The design and synthesis of probe molecules to validate the inhibition of epigenetic mechanisms for phenotypic responses

PhD Thesis - 2014
Thomas G Hayhow
Epinova Discovery Performance Unit, GlaxoSmithKline
Department of Pure \& Applied Chemistry, University of Strathclyde

Supervised by:

Colin J Suckling

University of

Strathclyde

Philip G Humphreys

Declarations of Authenticity and Author's Rights

This thesis is the result of the author's original research. It has been completed by the author and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to GSK in accordance with the author's contract of employment with GSK under the terms of the United Kingdom Copyright Acts. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed
Date:

Thomas Hayhow

Acknowledgements

It is a pleasure to thank those who have made this thesis possible. Without support and encouragement from those around me I never would have got as far as I have.

First of all, I would like to thank Prof. Colin J. Suckling for his guidance and patience in helping me down this academic route after spending a considerable time in industry. His proof reading and supervision from the preliminary to the level I am now have been invaluable.

I am deeply grateful to Dr. Philip G. Humphreys who has been tireless in giving me help at every single level since starting this programme. He has diligently enabled me to think about topics in a more philosophical manner as well as proof reading many drafts. His effort to critique the document and return it to me within days has been superhuman.

I am indebted to all of those within my workgroup who have helped me by making some of the compounds commented on in this thesis. Without you there would not be the breadth of SAR available to me and my time in the laboratory would be much less pleasant: Alex Preston, Jack Brown, Sue Westaway, Jessica Renaux, Neil Garton and Mike Barker, Stephen Atkinson and Katherine Jones. Special thanks go to the students I have supervised who have enabled me to synthesise more compounds than I could do on my own: Matthew Teasdale and Diego Barrios. Special thanks go to Stephen Atkinson and Emmanuel Demont for proof reading and providing comments.

Many thanks go to those in other disciplines who have produced data for me and explained, in simple terms, how the assays work. Also without the X-ray crystallographers and computational chemists much of the SAR could not be understood so my gratitude is extended to them. Individuals at Cellzome ran all of the chemoproteomic experiments that enabled the PCAF programme to be successful.

Finally, I would like to thank my wife Laura. Thank you for being so understanding in my being away from the house or locked in the office and never once complaining. It's not always been easy with getting married, moving house and having Daniel during this time but thank you for letting me take the time to complete this thesis.

1 Abstract

The work described in this thesis concerns the design and synthesis of probe molecules for epigenetic proteins. In many cases, it is unclear what the effect of selective inhibition of epigenetic proteins would achieve in biological systems. This lack of understanding is in part due to the novelty of the area and suitable tool molecules would significantly enable further investigation. Probe molecules have been designed for two epigenetic targets using fragment based drug discovery techniques to grow the templates using structure based design.

For the Jumonji D2 family of enzymes, a pyridopyrimidinone core with poor cellular penetration was grown at two positions to identify hydrogen bonding interactions between the ligand and the protein to increase the potency of the series. This resulted in selective compounds with approximately micromolar cellular activity.

Two chemically distinct templates were investigated to discover probes for the PCAF bromodomain. Phthalizinone compounds were found to be selective for PCAF, although they had poor aqueous solubility. Improving the solubility of the molecules either abolished potency at PCAF or brought in unwanted off-target activity and work on this series was halted. Using a pyridazinone core, probe compounds for the PCAF bromodomain were found starting from an unselective molecule. Through identification of a putative salt bridge interaction, highly selective and potent compounds were accessed and shown to be capable of displacing PCAF from chromatin.

The compounds identified were found to engage their respective targets in cellular systems and are suitable for phenotypic investigation of the inhibition of these epigenetic mechanisms.

Contents

1 Abstract 4
2 Abbreviations 10
3 Introduction 14
3.1 The current state of the pharmaceutical industry 14
3.1.1 Screening strategies for drug discovery 16
3.1.2 New targets for drug discovery 17
3.2 Epigenetics 18
3.2.1 Packing of DNA 18
3.2.2 The histone code 20
3.2.3 Writers 20
3.2.4 Readers 21
3.2.5 Erasers 22
3.2.6 Current epigenetic treatments 23
3.3 Target validation challenges 23
3.3.1 Properties of chemical probes 24
3.3.2 Historical chemical probes 26
4 JmjC containing proteins 29
4.1.1 Lysine demethylase families 30
4.1.2 The function of JmjC domains 31
4.1.3 Known inhibitors of JmjC domains 33
4.2 Inhibition of JmjD2 lysine demethylases 35
4.2.1 Identification of lead molecules 36
4.3 Screening cascade 39
4.4 Identification of a JmjD2 family hit compound 41
4.5 Investigation of 6,7 and 6,5 sized ring systems 46
4.5.1 Synthesis of test compounds 46
4.5.2 Discussion of SAR of 6,7 and 6,5 sized ring systems and intermediates 48
4.6 Alternative 6,6-bicyclic systems 51
4.6.1 Investigation into changes of the pyrimidinone ring 51
4.6.2 Movement of Tyr136 55
4.6.3 Investigation into changes of the pyridine ring 56
4.7 Substitution at the 2-position of the pyridopyrimidinone core 58
4.7.1 General synthesis 58
4.7.2 SAR of pyridopyrimidinone 2-substituted with small aliphatic groups 62
4.8 Substitution at the 2-position of the pyridopyrimidinone core with 6-membered aryl rings 64
4.8.1 The synthesis of 5-(4-oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2- yl)picolinamide (4.055) 64
4.8.2 SAR of pyridopyrimidinone 2-substituted with aryl rings. 66
4.8.3 Biological rationale for the movement observed 70
4.8.4 SAR trend explained by Mode 2 72
4.8.5 $\quad \mathrm{H}$-bonding interactions 73
4.9 Substitution at the 2-position of the pyridopyrimidone core with H -bond donors and acceptors 75
4.9.1 Synthesis of ethers 75
4.9.2 Analysis of the SAR of pyridopyrimidinone compounds 2-substituted with H - bond donors and acceptors 77
4.10 8-Substitution of the pyridopyrimidinone core with heteroaryl groups 81
4.10.1 Building the rings 83
4.10.2 Cross coupling methodology 90
4.10.3 SAR of 8-substituted pyridopyrimidinones 101
4.11 2-Substitution of the pyridopyrimidinone core with heteroatoms 105
4.11.1 Synthesis of 2-substituted ether linked pyridopyrimidinones. 108
4.11.2 Probe compounds for the JmjD2 family 109
4.12 JmjD2 inhibitors conclusion 112PCAF115
5.1 Protein-protein interactions 115
5.2 Introduction to bromodomains 116
5.2.1 Links between bromodomains and disease 121
5.2.2 Small molecule inhibitors of BET bromodomains 122
5.1.3 Structural features of BET inhibitors 126
5.3 Inhibiting non-BET family bromodomains 129
5.3.1 Introduction to PCAF 132
5.3.2 Screening cascade 133
5.3.3 Rationale for achieving BET selectivity 135
5.3.4 Known inhibitors of PCAF 136
5.3.5 Bromodomain assays 139
5.3.6 Assay development 140
5.3.7 Comparing pIC_{50} values across assays 142
5.3.8 Compounds identified from a knowledge based screen 144
5.4 Phthalizinone series 145
5.4.1 Development of a higher yielding route to carboxylic acid 5.027 148
5.4.2 Synthesis of phenolic ether 5.032 and aniline 5.033 149
5.4.3 Synthesis of substituted benzylamine 5.034 152
5.4.4 Synthesis of benzyl ether 5.035 153
5.4.5 Assay results of phthalizinones with alternative linkers 154
5.4.6 Synthesis of compounds with amide linkers 155
5.4.7 Addition of solubilising basic groups to the phthalizinone core 157
5.4.8 Assay results of phthalizinones with solubilising groups 162
5.4.9 Phthalizinone conclusion 163
5.5 Aminopyridazinone series 165
5.5.1 Benzylic aminopyridazinones 168
5.5.2 Fragments bound to X-ray crystal structure of PCAF 173
5.5.3 Changes at the 2-position of the aminopyridazinone 175
5.5.4 Synthesis of analogues at the 5-position of the 4-methyl-5- aminopyridazinone 178
5.5.5 SAR of analogues at the 5-position of the 4-methyl-5-aminopyridazinone 182
5.5.6 Variations of the tetrahydroisoquinoline containing 5.105 184
5.5.7 Generation of an improved PCAF assay reagent 191
5.5.8 Improving selectivity 195
5.5.9 Basic aminopyridazinones 202
5.5.10 Examination of chiral examples of 3-aminopiperidine and 3-aminoazepane pyridazinones 207
5.5.11 Substitution from the 3-piperidine 216
5.6 Selection of tool molecules 221
5.7 Further profiling of PCAF probe compounds 227
5.8 Conclusion 233
6 Experimental 235
6.1 General experimental abbreviations 235
6.2 NMR abbreviations 235
6.3 General methods 236
6.4 Procedures 245
6.4.1 6,7- and 6,5- sized ring systems 245
6.4.2 Pyridopyrimidinones 249
6.4.3 Schofield type compounds 262
6.4.5 Phthalizinones 286
6.4.6 Aminopyridazinones 308
7 References 337
Appendix A Phthalizinone amide compounds 354
Appendix B Copyright permissions 358

2

Abbreviations
2-MeTHF - 2-methyltetrahydrofuran
2-OG - 2-oxoglutarate
9-BBN - 9-borabicyclo[3.3.1]nonane
Ac-CoA - Acetyl-coenzyme A
AMP - artificial membrane permeability
ARID - AT-rich interaction domain
BACT - branched chain aminotransferase
Bcl-2 - B-cell lymphoma-2
BCP - bromodomain containing proteins
BET - bromo and extra terminal
BINAP - 2,2'-bis(diphenylphosphino)-1,1'-binaphthalene
Boc - N-tert-butoxycarbonyl
BRET - bioluminescence resonance energy transfer
cAMP - cyclic adenosine monophosphate
CDI-1,1'-carbonyldiimidazole
COX - cyclooxygenase
CPME - cyclopentylmethyl ether
CPP - cyanopyrazolopyrimidinone
CREB - cAMP response element-binding protein
CREBBP - CREB binding protein
DBAD - di-tert-butyldiazodicarboxylate
DCC - N, N '-dicyclohexylcarbodiimide
DCM - dichloromethane
DDQ-1,2-dichloro-4,5-dicyanobenzoquinone
DIAD - diisopropyl azodicarboxylate
DIPEA - diisopropylethylamine
DMA - N, N-dimethylacetamide
DMAP - N,N-dimethylaminopyridine
DMCC - dimethylcarbamoyl chloride
DMF - N, N-dimethylformamide
DMSO - dimethylsulfoxide
DNA - deoxyribonucleic acid

ELISA - enzyme-linked immunosorbent assay
EGLN3 - egl nine homolog 3
FAD - flavin adenine dinucleotide
FDA - U. S. Food and Drug Administration
FP - fluorescence polarisation
FRET - fluorescence resonance energy transfer
GCN5 - general control nondepressible 5
GSK - GlaxoSmithKline
HAT - histone acetyl transferase
HIV - human immunodeficiency virus
HDAC - histone deacetylase
HTS - high throughput screen
HxKy - histone x lysine y (where x and y are numbers)
IFN - interferon
IL - interleukin
IPA - 2-propanol
Jmj - Jumonji
Jak - Janus kinase
KAT - lysine acetyl transferase
KDM - lysine demethylase
KHMDS - potassium hexamethyldisilamide
KMT - lysine methyl transferase
LCMS - liquid chromatography - mass spectrometry
LDA - lithium diisopropylamide
LE - ligand efficiency
LiHMDS - lithium hexamethyldisilazide
LPS - lipopolysaccaride
LSD1 - lysine specific demethylase 1
LTR - long terminal repeat
MAPK - mitogen-activated protein kinases
MHC - major histocompatibility complex
MHz - megahertz
MIDA - N-methyliminodiacetic acid

NBS - N-bromosuccinimide
NMC - nuclear protein in testes midline carcinoma
NMR - nuclear magnetic resonance
NMP - N-methylpyrrolidinone
NF-кB - nuclear factor kappa-light-chain-enhancer of activated B cells
NSAID - non steroidal anti inflammatory drug
NUT - nuclear protein in testis
p-page
P -TEFb - positive transcription elongation factor
PB1 - polybromodomain-1
PBMC - peripheral blood mononuclear cell
PCAF - p300/CBP-associated factor
Pd / C - palladium on carbon
pDC - plasmoidal dendritic cell
PI3K - phosphoinositide 3-kinase
PID - P-TEFb-interacting domain
PMB - para-methoxybenzyl
PPI - protein-protein interaction
pTSA - para-tolylsufonic acid monohydrate
pyr - pyridyl
RNA - ribose nucleic acid
SAHA - suberoylanilide hydroxamic acid
SAR - structure activity relationship
SCX - strong cation exchange
SEM - 2-(trimethylsilyl)ethoxymethyl
SGC - Structural Genomics Consortium
siRNA - short interfering RNA
SLE - systemic lupus erthymatosus
T_{H} - T helper cell
T3P ${ }^{\circledR}$ - propylphosphonic anhydride
TBAF - tetrabutylammonium fluoride
TBDMS - tert-butyldimethylsilyl
TBDPS - tert-butyldiphenylsilyl

```
TFA - trifluoroacetic acid
THF - tetrahydrofuran
TIPS - triisopropylsilyl
TNF - tumour necrosis factor
Tyk2 - tyrosine kinase 2
VCD - vibrational circular dichroism
```


3.1 The current state of the pharmaceutical industry

Currently, the pharmaceutical industry is in a state of flux. Payers, such as medical insurance companies and governments who buy medicines for patients are, quite rightly, increasingly looking for value for money. Organisations such as England's National Institute for Health and Clinical Excellence perform cost/benefit analyses of drugs and if medicines do not provide sufficient value for money then they will not be purchased and used in patient populations. ${ }^{1}$ At the same time as payers are expecting increased value for money, the total cost of having a drug launched on to the market is increasing exponentially. Over the last sixty years increasing amounts of money has been spent on R\&D but this has resulted in a decrease in the number of drugs approved year on year. ${ }^{2}$ In fact, the number of new drugs approved per billion US dollars spent has halved roughly every nine years since 1950 (Graph 1). ${ }^{3}$

Graph 1: The number of drugs approved by the FDA per billion US dollar spent over time. Adapted with permission from Macmillan Publishers Ltd, copyright 2012. ${ }^{3}$

This decrease in the number of drugs being approved is at odds with major advances in the field of pharmaceutical research and development. ${ }^{3}$ Combinatorial chemistry has increased the number of drug like molecules possible to be synthesised by a chemist by about 800fold in a given time period. DNA sequencing is now over a billion times faster than when the first genome was sequenced. High throughput screening has resulted in a tenfold reduction in the cost of testing of compound libraries against protein targets since the

1990s. ${ }^{3}$ Even with these advances, the numbers of drugs being approved are falling. This decrease is thought to be due to a range of causes. ${ }^{4}$ For example, new drugs must have an advantage over existing ones and be safer, with fewer side effects than the previous generation.

Once a drug has been discovered and approved, it is marketed and sold by a single company until the patent expires, usually after 20 years. ${ }^{5}$ At this point the drug becomes generic and is often available at a greatly reduced price as other manufacturers can synthesise it without the need to recoup research and development costs. For a medicine to find a market for an already treatable disease it needs to show a demonstrable advantage over the other drugs on the market, including proven, well understood and cheaper generic pharmaceuticals.

In the field of anti-ulcerants there are two classes of highly effective and safe drugs on the market: histidine H_{2} receptor antagonists such as ranitidine (3.001) and proton pump antagonists such as omeprazole (3.002), both of which are now generic (Fig. 1).

3.001

3.002

Figure 1: Structures of ranitidine (3.001) and omeprazole (3.002).

A novel class of anti-ulcerants, known as potassium competitive acid blockers, probably would have been safe and effective. If they had been discovered before ranitidine (3.001) and omeprazole (3.002) then they would have been blockbusters, selling more than one billion US dollars worth per year. However, with the existence of cheap, safe and proven alternative anti-ulcerants they did not make it to market. This was despite advantages over the previous generation of drugs. ${ }^{6}$ The potassium competitive acid blockers were treating an already solved problem. A payer will only buy the more expensive drug if patients fail to respond to cheaper, generic medicines thus limiting the market for a new class. ${ }^{3}$

Many other indications such as hypertension and cholesterol management already have good treatments. New medicines need to be better than the existing drugs for a disease. Regulatory agencies are growing more cautious and drugs need increasingly good safety
profiles to be approved. This is relaxed somewhat for severe diseases that have an unmet medical need. For example drugs for oncology can have a worse safety profile than antiulcerants. The lower barrier to entry for approval for oncology drugs from the regulatory agencies is due to the life threatening nature of cancer.

Therefore, with drug approvals per billion US dollars spent falling and higher requirements needed for new treatments, the pharmaceutical industry must consider what can be done to discover safer, more effective drugs in a less expensive manner.

3.1.1 Screening strategies for drug discovery

Over the last 100 years, two types of screening have dominated early stage drug discovery, phenotypic screens and target based screens. Phenotypic screening examines the effects that compounds have on cells, tissues or whole organisms. Target based screening investigates the effects that compounds have on a purified target protein in an in vitro system. ${ }^{7}$

Historically, phenotypic screening has been the mainstay of drug discovery. However, starting in the 1980s, advances in molecular biology and genomics led to a reduction in the use of phenotypic screening and a greater reliance on target based screening. ${ }^{7}$ The major advantage of moving to target based screening is that is allows a much higher throughput compared to phenotypic screening. ${ }^{8}$ The perceived benefit is that if more compounds are screened then there is a higher likelihood that a new drug would be discovered. However, as there is movement away from an entire organism, to isolated cells, to purified target protein, there is also a decrease in validation between the target disease and the system being screened. If the protein targeted by small molecules has no relevance to the disease in question then even the best ligand for that protein will have no effect on the disease.

Some researchers have wondered whether an over-reliance on target based screening has contributed to the decline in the number of new medicines being approved per billion US dollars spent. ${ }^{9}$ It is considered that overconfidence in the understanding of genomics and hence target based screening may have lead to less effective target validation. Thus, by prosecuting some targets that are not linked to diseases, fewer successful drugs have been launched.

Analysis of first in class drugs, medicines that interact with a new biological target, between 1999 and 2008 have shown some interesting results. ${ }^{9}$ Drug discovery programmes that
used phenotypic screening had more success in getting drugs to market than those that used target based screening (Graph 2). However, for follower drugs, medicines that interact with a previously drugged protein, target based screening was more effective.

Graph 2: Number of new treatments approved for first in class and follower drugs between 1999 and $2008 .{ }^{9}$

The findings, summarised in Graph 2, show that once a protein has been validated for a disease, target based screening is very effective.

Establishing a link between a target and a disease is crucial for clinical success of a drug molecule. A recent examination of the reasons for project termination within AstraZeneca illustrates that once drug candidates enter the clinic the largest cause of failure is a lack of efficacy. ${ }^{10}$ The biggest reason for the lack of efficacy is having no link between the disease and the protein targeted by the clinical candidate. Hence, initially choosing a relevant target is extremely important.

3.1.2 New targets for drug discovery

For the pharmaceutical industry to reverse the decline seen in Graph 1 (p 14), one strategy to adopt is to treat diseases in a different manner by interacting with new biological targets. A class of proteins that has not been thoroughly investigated are epigenetic proteins. The term epigenetics derives from the Greek epi - meaning above, so literally termed as "above or near genetics". Epigenetic changes do not alter the DNA itself, but what genes can be transcribed from DNA. To understand epigenetics it is important to know how DNA is stored in the nuclei of cells.

3.2 Epigenetics

3.2.1 Packing of DNA

There are 1.8 metres of DNA in each human cellular nucleus ${ }^{11}$ and for this to be contained there must be efficient packing. Humans have twenty three chromosomes in their nuclei and these consist of negatively charged DNA wrapped around positively charged protein octamers called histones. ${ }^{12}$ This protein-DNA complex is known as a nucleosome and is a monomer for chromatin. ${ }^{13}$

The initial level of chromatin organisation consists of wrapping 147 base pairs around the octameric histone protein core. This short length of DNA encircles each histone complex approximately one and three quarter times, with variable lengths of DNA between each protein octamer. The histone octamer is comprised of two molecules of each histone protein $\mathrm{H} 2 \mathrm{~A}, \mathrm{H} 2 \mathrm{~B}, \mathrm{H} 3$ and H 4 (Fig. 2). ${ }^{12}$

Figure 2: A schematic of a histone octamer. Adapted with permission from Macmillan Publishers Ltd, copyright 2002. ${ }^{13}$

Chromatin exists in two forms, loosely packed euchromatin, which resembles beads on a string, and the next level of packing, tightly bound heterochromatin. When the complex is in the heterochromatin form, DNA transcription cannot take place. However, when the complex relaxes to euchromatin, the transcription of DNA is possible (Fig. 3). ${ }^{14}$

Figure 3: Relaxed euchromatin and tightly bound heterochromatin. Adapted. ${ }^{15}$

In the formation of heterochromatin another histone protein, H 1 , binds to the linker DNA and causes a higher order structure to form the 30 nm wide chromatin fibre with the H 1 proteins found internally. ${ }^{16,12}$ The next levels of chromatin organisation to eventually form a chromosome are much less clear, although it is thought to involve the recruitment of scaffold proteins (Fig. 4). ${ }^{17}$

Figure 4: Packing of DNA from double helix to chromosome. Reprinted with permission from Macmillan Publishers Ltd, copyright 2010. ${ }^{18}$

3.2.2 The histone code

Although all cells in an organism inherit the same genetic material, they must be differentiated to become a particular type of tissue. Changes in the packaging of the chromatin can dictate changes in protein expression which leads to cell type. One mechanism for the chromatin complexes to transition between heterochromatin and euchromatin is by the modification of peptide chains originating from the histone proteins. These peptide chains are known as histone tails and can be modified in a multitude of ways. For example, residues in the histone tails can be acetylated, methylated or a combination of both as well as other modifications such as phosphorylation or ubiquitination. ${ }^{14}$ The addition or removal of these covalent modifications causes the chromatin to transition between heterochromatin and euchromatin. The change of these marks is known as epigenetic modification. The alteration of the proteins around which DNA is wrapped causes changes to which gene is transcribed. Lysine is one residue to which methyl and acetyl marks can be added, removed or read and particular families of enzymes carry out these changes (Fig. 5). ${ }^{14}$

Figure 5: Families of epigenetic proteins which add, remove and read lysine marks on histone tails.

3.2.3 Writers

Histone acetyl transferases (HAT) acetylate lysines on histone tails ${ }^{19}$ and are broadly split into different families based on their primary structure homology. ${ }^{20}$ Lysines are acetylated using acetyl - coenzyme A (Ac-CoA) (3.003) (Fig. 6) as a co - factor. ${ }^{20}$

3.003

Figure 6: The structure of acetyl-coenzyme A (3.003).

Lysine acetylation is seen generally as a gene activating mark. ${ }^{21}$ This is thought to be due to the neutralisation of positive charge, which weakens the interactions between negatively charged DNA and the histone octamer. ${ }^{22}$

Methylation of histone lysines can be either activating or repressing for gene transcription depending on the specific lysine residue on either histone H 3 or H 4 that is methylated. ${ }^{23}$ For some processes, methylation on the same site can lead to different outcomes depending on the number of methyl groups added. ${ }^{24}$ The methylation of lysines is catalysed by SET or DOT1L proteins using S-adenosyl-L-methionine (3.004) as a methyl group donor (Fig. 7). ${ }^{25,26}$

Figure 7: Structure of S-adenosyl-L-methionine (3.004).

3.2.4 Readers

Bromodomains "read" by binding to acetylated lysines and are the only known protein domain to do this. ${ }^{27}$ Bromodomain containing proteins (BCP) are often part of larger protein complexes, which can contain transcription factors and therefore facilitate transcriptional initiation and elongation. ${ }^{21}$ This causes genes to be activated and transcribed. Selectively inhibiting the PCAF bromodomain is part of the focus of this thesis.

There is a much wider range of proteins that read methylated lysines compared to acetylated lysines. The number of methylated lysine readers is estimated to be greater
than 170 and these readers are from several different families, for example the so-called chroma and tudor domains. ${ }^{28}$ The large number of methyl lysine readers may indicate why there is a range of repressive and activating activities for different states of lysine methylation.

3.2.5 Erasers

Histone deacetylases (HDAC) remove acetyl groups from lysines on a histone tail and are linked with the repression of gene expression. ${ }^{29}$ There are four main classes of HDAC, three of these contain zinc, ${ }^{30}$ which is used in the enzymatic process to remove the acetyl group. ${ }^{31}$ The last class of HDACs includes sirtuins which have a requirement for NAD ${ }^{+}$ (3.005) to remove acetyl groups from lysines (Fig. 8). ${ }^{30}$

Figure 8: The structure of NAD^{+}(3.005).

Lysine demethylases (KDM) remove methyl groups from histone lysines. ${ }^{32}$ There are two known types of histone demethylases, those which use 2 -oxoglutarate (2-OG, 3.006) and those which use flavin adenine dinucleotide (FAD, 3.007) as co-substrates in the removal of methyl groups from lysines (Fig. 9). ${ }^{32}$ Those demethylases that use 2-OG as a co-factor also require the presence of a iron (II) ion to catalyse the reaction. ${ }^{33}$ Selectively inhibiting KDM enzymes is part of the focus of this thesis.

3.006

Figure 9: The structures of 2-OG (3.006) and FAD (3.007).

3.2.6 Current epigenetic treatments

The approach of inhibiting epigenetic mechanisms has had success with the approval of suberoylanilide hydroxamic acid (SAHA, 3.008) ${ }^{34}$ and romidepsin (3.009) for oncology (Fig. 10). ${ }^{35}$ These compounds are histone deacetylase (HDAC) inhibitors which prevent the removal of acetyl groups from histone tails, which modulate the production of oncogenic proteins. ${ }^{36}$

3.008

Figure 10: Structures of SAHA (3.008) and romidepsin (3.009).

Building on evidence that cancers can be modified through manipulating histone deacetylases, the aim of the research reported upon is to show that by modulating other epigenetic mechanisms, a phenotype can be observed in an in vitro system. However, as many epigenetic proteins have only recently been discovered there are often no known small molecule inhibitors of these proteins. To identify if these epigenetic proteins are potential drug targets, it needs to be established if interacting with these targets has a desirable biological effect.

3.3 Target validation challenges

A strategy to determine the biological role of a protein is to reduce or halt the expression of that specific protein. By doing this it is possible to observe what happens to the phenotype compared to a control experiment. ${ }^{37}$ This can be performed with short interfering RNA (siRNA) which can be designed to bind selectively to mRNA and prevent expression of a specific protein. ${ }^{38}$ If this is targeted towards an epigenetic protein the effects of inhibiting that protein can be investigated.

However, this approach removes all expression of the protein and epigenetic proteins often contain multiple binding domains which have different functions. For example CREBbinding protein (CREBBP) has eight different domains: a HAT domain, a bromodomain, a
plant homeodomain (PHD) finger, as well as five protein interaction domains. ${ }^{39}$ It should be clear that inhibiting, for example, just the bromodomain may have a considerably different effect from removing the protein altogether. On removal of the entire protein, the HAT domain will no longer be able to acetylate histone tails and the protein complex that CREBBP is a part of might be significantly different, potentially altering the other function of other proteins in the complex. However, selectively antagonising the bromodomain would leave the other domains in CREBBP functional. Therefore, the identification of small molecule inhibitors that selectively bind to a single domain in the protein will enable the determination of a phenotype for the inhibition of that specific domain. Additionally, complete inhibition of the target of interest may not be desirable and small molecules allow a way to attenuate biological activity without complete blockade of the domain. These molecules are known as chemical probes.

3.3.1 Properties of chemical probes

Using chemical probes for target validation is different from "typical" drug discovery and different attributes can be required from an eventual chemical probe. A probe molecule requires more stringent selectivity requirements than a drug, as polypharmacology cannot be tolerated. ${ }^{40}$ The lack of acceptance for polypharmacology is due to needing to associate any phenotype observed with binding to a single biological domain.

Building from principles articulated by Frye for chemical probe qualification, ${ }^{41}$ Bunnage et $a l .{ }^{42}$ have recently disclosed their philosophy around the identification of chemical probes for target validation which was based upon a retrospective review of drug programmes. Programmes which reached phase 2 of clinical trials found three common themes amongst those which showed efficacy: sufficient exposure at the site of action; proof of target engagement and expression of functional pharmacological activity. ${ }^{43}$ These themes were termed "The three pillars of survival" and a molecule possessing all these attributes has a high correlation with achieving a positive proof of concept and advancing the candidate into phase 3 of clinical trials. ${ }^{42}$ Bunnage et. al. considered these "pillars" a good framework for desirable properties in chemical probes and adapted them into the following attributes necessary for a chemical probe:

1. Cellular penetration,
2. Target engagement and selectivity,
3. Expression of functional pharmacology,

4. Expression of a relevant phenotype.

Cellular penetration is generally required for a molecule to have biological effects as many target proteins are intracellular and thus molecules have to penetrate the cell to reach the desired target. This is especially true of epigenetic modulators where the molecules must also penetrate the nucleus to engage the target. However, molecules with molecular weights of less than 5000 Da diffuse into the nucleus so quickly that if a molecule can penetrate the cell it can be considered typically freely available within the nucleus. ${ }^{44}$

A chemical probe needs to be able to bind to the target of interest and ideally be as selective as possible for that target compared to binding sites in other proteins. The selectivity requirement for a probe should be more stringent than for drug candidates. While "safe" promiscuity may enhance the efficacy of a drug molecule it can confuse the output of an assay if the chemical probe hits multiple targets. ${ }^{42}$ However, Bunnage et al. suggest that even with the most stringent biochemical selectivity it is likely that a given probe will have unknown off-target activity. Thus, they advocate the discovery and use of multiple, structurally distinct chemical probes, which would have alternative unknown offtarget activity as well as an inactive or much less active close analogue as a negative control. ${ }^{42}$ The purpose of this is to identify polypharmacology by making a small change to a probe molecule which significantly lowers the potency of the compound at the target of interest while keeping the properties of the molecule, for example the lipophilicity, as unchanged as possible. While this has a major effect at the target being investigated it is hoped that it would give only a subtle change in potency at any unknown proteins. Hence, if the negative control shows the same biological activity as the chosen chemical probe then the target of interest is not driving the observed biological activity. A good example of this is in the discovery of I-BET762 (3.010). ${ }^{45}$ It was found that the opposite enantiomer of I-BET762, 3.011 was inactive in the phenotypic assay providing a perfect control for nonspecific activity (Fig. 11). The discovery of I-BET762 (3.010) will be discussed in more detail later (p 124).

Figure 11: The structures of I-BET762 (3.010) and the inactive control 3.011.

Chemoproteomics is a method in which an active ligand is attached to a solid support and used to pull down interacting proteins from cell lysates, and the interacting proteins can then be identified by mass spectrometry. ${ }^{7}$ Advances in chemoproteomics allow for an understanding of target engagement, both on-target and off-target for probe molecules under physiological conditions by investigating relevant cellular lysates. Hence, using chemoproteomics technology based on a probe molecule can demonstrate binding to the target of interest and "pull back" off-target proteins as well.

Identification of relevant cell based systems is a core principle of pillars 3 and 4. Cells derived from a patient with the disease of interest can be the best system for probing functional pharmacology as these can capture post-translational modifications lacking in other cell lines. ${ }^{42}$ However, this assumes knowledge of the disease of interest and might not be relevant in a disease agnostic approach. Equally important is the measure and identification of a relevant phenotype in these systems. Some of the measurable biomarkers associated with the disease could be symptoms rather than the cause itself and in these cases chemical probes could be found that affect a symptomatic phenotype, but have no impact on modifying the disease. However, the necessity of a disease affected cell line and identification of a relevant phenotype will depend on the knowledge of the cellular system and an understanding of the disease itself.

3.3.2 Historical chemical probes

Some historical probes have not complied with the four attributes needed for a chemical probe, predominantly selectivity. ${ }^{42}$ Examples of historical chemical probes have been identified by phenotypic screening. In one case b-AP15 (3.012) was shown to induce an apoptosis pathway. ${ }^{46}$ It was considered that this was via a deubiquitination pathway, inhibited by b-AP15 (3.012). However, there was no investigation into other targets that
could be interacting with b-AP15 (3.012). Considering the chemical structure, it is likely that it binds promiscuously due to the presence of multiple Michael acceptors and nitro groups (Fig. 12). ${ }^{47}$

3.012

Figure 12: Structure of b-AP15 (3.012). ${ }^{46}$

Another example of poor target validation comes from work to link Tyk2 (Tyrosine kinase 2) with skin inflammation. ${ }^{48}$ In a series of experiments, mice with the gene Tyk2 knocked out were found to suffer from IL-23 induced inflammation less than wild-type mice. To investigate if Tyk2 inhibition in wild-type mice would have a similar effect to knocking out the Tyk2 gene, tyrphostin A1 (3.013), a reported Tyk2 kinase inhibitor, was dosed. ${ }^{49}$ Inflammation was induced in wild-type mice with IL-23 and dosing tyrphostin A1 (3.013) did reduce the inflammation. However, the selectivity of tyrphostin A1 (3.013) was not well investigated. While selectivity was found against the Jak family of kinases, no other proteins were investigated. As seen for b-AP15 (3.012), there is a likelihood of tyrphostin A1 (3.013) acting as a Michael acceptor (Fig. 13).

Figure 13: Structure of tyrphostin A 1 (3.013). ${ }^{48}$

Another issue is often the lack of negative controls. LY294002 (3.014, Fig. 14), discovered in 1994, is a widely used phosphoinositide 3-kinase (PI 3 K) probe molecule. ${ }^{50}$ PI3Ks are involved in cell migration, metabolism and survival and were therefore thought to be attractive targets for oncology. ${ }^{51}$ However, a number of studies found PI3K independent effects using the inactive control LY303511 (3.015, Fig. 14). Through using chemoproteomics it was found that LY294002 (3.014) and LY303511 (3.015) bind to the BET
family of bromodomains, the same target that I-BET762 (3.010, Fig. 11, p 26) was found to inhibit. Therefore, some of the biological effects associated with PI3K could be due to inhibition of the BET family of bromodomains where negative controls have not been used. ${ }^{52}$

3.014

3.015

Figure 14: Structures of LY294002 (3.014) and LY303511 (3.015)

In the present work, with the four fundamental attributes that probe molecules require in mind (Section 3.3.1, p 24), an investigation was begun to identify inhibitors for epigenetic proteins and related inactive controls. Probe compounds were designed and synthesised for proteins covering two epigenetic mechanisms: a lysine demethylase (Section 4, p 29), and a bromodomain (Section 5, p 115). The molecules had to conform to the four attributes needed for a chemical probe and an inactive or considerably less active control identified. Once identified, the probe compounds would be tested in cells to determine whether a phenotype could be identified.

A jumonji (Jmj) gene was first discovered in 1995 in mice. ${ }^{53}$ It was found that mouse embryos which had a mutation in this gene developed a cross-like structure in their growing brains. Jumonji is literally translated as cruciform in Japanese and hence the name arose. ${ }^{53}$ JmjC containing proteins demethylate N-methylated lysines on histones tails. They are part of a wider family of enzymes that hydroxylate substrates. ${ }^{54}$ Histone lysine demethylation is broadly associated with transcriptional activation, although there are some exceptions, which depend on the specific lysine methylated and the number of methyl groups added. ${ }^{55}$

JmjC containing proteins often contain other protein-protein interaction domains ${ }^{56}$ and are thought as having a scaffolding role in addition to functioning as part of transcriptional or chromatin protein complexes. ${ }^{54}$ The JmjC containing KDMs (Lysine demethylase) are split into six different families based on sequence homology. There is a high degree of homology within the JmjC domains for different proteins and a phylogenetic tree can be drawn to compare the levels of similarity (Fig. 15). ${ }^{57}$ The higher the sequence similarity of the JmjC domains the closer the branch point between the individual domains is.

Figure 15: Phylogenetic tree for human JmjC containing KDM proteins. The asterisks indicate proteins for which no enzymatic activity has yet been determined. Adapted. ${ }^{54}$

4.1.1 Lysine demethylase families

The KDM families, while having sequence similarities with each other, also appear to share common substrates. However, an individual KDM may demethylate more than one substrate. Both members of the KDM2 family, FBXL10 and FBXL11, demethylate methylated histone 3 lysine 36 (H3K36) with one or two methyl marks present. However, FBXL10 can also demethylate H3K4 with three methyl marks present. ${ }^{58}$ The enzymes in this family have been linked to leukaemia, pancreatic cancer and implicated in the immune response through regulation of NFкB, which is a transcription factor for both innate and adaptive immune response. ${ }^{54,59}$

The KDM3 family is known to demethylate H3K9 with one or two methyl groups present. However, substrates for JmjD1c and HR are currently unknown. ${ }^{60}$ This family of enzymes is found to be overexpressed in a range of cancers including bladder, lung and prostate cancers. However, a range of cancers have also found enzymes from this family to be deleted, which may suggest some members could be tumour suppressors. ${ }^{54}$

The KDM4 (JmjD2) family of enzymes with known substrates all demethylate tri- and dimethylated H3K9. The a, b and c JmjD2 proteins can also demethylate H3K36 in both the tri- and dimethylated forms. ${ }^{61}$ The KDM4 family has a role in the progression of prostate and breast cancers as well as some proteins being overexpressed in some breast cancers. ${ }^{54}$ JmjD2d has been linked to gene transcription in immune cells and may have role in autoimmune diseases. ${ }^{62}$

The KDM5 family of proteins, in addition to containing a JmjC domain also have AT-rich interaction domains (ARID) present, which are DNA binding features. ${ }^{63}$ Mono-, di- and trimethylated lysines on H3K4 are demethylated by this family of KDMs. This family of JmjC containing proteins is implicated in the regulation of tumour suppression and JARID1D is deleted in half of prostate cancers. ${ }^{54}$ JARID1a is associated with susceptibility to ankylosing spondylitis, ${ }^{64}$ an immune disease which causes fusion of bones in the spine. ${ }^{65}$

The KDM6 family of proteins are known to demethylate H3K27 in the tri- and di-methylated forms. ${ }^{66}$ These enzymes are involved in cancer by inactivating mutations in multiple tumour types and have links to tumour suppression through other pathways. In inflammatory disease they assist with proinflammatory gene regulation and T helper cell development. ${ }^{54}$

Finally, the KDM7 family of enzymes all demethylate dimethylated H3K9. PHF8 can additionally demethylate monomethylated H3K9 and monomethylated H4K20. KIAA1718 additionally demethylates monomethylated H3K9 and mono- and dimethylated H3K27. ${ }^{67}$ The KDM7 family is involved in leukaemia ${ }^{68}$ and control of proinflammatory gene expression. ${ }^{69}$

4.1.2 The function of JmjC domains

All these families demethylate N-methylated lysines using molecular oxygen and 2oxoglutarate (2-OG, 3.006) as a co - factor (Scheme 1). ${ }^{70}$

Scheme 1: Mechanism of demethylation of a trimethylated lysine.

For each demethylation, molecular oxygen associates to Fe (II). The oxygen oxidises 2-OG (3.006) to succinate and carbon dioxide and in doing so, $\mathrm{Fe}(\mathrm{II})$ is oxidised to a reactive $\mathrm{Fe}(\mathrm{IV})$ ferryl-oxo species. The ferryl-oxo species hydroxylates a methyl group on a methylated lysine thus generating an unstable hemiaminal intermediate, which subsequently fragments to the demethylated lysine and formaldehyde. ${ }^{70}$ The process can be repeated until the lysine is fully demethylated with the appropriate enzyme for the substrate.

In the JmjC containing proteins different residues can surround the iron, which hold it in place, for example in KIAA1718 a glutamic acid common to many JmjC proteins in Fig. 16 is replaced with an aspartic acid. ${ }^{71}$ Each JmjC domain folds into eight β-sheets forming an enzymatically active pocket which coordinates $\mathrm{Fe}(\mathrm{II})$ and 2-oxoglutarate (2-OG, 3.006) (Fig. 16). Most of the proteins also contain a JmjN domain which interacts extensively with the JmjC domain and provides structural integrity. ${ }^{54,72}$

Figure 16: Tertiary structure of JmjD2d (magenta) with Ni(II) (orange) and 2-OG (green, 3.006) bound, resolution $=1.8 \AA \AA^{73}$ The $\mathrm{Ni}(I I)$ is a surrogate for $\mathrm{Fe}(I I)$ that renders the protein catalytically inactive.

4.1.3 Known inhibitors of JmjC domains

A number of molecules which inhibit JmjC domains have been identified, all of which are competitive with the natural substrate 2-OG (3.006) (Fig. 17), and therefore are able to inhibit the demethylation of N-methylated histones.

4.001

4.004

4.002

4.005

4.006

4.007

4.008

4.010

4.011

Figure 17: Reported inhibitors of JmjC domains. The atoms that chelate iron (II) are highlighted in red.

One of the earliest inhibitors N-oxalylglycine (NOG, 4.001) is a catalytically inert analogue of 2-OG (3). ${ }^{74} 4.002$ is an analogue of NOG, which in addition to binding competitively with 2-

OG (3.006), has a benzyl spacer that places the N-dimethyl group in the methylated lysine binding pocket. ${ }^{75} 4.003$ is another NOG mimetic although this example is not targeted to fill the methylated lysine binding pocket. ${ }^{76}$ The pyridine 4 -carboxylic acid based inhibitors $4.004,^{77} 4.005^{70}$ and 4.006^{78} were found to inhibit JmjC domains by chelating to the catalytic iron present in JmjC domains through the pyridine nitrogen. Hydroxyquinoline 4.007 was screened against a wide range of 2-OG oxygenases and was found to inhibit all the enzymes it was tested against, with a shift in the active site iron compared to the natural ligand 2-OG (3). ${ }^{79}$ Biheteroaryl 4.008 was found to selectively inhibit JmjD3 and similarly to hydroxyquinoline $\mathbf{4 . 0 0 7}$ causes a shift of the bound metal, cobalt in the JmjD3 Xray crystallography system. ${ }^{80}$ The hydroxamic acid containing 4.009, ${ }^{81} 4.010^{82}$ and $4.011{ }^{83}$ were found to bind to JmjC containing proteins co-ordinating to the catalytic iron through the two oxygens of the hydroxamic acid. The larger examples of the hydroxamic acid containing compounds 4.010 and 4.011 were designed to mimic the peptide substrates while simultaneously binding to the iron. ${ }^{82,83}$

Figure 18: An ester pro-drug enters a cell and the ester is cleaved, revealing the active carboxylic acid.

All of the compounds discussed contain carboxylic acids and in many cases an ester prodrug approach is used to enable cellular penetration and investigate biological activity in the cell. Within the cell, esterases cleave the ester and unmask the active carboxylic acid (Fig. 18). Only hydroxamic acid 4.011, when dosed as the methyl ester analogue has shown an IC_{50} value less than $10 \mu \mathrm{M}$.

4.2 Inhibition of JmjD2 lysine demethylases

The KDM4 family of JmjC containing enzymes has been implicated in gene transcription in immune cells, in particular JmjD2d (p 30). ${ }^{62}$ JmjD2a, b, c and d have been found to demethylate $\mathrm{H} 3 \mathrm{~K} 9^{56}$ and high levels of H3K9 methylation has been shown to correlate with inhibition of the production of type I interferons (IFN), which are inflammatory cytokines. ${ }^{84}$ Hence, the inhibition of H3K9 demethylation should reduce the amount of IFN production in the body and thereby help those with autoimmune diseases which display heightened levels of IFN, such as systemic lupus erythematosus (SLE). ${ }^{85}$ It was hypothesised that inhibiting these enzymes in the body could reduce the amount of IFN produced. If less IFN is produced it could provide a treatment for SLE and other autoimmune diseases. ${ }^{86}$

JmjD2a and c share the highest homology within the JmjC domains and JmjD2d is the most structurally divergent of the protein family. Beyond the JmjC domain, JmjD2d is considerably different from the other members of the JmjD2 family. It is a shorter protein than JmjD2a, b or c and only contains a JmjC domain. The other members of the JmjD2 family also contain a PHD (plant homeodomain) sequence, a methylated lysine binding motif, ${ }^{87}$ and Tudor domains, which read di- and tri-methylated lysines as well as methylated arginines (Fig. 19). ${ }^{88}$ There are two possible other members of the JmjD2 family, JmjD2e and f . The genes that code for these proteins are currently believed to be pseudogenes, ${ }^{89}$ genes which have lost their protein coding ability or are not expressed in the cell. ${ }^{90}$

Figure 19: Schematic diagram of the JmjD2 family showing the domains present and length of amino acid chain. Adapted ${ }^{72}$

Ideally, a selective JmjD2 inhibitor would be identified that would inhibit only one of the JmjD2 family members as this would simplify any biological outcomes observed on dosing
the probe compound. However, due to the high homology between the JmjC domains in the JmjD2 family, especially within the methylated lysine binding pocket, ${ }^{56}$ this would be difficult to achieve and is not a focus of the project (Table 1).

JmjD	a	b	c	d	e
a	1.00	0.82	0.73	0.60	0.59
b	0.82	1.00	0.76	0.68	0.66
c	0.73	0.76	1.00	0.60	0.59
d	0.60	0.68	0.60	1.00	0.80
e	0.59	0.66	0.59	0.80	1.00

JmjD	a	b	c	d	e
a	1.00	0.81	0.82	0.73	0.73
b	0.81	1.00	0.85	0.76	0.74
c	0.82	0.85	1.00	0.74	0.73
d	0.73	0.76	0.74	1.00	0.91
e	0.73	0.74	0.73	0.91	1.00

Table 1: Levels of homology of the JmjD2 family. Left: The first 387 aa residues. Right: The 169 aa residue sequence which contains the Fe and 2-OG interacting residues.

However, selectivity, in addition to other attributes, is required for the KDM4 or JmjD2 family over the other KDM families and the compounds described earlier (Fig. 17, p 33) do not provide the required profile, with many of them being pan-inhibitors of 2-OG using enzymes. ${ }^{76,77}$ Therefore, a body of work was initiated to identify compounds to provide probe compounds for the JmjC domain of the JmjD2 family of enzymes. Based on literature evidence, it was anticipated this would lead to down regulation of anti-inflammatory cytokines such as type I IFN, which would be of value for an SLE indication. ${ }^{85}$

Therefore, a programme of work was undertaken to identify probe molecules that were potent, selective for JmjD2 lysine demethylases and could engage the endogenous enzyme in the nuclei of cells. Upon the identification of such molecules, they would be tested in cellular systems to determine if a phenotype could be identified.

4.2.1 Identification of lead molecules

Previously, in our laboratories, there had been an interest in the identification of a JmjD3 inhibitor and a high throughput screen (HTS) using the compound collection available in our laboratories had been undertaken. Following up the results from the HTS ultimately led to the discovery of biheteroaryl 4.008 (Fig. 17, p 33), a selective JmjD3 compound. ${ }^{80}$ The output from the JmjD3 HTS was reinvestigated and hits were cross screened through a JmjD2 RapidFire ${ }^{\text {TM }}$ assay. ${ }^{91}$ In a RapidFire ${ }^{\text {TM }}$ assay a solution of the molecule of interest at different concentrations is incubated with one of the Jumonji enzymes and a trimethylated peptide substrate then added. The mixture is allowed to stand for either 45 or 60 minutes and then the enzyme is denatured with a TFA solution halting the demethylation. The
mixtures are then sampled by mass spectrometry and the remaining trimethylated lysine peptide substrate ARTAQTARKSTGGIA is quantified by looking for the molecular ion and compared against the ions of the di-methylated peptides. This is possible through integrating the peak areas of the ions. Comparing the amounts of tri- and di-methylated peptide from the different concentrations of inhibitor compound allows an IC_{50} to be determined.

Molecules found from the JmjD3 screen needed to have certain properties to be taken forward as hits for JmjD2 family inhibitors:

- $\quad<10 \mu \mathrm{M}$ inhibition at a JmjD2 family enzyme
- Evidence of selectivity over JmjD3 or EGLN3
- $\quad>500 \mathrm{mV}$ redox potential

Less than $10 \mu \mathrm{M}$ inhibition at the JmjD2 family was required to have a reasonable level of potency that could be realistically optimised up to the required levels for a probe compound (p 39). Evidence of selectivity over other JmjC containing domains was required. Thus, JmjD3 and EGLN3 (Egl nine homolog 3) were chosen as representative JmjC domain containing proteins to show selectivity against and previous efforts to find inhibitors of these proteins within out laboratories meant that assays already existed for these targets. ${ }^{80,92}$ The requirement to have a redox potential of greater than 500 mV was necessary to ensure the compounds were inhibiting the binding of 2-OG rather than reducing or oxidising the iron to an non-catalytic oxidation state.

By applying these principles in analysing the HTS dataset, amide containing 4-pyridine carboxylic acid 4.012 was identified (Table 2).

4.012

JmjD2a/c plC ${ }_{50}$ (LE)	5.7 (0.37)/ 6.4 (0.43)
JmjD3 plC_{50}	5.9
EGLN3 plC_{50}	≤ 4.5
Oxidative stability mV	> 1320

Table 2: Properties of 4.012 .

The numbers in brackets represent the ligand efficiency (LE) of the compound. LE is a concept which relates the amount of binding energy per non-hydrogen atom or heavy atom (HA). ${ }^{93}$ By including a multiplication factor of 1.37 the amount of binding energy each atom is providing can be shown in $\mathrm{kcal} \mathrm{mol}^{-1}$ (Equation 1). ${ }^{94}$

$$
\mathrm{LE}=\frac{1.37 \times p I C_{50}}{H A}
$$

Equation 1: Calculation of LE.

Kuntz et al. have shown that the maximal affinity per HA for organic compounds is 1.5 kcal $\mathrm{mol}^{-1} .{ }^{95}$ The average LE of a marketed drug is around $0.3 .{ }^{96}$ When identifying a starting fragment to work from and elaborate it is useful to start with as high an LE as possible because the ligand efficiencies of compounds can fall as they are grown from a fragment. Having stated this, maintaining or increasing LE is highly desirable as one proceeds through optimisation of a given lead.

Amide containing 4-pyridine carboxylic acid 4.012 was a good, ligand efficient starting point and a package of work was undertaken against it. This work eventually led to compounds, for example furan containing 4.013, which were greater than one hundred-fold selective over JmjD3 and showed potency in a JmjD2c cell assay (Table 3). However, there was a one hundred-fold reduction in potency between the JmjD2c RapidFire ${ }^{\text {TM }}$ assay and the JmjD2c cell assay. This was believed to be linked to the low permeability, measured using an artificial membrane, of carboxylic acid 4.013 (Table 3). The low permeability, in the artificial membrane permeability assay (AMP), shows that $\mathbf{4 . 0 1 3}$ is likely to diffuse into cells slowly. Charged molecules permeate cell membranes slowly through passive diffusion, ${ }^{97}$ and the carboxylic acid present in 4.013 has a negative charge at biological pH of 7.4. ${ }^{98}$ The permeability of a compound can be measured in a high throughput manner using an artificial membrane bilayer, which has been correlated with passive diffusion of compounds into cells. ${ }^{99}$

4.013

JmjD2c/d plC ${ }_{50}$ (LE)	6.9 (0.59)/6.8 (0.58)
JmjD3 plC_{50}	4.8
JmjD2c cell assay plC_{50}	5.2
AMP nm s ${ }^{-1}$	< 3

Table 3: Properties of 4.013.
In an attempt to improve the cellular permeability of the compounds, esters were made of the carboxylic acids. These esters showed no activity in the JmjD2c cell assay, presumably due to the ester not being cleaved to the active carboxylic acid. Therefore, a search for non-carboxylic acid containing cellular inhibitors of the JmjD2 family was undertaken to investigate if inhibiting the JmjD2 family of enzymes could inhibit IFN production or show another phenotypic response. The removal of the carboxylic acid functionality was designed to improve cellular penetration of the probe molecules.

4.3 Screening cascade

In order to identify a suitable probe compound certain criteria needed to be met and hence a screening cascade was put into place (Fig. 20).

Figure 20: Screening cascade for JmjD2 family inhibitors.

To progress to the next level of the screening cascade the test compounds had to meet certain criteria that would facilitate identification of a probe molecule. Initially, the compounds need acceptable physicochemical properties with a LogP of between $1-3$ and a molecular weight of < 400 Da as this has been demonstrated to be an acceptable range in order to obtain cellular penetration. ${ }^{100}$ While increasing the lipophilicity of the compounds could aid cellular penetration, it is likely to cause wider issues. For example, compounds with high lipophilicity have been linked with promiscuity, poor PK and toxicology issues, often discovered later in development. ${ }^{101}$ These properties can be calculated prior to synthesis of the compound. However, the potency of the molecule cannot be calculated and the compound must be synthesised and screened in the RapidFire ${ }^{T M}$ assay. Here a plC_{50} value of >6.0 was thought to be sufficient for progression to the next level of the screening cascade along with $A M P \geq 30 \mathrm{~nm} \mathrm{~s}^{-1}$ and aqueous solubility of $\geq 50 \mu \mathrm{~g} \mathrm{~m}^{-1}$.

Greater than 30 -fold selectivity was required over both JmjD3 and EGLN3 compared to the JmjD2 family to provide selective compounds. JmjD3 and EGLN3 had been investigated previously in our laboratories and there was already experience in running these assays. Selectivity over two other JmjC containing proteins gave confidence that test compounds were not inhibiting all of the JmjC containing proteins. Compounds that inhibit all known proteins of a family or class are known as pan - inhibitors.

Selectivity in the biochemical RapidFire ${ }^{\text {TM }}$ assays allowed compounds to progress to the JmjD2c cell assay where a plC_{50} value of ≥ 5.0 was needed for further progression. In the JmjD2c cellular assay, cells are caused to overproduce JmjD2c while being incubated with different concentrations of test compound for 24 hours. During this period of time the JmjD2c can demethylate H3K9 present in the nucleus. The cells are rendered inactive with a solution of formaldehyde and incubated with a trimethylated - H3K9 antibody which can be used to measure the levels of inhibition by the compound. ${ }^{102}$ Positive activity in the cell assay also proves target engagement of the test compounds with JmjD2c.

Finally, the compounds should be tested against a wide range of non-related drug and liability targets to ensure that any phenotype seen is not due to off-target activity. Once a test compound has passed all these criteria a probe compound for the JmjD2 family will have been identified.

4.4 Identification of a JmjD2 family hit compound.

The amide containing 4-pyridine carboxylic acid 4.012 (Table 2, p 37) was simplified to isonicotinic acid (4.014, Table 4, p 43). Isonicotinic acid (4.014) was screened against JmjC containing enzymes and was found to be selective for the JmjD2 family compared to JmjD3 (Entry 1, Table 4, p 43). This provided a small fragment to begin the search for a JmjD2 family probe molecule. Isonicotinic acid (4.014) has an undesired carboxylic acid present and this needed to be removed to find a cellularly penetrant probe molecule.

An X-ray crystal structure was obtained for isonicotinic acid (4.014) bound in JmjD2d and this was compared to the crystal structure of 2-OG (3.006) bound in JmjD2d (Fig. 21). ${ }^{103}$ The crystallography systems employed in this study use nickel or cobalt in place of the catalytic iron in the natural protein. In JmjD2d, the key interactions for isonicotinic acid (4.014) are between the carboxylate acting as an H-bond acceptor for Lys210 and Tyr136 and the pyridine nitrogen chelating to the iron. Additionally, there is a possibility of an aromatic face to face interaction between isonicotinic acid (4.014) and Phe189. The same interactions are seen across the JmjD2 family, albeit with the numbering of the residues changing. When comparing the overlay with 2-OG (3.006) (Fig. 16, p 32) there is no significant change in the conformation of the residues in the JmjC domain. The H -bonds are maintained between the protein and the ligand for both 2-OG (3.006) and isonicotinic acid (4.014). There are some minor changes around the chelation to the metal as 2-OG (3.006) binds in a bidentate fashion while isonicotinic acid (4.014) chelates in a monodentate manner (Fig. 21).

Figure 21: Left X-ray crystal structure of isonicotinic acid (4.014) shown in cyan in JmjD2d, resolution $=2.0 \AA$. Right Overlaid with $2-\mathrm{OG}(\mathbf{3 . 0 0 6})$ in green (right), resolution $=1.8 \AA \AA^{73}$

Given the very limited success of using a pro-drug strategy for JmjC containing proteins (p 34) a search of similar compounds without the carboxylic acid moiety was undertaken using the compound collection available in our laboratories. ${ }^{104}$ It was reasoned that the compounds selected would make the same interactions with the JmjD2 family proteins as isonicotinic acid (4.014) did. The results of the search were screened through the JmjD2 family and selectivity assays (Table 4).

