The 

distance between two consecutive angles MJ is given by 60 = 27l' / (2L + 1). With this 

probability density the expectation value of the commutator can be written as 

(III.28) 

In the limit of L -.. 00 the spacing between two consecutive angles tends to zero and 

the probability distribution turns into a probablity density of the continuous variable 

<p, which is normalised according to: 

i
80+27r 

P( <p )d<p = 1. 
80 

(III.29) 

In later chapters we will be using the continuous probability density when we deal 

with physical states. The expectation value of the commutator also dictates the lower 

bound for the uncertainty product. For physical states we can write 

(111.30) 
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but it is important to keep in mind that this is an approximated form, which is derived 

from the exact form in Eq. (III.20) on page 45. The angle uncertainty (~lP)p is thus 

given by the square root of the angle variance for a physical state (~lP)~: 

(III.31) 

For the OAM uncertainty the formulation in terms of a continuous angle representa­

tion requires more care. A direct representation of Lz as derivative with respect to lP 
can lead to problems even for physical states. A physical state was defined above as 

a state for which all moments of the OAM operator Lz are finite. This includes the 
second moment (L~)p which forms part of the OAM variance. The coefficients (mlp) 
in the decomposition in Eq. (Ill.21) on page 45 thus have to fall off as m-2 for large 

m. As pointed out by Pegg et al. (2005), states with this fall-off characteristic, show a 

discontinuity in the gradient of the angle representation peep) = (eplp), Acting with 

L~ on such a state can lead to Singularities which render the states unnormalisable. 

By using the self-adjointness of the OAM operator we can represent (t~) p by 

(III.32) 

The OAM uncertainty is thus given by the square root of 

f90+2Tr 1 d 12 ( f80 +2Tr d ) 2 (~Lz)~ = ,,2 JBn d; dep +,,2 J9
0 

d; dep (III.33) 

In this class of physical states fall the intelligent states, which satisfy the equality in 

the uncertainty relation. Another class of physical states are the minimum uncer­

tainty product states, which give a constrained or global minimum in the uncertainty 

product. The next chapter examines the properties of both kind of states. 

3 Summary 

In this chapter we have presented a consistent description of angle and orbital 

angular momentum (OAM) as a pair of conjugate variables in quantum mechanics. 

In this approach angle and OAM are defined on a finite-dimensional state space of 

arbitrary dimension. Starting in a finite dimensional space and using a limiting pro­

cedure to allow the number of dimensions to tend to infinity after physical results 

have been calculated, avoids inconsistencies which we have highlighted in the first 

part of this chapter. The second part introduces the quantum theory for rotation an­

gles in some detail. In later chapters we will derive aspects of the OAM of light with 

the help of this theory. 
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IV Chapter 

Special states for the angular uncertainty 

relation 

The uncertainty product for two non-commuting observables has a lower bound 

given by the expectation value of the commutator for the two observables. For an­

gular momentum and angle this lower bound depends on the form of the state for 

which the uncertainties and the expectation values are calculated. This requires a 

distinction between states satisfying the equality in the uncertainty relation, that is 

intelligent states, and states giving a minimum in the uncertainty product. In this 

chapter we explain the difference between those two kinds of states and derive their 

defining equations. 

1 Introduction 

The uncertainty principle limits the precise knowledge of all physical quantities of 

a system. It finds its most familiar expression in the Heisenberg uncertainty principle 

(Heisenberg, 1927), where the product of the uncertainties for linear momentum 6px 

and position tlx has a constant lower bound 1i /2: 

h 
6px6x ~ 2' (IV.1) 

and equivalently for the y and z direction. For such a constant lower bound states sat­

isfying the equality in the uncertainty relation also minimise the uncertainty product. 

In general however, the lower bound depends on the form of the state for which the 

uncertainties are calculated. This is because for two arbitrary Hermitian operators A 
and a the lower bound in the uncertainty relation is given by the expectation value 

of the commutator [A, a] (Robertson, 1929): 

6AtlB ~ ~I([A,B])I. (IV.2) 

In this case states which give a minimum in the uncertainty product 6AtlB do not 

necessarily fulfil the equality (IV.2), but will always obey the inequality. On the other 

hand states satisfying the equality in the uncertainty relation do not need to have the 

smallest possible uncertainty product, as there might be states which have a smaller 

uncertainty product, without obeying the equality in the uncertainty relation. It is 

therefore required to distinguish between states satisfying the equality in Eq. (IV.2), 

that is intelligent states (Aragone et aI., 1974,1976), and minimum uncertainty prod­

uct states. Mathematically the distinction arises from two different eigenvalue equa-
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Chapter IV 1 Introduction 

tions for intelligent states and minimum uncertainty product states. For the Heisen­

berg uncertainty relation the solutions to the eigenvalue equations are identical and 

intelligent states and minimum uncertainty product states have the same Gaussian 

wavefunction. 
The uncertainty relation for orbital angular momentum (OAM) and angle has a 

state dependent lower bound. In its approximate form (Barnett &: Pegg, 1990) (d. 

Eq. (111.30) on page 46) 

(IV.3) 

the lower bound depends on the probability density P (eo) at the edge of the chosen 

2n radian interval for the angle (jI. The probability density for OAM eigenstates is 

a flat function with P(jI) = 1/(2n) for all (jI in the interval [60,60 + 2n). The lower 

bound in Eq. (IV.3) may thus become equal to zero, and the global minimum in the 

uncertainty product is obtained for the eigenstates of the OAM operator Lz• But it 

is also possible to identify states which minimise the uncertainty product tlLztl(jl for 

a given uncertainty in the OAM or in the angle. These states are called constrained 

minimum uncertainty product (CMUP) states (Pegg et al., 2(05). For the Heisenberg 

uncertainty relation (IV.l) on the previous page, that is for linear momentum and 

position, these CMUP states are identical to the global minimum uncertainty product 

states and the intelligent states. 
The angular uncertainty relation (IV.3) differs from the linear case also in the in­

terval on which the respective observables are defined. Whereas in the Heisenberg 

uncertainty relation the position is defined on an infinite inte~al x, y, Z E (-00,00), 
the angle is bounded in the 2n radian interval [60,60 + 2n). This allows solutions 

to be normalised in the angular case which are disregarded in the linear case on the 

grounds that they do not represent physical, normalisable states. The wavefunctions 

of these solutions are peaked at the edges of the 2n radian interval for the angle and 

consequently the angle uncertainty tends to be larger than for states with a wave­

function peaked in the centre of the interval. The intelligent and CMUP states thus 

appear in two variants with small and large angle uncertainties. The distinction is 

most apparent for the uncertainty product tlLztl(jl which is bounded by 1i/2 for states 

with small angle uncertainties but unbounded for the large-uncertainty case. 

The family of special states for the angular uncertainty relation has been studied 

both experimentally and theoretically in a series of papers. Intelligent states with 

small angle uncertainties have been first introduced by Franke-Arnold et al. (2004) to 

verify the form of the angular uncertainty relation in an optical experiment. The dis­

tinction between intelligent states and CMUP states in the small-uncertainty regime 

has been presented by Pegg et al. (2005). The work on the large-uncertainty regime is 

an original contribution to the literature and published in (Gotte et al., 2005) for the 

intelligent states and in (Gotte et al., 2006b) for the CMUP states. The analysis for the 

large-uncertainty states would be incomplete without a comparison to the small un­

certainty case, and we therefore present the theory for the complete family of special 

states in this chapter. 
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Chapter IV 2 Intelligent states 

2 Intelligent states 

Intelligent states satisfy the equality in the uncertainty relation (IV.2) on page 49. 

We first derive a necessary and sufficient condition for the equality to hold in form of 

an eigenvalue equation, which will then be used to determine the intelligent states in 

both variants. 

2.1 Equality condition 

For two Hermitian operators A and a the Schrodinger form of the uncertainty 

relation is given by (Schrodinger, 1930) 

where [A, Bl+ = AB + aA denotes the anti-commutator of the two operators A and 

a. In the derivation of the uncertainty relation (Schwab I, 1995) positive terms related 

to the anti-commutator are omitted in order to recover the compact form given in 

Eq. (IY.2) [see App. IV.A). For the equality in Eq. (IV.4) these terms become important 

as they strictly have to be equal to zero. We introduce two associated Hermitian 

operators a = A - (A) and b = 8 - (8) for the two Hermitian operators in Eq. (IV.4). 

Using these associated operators the uncertainty relation may be written as 

(IV.5) 

If we take the square on both sides in the Robertson form of the uncertainty rela­

tion (IV.2) on page 49 and compare this to Eq. (IV.5) we find that the term with the 

anti-commutator is additionally present in the Schrodinger form. This does not affect 

the validity of the inequality (IV.2) as the expectation value of the Hermitian operator 

[a, bl + is always positive and can thus be omitted. However, for the equality to hold 

in Eq. (IV.2) this additional term has to be taken into account, and ([a, bl+) is required 

to be equal to zero: 

(IV.6) 

It is worth mentioning that (ab + ba) is the quantum correlation function C1,1 or the 

covariance for the original observables A and B (Bohm, 1951). By requiring (al, + biZ) 
to be equal to zero we demand that A and B are uncorrelated with respect to C1,1' In 

the derivation of the uncertainty relation [see App. IY.A] the Schwartz inequality is 

used to give an upper bound for the modulus square of the scalar product (atplbtp) in 

terms of the product (a2) (f,2). The first term turns into the lower bound in Eqs. (IV.2) 

and (IV.5), while the latter term is equal to the product of variances (~A)2(~B)2. The 

equality in the Schwartz inequality holds if and only if the two state vectors in the 

scalar product are linearly dependent or parallel. Applied to Eq. (IV.5) this means 

that there exists a complex number z E C such that 

latp) = zlbt/J) or (atpl = z*(btpl, (IY.7) 
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due to the Hermiticty of a and b. On substituting this parallelity condition into 

Eq. (IV.6) on the previous page we can ascertain that z has to be purely imaginary: 

The last step follows from the fact that (b) = 0 and therefore (6b)2 = (b2). The 

Hermitian operators b and ~ have the same variance (L\b)2 = (68)2,so that (L\b)2 = 0 

only for an the eigenstate of ~. This is a rather specific case, but as mentioned above 

we reach the global minimum of the uncertainty product L\LzL\rp for an eigenstate of 

the OAM operator, and this state also satisfies the equality in the uncertainty relation. 

More generally, however, for the equality (IV.B) to hold z* + z has to be equal to zero, 

which requires z to be purely imaginary. We can therefore write Eq. (IV.7) on the 

previous page as an eigenvalue equation with the real parameter A E R: 

lat/') = iAlbt/'). (IV.9) 

If we now apply this equality condition to the angular uncertainty relation and iden­

tify a = tz - (tz) and b = lP - (cp) we arrive at the eigenvalue equation determining 

the intelligent states for OAM and angle (Franke-Arnold et aI., 2004): 

(IV.IO) 

where Ig) denotes an intelligent state. 

Projecting Eq. (IV.IO) onto (rpl yields a differential equation if we identify in the 

angle representation the OAM operator tz as derivative with respect to rp and cpeo as 

multiplictive operator Y( rp) = rp + 2rrn: 

[iliaarp + (tz) + ihA(Y(rp) - (lP9))] g(rp) = O. (IV. 11) 

Only for a continuous wave function is the representation of tz as derivative with 

respect to rp well defined. Owing to the periodic character this continuous behaviour 

is also required for the end points of the interval [60,60 + 2n]. It is more convenient to 

work in units where h = 1, but to the same effect we can introduce a dimensionless 

OAM operator m = tz/h. In terms of this operator the differential equation may be 

written without h: 

(IV.12) 

Solutions to this equation are the intelligent states for OAM and angle. The sign of 

A determines the curvature of the wavefunction at 60 + TC, the centre of the allowed 

range. If we restrict this analysis to cases where the mean values are equal to zero, 

we find that the second derivative of g( rp) is given by 

(IV.13) 

For a positive A this leads to a peak in the centre of allowed range and turning points 
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at q> = ± 1/ VA. For negative A the wavefunction is peaked at the edges and has no 

turning points. 

2.2 Wavefunction of intelligent states 

A family of solutions to the differential equation (IV.12) on the previous page is 

given by truncated exponentials, which are characterised by the parameter A (Galindo 
& Pascual, 1990; Franke-Arnold et al., 2004): 

g(q» = Ng exp(i(m)q» exp ( -~(Y(q» - (tP))2) . (IV. 14) 

Here, Ng is the normalisation constant for the intelligent states. The normalisation 

integral is calculated on the interval [00,00 + 2re] and Y (q» can thus be replaced with 
q>. The resulting normalisation constant can be given in terms of the error function 

erf (Abramowitz & Stegun, 1974): 

(IV.lS) 

Discontinuities in the wavefunction lead to infinite uncertainties for the OAM, we 
therefore require the wavefunction g( q» to be continuous at the ends of the 2re radian 

interval such that g(Oo) = g(Oo + 2re). This ensures that the mean angle lies in the 

middle of its definition range so that (tP) = 00 + re and that the OAM mean is an 

integer. The mean (m) contributes only to the phase of the wavefunction. We can 

therefore restrict the analysis of intelligent states to the case of zero OAM mean. This 

is because the unitary OAM shift operator exp(itP80k) shifts the angular spectrum 

uniformly by an integer number k E Z, but this does not change ~Lz (Barnett & 

Pegg, 1990) [see App. IV.B]. Also, owing to the unitary character of exp(itP8ok), the 

angle probability density P{ q» = Ig( q> )801
2 is left invariant and so is ~q>. Therefore, 

exp( itP80 k) Ig) is also an intelligent state with a shifted OAM mean. Until now we have 

not specified the starting point of the 2re radian interval 00 and the wavefunction 

g is given in complete general terms. But in the following we will specifically set 

00 = - re, such that the intelligent states have (tP) = O. Jointly with choosing (m) = 0 

this simplifies the notation in subsequent calculations and graphs without loss of 

generality. 
The parameter A determines the intelligent state completely. For A > 0 we have 

wave functions with a peak in the middle of the allowed range of angles. The wave­

function for these states has the form of a truncated Gaussian and the intelligent states 

represented by such wavefunctions will have a smaller angle uncertainty than states 

with A < 0 and a positively curved wavefunction with peaks at the edges of the cho­

sen 2re radian interval. For A = 0 the angle wavefunction is flat which corresponds 

to the OAM eigenstates. This particular state divides the small angle uncertainty 

regime with A > 0 from the large angle uncertainty regime with A < O. For A < 0 

the argument of the error function in Eq. (IV. 15) turns imaginary. It follows from the 
definition of the error function (Abramowitz & Stegun, 1974) that an error function 
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Figure N.l - The angle wavefunction of the intelligent states plotted for different values of 

fltp. For flcp = 7T / V3 [A = 0] the wavefunction is flat and represents an OAM eigenstate. For 

smaller values of fltp [A > 0] the wavefunction has the form of a truncated Gaussian and is 

peaked around tp = O. Intelligent states which are peaked at the edges have an angle uncer­

tainty fltp > 7T / V3 [A < 0]. 

with an imaginary argument is itself imaginary: 

erf(iy) = i Jrr loY
eXp (.-2)dT, y E lR. (IV. 16) 

To plot the complex error function we use an approximation in terms of an infinite 

series (Abramowitz & Stegun, 1974): 

where the functions ~n and 'n are given by 

~n(x,y) = 2x - 2xcosh(ny) cos(2xy) + n sinh(ny) sin(2xy), (IY.l7b) 

'n(x,y) = 2xcosh(ny)sin(2xy) +nsinh(ny)cos(2xy). (IV.17c) 

The error in this expansion can be estimated to be le(x,y)1 ~ 1O-16 Ierf(x + iy)l. 

Within this error the approximation also gives an imaginary value for an imaginary 

argument. The graphs in the analysis of intelligent states by Galindo & Pascual (1990) 

and Gotte et al. (2005) show the physical quantities of the intelligent states as a func­

tion of A. In this thesis, however, we use the angle uncertainty tlcp to characterise in­

telligent states in order to compare them with the constrained minimum uncertainty 
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product states (CMUP) states later in this chapter. 

2.3 Angle and angular momentum uncertainty 

In the following we present mathematical expressions and graphs for the uncer­

tainties of angle and angular momentum and their product. In contrast to the treat­

ment in the literature (Franke-Arnold et al., 2004; Gotte et al., 2(05), we give expres­

sion valid for intelligent states in both variants; for the small and large angle uncer­

tainty case. 

2.3.1 Angle uncertainty 

The angle variance is given by (~tp)2 = (cp2) - {cp)2. As our solutions are sym­

metric about cp = 0, the mean value of cp is zero and the angle variance is simply the 

expectation value of cp2 

(IV. IS) 

The functional form of the wavefunction allows us to express the angle variance as 

the derivative of the normalisation constant Ng with respect to A: 

2 _ 1 J7£ d 2 _ 1 dN~ 
(~cp) - Nl -7£ dA exp( -Atp )dcp - - Nl dA . (IV. 19) 

Using the Leibniz formula to evaluate the derivative of the error function, an expres­

sion for the angle variance can be obtained on substituting the normalisation constant 

from Eq. (IV. 15) on page 53 into Eq. (IV.19): 

(IV. 20) 

The square of a self-adjoint operator is self-adjoint and hence we expect the variance 

of cp to be real. The angle uncertainty is thus given by the positive square root of 

Eq. (IV.20) and the expression holds for positive and negative A. A plot of Acp as a 

function of A is given in figure (IV.2) on the following page. In the limit of A - 00 

the angle uncertainty ~tp tends to zero. But it is worth mentioning that the behaviour 

of (~tp)2 in Eq. (IV.20) is dominated by the 1/(2A) term. For A - -00 the angle 

uncertainty Atp tends to its supremum 7f. That 7f is indeed the supremum of ~tp for 

any kind of normalised state can be seen from an estimate of the integral in Eq. (IV. IS): 

(IV.21) 

For A = 0 the wavefunction becomes flat and represents an OAM eigenstate. Al­

though this is the global minimum uncertainty product state, it is also an intelligent 

state. The angle uncertainty for this states is given by 

(IV.22) 
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Figure [V.2 - The angle uncertainty tllfl for the intelligent states. The parameter value A = 0 
distinguishes between the truncated Gaussians with A > 0 (Franke-Arnold et al., 2004) and 

the large-uncertainty intelligent states with A < 0 (Gotte et al., 2005). The angle uncertainty is 

bounded by tllfl ~ n. 

This particular state is the dividing point between small uncertainty intelligent states 

with l:!.qJ < rr / J3 and large-uncertainty intelligent states with'l:!.qJ > rr / J3. 

2.3.2 Angular momentum uncertainty 

Using the continuous wavefunction in Eq. (IV.14) and the representation of Lz as 

a derivative requires some care. In section 2.1 we have argued that for the intelli­

gent states the first derivative of g( qJ) with respect to qJ is well behaved, while the 

second derivative is not. This is the reason why we can use -itz(d/dqJ) as a valid 

representation of Lz in the eigenvalue equation for the intelligent states. 
To calculate the OAM uncertainty l:!.Lz from its variance (l:!.Lz )2 = (L~) - (Lz)2 we 

have to operate with L~ on an intelligent state. Identifying L~ with _tz2( d2 / dqJ2) does 

not lead to a well behaved result because of the discontinuity of the wavefunction at 

the edges of the 2rr radian range, It is possible, however, to express (L~) in terms 

of the first derivative with respect to qJ. To prove this relation we have to represent 

the states in the arbitrarily large state space 'I' of 2L + 1 dimensions (see Ch. III), in 

which tz is Hermitian and self-adjoint. But as the relation is derived for expectation 

values, and therefore a physical quantity, it is admissible to take the limit of L - 00 

and to revert to the notation of continuous wave functions afterwards. Moreover, for 

expectation values it is not relevant in which representation the operator is given 

or in which basis the intelligent state is decomposed. If we write Ig) in its OAM 

decomposition in the state space 'f 

L 

Ig) = L gmlm) (IV.23) 
m=-L 
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then we have for the expectation value (l.~): 

L L L 

(l.~) = 2: IgmI2(mll.~lm) = 2: IgmI2(l.zmll.zm) = 2: Igml2ltzlm) 12. (IV. 24) 
m=-L m=-L m=-L 

Here, Itzlm) 12 denotes the norm of the the state vector l.zlm). As 1m) is an eigen­

state of l.z and obeys the orthogonality condition (mim') = t5mm" we can exchange 

the order in which we take the norm and evaluate the sum over m. The equality in 

Eq. (IV.24) may thus be continued by 

L L 2 

(t~) = 2: Igml2ltzlm) 12 = 2: l.zgmlm) = Il.zlg) 12. (IV.25) 
m=-L m=-L 

If we now revert to the infinite dimensional space we can represent l.z by -inC d/ dtp) 

in the angle representation. Taking the norm for the continuous wave function cor­

responds to the integral of the modulus square of the wave function over the full 2n 

radian interval: 

(IV.26) 

On substituting the wavefunction in Eq. (IV.14) on page 53 into this expression we 

find that the dimensionless OAM uncertainty t1m can be expressed in terms of the 

angle uncertainty t1tp: 

(IY.27) 

To obtain the equality in the uncertainty relation for linear position and momen­

tum, the uncertainties have to be inversely proportional to each other. In the angular 

case the uncertainties are directly proportional to each other; if we have a large angle 

uncertainty the DAM uncertainty is also large and yet the uncertainty product satis­

fies the equality in the uncertainty relation. The reason for this behaviour lies in the 

state dependent right hand side of Eq. (IV.3) on page 50. 

A plot of the OAM uncertainty t1m as a function of the angle uncertainty t1tp is 

shown in figure (IV.3) on the following page. As t1tp tends to n for A -+ -00, the 

DAM uncertainty t1m tends to infinity. We have discussed the behaviour of (t1tp)2 

for A -+ 00 earlier [see section IV 2.3.2] and noted that 1/ (2A) is the dominant term. 

The behaviour of t1m for A -+ 00 follows from Eq. (IV.27) and we find that t1m varies 

as JiXi72 for A -+ 00. This behaviour can be seen in the inset in figure (IV.3) on the 

following page. 

2.3.3 Uncertainty product 

The left hand side of the uncertainty relation (IY.3) on page 50 is given by the 

uncertainty product t1Lzt1tp. If we use the result for the dimensionless DAM uncer­

tainty t1m from Eq. (IV.27) and the expression for t1tp in Eq. (IV. IS) on page 55 the 
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Figure 1V.3 - The DAM uncertainty for intelligent states. The plot shows llm as a function 
of llrp. The plot is parameterised over A and owing to the asymptotic behaviour of llm as a 
function of A a large parameter range has to be chosen in order to continue the plot for llrp ...... O. 

The lack of plot points around llrp = 7r / v'3 is also a consequence of the parametrisation, as 
llm and llrp are evaluated for equidistant values of A. The behaviour of llm as a function of A 

is shown in the inset. 

uncertainty product can be expressed as 

(IV.28) 

As (ll<p)2 is positive we can include it in the modulus. For our choice of 00 the left 

hand side of the uncertainty relation for 6m6<p is given by 11 - 2rrP(rr) 1/2. If we 

substitute the expression for the wavefunction with the normalisation constant from 

Eq. (IV.1S) on page 53 to calculate P(rr) we obtain 

~Il- 2rrP(rr)I = ~ 1 _ 2v'A7f exp ( -rr2A) 
2 2 erf(rrv'X) 

(IV.29) 

for the lower bound in the uncertainty relation. If we compare this expression with 

Eq. (IY.28), we can see that the two sides of the uncertainty relation are equal, as they 

should be, for intelligent states. In the limit of A - -00 the uncertainty product 

tends to infinity as (691)2 approaches rr. The surprising result is that for the large­

uncertainty intelligent states with A < 0 the uncertainty product can become arbi­

trarily large and yet the equality in Eq. (IV.3) on page 50 is still satisfied. For the 

small-uncertainty intelligent states with A < 0 the uncertainty product tends to 1/2 

because the (691)2 behaves dominantly as 1/(2A) for A - 00, The graph of the un­

certainty product as a function of 691 is given in figure (IV.4) on the next page. 
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Figure N.4 - The uncertainty product llmlltp as a function of lltp. For the large-uncertainty 

intelligent states (lltp > Tf / y'3 or A < 0) the uncertainty product has no upper bound. The 
inset shows a plot of the uncertainty product against A for comparison with the plots of lltp 

and llm (see figures (IY.2) to (IV.3) on pages 56-58; see also a similar plot in (Galindo & Pascual, 

1990». 

2.4 Orbital angular momentum distribution 

The probability amplitudes gm of the OAM are calculated from the wavefunction 

in Eq. (N.14) on page 53 by means of a Fourier coefficient transform: 

1 lrr gm = r.c. g( 11') exp( -imcp )dcp. 
v2rr -rr (IV.30) 

By virtue of the symmetry of the wave function the transformation may be specialised 

to the Fourier cosine transform 

1 !orr gm = r.c. g(cp} exp(imq»dq> + c.c .. 
v2rr 0 

(IV.31) 

Here, c.c. denotes the complex conjugate of the previous expression, and we have 

written cos( mcp) as (exp (imcp) + c.c.) /2. On substituting the wave function g( cp) from 

Eq. (IV.14) into the Fourier transform, we can write the integral as an error function if 

we add and subsequently subtract a term to write the exponent as a complete square. 

In particular we can rewrite the integrand according to 

(IV. 32) 
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The first exponential can be taken out of the integral and we can transform the whole 

exponent of the second exponential by setting 

(IV.33) 

so that we can write the integral as 

(IV.34) 

The upper and lower boundaries in the integral are given by T(O) = -im/ (v'IT) and 

T(rr) = -im/( v'IT) + VArr/../2. The integral in the boundaries from T(O) to T(rr) 

can be split up as a difference between two integrals, each starting at zero and ending 

at T(rr) and T(O) respectively. These single integrals maybe written as complex error 

functions 

1 ( m2) .,fo gm = J27iNg exp - 2A v'IT (erf(T(rr)) - erf(T(O))) + C.c .. (IV.35) 

The term containing erf( T(O)) will always cancel with its complex conjugate, regard­

less of the sign of A. Either A > 0 and erf(T(O)) is imaginary, or A < 0 and erf(T(O)) 

is real and the factor .,fo / V2X is imaginary. In both cases only the erf( T ( rr)) term is 

left in the calculation of the gm. Adding the complex conjugate yields twice the real 

part of the entire expression: 

(IV.36) 

Depending on whether A is positive or negative we can write the gm differently (see 

App. IV.C). For the truncated Gaussians with A > 0 only the error function is a 

complex number. Consequently, the gm may be written as 

(IV.37) 

For the large-uncertainty intelligent states the factor ..,fii / V2X is imaginary and the 

additional imaginary unit interchanges real and imaginary part of the complex error 

function. In this case we can set A = -I A 1 an we have for the g m 

(IV.38) 

The divergent exponential exp(m2 / (2IAl)) is counterbalanced by the imaginary part 

of the complex error function which decays to zero in this case. This can be seen if 

the approximate expression for the complex error function in Eq. (IV.17a) on page 54 

is substituted into Eq. (IV.38). 
The distribution of the probability amplitudes gm for four different intelligent 

states is shown in figure (IV.5) on the next page. For the small-uncertainty intelligent 
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Figure N.S - The distribution of probability amplitudes gm for the OAM decomposition of 

intelligent states. The series of plots shows the distribution of probability amplitudes gm for 

four different intelligent states specified by their angle uncertainty tJ.cp. a) tJ.cp = 0.5 corre­

sponds to a range in figure (IV,4) on page 59 where the uncertainty product is constant. The 

wavefunction is a narrow truncated Gaussian and the distribution of the gm has also Gaussian 

form. b) for tJ.cp = 1.5 the uncertainty product differs from the linear case, and the effect of the 

truncation of the Gaussian wave function become more visible. The state is close to the OAM 

eigenstate and the distribution of the gm is narrow. c) tJ.cp = 2.0 corresponds to a flat large­

uncertainty intelligent state. The distribution is still narrow but alternating and has a form 

similar to a Lorentzian. d) {).rp = 3.0 is at the upper end of possible values for {).cp. {).rp and {).m 

are proportional to each other, so a large angle uncertainty, for a wavefunction sharply peaked 

at - Tr and Tr, corresponds to a wide distribution of the gm · 
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states with /).<p < :rr / J3 one can distinguish two regions for the uncertainty prod­

uct [see figure (N.4) on page 59]. For /).qJ < 1 the uncertainty product has roughly 

the constant value of 1/2. This is the range where the angular uncertainty relation 

behaves like the Heisenberg uncertainty relation for linear position and momentum. 

It is also the range where the wavefunctions are so narrow that they can be treated 

as extended Gaussians and the effects of the truncation become negligible. Conse­

quently, the distribution of the gm has also the form of a Gaussian. For values of 

/).<p > 1 the uncertainty product is no longer constant but tends to zero for the CAM 

eigenstates at /).<p = ..j7i /3. The wavefunction flattens and the effect of the truncation 

becomes more prominent. The distribution of the gm becomes narrower and starts to 

alternate at the flanks for higher values of m. This alternating behaviour is character­

istic for the distribution of the gm for the large-uncertainty intelligent states. Close to 

the OAM eigenstate the distribution of the gm is narrow, but the form is more similar 

to a Lorentzian than a Gaussian. For larger values of /).qJ the distribution becomes 

wider, following the relation /).m = IAI~qJ [ef. Eq. (IV.27) on page 57]. 

2.5 Limiting behaviour 

The complicated form of the angle and CAM uncertainties in terms of special 

functions prevents an intuitive understanding of the behaviour of these characteristic 

quantities. For the same reason it is difficult to see why the large-uncertainty intel­

ligent states have a probability amplitude distribution similar to a Lorentzian. We 

therefore present approximations to the exact expressions in o,rder to give a more ac­

cessible explanation of the behaviour of intelligent states. Naturally, the approxima­

tions are only valid for a limited range of ~<p values. We will explore three different 

regions: one region for the small-uncertainty intelligent states, where /).<p is close to 

zero, the region around ~<p = ..j7i /3, where the intelligent states in both varieties 

approach the OAM eigenstate, and one region for the large-uncertainty intelligent 

states, where ~<p tends to its maximum value. 

2.5.1 Small uncertainty regime: ~<p < 1 

In this region the angle wavefunction is so sharply peaked that at the edges of 

the 2:rr radian interval the wavefunction is negligibly small. The boundaries in the 

integrals to calculate the angle uncertainty or the OAM probability amplitudes may 

thus be extended to infinity. The wavefunction in this approximation is an extended 

Gaussian and is given here in its normalised form: 

gsml ( <p) = (~) 1 
exp ( - ~ <p2) A > O. (IV.39) 

If one compares this result with the exact wavefunction from Eq. (N.14) on page 53 

it becomes evident that the error function in the normalisation constant in Eq. (IV.IS) 

results from the restriction of the definition range for the angle to a 2:rr radian inter­

val. For large positive A the error function tends to one, which gives the Gaussian 

wavefunction in Eq. (N.39). The variance of the angle within this approximation is 
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Figure IV6 - Characteristic quantities for intelligent states for small angle uncertainties. a) 

shows the exact and approximated wavefunction for I'lcp = 1.0. b) shows the uncertainty prod­

uct as a function of I'lcp. In this approximation the uncertainty product has a constant value 

as for the Heisenberg uncertainty relation. For I'lcp > 1 the exact result deviates from the con­

stant value. c) shows the distribution of probability amplitudes . Although the values for the 

exact and approximated results are very similar, the exact results have alternating positive and 

negative values away from the central peak. 

calculated from Eq. (IV. IS) on page 55: 

(IVAO) 

which corresponds to the dominant term in Eq. (IV.20) on page 55 for large A. The 

OAM variance can be calculated from Eq. (IV.27) on page 57 which also holds in this 

approximation. As A is always positive for /).cp < I we have 

2 A 
(/).m)sml = 2' A > O. (IV.4I) 

The uncertainty product in this approximation has the constant value of 1/2. This is 

a form which corresponds to the intelligent states for the Heisenberg uncertainty rela­

tion. It satisfies the equality (IV.3) on page 50 because Psm1 (n) is negligible compared 

to one. Moreover, as the lower bound in the uncertainty relation in this approxi­

mation is constant, the intelligent states are also the minimum uncertainty product 

states. The distribution of probability amplitudes is calculated from the wavefunc­

tion using a Fourier transform. In this approximation the boundaries in the Fourier 

integral (IV.30) on page 59 are extended to infinity and the gm follow a Gaussian dis-

tribution 

(IV.42) 
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In figure (IV.6) on the preceding page the wavefunction and the distribution of the 

probability amplitudes is shown for a value of 6qJ = 1.0, which is at the end of the 

valid range for this approximation. The figure shows also a plot of the uncertainty 

product over the angle uncertainty, and one can see that at 6qJ = 1.0 the exact result 

for 6m6qJ starts to deviate from the constant value of 1/2. 

2.5.2 Flat wavefunction regime: 6qJ ::::: 7T 1 V3: 

For small values of IAI the continuous angle probability density becomes a flat 

function of the angle and in the limit of A -+ 0, where P(qJ) = 1/(27l') we have an 

OAM eigenstate. As we consider the case with zero OAM mean (tz ) = 0, the OAM 

eigenstate in the limit of A -+ 0 is 10}. The behaviour of 6qJ in this parameter region 

can be explained using a perturbation ansatz for 10} with A as perturbation parameter. 

The derivation of 6qJ in this perturbative approach is done in the arbitrarily large, but 

finite state space'f of 2L + 1 dimension (see Ch. III). For zero angle and OAM mean 

and in terms of the dimensionless OAM operator m the condition for the intelligent 

state in Eq. (IV.IO) on page 52 can be written as 

mig} - iA4>lg} = O. (IV.43) 

For small A we can use the perturbation ansatz Igper} = 10} + Alg(l)}. Substituting 

this ansatz in the condition (IV.43) yields at first order in A 

(IV.44) 

Without loss of generality we can write the perturbative state Ig(l)} as a superposi­

tion ofOAM eigenstates Im},m = -L, -L + 1, ... , -1, 1, ... , L without a contribution 

from 10}: 
L 

Ig(l)} = L g~)lm). (IV.45) 
m=-L 
m"O 

The OAM eigenstate 10} is a physical state, that is a state which may be approximated 

to any desired accuracy by the expansion Lm bmlm}, where the coefficients bm = 0 

for Iml > M (see section III 2.3). Here, the sum includes integer values of m and the 

bound M is sufficiently large to guarantee the desired accuracy but always less than 

L. Restricting the domain of the angle operator to these physical states simplifies the 

expression for the angle operator and changes the summation to include an infinite 

number of OAM states 1m}. Using the definitions for the OAM operator and for the 

angle operator for physical states in (Barnett & Pegg, 1990) (see also Ch. III) we can 

calculate the resulting states mlg(l)} and 4>10}: 

L L 

mlg(1») = L mg~)lm) = L mg~)lm), (IV.46) 
m=-L m=-L 
m"O 

4>10} -i L exp~m7l') 1m}. (IV.47) 

m"O 
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On substituting these results in the condition for the intelligent states at first order in 

A from Eq. (IV.44) on the previous page we find an equation to determine the g~): 

A L ( mg~) - exp~mrr)) 1m) = o. 
mfO 

(IV.48) 

For the linearly independent basis states 1m) the coefficients in Eq. (IV.48) have to 

vanish for the sum to result in zero. This requires g~) = -( -l)m 1m2. For small A 

the intelligent state Igper) may thus be written as 

( 
(_l)m) Igper) = Nper 10) - A L --;;;rIm) , 

mfO 

(IV.49) 

where Nper is the normalisation constant in the perturbative approach. The OAM 

amplitudes of the state Igper) are given by (go)per = Nper and (gm)per = Ag~)Nper. 
The angle representation of this state is obtained by projection onto an angle eigen­

state. We hereby calculate a physical quantity, the angle probability amplitude, and 

we can now allow L to tend to infinity, which yields the continuous wavefunction of 

the intelligent state for small A: 

Nper ( " (-l)m . ) (q>lgper) = g(q»per = r-c 1- A L... -2- exp(lmq» , 
v2rr ~ m 

mrO (IV.50) 

= Nper [1 + A (rr2 _ ~)] . ..;zrr 6 2 

The sum in the last equation has been evaluated using the contour integration method 

(Stephenson & Radmore, 1993) (see App. A on page 166), which can also be used to 

calculate the normalisation constant from the requirement that the OAM probabilities 

I (gm)perI2 sum to unity: 

(IV.51) 

The angle variance for the perturbative state can be calculated at first order from the 

continuous wavefunction in Eq. (IV.50): 

(IV.52) 

where O(A2) indicates terms of order A2 which are negligible for A -+ O. The angle 

uncertainty is given by the square root of the variance to first order in A and for small 

A we can approximate Nper and the square root. This yields at first order in A the 

angle uncertainty 

(~q»per::::: ~ (1- 12SAn2) for A -+ o. (IV.53) 
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Figure N7 - Characteristic quantities for intelligent states in the perturbation approach. a) 

shows the exact and approximated wave function for tlcp = 1.56. b) shows the uncertainty 

product as a function of tlcp. The approximated graphs are linear as all quantities have been 

calculated to the first order in A. c) shows the distribution of probability amplitudes. 

For A ~ 0 this perturbative result is consistent with I:lcp = n: / J3 for the OAM eigen­

state. 
The OAM uncertainty cannot be calculated from the relation (IV.27) for wavefunc­

tions in form of Gaussians or truncated Gaussians. Instead, we can calculate (tlm )per 

directly from the OAM decomposition in Eq. (IV.49) on the preceding page. With 

Nper determined by Eg. (IV.51) on the previous page the (glll)per are appropriately 

normalised . The OAM variance is thus given by 

(IV.54) 

Approximating Nper for small A yields the angular momentum uncertainty in the 

perturbation approach 
for A ---T O. (IV.5S) 

Here, we have to take the modulus of A to ascertain a positive (I:lm)per. To the first 

order in A the uncertainty product in the perturbation approach is approximately 

given by 

forA ~ o. (IV.56) 

On substituting the expression for the perturbative wavefunction in Eg. (IV.SO) on 

the preceding page for Pper(n:) = \g(n:)per\2, the right hand side of the uncertainty 
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relation becomes 

(IV.57) 

Using the approximation of Nper for small A and evaluating the square yields 

(IV.5S) 

which shows the equality in the uncertainty relation holds to the first order in A. 
The validity of the perturbative approach can be estimated from the characteristic 

quantities shown in figure (IV.7) on the previous page. We have taken only the first 
order in A and so it is not surprising that the graph of the uncertainty product as a 

function of the angle uncertainty is linear. 

2.5.3 Large uncertainty regime: tllP > 2.5 

The angle and angular momentum uncertainty are determined by the normalisa­

tion constant [see Eq. (IV.lS) on page 55 and (IV.27) on page 57]. In the negative lP 

range and within the integral in Eq. (IV.lS) on page 53, the wavefunction can be ap­

proximated with an exponentially decreasing function. In the limit of large negative A 

this approach provides simple approximate expressions, which explain the behaviour 

of the uncertainties for large angle uncertainties. However, it is worth stressing that 

we do not derive an approximate expression for the wave function in this approxima­

tion directly; we only approximate the wavefunction within an integral. 

The normalisation integral (IV. 15) on page 53 can be rewritten as 

1 fO 
N

2 = 2exp(IAI;rr2) exp[IAI(lP + rr)(lP - rr)]dlP A < o. 
g -n 

(IV.59) 

For large IAI only a small region around -rr will contribute significantly to the in­

tegral, and we can therefore approximate the factor (lP - rr) in the exponential with 
-2rr and extend the upper integration boundary to infinity. This results in the nor­

malisation constant Nexp : 

1 f~ 1 
... ? = 2exp(IAlrr2) exp( -2rrIAI(lP + rr))dlP = -IAI exp(IAlrrZ) A < o. 
A~p -n rr 

(IV.60) 

Using this normalisation constant to calculate the probability density in this approxi­

mation yields 
Pper(rr) = IAlrr A < o. (IV.61) 

We can thus give an approximation of the right hand side of the uncertainty relation 

(IV.3) in the limit of large IAI. This approximation is valid for tllP > 2.5 which corre­

sponds to A < -1/3. In this range P( rr) > 1 and the lower bound in the uncertainty 

relation can be written as 

1 ----'- 1 
211 - 2rrPexp (rr)1 = lAIn- - 2 A < O. (IV.62) 
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To calculate the angle uncertainty we can use the relation (IY.19) on page 55, al­

though in this regime we do not have an approximate expression for the wavefunc­

tion, for which the equality in Eq. (IV.19) would hold. The argument is that our ap­

proach allows us to approximate the normalisation constant and its functional de­

pendence on A for large 6qJ. In this region we can thus use the derivative of the 

normalisation constant Nexp to calculate the square of the angle uncertainty: 

(IV.63) 

For the angular momentum uncertainty we can use the relation in Eq. (IV.27) on 

page 57 

(IV.64) 

As a consequence of Eq. (IV.27) the uncertainty product in this approximation is given 

by IAI(6cp)~xp. On substituting Eq. (IV.63) into Eq. (11) on page ?? we find for the 

uncertainty product" 

(IV.65) 

If we compare this uncertainty product with the lower bound in the uncertainty rela­

tion (IV.62) on the preceding page, we find that the two expressions are only approx­

imatelyequal 
1 

IAI~ -1 ~ IAI~ - - A < O. 
2 

(IV.66) 

This approximation is valid for large !:J.qJ which corresponds to A -+ -00. Clearly, for 

sufficiently large values of IAI the discrepancy becomes negligible. 

A similar approximation as for the normalisation integral can be used in the Four­

ier integral to calculate the probability amplitudes. This leads to an integrand in form 

of an exponential and we expect a distribution of probability amplitudes in form of a 

Lorentzian. Owing to the symmetry of the wavefunction we can specialise the Fourier 

transform to the cosine form 

2Nint 1° IAI 2 gm = "'- exp( -2 qJ ) cos(mqJ)dtp. 
v 27l' -T[ 

(IV.67) 

In essence the integrand can be approximated in the same way as for the wavefunc­

tion approximation. The Fourier integrand can be written as exp[lAI(qJ + 7l')(qJ-

7l') 12J exp(IAl7l'2 /2). Within the integration interval-7l' ~ qJ < 0 and forlarge IAI this 

integrand is only significantly different from zero around the lower boundary - Te. 
This allows us to approximate the integrand with exp[lAI (qJ + Te)( -7l')J exp(IAl7l'2 /2) 

and to extend the integration interval in Eq. (IV.67) to infinity, which results in an 

angular momentum distribution in the shape of a Lorentzian: 

(gmh.or = N~ exp( IA21~) 100 

exp( -7l'IAI(cp + 7l')) cos(mtp)dtp, 
v 27l' -T[ 

_ NLor ( )m (~2) ( 21AI7l' ) 
- .,fiIT -1 exp 2 7l' IAI27l'2 + m2 . 

(IV.68) 

Here, wave are using the index Lor to indicate the Lorentzian distribution of proba­

bility amplitudes. The distinction between the approximation for the normalisation 
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Figure [VB - For large tJ.cp characteristic quantities may be approximated by treating the 

wavefunction as an exponential in the integrand of the normalisation integral and in the 

Fourier integral to calculate the OAM probability amplitudes. a) shows the approximation 
of tJ.cp as a function of A. One can see that the approximate value approaches the exact results 

for large negative A. b) shows the uncertainty product as a function of llcp. c) If applied to 
the Fourier integral this analysis yields an explanation for the distribution of probability am­

plitudes gm which is approximately Lorentzian for large negative A. The graph compares the 
exact results with a Lorentzian distribution calculated in this approximation for llcp = 3.0. 
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integral in Eq. (IV.60) on page 67 and the Fourier integral in Eq. (IV.68) on page 68 

becomes important for the normalisation constants, which differ from each other in 

the two approximations. The condition on the OAM probabilities I (gm h.or 12 to sum 
to one can be used to determine the normalisation constant NLor consistently in this 
approximation. From Eq. (IV.68) on page 68 we have 

~ ~ 

L leml2 = 1 = 2NlorIAI27rexp(IAI~) L (IA12n2 + m2) -2. (IV.69) 
m=-~ m=-~ 

The summation can be executed using the contour integration method (Stephenson 

& Radmore, 1993) (see App. A), which results in the following expression for NLor: 

(IV.70) 

For A -+ -00 the hyperbolic trigonometric functions cosech(IAln2) and coth(IAln2) 

tend to zero and one respectively. In this limit the normalisation constant from the 

Lorentzian distribution in Eq. (IV.70) becomes consistent with the normalisation con­
stant in Eq. (IV.60) on page 67. 

Figure (IV.8) on the previous page shows the validity of this approximation on 

hand of the uncertainty product, a distribution of probability amplitudes and the be­

haviour of ~<p as a function of A. The latter replaces the comparison between the exact 

and approximated wavefunction for a typical value of ~<p in the range of validity for 

the given approximation. Here, we only approximate integra~ of the wave function 

not the wave function itself. One can see that for large negative A the approximated 

values converge to the exact results. As the uncertainty product is given by IAI (~<p)2 
the discrepancies in the plot for the uncertainty product may be surprising. However, 

the range of ~<p shown in this plot corresponds to a range of A between -0.5 and -1. 
In this range the approximated values differ greatly. Also, every discrepancy in /).<p 

is multiplied in the plot of the uncertainty product, as both axes depend on ~<p: the 

abscissa linearly and the ordinate quadratically. 

3 CMUP states 

The constrained minimum uncertainty product (CMUP) states minimise the un­

certainty product for the additional constraint of a given uncertainty in the angle or 

in the orbital angular momentum (OAM). The form of the CMUP states is the same, 

whether the additional constraint is a given uncertainty in the angle or in the OAM. 

This is because the defining equation is derived using a variation of the uncertainty 

product ~Lz~<p and the given uncertainty in either the angle or the OAM is taken into 

account by Lagrange multipliers. Whether an uncertainty in the angle is given or an 

uncertainty in the OAM, we have the same linear combination of variances with un­

determined multipliers in both cases. In this section we first present the variational 

approach leading to the eigenvalue equation which defines the CMUP states. We then 

present the solutions for small and large angle uncertainties. 
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3.1 Variation method 

Using variational methods to determine minimum uncertainty product states has 

first been introduced by Jackiw (1968). Here, this method is applied for finding states 

which minimise the uncertainty product 6A68. Seeking states which give a min­

imum in the uncertainty product for a given uncertainty in the angle or for given 

uncertainty in the DAM is equivalent to finding a minimum for the uncertainty that 

is not given as a constraint. In the derivation presented in this section we are min­

imising the variance and not the uncertainty. But as the uncertainty is defined as 

the square root of the variance, uncertainty and variance are related to each other 

by a monotonic function and therefore minimising the variance is equivalent to min­

imising the uncertainty. In the following we are going to use (6A)2 for the variance 

which is to be minimised and (68)2 for the variance given as a constrained in the 

variation. We thus require that a CMUP state If) minimises the free variance (6A)2, 

but with the constraint of keeping the given variance (68)2 constant and obeying the 

normalisation condition (flf) = 1. 

The variables in the variation are (fl and If) and they are treated as independent 

in the variation of (6A)2. The additional requirements can be expressed formally 

as holonomic constraints, also depending on (fl and If). An extremum for (6A)2 

under these constraints will be obtained if the variation of (6A)2 and the holonomic 

constraints is stationary. Introducing Lagrange multipliers fl and v this condition can 

be expressed as 

(IV.71) 

On multiplying the whole equation with a third undetermined multiplier the station­

ary condition can be written as a linear combination of variations: 

(IV.72) 

The same linear combination of variations with undetermined Lagrange multipliers 

would be obtained, if we interchanged the roles of (6A)2 and (68)2. This explains 

why the defining equation for the CMUP state is the same whether the constraint is 

a given variance in the angle or in the OAM. As it is not necessary to distinguish 

between the variance given as a constraint and the variance which is to be minimised 

we replace the variances (6A)2 and (68)2 with the variances for angle and DAM in 

no particular order. 

We have seen for the intelligent states that the operator exp(ikcp9o) shifts the an­

gular spectrum uniformly by k without changing (6Lz)2 or (6q?). We can therefore 

choose the OAM mean to be zero. This holds, whether (6Lz)2 is given as constraint, 

or whether it is to be minimised, and we can replace (6Lz)2 with (t~) in the variation. 

In App. IV.O we show that for the angle variance minimising (6cp)2 is equivalent to 

minimising (cp2). We can therefore rewrite Eq. (IV.72) in terms of (t~) and (cp2): 

(IV. 73) 

It has been shown by Pegg et al. (2005) that for the CMUP states the coefficients f m in 
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the OAM decomposition 

If) = Llmlm) l(lP) = :..:: Lim exp(imlP) 
m v 2rr m 

(IV. 74) 

can be assumed to be real, regardless whether the given constraint is an uncertainty 

in the angle or in the OAM. The variation for the variance of the OAM is therefore 

given by (Summy & Pegg, 1990): 

c5(fILilf) = (c5(fI)Lilf) + (fILi(c5lf)), 

= L c5lm ((mltil!) + (flt~lm)) = 2(c5(fl)t~lf) (IV. 75) 

m 

The same reasoning can be applied to the variation 15(/1/) and, by using the wave­

function in Eq. (IV.74), to the variation of the angle variance 15(114)2 11). The linear 

combination of variations in Eq. (IV.73) on the preceding page may thus be turned 

into 
(IV. 76) 

For If) to minimise the variance in the angle or OAM under the constraints of nor­

malisation and keeping the other variance constant, this equation has to vanish for 

all variations (o(fl). This gives a condition on the linear combination of operators 

applied to If) and we find as eigenvalue equation for the CMUP states 

(IV. 77) 

Here, we have divided the whole expression by A' and we have chosen the sign of 

the undetermined multipliers fl, v according to the expressions in (Pegg et al., 2005; 

Gotte et al., 2006b). The identification of the OAM operator tz as derivative with 

respect to lP sets additional requirements on the wavefunction representing CMUP 

states (Pegg et al., 2005; Gotte et al., 2(05). The wavefunction in the angle represen­

tation !(lP) = (lPlf) has to be an element of el , which is the set of continuously dif­
ferentiable functions. The question of differentiability is of particular importance at 

the boundaries of the 2rr radian interval, on which the angle wave function is defined. 
Whereas intelligent states are continuous, they do not have a continuous first deriva­

tive at lP = ±rr. CMUP states, however, need to have a continuous first derivative 

at the boundaries, because representing t~ by the differential operator -h(a2 /olP2) 
has to be well defined. Together with the periodicity of the wavefunction this re­

quires a! I alP = 0 at lP = ±O. In the following we are using the dimensionless OAM 

operator m = tzlli such that the eigenvalue equation (IV.77) may be turned into a 

differential equation for the CMUP wavefunction I ( lP): 

(IV.78) 

From Eq. (IY.78) follows that the curvature at lP = 0 is determined by fl. Owing to 

the undetermined multipliers, however, the curvature is not constant over the whole 

2rr radian interval. To satisfy the continuous boundary condition a! I alP == 0 at lP = 
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± 7r the wavefunction has to have a turning point with a2 f / acp2 = 0 and thus the 

Lagrange multipliers are either both positive or both negative. Whereas the case of 
both multipliers being positive leads to the small-uncertainty CMUP states with a 

peak in the middle of 2IT radian interval, the case of both multipliers being negative 
gives rise to the large-uncertainty CMUP states with peaks on either side of the angle 

range. 

3.2 Wavefunction of CMUP states 

A number of approximate solutions of Eq. (IV.7B) on the previous page for special 

cases and the exact solution in the small uncertainty regime has been discussed by 

Pegg et al. (2005). Here, we are presenting the exact solution for the CMUP states 
for small and large angle uncertainties. The solution is given in terms of a Gaussian 

modulated by a confluent hypergeometric function. For the large uncertainty case the 

arguments of the Gaussian and the hypergeometric function become complex. We 

therefore present a power series solution in the large-uncertainty case to approximate 
the wavefunction in the large uncertainty regime. 

3.2.1 Direct solution 

The differential equation (N.7B) on the preceding page can be solved by introduc­

ing substitutions which fix the ratio of the Lagrange multiplier fi and v: 

'1 = v'zv!tp and a = -2~. (IV.79) 

The parameters v and fi take on positive and negative values and their sign distin­

guishes between small-uncertainty and large-uncertainty CMUP states. For the mo­

ment, we treat CMUP states in their generality and leave the signs of v and fi unde­

termined. The new variables '1 and a may thus be imaginary. In these new variables 

the differential equation (IY.7B) on the previous page can be rewritten as 

(IV.80) 

By making an ansatz for the solution of this differential equation in terms of a mod­

ulated Gaussian wavefunction 1('1) = exp( -'12 /4)M('1) we find that M('1) has to 

satisfy the differential equation 

(IV.B1) 

On substituting X = '12/2 this differential equation can be turned into Kummer's 

equation (Abramowitz &t Stegun, 1974): 

()2M (1 ) aM (1 1) X-+ --X -+ -a+- M(X) =0. 
aX2 2 ax 2 4 

(IV.B2) 

Solutions to this equation are given by the confluent hypergeometric function M (a /2 + 
1/4, 1/2, X) = M (a / 2 + 1/4, 1/2, '12/2). For the small-uncertainty case, with v, fi > 0 
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the wavefunction for the CMUP states in the original variables is given by (Pegg et 

al.,2005): 

~,v > 0. (IV.83) 

For the large-uncertainty case with v, l' < 0, we write explicitly '1 = -J2( -1)! Ivl! q> 

and a = i1'/ (2M)· This leads to a wave function with complex arguments (Gotte et 

al.,2006b): 

(IV.84) 

To determine the two multipliers l' and v we solve the differential equation (IV.80) on 

the preceding page in the substituted variables for a given a. The parameter v is then 

determined from the condition that the position of first extremum 1]0 of f(I]) has to 

correspond to q> = ±rr, such that 

q> = ±!Lrr and v = {'1g/(4rr4) v> 0, 
'10 -I]~/(4rr4) v < O. 

(IV.8S) 

From Eq. (IV.79) on the previous page follows that ~ is given by ~ = 2JVa for fl, v > 0 

and 1l = -2iJrVTii for 1l' v < O. Series expansions of Kummer's function for numeri­

cal calculation can be found in the literature (Abramowitz & S~gun, 1974). However, 

by using different substitutions a modified differential equation with real parameters 

can be obtained. This differential equation can be solved using a series expansion. 

3.2.2 Series expansion 

By modifying the substitutions for the large-uncertainty case and making it inde­

pendent of the sign of v 

(IV.86) 

we change the sign of the 1]2 term in the differential equation (IV.80) on the preceding 

page 

(IV.87) 

The two differential equations are equivalent, and by making the ansatz f(~) = 
exp( _i~2 14)M(iJ), we recover Kummer's equation on substituting X = i~2 /2. After 

substituting the original variables according to Eq. (IV.86) the solution f(iJ) is identi­

cal to the wave function in Eq. (IV.84) obtained by the direct solution. However, in the 

variables given by Eq. (IV.86) the parameter a is real and we can solve the differential 

equation (IV.87) with a series expansion in the form 

00 

f(~) = L bjiJj 
j=o 

(IV.88) 
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Figure N.9 - The angle wavefunction of the CMUP states plotted for different values of lltp. 

For llq> = n: / v'3 the wavefunction is flat and represents an DAM eigenstate. In the limit of 
llrp ...... 0 the small-uncertainty CMUP states become sharply peaked and very similar to the 
intelligent states in the same limit. For larger angle uncertainties the CMUP states are different 

from the intelligent states [see figure (lV.I) on page 54]. 

On substituting the power series into the differential equation (IV.S7) on the previous 

page we find the recurrence relation for the coefficients hj 

(IV.S9) 

The coefficient bo is determined by the normalisation of the wavefunction. It is diffi­

cult to anticipate the convergence of the power series over a large range of values for 

ii. But within the numerical implementation of the power series the algorithm tests 

if the contribution of an additional order falls below a set value relative to the power 

series up to this order. Should that be the case, the power series is terminated at this 

point, otherwise the next order contribution is calculated. With the help of the power 

series we are able to determine the position of the first maximum numerically, and 

therefore the values of Il and v. 
A plot of the wavefunction for CMUP states for the small and the large uncertainty 

case is shown in figure (IV.9). 

3.3 Angle and angular momentum uncertainty 

Using Eq. (IV.79) on page 73 the angle variance (tP2) is given by (tP2) = (1'(2 /1]5) (~2) 
for values of 1] in [-1]0,1]0), The variance of the angular momentum operator is given 

by Eq. (IV.7S) on page 72 in terms of Il' v and (tP2
), which results in the following 
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Figure IVJO - The ratio of the two Lagrange multipliers Il and v determines the limiting 
behaviour of the uncertainty product (see Eq. (IV.90a». For llrp - n: the ratio ll/v tends to n:2, 

but more slowly than (f"). The uncertainty product thus tends to infinity. The plot of ll/v in 
the Airy approximation shows the region of validity for this approximation. 

expression for the product of the variances (cp2) and (m2 ): 

(cp2) (m2) = (cp2) (1l- v(cp2)) , (N.90a) 

= (~2) (-a + ~ (~2)) . (N.90b) 

The limiting behaviour of the uncertainty product is directly connected to the be­

haviour of the ratio fl/v. For a -4 0, Il and v tend to zero individually but their ratio 

ll/v approaches rr2/3 (see figure (IV.lO)). The variance (cp2) takes on the value of 

rr2/3 and the overall product of variances vanishes. For a -4 00, both Il and v -4 -00, 

but the ratio ]4/v approaches rr2. The variance (cp2), however, tends to its maximum 

rr2 faster than ]4/v such that the uncertainty product in Eq. (N.90a) tends to infinity. 

The resulting behaviour of the uncertainty product as a function of l::J.t:p is given in 

figure (N.ll) on the next page. As in the small-uncertainty case for l::J.rp < rr/ v'3 the 

uncertainty product is smaller for the CMUP states than for the intelligent states while 

still obeying the uncertainty relation (N.3) on page 50. This is possible because of the 

smaller probability density P{rr) at the edge of the chosen 2rr radian interval. But in 

comparison to the small uncertainty CMUP states, the difference in the uncertainty 

product between intelligent states and CMUP states in the large-uncertainty regime 

is enhanced over the small-uncertainty regime. This goes along with a significant dif­

ference in the wave function for intelligent states and CMUP states for the same l::J.q> 

in this region (see figure (N.12) on page 78). In connection with figure (N.ll) on the 

following page it is appropriate to clarify the meaning of minimising the uncertainty 

product under a constraint. For CMUP states with small and large angle uncertain-
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Figure IY.ll - Plot of the uncertainty product as a function of llrp. The graphs of the intelli­

gent states (Franke-Arnold et al., 2004; Gotte et al., 2005) and small-uncertainty CMUP states 

(Pegg et al., 2005) are shown for comparison (see also plot of intelligent states in (Galindo & 

Pascual, 1990». The difference in the uncertainty product between intelligent states and CMUP 

states is significantly enhanced in the large-uncertainty regime for llrp > n: / V3. For two values 

of llrp (marked by the dotted lines with the symbols 0 and 0) the difference in the wavefunc­

tion is shown in figure (IV.l2) on the next page. The inset shows an enlargement around the 

global minimum in the uncertainty product for ll<p = n:/ J3. 
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Figure N.12 - Comparison of the wavefunction for intelligent states and CMUP states for 
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Figure N.13 - If the uncertainty product is minimised for a given uncertainty in the OAM, 

two minima can be obtained. The first and smaller minimum is obtained for the small­
uncertainty CMUP states while a secondary minimum is found for the large-uncertainty 
CMUP states. For comparison the limiting cases for these two kinds of states are shown. 

For 6.rp -+ 0 the small uncertainty states become Gaussians (Pegg et al., 2005), whereas the 
large-uncertainty states are approximatively given by Airy functions for 6.rp -+ 7f (Gotte et al., 

2oo6b). 

ties the OAM uncertainty can take on all positive real values. ~m is zero for the OAM 

eigenstates at ~cp = IT/ J3 and it approaches infinity for ~cp -+ 0 and ~cp -+ IT. Min­
imising the uncertainty product for a given ~m yields two constrained minima. The 
smaller constrained minimum is obtained for the small-uncertainty CMUP states and 

corresponds to an angle uncertainty ~cp < IT / J3. A secondary minimum, however, 
is obtained for the large-uncertainty CMUP states corresponding to ~cp > IT / J3 (see 
figure (IV.13». On the other hand minimising the uncertainty product for a given 
~cp results in a unique minimum. Whether this minimum is obtained for small­
uncertainty or large-uncertainty CMUP states depends on the given ~cp. Owing to 
the complexity of the CMUP states we are not able to give an analytical explana­

tion of the limiting behaviour in simple terms. Also, our method to determine the 
first maximum of the wave function numerically fails for very sharply peaked wave­

functions. In the following we therefore present an approximate expression for the 
wavefunction in terms of Airy functions, which allows us to calculate the variance 

~cp analytically. 

3.4 Orbital angular momentum distribution 

For completeness we present the OAM distribution for CMUP states in this sec­
tion. The OAM probabilities have been calculated numerically with help of the power 

series discussed in section IV 3.2.2. The graph of the distributions is shown in fig-
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ure (IV.14) on the following page. In contrast to the intelligent states, the OAM distri­

bution of CMUP states has a Gaussian form in the small and large uncertainty regime. 

3.5 Limiting behaviour 

In this section we investigate the CMUP states for the same regions as for the 

intelligent states. For the intelligent states the two extreme cases for 6qJ -+ 0 and 

t.qJ -+ n are very distinct, but for the CMUP states one might expect that the large 

uncertainty CMUP states are a shifted version of the small uncertainty states owing 

to the smooth boundary conditions. As we will see in this section this is not the 

case, and the CMUP states in the small and large uncertainty regime have different 

functional forms. 

3.5.1 Small uncertainty regime: t.qJ < 1 

The uncertainty product in this region is approximately constant, and therefore 

intelligent states and CMUP states are identical and we can refer to the analysis in 

section 2.5.1. It is, however, interesting to point out that it is possible to have Gaus­

sians as a solution to the defining differential equation (IV.78) on page 72. If we make 

the ansatz f(qJ) ex exp( _O'qJ2), we find that that the constant 0' E IR has to fulfill the 

relation 
(IV.91) 

This is the case for v = 4u2 and l' = 20' or equivalently 1'2/ v = 1, and this is always 

possible as v and l' are positive for the small uncertainty case. In terms of the scaled 

variables in Eq. (IV.79) on page 73 this gives a = 1/2 which corresponds to the limit 

of t.rp = O. In this extreme case the wavefunction is therefore indeed Gaussian. As 

pointed out in section 2.5.1 the wavefunctions in the whole region for tlqJ < 1 are 

approximatively Gaussians. 