Entry	Number	Structure	$\begin{gathered} \text { JmjD2c } \\ \mathrm{pIC}_{50} \text { (LE) } \end{gathered}$	$\begin{gathered} \hline \text { JmjD2d } \\ \text { pIC }_{50} \text { (LE) } \\ \hline \end{gathered}$	$\begin{gathered} \text { JmjD2e } \\ \text { pIC }_{50} \text { (LE) } \end{gathered}$	$\begin{gathered} \text { JmjD3 } \\ \mathrm{plC}_{50} \end{gathered}$	$\begin{gathered} \text { EGLN3 } \\ \mathrm{pIC}_{50} \end{gathered}$
1	4.014		5.9 (0.90)	5.3 (0.81)	5.4 (0.82)	< 4.0	- -
2	4.015		< 4.0	< 4.0	< 4.0	< 4.0	< 4.3
3	4.016		4.1 (0.51)	3.6 (0.45)	-	-	-
4	4.017		5.8 (0.79)	4.8 (0.66)	5.1 (0.70)	5.3	< 4.0
5	4.018		$<4.0^{\text {a }}$	$<4.0^{\text {a }}$	$<4.0^{\text {a }}$	< 4.0	4.4
6	4.019		5.7 (0.71)	5.0 (0.62)	5.1 (0.64)	< 4.0	< 4.3

Table 4: Comparison of the potencies of JmjD2 test compounds. ${ }^{\text {a }}$) Assay carried out with 10x concentration of JmjD2 enzyme, incubating for 8 min .

Primary amide containing 4.015 (Entry 3), as a close analogue to isonicotinic acid (4.014) was expected to retain some binding affinity, although upon testing it displayed pIC_{50} values of <4.3 at the enzymes of interest. Tetrazole is a known isostere of carboxylic acid ${ }^{105,106}$ and thus tetrazole containing 4.016 was selected for investigation. Compared to isonicotinic acid (4.014) tetrazole containing 4.016 was found to be 50 to 100 -fold less active at JmjD2c and JmjD2e, respectively, which can be rationalised by examining Fig. 21 (p 42). Assuming that the pyridine nitrogen chelates to the metal, Lys210 and Tyr136 would have to move to avoid steric clash with the tetrazole, which is disfavoured energetically, causing a decrease in the binding potency. Hydroxamic acid is another known carboxylic
acid isostere ${ }^{106}$ and therefore 4.017 was investigated. The potency of hydroxamic acid containing 4.017 was similar to isonicotinic acid (4.014) which was promising. However, the compound was equipotent at JmjD3 which made it an unsuitable starting point for a JmjD2 selective probe. This lack of selectivity could be due to hydroxamic acids being chelators for a wide range of transition metals ${ }^{107,108}$ and an X-ray crystal structure for hydroxamic acid containing 4.017 in JmjD2d shows a different binding mode (Fig. 22). ${ }^{103}$

Figure 22: X-ray crystal structure of hydroxamic acid compound 4.017 in JmjD2d, resolution $=2.1$ Å.

Compared to the X-ray crystal structure of isonicotinic acid (4.014) (Fig. 21, p 42) hydroxamic containing 4.017 has been inverted, with the hydroxamic acid chelating, in a bidentate fashion, to the metal. The hydroxamic acid also makes an H-bond to Asn202, which is not implicated in the binding of isonicotinic acid (4.014). The final interaction between the ligand and the protein is the pyridine nitrogen acting as an H -bond acceptor for Lys210. Tyr136 has not moved significantly even though it is not making an interaction with hydroxamic containing 4.017.

Naphthyridone 4.018 universally had pIC_{50} values of < 4.0 at the JmjD2 family and was of no further interest as a template. However, introduction of a nitrogen into the core provided pyridopyrimidinone 4.019, which gave a very attractive profile to work from being only approximately two and a half-fold less potent than isonicotinic acid (4.014) whilst its binding to JmjD3 and EGLN was below the limit of quantification. The difference in potency between naphthyridone 4.018 and pyridopyrimidinone 4.019 will be discussed later (Table 7, p 53). An X-ray structure of pyridopyrimidone 4.019 shows it makes the same interactions as isonicotinic acid (4.014) (Fig. 23). ${ }^{103}$

Figure 23: Comparison of the X-ray crystal structures of pyridopyrimidinone 4.019 (grey) and isonicotinic acid (4.014) (cyan) in JmjD2d, resolution for both $=2.0 \AA$.

The amide oxygen behaves as an H-bond acceptor for Lys210, the amide nitrogen is an H bond donor for Tyr136 and the nitrogen of the pyridine ring chelates to the nickel. Additionally there is a face to face aromatic ring interaction with Phe189 (Fig. 23). Due to the high homology of the JmjD2 family, the lysine and tyrosine residues that pyridopyrimidinone 4.019 interacts with in JmjD2d are conserved in the other proteins of the JmjD2 family (Table 1, p 36). Therefore, selectivity for an individual member of the JmjD2 family will be very challenging to achieve. As the levels of inhibition for individual
members of the JmjD2 family have shown to be largely similar over a large number of compounds only JmjD2d RapidFire ${ }^{\text {TM }}$ data will be presented routinely.

$J m j D 2 \mathrm{c} / \mathrm{d} / \mathrm{e} \mathrm{pIC}_{50}(\mathrm{LE})$	$5.7(0.71) / 5.0(0.62) / 5.1(0.64)$
$\mathrm{JmjD3}^{\mathrm{pIC}} 50$	<4.0
$\mathrm{EGLN}_{50} \mathrm{pIC}_{50}$	<4.3
Oxidative stability mV	719
Molecular weight Da	147
cLogP	-0.7
Aqueous solubility $\mathrm{\mu g} \mathrm{~mL}^{-1}$	≥ 68
pK_{a}	8.3
AMP nm s	
-1	69

Table 5: Properties of pyridopyrimidinone 4.019.

As mentioned earlier, the potency of the molecule was at an acceptable level to work from with good selectivity between JmjD3 and the JmjD2 family. The compound was found to be oxidatively stable and had a low molecular weight and cLogP that were amenable to growing the fragment and looking for other interactions with the target enzymes. Pyridopyrimidinone 4.019 had acceptable levels of aqueous solubility in an assay determining this from a DMSO solution. This combined with pyridopyrimidinone 4.019 being, at a physiological pH of 7.4 , largely uncharged gives it a higher chance of passively crossing the cell membrane compared to isonicotinic acid (4.014) as shown by the AMP data (Table 5). It was from pyridopyrimidinone 4.019 that work in this chapter originated.

The synthesis of the compounds in this thesis was a team effort and bespoke compounds synthesised by other members of the research group will be noted with an asterisk (*).

4.5 Investigation of 6,7 and 6,5 sized ring systems

4.5.1 Synthesis of test compounds

The first area investigated was to determine the effects of changing the ring size on the potency of the molecules. One of the first compounds to be synthesised was a homologated, saturated version of pyridopyrimidinone 4.019 which breaks the aromaticity in the pyrimidinone ring of the bicycle. Compound 4.020 was designed to investigate different vectors around the amide, to determine how this would affect the H -bonding to

Lys210 and Tyr136 in JmjD2d and whether a non-planar molecule would be tolerated within the active site. Two synthetic approaches were considered to give the desired material. Accordingly, there were two key bonds to disconnect (Scheme 2).

Scheme 2: Disconnections to 4.020.

These initial disconnections were between the $C-N$ bond of the amide (Route A) or the pyridyl ring- N bond (Route B). Historically, a number of molecules in the isonicotinic acid series such as furan containing 4.013 (Table 3, p 39) had been made by $\mathrm{S}_{N} \mathrm{Ar}$ of aliphatic amines with 3-fluoroisonictotinic acid (4.022) and there are further examples of $\mathrm{S}_{N} \mathrm{Ar}$ reactions with fluoro substituted electron deficient aromatic rings. ${ }^{109}$ The 7-exo-trig cyclisation ${ }^{110}$ was then expected to deliver diazepinone containing 4.020 via an amide coupling (Scheme 3). ${ }^{111,112}$

Scheme 3: Reagents and conditions: a) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, 150{ }^{\circ} \mathrm{C}$, microwave, 41%; b) $\mathrm{H}_{2} \mathrm{SO}_{4}$, EtOH, 0%; c) $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, EtOH, $100^{\circ} \mathrm{C}$, microwave, 30%; d) DMSO, $160^{\circ} \mathrm{C}, 21 \%$.

The $S_{N} A r$ reaction with fluoropyridine containing 4.022 using ethylenediamine as solvent gave amino acid 4.021. The cyclisation of amino acid 4.021 was unsuccessful on heating in ethanol with sulfuric acid as neither the ethyl ester, a possible intermediate, or the desired product were observed. In contrast, diazepinone containing 4.020 was successfully accessed by the direct amide formation from methyl ester 4.024 to give amide 4.023 in 30\% yield and the subsequent $S_{N} A r$ cyclisation gave the desired product 4.020 in a yield sufficient for biological assays (Scheme 3).

Another compound of interest was pyridopyrazolone 4.025 which contracted the pyrimidinone ring of pyridopyrimidinone 4.019 to a pyrazolone. This probes a different ring size at the top of the molecule while retaining aromaticity allowing access to different vectors within the protein compared to the six membered ring ligands. The synthesis of 4.025 began with the diazotisation of 3 -aminoisonicotinic acid (4.026) and subsequent reduction of the resulting diazonium salt by aqueous sodium sulfite, generated by passing gaseous sulfur dioxide through water, to give aryl hydrazine 4.027. Aryl hydrazine $\mathbf{4 . 0 2 7}$ was subsequently cyclised to give pyridopyrazolone 4.025 by refluxing in dilute aqueous hydrogen chloride (Scheme 4). ${ }^{113}$

Scheme 4: Reagents and conditions a) conc. $\mathrm{HCl}, \mathrm{NaNO}_{2}$, sat. aq. $\mathrm{SO}_{2}, \mathrm{O}^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}, 66 \%$; b) aq. HCl , reflux, 45%.

4.5.2 Discussion of SAR of 6,7 and 6,5 sized ring systems and intermediates

Diazepinone containing 4.020, when tested at JmjD2d, was found to be inactive, indicating that a seven membered ring is not tolerated in this position (Table 6, Entry 6). This could be due to a number of factors: the protein is not sufficiently mobile in this area to incorporate the new vectors around the amide to interact with Lys210, Tyr136 or the face to face aromatic interaction between the ligand and Phe189 may not have sufficient overlap. Additionally, the aromatic face to face interaction with Tyr136 may be disrupted by the introduction of the sp^{3} centres. Another possibility is that the amide may not be suitably
acidic. The pK_{a} of the amide is predicted to be 13.4 and is considerably higher than the pK_{a} of fragment 4.019 which has a measured pK_{a} of 8.3 (Table $5, \mathrm{p} 46$). The distance between Phe189 and the original fragment 4.019 is $3.7 \AA$, which is within the range of distances for a diverse range of aromatic face to face interactions. ${ }^{114}$ Hence, the steric clash between the sp^{3} centres of diazepinone containing 4.020 and Phe189 may be disrupting this important interaction and cause the binding of 4.020 not to be energetically favourable.

Entry	Number	Structure	$\begin{aligned} & \hline \mathrm{JmjD2d} \\ & \mathrm{plC}_{50} \text { (LE) } \end{aligned}$	cLog ${ }^{\text {a }}$
1	4.014		5.3 (0.81)	0.8
2	4.022		$4.6(0.63)^{\text {b }}$	0.6
3	4.026		5.8 (0.78)	0.8
4	4.021		< 4.0	-1.0
5	4.028*		5.7 (0.56)	-0.6
6	4.020		$<4.0^{\text {b }}$	-0.6
7	4.025		< 4.0	0.0

Table 6: JmjD2d RapidFire ${ }^{\text {TM }}$ potencies for test compounds. ${ }^{\text {a }}$) Calculated using Daylight cLogP v4.81. ${ }^{\text {b }}$) Assay carried oit $10 x$ concentration of JmjD2 enzyme, incubating for 8 min .

3-Fluoroisonictotinic acid (4.022) and amino acid 4.021 (Entries 2 and 4, Table 6) were also submitted for test, but were found to be less active than isonicotinic acid (4.014) at JmjD2d. This five-fold drop in potency for 3-fluoroisonictotinic acid (4.022) may be due to the pyridine lone pair being less able to chelate to the iron as the electronegativity of the fluorine decreases the electron density in the ring. 3-Aminoisonicotinic acid (4.026) is 20fold more potent than 3 -fluoroisonictotinic acid (4.022) against JmjD2d. As the JmjD2d potency of the isonicotinic acids is ranked $4.026>4.014>4.022$ and these respectively have electron donating, neutral and electron withdrawing groups, it lends weight to the hypothesis that as electron density within the pyridine ring increases so does the binding strength to the iron. A study by Rodgers on the binding strength of substituted pyridines to alkali metal ions supports this as aminopyridines are better binders to metal ions than unsubstituted pyridine. ${ }^{115}$ Also, the pyridine-metal bond of 2- and 4-aminopyridines is stronger than that of 3-aminopyridine as more electron density can be placed on the ring nitrogen by the mesomeric effect when the amino group is in the 2 or 4 positions. ${ }^{115}$ Why the activity of amino acid 4.021 is less than 3-aminoisonicotinic acid (4.026) (Entries 4 and 3) is unclear and for a definitive answer an X-ray crystal structure may be required. The ethylamine chain of amino acid 4.021 is clearly making a deleterious interaction, however, information from related crystal structures it is not obvious what this interaction is. One possibility is the aliphatic amine is too close to Lys245 at a distance of about $6 \AA$ (Fig. 24). At physiological pH both Lys245 and the aliphatic amine will be positively charged and electrostatic repulsion between these two groups causes the drop in activity for ethylamine containing 4.021. The amine moiety of ethylamine analogue 4.021 is near to Asp139 in JmjD2d. Propylamine analogue 4.028, synthesised in the efforts that identified furan containing 4.013 (p 39), shows an increase in potency of at least 50 -fold at JmjD2d compared to ethylamine containing 4.021 (Table 6). The X-ray crystal structure of propylamine compound 4.028 in JmjD2d suggests it is caused by a salt bridge between the aliphatic amine and Asp139 (Fig. 24). ${ }^{103}$

Figure 24: X-ray structure of 4.028 in JmjD2d, resolution $=1.9 \AA$ Å.

The amine chain in amino acid 4.021 may not be able to form the salt bridge with Asp139 due to the shorter alkyl chain than comparatively homologated 4.028. Pyridopyrazolone 4.025 (Entry 7, Table 6, p 49) had a plC_{50} value of <4.0 possibly indicating that the interactions between the ligand and Lys210 and Tyr136 have been disrupted.

As there was precedent for activity with 6,6-bicycles and other ring systems, 5,6- and 7,6bicycles (Table 6, p 49) showed no activity, it was decided to investigate both the $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ and potential alternative binding modes through changing the 6,6-bicylic system.

4.6 Alternative 6,6-bicyclic systems

Both the pyrimidinone and pyridine rings were investigated. The modification of the pyrimidinone ring will be discussed first.

4.6.1 Investigation into changes of the pyrimidinone ring

Pyridopyridizinone 4.029 (Scheme 5) was a molecule of interest as it was predicted to have a lower pK_{a} than the corresponding inactive pyridopyridinone 4.018 (Table 7, p 53), although not as low as pyridopyrimidinone 4.019. Pyridopyridizinone 4.029 was hypothesised to bind more strongly to the JmjD2 proteins as it would better mimic the carboxyl group in the isonicotinic acid (4.014). Based on this, pyridopyridizinone 4.029 was synthesised according to a literature procedure (Scheme 5). ${ }^{116}$

Scheme 5: Reagents and conditions: a) CDI, $\mathrm{PhNH}_{2}, 2-\mathrm{MeTHF}, 50^{\circ} \mathrm{C}, 83 \%$; bi) n-BuLi, THF, -$70-0^{\circ} \mathrm{C}$; ii) DMF, $-70-20^{\circ} \mathrm{C}, 4 \%$; c) 35% aq. $\mathrm{NH}_{2} \mathrm{NH}_{2}, 120^{\circ} \mathrm{C}, 8 \%$.

After the amide formation to give aryl amide 4.030, the addition of two equivalents of n BuLi initially deprotonates the amide NH and then directed ortho-lithiation occurs. ${ }^{117}$ The anion adjacent to the amide group on the pyridine ring is initially quenched by DMF to give an aldehyde, which is isolated as hemiaminal 4.031. Stirring hemiaminal 4.031 in refluxing 35% aq. hydrazine hydrate initially causes the formation of the hydrazone which then reacts, displacing aniline to give pyridopyridizone 4.029. Pyridopyridizone 4.029 was found to be inactive at all enzymes of interest (Entry 3, Table 7).

Upon comparison of the measured $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of pyridopyridinone 4.018 and pyridopyridizinone 4.029 it was observed that having the additional electronegative nitrogen adjacent to the amidic nitrogen does lower the pK_{a} (Entries 3 and 2, Table 7). However, the lack of inhibition by pyridopyridizinone 4.029 could be due to the molecule still not being sufficiently acidic or the lack of H -bond acceptors at the 4-position of the pyridazinone ring. The lack of an H-bond acceptor may cause unfavourable interactions with the water network around this area of the active site rendering the compound inactive (Table 7). This potential disruption of the water network and necessity of an H -bond acceptor could be an additional factor in why pyridopyrazolone 4.025 (Entry 7, Table 6, p 49) was also found not to inhibit JmjD2 proteins.
Entry

Table 7: RapidFire ${ }^{\text {TM }}$ activities of 6,6 bicycles. ${ }^{\text {a }}$) Measured using a Sirius T3. ${ }^{\text {b }}$) Assay carried out with $10 x$ concentration of JmjD2 enzyme, incubating for 8 min .

The closely related molecule 4.032 was successfully crystallised in JmjD2d and an X-ray structure derived. ${ }^{103}$ The crystal structure shows Lys245 is actively H -bonding with hydroxypyridopyridazinone 4.032 and Tyr136 has moved in comparison with pyridopyrimidinone 4.019, while the remainder of the protein is comparatively static (Fig. 25).

Figure 25: Overlay of two X-ray crystal structures in JmjD2d. Pyridopyrimidinone 4.019 (magenta), resolution = $2.0 \AA$, and hydroxypyridopyridazinone 4.032 (green), resolution = 2.5 A. The water replacing the oxygen of Tyr136 is the red sphere labelled water below Asn284.

Interestingly, water occupies the same site as the oxygen of Tyr136 in pyridopyrimidinone 4.019 and makes an H-bond to Asn284 in an analogous manner to Tyr136. Lys245 is another residue in the active site which has moved, in this case closer to hydroxypyridopyridazinone 4.032 making an H-bond 3.1 Å long between the protonated nitrogen of Lys245 and the nearby oxygen of hydroxypyridopyridazinone 4.032. Methoxy analogue 4.033 was found to be inactive. This could be caused by the disruption of the Hbond between Lys245 and the nearby oxygen due to steric hindrance around the oxygen by the methyl group. As methoxy containing 4.033 has a higher pK_{a} than pyridopyrimidinone 4.019 and is inactive, it appears that activity is partially driven by pK_{a} and above a certain value, lack of acidity may prevent binding of the molecules in the active site. The effect of pK_{a} may have a smaller effect on the potency of the molecule compared to having an accessible H -bond acceptor on the right hand side of the molecule for these bicycles. One hypothesis is that molecules which do not contain an H-bond acceptor on the right hand side of the molecule cause disruption of a water network in this area of the active site. This in turn causes a reduction in the activity of the molecules without this moiety.

4.6.2 Movement of Tyr136

The movement of the protein shown in Fig. 25 was intriguing and was also seen for another chemical series that was worked on by the JmjD2 chemistry team. This was in an attempt to produce a second JmjD2 inhibitor chemical series structurally distinct from the series based on pyridopyrimidinone 4.019, as suggested by the probe philosophy (Section 3.3.1, p 24). The second series is exemplified by cyanopyridopyrimidinone 4.034 (Table 8).

JmjD2c/d/e plC ${ }_{50}$ (LE)	5.6 (0.51) / 5.2 (0.47) / 5.4 (0.49)
JmjD3 plC_{50}	< 4.0
EGLN3 plC_{50}	< 4.3
Oxidative stability mV	892
Molecular weight Da	202
cLogP	0.2
Aqueous solubility $\mu \mathrm{g} \mathrm{mL}^{-1}$	74
AMP nm s ${ }^{-1}$	<3

Table 8: Properties of cyanopyridopyrimidinone 4.034.

However, the desired probe profile was not achieved through this series and will not be discussed beyond this section. An X-ray crystal structure of cyanopyridopyrimidinone 4.034 in JmjD2d was obtained (Fig. 26). ${ }^{103}$

Figure 26: X-ray crystal structure of cyanopyridopyrimidinone 4.034 bound in JmjD2d, resolution $=2.1 \AA$.

Examination of the X-ray crystal structure of cyanopyridopyrimidinone 4.034 in JmjD2d shows the interactions between cyanopyridopyrimidinone 4.034 and the JmjD2d protein (Fig. 26). The nitrogen lone pair of the nitrile group chelates with the metal. The carbonyl oxygen and the nitrogen at the 1-position both make H-bonding interactions with Lys210, and the $\mathrm{N}-\mathrm{H}$ in the pyrimidinone ring appears to make an H -bonding interaction with a conserved water. The oxygen of the carboxamide, in addition to the H-bond with Lys210, makes an H-bonding interaction with Asn284. It is in this position that the oxygen of Tyr136 in the X-ray crystal structure of pyridopyrimidinone 4.019 (Fig. 23, p 45) and the water highlighted in the X-ray crystal structure of hydroxypyridopyridazinone 4.032 sit (Fig. 25, p 54). This highlights that Tyr136 is capable of moving and therefore new interactions or binding pockets could be found for potential probe compounds to interact with. It also indicates that having an oxygen in this position is highly desirable as it is present from a tyrosine (Fig. 23, p 45), a water (Fig. 25, p 54) or the oxygen of a carboxamide (Fig. 26).

4.6.3 Investigation into changes of the pyridine ring

Returning to alterations of the 6,6-bicyclic system; changes to the pyridine portion of pyridopyrimidinone 4.019 were investigated via a number of alternative, nitrogen containing aromatic ring systems. Examples from the compound collection available in our laboratories were screened against the enzymes of interest (Table 9). These compounds were identified through substructure searching. ${ }^{104}$

Entry	Number	Structure	JmjD2d plC 50 (LE)	Measured $\mathrm{pK}_{\mathrm{a}}{ }^{\text {a }}$
1	4.019		5.0 (0.62)	8.3
2	4.035		$<4.0^{\text {b,c }}$	7.5
3	4.036		4.7 (0.59)	6.9
4	4.037		5.2 (0.65)	7.5

Table 9: RapidFire $^{\mathrm{TM}}$ activities of analogues of 4.019 containing an additional nitrogen. ${ }^{\text {a }}$) Measured using a Sirius T3. ${ }^{\text {b }}$) Assay carried out with $10 x$ concentration of JmjD2 enzyme, incubating for $8 \mathrm{~min} .{ }^{\mathrm{c}}$) $\mathrm{pIC}_{50}=5.6$ on 1 test occasion, inactive on 4 other occasions.

Pyrimidine containing 4.035 (Entry 2) was found to be inactive at JmjD2d whilst the pyridazine analogues 4.036 and 4.037 (Entries 3 and 4) show similar levels of potency to pyridopyrimidinone 4.019. The inactivity of pyrimidine compound 4.035 may be due to the metal binding properties of pyrimidines. The binding of pyrimidine to alkali metals has been shown to be less energetically favourable than the binding of alkali metals to pyridine and pyridazine. ${ }^{118}$ Alternatively, the binding of pyrimidine containing 4.035 to JmjD2 enzymes could be altered depending on which tautomer is energetically favoured (Scheme $6)$.

Scheme 6: Tautomers of 4.035.

Tautomers 4.035 and 4.035^{\prime} can continue to bind Lys210 through the carbonyl group, however, the form represented by 4.035" can form an internal hydrogen bond with the pyrimidine nitrogen at the 5 -position (Scheme 6). While there are currently no small molecule X-ray crystal structures of 4.035 or its analogues, internal hydrogen bonds of the type shown in 4.035" have been observed in 8-hydroxyquinolines. ${ }^{119}$ If 4.035" is the preferred tautomer, this will further explain the loss in activity of 4.035 at JmjD2d as hydroxyl groups are poorer H-bond acceptors than carbonyl groups. ${ }^{120}$ Hence, the key Hbonding interaction between Lys210 and 4.035 is weaker and the inhibitory effect is not detected.

Armed with the knowledge that the residues in the active site are capable of moving, exemplified by the X-ray crystal structures of hydroxypyridopyrididazine 4.032 (Fig. 25, p 54) and cyanopyridopyrimidinone 4.034 (Fig. 26, p 55) in JmjD2d, an array of compounds with variation at the 2-position was planned to probe the SAR in this area. This work was carried out based on the pyridopyrimidinone core (4.019) as synthesis of analogues around the pyridazine templates 4.036 and 4.037 was more synthetically challenging and offered no significant benefits to potency.

4.7 Substitution at the 2-position of the pyridopyrimidinone core

4.7.1 General synthesis

In the previous section, the X-ray crystal structure of hydroxypyridopyridazinone compound 4.032 bound in JmjD2d showed movement of Tyr136 (Fig. 25, p 54) compared with the Xray crystal structure of pyridopyrimidinone 4.019 bound in JmjD2d. In this section the chemistry to synthesise pyridopyrimidinone analogues with substitution at the 2-position will be examined. The work was undertaken to determine if the potency of pyridopyrimidinone 4.019 could be improved upon and increased to the point where compounds could be screened in cellular assays if they were selective against JmjD3 and EGLN3. The IUPAC numbering of pyrido[3,4-d]pyrimidin-4(3H)-one is as shown below (Fig. 27).

4.019

Figure 27: Fragment 4.019 showing the numbering of pyrido[3,4-d]pyrimidin-4(3H)-one

Initial exploration at the 2-position of the pyridopyrimidinone core was limited to small groups to investigate which substituents could be tolerated in this region of the molecule. Examining the crystal structure of pyridopyrimidone 4.019 in JmjD2d showed limited space between the 2 -position of 4.019 and Tyr136. To accommodate groups larger than one atom at the 2-position, Tyr136 would have to move. However, the evidence of hydroxypyridopyrididazine 4.032 and cyanopyrazolopyrimidinone 4.034 causing significant movement of Tyr136 (Fig. 26, p 55), encouraged bold approaches to challenge the conformation of the protein. To test this hypothesis, an array of compounds with diversity at the 2-position of the pyridopyrimidinones was prepared (Scheme 7).

Scheme 7: Generic approach to the synthesis of pyridopyrimidinones: Reagents and conditions: a) $\mathrm{RCO}_{2} \mathrm{H},(\mathrm{COCl})_{2}, \mathrm{DMF}, \mathrm{NEt}_{3}, \mathrm{DCM}, 20^{\circ} \mathrm{C}$ or $\mathrm{RCO}_{2} \mathrm{H}, \mathrm{T} 3 \mathrm{P}^{\oplus}$, DIPEA, DCM, $20^{\circ} \mathrm{C}$; b) i) $\mathrm{NH}_{3}, \mathrm{MeOH}$ ii) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$.

A variety of amide coupling agents were tested (CDI, T3P®, HATU). However, the use of oxalyl chloride and DMF was the most used reagent system to activate the carboxylic acid for amide coupling with a wide range of alkyl or aryl R-substituents. Triethylamine and the ester 4.038 were then added to the activated acid in situ which, after purification, gave a range of amide analogues (4.039). Stirring some examples of amide containing 4.039 in a solution of 7 M methanolic ammonia caused cyclisation to pyridopyrimidinone analogues 4.040 at room temperature. When the cyclisation did occur, it generally took over twelve hours and the cyclisation was not successful for some analogues with only intermediate primary amides 4.041 formed (Scheme 8). After some experimentation, it was found that
the addition of sodium hydroxide greatly accelerated the ring forming reaction of primary amide 4.041 to 2 -substituted pyridopyrimidone 4.040. The effect of base has been employed elsewhere to cyclise similar amide analogues of primary amide 4.041 after their isolation to give analogues of 2-substituted pyridopyrimidinone 4.040. ${ }^{121}$ Several examples have shown the need for elevated temperatures for the reaction to be complete in a matter of hours and alternative bases to sodium hydroxide have also been used. ${ }^{122,123,124}$ However, with this pyridine template under the conditions outlined in Scheme 7, the cyclisation is complete in a matter of hours at room temperature.

4.042

MeOH

4.040

Scheme 8: Proposed mechanism for formation of 4.040.

During the cyclisation of ester 4.039 to give 2-substituted pyridopyrimidinone 4.040 a number of chemical transformations take place and several of these distinct chemical entities are observable by LCMS analysis (Fig. 28).

Figure 28: LCMS analysis of the formation of cyclohexyl containing 4.044 (Entry 8, Table 10, p 62) at different time points.

From the observation of these intermediates, a proposed mechanism is illustrated (Scheme 10). The formation of the primary amide, which typically would not be expected to take place at room temperature, ${ }^{125}$ is thought to occur due to anchimeric assistance caused by the adjacent amide and ester groups to form oxazine 4.043. Analogues of oxazine $\mathbf{4 . 0 4 3}$ have been isolated by co-workers and in the literature as well as other closely related cores and used to make analogues of pyridopyrimidinone 4.040. ${ }^{126,127}$ Both the methyl ester 4.042 and the primary amide 4.041 are formed by reaction by nucleophilic addition to oxazine 4.043 by either methanol or ammonia. Primary amide 4.041 forms at a slower rate than methyl ester 4.042, although it is generally the major component after a few hours as oxazine 4.043 undergoes nucleophilic attack by ammonia to irreversibly form primary amide 4.041. Primary amide 4.041 can be isolated, although the addition of base, in this case sodium hydroxide, causes clean, rapid cyclisation to 2 -substituted pyridopyrimidinone
4.040 so isolation and purification of intermediates of the primary amide analogues 4.041 are not necessary. The addition of a strong base may cause rapid cyclisation by deprotonating 2-substituted pyridopyrimidinone 4.040, which has a measured pK_{a} of 13 in water, removing it from the equilibrium and forcing the reaction towards 2 -substituted pyridopyrimidinone 4.040. The methodology was used to make a variety of 2 -substituted pyridopyrimidinones (Table 10).

4.7.2 SAR of pyridopyrimidinone 2-substituted with small aliphatic groups

A series of small 2-aliphatic substituted pyridopyrimidinones were synthesised and the RapidFire ${ }^{\text {TM }}$ potencies for these compounds are shown below. Unsubstituted pyridopyrimidinone 4.019 is included for comparison (Table 10).

Entry	Number	R	JmjD2d plC 50 (LE)
1	4.019	H	5.0 (0.62)
2	4.045*	Me	< 4.0
3	4.046*	Et	< 4.0
4	4.047	$\overbrace{\text { そ- }}$	5.1 (0.54)
5	4.048*	- ${ }^{-} \mathrm{CF}_{3}$	5.0 (0.43)
6	4.049*	红	4.7 (0.46)
7	4.050*		4.4 (0.40)
8	4.044		≤ 4.1 (0.31)
9	4.051*		≤ 4.2 (0.32)

Table 10: RapidFire ${ }^{\text {TM }}$ potencies of aliphatic compounds.

The 2-methyl and 2-ethyl substituted pyridopyrimidinones (Entries 2 and 3, Table 10) showed a significant reduction in potency compared to unsubstituted pyridopyrimidinone 4.019, possibly due to steric clash with Tyr136. Replacing the terminal methyl with a Cl in 4.047 or CF_{3} in $\mathbf{4 . 0 4 8}$ causes an increase in potency compared to the 2-methyl and 2-ethyl substituted pyridopyrimidinones. This may be caused by the greater electronegativity of these groups compared to the aliphatic 4.046 and $4.045{ }^{128,129}$ making the ring system more electron poor and thus increasing the acidity of the amide NH. This in turn would cause the
molecule to behave more like carboxylic acid 4.026 (Table 6, p 49), having stronger interactions to the Lys210 and Tyr136 (Graph 3, p 107). An X-ray crystal structure of chloro containing 4.047 shows there is no evidence of a covalent bond being formed (Fig. 29). ${ }^{103}$

Figure 29: X-ray crystal structure of chloro 4.047 in JmjD2d with an implied chlorine atom, resolution $=2.1 \AA$.

While the 2-ethyl substituted pyridopyrimidinone 4.046 was inactive, the addition of one further carbon to make the 2-n-propyl substituted pyridopyrimidinone 4.049 causes a measurable potency increase of at least one log unit relative to that of ethyl 4.046 to give a RapidFire ${ }^{\text {TM }}$ pIC $_{50}$ value of 4.7 at JmjD2d. This rise in potency cannot be solely explained by the increase in $\log P$ due to the hydrophobic effect, where ligand binding can be increased by adding lipophilicity to a molecule. This occurs due to the increase in lipophilicity causing the ligand to partition into the relatively hydrophobic protein compared to the polar solvent, usually water. ${ }^{130}$ Even if the potency of ethyl analogue 4.046 was only 3.9 , the increase in logP due to the homologation can only explain an increase in potency of about threefold. ${ }^{131}$ Thus, it must be concluded that the final methyl in the chain of n-propyl 4.049 must be in a hotspot for potency, although with the crystal structure evidence currently available, it is unclear what is causing this increase. To further explore this result,
cyclopropyl compound 4.050 and cyclohexyl analogue 4.044 were prepared, which show that as the substituent is made progressively more bulky, from n-propyl 4.049 to cyclopropyl 4.050 to cyclohexyl 4.044, the level of potency decreases with a substantial drop in LE. The decrease in potency as the substituent gets bigger suggests there is limited space to fill in this area. X-ray crystallography of related compounds does not fully indicate why this would be, although the cyclopropyl 4.050 and cyclohexyl 4.044 compounds could be disrupting a water network within the enzymes and thereby reducing the potency of the molecules. The benzyl group of $\mathbf{4 . 0 5 1}$ removes some of the steric hindrance by flattening out the cyclohexyl to the aromatic phenyl, although this has no effect on JmjD2d potency. With the aim of driving potency higher, a number pyridopyrimidinone compounds with directly attached aromatic rings were synthesised (Scheme 7, p 59) to probe this sensitive region of the enzyme.

4.8 Substitution at the 2-position of the pyridopyrimidinone core with 6-membered aryl rings

The same methodology was used to synthesise 2-aryl substituted pyridopyrimidones. For certain exemplars, some problems were encountered (Fig. 30).

Figure 30: Molecules of interest to be accessed using the sequence shown in Scheme 7 (p 59).

Although nitrile compound 4.052, secondary amide 4.056, and ether analogues 4.053 and 4.054 were prepared smoothly using the methodology shown in Scheme 7 (p59), primary amide containing 4.055 could not be accessed directly and a protecting group strategy was employed.
4.8.1 The synthesis of 5-(4-oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2-yl)picolinamide (4.055)

The initial amide couplings activating the acid 4.057 with either the Vilsmeier-Haack reagent, generated through the reaction between oxalyl chloride and DMF, to the acid
chloride (4.058) or $\mathrm{T}^{\left(3 P^{®}\right.}$ to the phosphinic anhydride (4.059) gave none of the desired amide 4.060 upon addition of 4.038 (Scheme 9).

Scheme 9: Reagents and conditions: a) DIPEA, T3P®, DCM $20^{\circ} \mathrm{C} 0 \%$; b) $(\mathrm{COCl})_{2}, \mathrm{DMF}^{(} \mathrm{NEt}_{3}$, DCM, $20^{\circ} \mathrm{C}, 0 \%$; c) 4.038, 0%

As reactions on similar molecules had proven successful it was thought that there must be a problem with forming the activated acid species with the primary amide in place. Thus, masking the primary amide as a group which could be converted into the amide in one mild step was sought. Hydrolysis of nitriles to primary amides and acids is well known and the suitability was investigated with the aim of providing primary amide containing 4.055. ${ }^{132}$ Classically, this hydrolysis is performed in the presence of acids or metal oxides as basic conditions can lead to over reaction to the carboxylic acid. However, Katritzky and et. al. have reported mild selective hydrolysis conditions using potassium carbonate and hydrogen peroxide in DMSO. ${ }^{132,133}$ Hence, amide 4.061 was prepared using the Vilsmeier-Haack reagent generated in situ, coupling together 6-cyanonicotinic acid (4.062) and aminopyridine 4.063 (Scheme 10). Due to the delicate nature of the nitrile group, the rate of the cyclisation step could not be accelerated by the addition of sodium hydroxide as in a trial reaction this was found to cause degradation of the cyclised product to a number of unidentified impurities. Hence, an alternative procedure was employed relying on the cyclisation taking place in just the 7 M methanolic ammonia which was left for three days at
room temperature to yield 4.064. Subsequent hydrolysis by hydrogen peroxide and potassium carbonate in DMSO gave the desired amide 4.055 (Scheme 10). ${ }^{132}$

Scheme 10: Reagents and conditions: a) 4.062, $(\mathrm{COCl})_{2}, \mathrm{DMF}^{2} \mathrm{NEt}_{3}, \mathrm{DCM}, 20^{\circ} \mathrm{C}, 30 \%$; b) 7 M methanolic ammonia, $20^{\circ} \mathrm{C}, 45 \%$; c) aq. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 0^{\circ} \mathrm{C}, 57 \%$.

4.8.2 SAR of pyridopyrimidinone 2-substituted with aryl rings

A number of molecules containing aromatic and heteroaromatic rings in the 2-position of pyridopyrimidinone 4.019 were synthesised as previously described. In order to determine if an increase in JmjD2 potency could be achieved through heteroaryl substitution at the 2position (Scheme 7, p 59) the compounds were assayed against JmjD2d (Table 11)
Entry 1 Number

Table 11: RapidFire ${ }^{\text {TM }}$ potencies of 2-aryl pyridopyrimidinones. ${ }^{\text {a }}$) Assay carried out with 10 x concentration of JmjD2 enzyme, incubating for 8 min .

An X-ray crystal structure was obtained for 3-pyridyl pyridopyrimidinone 4.067 (Entry 4, Table 11) and showed some intriguing results. The first crystal structure obtained with an aromatic ring present at the 2-position of the pyridopyrimidinone showed rotation of Tyr136, a more subtle movement than had been seen previously (Fig. 31). ${ }^{103}$

Figure 31: Overlay of pyridopyrimidinone 4.019, resolution $=2.0 \AA$, in green and 3-pyridyl 4.067, resolution $=1.9 \AA$, in magenta showing the movement of Tyr136 when the 2 -position of the pyridopyrimidinone is substituted with a 6-membered aryl.

The initial phenyl substituted compound 4.065 retained potency against JmjD2d, when compared to pyridopyrimidinone 4.019, which gave encouragement to further investigate with heteroaryl compounds. Comparing the 2-, 3- and 4-substituted pyridyl containing compounds, 2-pyridyl analogue 4.066 is inactive whilst 3-pyridyl example 4.067 and 4 pyridyl compound 4.068, have a similar level of potency as phenyl substituted 4.065. As 3pyridyl containing 4.067 and 4 -pyridyl analogue 4.068 were tolerated while 2-pyridyl example 4.066 was not, it was postulated that this might be due to the positioning of the basic nitrogen of the 2-pyridyl substituent. The nitrogen of the 2-pyridyl substituent in 4.066 can H -bond with the acidic proton of the pyrimidone core forming a pseudo 5membered ring and thereby causing the molecule to be planar (Fig. 32).

Figure 32: Possible pseudo 5-membered internal H-bond causing 2-pyridyl pyridopyrimidinone 4.066 to be planar.

To test the hypothesis that planarity has a negative effect, 5-methyl pyridine compound 4.069 (Entry 11, Table 12, p 73) was designed and synthesised to induce a twist. However, this compound was found to be inactive at the enzymes of interest. This can be explained by the ortho methyl group having a significant impact on the dihedral angle between the pyridopyrimidone and the pyridine containing ring causing it to be driven out of the plane too far. This could cause a steric clash with Tyr136 and so methyl pyridine compound $\mathbf{4 . 0 6 9}$ is not tolerated in the JmjD2 family of enzymes.

However, through further examination of the electron density data of the X-ray crystal structure of 3-pyridyl pyridopyrimidinone 4.067 in JmjD2d showed there was an alternative conformation of JmjD2d (Fig. 33). ${ }^{103}$

Figure 33: Alternative binding conformation (Mode 2) of JmjD2d with 4.067 present, resolution $=2.4 \AA$.

In this conformation, henceforth known as Mode 2, Tyr136 has pivoted away from H bonding with the pyridopyrimidinone and in doing so His90 has also pivoted similarly. This is comparable to the X-ray crystal structure obtained for cyanopyridopyrimidinone $\mathbf{4 . 0 3 4}$ (Fig 26, p 55). A water molecule, labelled in Fig. 33, now occupies the position where the hydroxyl of Tyr136 was and the water H-bonds to Asn284. A direct comparison of the two binding modes shows the movement of Tyr136 and His90 (Fig. 34).

Figure 34: Comparison of the two conformations of JmjD2d with 3-pyridyl 4.067 present. The first observed conformation is in magenta, resolution $=2.0 \AA$, and Mode 2 shown in green, resolution $=2.4 \AA$.

As these tyrosine and histidine residues in the protein have been shown to flip, an interesting question is whether this movement has any biological relevance. Other types of protein have been shown to undergo conformational change while binding substrates and either enzymatically altering their structure, such as kinases, ${ }^{134}$ or binding strongly to a substrate, such as streptavidin to biotin. ${ }^{135}$

4.8.3 Biological rationale for the movement observed

A hypothesis for the biological relevance of the tyrosine and histidine movement in the JmjD2 family of enzymes is that the movement of the tyrosine and histidine residues may aid the decomplexation of the H 3 peptide out of the JmjC domain once a demethylation event has taken place. In the crystal structure of JmjD2d with a truncated, trimethylated H3 peptide tail and 2-OG present there is a clear hydrogen bond between Tyr136 and 2-OG. In turn 2-OG is co-ordinated to the Fe (II) holding this sub-complex in a rigid position (Fig. 35). The proximity of the methylated lysine to the 2-OG co-factor allows the oxidative demethylation to occur.

Figure 35: X-ray crystal structure of a truncated H3 peptide (magenta) and 2-OG (blue) bound in the active site of JmjD2d, resolution $=1.8 \AA .{ }^{73}$

Upon oxidation of one of the methyl groups to formaldehyde, succinate is formed from 2OG (3.006) (Scheme 1, p 31) which is less well bound to the Fe (II), compared to 2-OG (3.006). This could loosen the sub-complex, which allows Tyr136 and subsequently His90 to change conformation to Mode 2, ejecting the H3 peptide and allowing a new 2-OG molecule access to the active site for further oxidations. There is crystallographic evidence for movement of Tyr136 upon binding 2-OG as the Apo X-ray crystal structure of JmjD2d shows Tyr136 in an intermediate position between Mode 1 and Mode 2 (Fig. 36).

Figure 36: X-ray crystal structures JmjD2d highlighting the positions of Tyr136 and His90 in (a) Mode 1 (green), resolution $=2.0 \AA$, (b) in the JmjD2d apo structure (blue), resolution $=$ $1.8 \AA \AA^{73}$ (c) Mode 2 (magenta), resolution $=2.4 \AA$, and (d) in overlay.

4.8.4 SAR trend explained by Mode 2

Having hypothesised the potential biological relevance for the movement of the Tyr136 and His90 into Mode 2, it was found that this conformation could be used to explain some of the SAR observed (Table 12).

Entry	Number	R	$\mathrm{JmjD2d} \mathrm{pIC}_{50}$ (LE)
1	$\mathbf{4 . 0 6 7 *}$	$5.1(0.41)$	
2	$\mathbf{4 . 0 7 0}$		$5.8(0.44)$

Table 12: RapidFire ${ }^{\text {TM }}$ potencies of substituted aryl compounds.

Mode 2 is believed to enhance the potency of 3-pyridine containing 4.067 due to the increased polarity of the $\mathrm{C}-\mathrm{H} \sigma$-bond between the nitrogens of the pyrimidine ring making an interaction with the aromatic ring of the tyrosine. The polarised $\mathrm{C}-\mathrm{H}$ bond is pointing towards the electron rich π-cloud of Tyr136 and makes a positive binding interaction. On the basis of this hypothesis, fluoropyridine analogue 4.070 (Table 12) was accessed via the method discussed earlier (Scheme 7, p 59).

The C-H bond in fluoropyridine compound 4.070 (Entry 1, Table 12) is adjacent to both the pyridine nitrogen and the fluorine, further polarising the σ-bond. This combination gives one of the most potent compounds investigated with a 2-substituted aryl example. However, merely exploring the 2-position with directly attached aryl rings did not provide the necessary sub-micromolar potency at the JmjD2 enzymes for a cellular probe. Therefore a series of compounds that could form polar interactions between the ligand and the protein was designed.

4.8.5 H-bonding interactions

Based on the observations noted above in relation to differential binding modes, a range of compounds that could investigate the area of the protein from the 2-position of the pyridopyrimidinone were designed. These compounds incorporated substituents capable of forming H -bonding interactions with the protein or any conserved water molecules (Table 13).

Table 13: RapidFire ${ }^{\text {TM }}$ potencies of substituted aryl compounds. ${ }^{\text {a }}$) Assay carried out with 10x concentration of JmjD2 enzyme, incubating for 8 min .

Benzonitrile compound 4.052 (Entry 2, Table 13) does not show any improvement compared to 3 -pyridine example 4.067. However, it does reinforce the evidence that benzonitrile is a bioisostere for pyridine H -bonded to a water due to the similar directionality and positioning of the lone pairs (Fig. 37). ${ }^{136}$

Figure 37: Benzonitrile is an isostere of water H -bonded to a pyridine nitrogen.

Comparing primary amide 4.055 and nitrile 4.064 (Entries 3 and 4) illustrates that while H bond acceptors are tolerated in this area of the protein, H-bond donors are not. Against JmjD2d, ten-fold potency has been lost in adding an H-bond donor as observed by comparing primary amide 4.055 with 3 -pyridyl containing 4.067 (Entries 4 and 1). The low potency of secondary amide example 4.056 indicates that H -bond donors are not tolerated in the 3-position of the pyridyl ring. 3-Aryl ether compounds 4.053 and 4.054 (Entries 5 and 7) indicate that electron donating groups do not improve the potency, although there is ample space for expansion.

As can be noted from Tables $11-13$ (p 67-74), it was not possible to significantly improve the potencies at JmjD2d by directly attaching aryl groups to the 2-position of the pyridopyrimidinone core. Hence different strategies were employed and the first of these was to introduce H-bond donating and accepting groups branching out from the 2-position.

4.9 Substitution at the 2-position of the pyridopyrimidone core with H-bond donors and acceptors

4.9.1 Synthesis of ethers

To easily probe the SAR around the 2-position with ethers, a late stage intermediate which could be used to synthesise target compounds in one or two synthetic steps was required. Chloride 4.047 was identified as one such intermediate and this could be made in one step using chloroacetonitrile (4.071) and amino ester 4.063 (Scheme 11).

Scheme 11: Retrosynthesis of intermediate 4.047.

The key bond forming step is the reaction of nitrile 4.071 with the amino ester 4.063 in the presence of hydrogen chloride, which has been employed in the synthesis of similar molecules. ${ }^{137}$ This methodology was not used for target molecules mentioned previously due to the relatively harsh conditions that could cause functional group incompatibility and the relative scarcity of readily available cyanopyridines was another. In the first step, HCl catalyses the formation of the amidine by reaction between amino ester 4.063 and protonated 4.071'. The methyl ester subsequently undergoes nucleophilic attack by the amidine forming the ring and producing methanol as the condensation product (Scheme 12).

Scheme 12: Mechanism for the formation of 4.047.

Methyl 3-aminoisonicotinate (4.063) was heated with stirring in the presence of 2chloroacetonitrile in a solution of 4 M hydrogen chloride in 1,4-dioxane to give 4.047. ${ }^{137,138}$ 4.047 could be further elaborated to molecules of interest through alkylation of alcohols and subsequent deprotection where necessary to give ethers of type 4.074 (Scheme 13). ${ }^{139}$

The alkylation by reaction of chloro compound 4.047 with an alcohol in the presence of sodium hydroxide was problematic. The original attempts to alkylate alcohols using the solvents DMF, water or tert-butyl alcohol with a variety of different alcohols gave no evidence of the desired products. Performing the reaction in acetone at 0.1 M concentration using potassium carbonate as base formed pentacycle analogue 4.075, formed through the dimerisation of two alkyl chloride monomer units (Scheme 13).

Scheme 13: Reagents and conditions: a) $\mathrm{ClCH}_{2} \mathrm{CN}, 4 \mathrm{M} \mathrm{HCl}$ in 1,4-dioxane, $50{ }^{\circ} \mathrm{C}, 45 \%$; b) $\mathrm{NaOH}, \mathrm{R}-\mathrm{OH}, 100{ }^{\circ} \mathrm{C}$; c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTBDMS}$, reflux, 5%.

The reaction was completed successfully upon using the alcohol starting material as the solvent and sodium hydroxide as the base, furnishing hydroxy ethyl compound 4.083 and n butyl containing 4.084. ${ }^{139}$ Whist n-butyl analogue 4.084 was intended to be synthesised eventually, it was inadvertently formed whilst searching for appropriate conditions for the alkylation outlined in Scheme 13. tert-Butyl alcohol was supposed to be used as the solvent and n-butyl alcohol was inadvertently used instead. Compound 4.076 was synthesised in this manner in 7% yield over two steps with the hydroxy propyl group installed as the TBDMS ether 4.077 and subsequently deprotected (Scheme 14).

Scheme 14: Reagents and conditions: a) $\mathrm{NaOH}, \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OTBDMS}, 9{ }^{\circ} \mathrm{C}, 10 \%$; b) TBAF, THF, $20^{\circ} \mathrm{C}, 70 \%$.

4.9.2 Analysis of the SAR of pyridopyrimidinone compounds 2-substituted with H-bond donors and acceptors

It was unknown whether H -bond acceptors or donors would be tolerated at the 2-position of the pyridopyrimidinone or what the ideal distance from the core would be for these
groups because of the inherent movement of the protein（Fig．36，p 72）．Thus，a selection of molecules to answer these key questions were synthesised（Table 14）．

Entry	Number	R	JmjD2d plC 50 （LE）
1	4．078＊		$<4.0^{\text {a }}$
2	4．079＊	会 OH	≤ 4.0（0．42）
3	4．080＊	$\stackrel{\xi}{\text { ¢ }} \mathrm{NH}_{2}$	$<4.0^{\text {a }}$
4	4．081＊	$\xi_{2} \mathrm{O}^{\prime}$	4.8 （0．47）
5	4．082＊		5.3 （0．38）
6	4.083	令 $\mathrm{O} \sim \mathrm{OH}$	4.8 （0．41）
7	4.076	运	4.6 （0．37）
8	4.084	－	≤ 4.7（0．38）

Table 14：RapidFire ${ }^{\text {TM }}$ potencies of 2－substituted compounds containing H－bond accepting and donating groups．${ }^{\text {a }}$ ）Assay carried out with $10 x$ concentration of JmjD2 enzyme， incubating for 8 min ．

Primary amide 4.078 and alcohol 4.079 （Entries 1 and 2，Table 14）have both H－bond accepting and donating features and a plC_{50} value of ≤ 4.0 at JmjD2d．As dually H －bonding acceptors and donors were not tolerated at JmjD2d，the purely donating primary amine 4.080 and the purely accepting ether 4.081 were synthesised．Charged amine 4.080 has a plC_{50} value of＜ 4.0 at JmjD2d which indicates that basic groups，and by extension，purely donating groups are not well tolerated in this area of the protein．H－bond accepting ether 4.081 shows at least an eightfold increase of potency at JmjD2d compared to the H －bond donating examples 4.078 and 4．080．This illustrates an H－bond acceptor to be well tolerated at this position．The addition of the phenyl ring in $\mathbf{4 . 0 8 2}$ compared to the methyl in 4.081 does increase JmjD2d potency by five－fold．This increase in potency can be rationalised through molecular modelling（Fig．38）．

Figure 38: Glide ${ }^{140}$ docking of phenyl ether 4.082 in JmjD2d.

Using this model, the ether oxygen and the 1-nitrogen on the pyridopyrimidinone core can be seen to be acting as H -bond acceptors and are interacting with the positively charged Lys245. The increase in potencies observed with phenyl ether $\mathbf{4 . 0 8 2}$ versus methyl ether 4.081 at JmjD2d can be explained by the potential of a face to face aromatic interaction of the phenyl ring with His90 in JmjD2d. To further exploit and probe this interaction, biaryl or bicyclic rings could be envisaged from the ether linker to achieve a larger overlap with His90. Ring systems such as benzoxazole, indazole or quinoline could be used to investigate this.

As can be seen from Fig. 38, Asp139 is sufficiently close to potentially design an H-bonding interaction with. This has already been attempted, with basic groups meeting only limited success, possibly due to charge-charge repulsion with Lys245 (p 50). Thus, hydroxyl groups attached to different length linkers were examined with ethyl hydroxyl compound 4.083. If an interaction was successfully observed through either a boost in potency or via X-ray crystallography, the molecule would be conformationally restrained through cyclisation with an aim to further improve potency by preorganisation of the ligand. ${ }^{141}$ However, comparison of ethyl hydroxyl ether 4.083 with n-butyl ether 4.084 (Entries $5-7$, Table 14), shows there is no significant difference in potency with the incorporation of a hydroxyl group. Therefore, it is unlikely the hydroxyl is engaged in an H-bonding interaction with Asp139.

None of the C-linked 2-pyridopyrimidinone molecules mentioned exhibited sufficient RapidFire ${ }^{\text {TM }}$ potency of >6.0 to be progressed into a cell assay. While work, not discussed here, has shown that substitution at the 5-and 6- positions of the pyridopyrimidinone core are not tolerated there had been little effort investigating the 8 -position. If elaboration at the 8-position improves the potency it could be combined with 2-substituents that also give an enhancement in potency. These disubstituted combination molecules have the potential to be more potent than either just the 2 - or 8 -substituted molecule if the SAR is additive (Fig. 39).

Figure 39: The SAR investigation examined in the next section and the potential combination of 2,8 -disubstituted molecules to be synthesised if 8 -substitution is advantageous.

4.10 8-Substitution of the pyridopyrimidinone core with heteroaryl groups

Research from Schofield et al. ${ }^{77}$ has identified that substitution at the 2-position of pyridine-4-carboxylic acid is tolerated against Jumonji D2 enzymes when the substituent is carboxylic acid 4.004 (Fig. 17, p 33) or 2-pyridyl-4-carboxylic acid 4.085 (Table 15). Further work from Schofield et al. showed that incorporating ethane 1,2-diamine to form amide 4.005 was one of the most potent compounds they found against JmjD2e. ${ }^{70}$ These compounds were remade and the results from the in house RapidFire ${ }^{\mathrm{TM}}$ assay are summarised below (Table 15).

Entry	Number	Structure	$\begin{gathered} \text { JmjD2c } \\ \text { pIC }_{50} \\ (\mathrm{LE}) \end{gathered}$	$\begin{gathered} \hline \text { JmjD2d } \\ \text { pIC }_{50} \\ (\mathrm{LE}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { JmjD2e } \\ \text { pIC }_{50} \\ \text { (LE) } \end{gathered}$	AMP $\mathrm{nm} \mathrm{s}{ }^{-1}$
1	4.004		$\begin{gathered} 6.8 \\ (0.78) \end{gathered}$	$\begin{gathered} 6.6 \\ (0.75) \end{gathered}$	$\begin{gathered} 6.8 \\ (0.78) \end{gathered}$	-
2	4.085		$\begin{gathered} 4.6 \\ (0.35)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} 5.3 \\ (0.40)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} 4.8 \\ (0.37)^{\mathrm{a}} \end{gathered}$	-
3	4.005*		$\begin{gathered} 6.9 \\ (0.45)^{\mathrm{a}} \end{gathered}$	$\begin{gathered} 6.4 \\ (0.42)^{a} \end{gathered}$	$\begin{gathered} 7.1 \\ (0.46)^{a} \end{gathered}$	< 10

Table 15: RapidFire ${ }^{T M}$ potencies for compounds identified by Schofield et al. ${ }^{70}{ }^{\text {a }}$) Assay carried out with 10x concentration of JmjD2 enzyme, incubating for 8 min .

As seen before, the potencies for the JmjD2 enzymes are similar to each other and only JmjD2d data will be quoted. Starting from dicarboxylic acid containing 4.004, replacing the 2-carboxylic acid with the pyridine carboxylic acid to give symmetrical compound 4.085 is not optimal as there is a loss of potency across all the JmjD2 family members assayed. The loss in potency is likely due to the conformation the compound will adopt in the protein for the metal to co-ordinate with both of the pyridine nitrogens. In the low energy conformation of symmetrical 4.085 the nitrogens of the pyridine rings are on opposite sides of the molecule thereby minimising steric clash with the peri hydrogens of the two rings.

Both nitrogens co-ordinating with the metal will cause an approximately 180° rotation of one of the rings, causing steric clash between the two peri hydrogens and moving the conformation away from the energy minima (Fig. 40).