3.5.2 Large uncertainty regime: tlqJ -+ n 

Judging from the plot of the wavefunction for the CMUP states in figure (IV.9) on 

page 75 the wave function for large uncertainty CMUP with t.qJ -+ n states looks 

similar to the Gaussian wavefunction for t.qJ -+ 0 shifted by n. But if we make 

the same simple analysis as in section 3.5.1 we find that the wavefunction cannot be 

Gaussian. By making the ansatz f(qJ) ex exp( -O'(qJ - n)2),0' > 0 as solution for 

the differential equation (IV.78) on page 72 for qJ > 0 we find that 0' has to fulfil the 

equation 
(IV.92) 

For the large-uncertainty CMUP states v, l' < 0 and therefore 0' cannot obey the rela­

tion 4u2qJ2 = v~ for all qJ. It is, however, possible to find an approximate expression 

for the large- uncertainty CMUP states in the limit t.qJ -+ n. To be more precise, rather 

than finding an approximate solution to the exact differential equation, we find an ex­

act solution to an approximate version of the defining differential equation (IV.78) on 

page 72. 
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Figure IV14 - The distribution of the OAM probabilities for the CMUP states is approxi­

matively Gaussian for both small-uncertainty and large-uncertainty states. a) for !lqJ < 1 the 

uncertainty product is constant and intelligent states and CMUP have the same Gaussian prob­

ability distribution (see figure (JV.5) on page 61 ). b) for!lqJ = 1.5 the probability distribution is 

different to' the distribution for intelligent states of the same angle uncertainty. d) for !lqJ = 3.0 

the wave function of the CMUP states is approximately given by the decaying tail of an Airy 

function. 
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Chapter IV 3 CMUP states 

The behaviour of the solution for a general differential equation of the form 

(IV.93) 

is partly determined by the sign of the function C( x). Should C( x) be purely positive 

we would expect an exponential behaviour, whereas for a purely negative C(x) the 

solution would be oscillating. Of particular importance, therefore, are the values of x 

where C (x) exhibits a change of sign, that is the turning points of the equation (IV.93). 

We can restrict the analysis of the differential equation (IV.78) on page 72 to the half in­

terval [0, Tr) due to the symmetry of the equation. In this range Eq. (IV.78) on page 72 

has one turning point at lP = v'1l/v. The equation is approximated by expanding 

C(x) = vlP2 -1l around this point. Setting lP = v'1l/v + x and neglecting quadratic 
terms in x turns Eq. (IV.78) on page 72 into Airy's equation (Vallee & Soares, 2004): 

(PI 
dy2 = yl, 

1 1 r.:T:: 
Y = -(2ffv)3x = -(2ffv) 3 (lP - V ll/v). (IV.94) 

This equation is solved exactly by the Airy function Ai(y) which results in 

(IV.9S) 

on substituting the appropriate variables. Here, N Airy is the normalisation constant. 

To fulfill the boundary condition I' (Tr) = 0 the argument of the Airy function in 

Eq. (IV.9S) is required to have the value of the first zero of Ai' .for lP = Tr. This leads 

to the equation 
-(2ffv)l (Tr - v'1l/v) ~ -1.0188. (IV. 96) 

Choosing a particular v gives a quartic equation for v'1l/v and for values of v'1l/v 
close to Tr an approximate solution is given by 

1 

~ ~ Tr _ (-1.0188) 3 • 
V 2vTr 

(IV.97) 

In the Airy approximation a particular CMUP state can thus be characterised by the 

Lagrange multiplier v. The normalisation constant can be determined by analytical 

evaluation of the normalisation integral 

(IV.98) 

In the last step we have extended the range of integration from y( lP = 0) to infinity. In 

the region where the Airy approximation is applicable (~lP --. Tr), the wavefunction 

decays to zero sufficiently quickly for small angles so that extending the upper bound 

in the integral does not Significantly change the normalisation integral. Primitives of 

products of Airy functions can be calculated using the method of Albright (1977). 

This results in 
NAiry = (Ilv) tz ((1.0188)! (0.5357)2l ) -1 , (IV.99) 

where Ai(y = -1.0188) = 0.5357. In figure (IV. IS) on the following page a compar-
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Figure IY.15 - Plot showing a comparison of the Airy approximation (continuous lines) with 
the numerically calculated wavefunction (individual points). For l:l.cp = 3 (+) the Airy approx, 

imation shows a good agreement with the numerical results. The inset shows the deviation of 

the argument of the Airy function Ai at rp = 7r from -1.0188 (marked by the horizontal dotted 

line), the position of the first maximum of the Airy function Ai. 

ison of the numerically calculated wavefunction and the wave function in the Airy 

approximation is shown. The approximation becomes better for values of Ilcp closer 

to Tr. An inset in figure (IV. 15) gives the deviation of the argument of the Airy func­

tion in Eq. (IV.95) on the previous page from the exact value of y = -1.0188 due to 

the approximation in Eq. (IV.97) on the preceding page of the quartic equation (IV.96) 

determining ",Iv. Within the Airy approximation the integral for the angle variance 

can be calculated analytically using the method of Albright (1977): 

'" 2 1 (llcp)2 = V + 3(1.0188) (2JiiV)-l V",lv 

+ ~(1.0188-1 + 1.01882) (2v1W)-J . 
(IV. 100) 

As in the calculation of the normalisation constant in Eq. (IV.98) on the previous page 

the upper boundary in the integration has been extended to infinity. On multiply­

ing Eq. (IV.l00) by v one can see in Eq. (IV.90a) on page 76 that v{q>2) will always be 

smaller than '" resulting in an unbounded uncertainty product. Within the Airy ap­

proximation the uncertainty product can be calculated for values of Ilcp much closer 

to Tr than in the numerical calculation. This is due to the fact that our numerical 

determination of the first maximum fails for large values of Q. In the Airy approxi­

mation a numerical search for the first maximum is not necessary. The uncertainty 

product calculated in the Airy approximation is compared with the numerical results 

in figure (IV.16) on the following page. 
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Figure N.16 - Comparison of the uncertainty product calculated in the Airy approximation 
and for numerical results. In difference to figure (IV.ll) on page 77, the graph shows only the 
large-uncertainty region (tlqJ > rr / )3) and the ordinate is extended to larger values of tlqJtlm. 

The Airy approximation explains the behaviour of tlqJtlm in a region where our numerical 
calculation fails. 

4 Conclusions 

The angular uncertainty relation gives rise to a family of special states: intelligent 

states satisfying the equality in the uncertainty relation and states giving a minimum 

in the uncertainty product. The distinction arises from the state dependent lower 

bound for the uncertainty relation (IV.3) on page 50, which reaches the global min­

imum for orbital angular momentum (OAM) eigenstates. But one can also look for 

minimising the uncertainty product for a given uncertainty in the angle or OAM. 

This leads to the constrained minimum uncertainty product (CMUP) states, which 

have the same form whether the given uncertainty is for the angle or for the OAM. 

The fact that the angle is defined on a 27f radian range adds further to the complexity 

of the special states for the angular uncertainty relation. On a finite interval states can 

be normalised which could not be normalised on an infinite interval. These states are 

peaked at the edge of the 27f radian interval and have a larger angle uncertainty than 

states peaked at the centre of the allowed range of angles. CMUP states and intelli­

gent states therefore come in two varieties, with small and large angle uncertainties. 

The OAM eigenstate is the dividing point and, at the same time, intelligent state and 

minimum uncertainty product state. 

In this chapter we have derived the defining equations for the whole family of 

states. The solution to the differential equations (IV.12) on page 52 and (IV.78) on 

page 72 gives the wavefunction for intelligent states and CMUP states, and we have 

used these wavefunctions to calculate the uncertainties in angle or OAM and their 

product. In the case of the intelligent states is was possible to find analytical expres­

sions, but for the CMUP states all the characteristics had to be calculated numerically. 
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In both cases, however, we have presented approximations for a particular range of 

values for tlcp to give a better understanding and an explanation of the observed phe­

nomena. 

In the theoretical framework by Barnett & Pegg (1990) choosing a specific 2n ra­

dian range determines the angular uncertainty, the uncertainty relation and so the in­

telligent states and CMUP states. Our analysis of the CMUP states in the two extreme 

cases of tlcp -+ 0 and tlcp -+ n shows that these wavefunctions cannot be transformed 

into each other simply by shifting the range of allowed angles. In the case of tlcp -+ 0 

the wavefunction is approximatively Gaussian, whereas for b.cp -+ n the wavefunc­

tion can be excellently approximated by an Airy function. In the article by Pegg et a1. 

(2005) the possibility is discussed to distinguish between intelligent states and optical 

states in an experiment. Our comparison of the uncertainty product for CMUP states 

and intelligent states shows that the difference in the uncertainty product is enhanced 

in the large-uncertainty regime. This goes in hand with a significant difference in the 

wavefunction. Judging from these results it could be advantageous to perform the 

experiment with large-uncertainty intelligent and CMUP states. 

Truncated Gaussians, the functional form of the wavefunction for intelligent states, 

will also be used in the next chapter to define angular apertures used in the derivation 

of an angular EPR paradox. 

IV.A Uncertainty relation 

The derivation of the uncertainty relation can be found in standard quantum me­

chanic textbooks. It is given here, to explain the derivation of Eq. (IVA) on page 51, the 

starting point for the analysis of angular intelligent states. We follow the treatment 

by Louisell (1973). 

In quantum mechanics physical observables are represented by Hermitian opera­

tors. The measurement of an observable A shows, in general, fluctuations about the 

average value (A). The mean- square deviation from the average value, also called 

variance, is given by 
(IV.101) 

If we disregard fluctuations in the measurement originating from the measuring in­

struments then the variance is only zero if and only if the mean value (A) is evaluated 

for an eigenstate of A-
If we now have two observables A and B which do not commute, we can define 

two new Hermitian operators a and b by setting 

(IV.102) 

As (A) and (a) are numbers and not operators, a and b share the same commutation 

relation as A and a: 
[a,b] = [A,a]. (IV. 103) 

From Eq. (IV.102) it follows that (a) = (b) = 0 and so a and b have the same variances 

as A and a 
(IV. 104) 
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Chapter IV IV.B Orbital angular momentum shift operator 

Owing to the Hermiticity of the operators a and b the mean values (a2 ) and (b2 ) 

may be written as (atplatp) and (btplbtp) respectively. The product of the variances 

(.1A)2(.1B)2 may thus be written as (atplatp) (btplbtp). We may now use the Schwartz 

inequality which asserts that for any two state vectors III') and Ix) the modulus square 

of the scalar product I (<pIx) 12 is smaller than or equal to the product (11'111') (xix). And 

the equality holds if and only if the two state vectors are linearly dependent. If we 

apply the Schwartz inequality to the product (atplatp) (btplbtp) and use Eq. (IV.l04) on 

the preceding page we arrive at the inequality 

(IV.lOS) 

The product ab may be written in terms of the anti-commutator and commutator of 

these two operators: 

A l(A A) l(A A) ab = 2 ab + ba + 2 ab - ba , 

1 A 1 A 

= 2[a,b]+ + 2[il,b]. 
(IV.l06) 

The anti-commutator of two Hermitian operators is again Hermitian, but the Her­

mitian conjugate of the commutator of two Hermitian operator is its own negative. 

Therefore multiplying the commutator [a, b] by the imaginary unit gives an overall 

Hermitian operator ita, b] (Bohm, 19S1). The product ab may thus be rewritten as the 

sum of two Hermitian operators 

(IV. 107) 

On substituting this form into Eq. (IV. IDS} we note that the mean value of a Hermitian 

operator is a real number. In Eq. (IV. IDS} we therefore have the modulus square of 

a complex number with ([a,b]+/2) as the real part and (-i[a,b]/2) as the imaginary 

part. The inequality (IV. IDS} may thus be rewritten in terms of the anti- commutator 

and commutator 

(IV. lOB) 

Here, we have used the fact that (-i[a, b]) is a real number and we can thus identify 

( -ita, b])2 = I ( -ita, b]) 12. Taking the imaginary unit out of the mean value then 

leads to the form given in Eq. (IV. lOB). Using the identities in Eqs. (IV.103) to (IV.l04), 

we may substitute the product of variances (.1a)2(.1b)2 and the commutator [a, b] in 

Eq. (IV.l08) with (.1A)2(.1B)2 and [A, i3] to arrive at Eq. (IV.5) on page 51. 

IV.B Orbital angular momentum shift operator 

In the derivation of the wavefunction for intelligent states and CMUP states we 

consider the case of zero OAM mean without loss of generality. This is because the 

class of unitary DAM shift operators exp(ik~8o) with k E Z changes the DAM of a 
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Chapter IV IV.B Orbital angular momentum shift operator 

state by k (Barnett & Pegg, 1990). This class of operators forms a one a parameter 

group with k as the parameter of DAM shift (Holevo, 2001). 

In quantum mechanics DAM and angle are two incompatible observables. As 

such the angle operator acts as the generator of DAM (Galindo & Pascual, 1990). 

Within the state space 'f of 2L + 1 dimensions [see Ch. III] the unitary DAM shift 

operator is constructed as 

(IV. 109) 

where k = -L,-L + 1, .. . ,L. The dyadic product IOn)(9nl = P(On) is a projector 

onto the angle states IOn} and as such idempotent, that is P(On)V = P(On) for v E N. 

Owing to the orthogonal angle states the product of two projectors onto different 

angle states results in zero: P(On)P(On') = bnn,. If we use these properties of the 

projector in a series expansion of the exponential we find 

00 1 (2L ) v 2L 00 1 
exp(ik~6o) = ~ v! ik ~ P(On) = ~ ~ v! (ikOn)V P(On), 

2L 
(IV.l10) 

= L: exp(ikOn)P(On}. 
n=O 

Applied to an DAM eigenstate 1m} the DAM shift operator exp(ik~6o) changes the 

DAM quantum number by k 

2L 2L. 
exp(ik~6o)lm} = L:exp(ikOn)P(On) L: e~) 10~}, 

n=O n'=O 2L + 1 

_ ~ exp(i(m + k)en) 10 } - I k} 
- ~ .j2L + 1 n - m $ . 

(IV.111) 

Here, we have used the decomposition of an DAM eigenstate in terms of angle eigen­

states as discussed in chapter III. The addition is to be understood modulo 2L + 1 

such that 

{
eXP[i(2L + I)Oollm + k - (2L + I)} 

Im$k} = 
exp[ -i(2L + I)Oollm + k + (2L + I)}, m + k < -L. 

m+k> L 
(N.l12) 

The symbol for the modulo addition $ will be used elswhere in this thesis for a dif­

ferent modulo addition. The particular meaning will be clear from the context. For a 

general state I1/'} the shift operator exp(ik~6o) changes the mean value of the orbital 

angular momentum by k, where the change is again understood modulo 2L + 1. If 

we consider a shifted state 11/"} = exp(ik~6o) I1/'} we find that the mean value (m}1/I' is 
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given by: 

L 

(m).", = lim "" g~,gm (m'l exp( -ik«P9o)m exp( - ik«P9o) 1m), 
'f' L-+oo ~ 

m,m'=-L 
L 

= lim L g~,gm(m' EI7 klmlm EI7 k), 
L-+oo m,m'=-L 

(IV. 113) 

00 

= L Igml 2(m + k) = (m)1/1 + k, 
m=-oo 

where we have used the fact that the OAM probabilities gm sum to unity. The modulo 

addition is no longer required as we have taken the limit of L -+ 00 in the last step. To 

show that the OAM variance is left invariant we calculate tlm2 for the states It/') and 

ItP') = exp(ik«P9o)ltP): 
(IV. 114) 

The effect of the shift operator on the mean value has been calculated in Eq. (IV.113). 

The mean square for the shifted state is given by: 

L 

(m2)I/1' = lim L g~,gm(m'l exp( - ik«P8o)m2 exp( - ik«P9o)lm), 
L-+oo m,m'=-L 

L 

= lim L g~,gm(m'EI7klm2ImEl7k), 
L-+oo 

m,m'=-L 
(IV.llS) 

00 

m=-oo 

This completes the proof hat the OAM shift operator leaves the variance unchanged. 

To show hat the unitary shift operators form a one parameter group we have to 

prove that ChUk' = Uk+k': 

2L 

UkU/(' = L exp(ik9n) exp(ik'9n, )P(9n)P(9~), 
n,n'=O (IV. 116) 
2L 

= L exp(i(k + k')9n)P(9n) = Ukek', 
n=O 

where the addition is understood modulo 2L + 1 such that k EI7 k' lies between - L 

ans L. The unitarity of the OAM shift operator is a consequence of the Hermiticity 

of the angle operator tP90' but we prove here that the Hermitian conjugate of the shift 

operator Uk is its inverse U-k shifting the OAM by -k 

2L 2L 

ut = L exp( -ik9n)pt(9n) = L exp( -ik9n)P(9n) = U-k' (IV. 117) 
n=O n=O 

Therefore UtUk = U-kUk = Uo = 1, where f is the identity operator and Uo is 

identified as the neutral element of the one-parameter group. 
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IV.C Infinite series for the complex error function 

Owing to the complex error function it is difficult to gain a qualitative insight of 

some of the physical properties of the intelligent states. In particular the behaviour of 

the OAM probability amplitudes is hard to understand from the Eqs. (IV.37) to (IV.38). 

Using the approximate expression of the complex error function in terms of an infinite 

series in Eq. (IV.17a) on page 54 can explain some aspects of the distribution of the 

probability amplitudes. 

For the small-uncertainty case we find that the expression for the gm takes on the 

following form after substituting the complex error function with the infinite series 

for A > 0: 

gm ~ ~ exp ( - ~) [er! ( "; ) + exp ( - At) { ~1l2 
x (1- (_l)m) +2/2X~ :rl-J:l [l-(-l)m cosh ( -n ffi) J}] . 

(IV.ll8) 

One can see that the alternating factor contained in the sum becomes important for 

Iml -t 00, as the hyperbolic cosine will become much larger than one. In the central 

region around m = 0 and in particular for large A the distribution follows dominantly 

the Gaussian given by exp( -m2 /(2A)). This behaviour can be seen in the graphs in 

figure (IV.5) on page 61. 
In the large uncertainty case the expression shows the alternating behaviour over 

the whole range of m. This can be seen on substituting the infinite series for the 

complex error function in Eq. (IV.38) for A < 0: 

(IV.ll9) 

The fraction inside the sum has the form of a Lorentzian distribution with a weight 

factor given by the exponential in n2 and the hyperbolic sine function. In the limit 

of large IAI the contribution from a single dominant Lorentzian distribution with the 

largest weight becomes more prominent. This explains the validity of our statement 

that the distribution of the gm in the limit of IAI -t 00 is approximately Lorentzian. 

IV.D Zero angular mean 

We have seen for the intelligent states that the unitary operator exp(ik~8o) shifts 

the OAM mean by k without changing the OAM variance (~Lz? or the angle variance 

(tlip)2. Whether the OAM is given as a constraint or whether it is the variance to be 

minimised, in both cases we are free to choose the OAM mean. For simplicity we 

choose (t z ) = O. Similarly, a shift in the angular coordinate does not change (~Lz)2. 

However, the angle variance for a shifted angular coordinate is 

(IV.120) 
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where Y ( rp) = Y ( rp + 2nn), n E Z is the angle representation of CPoo and <I> is the shift 

in the angle coordinate. On differentiating Eq. (IV.120) on the preceding page with 

respect to <I> we find a condition on cP to have a minimum in the angle variance. By 

using the identity d/ (d<l»P{tp - CP) = -d/ (dtp )P{ rp - CP) and partial integration we 

obtain for the derivative of {~rp)2: 

(IY.121) 

In order to have a minimum, or more generally an extremum, this has to be zero, 

which corresponds to choosing cP such that the mean value (4'00) = o. Hence, min­

imising (~tp)2 is consistent with minimising (cp~o)' 
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V Chapter 

Angular EPR paradox 

The Einstein-Poldosky-Rosen (EPR) Gedankenexperiment reveals an apparent paradox 

if the premises in the EPR argument of local realism and a complete description of 

the physical reality by quantum mechanics are held to be true. In juxtaposition to 

EPR's solution to the paradox of concluding that quantum mechanics is incomplete, 

J. S. Bell showed that any attempt to complete quantum theory by the introduction 

of 'hidden variables' leads to an observable contradiction with quantum mechanics. 

This opened the possibility to test experimentally the validity of local 'hidden vari­

able' theories. Subsequent experiments gave results in favour of traditional quantum 

mechanics, which requires a non-local description of the entangled quantum system 

considered by EPR. In this chapter we reformulate the EPR Gedankenexperiment for 

angle and orbital angular momentum. By considering indeterminacies in the mea­

surement of the conjugate variables we derive an experimentally testable criterion 

for the angular version of the EPR paradox. 

1 Introduction 

With their Gedankenexperiment Einstein, Podolsky and Rosen (EPR) asked ques­

tions about the completeness of quantum mechanics (Einstein et al., 1935). The criti­

cal point in the original form of the argument is the apparent violation of the Heisen­

berg uncertainty principle (Heisenberg, 1927) for an entangled quantum state if one 

adheres to the idea of local realism. In short this term refers to the notion that mea­

surements on one subsystem do not influence the other subsystem instantaneously. 

Inferring with certainty the value of an observable in one subsystem from a measure­

ment on the other subsystem and without disturbing the system according the local­

ity argument constitutes for EPR an element of reality just as a direct measurement 

on the first subsystem would do. 

The premise of local realism in the argument seemed so naturally compelling for 

EPR that they concluded from the apparent violation of the uncertainty principle that 

their other premise, the completeness of quantum theory, has to be wrong. The theo­

ries which would complete quantum theory and which would explain why the out­

come of the measurement can be inferred are usually called 'hidden variable theories'. 

According to these theories the statistical character of quantum mechanics originates 

in the same way as in classical statistical mechanics, from averages of states which 

are more completely determined by supplementary parameters. These parameters or 

variables are called 'hidden' because they are not accessible for experimental prepa­

ration. If states with hidden variables could be prepared experimentally quantum 
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mechanics could be proven to be wrong by direct observation. In general, however, 

hidden variable states are required to give the measurable quantum mechanical re­

sults only when averaged over the additional, hidden variables. This restores the 

statistical character of quantum mechanics and the applicability of the Heisenberg 

uncertainty principle. 
Various mathematical considerations exists which attempt to prove that 'hidden 

variables' cannot exists (von Neumann, 1932; Jauch & Piron, 1963), but they all have 

been found to make assumptions on the hidden variables which only have to be ful­

filled by quantum mechanical states (Bell, 1966). Bell proved that hidden variable 

theories cannot exist in accordance with the postulates of quantum mechanics, but 

it did not prove that hidden variables theories cannot exist outside quantum me­
chanics, or indeed that they cannot complete quantum mechanics. These proofs are 

often stated in terms of a contradiction: assumptions are made on the hidden variable 
states and the conclusions drawn from the assumptions lead to a contradiction which 

shows that the assumptions have been wrong. In hindsight, after reading the analy­

sis of Bell (1966), it is not surprising to reach a contradiction in these arguments if the 

hidden variable states are required to fulfil some rules of quantum mechanical states, 

but it shows the conceptual difficulty in finding a suitable criterion which does not 

make use of quantum mechanics. Bell (1964) showed that hidden variable theories 
which would explain the violation of the uncertainty principle while retaining the 

assumption of locality would give predictions for observable quantities which differ 
from the predictions of quantum theory. Bell bases his argument on a version of the 

EPR paradox according to Bohm & Aharonov (1957) who considered two spin 1/2 

particles in a singlet state. Using discrete variables such as the orientation of spin 

components has a considerable advantage for experiments over the continuous vari­

ables of linear position and momentum considered originally by EPR. It thus became 

possible to design conclusive experiments which would answer the question about 

the completeness of quantum theory. The subsequent experiments by Aspect et al. 

(1982a,b) on an optical version of the discrete EPR paradox using the polarisation of 

photons were in agreement with the quantum mechanical predictions. 
EPR paradoxes can be construed for any two complimentary observables, but 

the experimental demonstration requires a source generating the correlations in both 
variables. Optical parametric down conversion, a non-linear process, in which a bire­

fringent crystal is used to convert one incident photon into two photons of lower 

energy, is a well studied source of entangled photon pairs (Louisell et al., 1961; Ru­

bin et a1., 1994; Kwiat et a1., 1995). This is why the implications of the EPR paradox 

have been mainly tested on optical systems, for example on the polarisation of pho­

tons (Aspect et a1., 1982ai Weihs et al., 1998), quadrature phase components (Reid, 

1989; Ou et al., 1982) or directly on the optical version of EPR's original example, 

the linear momentum and linear position of photons (Howell et al., 2004). In this 

chapter we study the EPR paradox for different variables, orbital angular momen­

tum (OAM) and angle of light. The relation between OAM and its conjugate variable, 

the angular position, is fundamentally different from other systems, because OAM is 

a discrete observable of infinite dimension and the angular position is continuous and 

bounded. The entanglement for OAM of photon pairs generated in parametric down 
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conversion has been confirmed both experimentally (Mair et a1., 2001) and theoreti­

cally (Franke-Arnold et aI., 2003). It is therefore interesting to examine the possibility 
to demonstrate an angular EPR paradox for this pair of observables, in particular as 

the necessary experimental techniques have already been employed in recent work 
in this field (Franke-Arnold et aI., 2004; Leach et aI., 2002). 

The fundamental interest in studying EPR paradoxes is the startling revision of 
our understanding of correlated systems. The correlations for physical systems which 

exhibit EPR paradoxes cannot be explained by local interactions. This is the result 

from Bell's consideration and Aspect's experiments. But it is not obvious that this 

can be demonstrated for any two complimentary observables. This point is of par­

ticular importance if the measurement of the variables cannot be precise, not due to 
the statistical character of quantum mechanics, but because the variable is continuous 

and can only be determined within a range of values. The inherent indeterminacy in 

measuring the angle will be a major aspect in studying the nature of the EPR correla­

tions for angle and orbital angular momentum (OAM). Apart from the fundamental 

interest in EPR correlations, the criterion for an EPR paradox for OAM and angular 

position provides a tool to characterise entanglement for these observables. Using 

variances in violations of local uncertainty relations as entanglement criteria has re­

ceived renewed interest. Hofmann & Takeuchi (2003) have shown that variances of 
special observables can be used to detect entanglement in finite-dimensional systems. 

This approach has been generalised to arbitrary observables by Giihne (2004). 
We first review the paradox arising from the EPR Gedankenexperiment in more 

detail. We then devise a criterion for an EPR paradox for OAM and angle, which 

is suitable for experimental tests. The criterion takes indeterminacies in the angle 

measurement into account which are inherent to the measurement of a continuous 

variable. We propose an experimental scheme and discuss the necessary measure­

ments and finally we are modeling the measurement process theoretically. For that 

we have to make assumptions on the correlations of a photon pair generated by para­

metric down conversion. We show that under these assumptions we can expect a 

violation of the angular uncertainty relation and hence a demonstration of the angu­

lar EPR paradox. This work is an original contribution to the literature and has been 

published in part in (Gotte et aI., 2006a). 

2 Formulation of the paradox 

In this section the criterion for a demonstration of the angular EPR paradox is de­

rived and discussed. We first reexamine the original EPR Gedankenexperiment and 

explain why the inclusion of statistical and methodical errors requires a reformula­

tion in terms of conditional variances. The violation of the Heisenberg uncertainty 

relation in the original EPR argument is based on inference, we therefore have to dis­

tinguish clearly between inferred and measured quantities. With this distinction we 

are able to give an experimentally testable criterion for an angular EPR paradox in 

terms of measured and inferred conditional variances for angle and OAM. 
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Figure Vl - Schematic picture of the EPR Gedankenexperiment. Two independent mea­
surements on position and momentum on one subsystem are used to infer the corresponding 

physical quantity in the other subsystem. The chosen example shows a photon pair generated 
by a parametric down conversion process. After the parametric down conversion the two sub­
systems do not interact and according to EPR a measurement on one subsystem cannot have 
an instantaneous effect on the other subsystem. The inference with certainty constitutes an el­

ement of reality for the predicted values of position and momentum ~n the second subsystem. 
With the definition of reality by EPR the inferred values have a simultaneous element of reality 
which contradicts the Heisenberg uncertainty relation (see Howell et a1. (2004)). 

2.1 EPR paradox 

The EPR paradox describes the apparent violation of the uncertainty principle 

resulting from measurements on correlated, spatially separated systems. The origi­

nal EPR argument considers correlations that are strong enough to predict or infer 

with certainty the values of observables in one subsystem from measurements on the 

other, separated, subsystem without disturbing in any way the first subsystem. The 

ability to predict with certainty the value of an observable defines, according to EPR, 

an element of reality. However, non-cornmuting observables, cannot have a simulta­

neous reality, an expression of which is the uncertainty principle (Robertson, 1929). 

The tension between local elements of reality and quantum complementarity leads to 

the paradox. 
The mathematical formulation of the original argument considers two separated 

systems which are permitted to interact for a certain time, but after this time the in­

teraction stops and the two subsystems are separated according to the locality argu­

ment. This setup is shown in figure (V.1) on the example of a photon pair generated 

by parametric down conversion. The state of the combined system is given by the 

wavefunction 'f(Xl' xz), where Xl and Xz are variables to describe the two subsys­

tems, here signal and idler. Although EPR state their argument in all generality they 

consider a specific example for the conjugate physical quantities of linear position 
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and momentum. One difficulty in the EPR argumentation is the role of position as 

physical quantity and as variable in which the system is described. The wavefunc­

tions and operators are all given in the position representation, which requires some 

care in distinguishing operators in position representation and associated eigenval­
ues. In the following we will give the EPR argument as in the original example for 

pOSition and momentum in terms of wavefunctions, and we will later use the Dirac 
notation, which gives a more lucid description of the paradox. EPR considered the 

wavefunction for the combined system to be 

(Y.l) 

where Xo is a constant. Using this wavefunction EPR examined two independent 

measurements of position and momentum in the first subsystem. For both measure­

ments the wave function can be decomposed in the eigenfunction of the correspond­

ing operator. For the momentum measurement this leads to the decomposition 

(V. 2) 

where up (Xl) is the eigenfunction of the momentum operator in position representa­

tion: 
(V.3) 

This requires that tPp(X2) has the form 

tp(X2) = exp[-(i/h)(X2 - xo)p], (V.4) 

which is also an eigenfunction of the momentum operator, but now in the second 

subsystem with the eigenvalue -po If a measurement of the position in the first sub­

system gives a result of p, the first subsystem will be left in the state given by the 

eigenfunction Up(XI), while the other subsystem will be in a state described by the 

wavefunction tPp(X2). As this is an eigenfunction of the momentum operator a subse­

quent measurement on the momentum in the second subsystem would give the cor­

responding eigenvalue -po After measuring p in the first subsystem the momentum 

in the other subsystem is known with certainty and the uncertainty of the momentum 

measurement in the second subsystem in zero. In a similar way a position measure­

ment can be considered. Here, the decomposition is in terms of the eigenfunctions of 

the position operator Vx(XI): 

(V.S) 

The eigenfunctions Vx(XI) in the position representation are given by the Dirac &­

function vx(xd = O(XI - x). The weight function l/'x(X2) is then given by the integral 

representation 

l/'x(X2) = f: exp[(i/h)(x - x2 + xo)pdp = 2nM(x - X2 + xo). (V.6) 
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This Dirac 6-function is the eigenfunction of the multiplicative position operator in 

the second subsystem for the eigenvalue x + Xo. By following the same reasoning as 

above for the momentum a measurement of the position in the first subsystem with 

the result x determines the outcome of a position measurement in the second sub­

system with certainty. Position and momentum in the second subsystem can thus be 

inferred with certainty from measurements in the first subsystem. The two measure­

ments in the first subsystem are independent, not simultaneous and leave the first 

subsystem in two different states. But this is of no relevance for the EPR argument. 

For EPR the possibility to predict position or momentum in the second subsystem 

from a measurement in the first subsystem which does not disturb the second subsys­

tem gives the corresponding physical quantity in the second subsystem an element of 

reality. In the definition of reality according to EPR a measurement in one subsystem 

which does not disturb the other subsystem cannot have an influence on the reality 

of physical quantities in the other, undisturbed subsystem. Therefore, the inferred 

position and the inferred momentum in the second subsystem have simultaneous 

elements of reality, which contradicts the Heisenberg uncertainty principle. 

The original EPR Gedankenexperiment considers an idealised situation. The quan­

tum state given by EPR on the example of the position and momentum is - in the 

modern language of entanglement - a maximally entangled state (Nielsen & Chuang, 

20(0). This becomes obvious if the state given by the wavefunction in Eq. (V.2) on the 

previous page is written in the Dirac notation. From the reasoning for the momentum 

measurement follows that the state I'I'} is given by 

(V.7) 

where Ip}i denotes the momentum eigenstate in subsystem i = 1,2 with eigenvalue 

p. This is a continuous Schmidt decomposition where all Schmidt coefficients are 

equal and the state is thus maximally entangled. Also, the measurement of the ob­

servables is assumed to be infinitely precise. For OAM and angular position this 

idealised setting would require a parametric down conversion process which creates 

an entangled photon pair, perfectly correlated in OAM and angular position. An er­

rorless measurement of the OAM on the signal photon could then be used to infer the 

OAM of the idler photon, and an errorless measurement of the azimuthal angle on 

the signal photon would allow us to predict precisely the angle of the idler photon. 