Figure 40: Low energy conformation of 4.085 calculated using force field MMFF94x. ${ }^{142}$

From consideration of this initial data, it may appear that the bipyridyl motif is not an ideal scaffold to work from. However, by building out from one of the carboxylic acids with a basic amine to give amine 4.005 over one hundred-fold potency can be gained at JmjD2c and e and tenfold at JmjD2d compare to the symmetrical compound 4.085. Schofield et al. have reported a crystal structure with amine 4.005 bound in JmjD2a (Fig. 41). ${ }^{70}$ The crystal structure shows amine $\mathbf{4 . 0 0 5}$ binds in a similar manner to propylamine compound $\mathbf{4 . 0 2 8}$ (Fig. 24, p 51) with the basic amine making a salt bridge with Asp135 (Asp139 in JmjD2d). This interaction is believed to cause the large rise in potency across JmjD2c, d and e. The two pyridine rings are slightly out of plane with each other with a dihedral angle of 11°. Having the nitrogen on the same face was expected from the complexation of the metal but the molecule is not planar presumably due to the steric clash between the perihydrogens. Interestingly, there is a pseudo 7-membered ring caused by the basic amine Hbonding back to the carbonyl of the amide. This decreases the entropic penalty that would be caused if the amine was entirely conformationally free. Amine 4.005 has the level of potency that is desired for a probe compound. However, due to the presence of the carboxylic acid, as with the isonicotinic acids, no membrane penetration was observed in the AMP assay.

Figure 41: X-ray crystal structure of 4.005 bound in JmjD2a, resolution $=2.0 \AA .{ }^{70}$

Given the success in replacing isonicotinic acid with the pyridopyrimidinone 4.019 it was hypothesised that the same replacement could be made with 4.005 to give 4.086 (Scheme 15). The change was predicted to improve the cellular penetration as compound 4.005 can be both positively and negatively charged.

Scheme 15: Proposed scaffold hop to remove carboxylic acid.

4.10.1 Building the rings

The bond perceived to be most difficult to form was the pyridine-pyridine bond. One of the most prevalent methods to form aryl-aryl bonds is the Suzuki reaction. ${ }^{143,144}$ The reaction, generally, takes place between an aryl-boronic acid or ester and an aryl-halide or pseudo halide in the presence of base and a palladium based catalyst. However, due to the lack of air stability of 2-pyridyl boronic acid and the tendency of 2-pyridyl boronic species to undergo protodeboronation, ${ }^{145}$ it was desirable to have the pyridine-pyridine bond already
in place. To this end, a retrosynthetic analysis of pyridopyrimidinone 4.086 was undertaken reverting back to bipyridyl containing 4.085 (Scheme 16).

4.085

Scheme 16: Retrosynthetic analysis of 4.086 to 4.085 .

Diacid 4.085 was commercially available and treatment with thionyl chloride in methanol gave dimethyl ester 4.089. ${ }^{146}$ Work by Bakke and Ranes suggested that treating dimethyl ester 4.089 with nitronium tetrafluoroborate and sodium hydrogen sulfate in nitromethane would give 4.088 as it had been shown to be successful on a range of 4 -substituted pyridines (Scheme 17). ${ }^{147}$

Scheme 17: Reagents and conditions: a) $\mathrm{SOCl}_{2}, \mathrm{MeOH}, 65{ }^{\circ} \mathrm{C}, 65 \%$; b) $\mathrm{NO}_{2} \mathrm{BF}_{4}, \mathrm{NaHSO}_{3}$, $\mathrm{MeNO}_{2}, 20^{\circ} \mathrm{C}, 0 \%$.

Unfortunately, no desired nitro analogue 4.088 was isolated from the reaction mixture. An unsuccessful attempt was made to brominate diester 4.089 with N-bromosuccinimide to give 3 -substituted example 4.090. The planned forward reaction was to aminate bromo compound 4.090 to give amine analogue 4.087 via a palladium catalysed Buchwald-Hartwig coupling (Scheme 18).

Scheme 18: Alternative route to amine containing 4.087. Reagents and conditions: a) NBS, acetic acid, acetone, $20-90^{\circ} \mathrm{C}, 0 \%$

The strategies to elaborate diester 4.089 both failed at the first step with and given the lack of literature precedent for transformations of diester 4.089 it was decided that building up a heteroaryl ring to form the biheteroaryl metal binding moiety was a more feasible proposition (Scheme 19). Building the ring in this fashion would grant access to pyrimidine containing 4.091 which does not have peri hydrogens and thus will be less sterically hindered. This allows the biheteroaryl moiety to lie more in plane with each other and thereby suffer less of a penalty when co-ordinating the iron in the enzymes of interest.

Scheme 19: Retrosynthetic analysis of pyrimidine compound 4.091.

The retrosynthetic analysis of 4.091 illustrates the need for a halogen in the 2-position of the substituted pyridine (Scheme 19). Bakke and Riha have demonstrated the chlorination of primary amide 4.097 via the in situ oxidation of HCl to chlorine with hydrogen peroxide to give chloro containing 4.096. ${ }^{148}$ Applying these conditions furnished chloro analogue 4.096 and dichlorinated 3-amino-2,6-dichloroisonicotinamide by-product. These could be separated via silica gel chromatography to isolate pure mono-chloro example 4.096. The pyrimidinone ring could be closed to form pyridopyrimidinone 4.095 using triethylorthoformate and pTSA. ${ }^{149}$ 8-Chloropyridopyrimidinone 4.095 was a key intermediate and was used extensively in the synthesis of the 8 -substituted pyridopyrimidinones (Scheme 20).

Scheme 20: Reagents and conditions a) 35% aq. $\mathrm{H}_{2} \mathrm{O}_{2}$, fuming $\mathrm{HCl}, 20^{\circ} \mathrm{C}, 24 \%$; b) $\mathrm{CH}(\mathrm{OEt})_{3}$, pTSA. $\mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}, 95 \%$; b) $\mathrm{Zn}(\mathrm{CN})_{2}, 6 \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}, 72 \%$.

The initial coupling between 8-chloropyridopyrimidinone 4.095 and zinc cyanide was effective in providing 8-cyanopyridopyrimidinone 4.094, but due to the lack of solubility in
organic solvents and water of both 8-chloropyridopyrimidinone 4.095 and 8cyanopyridopyrimidinone 4.094 the compound could not be effectively purified. ${ }^{150}$ The cyanation reaction provided 4.094 in 72% yield correcting for impurities, the largest being the unreacted starting material 4.095. In order to access the required pure 8chloropyridopyrimidinone 4.095, a decision was made to use a protecting group strategy with the aim of providing more soluble intermediates. The inclusion of a PMB protecting group to 8-chloropyridopyrimidinone 4.095 gave PMB-protected 4.098 and subsequent cyanation provided 8-cyano 4.099, which was considerably more soluble in organic solvents than des-PMB 4.094. This improved solubility was thought to be due to both the removal of an H-bond donor and a significant increase in lipophilicity (Scheme 21).

Scheme 21: Reagents and conditions a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{PMB}-\mathrm{Cl}, \mathrm{KI}$, acetone, $50{ }^{\circ} \mathrm{C}, 86 \%$; b) $\mathrm{Zn}(\mathrm{CN})_{2}$, $10 \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{DMF}, 9{ }^{\circ} \mathrm{C}, 89 \%$.

The key intermediate to the pyrimidine containing 4.091 (Scheme 20, p 86) was the amidine 4.100 which was accessed via hydroxyamidine 4.101 (Scheme 22). Hydroxylamine hydrochloride was added to 4.099 and, when neutralised with sodium hydroxide, attacked the nitrile of 4.099 in a nucleophilic manner to give hydroxyamidine compound 4.101. ${ }^{151,152}$ Hydroxyamidine example 4.101 could be reduced to amidine containing 4.100 through initial treatment with acetic anhydride in acetic acid and hydrogenation in the presence of 10% palladium on carbon. ${ }^{153}$ This transformation not only gave the desired product, but also two by-products in similar yield (Scheme 22).

Scheme 22: Reagents and conditions a) $\mathrm{H}_{2} \mathrm{NOH} . \mathrm{HCl}, \mathrm{NaOH}, \mathrm{EtOH}, 6{ }^{\circ} \mathrm{C}, 84 \%$ b) $\mathrm{Ac}_{2} \mathrm{O}, 10 \%$ $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2} 1 \mathrm{~atm}, \mathrm{AcOH}, 20^{\circ} \mathrm{C}, 4.100$ 19\%, 4.102 23\%, 4.10329%.

Dihydropyrimidinone containing 4.102 and acetamide example 4.103 are over reduction products. Acetamide example 4.103 has undergone a further amidation reaction with excess acetic anhydride in the reaction mixture. Reductions of N-alkylated pyrimidinone containing molecules with hydrogen and a metal catalyst are reasonably well known although many examples have required more than one atmosphere of hydrogen. ${ }^{154,155,156,157}$ Hydrogenation of pyridines is also well known with subsequent amide formation on the formed amine, ${ }^{158,159}$ although the diaminomethylene group is obscure. Reaction of amidine 4.100 with 3-dimethylaminoacrolein gave none of the desired pyrimidine 4.104 and neither did reaction of hydroxyl amidine 4.101 with acrolein (Scheme 23). ${ }^{160}$

Scheme 23: Reagents and conditions a) $\mathrm{Me}_{2} \mathrm{NCHCHCHO}, \mathrm{NaOMe}, \mathrm{MeOH}, 0 \%$; b) $\mathrm{H}_{2} \mathrm{CCHCHO}$, pTSA, PhMe, $80^{\circ} \mathrm{C}, 0 \%$.

However, it was possible to access an oxadiazole, an alternative heteroaryl to the pyrimidine which may be able to provide a hydrogen bonding partner for Lys245 in addition to providing a metal binding motif. Hydroxyamidine containing 4.101 was stirred in acetic acid with acetic anhydride, first at room temperature to form acetylated compound 4.105 and then at $100{ }^{\circ} \mathrm{C}$ to form oxadiazole analogue 4.106 (Scheme 24). ${ }^{161}$ Attempted PMB deprotection with $D_{D Q}{ }^{162}$ gave no reaction either at room temperature or with heating and the starting material 4.106 was recovered in quantitative yield. The next conditions used TFA as solvent and heating at $70^{\circ} \mathrm{C}$ for one hour, which gave final compound $\mathbf{4 . 1 0 7}$ in 35% yield (Scheme 24). ${ }^{163}$

Scheme 24: Reagents and conditions a) $\mathrm{Ac} \mathrm{c}_{2} \mathrm{O}, \mathrm{AcOH}, 20^{\circ} \mathrm{C}$ then $100{ }^{\circ} \mathrm{C}, 91 \%$; b) TFA, $70^{\circ} \mathrm{C}$, 36\%.

At this time efforts to access pyrimidine compound 4.091 were halted due to lack of success and a renewed focus was placed on introducing pyridine at the 8-position of the pyridopyrimidinone.

4.10.2 Cross coupling methodology

Despite initial misgivings about the challenge of forming the key pyridine-pyridine bond via cross coupling, pyridine containing 4.108 was targeted by this approach (Fig. 42). If pyridine compound 4.108 showed a pIC_{50} of >4.0 at JmjD 2 d then fully elaborated 4.086 (Scheme 22, p 88) will be targeted as this should give a 10 to 100 -fold jump in potency if the SAR of the Schofield compounds correlated with this series (Table 15, p 81).

Figure 42: Initial target to model Schofield-like compounds.

The first method attempted was the direct Suzuki coupling of chloro compound 4.095 with 2-pyridineboronic acid. The Suzuki reaction is a mild reaction with wide functional group tolerance which, in this example, should allow the introduction of an elaborated pyridine ring to make a late stage intermediate for the synthesis of amine containing 4.086. 2Pyridineboronic acid is a known difficult substrate to couple, believed to be due to the slow
rate of transmetallation from boron to palladium, which allows competitive protodeboronation. A group from Merck have had success in adding stoichiometric quantities of copper halides to their Suzuki reaction mixtures, increasing yields from less than 5% without copper chloride to much improved yields of $46-88 \%{ }^{164}$ It was proposed in their examples that the pyridine boronic ester initially transmetallates to the copper at a much faster rate than compared to palladium. The copper-pyridine complex then transmetallates to palladium and proceeds through the remainder of the Suzuki mechanism to give the desired cross-coupled product (Scheme 25).

Scheme 25: Proposed mechanism of the copper mediated Suzuki cross coupling. ${ }^{164}$

However, on attempting the copper mediated conditions, neither the desired product 4.108 or the des-chloro compound 4.019 were observed suggesting that no oxidative addition took place (Scheme 26).

Scheme 26: Reagents and conditions a) (HO) ${ }_{2} \mathrm{~B}-2-\mathrm{pyr}, \mathrm{CuCl}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 100^{\circ} \mathrm{C}$, 0\%.

A recent strategy to reduce the issues of protodeboronation with 2-heteroaryl boronic acids and esters is to replace them with a MIDA boronate (Fig. 43).

4.109

Figure 43: Structure of 2-pyridyl MIDA boronate (4.109).

These MIDA boronates have the advantage of being air stable while many 2-heteroaryl boronic acids and esters are not. ${ }^{165}$ While MIDA boronates are hydrolysed rapidly to boronic acids by strong bases such as sodium hydroxide, tripotassium phosphate causes only slow hydrolysis and it is believed this small quantity of boronic acid formed in situ is rapidly transmetallated by the palladium species which is in relative excess. The 2-pyridyl MIDA boronate (4.109) was used in conjunction with a palladium precatalyst developed by the Buchwald group, which is unmasked by base under the reaction conditions to give a palladium species which has proven effective in cross-coupling 2-heteroaryl boronic acids. ${ }^{166}$ However, even given these advantages none of the desired coupled product 4.108 or the des-chloro compound 4.019 were observed (Scheme 27).

Scheme 27: Reagents and conditions a) 4.109, XPhos palladacycle, $\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{THF}, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}$, 0\%.

The lack of any reaction at all led to questions regarding whether any form of crosscoupling was possible. The conditions in Schemes 26 and 27 were tried again with the PMB protected pyridopyrimidinone 4.098, in case a lack of solubility of the 8 -chloro pyridopyrimidinone 4.095 was a cause for the reactions to fail. Even with the more soluble PMB-protected 4.098 in the reaction mixture, none of the desired cross coupled product was observed.

The success of the cyanation with zinc cyanide and tetrakis triphenylphosphine palladium to synthesise 8-cyanopyridopyrimidinone 4.099 (Scheme 21, p 87) gave a degree of confidence that a Negishi coupling to introduce the 2-pyridyl group would be successful. To this end, a Negishi coupling was trialled using 2-pyridylzinc bromide and tetrakis triphenylphosphine palladium in THF. ${ }^{167}$ The coupling was successful in a modest yield of 36% to give bipyridyl 4.110. The final step was the PMB deprotection which, given the ease of deprotection of PMB protected oxadiazole containing 4.106 to give unprotected 4.107, (Scheme 24, p 90) was expected to be complete in short order. However, the reaction to remove the PMB group from 8-pyridyl pyridopyrimidinone 4.110 was considerably slower than the analogous reaction with the 8-oxadiazole (Scheme 24, p 90). After 4 days at reflux in TFA approximately half of protected 4.110 had been converted to unprotected 4.108. The reaction was removed from the heat and purified at this point as impurities were beginning to form, which ultimately provided 4.108 in 31\% yield (Scheme 28).

Scheme 28: Reagents and conditions a) pyr-2-ZnBr, 10\% $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}, \text { THF, reflux, } 36 \% \text { b) TFA, }}$ reflux, 31\%.

The hypothesis for the change in the rate of deprotection to provide oxadiazole 4.107 and pyridyl 4.108, is the difference in the electron density in the pyridopyrimidinone ring system. Oxadiazole containing 4.106 is more electron deficient overall, due to the larger number of heteroatoms in the 8-substituted oxadiazole ring, than pyridine containing 4.110 and this causes the removal of the PMB group to occur at a faster rate. ${ }^{168}$

When tested at the JmjD2 enzymes (Table 16, p 101), 8-pyridyl compound 4.108 had a pIC_{50} value at JmjD2d of ≤ 4.3 which gave confidence to prosecute the synthesis of the pyridopyrimidinone analogue of the Schofield compound 4.086 (Scheme 15, p 83), the pyridopyrimidinone analogue of the most active compound in the Schofield paper. ${ }^{70}$ Given the success of the Negishi coupling compared to the other methods evaluated in respect to introducing the 2-pyridyl moiety, this was the key step that would be used to synthesise amino pyridopyrimidinone 4.086. Using similar methodology that Schofield et al. used to synthesise the carboxylic acids 4.085 and 4.005 (Table 15, p 81), a retrosynthesis using a 4methylpyridyl substrate was undertaken (Scheme 29). ${ }^{70}$

Scheme 29: Retrosynthesis to 4.086.

Focussing on the forward synthesis, (4-methylpyridin-2-yl)zinc chloride (4.115) was synthesised as a solution in THF by treating 2-bromo-4-methylpyridine (4.114) first with a solution of isopropylmagnesium chloride in diethyl ether, followed by a solution of zinc chloride in THF. ${ }^{169}$ Negishi coupling of aryl zinc compound 4.115 in THF with PMB protected compound 4.098 using tetrakis triphenylphosphine palladium gave bipyridyl analogue 4.113 in 22% yield. ${ }^{167}$ Bipyridyl example 4.113 was dissolved in concentrated sulfuric acid and chromium trioxide added. This forms a solution of chromic acid which should be capable of oxidising methyl containing 4.113 to the corresponding carboxylic acid 4.112. The chromic acid methodology is used to oxidise 4,4'-dimethyl-2,2'-bipyridine to form dicarboxylic acid 4.085 and was therefore considered likely to succeed. ${ }^{170}$ However, when used on the methyl substituted pyridine 4.113 a multicomponent mixture was generated containing none of the desired acid 4.112 or PMB deprotected analogue (Scheme 30).

Scheme 30: Reagents and conditions a) ${ }^{i} \mathrm{PrMgCl}, \mathrm{ZnCl}_{2}$, THF, $0-20^{\circ} \mathrm{C}$; b) $4.098,10 \%$ $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, reflux, 22% over 2 steps; c) $\mathrm{CrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, 20^{\circ} \mathrm{C}, 0 \%$.

Therefore another synthetic strategy needed to be undertaken. Given the difficulty in removing the PMB protecting group from bipyridyl 4.110 (Scheme 28, p 94) an alternative protecting group was required. SEM was selected as it should be stable to the reaction conditions in the planned synthesis and can be removed using milder conditions than the PMB group such as in the presence of fluoride ions. The SEM group was appended to 8chloropyrido $3,4-d$]pyrimidin- $4(3 H)$-one (4.095) using analogous conditions to those used to form PMB protected 4.098 (Scheme 21, p 87). In this particular case, DMF was added as a co-solvent to aid solubility and this gave 4.116 in 82% yield (Scheme 31).

Scheme 31: Reagents and conditions a) SEM-CI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, DMF, $50^{\circ} \mathrm{C}, 82 \%$.

To enter at the appropriate oxidation state to access the carboxylic acid it was decided to protect the acid as a tert-butyl ester. The hypothesis was that the tert-butyl ester would be less likely to react with isopropyl magnesium chloride than smaller, less sterically hindered esters during the formation of the organozinc. tert-Butyl esters have been proved to be stable to isopropyl magnesium chloride at room temperature. ${ }^{171}$ Also, tert-butyl esters can be removed under mild conditions such as using silica in toluene which will leave the SEM group intact. ${ }^{172}$ tert-Butyl 2-bromoisonicotinate (4.117) was formed through the reaction of 2-bromoisonicotinic acid (4.118) with tert-butyl alcohol in the presence of DCC and DMAP in 58% yield. ${ }^{173}$ Using the same conditions as were utilised to form organozinc
4.115, gave none of the desired product 4.119. Even after adding further equivalents of isopropyl magnesium chloride, to rule out complexation of the Grignard reagent with either the pyridyl nitrogen or the ester oxygens, the starting material was only partially consumed and many side products were observed (Scheme 32). ${ }^{174}$

Scheme 32: Reagents and conditions a) DCC, ${ }^{\text {t }} \mathrm{BuOH}, \mathrm{DMAP}, \mathrm{DCM}, \mathrm{DMF}, 20{ }^{\circ} \mathrm{C}, 58 \%$; b) ${ }^{i} \mathrm{PrMgCl}, \mathrm{ZnCl}_{2}, \mathrm{THF}-70-20^{\circ} \mathrm{C}, 0 \%$.

The reaction profile indicated it would not be possible to couple with a compound at the desired oxidation state using this method, so a route starting at the alcohol oxidation state, cross-coupling and then oxidising to the carboxylic acid for subsequent amide formation was selected (Scheme 33). Pyridyl carboxylic acid 4.118 was reduced to alcohol 4.120 with borane:THF complex. 1 M Sodium hydroxide was added and the mixture refluxed to disassociate residual boron complexes from the desired product to give alcohol 4.120 in 26% yield. ${ }^{175}$ Primary alcohol 4.120 was protected with TBDMS to give silyl ether 4.121 and from this, organozinc 4.122 was formed. ${ }^{174}$ Organozinc 4.122 was successfully cross coupled with SEM-protected chloro pyridopyrimidinone 4.116 using Negishi cross-coupling conditions to give bipyridyl compound 4.123. ${ }^{167}$

During the initial synthesis of bipyridyl 4.123 the material was loaded on to an SCX ion exchange column and after elution with 2 M methanolic ammonia two products were observed; fully protected desired product bipyridyl compound 4.123 and des-TBDMS analogue 4.124. This suggested that while in contact with the sulfonic acid stationary phase of the SCX column the acid had selectively deprotected the TBMDS group. The original synthetic strategy was to globally deprotect bipyridyl 4.123 and carry out subsequent chemistry on the unalkylated pyridopyrimidinone. However, if the TBDMS could be selectively deprotected in the presence of the SEM this would make the handling of the intermediates significantly easier due to the previous experience of unprotected pyridopyrimidinones being poorly soluble in organic solvents. To test a more convenient
way of selectively removing the TBDMS group than leaving it in contact with the SCX stationary phase, bipyridyl 4.123 was stirred in THF at room temperature and a solution of 1 M TBAF in THF added. After 1 hour the bipyridyl 4.123 had been entirely converted to des-TBDMS 4.124. After a further 4 days stirring at room temperature no SEM deprotection was detected. As expected, heating the reaction mixture to $60{ }^{\circ} \mathrm{C}$ overnight removed the SEM group to give fully deprotected 4.125 (Scheme 33)

4.124

4.125

Scheme 33: Reagents and conditions a) THF.BH ${ }_{3}$, THF $0-60{ }^{\circ} \mathrm{C}, 26 \%$; b) TBDMS-CI, imidazole, DMF, 96%; c) ${ }^{i} \operatorname{PrMgCl}, \mathrm{ZnCl}_{2}$, THF, $0-20^{\circ} \mathrm{C}$; d) 4.116, $10 \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, reflux; e) TBAF, THF, $20^{\circ} \mathrm{C}, 50 \%$ over 3 steps; f) TBAF, THF, $60^{\circ} \mathrm{C}, 55 \%$.

Alcohol 4.124 was oxidised to aldehyde 4.126 in 80% yield using a Swern oxidation (Scheme 34). ${ }^{176,177}$ Aldehyde containing 4.126 was then oxidised via a Pinnick oxidation to give carboxylic acid analogue 4.127 in 47% yield. ${ }^{178}$ The acid chloride was generated with oxalyl chloride and catalysed by DMF forming the Vilsmeier reagent, chloromethylenedimethylammonium chloride, in situ. The crude acid chloride was
evaporated to dryness, redissolved in DCM and N-Boc-ethylenediamine added with triethylamine to form amide 4.128 in 86% yield. A solution of 5 M HCl in IPA was added to doubly protected 4.128 and after 2 hours it was noted that the Boc group had been removed but only a small amount of final product 4.086 had been formed, with the major species present in the reaction mixture being the des-Boc 4.128. The reaction mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 3 hours whereupon only desired final product 4.086 could be seen in the reaction mixture, which was isolated in 91\% yield (Scheme 34).

Scheme 34: Reagents and conditions a) DMSO, (COCI) $)_{2}, \mathrm{NEt}_{3},-70^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}, 81 \%$; b) NaClO_{2}, $\mathrm{NaH}_{2} \mathrm{PO}_{4}, \quad \mathrm{CH}_{3} \mathrm{CHC}\left(\mathrm{CH}_{3}\right)_{2},{ }^{\mathrm{t}} \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 58 \%$; c) i) $(\mathrm{COCl})_{2}, \quad \mathrm{DMF}, \quad \mathrm{DCM}, 20{ }^{\circ} \mathrm{C}$; ii) $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NHBOC}, \mathrm{NEt}_{3}, \mathrm{DCM}, 20^{\circ} \mathrm{C}, 86 \%$; d) $\mathrm{HCl}, \mathrm{IPA}, 20-60{ }^{\circ} \mathrm{C}, 91 \%$.

In silico modelling had previously suggested that Asp139 in JmjD2d would make stronger interactions with an alcohol rather than an amine and thus improve the potency compared to amine containing 4.086. Therefore, an analogous amide coupling was undertaken with TBDMS protected ethanolamine, which gave silyl ether 4.129 which could be deprotected with TBAF in THF. As previously observed the TBDMS group was removed first at $50{ }^{\circ} \mathrm{C}$. However, the SEM group proved stubborn to remove and required heating at $110{ }^{\circ} \mathrm{C}$ under microwave conditions for 6 hours to give alcohol 4.130 in 14\% yield (Scheme 35).

Scheme 35: Reagents and conditions a) i) $(\mathrm{CO})_{2} \mathrm{Cl}_{2}, \mathrm{DMF}, \mathrm{DCM}, 20^{\circ} \mathrm{C}$; ii) $\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBDMS}$, $\mathrm{NEt}_{3}, \mathrm{DCM}, 20^{\circ} \mathrm{C} 35 \%$; b) 1 M TBAF in THF, $110^{\circ} \mathrm{C}, 14 \%$.

Overall, synthetically challenging 8 -substituted pyridopyrimidinones amino 4.086 and hydroxyl 4.130 were accessed in 3.6% and 0.2% overall yield, respectively, both over nine linear steps starting from 3-aminoisonicotinamide (4.097).

4.10.3 SAR of 8-substituted pyridopyrimidinones

If the SAR was to track as it did with compounds dicarboxylic acid 4.085 and amine 4.005 giving a 100 -fold increase in potency (Table 15, p 81), then it would be expected that moving from 8-pyridyl 4.108 or benzyl alcohol 4.125 to amine 4.086 would give a similar shift in potency. However, this is not the case for this particular example (Table 16).

Entry	Number	R	JmjD2d plC ${ }_{50}$ (LE)
1	4.019	H	5.0 (0.62)
2	4.108		≤ 4.3 (0.34)
3	4.125		< 4.0
4	4.086		4.9 (0.29)
5	4.130		< 4.0
6	4.107		< 4.0
7	4.095	Cl	$<4.0^{\text {a }}$

Table 16: RapidFire ${ }^{T M}$ potencies of compounds. ${ }^{\text {a }}$) Assay carried out with $10 x$ concentration of JmjD2 enzyme, incubating for 8 min .

While there is an increase in potency moving from 8-pyridyl 4.108 and benzyl alcohol 4.125 to amine 4.086, it is considerably smaller than the 10 to 100 -fold increase that were seen for the Schofield compounds. This is, ultimately, disappointing as there is no increase in potency from pyridopyridinone 4.019 and nearly a halving of the LE. However, from the difference in potencies between amine 4.086 and alcohol 4.130 it can be inferred that the terminal primary amine is making a more favourable interaction with the protein, possibly a salt bridge with Asp139, than the primary alcohol. The inactivity of 8 -chloropyrido[3,4-
d]pyrimidin- $4(3 H)$-one (4.095) and the diazole containing 4.107 can be explained by the electron withdrawing nature of the groups in the 8-position of the pyridopyrimidinone. The chlorine and the diazole remove electron density from the pyridine ring and thus decrease the binding interaction between the lone pair of the pyridine nitrogen and the Fe (II).

The reason for the decrease in potency of the 8-pyridyl substituted compounds is not clear. However, there are some reasons why the potency for amino 4.086 may be lower than expected. First of all there is a reasonable probability that the lowest energy conformation of amino 4.086 is not with the nitrogens of the pyridine preorganised to chelate the iron. The lowest energy conformations of the two possible pyridopyrimidinone tautomers show the lowest energy conformer will not give bidentate chelation (Fig. 44).

Figure 44: Left: Lowest energy conformer of 4.086 of the pyridopyrimidinone using force field MMFF94x. ${ }^{142}$ Right: Lowest energy conformer of 4.086 with an internal H-bond.

Due to steric clash between the peri-hydrogen of the pyridine and the nitrogen of the pyrimidone portion in the pyridopyrimidinone, the dihedral angle between the pyridopyrimidone and the pyridine ring is 130° from the ideal 0° angle. If the 4 -pyrimidone tautomer of the pyridopyrimidinone is favoured then an internal hydrogen bond can be formed. This creates a pseudo 6-membered ring which holds the aromatic portion of amino 4.086 flat and would need to flip 180° to chelate in a bidentate manner to a metal. To compare with the conformation of amino 4.086 in JmjD2d an X-ray crystal structure was obtained for amino 4.086 in JmjD2d (Fig. 45).

Figure 45: X-ray crystal structure of 4.086 in JmjD2d. Electron density for the pendant amine was not observed.

The ethylamine portion of the molecule cannot be seen in the crystal structure indicating it is in a disordered state throughout the crystal and thus not involved in a strong salt bridging interaction with Asp139. The dihedral angle between the pyridine rings is 15° which is comparable with the bipyridyl dihedral angle of 11° in the most potent compound from Schofield et al., which is carboxylic acid 4.005 (Fig. 41, p 83). The energy needed to adopt the binding conformation rather than the low energy conformation is $10 \mathrm{kcal} \mathrm{mol}^{-1}$ greater for pyridopyrimidinone 4.086 than carboxylic acid 4.005 and thus rather than seeing a 10 to 100 -fold increase in potency as was expected, only a threefold to fivefold increase was observed (Fig. 46). ${ }^{179}$ The higher energy need to lay the pyridine ring in a position where it can chelate the iron in a bidentate manner is due to a steric clash between the perihydrogen in the 8 -pyridyl position and the 1- N in the pyridopyrimidinone ring system.

4.005

4.086

Figure 46: Biaryl torsion angle potential energies calculated using MMFF94s for 4.005 and 4.086.

In contrast, oxadiazole example 4.107 should be planar due to the adjacency of the 5 and 6membered aromatic rings (Fig. 33, p 69) and therefore set up to co-ordinate to the metal in the JmjD2 family enzyme. Similar substructures are known to co-ordinate iron (II) in small molecule crystal structures such as tricyclic 4.131 (Fig. 47). ${ }^{180}$

4.131

Figure 47: X-ray crystal structure of $\mathbf{4 . 1 3 1}$ co-ordinating to an iron (II) ion. Counter ions are not shown.

It may be that oxadiazole substituted pyridopyrimidinone 4.107 does not co-ordinate well to the iron in the JmjD2d enzyme as the oxadiazole is removing electron density from the pyridopyrimidinone ring system (p 94). The lowered electron density could reduce the binding between the iron and the pyridine nitrogen lone pair as hypothesised for 8chloropyridopyrimidinone 4.095.

Substitution at the 8-position of the pyridopyrimidone core appears to lower potency when compared to fragment 4.019 which has no substitution. Thus, this will not provide the desired profile of increasing or at least retaining potency while generating a molecule which could be used to probe the phenotypic effects of inhibiting the JmjD2 family. However, substitution from the 2-position of the pyridopyrimidinone with heteroatoms was being pursued which showed some positive results.

4.11 2-Substitution of the pyridopyrimidinone core with heteroatoms

Screening compounds identified by substructure searches of the compound collection available within our laboratories with just a heteroatom at the 2-position of the pyridopyrimidinone, did not provide the desired increase in potency. However, when compounds were synthesised with substitution from the heteroatom interesting results were seen (Table 17).

Entry	Number	R	JmjD2d plC ${ }_{50}$ (LE)
1	4.019	H	5.0 (0.62)
2	4.045*	Me	< 4.0
3	4.132	NH_{2}	4.6 (0.53)
4	4.133	OH	≤ 4.2 (0.48)
5	4.049*	$\mathrm{n}-\mathrm{Pr}$	4.7 (0.46)
6	4.134*	NHEt	5.1 (0.50)
7	4.135*	OEt	6.2 (0.61)

Table 17: RapidFire ${ }^{T M}$ potencies of 2-substituted pyridopyrimidinones with heteroatoms.

While the initial 2-amino 4.132 compound and 2-hydroxyl substituted 4.133 pyridopyrimidinones (Entries 3 and 4, Table 17) were more potent than 2-methyl substituted 4.045 (Entry 2), there was no improvement in potency compared to the
unsubstituted pyridopyrimidinone 4.019. When N-ethyl example 4.134 and O-ethyl 4.135 containing (Entries 6 and 7) were tested, a significant increase in potency was observed when compared to n-propyl analogue 4.049 (Entry 5). O-Ethyl compound 4.135 was the first compound to give sub-micromolar potency at JmjD2d. The 100 -fold increase in potency between unsubstituted 4.133 (Entry 4) and ethyl substituted ether 4.135 (Entry 7) was thought to be due to substituting the oxygen forcing the resulting molecule into a more active tautomer 4.133 (Scheme 36). 4.133 could be more active than 4.133 ' because of the H -bond acceptor at the 1-position of the pyridopyrimidinone ring. Having an H -bond acceptor at this position was seen to be positive for binding for a number of molecules previously (Table 7, p 53).

Scheme 36: Tautomers of 4.133.

The improvement of the RapidFire ${ }^{T M}$ potencies may be partially due to an increase in acidity of the amide $\mathrm{N}-\mathrm{H}$ in the molecules. However, the nature of the pendant substituent will affect the potency as seen for the 2-carbon substituted pyridopyrimidinones. This is because it can affect the conformation of the JmjD2 family protein as seen by the changing conformation of the protein (Fig. 36, p 72). The $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of a range of pyridopyrimidinones were measured and plotted against their JmjD2d potencies (Graph 3).

Graph 3: Relationship of pK_{a} with enzyme potency.

There is an apparent linear increase in potency as the pK_{a} decreases. It is possible that the outlier from this trend, at the bottom left of the Graph 3, trifluoromethyl containing 4.136 (Fig. 48) is making unfavourable interactions such as causing a steric clash with Tyr136 in JmjD2d. Alternatively, the trend may be a bell shaped curve and to further determine this, compounds with $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of between 4.5 and 6.0 could be synthesised and tested. It should be noted that Graph 3 does not reflect any other interactions that the molecules may be making with the protein and thereby affecting the potency.

Figure 48: The structures of compounds highlighted in Graph 3.

Due to the high levels of potency seen for the 2-substituted oxygen linked compounds this series of compounds was pursued.

4.11.1 Synthesis of 2-substituted ether linked pyridopyrimidinones

The compounds that were found to be most potent at the JmjD2 enzymes had an aromatic ether substituent at the 2-position of the pyridopyrimidinone core. These compounds could be accessed in four steps (Scheme 37).

Scheme 37: Reagents and conditions: a) $\mathrm{CS}\left(\mathrm{NH}_{2}\right)_{2}, 160^{\circ} \mathrm{C}, 63 \%$; b) aq. $\mathrm{NaOH}, \mathrm{EtI}, \mathrm{MeOH}, 20$ ${ }^{\circ} \mathrm{C}, 92 \%$; c) mCPBA, THF, $20^{\circ} \mathrm{C}, 57 \%$; d) 1,3-dimethyl-1H-pyrazol-4-ol, NaH, DMF, $100{ }^{\circ} \mathrm{C}, 6 \%$. In the first step a melt of thiourea and 3-aminoisonicotinic acid (4.026) were heated overnight to provide thiol example 4.138. ${ }^{181}$ Thiol 4.139 was alkylated with ethyl iodide and oxidised to provide sulfone containing 4.140. ${ }^{182}$ Some batches of sulfone compound 4.140 contained the sulfoxide as an impurity. However, the sulfoxide was found to react in the same manner as the sulfone when treated with the alkoxides of aryl compounds, which had been deprotonated with sodium hydride. ${ }^{183}$ The methodology allowed access to compounds such as pyrazole containing 4.141.

The methodology outlined in Scheme 37 produced a number of compounds that met the majority of the probe criteria.

4.11.2 Probe compounds for the JmjD2 family

The compounds which were found to be suitable all had an oxygen linked pyrazole present (Table 18).

Compound	4.137*	4.142*	4.143*	Probe profile
R				
$\begin{gathered} \hline \text { JmjD2c/d/e } \\ \text { RapidFire }^{\text {TM }} \\ \text { pIC }_{50}(\text { LE }) \\ \hline \end{gathered}$	$\begin{gathered} 6.3 / 6.4 / 6.3 \\ (0.33 / 0.34 / 0.33) \end{gathered}$	$\begin{gathered} 6.2 / 6.4 / 6.3 \\ (0.32 / 0.34 / 0.33) \end{gathered}$	$\begin{gathered} 6.2^{\mathrm{a}} / 6.3 / 6.4 \\ (0.35 / 0.36 / 0.36) \end{gathered}$	≥ 6.0
cLogP	1.5	2.2	1.7	1-3
AMP nm s ${ }^{-1}$	66	70	44	> 30
Aqueous solubility $\mu \mathrm{g} / \mathrm{mL}$	30	83	60	≥ 50
JmjD3 plC 50	< 4.0	<4.0	<4.0	< 4.0
EGLN3 plC ${ }_{50}$	< 4.0	< 4.0	< 4.0	< 4.0
JmjD2c cell potency plC_{50}	5.3	5.3	5.7	> 5.0
$\begin{gathered} \text { Jarid1c } \\ \text { RapidFire }^{\mathrm{TM}} \\ \mathrm{pIC}_{50} \\ \hline \end{gathered}$	7.2	7.1	6.9	< 4.5
Jarid1c cell potency plC_{50}	5.4	5.6	5.3	<4.0

Table 18: Profiles of JmjD2 family probe compounds. ${ }^{\text {a }}$) Inactive on 1 of 9 test occasions.

The compounds selected meet most of the probe criteria, although they were also found to be potent inhibitors of the KDM5 family as exemplified by the Jarid1c data in Table 18. However, there is a larger drop off into the Jarid1c cell assay from the RapidFire ${ }^{\mathrm{TM}}$ assay as compared to between the JmjD2c cell assay and the RapidFire ${ }^{T M}$ assay. The compounds were found to be approximately equipotent in the JmjD2c and Jarid1c cell assays. The compounds, when profiled though a selection of 43 non-related drug or liability targets were found to have no significant activity. The compounds were therefore progressed to cellular phenotypic assays to validate the KDM4 and KDM5 families of JmjC containing enzymes as viable targets for drug discovery. Crucially, an inactive control, 4.144 that
cannot chelate to the iron, was added to the collection to help to establish if any activity seen was driven by the JmjD2 family rather than by off-target activity (Table 19).

Compound	4.144*
JmjD2c/d/e RapidFire ${ }^{\text {TM }} \mathrm{pIC}_{50}$	$\leq 4.4^{\text {a }} /<4.0$ / <4.0
cLogP	1.5
AMP nm s ${ }^{-1}$	34
Aqueous solubility $\mu \mathrm{g} \mathrm{ml}{ }^{-1}$	≥ 179
JmjD3 plC_{50}	< 4.0
EGLN3 plC 50	< 4.0
JmjD2c cell potency plC_{50}	< 4.0
Jarid1c RapidFire ${ }^{\text {TM }} \mathrm{pIC}_{50}$	≤ 4.6
Jarid1c cell potency plC_{50}	< 4.0

Table 19: Profile of JmjD2 family inactive control 4.144. ${ }^{a}$) Inactive on 5 of 6 test occasions.

The inactive control was designed to be as physicochemically similar to active 4.137 (Table 18, p 109) as possible, as 4.137 was one of the first probe compounds identified. Therefore, only the nitrogen in the pyridine ring of the pyridopyrimidinone core of 4.144 has been moved compared to active 4.137. This disrupts the important interaction between the pyridopyrimidinone core and the iron in the JmjD2 family of enzymes and the resulting compound has a plC_{50} value of <4.0 when assayed against these enzymes.

Therefore, the compounds in Table 18 and inactive control 4.144 were thought to be suitable as dual KDM4 (JmjD2) and KDM5 family probe compounds and were profiled in a range of immune cells both within our laboratories and with external collaborators. In particular, the BioMAP ${ }^{\circledR}$ (DiscoveRx Corp., Fremont, CA) panel allowed a wider range of biological activities to be probed in a variety of disease relevant cellular cultures. As cyclopentyl containing 4.143 was the most potent compound seen in the JmjD2c cellular assay it was chosen to be profiled through the BioMAP ${ }^{\circledR}$ assay. However, cyclopentyl analogue 4.143 showed little biological activity outside of the grey area on the chart, which depicts the error in the assay (Fig. 49). This correlates with the data generated from the internal phenotypic assays. Due to the lack of efficacy in immuno-inflammation phenotypic assays and changes in portfolio priorities, work on inhibiting the JmjD2 family of lysine demethylases was halted.

Figure 49: BioMAP ${ }^{\circledR}$ profile of cyclopentyl containing 4.143.

4.12 JmjD2 inhibitors conclusion

Through the work described above, a series of pyridopyrimidinone compounds was identified that showed the profile necessary to be dual KDM4 and KDM5 family probe compounds. The compounds identified were the first non-carboxylic acid compounds that inhibited the JmjD2 family of enzymes. From a very highly ligand efficient starting point with little cellular penetration were derived compounds that improved upon the potency, and through increasing the lipophilicity of the inhibitors provided cellularly penetrant molecules. Improving upon the cellular penetration over previously known carboxylic acid containing compounds (Table 20) caused lower drop off between the RapidFire ${ }^{\text {TM }}$ and JmjD2c cellular assays and improved cellular potency was attained. Increasing the lipophilicity did require erosion of the high LE of the starting pyridopyrimidinone 4.019, although the probe compounds selected did retain a respectable ligand efficiency of greater than 0.3

4.013

4.143

$\mathrm{JmjD2d} \mathrm{pIC}_{50}$ (LE)	$6.8(0.58)$	$6.3(0.36)$
$\mathrm{JmjD3} \mathrm{pIC}_{50}$	4.8	<4.0
$\mathrm{JmjD2c} \mathrm{cell} \mathrm{assay} \mathrm{pIC}_{50}$	5.2	5.7
AMP nm s		

Table 20: Comparison of carboxylic acid 4.013 and pyridopyrimidinone 4.143 probes.

In the course of the research the author has made several key discoveries that have led to further understanding of inhibiting the JmjD2 enzymes with small molecules. Firstly deviating from a 6,6 biaryl template to either 6,5 or 6,7 ring systems is not tolerated by the JmjD2 proteins. Additionally, a H-bond acceptor at the 1-position of the 6,6 biaryl is essential for binding to the JmjD2 proteins (Table 21).

$\mathrm{JmjD2d}$ plC_{50} (LE)		
$5.0(0.62)$	<4.0	<4.0
<4.0		

Table 21: Demonstrating a 6,6 biaryl ring and an H-bond acceptor at the 1-position is essential for JmjD2 binding.

Scaffold hopping between carboxylic acid bipyridyl compounds designed by Schofield et al. ${ }^{70}$ and the pyridopyrimidinone core described in this thesis was investigated. A tenfold improvement in potency was observed in the carboxylic acid template, although when repeated in the pyridopyrimidinone template no increase in potency was observed (Table 22). It was hypothesised that steric clash between the two pendant ring systems incurred on making the molecule planar was responsible for this result.

Table 22: Potencies of original pyridopyrimidinone hit and 8-pyridyl elaborated compound.

Maintaining potency through substitution at the 8-position of the pyridopyrimidinone with an optimised group and other 8-substitutions causing at least a tenfold decrease in potency (Table 16, p 101) led to no further investigation from this vector. However, this allowed other areas of the molecule to be investigated. The author linked tuning the pK_{a} of the molecules with increased potency (Graph 3, p 107) by altering the atom directly substituted at the 2-position of the pyridopyrimidinone. Using this link and adding lipophilicity led to the discovery of the probe molecules with measurable cellular penetration (Table 18, p 109). These compounds had demonstrable cellular activity over compounds already known in the literature and the related pro-drugs (Fig 17, p 33).

It was thought that inhibiting the JmjD2 enzymes with the probe compounds could deliver phenotypic changes in a range of immune cells. However, upon testing these compounds in a wide range of immune cells and under different conditions, no immuno-inflammation phenotype was observed. Therefore, the high quality of the probe compounds were instrumental in allowing the programme team to make the decision to halt work on the targets. The probe compounds are undergoing further profiling elsewhere within our laboratories to better understand the biological outcome of dual KDM4/KDM5 JmjC domain inhibitors.

However, due to the probe compounds lack of efficacy in immuno-inflammation and a change in target prosecution within our laboratories, no further work is planned around this target class of "eraser" proteins of the epigenetic code (Fig. 5, p 20). The next body of work undertaken investigated the "reader proteins," known as bromodomains and inhibiting the protein-protein interactions they form.

5.1 Protein-protein interactions

Protein-protein interactions (PPI) are central to most biological processes and are involved in processes as diverse as intercellular communication and apoptosis. ${ }^{184}$ Therefore, PPIs represent an important class of targets to manipulate biological responses. However, due to technological hurdles there are few small molecule inhibitors of these interactions. ${ }^{185}$ Difficulties in identifying small molecule inhibitors of PPIs include having almost no natural small molecule substrates, the flatness of protein-protein interfaces and difficulty in distinguishing real from artefactual binding.

The large, relatively featureless areas across which the proteins interact with each other make it difficult for small molecules to interact with these binding domains. Proteins interact across areas of about $750-1500 \AA^{2}$ and for competitive inhibition, a small molecule must cover $800-1100 \AA^{2}$ of a protein surface. ${ }^{186}$ PPI domains often lack the clefts or pockets that traditional small molecules bind to and thus any small molecule inhibitor must complement the hydrophobic and charged domains on a flat or mildly convex surface. ${ }^{187}$ Despite the large surface area that PPIs span, much of the binding affinity is driven by a few key residues and is known as a "hot spot". ${ }^{188}$

Although difficult, it is possible to design and synthesise compounds that inhibit these PPIs. The inhibitors of PPIs have a higher molecular weight and are more lipophilic than typical small molecules designed within the "Rule-of-Five" parameters. ${ }^{189}$ Statistical analysis of 39 PPI inhibitors has enabled the establishment of a "Rule-of-Four" for this class of molecule: 190

1. Molecular weight > 400 Da ,
2. $\log P>4$,
3. Number of rings >4,
4. Number of H-bond acceptors >4.

Despite being outside typical chemical space for oral drug-like compounds, examples of PPI inhibitors have progressed through clinical trials. Navitoclax (5.001), a B-cell lymphoma-2 (Bcl-2)/Bcl-2 homologous antagonist killer inhibitor was investigated for the treatment of small cell lung cancer and has a molecular weight of 975 Da and a cLogP of 12 (Fig. 50). ${ }^{185,191}$ Additionally RG7112 (5.002), a human double minute $2 / \mathrm{p} 53$ antagonist is
undergoing clinical trials for oncological diseases and has a molecular weight of 728 Da and a cLogP of 11 (Fig. 50). ${ }^{192,193}$

Figure 50: Examples of PPI inhibitors.

While many PPI interactions require large molecules that cover a large area of protein surface some PPIs can occur via a more typically druggable cleft or pocket in a protein surface. Bromodomains are one example of a PPI binding partner that has a deep binding pocket and therefore can be inhibited with "Rule-of-Five" compliant molecules as seen for characteristic orally active compounds. ${ }^{190}$

5.2 Introduction to bromodomains

Bromodomains are reader domains in the read-write-erase model of the histone code (Fig. $5, \mathrm{p} 20)^{194}$ and were first identified in the drosophila gene brahma, hence their name. ${ }^{195}$ They have been found to bind to acetylated lysines on histone tails. ${ }^{196}$ Bromodomains are considerably different to the JmjC domains previously discussed as they interact with acetylated lysines rather than methylated lysines. Another difference is that bromodomains have no enzymatic function and are involved in binding protein-protein interactions, rather than adding or removing epigenetic marks.

Bromodomains all have the same tertiary structure of a four α-helix bundle with a lefthanded twist, which is unusual as most four α-helix bundles have a right-handed twist. ${ }^{196}$ These domains contain approximately 110 amino acid residues (Fig. 51). The α-helices are highly conserved between individual bromodomains; the majority of the differences
between bromodomains are found in the ZA and BC loops, which link the helices together. ${ }^{197}$

Figure 54: X-ray crystal structure of Brd4 BD1, a left-handed four α-helix bundle, resolution $=1.5 \AA$ A

Bromodomains contain a long intervening loop between the Z and A helices with a defined conformation, termed the ZA loop, which packs against the shorter loop between helices B and C, termed the BC loop, to form a hydrophobic binding pocket. ${ }^{196}$ It is within the pocket that acetylated lysines bind and form protein-protein interactions between the histone tail and the bromodomain containing protein (Fig. 52).

Figure 52: X-ray crystal structure demonstrating the interaction between a histone peptide (cyan) and Brd4 BD1, resolution $=1.4 \AA$.

The acetylated lysine from the histone peptide makes an H-bond to an asparagine and a conserved structural water, which are seen in most crystal structures of bromodomains with an acetylated lysine bound. ${ }^{198,199}$ The waters, shown as red spheres (Fig. 52), are highly ordered and the interaction with a conserved Tyr is believed to help in the conservation of the water molecules. ${ }^{197}$

Due to the high degree of homology between bromodomains, a phylogenetic tree can be drawn showing the degree of similarity with other bromodomains. The higher the sequence similarity the individual bromodomains have, the closer they are drawn to a common branch point (Fig. 53). The groups of bromodomains that have similar sequence homology to each other can be grouped into different families which are shown through the use of colour (Fig. 53).

Figure 53: A phylogenetic tree of bromodomains based on sequence homology. ${ }^{200}$

There is disagreement in the literature on the number of bromodomain-containing proteins (BCPs) and the number of individual bromodomains. The accepted numbers vary between 41 and 46 BCPs and 56 to 61 individual bromodomains. ${ }^{201,14,202}$ The discrepancy between the number of bromodomains originates due to of the inclusion of bromodomain-like proteins which have low sequence homology with bromodomains. This is postulated to arise from evolution from another amino-acid sequence starting point to provide the same acetyl-lysine binding function, the translocation or insertion from the gene sequence of existing bromodomains, or a mixture of the aforementioned reasons. ${ }^{203}$ Some BCPs have more than one bromodomain, for example the BET family of bromodomains, where each protein contains two acetylated lysine binding sites, ${ }^{204}$ and polybromodomain-1 (PB1), which contains six bromodomains. ${ }^{205}$

While the lipophilic bromodomain fold is highly conserved in bromodomain containing proteins, the surface around the acetylated lysine binding site can be highly diverse. The surfaces can range from strongly positively to strongly negatively charged. ${ }^{206}$ Presumably the significant differences of the surfaces surrounding the bromodomain folds allows for specific binding to individual acetylated lysines on histone tails. The specific binding occurs because the amino acid residues surrounding the acetylated lysine complement the surface of the bromodomain containing protein. BCPs do not solely bind to histone proteins, PCAF is known to bind to the acetylated Tat protein of the human immunodeficiency virus. ${ }^{207}$

There are often multiple domains for binding to other proteins in addition to the bromodomain and BCPs usually exist as part of a chromatin modifying complex of proteins (Fig. 54). ${ }^{208}$

Figure 54: Schematics of representative BCPs showing a variety of domains contained within the proteins. Adapted. ${ }^{206}$

CREBBP has the largest number of domains shown in Fig. 54 having three zinc fingers $(2 \times$ zf-TAZ and $1 \times Z Z$), two other protein binding domains (KIX and CREB binding), domain of unknown function (DUF902), a HAT domain as well as a bromodomain. ${ }^{39,206}$ ATAD2 is simpler with an ATPase domain (AAA) and a bromodomain. Brd4 has two bromodomains in the protein. PCAF has an acetyl transferase, a EP300/CREBBP binding domain [PCAF (N)] and a bromodomain.

Currently, there are no marketed drugs that target bromodomains. However, as readers of acetylated lysines, bromodomains show potential as therapeutic targets as BCPs mediate the recruitment of proteins to macromolecular complexes. BCPs and their associated complexes can have multiple functions, such as acting as transcription factors, controlling the transcription of mRNA, or histone acetyl transferases that acetylate lysines on histone tails. ${ }^{209}$

For example, Brd4 uses the bromodomains present to bind to chromatin through H3K9, H3K14, H4K5 and H4K12, ${ }^{210}$ although not all at the same time. Brd4 can also bind to positive transcription elongation factor (P-TEFb), which is involved in the transcription of DNA, ${ }^{211}$ via another domain present in Brd4, the P-TEFb-interacting domain (PID). ${ }^{212}$ Therefore, if the binding of Brd 4 to chromatin is disrupted then the downstream production of associated proteins may also be altered, potentially leading to a therapeutic outcome.

5.2.1 Links between bromodomains and disease

Numerous bromodomain containing proteins have been linked to diseases and can be classified broadly into different therapeutic areas. Many BCPs are found to be overexpressed in cancerous growths compared to those in normal tissue, ${ }^{213}$ which suggests that BCPs play an important role in maintaining genome integrity and suppressing the formation of tumours. ${ }^{197}$ Further evidence to support the role of BCPs in cancer has come from RNA interference studies. A reduction in the expression of EP300 and CREBBP has been shown to inhibit tumour growth in prostate cancer cell lines. ${ }^{214}$ Similar RNA interference experiments with other BCPs, for example BPTF, EP300 and SMARCA4, have shown similar results in different cancers. ${ }^{197}$

There are links between BCPs and neurological diseases such as schizophrenia, epilepsy and mental retardation. ${ }^{197}$ When these genetic links have been deeply studied, in all cases the diseases result from reduced or absent gene function, which probably reflects key roles for these proteins in neurological development. An example of BCPs affecting neurological development is in Rubinstein-Taybi syndrome (RTS). RTS affects approximately 1 in 100,000 newborns worldwide and is characterised by broad thumbs and toes, mental and physical retardation. Mutations in two BCPs, CREBBP and EP300, have been linked to approximately half of RTS cases. ${ }^{215}$ BCPs are not limited to roles in developmental neurological function as reduced levels of TAF1 correlate with X-linked dystonia parkinsonism an adult onset movement disorder. ${ }^{216}$

Metabolic diseases have been linked to BCPs through the identification of diseaseassociated single nucleotide polymorphisms. BAZ1B has been linked to type 2 diabetes and serum lipid levels, SMARCA4 has links with total plasma cholesterol, and Brd2 with type 2 diabetes. ${ }^{217}$ 218,219 BET family ($\operatorname{Brd} 2, B r d 3, \operatorname{Brd} 4$ and BrdT) inhibitor I-BET762 (3.010, Fig 56, p 121) was identified as a compound that increases apolipoprotein $A 1$ (ApoA1) in a cellular
phenotypic assay (Graph 5, p 127). ${ }^{220}$ ApoA1 helps to clear fats from white blood cells within arteries and has a role in lipid metabolism.

Autoimmune and inflammatory diseases have links with BCPs. For example, SP140 and SP110 have been shown to be upregulated by the inflammatory cytokine IFN- γ. ${ }^{221}$ CREBBP and EP300 are associated with immune function as individuals with systemic lupus erythematosus (SLE) and ankylosing spondylitis have reduced expression of these BCPs, respectively. ${ }^{222,223}$ Several BCPs including GCN5, PCAF, CREBBP and SMARCA4 are involved in the production of type 1 IFN, which drives autoimmunity in SLE. ${ }^{224}$ Brd2 has been associated with rheumatoid arthritis. ${ }^{225}$

However, the strongest link between BCPs and human disease is surrounding the BET family of bromodomains.

5.2.2 Small molecule inhibitors of BET bromodomains

The BET family of bromodomains consists of eight separate bromodomains distributed between four proteins: Brd2, Brd3, Brd4 and BrdT. ${ }^{45}$ Each protein contains two bromodomains with the bromodomain nearest the N-terminal of the amino acid sequence termed BD1 and the bromodomain nearest the C-terminal of the amino acid sequence termed BD2 (Fig. 55).

Figure 55: Schematic of the bromodomains in the BET family. ${ }^{201}$

The BD1 domains within the BET family of bromodomains are highly conserved with few changes in the ZA and BC loops which make up the bromodomains. ${ }^{45}$ The BD2 domains are similarly conserved between $\mathrm{Brd} 2, \mathrm{Brd} 3, \mathrm{Brd} 4$ and BrdT . However, there are differences between the BD1 and BD2 domains which can be exploited to identify domain selective molecules. ${ }^{226}$

Evidence for inhibiting bromodomains with small molecules to modify disease has been disclosed around (+)-JQ1 (5.003), I-BET762 (3.010) and RVX-208 (5.004) (Fig. 56).

5.003

3.010

5.004

Figure 56: Inhibitors of the BET family of bromodomains.

An observation from Mitsubishi Pharmaceuticals that thienodiazepines bound to Brd4 led to the discovery of (+)-JQ1 (5.003). ${ }^{227,201}(+)-J Q 1(5.003)$ is a pan-inhibitor of the BET family of bromodomains, meaning that it inhibits every bromodomain of the BET family. (+)-JQ1 (5.003) has been shown to induce differentiation and arrests growth in nuclear protein in testes midline carcinoma (NMC). ${ }^{201}(+)$-JQ1 (5.003) has also been found to behave as an effective male contraceptive in mice, which is thought to be driven via inhibition of the BrdT bromodomain. ${ }^{228}$

Other biological effects have also been identified when inhibiting the BET family of bromodomains. Mice treated with I-BET762 (3.010) survive after being given a lethal dose of LPS, a disease model of sepsis (Graph 4). ${ }^{229}$

Graph 4: Dosing with I-BET762 enables mice to survive a lethal dose of LPS. Reprinted with permission from Macmillan Publishers Ltd, copyright 2010. ${ }^{229}$

RVX-208 ${ }^{230}$ (5.004) is being tested for the treatment of atherosclerotic cardiovascular disease ${ }^{231}$ and more recently for Alzheimer's disease and type 2 diabetes. ${ }^{232,233}$ I-BET762 (3.010) is being investigated for the treatment of NMC and clinical trials are being extended into other cancers. ${ }^{234}$ Further BET family inhibitors currently undergoing clinical trials include OncoEthix OTXO15 (5.005), Constellation Pharmaceuticals CPI-0610 and Tensha Therapeutics TEN-010, which are investigating treatment for different cancers. ${ }^{233}$ The structure of OTX015 (5.005) is known and has a thienodiazepine core (Fig. 57), while the structures of TEN-010 and CPI-0610 are not currently in the public domain.

Figure 57: The structure of OTXO15 (5.005).

The discovery of I-BET762 (3.010) is an excellent case study for the discovery of a probe molecule as defined by Bunnage et. al. (p24). ${ }^{42}$ The programme aimed to find a molecule that enhanced expression of ApoA1 with the hypothesis that increased levels of ApoA1 would prevent atherosclerosis. ${ }^{235}$ However, the mechanism of action for enhanced expression of ApoA1 was unknown. The programme, therefore, used a cell reporter assay where the DNA sequence responsible for coding for ApoA1 was replaced by the gene for the luminescent firefly luciferase. ${ }^{45}$ This gene sequence was transfected into a suitable cell line and these cells could be used in a dose response assay where the higher the effect of the compound, the greater the luminescence from the cells. This assay helped to identify molecules which met two of the probe criteria; the compounds had to be cell penetrant and show a relevant phenotype for the assay to produce data. GW841819X (5.006) was found to be a potent inducer of the ApoA1 reporter gene and was optimised to I-BET762 (3.010) (Scheme 38).

Scheme 38: 5.006 was optimised for ApoA1 upregulation to I-BET762 (3.010).

An inactive control, the enantiomer of I-BET762 (3.010), 3.011 (Fig. 11, p 26), was identified that could be used to identify non-specific activity. However, it was unknown if the chemical series containing $\mathbf{3 . 0 1 0}$ was selective for one particular target or even what that target was. ${ }^{45}$

Chemoproteomic experiments were performed, using 3.010 covalently attached to a solid support, to identify the target. The matrix was exposed to cell lysate for the same cell types as used in the luciferase assay and removed. Using LC/MS/MS, the BCP proteins Brd2, Brd3 and Brd4, members of the BET family of bromodomains, were identified as the targets for 3.010. ${ }^{45}$ This confirmed target engagement with the BET family. Further pharmacological profiling of I-BET762 (3.010) demonstrated that it had negligible activity outside of binding to the BET family, thus confirming functional pharmacology. Finally, extensive SAR analyses showed that inhibitory BET activity strongly correlated with cell potency for ApoA1 upregulation indicating a target-phenotype association in cells (Graph 5). Interestingly, interfering RNA knockdown experiments showed that only inhibiting Brd4 from the BET family was responsible for ApoA1 upregulation. ${ }^{45}$

Graph 5: Correlation between Brd4 binding and upregulation of ApoA1. ${ }^{45}$

5.1.3 Structural features of BET inhibitors

A common structural theme of BET inhibitors is the presence of an acetyl mimetic. It would appear that this is a necessary motif for ligands to bind to bromodomains and there are multiple functionalities which can mimic the acetyl group. The acetyl mimetics all contain an H-bond acceptor (red) with a methyl group (blue) in close proximity. The H-bond acceptor makes a hydrogen bond with a conserved asparagine and a conserved water in the binding pocket. The water hydrogen bonds to a conserved tyrosine that helps to retain the water and the methyl group is within a lipophilic pocket (Fig. 58).

Figure 58: Binding of the H -bond acceptor to the conserved asparagine and water that is retained by a conserved tyrosine.

Analysis of X-ray crystal structures of ligands in Brd2 shows in almost all cases the hydrogen bond to the water is shorter than the hydrogen bond to the asparagine (Graph 6). This suggests the hydrogen bond to the bridging water is stronger than the hydrogen bond to the asparagine. ${ }^{200}$

Graph 6: Distance between the ligand and asparagine side chain nitrogen and the bridging water nitrogen for 40 Brd 2 ligands. Symbols show the heavy atoms closest to the asparagine $($ Crosses $=N$ or O, Circles $=C) .{ }^{200}$

Research in this rapidly expanding area is continuing to identify inhibitors of the BET family due to the profound biological effects discussed in the previous section. Identifying a chemically diverse range of compounds that can inhibit the BET family of bromodomains allows a deep, unbiased probing of the biological systems affected by the BET family further aided by the discovery of more selective compounds. One example of a BD2 selective molecule is RVX-208 (5.004) which is reported to bind 20-fold selectively to BD2 of Brd2 and Brd3 compared to BD1 of these proteins. ${ }^{236}$ Conversely, a BD1 selective molecule is MS436 (5.007), which is reportedly at least ten-fold selective for Brd4 BD1 compared to Brd4 BD2 (Fig. 59, p 129). ${ }^{237}$ The hydrogen bond acceptors are shown in red and the methyl mimetics shown in blue.

Many of the compounds in Fig. 59 were discovered through fragment screening efforts. Compounds with molecular weights of < 250 Da were successfully soaked into apo Brd2 BD1 bromodomains and X-ray crystal structures obtained. ${ }^{200}$ Tetrahydroquinoline containing 5.008 and dihydroquinazolinone example 5.009 were identified directly using this method. Ketone containing 5.009 binds to a wide variety of bromodomains. ${ }^{200}$ The core of dihydroquinazolinone analogue PFI-1 (5.010) was identified in the same screen, although the molecule itself was synthesised by Fish et al. ${ }^{238}$ Isoxazoles as acetyl lysine mimetics were originally identified through X-ray crystal structures and 5.011 has recently been disclosed by Brennan et al. ${ }^{239}$ RVX-208 (5.004) is a derivative of the plant polyphenol reversatrol that can increase plasma levels of ApoA1. However, the mechanism was initially
unknown. Similarity to the effect of increased plasma levels of ApoA1 when dosing (+)-JQ1 (5.003) and I-BET762 (3.010) led to the investigation and identification of RVX-208 (5.004) as a BET inhibitor. ${ }^{242}$ Interestingly, RVX-208 (5.004) and related phenol analogue 5.012 have different binding modes in Brd4 BD2 despite the overall similarity of structures. Removal of the hydroxyl-ethyl group causes the phenol to become the hydrogen bond acceptor motif. ${ }^{242}$ The phenol is common to diazo containing 5.007 which was derived from an inhibitor of the CREBBP bromodomain (Fig. 61, p 132). ${ }^{237}$ Recent patent literature has identified compounds such as pyridinone containing 5.013 from Abbvie and triazole analogue $\mathbf{5 . 0 1 4}$ from Constellation Pharmaceuticals. ${ }^{240}$

5.008

5.009

5.012
5.007

5.013

5.014

3.010
Figure 59: Examples of literature BET family inhibitors. ${ }^{241,242,240}$ Acetyl mimetics are shown with the methyl mimic highlighted in blue and the hydrogen bond acceptor highlighted in red. WPF shelf groups are highlighted in green.

Another feature common to many of the BET inhibitors (Fig. 59) is the presence of a group which lies on a lipophilic region of the BET protein known as the WPF shelf. The lipophilic region consists of a tryptophan (W), a proline (P) and a phenylalanine (F), thereby giving the region its name. BET inhibitors that occupy the WPF shelf usually see a large increase in binding to the bromodomain compared to those which do not. ${ }^{238}$ For example the X-ray crystal structure of I-BET762 (3.010) in Brd4 BD1 shows excellent shape complementarity with the bromodomain and places the 4-chlorophenyl group on the lipophilic WPF shelf (Fig. 60).

Figure 60: X-ray crystal structure of I-BET762 (3.010) in Brd4 BD1. The WPF shelf is highlighted in yellow, resolution $=1.6$ Å.

5.3 Inhibiting non-BET family bromodomains

As inhibiting the BET family of bromodomains was found to have significant biological effects as evidenced by BET inhibitors currently undergoing clinical trials (p 121), ${ }^{233}$ it was postulated that inhibiting other non-BET family bromodomains could also exhibit a phenotypic response. A number of compounds have been identified as inhibitors of bromodomains other than BET (Fig. 61, p 132).

NP1 (5.015) was one of the first identified bromodomain inhibitors and in 2005 was found to be an inhibitor for PCAF with a reported IC_{50} of $1.6 \mu \mathrm{M}$. ${ }^{243} \mathrm{NP1}$ (5.015) is unusual as it does not bind in the same fashion as the compounds in Fig. 59 (p129) as it does not form an H -bond with the conserved asparagine or water in the acetyl lysine binding site. CREBBP inhibitor MS7972 (5.016) also does not H-bond to the asparagine or the conserved water. However, it does show complete inhibition of binding between CREBBP and acetylated p53 at $50 \mu \mathrm{M} .{ }^{244}$ The binding modes of both 5.015 and 5.016 were derived via NMR studies.

I-CBP112 (5.017) returns to the conventional binding mode of an acetyl mimetic, where the oxygen of the amide is the H-bond acceptor. However, where the BET inhibitors (Fig. 59, p 129) had methyl groups I-CBP112 (5.017) has the larger ethyl group present. ${ }^{245}$ This larger group may explain why I-CBP112 (5.017) is selective for CREBBP and EP300 compared to the BET family of bromodomains. The reported potencies for I-CBP112 (5.017) is $0.15 \mu \mathrm{M}$ at CREBBP and $0.63 \mu \mathrm{M}$ at EP300. SGC-CBP30 (5.018) is known to bind to CREBBP with a K_{d} of $0.02 \mu \mathrm{M}$ and EP300 with a Kd of $0.04 \mu \mathrm{M}$. ${ }^{246}$ I-CBP112 (5.017) has a dimethyl isoxazole group, which is present in examples of BET inhibitors (Fig. 59). SGC-CBP30 (5.018) has been found to be forty-fold selective for CREBBP over Brd4 BD1. Ischemin (5.019) is known to bind in the acetyl lysine binding site of CREBBP with a K_{d} of $19 \mu \mathrm{M}$ as well as in PCAF and BAZ1B with K_{d} values of $40 \mu \mathrm{M} .{ }^{247}$ GSK2801 (5.020) is structurally related to 5.009 (Fig. 59) and is an inhibitor for the BAZ2A and BAZ2B bromodomains with K_{d} values of 0.26 and 0.14 , respectively. ${ }^{248}$ Triazole containing 5.021 is tenfold selective over Brd4 BD1 for Brd9, CECR2 and CREBBP, where it is approximately $1 \mu \mathrm{M}$ at those proteins. ${ }^{249}$ Structurally related to 5.021 is bromosporine (5.022), which binds to a wide range of bromodomains. As well as the BET family of bromodomains, bromosporine (5.022) binds to Brd7, Brd9, CECR2, EP300, PCAF, SMARCA4 and TAF making it a broad spectrum inhibitor of bromodomains. ${ }^{250}$

5.015

5.016

5.017

5.019

5.020

5.021

5.022

Figure 61: Known non-BET bromodomain inhibitors. The hydrogen bond acceptors are highlighted in red and the methyl mimetics highlighted in blue.

The compounds in Fig. 61 showed it was possible to inhibit bromodomains outside of the BET family. However, to date with the exception of the BET family of bromodomains, the biology of inhibiting most bromodomains has not been extensively studied. Given the profound biological impact of inhibiting the BET family of bromodomains, it was interesting to discover if inhibiting other bromodomains could have a similar effect. Therefore, a programme of work within our laboratories was begun to identify chemical probes for nonBET bromodomains to understand the consequences of selective inhibition. One of the bromodomain containing proteins of interest was PCAF. ${ }^{251}$

5.3.1 Introduction to PCAF

PCAF or p300/CREBBP-associated factor, also known as KAT2B, is a bromodomain containing protein. PCAF, in vivo, exists in a complex of more than 20 polypeptides, ${ }^{252}$ some of which have been identified and studied such as p300 and CBP. ${ }^{251}$ The PCAF protein itself contains 832 amino acid residues ${ }^{251}$ and has several domains such as an enzymatic histone acetyl transferase (HAT), a bromodomain, an E3 ligase ubiquitination domain ${ }^{253}$ and a PCAF homology domain that binds to p300 and CREBBP (Fig. 62). ${ }^{254}$

1	75	121		242	320	550	625	725

Figure 62: Schematic of the domains in PCAF. The PCAF homology domain where EP300 and CREBBP bind is shown in blue and includes the E3 ligase ubiquitination domain shown in grey. Adapted with permission from Macmillan Publishers Ltd, copyright 2007. ${ }^{255}$

The E3 ligase ubiquitination domain is known to append ubiquitin to the oncoproteins Hdm2 and Gli1, which causes Hdm2 and Gli1 to be destroyed within the cell. ${ }^{253,255}$ The removal of the E3 domain or knockdown of PCAF with interfering RNA causes an increase in the quantity of Hdm2 and Gli1 within the cells studied.

The HAT domain of PCAF has been extensively studied and PCAF is actually primarily known as an acetyl transferase. PCAF does not only acetylate histone lysines, it is also known to acetylate the tumour suppressor protein $\mathrm{p} 53^{256}$ in addition to having a strong site preference for histone 3 lysine 14 (H3K14). ${ }^{257}$ Inhibitors of the PCAF HAT domain have shown growth inhibition in a panel of human colon and ovarian cancers. ${ }^{258}$ Additionally, PCAF HAT domain inhibitors have been shown to alter the expression of several genes. The acetyl transferase domain is thought to be important in the regulation of muscle cell differentiation and developmental survival. ${ }^{256}$

It is known that PCAF is a co-activator of the IFN regulatory factor, which transcribes interferon mRNA, and deletion of the bromodomain in PCAF prevents interaction of PCAF with IFN regulatory factors. ${ }^{259}$ Thus, antagonising the PCAF bromodomain could attenuate the production of the IFN family of cytokines. The PCAF bromodomain is known to bind to H4K8 and H3K15. ${ }^{196}$ This may aid regulation of DNA transcription as it is known that PCAF binds to the DNA binding domain of nuclear receptors ${ }^{260}$ which act as transcription factors.

The closest homologue to PCAF is GCN5 which shares 73\% homology with PCAF over the entire protein. ${ }^{261}$ However, in the ZA and BC loops, which pack against each other to form the bromodomain, the sequence homology is increased to $77 \% .{ }^{262}$ Additionally, only one of the changes in the sequence is within the acetyl lysine binding site of the bromodomain which may mean that finding selectivity with a chemical probe over GCN5 may be challenging. Currently the effects of dual PCAF and GCN5 bromodomain inhibition are unknown so there is the possibility that inhibiting both bromodomains is beneficial and may provide a synergistic effect. Most known BET inhibitors inhibit eight bromodomains concurrently, ${ }^{45}$ which may explain the diverse and potent biological effects these molecules show. However, the question if dual inhibition of the bromodomains of GCN5 and PCAF is desirable can only be answered if a selective inhibitor of either bromodomain can be identified.

Therefore, with evidence that the PCAF bromodomain may well regulate the expression of interferon ${ }^{259}$ and that PCAF is highly expressed in immune cells, ${ }^{263,264}$ the PCAF bromodomain became an interesting target. Currently, as there are no compounds that selectively inhibit the PCAF bromodomain, to validate the target and determine if PCAF is a valid target for drug discovery a probe compound must be identified.

5.3.2 Screening cascade

To identify a probe, certain criteria needed to be met in order to have a suitable tool compound and hence a screening cascade was designed (Fig. 63).

Figure 63: Screening cascade for PCAF bromodomain inhibitors.

The criteria for a probe molecule for the PCAF bromodomain were largely similar to those being used for the identification of a probe molecule for the JmjC domain of the JmjD2 family ($p 38$). To progress to the next level of the screening cascade the test compounds had to meet certain criteria. Initially, the compounds have to have acceptable physicochemical properties with a LogP of between 1-3 and a molecular weight of < 400 Da as this is considered to be a good range to obtain cellular penetration. ${ }^{100}$ While increasing the lipophilicity of the compounds could aid cellular penetration, it may cause wider issues as compounds with high lipophilicity have been linked with promiscuity, poor PK and toxicology issues. ${ }^{101}$ These properties can be calculated prior to synthesis of the compound. However, the potency of the molecule cannot be calculated and the molecule must be synthesised and screened in the PCAF FP assay. In this case a pIC_{50} value of ≥ 6.0 was thought to be sufficient for progression to the next level of the screening cascade along with $A M P \geq 50 \mathrm{~nm} \mathrm{~s}^{-1}$ and aqueous solubility of $\geq 50 \mu \mathrm{~g} \mathrm{~mL}^{-1}$.

The 100 -fold selectivity over BET is necessary to have a window from any potential biological activity arising from antagonising the BET proteins. As mentioned previously, antagonising the BET family of bromodomains has profound biological effects (p 121) and even low levels of BET inhibition show phenotypic changes. As the bromodomains of Brd2, Brd3, Brd4 and BrdT are very similar, only the data for Brd4 will be routinely reported as it is representative for the other members of the BET family.

Taking lessons from the JmjD2 probe discovery work, where significant off-target activity was seen for the KDM5 family of enzymes a wider range of BCP will be assayed against for off-target binding. Initially using assays available in our laboratories and subsequently using external collaborators. 30-fold selectivity over other bromodomains was to ensure any biological activity observed is being caused by antagonising PCAF rather than any other bromodomain. Ideally any probe compounds identified would also be selective for GCN5 although this may not be possible and the selectivity criteria for GCN5 was relaxed. The compounds should be tested against a wide range of non-related drug and liability targets to ensure that any phenotype seen is not due to off-target activity. For any compound to inhibit PCAF, the antagonist must get to the bromodomain binding site, which is within the cell nucleus so cellular penetration is vital. Beyond this, in order to observe a phenotype the probe compound must engage the endogenous PCAF protein within the nucleus. At the
outset of this work a target engagement assay had not been developed. Generating a target engagement assay was also a key aim for the project.

5.3.3 Rationale for achieving BET selectivity

As BET selectivity was an essential goal of the programme, an analysis of the X-ray crystal structures of apo PCAF and Brd4 BD1 was carried out. The structures of the BET family of bromodomains are highly conserved, so comparison with only one of the domains is shown below (Fig. 64). From the available structural information, it was thought to be possible to get the necessary selectivity over the BET family of bromodomains due to fundamental differences in the bromodomain structure between PCAF and BET. The major structural change between PCAF and BET is brought about by a tyrosine present in PCAF, Tyr809, which blocks access to the WPF shelf in the BET family of bromodomains. ${ }^{229}$ As stated above (p 131), many BET inhibitors derive much of their potency from interacting with the WPF lipophilic region and, since access to this region is precluded in PCAF, many BET inhibitors will be unable to bind to PCAF. Additionally, there is the potential for a positive face to face aromatic interaction between Tyr809 in PCAF if the PCAF ligand contains an aromatic ring that can overlap, which is not possible in BET. This could provide a positive interaction between the ligand and the bromodomain. Comparison of the X-ray crystal structures of PCAF and BET demonstrate the inaccessibility of the WPF shelf in PCAF (Fig. 64). ${ }^{229}$

Figure 64: Left: X-ray crystal structure surface of Brd4 BD1 in blue highlighting the lipophilic WPF shelf, resolution = 1.6 Å; Right: Overlay with a PCAF X-ray crystal structure (green), resolution = 2.0 Å showing Tyr809 blocks access to the WPF shelf (yellow).

5.3.4 Known inhibitors of PCAF

Zhou et al. have published a range of PCAF bromodomain inhibitors based around 2nitroanilines reporting NP1 (5.015) (Fig. 65) to be their most potent compound against PCAF with a pIC_{50} of 5.8. ${ }^{243}$

Figure 65: PCAF inhibitor NP1 (5.015) discovered by Zhou et al. ${ }^{243}$

Zhou et al. found that NP1 (5.015) could block a unique viral trans-activator protein, Tat, which is thought to be essential for the transcription of the human immunodeficiency virus (HIV). ${ }^{243}$ For the transcription of HIV to occur, the Tat protein must be acetylated on lysine 50 which binds to the co-ordinating PCAF bromodomain. Thus, by inhibiting the PCAF bromodomain and preventing Tat from binding, there is the potential for a treatment of individuals with HIV. ${ }^{243}$

As there is a clear unmet medical need for those suffering from HIV, research around this molecular series was continued. Chloroethyl analogue 5.023 (Fig. 66) was identified as binding 15 -fold more strongly than NP1 (5.015) in-vitro to the PCAF bromodomain. ${ }^{265}$ Additionally, it was found that chloroethyl analogue 5.023 exhibited an $E C_{50}$ of approximately $1 \mu \mathrm{M}$ on inhibiting Tat-mediated transcription of the viral promoter in an HIV-1 long terminal repeat (LTR) luciferase reporter gene assay. ${ }^{265}$ In the same luciferase assay, NP1 (5.015) displayed an EC_{50} of approximately $10 \mu \mathrm{M}$. Recently, Zhang et al. have disclosed oxygen linked analogues of NP1 (5.015) of which 5.024 (Fig. 66) shows a 17-fold higher EC_{50} than NP1 (5.015) in the cell based assay of $0.6 \mu \mathrm{M}$. ${ }^{266}$ However, upon measuring the IC_{50} of ether containing 5.024 at PCAF using an ELISA assay it was found to be $126 \mu \mathrm{M}$. Due to this mismatch between the EC_{50} and the IC_{50} Zhang et al. conclude that the suppression in the cellular assay must be driven by off target activity. ${ }^{266}$ Hence, while there is interest in finding an HIV treatment, it may not be best served by these compounds.

Figure 66: Molecules capable of suppressing transcription of an HIV promoter.

Another reported inhibitor of the PCAF bromodomain is ischemin (5.019) (Fig. 67). Ischemin was identified primarily as a binder to the CREBBP bromodomain and has been found to block apoptosis in cardiomyocytes. ${ }^{247}$ Ischemin is not selective for CREBBP and has a K_{d} of $19 \mu \mathrm{M}$ at the CREBBP bromodomain as well as a K_{d} of $44 \mu \mathrm{M}$ at the PCAF bromodomain when determined by measuring protein tryptophan fluorescence as a function of ligand concentration. ${ }^{247}$

Figure 67: Ischemin (5.019) an inhibitor of PCAF and other bromodomains. ${ }^{247}$

Within the same patent which described ischemin (5.019) there was another compound with sub-micromolar PCAF potency, stilbene derivative 5.025 (Fig. 68). ${ }^{267}$ However, these reported PCAF inhibitors did not provide any selectivity over the BET family of bromodomains.

Figure 68: Reported PCAF inhibitor 5.025.

Interestingly, none of the reported PCAF inhibitors showed evidence of binding in an FP assay or X-ray crystallography system when studied in our laboratories. However, subsequently the pan-bromodomain inhibitor bromosporine (5.022, Fig. 61, p 132) has
displayed a plC_{50} of 4.7 in the PCAF FP assay, although the structure had not been disclosed upon starting this work. Zhou et al. have published a 3D structure of NP1 (5.015) bound in the PCAF bromodomain obtained by NMR methods (Fig. 69). ${ }^{243}$ However, the structure of the PCAF bromodomain with NP1 (5.015) bound is somewhat different from the apo structure of PCAF derived by Filippakopoulos et al. (Fig. 69). ${ }^{198}$ The Filippakopoulos structure is almost identical to the PCAF X-ray crystal structure obtained in our laboratories.

Figure 69: 3D structures of the PCAF bromodomain. Left The NMR derived Zhou PCAF structure; ${ }^{243}$ Right The Filippakopoulos PCAF structure showing the deep acetylated lysine binding pocket, resolution $=1.4 \AA \AA^{198}$

The two structures of PCAF look fundamentally different to each other, with the Zhou PCAF bromodomain showing a shallow indentation in the protein surface and the Filippakopoulos bromodomain showing the usual lipophilic groove. It may be that the binding of NP1 (5.015) causes a conformational shift of the residues in the protein, as different constructs had been used, or that one of the structures is inaccurate. The two structures overlay well for the majority of the protein. However, it is at the bromodomain binding site where they differ considerably. The key movements in the Zhou structure are that of Tyr802 and Tyr809 to prevent access to the acetyl lysine binding site (Fig. 70).

Figure 70: Left Comparison of the Zhou NMR derived structure ${ }^{243}$ in magenta and the Filippakopoulos X-ray crystal structure in green, resolution $=1.4 \AA \AA^{243}$ Right Highlighting the clash between NP1 (5.015) from the NMR derived structure and Tyr809 in the Filippakopoulos X-ray crystal structure.

The major differences are between Tyr761, Tyr802, Tyr809 and Pro758. Overlaying nitro containing NP1 (5.015) in the Filippakopoulos X-ray crystal structure shows a major steric clash between the nitro group in NP1 (5.015) and Tyr809 with the nitro group superimposed through the phenolic C-O bond. With this lack of a biologically relevant binding mode in PCAF compared to other known bromodomain binders ${ }^{199}$ and a lack of potency in the FP assay, other starting points were needed.

5.3.5 Bromodomain assays

Bromodomains have no enzymatic activity and therefore an assay which measures turnover of a substrate cannot be used for these proteins. Hence binding assays that use technologies such as fluorescence polarisation (FP) or fluorescence resonance energy transfer (FRET) are used.

FP assays operate by tagging a known binder of the target of interest with a fluorescent tag and allowing the resultant assay reagent to bind to the protein. Under the assay conditions, a compound is dosed and if this compound binds to the target of interest, the assay reagent is displaced. The more potent the compound, the more assay reagent is displaced and the degree of displacement can be measured by recording the degree of light scattering when plane polarised light is shone on the assay. The principle behind this is the larger the amount of displaced assay reagent, the higher the degree of scattered light and
thus a percentage inhibition can be measured. ${ }^{268}$ The test compound is dosed at a range of concentrations and in so doing, an IC_{50} can be determined.

A FRET assay works in a similar manner, requiring an assay reagent with a fluorescent tag. However, the binding partner, in this case the bromodomain, must also have a fluorescent tag which is excited by the light emitted from the assay reagent, or vice versa, and then emits a signal which can be measured. For the light emission to be measured the tagged assay reagent and the tagged protein must be in close proximity. Hence, if an inhibitor of the bromodomain is present there will be less light emitted and a percentage inhibition can be measured (Fig. 71). ${ }^{269}$

Figure 71: Schematic of a FRET assay. When the donor and acceptor are apart there is no FRET signal. When the donor and acceptor are brought into proximity a FRET signal is generated; 665 nm in this example. Reprinted courtesy of Cisbio Bioassays. ${ }^{269}$

5.3.6 Assay development

Earlier work in our research group to identify PCAF bromodomain inhibitors identified a fragment compound as a binder to Brd9 and CREBBP through thermal shift experiments. The fragment was identified as a BET inhibitor through X-ray crystallography and at $200 \mu \mathrm{M}$ was found to increase the melting point of Brd9 and CREBBP by 5.6 and $2.2^{\circ} \mathrm{C}$, respectively.

One vector from the fragment pointed directly into solvent and from this vector it was possible to append a fluorescent tag, in this case Alexa Fluor $488,{ }^{270}$ to produce assay reagent 5.026 (Fig. 72).

Figure 72: Assay reagent. The bromodomain binder is represented by R.

The K_{d} of the assay reagent 5.026 was determined for a number of bromodomains and was found to bind to sixteen examples (Table 23).

Bromodomain	$\mathbf{K}_{\mathrm{d}}(\boldsymbol{\mu} \mathbf{M})$
Brd9	0.04
TAF1	0.17
CECR2	0.17
Brd7	0.25
GCN5	0.45
EP300	0.45
BRPF1	0.50
BAZ2A	0.65

Bromodomain	$\mathbf{K}_{\mathbf{d}}(\boldsymbol{\mu} \mathbf{M})$
CREBBP	0.69
Brd8	6.74
Brd1	1.00
TAF1L	1.50
BPTF	2.40
PCAF	2.50
BAZ1B	5.00
BAZ2B	1.00

Table 23: $K_{d} S$ of assay reagent 5.026 against different bromodomains.

Through using the assay reagent 5.026, an FP assay was developed to measure the binding of small molecules to the PCAF bromodomain using a PCAF truncate which contained the bromodomain. The PCAF FP assay was fit for purpose as it could provide IC_{50} values for test compounds, although there were several limitations to be aware of:

- The actual plC_{50} of $\mathbf{5 . 0 0 9}$ at PCAF (Fig. 75, p 142) could not be determined with great accuracy as 5.009 was fluorescent and interfered with the readout from the assay,
- Due to the $2.50 \mu \mathrm{M} K_{d}$ of $\mathbf{5 . 0 2 6}$ at PCAF and the low signal to noise ratio, the tight binding limit of the assay, the maximum pIC_{50} the assay could measure, was predicted to be 5.9 assuming 100% active protein, too low to accurately measure the desired sub-micromolar compounds at PCAF,
- The assay required comparatively large amounts of protein to run. For example an HTS screen of the compound collection available within our laboratories with the PCAF FP assay would require 8 g of protein, whereas a typical HTS screen in our laboratories would require $c a .20 \mathrm{mg}$.

Thus, in addition to identifying a probe molecule for PCAF, a new ligand for an improved assay was required. The requirements of this ligand were:

- Requiring less PCAF bromodomain truncate protein,
- Having a smaller K_{d} to raise the tight binding limit of the assay,
- Ideally, not being auto-fluorescent so the readout from the assay would not be interfered with.

Once the improved assay reagent was identified, an HTS could be initiated to find other chemotypes which bound to the PCAF bromodomain and potentially find structurally diverse inhibitors of the PCAF bromodomain.

5.3.7 Comparing pIC_{50} values across assays

Between different biochemical assays, plC_{50} values are typically not directly comparable as the IC_{50} is dependent on the concentrations of the substrate used (S), in this case the assay reagent, and the affinity of the assay reagent to the protein $\left(K_{d}\right)$. However, using the Cheng-Prusoff equation ${ }^{271}$ (Equation 2) the IC_{50} s from the assays can be converted into K_{i} values which are directly comparable with each other, assuming competitive binding.

$$
K_{i}=\frac{I C_{50}}{1+\left(\frac{S}{K_{d}}\right)}
$$

Equation 2: The Cheng-Prusoff equation. ${ }^{271}$

By taking the negative log of the Cheng-Prusoff equation a direct, additive relationship between pK_{i} and pIC_{50} can be determined (Equation 3).

$$
p K_{i}=p I C_{50}+\log \left(1+\frac{S}{K_{d}}\right)
$$

Equation 3: Negative log of the Cheng-Prusoff equation.

While the PCAF assay was an FP assay using assay reagent 5.026 at $\mathrm{S}=2.5 \mathrm{~K}_{\mathrm{d}}$, due to the low signal to noise ratio, the Brd4 assays were performed in a FRET format at $S=K_{d}$. This difference in the substrate concentration meant that the plC_{50} values from the two assays were not directly comparable.

Converting the values from the PCAF FP assay from plC_{50} to pK_{i} gives an approximate increase of 0.5 log units for each compound while converting the values from the most relevant selectivity assay, Brd4 BD1 and Brd4 BD2, gives an increase of 0.3 log units (Equation 4).

$$
\begin{gathered}
\text { PCAF } p K_{i}=p I C_{50}+\log \left(1+\frac{2.5 K_{d}}{K_{d}}\right)=p I C_{50}+\log 3.5=p I C_{50}+0.54 \\
\text { Brd4 } p K_{i}=p I C_{50}+\log \left(1+\frac{K_{d}}{K_{d}}\right)=p I C_{50}+\log 2=p I C_{50}+0.30
\end{gathered}
$$

Equation 4: Conversion of plC_{50} to pK_{i} for the PCAF and Brd 4 assays.

This means that when comparing the pIC_{50} values between the PCAF FP and the Brd4 BD1 and 2 assays the compounds will be more selective against PCAF than reported. However, as the error in the assays is approximately $0.5 \log$ units for the PCAF FP assay and $0.3 \log$ units for the Brd4 FRET assay the plC_{50} values will remain uncorrected. It is worth noting that the Brd4 BD1 and BD2 data will be quoted for the selectivity against the BET family. This is based on experience of screening thousands of compounds shows that Brd4 BD1 and BD2 are good surrogates for the other BET family members due to the high homology of the bromodomains.

5.3.8 Compounds identified from a knowledge based screen

In order to identify chemical series that inhibit PCAF, a knowledge based screen of 27,000 compounds based on known bromodomain binders such as those containing a hydrogen bond acceptor close to a methyl mimetic (Fig. 59, p 128; Fig. 61, p 131) was run.

> 5.027
> Desired
> probe
> properties

Table 24: PCAF inhibitors identified from focussed screen. ${ }^{\text {a }}$) Inactive on 4 of 25 test occasions.

The two chemotypes identified (Table 24) have sufficient PCAF potency for initial hits, acceptable ligand efficiency as starting points for future lead optimisation and have been shown to bind in the bromodomain binding site through the use of ${ }^{15} \mathrm{~N} N M R .{ }^{93}$ Phthalizinone analogue 5.027 had Brd4 potencies below the level of quantification whereas the pyridazinone compound 5.028 was approximately equipotent at PCAF and Brd4. The molecular weight of phthalizinone containing 5.027 is sufficiently low for some further molecular weight to be appended as the hit is optimised, while still remaining in desired probe-like space. However, phthalizinone compound 5.027 does have low lipophilicity so lipophilic groups can be added to the molecule to aid cellular penetration. ${ }^{272}$ Pyridazinone analogue 5.028 has less scope for adding lipophilic groups than phthalizinone compound 5.027 before becoming prone to being more promiscuous for other biological targets. ${ }^{131}$ However, the molecular weight of 5.028 is lower than phthalizinone containing 5.027 allowing for a considerable increase in molecular weight before the mass becomes too high
for oral bioavailability. The aqueous solubility of phthalizinone compound 5.027 is lower than desired for a probe although the AMP is well above the needed amount. The solubility and AMP of pyridazinone containing 5.028 are well above the minimum desired properties.

Phthalizinone 5.027 and aminopyridazinone 5.028 were found to be chemically stable and underwent further investigation. As for the JmjD2 family section, the programme was a team effort and the compounds reported on were not solely designed or synthesised by the author. Those compounds that were designed and synthesised by others will be identified by an asterisk $\left({ }^{*}\right)$ and those designed by the author but synthesised by others will be identified by a dagger (\dagger). The phthalizinones will be discussed first.

5.4 Phthalizinone series

The initial phthalizinone hit 5.027 showed a promising profile with a pIC_{50} of 5.0 at PCAF and displayed no measurable activity at Brd4. Although, these data were encouraging, phthalizinone containing $\mathbf{5 . 0 2 7}$ was remade to ensure the biological activity was caused by the compound itself and not a low level impurity (Scheme 39).

5.027

Scheme 39: Reagents and conditions a) $\mathrm{KMnO}_{4}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}, 9{ }^{\circ} \mathrm{C}$; b) $\mathrm{MeNHNH}_{2}, 90^{\circ} \mathrm{C}, 6 \%$; c) i) DMF, $(\mathrm{COCl})_{2}, 20^{\circ} \mathrm{C}$; ii) 2-aminobenzamide, $\mathrm{NEt}_{3}, 20^{\circ} \mathrm{C}, 15 \%$.

Tetrahydronaphthalene (5.029) was oxidised using KMnO_{4} to 2-(carboxycarbonyl)benzoic acid (5.030) and after destruction of any residual permanganate with IPA, methyl hydrazine
was added to form the desired phthalizinone carboxylic acid 5.031. ${ }^{273}$ The acid chloride of 5.031 was made in situ and coupled with 2-aminobenzenecarboxamide. Although the yields for both steps were poor, 0.8% across two steps, and would have to be improved for further analogue generation, the remade batch of amide containing 5.027 was found to have the same level of potency at PCAF and Brd4 as the historical batch. This provided the confidence necessary to continue investigating the phthalizinone series. One of the main aims with this template was to increase the potency against PCAF while maintaining the BET selectivity.

However, on repeatedly retesting the new batch of phthalizinone compound $\mathbf{5 . 0 2 7}$ at PCAF some concerning results came to light (Fig. 73).

Figure 73: Left: Comparison of two batches of ME on different test occasions at PCAF. Right: an example of a dose response curve for one of the inactive test occasions (red) and a successful curve (green).

Some of the assay results showed that the new batch was inactive and so the individual dose response curves were examined (Fig. 73). On the inactive test occasions there was the beginning of a dose response curve although after a concentration $3.7 \mu \mathrm{M}$ of phthalizinone containing 5.027 in the PCAF assay there is a drop in the percentage inhibition. This curve shape is consistent with a lack of solubility of the compound being tested in assay media. As the compound is dosed at higher concentrations the compound precipitates out of solution and is therefore unable to inhibit the bromodomain. This lack of solubility of phthalizinone analogue 5.027 was found to extend to many of the phthalizinones synthesised and was a problem which needed addressing as part of making a viable probe molecule.

The low solubility of phthalizinone 5.027 was attributed to the number of amides in the molecule, three if the embedded phthalizinone amide is included. Molecular modelling showed that the primary amide group can form an intramolecular H-bond to the secondary amide in the linker of 5.027. The formed H -bond causes two planar sheets in the molecule when modelled thus lowering the aqueous solubility of the molecule (Fig. 76). ${ }^{274}$

Figure 74: 5.027 showing a $1.7 \AA$ internal H-bond. Modelled via a stochastic conformational search using MMFF94x and MOE 2012.10. ${ }^{275}$

Therefore, alternative linkers were investigated to disrupt the potential internal H-bonding and a series of analogues were targeted which remove the linking amide were designed (Fig. 75).

Figure 80: Target compounds with alternative linkers to 5.027.

5.4.1 Development of a higher yielding route to carboxylic acid 5.027.

The target compound aryl amine 5.033, benzyl amine containing 5.034, phenyl ether analogue 5.032 and benzyl ether compound $\mathbf{5 . 0 3 5}$ all shared a phthalizinone core and thus could be synthesised using a common retrosynthetic intermediate bromo 5.036. This key intermediate could be accessed in a straightforward manner from anhydride 5.037 via hydrazide 5.038 and chemoselective bromination (Scheme 40).

Scheme 40: Retrosynthesis of key intermediate 5.031.

Dihydrophthalizindione 5.038 was accessed through the condensation of N methylhydrazine with phthalic anhydride (5.037). ${ }^{276} \quad 5.038$ was brominated using phosphorus oxybromide and triethylamine in toluene to provide impure 5.036 contaminated with 1,4-dibromophthalazine. ${ }^{277}$ Bromophthalizinone 5.036 was subsequently carbonylated using catalytic palladium acetate, DPPF and carbon monoxide in MeOH to provide methyl ester 5.039 (Scheme 41).

Scheme 41: Reagents and conditions a) $\mathrm{H}_{2} \mathrm{NNHMe} \mathrm{AcOH}, 20^{\circ} \mathrm{C}, 67 \%$; b) $\mathrm{POBr}_{3}, \mathrm{NEt}_{3}$, PhMe, $115^{\circ} \mathrm{C}, 34 \%$; c) CO, $\mathrm{NEt}_{3}, \mathrm{Pd}(\mathrm{OAc})_{2}(6 \mathrm{~mol} \%)$, DPPF (12 mol \%), $\mathrm{MeOH}, 5{ }^{\circ} \mathrm{C}, 41 \%$.

While the route outlined in Scheme 41 could provide the material necessary to synthesise the alternative linker compounds (Fig. 75) and provide additional material for amide analogues of 5.027 , the overall yield of 9% to methyl ester 5.039 was deemed insufficient
to provide intermediates for multiple analogues. Thus, an effort was made to access carboxylic acid 5.031 directly from bromo 5.036 via halogen-lithium exchange and quenching with CO_{2}, however, only the des-bromo phthalizinone analogue was seen as a product by LCMS .

Therefore a re-examination of the original route to carboxylic acid 5.031 (Scheme 39, p 145) was undertaken. If an improved method of generating the dicarboxylic acid intermediate 5.030 could be identified the condensation with methyl hydrazine could give the desired carboxylic acid 5.031 in higher yield. Ketone 5.040 was oxidised with potassium permanganate in the presence of potassium carbonate to provide dicarboxylic acid $\mathbf{5 . 0 3 0}$ in $s^{2} t u^{278}$ and after destruction of the excess permanganate with ethanol, carboxylic acid 5.031 was formed by adding methyl hydrazine and acetic acid (Scheme 42).

Scheme 42: Reagents and conditions a) $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 50-70^{\circ} \mathrm{C}$; b) $\mathrm{MeNHNH}_{2}, \mathrm{AcOH}$, $70^{\circ} \mathrm{C}, 44 \%$ over 2 steps.

This improved synthetic route to carboxylic acid 5.031, originating from ketone $\mathbf{5 . 0 4 0}$ provided sufficient material to probe alternative linkers as well as investigate other amides.

5.4.2 Synthesis of phenolic ether 5.032 and aniline 5.033

Ethyl ester 5.041 was synthesised via a Fisher-Speier esterification ${ }^{279}$ of carboxylic acid 5.031 and was reduced using sodium borohydride to give primary alcohol 5.042. The target molecule 5.032 was obtained using Mitsunobu conditions to give the desired phenolic ether 5.032 (Scheme 43). ${ }^{280}$

Scheme 43: Reagents and conditions a) $\mathrm{H}_{2} \mathrm{SO}_{4}$, $\mathrm{EtOH}, 80^{\circ} \mathrm{C}, 88 \%$; b) $\mathrm{NaBH}_{4}, \mathrm{THF}, 60^{\circ} \mathrm{C}, 79 \%$; c) 2-hydroxybenzamide, DBAD, $\mathrm{PPh}_{3}, 20^{\circ} \mathrm{C}, 65 \%$.

With the first target compound synthesised, focus was placed on the synthesis of aryl amine 5.033 which was prepared using alcohol 5.042 . Primary alcohol 5.042 was oxidised to aldehyde 5.043 using a Swern oxidation ${ }^{176}$ and reductive aminations were attempted with this material. A test reaction with aniline showed this method to be successful and provided aryl amine 5.044. However, when repeating these conditions with the electron deficient 2-aminobenzamide none of the desired aryl amine 5.033 was obtained, with the major product being the original intermediate primary alcohol 5.042 (Scheme 44).

Scheme 44: Reagents and conditions a) $(\mathrm{COCl})_{2}, ~ \mathrm{DMSO}, \mathrm{NEt}_{3}, \mathrm{DCM},-70-20{ }^{\circ} \mathrm{C}, 100 \%$; b) $\mathrm{PhNH}_{2}, \mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{THF}, 60^{\circ} \mathrm{C}, 59 \%$; c) 2-aminobenzamide, $\mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{THF}$, $60^{\circ} \mathrm{C}, 0 \%$.

Therefore, an alternative strategy was used to prepare 2-aminobenzamide containing 5.033. The primary alcohol 5.042 was treated with mesyl chloride and triethylamine to form mesylate 5.045 in situ which alkylated 2-aminobenzamide in the presence of potassium carbonate to form aryl amine 5.033 (Scheme 45).

Scheme 45: Reagents and conditions a) $\mathrm{MsCl}, \mathrm{NEt}_{3}, \mathrm{DCM}, \mathrm{O}-20^{\circ} \mathrm{C}$; b) 2-aminobenzamide, $\mathrm{K}_{2} \mathrm{CO}_{3}, 20-40^{\circ} \mathrm{C}, 4 \%$.

This provided for the target molecules with heteroatoms adjacent to the benzene ring and attention was then focussed on the remaining targets, substituted benzylamine 5.034 and benzyl ether 5.035

5.4.3 Synthesis of substituted benzylamine $\mathbf{5 . 0 3 4}$

Key intermediate carboxylic acid 5.031 was converted into carbamate 5.046 via a Curtius rearrangement ${ }^{281}$ in ${ }^{\text {t BuOH. }}{ }^{282}$ Carbamate 5.046 was deprotected to provide amino 5.047 by treatment with HCl in IPA. The resultant amine 5.047 was opportunistically used to investigate another alternative linker in the phthalizinone series, the reverse amide of 5.027, albeit with the simple benzamide 5.048. 5.048 was prepared by treating amine 5.047 with benzoyl chloride in the presence of triethylamine (Scheme 46).

Scheme 46: Reagent and conditions a) (PhO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}_{3}, \mathrm{NEt}_{3}, t-\mathrm{BuOH}, 30^{\circ} \mathrm{C}, 64 \%$; b) $\mathrm{HCl}, \mathrm{IPA}$, $20^{\circ} \mathrm{C}, 80 \%$; c) $\mathrm{PhCOCl}, \mathrm{NEt}_{3}, \mathrm{DCM}, 40^{\circ} \mathrm{C}, 17 \%$.

A reductive amination was attempted with commercially available 2-cyanobenzaldehyde and amine 5.047 to form benzamide analogue 5.049 with the intention to hydrolyse the nitrile to the primary amide 5.034 . This strategy was successful, although sodium triacetoxyborohydride was found to be unreactive with this system and initially imine $\mathbf{5 . 0 5 0}$ was isolated. Treatment of imine 5.050 with sodium borohydride reduced the imine to substituted benzylamine 5.049 which was hydrolysed using potassium carbonate and hydrogen peroxide to provide desired benzylamine containing 5.034 (Scheme 47). ${ }^{132}$

Scheme 47: Reagents and conditions a) 2-cyanobenzaldehyde, $\mathrm{AcOH}, \mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{DCM}$, $20^{\circ} \mathrm{C}, 42 \%$; b) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, \mathrm{DCM}, 20^{\circ} \mathrm{C}, 61 \%$; c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{DMSO}, 20^{\circ} \mathrm{C}, 59 \%$.

5.4.4 Synthesis of benzyl ether 5.035

The final compound in the set with alternative linkers between the phthalizinone and the benzamide was accessed in an efficient manner. Phthalizindione 5.038, which had been used as an intermediate for a trial synthetic route to key carboxylic acid 5.031, was selectively O -alkylated with 2-cyanobenzyl bromide in the presence of silver carbonate to furnish ether 5.051. ${ }^{283}$ The nitrile group on 5.051 was hydrolysed using conditions employed by Katritzky et al. to provide the desired primary amide 5.035 (Scheme 48). ${ }^{132}$

Scheme 48: Reagents and conditions a) $\mathrm{NH}_{2} \mathrm{NHMe}, \mathrm{AcOH}, 20{ }^{\circ} \mathrm{C}, 67 \%$; b) 2nitrilebenzylbromide, $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 77 \%$; c) aq. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 20^{\circ} \mathrm{C}$, 47\%.

This completed the set of compounds with alternative linkers (Fig. 75, p 147), which were assayed against PCAF.

5.4.5 Assay results of phthalizinones with alternative linkers

In addition to having the potencies of the molecules measured at PCAF, the aqueous solubilities measured from DMSO were determined to establish if the compounds were more soluble than the original hit 5.027 (Table 25).

Entry	Number	Structure	PCAF plC_{50}	Aqueous solubility $\mu \mathrm{g} / \mathrm{mL}$
1	5.027		$5.0{ }^{\text {b }}$	15
2	5.051		≤ 4.4	33
3	5.035		4.0	≥ 158
4	5.039	$\mathrm{MeO}_{2} \mathrm{C}$	< 4.0	≥ 197
5	5.042	$\mathrm{HO} \widehat{3}^{5}$	< 4.0	≥ 186
6	5.032†		< 4.0	15
7	5.044		< 4.0	32
8	5.033		< 4.0	11
9	5.047	NH_{2}	< 4.0	≥ 119
10	5.048		< 4.0	≥ 137
11	5.034		$4.1{ }^{\text {a }}$	22

Table 25: Potencies and solubilities of phthalizinone compounds with alternative linkers to 5.027. ${ }^{\text {a }}$) Data from FRET assay (Section 5.5 .8, p 191).${ }^{\text {b }}$) Inactive on 4 of 25 test occasions.

As indicated in Table 25, the measured potencies of the compounds at PCAF showed no improvement against the original amide 5.027. Some of the compounds were more soluble than amide 5.027, principally those unable to make a 5 or 6 -membered internal H-bond: benzyl alcohol containing 5.035, methyl ester 5.039, amino 5.047 and benzamide analogue 5.048. The compounds which potentially could form internal H-bonds had universally poor solubilities (Fig. 76). This supports the hypothesis outlined in Section 5.4.1 (p 150).

5.032

5.044

5.033

Figure 76: Potential internal H -bonds that could explain poor solubilities of these compounds.

However, only nitrile 5.035, benzylamine analogue 5.034 and benzyl alcohol 5.051 had plC_{50} values ≥ 4.0 at PCAF and these were approximately tenfold less potent than $\mathbf{5 . 0 2 7}$. This led to the belief that the amide linker, as exemplified in the original hit 5.027, was involved in binding to the PCAF protein. Therefore, a variety of amides were synthesised from the phthalizinone carboxylic acid 5.031 as well as screening historical compounds from the compound collection available in our laboratories.

5.4.6 Synthesis of compounds with amide linkers

A variety of amide coupling methods to vary the amide head group were used: formation of the acid chloride of 5.031; the use of CDI to form imidazolide, or the use of $\mathrm{T3P}^{\circledR}$ to form the phosphinic anhydride intermediate (Scheme 49). None of the activated intermediates were isolated as they were used in situ.

Scheme 49: Reagents and conditions a) i) DMF, $(\mathrm{COCl})_{2}, \mathrm{DCM}, 2{ }^{\circ} \mathrm{C}$; ii) $\mathrm{R}-\mathrm{NH}_{2}, \mathrm{NEt}_{3}, \mathrm{DMF}$, $20^{\circ} \mathrm{C}$; b) CDI, R-NH2, DMSO, $20^{\circ} \mathrm{C}$; c) T3P ${ }^{\circledR}$, R-NH2, DIPEA, DCM, $20^{\circ} \mathrm{C}$.

Many of these phthalizinone amide compounds were profiled through the PCAF assay although ultimately no meaningful data could be gleaned for the compounds assayed. Most of the compounds synthesised were sparingly soluble in a wide variety of solvents, including water and thus within biological systems. It was difficult to determine if the compounds synthesised were inactive as inhibitors of the PCAF bromodomain or insoluble under the assay conditions. Many compounds showed inhibition curves consistent with compounds precipitating as the concentration of the compounds increased (c.f. Fig. 73, p 146). Examples synthesised by the author can be found in Appendix A.

An X-ray crystal structure of ortho-fluoro 5.052 was successfully obtained (Fig. 77) and this was the only X-ray crystal structure collected in PCAF for the phthalizinone series.

5.052

Figure 77: X-ray crystal structure of $\mathbf{5 . 0 5 2}$ in PCAF, resolution $=2.0 \AA$.

The key interactions between the PCAF protein and the ligand 2-fluoro 5.052 are highlighted in the diagram above. The majority of the interactions will be consistent for the phthalizinone amides as only the apparent H -bond ${ }^{284}$ between the fluorine and the $\mathrm{N}-\mathrm{H}$ amide of Glu 750 will be specific for 2 -fluoro 5.052 . The amide $\mathrm{N}-\mathrm{H}$ forms an H -bond with the carbonyl of Pro747, and the bicyclic ring system forms a face to face aromatic interaction with Tyr809. The methyl group mimics the methyl of the acetylated lysine from the histone tail binds, filling a small lipophilic pocket. The carbonyl of the phthalizinone
core is situated in the area where the carbonyl of the natural substrate, the acetylated lysine from the histone tail, binds and makes H-bonding interactions with Asn803 and a residual water.

The crystal structure is interesting beyond the interactions mentioned above as the compound is in an almost planar conformation between the amide group and the phthalizinone core, with an 8° dihedral angle. The small angle indicates that there could be an H-bonding contribution between the amide nitrogen in the 3-position of the phthalizinone ring keeping the conformation rigid. It would appear that the H-bond between the amide N-H and the carbonyl of Pro747 is key. The alternative linkers (Table 25, p 154), in general, cannot form this interaction and therefore show no potency. The exceptions to this are aryl amine compounds 5.044 and 5.033 (Fig. 78).

Figure 78: Aryl amine containing phthalizinones with plC_{50} values <4.0 at PCAF.

Aryl amines 5.044 and 5.033 could make the H -bonding interaction with Pro747 as the aniline $\mathrm{N}-\mathrm{H}$ bonds will be in approximately the same position as the hit $\mathbf{5 . 0 2 7}$ (Table 24, p 144). The lack of measurable potency could be due to the N-H bond being insufficiently acidic or it could be due to the lack of solubility of the compounds (p148).

The lack of aqueous solubility remained the major problem with the phthalizinone series. Hence a body of work attaching solubilising groups to the original hit 5.027 was undertaken. The addition of basic groups has proven to be an effective method to improve the aqueous solubility of some drug molecules. ${ }^{285,286}$ By adding a group which is charged at neutral pH the compound is made more hydrophilic and the aqueous solubility increases.

5.4.7 Addition of solubilising basic groups to the phthalizinone core

After consideration of the X-ray crystal structure of fluoro derivative 5.052 (Fig. 77, p 156) there appeared to be two vectors suitable for the incorporation of solubilising groups.

These positions were from the 4-position of the pendant benzene ring and the 6-position of the phthalizinone. Hence, compounds with basic centres were proposed: 5.053 with a basic solubilising group from the 4-position of the amide and 5.054 with a basic solubilising group originating from the 7-position of the phthalizinone core (Fig. 79).

Figure 79: Phthalizinone compounds with solubilising groups.

The basic groups were chosen as they will be positively charged at biological pH of 7.4 making the compounds more hydrophilic, increasing the aqueous solubility. To ensure the solubilising group would be tolerated initially, ((4-dimethylamino)methyl)aniline (5.055) was coupled using the CDI conditions to the phthalizinone core to give N, N-dimethyl benzylamine containing 5.056 (Entry 3, Table 26, p 162) and tested against PCAF. The rationale behind this was the synthesis of primary amide example 5.053 would require some synthetic commitment and if the solubilising group was not tolerated at the 4position then there would be no cause for investing time and effort to the synthesis. $\mathrm{N}, \mathrm{N}-$ Dimethyl benzylamine containing 5.056 was found to be equipotent with the unsubstituted aniline compound 5.057 (Entry 2, Table 26, p 162) with a potency at PCAF of 4.4 and therefore a synthesis of primary amide containing 5.053 was undertaken.

The first route attempted commenced with ((4-dimethylamino)methyl)aniline (5.055) and was iodinated selectively in the 2-position ${ }^{287}$ with Barluenga's reagent, a mild iodinating reagent, ${ }^{288}$ to give iodo 5.058. The second step, a copper mediated cyanation, ${ }^{289}$ consumed the starting material and after aqueous work up only NMP was isolated. No further attempts to synthesise nitrile 5.059 were made via this 2 -iodo methodology (Scheme 50).

Scheme 50: Reagents and conditions a) $\mathrm{Py}_{2} \mathrm{IBF}_{4}, \mathrm{DCM}, 20^{\circ} \mathrm{C}, 37 \%$; b) $\mathrm{CuCN}, \mathrm{NMP}, 200^{\circ} \mathrm{C}$, 0\%.

A second method was employed with the starting material containing a nitrile in place at the 2-position for later hydrolysis to the primary amide. The initial bromination of 2aminobenzonitrile (5.060) with NBS was successful ${ }^{290}$ to give bromo nitrile 5.061, as was the subsequent introduction of the tertiary amine using chemistry developed by Molander et al. albeit in poor yield. ${ }^{291}$ However, after hydrolysing the nitrile only 12 mg of a solid was isolated, the LCMS of which did not correlate with the desired product (Scheme 51). ${ }^{132}$ An amide coupling with carboxylic acid 5.031 and the putative 5.062 was attempted, which did not provide evidence that the desired amide 5.053 had been formed. Therefore it was assumed that primary amide 5.062 had not been formed in the first instance.

Scheme 51: Reagents and conditions a) NBS, $\mathrm{MeCN}, \mathrm{O}-20^{\circ} \mathrm{C}$, 93%; b) $\mathrm{Me}_{2} \mathrm{NCH}_{2} \mathrm{BF}_{3} \mathrm{~K}$, XPhos, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{CPME}, \mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}, 8 \%$; c) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 2{ }^{\circ} \mathrm{C}, 0 \%$.