As these measurements on the signal photon 'do not disturb the idler photon in any 

way', the predictions would constitute simultaneous elements of reality for the OAM 

and the azimuthal angle of the idler photon. We stress that the possibility to predict 

observables of the idler photon with certainty depends on the ability to measure the 

observables on the signal photon without error. 

In particular for a continuous observable a measurement with infinite precision 

cannot be realised experimentally. A typical experimental setup would allow us to 

determine whether a continuous variable falls into a previously specified range. To 

analyse the possibility of demonstrating an EPR paradox experimentally a more re­

alistic situation has to be studied. This requires the consideration of non-maximal 

correlations and of measurements with finite precision leading to an error in infer-
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ring one observable from a measurement on the other subsystem. The size of this 

error determines whether the EPR paradox can be demonstrated in the considered 

experimental setup (Reid, 1997). 

2.2 Indeterminacies in Preparation and Measurement 

The inclusion of indeterminacies in preparation and measurement requires a re­

formulation of the EPR paradox. If the correlation between the two subsystem is not 

perfect it will not be possible to infer with certainty the value of a physical quantity 

in the other subsystem. Furthermore, the measurement on the first subsystem may 

have an experimental error, this again would render a precise prediction impossible. 

The question of experimental indeterminacies in the measurement will be of great 

importance for the angular version of the EPR paradox. For the moment we restrict 

the reformulation to the case, where the physical quantities may be measured pre­

cisely but the imperfect correlations forbid a inference with certainty. In this scenario 

we can consider conditional variances var[x2!xI], that is variances for the position in 

the second subsystem, say the idler, given that a measurement in the first subsystem, 

the signal, gives a value of Xl' For two perfectly correlated subsystems a measure­

ment of a single value of Xl in the signal would correspond to a single value in the 

idler and the conditional variance would thus be equal to zero. But in general the 

imperfect correlations will introduce a spread in the measurement of X2. In a similar 

way a conditional variance for the momentum var[P2!PI] can be constructed. By us­

ing a local version of the Heisenberg uncertainty relation for ,the second subsystem 

~X2~P2 > h/2, one can infer the minimum variance minvar[x2!PI], which is still in 

accordance with the uncertainty relation. To distinguish measured and inferred quan­

tities we are going to label them with the indices 'm' and 'i' respectively. Within the 

EPR argument the measurement on the signal, which sets the condition in the vari­

ance var[x2!xI], does not have an instantaneous influence on the other subsystem. 

In this sense the measured variance var[x2!xI]m and the inferred variance var[x2!PI]i 

can be compared and if 

(V. 8) 

the EPR paradox would be demonstrated for the particular set of conditions. In this 

formulation the two positions have a different character, X2 is a position variable, and 

the variance var[x2!PI]i gives a measure for the spread in this variable, but Xl and 

also PI designate a specific position and a specific momentum. If the inequality (V.8) 

can be demonstrated for one set of conditions Xl and PI it does not necessarily con­

stitute a demonstration of the EPR paradox in general. This is particularly valid as 

we consider imperfect correlations, and we cannot assume that the correlations in the 

position are the same for all values of Xl nor that the momenta are identically corre­

lated for all values or Pl' For this reason we are taking the average on both sides in 

Eq. (V.8) over the respective conditions Xl and PI 

(V.9) 
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The averaging involves the probability densities P(XI) and P(PI). These are the 

local probability densities for the variables Xl and PI, and give the probability for a 
local measurement of the position or momentum in the first subsystem. A criterion 

which compares a measured variance in the momentum var[p21 PI] m with an inferred 
variance in the position var[x2lxIJi can be derived analogously. 

Another conceptual difficulty arises, when we take into account that the measure­

ment will not be precise. This has implications not only for measuring the conditional 

variance in an experiment but it also affects the condition in the conditional variances. 

Until now the condition was set by the measurement of a single value of the particular 

position or the momentum. For the angular version of the EPR paradox we consider 

OAM and angle. Orbital angular momentum is a discrete variable and the condition 

can be set to the measurement of a single value mI' But for the angle a measurement 

can only determine if the angle falls within a range of angles. Similarly, a condition 

can only be set on a range of angles. For the DAM we denote the conditional vari­

ance with var[m2Iml], i.e. the variance of m2 in the idler under the condition that a 

measurement on the signal photon yields a value of mI' The condition for the az­

imuthal position will be set by passing an angular aperture. This gives a conclusive 

yes or no answer just as measuring a particular value of mI. The angular aperture 

will be denoted by A I ( f/11), where f/11 gives the orientation of the mask. A convenient 

choice of f/11 for a symmetric aperture would be the central angle. A simple example 

of these angular aperture is shown in figure (V.2a) on page 101; a hard-edged aper­
ture in form of a circle segment. But it is possible to realise smooth apertures which 

gradually become more opaque (see figure (V.2b». The conditional variance for the 

angle can thus be written as var[f/12IAl(f/11)], which should be read as the variance of 

the angle f/12 in the idler under the condition that in the signal the photon passes the 

mask A 1 positioned at f/11' 

2.3 Criterion for an angular EPR paradox 

In the previous sections 2.1 and 2.2 we have emphasizes the importance of infer­

ence in EPR type arguments and the use of conditional variance to consider indeter­
minacies. To set a condition for the angle, angular apertures are used which have an 

effect on the range of angles that are detected behind such a mask. In the simplest 
case of a 'cake-slice' mask as in figure (V.2) on page 101 the angular position of the 

photon has to fall in a range of angles set by the mask. 

To demonstrate an angular version of the EPR paradox the measured conditional 

variance var[m2Iml]m can be compared to the inferred quantity var[m2lAl (f/11)]i' The 

reasoning is identical to the previous section 2.2: from a measured conditional vari­

ance var[f/12IAl(f/11)]m a minimum variance can be inferred which is still in accor­

dance with the local angular uncertainty relation (111.30) on page 46. If the measured 
variance for m2 is smaller than the minimum inferred variance, that is if 

(V. 10) 

the angular EPR paradox would be demonstrated for this particular choice of condi­
tions. To arrive at a general statement, however, the average has to be taken on both 
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sides over the respective conditions. For the OAM this is done by summing over all 

possible values of ml weighted with the probabilities ICml 12. For the inferred variance, 

however, the average is taken over the orientation of the angular aperture fIJI: 

(V. 11) 

The weight function in this average is the probability that the photon passes the an­

gular aperture Al at the orientation 11'1' This is analogous to the case of position and 

momentum in section 2.2. There, the condition was set to a single value of the posi­

tion or momentum in the signal. The average contained therefore the probability for 

this particular value of Xl or Pl' Here, the condition is set by detecting the photon be­

hind the aperture and consequently the average contains the probability for passing 
the mask at the given orientation. The criterion for a demonstration reads thus as 

L ICmlI2var[m2Iml]m < i: dIPIP[Al (flJl)]minvar[m2IAl (1P1)]i' 
ml 

(V. 12) 

This criterion depends on the form of the aperture AI, but the dependence on the 
particular form of the aperture is very much different from the dependence on the 

orientation. The latter is connected to the correlations in the angle for the entangled 
photon pair. We cannot assume a priori a particular form of the correlations and we 

therefore have to average over all orientation angles 11'1 to achieve generality for the 
criterion. The influence of the aperture in the criterion is connected to the way in 

which the angle is measured. This will become more obvious when the apertures are 

translated into probability densities for the angle. 

In the variance var[ m21A 1 (fIJI) L the condition is set by passing an angular aper­

ture, which restricts the range of angles. The most simple example of such an aperture 

is a 'cake-slice' mask, which only lets through photons within a limited range of an­

gles and blocks all others. If a photon is detected behind such a mask it must have 

been in the range of angles allowed by the mask. We can thus assign a probability 

density for the angular position of the passing photon. For a 'cake-slice' mask all al­
lowed angles are equally likely and the probability density is given by a rectangular 

function. But we are also considering apertures which are represented by smooth 

functions such as shown in figure (V.2) on the following page. 

The assignment of a probability density to a detected photon is at the heart of 

the EPR argument. Prior to the detection the angular position is completely undeter­

mined. Setting the condition by the angular aperture and detecting a photon behind 

this aperture is a rough measurement of the angular position. The angular probabil­

ity density of the photon that has passed the mask is thus given by the corresponding 
probability density of the angular aperture. It is, however, different from the angular 

probability density before passing the aperture. We write PI (Tl; fIJI) for the proba­

bility density representing the angular aperture A I ( fIJI)' The measured conditional 

variance is thus given by var[1P2lPl (TI; flJd]m, which should be read as the variance 

of the angle flJ2 in the idler under the condition that the paired photon in the sig­

nal has passed the angular aperture described by the probability density PI (TI; fIJI)' 

The probability PlAt (fIJI)] in Eq. (V.12) translates thus into P[PI (TI; fIJI)] which is the 
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Figure V2 - The graph shows different angular apertures which are used to set a condition 
on the angular position of the photon in the signal. b) shows a hard-edged aperture in form 

of a circle segment. The corresponding probability density is given by a rectangular function. 
c) shows a smooth aperture represented by a truncated Gaussian. d) shows a smooth aperture 

represented by truncated super-Gaussians. These functions have a higher power in the expo­
nential than Gaussians, and resemble the rectangular function while retaining the smoothness. 

probability that a photon passes the angular aperture represented by PI (TI; 'PI). This 

probability is given by the integral over the probability densitY P( TI) before passing 

the angular aperture and PI (TI; 'PI) representing the angular aperture: 

(V13) 

We will write as short hand notation for this integral [P ® PI]('PI) ' For symmetric 

apertures the integral is identical to the convolution P * PI, but not in general (see 

App. VC) . The graphical meaning of this operation, however, is very similar and 

the notation [P ® PI ] ('PI) makes it clear that the construct does not depend on the 

variable TI but only on the orientation of the aperture CPl. In the special case, where 

the aperture has the form of a Dirac 6-function centred at 'PI the integral in Eq. (V13) 

reduces to the probability density P( 'PI) ' This is a very reasonable result, as the case 

of a precise condition discussed in section 2.2 can be seen as the limiting case of a 

condition set by an aperture with infinitely small opening. The criterion can now be 

written in terms of probability densities alone: 

(Y.14) 

A similar criterion can also be derived when a measured var[ CP21 P (TI; 'PI)] m is com­

pared to an inferred var['P2Iml]i' 
At the end of this section it is worthwhile to reflect on the meaning of the different 

variables in this criterion. In the conditional variance for the OAM m2 is a variable 
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physical quantity; a measurement of var[m2lmtlm involves many possible values of 
m2 as measurement outcomes, but for each measurement contributing to this condi­

tional variance mt will be kept fixed. For the conditional variance var[ tp21P( Tt; tpt) 1m 
the angle tp2 is a variable quantity. A variance for a continuous quantity is a well 
defined object, but it is less well defined to set the measurement of a single value of 

a continuous variable as a condition. Unless the local probability density P(tpt) is 
singular, the probability for measuring a single value of tpl is vanishing. For that rea­

son we have introduced angular apertures, which restrict the range of angles. These 

apertures have a designated orientation given by tpt, and their representing probabil­

ity density is a function of the variable Tt. For a measurement of var[tp2IP(Tt; 9't) the 
orientation tpt is kept fixed. 

3 Experimental scheme 

In this section the requirements for an experimental implementation of the crite­

rion (V.14) on the previous page are discussed. We first examine conditional prob­

abilities and how they are used to calculate the measured and inferred conditional 
variances. We then propose experimental schemes for measuring the conditional 

probabilities of the angle and the DAM. In the last section we discuss experimentally 
relevant phenomena that are not taken into account in our criterion. 

3.1 Conditional variances from measurement 

In the previous section we repeatedly distinguished between measured and in­

ferred conditional variances. The tenn 'measured' in this distinction indicates that 

the conditional variance, say var[m2Imt]m, is calculated directly from measured con­

ditional probabilities. For var[m2lmtlm these probabilities are the conditional proba­

bilities Ic[m2ImtlmI2. An experimental scheme to measure Ic[m2lmtlml2 will be pre­
sented in the next section. But once the conditional probabilities are known from 

measurements, the conditional variance can be calculated by summation over m2: 

(V.1S) 

In practice, only a limited number of m2 values will be taken into account for the sum­

mation. Judging from the experimental and theoretical studies on the entanglement 

of OAM (Mair et al., 2001; Franke-Arnold et al., 2003), the distribution of conditional 

probabilities Ic[m2lmtlml2 will be sharply peaked for m2 = -mt. For values of m2 
much different from -mt the conditional probability will be very small and these 

terms will not contribute significantly to the variance. 
The inferred conditional variance, say var[m2lPt (Tt; tpt)h, on the other hand is in­

ferred from conditional probabilities of the conjugate variable, here P[ tp21 Pt (Tt; tpt)] m. 

This is precisely the point, where the inference enters the line of argument in our cri­

terion. One way to infer var[m2IPt(Tt;tpt)h from P[tp2IPt (Tt;tpt)lm in practice is by 

using the Fourier relation between OAM and angle. From the measured conditional 
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probability density P[q>ziPI (TI; q>1)lm a conditional wavefunction can be derived: 

Here, the phase «(q>z) is undetermined, as the measured probability densities only 

give the modulus square of the wavefunction. The wavefunction is then transformed 

into a conditional probability amplitude for the OAM via a Fourier transform: 

c[mzlPI (TI; q>1)li = ~ j1f dq>z exp(imzq>z) (P[q>zIPI (TI; q>1) lm)l12 exp(i«( q>z)). 
v 2rr -1f 

(V.17) 

From the conditional probability amplitudes we can calculate the conditional vari­

ance var[mzIP(TI; q>t}li by taking the sum over all mz values 

var[mzIP(Tl;q>l)li = L Ic[mzIPl(Tl;q>l)ldZm~ - (L IC[mzIPI(TI;q>I)ldZmz)Z 
m2 m2 

(V.lS) 

This is the inferred variance which can be minimised and then compared to the mea­

sured quantity var[mzlmllm. The phase «( q>z) will be determined by the minimisation 

of the conditional variance var[mzlPI (TI; q>dli as detailed in App. v.A. 
Before discussing the experimental schemes to measure the conditional probabil­

ities we present our criterion written in terms of conditional probabilities alone: 

L ICmllz [L Ic[mzlmllmlzm~ - (L Ic[mzlmllmIZmz)Z] . 
ml m2 m2 

< I: dq>l [1' @ P,] ('1',) min [~Ie[ m,IP, (T'; 'I'd h I'mj (V. 19) 

- (~le[m,IP, (T,; q>')hl'm,),] . 

With this formulation and the presented method of inferring c[mzlPI (TI; q>t}h from 

the measured quantity P [q>21 PI (Tl; q>1) 1 m the criterion can be used directly on experi­

mental data. 

3.2 Measuring conditional probabilities 

An experimental demonstration of the angular EPR paradox requires the mea­

surement of conditional probabilities. From these probabilities the measured and 

inferred conditional variances can be calculated. In the following we propose experi­

mental schemes to measure the conditional probabilities for the angle and OAM. 

3.2.1 Orbital angular momentum 

In order to measure P[mzlmllm a condition in the signal has to be set such that 

only photons with an OAM of ml are detected, and in coincidence with the detection 

in the signal the OAM mz has to be measured in the idler. The condition in the sig-
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nal can be set by an optical component which changes the OAM by -ml such that 

the photon has an OAM of zero after the optical element (Vaziri et al., 2002; Franke­

Arnold et al., 2004). In this setup it is convenient to use a spatial light modulator to set 

the condition. A spatial light modulator is a phase-only diffractive component which 

can be readily programmed for different phase patterns changing the OAM by a dif­

ferent value of -mI' In this way any condition ml can be realised without replacing 

optical elements. Behind the phase component the light is passed through a pinhole. 

Only light beams with zero OAM have on-axis intensity. The pinhole thus filters out 

photons whose OAM has not been changed to zero by the phase component and only 

photons with an OAM of ml are detected behind the pinhole. 

The measurement of m2 has to be in coincidence with the detection of a photon 

behind the pinhole in the signal. Ideally the measurement should distinguish several 

values for m2. By repeating the measurement for the same condition ml several times 

the probability distribution P[m2Iml] can be measured. An experimental scheme to 

sort OAM states according to the symmetry of their phase structure has been experi­

mentally implemented by Leach et a1. (2002) and a simplification has been proposed 

by (Wei et a1., 2003). This sorting scheme works in stages, the first stage is able to dis­

tinguish even and odd values of m2, which measures m2 mod 2. Subsequent stages 

would be able to measure m2 mod 4, m2 mod 8 and so on. In general n stages are 

able to measure the OAM m2 mod 2". The experimental implementation of this sort­

ing scheme gets increasingly difficult with the number of stages, but for a strong 

correlation between mt and m2 only a limited number of m2 values around -ml will 

have to be distinguished in the experiment. Such strong correlations are to be ex­

pected and the knowledge of the possible outcomes of a measurement of m2 can be 

used to associate the measurement of m2 mod 2" with the most likely value for m2. 

But for a small n it is possible that different values of m2 with a similar probability 

are sorted into the same outcome. If, for example n = 3, the OAM m2 mod 8 would 

be measured in the idler and the values of m2 = -3 and m2 = S would be sorted into 

the same outcome. If the condition in the signal is set to ml = 0, one would expect 

fluctuations of m2 around zero. The conditional probabilities P[m2 = -31ml = 0] and 

P[m2 = SimI = 1] might thus have a similar value. Choosing a suitable number of 

stages is therefore important in measuring P[m2Iml]. A schematic representation of 

the experimental setup to measure this quantity is given in figure (V.3) on the follow­

ing page. 

3.2.2 Angular position 

To calculate the conditional variance var[IP2IPI(TI;tpl)]m, the conditional proba­

bility density P[ tp21 PI (Tt; tpt)] m has to be measured. We have discussed how the con­

dition can be set with help of an angular aperture in an earlier section (see section 2.3 

and figure (V.4) on page 106). To measure P[tp21P1 (TI; tpl)]m the angle q>2 in the idler 

has to be measured in coincidence with a photon being detected behind the angular 

aperture in the signal. The same difficulty in setting the condition in the conditional 

variance appears here for measuring the angle tp2' Experimentally it will not be possi­

ble to measure the conditional probability density for a single angle, instead a suitable 

aperture can be used to test for a range of angles. Analogously to the conditioning 
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detector 

Figure V.3 - Experimental scheme for measuring var[m2Imdm. In the signal a hologram is 

used to single out a particular value of ml as a condition. The OAM distribution of the idler is 

determined with help of an interferometric OAM sorter (Leach et ai., 2002). Only the first stage 

of the sorter is shown here, additional stages are added where indicated by arrows. Each stage 

doubles the possible outcomes and therefore the number of detectors. Eventually the signals 

from all detectors are transmitted to a coincidence counter. 

aperture, the measured quantity is P[A2(<P2)IP1(T1;<P1)]m, where the aperture A2 is 

oriented at a particular angle <P2. The aperture can be describec;l by a probability den­

sity P2 (T2; <P2), where the variable T2 is used to describe the function and <P2 indicates 

the orientation. 
By using a probability density we can make statements about the likelihood of the 

angular position <P2. We cannot speak of the actual angle <P2, as detecting the photon 

behind an angular aperture only allows us to assign the corresponding probability 

density to the state. But with this probability density we are able to calculate the 

likelihood of the angular position <P2. For an aperture in form of a narrowly peaked 

Gaussian it is much more likely that the actual angular position is within an interval 

around the peak than in an interval of the same size at the flanks of the Gaussian. 

In this sense the measured probability can be written as P[P2(T2;<P2)IP1(T1;<Pd]m, 
and for a very narrow aperture A2 oriented at <P2 this measurement will give a good 

estimate of P[ <P21 P1 (T1; <P1) ]m: 

(Y.20) 

The error made in this approximation is then given by the variance of T2 for the prob­

ability density P2· 
The scheme to measure P[P2( T2; <P2) IP1 (T1; <PI )]m is basically shown in figure (V.5). 

Spatial light modulators can also be used to create intensity masks. With help of such 

an intensity mask any chosen P1 (T1; <P1) can be set as a condition for the signal. For 

the idler the aim is to determine <P2 as exactly as possible. To achieve this a spatial 

light modulator can be programmed for a narrow angular aperture P2(T2; <P2) cen­

tred at <P2, which would then be varied over <P2 in a 2rr radian interval. Eventually 
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Figure V.4 - Measurement scheme for the azimuthal position. A photon is said to have a 
particular probability density for the azimuthal angle if it is detected after passing an aperture 

corresponding to this probability density. Experimentally these apertures may be shaped using 

a spatial light modulator. 

this would lead to P[P2(T2; /fI2)i PI (TI; /fIl)lm which not only depends on the condition 

PI (TI; /fII) but also on the chosen analysing aperture P2 (T2; /fI2)' This is the experimen­

tally measurable estimate of the quantity P[ /fI2iPI (TI; /fId 1m used in the formulation of 
the angular EPR paradox (see section 2.3). Obviously there are experimentallimita­

tions: a narrow aperture would transmit only little intensity, which would reduce the 

detection rate in the conditional measurement. Also, spatial light modulators have 

a finite size and resolution, which limits the ability to distinguish between similar 

apertures. 

3.3 Experimentallimitations 

Our presented experimental scheme does not take into account a number of phe­

nomena which could possibly have an influence on the measurements. For one mis­

alignment has an affect on the probability distribution, either by introducing a spread 

in the distribution, or by shifting the distribution by a constant, or by a combination 

of both (Vaziri et al., 2002; Vastnetsov et al., 2005). These misalignment effects can be 

characterised by a dimensionless variance introduced by Zambrini & Barnett (2006). 

But also the exact effect of the angular apertures on the angular position is not known. 

In the theoretical derivation in section 2.3 we assumed that an angular aperture de­

scribed by the probability density P( Tl; /fIl) imprints this probability density on the 

passing photon exactly. In the next section, where we model the measurements theo­

retically, we will present a result which questions this assumption. Rectangular prob­

ability densities give a conditional wavefunction which has singular derivatives for 

particular angles. The inferred variance thus tends to infinity and the angular EPR 

criterion would be fulfilled for any finite measured conditional variance. We therefore 

study a class of continuously differentiable aperture functions which asymptotically 

approximate rectangular functions . These functions have a similar form to truncated 

Gaussians but with a higher power in the exponential and are therefore called trun-
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Figure V5 - Schematic representation of the conditional measurement. A fixed angular aper­

ture in the signal beam sets the condition and a rotatable aperture in the idler beam can be used 

to measure a conditional probability density for the azimuthal position. 

cated super-Gaussians. These functions do not show the same divergent behaviour 

for the inferred conditional variance although for a very large power they differ only 

slightly from rectangular functions. It is therefore interesting ~o ask if diffraction on 

the hard edges of a circle segment could have an influence on the angular probability 

density. A related problem lies in the limited resolution of the spatial light modu­

lators. For two apertures represented by very similar probability densities the reso­

lution of the spatial light modulator might not be sufficient to distinguish between 

them. This is particularly relevant for the case where the power in the truncated 

super-Gaussian is chosen to be so large that the difference to a rectangular function 

falls below the resolution of the spatial light modulator. As will be shown in the next 

section the theoretical prediction for the two cases are very different, whereas the 

experiments would probably give similar results. 

Some of these questions will be discussed in connection with the theoretical re­

sults presented in the next section. A comprehensive analYSis of further experimental 

effects will only be possible with a particular experiment and experimental data. 

4 Theoretical results 

Our criterion (V.19) on page 103 has been devised to be tested on experimental 

data. For that it does not make any assumption on the correlation for angle and OAM 

in the two subsystems. In lack of experimental data we have to make an assumption 

on these correlations, and in the first part of this section we derive the form of the 

correlations from a simple phase matching argument. With this assumption we are 

able to model the measurement process and to predict the measurement results. This 

is more than a mathematical exercise as the theoretical results can be compared to 

future experimental results, which would provide more insight in both, the experi-
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mental data and the theoretical model. We therefore present theoretical calculations 

for three different types of angular apertures, to model hard-edged circle segments, 
smooth apertures in form of truncated Gaussians, and a kind of aperture which can 

be changed continuously from the truncated Gaussian case to the rectangular case. 

4.1 Corellations for angle and orbital angular momentum 

The possibility to create photon pairs entangled in OAM or angular position is 

based on the conservation of OAM under parametric down conversion (Mair et al., 

2001; Franke-Arnold et al., 2003), which has been studied for thin down conversion 

crystals and in the paraxial limit. The conservation leads to a perfect correlation in 

the OAM values so that for a given mp in the pump, signal and idler obey mp = 

ml + m2' In a recently reported down conversion experiment (Altman et aI., 2005), the 

spatial correlation of photons entangled in OAM have been studied. In this particular 

experiment signal and idler cone overlap completely and the spatial correlations are 

such that for a fixed detector position in the Signal, the coincidence pattern in the 

idler shows two distinct spots equally separated in angle from the position exactly 

opposite the signal detector on the phase matching ring. The vertex of the separation 
angle is on the pump axis. In our work we are concerned with a different angle: the 

azimuthal position of a photon in a beam is measured from the beam axis, i.e. in 

a down conversion experiment from the signal and idler axis respectively. For non 

degenerate down conversion crystals these two angles are not identical. The question 

if they are compatible for the degenerate case is a very interes~g one, but it will not 

be examined in the scope of this thesis. Therefore, for our theoretical modelling, 

we make use of the phase matching condition for parametric down conversion. The 

entanglement in OAM and angle is a consequence of this phase matching (Allen et 

al.,2003). 
For a plane wave pump the conservation of transverse momentum requires, that 

the two-photon wave function for the signal and idler has to be of the form 6(k l •x + 
k2J6(kl,y + k2•y) (Allen et al., 2003). Using a simplified approach one can argue that 
the transverse spatial correlations in the far field originate from the momentum con­

servation under parametric down conversion. Identifying transverse momentum 

components in the near field with spatial coordinates in the far field allows us to 

write the spatial dependence of the wave function in position representation as 

(V.21) 

where P and T are the radial and azimuthal coordinates and 62rr is the 27T periodic 

delta function (see App. V.B). From this result we can expect that the azimuthal an­

gles of the photons in the far field obey TI = T2 + 7T, so that the signal and idler pho­

tons appear on opposite sides of their respective cones. The correlation in angular 

momentum follows on writing Eq. (V.21) in terms of its angular Fourier components: 

00 

t5(XI + X2)t5(Yl + Y2) = .!..t5(PI - P2);j- L (_l)m exp(imTI) exp( -imT2), (V.22) 
PI 7T m=-oo 
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which is an entangled superposition of states with zero total OAM. A more detailed 

analysis which considers a specific parametric down conversion process shows that 
more complicated dependencies of the wavefunction on the azimuthal angles are also 
possible (Barbosa & Arnaut, 2002). 

4.2 Theoretical modelling 

To give a quantitative result we model the measurement of P[P2(T2; CP2) IPI (TI; CPI)] 
under the two assumptions that the photon pair is perfectly correlated in angular po­

sition and that the angle probability density behind the aperture is exactly given by 
the function describing the aperture. Under these assumptions the probability to de­

tect a photon behind the aperture ~(T2i CP2) in the idler given that the paired photon 
is detected behind the aperture PI (TI; CPI) in the signal is given by the probability den­
sities in signal and idler after passing the apertures and the two-photon probability 
density describing the correlated photon pair: 

Using the assumption of perfect correlations the probability density will be sharply 
peaked for TI - T2 = rr and in that sense we may use a 2rr-periodic o-function (see 

App. V.B) to approximate ItJI(TI, T2W 

(V. 24) 

Using an implicit periodicity the probability densities PI and P2 can be written as 

PI (TI - CPI) and P2 (T2 - lP2). This notation implies that there exists a fundamental 
form Pj (Tj) which can be displaced by CPj, i = 1,2. The displacement of the probability 

density corresponds to a rotation of the angular aperture. Using the fact that for 

periodic functions the integration boundaries can be uniformly displaced without 
altering the integral, we can write for the detection probability 

where we have used the short hand notation from Eq. (V.13) on page 101. For the 
calculation of this integral it is important to use the periodicity of the probability 

densities if the argument lies outside the 2rr radian interval. The detection probability 

Pdtc( CP2) is the measured conditional probability P[P2(T2i CP2) IPI (TI; CPl)]m. 

4.3 Aperture functions 

We model the conditional angle measurement for three different apertures. The 

probability densities or aperture functions are given by rectangular functions, trun­
cated Gaussians and truncated super-Gaussians respectively. Rectangular aperture 

functions represent hard-edged circle segments. Using these apertures to determine 

the angle in the range set by the aperture is a simple and clear concept. But the cal­
culated inferred conditional variance tends to infinity and the criterion in Eq. (V.14) 
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would be fulfilled trivially. Apertures represented by truncated Gaussians have been 

used in the experimental confirmation of the angular uncertainty relation (Franke­

Arnold et al., 2004) and truncated super-Gaussian are able to interpolate between 

rectangular and truncated Gaussian apertures. 

All aperture functions discussed in this section are symmetric, i.e. Pi(Ti - ((Ji) = 

Pi«({Ji - Ti) for i = 1,2. The overlap integral in Eq. (V.2S) on the preceding page can 

therefore be turned into the convolution of the two probability densities 

where ,the asterisk denotes the convolution. The theoretically motivated correlations 

from section 4.1 are uniform and the detection probability depends only on the differ­

ence between the orientations of the apertures. It is therefore possible to set ({JI = re 

and to vary ({J2. The calculated quantity Pdtc «({J2) = P[Pz(T2; ({J2)\PI(TI; ({Jl)]m is there­

fore given as a function of ({J2 alone. 

Aperture functions have to be periodic by nature, as they represent rotatable an­

gular apertures. But writing the periodic behaviour explicitly in the functional form 

complicates the equations unnecessarily. We therefore introduce a new variable ~, 

which is periodic in Ti and also contains the orientation of the aperture ({Ji for i = 1,2: 

~i(Ti; ({Ji) = [(Ti - ({Ji + re) mod 2re]- re i = 1,2. (V. 27) 

This variable ranges from -re to re, regardless of our choice of.the original2re radian 

interval [90;90 + 27T). In the following we will present the aperture functions as a 

function of ~i' Additionally the aperture function will be characterised by a parameter 

CTi associated with the width of the respective aperture function. 

4.3.1 Rectangular functions 

The probability functions describing rectangular apertures can be given in terms 

of Heaviside step functions H(~): 

(V. 28) 

The conditional probability density is given by the convolution of the probability 

densities for signal and idler according to Eq. (V.26) and is a function of the orientation 

({J2 as detailed in the previous section: 

\ ({J2\ < (CTl - CT2) /2, 

(CTI - CT2)/2 ::; \({J2\ < (CTI + CT2)/2, 

(CTI + CT2)/2 ::; \({J2\' 
(V.29) 

Here, we have chosen CT1 > CT2, but the convolution is commutative (see App. V.C) 

and we can interchange CTI and CT2 for the case CT2 < CT1. The conditional wavefunction 

is given by the square root of [PI * Pz](({J2) according to Eq. (V.16) on page 103. The 

phase is determined by minimising the angular momentum variance and in App. V.A 

it is shown that choosing a constant phase is one possibility to minimise the angular 
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Figure \1.6 - In a) the probability densities representing the apertures in the signal and idler 
beam are plotted for a width in the idler and signal of 0"1 = 1/811' and 0"2 = 1/12811' respectively. 
The resulting conditional probability density and wavefunction are shown in b). 

momentum variance. Graphs of the rectangular apertures and the resulting condi­

tional probability density and wavefunction are shown in Fig (V.6). 