A third method was used to try to access a close analogue of N, N-dimethyl benzylamine analogue 5.053, namely primary amine 5.063 , which lacks the two methyl groups on the benzylamine functionality. Anthranilamide (5.064) was brominated with NBS to provide bromo 5.065. Bromo 5.065 was cyanated with $\mathrm{Zn}(\mathrm{CN})_{2}$ in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to give nitrile 5.066 which was subsequently reduced and Boc protected in one synthetic step to give protected 5.067. Aryl amine 5.067 could be coupled to carboxylic acid 5.031 using the aforementioned $\mathrm{T}^{\left(P^{\circledR}\right.}$ methodology to give amide 5.068 and finally deprotected with HCl in IPA to provide the test compound 5.063 (Scheme 52).

Scheme 52: Reagents and conditions a) NBS, MeCN, $0-20^{\circ} \mathrm{C}, 53 \%$; b) $\mathrm{Zn}(\mathrm{CN})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4} 10$ mol \%, DMF, $150{ }^{\circ} \mathrm{C}, 87 \%$; c) i) $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$; ii) $\mathrm{Boc}_{2} \mathrm{O}, 20{ }^{\circ} \mathrm{C}$; iii) $\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}, 20^{\circ} \mathrm{C}, 49 \%$; d) 5.031, T3P ${ }^{\oplus}$, DIPEA, DCM, $20^{\circ} \mathrm{C}, 77 \%$; e) HCl, IPA, $80^{\circ} \mathrm{C}$, 87\%.

The next area to investigate was to incorporate a solubilising group at the 6-position of the phthalizinone. The fluoro-phthalizinone intermediate 5.069 was a desirable intermediate so the diamine solubilising group could be installed via an $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. 6-fluoro 5.069 was synthesised using the same methodology as des-fluoro 5.031 (Scheme 42, p 149), oxidising 4'-fluoro-2'-methylacetophenone (5.070) with $\mathrm{KMnO}_{4}{ }^{278}$ and condensing with methyl hydrazine (Scheme 53). ${ }^{273}$

Scheme 53: Reagents and conditions a) i) $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 50-70{ }^{\circ} \mathrm{C}$; ii) MeNHNH_{2}, $\mathrm{AcOH}, 70^{\circ} \mathrm{C}, 39 \%$.

A subsequent $S_{N} \mathrm{Ar}$ reaction ${ }^{292}$ was undertaken with carboxylic acid 5.069 and N^{1}, N^{1} -dimethylethane-1,2-diamine heating at $150{ }^{\circ} \mathrm{C}$ in DMSO in the presence of potassium carbonate as a base to give amine 5.071. An amide forming reaction was undertaken with the most potent and selective headgroup known, 2-aminobenzamide, using T3P® conditions. This provided the desired amide $\mathbf{5 . 0 5 4}$ in $\mathbf{3 \%}$ yield (Scheme 54). The yield was low due to a major N-acetyl impurity being formed, which was believed to be from acetic acid present in the $\mathrm{T} 3{ }^{\circledR}$ solution in ethyl acetate.

Scheme 54: Reagents and conditions a) $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, DMSO, $150{ }^{\circ} \mathrm{C}, 40 \%$; b) 2aminobenzamide, $\mathrm{T}^{\left(3 P^{®}\right.}$, DIPEA, DCM, $20^{\circ} \mathrm{C}, 3 \%$.

5.4.8 Assay results of phthalizinones with solubilising groups

The compounds containing solubilising groups were investigated in the biochemical PCAF FP, Brd4 FRET, aqueous solubility assays and compared with other compounds (Table 26).

Entry	Number	R	X	PCAF plC_{50}	Brd4 BD1/2 plC_{50}	Aqueous solubility $\mu \mathrm{g} \mathrm{m}^{-1}$
1	5.027		H	$5.0^{\text {a }}$	$\begin{gathered} <4.3 / \\ <4.3 \end{gathered}$	15
2	5.057		H	4.4	4.4 / 4.4	163
3	5.056		H	4.4	$\begin{gathered} <4.3 / \\ <4.3 \end{gathered}$	≥ 224
4	5.063		H	5.4	$\begin{aligned} & 4.6 / \\ & <4.3 \end{aligned}$	7
5	5.054			≤ 4.4	$\begin{aligned} & 4.8 / \\ & <4.3 \end{aligned}$	≥ 235

Table 26: Potencies and solubilities of compounds at PCAF and BET. ${ }^{\text {a }}$) Inactive on 4 of 25 test occasions.

The basic groups increase the aqueous solubility of the compounds compared to those without solubilising groups, except primary amine 5.063 (Entry 4). However, plC_{50} values have been generated for both the PCAF and Brd4 assays so the solubility of the compound could be higher under the PCAF FP assay conditions and Brd4 FRET, than in the aqueous solubility assay. This could be caused by the addition of salts and surfactants in the biochemical assays. Primary amine 5.063 does show an increase in potency against benzylamine containing 5.056 and, surprisingly, the original hit 5.027 illustrating again that the primary amide makes a positive binding interaction with the PCAF protein. However,
benzylamine containing 5.063 also brings in Brd4 BD1 potency so solubilising groups from the pendant benzene ring are of no further interest. Why the Brd4 potency has increased is not clear. Primary amine 5.063 may be more soluble under the Brd4 assay conditions than the original phthalizinone compound 5.027 and is able to reach a sufficient concentration. Examination of the inhibition curves at Brd4 or PCAF does not support this hypothesis as the curves had the standard sigmoidal shape (Fig. 73, p 146). This leads to the belief that the amino group must be causing some form of positive binding interaction with the Brd4 BD1 bromodomain.

In substituting from the 7-position of the phthalizinone with an amine the solubility has increased with respect to the original phthalizinone compound 5.027 although the PCAF potency has decreased and tertiary amine $\mathbf{5 . 0 5 4}$ shows a selectivity bias towards Brd4 BD1 rather than PCAF which is not a desirable profile. Again, there is no obvious explanation as to why the Brd4 BD1 potency is increased and again the argument that the basic group is causing some form of positive binding interaction is likely to be valid.

5.4.9 Phthalizinone conclusion

Thorough SAR of the phthalizinone series could not be generated due to the insolubility of the phthalizinone compounds, which rendered them inactive in the biochemical PCAF assay. The level of insolubility also made them unsuitable as probe compounds as molecules must be in solution to penetrate cellular membranes and interact with proteins in the cell. Investigating different linkers other than the original amide improved solubility of the template, although to the detriment of PCAF potency (Table 27).

5.027
5.051

5.048

PCAF FP pIC ${ }_{50}$	5.0	4.0	<4.0
Aqueous solubility $\mu \mathrm{g} \mathrm{mL}^{-1}$	15	≥ 158	≥ 119

Table 27: Changes to the linker improves aqueous solubility of the phthalizinones at the expense of PCAF potency.

The introduction of solubilising groups successfully increased the aqueous solubility of the compounds 15 -fold. However, the solubilising groups decreased PCAF potency and
additionally brought in unwanted Brd4 potency. The phthalizinones with solubilising groups 5.063 and 5.054 (Table 28) have been submitted for X-ray crystallography in Brd4 BD1 to try to understand how the basic groups are interacting with the Brd4 bromodomain. However, X-ray crystal structures of these compounds have not been obtained. Although not an aim for this project, the phthalizinones with solubilising groups 5.063 and 5.054 could provide a starting point for BET BD1 selective compounds.

Table 28: Properties of phthalizinone compounds with solubilising groups.

Based on the discussion above, the phthalizinone series was terminated and no further investigation has been carried out. Another series was investigated, the aminopyridazinones, which were more soluble and were reasoned to be better suited for delivering a PCAF probe molecule.

5.5 Aminopyridazinone series

PCAF pIC $_{50}$ (LE)	$4.7(0.36)$
Brd4 BD1/BD2 pIC $_{50}$	$\leq 4.9 / \leq 4.5$
MWt	267.7
cLogP	2.1
Aqueous solubility $\mathbf{\mu g ~ m L}^{-1}$	≥ 134
Artificial membrane permeability $\mathbf{~ n m ~ s}^{-1}$	630

Table 29: Original aminopyridazinone hit from the focussed screen with numbering around the aminopyridazinone core.

To identify a probe molecule for the PCAF bromodomain commencing from pyridazinone 5.028, initial efforts would need to be concentrated around improving the potency of the series and achieving selectivity over the BET family of bromodomains. The aminopyridazinone series is structurally similar to the phthalizinone series in the previous section and it was assumed that they would bind to the PCAF protein in an analogous manner with the methyl group and the carbonyl filling the acetylated lysine binding pocket (Fig. 80). It was also considered possible that the amino group was making a hydrogen bond to Pro747 similarly to the phthalizinone compound 5.052 (Fig. 77, p 156).

Figure 80: Potential binding mode of aminopyridazinone $\mathbf{5 . 0 2 8}$ compared to phthalizinone 5.052 in PCAF bromodomain.

An advantage the aminopyridazinone series had over the phthalizinone series was the core contained fewer aromatic rings; one in the aminopyridazinone system versus two in the phthalizinone system. This was attractive as it has been shown that a higher number of aromatic rings within a molecule correlates with a reduction in aqueous solubility. ${ }^{293,294}$ This lower aromatic ring count coupled with fewer amides in the molecule positively impacted on the solubility within the series (Table 29). However, 4-fluorobenzyl 5.028 was not as potent against PCAF as the phthalizinone hit $\mathbf{5 . 0 2 7}$ from the focussed screen (Table 24, p 144) and showed no selectivity against Brd4. Thus the properties which immediately needed improving upon were PCAF potency and selectivity over Brd4.

There were further examples of aminopyridazinone compounds within the compound collection available in our laboratories and these were assayed against PCAF. From the plC_{50} data generated from screening these compounds, broad SAR trends could be observed (Fig. 81).

Figure 81: Initial SAR from screening aminopyridazinone compounds from GSK collection.

The SAR from screening the historical aminopyridazinone compounds showed that a wide range of aromatic groups were tolerated from the 5-position of the aminopyridazinone (Table 30, p 170). The linker between the amino group and the aromatic ring was found to be optimal with one methylene group as extending to substituted phenethyl groups caused the plC_{50} value to be approximately 0.3 log units lower on average than the benzyl equivalent on a number of examples. α-Methyl substitution at the benzylic carbon was not tolerated and caused the PCAF potency to drop. This is potentially due to the alpha-methyl inducing a conformational twist with the aryl ring which induces a steric clash between the PCAF protein and the test molecule.

The nitrogen linker between the pyridazinone ring was extremely important as substitution with any other atom causing a marked decrease in potency. Additionally, tri-substitution of the nitrogen with either alkyl groups or amides was not tolerated. The loss of potency upon removal of the N-H lends weight to the binding mode proposed in Fig. 80 (p 165). The N-H could be making a key hydrogen bond with the Pro747 of the PCAF protein, which would mean that the 4 -chloro was the methyl mimetic of the acetylated lysine. To our knowledge, at the time, this was the first known example of a halogen being a methyl mimetic for bromodomains. While the predicted binding mode was eventually demonstrated by X-ray crystallography (Fig. 85, p 174), Vidler et al. have reported 3chloropyridone compound 5.072 as an inhibitor of $\operatorname{Brd} 4$ where the chlorine is the methyl mimetic (Fig. 82). ${ }^{241}$

Figure 82: Structure of Brd4 inhibitor 5.072 highlighting the H -bond acceptor in red and the methyl mimetic in blue.

For PCAF potency, 2-methylation of the pyridazinone ring was found to be essential compared to the des-alkylated compound. The unmethylated examples had plC_{50} values at PCAF of <4.0. This indicated that there could be a lipophilic pocket which needed to be filled in this position and substitution from this vector is discussed later (Table 32, p 177).

Finally, other heterocyclic ring systems were investigated by other members of our research group. However, none showed the level of potency or chemical tractability needed to make analogues and hence the vast majority of the work was performed on the aminopyridazinone core.

The first area to be investigated involved aromatic analogues at the 5-position of the aminopyridazinone.

5.5.1 Benzylic aminopyridazinones

Amino analogues based around the group branching from the 5-position of the aminopyridazinone of fluoro 5.028 could be synthesised quickly in large numbers allowing for rapid expansion of SAR. This was achieved using $S_{N} A r$ chemistry as the dichloropyridazinone ring is sufficiently electron deficient for the initial nucleophilic addition to occur. ${ }^{295}$ The conditions were optimised though experimenting with different solvents, temperatures and bases. The literature suggests that nucleophilic substitution at the desired 5-position is favoured over substitution at the 4-position in polar solvents and substitution at the 4-position is favoured in apolar solvents. ${ }^{295,296,297,298}$ A general procedure was used to synthesise a wide range of substrates, starting with fluoro 5.028 to confirm the data in Table 29 (Scheme 55).

5.073

5.028

Scheme 55: Reagents and conditions a) 4-F-C $\mathrm{C}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}$, DIPEA, DMSO, $120^{\circ} \mathrm{C}, 57 \%$.

The $S_{N} A r$ reaction did give a mixture of amino regioisomers substituted at the 4 and 5 positions although the desired 5-aminopyridazinone was always formed in higher abundance than the 4 -substituted analogue. The ratio of the regioisomers varied for different amino substrates in the range of about 5:1 to $1.5: 1$. However, there was no evidence of disubstitution of the pyridazinone occurring as it would appear after having an electron donating amine on the ring the pyridazinone is no longer electron deficient enough to undergo further nucleophilic attack. The relative abundance of the 4-and 5aminopyridazinones can be explained by considering the mechanism of formation (Scheme 56).

Scheme 56: Mechanisms of formation for the two regioisomers of the aminopyridazinones.

The intermediates of the two regioisomers 5.074 and 5.076 show the negative charge being delocalised to an oxygen and a nitrogen respectively (Scheme 56). The major regioisomer formed, 5 -aminopyridazinone 5.075 is the example where the negative charge can be delocalised on to an oxygen, a more electronegative element ${ }^{299}$ than nitrogen, which the negative charge can only be located on during the formation of the minor regioisomer, 4aminopyridazinone 5.077. From the solvent effects on the distribution of the 4 - and 5 isomers, intermediate 5.074 would appear to be more stable in polar solvents and 5.076 in apolar solvents. ${ }^{295-298}$

To further investigate the original aminopyridazinone hit 5.028 (Table 29, p 165) substitution from the 5 -amino group on the pyridazinone ring was varied in order to establish an improvement in PCAF potency and Brd4 selectivity (Table 30).

Entry	Number	Structure	$\begin{aligned} & \hline \text { PCAF FP } \\ & \text { pIC }_{50} \text { (LE) } \end{aligned}$	Brd4 FRET $\mathrm{BD} 1 / 2 \mathrm{pIC}_{50}$
1	5.028		4.7 (0.36)	≤ 4.9 / ≤ 4.5
2	5.078*		5.1 (0.39)	$\leq 5.6 / \leq 5.9$
3	5.079*		5.0 (0.40)	< 4.3 / < 4.3
4	5.080*		4.8 (0.41)	< 4.3 / < 4.3
5	5.081*		4.8 (0.39)	< 4.3 / < 4.3

Table 30: Potencies of selected aminopyridazinone molecules at PCAF and Brd4.

Although a series of electron withdrawing, electron donating and space filling groups were investigated there was not significant effect on the PCAF potency when putting different substituents around the phenyl ring. Therefore, heteroaromatic rings were incorporated.

Thiophene containing 5.078 (Entry 2, Table 30) had a very similar profile against PCAF compared to the equivalent 4-fluorobenzyl compound 5.028 (Entry 1) which is understandable as a thiophene ring is a bioisostere of a phenyl ring. ${ }^{300}$ Incorporating heteroatoms into the 5-membered rings significantly lowered the Brd4 activity while maintaining PCAF potency (Entries 3 - 5). 4-Methyl-thiazole example 5.079 (Entry 3) provided the largest selectivity for PCAF over Brd4 seen so far of at least fivefold. Although it is very positive Brd4 activity can be reduced to <4.3 while retaining PCAF potency, there is not the required increase in potency at the PCAF bromodomain to sub-micromolar levels deemed necessary for a probe molecule.

To better understand the reasons behind the selectivity for some compounds at Brd4, X-ray crystallography at Brd4 BD1 was attempted for the compounds in Table 30 that showed Brd4 activity. Ideally there would be a comparison between the PCAF and Brd4 X-ray
crystal structures. However, obtaining X-ray crystal structures in PCAF with compounds larger than fragments was not successful (vide infra, Section 5.5.2, p 173). An X-ray crystal structure of methyl thiophene containing 5.078 was successfully obtained in Brd4 BD1 (Fig. 83). ${ }^{103}$

Figure 83: X-ray crystal structure of thiophene containing 5.078 in Brd4 BD1, resolution = 1.6 Å.

The core of the aminopyridazinone is orientated so the methyl group and carbonyl occupy the space that would be filled by the acetylated lysine from the histone tail as seen in the phthalizinone compounds in both PCAF and Brd4. The carbonyl makes H-bonds with Asn140 and a conserved water. There appears to be only one other major interaction between Brd4 BD1 and methyl thiophene example 5.078 which is a lipophilic interaction between the thiophene ring and a lipophilic shelf formed by Trp81, Pro82 and Ile146. There is excellent shape complementarity between the back edge of the methyl thiophene and Trp81 (Fig. 83).

From this X-ray crystal structure it can be seen that the Brd4 selectivity of the polar heterocyclic compounds likely originates from the repulsion of the polar atoms in the heterocycle and the lipophilic shelf. Another point which arises from examining the X-ray crystal structure is the orientation shown here will not allow for the key H-bonding interaction with Pro747 which looked to be essential for the phthalizinone series to bind to

PCAF. The binding mode for methyl-thiophene containing 5.078 is overlaid in PCAF (Fig. 84).

Figure 89: 5.078 in Brd4 BD1, resolution $=1.6 \AA$, overlaid into PCAF crystal structure, resolution $=2.0 \AA$.

While certain elements of this overlaid binding mode are plausible around the aminopyridazinone core of the molecule, other parts are definitely inconsistent with how the molecule would bind in PCAF. The carbonyl making H -bonds to Asn803 and a conserved water as well as the methyl group filling the space the methyl in the acetylated lysine originating from the histone tail would occupy are possible. However, the most evidently incorrect part of this overlaid binding mode is the thiophene, which is superimposed with Tyr809. Within PCAF, there does appear to be space for the thiophene group to move away from Tyr809 and occupy other areas of the bromodomain. However, there is no H-bonding interaction in this proposed binding mode with Pro747. Given this was thought to be key for the phthalizinones to bind to PCAF, it placed doubts on the applicability of the binding mode in Fig. 84. A crystal structure of an aminopyridazinone in PCAF would be helpful in determining how compounds in the series bind to the bromodomain and how to improve selectivity and potency.

5.5.2 Fragments bound to X-ray crystal structure of PCAF

The X-ray crystal structure of an apo protein was obtained and it was found that the binding site of the PCAF bromodomain was where two protein molecules met within the unit cell. Therefore, it was reasoned that the pendant aromatic groups from the aminopyridazinone core could be disrupting this crystal contact, either failing to bind into the bromodomain or preventing crystallisation. To solve this, small groups were placed at the 5-position of the aminopyridazinone in place of the aromatic ring (Table 31).

Entry	Number	Structure	PCAF pIC (LE)	$\mathrm{Brd} 4 \mathrm{BD1/2}$ pIC_{50}
1	$\mathbf{5 . 0 8 2}$	*	H	$4.3(0.59)$
2	$\mathbf{5 . 0 8 3}$	$<4.3 /<4.3$		
3	$\mathbf{5 . 0 8 4}$	Me	$4.6(0.57)$	$\leq 4.4 / \leq 4.5$

Table 31: Potencies of small aminopyridazinone compounds at PCAF and Brd4.

The data shows that the aromatic groups investigated so far are giving very little in terms of PCAF potency and may be offering little in terms of Brd4 selectivity as well. The ligand efficiency (LE) of the molecules in Table 31 is considerably higher than those for marketed drugs, which tends to be approximately $0.3 .{ }^{93}$ However, to obtain higher levels of potency and selectivity it may be necessary to erode the LE. Given the high level of LE as a starting point this should not cause the LE to fall below 0.3. All of these compounds are showing Brd4 potencies of <4.3.

An X-ray crystal structure of methyl compound $\mathbf{5 . 0 8 3}$ bound to PCAF was successfully obtained (Fig. 85). ${ }^{103}$

Figure 85: X-ray crystal structure of 5.083 in PCAF, resolution $=1.7 \AA$.

The binding mode of secondary amine 5.083 in PCAF has flipped 180° compared to the methyl thiophene 5.078 in Brd4 (Fig. 83, p 171). As predicted, the methyl binding pocket has now been filled with a chlorine atom (Fig. 80, p 165). The carbonyl makes H-bonding interactions with Asn803 and a conserved water and there is a face to face aromatic interaction with Tyr809, as there was with the phthalizinone series. There is an H-bond formed between the amino N-H and Pro747 as predicted (Fig. 80, p 165). This H-bond was thought to be vital for the potency at PCAF of the phthalizinone series and thus is expected to be important for the aminopyridazinone series also. It explains why di-substitution of the nitrogen or replacing the nitrogen with another atom is not tolerated in PCAF. Moving out from the amino methyl to the area where, presumably, the pendant aromatic groups shown in Table 30 (p 170) are bound, there is a depression in the surface of PCAF ringed by Trp746, Met 749, Glu750 and Glu756. These amino acid residues presented a good opportunity to probe for H -bonding interactions with the protein.

An X-ray structure of secondary amine 5.083 in Brd4 BD1 was also obtained and the fragment was found to bind in the same orientation as in PCAF (Fig. 86). ${ }^{103}$

Figure 86: Left: X-ray crystal structure of methyl aminopyridazinone analogue $\mathbf{5 . 0 8 3}$ in Brd 4 BD1 (grey), resolution = 1.6 Å. Right: the binding mode of 5.083 in PCAF overlaid (green), resolution $=1.7 \AA$.

Methyl aminopyridazinone 5.083 is bound flipped through 180° compared to thiophene example 5.078 in Brd4 BD1 (Fig. 84, p 172). The chlorine atom is in the methyl binding pocket of the acetylated lysine and the carbonyl is making H -bonding interactions to Asn140 and a conserved water. The amino $\mathrm{N}-\mathrm{H}$, in this orientation, can form an H -bond with Pro82 of Brd4. From further examination of the X-ray crystal structure it is possible to see why thiophene analogue 5.078 flips through 180° to bind to Brd4 BD1. The area of the Brd4 BD1 protein around the vector from the amino methyl is heavily congested with Trp81, Gln85 and Leu92 all contributing to the steric bulk in this area. Hence, thiophene compound 5.078, and presumably the molecules with large pendant groups from the 5position previously discussed, break the H -bond with Pro82 in Brd4 and lay the aromatic groups on the lipophilic shelf (Fig. 83, p 171).

5.5.3 Changes at the 2-position of the aminopyridazinone

Although the binding modes of methyl aminopyridazinone $\mathbf{5 . 0 8 3}$ are similar in Brd4 BD1 and PCAF, it was noted that a subtle change around the 2-position of the aminopyridazinone between Brd4 and PCAF offered an opportunity to find more selective PCAF compounds. What is Ala757 in PCAF is Leu94 in Brd4 BD1 and hence PCAF may be able to accommodate larger groups from the amidic nitrogen of the pyridazinone ring (Fig. 87).

Figure 87: Comparison between the X-ray crystal structures of Brd4 (magenta), resolution = 1.6 Å and PCAF (cyan), resolution = 1.7 Å.

Therefore, compounds were synthesised with differing sterically demanding groups at the 2-position of the aminopyridazinone. One method of the initial synthesis of the core was via deprotonation of commercially available dichloropyridazinone 5.085 with sodium hydride and subsequent alkylation with the alkyl halide of choice. ${ }^{301}$ Subsequently, the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ conditions could be utilised to append the amino group of choice at the 5-position (Scheme 57).

Scheme 57: Reagents and conditions a) i) $\mathrm{NaH}, \mathrm{DMF}, 20^{\circ} \mathrm{C}$; ii) $\mathrm{R}-\mathrm{Hal}$; b) $\mathrm{RCH}_{2} \mathrm{NH}_{2}$, DIPEA, DMSO, $130^{\circ} \mathrm{C}$.

The 5-position group was standardised as the substituted 3-methylthiophene and the group at the 2-position varied. The compounds were assayed against PCAF and Brd4 (Table 32).

Entry	Number	X	PCAF pIC 50 (LE)	$\begin{gathered} \hline \text { Brd4 BD1/2 } \\ \mathrm{pIC}_{50} \end{gathered}$
1	5.078*	Me	5.1 (0.41)	$\leq 5.6 / \leq 5.9$
2	5.088*	Et	4.9 (0.37)	<4.3/<4.3
3	5.090*	$i-\mathrm{Pr}$	5.2 (0.37)	<4.3/<4.3
4	5.119*	$c-\mathrm{Pr}$	4.5 (0.32)	<4.3/<4.3

Table 32: Potencies of aminopyridazinones at PCAF and Brd4.
The data in Table 32 suggest there is an ideal size for the group at the 2-position between methyl and isopropyl for PCAF potency. There is a significant decrease in Brd4 potency as the size of the alkyl group coming from the nitrogen in the pyridazinone increases from methyl. This validates the hypothesis that there is limited space in $\operatorname{Brd} 4$ due to the change of an alanine in PCAF to a leucine in Brd4 and this can be used to drive selectivity.

Having substituents which are longer than isopropyl does decrease the PCAF potency with cyclopropyl 5.119 (Entry 4) decreasing the PCAF potency compared to the isopropyl compounds. ${ }^{302,303}$ The selectivity driven by the isopropyl substituted compounds can be seen by comparing the X-ray crystal structure of isopropyl containing fragment 5.091 bound to PCAF with the X-ray crystal structure of Brd4 BD1 (Fig. 88). ${ }^{103}$

5.091

Figure 88: Left X-ray crystal structure of 5.091 in PCAF (magenta), resolution $=2.1 \AA$, ; Right 5.091 overlaid into Brd4 BD1 (blue), resolution = 1.6 Å.

As can be seen from Fig. 88, one of the methyl groups of the isopropyl would cause a steric clash with Brd4 BD1 as it is only $1.9 \AA$ away from Leu94. This is reflected in the potencies of the compounds with isopropyl substitution. In Brd4 BD1 a considerably different, higher energy conformation would have to be adopted for the isopropyl containing compounds to bind to the bromodomain. With investigation at the 2-position of the aminopyridazinone showing selectivity could be achieved through simple changes, other areas of the aminopyridazinone core were investigated to determine if further selectivity or potency could be derived.

5.5.4 Synthesis of analogues at the 5-position of the 4-methyl-5-aminopyridazinone

4-Methyl aminopyridazinones could be synthesised by treating pyridazinone compound 5.085 with methylmagnesium bromide to give 4-chloro-5-methyl pyridazinone 5.092. ${ }^{304}$ This was subsequently alkylated by deprotonating with sodium hydride and quenching with methyl iodide to provide methylated compound 5.093. ${ }^{301} \mathrm{~S}_{N} \mathrm{Ar}$ conditions were ineffective at appending amines to methyl containing 5.093 as the replacement of an electron withdrawing chlorine with an electron donating methyl meant the pyridazinone core was no longer sufficiently electron withdrawing for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions to occur. Therefore, a palladium catalysed Buchwald-Hartwig amination methodology was used (Scheme 58). ${ }^{305}$

Scheme 58: Reagents and conditions a) $\mathrm{MeMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 78 \%$; b) i) $\mathrm{NaH}, \mathrm{DMF}, 20^{\circ} \mathrm{C}$; ii) Mel, $20^{\circ} \mathrm{C}, 23 \%$; c) $\mathrm{H}_{2} \mathrm{NR}$, BrettPhos, BrettPhos palladacycle, $\mathrm{NaO}{ }^{\mathrm{t}} \mathrm{Bu}, 1,4$-dioxane, $100^{\circ} \mathrm{C}, 7$ -69\%.

In contrast to the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction between amines and the dichloropyridazinone (Scheme 55, p 168), the $S_{N} A r$ reaction with the Grignard reagent ${ }^{306}$ is much more selective for the 4substituted isomer. A ratio of 6:1 in favour of the 4 -substituted isomer is formed and this can be explained by examining the mechanism (Scheme 59).

Scheme 59: Mechanism of formation of regioisomers of 5.092.

Two equivalents of methylmagnesium bromide are needed for the reaction to occur. The first equivalent presumably deprotonates dichloropyridazinone and a second equivalent can add in a nucleophilic manner at either the 4- or 5-positions. This leads to the formation of two possible intermediates, $\mathbf{5 . 0 9 6}$ and $\mathbf{5 . 0 9 8}$. $\mathbf{5 . 0 9 6}$ has two negative charges β to each other and is therefore disfavoured in comparison to 5.098 which can place the two negative charges γ to each other.

Another potential reason for obtaining more of the 4-methyl pyridazinone is the reaction is performed in diethyl ether rather than DMSO. Diethyl ether is markedly less polar than DMSO and the solvent polarity has been shown (p 168) ${ }^{296-298}$ to affect the ratio of 4substitution compared to 5 -substitution. ${ }^{295-298}$ Therefore, there may be several contributory factors affecting the product ratio between 4 and 5 -substitution with the Grignard reagent

A number of benzylic analogues of type 5.094 were synthesised and these had a very similar profile to the chloro analogues shown in Table 30 (p 170) albeit with approximately twofold less potency at PCAF. The 4-methyl compounds did not show such high levels of binding at PCAF as the 4-chloro compounds although they did offer an opportunity to synthesise aminopyridazinones with less nucleophilic amines using palladium catalysed Buchwald-Hartwig conditions. ${ }^{307}$ The coupling of anilines and amino substituted heteroaromatics had been attempted via the $\mathrm{S}_{N} \mathrm{Ar}$ conditions developed for this programme (Scheme 55, p 168) and other conditions. ${ }^{308}$ However, these only provided sufficient quantities of desired material on one occasion in a poor yield (Scheme 60, Table 33).

Scheme 60: Reagents and conditions a) ArNH_{2}, See Table 33.

Entry	Number	Aryl	Solvent	Base	Temperature ${ }^{\circ} \mathrm{C}$	Yield
1	5.101		DMSO	DIPEA	120	3\%
2	5.102		DMSO	DIPEA	140	0\%
3	5.103		DMSO	DIPEA	140	0\%
4	5.104		$\mathrm{H}_{2} \mathrm{O}$	-	100	0\% Trace seen by LCMS

Table 33: Conditions for $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions of aminoaryl compounds.

Therefore, there was an opportunity to use palladium catalysed Buchwald-Hartwig aminations to access aromatic aminopyridazinone analogues of the 4-methyl aminopyridazinone. ${ }^{305}$ The methodology was successful for both aromatic and heteroaromatic compounds (Scheme 61). To couple substrates with more than one amino group, as for the synthesis of tetrahydroisoquinoline containing 5.105, a protecting group strategy was used. The more nucleophilic, basic amine was subsequently deprotected with a solution of HCl in IPA.

Scheme 61: Reagents and conditions a) BrettPhos, BrettPhos palladacycle, $\mathrm{NaO}^{t} \mathrm{Bu}, 1,4-$ dioxane, $100^{\circ} \mathrm{C}, 69 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 20^{\circ} \mathrm{C}, 91 \%$.

5.5.5 SAR of analogues at the 5-position of the 4-methyl-5-aminopyridazinone

A range of compounds were synthesised to investigate the SAR around the 5-position of the aminopyridazinone. The amines at the 5 -position were selected to probe for H -bonding interactions as this had proven successful in improving potency and selectivity in the phthalizinone series. The 2-methyl substituted core was chosen to investigate if Brd 4 selectivity could be improved through groups at the 5 -position of the aminopyridazinone (Table 34).

Entry	Number	R	$\text { PCAF } \mathrm{plC}_{50}$ (LE)	$\begin{gathered} \hline \mathrm{Brd} 4 \mathrm{BD} 1 / 2 \\ \mathrm{pIC}_{50} \\ \hline \end{gathered}$
1	5.108	Ph	4.5 (0.39)	4.6 / < 4.3
2	5.109	2-Pyr	< 4.0	< 4.3 / < 4.3
3	5.110^{+}	3-Pyr	4.3 (0.37)	< $4.3 /<4.3$
4	5.111†	4-Pyr	< 4.0	< 4.3 / < 4.3
5	5.112*		4.3 (0.27)	4.7 / ≤ 4.6
6	5.113*		4.5 (0.32)	$\leq 4.5 / \leq 4.4$
7	5.114*		4.4 (0.25)	4.8 / 4.7
8	5.115*		4.7 (0.28)	5.2 / 4.7
9	5.105		5.2 (0.36)	< 4.3 / < 4.3

Table 34: Potencies of aminopyridazinone compounds at PCAF and Brd4.

Most of the compounds in the table illustrate that the SAR at PCAF and Brd4 of the directly attached aryl compounds is largely unchanged. Phenyl substituted 5.108 (Entry 1, Table 34) shows a similar profile to 4-fluorobenzyl compound 5.028 (Entry 1, Table 30, p 170) albeit with lower potency as could be expected from the 4-methyl pyridazinone core compared to the 4 -chloro core. Aniline containing 5.108 shows no selectivity for Brd 4 compared to PCAF. The pyridines (Entries $2-4$) show poor potency at PCAF and the 2 and 4 -pyrido compounds, 5.109 and $\mathbf{5 . 1 1 1}$, respectively have pIC_{50} values <4.0 at PCAF suggesting either basicity is not tolerated in these positions or the tautomer disrupts the H -bond to Pro747 (Scheme 62).

Scheme 62: Potential disruption of the essential H-bond between the 2-pyridyl ligands and Pro747.

The introduction of the primary amide in 5.112 (Entry 4) does not improve upon the PCAF potency as it did in the phthalizinones (Table 26, p 162). The introduction of polar heteroatoms into aromatic rings for isoxazole 5.113 and imidazole 5.114 (Entries 6 and 7) did not provide any Brd4 selectivity as was observed for the thiazoles, furan and pyrazoles (Table 30, p 170) which indicates they cannot bind in the same orientation as thiophene analogue 5.078 (Fig. 83, p 171). Mesyl indoline compound 5.115 (Entry 8) illustrates there is a good degree of space that can be filled from that vector with no negative effects on potency at any of the proteins of interest. Tetrahydroisoquinoline example 5.105 (Entry 9) gave a promising result as it was one of the most potent compounds seen at PCAF in the aminopyridazinone series. Tetrahydroisoquinoline compound 5.105 has $\mathrm{Brd} 4 \mathrm{plC}_{50}$ values of < 4.3, which is exciting given that the pyridazinone core is N-substituted with a methyl group rather than larger groups usually required for Brd4 selectivity (Table 32, p 177).

Given tetrahydroisoquinoline containing 5.105 was of considerable interest because of the selectivity over Brd4 it was profiled against further bromodomains. Of particular interest was Brd9, which has a tyrosine blocking access to the WPF shelf in the same place as Tyr809
in PCAF. ${ }^{206}$ Therefore, it was considered that compounds that bound to PCAF might bind to Brd9 (Table 35).

Number	Structure	$\mathrm{PCAF} \mathrm{pIC}_{50}$ (LE)	$\mathrm{Brd} 4 \mathrm{BD} 1 / 2$ pIC_{50}	$\mathrm{Brd9} \mathrm{pIC}_{50}$
5.105	$5.2(0.36)$	$<4.3 /<4.3$	6.1	

Table 35: Potencies of aminopyridazinone 5.105 at PCAF, Brd4 and Brd9.

The selectivity over Brd9 required improvement as it was, strikingly, eightfold more potent at Brd9 compared to PCAF. However, it was hoped that by iterating from this result it would be possible to find selective PCAF compounds.

5.5.6 Variations of the tetrahydroisoquinoline containing $\mathbf{5 . 1 0 5}$

A series of reductive aminations were performed using tetrahydroisoquinoline containing 5.105 as the starting material to determine if there was any space for expansion from the basic amine within the PCAF protein. These exclusively took place at the tetrahydroisoquinoline nitrogen as the aminopyridazinone nitrogen lone pair of electrons is less nucleophilic as it can be delocalised on to both the phenyl and pyridazinone aromatic rings. Methyl analogue 5.121 was synthesised using Eschweiler-Clarke conditions (Scheme 63). ${ }^{309}$

Scheme 63: Reagents and conditions a) aq. $\mathrm{CH}_{2} \mathrm{O}, \mathrm{HCO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 85 \%$.

Isopropyl analogue 5.122 and n-propyl example 5.123 were synthesised using acetone and propionaldehyde, respectively in the presence of sodium triacetoxyborohydride and acetic acid (Scheme 64). ${ }^{310}$

Scheme 64: Reagents and conditions a) $\mathrm{CO}\left(\mathrm{CH}_{3}\right)_{2}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{DCM}$ $20^{\circ} \mathrm{C}, 5.122$ 87\%, 5.123 59\%.

Acetylated tetrahydroisoquinoline compound 5.124 was synthesised to determine if the basicity of tetrahydroisoquinoline containing 5.105 was causing the increase in PCAF potency and Brd4. Acetyl 5.124 smoothly accessed via treating tetrahydroisoquinoline compound 5.105 with acetic anhydride in acetonitrile (Scheme 65). ${ }^{311}$

Scheme 65: Reagents and conditions a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{MeCN}, 20^{\circ} \mathrm{C}, 69 \%$.

Finally, to establish the effects of altering the position of the basic centre the isomeric tetrahydroisoquinoline compound 5.125 was synthesised using the same protocol as to prepare the original tetrahydroisoquinoline example 5.105 (Scheme 66).

Scheme 66: Reagents and conditions a) BrettPhos, BrettPhos palladacycle, $\mathrm{NaO}^{\mathrm{t}} \mathrm{Bu}, 1,4-$ dioxane, $100^{\circ} \mathrm{C}, 58 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 20^{\circ} \mathrm{C}, 96 \%$.

Once the tetrahydroisoquinolinyl compounds were synthesised the ligands were profiled against the bromodomains of interest, PCAF, Brd4 and Brd9 (Table 36).

Table 36: Potencies of tetrahydroisoquinolinyl aminopyridazinone compounds at PCAF, Brd4 and Brd9.

Comparing tert-butyl carbamate protected compound 5.107 (Entry 2, Table 36) to deprotected example tetrahydroisoquinoline 5.105 (Entry 1) shows a complete swap in the
selectivity for PCAF compared to Brd4. It was considered possible that the lack of PCAF binding and micromolar Brd4 potency was being driven by the size of the tert-butyl carbamate. However, it was deemed more likely that the lack of a basic centre was causing the reversal in selectivity compared to basic 5.105. Acetyl 5.124 (Entry 3) corroborates that the basic centre is vital for PCAF potency and Brd4 selectivity as comparison with isopropyl compound 5.122 (Entry 5) shows a reversal in the selectivities for PCAF and Brd4. Acetyl 5.124 is tenfold less potent at PCAF than isopropyl example 5.122 and greater than fivefold more potent at Brd4 BD1.

Entries 4-6 were synthesised to investigate the amount of steric bulk which could be accommodated in this area of the protein. Methyl substituted compound 5.121 (Entry 4) shows an increasing in Brd9 selectivity of fivefold compared to unsubstituted 5.105 (Entry 1). However, methyl example 5.121 does show potency, albeit low, at Brd4 which suggests that tetrahydroisoquinoline containing $\mathbf{5 . 1 0 5} \mathrm{plC}_{50}$ at Brd 4 is only slightly below 4.3. The absolute value could be determined by high concentration screening, although it was considered unnecessary. The more sterically demanding isopropyl compound $\mathbf{5 . 1 2 2}$ (Entry 5) shows similar PCAF potency of 5.1 to tetrahydroisoquinoline containing 5.105 , although with a lower ligand efficiency. Compared to unsubstituted compound 5.105, isopropyl analogue $\mathbf{5 . 1 2 2}$ shows no advantage in Brd4 or Brd9 selectivity. n-Propyl example 5.123 (Entry 6) shows no advantages over unsubstituted 5.105 at PCAF or Brd4 and shows twofold less selectivity against Brd9. Comparing unsubstituted 5.105, methyl 5.121, isopropyl 5.122, and n-propyl 5.123 illustrates that methyl substitution appears optimal for PCAF binding as it improves upon the PCAF potency of the unsubstituted tetrahydroisoquinoline and the larger propyl compounds reduce PCAF potency.

Altering the position of the nitrogen in the regioisomer of the tetrahydroisoquinoline was investigated with tetrahydroisoquinoline containing 5.127 and $\mathbf{5 . 1 2 3}$. tert-Butyl protected tetrahydroisoquinoline 5.127 has a similar profile to the regioisomer 5.107 showing no PCAF activity and a plC_{50} at Brd 4 of 5.7 and 5.5 at BD 1 and BD 2 , respectively. This is likely to be driven chiefly by the lack of basicity with the steric bulk additionally being detrimental to the PCAF potency. However, the Brd9 potency of 5.127 is tenfold lower compared to Boc-protected example 5.107 suggesting that improved $\operatorname{Brd} 9$ selectivity could be achieved through substitution at this position. Unsubstituted tetrahydroisoquinoline 5.125 has an approximately equal potency of 5.1 as the tetrahydroisoquinoline regioisomer 5.105 at

PCAF, although it does show less Brd4 selectivity, displaying measurable potency of 4.4 at both BD1 and BD2.

In summary, basicity drives selectivity for PCAF over Brd4. However, basicity appears to have no effect on selectivity for PCAF over Brd9. To help try to explain this tetrahydroisoquinoline containing 5.105 was docked into the crystal structure of PCAF ${ }^{140}$ which can be used to explain much of the SAR in Table 36 (Fig. 89).

Figure 89: Glide ${ }^{140}$ docking of 5.105 in PCAF.

The usual H -bonding and face to face aromatic interactions are present around the aminopyridazinone core and the tetrahydroisoquinoline has good shape complementarity with the protein. It is clear to see the basic centre could make an H-bonding interaction with Glu756 explaining the improved potency of this moiety compared to many other substituents at this position. There is space for methyl substitution from the tetrahydroisoquinoline nitrogen if the ring puckers differently which can explain the increase in potency for N-methylated tetrahydroisoquinoline analogue 5.121. However, larger groups would have to move Glu 750 and Lys 753 to be accommodated, which indicates why isopropyl compound $\mathbf{5 . 1 2 2}$ and n-propyl analogue $\mathbf{5 . 1 2 3}$ are less potent. The regioisomer of tetrahydroisoquinoline compound 5.125 could also make an H -bonding
interaction between the basic nitrogen and Glu756 if the ring puckers differently to how it is shown for the tetrahydroisoquinoline regioisomer 5.105 (Fig. 89).

Two aryl amine compounds were synthesised using the methodology described in Scheme 62 (p 183$)^{305}$ of a palladium catalysed Buchwald-Hartwig amination using the tert-butyl protected carbamates and subsequently deprotecting using HCl in IPA, to determine if the bicyclic ring system could be broken open and similar levels of potency at PCAF could be preserved (Table 37).

Entry	Number	R	$\begin{aligned} & \text { PCAF plC }{ }_{50} \\ & \text { (LE) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Brd} 4 \mathrm{BD} 1 / 2 \\ \mathrm{pIC}_{50} \\ \hline \end{gathered}$	$\mathrm{Brd} 9 \mathrm{plC}_{50}$
1	$5.128 \dagger$		4.7 (0.36)	$\leq 4.6^{a} / \leq 5.0^{\text {a }}$	5.9
2	5.129†		5.3 (0.40)	$<4.3 / \leq 5.1^{\text {a }}$	5.2

Table 37: Potencies of aminopyridazinone compounds at PCAF, Brd4 and Brd9. ${ }^{\text {a }}$) Active at only 1 of 3 test occasions.

There is a fourfold difference in the potencies of the two benzylamine containing compounds at PCAF. The compounds should place the basic centres in similar positions to the two tetrahydroisoquinoline regioisomers $\mathbf{5 . 1 0 5}$ and $\mathbf{5 . 1 2 5}$. However, 2-benzylamine containing 5.129 (Entry 2, Table 37) should, in solution, have a larger dihedral angle with respect to the aminopyridazinone than 3-benzylamine example 5.128 (Entry 1) due to the 2-substitution on the aniline ring. This will aid making the 79° angle seen in Fig. 89 (p 188) between the aminopyridazinone and the tetrahydroisoquinoline ring. This indicates that exact positioning of the basic centre is crucial for increasing or maintaining PCAF potency. Therefore, no further work was undertaken on 3 -substituted benzylamines such as $\mathbf{5 . 1 2 8}$ and changes around 2 -substituted benzylamine compound 5.129 were investigated.

Some of the test compounds to be synthesised could be made through aryl amines, available either commercially or through the compound collection available in our laboratories, whereas others required synthesis. N-Substituted benzylamines were
synthesised by coupling benzyl alcohol containing 5.130 with the 4-methyl aminopyridazinone compound 5.093 using palladium catalysed Buchwald-Hartwig conditions ${ }^{312}$ to give primary alcohol 5.131, oxidising with manganese dioxide to form aldehyde 5.132^{313} and finally reductive aminations to give the desired test compounds (Scheme 67). ${ }^{314}$

Scheme 67: Reagents and conditions a) 5.093, BrettPhos, BrettPhos palladacycle, $\mathrm{NaO}^{\dagger} \mathrm{Bu}$, 1,4-dioxane, $100{ }^{\circ} \mathrm{C}, 40 \%$; b) $\mathrm{MnO}_{2}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$, reflux, 73%; c) $\mathrm{HNR}^{1} \mathrm{R}^{2}, \mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}$, DCM, $\mathbf{5 . 1 3 3} 44 \%, \mathbf{5 . 1 3 4}$ 8\%.

The basic centre containing aryl amines were assayed against PCAF, Brd4 and Brd9 (Table 38).

Entry	Number	R	PCAF plC 50 (LE)	$\begin{gathered} \mathrm{Brd} 4 \mathrm{BD} 1 / 2 \\ \mathrm{pIC}_{50} \end{gathered}$	Brd9 plC ${ }_{50}$
1	5.133		4.2 (0.30)	< 4.3 / < 4.3	-
2	5.134		< 4.0	< 4.3 / < 4.3	<4.3
3	5.135†		4.2 (0.30)	< 4.3 / < 4.3	5.2
4	5.131		4.5 (0.34)	4.6 / < 4.3	5.5

Table 38: Potencies of aminopyridazinones at PCAF, Brd4 and Brd9.

Benzylamine analogues 5.133 and 5.134 (Entries 1 and 2, Table 38) suggest that there is insufficient space to accommodate any groups from the basic amine position as there is only a plC_{50} value of 4.2 seen for the mono-methylamine compound $\mathbf{5 . 1 3 3}$ and a plC_{50} value of <4.0 for 5.134 . Interestingly, there is no measurable binding against any of the proteins of interest for dimethyl analogue 5.134. Extending the basic group two carbons from the phenyl ring in phenethylamine compound 5.135 (Entry 3) did not give good PCAF potency as only a pIC_{50} value of 4.2 is seen and tenfold greater potency at Brd9. Alcohol $\mathbf{5 . 1 3 1}$ (Entry 4) further illustrates a basic centre is needed as this compound is six-fold less potent at PCAF than the equivalent benzylamine analogue 5.129.

It was believed that some of these examples of aminopyridazinones with basic centres were reaching the upper limit of the FP assay and some compounds could be more potent than the data suggested. N-Methylated tetrahydroisoquinoline containing 5.121 was the most potent PCAF compound profiled so far and not fluorescent, an advantage over the base compound used for the PCAF FP assay reagent 5.009 (Fig. 75, p 147). Therefore, work was undertaken elsewhere in our laboratories ${ }^{315}$ to generate an assay able to measure the difference in potency between more potent compounds and, ideally, use the same FRET format assay as used for other bromodomains. This would generally allow pIC_{50} values to be directly compared without having to convert to $\mathrm{pK}_{\mathrm{i}} \mathrm{s}$. Although N -methylated tetrahydroisoquinoline analogue 5.121 is not selective for PCAF this is not a necessary attribute for an assay reagent as usually there will only one bromodomain present under the assay conditions. Hence, N-methylated tetrahydroisoquinoline analogue 5.121 was used as the basis for the synthesis of an improved assay reagent for PCAF.

5.5.7 Generation of an improved PCAF assay reagent

When generating an assay reagent tagged with a fluorophore, based on a known ligand, it is important not to induce a steric clash with the target protein. This is to ensure the assay reagent will bind to the protein of interest.

It was assumed that the N-methylated tetrahydroisoquinoline compound 5.121 would bind in the same orientation as the docking of unsubstituted tetrahydroisoquinoline example 5.105 (Fig. 89, p 188). The vector from the 8-position of the THIQ was identified as being unlikely to cause a steric clash with the PCAF protein as it pointed out into solvent. Therefore, substitution was investigated from this position.

To ensure there would be no steric clash between the protein and the linker or fluorescent tag a phenyl spacer was installed at the 8-position with a Boc-protected amine to give aminopyridazinone example 5.136. Deprotection of the Boc-group provided 5.137 which was approximately equipotent with Boc-protected compound $\mathbf{5 . 1 3 6}$ in the PCAF FP assay (Table 39).

Entry	Number	R	PCAF plC_{50} (LE)
1	5.136*		5.6 (0.18)
2	5.137*		5.7 (0.22)

Table 39: PCAF potency profile of assay reagent intermediates.

The potencies of intermediates $\mathbf{5 . 1 3 6}$ and $\mathbf{5 . 1 3 7}$ are as high, if not higher, as any compound screened so far at PCAF. This gives confidence that there is no steric clash between the molecules and the PCAF bromodomain. The amine 5.137 was also used in chemoproteomics experiments attached to a solid support and competed with the free amine 5.137 at $100 \mu \mathrm{M}$. This enabled the capture of endogenous PCAF for the first time as well as 19 other BCPs (Graph 7). ${ }^{316}$

Graph 7: BCPs identified using 5.137 attached to a solid support.

Previous chemoproteomic experiments had attempted the pull down of PCAF. However, they had not been successful as the ligands used did not have the necessary level of selectivity over BET. The lack of BET selectivity of the ligands and the comparatively high levels of BET proteins in the nucleus compared to other BCPs it was difficult to identify nonBET bromodomain containing proteins pulled back from the cell lysate.

The amine 5.137 was tagged with the fluorescent tag Alexa Fluor ${ }^{\circledR} 647$ and the resulting compound 5.138 (Fig. 90) was used to develop a FRET assay for PCAF.

Figure 90: Fluorescent PCAF ligand used for PCAF FRET assay

The PCAF assay that was developed using aminopyridazinone 5.138 was also suitable for an HTS as pleasingly the quantity of protein needed was 1000 times lower than for the
previous FP assay. Less protein was needed as the signal to noise ratio of the FRET assay was much higher and the K_{d} of the ligand to the PCAF bromodomain was 50 nM . Only 8 mg of PCAF protein would be required to screen 1.7 million compounds. The FRET assay had a higher tight binding limit than the FP assay, which enable the differentiation of compounds with pIC_{50} values >5 (Graph 9, p 215). This allowed the identification of compounds that met the desired probe criteria of a PCAF pIC_{50} value >6.0. However, it took several months to optimise the assay and as such most of the pIC_{50} values below were generated using the FP assay.

While the existing tetrahydroisoquinoline aminopyridazinone compounds were of great utility as assay reagents and demonstrated high levels of PCAF potency, they did not provide selectivity over other bromodomains, most notably Brd9. Thus modifications were made to the aminopyridazinone core to try to attain selectivity.

5.5.8 Improving selectivity

The methylated tetrahydroisoquinoline example 5.121 (Entry 4, Table 36, p 186) and 2benzylamine compound 5.129 (Entry 2, Table 37, p 189) gave the best profiles for PCAF potency and Brd4 selectivity. However, these compounds were approximately equipotent at PCAF and Brd9 so further selectivity was sought using alterations at the 2 and 4 -positions of the aminopyridazinone.

Entry	Number	R	X	Y	PCAF FP plC 50 (LE)	Brd9 plC 50
1	5.078*		Me	Cl	5.1 (0.41)	6.0
2	5.079*		Me	Cl	5.0 (0.40)	6.0
3	5.090*		$i-\mathrm{Pr}$	Cl	5.2 (0.37)	4.6
4	5.116*		$i-\mathrm{Pr}$	Cl	4.9 (0.35)	4.6
5	5.117*		Me	Me	4.8 (0.37)	6.4
6	5.118*		Me	Cl	5.0 (0.38)	6.0
7	5.119*		Me	Me	4.7 (0.38)	6.0
8	5.120*		$i-\mathrm{Pr}$	Me	4.6 (0.33)	4.6

Table 40: Pairwise comparisons of PCAF and $\mathrm{Brd} 9 \mathrm{plC}_{50}$ values altering groups at the 2 and 4- positions of the aminopyridazinone ring.

Through screening previously synthesised compounds it was shown that an isopropyl group at the 2-position of the aminopyridazinone helped to improve PCAF selectivity by
approximately twenty five-fold (Entries 1 and 3; 2 and 4, Table 40) compared to a methyl group. Also, having discharged the chemical instability risk of the 4-chloro aminopyridazinone compounds, they were reinvestigated. It was found that changing the 4-methyl to a 4-chloro improved the selectivity for PCAF over Brd9. This was accomplished by improving the PCAF potency while maintaining or reducing binding to Brd9 (Entries 5 and 6; 1 and 7; 3 and 8).

Figure 91: Left: X-ray crystal structure of 4-chloro-2-isopropyl-5-(methylamino)pyridazin$3(2 H)$-one (5.091) in PCAF, resolution $=2.1 \AA$ A ; Right: overlaid into Brd9, resolution $=1.7 \AA$.

From the crystal structures of fragment 5.091 in PCAF and Brd9 (Fig. 91) it is possible to see that there is a greater potential for steric clash between the isopropyl group and the Brd9 bromodomain than the PCAF bromodomain. ${ }^{103}$ Herein lies the cause of the 2-isopropyl aminopyridazinones being more potent at PCAF than Brd9.

Changing the group at the 4-position from a methyl to a chlorine has very little effect on the Brd9 potency. However, the 4-chloro compounds were more potent than the 4-methyl compounds at PCAF (Table 40).

Therefore, the combination compound $\mathbf{5 . 1 3 9}$ was selected as a target (Fig. 92).

5.139

Figure 98: Combination aminopyridazinone to improve selectivity for PCAF over Brd4 and Brd9.

The compound was synthesised using the same palladium catalysed Buchwald-Hartwig conditions as used previously to synthesise the 4-methyl compounds ${ }^{305}$ and a 1:1 ratio of the 4 and 5 -substituted aminopyridazinone was seen by LCMS in the crude reaction mixture. The desired 5-aminopyridazinone $\mathbf{5 . 1 4 0}$ was isolated in 7% yield and subsequently the tert-butyl carbamate removed with HCl in IPA to give $\mathbf{5 . 1 4 1}$ (Scheme 68). This provided sufficient tetrahydroisoquinoline containing $\mathbf{5 . 1 4 1}$ for assaying, although not enough to be confident that the subsequent methylation would give enough 5.139 for test so the reaction was not attempted.

Scheme 68: Reagents and conditions: a) BrettPhos, BrettPhos palladacycle, $\mathrm{NaO}^{t} \mathrm{Bu}, 1,4-$ dioxane, $100^{\circ} \mathrm{C}, 7 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 87 \%$.

When tested at the bromodomains of interest tetrahydroisoquinoline compound 5.141 gave some interesting results (Table 41).

Entry	Number	R	PCAF plC (LE)	$\mathrm{Brd} 4 \mathrm{BD} 1 / 2$ pIC_{50}	$\mathrm{Brd9} \mathrm{pIC}_{50}$
1	$\mathbf{5 . 1 4 1}$		$4.9(0.31)$	$<4.3 /<4.3$	4.4

Table 41: Potency of 5.141 at PCAF, Brd4 and Brd9.

The potency of isopropyl 5.141 for PCAF compared to Brd9 was, for the first time in an aminopyridazinone compound, threefold higher and larger than experimental error. However, the potency of tetrahydroisoquinoline containing 5.141 was lower than expected at PCAF as previously the isopropyl had no effect on PCAF potency and the 4-chlorine usually gave an approximate twofold increase in potency.

Figure 93: Movement of the highlighted chain means the isopropyl group is not tolerated, resolution $=2.1 \AA$.

The hypothesis for this loss in expected potency was that the interaction of the tetrahydroisoquinoline pulls Glu756 towards the ligand and this movement causes the local peptide chain to move towards the bound ligand (Fig. 93). ${ }^{103}$ In doing so, the space around
the isopropyl group is made smaller. The bulky isopropyl group is no longer tolerated due to steric clash with Ala757. Therefore, as the 2-methyl substituted aminopyridazinone core is smaller, it was considered to be more tolerant of the predicted conformational change brought by introducing a basic centre. Compounds incorporating both a basic centre and a 2-methyl substituted aminopyridazinone core were designed and planned for synthesis to improve potency and selectivity over Brd4 (Fig. 94).

5.145

Figure 94: Compounds selected to improve potency at PCAF compared to isopropyl 5.141.

Regioselective substitution of chloropyridazinones by aromatic amines was still a problem. Several different sets of palladium catalysed Buchwald-Hartwig amination conditions were investigated. Unfortunately, conditions which gave an excess or even a 1:1 mixture of the desired 5-amino substituted products compared to the 4 -amino substituted products were not identified. $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions using the standard conditions (Scheme 55, p 168) gave none of the desired product. Therefore, $S_{N} A r$ conditions were found to improve the nucleophilicity of Boc-protected compound 5.106 by deprotonating with LiHMDS. This methodology had been demonstrated on similar substrates. ${ }^{317,318}$ However, exclusively 4aminopyridazinone compound 5.146 was formed (Scheme 69).

Scheme 69: Reagents and conditions a) i) LiHMDS, THF, $-70--5^{\circ} \mathrm{C}$; ii) 5.073, $-70-20^{\circ} \mathrm{C}$, not isolated.

An alternative method was needed and the palladium catalysed Buchwald-Hartwig amination was revisited as it did provide some of the desired 5-substituted aminopyridazinones. To date, there had been no investigation into modification of the aryl
halide to alter the regioselectivity. If a halogen or pseudo-halogen could be incorporated at the 5-position of the pyridazinone ring that underwent oxidative addition more easily than the 4-chloro then under palladium catalysed amination conditions the desired 5aminopyridazinone would be preferentially formed. Palladium oxidatively inserts into aryliodide bonds more easily than aryl-chloride bonds. ${ }^{319}$ 4-Chloro-5-iodo-2-methylpyridazin$3(2 H)$-one (5.147) was synthesised via an aromatic Finkelstein reaction. ${ }^{320}$ Subsequently, successful palladium catalysed Buchwald-Hartwig aminations with anilines ${ }^{318}$ were performed to exclusively provide 5-aminopyridazinone compounds (Scheme 70).

Scheme 70: Reagents and conditions a) Nal, DMF, $150{ }^{\circ} \mathrm{C}, 56 \%$; b) $\mathrm{RNH}_{2}, \mathrm{BINAP}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PhMe}, 80^{\circ} \mathrm{C}$.

Methylated tetrahydroisoquinoline 5.144 was synthesised directly using this method. Other examples had to be synthesised using a protecting group strategy. tert-Butyl carbamate 2-benzylamine containing 5.148 was synthesised using the palladium catalysed Buchwald-Hartwig amination in 14\% yield and subsequently deprotected using a solution of HCl in IPA to provide the desired compound 5.145 as the HCl salt (Scheme 71).

Scheme 71: Reagents and conditions: a) tert-butyl 2-aminobenzylcarbamate, BINAP, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PhMe}, 80^{\circ} \mathrm{C}, 14 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 20^{\circ} \mathrm{C}, 81 \%$.

The target compounds were assayed against PCAF, Brd4 and Brd9 (Table 42).

Entry	Number	R	PCAF plC 5_{50} (LE)	Brd4 BD1/2 pIC 50	Brd9 plC 50
1	5.143		5.3 (0.33)	< 4.3 / < 4.3	5.8
2	$5.144{ }^{\dagger}$		5.6 (0.33)	$<4.3 / \leq 4.8{ }^{\text {a }}$	5.6
3	5.145		5.5 (0.42)	$<4.3 / \leq 4.4$	4.9

Table 42: Potencies of 4-chloro-5-aminopyridazinones at PCAF, Brd4 and Brd9. ${ }^{\text {a }}$) Inactive on 12 of 13 occasions.

The 4-chloro compounds show a minor increase in PCAF potency; in general a minor decrease in Brd9 potency compared to the 4-methyl compounds and no Brd4 potency > 4.3. This is broadly consistent with the SAR seen when changing from the 4-methyl to the 4-chloro aminopyridazinones. The ranking of potency between the methyl and chloro examples with the R groups shown in Table 42 is consistent. Unsubstituted 4-methyl tetrahydroisoquinoline compound 5.105 (Entry 9, Table 34, p 182) and unsubstituted 4chloro tetrahydroisoquinoline compound 5.143 (Entry 1, Table 41, p 198) are the least potent. In the 4-methyl series benzylamine analogue 5.129 (Entry 2, Table 37, p 189) is the next most potent, followed by N-methyl tetrahydroisoquinoline compound 5.121 (Entry 4, Table 36, p 186). The ranking does follow in the 4 -chloro series with N-methyl tetrahydroisoquinoline example $\mathbf{5 . 1 4 4}$ found to be more potent than benzylamine analogue 5.145. However it was suspected that the tight binding limit of the FP assay had been reached, which was found to be the case upon screening the compounds in Table 43 (p 203) in the PCAF FRET assay.

Although, benzylamine compound $\mathbf{5 . 1 4 5}$ shows the best profile seen so far with fourfold selectivity over Brd9, it does not meet the probe criteria needed of greater than micromolar potency at PCAF or greater than 30 -fold selectivity over other bromodomains. It was not obvious how to progress with aryl amine compounds to find the shift needed in

PCAF potency and Brd9 selectivity. There was also the possibility that the tetrahydroisoquinoline containing compounds could have significant selectivity issues. This was highlighted by the BCPs identified to bind to tetrahydroisoquinoline containing 5.137 using chemoproteomic experiments (Graph 7, p 193). Therefore, an array of more diverse 5-aminopyridazinones containing basic nitrogens was synthesised. The aim was to try to interact with the glutamic acids in the binding site as basic centres had been seen to be beneficial for PCAF potency and Brd4 selectivity.

5.5.9 Basic aminopyridazinones

The $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ methodology used to synthesise the benzyl 5-aminopyridazinones (Scheme 55, p 168) was used to synthesise these compounds. ${ }^{295}$ Compounds protected with tert-butyl carbamates were deprotected with HCl in IPA as shown for the synthesis of benzylamine example 5.149 (Scheme 72).

Scheme 72: Reagents and conditions a) 1-(N-Boc-aminomethyl)-3-(aminomethyl)benzene, DIPEA, DMSO, $120^{\circ} \mathrm{C}, 60 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 20^{\circ} \mathrm{C}, 91 \%$.

The first compounds to be investigated were intended to see if the postulated interaction with Glu756 and the tetrahydroisoquinoline substituted aminopyridazinone compounds could be found with other groups. The acetyl lysine binding site contains another more distant acidic residue, Glu750, and it was of interest if any of the target compounds could interact with this residue as well as with Glu756 (Table 43).

Entry	Number	R	PCAF plC_{50} (LE)	$\begin{gathered} \hline \mathrm{Brd} 4 \mathrm{BD} 1 / 2 \\ \mathrm{pIC}_{50} \\ \hline \end{gathered}$	Brd9 plC ${ }_{50}$
1	5.151*		4.7 (0.31)	$\leq 5.0^{\text {a }} /<4.3$	6.0
2	5.149†		4.5 (0.32)	< 4.3 / < 4.3	5.9
3	5.152†		4.3 (0.31)	< 4.3 / < 4.3	5.6
4	5.153†		4.8 (0.51)	< 4.3 / < 4.3	4.4
5	$5.154 \dagger$		4.8 (0.44)	< 4.3 / < 4.3	-
6	5.155†		5.0 (0.49)	< 4.3 / < 4.3	4.5
7	$5.156 \dagger$		4.6 (0.39)	< 4.3 / < 4.3	< 4.3
8	5.157†		4.6 (0.42)	< 4.3 / < 4.3	4.7

Table 43: Potencies of 4-chloro-5-aminopyridazinones at PCAF, Brd4 and Brd9. ${ }^{a}$) Inactive at 3 of 4 occasions.

The inclusion of basic centres significantly reduces the Brd4 activity across all the compounds assayed. This is a marked change and identifies a simple and powerful way to provide BET selective compounds. This selectivity likely occurs as the lipophilic WPF shelf present in the BET family of BCPs (Fig. 64, p 135) does not accommodate polar substituents (Table 30, p 170).

2-Substituted benzylamine example 5.151 (Entry 1, Table 43) is equipotent with the 4fluorophenyl ring containing 5.080 (Entry 4, Table 30, p 170) which indicates that the basic centre is making no positive interactions with the PCAF protein. 3-substituted compound 5.149 (Entry 2, Table 43) and 4-substituted analogue 5.152 (Entry 3) progressively shed
potency compared to phenyl containing 5.151 as the benzylamine is moved around the ring suggesting there may be limited space in this area of the protein. The lack of an increase in potency at PCAF and the, at least, tenfold higher potency at Brd9 led to no further aromatic compounds being synthesised.

Interestingly the removal of the aryl ring significantly reduces the Brd9 potency. The aliphatic chains terminating in basic amines gave a very exciting set of results. Ethylamine compound 5.153 (Entry 4) shows a similar level of PCAF potency compared to the 4fluorophenyl ring compound 5.080 (Entry 1, Table 30, p 170) and two and half-fold selectivity over Brd9. Due to the lower number of heavy atoms the level of ligand efficiency is impressive. N,N-Dimethyl ethylamine analogue 5.154 (Entry 5, Table 43) shows no improvement in PCAF potency compared to the primary amine containing 5.153. However, it suggests there is space for substitution from the basic centre. Propylamine containing 5.155 (Entry 6) improves upon the PCAF affinity shown by the ethylamine analogues 5.153 and 5.154 and has threefold selectivity over Brd9. N, N-Dimethyl propylamine containing 5.156 (Entry 7) causes the PCAF potency to fall two and half fold in comparison to the desmethyl propylamine compound $\mathbf{5 . 1 5 5}$. Possibly, there is insufficient space to accommodate the steric bulk introduced by the two methyl groups. Butylamine analogue 5.157 (Entry 8) shows a two and a half-fold fall in PCAF affinity in comparison to the propylamine containing 5.155. This suggests that two or three carbons from the 5 -aminopyridazinone is the optimal distance for the basic centre. However, this could possibly change on introducing aliphatic and heterocyclic rings to the aminopyridazinone.

Cyclising the aliphatic chain will reduce the number of rotatable bonds and therefore reduce the entropic penalty of binding the ligand to PCAF ${ }^{321,322}$ thereby increasing the potency of the ligand if the basic centre can be positioned correctly. Hence, a number of basic aliphatic and heterocyclic compounds were synthesised and screened against the proteins of interest (Tables 44 and 45). The compounds have the greatest degree of selectivity observed thus far. Only one compound shown has Brd9 potency >4.2 and there are no $\mathrm{Brd} 4 \mathrm{plC}_{50} \mathrm{~s}>4.2$ observed for any of the compounds.

Entry	Number	R	PCAF pIC ${ }_{50}$ (LE)	Brd4 BD1/2 plC 50	Brd9 plC 50
1	5.158*		4.8 (0.41)	< 4.3 / < 4.3	< 4.3
2	5.159*		4.3 (0.35)	< 4.3 / < 4.3	4.5
3	5.160*		4.8 (0.39)	< 4.3 / < 4.3	< 4.3
4	5.161*		5.0 (0.38)	< 4.3 / < 4.3	4.3

Table 44: Potencies of 5-chloro-4-aminopyridazinones at PCAF, Brd4 and Brd9.

Pyrrolidine analogue 5.158 (Entry 1, Table 45) shows a reasonable PCAF pIC_{50} of 4.8, although this is no improvement on the simple ethylamine compound 5.153 (Entry 4, Table 43, p 203). Expanding the ring to the 4-piperidine example 5.159 (Entry 2, Table 45) shows a significant drop, threefold, in PCAF potency and is the only molecule which displays measurable Brd9 potency. This compound mirrors butylamine containing 5.157 (Entry 8, Table 43, p 212) as there are four carbons between the nitrogen connecting to the pyridazinone ring and the basic centre. Both piperidine analogue 5.159 (Entry 2) and butylamine containing 5.157 (Entry 8, Table 43, p 203) show higher levels of Brd9 potency compared to PCAF which indicates that having a basic centre five carbons atoms away from the pyridazinone core does not give the desired selectivity profile. 2-Piperidyl 5.160 (Entry 3) shows the same level of potency at PCAF as pyrrolidine compound 5.158 (Entry 1) which illustrates that the steric bulk of the piperidine ring is tolerated in this position. Methylating the piperidine provides $\mathbf{5 . 1 6 1}$ (Entry 4) which shows a minor increase in PCAF potency, although with a minor decrease in ligand efficiency. This suggests the increase in potency is driven by the presence of the extra carbon atom rather than a positive interaction with the protein.

Entry	Number	R	$\begin{aligned} & \text { PCAF plC } \\ & \text { (LE) } \end{aligned}$	$\begin{gathered} \hline \text { Brd4 BD1/2 } \\ \mathrm{pIC}_{50} \\ \hline \end{gathered}$	Brd9 plC ${ }_{50}$
1	5.162*		4.7 (0.40)	< 4.3 / < 4.3	< 4.3
2	5.163		4.2 (0.36)	< 4.3 / < 4.3	-
3	5.165†		4.4 (0.38)	< 4.3 / < 4.3	< 4.3
4	$5.166 \dagger$		5.4 (0.44)	< 4.3 / < 4.3	< 4.3
5	5.167†		5.3 (0.43)	< 4.3 / < 4.3	< 4.3
6	$5.168 \dagger$		5.1 (0.41)	< 4.3 / < 4.3	< 4.3

Table 45: Potencies of directly attached 5-chloro-4-aminopyridazinones at PCAF, Brd4 and Brd9.

Directly attaching the ring to the 4-aminopyridazinone is tolerated although pyrrolidine containing 5.162 (Entry 1, Table 45) with a PCAF potency of 4.7, shows no advantage over molecules already discussed. However, placing the basic centre externally to the cyclopentyl ring in a cis-configuration, as shown in cyclopentyl compound 5.163 (Entry 2), demonstrates a fall in PCAF potency and as a result no further exocyclic basic centres were investigated. Cyclopentyl compound 5.163 was synthesised via the tert-butyl carbamate example 5.164, which was not screened as it did not contain a basic centre, using the methodology exemplified in Scheme 72 (p 202). 4-Aminopiperidine analogue 5.165 (Entry 3) suggests that this is not a good place to situate a basic centre, even though it is three
carbon atoms from the nitrogen of the aminopyridazinone. However, reinforcing the importance to PCAF potency of the positioning of the basic centre, racemic 3aminopiperidine containing 5.166 (Entry 4) shows a plC_{50} of 5.4 , being approximately equal in potency and with higher LE than the tetrahydroisoquinoline compounds 5.143 and 5.144 (Entries 1 and 2, Table 42, p 201). However, 3 -aminopiperidine example 5.166 shows greater than 12 -fold selectivity over Brd 4 and Brd 9 and is the most selective compound profiled so far. The 3- and 4-aminoazepane compounds 5.167 and 5.168 , respectively, (Entries 9 and 10) demonstrate a similar profile to 3 -aminopiperidine 5.166 with plC_{50} values of greater than 5.0 at PCAF and potencies <4.3 at Brd4 or Brd9 potency.

5.5.10 Examination of chiral examples of 3-aminopiperidine and 3-aminoazepane pyridazinones

Due to a combination of greatest selectivities and highest potencies for PCAF, 3aminopiperidine analogue 5.166 and 3 -aminoazepane containing 5.167 were selected for further study. The initial investigation was to isolate single enantiomers of the 3aminopiperidine and 3-aminoazepane. Different strategies were employed for the enantiopure piperidines and azepanes as chiral starting materials were available for the piperidines although not for the azepanes. Both $3-(R)$ and $3-(S)$-piperidine compounds, 5.169 and 5.170 were synthesised via the same method, although only the (R)-enantiomer is shown for clarity (Scheme 73).

Scheme 73: Reagents and conditions a) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{HCO}_{2} \mathrm{H}, 2-\mathrm{MeTHF}, 8{ }^{\circ} \mathrm{C}, 69 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 80$ ${ }^{\circ} \mathrm{C}, 100 \%$; c) 5.073 , DIPEA, $130^{\circ} \mathrm{C}, 52 \%$.
tert-Butyl carbamate protected 3-piperidine compound 5.171 was methylated using an Eschweiler-Clarke ${ }^{309}$ methodology. The resulting piperidine compound 5.172 was deprotected using HCl in IPA and isolated as the bis-hydrochloride salt 5.173. The 3-
aminopiperidine compound 5.173 could be appended to the dichloropyridazinone using the established $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ conditions (Scheme 72, p 202). ${ }^{295}$

The azepane enantiomers were synthesised by using the $S_{N} A r$ reaction between azepane analogue 5.174 and dichloropyridazinone compound 5.073 (Scheme 74, p 210) to synthesise the racemic tert-butyl carbamate containing compound $\mathbf{5 . 1 7 5}$. This was chirally separated using preparative chiral chromatography into the two enantiomers 5.176 and 5.177. The stereochemistry of each enantiomer was unknown and both were deprotected using HCl in IPA to provide the enantiopure analogues of 3 -azepane 5.167, 5.178 and 5.179. The unsubstituted azepanes were methylated using Eschweiler-Clarke conditions ${ }^{309}$ to provide enantiomers 5.180 and 5.181 which underwent vibrational circular dichroism (VCD) analysis ${ }^{323}$ to determine the stereochemistry of each enantiomer.

In VCD analysis, a solution of a chiral compound is irradiated with circularly polarised light in the infra red (IR) region. The absorbance of the light is measured across the IR range and the two enantiomers should have equal, but opposite spectra. The measured spectra are compared with the calculated spectrum of one of the enantiomers. When the measured and calculated spectra agree, it indicates that the chirality of the measured enantiomer is the same as the calculated enantiomer. It is possible to calculate the VCD spectrum of a chiral compound by predicting the change in dipole moment of an atom when circularly polarised light of a particular wavelength is absorbed. IR radiation is used as it does not electronically excite compounds, simplifying the calculation of the wavefunction. ${ }^{324,325}$ The spectrum of the (S)-enantiomer was calculated and used to determine the stereochemistry of 5.180 and 5.181 (Fig. 95). ${ }^{326}$

Figure 95: VCD spectra of N-methyl azepane compounds $\mathbf{5 . 1 8 0}$ and $\mathbf{5 . 1 8 1}$. The black line is the calculated spectrum of the (S)-enantiomer 5.181 . The red line is the measured spectrum of the (R)-enantiomer 5.180 and the blue line is the measured spectrum of the (S)-enantiomer 5.181.

After the preparative chiral chromatography only the (R)-enantiomer is shown as the steps were identical (Scheme 74).

Scheme 74: Reagents and conditions a) 5.073, DIPEA, $130{ }^{\circ} \mathrm{C}$, 31%; b) chiral chromatography: $\mathbf{5 . 1 7 6} 44 \%, \mathbf{5 . 1 7 7} 38 \%$; c) $\mathrm{HCl}, \mathrm{IPA}, 2{ }^{\circ} \mathrm{C}, 95 \%$; d) $\mathrm{CH}_{2} \mathrm{O}, \mathrm{HCO}_{2} \mathrm{H}, 2-\mathrm{MeTHF}$, $80^{\circ} \mathrm{C}, 90 \%$.

The enantiomerically pure compounds were assayed against PCAF, Brd4 and Brd9 (Table 46).

| Entry | Number | PCAF plC ${ }_{50}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (LE) | | |

Table 46: Potencies of 4-chloro-5-aminopyridazinones at PCAF, Brd4 and Brd9. ${ }^{\text {a }}$) Inactive at 6 of 7 test occasions. ${ }^{\text {b }}$) Inactive at 2 of 3 test occasions. ${ }^{c}$) Inactive at 4 of 5 test occasions.

The clear indication is that the (R)-enantiomers are more potent compared to the (S) enantiomers. This again indicates that exact positioning of the basic centre within PCAF is key for a boost in potency. The (S)-enantiomers are not significantly more potent than many of the benzylic compounds (Table 30, p 170) at the 5-position of the aminopyridazinone suggesting they simply fill space in PCAF, although they are more selective with $\mathrm{plC}_{50} \mathrm{~S}$ of <4.3 at Brd 4 and Brd . It was suspected that the (R)-enantiomers were at the tight binding limit of the PCAF FP assay.

As the most potent and ligand efficient compound (R) - N-methyl piperidine containing 5.169 was studied further through different assays and was docked into PCAF using Glide (Fig. 96). ${ }^{140}$

5.169

Figure 96: Glide ${ }^{140}$ docking of 5.169 in PCAF.

From the docking it can be seen that piperidine compound $\mathbf{5 . 1 6 9}$ is likely to make the usual interactions with the PCAF protein as well as an H -bond between the basic centre and Glu756. As mentioned previously, it is believed that the H -bond between the piperidine basic centre and Glu756 gives the marked increase in PCAF potency. The basic centre provides Brd4 selectivity and the incorporation of sp^{3} carbons gives $\operatorname{Brd} 9$ selectivity. The piperidine ring fills the available space in the PCAF pocket well, although the docking does assume the protein is rigid and the actual conformation may be considerably different.
N-Methyl piperidine containing 5.169 was profiled against a number of endogenous bromodomains through multiple chemoproteomic binding experiments. Cellular lysates from different cell types were individually incubated with aminopyridazinone 5.169 and promiscuous bromodomain binder 5.137 (Entry 2, Table 39, p 192) attached to a solid support was immersed in the lysate. The beads were removed, rinsed and the BCPs bound to the beads identified which provided some interesting results (Graph 8).

Graph 8: Results from chemoproteomic experiments with 5.169 and endogenous bromodomain containing proteins.

The results showed that N-methyl piperidine analogue $\mathbf{5 . 1 6 9}$ is exceptionally selective for PCAF with greater than 100 -fold selectivity over all the bromodomains studied with one exception, KAT2A also known as GCN5. As discussed previously, the homology between the bromodomains of PCAF and GCN5 is extremely high ${ }^{251}$ and therefore it is understandable that selectivity against this bromodomain is limited. Currently there are no known inhibitors of the GCN5 bromodomain, although there are inhibitors of the GCN5 HAT domain. ${ }^{327}$ This means that N-Methyl piperidine containing $\mathbf{5 . 1 6 9}$ could be used as a dual PCAF/GCN5 probe or alternatively named as a KAT2 probe.

The other striking information from Graph 8 is that the potency of piperidine analogue 5.169 is greater than tenfold higher than measured in the PCAF FP assay. As has been expected, examples of the aminopyridazinone compounds had exceeded the maximum potency measurable by that assay. Around this time a FRET PCAF assay, using the assay reagent 5.138 (Fig. 90, p 193), was developed that was capable of determining higher plC_{50} s. Data from the FRET and FP PCAF assays for methyl piperidine containing 5.169 was compared as well as a broader range of data (Table 47).

Assay	Data	Target profile
PCAF FP plC 50	5.6 (0.45)	≥ 6.0
PCAF FRET plC_{50}	6.3 (0.51)	
PCAF SPR pKd	6.4 (0.52)	
cLogP, MWt	1.3, 256	$1-3, \leq 400$
Aqueous solubility $\boldsymbol{\mu} \mathrm{g} \mathrm{mL}^{-1}$	101	≥ 50
AMP nm s ${ }^{-1}$	320	≥ 50
MDCK2 penetration $\mathrm{nm} \mathrm{s}^{-1}$	574	
Brd2 FRET BD1 / BD2 pIC_{50}	< 4.3 / < 4.3	
Brd3 FRET BD1 / BD2 pIC_{50}	< 4.3 / < 4.3	
Brd4 FRET BD1 / BD2 pIC_{50}	$\leq 4.8^{a} / \leq 4.5^{\text {a }}$	
PCAF selectivity over Brd3	$\geq \times 125$	$\times 100$
Brd9 FRET plC_{50}	< 4.3	
PCAF selectivity over Brd9	$\geq \times 125$	$\times 30$

Table 47: Data for piperidine 5.169. ${ }^{\text {a }}$) Inactive at 6 of 7 test occasions.

Upon screening piperidine containing 5.169 in the FRET assay it was evident that, as expected, the FP assay was under-reporting the potency of the compound. The FRET, the SPR and the chemoproteomics data broadly correlate with each other. This satisfies the level of potency required for initial investigation in cellular systems.

Aminopyridazinone compounds which had plC_{50} values determined by both the FP and FRET PCAF assay formats were compared. There was good correlation for compounds with pIC_{50} values of up to around 5.2 in the FP PCAF assay but beyond that there was significant deviance from the line of unity (Graph 9).

Graph 9: Comparison of pIC_{50} values of compounds between the FP PCAF assay and the FRET PCAF assay.

Theoretically, the tight binding limit was predicted to be at a plC_{50} value of 5.9 (p 142). However, it can be seen from Graph 9 that the tight binding limit is somewhat lower. This mismatch between the observed and theoretical value is most likely due to not having entirely active protein in the assay, caused by either impurities or misfolded protein. Therefore, further examples of compounds which displayed a higher plC_{50} than 5.2 in the FP assay were profiled through the FRET assay.

The physicochemical descriptors in Table 47 indicate that methyl piperidine analogue $\mathbf{5 . 1 6 9}$ is a hydrophilic, low molecular weight, water soluble compound, which correlates with the high ligand efficiency. However, due to the low molecular weight and hydrophilicity there was some debate if the molecule would penetrate cellular membranes. The data from the AMP assay suggested it would as it was shown to be highly permeable. To verify this in a cellular system the permeability of the piperidine containing 5.169 was measured in a MDCK2 permeability assay. ${ }^{328}$ Piperidine compound 5.169 was found to penetrate these cells and therefore, should enter the nucleus where the PCAF protein is located as it has a molecular weight less than $5000 \mathrm{Da} .^{44}$ Aminopyridazinone 5.169 was assayed through a cross screening panel of known drug safety and liability targets. From these assays, piperidine analogue 5.169 was found to have no concerning off-target liabilities. The penetration data combined with the vastly better than required selectivity over wider
bromodomains, illustrated that aminopyridazinone compound 5.169 fitted almost all the required criteria as a probe molecule. At this time the programme was without a target engagement assay so it could not be conclusively determined if N-methyl piperidine $\mathbf{5 . 1 6 9}$ was engaging endogenous PCAF in the nucleus. The $3(R)$-aminopiperidine group was still of interest and thus a series of compounds assessing which substituents could be tolerated from the nitrogen in the piperidine ring were investigated.

5.5.11 Substitution from the 3-piperidine

$3(R)$-Aminopiperidine compound 5.169 was a good candidate to probe the phenotypic effects of inhibiting the KAT2 family of bromodomains. However, historically molecules for other proteins have been selected as potential candidate compounds and found to not act on the predicted drug target within cells. ${ }^{329,330}$ For this reason, a series of compounds were designed to span a range of lipophilicities and $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ to provide a series of chemical probes with diverse physicochemical properties. This was to give the best chance possible for penetration of the compound into the nucleus and target engagement to occur. Increasingly lipophilic compounds are more likely to be cellularly penetrant and by reducing the basicity of the piperidine less of the compound will be protonated at physiological pH . Thus there will be more neutral species to penetrate the cell and other organelles contained within. ${ }^{331}$ However, the reduction in basicity could lead to the compounds losing selectivity for the BET family of bromodomains.

The 3-(R)-aminopiperidines were synthesised by using the previously described $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ methodology with (R)-tert-butyl 3-aminopiperidine-1-carboxylate (5.174) and dichloropyridazinone compound 5.073 to provide 4 -aminopyridazinone example 5.182 . The tert-butyl protected carbamate could be subsequently deprotected with HCl in IPA to provide the versatile intermediate $\mathbf{5 . 1 8 3}$ (Scheme 75).

Scheme 75: Reagents and conditions a) 5.073, DIPEA, DMSO, $130^{\circ} \mathrm{C}, 44 \%$; b) $\mathrm{HCl}, \mathrm{IPA}, 20^{\circ} \mathrm{C}$, 74\%.

The piperidine nitrogen of 5.183 was elaborated to investigate the effects of steric bulk coming from this vector and modulation of the pK_{a}. The nitrogen was alkylated using reductive aminations and alkylations with alkyl halides (Scheme 76). ${ }^{332}$

Scheme 76: Reagents and conditions a) $\mathrm{R}-\mathrm{Br}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{KI}, \mathrm{MeCN}, 130^{\circ} \mathrm{C}$; b) RCHO , $\mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{AcOH}, \mathrm{DCM}, 20^{\circ} \mathrm{C}$.

A range of compounds that investigated the area from the piperidine nitrogen with different sized substituents and functional groups were assayed against the bromodomains of interest (Table 48). All the compounds were found to have Brd 4 and $\mathrm{Brd} 9 \mathrm{pIC}_{50} \mathrm{~S}$ of ≤ 4.4 so these results are not recorded.

Entry	Number	R	$\begin{aligned} & \text { PCAF FP } \\ & \mathrm{pIC}_{50}(\mathrm{LE}) \end{aligned}$	PCAF FRET plC_{50} (LE)	$\begin{aligned} & \text { AMP } \\ & \mathrm{nm} \mathrm{~s}^{-1} \end{aligned}$	cLogP
1	5.169	Me	5.6 (0.45)	6.3 (0.51)	320	1.3
2	5.183	H	5.4 (0.46)	5.9 (0.51)	37	0.8
3	$5.184 \dagger$	Et	5.6 (0.43)	6.1 (0.46)	310	1.8
4	5.185* ${ }^{\text {a }}$		4.6 (0.32)	4.7 (0.34)	10	0.2
5	$5.186{ }^{\text {t }}$	$i-\mathrm{Pr}$	5.1 (0.37)	5.2 (0.37)	590	2.1
6	$5.187+$	$n-\mathrm{Pr}$	5.2 (0.37)	5.5 (0.40)	580	2.4
7	$5.188 \dagger$	$i-\mathrm{Bu}$	4.9 (0.34)	5.1 (0.35)	830	2.8
8	5.189†		5.0 (0.30)	5.2 (0.31)	860	3.0

Table 48: Potencies of aminopyridazinones at PCAF. ${ }^{\text {a }}$) Racemate
The levels of PCAF potency show that there is a limit to the steric bulk of groups which can be tolerated emerging from the piperidine nitrogen. The unsubstituted piperidine intermediate 5.183 (Entry 2) has a lower binding affinity for PCAF than the methyl
compound 5.169 (Entry 1) so the methyl group does provide a small improvement in binding. In the FP assay ethyl 5.184 (Entry 3) and methyl 5.169 appear to be equipotent. However, comparing the compounds in the FRET assay methyl 5.169 is marginally more potent than ethyl 5.184 which suggests the optimal size for PCAF potency is somewhere between the size of a methyl and an ethyl. Primary amide 5.185 (Entry 4) was designed to investigate if it was possible to interact with H-bond donors or acceptors. However, the PCAF potency of amide containing 5.185 is tenfold less than $\mathbf{5 . 1 6 9}$ when comparing the FP assay results and 50-fold less when comparing the FRET data for methyl piperidine analogue 5.169 and the FP data for amide containing 5.185. Isopropyl 5.186 (Entry 5) and n-propyl 5.187 (Entry 6) show a loss in potency compared to the smaller alkyl substituents which corresponds well with the binding pose suggested by the docking (Fig. 96, p 212). This suggests that there is only a small cleft available for substituents from the piperidine nitrogen before steric clash occurs. Larger substituents from the piperidine nitrogen would have to move residues or bind in a different conformation which would not allow the H bond between the basic centre of the piperidine and Glu756. This could be the case as Entries 5-8 show similar levels of PCAF potency with many of the benzyl compounds (Table 30, p 170) where it would appear no H-bonding interactions are taking place between the protein and the headgroup of the ligand. The AMP of the compounds increases in an almost linear fashion with cLogP showing that adding lipophilicity has helped cellular penetration of the molecule as predicted (Graph 10).

Graph 10: Illustrating the correlation between AMP and cLogP.

Only primary amide 5.185 and unsubstituted piperidine $\mathbf{5 . 1 8 3}$ show insufficient values of less than $50 \mathrm{~nm} \mathrm{~s}^{-1}$ in the AMP assay as defined by the probe criteria (p 133). The other
compounds in Table 48 are predicted to be highly permeable with values reported from the AMP assay of greater than $300 \mathrm{~nm} \mathrm{~s}^{-1}$. While adding lipophilicity can have effects on the promiscuity of a compound for other protein targets ${ }^{333}$ these compounds have a sufficiently low cLogP, with the highest being approximately 3 , for these compounds to still be within drug-like chemical space. ${ }^{190}$

Next to be investigated was how the basicity of the piperidine affected binding to PCAF (Table 49). The fluoroethyl piperidine compounds 5.190 and 5.191 were synthesised using the relevant alkyl bromides as outlined in Scheme 76 (p 217).

Table 49: Potencies of aminopyridazinones at PCAF, and the $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of the protonated piperidines. ${ }^{\mathrm{a}}$) Calculated by ChemAxon pK_{a} 5.4.1.1.

The compounds were designed to have similar steric bulk to each other and as such entries $2-4$ are all based around an ethyl substituted piperidine. Methyl compound 5.169 (Entry 1, Table 49) is the most basic molecule of the subtype and at physiological pH of 7.2 , which is typical for lymphocytes, ${ }^{334}$ will be approximately 90% protonated, that is to say 90% of the molecules will be capable of forming the putative H -bond with Glu756. However, simply introducing one electron withdrawing fluorine to the ethyl group as in monofluoro compound 5.190 (Entry 2) would cause only 20% of the molecules to be protonated and thus able to form the H -bond necessary to improve the potency of the compound. The difluoroethane containing 5.191 (Entry 3) is less basic still and will have just 0.5\% protonated within the cell. Trifluoro example 5.192 (Entry 4) is essentially a neutral molecule and incapable of protonation at physiological pH . From examining the potency data around the fluorinated compounds it would appear that more than 20% of the compound needs to be protonated as monofluoro compound 5.190 is equipotent with difluoro analogue 5.191 and a number of benzylic compounds (Table 30, p 170). The reduction in potency of trifluoro compound 5.192 to a plC_{50} of 4.5 is not explained adequately by the protonation argument but may be answered by the increase in steric bulk of the trifluoromethyl group. ${ }^{335}$

The electronegative oxygen was introduced into oxazepane containing 5.193 (Entry 6) to reduce the basicity of the nitrogen through the inductive effect. ${ }^{336}$ There is a reduction in the measured basicity, which might explain the approximate tenfold decrease in potency. However, it could additionally be due to the oxygen present causing an unfavourable interaction with the PCAF protein. Comparing the measured pK_{a}, substituting for the calculated pK_{a} where measured data was not available, against the AMP shows a correlation between reducing basicity and increasing penetration through the artificial membrane (Graph 11).

Graph 11: Illustrating the correlation between AMP and pKa.

Reducing the basicity with the intention of improving the cellular penetration has improved the transit of the molecules into the cell, although it reduced the potency to the point where the molecules were unlikely to be biologically active. Hence, the most potent molecules were selected to be further profiled in selectivity, as well as cellular assays in immune cells. The molecules selected all met the probe criteria of sub-micromolar potency in the PCAF FRET assay.

5.6 Selection of tool molecules

The molecules selected to be assayed for selectivity and in cellular systems met the probe criteria of sub-micromolar potency at PCAF. In light of the chemoproteomics data that showed piperidine containing 5.169 was approximately equipotent with GCN5 (Graph 8, p 213), a GCN5 FRET assay was developed. The GCN5 assay used the same fluorescent tagged assay ligand 5.138 as the PCAF FRET assay (Fig. 90, p 193) and was run at the same concentrations of protein and assay reagent so the pIC_{50} values generated are directly comparable. The GCN5 assay was developed to determine if any of the selected molecules showed improved PCAF selectivity over GCN5. This selectivity data and physicochemical properties are shown below (Table 50).

Compound	5.169	5.184	5.180	5.194*	Probe criteria
R					
PCAF FRET pIC_{50} (LE)	$\begin{gathered} 6.3 \\ (0.51) \end{gathered}$	6.1 (0.46)	6.4 (0.49)	7.1 (0.42)	≥ 6.0
GCN5 FRET pIC_{50}	$\begin{gathered} \hline 6.0 \\ (0.48) \end{gathered}$	-	5.9 (0.45)	-	≥ 6.0
PCAF SPR pK ${ }_{\text {d }}$	$\begin{gathered} 6.4 \\ (0.52) \end{gathered}$	6.4 (0.49)	6.5 (0.49)	-	≥ 6.0
cLogP, MWt	1.3, 256	1.8, 270	1.9, 270	2.9, 332	$\begin{aligned} & 1-3, \\ & <400 \end{aligned}$
CLND sol $\mu \mathrm{g} \mathrm{mL}$	101	≥ 151	114	109	≥ 50
$\begin{gathered} \text { AMP pH } 7.4 \\ \mathrm{~nm} \mathrm{~s}^{-1} \end{gathered}$	320	310	285	535	≥ 10
Brd4 FRET BD1 / BD2 pIC_{50}	$\begin{aligned} & \leq 4.8^{\mathrm{a}} / \\ & \leq 4.5^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & <4.3 / \\ & <4.3 \end{aligned}$	$\begin{aligned} & <4.3 / \\ & <4.3 \end{aligned}$	< 4.3 / < 4.3	
PCAF selectivity over Brd4	$\geq \times 125$	$\geq \times 60$	$\geq \times 150$	$\geq \times 630$	$\geq \times 100$
Brd9 FRET plC_{50}	<4.3	< 4.3	<4.3	4.5	
PCAF selectivity over Brd9	$\geq \times 125$	$\geq \times 60$	$\geq \times 150$	$\geq \times 400$	$\geq \times 30$

Table 50: Molecules selected for profiling in selectivity and cellular assays. ${ }^{\text {a }}$) Inactive at 6 of 7 test occasions.

What is apparent from the data is that these compounds do not have significant GCN5 selectivity compared to PCAF. As discussed earlier there is high sequence homology between GSN5 and PCAF being alternatively named KAT2A and KAT2B, respectively. ${ }^{261,262}$ In essence the molecules here are KAT2 family inhibitors which will be interesting to examine in their own right in the absence of solely PCAF inhibitors. Interestingly the more
sterically demanding compounds do appear to show slight bias for PCAF over GCN5. This indicates that the binding pocket in PCAF may be larger or more flexible than in GCN5.

There is one previously unmentioned compound in Table 50. Phenyl piperidine analogue 5.194 was designed through modelling iterating from piperidine compound 5.169 by Humphreys, P. The additional phenyl group was predicted to make an edge to face interaction with Trp746 as well as the other H-bonds which the core makes with the PCAF protein (Fig. 97). It was postulated that through this interaction there could be an increase in the PCAF potency as well as an increase in the lipophilicity which should aid cellular penetration of the molecule.

Figure 97: 5.193 docked into PCAF using Glide ${ }^{140}$ showing a potential edge to face interaction with Trp746. ${ }^{337}$

On testing of the compound in the PCAF FRET assay it was found to be the most potent compound at PCAF so far with a pIC_{50} of 7.1 , albeit with some erosion of the ligand efficiency. The remainder of the data showed it was suitable as a PCAF probe although with evidence of low levels of binding to Brd9. However, the compound was 400-fold selective for PCAF compared to Brd9, greater than the required 30-fold selectivity.

The physicochemical properties of the molecules suggested the compounds should be cellularly penetrant as they showed the compounds capable of permeating through an artificial cellular membrane as well as aqueous solubility. The molecules all displayed at least 100 -fold selectivity over BET and thus met the probe criteria for cellular potency and BET selectivity.

Through the knowledge of the previously generated SAR it was known that incorporating a bromine at the 4-position of the aminopyridazinone ring gave an approximate twofold increase to the IC_{50} value of the compound compared to the 4-chloro variant (Table 33, p 181). Therefore, the 4-bromo aminopyridazinone analogues of the compounds in Table 50 were synthesised (Scheme 77).

Scheme 77: Reagents and conditions: a) $\mathrm{MeNHNH}_{2}, \mathrm{EtOH}, 45^{\circ} \mathrm{C}, 60 \%$; b) R-NH2, DIPEA, DMSO, $130{ }^{\circ} \mathrm{C}$.

Mucobromic acid (5.195) was condensed with methyl hydrazine to give the intermediate dibromopyridazinone analogue 5.196. ${ }^{338}$ The desired test compounds were synthesised through the previously described $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ chemistry and profiled through the screening cascade (Table 51)

Compound	5.197*	5.198*	5.199*	5.200*	Probe criteria
R					
PCAF FRET plC_{50} (LE)	6.5 (0.52)	6.4 (0.49)	6.7 (0.51)	7.4 (0.44)	≥ 6.0
GCN5 FRET pIC_{50}	6.4	6.0	6.3	-	≥ 6.0
PCAF SPR pK ${ }_{\text {d }}$	6.6	6.5	7.0	-	≥ 6.0
cLogP, MWt	1.5, 300	2.0, 315	2.0, 315	3.0, 377	$\begin{aligned} & 1-3 \\ & <400 \end{aligned}$
CLND sol $\mu \mathrm{g} \mathrm{mL}$	≥ 189	≥ 162	198	149	≥ 50
$\begin{gathered} \text { AMP pH } 7.4 \\ \mathrm{~nm} \mathrm{~s}^{-1} \end{gathered}$	375	390	505	500	≥ 50
$\begin{gathered} \hline \mathrm{Brd} 4 \text { FRET } \\ \mathrm{BD} 1 / \mathrm{BD} 2 \\ \mathrm{pIC}_{50} \end{gathered}$	$\begin{aligned} & <4.3 / \\ & <4.3 \end{aligned}$	$\begin{aligned} & <4.3 / \\ & <4.3 \end{aligned}$	$\begin{gathered} \leq 4.4 / \\ <4.3 \end{gathered}$	≤ 4.5 / 4.6	
PCAF selectivity over Brd4	$\geq \times 200$	$\geq \times 150$	$\times 200$	$\times 630$	$\geq \times 100$
$\begin{aligned} & \text { Brd9 FRET } \\ & \mathrm{pIC}_{50} \end{aligned}$	≤ 4.4	< 4.3	< 4.3	5.1	
Brd9 selectivity	$\times 125$	$\geq \times 125$	$\geq \times 250$	$\times 250$	$\geq \times 30$

Table 51: 4-Bromo analogues of the molecules selected for profiling in selectivity and cellular assays.

The substitution of the 4-bromo for the 4-chloro in the aminopyridazinones was consistent with the known SAR for the series. The change gave the expected increase in pIC_{50} of 0.3 log units for all the compounds with the exception of methyl piperidine containing 5.197 which showed an increase of 0.2 log units. This slightly lesser increase is within error of the assay and is consistent with the trend observed for the other compounds. Otherwise the physicochemical and selectivity data for the chloro compounds (Table 50) and the bromo
compounds (Table 51) are almost identical to each other. However, a negative control was required for the cellular assays to ensure any phenotype seen was being driven by inhibition of the KAT2 family of bromodomains. The enantiomer of the phenyl piperidine analogue 5.200, 5.201, was used for this purpose as 5.201 was 250 -fold less potent at PCAF than 5.200 and showed no BET activity (Table 52).

Compound	5.201*
R	
PCAF FRET plC_{50} (LE)	4.9 (0.29)
GCN5 FRET plC_{50}	-
PCAF SPR pK_{d}	-
cLogP, MWt	3.0, 377
CLND sol ($\mu \mathrm{g} \mathrm{mL}{ }^{-1}$)	137
AMP pH $7.4\left(\mathrm{~nm} \mathrm{~s}^{-1}\right)$	473
Brd4 FRET BD1 / BD2 pIC 50	<4.3 / 4.4
PCAF selectivity over Brd4	$\geq \times 3$
Brd9 FRET plC_{50}	≤ 4.6
Brd9 selectivity	$\times 3$

Table 52: Profile of less active control 5.201.

The loss of potency of $\mathbf{5 . 2 0 1}$, compared to the active isomer 5.200 was believed to be due to loss of the hydrogen bond between Glu756 and the basic nitrogen in the piperidine ring (Fig. 98, p 228). Without this hydrogen bond the aminopyridazinone PCAF inhibitors profiled all tended to have a maximum pIC_{50} value of approximately 5.0. Phenyl piperidine compound 5.201 is no exception.

Therefore, select examples were chosen for further profiling with the less active control 5.201.

5.7 Further profiling of PCAF probe compounds

Three members of the toolset, piperidine containing 5.169, azepane compound 5.199 and phenyl piperidine analogue $\mathbf{5 . 2 0 0}$ were used as exemplar compounds and profiled through a panel of 43 known safety and drug liability targets. None of the compounds displayed potency which could cause biological effects against ion channels, kinases and known targets for pro-convulsant liabilities, emesis or CV effects. In fact, in most cases the measured potency was below the level of quantification of most of the assays. This illustrates the probe molecules identified are selective for target classes other than bromodomains, which could be expected due the low lipophilicities ${ }^{339}$ and presence of chiral centres, ${ }^{340}$ which is known to make compounds less promiscuous. Importantly, the compounds were also found to be non-cytotoxic at concentrations up to $200 \mu \mathrm{M}$. Therefore, any potential phenotype observed would be through inhibition of a biological mechanism rather than through cell death.

The bromodomain selectivity of the most potent compound piperidine containing $\mathbf{5 . 2 0 0}$ was profiled by means of BROMOscan ${ }^{\circledR}$ (DiscoveRx Corp., Fremont, CA, USA) against 34 bromodomain containing proteins (Table 53). The BROMOscan ${ }^{\circledR}$ assay measures the K_{d} of a test compound against a panel of immobilised bromodomains.

Bromodomain		Kd (nM)	
pK			
d			

Bromodomain	Kd (nM)	$\mathbf{p K}_{\mathbf{d}}$	
BRDT(1)	>30000	<4.5	
BRDT(2)	>30000	<4.5	
BRPF1	140	6.9	
BRPF3	100	7.0	
CECR2		11000	5.0
CREBBP	>30000	<4.5	
EP300	>30000	<4.5	
FALZ		130	
GCN5		1.4	
PBRM1(2)	>30000	<4.5	
PBRM1(5)	<30000	<4.5	
PCAF		1.4	8.9
SMARCA2	>30000	<4.5	
TAF1(2)	>30000	<4.5	
TAF1L(2)	>30000	<4.5	

Table 53: Results from the BROMOscan ${ }^{\circledR}$ assay for phenyl piperidine compound 5.200.

As was seen for other examples in the FRET assays (Tables 50 and 51), phenyl piperidine compound 5.200 was found to be equipotent at both PCAF and GCN5. However, phenyl piperidine analogue 5.200 has been found to have a K_{d} of 1.4 nM at the KAT2 family of bromodomains, which shows considerably stronger binding than was displayed in the FRET assay. The results can be visualised on a phylogenetic tree (Fig. 98).

Figure 98: Phylogenetic tree showing the results from the BROMOscan assay with a six hundred-fold cut off.

Phenyl piperidine compound $\mathbf{5 . 2 0 0}$ has more than seventy-fold selectivity for PCAF against all the bromodomains tested against with the exception of GCN5. Gratifyingly, phenyl piperidine analogue 5.200 shows no binding to the BET family of bromodomains which correlates with the FRET assay data already collected. Using the data from the BROMOscan ${ }^{\circ}$ assay shows that phenyl piperidine aminopyridazinone $\mathbf{5 . 2 0 0}$ is greater than 18,000 -fold selective for the BET family of bromodomains. This passes one of the key probe
criteria of having greater than one hundred-fold selectivity over the BET family of bromodomains.

However, binding to other non-BET bromodomains is noted with FALZ, BRPF1, BRPF3 and Brd1 being targets. These bromodomains have phenylalanine residues present where Tyr809 is in PCAF (Fig. 97, p 223). This may cause a positive aromatic face to face interaction with the pyridazinone ring and hence binding to the off-target bromodomains. However, the level of selectivity phenyl piperidine example 5.200 shows for these bromodomains compared to the KAT2 family is close to 80 -fold. According to the probe criteria (Fig. 63, p 133) this level of selectivity is higher than necessary for the compound to be selected as a probe molecule. This fulfils the greater than 30 -fold selectivity probe criteria for selectivity over non-BET bromodomains. It was assumed that the other aminopyridazinone molecules in Tables 50 and 51 would have a similar, selectivity profile to phenyl piperidine compound 5.200.

To determine if phenyl piperidine pyridazinone analogue 5.200 could engage endogenous PCAF in the nuclear environment, an in-cell bioluminescence resonance energy transfer (BRET) assay was developed by Promega (Madison, WI, USA). A BRET assay is similar to a FRET assay, although the light needed for the assay is produced by bioluminescence rather than by an external source. ${ }^{341}$ Histone H3 and endogenous PCAF were tagged fluorescently, as for a standard FRET assay (Fig. 71, p 140), within HEK293 cells. The cells were treated with different concentrations of phenyl piperidine compound 5.200 and the less active enantiomer 5.201. The dose response curves were measured looking at the reduction in fluorescence at different concentrations of dosed compounds (Graph 12).

Graph 12: Dose response of aminopyridazinone compounds $\mathbf{5 . 2 0 0}$ (red) and $\mathbf{5 . 2 0 1}$ (blue) from the in-cell PCAF BRET assay.

The key results from the BRET assay using endogenous full length PCAF correlated with the results from the biophysical FRET assay using truncated PCAF. The BRET assay results also showed that the bromodomain is accessible in the protein complex and demonstrated target engagement. The plC_{50} values were found to be similar with phenyl piperidine compound 5.200 showing a pIC_{50} value of 7.4 in the PCAF FRET assay and 7.2 in the BRET assay. Less active control 5.201 showed a plC_{50} value of 5.0 in both the biochemical FRET and in-cell BRET assays.

Therefore, the reasonable assumption was made that the other probe molecules behave in the same manner. Compounds have been found that are potent, selective, can engage endogenous PCAF and displace PCAF from chromatin and therefore are suitable to be declared as probes. The probe molecules listed in Tables 50 and 51 (p 222 and 225) were screened initially in immuno-inflammation related biological systems.

Various immune cells were exposed to solutions of the compounds, having been stimulated with substances which would give an immune response and their phenotypic response measured. However, in studies involving peripheral blood mononuclear cells (PBMCs) which had been stimulated with anti-CD3 antibodies there was no decrease in the output of IFN- γ or IL-10, 13 or 17 upon treatment with any of the probe molecules. Additionally, treatment of human B cells extracted from tonsils with the PCAF probe compounds had no effect detected upon the output of immunoglobulin $\mathrm{G}(\mathrm{IgG})$.

As the internal panel of immuno-inflammation cellular systems showed no desired change on the measured phenotypes an alternative, external approach was used. Investigating a collection of immune cell types using a BioMAP ${ }^{\circledR}$ (DiscoveRx Corp., Fremont, CA) panel allowed a wider range of biological activities to be probed. As the most potent, phenyl piperidine containing 5.200 was sent for profiling through the BioMAP ${ }^{\circledR}$ panel. Even with the more diverse set of cell types no significant biological activity was seen (Fig. 99). Comparing this to data derived for BET inhibitors in the BioMAP ${ }^{\circledR}$ assay ${ }^{342}$ there is a marked difference. The BET inhibitors show values significantly outside the grey area which represents a statistically significant result in the assays. However, phenyl-piperidine analogue 5.200 showed very little biological activity outside of the grey area on the chart. This led to the conclusion that inhibiting the PCAF bromodomain has no effect on immunoinflammation phenotypes in the types of cell investigated.

5.8 Conclusion

Through the work described above, a chemical series of aminopyridazinones, which displayed $20 \mu \mathrm{M}$ potency at PCAF and was equipotent for the BET family of bromodomains, was transformed into a set of compounds that showed a K_{d} of 1.4 nM at PCAF and GCN5 while simultaneously reducing the BET potency. Upon testing these compounds at a wider range of bromodomains, they were found to have a greater than 70-fold selectivity against all bromodomains tested apart from the very closely related GCN5. These compounds were found to bind to displace PCAF from chromatin in the nucleus and therefore were suitable to determine if inhibiting the PCAF bromodomain had a biological effect.

The author designed and synthesised a number of important molecules to deliver chemical probes to investigate inhibition of the PCAF bromodomain. (R)-4-chloro-2-methyl-5-((1-methylpiperidin-3-yl)amino)pyridazin-3(2H)-one (5.169) was one such molecule as it met all of the probe criteria. Piperidine containing 5.169 has sub-micromolar potency at the KAT2 family of bromodomains, greater than 30-fold selectivity against all bromodomains tested against, no detectable off-target liabilities and is cellularly penetrant. This provided a compound suitable to investigate any phenotype driven by inhibition of the PCAF or GCN5 bromodomains (Fig. 100). Iterations from piperidine containing 5.169 enabled the discovery of more potent compounds that were proven to have target engagement in cellular systems.

5.169

5.121

Figure 100: Key compounds for the discovery of probe PCAF inhibitors.

Tetrahydroisoquinoline 5.121 was an important compound as adding a linkable extended amino group to this compound enabled the generation of a new assay reagent that allowed the tight binding limit of the PCAF assay to be increased. Through the increase in the tight binding limit more potent compounds could be identified. The FRET assay reagent (5.138, Fig. 90, p 193) derived from the aminopyridazinone series has allowed an HTS to be run to identify other chemotypes that might identify novel PCAF inhibitors or new templates
capable of inhibiting BCPs. Elaborating tetrahydroisoquinoline 5.121 also enabled chemoproteomics experiments to investigate the binding of test compounds to endogenous BCPs.

The probe compounds selected show that dual PCAF and GCN5 inhibition does not show an immuno-inflammation phenotype. The aforementioned in-cell BRET assay has shown phenyl-piperidine compound $\mathbf{5 . 2 0 0}$ can displace PCAF from chromatin in HEK293 cells and prove cellular target engagement.

The lack of efficacy of these molecules in immuno-inflammation phenotypes does not mean they have no biological activity at all. In non-immune cell types there could be biological activity. To this end, other areas of the organisation have been notified of the profile of these molecules and are still being actively profiled through the phenotypic assay available elsewhere in our laboratories. The compounds are also being shared with the Sanger Institute to determine if the KAT2 family of bromodomains has any role in cancer. ${ }^{343}$

The compounds identified show significant improvement on the previously known PCAF inhibitors NP1 (5.015) and ischemin (5.019) (p 137) as they are over 1000-fold more potent in our assays against PCAF. The KAT2 family inhibitors also show excellent selectivity over other bromodomains, which previously reported PCAF inhibitors did not achieve. The probe compounds discovered are more amenable as starting points for potential medicines as they contain no chemical groups with known developability issues such as the nitro group in NP1 (5.015) or the diazo linker in ischemin (5.019).

In summary, selective KAT2 family inhibitors have been identified with a range of physicochemical properties. These compounds have been shown to bind to the endogenous PCAF bromodomain through the use of chemoproteomics experiments and an in-cell BRET assay. These are the first known selective molecules to achieve proven binding to the KAT2 family of bromodomains.

6.1 General experimental abbreviations

a/a - percentage area of area
aq. - aqueous
decomp - decomposed
h - hour

LRMS - low resolution mass spec

MDAP - mass directed autoprep
min - minutes
mp - melting point
sat. - saturated

6.2 NMR abbreviations

app. - apparent
br. - broad
d-doublet
dd - doublet of doublets
q - quartet
quin - quintet
s-singlet
spt - septuplet
sxt - sextet
t-triplet
tt - triplet of triplets

6.3 General methods

All solvents were of analytical grade, purchased from Sigma-Aldrich in anhydrous form.

Reagents were purchased from standard suppliers and used without further purification.

Melting points were determined on a Stuart SMP10 melting point apparatus.

Infrared spectra were recorded on a Perkin Elmer Spectrum One Fourier Transform spectrometer. Selected absorptions are reported and quoted in wavenumbers (cm^{-1}).
${ }^{1} \boldsymbol{H}$ NMR were recorded on a Bruker (400 MHz) or Bruker $(600 \mathrm{MHz}$) spectrometer. Chemical shifts are quoted in ppm relative to trimethylsilane and are internally referenced to the residual solvent peak. Coupling constants are given to the nearest 0.5 Hz .
${ }^{13}$ C NMR were recorded on a Bruker (101 MHz) or Bruker (151 MHz) spectrometer. Chemical shifts are quoted in ppm referenced relative to the residual solvent peak.

HRMS

Chromatography and analysis conditions: An Agilent 1100 Liquid Chromatograph equipped with a model G1367A autosampler, a model G1312A binary pump and a HP1100 model G1315B diode array detector was used. The method used was generic for all experiments. All separations were achieved using a C_{18} reversed phase column ($100 \times 2.1 \mathrm{~mm}, 3 \mu \mathrm{~m}$ particle size) or equivalent. Gradient elution was carried out with the mobile phases as (A) water containing $0.1 \%(v / v)$ TFA and (B) acetonitrile containing $0.1 \%(v / v)$ TFA. The conditions for the gradient elution were initially 0% B, increasing linearly to 95% B over 8 min, remaining at 95% B for 0.5 min then decreasing linearly to 0% over 0.1 min followed by an equilibration period of 1.49 min prior to the next injection. The flow rate was 1 $\mathrm{ml} / \mathrm{min}$, split to source and the temperature controlled at $40^{\circ} \mathrm{C}$ with an injection volume of between 2 to $5 \mu \mathrm{~L}$.

Mass Spectrometry conditions: Positive ion mass spectra were acquired using a Thermo LTQ-Orbitrap FT mass spectrometer, equipped with an ESI interface, over a mass range of $100-1100 \mathrm{Da}$, with a scan time of 1 sec . The elemental composition was calculated using

Xcalibur software and processed using RemoteAnalyzer (Spectral Works Ltd) for the $[\mathrm{M}+\mathrm{H}]^{+}$ and the mass error quoted as ppm.