The Fourier integral in Eq. (V.17) on page 103 can be calculated analytically by 

using the Fresnel sine and cosine integrals S2 and C2 (Gradshteyn & Ryzhik, 2000): 

(V.30) 

The distribution of conditional probability amplitudes is given in figure (V.7) on the 

following page for the analytical calculation and a numerical integration. The con­

ditional variance is shown in figure (V.7) over the value of m2 at which the sum in 

Eq. (V.1S) on page 103 is truncated. The Fresnel integrals tend to 1/2 for large argu­

ments and the conditional amplitudes c[m2\P1 (T1; 11')] thus vary with \m2\-3 for large 

m2. This explains the logarithmic dependence on the maximum number of terms 

in the sum. As a consequence the conditional variance tends to infinity. The rea­

son for this behaviour lies the singular derivative of the conditional wave function 

at <P2 = (0"1 - 0"2)12. As pointed out in by Pegg et al. (2005) wavefunctions with 

discontinuities in the first derivative generally have infinite variance. 

4.3.2 Truncated Gaussians 

Aperture functions in form of truncated Gaussians have been used in the experi­

ment studying the angular uncertainty principle (Franke-Arnold et al., 2(04). In this 

case the probability densities Pi are given by: 

..jUi (2) Pi(~i) = y'7ierf(rr..jUi) exp -O"j~j , (V.31) 
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respectively. These values for CTj, i = 1,2 give a comparable width with the rectangular case. 
The resulting conditional probability density and wavefunction are shown in b). 

where erf denotes the error function. The graph for truncated Gaussian apertures is 

shown in figure (V.8) for comparable widths. The resulting conditional probability 

density and the wavefunction are also plotted in figure (V.8). 

The conditional probability density P[CP2IP(Tl; TC)] can be calculated analytically 

using the convolution theorem for the Fourier transform (see App. V.C): 

(V.32) 

This way avoids the complication of taking the periodic behaviour of the probability 

densities into account when calculating the convolution integral. The Fourier trans­

form of truncated Gaussians is known from section IV 2.4 on page 59 of the previous 
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chapter on intelligent states. For the chosen notation here we have for F {Pi (~i) }: 

F {Pi(~j)} = Re erf(27rO"j + im) / (2v'Ui) exp( _m2 / (40"j)). 
v'27rerf( 7r y7T;) 

(V.33) 

The transformed probability densities can be multiplied and the result can be trans­

formed back using the inverse Fourier transform. The conditional wavefunction is 
taken as the square root of the convolution and for the conditional probability ampli­

tudes we have to invoke the Fourier transform again. But, apart from the normalisa­

tion, the Fourier transform, the square and the square root of an extended Gaussian is 

again a Gaussian (see App. V.C). The combination of inverse Fourier transform, divi­

sion of the exponent in the Gaussian by two for the square root and Fourier transform 
is therefore equivalent to multiplying the exponent in the original Gaussian by two. 

By using this fact we can give an approximate result for the conditional probability 

amplitudes, but we have to renormalise the probability distribution for calculating 

the conditional variance: 

_[ I ( . )] ~ (Reerf(27t0"1 + im)/(2JUl)) 
2 

(Reerf(27t0"2 +im)/(2JU2))2 c m2 PI Tl,7r ....., M=. 
V 27terf( 7t JUl) v'27Terf( 7r JU2) 

( 
-m2(0"1 + 0"2)) 

xexp 2 . 
0"10"2 

(V.34) 

Here c denote the unnormalised probability amplitudes. The l'\Ormalisation can be re­

stored by dividing the c by the sum over the unnormalised conditional probabilities: 

(V.35) 

For the chosen widths 0'1 and 0'2 the agreement with the numerical solution is excel­

lent as can be seen in Fig. (V.9) on the next page. This is because the single probability 

densities PI and P2 are sufficiently narrow and decay quickly enough towards the 
boundaries, so that extending the integral boundaries does not change the integrals 

significantly. The resulting conditional variance is shown for numerical and analy­

tical calculations in figure (V.9) on the following page. For the truncated Gaussians 

the conditional variance var[m2IPl(Tl; 7r)] converges and does not change with the 

number of m2 values taken into account in the summation in Eq. (V.18) on page 103. 

4.3.3 Truncated super Gaussians 

With truncated super-Gaussian apertures we can gradually go from the rectan­

gular case to the Gaussian. This is achieved by an additional parameter 'Y in the 

exponential: 

(V.36) 

where r(·) is the complete Gamma function and r(.;.) the incomplete Gamma func­

tion (Abramowitz & Stegun, 1974). The effect of this parameter on the probability 

113 



Chapter V 4 Theoretical results 

0.5 a) approximated _ b) 
numerical c=::::::J 

0.4 
0.8 !Il !Il !Il III III III 

N_ 

'R ~ 0.3 £ 
0.6 

£: 0: 
0: 

N 

N E 
0.4 E 0.2 't:' 

~ '" > 

0.1 0 .2 

In III 
numeric.1 + 

ap'proximated 0 
0 0 

-4 -2 2 0 20 40 60 80 100 120 140 

"'2 maximum nl2 

Figure V.9 - a) Numerically and analytically calculated OAM distribution for truncated 

Gaussians apertures. The analytical solution is approximated by neglecting the effects of the 
finite interval and treating the truncated Gaussians as extended. This allows us to calculate 

the probability amplitudes using the convolution theorem and the fact that square roots of 
Gaussians are again Gaussians. The resulting conditional variance can be seen in b) . For the 
truncated Gaussian apertures the conditional variance converges. 

density can be seen in figure (V.10) on the following page. 

For the truncated super-Gaussians all calculations have been done numerically 

and one can see in figure (V.11) on the next page that, even for high values of ,,(, the 

probability distribution, Ic[m2IPI (T1; rr)] j2, differs substantially from the rectangular 

case. The dependence of the conditional variance on the maximum value of m2 and 

"( is also shown in figure (V.11). For small values of "( the variance converges quickly 

and does not depend much on the number of m2 values in the sum. For higher values 

the variance converges more slowly. Even for the highest value of 'Y = 80 a logarith­

mic increase, as for the rectangular case, cannot be seen. 

4.4 Discussion of theoretical results 

The theoretical modelling of a conditional angle measurement leads to a condi­

tional variance significantly different from zero. This is the result from all angular 

apertures. However, for rectangular apertures the inferred conditional variance tends 

to infinity, which would allow a demonstration of the angular EPR paradox accord­

ing to our criterion in Eq. (V.14) on page 101 for all measured conditional variances 

var[m2Iml]m with finite value. This is certainly not a sensible result and the reason 

for this divergent behaviour lies in the discontinuous derivative of the conditional 

wavefunction. But of course the inferred conditional variance will always depend on 

the chosen apertures, not only because the condition is set by passing an aperture, 

but also because an aperture is used to measure the angle. In the theoretical analysis 

we assumed that the measuring aperture P2 is very narrow, and in that case it is the 

aperture in the signal PI which determines mostly the broadness of the conditional 

probability density P[P2( T2; q>2) IPI (TI; q>1)]. Choosing a broad aperture PI will in all 

generality give a broad conditional probability density and the angular position in 

the conditional wave function will not be very localised. This in tum causes the OAM 
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Figure V.1O -- a) Probability densities for apertures in form of truncated super-Gaussians 
in the signal and idler beam (Ul = 16/ rr2, U2 = 4096/rr2, 'Y = 3) b) Resulting conditional 

probability density and wave function. c) Probability densities representing the apertures in 

the signal and idler beam [Ul and u2 as in a), 'Y = 20] . d) Resulting conditional probability 
density and wavefunction. 
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Figure Y.ll -- a) Numerically calculated conditional angular momentum distribution for 

truncated super-Gaussian apertures. The distribution is plotted for two different values of 
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Chapter V 5 Conclusion 

distribution to be very narrow and thus the inferred conditional variance to be small. 

Choosing a broad aperture sets therefore a stronger limit for the measured conditional 

variance. 

Not only the width of the aperture has a direct influence on the results, but also the 

form. This is most visible for the rectangular apertures and the apertures represented 

by truncated super-Gaussians. The advantage of the rectangular apertures lies in 

the clear concept of limiting the range of angle within a circle segment. Detecting a 

photon behind such a mask determines the angle within the allowed range, much like 

slits are used to determine the position in the EPR experiment by Howell et al. (2004). 

And just like in a single slit experiment, the photon passing a hard-edged aperture 

will be subject to diffraction. This diffraction should have a smoothing effect on the 

conditional probability density, and thus remove the discontinuity in the derivative 

of the conditional wavefunction which leads to the diverging inferred conditional 

variance for rectangular apertures. The results from the truncated super-Gaussians 

show that already a small deviation from the strict rectangular case can lead to a finite 

value for the inferred conditional variance. 

5 Conclusion 

In this chapter we have discussed the possibility to demonstrate an angular EPR 

paradox for the conjugate variables of orbital angular momentum (OAM) and angle. 

The paradox is about the apparent violation of an uncertainty relation for incompat­

ible observables measured on correlated, spatially separated -subsystems. By using 

photon pairs entangled in DAM and in angle these subsystems can be realised in an 

optical experiment. We have found a testable criterion for an angular EPR paradox, 

which takes experimental indeterminacies into account. For that we have reformu­

lated the EPR paradox using conditional variances, that is variances of observables 

from one subsystem given a preset outcome on the other subsystem. To devise a 

conditional variance for the angular position we make use of angular apertures. The 

detection of a photon behind such an aperture in the signal sets a condition in the 

conditional variance of the angle in the idler. From a measurement of a conditional 

variance for the angle a minimum variance for the OAM can be derived. This is 

an inferred quantity which can be compared to a measured variance for the DAM. 
Comparing the two variances leads to a criterion for an angular EPR paradox. The 

criterion is meant to be tested on experimental data. One possibility to measure the 

angular position is to use another angular aperture which restricts the range of an­

gles. The conditional variance thus depends not only on the aperture in the signal, 

which sets the condition, but also on the aperture used to determine the angle. These 

aperture can be described by angle probability density. 

To investigate the feasibility of an experimental demonstration, we have mod­

elled the measurement process under the assumption of perfect angle correlation. 

Also, angular apertures to set the condition or to determine the angle were assumed 

to impose their probability characteristics exactly on transmitted photons. Under 

these assumptions we have studied different classes of aperture functions for the fi­
nal conditional OAM variance. Rectangular functions lead to a divergent conditional 
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OAM variance, which does not set any lower bound for the OAM correlations. Trun­

cated Gaussians result in a quickly converging variance significantly different from 

zero. Truncated super-Gaussians, which can be varied from the rectangular case to 

the truncated Gaussians, provide an aperture which leads to a convergent variance. 

For the case of a truncated super-Gaussian which is very similar to a rectangular 

function, one can combine the clear concept of measuring the angle with an angular 

aperture with a finite conditional variance for the OAM. The conditional variances 

obtained from the theoretical modeling show that an angular EPR paradox can be 

demonstrated. Given the current state of experiments we expect an implementation 

of our criterion to be able to demonstrate the EPR paradox for OAM and azimuthal 

position. 

V.A Minimisation 

Calculating the conditional wavefunction from the conditional probability leaves 

the phase tx ( qJ2) undetermined. We find that if the variance is calculated for a constant 

phase tx then the minimum variance min var[m2lPl (Tl; qJl)]i is obtained. To show this 

we assume the conditional wavefunction to be of the form 

(V.37) 

where A = til 11'[ qJ21 PI (TI; qJd JI2 is a positive, real function, which is periodic in qJ2. 
Applying the OAM operator to the wavefunction yields 

tztP[ qJ2IPI (TI; qJd] = -iii 11" [qJ2I PI (qJI) j, 

= -mA' (qJ2) exp[itx( qJ2)] + hA( qJ2)tx' (qJ2) exp[ia( qJ2)], 
(V.38) 

where the primes denote derivatives with respect to qJ2. The periodicity of the condi­

tional probability density and the conditional wave function requires that both A and 

a are periodic in qJ2' The expectation value of tz is thus given by 

(V.39) 

where we used the fact that A2(qJ2) = P[qJ2IP1(TI; qJd]. The first term in the second 

line of the expression for the expectation value vanishes on integration as the inte­

grand AA' can be written as the derivative of A2/2 with respect to qJ2. Owing to 

the periodicity of A the integral evaluates to zero. The OAM variance requires the 

expectation value of ti: 

t~tP[ qJ21 PI (TI; qJI)] = - h2 A" (qJ2) exp[ia( qJ2)] - 2ih2 A' (qJ2)a( qJ2) exp[ia( qJ2)] 

- ih2 A( qJ2)a( qJ2) exp[ia( qJ2)] + h2 A( qJ2)[tx' (qJ2Wexp[itx( qJ2)]. 

(V.40) 

On integration the middle two terms vanishes as the combined integrand can be writ­

ten as derivative of A2a' /2 with respect to qJ2· The expectation value of Li is thus 
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given by: 

The variance of L~ is given by (f..~) - (f..z}2. The second term in Eq. (V.41) together 

with the square of the expectation value of Lz from Eq. (V.39) on the preceding page 

is the variance of IX'. The variance of Lz is thus given by the variance of Lz with a 

constant IX and the variance of ct': 

var Lz = [var Lzl«=const + Ji2var tx'. (V.42) 

The variance of {x' is either positive or zero, if (x' = const. The minimum of varLz 
is therefore given by the minimum of [var Lzl«=const. Variances are calculated for a 

given state, and by specifying the probability density, the wavefunction for this state 

is determined apart from the phase. From Eq. (V.42) follows that a constant phase 

gives the minimum variance for the OAM. 

V.B Periodic b'-function 

The periodic 0 function can be written as a sum of conventional 0 functions (Pefi­

nova et al., 1998): 
00 

02rr(O) = L 0(0 - 2rrk). (V.43) 
k=-co 

From this definition follows the property for an infinitely extended integral 

i: d002rr(O)f(O) = f f(2rrk). 
k=-oo 

(V.44) 

For a finite integral only a finite number of terms appear in the sum. An interesting 

case occurs for a integration interval with a length of an integer multiple of 2rr. De­

pending on the exact position of the integral boundaries, one 0 function from the sum 

in Eq. (V.43) is fully contained or two 0 functions are at the boundaries. This is the 

case for the expectation value of the commutator between number and phase oper­

ator (Pegg &: Barnett, 1997) or OAM and angle operator (Barnett &: Pegg, 1990) and 

causes the expectation value to depend on the exact choice of the integration interval 

(see Ch. III). 

V.C Periodic convolution 

The convolution of two periodic functions v, won a 2rr radian interval is defined 

as 

[v * w](O) = I: dxv(X)w(O - x)· (Y.45) 

For the evaluation of this integral it is important to make use of the periodicity of the 

functions. This is of particular importance if the function does not decay quickly to­

wards the boundaries. We can study the effect on the example of truncated Gaussians. 
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Figure V12 - Graphs of the convolution of truncated Gaussians. a) shows the difference 
between the evaluation of the convolution according to Eq. (V.46) (solid lines) and an integra­
tion which disregards the periodic behaviour (dashed lines) for the values of 0"1 = 2/ rr2 and 
0"2 = 4/ rr2. b) shows the difference for 0"1 = 16/ rr2 and 0"2 = 4096/ rr2. Solid and dashed lines 

are inseparable. 

With the definition in Eq. (V.31) on page 111 the periodicity is given implicitly by us­

ing the variable ~i. Using the periodicity explicitly the integration in Eq. (V.4S) on the 

preceding page has to be evaluated in the following way: 

J
6- Tf fTf 

[v * w](8) = -Tf dxv(X)w(8 - X - 2rr) + JO-Tf dxv(X)w(8 - X) 8 > 0, (V.46a) 

JTf+6 lTf 
[v * w](8) = dxv(X)w(8 - X) + dxv(X)w(8 - X + 2rr) -Tf Tf+O 

8 < o. (V.46b) 

The effect can be seen in figure (V.12). The solid line is the evaluation of the integral 

according to Eq. (V.46), while the dashed line is an integration in which the trun­

cated Gaussians are treated as extended, and no amendments have been made for 

the case where the argument of w is outside [- rr, rr). The graph shows that for nar­

rowly peaked functions which decay sufficiently quickly towards to the boundaries 

the correct convolution is excellently approximated by evaluating the integral with­

out taking the periodic behaviour into account. 

In the derivation of the criterion for the angular EPR paradox we have introduced 

the operation v ® win Eq. (V.13) on page 101 and Eq. (V.25) on page 109: 

[v ® w](8) = i: dxv(X)w(X - 8), (V.47) 

which is an overlap integral for v and w, where w is shifted by 8. From the definition 

in Eq. (V.4S) on the previous page it is clear that for a symmetric w the shifted integral 

is equivalent to a convolution. 

The Fourier transform and the convolution for periodic function obey the convo­

lution theorem (Stephenson & Radmore, 1993): 

(V.48) 

where 0(5) and W(5) are the Fourier transforms of v(8) and w(8). The constant factor 
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A depends on the choice of multiplicative factors in the Fourier transform: 

F{v(O)} = 'O(s) = A i: dOv(O)exp(-isO), 

1 
F-I{v(s)} = v(8) = 2rrA L'O(s)exp(isO). 

s 

(Y.49a) 

(V.49b) 

For the Fourier relation between angle and OAM we have chosen A = 1/ $ (cf. 

Eq. (V.17) on page 103). With this notation it is straightforward to proof the relation 

in Eq. (V.48) on the previous page: 

F {v * w} = A iTCTC dO i: d~v(~)w(O - ~) exp( -isO), 

f
1{ fTC 1 

= A -TC dO -TC d~v(~) 2rrA ~ w(t) exp[it(O - ~)] exp( -isO), 

1 fTC 
= 2rrA L'O(t)w(t) -1{ dOexp[i{t-sW], 

t 

1 
= A 'O(s)w(s). 

Here, we have used an integral representation for 0 (t - s) in form of 

i: dOexp[i(t - s)O] = 2rro(t - s). 

(V.SO) 

(V.S1) 

This shows the convolution theorem for the Fourier transform on a 2rr radian interval. 

The convolution theorem finds its use in calculating the conditional probability 

amplitudes c[m2IP1(TI;rr)] for truncated Gaussian apertures. From Eqs. (V.17) on 

page 103 and (V.26) on page 110 it follows that the conditional probability amplitudes 

are given by the Fourier transform of the square root of PI * ~: 

(V.52) 

The Fourier transform of PI * P2 would simply be given by the product of the Fourier 

transforms PI and P2. For extended Gaussians of the form exp( -um2) the inverse 

Fourier transform yields another Gaussian with a reciprocal width exp[-~2/(40")]. 

The factor of four depends on our particular choice of the form of the Gaussian. Tak­

ing the square root would result in exp [ - ~2 / (80")] and the Fourier transform of that 

would give exp( -20"m2). For an extended Gaussian the process of inverse Fourier 

transform, square root and Fourier transform results in multiplying the original ex­

ponent by two: 

F{PI *~} = PI~ P[ CP21Pl (Tl; rr)], 

(-)21 1v: (V.53) 

c[m21PI (Tl; rr)] -!- t/1[CP2IPl (TI; rr)]. 

The resulting distribution of OAM probabilities will in general not be normalised. For 

truncated Gaussians this approach works only approximately. For narrow truncated 

Gaussians the effects introduced by the truncation at rr and - rr are very small, this 
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is why this approach gives results in excellent agreement with a direct numerical 

calculation. 

Bibliography 

Abramowitz, M. & Stegun, I. S. (1974), Handbook of Mathematical Functions, Dover 

Publications, Inc., Mineola, New York. Reprint. Originally published: National 

Bureau of Standards, corrected edition, 1964. ISBN: 0-486-61272-4. 

Allen, L., Barnett, S. M. & Padgett, M. J. (2003), Optical Angular Momentum, Institute 

of Physics Publishing, Ltd., Bristol. ISBN: 0-7503-0901-6. 

Altman, A R., Koprulu, K. G., Corndorf, E., Kumar, P. & Barbosa, G. A (2005), 'Quan­

tum imaging of non local spatial correlations induced by orbital angular momen­

tum', Physical Review Letters 94(12), 123601. DOl: 10.1103/PhysRevLett.94.123601. 

Aspect, A, Dalibard, J. & Roger, G. (1982a), 'Experimental Test of Bell's Inequalities 

Using Time-Varying Analyzers', Physical Review Letters 49(25), 1804 - 1806. 001: 

10.ll03/PhysRevLett.49.1804. 

Aspect, A, Grangier, P. & Roger, G. (1982b), 'Experimental Realization of Einstein­

Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequali­

ties', Physical Review Letters 49(2), 91 - 94.001: 10.1103/PhysRevLett.49.91. 

Barbosa, G. A & Arnaut, H. H. (2002), 'Twin photons with angular-momentum 

entanglement: Phase matching', Physical Review A 65, 053801. DOl: 10.1103/Phys­

Rev A.65.053801. 

Barnett, S. M. & Pegg, D. T. (1990), 'Quantum theory of rotation angles', Physical Re­
view A 41(7), 3427-3435. DOl: 10.1103/PhysRevA.41.3427. 

Bell, J. S. (1964), 'On the Einstein-Podolsky-Rosen paradox', Physics 1, 195-200. 

Reprinted in (Bell, 2004, Paper 2). 

Bell, J. S. (1966), 'On the problem of hidden variables in quantum mechanics', Re­

views of Modern Physics 38(3), 447 - 452. Reprinted in (Bell, 2004, Paper 1). DOl: 

10.1103/RevModPhys.38.447. 

Bohm, D. & Aharonov, Y. (1957), 'Discussion of Experimental Proof for the Para­

dox of Einstein, Rosen, and Podolsky', Physical Review 108(4), 1070 - 1076. DOl: 

10.1103/PhysRev.l08.1070. 

Einstein, A, Podolsky, B. & Rosen, N. (1935), 'Can Quantum-Mechanical Description 

of Physical Reality Be Considered Complete?', Physical Review 47, 777-780. DOl: 

http://link.aps.org/abstract/PR/v47 /p7n DOl: 10.1103/PhysRev.47.777. 

Franke-Arnold,S., Barnett, S. M., Padgett, M. J. & Allen, L. (2003), 'Two-photon en­

tanglement of orbital angular momentum states', Physical Review A 65,033823. DOl: 

10.1103/PhysRevA.65.033823. 

121 



BIBLIOGRAPHY BIBLIOGRAPHY 

Franke-Arnold,S., Barnett, S. M., Yao, E., Leach, J., Courtial, J. & Padgett, M. (2004), 

'Uncertainty principle for angular position and angular momentum', New Journal 
of Physics 6, 103. DOl: 10.1088/1367-2630/6/1/103. 

Gotte, J. B., Franke-Arnold, S. & Barnett, S. M. (2006), 'Angular EPR paradox', Journal 

of Modern Optics 53(5 - 6), 627 - 645. 

Gradshteyn, I. S. & Ryzhik, I. M. (2000), Tables of Integrals, Series, and Products, 6th edn, 

Academic Press, Inc., San Diego. ISBN: 0-12-294757-6. 

Giihne, O. (2004), 'Charcterizing Entanglement via Uncertainty Relations', Physical 
Review Letters 92(11),117903. DOl: lO.l103/PhysRevLett.92.117903. 

Heisenberg, W. (1927), 'Uber den anschaulichen Inhalt der quantentheoretischen 

Kinematik and Mechanik', Zeitschrijt fUr Physik 43,172. 

Hofmann, H. F. & Takeuchi, S. (2003), 'Violation of local uncertainty relations as 

a signature of entanglement', Physical Review A 68, 032103. DOl: 1O.1103/Phys­

RevA.68.032103. 

Howell, J. c., Bennink, R. 5., Bentley, S. J. & Boyd, R. W. (2004), 'Realization of 

the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangles 

Photons from Spontaneous Parametric Down Conversion', Physical Review Letters 
92(21),210403. DOl: 1O.1103/PhysRevLett.92.210403. 

Jauch, J. M. & Piron, C. (1963), 'Can Hidden Variables be excluded in Quantum Me-

chanics?', Helvetica Acta Physics 36, 827-837. . 

Kwiat, P. G., MattIe, K., Weinfurter, H. & Zeilinger, A (1995), 'New High-Intensity 

Source of Polarization-Entangled Photon Pairs', Physical Review Letters 75(24), 4337-

4341. 001: 10.1103/PhysRevLett.75.4337. 

Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. & Courtial, J. (2002), 'Mea­

suring the Orbital angular momentum of a single Photon', Physical Review Letters 
88,257901. DOl: 1O.1103/PhysRevLett.88.257901. 

Louisell, W. H., Yariv, A & Siegman, A E. (1961), 'Quantum Fluctuations and Noise 

in Parametric Processes. I.', Physical Review 124(6), 1646-1654. DOl: 1O.1103/Phys­

Rev.l 24.1 646. 

Mair, A. E., Vaziri, A, Weihs, G. & Zeilinger, A (2001), 'Entanglement of the orbital 

angular momentum states of photons', Nature 412,313-316. Reprinted in (Allen et 

al., 2003, Paper 8.1). 

Nielsen, M. A & Chuang, I. L. (2000), Quantum Computation and Quantum Information, 

Cambridge University Press, Cambridge. 

Ou, Z. Y., Pereira, S. F. & Kimble, H. J. (1982), 'Realization of the Einstein-Podolsky­

Rosen paradox for continuous variables', Physical Review Letters 68(25), 3663 - 3666. 

001: 10.1103/PhysRevLett.68.3663. 

Pegg, D. T. & Barnett, S. M. (1997), 'Tutorial review: Quantum optical phase', Journal 

of Modern Optics 44(2), 225-264. 

122 



BIBLIOGRAPHY BIBLIOGRAPHY 

Pegg, D. T., Barnett, S. M., Zambrini, R., Franke-Arnold, S. & Padgett, M. (2005), 

'Minimum uncertainty states of angular momentum and angular position', New 
Journal of Physics 7, 62.001: 10.1088/1376-2630/7/1/062. 

Pefinova, v., Luicl, A & Penna, J. (1998), Phase in Optics, Vol. 15 of World Scientific 
Series in Contemporary Chemical Physics, World Scientific, Singapore. 

Reid, M. (1997), 'Macroscopic elements of reality and the Einstein- Podolsky-Rosen 

paradox', Quantum and Semiclassical Optics 9, 489-499. 

Reid, M. D. (1989), 'Demonstration of the Einstein-Podolsky-Rosen paradox using 

nondegenerate parametric amplification', Physical Review A 40(2), 913-923. 001: 

1O.1103/PhysRevA.40.913. 

Robertson, H. P. (1929), 'The Uncertainty Principle', Physical Review 34,163-164. 

Rubin, M. H., Klyshko, D. N., Shih, Y. H. & Sergienko, A V. (1994), 'Theory of two­

photon entanglement in type-II optical parametric down-conversion', Physical Re­
view A 50(6),5122-5133.001: 10.1103/PhysRevA.50.5122. 

Stephenson, G. & Radmore, P. M. (1993), Advanced Mathematical Methods for Engineerg­
ingand Science Students, Cambrige University Press, Cambridge. ISBN: 0-521-36860-

X. 

Vastnetsov, M. V., Pas'ko, V. A & Soskin, M. S. (2005), 'Analysis of orbital angular 

momentum of a misaligned optical beam', New Journal of Physics. DOl: 10.1088/1367-

2630 /7 /1 /046. 

Vaziri, A, Weihs, G. & Zeilinger, A (2002), 'Superpositions of the orbital angular 

momentum for applications in quantum experiments', Journal of Optics B 4, 547-

551. DOl: 10.1088/1464-4266/4/2/367. 

von Neumann, J. (1932), Mathematische Grundlagen der Quantenmechanik, Springer Ver­

lag, Berlin. English translation: (von Neumann, 1955). 

Wei, H., Xue, X., Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold,S., Yao, E. 

& Courtial, J. (2003), 'Simplified measurement of the orbital angular momentum 

of single photons', Optics Communication 223(1-3), 117-122. DOl: doi:10.l016/SOO3O-

4018(03)01619-5. 

Weihs, G., Jennwein, T. & Simon, C. (1998), 'Violation of Bell's Inequality under 

Strict Einstein Locality Conditions', Physical Review Letters 81(23),5039 - 5043.001: 

10.1103/PhysRevLett.81.5039. 

Zambrini, R. & Barnett, S. M. (2006), 'Quasi-Intrinsic Angular Momentum and the 

Measurement of Its Spectrum', Physical Review Letters 96, 113901. DOl: 10.1103/Phys­

RevLett.96.113901. 

123 



VI Chapter 

Fractional Orbital Angular Momentum 

Light beams carrying integer values of orbital angular momentum have a phase struc­
ture which is stable under propagation. The phase structure contains a number of 

intertwined helices corresponding to the charge of the optical vortex imprinted by an 
optical device. The optical devices which generate light beams with orbital angular 

momentum can also be designed for fractional phase steps. In place of a vortex with 

integer charge these phase steps imprint a vortex with fractional charge which can­

not propagate. Instead, the fractional vortex splits up in a number of vortices with 
charge ± 1. Light beams emerging from a fractional phase step are not stable under 

propagation and show a line of low light intensity. For odd half-integer phase steps 

additional vortices are created in this region. The theoretical description of these frac­

tional modes is facilitated by a generalisation of the quantum mechanical description 

of orbital angular momentum to non-integer values. The generalised theory is ap­

plied to simulate the propagation of fractional modes in the paraxial and nonparaxial 

regime. 

1 Introduction 

By investigating special states connected to the angular uncertainty relation and 

by formulating an angular EPR paradox orbital angular momentum (OAM) and an­

gle have been established as conjugate variables. The connection between angle and 

OAM is visible in the wave function of angular momentum eigenstates which is given 

by exp( -imtp) in the unnormalised angle representation. A wavefunction of this form 

has a phase singularity at the origin. Beams with OAM can be generated by phase 

sensitive optical components such as spiral phase plates. On propagation the phase 
singularity turns into an optical vortex of charge m. The azimuthal phase structure 

of beams with OAM consists of Iml intertwined helices and the handedness of the 

helices is given by the sign of m. The phase structure of light beams emerging from 

integer phase steps is stable under propagation apart from dilation. In particular the 

mean value of the OAM in the beam remains unchanged and there is a direct corre­

spondence between the charge of the optical vortex and the OAM in the light beam. It 

is possible, however, to design these phase sensitive optical components for fractional 
phase steps (Oemrawsingh et al., 2004b). In this case the generating optical device im­

prints a phase structure of exp(iMtp), where M is not restricted to an integer value. 

Light beams emerging from a fractional phase step are not stable under propagation 

and have a more complex phase structure and intensity profile. The intensity profile 

shows a line of darkness along the direction of the phase discontinuity of the optical 
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device. In the phase profile the fractional charge vortex on the axis splits up in a num­

ber of charge ± 1 vortices which are situated in the central area of the beam but not 

directly on the axis. For half-integer phase steps a series of additional optical vortices 

with alternating charge is created in the line of low intensity (Berry, 2004; Leach et at, 
2004b). Moreover, only for integer and half-integer values of M the mean value of the 

OAM in the beam is equal to step height but not in general. 
The dependence of the fractional modes on the orientation of the phase disconti­

nuity finds interesting applications in the study of entangled photon pairs carrying 

OAM (Oemrawsingh et at, 2004a). Half-integer spiral phase plates imprint a IT ra­

dians phase shift which results in a line of zero intensity along the orientation of the 

step. Additionally, the quantum states which describe the light emerging from two 

half-integer spiral phase plates are orthogonal if their relative orientation is IT radians. 

This opens the possibility to use the orientation of the phase plates as measurement 
settings in a Bell-type inequality (Aiello et at, 2005; Oemrawsingh et al., 2005). Until 

now, however, the theoretical description of such fractional OAM modes has been 
based on modelling the generating optical device. In this chapter we present a fun­

damental theory of fractional OAM by generalising the quantum theory of rotation 

angles (Barnett & Pegg, 1990) to fractional values of M. In light of recent applications 

of integer OAM in quantum key distribution (Spedalieri, 2006) and the conversion 
of spin angular momentum to OAM in an optical medium (Marrucci et al., 2006) a 

rigid theory of fractional OAM is important for possible applications of fractional 
OAM in quantum communication. We compare our generalised theory with recent 

experimental and theoretical work. With our approach we are able to calculate the 

propagation of light modes with fractional OAM in the paraxial and non-paraxial 

regime. The work in this chapter is an original contribution to the literature and has 

been accepted for publication. 

2 Generating fractional orbital angular momentum 

In this section we present two methods of generating light with fractional OAM. 
Both methods have been experimentally implemented and theoretically studied. We 

review the corresponding theory in both cases and reproduce important results to 
which we will refer later in this chapter. These two methods have been used for 

different aspects of fractional OAM. While the half-integer spiral phase plates have 

been used to examine two-photon entanglement (Aiello et at, 2005; Oemrawsingh et 

al., 2005), holograms with fractional step height have been used to study the vortex 

structure of non-integer vortex beams (Berry, 2004; Leach et at, 2004b). 

2.1 Spiral phase plates 

The production of high-quality half-integer spiral phase plates has first been re­

ported by Oemrawsingh et al. (2004b). The term half-integer spiral phase plates refers 

to odd half-integer values of the imprinted vortex charge which is given by a closed 
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• ~ 

Figure VI.l - Sketch of a spiral phase plate without a base (h o = 0) . The step is oriented at 

the azimuthal angle q> = It. 

path integral around the phase singularity (Nye, 1999): 

Q = ~ f dX = ~ f ds . \7 X, 27r 27r 
(VI.l) 

where s is the line element and X is the phase of the field . A spiral phase plate is a 

transparent plate of refractive index n with a base and a height on top of the base, 

which is proportional to the azimuthal angle cp (see figure (VI.1)): 

h( cp) = hs 2CPrc + ho· (VI.2) 

Here, hs is the step height and ho the base height of the device. The phase change is 

determined by the ratio of the optical path length I and the wavelength of the light A: 

(VI.3) 

The optical path length for a path c is given by the integral over the refractive index 

along that path (Born & Wolf, 1999): 

I = 1 n(s)ds. (VI.4) 

Owing to the spiral structure of the phase plate the optical path length depends on 

the azimuthal angle cp: 

l(cp) = ndz+ nodz = (n - no)hs !!!..... 
l

h(q» lho+hs 

ho h(q» 27r 
(VI.5) 
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If the spiral phase plate is illuminated by a plane wave or an area of a beam with 

constant phase the change in the phase is solely due to the difference in the optical 

path length. The base of a spiral phase plate causes a uniform phase shift and does 

not contribute to the integral in Eq. (VI.1) on the previous page. From Eqs. (VI.1) and 

(VI.3) it follows that the spiral phase plate imprints a vortex charge 

(VI.6) 

By choosing a suitable step height or difference in the refractive indices it is possible 

to design spiral phase plates with a fractional step height. In general for spiral phase 

plates with a fractional charge the orientation of the step becomes important, as the 

discontinuity in the phase leads to a visible line of lower intenSity or even complete 

darkness. This is because the fractional step height leads to a phase difference other 

than 2rr radians which in tum causes partial or full destructive interference along 

the discontinuity. Oemrawsingh et al. (2004b) showed that the spiral phase plate is a 

unitary optical element by illuminating a spiral phase plate and its optical conjugate 

phase plate with a Gaussian beam. The conjugate spiral phase plate is a second spiral 

phase plate which is identical to the first, but has opposite helicity. 

The unitarity of the spiral phase plate is also reflected in the spiral phase plate 

operator introduced by Oemrawsingh et al. (2004a). The operator is defined by its 

action on an eigenstate of the OAM operator Lz: 

S{«,M')lm} = I{M' + m)(<<)}, (VI.7) 

where M' = m' + p' and m' E Z with p' E [0,1). The corresponding wave function 

in the angle representation shows a discontinuity at the angle «: 

( I
fI( M')I) exp{imq» ['M'( )] {eXP{iM'2rr) 0 < II' < «, II' ;, «, m = r..=2'" exp 1 II' - « x 1 

v~n «< II' < 2rr. 
(VI.B) 

On using the expression for the wavefunction in Eq. (VI.B), one can calculate the over­

lap for two states with equal fractional OAM M and with a relative orientation f3. The 

overlap probability is given by: 

where we have split M = m + p into an integer part m and a fractional part p. For 

p = 1/2 and f3 = rr the overlap is zero and the states are orthogonal. It is this prop­

erty that renders half-integer spiral phase plates interesting for studying two photon 

entanglement. Choosing two orthogonal orientations provides an orthonormal, two­

dimensional basis which describes a dichotomic subspace of the OAM space (Aiello 

et aI., 2005). The integer part of the OAM does not enter the overlap probability and 

by using half integer spiral phase plates with two orthogonal orientations the infi­

nite number of dimensions in the OAM space is projected onto two dimensions. This 

opens the possibility to use the orientations of the spiral phase plates in a Clauser­

Home-type inequality as proposed by Aiello et al. (2005). This is, however, a differ-
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o 7C 27C 0 7C 271 

Figure VI.2 - Phase profile for holograms with integer and fractional phase steps. a) shows 

the phase profile of exp (imq.» with m = - 2. b) shows the phase profile of exp(iMq.» with 

M = - 1.7. An additional discontinuity is visible in the latter, where the phase jumps by less 

than 2n. The orientation of this discontinuity corresponds to the orientation of the step in the 

spiral phase plates. 

ent setup from a continuous variation of the relative orientation f3 which has been 

studied by Oemrawsingh et al. (2005). 

2.2 Fractional phase steps with holograms 

The use of spatial light modulators to produce holograms with fractional phase 

steps has first been reported by Leach et al. (2004b). When compared to an integer 

phase step hologram, a hologram with a fractional phase step shows an additional 

radial discontinuity, where the phase jumps by an amount smaller than 2n (see fig­

ure (VI.2)). The orientation of this discontinuity corresponds to the orientation of 

the step in the spiral phase plates. To displace different orders of diffracted beams 

the phase profile of a blazed grating is added to the phase ramp via a modulo 2n 

radian addition. This creates the characteristic fork dislocation (see Ch. II). For a 

fractional phase step the number of prongs is given by the modulus of the nearest 

integer. The additional radial phase discontinuity is clearly visible in the fork dislo­

cation pattern (see figure (VJ.3) on the following page). Changing the orientation of 

the phase step in the spiral phase plates simply corresponds to rotating the whole 

spiral phase plate. For holograms, the orientation of the phase discontinuity and the 

direction of the grating can be changed independently. Rotating the whole hologram 

including the grating would not only change the orientation of the phase disconti­

nuity but also the direction of the angular displacement for the different order of 

diffraction. Leaving the alignment of the grating vertically while changing the ori­

entation of the radial phase discontinuity results in a hologram different from those 

shown in figure (VI.3) on the next page with a different angle between radial discon­

tinuity and the primary direction of the grating. With help of these holograms with 

fractional phase steps Leach et al. (2004b) confirmed theoretical predictions of Berry 

(2004) about the vortex structure emerging from fractional phase steps. The analysis 

of the optical vortices is twofold; first the field amplitude behind a phase compo­

nent with an integer phase step is written as a superposition of plane waves, then 
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Figure VI.3 - Phase profiles for holograms with fractional phase steps. The phase profile 

includes a blazed grating to displace different order of diffraction. a) shows the phase profile 

for M = -1.7. The fork dislocation has two prongs as -2 is the nearest integer. b) for M = 

1.1 there is only one prong and the phase profile is only slightly different from m = 1 (see 

figure (Il.5) on page 30). c) for M = 3.5 three prongs are clearly visible and a fourth one is 

forming. Here, the radial discontinuity corresponds to a rr phase jump. 

the wave emerging from a fractional phase step is expressed as a superposition of 

waves emerging from integer phase steps. In the following we are reproducing some 

important results from Berry (2004), to which we will refer later in this section when 

we apply our fundamental theory to the propagation of fractional modes. 

The superposition of the propagating wave into plane waves with a transverse 

wavevector K can be written as 

'fm(r) = J 1 dKam(K) exp [i (R. K + zJl- K2)], (VI.10) 

where K = I K I and the overall wavenumber k has been set to k = 1. Waves with K > 1 

are evanescent, but they are included in the superposition, because they originate 

from the on-axis singularity and they are needed to describe the singularity correctly 

(Roux, 2003). The Fourier coefficients am (K) are given by 

1 J~ Im\( -1)lml am(k) = -2 dRexp[i(K·R+mtp)= 2 2 exp(imtpk), 
47T R 7TK 

(Vl.ll) 

where tpk the azimuthal angle in a polar representation of K. The propagating wave 

can be given in the exact form and in the paraxial approximation by choosing the 

respective propagation factor (see section II.4 on page 16). For the exact wave this 

leads to 

lo
OO dK 

'fm(r) = exp(imcp)\m\ -Ilml(KP) exp(izJl- 1(2), 
o K 

(VI.12) 

where III denotes the Bessel function of the first kind (Abramowitz & Stegun, 1974). 

In the paraxial approximation VI - K2 is replaced by 1 - K2/2 and the form of the 
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wave changes to 

1/Jm(r) = exp[i(mIP + z)Jlml (IX> dK Jlml(KP) exp{ -iz~ /2), 10 K 

= exp[i(mIP + z)Pm( Jz). (VI.13) 

On manipulating the integral in Eq. (VI.13) we can give an expression for the Pm in 

closed form in terms of Bessel functions (see App. VI.D): 

For even values of m the expression for the Pm contains Bessel functions of half­

integer order, which can be expressed in terms of finite trigonometric sums (Abramowitz 

& Stegun, 1974). It is worth noting that the wave in the paraxial integration (see 

Eq. (VI.13» does not contain evanescent waves. 

Waves emerging from fractional phase steps are treated as a superposition of 

waves from integer phase steps. The superposition is determined by the Fourier se-

ries: 

(
.M ) _ exp{iMrr) sin(Mrr) ~IX> exp(imIP) 

expl cp- M ' rr -m 
(VI.1S) 

m=-IX> 

where M = m + ll' with m E Z and 1l E [0,1). The exact wave emerging from a 

fractional phase step is thus given by: 

'f M(r) = exp(iMrr) sin(Mn) 
rr 

IX> 
~ 'fm{r) 

M-m· 
m=-IX> 

The corresponding wave in the paraxial approximations is: 

( ) 
_ exp[i(z + Mrr) sin(Mrr) ~ exp(imq>)pm(p/ JZ) 

1/JM r - ~ M . rr -m m=-IX> 

(VI.16) 

(VI. 17) 

One quantity of interest is the OAM mean M of light emerging from a fractional phase 

step. For the initial wave exp(iMcp) in Eq. (VI.1S) the OAM mean can be calculated 

using the contour integration method to evaluate sums (see App. A). We present here 

the final result which has been reported by Berry (see (Leach et al., 2004b»: 

(VI.1S) 

We will derive an identical result in the next section where we present a fundamental 

theory for fractional OAM based on the generalisation of the quantum theory of ro­

tation angles by Barnett & Pegg (1990). The OAM mean of the propagated wave will 

be examined in a later section to compare the measured and simulated results from 

Leach et al. (2004b) with our numerical calculation of the propagated wave emerging 

from a fractional phase step. 
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3 Generalised theory for fractional OAM states 

In this section we present the quantum theory of fractional OAM. From a gen­

eralised expression for OAM states we are able to calculate the overlap of two such 

states. This expression can be specialised to the case, where the fractional value M is 

identical for both states and the relative orientation f3 can be varied over a 2rr radian 

interval. These results will be compared with results from Oemrawsingh et al. (2005). 

From the general expression for the overlap amplitudes we derive the decomposition 

of fractional OAM states into the OAM basis. It is shown that states with fractional 

OAM form an alternative basis for the OAM state space, if the fractional part and the 

orientation are kept fixed. 

3.1 Construction of fractional OAM states 

The properties of the angle operator are rigorously derived in the arbitrarily large, 

yet finite state space of 2L + 1 dimensions (Barnett & Pegg, 1990) which has been in­

troduced in chapter III. This space is spanned by the OAM states 1m} with m ranging 

from - L, - L + 1, ... ,L. Accordingly, the 2rr radian interval [00,00 + 2rr) is spanned 

by 2L + 1 orthonormal angle states IOn} with On = 00 + 2rrn/(2L + 1). Here, 00 de­

termines the starting point of the interval and with it a particular angle operator tPe. 
Only after physical results have been calculated within this state space L is allowed to 

tend to infinity, which recovers the result of an infinite but countable number of basis 

states for the OAM and a dense set of angle states within a 2rr radian interval. The 

analysis of fractional OAM is conducted in this finite dimensional space. After we 

have calculated expectation values or probabilities we give final results in the limit of 

L ---t 00. 

A quantum state with fractional OAM is denoted by 1M), where M = m + Il 

with m as the integer part and Il E [0,1) as the fractional part. Choosing 'fractional' 

over 'non-integer' follows the terminology in earlier work, but Il can take on every 

real number between zero and one and not just rational numbers. This distinction, 

however, is not relevant for all practical purposes. Such a state can be created using 

holograms (Leach et al., 2004b) or spiral-phase plates (Oemrawsingh et a1., 2004b). 

The angle decomposition of 1M) is given by: 

2L 

1M) = (2L+1)112:Lexp(iMOn)IOn), 
n=O 

2L 

= (2L + 1)1/2:L exp(imOn) exp(iIl8n)18n). 
n=O 

(VI.19) 

In general exp(iIl0n) will be a multivalued function, but a common way to render 

a multi-valued function single-valued is the introduction of a branch cut (Conway, 

1978), which restricts the range of the function. Usually the branch cut is chosen to be 

along the negative real axis in the complex plane, such that the restricted function has 

no discontinuities (see App. VI.A). In our case we would like to choose the position 

of the branch cut a, that is the position of the discontinuity in the function exp(iIl0n), 

independently of 00, the starting angle of the 2rr radian interval. For that we intro-
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Figure VI.4 - Graph of the phase discontinuity in fractional orbital angular momentum states. 
The position of the discontinuity It is chosen independently from the starting angle of the 2rr 
radian interval, on which the angle is defined. In the state space 'f the angle is a discrete 
variable with 2L + 1 angle eigenstates 18n), n = 0, ... ,2L (see Ch. III). 

duce an integer-valued function 1«(6n ) which takes on the values 1 and 0, depending 

whether 8n is smaller or greater than a: 

{ 
1 60 < 8n < 80 + a, 

/«(6n) : {6n }n=0, ... ,2L ---+ {a, I}, en ...- 0 
60 + It < en < 80 + 27f, 

(VI.20) 

where a E [0,2rr). The effect can be seen in figure (VI.4). We should note that ac­

cording to the mathematical definition we do not create a branch of the multivalued 

function, as we explicitly include the discontinuity. With this construction the frac­

tional state 1M} can be written as 

(VI.2I) 

The factor exp( -illa) ensures that the fractional OAM state remains in the same 

'branch' independent of the value of a. The fractional OAM state IM(a)} depends 

now on the orientation of the discontinuity It. 

3.2 Overlap of fractional OAM states 

The overlap of two states with fractional values of OAM and two different ori­

entations is given by (M'(a')IM(a)}. It is possible to introduce a unitary operator 
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Um(f3), f3 E [O,2rr) which formally rotates the position of the discontinuity by writing 

Um(f3)IM'(a)) = exp[i(m - m')f3JIM'(a $ (3)). (VI.22) 

The addition a $ f3 is required to yield a result in the range [O,2rr). This can be 

achieved by a modulo addition in the form a $ f3 = a + f3 mod 2rr. The set of op­

erators {Um(f3)}~E[O,2rr) forms a one-parameter group under multiplication with the 

continuous parameter f3 (see App. VI.B). On applying the operator Um/( -a') to the 

state IM(a») and CI~/( -a') to (M'(a')1 the orientation of the states in the overlap is 

altered such that one orientation is zero and the other is equal to the difference of the 

original orientations. This yields 

(M' (a') IM(a») = (M' (a') I CI~, ( -a') Uml ( -a') IM(a»), 

= exp[(i(m - m')a'J(M'(O)IM(f3»), 
(VI.23) 

where we have set f3 = a $ (-a'). The moduli of the rotated and unrotated overlaps 

are the same so we proceed in calculating (M'(O)IM(f3») only. With the definition of 

the fractional OAM state in Eq. (VI.21) on the previous page the overlap is given by 

(M' (0) IM(f3») = ex~i~~(3) t exp[i(M - M')9nl exp[iIl2rrf~(On)J, 
n=O 

(VI. 24) 

where we have used the fact that liOn} }n=O, ... ,2L is an orthonormal set (see Eq. (III.10)}. 

The sum in the above equation (VI.24) can be split in two parts by introducing an 

index N with ON < f3 ~ ON+l corresponding to the different cases in the definition of 

f~ in Eq. (VI.20) on the previous page: 

2L ] + L exp[i(M - M')8n . 
n=N+l 

(VI.25) 

On substituting the expression for the angle On in Eq. (111.9) on page 43 it is possible 

to evaluate the sums using geometric progression (see App. VI.C): 

(M'(O)IM(f3») = exp( -i1lM exp[i(M - M')Ool 
2L+1 

X exp(iu2rr). 2L+1 
[ 

1- exp[i(M - M') 2rr(N+l)1 

r 1 - exp[i(M - M') 2l~lJ 

exp[i(M - M')2rr2~r)1- exp[i(M - M')2rrJ] 

+ 1 - exp[i(M - M'hl~11 . 

(VI.26) 

The overlap is a physical result and we can take the limit of L -t 00 by expanding the 

exponentials in the denominators. In this limit the set of angles {On }n=O, ... ,2L becomes 
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Figure Vl.S - Plot of the overlap probability for two general OAM states 1M) and 1M') for 
three different values of the difference in the orientation f3. a) f3 = 0: For M - M' = K E Z the 

overlap probability is independent of the particular values M and M' . b) f3 = n /2: The overlap 
probability generally depends on the fractional values, but does not reach zero for M = M'. c) 
f3 = n: For M = M' and l' = f/' = 1/2, the overlap probability reaches zero. 
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d . f l' 27r(N+l} l' (J f3 dense an one can wnte or ImL--+oo 2L+1 = ImL-+oo N+l = : 

(M'(O)IM(f3)) = exp( -illf3)ie7~(~ ;;,~~(Jol 
x {exp(iIl2rr) [1 - exp[i(M - M')f3J] 

(V1.27) 

+ [exp[i(M - M'}f31 - exp[i(M - M'}2rrlJ} . 

From this expression it is possible to calculate the modulus square of the overlap 

(M' (0) I M (f3}) with help of several trigonometric identities: 

I(M'(0)IM(f3))12 = (M _ ~'}2rr2 [Sin2(Mrr) + sin2 (M'rr) 

- 2cos[(M - M')(rr - f3}] sin (Mrr) sin(M' rr}] . 
(V1.28) 

The overlap probability is plotted for different values of f3 in figure (VI.5) on the pre­

vious page. For ~ = 0 the plot shows that there are parallel lines of equal overlap 
probability for M - M' = K E IR. The overlap probability along these lines is given 

by sin2(rrK)/(rr2K2) and does not depend on the particular values of Il and 1l'. For 

~ = rr /2 there are primary maxima at M = M' = m E Z and secondary maxima at 

M - M' = ±2, with 1l,1l' = 1/2. There are also further local maxima, at half-integer 

pairs of M, M'. Along the diagonal M = M the overlap probability is Significantly 

lower at 1l'1l' = 1/2 but not equal to zero. This is in contrast to the case of ~ = rr 
where the overlap probability reaches zero for M = M' with 1l, 1l' = 1/2. 

This can be seem more clearly by considering the particular case of M = M'. On 

expanding the exponentials in Eq. (VI.27) for M - M' -+ 0, the overlap amplitude is 

given by 

(M(O)IM(M) = trr (exp(iIl2rr) -1) + 1. (V1.29) 

This result can be compared to the approach of modelling fractional DAM states by 

Demrawsingh et al. (2004a) (see section 2.1 on page 125). The resulting overlap prob­

abilities are identical: 

(V1.30) 

The overlap probability only depends on the fractional part Il and the relative ori­

entation f3 and not the integer part m. In figure (V1.6) on the next page the overlap 

probability is plotted as a function of ~ for different values of 1l. Only for Il = 1/2 

does the overlap probability reach zero for ~ = rr. 

3.3 Orbital angular momentum distribution of fractional states 

The expression for the general overlap of two fractional angular momentum states 

can be specialised to yield the coefficients in an integer OAM decomposition of frac­

tional DAM. By choosing M' = m' E Z we can evaluate the probability amplitudes 
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Figure VI.6 - Plot of the overlap probability for two fractional orbital angular momentum 
states with M = M' as a function of the relative orientation {l The overlap probability reaches 
zero for fl = 1/2 and f3 = 1f (d. Oemrawsingh et al. (2004a) and Eq. (VI.9) on page 127). 

Cm' [M(,1)] = (m' (0) IM(,1)) from Eq. (VI.27) on the preceding page: 

cm,[M(,1)] = (m'IM(,1)) = exp( -i~,1) iexr!i~ = ::?Oo] 
(VI.31) 

x [exp[i(M - m'),1] (1 - exp(i~27t))] . 

Only the complex argument of the probability amplitudes cm,[M(,1)] depends on the 

relative orientation; the probabilities Pm,(M), given by the modulus square of the 

probability amplitudes, are independent of ,1: 

(VI.32) 

Integer DAM states form an orthonormal basis, that is they obey (mim') = bmm' for 

m, m' E Z. This particular result is recovered for the DAM probabilities Pm' (M) from 

Eq. (VI.31). For M = m E Z and m =F m' the fractional part ~ is zero resulting in a 

vanishing DAM probability. For M = m', we can determine the value of Pm' (m') by 

the limiting procedure: 

(VI.33) 

For integer values of M the OAM distribution is thus singular, consisting of a single 

non-vanishing probability at M = m'. For fractional values of M, however, the prob­

abilities are peaked around the nearest integer to M, as can be seen in figure (VI.7) on 

the following page. 
Owing to the completeness of the DAM basis states 1m'), the sum of the the prob-
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Figure VI.7 - Plot of the angular momentum distribution for fractional states. The distri­
bution has a peak at the nearest integer to M. For Il = 0.5 this results in two peaks of equal 
height at the two neighbouring integers. Also, the spread in the distribution is determined by 
the fractional value fl. In b) for Jl = 0.1 the distribution is concentrated at m' = 1 and only the 
nearest integers m' = 0,2 have a probability visibly different from zero. In c) for Jl = 0.5, the 
distribution has the widest spread. 
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abilities Pm' (M) adds to unity: 

~ P () ~ 1 - cos{2Mn) _ 1 
~ m' M = ~ (M _ m')22n2 - , 

m'=-oo m'=-oo 

(VI.34) 

where we have used cos{21lrr) = cos{2Mrr). The relevant summation can be exe­

cuted using the contour integration method (see App. A on page 166), which yields 

(VI.3S) 

On using trigonometric identities this shows that the probabilities in Eq. (VI.34) sum 

indeed to unity. In a similar way the mean value of the OAM can be calculated: 

- = ~ 'p ,(M) = 1- cos(2Mn) ~ m' 
M L- m m 2n2 ~ (M-m')2' 

m'=-oo m'=-oo 

(VI.36) 

In this form, however, the summation cannot be evaluated using the contour integra­

tion method directly, because the overall expression does not fall off as m'-2 for large 

Im'l (Stephenson & Radmore, 1993) (see App. A). By splitting the sum at m' = 0 and 

substituting m' ---+ -m' in the sum from m' = -00 to m' = 0 we can transform the 
summation into a form which falls off as m,-2: 

00 m' 00 m,2 00 m,2 
L {M _ m')2 = 4M L {ml2 _ M2)2 = 2M L {m'2 _ M2)2' 

m'=-oo m'=O m'=-oo 

= 2M ( 1£2 _ n cot(M1£)) . 
2sin2(Mn) 2 M 

(VI.37) 

This results in an OAM mean which is equal to M only at integer and half-integer 

values of M (d. Eq. (VI.18) on page 130): 

M = M _ Sin~~n) . (VI.3S) 

A plot of the OAM mean as a function of M is given in figure (VI.8) on the next page. 

The OAM variance, however, tends to infinity 

(VI.39) 

While the second term is the square of the mean value and therefore finite, the sum­

mation in the first term is divergent: 

00 ml2 00 00 2M~ 

L {M-m')2 = L 1+ L {M-m')2 
m'=-oo m'=-oo m'=-oo 

(VI.40) 

The first sum causes the divergence whereas the second and third sum have been 

calculated in the sum of the probabilities (see Eq. (VI.34» and the OAM mean (see 

Eq. (VI.36» and are finite. From a more general point of view it is not surprising 
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Figure VI.8 - Plot of the angular momentum mean value for fractional angular momentum 

states. Only at integer and half integer values of M is the angular momentum mean Jiif. equal 

to M. In general the relation between Jiif. and M is given in Eq. (V1.36). 

that the OAM variance is divergent. The discontinuity in the phase leads also to a 

discontinuity in the angle wavefunction. For such a discontinuous wavefunction the 

mean square OAM will be divergent as demonstrated by Pegg et al. (2005). This is 

due to the singularity in the derivative, which also causes the rectangular apertures 

from the previous chapter to have an infinite inferred conditional variance (d. sec­

tion (4.3.1) on page 110). 
The question of the OAM mean value for fractional states will be discussed also 

in the next section, where we calculate the propagation of fractional OAM beams. 

3.4 Transformed basis 

The spiral phase plate operator 5 (tt, M') introduced by Oemrawsingh et al. (2004a) 

is unitary and symmetric (Aiello et al., 2005). Therefore, the basis of OAM states 

{1m) }mEZ can be transformed to a different basis {I(m + M')(tt)) }mEZ with help of 

the unitary operator S(a, M'). This transformation is in part a rotation of the basis, not 

unlike rotating a canonical basis in a Euclidean space, but it is worth noting that the 

rotation only becomes apparent for fractional OAM. The basis of integer OAM states 

{1m) }mEZ is left invariant by a rotation around a. Owing to the unitarity of S(a, M') 

the transformed basis {I(m + M')(a)) }mEZ is also orthonormal and complete. 
In the construction of states with fractional OAM in section VI 3.1 we have not 

introduced an operator to generate states with fractional OAM from states with in­

teger OAM. We thus cannot show that a corresponding operator in our approach 

is unitary and symmetric. But we can show that the set of fractional OAM states 

{I(m + M')(a))}mEZ, which is obtained by applying the spiral phase plate opera­

tor S(/X, M/) to the canonical basis of the OAM space {1m) }mEZ, is orthonormal and 
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complete. We prove these results in the arbitrarily large yet finite state space 'I' in­

troduced in chapter III. The finite number of dimensions requires a bit more care in 

the operation of the spiral phase plate operator S(IX,M'), where M' = m' + ]4'. This 

operator not only adds a fractional part ]4' to the DAM, but also changes the inte­

ger part by m'. To ensure that the transformed basis is again fully contained in the 

state space '1', the addition has to be calculated such that values of m + m' > L are 

mapped to m + m' - (2L + 1). Correspondingly values of m + m' < - L are mapped 

to m + m' + (2L + 1). The fractional value fl' E [0,1) is unaffected by this restriction. 

With the particular form of adding to the integer part of the OAM every operator 

S(<<,M') can be treated as an operator with M' = ]4 E [0,1), that is with an inte­

ger part equal to zero. In the state space 'I' the transformed basis is thus given by 

{1m + fl(<<) }m=-L.L+l •...• L· To change the absolute orientation of the fractional states 

we make use of the unitary operator Um(lX) which in contrast to the spiral phase plate 

operator S{IX, M') only rotates the fractional states and does not change the DAM (see 

App. VI.B). We first show that the transformed basis states are orthonormal. In the 

transformed basis the orientation is always the same which is why we can change the 

relative orientation to zero with help of the unitary operator U«: 

(m' + p)(<<)I(m + p)(IX) = (m' + p)(IX)IU~,( -1X)Um,( -1X)I(m + p){IX), 

= exp[-i(m' - m)lX] (m' + p)(O)I(m + p)(O) = c5mm'. 

(VI.41) 

The orthonormality follows from Eq. (VI.27) on page 135 for m =I m' and from 

Eq. (VI.29) on page 135 for m = m'. For the completeness of the set {1m + p (IX) }mEZ 

we have to show that the sum of the projectors I (m + ]4) (IX) ) ( m + p) (IX) I is equal to 

the identity operator: 

L 

L I(m + fl)(IX)(m + p)(IX)1 = 1. (VI.42) 
m=-L 

By acting on the sum with the operator Urn ( -IX) from the left and with U~ ( -IX) from 

the right we can change the orientation in the fractional states to zero: 

L 

1 = U~ (-«)lUt - IX) = U~( -IX) L I(m + p){IX» (m + p )(IX) IU~ (-IX), 
m=-L 

L 
(VI.43) 

= L I(m + p)(O»(m + p)(O)I· 
m=-L 

To prove this result we make use of the decomposition of fractional OAM states in 
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Eq. (V1.21) on page 132: 

L 1 2L 

11. = L 2L+1 L exp[iM{6n -6n,)]16n )(6n,l, 
m=-L n,n'=O 

~ 2L ~ 1 J:XPIi~ (9. - 9., )]19.) (9., I JL exp lim 21r2~ .; ;') 1 ' (VI.44) 

2L 2L 

= _1_ L exp[ill{9n - 6n, )]19n )(9n,I{2L + l)onn' = L 16n}{6n l· 
2L + 1 n,n'=O n=O 

In the state space 'I' the set of angle states {16n) hEN is complete which concludes the 

proof of the completeness of the transformed basis {I(m + Il)(<<)) }mEZ' This estab­
lishes formally the equivalence between the spiral phase plate operator S{«, M') and 

the fractional orbital angular momentum states I (m + fl) (<<) ). In the next section we 
will see that our approach to fractional orbital angular momentum is also applicable 

to the propagation of modes emerging from a fractional phase step. 

4 Propagation of fractional modes 

In this section we apply the theory of fractional OAM to calculate the propaga­
tion of a light beam after passing an optical component which changes the OAM by a 

fractional value M. The input is a Gaussian with zero OAM and we will use a decom­

position in terms of Bessel beams to calculate the propagation .of the emerging beam 

in the paraxial and non-paraxial regime. 

4.1 Bessel decomposition of fractional modes 

In chapter II we have presented Bessel beams as one form of light beams carry­

ing OAM. One interesting property of Bessel beams is that they are solutions to the 

paraxial wave equation as well as the Helmholtz equation. By changing the expres­

sion for the longitudinal wavenumber we can switch between the different solutions 

in the same way as Berry (2004) in his analysis of waves evolving from fractional and 

integer phase steps (see section 2.2). But in contrast to this analysis we consider a 

Gaussian input beam with a finite beam width woo The beam emerging from spiral 

phase plate can thus be written as 

'I'{p, lp,z = 0) = exp (- p22) exp{iMlp). 
2wo 

(VI.4S) 

Another advantage of Bessel functions as solutions to the exact and paraxial wave 

equation is that the dependence on the radial and longitudinal coordinates factorises. 