LRMS analysis was conducted on a Waters ZQ

Ionisation mode : Positive Electrospray
Scan Range : 100 to 1000 AMU
Scan Time : 0.27 seconds
Inter scan Delay : 0.05 seconds

Conditions for Mass Directed Auto-Preparative Chromatography (MDAP)

HPH Method A

LC Conditions

The HPLC analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=10 \mathrm{mM} \mathrm{NH} \mathrm{HCO}_{3}$ in water adjusted to pH 10 with aq. NH_{3} solution.
$B=M e C N$.

The gradient employed was:

Time (min)	Flow Rate $(\mathrm{mL} / \mathrm{min})$	\%A	\%B
0	40	95	5
1	40	95	5
10	40	70	30
11	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds

Inter scan Delay : 0.25 seconds

HPH Method B

LC Conditions

The HPLC analysis was conducted on an XBridge C18 column (100 mm x 30mm i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=10 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3}$ in water adjusted to pH 10 with aq. NH_{3} solution.
$B=M e C N$.
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	85	15
1	40	85	15
10	40	45	55
10.5	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds

Inter scan Delay : 0.25 seconds

HPH Method C

LC Conditions

The HPLC analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=10 \mathrm{mM} \mathrm{NH} \mathrm{NCO}_{3}$ in water adjusted to pH 10 with aq. NH_{3} solution.
$B=M e C N$.
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	70	30
1	40	70	30
10	40	15	85
11	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds
Inter scan Delay : 0.25 seconds

HPH Method E

LC Conditions

The HPLC analysis was conducted on an XBridge C18 column ($100 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=10 \mathrm{mM} \mathrm{NH} 4 \mathrm{HCO}_{3}$ in water adjusted to pH 10 with aq. NH_{3} solution.
$B=M e C N$.
The gradient employed was:

Time (min)	Flow Rate $(\mathrm{mL} / \mathrm{min})$	\%A	\%B
0	40	95	5

1	40	95	5
10	40	70	30
11	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds
Inter scan Delay : 0.25 seconds

Formic Method A

LC Conditions

The HPLC analysis was conducted on a Sunfire C18 column ($150 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in Water.
$B=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in MeCN .
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	95	5
1	40	95	5
10	40	70	30
10.5	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .
MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds
Inter scan Delay : 0.25 seconds

Formic Method B

LC Conditions

The HPLC analysis was conducted on a Sunfire C18 column ($150 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in Water.
$B=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in MeCN .
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	85	15
1	40	85	15
10	40	45	55
10.5	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds

Inter scan Delay : 0.25 seconds

Formic Method C

LC Conditions

The HPLC analysis was conducted on a Sunfire C18 column ($150 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in Water.
$\mathrm{B}=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in MeCN .
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	70	30
1	40	70	30
10	40	15	85
11	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds
Inter scan Delay : 0.25 seconds

Formic Method D

LC Conditions

The HPLC analysis was conducted on a Sunfire C18 column ($150 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$\mathrm{A}=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in Water.
$\mathrm{B}=0.1 \% \mathrm{v} / \mathrm{v}$ solution of $\mathrm{CHO}_{2} \mathrm{H}$ in MeCN .
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	50	50
1	40	50	50
10	40	1	99
11	40	1	99
15	40	1	99

The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Alternate-scan Positive and Negative Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds
Inter scan Delay : 0.25 seconds

TFA Method B

LC Conditions

The HPLC analysis was conducted on a Sunfire C18 column ($150 \mathrm{~mm} \times 30 \mathrm{~mm}$ i.d. $5 \mu \mathrm{~m}$ packing diameter) at ambient temperature.

The solvents employed were:
$A=0.1 \% \mathrm{v} / \mathrm{v}$ solution of TFA in Water.
$B=0.1 \% \mathrm{v} / \mathrm{v}$ solution of TFA in MeCN.
The gradient employed was:

Time (min)	Flow Rate (mL/min)	\%A	\%B
0	40	85	15
1	40	85	15
10	40	45	55
10.5	40	1	99

199
The UV detection was an averaged signal from wavelength of 210 nm to 350 nm .

MS Conditions

MS : Waters ZQ
Ionisation mode : Positive Electrospray
Scan Range : 150 to 1500 AMU
Scan Time : 0.50 seconds
Inter scan Delay : 0.25 seconds

Under microwave conditions means heated in a Biotage ${ }^{\circledR}$ Initiator microwave synthesiser.

6.4 Procedures

6.4.1 6,7- and 6,5- sized ring systems

3-((2-Aminoethyl)amino)isonicotinic acid (4.021) ${ }^{109}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight: 181.19

3-Fluoroisonicotinic acid ($255 \mathrm{mg}, 1.81 \mathrm{mmol}$) was added to ethylenediamine ($1.50 \mathrm{~mL}, 22.4$ mmol) and the resulting suspension heated under microwave conditions at $150{ }^{\circ} \mathrm{C}$ for 2 h . The mixture was loaded on to a preconditioned 5 g aminopropyl column, eluted with IPA (30 mL) followed by aq. $2 \mathrm{M} \mathrm{HCl}(25 \mathrm{~mL})$. The acidic fractions were evaporated to dryness in vacuo, loaded on to a 10 g SCX cartridge and eluted with water: $\mathrm{MeOH}(1: 1)(50 \mathrm{~mL})$ followed by 2 M methanolic ammonia (50 mL). The basic fractions were evaporated to a white solid, triturated with $\mathrm{MeOH}(2 \mathrm{~mL})$, filtered and dried in vacuo to give the title compound 4.021 as a white solid ($140 \mathrm{mg}, 41 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 182 ; 100 \%$ a/a.

$\underline{N-(2-A m i n o e t h y l)-3-f l u o r o i s o n i c o t i n a m i d e ~(4.023) ~}{ }^{111}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{FN}_{3} \mathrm{O}$
Molecular Weight: 183.18

Methyl 3-fluoroisonicotinate ($286 \mathrm{mg}, 1.84 \mathrm{mmol}$) was added to a solution of ethylenediamine ($0.148 \mathrm{~mL}, 2.21 \mathrm{mmol}$) in ethanol (4 mL). The resulting mixture was heated under microwave conditions at $100{ }^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was evaporated to dryness, triturated with DCM (2 mL), filtered and the solid recrystallised from DMSO:MeOH (1:1, 0.4 mL$)$. The resulting solid was washed ($2 \times \mathrm{MeOH}, 0.4 \mathrm{~mL}$) and dried in
vacuo to give the title compound 4.023 as a white solid ($105 \mathrm{mg}, 30 \%$): ${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{CN}, 400$ $\mathrm{MHz}) \delta 8.59(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}), 7.51$ (br.s, 1H), 3.62-3.51 (m, 2H), 3.03-2.90(m, 2H); LRMS [M+H] ${ }^{+}$: 184; 100\% a/a.

3,4-Dihydro-1H-pyrido[3,4-e][1,4]diazepin-5(2H)-one (4.020) ${ }^{109}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 163.18

N -(2-Aminoethyl)-3-fluoroisonicotinamide (11) (95 mg, 0.52 mmol) was suspended in DMSO (12 mL) and heated to $160^{\circ} \mathrm{C}$ under N_{2} for 4 h . The resulting solution was cooled to room temperature and loaded on to a 5 g SCX cartridge. The cartridge was eluted with $\mathrm{MeOH}(40 \mathrm{~mL})$, followed by 2 M methanolic ammonia (30 mL). The basic fractions were evaporated to dryness and purified by MDAP (HPH method A) to give the title compound 4.020 as a pale yellow solid (20 mg, 21\%): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.57$ - $3.50(\mathrm{~m}, 2 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 164 ; 100 \%$ a/a.

3-Hydrazinylisonicotinic acid. $2 \mathrm{HCl}(4.027)^{113}$

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2} .2 \mathrm{HCl}$
Molecular Weight: 226.06

Conc. $\mathrm{HCl}(22.0 \mathrm{~mL}, 264 \mathrm{mmol})$ was added to a stirred suspension of 3-aminoisonicotinic acid $(2.8 \mathrm{~g}, 20 \mathrm{mmol})$ and the resulting suspension cooled in an ice bath. Sodium nitrite (1.6 $\mathrm{g}, 23 \mathrm{mmol}$) was added dropwise and the resulting solution stirred for 1 h . The solution was added dropwise to a solution of water sparging with gaseous sulfur dioxide and the resulting suspension stirred for 1 h and allowed to stand overnight. The suspension was stirred for 5 min , filtered, the resulting filtercake washed [2 x water (20 mL), 1 x water: MeOH
($20 \mathrm{~mL}, 1: 1$)] and dried in vacuo at $40^{\circ} \mathrm{C}$ for 5 h to give the title compound 4.027 as a yellow solid (3.02 g, 66\%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.92$ (br.s, 1 H), 8.73 (s, 1H), $8.10-7.99$ (m, 2H), exchangeable protons not observed.

1H-Pyrazolo[3,4-c]pyridin-3(2H)-one (4.025) ${ }^{113}$

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 135.12

3-Hydrazinylisonicotinic acid. $2 \mathrm{HCl}(1.00 \mathrm{~g}, 4.42 \mathrm{mmol})$ was added to a stirred solution of 2 M aq. $\mathrm{HCl}(50 \mathrm{~mL}, 100 \mathrm{mmol})$ and the mixture heated to reflux for 5 h and cooled to room temperature overnight. The solution was evaporated in vacuo to give a yellow solid. The residue was suspended in water (30 mL) and 50% aq. NaOH added until the resulting suspension was brought to pH 7 . The precipitate was recrystallised from the mother liquors to give the title compound 4.025 as an orange solid ($269 \mathrm{mg}, 45 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400\right.$ $\mathrm{MHz}) \delta 12.11$ (br.s, 1H), 10.82 (br.s, 1H), $8.80(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$
 133.7; LRMS [M+H]+ = 136; IR: v 3071, 3017, 1641, 1552, 1484, 1435, 1338, 1254, $1088 \mathrm{~cm}^{-}$ ${ }^{1}$; $m p>250^{\circ} \mathrm{C}$.
N-Phenylisonicotinamide (4.030) ${ }^{116}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}$
Molecular Weight: 198.22

CDI ($7.90 \mathrm{~g}, 48.7 \mathrm{mmol}$) was added to a stirred suspension of isonicotinic acid ($5.00 \mathrm{~g}, 40.6$ mmol) in 2-MeTHF (50 mL) and the resulting suspension heated to $50^{\circ} \mathrm{C}$ for 30 min . Aniline $(4.82 \mathrm{~mL}, 52.8 \mathrm{mmol})$ was added and the resulting solution stirred at $50^{\circ} \mathrm{C}$ for 20 min . The mixture was cooled to room temperature and a precipitate formed. The suspension was
washed [$3 \times$ water $\left(10 \mathrm{~mL}\right.$), brine (10 mL)], and dried over MgSO_{4}. The aqueous washings were extracted [$3 \times$ DCM $(20 \mathrm{~mL})$], combined with the washed and dried organic layer and evaporated in vacuo to give a brown solid. The solid was triturated with EtOAc (5 mL) and the resulting solid washed [$2 \mathrm{x} \operatorname{EtOAc}(5 \mathrm{~mL}$)] and dried via filtration to give the title compound 4.030 as a white crystalline solid ($5.96 \mathrm{~g}, 70 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.79$ (d, J = 6.0 Hz, 2H), 7.91 (br.s, 1H), 7.70 (d, J = 6.0 Hz, 2H), $7.63(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.35$ (m, 2H), 7.23-7.16 (m, 1H); LRMS [M+H]+: 199, 100\% a/a.

The washings were evaporated in vacuo to dryness and the residue purified by silica gel chromatography cyclohexane:EtOAc (75 -> 100\%) to give a second crop of the title compound 4.030 as a white solid ($1.14 \mathrm{~g}, 13 \%$): Analytical data as above.

3-Hydroxy-2-phenyl-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one (4.031) ${ }^{116}$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
Molecular Weight: 226.23
1.6 M n -Butyllithium in hexanes ($7.91 \mathrm{~mL}, 12.65 \mathrm{mmol}$) was added dropwise to a stirred solution of N-phenylisonicotinamide (4.030) (1.14 g, 5.75 mmol$)$ in dry THF (36 mL) under N_{2} at $-70^{\circ} \mathrm{C}$ and stirred for 30 min at $-70^{\circ} \mathrm{C}$ and warmed to $0^{\circ} \mathrm{C}$ for 5 min . The resulting solution was re-cooled to $-70^{\circ} \mathrm{C}$ and dry DMF ($0.891 \mathrm{~mL}, 11.5 \mathrm{mmol}$) added dropwise. The mixture was allowed to come to room temperature overnight, acidified to pH 2 with 2 M aq. HCl and the organic layer separated. The aqueous layer was extracted (2 x chloroform [20 mL]), the combined organic layers dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with $\mathrm{DCM}: \mathrm{MeOH}(0$ -> 10\%) to give an impure brown solid containing the title compound 4.031 (84 mg). Used crude.

The mixed fractions from the column were evaporated in vacuo and triturated with EtOAc and the resulting white solid dried in vacuo to give an analytically pure sample of the title compound 4.031 as a white solid ($32 \mathrm{mg}, 2 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 9.00(\mathrm{~s}, 1 \mathrm{H})$,
$8.88(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (d, J = 10.0 Hz, 1H), 6.72 (d, J = 10.0 Hz, 1H); LRMS [M+H] ${ }^{+}: 227 ; 99 \%$ a/a

Pyrido[3,4-d]pyridazin-1(2H)-one (4.029) ${ }^{116}$

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 147.13

3-Hydroxy-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one (4.031) (84 mg, 0.56 mmol) was added to a stirred solution of 35% aq. hydrazine ($2.40 \mathrm{~g}, 26.2 \mathrm{mmol}$) and the mixture heated to reflux under N_{2} for 2 h . The mixture was evaporated in vacuo and the residue purified by MDAP (HPH method A) to give the title compound 4.029 a pale brown solid (7.3 $\mathrm{mg}, 8 \%):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.00($ br.s, 1 H$), 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 1 \mathrm{H})$; LRMS [M-H]: 146; 94\% a/a

6.4.2 Pyridopyrimidinones

Ethyl 3-(2-cyclohexylacetamido)isonicotinate (4.044a) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
Molecular Weight: 290.36

2-Cyclohexylacetic acid ($171 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added to a solution of ethyl 3aminoisonicotinate ($200 \mathrm{mg}, 1.20 \mathrm{mmol}$) and DIPEA ($0.84 \mathrm{~mL}, 4.8 \mathrm{mmol}$) in DCM (10 mL), and the resulting mixture stirred at $20^{\circ} \mathrm{C}$ under N_{2} for 5 min . 2,4,6-Tripropyl-1,3,5,2,4,6trioxatriphosphinane $2,4,6$-trioxide ($1.08 \mathrm{~mL}, 1.81 \mathrm{mmol}$) was added and the resulting mixture stirred for 18 h . 2-Cyclohexylacetic acid ($100 \mathrm{mg}, 0.703 \mathrm{mmol}$) and 2,4,6-tripropyl-1,3,5,2,4,6-trioxatriphosphinane 2,4,6-trioxide ($400 \mathrm{mg}, 1.26 \mathrm{mmol}$) were added and the reaction mixture stirred for a further 18 h under the same conditions. The reaction mixture was partitioned between sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$. The organic layer was
removed and aqueous layer extracted further with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water (10 mL) and filtered through a hydrophobic frit. The resulting solution was concentrated in vacuo to an oil. The residue was purified by silica gel chromatography eluting with DCM to give the title compound as a white solid (201 mg , $58 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 10.60($ br.s, 1 H$), 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75$ ($\mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}$), $4.40(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.56$ (m, 6H), $1.40(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-0.89(\mathrm{~m}, 6 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 291 ; 98 \% \mathrm{a} / \mathrm{a}$.

2-(Cyclohexylmethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.044) ${ }^{121}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 243.30

Ethyl 3-(2-cyclohexylacetamido)isonicotinate ($200 \mathrm{mg}, 0.689 \mathrm{mmol}$) was dissolved in 7 M methanolic ammonia ($10 \mathrm{~mL}, 70 \mathrm{mmol}$) and stirred at $20^{\circ} \mathrm{C}$ for 19 h . Further 7 M methanolic ammonia ($10 \mathrm{~mL}, 70 \mathrm{mmol}$) was added and the solution warmed to $40^{\circ} \mathrm{C}$ over the weekend. The solvent was filtered to give the title compound as a cream powder (83 $\mathrm{mg}, 50 \%):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.42$ (br.s, 1 H$), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.91(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.96-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.6(\mathrm{~m}, 5 \mathrm{H})$, 1.29-1.10(m, 3H), 1.08-0.94 (m, 2H); LRMS [M+H] ${ }^{+}: 244,100 \%$ a/a.

2-(Chloromethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.047) ${ }^{137}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{CIN}_{3} \mathrm{O}$
Molecular Weight: 195.61

Chloroacetonitrile ($1.00 \mathrm{~mL}, 15.8 \mathrm{mmol}$) was added to a stirred suspension of methyl 3aminoisonicotinate ($2.00 \mathrm{~g}, 13.1 \mathrm{mmol}$) in 4 M HCl in dioxane ($25 \mathrm{~mL}, 100 \mathrm{mmol}$) and the mixture heated to $80^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to $50^{\circ} \mathrm{C}$, chloroacetonitrile (1.00
$\mathrm{mL}, 15.8 \mathrm{mmol})$ added and the mixture heated at this temperature for 60 h . The mixture was evaporated in vacuo to dryness, recharged with 4 M HCl in dioxane ($25 \mathrm{~mL}, 100 \mathrm{mmol}$) and chloroacetonitrile ($1.00 \mathrm{~mL}, 15.8 \mathrm{mmol}$) and heated to $50^{\circ} \mathrm{C}$ overnight. The mixture was evaporated in vacuo to dryness, recharged with 4 M HCl in dioxane ($25 \mathrm{~mL}, 100 \mathrm{mmol}$), chloroacetonitrile ($1.00 \mathrm{~mL}, 15.8 \mathrm{mmol}$) and heated to $50^{\circ} \mathrm{C}$. The mixture was cooled to room temperature, filtered, the filtercake washed ($2 x$ dioxane (10 mL), 2 x TBME (10 mL)) and dried in vacuo at $40^{\circ} \mathrm{C}$ to give a brown solid. The residue was stirred in 5% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(100 \mathrm{~mL})$ and the resulting solution loaded on to a Biotage 103 column (10 g). The column was eluted with water $(50 \mathrm{~mL})$, followed by $\mathrm{MeOH}(150 \mathrm{~mL})$. The organic fractions were evaporated in vacuo to give the title compound 4.047 as a red solid (1.16g, 45\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.93($ br.s, 1 H$), 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 161.1,154.9,151.0,147.1,143.4$, 126.9, 118.6, 43.5 ; LRMS [M+H] ${ }^{+}$: 196, 198; 97\% a/a; IR: solid v 2707, 1695, 1618, 1422, 1286, 1120, 1046, cm^{-1}; $\mathrm{HRMS}: \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires 196.0272, found $[\mathrm{M}+\mathrm{H}]^{+}$ 196.0281; mp $240{ }^{\circ} \mathrm{C}$ (dec.).

Ethyl 3-(3-cyanobenzamido)isonicotinate (4.052a) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 295.29

T3P ${ }^{\circledR}$ 50\% in EtOAc ($1.51 \mathrm{~mL}, 2.53 \mathrm{mmol}$) was added to a stirred suspension of ethyl 3aminoisonicotinate ($300 \mathrm{mg}, 1.81 \mathrm{mmol}$), 3-cyanobenzoic acid ($292 \mathrm{mg}, 1.99 \mathrm{mmol}$) and DIPEA ($0.95 \mathrm{~mL}, 5.42 \mathrm{mmol}$) in dry DCM (5 mL) under N_{2}. The reaction mixture was stirred overnight, washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, the aqueous fraction extracted with DCM (5 mL), the organic layers, combined, dried over MgSO_{4} and evaporated in vacuo to a brown oil. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (0 -> 50\%) to give a residue which was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->2 \%$) to give the title compound 4.052a as a pale yellow solid (55 mg, 10\%): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.81$ (br.s, 1 H$), 10.20(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H})$,
8.35-8.31(m, 1H), 8.29-8.24(m, 1H), 7.91-7.84(m, 2H), $7.68($ app.t, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ ($q, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $1.47(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS [M+H] $\left.{ }^{+}: 296 ; 97 \% \mathrm{a} / \mathrm{a}\right)$.

The filtrate from the trituration was purified by MDAP (HPH Method A) to yield a second crop of the title compound as a pale yellow solid ($33 \mathrm{mg}, 60 \%$): Analytical data as above.

3-(4-Oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2-yl)benzonitrile (4.052) ${ }^{121}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 248.24
3-(3-Cyanobenzamido)isonicotinate ($88 \mathrm{mg}, 0.30 \mathrm{mmol}$) was added to a solution of 7 M ammonia in $\mathrm{MeOH}(5 \mathrm{~mL}, 35.0 \mathrm{mmol})$ and the resulting solution allowed to stand overnight. 10 M aq. sodium hydroxide ($0.30 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added to the solution and stirred. 2 M aq. $\mathrm{HCl}(1.5 \mathrm{~mL}, 3.0 \mathrm{mmol})$ was added, the mixture stirred for 15 min , evaporated in vacuo to dryness, suspended in EtOAc (10 mL) and water (5 mL) and the mixture filtered. The filtercake was washed with water (1 mL) and $\mathrm{MeOH}(1 \mathrm{~mL})$. The residue was purified by MDAP (HPH Method A) to give the title compound 4.052 as a white solid ($48 \mathrm{mg}, 52 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 13.00(b r . s, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H})$, $8.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80($ app.t, J = 8.0 Hz , 1H); LRMS [M+H] ${ }^{+}$: 249; 99\% a/a.

Ethyl 3-(5-methoxynicotinamido)isonicotinate (4.053a) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{4}$
Molecular Weight: 301.30

Oxalyl chloride ($0.12 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added to a stirred suspension of 5methoxynicotinic acid ($185 \mathrm{mg}, 1.21 \mathrm{mmol}$) in DCM (5 mL) under N_{2}. DMF ($0.01 \mathrm{~mL}, 0.129$ mmol) was added and the mixture stirred for 1 h . Ethyl 3-aminoisonicotinate ($183 \mathrm{mg}, 1.10$
$\mathrm{mmol})$ and DIPEA ($0.269 \mathrm{~mL}, 1.54 \mathrm{mmol}$) were added. The mixture was stirred for 1.5 h and allowed to stand overnight. Sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the separated aqueous phase was extracted with DCM ($2 x 5 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc,(0 \rightarrow - $66 \%)$ to give the title compound as a pale yellow solid (197 mg, 57% : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.78$ (br.s, 1H), 10.20 (s, $1 \mathrm{H}), 8.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.84,(d d, J=2.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 302,100 \%$ a/a.

2-(5-Methoxypyridin-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.053) ${ }^{121}$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 254.24
A solution of ethyl 3-(5-methoxynicotinamido)isonicotinate ($197 \mathrm{mg}, 0.654 \mathrm{mmol}$) in 7 M aq. ammonia in $\mathrm{MeOH}(10 \mathrm{~mL}, 70.0 \mathrm{mmol})$ was stirred overnight at room temperature. 10 M aq. sodium hydroxide ($0.618 \mathrm{~mL}, 6.18 \mathrm{mmol}$) was added to the resulting mixture and stirred over the weekend. 2 M aq. $\mathrm{HCl}(3.1 \mathrm{~mL}, 6.20 \mathrm{mmol})$ was added to the mixture and the resulting suspension stirred for 30 min . The suspended solid was filtered, washed [1x water (5 mL), $1 \times \mathrm{MeOH}(5 \mathrm{~mL})$] and dried in vacuo to give the title compound 4.053 as a white solid (142 mg, 86\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.01$ (br.s, 1 H), 9.16 (d, J= 1.0 $\mathrm{Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=$ 2.0, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.01(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta}\right.$ $161.8,155.6,153.0,151.3,143.9,143.7,141.4,141.0,129.4,126.7,119.5,118.6,56.4 ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 255 ; 100 \%$ a/a; HRMS: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 255.0877 , found $[\mathrm{M}+\mathrm{H}]^{+}$ 255.1190; IR: solid v $1698,1584,1418,1217,1032, \mathrm{~cm}^{-1} ; \mathrm{mp}>250^{\circ} \mathrm{C}$.

Methyl 3-(5-(benzyloxy)nicotinamido)isonicotinate (4.054a) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$
Molecular Weight: 363.37

Oxalyl chloride ($0.13 \mathrm{~mL}, 1.5 \mathrm{mmol}$) and DMF (0.01 mL) were added to a stirred suspension of sodium 5-(benzyloxy)nicotinate (55) (252 mg, 1.00 mmol) in DCM (10 mL). The mixture was stirred for 30 min and evaporated in vacuo to a white solid. The residue was suspended in DCM (10 mL), methyl 3-aminoisonicotinate ($152 \mathrm{mg}, 1.00 \mathrm{mmol}$) and DIPEA $(0.44 \mathrm{~mL}, 2.5 \mathrm{mmol})$ were added and the resultant solution stirred overnight. The solution was washed [$1 x$ water (10 mL), 1 x brine $(10 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM: 2 M methanolic ammonia (0 -> 3\%). The product containing fractions were evaporated in vacuo to dryness and purified by MDAP (HPH Method C) to give the title compound 4.054a as a yellow solid ($87 \mathrm{mg}, 24 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.00(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H})$ $8.96(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~m}, 1 \mathrm{H}), 8.01$ (dd, J = 0.5, 5.0 Hz, 1H), 7.54-7.32 (m, 5H), $5.32(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 364$; 95\% a/a.

2-(5-(Benzyloxy)pyridin-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.054) ${ }^{121}$

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 330.34

Methyl 3-(5-(benzyloxy)nicotinamido)isonicotinate ($87 \mathrm{mg}, 0.24 \mathrm{mmol}$) was stirred in 7 M ammonia in $\mathrm{MeOH}(10 \mathrm{~mL}, 70.0 \mathrm{mmol})$ at room temperature. The resulting suspension was stirred for $2 \mathrm{~h}, 10 \mathrm{M}$ sodium hydroxide ($0.239 \mathrm{~mL}, 2.394 \mathrm{mmol}$) added, the mixture stirred
for 2 days and treated with $2 \mathrm{M} \mathrm{HCl}(0.479 \mathrm{~mL}, 2.394 \mathrm{mmol})$, evaporated in vacuo to dryness and purified by silica gel chromatgraphy eluting with $\mathrm{DCM}: \mathrm{MeOH}(0->4 \%)$ to give an impure white solid. The solid was triturated with $\mathrm{MeOH}(1 \mathrm{~mL})$, filtered, washed with $\mathrm{MeOH}(1 \mathrm{~mL})$ and evaporated in vacuo to give the title compound 4.054 as a white solid (17 $\mathrm{mg}, 21 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.00(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 9.15(\mathrm{~s}, 1 \mathrm{H}) 8.96(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=0.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J$ $=0.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 331 ; 100 \%$ a/a.

Ethyl 3-(5-(methylcarbamoyl)nicotinamido)isonicotinate (4.056a) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4}$
Molecular Weight: 328.32

Oxalyl chloride ($0.116 \mathrm{~mL}, 1.320 \mathrm{mmol}$) was added to a stirred suspension of (methylcarbamoyl)nicotinic acid ($201 \mathrm{mg}, 1.12 \mathrm{mmol}$) in DCM (5 mL) under N_{2}. DMF (0.010 $\mathrm{mL}, 0.13 \mathrm{mmol}$) was added and the mixture stirred for 1 h . Ethyl 3-aminoisonicotinate (183 $\mathrm{mg}, 1.10 \mathrm{mmol})$ and DIPEA ($0.269 \mathrm{~mL}, 1.54 \mathrm{mmol}$) were added. The mixture was stirred for 1.5 h and allowed to stand overnight. Sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the separated aq. phase was extracted with DCM ($2 \times 5 \mathrm{~mL}$). The combined organic phases were dried over MgSO_{4}, filtered and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0 \rightarrow 5 \%$) to give the title compound 4.056a as a white solid ($203 \mathrm{mg}, 56 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 11.90$ (br.s, $1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=2.0,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.53(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=0.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.49(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.09(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+} 329 ; 100 \% \mathrm{a} / \mathrm{a}$.

5-(4-Oxo-3,4-dihydropyrido[3,4-d] pyrimidin-2-yl) nicotinamide (4.056) ${ }^{121}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$
Molecular Weight: 281.27
A solution of N-methyl-5-(4-oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2-yl)nicotinamide (203 $\mathrm{mg}, 0.62 \mathrm{mmol}$) in a solution of 7 M ammonia in MeOH ($10 \mathrm{~mL}, 70.0 \mathrm{mmol}$) was stirred overnight. A solution of 10 M aq. $\mathrm{NaOH}(0.618 \mathrm{~mL}, 6.18 \mathrm{mmol})$ was added to the resulting mixture and the mixture stirred over the weekend. 2 M aq. $\mathrm{HCl}(3.1 \mathrm{~mL}, 6.20 \mathrm{mmol})$ was added to the mixture and the resulting suspension stirred for 30 min . The suspended solid was filtered, washed [1 x water (5 mL), $1 \mathrm{x} \mathrm{MeOH}(5 \mathrm{~mL})$] and dried in vacuo to give the title compound 4.056 as a white solid ($96 \mathrm{mg}, 56 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.10$ (br.s, $1 \mathrm{H}), 9.39(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.21-9.11(\mathrm{~m}, 2 \mathrm{H}), 8.94-8.86(\mathrm{~m}, 1 \mathrm{H}), 8.82-8.74(\mathrm{~m}, 1 \mathrm{H}), 8.70$ (d, J = 5.0 Hz, 1H), $8.01(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 282,100 \%$ a/a.

Methyl 3-(6-cyanonicotinamido)isonicotinate (4.061) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$
Molecular Weight: 282.25

6-Cyanonicotinic acid ($321 \mathrm{mg}, 2.17 \mathrm{mmol}$) was suspended in dry DCM (5 mL) with stirring under N_{2}. Oxalyl chloride ($0.21 \mathrm{~mL}, 2.4 \mathrm{mmol}$) and DMF $(0.01 \mathrm{~mL})$ were added, the mixture stirred for 30 min . Methyl 3 -aminoisonicotinate ($300 \mathrm{mg}, 1.97 \mathrm{mmol}$) and DIPEA (0.96 mL , $5.5 \mathrm{mmol})$ were added, the mixture stirred for 5 min , further dry DCM (5 mL) added and the resulting suspension stirred for 3.5 h . The reaction mixture was partitioned between EtOAc $(10 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous layer was separated and the organic layer washed [1x sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL}), 1 x$ brine $(5 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with

DCM:2 M methanolic ammonia ($0->3 \%$) to give the title compound 4.061 as a yellow solid ($168 \mathrm{mg}, 30 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 11.90$ (br.s, 1 H), 10.19 (s, 1 H), 9.36 (d, J = 2.0 Hz , 1H), 8.56 (d, J = $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.47 (dd, J = 2.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (m, 2H), 4.04 (s, 3H); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 8 3}, 98 \%$ a/a.

5-(4-Oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2-yl)picolinonitrile (4.064) ${ }^{121}$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}$
Molecular Weight: 249.23

Methyl 3-(6-cyanonicotinamido)isonicotinate (4.061) ($225 \mathrm{mg}, 0.797 \mathrm{mmol}$) was stirred in 7 M aq. ammonia in MeOH ($10 \mathrm{~mL}, 70 \mathrm{mmol}$) for 3 days, the mixture adsorbed on to silica and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia (5 -> 20\%) to give the title compound 4.064 as an off white solid ($89 \mathrm{mg}, 45 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}{ }_{2}, 400 \mathrm{MHz}\right) \delta 13.22$ (br.s, 1H), 9.45 (dd, J = $1.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.26 (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.00 (dd, J = $1.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}$); LRMS [M+H] ${ }^{+} 250 ; 97 \% \mathrm{a} / \mathrm{a}$.

5-(4-Oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2-yl)picolinamide (4.055) ${ }^{132}$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{2}$
Molecular Weight: 267.24
35% aq. Hydrogen peroxide ($0.31 \mathrm{~mL}, 3.6 \mathrm{mmol}$) was added to a stirred suspension of 5-(4-oxo-3,4-dihydropyrido[3,4-d]pyrimidin-2-yl)picolinonitrile (4.061) ($89 \mathrm{mg}, 0.36 \mathrm{mmol}$) and potassium carbonate ($99 \mathrm{mg}, 0.71 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ in DMSO $(10 \mathrm{~mL})$. The resulting mixture was stirred for 3 h and 10% aq. sodium thiosulfate (10 mL) added. The mixture was
adjusted to pH 7 with 2 M aq. HCl , the resulting suspension filtered, washed [2 x water (20 $\mathrm{mL}), 1 \mathrm{x} \mathrm{MeOH}$:water (1:1, 5 mL), $1 \mathrm{x} \mathrm{MeOH} \mathrm{(} 5 \mathrm{~mL}$)] and the mixture dried in vacuo to give the title compound 4.055 as an almost white solid ($54 \mathrm{mg}, 57 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400\right.$ $\mathrm{MHz}) \delta 13.15$ (br.s, 1H), 9.33 (dd, J = 1.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 9.17 (d, J = $0.5 \mathrm{~Hz}, 1 \mathrm{H}$), $8.71(\mathrm{~m}, 2 \mathrm{H})$, 8.26 (br.s, 1H), 8.21 (dd, $J=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02 (dd, $J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79 (br.s, 1 H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, SO(CDCl $)_{2}$) $\delta 165.3,161.3,152.3,152.2,150.8,147.8,146.4,143.2,137.3$, 130.6, 126.3, 121.7, 118.1; LRMS $[\mathrm{M}+\mathrm{H}]^{+} 268,100 \%$ a/a; HRMS: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 268.0829, found $[\mathrm{M}+\mathrm{H}]^{+}$268.0832; IR solid: v 3307, 1704, 1592, 1423, $1310 \mathrm{~cm}^{-1}$; mp > 250 ${ }^{\circ} \mathrm{C}$.

Pyrido[3,4-d]pyrido[3'",4':4',5']pyrimido[1',2':4,5]pyrazino[1,2-a]pyrimidine-5,13(7H,15H)dione (4.075)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$
Molecular Weight: 318.29
3-((tert-Butyldimethylsilyl)oxy)propan-1-ol ($0.22 \mathrm{~mL}, 1.0 \mathrm{mmol}$) was added to a stirred suspension of potassium carbonate ($106 \mathrm{mg}, 0.77 \mathrm{mmol}$) and 2-(chloromethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.047) (100 $\mathrm{mg}, 0.51 \mathrm{mmol}$) in the acetone (5 mL) and the resulting suspensions heated at $50{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, partitioned between $2-\mathrm{MeTHF}(50 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous layer was separated and the organic layer washed ($2 x$ water [10 mL], $1 x$ brine $[10 \mathrm{~mL}$]). The aqueous layer was extracted with DCM ($2 \times 20 \mathrm{~mL}$), all the organic portions combined, dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia to give the title compound 4.075 as a white solid ($9 \mathrm{mg}, 5 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 9.13(\mathrm{~s}, 2 \mathrm{H}), 8.74(\mathrm{~d}, \mathrm{~J}=5.0$ $\mathrm{Hz}, 2 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~s}, 4 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 319 ; 97 \%$ a/a.

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Si}$ Molecular Weight: 349.50

Sodium hydroxide ($184 \mathrm{mg}, 4.60 \mathrm{mmol}$) was added to a stirred suspension of 2-(chloromethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.047) (288 mg, 1.47 mmol) in 3-((tert-butyldimethylsilyl)oxy)propan-1-ol ($3.0 \mathrm{~mL}, 14 \mathrm{mmol}$) and the mixture heated to $90^{\circ} \mathrm{C}$ for 1 h and the resulting suspension cooled to room temperature, partitioned between water (10 mL) and EtOAc (60 mL). The aqueous layer was separated and the organic layer washed $[3 x$ water (10 mL), $1 \times$ brine (10 mL)], dried over MgSO_{4} and evaporated in vacuo to a pale yellow oil. The oil was purified by silica gel chromatography eluting with cyclohexane:EtOAc (10 -> 100\%) to give the title compound 4.077 as a white solid (53 mg , $10 \%):{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 9.73$ (br.s, 1 H), $9.10(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (d, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.57(\mathrm{~s}, 2 \mathrm{H}), 3.83-3.71(\mathrm{~m}, 4 \mathrm{H}), 1.90($ app. quin, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{~s}$, 9H), 0.08 (s, 6H); LRMS [M+H] ${ }^{+}$: 350; 100\% a/a.

2-((3-Hydroxypropoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.076)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 235.24

1M TBAF in THF ($0.23 \mathrm{~mL}, 0.23 \mathrm{mmol})$ was added to a solution of 2-((3-((tert-butyldimethylsilyl)oxy)propoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.077) (53 mg, 0.15 mmol) in THF (2 mL) and the resulting solution stirred overnight. The mixture was evaporated in vacuo to dryness and the residue purified by silica gel chromatography eluting with DCM: 2 M methanolic ammonia to give the title compound 4.076 as a white solid (25 mg, 70\%): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.50(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=$
$5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.21(\mathrm{~m}, 3 \mathrm{H}), 3.61(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{t}, \mathrm{J}=6.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.72 (app. quin, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{CNMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 161.1,156.7,150.9$, 146.5, 143.5, 127.0, 118.6, 70.5, 68.6, 58.2, 32.9; LRMS [M+H] ${ }^{+}$: 236; 100\% a/a; HRMS: $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 236.1030, found $[\mathrm{M}+\mathrm{H}]+236.1029$; IR: solid $v 3322,1685,1619$, $1494,1450,1423,1332,1120, \mathrm{~cm}^{-1}$; mp $159-162{ }^{\circ} \mathrm{C}$.

2-((2-Hydroxyethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.083) ${ }^{139}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 221.21
Sodium hydroxide ($78 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to a stirred solution of 2-(chloromethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.047) (100 mg, 0.511 mmol) in ethane-1,2-diol ($5.0 \mathrm{~mL}, 89 \mathrm{mmol}$) at $100{ }^{\circ} \mathrm{C}$ and the mixture heated for 3 h . The solution was allowed to cool to room temperature, evaporated in vacuo to dryness, 2 M aq. HCl added (2 mL), evaporated in vacuo to dryness and purified by MDAP (HPH, Method A, Xbridge column) to give the title compound 4.083 as a brown solid ($55 \mathrm{mg}, 49 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}\right.$, $400 \mathrm{MHz}) \delta 12.41$ (br.s, 1H), $9.03(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.88 (br.s, 1 H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 161.0$, $156.8,150.8,146.4,143.5,127.0,118.6,73.3,70.4,60.6 ;$ LRMS [M+H] ${ }^{+}$: 222; 100\% a/a; HRMS: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 222.0873, found $[\mathrm{M}+\mathrm{H}]^{+}$222.0874; IR: solid v 3149, $1679,1618,1423,1127,1061 \mathrm{~cm}^{-1} ; \mathrm{mp} 182-186^{\circ} \mathrm{C}$.

2-(Butoxymethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.084) ${ }^{139}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight: 233.27

Sodium hydroxide ($92 \mathrm{mg}, 2.3 \mathrm{mmol}$) was added to a stirred suspension of 2-(chloromethyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.047) (150 mg, 0.767 mmol$)$ and 3-((tert-
butyldimethylsilyl)oxy)propan-1-ol ($0.245 \mathrm{~mL}, 1.15 \mathrm{mmol}$) in 1-butanol (5 mL). The mixture was heated to $75^{\circ} \mathrm{C}$ for 30 min . The mixture was cooled to room temperature, partitioned between 1 M aq. citric acid (10 mL) and 2-MeTHF (60 mL) and the aqueous layer separated. The organic layer was washed [$2 x$ water (10 mL), 1 x brine (10 mL)], dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (0 -> 100\%) to give the title compound 4.084 as an off white solid (49 mg, 29\%): ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.52(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.65$ $(\mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=5.0,1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.5(\mathrm{~m}, 2 \mathrm{H})$, 1.42-1.29 (m, 2H), $0.89(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 161.1,156.6$, $150.9,146.5,143.5,127.0,118.5,70.8,70.5,31.6,19.2,14.2 ;$ LRMS $[M+H]^{+}: 234 ; 100 \% \mathrm{a} / \mathrm{a}$; HRMS: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 234.1107, found $[\mathrm{M}+\mathrm{H}]^{+}$234.1106; IR: solid v 1689, 1621, 1417, 1278, 1090, $1046 \mathrm{~cm}^{-1}$; mp $155-157^{\circ} \mathrm{C}$.

6.4.3 Schofield type compounds

Dimethyl [2,2'-bipyridine]-4,4'-dicarboxylate (4.089) ${ }^{146}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ Molecular Weight: 272.26

Thionyl chloride ($3.77 \mathrm{~mL}, 51.7 \mathrm{mmol}$) was added dropwise to a suspension of [2, $2^{\prime}-$ bipyridine]-4,4'-dicarboxylic acid ($5.05 \mathrm{~g}, 20.7 \mathrm{mmol}$) in methanol (410 mL). The resulting suspension refluxed overnight, cooled in an ice bath, filtered, the filtercake washed ($3 x$ MeOH [20 mL], 1x MeOH:TBME [1:1, 20 mL], $1 \times$ TBME [20 mL]) and dried in vacuo at $40^{\circ} \mathrm{C}$ to give a white solid. The solid was partitioned between DCM (150 mL) and sat. aq. NaHCO_{3} $(50 \mathrm{~mL})$. The organic layer was removed, the aqueous layer extracted ($3 \times \mathrm{DCM}[100 \mathrm{~mL}]$), the organic portions combined, dried over MgSO_{4} and evaporated to give the title compound 4.089 a as white solid ($1.39 \mathrm{~g}, 25 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.99(\mathrm{~s}, 2 \mathrm{H})$, $8.88(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 6 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 273,100 \% \mathrm{a} / \mathrm{a}$.

The filtrate from the initial filtration was evaporated in vacuo to a pink solid and the residue partitioned between sat. aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and $\mathrm{DCM}(100 \mathrm{~mL})$. The organic layer was removed and the aqueous portion extracted with DCM ($4 \times 100 \mathrm{~mL}$), the organic portions combined, dried and evaporated in vacuo to an off white solid. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia (0 -> 2 \%). The product containing fractions were evaporated in vacuo to give the title compound 4.089 as a white solid (2.28 g, 40\%): Analytical data as above.

3-Amino-2-chloroisonicotinamide (4.096) ${ }^{148}$

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CIN}_{3} \mathrm{O}$
Molecular Weight: 171.58
35% aq. Hydrogen peroxide ($2.06 \mathrm{~mL}, 23.6 \mathrm{mmol}$) was added dropwise over 45 min to a stirred suspension of 3-aminoisonicotinamide (2.81g, 20.5 mmol$)$ in fuming $\mathrm{HCl}(60 \mathrm{~mL}, 730$ mmol). The mixture was allowed to stir overnight, cooled in an ice bath and basified to pH 8 with 50% aq. NaOH . The resulting suspension was stirred for 30 min at room temperature, filtered, the collected solid washed with water (5 mL) and dried in vacuo. The filtrate was evaporated to dryness, combined with the dried, filtered solid and the mixture slurried in MeOH . The suspension was filtered, the filtrate adsorbed on to silica, evaporated in vacuo and purified by silica gel chromatography eluting with cyclohexane:EtOAc to give the title compound 4.096 as a white solid ($852 \mathrm{mg}, 24 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.16$ (br.s, 1 H$), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (br.s, 2H); LRMS [M+H] ${ }^{+}$: 172, 174; 92\% a/a.

8-Chloropyrido[3,4-d]pyrimidin-4(3H)-one (4.095) ${ }^{149}$

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{CIN}_{3} \mathrm{O}$
Molecular Weight: 181.58

Tosic acid monohydrate ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added to a stirred suspension of 3-amino-2chloroisonicotinamide (4.096) ($132 \mathrm{mg}, 0.769 \mathrm{mmol}$) in triethyl orthoformate ($2.5 \mathrm{~mL}, 15.03$ mmol) and ethanol (2.5 mL). The suspension was heated to reflux for 1 h , cooled to room temperature and the suspension evaporated to dryness in vacuo. The residue was triturated [2x EtOAc (1 mL)], filtered and dried in vacuo to give the title compound 4.095 as a white solid ($132 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.84$ (br.s, 1 H$), 8.45(\mathrm{~d}, \mathrm{~J}=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$; LRMS [M+H] ${ }^{+}$: 182, 184; 100\% a/a.

4-Oxo-3,4-dihydropyrido[3,4-d]pyrimidine-8-carbonitrile (4.094) ${ }^{150}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 172.14

Zinc cyanide ($69 \mathrm{mg}, 0.58 \mathrm{mmol}$) was added to stirred mixture of 8 -chloropyrido[3,4-d]pyrimidin-4(3H)-one (4.095) (106 $\mathrm{mg}, 0.583 \mathrm{mmol}$) in DMF (3 mL) under N_{2}. The resulting suspension was degassed under vacuum and backfilled with N_{2} ($x 3$), tetrakis-(triphenylphosphine)-palladium ($38 \mathrm{mg}, 0.033 \mathrm{mmol}$) added, the mixtures degassed under vacuum and backfilled with $\mathrm{N}_{2}(\mathrm{x} 2)$, heated to $90^{\circ} \mathrm{C}$ overnight and concentrated in vacuo to dryness. The residue was suspended in water, filtered, the filtercake washed [2x 2 M methanolic ammonia (2 mL), $1 \mathrm{xEt}_{2} \mathrm{O}(2 \mathrm{~mL})$] and air dried to give the title compound 4.094 as a white solid. ($96 \mathrm{mg}, 96 \%$, contained $20 \% 8$-chloropyrido[3,4-d]pyrimidin-4(3H)-one (4.095) w/w): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.28(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 173 ; 100 \%$ a/a.

8-Chloro-3-(4-methoxybenzyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.098)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{CIN}_{3} \mathrm{O}_{2}$
Molecular Weight: 301.73

4-Methoxybenzyl chloride ($0.84 \mathrm{~mL}, 6.2 \mathrm{mmol}$) was added to a stirred suspension of 8chloropyrido $3,4-d$]pyrimidin-4(3H)-one (4.095) (1.02g, 5.62 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.99 \mathrm{~g}, 7.2$ $\mathrm{mmol})$ and potassium iodide $(9.32 \mathrm{mg}, 0.056 \mathrm{mmol})$ and the suspension heated to $50^{\circ} \mathrm{C}$ overnight. The resulting suspension was partitioned between 2-MeTHF (50 mL) and water $(10 \mathrm{~mL})$. The aqueous layer was separated, the organic layer washed [2 x sat. aq. NaHCO_{3} (10 mL), $1 \times$ brine $(5 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to an off white solid. The residue was slurried in refluxing EtOAc (16 mL), cooled in an ice bath with stirring, filtered, the filter cake washed [1x EtOAc (16 mL), 1x EtOAc $(8 \mathrm{~mL})$] and dried in vacuo to give the title compound 4.098 as a white solid ($1.46 \mathrm{~g}, 86 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $8.47(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 302 ; 100 \% \mathrm{a} / \mathrm{a}$.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ Molecular Weight: 292.29

Tetrakis triphenyl phosphine palladium ($249 \mathrm{mg}, 0.215 \mathrm{mmol}$) was added to a vacuum degassed solution of zinc cyanide ($278 \mathrm{mg}, 2.370 \mathrm{mmol}$) and 8-chloro-3-(4-methoxybenzyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.098) (650 mg, 2.15 mmol) in DMF (20 mL) under N_{2}. The resulting suspension was vacuum degassed and backfilled with $\mathrm{N}_{2}(x 3)$, heated to $90{ }^{\circ} \mathrm{C}$ overnight and cooled to room temperature. The reaction mixture was partitioned between 2-MeTHF (15 mL) and water (5 mL). The aqueous layer was separated, the organic washed [$1 x$ water $(30 \mathrm{~mL}), 1 x$ brine $(30 \mathrm{~mL})$], dried over MgSO_{4} and evaporated to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (10 -> 100\%) to give a white solid containing the title compound 4.099 and triphenylphosphine oxide. The residue purified again by silica gel chromatography eluting with $\mathrm{DCM}: \mathrm{MeOH}$ ($0->2 \%$). The residue purified by silica gel chromatography eluting with DCM:EtOAc (0 -> 10) gave the title compound 4.099 as a white solid (572 mg , $91 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.80(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31-8.26(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 293 ; 100 \% \mathrm{a} / \mathrm{a}$.

$(4.100)^{153}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$
Molecular Weight: 309.32

Acetic anhydride ($0.082 \mathrm{~mL}, 0.87 \mathrm{mmol})$ was added to a stirred solution of N '-hydroxy-3-(4-methoxybenzyl)-4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-8-carboximidamide ($0.188 \mathrm{~g}, 0.578 \mathrm{mmol}$) in acetic acid (5 mL) and the resulting solution stirred for 30 min . 10% palladium on carbon ($0.031 \mathrm{~g}, 0.029 \mathrm{mmol}$) was added and the resulting suspension stirred under an atmosphere of hydrogen for 24 h . The mixture was filtered through celite and washed with acetic acid. The filtrate was evaporated in vacuo to dryness, the residue purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia to give the title compound 4.100 as a brown solid ($34 \mathrm{mg}, 19 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)} \mathbf{2}_{2}, 400 \mathrm{MHz}\right) \delta$ 10.03 (br.s, 3 H), 8.86 (s, 1H), 8.81 (d, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.28 (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38 (d, $J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS [M+H$]^{+}: 310 ; 91 \% \mathrm{a} / \mathrm{a}$.
N^{\prime}-Hydroxy-3-(4-methoxybenzyl)-4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-8carboximidamide (4.101) ${ }^{151}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$
Molecular Weight: 325.32

A solution of 2 M aq. sodium hydroxide ($0.34 \mathrm{~mL}, 0.68 \mathrm{mmol}$) was added to a stirred suspension of 3-(4-methoxybenzyl)-4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-8-carbonitrile (4.099) ($200 \mathrm{mg}, 0.684 \mathrm{mmol}$) and hydroxylamine hydrochloride ($48 \mathrm{mg}, 0.68 \mathrm{mmol}$) in ethanol (10 mL). The resulting suspension was stirred overnight at room temperature and heated to $60^{\circ} \mathrm{C}$ for 7 h . Further hydroxylamine hydrochloride ($48 \mathrm{mg}, 0.68 \mathrm{mmol}$) and 2 M aq. $\mathrm{NaOH}(0.34 \mathrm{~mL}, 0.68 \mathrm{mmol})$ were added, the mixture heated overnight, water (1 mL) added and the mixture cooled to room temperature. The resulting suspension was filtered, the filtercake washed [$2 \mathrm{x} \mathrm{EtOH}(5 \mathrm{~mL}$), 2 x TBME (5 mL)] and pulled to dryness under vacuum to give the title compound 4.101 ($188 \mathrm{mg}, 84 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)} \mathrm{I}_{2}, 400 \mathrm{MHz}\right) \delta$ $9.74(\mathrm{~s}, 1 \mathrm{H}) 8.70-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~d}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, 8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, 8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.90(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 326 ; 100 \%$ a/a.

3-(4-Methoxybenzyl)-4-oxo-1,2,3,4-tetrahydropyrido[3,4-d]pyrimidine-8-carboximidamide

 (4.102)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2}$
Molecular Weight: 311.34

Prepared by the same method as 4.100 to give the title compound 4.102 as a brown solid (42 mg, 23\%): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 600 \mathrm{MHz}$): $\delta 10.09$ (br.s, 1 H), $7.96(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (br.s, 2H), $6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.52$ (br.s, $2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}=312 ; 100 \% \mathrm{a} / \mathrm{a}$.

7-acetyl-8-(diaminomethylene)-3-(4-methoxybenzyl)-5,6,7,8-tetrahydropyrido[3,4-

dlpyrimidin-4(3H)-one (4.103)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}$
Molecular Weight: 355.39

Prepared by the same method as 4.100 to give the title compound 4.103 as a brown solid ($59 \mathrm{mg}, 29 \%$): ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 600 \mathrm{MHz}\right): \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{br}$. $\mathrm{s}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 4.96-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ - $4.48(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 356 ; 100 \%$ a/a.

3-(4-Methoxybenzyl)-8-(5-methyl-1,2,4-oxadiazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-one
$(4.106)^{161}$

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$
Molecular Weight: 349.34

Acetic anhydride ($3.2 \mathrm{~mL}, 34 \mathrm{mmol}$) was added to a stirred suspension of N '-hydroxy-3-(4-methoxybenzyl)-4-oxo-3,4-dihydropyrido[3,4-d]pyrimidine-8-carboximidamide (4.100) (117 $\mathrm{mg}, 0.360 \mathrm{mmol})$ in acetic acid $(2 \mathrm{~mL})$ and the resulting solution stirred at room temperature for 2 h , heated to $100^{\circ} \mathrm{C}$ for 1.5 h and cooled to room temperature. The solution was evaporated in vacuo and purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia to give the title compound 4.106 as a white solid (114 mg,

91\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.92(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 350 ; 100 \%$ a/a.

8-(5-Methyl-1,2,4-oxadiazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.107) ${ }^{163}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{~N}_{5} \mathrm{O}_{2}$
Molecular Weight: 229.19

A solution of 3-(4-methoxybenzyl)-8-(5-methyl-1,2,4-oxadiazol-3-yl)pyrido[3,4-d]pyrimidin$4(3 \mathrm{H})$-one (4.106) ($115 \mathrm{mg}, 0.329 \mathrm{mmol}$) in TFA (5 mL) was heated at $70^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature and evaporated in vacuo to dryness. The residue was triturated with a THF:water:conc. aq. ammonia mix, evaporated in vacuo to dryness, triturated with THF:water, filtered, washed ($\mathrm{MeOH}, 5 \mathrm{~mL}$) and the filtercake dried in vacuo at $40{ }^{\circ} \mathrm{C}$ overnight to give the title compound 4.107 as an almost white solid ($19 \mathrm{mg}, 25 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.74$ (br.s, 1 H$), 8.78(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) ; \operatorname{LRMS}[\mathrm{M}+\mathrm{H}]^{+}=230 ; 98 \% \mathrm{a} / \mathrm{a}$.

A second crop was isolated via the following method. The filtrate was evaporated in vacuo to dryness, dissolved in THF:water (1:1), and passed through a preconditioned 5 g aminopropyl cartridge. The cartridge was eluted with $\mathrm{MeOH}(20 \mathrm{~mL})$ and the filtrate evaporated in vacuo to a pale brown solid. The residue was purified by MDAP (Formic method A) to a give the title compound 4.107 as a white solid ($8 \mathrm{mg}, 11 \%$): Analytical data as above.

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$.TFA
Molecular Weight: 441.38

Tetrakis-(palladium)-triphenylphosphine ($57 \mathrm{mg}, 0.050 \mathrm{mmol}$) was added under N_{2} to a vacuum degassed suspension of 8-chloro-3-(4-methoxybenzyl)pyrido[3,4-d]pyrimidin$4(3 \mathrm{H})$-one (4.098) ($150 \mathrm{mg}, 0.497 \mathrm{mmol}$) and 0.5 M 2-pyridylzinc bromide in THF (1.09 mL , 0.547 mmol) in THF (4 mL). The resulting suspension was vacuum degassed, heated to reflux overnight and cooled to room temperature. The mixture was partitioned between sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and 2-MeTHF (10 mL). The aqueous layer was separated, the organic layer washed (2 x sat. aq. NaHCO_{3}), dried over MgSO_{4} and evaporated in vacuo to a brown solid. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia to give impure 4.110 which was purified by MDAP (TFA method B) to give the TFA salt of title compound $\mathbf{4 . 1 1 0}$ as a colourless gum ($81 \mathrm{mg}, 36 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 9.67(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.59-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.92 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.26 (s, 2H), 3.81 (s, 3H); LRMS [M+H] ${ }^{+}: 345 ; 100 \% \mathrm{a} / \mathrm{a}$.

8-(Pyridin-2-yl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.108) ${ }^{163}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 224.22

3-(4-Methoxybenzyl)-8-(pyridin-2-yl)pyrido[3,4-d]pyrimidin-4(3H)-one.TFA (4.110) (79 mg, 0.17 mmol) was stirred in TFA (2 mL) and the mixture heated to $75^{\circ} \mathrm{C}$ for 4 days, cooled to room temperature, evaporated in vacuo to a dark red gum and purified by MDAP (HPH method A). The product containing fractions were evaporated in vacuo to give the title compound 4.108 as a white solid ($12 \mathrm{mg}, 31 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.65$ (br.s, $1 \mathrm{H}), 8.78-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.21,(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.44$ (m, 1H); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 225 ; 100 \%$ a/a.