We thus can express the Gaussian beam directly behind the phase step in a superposi­

tion of Bessel beams with different transverse wavenumbers K. The propagated wave 

is obtained by multiplying each term in the superposition with the adequate propaga­

tion factor for the exact or paraxial form. The superposition of Bessel beams is specific 

for every integer value of the OAM and the decomposition of the wave behind a frac-
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tional phase step requires a summation over the integer values (see Eq. (VI.1S) on 

page 130): 

00 

'f'(p,q>,z = 0) = L cm,[M(tJ)]exp(im'q» f dK dm'(KHm' (Kp), 
m'=-oo 

(VI.46) 

The coefficients cm,[M(Ml are given by the overlap between the integer and fractional 

OAM states (m'(O)IM(tJ») (see Eq. (VI.31) on page 136). This follows on multiplying 

both expressions for 'f'(p, q>, z = 0) in Eqs. (VI,4S) and (VI.46) by exp( -im" q» and 

integration over q>. The decomposition of the radial part is given by: 

(VI.47) 

which has to be fulfilled for every m'. The coefficients dm'(K) can be calculated using 

the Fourier-Bessel theorem (see App. VI.D): 

(VI.48) 

By multiplying both sides in Eq. (VI.47) by 1m' (K' p) and integration over p we find 

that the coefficients dm'(K) are given by the integral: 

(VI.49) 

The solution of this integral can be written in terms of modified Bessel functions Iv 
with a half-integer order v (Gradshteyn & Ryzhik, 20(0). For all positive half-integer 

orders the modified Bessel functions increase exponentially. This behaviour changes 

for v = - i and v = - ~ which renders the integral expression for the coefficients in 

terms of modified Bessel functions invalid for m' $ -2. We therefore have to evaluate 

the integral in Eq. (VI.49) for negative values of m' separately by using 1-m,(KP) = 

(-l)m'Jm,(KP) (Stephenson & Radmore, 1993). The coefficients in Eq. (VI.49) may 

thus be written as 

m' < 0, 

m' ~O. 

(VI.SO) 

The coefficients dm, show the same behaviour on inversion of the index m' as the 

Bessel functions 'm'; the coefficients for negative m' are related to the coefficients with 
positive m' by d_ m, = (_l)m' dm,. This is why in figures (VI.9) and (V1.10) on the next 

page the coefficients dm, are plotted only for positive m'. From Eq. (VI.SO) one can 

see that the coefficients scale linearly with the beamwaist woo For large values of K 

an asymptotic expansion of the modified Bessel functions is advantageous for the 

numerical evaluation (see App. VI.E). 

On substituting the coefficients in Eq. (VI.46) the wave emerging from a fractional 
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phase step is determined at z = O. To calculate the propagated wave we have to add 

the appropriate propagation factor in the integral in Eq. (VI.46) on page 142. For the 

exact form the propagation factor is given by exp(h!k2 _JC2z) and the propagated 

wave reads as 

Y(p, cp, z) = t Cm' [M(~)] exp(im' cp) looo dJC dlm'l (JC)Jlm'l (JCp) exp(hlk2 - JC2z). 
m'=-oo 

(VI.51) 

A distinction between negative and positive values of m' is not necessary in this for­

mulation. For negative m' the alternating factor (_l)m is compensated by the al­

ternating sign of the Bessel functions J-m'(JCP) = (-l)m'Jm'(ICP). The integration 

boundaries are set from zero to infinity which includes evanescent waves for" > k. 
As pointed out by Roux (2003) the evanescent components are necessary to describe 

the singularity correctly (see section 2.2). But it is worth noting that the character of 

the integral changes at" = k, where the square root turns imaginary and the exponen­

tial changes from an oscillating to a decreasing behaviour. In the paraxial solution, 

where the propagation factor is exp[ik(l - IC2 / (2~)z] this distinction does not exist. 

The z dependent term exp( ikz) in the propagation factor can be written in front of the 

integral, which gives for the paraxial solution 

00 

t/J(p, cp, z) = L cm,[M(~)] exp(im' cp) exp(ikz) 

m'=-oo (VI.52) 

The integrals for the exact and paraxial solution are solved numerically to give the 

intensity and the phase profile of the propagated wave. The number of contributing 

integer orbital angular momentum modes is restricted in the numerical calculation. 

Only modes with ICm,[M(~)lI > 10-4 are taken into account. The numerical inte­

gration of highly oscillating functions is not trivial. This is why we compare our 

numerical results to results obtained by Berry (2004) in the next section. 

4.2 Comparison with Berry's result for integer phase steps 

The integrals in the expressions for the exact and paraxial solutions are calcu­

lated numerically. In particular for large values of z , when the integrand oscillates 

rapidly, the numerical algorithm becomes computationally demanding. For the exact 

solution this problem is restricted to the first part of the integral, where JC < k. The 

evanescent part with JC > k contains a quickly decreasing factor which in tum renders 

the semi-infinite integral convergent. For the paraxial solution the problem is more 

prominent. The solution is given as a semi-infinite integral over a highly oscillating 

function. The only converging factors are the coefficients dm, (IC), but for larger values 

of m' the coefficients tend to zero more slowly. For these reasons it is not guaran­

teed that the adaptive numerical algorithms used in the calculation of the integrals 

give reliable results. We therefore compare our numerical calculations to analytical 

and numerical results from Berry (2004) for integer phase steps. In his article Berry 

presents the intensity profile of a propagated wave emerging from a phase step with 
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m = 1 for different values of z. As Berry considers a plane wave incident on the 

spiral phase plate, we approximate this setup with a very large beamwaist for the 
incident Gaussian beam in our approach. We choose a beamwaist of Wo = 1000000 

A/(2n). For visible light with a wavelength of roughly one micron this corresponds 

to a beamwaist of about 1 decimetre. 
The profiles are compared in figure (VI.ll) on the next page. The values for Berry's 

results are manually determined from the graphs in the article. To plot the graphs for 

different propagation distances on the same scale the radial position p is divided by 

the square root of z. One can see from figure (VI.ll) on the following page that the 

agreement is excellent for z = 1,5,200 and that there is a small difference between our 

results and Berry's results in the graph for z = 50. The reason for this discrepancy 
is not known, but the values follow a similar behaviour with a relative difference of 

under 3%. In Berry's approach the paraxial solution is given in closed form in terms 

of modified Bessel functions (see Eq. (VI.13) on page 130). The fact that the numerical 

integration of Eq. (VI.52) on the preceding page reproduces analytical results shows 

the accuracy of our integration method. 
It is interesting to examine, why the two different expressions for the exact and 

paraxial wave give similar results. If we compare Eqs. (VI.12) and (VI.51) it be­

comes obvious that the coefficients dm, (K) in our approach carry the dependence on 

the beamwaist Woo In Berry's expression the coefficients are replaced by I/K, but for 

large Wo and m' = 1 the behaviour of dl(K) is similar to I/K (see figure (VI.10) on 
page 143). The integrands in Eq. (VI.12) on page 129 and Eq. (VI.51) on the previ­

ous page are therefore similar. For other beamwaists Wo and in particular for other 

values of m' the behaviour of dm'(K) is much different from I/K. For the paraxial 
solutions in Eqs. (VI.13) on page 130 and (VI.52) on the previous page the reasoning 

is similar. The fact that the general form of the coefficients dm, (K) in Eq. (V1.50) on 

page 142 can be written in terms of Bessel functions similar to Berry's paraxial so­

lution in Eq. (V1.14) on page 130 is not directly related to the agreement seen in fig­

ure (VI.ll) on the following page. It is rather a consequence of the recurrent integral 

over quadratic exponentials combined with Bessel functions. The two expressions 

describe two different entities; while Berry's expression in Eq. (VI.14) on page 130 

describes the modulus of the paraxial wave from an integer phase step completely, 
the coefficient in Eq. (VI.50) on page 142 only determines the contribution from one 

transverse wavevector to the Bessel decomposition in Eq. (VI.47) on page 142. 

The series of graphs in figure (VI.11) on the following page also compares the exact 

and paraxial solution. The paraxial solution gives an accurate result near the vortex, 

but the oscillations far from the vortex are only correctly described if the p/z «: 
1 and z » 1. Within Berry's analysis the intensity profile in the paraxial solution 

does not change under propagation in the scaled coordinate p/ Vz (see Eq. (VI.14) on 
page 130). The excellent agreement with results obtained by different means shows 

that our approach and the numerical integration of the exact and paraxial solution 

give reliable results. 
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Figure VI.II -- Plot of the intensity profile of a wave emerging from an integer phase step for 

different propagation distances. The graphs compare results reported in (Berry, 2004) to the 

Bessel decomposition in section (4.1) on page 141. 
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4.3 Propagated phase and intensity profiles 

The phase and intensity profiles are calculated for three different fractional phase 

steps with M = -1.7,1.1 and M = 3.5. All three cases are given for the exact and 

paraxial solution. For the paraxial solution and a beam width Wo = 10000 AI (2n) 

the intensity profile remains unchanged on propagation and the phase profile simply 

rotates around the propagation axis. This is why we present four profiles for the 

exact solution at the propagation distances kz = 1,5,50,200 and two for the paraxial 
solution at kz = 1,200. The graphs are presented in the series of figures (V1.12) to 

(VI.17) from page 148 on. In the intensity profiles the most obvious feature is the 
radial line of low or zero intensity. In particular for M = -1.7 (see figure (VI.12) on 

the following page) and M = 3.5 (see figure (VI.17) on page 153) the line is clearly 

visible. In the case of M = 3.5 the intensity along this line drops to zero. For M = 1.7 
the line has a lower intensity than the dark fringes but it is not equal to zero. The 
line of low intensity is framed by two lines of higher intensity, and this feature hints 

at the existence of a faint line of slightly lower intensity in the graphs for M = 1.1 
(see figure (VI.14) on page 150). The other important feature in the intensity profiles 

is the number and position of the spots of zero intensity in the centre of the beam. 

The graphs for M = -1.7, 1.1,3.5 show 2, 1 and 3 such spots respectively. These spots 

correspond to optical vortices and the number of vortices is given by the modulus of 

the nearest integer to M. While a beam with integer OAM m E Z propagates with an 

optical vortex of charge m on the axis, beams with fractional OAM only show vortices 

with charge ± 1. None of these vortices is on the axis, but the w~ole central region has 
low intensity. Another prominent feature are the diffraction fringes surrounding the 

axis, due to diffraction on the initial singularity at the centre, and the radial fringes 
in the direction of (){. due to diffraction on the discontinuity in the spiral phase plate 

or hologram. For a fractional part fl = 1/2 the contrast in the fringes is highest (d. 

figure (VI.16) with figures (VI.12) and (VI.14». 

The phases profiles show clearly that the fractional strength vortex splits up in 

vortices with strength ±1. The phase is represented by a colour circle, such that the 

colour for the phase of 0 and 21£ are identical. A vortex corresponds to a point where 

all colours meet and for a vortex of strength ± 1 a circle surrounding the vortex goes 
through the colour circle once. The sign determines if the colours run through the 

circle clockwise or anti-clockwise. The difference becomes obvious if one compares 

the vortices in figure (VI.13) on page 149 with the vortices in the figures (VI.15) on 

page 151 and (VI.17) on page 153. Although vortices are the prominent feature in 

the phase profiles it is worth noting that the profiles are not determined by the po­

sition and charge of the vortices alone. In the phase profile for M = -1.7 in figure 

(VI.13) the corresponding colours are not opposite to each other. If the field would 

solely be given by a superposition of two charge -1 vortices the phase would show 

a symmetry with respect to the connecting line. The reason for this asymmetric be­

haviour is the presence of the initial radial phase discontinuity. On propagation the 

discontinuity smoothens, which can be seen from the sequence of phase profiles for 

the exact solution in figure (VI.13). In figure (VI.13a) for kz = 1 the line is smaller than 

in the subsequent profiles in figures (VI.13b) to (V1.13d) for kz = 5,50 and kz = 200. 

From this series of phase profiles one can also see that the position of the vortices is 
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Figure VI.12 - lnten ity profiles for M = -1.7. The graphs a-d) show the exact solution for 

the propagation distance kz = 1, 5, SO, 200 respectively. The graphs e) and f) show the paraxial 

solution for the di tance kz = 1 and kz = 200. The radial line of low intensity is clearly visible. 
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Figure VI_13 - Phase profiles for M = -1.7. The graphs a-d) show the exact solution for 
the propagation distance kz = 1,5,50, 200 respectively. The graphs e) and f) show the paraxial 
solution for the distances kz = 1 and kz = 200_ The vortex with a fractional charge of M = _ 1.7 
splits up in two vortices with charge - 1. 
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Figure VI.14 - Intensity profiles for M = 1.1. The graphs a-d) show the exact solution for 
the propagation distance kz = 1,5,50, 200 respectively. The graphs e) and f) show the paraxial 

solution for the distances kz = 1 and kz = 200. For a fractional phase step close to an integer 
phase step the radial line of lower intensity is only very faintly visible. 
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Figure VI.15 - Phase profiles for M = 1.1. The graphs a-d) show the exact solution for the 
propagation distance kz = 1,5,50,200 respectively. The graphs e) and f) show the paraxial 
solution for the distances kz = 1 and kz = 200. 
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Figure VI.16 - Intensity profiles for M = 3.5. The graphs a-d) show the exact solution for 
the propagation distance kz = 1, 5,50, 200 respectively. The graphs e) and f) show the paraxial 

solution for the distances kz = 1 and kz = 200. For fractional phase steps with fl = 1/ 2 the 
intensity along the radial line drops to zero. 
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Figure VI.17 - Phase profiles for M = 3.5. The graphs a-d) show the exact solution for the 

propagation distance kz = 1,5,50, 200 respectively. The graphs e) and f) show the paraxial so­

lution for the distances kz = 1 and kz = 200. The phase profiles show the creation of additional 
vortices on propagation. 
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changing slightly. In (VI.13a) the two vortices are positioned near the x axes and the 

connecting line is only slightly tilted with respect to the axes. On propagation the 

tilting increases. The most prominent feature in the phase profiles, however, is the 

creation of additional vortices in the region of zero intensity for half-integer phase 

steps. In figure (VI.17a) for kz = lone can see that there are no additional vortices, 

while in figure (VI.17b) one pair of vortices has formed and another pair is in the 

process of forming. At greater propagating distances the series of vortex pairs moves 

closer together. From the different rotation sense for the colours it can be seen that 

the vortices in this series have alternating charge. Berry (2004) points out that the 

vortices annihilate each other differently depending if the phase step has a fractional 

part fl of just under 1/2 or just over 1/2. 

On propagation fractional modes develop a number of features which can only 

be seen in the exact solution. Although the paraxial solution approaches the exact 

solution for z ~ 00 the paraxial solution does not show the changing position of the 

integer vortices or the formation and movement in the chain of vortices. In the next 

section we discuss how the propagation affects the mean of the OAM. 

4.4 Orbital angular momentum mean of propagated fields 

The propagated field for the exact and paraxial solution are integrated numeri­

cally and we calculate the OAM mean from the propagated waves. This requires a 

suitable normalisation, as the numerical values are only calculated on a finite disc. 

The OAM mean at a propagation distance z is thus given by the integral 

Lz(z) = { dp dtp p'Y*Lz'Y x ({ dp dtp P'Y*'Y) -1 , 
~(p) ~(p) 

(VI.53) 

where pep) is a disc of radius p around the z axes. The graphs in the figures (VI.12), 

(VI.14) and (VI.16) show a smooth intensity profile without discontinuities. It is there­

fore possible to represent the OAM operator simply as derivative with respect to tp. 

The only part in the exact and paraxial wave which depends on the azimuthal an­

gle is the decomposition into OAM eigenfunctions (see Eqs. (VI.51) and (VI.52) on 

page 144). The derivative with respect to tp thus leads to a factor of im' for every term 

in the OAM decomposition. The terms together with the respective integral from the 

Bessel decomposition are summed over m' which yields Lz'l'Cp, tp,z). The complex 

conjugate of the wave 'Y*Cp, tp,z) is calculated in a similar manner from Eq. (VI.51) or 

Eq. (VI.52). In the numerical calculation of the OAM mean the product of these two 

terms is then summed over p and tp in accordance with the discretisation of the disc 

P (p). The integral over the modulus square of the wave is calculated analogously. In 

figure (VI.18) on the next page it can be seen that the numerical values deviate from 

the analytical formula in Eq. (VI.36) on page 138. The plot shows the difference in the 

OAM mean for the exact solution at the propagation distances kz = 1 and kz = 5. The 

difference in the plots for kz = 1 and kz = 5 can be explained if we assume that at 

a given propagation distance not all OAM eigenstates contribute to the OAM mean. 

This is possible because the corresponding eigenmodes to the OAM eigenstates have 

different spatial dimensions. For kz = SO,200 and the paraxial solutions the devia-
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Figure VI.18 - Plot of the difference between the analytical expression for the angular mo­

mentum mean from Eq. (VI.36) on page 138 and numerically calculated values. The continuous 
curves are based on a model to explain the differences by assuming that the numerical values 
for the angular momentum mean are calculated on a limited subset of the OAM eigenstates 

{1m) }m=-T.- T+1....T· 

tions from the analytical expression are so small that other effects are more dominant 

(see figure (VI.19) on the next page). 

By introducing an index T at which the sum over m' in Eq. (VI.36) on page 138 is 

truncated, we calculate the DAM mean on a restricted subset of the DAM eigenstates: 

_ T, 1- cos(2Mrr) ~ m' 
MT = L: m Pm,(M) = 2rr2 LJ (M _ m')2' 

m'=-T m'=-T 

(VI.54) 

An analytical expression for this sum can be found by subtracting it from the untrun­

cated sum. This leaves two infinite sums which are divergent if evaluated on their 

own. We thus have to introduce a limiting procedure to calculate the overall sum: 

__ 1-cos(2Mrr) [ ~ m' _ 
MT - 2rr2 LJ (M - m')2 

m'=-oo 

(

-(T+1)' L ,)] 

l~ L: (M:m')2 + l: (M:m')2 . 
m'=-L m'={T +1) 

(VI.55) 

The first sum is the DAM mean given in Eq. (VI.36) on page 138. The sums in the 

limiting procedure can be combined in the same way as in the original calculation of 
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Figure VI.19 - Plot of the numerically calculated mean value of the OAM for different prop­
agation distances. For smaller propagation distances not all OAM eigenmodes are contained 
within the calculated area. But for kz = 50 and kz = 200 the small differences to the analytical 
expression in Eq. (VI.36) on page 138 cannot be explained by a truncated set of modes. The 
paraxial solution does not show different values for the OAM mean at different propagation 

distances. 

the DAM mean. The resulting sum is convergent and the limit L -+ 00 can be taken: 

(VI.56) 

Considering a truncated OAM mean aims to explain the differences between the ana­

lytical and numerical values for the OAM mean qualitatively. For a qualitative expla­

nation we can approximate the integrand for T ~ Min Eq. (VI.56) by (m')-2. This 

allows us to calculate the fundamental integral in Eq. (VI.56) and hence to give an 

approximate expression for the truncated OAM mean: 

M ~ M (1 _ 2(1 - cos(2rrM)) _ sin(2rrM) . 
r Trr2 2rr (VI.57) 

From this formula and the expression for the OAM mean in Eq. (VI.36) it is possible 

to calculate the difference M - Mr. We have fitted the analytical expression on the 

numerical data to estimate the value of T for the different propagation distances. The 

numerical fit yields real numbers for T, but in figure (VI.1S) on the preceding page 

we have plotted the analytical expression for M - Mr for the nearest integer. This 

is consistent with our assumption that the deviation from the analytical value for 

the DAM mean is caused by a limitation in the number of integer OAM eigenstates 

contributing to the sum for the mean value. 
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5 Conclusion 

In this chapter we have derived a quantum formulation of fractional orbital angu­

lar momentum (OAM). This formulation is a generalisation of the quantum theory of 

rotation angles by Barnett & Pegg (1990) to fractional values of the OAM. Fractional 

values of OAM require the introduction of a branch cut in the angle representation of 

the angular momentum eigenfunctions. The orientation of the branch cut is an addi­

tional parameter in the description of fractional OAM. We have calculated the over­

lap of two general fractional OAM states. We have found that for odd half-integer 

values of the orbital angular momentum and a relative orientation of 7r radian the 

overlap is zero and the corresponding states are orthogonal. This confirms earlier 

work on fractional OAM by Oemrawsingh et al. (2004a) who consider half-integer 

spiral phase plates. On establishing an analogy between the description of these spi­

ral phase plates in terms of a unitary operator and our generalised theory of fractional 

OAM we are able to identify the orientation of the branch cut with the orientation of 

the step in spiral phase plates. 

We have applied our theory to the propagation of light beams with fractional 

OAM. For light carrying integer OAM a stable optical vortex of corresponding integer 

strength forms on the propagation axes. For fractional OAM no fractional strength 

vortices are stable on propagation, and instead a number of strength ±1 vortices are 

formed in the central region of the beam. Additionally a line of low intensity is visi­

ble corresponding to the orientation of the branch cut or the phase step discontinuity 

in the generating optical device. For odd half-integer phase ,steps a chain of addi­

tional vortices with alternating charge is formed in this region of low intensity. We 

have confirmed theoretical and experimental results regarding the evolution of opti­

cal vortices in light beams with fractional OAM. Further to existing theories we have 

calculated the propagated fields in the paraxial and non-paraxial regime for an inci­

dent beam of finite width. The gradual formation of additional vortices in the region 

of low intensity is a phenomenon which is only visible in the non-paraxial solution. 

We have calculated the mean value of the OAM for different propagation distances. 

For small propagation distances the numerical values differ from the analytically cal­

culated values. To explain these differences we assume that for small propagation 

distances not all OAM eigenmodes are contained in the numerical calculation. On 

calculating the OAM mean on a truncated set of OAM states and comparing the 

analytical results to the numerical values we find that our assumptions explain the 

differences accurately. 

VI.A Branch cut 

A branch of a many-valued function is a simply connected region in the complex 

plane on which the original function is continuous and single valued. The branch is 

obtained by cutting the complex plane along a simple arc starting at the origin and 

reaching to infinity. Branches of arbitrary functions can be rigorously defined over 

the branches of the logarithm (Conway, 1978). But it is possible to illustrate the idea 

behind a branch cut without going into the mathematical definition (Hahn & Epstein, 
19%). 
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The function I(z) = Vz = z1/3 has three different values for each z i- O. However, 

it is possible to construct a simply connected region not containing the origin in which 
the value of the function is unambiguously determined once a value is given at any 
point in the region. If we cut the complex plane along the negative real axis and 
include the origin in the cut, we end up with a simply connected region. The value 
of the function I(z) in this region is completely determined once we choose ?"1 = 

1, exp(i2rr /3) or exp(i47r 13). Each of these branches is single-valued if z is restricted 

to this region. Although for every z in the complex plane there is now only one value 
of 1 (z) in one branch, this does not mean, that one branch covers the whole complex 
plane. By introducing branches of the multi-valued functions we have restricted the 

range of the function I(z). The polar angle 0 in the representation z = Izl exp(iO) 
ranges either from 0 to 2rr or from -rr to 7r. Depending on the range of 0 the first 
branch with ?"1 = 1 contains numbers with their complex argument ranging from 0 
to 27r/3 or from -7r/3 to 7r/3. The second branch starts where the first ended and 
so on, until the largest complex argument in the third branch connects to the lowest 
argument of the first branch with a difference of 27r. 

VI.B Rotation operator for fractional angular momentum states 

Quantum states with fractional OAM depend on tt, the orientation of the phase 

discontinuity. To rotate the orientation we introduce a class of operators Um (M, m E 

JR, ~ E [0,2rr) defined by their action on a state with fractional OAM: 

am(~)IM'(<<)) = exp[i(m - m')~lIM(tt $ M), (VI.58) 

where ~ is the angle through which the discontinuity is rotated. The addition tt EEl ~ = 
(<< +~) mod 27r yields a result in the range [0,2rr). For m = m', that is if m is 
equal to the integer part of M, this operator is a pure rotation of the orientation «, 
but for m i- m' the rotated state acquires also a phase shift unless ~ mod 2rr = O. 
Consequently, the operator acts as identity operator if ~ is an integer multiple of 2rr. 
The eigenstates of this operator are the integer OAM states. Acting with am (M on an 

integer state 1 m), m E Z, results only in a phase shift: 

Um(Mlm') = exp[i(m - m')l>llm'). (VI.59) 

All the eigenvalues have unit modulus and the operator Urn (I» is therefore unitary 

with Um(~) = Um( -~) = Q~(~). 
From the definition of the operator in Eq. (VI.22) it is obvious that the set of op­

erators cannot form a group under multiplication for arbitrary combinations of pa­

rameters I> and m. But for a fixed m the set of operators {Um (I>)} tiE [O.2n) does form 
a one-parameter group under multiplication with the group parameter I> (Galindo & 

Pascual, 1990). As proof we show that Um (~') am (I» can always be written as Um ( '}') 
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with l' E [O,2rr): 

Om(tnOm(t3)IM'(a:)) = OmU3') exp[i(m - m')t3JIM'(a: $ 13)), 

= exp[i(m - m')(t3 + t3')J 1M' (<< $ 13 $ 13')), 

= Om (13 $ 13') 1M' (<<)). 

(VI.60) 

Therefore Om (t3')Om(t3) = Om (13 $ W) as the modulo 2rr addition 13 $ 13' is always in 
the interval [O,2rr). There is also a neutral element in form of the identity operator 

for 13 = O. Moreover, to every operator Om (13) exists an inverse element in the form 

O~(13) = Om( -13)· 
The product of two operators with the same orientation but different values for 

the fractional OAM can be combined to give 

(VI.61) 

The set of operators {Om(t3)}mEZ does not form a group under multiplication for 
13 "I O. For 13 = 0 these operators are all identity operators. 

We have introduced the operator Om (13) to facilitate the calculation of the general 

overlap (M'(<<')IM(<<») in section VI 3.2. The mathematical properties suggest, that 
the action of this operator on a state 1M' (a:)) is independent of the fractional part p'. 
A physical implementation of this operator would be an optical device with two edge 

dislocations; one to compensate the original dislocation at an angle «, the other to im­

print the new phase discontinuity at an angle « $ 13. This imp,ementation, however, 
would be specific for given fractional part p'. As the effect of the edge dislocation is 

completely specified by the fractional part p' and the orientation « it would be pos­

sible to change the orientation of the state IM'(<<)) with an implementation of the 

operator Om (13), where the integer part of M' is different from m, which causes the 

overall phase factor in definition of the rotation operator in Eq. (VI.22) on page 133. 

VI.C Geometric progression 

A geometric progression is a sequence of numbers such that any two consecu­

tive members in the sequence have a common ratio. A geometric progression can be 

written as 
a, ar, a-,2, aY3, ... , (VI.62) 

where r "I ° is the common ratio and a is a scaling factor. A sum of the numbers 
in a geometric progression is called a geometric series. A finite geometric series can 

be evaluated by the following consideration. The sum over N + 1 members of in the 

geometric progression is given by 

N 

L ar" = a + ar + a-,2 + ar3 + ... + ar" . (VI.63) 

"=0 

By multiplying both sides of the equation with (1 - r) any two consecutive terms 

other than the first or last term cancel. The sum on the right hand side is thus reduced 
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to 
N 

(1- r) Larn = a - arN • (VI. 64) 
n=O 

The geometric series starting at n = 0 can be evaluated to 

(VI.65) 

If the sum does not start at n = 0 but at different order M ~ N the geometric series 

can be evaluated by subtraction from the full series: 

(VI.66) 

The exponentials in the calculation of the general overlap of two states with fractional 

OAM in Eq. (V1.25) on page 133 are members of a geometric progression with the 
common ration exp[i(M - M')2rr/(2L + 1)]. 

Vl.D Fourier-Bessel theorem 

The Fourier-Bessel theorem is closely connected to the Hankel transform (Arfken, 

1985). The Hankel transform of order k is defined as: 

Fk(a:) = 1td/(t)} = 10
00 

/(t)h(a:t)dt, (VI.67a) 

/(t) = 1tk
1{Fk(a:)} = 10

00 
/k(a:)h(a:t)da:. (VI.67b) 

On substituting Fk(a:) into the inverse Hankel transform we obtain: 

/(t) = 10
00 

d« 10
00 

dt'/(t')h(d')h(a:t), (VI.68) 

from which we can deduce the Fourier-Bessel theorem: 

[00 1 10 d«Jn(<<t)Jn(a:t') = pb{t - t'). (VI.69) 

The connection between Hankel transforms and Fourier transforms is discussed in 

(Goodman, 2(05). 

VLE Asymptotic Expansion for Bessel functions 

The modified Bessel functions in the expression for the coefficients in the Bessel 

decomposition in Eq. (VI.50) on page 142 show a exponential increase for larger ar­

guments. Overall the coefficients dm{K) tend to zero for K -4 00 but the numerical 

calculation may cause overflow errors for large values of K owing to the divergent be­

haviour of the modified Bessel functions. By using a asymptotic expansion for large 

values of K the difficulties in the numerical evaluation of the dm{K) can be avoided. 
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For large arguments Z with larg(z)I < nl2 modified Bessel functions can be approx­

imated by the expansion 

Iv(z) ~ e~ (Pv(iz) - iQv(iz)), 
v2nz 

where Pv and Qv are given by: 

(VI.70) 

(VI.71a) 

(VI.71b) 

with J.4 = 4v2 . With help of this asymptotic expansion the coefficients dm(IC) may be 

approximated for large IC to: 

(VI.72) 

In the plots in figures (VI.9) and (VI.10) on page 143 the coefficients have been cal­

culated with the asymptotic expansion for values of ICWO > 50. The plots shows a 

smooth transition to the region where the asymptotic expansion has been used to 

calculate the values of the coefficients dm(IC). 
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VII Chapter 

Conclusions 

Orbital angular momentum (OAM) of light is still a relatively young area of research 

and although its 'foundations have been firmly established'! there are still a number 

of open questions on a fundamental level. In this thesis we have sought to investigate 

some of these questions. These question are not directly connected to each other and 

we will draw conclusions for each of them separately. In the end of this chapter we 

will put the results of this thesis in context which earlier and future work in this field. 

In CHAPTER IV we have examined four classes of special states connected to the 

angular uncertainty relation. The lower bound in the uncertainty relation for angle 

and OAM is state dependent which requires a distinction between intelligent states, 

that is states which satisfy the equality in the uncertainty relation, and minimum un­

certainty product states. In this thesis we have treated the angle as a variable which 

is strictly defined on a 2IT radian interval as outlined in chapter III. Wavefunctions in 

the angle representation which have peaks on either edge of the allowed range can 

therefore be normalised. This gives rise to two varieties of states; states having an 

angle uncertainty smaller than IT / J3 and states having an angle uncertainty larger 

than IT / v'3. The OAM eigenstates with a flat wavefunction and an angle uncertainty 

of IT / v'3 separate the small uncertainty states from the large uncertainty states. These 

states give the global minimum for the uncertainty product, but one can also identify 

constrained minimum uncertainty product (CMUP) states, which minimise the un­

certainty product for a given uncertainty in the angle or in the OAM. In this chapter 

we have discussed all four classes of states, by deriving the defining equations and 

giving their solution. Of particular interest are the extreme cases for angle uncertain­

ties either close to zero or close to the maximum of IT. For the intelligent states the 

wavefunctions of these two extreme situations are very different, because intelligent 

states only have to be continuous at the edges of the 2IT interval, but do not need to 

be continuously differentiable. But for the CMUP states, the first derivative has to be 

continuous and one might be tempted to regard the large uncertainty CMUP states as 

a shifted version of the small uncertainty CMUP states, but we have shown that this 

is not the case. The wavefunction of CMUP states with very small angle uncertainties 

approaches a Gaussian form, whereas the wave function of CMUP states with a very 

large uncertainty is approximatively given by the decaying part of an Airy function. 

This shows the importance of the choice for the particular 2IT radian interval. 

In CHAPTER V we have derived a criterion for the demonstration of an EPR para­

dox for OAM and angle. Within the derivation we have placed a particular empha­

sis on the fact that it is not possible to have infinitely precise measurements. For 

1 Allen et al. (2003) 
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the OAM these difficulties in the measurement are technical problems in a potential 

experiment, but for the angle it is inherently impossible to measure a single value. 

However, EPR paradoxes are stated in terms of apparent violations of inequalities 

and it is possible to demonstrate such a violation even for measurements with realis­

tic uncertainties. This is why in the formulation of the criterion we have used angular 

apertures which test for a range of angles. With help of these angular apertures we 

were able to conceive a measurement scheme for conditional variance for the angle. 

The measurement is designed for a down conversion experiment, in which one angu­

lar aperture is used to set a condition on the angular position of the signal, while the 

angular position of the idler is measured with help of another angular aperture. By 

using the locality and realism arguments, akin to those occurring in EPR paradoxes, 

we can infer from the conditional angle variance a conditional variance for the OAM. 

The inferred conditional variance can be compared to a measured conditional vari­

ance for the OAM. For a criterion of an EPR paradox we have to take into account that 

the influence of the condition on the conditional variance is not uniform. The crite­

rion derived in this chapter therefore also compares averaged conditional variances, 

where the average is taken over the local probability. 
In CHAPTER VI we have found a way to describe the phenomenon of fractional 

OAM within the framework of the quantum theory of rotation angles reviewed in 

chapter III. We have generalised this theory by allowing non-integer values of the 

OAM. In a decomposition into angle states fractional OAM leads to a multi-valued 

complex factor, which we are requires the introduction of a branch cut. This leads 

to additional parameter in the description of the fractional states: the orientation of 

the complex phase discontinuity. We have shown that this phase discontinuity corre­

sponds to an edge dislocation necessary in the creation of light beams with fractional 

OAM. Finally we have applied the generalised theory to numerical simulations of the 

propagation of light carrying fractional OAM. 

At the time of this thesis the scientific field of OAM of light is almost 15 years 

old. In the area of optical tweezers, where light is used to trap and manipulate small 

particles, it has become a part of technology, not only used in physics laboratories but 
also in biology and other sciences. The motivation for further research in this area 

comes from desire or necessity to manipulate the particles in more and more sophis­
ticated ways. Although this does not necessarily add to the fundamental knowledge 

on OAM, it is certainly a great success for this young area of research. This thesis, 

however, is concerned with the foundations of OAM of light and it is interesting to 

ask how the results of this thesis have enhanced our knowledge. In the opinion of 

the author it is very important to keep in mind that the OAM of light is a physical 

realisation where the variables of angle and OAM can be studied within the frame­

work of quantum mechanics. This applies in particular to the results from chapter IV. 
The theoretical work on the special states connected to the angular uncertainty prin­

ciple is not restricted to implementations with light carrying OAM. The form of the 

wavefunction for intelligent states and CMUP states will be the same regardless of 

the particular physical realisation. However, an experiment designed to distingUish 

between intelligent states and CMUP states would possibly use OAM of light. For 

such an experiment large uncertainty states with their enhanced difference between 
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intelligent states and CMUP states would be a natural choice. 
Although our criterion for an angular EPR paradox in chapter V has been de­

signed for an optical experiment, the underlying principle would still hold for a dif­
ferent physical system. But our motivation to pursue the idea of an angular EPR 
paradox is firmly rooted in the possibility to demonstrate the paradox in an optical 
experiment. EPR paradoxes can be constructed theoretically for all complimentary 
variables, but an experimental demonstration will not always be possible. It is the 

hope of the author that this experiment will be realised in the near future, because 

only then will it be possible to assess how feasible this criterion is. For future applica­
tions of this criterion as a possible signature of entanglement, it is important to keep 
the experimental demonstration as simple as possible. With the experience gained 
from performing the experiment it might be possible to construct a different signa­
ture of entanglement for OAM which is better suited for applications in quantum 

information. 
The motivation for our work on fractional OAM in chapter VI does not come from 

a possible implementation with light. Some optical experiments on fractional OAM 
have have already been performed, but the theoretical explanation lacked a connec­

tion to the quantum theory of rotation angles in chapter III. With this connection in 
place fractional OAM is placed on a sound theoretical foundation. The possibilities 
for further research in this area are many. It already connects two very different areas: 
optical vortices and the study of two-photon entanglement. It would also be very in­
teresting to use light beams with fractional DAM in connection with Bose-Einstein 

condensates. 
Finally, we hope that this fascinating field of research remains an active one. Not 

only in the search of new possible applications but also on a fundamental level. Only 
then DAM of light will be named alongside spin angular momentum and not set 

against it. 
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A Appendix 

Contour integration method to evaluate 

infinite sums 

Contour integration can be used to sum infinite series if the member of the series fall 

off sufficiently quickly. Suppose, J (z) is analytic at the integers z E Z and approaches 
zero as Iz 1-2 or faster for Iz I ---. 00. Consider now the function 

F{z) = rrcot{rrz)J{z), (A.l) 

which is devised to have simple poles at the integers n E Z with residues at these 

poles given by J(n) (Stephenson & Radmore, 1993). In addition to the poles at the 

integers from the cot( rrz) part, this function could also have poles from the function 

J(z). By construction there are no poles of J(z) at z E Z. If we integrate F(z) around 

a square SN with comers at the points z = (N + 1/2)(±1 ± i) in the complex plane, 

then this square contains 2N + 1 integers on the real axis. USiI:'g the Cauchy residue 
theorem allows us to evaluate the integral as the sum over the residues of F(z) at the 

poles of F(z) within the square SN: 

F z dz = 2rri x . i (sum of the residues at the poles of ] 
SN () 7rcot(rrz)J(z) inside the square SN 

(A.2) 

The poles of rrcot(rrz)J(z) are the integers n E Z and the poles of J(z). We can thus 
split the sum of the residues in Eq. (A.2) according to: 

i () . {~J() [sum of the residues of rrcot(rrz)J(z) at]} F z dz = 2m x ~ n + . 
SN n=-N the poles of J{z) inside the square SN 

(A.3) 

If now the contour integration of F(z) = rrcot(rrz)J(z) along the square SN vanishes 

for N -+ 00, the sum of the J(n) and the sum over the residues in Eq. (A.3) have to 

add to zero. Because I cot( rrz) 1 is bounded on SN as N ---. 00 the contour integral 

tends to zero, as J(z) falls off sufficiently quickly for Izl ---. 00. The infinite sum of the 

J(n) is thus given by: 

~ n) = _ [sum of the residues of rrcot(rrz)J{z) at] 
nf:::ooJ { the poles of J(z) . (A.4) 

If we want to sum a series with alternating signs we have to use a function F(z) = 
7rcosec(rrz) with residues at the poles z = n E N given by (-I)n J(n). The contour 

integral tends to zero for N ---. 00 because I cosec(rrz)I is bounded for Izl ---. 00. The 
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corresponding result to Eq. (A.4) on the previous page is 

f (-It fen) = _ [sum of the residues of rrcosec(rrz)f(z) ] . (A.S) 
n=-oo at the poles of fez) 

The contour integration method to sum infinite series has been used widely in this 

thesis, most often to calculate orbital angular momentum uncertainties. 

167 



BIBLIOGRAPHY BIBLIOGRAPHY 

Bibliography 

Abramochkin, E. & Volostnikov, V. (1991), 'Beam transformation and nontransformed 

beams', Optics Communications 83(1,2), 123-135. 

Abramowitz, M. & Stegun, I. S. (1974), Handbook of Mathematical Functions, Dover 

Publications, Inc., Mineola, New York. Reprint. Originally published: National 

Bureau of Standards, corrected edition, 1964. ISBN: 0-486-61272-4. 

Aiello, A., Oemrawsingh, S. S. R., Eliel, E. R & Woerdman, J. P. (2005), 'Nonlocality of 

high-dimensional two-photon orbital angular momentum states', Physical Review 
A 72,052114. DOl: 10.1103/PhysRevA.72.052114. 

Albright, J. R (1977), 'Integrals of products of Airy functions', Journal of Physics A 

10(4),485-490. 

Allen, L., Barnett, S. M. & Padgett, M. J. (2003), Optical Angular Momentum, Institute 

of Physics Publishing, Ltd., Bristol. ISBN: 0-7503-0901-6. 

Allen, L., Beijersbergen, M. W., Spreeuw, R J. c. & Woerdman, J. P. (1992), 'Orbital 

angular momentum of light and the transformation of Laguerre-Gaussian modes', 

Physical Review A 45(11),818~190. Reprinted in (Allenet al., 2003, Paper 2.1). DOl: 

O.ll03/PhysRev A.4S.81SS. 

Altman, A. R, Koprulu, K. G., Comdorf, E., Kumar, P. & Barbosa, G. A. (2005), 'Quan­

tum imaging of non local spatial correlations induced by orbital angular momen­

tum', Physical Review Letters 94(12), 123601.001: 10.1103/PhysRevLett.94.123601. 

Aragone, c., Chalbaud, E. & Salam6, S. (1976), 'On intelligent spin states', Journal of 
Mathematical Physics 17(11), 1963-1971. 

Aragone, c., Guerri, G., Salam6, S. & Tani, J. L. (1974), 'Intelligent spin states', Journal 

of Physics A 7(15), L149-L151. 

Arfken, G. (1985), Mathematical Methods for Physicists, 3rd edn, Academic Press, Inc., 

Orlando. ISBN: 0-12-059820-5. 

Aspect, A., Dalibard, J. & Roger, G. (1982a), 'Experimental Test of Bell's Inequalities 

Using Tune-Varying Analyzers', Physical Review Letters 49(25), 1804 - 1806. DOl: 

l0.1103/PhysRevLett.49.1804. 

Aspect, A., Grangier, P. & Roger, G. (1982b), 'Experimental Realization of Einstein­

Podolsky-Rosen-Bohm. Gedankenexperiment: A New Violation of Bell's Inequali­

ties', Physical Review Letters 49(2),91 - 94. 001: 10.1103/PhysRevLett.49.91. 

Barbosa, G. A. & Arnaut, H. H. (2002), 'Twin photons with angular-momentum 

entanglement: Phase matching', Physical Review A 65,053801. DOl: lO.1103/Phys­

Rev A.65.053801. 

Barnett, S. M. (2002), 'Optical angular-momentum flux', Journal of Optics B 4(2), S7-

S16. 001: 10.1088/1464-4266/4/2/361. 

168 



BIBLIOGRAPHY BIBLIOGRAPHY 

Barnett, S. M. & Allen, L. (1994), 'Orbital angular momentum and nonparaxiallight 

beams', Optics Communication 110(5-6), 670-678. DOl: doi:lO.l0l6/0030-4018(94)90269-

o. 

Barnett, S. M. & Pegg, D. T. (1989), 'On the Hermitian optical phase operator',Journal 
of Modern Optics 36(1), 7-19. 

Barnett, S. M. & Pegg, D. T. (1990), 'Quantum theory of rotation angles', Physical Re­
view A 41(7), 3427-3435. 001: 10.1l03/PhysRevA.41.3427. 

Beijersbergen, M. W., Allen, L., van der Veen, H. E. L. O. & Woerdman,]. P. (1993), 

'Astigmatic laser mode converters and transfer of orbital angular momentum', Op­

tics Communication 96(1-3), 123-132. DOl: doi:10.1016/003O-4018(93)90535-D. 

Beijersbergen, M. W., Coerwinkel, R. P. c., Kristensen, M. & Woerdman,]. P. (1994), 

'Helical-wavefrontnext term laser beams produced with a spiral phaseplate', Optics 
Communication 112(5-6), 321-327. 001: 10.1016/0030-4018(94)90638-6. 

Bell, J. S. (1964), 'On the Einstein-Podolsky-Rosen paradox', Physics I, 195-200. 

Reprinted in (Bell, 2004, Paper 2). 

Bell, J. S. (1966), 'On the problem of hidden variables in quantum mechanics', Re­
views of Modern Physics 38(3),447 - 452. Reprinted in (Bell, 2004, Paper 1). DOl: 

10.1103/RevModPhys.38.447. 

Bell,]. S. (2004), Speakable and Unspeakable in Quantum Mechan~cs, 2nd edn, Cambrige 

University Press, Cambridge. ISBN: 0-521-52338-9. 

Berry, M. V. (1998), Paraxial beams of spinning light, in M. S. Soskin & M. V. Vast­

netsov, eds, 'Singular optics', Vol. 3487, International Conference on Singular Op­

tics, SPIE, pp. 6-11. 

Berry, M. V. (2004), 'Optical vortices evolving from helicoidal integer and fractional 

phase steps', Journal of Optics A 6(2), 259-269.001: 10.1088/1464-4285/6/2/018. 

Beth, R. A. (1936), 'Mechanical detection and measurement of the angular momentum 

of light', Physical Review SO, 115--125. 

Bohm, D. (1951), Quantum Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 

Reprinted in 1989, Dover Publications, Inc., New York, ISBN: 0-486-65969-0. 

BOhm' D. & Aharonov, Y. (1957), 'Discussion of Experimental Proof for the Para­

dox of Einstein, Rosen, and Podolsky', Physical Review 108(4), 1070 - 1076. DOl: 

10.1103/PhysRev.l08.1070. 

Born, M. & Wolf, E. (1999), Principles of Optics, 7th expanded edn, Cambrige Univer­

sity Press, Cambridge. reprinted 2003. ISBN: 0-521-64222-1. 

Bouwmeester, D., Ekert, A. & Zeilinger, A., eds (2001), The Physics of Quantum Infor­

mation, Springer Verlag, Berlin. 

Carruthers, P. & Nieto, M. M. (1968), 'Phase and Angle Variables in Quantum Me­

chanics', Reviews of Modern Physics 40(2),411-440.001: O.1103/RevModPhys.40.411. 

169 



BIBLIOGRAPHY BIBLIOGRAPHY 

Conway, J. B. (1978), Functions of One Complex Variable, no 11 in 'Graduate Text in 

Mathematics', 2nd edn, Springer Verlag. 

Davis, L. W. (1979), 'Theory of electromagnetic beams', Physical Review A 19(3), 1177-

1179. DOl: 10.1l03/PhysRevA.19.1l77. 

Durnin, J. (1987), 'Exact solutions for nondiffracting beams. I. The scalar theory', Jour­
nal of the Optical Society of America A 4(4), 651. 

Durnin, J., Micelli,J. J. & Eberly, J. H. (1987), 'Diffraction-Free Beams', Physical Review 
Letters 58(15), 1499-1501. DOl: 1O.1l03/PhysRevLett.58.1499. 

Einstein, A., Podolsky, B. & Rosen, N. (1935), 'Can Quantum-Mechanical Description 

of Physical Reality Be Considered Complete?', Physical Review 47, 777-780. 001: 

http://link.aps.org/abstract/PR/v47 /pm DOl: 1O.1103/PhysRev.47.m. 

Enderlein, J. & Pampaloni, F. (2004), 'Unified operator approach for deriving 

Hennite-Gaussian and Laguerre-Gaussian laser modes', Journal of the Optical So­

ciety of America A 21(8), 1553-1558. 

Franke-Arnold,S., Barnett, S. M., Padgett, M. J. & Allen, L. (2003), 'Two-photon en­

tanglement of orbital angular momentum states', Physical Review A 65, 033823. DOl: 

1O.1103/PhysRevA.65.033823. 

Franke-Arnold,S., Barnett, S. M., Yao, E., Leach, J., Courtial, J. & Padgett, M. (2004), 

'Uncertainty principle for angular position and angular mo~entum', New Journal 
of Physics 6, 103.001: 10.1088/1367-2630/6/1/103. 

Galindo, A. & Pascual, P. (1990), Quantum Mechanics, Vol. I, Springer Verlag, Berlin. 

ISBN: 3-540-51406-6. 

Gibson, G., Courtial, J., Padgett, M. J., Vastnetsov, V., Pas'ko, V., Barnett, S. M. & 

Franke-Arnold, S. (2004), 'Free-space information transfer using light beams carry­

ing orbital angular momentum', Optics Express 12(22), 5448-5456. 

Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. (2002), 'Quantum cryptography', Re­
views of Modern Physics 74(1), 145-195. DOl: lO.1l03/RevModPhys.74.145. 

Goodman, J. W. (2005), Introduction to Fourier Optics, 3rd edn, Roberts and Company 

Publishers, Englewood, Colorado. 

Gatte, J. B., Franke-Arnold, S. & Barnett, S. M. (2006a), 'Angular EPR paradox', Journal 
of Modern Optics 53(5 - 6), 627 - 645. 

Gatte, J. 8., Radmore, P. M., Zambrini, R. & Barnett, S. M. (2006b), 'Angular minimum 

uncertainty states with large uncertainties', Journal of Physics B 39, 2791-2801. DOl: 

doi:10.l088/0953-4075/39/12/013. 

Gatte, J. B., Zambrini, R., Franke-Arnold, S. & Barnett, S. M. (2005), 'Large-uncertainty 

intelligent states for angular momentum and angle', Journal of Optics B 7,5563-

5571. 001: 10.1088/1464-426617/12/019. 

170 



BIBLIOCRAPHY BIBLIOGRAPHY 

Gouy, L. G. (1890), 'Sur une propriete nouvelle des ondes lumineuses', Compted Ren­
dus de I'Academie des Sciences 110, 1251. 

Gradshteyn, I. S. & Ryzhik, I. M. (2000), Tables of Integrals, Series, and Products, 6th edn, 

Academic Press, Inc., San Diego. ISBN: 0-12-294757-6. 

Gray, A. G. & Mathews, G. B. (1895), A Treatise on Bessel functions and their Application 
to Physics, Macmillan and Co., London. The authors do not use the notation of the 

Dirac delta distribution, which had been not yet been introduced at the time the 

book was published. 

GUhne, O. (2004), 'Charcterizing Entanglement via Uncertainty Relations', Physical 
Review Letters 92(11), 117903. DOl: lO.1103/PhysRevLett.92.117903. 

Hahn, L. & Epstein, B. (19%), Classical Complex Analysis, Jones and Bartlett Publishers, 

Boston. 

He, H., Friese, M. E. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. (1995), 'Di­

rect Observation of Transfer of Angular Momentum to Absorptive Particles from 

a Laser Beam with a Phase Singularity', Physics 75(5), 826-829. 001: 10.l103/Phys­

RevLett.75.826. 

Heisenberg, W. (1927), 'Uber den anschaulichen Inhalt der quantentheoretischen 

Kinematik and Mechanik', Zeitschrift fUr Physik 43,172. 

Hofmann, H. F. & Takeuchi, S. (2003), 'Violation of local uncertainty relations as 

a signature of entanglement', Physical Review A 68, 032103. 001: lO.1103/Phys­

RevA.68.032103. 

Holevo, A. S. (2001), Statistical Structure of Quantum Theory, no Monographs 67 in 
'Lecture Notes in Physics', Springer Verlag, Berlin. ISBN: 3-540-42082-7. 

Howell, J. c., Bennink, R. 5., Bentley, S. J. & Boyd, R. W. (2004), 'Realization of 

the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangles 

Photons from Spontaneous Parametric Down Conversion', Physical Review Letters 

92(21),210403. DOl: lO.1103/PhysRevLett.92.210403. 

Jackiw, R. (1968), 'Minimum uncertianty product, number-phase uncertainty product 

and Coherent States', Journal of Mathematical Physics 9(3),339-346. 

Jackson, J. D. (1998), Classical Electrodynamics, 3rd edn, John Wiley & Sons, Inc., New 

York. ISBN: 0-471-30932-X. 

Jauch, J. M. & Piron, C. (1963), 'Can Hidden Variables be excluded in Quantum Me­

chanics?', Helvetica Acta Physics 36, 827-837. 

Judge, D. & Lewis, J. T. (1963), 'On the commutator [Lz, q>]', Physics Letters 5(3),190. 

Kwiat, P. G., MattIe, K., Weinfurter, H. & Zeilinger, A. (1995), 'New High-Intensity 

Source of Polarization-Entangled Photon Pairs', Physical Review Letters 75(24), 4337-

4341. DOl: lO.1103/PhysRevLett.75.4337. 

171 



BIBLIOGRAPHY BIBLIOGRAPHY 

Landau, L. D. &: Lifshitz, E. M. (1975), The Classical Theory of Fields, Vol. 2 of Course 
of Theoretical Physics, 4th revised english edition edn, Butterworth-Heinemann, 

Burlington. 

Lax, M., Louisell, W. H. &: McKnight, B. (1975), 'From Maxwell to paraxial wave op­

tics', Physical Review A 11(4), 1365-1370. DOl: 10.1103/PhysRevA.ll.1365. 

Leach, J., Courtial, J., Skeldon, K., Barnett, S. M., Franke-Arnold, S. &: Padgett, 

M. J. (2004a), 'Interferometric Methods to Measure Orbital and Spin, or the Total 

Angular Momentum of a Single Photon', Physical Review Letters 92, 013601. DOl: 

10.l103/PhysRevLett.92.013601. 

Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S. &: Courtial, J. (2002), 'Mea­

suring the Orbital angular momentum of a single Photon', Physical Review Letters 
88,257901.001: 10.1103/PhysRevLett.88.257901. 

Leach, J., Yao, E. &: Padgett, M. J. (2004b), 'Observation of the vortex structure of a non­

integer vortex beam', New Journal of Physics 6,71. DOl: 10.1088/1367-2630/6/1/071. 

Loudon, R. (2000), The Quantum Theory of Light, 3rd edn, Oxford University Press, 

Oxford. ISBN: 0-19-850176-5. 

Louisell, W. H. (1963), 'Amplitude and phase uncertainty relations', Physics Letters 
7(1),60-61. 001: http://dx.doi.org/10.1016/0031-9163(63)90442-6. 

Louisell, W. H. (1973), Quantum Statistical Properties of Radiation, Pure and Applied 

Optics, John Wlley &: Sons, Inc., New York. ISBN: 0-471-54785-9. 

Louisell, W. H., Yariv, A. &: Siegman, A. E. (1961), 'Quantum Fluctuations and Noise 

in Parametric Processes. I.', Physical Review 124(6), 1646--1654. DOl: 10.1103/Phys­

Rev.l24.1646. 

Mair, A. E., Vaziri, A., Weihs, G. &: Zeilinger, A. (2001), 'Entanglement of the orbital 

angular momentum states of photons', Nature 412,313-316. Reprinted in (Allen et 

al., 2003, Paper 8.1). 

Marrucci, L., Manzo, C. &: Paparo, D. (2006), 'Optical Spin-to-Orbital Angular Mo­

mentum Conversion in Inhomogeneous Anisotropic Media', Physical Review Letters 
96(16), 163905. DOl: lO.1103/PhysRevLett.96.163905. 

Maxwell, J. C. (1873), A Treatise on Electricity and Magnetism, Clarendon Press Series, 

Oxford at the Clarendon Press, Oxford. Reprinted in Maxwell (1998). 

Maxwell, J. C. (1998), A Treatise on Electricity and Magnetism, Oxford Classical Texts in 

the Physical Sciences, Oxford University Press, Oxford. 

Molina-Terizza, G., Torres, J. P. &: Tomer, L. (2001), 'Management of the Angular 

Momentum of Ught: Preparation of Photons in Multidimensional Vector States 

of Angular Momentum', Physical Review Letters 88(1),013601. DOl: lO.1103/Phys­

RevLett.88.013601. 

Nielsen, M. A. &: Chuang, I. L. (2000), Quantum Computation and Quantum Information, 
Cambridge University Press, Cambridge. 

172 



BIBLIOGRAPHY BIBLIOGRAPHY 

Nye, J. F. (1999), Natural Focussing and the Fine Structure of Light, Institute of Physics 

Publishing, Bristol. 

Nye, J. F. & Berry, M. V. (1974), 'Dislocations in Wave Trains', Proceedings of the Royal 
Society of London, Series A 336(1605), 165-190. 

Oemrawsingh, S. S. R, Aiello, A, Ellel, E. R., Nienhaus, G. & Woerdman, J. P. (2004a), 

'How to observe High-Dimensional Two-Photon Entanglement with Only Two De­

tectors', PhysiCIJI Review Letters 92, 217901. DOl: 1O.1103/PhysRevLett.92.217901. 

Oemrawsingh, S. S. R, Eliel, E. R, Woerdman, J. P., Verstegen, E. J. K., Kloosterboer, 

J. G. & t' Hooft, G. W. (2004b), 'Half-integral spiral phase plates for optical wave­

lengths', Journal of Optics A 6, S288-29O. 

Oemrawsingh, S. S. R, Ma, X., Voigt, D., Aiello, A., Eliel, E. R., 't Hooft, G. W. & 

Woerdman, J. P. (2005), 'Experimental Demonstration of Fractional Orbital Angular 

Momentum Entanglement of Two Photons', Physical Review Letters 95(24), 240501. 

001: 10.l103/PhysRevLett.95.240501. 

O'Neil, AT., MacVicar, I., Allen, L. & Padgett, M. J. (2002), 'Intrinsic and Extrinsic 

Nature of the Orbital Angular Momentum of a Light Beam', Physical Review Letters 
88(5),053601. 001: 10.1l03/PhysRevLett.88.053601. 

Ou, Z. Y., Pereira, S. F. & Kimble, H. J. (1982), 'Realization of the Einstein-Podolsky­

Rosen paradox for continuous variables', Physical Review Letters 68(25), 3663 - 3666. 

001: 10.1 103 I PhysRevLett.68.3663. 

Paterson, C. (2005), 'Atmospheric Turbulence and Orbital Angular Momentum of Sin­

gle Photons for Optical Communication', Physical Review Letters 94, 153901. DOl: 

10.l103/PhysRevLett.94.153901. 

Pegg, D. T. & Barnett, S. M. (1989), 'Phase properties of the quantized singe­

mode eletromagnetic field', PhysiCIJI Review A 39(4), 1665-1675. DOl: 10.1103/Phys­

RevA.39.l665. 

Pegg, D. T. & Barnett, S. M. (1997), 'Tutorial review: Quantum optical phase', Journal 
of Modern Optics 44(2), 225-264. 

Pegg, D. T., Barnett, S. M., Zambrini, R., Franke-Arnold, S. & Padgett, M. (2005), 

'Minimum uncertainty states of angular momentum and angular position', New 
Journal of Physics 1, 62. DOl: 10.1088/1376-2630/7/1/062. 

Pegg, D. T., Vaccaro, J. A & Barnett, S. M. (1990), 'Quantum-optical phase and canon­

ical conjugation', Journal of Modern Optics 31(11), 1703-1710. 

Petinovci, V., Luld, A. & Petina, J. (1998), Phase in Optics, Vol. 15 of World Scientific 
Series in Contemporary Chemical Physics, World Scientific, Singapore. 

Poynting, J. H. (1884), 'On the transfer of energy in the electromagnetic field', Philo­
sophical Transactions 115, 343-361. Reprinted in Poynting (1920a). 

173 



BIBLIOGRAPHY BIBLIOGRAPHY 

Poynting, J. H. (1909), 'The wave motion of a.revolving shaft, and a suggestion as to 

the angular momentum in a beam of circularly polarised light', Proceedings of the 
Royal Society of London, Series A 82,560-567. Reprinted in Poynting (1920b) and 

(Allen et al., 2003, Paper 1.1). 

Poynting, J. H. (1920a), On the transfer of energy in the electromagnetic field, in G. A. 

Shakespear & G. Barlow, eds, 'Collected Scientific Papers by John Henry Poynting', 

Cambridge at the University Press, Cambridge. 

Poynting, J. H. (1920b), The wave motion of a revolving shaft, and a suggestion as to 

the angular momentum in a beam of circularly polarised light, in C. A. Shakespear 

& G. Barlow, eds, 'Collected Scientific Papers by John Henry Poynting', Cambridge 

at the University Press, Cambridge. 

Reid, M. (1997), 'Macroscopic elements of reality and the Einstein- Podolsky-Rosen 

paradox', Quantum and Semiclassical Optics 9,489-499. 

Reid, M. D. (1989), 'Demonstration of the Einstein-Podolsky-Rosen paradox using 

nondegenerate parametric amplification', Physical Review A 40(2), 913-923. DOl: 

10.1103 /PhysRev A.40.913. 

Robertson, H. P. (1929), 'The Uncertainty Principle', Physical Review 34, 163-164. 

Rohrlich, F. (1970), 'Electromagnetic Momentum/Energy, and Mass', American Journal 
of Physics 38(11), 1310-1316. DOl: 10.1119/1.1976082. 

Romer, H. & Forger, M. (1993), Klassische Feldtheorie, VCH Verlilgsgesellschaft, Wein­

heim. 

Roux, F. S. (2003), 'Optical vortex density limitations', Optics Communication 223(1-

3),31-37. DOl: 10.1016/50030-4018(03)01626-2. 

Rubin, M. H., Klyshko, D. N., Shih, Y. H. & Sergienko, A. V. (1994), 'Theory of two­

photon entanglement in type-II optical parametric down-conversion', Physical Re­
view A 50(6),5122-5133. DOl: 10.1103/PhysRevA.50.S122. 

SchrOdinger, E. (1930), 'Zum Heisenbergschen Unscharfeprinzip', Sitzungsberichte der 
Preussischen Alaldemie der Wissenschaften Physilallisch-mathematische Klasse XIX, 296-

303. 

Schwabl, F. (1995), Quantum Mechanics, 2nd revised edn, Springer Verlag, Berlin. 

ISBN: 3-540-59187-7. 

Siegman, A. E. (1986), Lasers, University Science Books, Sausalito. ISBN: 0-935702-11-

3. 

Silverman, R. A. (1984), Complex Analysis with Applications, Dover Publications, Inc., 

Mineola, New York. Reprint. Originally published: Prentice-Hall, Inc., Englewood 

Cliffs, New Jersey, 1973, c1974. ISBN: 0-486-64762-5. 

Spedalieri, F. M. (2006), 'Quantum key distribution without reference frame align­

ment: Exploiting photon orbital angular momentum', Optics Communications 
260,340-346. DOl: lO.1016/j.optcom.2005.10.001. 

174 



BIBLIOGRAPHY BIBLIOGRAPHY 

Stephenson, G. & Radmore, P. M. (1993), Advanced Mathematical Methods for Engineerg­
ing and Science Students, Cambrige University Press, Cambridge. ISBN: 0-521-36860-

X. 

Summy, G. S. & Pegg, D. T. (1990), 'Phase optimized quantum states of light', Optics 
Communications 77(1), 75-79. DOl: doi:10.1016/0030-4018(90)90464-5. 

Susskind, L. & Glogower, J. (1964), 'Quantum mechanical phase and time operator', 

Physics 1, 49--61. 

Tamm, C. & Weis, C. O. (1990), 'Bistability and optical switching of spatial patterns in 

a laser', Journal of the Optical Society of America B 7(6), 1034-1038. 

Vaccaro,J. A. (1995), 'Phase operators on Hilbert space', Physical Review A 51(4),3309-

3317. DOl: 10.1103/PhysRevA.51.3309. 

Vallee, O. & Soares, M. (2004), Airy functions and applications to Physics, Imperial Col­

lege Press, London. ISBN: 1-86094-478-7. 

Vastnetsov, M. V., Pas'ko, V. A. & Soskin, M. S. (2005), 'Analysis of orbital angular 

momentum of a misaligned optical beam', New Journal of Physics. DOl: 10.1088/1367-

2630/7 /l /046. 

Vaziri, A., Weihs, G. & Zeilinger, A. (2002), 'Superpositions of the orbital angular 

momentum for applications in quantum experiments', Journal of Optics B 4, 547-

551. DOl: 10.1088/1464-4266/4/2/367. 

von Neumann, J. (1932), Mathematische Grundlagen der Quantenmechanik, Springer Ver­

lag, Berlin. English translation: (von Neumann, 1955). 

von Neumann, J. (1955), Mathematical Foundations of Quantum Mechanics, Princeton 

University Press. 

Wei, H., Xue, X., Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S., Yao, E. 

& Courtial, J. (2003), 'Simplified measurement of the orbital angular momentum 

of single photons', Optics Communication 223(1-3), 117-122. DOl: doi:10.1016/SOO30-

4018(03)01619-5. 

Weihs, G., Jennwein, T. & Simon, C. (1998), 'Violation of Bell's Inequality under 

Strict Einstein Locality Conditions', Physical Review Letters 81(23), 5039 - 5043. DOl: 

10.1103/PhysRevLett.81.5039. 

Zambrini, R. & Barnett, S. M. (2006), 'Quasi-Intrinsic Angular Momentum and the 

Measurement ofIts Spectrum', Physical Review Letters 96,113901. DOl: 10.1103/Phys­

RevLett.96.113901. 

175 