3-(4-Methoxybenzyl)-8-(4-methylpyridin-2-yl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.113) ${ }^{167}$

Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 358.39

2-Bromo-4-methylpyridine ($0.56 \mathrm{~mL}, 5.0 \mathrm{mmol}$) was added dropwise to a stirred solution of 2 M isopropylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}(2.75 \mathrm{~mL}, 5.50 \mathrm{mmol})$ under N_{2} in an ice bath keeping the internal temperature below $20^{\circ} \mathrm{C}$. Once the addition was complete the ice bath was removed and the suspension stirred at room temperature for 2 h . Further 2M isopropylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}(2.50 \mathrm{~mL}, 5.00 \mathrm{mmol})$ was added dropwise, keeping the internal temperature below $20^{\circ} \mathrm{C}$. The resulting suspension was stirred for 2 h , further 2 M isopropylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}$ ($2.75 \mathrm{~mL}, 5.50 \mathrm{mmol}$) added at room temperature and the mixture stirred for 1 h . The resulting brown solution was cooled in an ice bath and 0.5 M zinc chloride in THF ($35.0 \mathrm{~mL}, 17.5 \mathrm{mmol}$) added dropwise to give the organozinc compound 4.115 as a brown stock suspension at 0.11 M in $\mathrm{THF}: \mathrm{Et}_{2} \mathrm{O}$ (4.4:1).

Tetrakis-(palladium)-triphenylphosphine ($57 \mathrm{mg}, 0.050 \mathrm{mmol}$) was added to a vacuum degassed suspension of 8-chloro-3-(4-methoxybenzyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.098) ($150 \mathrm{mg}, 0.497 \mathrm{mmol}$) in the previously prepared suspension of (4-methylpyridin-2$\mathrm{yl})$ zinc(II) chloride in THF and $\mathrm{Et}_{2} \mathrm{O}$ ($6.78 \mathrm{~mL}, 0.746 \mathrm{mmol}$). The resulting suspension was vacuum degassed and heated to reflux overnight and cooled to room temperature,
partitioned between water $(10 \mathrm{~mL})$ and EtOAc $(30 \mathrm{~mL})$. The aqueous layer was separated, the organic layer extracted [$2 x$ water (10 mL), $1 x$ brine (5 mL)], the combined aqueous portions combined, extracted [4x DCM (20 mL)], the combined DCM portions dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->5 \%$) to give the title compound 4.113 as a pale brown solid ($40 \mathrm{mg}, 22 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.66(\mathrm{~d}, \mathrm{~J}$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.47(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70$ (d, J = 6.0 Hz, 1H), $7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.74(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 359 ; 88 \%$ a/a.

8-Chloro-3-((2-(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.116)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{CIN}_{3} \mathrm{O}_{2} \mathrm{Si}$
Molecular Weight: 311.84

2-(Trimethylsilyl)ethoxymethyl chloride ($2.19 \mathrm{~mL}, 12.4 \mathrm{mmol}$) was added to a stirred suspension of potassium carbonate $(2.28 \mathrm{~g}, 16.5 \mathrm{mmol})$ and 8 -chloropyrido[3,4-d]pyrimidin-4(3H)-one (4.095) (1.5 g, 8.3 mmol) in acetone (20 mL) and DMF (20 mL). The resulting suspension was heated to $50^{\circ} \mathrm{C}$ for 4 h and further potassium carbonate (2.28 g , 16.5 mmol) and 2-(trimethylsilyl)ethoxymethyl chloride ($2.19 \mathrm{~mL}, 12.4 \mathrm{mmol}$) added. The mixture was heated at $50{ }^{\circ} \mathrm{C}$ overnight, cooled to room temperature and partitioned between water (20 mL) and 2-MeTHF (100 mL). The aqueous layer was separated and the organic layer washed [2 x water $\left(20 \mathrm{~mL}\right.$), 1 x brine $(10 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a pale brown oil. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (0 -> 33\%) to give the title compound 4.116 as a white solid ($2.11 \mathrm{~g}, 82 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.49(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ $(\mathrm{s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}),-$ $0.01(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 159.4,151.0,148.0,145.8,140.6,129.4,118.8$, 75.1, 68.0, 18.0, -1.4; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 312 ; 100 \%$ a/a; HRMS: $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires
312.0935, found $[\mathrm{M}+\mathrm{H}]^{+} 312.0930$; IR: solid v 1699, 1602, 1378, 1248, 1152, $1089 \mathrm{~cm}^{-1}$; mp $86-89^{\circ} \mathrm{C}$.
tert-Butyl 2-bromoisonicotinate (4.117) ${ }^{173}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrNO}_{2}$
Molecular Weight: 258.11

DCC ($2.54 \mathrm{~mL}, 16.3 \mathrm{mmol}$) at $40{ }^{\circ} \mathrm{C}$ was added to a stirred solution of 2-bromoisonicotinic acid ($3.00 \mathrm{~g}, 14.9 \mathrm{mmol}$), tert-butanol ($2.13 \mathrm{~mL}, 22.3 \mathrm{mmol}$) and DMAP ($0.181 \mathrm{~g}, 1.49 \mathrm{mmol}$) in DCM (70 mL) and DMF (20 mL) under N_{2}. The resulting suspension was stirred over the weekend and evaporated in vacuo to a brown residue. The residue was partitioned between $\mathrm{EtOAc}(200 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The aqueous layer was separated, the organic layer washed [2 x sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a pale brown solid. The residue was purified by silica gel chromatography, eluting with cyclohexane:EtOAc (5 -> 33\%) to give the title compound 4.117 as a white solid (2.23 $\mathrm{g}, 58 \%):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.51(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}$, $J=1.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 258 \& 260 ; 100 \% \mathrm{a} / \mathrm{a}$

(2-Bromopyridin-4-yl)methanol (4.120) ${ }^{175}$

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{BrNO}$
Molecular Weight: 188.02

A solution of 1 M borane:THF complex in THF ($24.6 \mathrm{~mL}, 24.6 \mathrm{mmol}$) was added dropwise to a stirred suspension of 2-bromoisonicotinic acid ($1.98 \mathrm{~g}, 9.82 \mathrm{mmol}$) in THF (40 mL) under N_{2} at $0^{\circ} \mathrm{C}$. Upon completion of the addition the resulting suspension was stirred at room temperature for 2 h and heated to $60^{\circ} \mathrm{C}$ for 2 h . Further 1 M borane:THF complex in THF $(24.6 \mathrm{~mL}, 24.6 \mathrm{mmol})$ added at $60^{\circ} \mathrm{C}$ and stirred for 60 h under N_{2}. The resulting mixture was cooled to room temperature, water added dropwise until no further gas evolution was
noticed. $\mathrm{NaOH}(0.39 \mathrm{~g}, 9.8 \mathrm{mmol})$ was added and the mixture was refluxed for 1 h . The resulting suspension was cooled to room temperature, evaporated in vacuo to a white solid, dissolved with sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and extracted with DCM ($20 \mathrm{~mL} \times 8$). The combined organic extractions were dried over MgSO_{4} and evaporated in vacuo to a colourless oil. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (10 -> 66\%) to give the title compound 4.120 as a white solid (485 mg , 26\%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.34(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}$, 1H), 4.76 (s, 2H); LRMS [$\mathrm{M}+\mathrm{H}]^{+}: 188$ and 190; 100\% a/a

2-Bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)pyridine (4.121)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BrNOSi}$
Molecular Weight: 302.28

TBDMS-Cl ($504 \mathrm{mg}, 3.35 \mathrm{mmol}$) was added to a stirred solution of (2-bromopyridin-4yl)methanol (4.120) ($484 \mathrm{mg}, 2.57 \mathrm{mmol}$) and $1 H$-imidazole ($280 \mathrm{mg}, 4.12 \mathrm{mmol}$) in dry DMF (10 mL) under N_{2}. The resulting solution was allowed to stand overnight, evaporated in vacuo to dryness and the residue partitioned between TBME (50 mL) and water (10 mL). The aqueous layer was separated, the organic layer washed [$2 x$ water $(10 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a colourless oil. The residue was purified by silica gel chromatography, eluting with cyclohexane:EtOAc ($0->10 \%$) to give the title compound 4.121 as a colourless oil ($811 \mathrm{mg}, 96 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.30(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H})$; LRMS [M+H] ${ }^{+}: 302$ \& 304; 100\% a/a.

(4-(((tert-Butyldimethylsilyl)oxy)methyl)pyridin-2-yl)zinc chloride (4.122) ${ }^{174}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{CINOSiZn}$
Molecular Weight: 323.21

2-Bromo-4-(((tert-butyldimethylsilyl)oxy)methyl)pyridine (4.121) (2 g, 6.62 mmol$)$ was added dropwise to a stirred solution of 2 M isopropylmagnesium chloride in $\mathrm{Et}_{2} \mathrm{O}(9.9 \mathrm{~mL}$, 20 mmol) under N_{2} in an ice bath and the resulting orange suspension warmed to room temperature. The suspension was stirred for 30 min , cooled in an ice bath and 0.5 M zinc chloride in THF ($43.7 \mathrm{~mL}, 21.8 \mathrm{mmol}$) added dropwise, the mixture stirred for 1 h and used as a stock suspension without further manipulation.

8-(4-(((tert-Butyldimethylsilyl)oxy)methyl)pyridin-2-yl)-3-((2-(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.123) ${ }^{167}$

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}_{2}$
Molecular Weight: 498.77

A suspension of (4-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-2-yl)zinc(II) chloride in THF and $\mathrm{Et}_{2} \mathrm{O}$ (4.122) ($40.8 \mathrm{~mL}, 4.81 \mathrm{mmol}$) filtered through a $0.2 \mu \mathrm{~m}$ PES syringe filter was added to 8-Chloro-3-((2-(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.116) ($1.00 \mathrm{~g}, 3.21 \mathrm{mmol}$) under N_{2}. The resulting solution was vacuum degassed under N_{2}, tetrakis-(triphenylphosphine)-palladium ($0.37 \mathrm{~g}, 0.32 \mathrm{mmol}$) added, the resulting solution vacuum degassed, heated to $64{ }^{\circ} \mathrm{C}$ for 2 h and further tetrakis-(triphenylphosphine)-palladium ($0.371 \mathrm{~g}, 0.321 \mathrm{mmol}$) added. The mixture was vacuum
degassed and heated at $64{ }^{\circ} \mathrm{C}$ for 2 h and allowed to cool to room temperature overnight. The resulting suspension was eluted through a silica plug with first THF (250 mL), followed by $10 \% 2 \mathrm{M}$ methanolic ammonia in DCM (250 mL) and the basic fractions evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia to give a crude sample of the title compound 4.123 (1.16 g): LRMS $[\mathrm{M}+\mathrm{H}]^{+}$: 499; 72\% a/a.

Crude 4.123 ($60 \mathrm{mg}, 0.09 \mathrm{mmol}$, correcting for purity) was sub-sampled and purified by MDAP for characterisation data (HPH method E) to give the title compound 4.123 (18 mg): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.78(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H})$, 8.12 (d, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 ($\mathrm{s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 11 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H}),-0.04(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 499 ; 96 \% \mathrm{a} / \mathrm{a}$.

8-(4-(Hydroxymethyl)pyridin-2-yl)-3-((2-(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.124)

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 384.50

A solution of 1M TBAF in THF ($2.2 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added dropwise to a stirred solution of

8-(4-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-2-yl)-3-((2-(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.123) (1.1g, 2.2 mmol) in THF (42 mL) and the resulting orange suspension stirred for 1 h . The suspension was partitioned between EtOAc (100 mL) and aq. $\mathrm{NaCl}(20 \mathrm{~mL})$. The aqueous layer was separated and the organic layer washed [$2 x$ aq. $\mathrm{NaCl}(10 \mathrm{~mL}), 1 x$ brine $(10 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a yellow gum. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia (0 -> 7\%) giving the title compound 4.124 as a pale yellow solid ($519 \mathrm{mg}, 61 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.78$
$(\mathrm{s}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H})$, $7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=\mathrm{Hz}, 8.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 385 ; 100 \% \mathrm{a}$ a.

8-(4-(Hydroxymethyl)pyridin-2-yl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.125)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ Molecular Weight: 254.24

A solution of 1M TBAF in THF ($0.150 \mathrm{~mL}, 0.150 \mathrm{mmol}$) was added to a stirred solution of 8-(4-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-2-yl)-3-((2-
(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.123) (25 mg, 0.050 mmol) in THF (1 mL), the resulting solution was allowed to stand for 4 days. The reaction mixture was warmed to $60^{\circ} \mathrm{C}$ overnight, evaporated in vacuo to dryness and purified by MDAP (formic method A) to give the title compound 4.125 as a grey solid ($7 \mathrm{mg}, 55 \%$): ${ }^{1} \mathrm{H}$ NMR (SO(CD $\left.)_{2}, 600 \mathrm{MHz}\right) \delta 9.08(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.99(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=1.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H})$, exchangeable protons not observed; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 151 \mathrm{MHz}\right) \delta 163.8,159.2,148.8$, 147.1, 145.9, 144.0, 142.7, 141.9, 130.1, 124.4, 123.8, 122.4, 61.6; LRMS [M+H] ${ }^{+}: 255 ; 100 \%$ a/a; HRMS: $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$requires 255.0877, found $[\mathrm{M}+\mathrm{H}]^{+} 255.0874$.

2-(4-Oxo-3-((2-(trimethylsilyl)ethoxy)methyl)-3,4-dihydropyrido[3,4-d]pyrimidin-8-

 yl) isonicotinaldehyde $(4.126)^{177}$

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{Si}$
Molecular Weight: 382.49

Oxalyl chloride ($0.23 \mathrm{~mL}, 2.7 \mathrm{mmol}$) was added to a stirred solution of DMSO ($0.19 \mathrm{~mL}, 2.7$ $\mathrm{mmol})$ in dry $\mathrm{DCM}(6 \mathrm{~mL})$ under N_{2} at $-78{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 15 min , a solution of 8-(4-(hydroxymethyl)pyridin-2-yl)-3-((2-(trimethylsilyl)ethoxy)methyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.124) ($511 \mathrm{mg}, 1.33 \mathrm{mmol}$) in dry DCM (19 mL) was added dropwise keeping the internal temperature below $-60{ }^{\circ} \mathrm{C}$. The resulting suspension was stirred for 15 min and triethylamine (0.74 mL , 5.3 mmol) dried over MgSO_{4} added. The resulting solution was warmed with stirring to room temperature over 1 h and partitioned between DCM $(50 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The aqueous layer was removed and the organic layer washed [2 x water (10 mL)], dried over MgSO_{4} and evaporated with PhMe in vacuo to give the title compound 4.126 as a brown oil ($514 \mathrm{mg}, 81 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta} \delta\right.$ 10.18 ($\mathrm{s}, 1 \mathrm{H}$), $9.03(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.16$ (d, J = 5.0 Hz, 1H) 7.93 (dd, J = 1.5, 5.0 Hz, 1H), $5.40(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS of MeOH hemiacetal $[\mathrm{M}+\mathrm{H}]^{+}: 414$.

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}$
Molecular Weight: 398.49

Sodium chlorite ($483 \mathrm{mg}, 5.34 \mathrm{mmol}$) was added to a stirred solution of 2-(4-oxo-3-((2-(trimethylsilyl)ethoxy)methyl)-3,4-dihydropyrido[3,4-d]pyrimidin-8-yl)isonicotinaldehyde (4.126) ($511 \mathrm{mg}, 1.34 \mathrm{mmol}), 2$-methyl-2-butene ($1.0 \mathrm{~mL}, 9.4 \mathrm{mmol}$) and sodium phosphate monobasic ($817 \mathrm{mg}, 6.81 \mathrm{mmol}$) in tert-butanol (19.3 mL) and water (6.4 mL). The resulting orange solution turned to a yellow solution over 1 h , was evaporated in vacuo to dryness, partitioned between EtOAc (20 mL) and aq. formic acid at $\mathrm{pH} 4(5 \mathrm{~mL})$. The aqueous layer was separated, the organic layer washed ($3 x$ aq. formic acid at pH 4 [5 mL$]$), passed through a hydrophobic frit and evaporated in vacuo to give the title compound 4.127 as a white solid (252 mg, 47\%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.81(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (dd, J=1.5, 5.0 $\mathrm{Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 399 ; 100 \%$ a/a.

A second crop was isolated by combining the water portions, concentrating in vacuo to dryness and slurrying with EtOAc. The organic portion was decanted and evaporated in vacuo to give carboxylic acid 4.127 as a white solid ($59 \mathrm{mg}, 11 \%$): Analytical data as above.

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Si}$
Molecular Weight: 540.69

Oxalyl chloride ($37 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$) was added to a stirred suspension of 2-(4-oxo-3-((2-(trimethylsilyl)ethoxy)methyl)-3,4-dihydropyrido[3,4-d]pyrimidin-8-yl)isonicotinic acid (4.127) ($120 \mathrm{mg}, 0.301 \mathrm{mmol}$) in DCM under N_{2}. DMF ($5 \mu \mathrm{~L}, 0.07 \mathrm{mmol}$) was added to the resulting orange suspension and the suspension stirred for 40 min . The orange suspension was concentrated in vacuo to dryness and resuspended in dry DCM (5 mL). N-Bocethylenediamine ($67 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$) was added to the stirred suspension followed by triethylamine ($42 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) dried over MgSO_{4}. The resulting solution was stirred for 30 min and evaporated in vacuo to a brown oil. The residue was purified by silica gel chromatography eluting with $\mathrm{DCM}: 2 \mathrm{M}$ methanolic ammonia ($0->5 \%$) to give the title compound 4.128 as a pale yellow solid ($140 \mathrm{mg}, 86 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.90-$ $8.74(\mathrm{~m}, 3 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 1 \mathrm{H})$, $5.39(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 0.90$ (t, J = 8.0 Hz, 2H), -0.03 (s, 9H); LRMS [M+H] ${ }^{+}: 541 ; 98 \%$ a/a.
N-(2-Aminoethyl)-2-(4-oxo-3,4-dihydropyrido[3,4-d]pyrimidin-8-yl)isonicotinamide.
hydrochloride (4.086)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2} . \mathrm{HCl}$ Molecular Weight: 346.77

A solution of 5 N HCl in 2-propanol ($5.0 \mathrm{~mL}, 25 \mathrm{mmol}$) was added to a flask containing tertbutyl (2-(2-(4-oxo-3-((2-(trimethylsilyl)ethoxy)methyl)-3,4-dihydropyrido[3,4-d]pyrimidin-8yl)isonicotinamido)ethyl)carbamate (4.128) ($136 \mathrm{mg}, 0.252 \mathrm{mmol}$) and the resulting suspension stirred for 2 h . The suspension was heated to $60^{\circ} \mathrm{C}$ for 3 h and allowed to cool to room temperature overnight. The resulting suspension was filtered, washed [1x IPA (1 mL), $1 \times$ TBME (1 mL)] and dried in vacuo at $40^{\circ} \mathrm{C}$ for 1 h to give the title compound 4.086 as the mono HCl salt as an almost white solid ($79 \mathrm{mg}, 91 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta} \delta\right.$ $9.26(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.82(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~s}$, $1 \mathrm{H}), 8.23-8.03(\mathrm{~m}, 5 \mathrm{H}), 3.59(\mathrm{app} . q, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-2.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}\right.$, 101 MHz) $\delta 164.0,159.6,152.8,148.8,148.6,147.0,145.5,144.6,140.5,129.4,124.1$, 123.0, 120.9, 38.2, 37.4; LRMS [M+H] ${ }^{+}$: 311; 100% a/a; HRMS: $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}]^{+}$requires 311.1251, found [M] ${ }^{+} 311.1253$; IR solid: v 3317, 3042, 1645, 1539, 1448, 1295, $1121 \mathrm{~cm}^{-1}$; mp Decomp. $210{ }^{\circ} \mathrm{C}$.

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Si}_{2}$ Molecular Weight: 555.82

Oxalyl chloride ($40 \mu \mathrm{~L}, 0.45 \mathrm{mmol}$) was added to a stirred suspension of 2-(4-oxo-3-((2-(trimethylsilyl)ethoxy)methyl)-3,4-dihydropyrido[3,4-d]pyrimidin-8-yl)isonicotinic acid (4.127) ($129 \mathrm{mg}, 0.324 \mathrm{mmol}$) in DCM. DMF ($5 \mu \mathrm{~L}, 70 \mu \mathrm{~mol}$) was added to the resulting suspension, the suspension stirred for 1 h and evaporated in vacuo to dryness. The residue was resuspended in DCM (5 mL) and 2-((tert-butyldimethylsilyl)oxy)ethanamine (114 mg , 0.647 mmol) and triethylamine ($68 \mu \mathrm{~L}, 0.49 \mathrm{mmol}$) added. The resulting suspension was stirred for 1 h and evaporated to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia (0-> 4\%) to give the title compound 4.129 as a colourless gum ($63 \mathrm{mg}, 35 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.92$ $8.78(\mathrm{~m}, 3 \mathrm{H}), 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.23-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{dd}, \mathrm{J}=1.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 3.72$ $(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.82(\mathrm{~m}, 11 \mathrm{H}), 0.03(\mathrm{~s}$, 6H), -0.03 (s, 9H); LRMS [M+H] ${ }^{+}$:556; 83\% a/a.
N-(2-Hydroxyethyl)-2-(4-oxo-3,4-dihydropyrido[3,4-d] pyrimidin-8-yl)isonicotinamide

(4.130)

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}$
Molecular Weight: 311.30

A solution of 1 M TBAF in THF ($0.34 \mathrm{~mL}, 0.34 \mathrm{mmol}$) was added to a stirred solution of N -(2-((tert-butyldimethylsilyl)oxy)ethyl)-2-(4-oxo-3-((2-(trimethylsilyl)ethoxy)methyl)-3,4-dihydropyrido[3,4-d]pyrimidin-8-yl)isonicotinamide (4.129) (63 mg, 0.11 mmol) in THF (5 mL), the resulting solution heated to $60^{\circ} \mathrm{C}$ for 5 h and further $1 \mathrm{M} \mathrm{TBAF} \mathrm{in} \mathrm{THF} \mathrm{(} 0.34 \mathrm{~mL}$, $0.34 \mathrm{mmol})$ was added, the mixture heated at $110{ }^{\circ} \mathrm{C}$ under microwave conditions for 6 h and cooled to room temperature. The reaction mixture was evaporated in vacuo to dryness and purified by MDAP (HPH method A) to give the title compound 4.130 as a white
 $8.81-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.27-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ $(\mathrm{dd}, J=1.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=6.0,11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{app} . \mathrm{q}, J=$ 6.0 Hz, 2H); LRMS [M+H] ${ }^{+}$: 312; 100 a/a.

2-Mercaptopyrido[3,4-d] pyrimidin-4(3H)-one (4.138) ${ }^{181}$

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{OS}$
Molecular Weight: 179.20

3-Aminoisonicotinic acid ($12.1 \mathrm{~g}, 88.0 \mathrm{mmol}$) and thiourea ($8.02 \mathrm{~g}, 105 \mathrm{mmol}$) were mixed together as solids and heated to $160^{\circ} \mathrm{C}$ overnight. Water (120 mL) was added, the mixture cooled to $100{ }^{\circ} \mathrm{C}$ and then cooled slowly to room temperature. The resulting suspension was filtered, washed [water (20 mL), water: $\mathrm{MeOH}(1: 1,10 \mathrm{~mL}$), MeOH (10 mL), TBME (20 mL)] and dried in vacuo to give a the title compound as a pale brown solid ($9.85 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 12.87$ (br.s, 1 H$), 12.68(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, \mathrm{~J}=5.0$ Hz, 1H), 7.78 (d, J = 5.0 Hz, 1H); LRMS [M+H] ${ }^{+}: 180 ; 99 \% ~ a / a$.

2-(Ethylthio)pyrido[3,4-d]pyrimidin-4(3H)-one (4.139) ${ }^{182}$

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{OS}$
Molecular Weight: 207.25

1 M aq. sodium hydroxide ($146 \mathrm{~mL}, 146 \mathrm{mmol}$) was added to a fine suspension of 2-mercaptopyrido[3,4-d]pyrimidin-4(3H)-one ($9.85 \mathrm{~g}, 55.0 \mathrm{mmol}$) in methanol (146 mL) and the resulting suspension stirred for 5 min . Ethyl iodide ($5.33 \mathrm{~mL}, 66.0 \mathrm{mmol}$) was added, the resulting solution stirred for 2.5 hours, and $2 \mathrm{Maq} . \mathrm{HCl}(73 \mathrm{~mL})$ added. The resulting suspension was filtered, washed $[\mathrm{MeOH}(20 \mathrm{~mL})$, TBME $(20 \mathrm{~mL})]$ and dried in vacuo to give the title compound as an almost white solid (10.6 g, 92\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)} \mathrm{I}_{2}, 400 \mathrm{MHz}\right) \delta$ 12.86 (br.s, 1H), $8.90(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS [M+H] ${ }^{+}$: 208; 99\% a/a.

2-(Ethylsulfonyl)pyrido[3,4-d]pyrimidin-4(3H)-one (4.140) ${ }^{182}$

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Molecular Weight: 239.25
mCPBA ($8.99 \mathrm{~g}, 52.1 \mathrm{mmol}$) was added to a ground suspension of 2-(ethylthio)pyrido[3,4-d]pyrimidin-4 3 H)-one ($3.60 \mathrm{~g}, 17.4 \mathrm{mmol}$) in THF (180 mL) and the resulting suspension stirred under nitrogen overnight. The solvent was replaced by IPA (50 mL) and the resulting solid filtered, washed [IPA (10 mL), TBME (10 mL)] and the solid dried in vacuo at $40^{\circ} \mathrm{C}$ overnight to give an almost white solid. The solid was sonicated in THF (15 mL) for 10 min and evaporated in vacuo to give the title compound as a white solid ($2.34 \mathrm{~g}, 57 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 9.19(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=0.5,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ; \operatorname{LRMS}[\mathrm{M}+\mathrm{H}]^{+}: 240 ; 80 \% \mathrm{a} / \mathrm{a}$. 2-((1,3-dimethyl-1H-pyrazol-4-yl)oxy)pyrido[3,4-d]pyrimidin-4(3H)-one (4.141) ${ }^{183}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{2}$
Molecular Weight: 257.25
$60 \% \mathrm{w} / \mathrm{w}$ Sodium hydride in mineral oil ($115 \mathrm{mg}, 2.88 \mathrm{mmol}$) was added to a solution of 1,3-dimethyl-1H-pyrazol-4-ol ($105 \mathrm{mg}, 0.936 \mathrm{mmol}$) in DMF (5 mL) under N_{2} and the resulting suspension stirred for 5 min . 2-(Ethylsulfonyl)pyrido[3,4-d]pyrimidin-4(3H)-one (150 mg, 0.568 mmol) was added, the resulting suspension heated to $110^{\circ} \mathrm{C}$ for 1.5 h . The mixture was cooled to room temperature, acidified to pH 4 with a solution of 2 M HCl and diluted with ethyl acetate $(20 \mathrm{~mL})$. The aqueous layer was removed and the organic layer washed [$3 x$ water (5 mL), $1 x$ brine $(5 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a dark red solid. The residue was purified by silica gel chromatography eluting with DCM:MeOH (0 -> 6%) to give the title compound as a white solid ($9 \mathrm{mg}, 6 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta} \delta\right.$ 13.05 (br.s, 1H), $8.80(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (s, 3H), 2.07 (s, 3H); LRMS [M+H] ${ }^{+}$: 258; 100\% a/a.

6.4.5 Phthalizinones

3-Methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid (5.031)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$
Molecular Weight: 204.18

Method 1: ${ }^{273}$

Potassium permanganate ($58.0 \mathrm{~g}, 367 \mathrm{mmol}$) was added portionwise over 45 min to a stirred emulsion of Decon ${ }^{\circledR} 90$ (4 drops), 1,2,3,4-tetrahydronaphthalene ($6.78 \mathrm{~mL}, 49.9$ mmol) and sodium hydroxide ($1 \mathrm{~g}, 25.00 \mathrm{mmol}$) in water (100 mL). The mixture was heated to $90^{\circ} \mathrm{C}$ for 1 h and cooled to room temperature overnight. The resulting suspension was filtered through celite, IPA added with stirring until no purple colour remained, filtered and evaporated in vacuo to ${ }^{\sim} 120 \mathrm{~mL}$ of a brown suspension. Methylhydrazine ($4.14 \mathrm{~mL}, 79.0$ mmol) was added cautiously and the resulting colourless solution was heated to $90^{\circ} \mathrm{C}$ for 1 h. The solution was cooled in an ice bath and acidified with conc. aq. HCl until a white precipitate formed ($\sim \mathrm{pH} 3$). The suspension was filtered, washed [1 x water (20 mL), 1 x water:acetone (1:1, 10 mL), 1 x acetone $(5 \mathrm{~mL})$] and dried under suction to give the title compound 5.031 as a white solid (343 mg, 3.4\%). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.67$ (br.s, 1H), 8.56 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 8.32 (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.02-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.94-$ 7.86 (m, 1H), 3.79 (s, 3H); LRMS [M+H] ${ }^{+}: 205,99 \%$ a/a.

Further acetone (50 mL) was added to the filtrate, evaporated in vacuo to dryness and stirred in methanol (50 mL) for 1 h . The resulting suspension was filtered. The filtrate was evaporated to dryness, suspended in water (2 mL) and filtered. The filtered solid was washed [$3 x$ water $(10 \mathrm{~mL})$] and pulled to dryness under vacuum to give the title compound 5.031 as a white solid ($241 \mathrm{mg}, 2.4 \%$): Analytical data as above.

Method 2: ${ }^{278}$

Potassium permanganate ($24.7 \mathrm{~g}, 157 \mathrm{mmol}$) was added dropwise over 45 min to a stirred emulsion of 2'-methyl-acetophenone ($4.87 \mathrm{~mL}, 37.3 \mathrm{mmol}$) and potassium carbonate (3.22 $\mathrm{g}, 23.29 \mathrm{mmol})$ in water $(150 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$. The resulting solution was heated to $70^{\circ} \mathrm{C}$ for 2
h, ethanol (10 mL) added and cooled to room temperature. The resulting black suspension was filtered, washed [2x water (100 mL)], evaporated at 40 bar at $35{ }^{\circ} \mathrm{C}$ for 10 min and methylhydrazine ($2.54 \mathrm{~mL}, 48.4 \mathrm{mmol}$) added. The colourless solution was heated to $90^{\circ} \mathrm{C}$ for 15 min , and acetic acid (15 mL) added. The resulting solution was stirred for 2 hours at $70^{\circ} \mathrm{C}$ and cooled in an ice bath. The resulting solution was acidified to pH 0 with 37% aq. $\mathrm{HCl}(18 \mathrm{~mL})$ and the formed suspension filtered. The filtered solid was washed [2 x water $(20 \mathrm{~mL}), 1 x$ water:acetone (1:1, 10 mL$), 1 x$ acetone $(10 \mathrm{~mL}), 1 x$ TBME (5 mL)], pulled to dryness under vacuum and dried in vacuo at $40^{\circ} \mathrm{C}$ to give the title compound 5.031 as a white solid ($3.317 \mathrm{~g}, 44 \%$): ${ }^{1} \mathrm{H}$ NMR and LRMS data as above; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right.$) $\delta 164.9,159.1,136.1,134.2,132.5,128.0,127.4,126.7,126.6,40.0 ;$ HRMS: $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$requires 205.0608, found $[\mathrm{M}+\mathrm{H}]^{+}$205.0611; IR: v 3319, 1717, 1622, 1416, 1347, $1186 \mathrm{~cm}^{-1}$.

N-(2-Carbamoylphenyl)-3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxamide (5.027) ${ }^{111}$

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$
Molecular Weight: 322.32

Oxalyl chloride ($51.4 \mu \mathrm{~L}, 0.588 \mathrm{mmol}$) was added to a suspension of DMF ($5 \mu \mathrm{~L}, 0.065$ mmol) and 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid ($100 \mathrm{mg}, 0.490 \mathrm{mmol}$) in DCM (5 mL) under N_{2}. The suspension was stirred for 30 min , triethylamine ($102 \mu \mathrm{~L}$, 0.735 mmol) added, stirred for 5 min and 2-aminobenzamide ($133 \mathrm{mg}, 0.979 \mathrm{mmol}$) added. The resulting suspension was stirred for 10 min and stood overnight. The reaction mixture was diluted with EtOAc (15 mL) and 2-MeTHF (15 mL) and washed [3x sat. aq. sodium hydrogen carbonate (5 mL), 1x brine (5 mL)], dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:ethyl acetate ($10->100 \%$) to give the title compound 5.027 as a white solid (23 mg, 15\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.20(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}$
$=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.41-8.27(\mathrm{~m}, 2 \mathrm{H}), 8.05-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{dd}, \mathrm{J}=1.0$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (s, 3H); LRMS [M+H] ${ }^{+}$: 323, 91\% a/a.

2-((3-Methyl-4-oxo-3,4-dihydrophthalazin-1-yl)methoxy)benzamide (5.032) ${ }^{280}$

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 309.32

DBAD ($91 \mathrm{mg}, 0.39 \mathrm{mmol}$) was added to a stirred solution of 4-(hydroxymethyl)-2-methylphthalazin- $1(2 \mathrm{H}$)-one ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$), 2-hydroxybenzamide ($40 \mathrm{mg}, 0.29 \mathrm{mmol}$) and triphenylphosphine ($103 \mathrm{mg}, 0.394 \mathrm{mmol}$) in THF (5 mL) under N_{2}. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 41 h . The resultant suspension was filtered under vacuum and the white solid rinsed with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and pulled to dryness under vacuum for 20 min , to give the title compound $\mathbf{5 . 0 3 2}$ as a white solid ($53 \mathrm{mg}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.32$ (dd, J = 0.5, 8.0 Hz, 1H), $8.14(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.86(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}$, 1H), $7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 166.5,159.0,156.4,141.1,133.9,132.9,132.6,131.4$, $128.4,127.5,126.6,125.6,123.5,121.6,114.0,68.0,39.5 ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 310,100 \%$ a/a; HRMS: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 310.1186, found $[\mathrm{M}+\mathrm{H}]^{+} 310.1195$; IR: solid $v 3403$, $1688,1647,1591,1573,1484,1456 \mathrm{~cm}^{-1} ; \mathrm{mp}>250^{\circ} \mathrm{C}$.

2-(((3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)methyl)amino)benzamide (5.033)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 308.33

A solution of 4-(hydroxymethyl)-2-methylphthalazin-1(2H)-one ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) and triethylamine ($0.073 \mathrm{~mL}, 0.53 \mathrm{mmol}$) in DCM (5 mL) was cooled in an ice bath. Methanesulfonyl chloride ($0.023 \mathrm{~mL}, 0.29 \mathrm{mmol}$) was added over 1 min and the reaction mixture stirred under N_{2} for 30 min . Further methanesulfonyl chloride ($0.010 \mathrm{~mL}, 0.13$ mmol) was added and the reaction mixture stirred for 10 min . The reaction mixture was warmed to $20^{\circ} \mathrm{C}$ and 2-aminobenzamide ($54 \mathrm{mg}, 0.39 \mathrm{mmol}$) and potassium carbonate (55 $\mathrm{mg}, 0.39 \mathrm{mmol}$) were added in single portions. The resulting suspension was stirred for 1.5 h and heated at $40^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was partitioned between DCM (10 mL) and water (20 mL). The organic portion was removed and washed with water (20 mL) and evaporated in vacuo to a cream residue. The residue was purified by MDAP (Formic method B) to give the title compound 5.033 as a white solid ($3 \mathrm{mg}, 4 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}\right.$, $400 \mathrm{MHz}) \delta 8.89(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96$ (ddd, $J=1.5,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29$ (m, 1H), 7.16 (br.s, 1H), 7.00 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}$, 2H), 3.76 (s, 3H); LRMS [M+H] ${ }^{+}$: 309, 100\% a/a.

2-(((3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)amino)methyl)benzamide (5.034) ${ }^{132}$

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 308.33

A solution of 30% hydrogen peroxide in water ($0.056 \mathrm{ml}, 0.55 \mathrm{mmol}$) was added to a stirred suspension of potassium carbonate $(15 \mathrm{mg}, 0.11 \mathrm{mmol})$ and 2-((3 -methyl-4-oxo-3,4-dihydrophthalazin-1-yl)amino)methyl)benzonitrile ($16 \mathrm{mg}, 0.055 \mathrm{mmol}$) in DMSO (1 mL). The resulting suspension was stirred for 4 h and evaporated under a stream of nitrogen. The residue was suspended in water (1 mL), filtered, washed (water [1 mL]) and dried in vacuo at $40{ }^{\circ} \mathrm{C}$ to give the title compound 5.034 as a white solid ($10 \mathrm{mg}, 59 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.24(\mathrm{dd}, \mathrm{J}=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.79(\mathrm{~m}$,
$3 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{td}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, 2H), 3.51 (s, 3H); LRMS [M+H] ${ }^{+}$: 309, 97\% a/a.

2-Methyl-2,3-dihydrophthalazine-1,4-dione (5.038) ${ }^{276}$

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
Molecular Weight: 176.17

Phthalic anhydride ($2.00 \mathrm{~g}, 13.5 \mathrm{mmol}$) was added to acetic acid (12.8 mL) and the suspension stirred for 5 min . N-Methylhydrazine ($0.778 \mathrm{~mL}, 14.9 \mathrm{mmol}$) was added cautiously and the resulting suspension stirred for 3 h , filtered, the solid washed $[2 \mathrm{xAcOH}$ $(10 \mathrm{~mL}), 1 \times \mathrm{AcOH}:$ TBME $(1: 1,10 \mathrm{~mL}), 2 x$ TBME $(10 \mathrm{~mL})]$ and pulled to dryness under vacuum to give the title compound 5.038 as a white solid (1.602 g, 67\%): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400\right.$ $\mathrm{MHz}) \delta 11.63($ br.s, 1H), 8.29-8.18(m, 1H), 8.01-7.93(m, 1H), $7.93-7.83(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}$, $3 H)$; LRMS $[M+H]^{+}: 177,100 \%$ a/a.

2-(((3-Methyl-4-oxo-3,4-dihydrophthalazin-1-yl)oxy)methyl)benzonitrile (5.051) ${ }^{283}$

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight: 291.30
α-Bromo-2-tolunitrile ($117 \mathrm{mg}, 0.596 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ $(172 \mathrm{mg}, 0.624 \mathrm{mmol})$ and 2-methyl-2,3-dihydrophthalazine-1,4-dione ($100 \mathrm{mg}, 0.568$ mmol) in ethanol (0.1 mL) and acetonitrile (5 mL). The resulting suspension was stirred at room temperature for 16 h and the resulting suspension heated to $80^{\circ} \mathrm{C}$ for 24 h . The resulting black suspension was cooled to room temperature, paritioned between ethyl acetate $(20 \mathrm{~mL})$ and water (5 mL), filtered and the aqueous layer removed. The organic layer was washed (1 x water [5 mL], 1 x brine $\left[5 \mathrm{~mL}\right.$]), dried over MgSO_{4} and evaporated in
vacuo to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:ethyl acetate (10 -> 50\%) to give the title compound 5.051 as a white solid (128 mg, 77\%): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.28-8.24(\mathrm{~m}, 1 \mathrm{H}), 8.05-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.98-$ $7.88(\mathrm{~m}, 3 \mathrm{H}), 7.88-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{td}, \mathrm{J}=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{td}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.54 (s, 2H), 3.65 (s, 3H); LRMS: [M+H] ${ }^{+}$: 292, 92\% a/a.

2-(((3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)oxy)methyl)benzamide (5.035) ${ }^{132}$

Chemical Formula:
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 309.32
30% aq. hydrogen peroxide ($0.400 \mathrm{~mL}, 3.91 \mathrm{mmol}$) was added to a stirred suspension of 2-(((3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)oxy)methyl)benzonitrile (114 mg, 0.391 mmol) and potassium carbonate ($108 \mathrm{mg}, 0.783 \mathrm{mmol}$) in DMSO (5 mL). The resulting suspension was stirred for 30 min , and partitioned between water (5 mL) and ethyl acetate $(20 \mathrm{~mL})$. The aqueous layer was run off and the organic layer washed ($3 x$ water $[5 \mathrm{~mL}$], 1 x brine [5 mL]), dried over MgSO_{4} and evaporated in vacuo to a white solid. The residue was purified by silica gel chromatography eluting with cyclohexane:ethyl acetate (50-> 100\%) to give a white powder. The solid was triturated in hot methanol, cooled to $4{ }^{\circ} \mathrm{C}$ and filtered to give the title compound 5.035 as a white crystalline solid ($33 \mathrm{mg}, 27 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.29-8.22(\mathrm{~m}, 1 \mathrm{H}), 8.06-7.99(\mathrm{~m}$, 1H), $7.97-7.85(\mathrm{~m}, 3 \mathrm{H}), 7.71-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~s}$, $2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 170.8,158.0,149.1,136.6,135.0,133.7$, 132.9, 130.2, 129.1, 128.8, 128.3, 128.0, 126.8, 124.5, 123.9, 66.6, 38.8; LRMS: $[\mathrm{M}+\mathrm{H}]^{+}: 310$, 100% a/a; $\mathrm{HRMS}: \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$requires 310.1186 , found $[\mathrm{M}+\mathrm{H}]^{+} 310.1181$; IR: solid v $3324,1640,1585,1390,1332,1132,1100 \mathrm{~cm}^{-1}$; mp $217-222^{\circ} \mathrm{C}$.

The filtrate gave further solid on standing overnight. The filtrate was filtered to give a second crop of the title compound 5.035 as a white crystalline solid ($25 \mathrm{mg}, 20 \%$): Analytical data as above.

4-bromo-2-methylphthalazin-1(2H)-one (5.036) ${ }^{277}$

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}$
Molecular Weight: 239.07

Phosphorus (V) oxybromide ($1.67 \mathrm{~g}, 5.83 \mathrm{mmol}$) was added to a stirred suspension of 2-methyl-2,3-dihydrophthalazine-1,4-dione ($342 \mathrm{mg}, 1.94 \mathrm{mmol}$) and triethylamine (0.95 mL , 6.8 mmol) in toluene (10 mL) under N_{2}. The resulting suspension was heated to $115^{\circ} \mathrm{C}$ overnight and cooled to room temperature. The reaction mixture was partitioned between water (15 mL) and ethyl acetate $(80 \mathrm{~mL})$, the aqueous layer run off and the organic washed [$3 x$ water $(20 \mathrm{~mL}), 1 x$ brine $(10 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a brown solid. The residue was purified by silica gel chromatography and eluted with cyclohexane:ethyl acetate (5 -> 35\%) to give the title compound 5.036 as a white solid (228 $\mathrm{mg}, 34 \%$, correcting for 30% 1,4-dibromophthalazine present): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right)$ $\delta 8.44$ (dd, J = 1.0, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.97-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{td}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{td}, J=$ 1.5, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 239$ \& 241, 76\% a/a.

Methyl 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylate (5.039) ${ }^{277}$

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
Molecular Weight: 218.21

A solution of 4-bromo-2-methylphthalazin-1 2 H)-one ($100 \mathrm{mg}, 0.418 \mathrm{mmol}$), DPPF (28 mg , $0.050 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ in DMF (2.5 mL) and methanol (2.5 mL) was vacuum degassed with nitrogen, sparged with carbon monoxide for 5 min , heated to
$50{ }^{\circ} \mathrm{C}$ and triethylamine ($0.12 \mathrm{ml}, 0.84 \mathrm{mmol}$) added. The solution was stirred overnight, further DPPF ($28 \mathrm{mg}, 0.050 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(5.6 \mathrm{mg}, 0.025 \mathrm{mmol})$ and triethylamine (0.12 $\mathrm{ml}, 0.84 \mathrm{mmol})$ were added in DMF (0.5 mL) and methanol (0.5 mL) and the resulting suspension stirred for 4 days. The resulting black solution was cooled to room temperature and partitioned between ethyl acetate $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$. The aqueous layer was removed, the organic layer washed ($2 x$ water [3 mL], 1 x brine $\left[3 \mathrm{~mL}\right.$]), dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:ethyl acetate (5 -> 33\%) to give the title compound 5.039 as a white solid ($37 \mathrm{mg}, 41 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.64(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{dd}, J=$ $1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.94-7.86(\mathrm{~m}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 219,95 \%$ a/a.

Ethyl 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylate (5.041) ${ }^{279}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$
Molecular Weight: 232.24

Sulfuric acid ($0.026 \mathrm{~mL}, 0.49 \mathrm{mmol}$) was added to a stirred supsension of 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid ($1.00 \mathrm{~g}, 4.90 \mathrm{mmol}$). The suspension was heated at $80{ }^{\circ} \mathrm{C}$ for 2 days. The resulting solution was cooled to room temperature, partitioned between EtOAc (40 mL) and sat. aq. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous portion was removed and the organic layer washed ($2 x$ sat. aq. NaHCO_{3} [40 mL]). The combined aqueous portions were extracted with EtOAc (30 mL). The combined organic phases were evaporated in vacuo to a colourless oil which crystallised overnight. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (0 -> 50\%) to give the title compound 5.041 as a white solid ($1.00 \mathrm{~g}, 88 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.48$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, \mathrm{J}=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 1 \mathrm{H}), 4.43$ ($q, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \operatorname{LRMS}[\mathrm{M}+\mathrm{H}]^{+}: 233,100 \% \mathrm{a} / \mathrm{a}$.

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
Molecular Weight: 190.20

Sodium borohydride ($435 \mathrm{mg}, 11.5 \mathrm{mmol}$) was added in to a stirred solution of ethyl 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylate ($100 \mathrm{mg}, 0.431 \mathrm{mmol}$) in THF (2.5 mL) under N_{2}. The reaction mixture was stirred for 1 h under N_{2} at $20^{\circ} \mathrm{C}$ and heated to reflux for 65 h . The reaction mixture was cooled to room temperature and evaporated in vacuo to a white solid. The residue was partitioned between $\mathrm{DCM}(30 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. The organic portion was removed and the aqueous layer extracted with DCM ($2 \times 30 \mathrm{~mL}$). The combined organic layers were washed with water (50 mL) and evaporated in vacuo to a white solid. The residue was purified by silica gel chromatography eluting with $\mathrm{DCM}: \mathrm{MeOH}$ (0 -> 8\%) to give the title compound 5.042 as a white solid ($574 \mathrm{mg}, 79 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.29(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{td}, J=1.5$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.81(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$; LRMS [M+H] ${ }^{+}$: 191, 91\% a/a.

3-Methyl-4-oxo-3,4-dihydrophthalazine-1-carbaldehyde (5.043) ${ }^{176}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
Molecular Weight: 188.18

A solution of oxalyl chloride ($0.276 \mathrm{~mL}, 3.15 \mathrm{mmol}$) in DCM (12.5 mL) was cooled to $-70^{\circ} \mathrm{C}$ under N_{2}. DMSO ($0.448 \mathrm{~mL}, 6.31 \mathrm{mmol}$) was added over a period of 1 min and the reaction mixture stirred at $-70{ }^{\circ} \mathrm{C}$ for 30 min . A solution of 4-(hydroxymethyl)-2-methylphthalazin$1(2 \mathrm{H})$-one ($300 \mathrm{mg}, 1.58 \mathrm{mmol}$) in DCM (12.5 mL) was added dropwise over 15 min and the reaction mixture stirred for a further 15 min at $-70^{\circ} \mathrm{C}$. Triethylamine ($1.32 \mathrm{~mL}, 9.46 \mathrm{mmol}$) was added in a single portion and the reaction mixture warmed to $20^{\circ} \mathrm{C}$ and stirred for 1.5
h. The reaction mixture was diluted with DCM (10 mL) and washed with water (30 mL). The separated aqueous portion was further extracted with DCM ($2 x 30 \mathrm{~mL}$) and the combined organic phases were washed with water (100 mL). The resulting solution was evaporated in vacuo to give the title compound 5.043 as a cream solid ($296 \mathrm{mg}, 100 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}\right.$, $400 \mathrm{MHz}) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{ddd}, J=$ 1.5, 8.0, 8.0 Hz, 1H), $7.97-7.90(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$; LRMS [M+H] ${ }^{+}: 189,97 \%$ a/a.

2-Methyl-4-((phenylamino)methyl)phthalazin-1(2H)-one (5.044)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 265.31

Acetic acid (11 $\mu \mathrm{L}, 0.19 \mathrm{mmol}$) was added to a stirred solution of aniline ($0.019 \mathrm{~mL}, 0.21$ mmol) and 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carbaldehyde ($39 \mathrm{mg}, 0.19 \mathrm{mmol}$) in THF (5 mL) at $20{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min and sodium triacetoxyborohydride ($79 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added and the resulting solution stirred for 30 min . The reaction mixture was heated at $60^{\circ} \mathrm{C}$ under N_{2} for 1.5 h and further sodium triacetoxyborohydride ($79 \mathrm{mg}, 0.37 \mathrm{mmol}$) added and heated at $60^{\circ} \mathrm{C}$ for a further 30 min . A further portion of sodium triacetoxyborohydride ($79 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added, the reaction mixture stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h and cooled to $20^{\circ} \mathrm{C}$. The reaction mixture was partitioned between sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$. The organic portion was removed and the aqueous portion was extracted with EtOAc ($2 x 10 \mathrm{~mL}$). The organic portions were combined, washed with water (20 mL) and evaporated in vacuo to a solid. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (0 -> 75%) to give the title compound 5.044 as a white solid ($29 \mathrm{mg}, 59 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400\right.$ $\mathrm{MHz}) \delta 8.30(\mathrm{dd}, J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{ddd}, J=1.5,7.5,7.5 \mathrm{~Hz}$, 1H), $7.90-7.83$ (m, 1H), 7.10 (dd, J = 7.5, $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.75(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.60-6.54$ $(\mathrm{m}, 1 \mathrm{H}), 6.17(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ; \operatorname{LRMS}[\mathrm{M}+\mathrm{H}]^{+}: 266$, 100\% a/a.

tert-Butyl (3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)carbamate (5.046) ${ }^{282}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 275.30

3-Methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid ($200 \mathrm{mg}, 0.980 \mathrm{mmol}$) was stirred at $30{ }^{\circ} \mathrm{C}$ under N_{2} in $t-\mathrm{BuOH}(10 \mathrm{~mL})$ and triethylamine ($0.68 \mathrm{~mL}, 4.9 \mathrm{mmol}$). Diphenyl phosphorazidate ($0.42 \mathrm{~mL}, 2.0 \mathrm{mmol}$) was added in a single portion and the reaction mixture stirred for 1.5 h . The reaction mixture was heated to $75^{\circ} \mathrm{C}$ for a further 3 h , cooled to $20^{\circ} \mathrm{C}$ and partitioned between EtOAc $(20 \mathrm{~mL})$ and sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous layer was removed and the organic portion was washed sat. aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The combined aqueous phases were extracted with EtOAc (40 mL) and the combined organic portions evaporated in vacuo. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (20-> 70\%) to give the title compound 5.046 as a white solid (173 $\mathrm{mg}, 64 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, \mathrm{~J}=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-$ $7.92(\mathrm{~m}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 276,93 \%$ a/a.

4-Amino-2-methylphthalazin-1(2H)-one (5.047)

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 175.19
tert-Butyl (3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)carbamate (169 mg, 0.614 mmol$)$ was stirred in 5 M HCl in IPA (5 mL) at $20^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was evaporated in vacuo to a white solid. The residue was dissolved in MeOH , loaded onto a preconditioned SCX cartridge and eluted with MeOH , followed by 2 M methanolic ammonia. The basic fractions were evaporated in vacuo to give the title compound $\mathbf{5 . 0 4 7}$ as a white solid ($86 \mathrm{mg}, 80 \%$): $\left.{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.24(\mathrm{dd}, \mathrm{J}=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.79(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 176$, 100\% a/a.
N-(3-Methyl-4-oxo-3,4-dihydrophthalazin-1-yl)benzamide (5.048)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight: 279.29

Benzoyl chloride ($0.022 \mathrm{~mL}, 0.19 \mathrm{mmol}$) was added to a stirred solution of 4-amino-2-methylphthalazin-1 2 H)-one ($30 \mathrm{mg}, 0.17 \mathrm{mmol}$) and triethylamine ($0.048 \mathrm{~mL}, 0.34 \mathrm{mmol}$) in DCM (5 mL) at $20^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . A further benzoyl chloride ($0.022 \mathrm{~mL}, 0.19 \mathrm{mmol}$) and triethylamine ($0.048 \mathrm{~mL}, 0.34 \mathrm{mmol}$) were added and the reaction mixture stirred at $20^{\circ} \mathrm{C}$ for 1 h and heated to $40{ }^{\circ} \mathrm{C}$ for 6 h . Further benzoyl chloride ($0.022 \mathrm{~mL}, 0.19 \mathrm{mmol}$) and triethylamine ($0.048 \mathrm{~mL}, 0.34 \mathrm{mmol}$) were added and the reaction mixture stirred for 16 h . Further portion of benzoyl chloride $(0.022 \mathrm{~mL}, 0.19 \mathrm{mmol})$ and triethylamine ($0.048 \mathrm{~mL}, 0.34 \mathrm{mmol}$) were added and the reaction stirred for 6 h . Upon cooling to $20^{\circ} \mathrm{C}$, the reaction mixture was partitioned between DCM (10 mL) water (10 mL). The aqueous layer was removed and the organic portion was washed with water (2 x 10 mL) and evaporated in vacuo to dryness. The residue was purified by MDAP (Formic method B) to give the title compound 5.048 as a white solid ($8 \mathrm{mg}, 17 \%$): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 600 \mathrm{MHz}\right) \delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.30(\mathrm{~m}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 2 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 151 \mathrm{MHz}\right) \delta 167.2,158.5,138.5,133.3,133.0,132.2,132.1$, 128.5, 127.8, 127.6, 126.1, 125.5, 38.8 (carbon signals superimposed at 127.8); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 280,100 \%$ a/a.

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 288.30

2-Cyanobenzaldehyde ($42.7 \mathrm{mg}, 0.325 \mathrm{mmol}$) was added to a stirred suspension of 4-amino-2-methylphthalazin-1 $(2 \mathrm{H})$-one ($38 \mathrm{mg}, 0.22 \mathrm{mmol}$) and acetic acid ($0.015 \mathrm{~mL}, 0.26$ mmol) in DCM (3 mL). The resulting solution was allowed to stand overnight under N_{2} and sodium triacetoxyborohydride ($46.0 \mathrm{mg}, 0.217 \mathrm{mmol}$) added. The resulting solution was stirred for 8 h and allowed to stand overnight. The reaction mixture was purified by silica gel chromatography eluting with cyclohexane:EtOAc (5 -> 40\%) to give the title compound 5.050 as a yellow solid ($26 \mathrm{mg}, 42 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}$) $\delta 9.26(\mathrm{~s}, 1 \mathrm{H}), 8.41$ - 8.29 (m, 3H), 8.05-7.88(m, 4H), 7.84-7.76 (m, 1H), $8.81(\mathrm{~s}, 3 \mathrm{H})$; LRMS [M+H] ${ }^{+}: 289,100 \% \mathrm{a} / \mathrm{a}$; IR: v 2225, 1661, 1623, 1580, 1329, $1260 \mathrm{~cm}^{-1}$.

2-(((3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)amino)methyl)benzonitrile (5.049)

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 290.32

Sodium borohydride ($3.4 \mathrm{mg}, 0.090 \mathrm{mmol}$) was added to a stirred suspension of 2-(()3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)imino)methyl)benzonitrile ($26 \mathrm{mg}, 0.090 \mathrm{mmol}$) in a mixture of methanol $(1.0 \mathrm{~mL})$ and $\mathrm{DCM}(1.0 \mathrm{~mL})$. The resulting suspension was stirred for 1 h and evaporated to dryness under a stream of N_{2}. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (10 -> 50\%) to give the title compound 5.049 as a white solid (16 mg, 61\%): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.24$ (dd, J = 1.0, 8.0 Hz ,
$1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{td}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.58(\mathrm{~m}$, $3 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 291,100 \% \mathrm{a} / \mathrm{a}$.

Methods used for the synthesis of phthalizinone amides (Appendix A)

General Method A: Amide coupling using acid chloride intermediate. (5.057)

Oxalyl chloride (2.4 eq.) was added to a stirred suspension of 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid (1.0 eq.) in DCM (10 mL) under nitrogen. The suspension was stirred for $2 \mathrm{~min}, \mathrm{DMF}(0.05 \mathrm{~mL})$ added and the suspension stirred for 30 min. The reaction mixture was evaporated in vacuo to dryness and resuspended in DMF $(5.0 \mathrm{~mL})$. The relevant aniline (1.2 eq.) and triethylamine (1.0 eq.) were added, the mixtures stirred for 15 min , allowed to stand overnight. The mixture was evaporated to dryness and dissolved in a $2-\mathrm{MeTHF}$ and DCM mixture ($1: 1,50 \mathrm{~mL}$). The mixture was washed ($2 x$ sat. aq. NaHCO_{3} [10 mL], $2 x$ water [10 mL], $2 \mathrm{x} 2 \mathrm{M} \mathrm{HCl}[10 \mathrm{~mL}$], $1 x$ brine [10 $\mathrm{mL}]$), dried over MgSO_{4} and evaporated in vacuo to dryness. The residues were purified by silica gel chromatography to give the amide product.

General Method B: Amide coupling using CDI. (5.056)

CDI (1.2 eq.) was added to a stirred solution of 3-methyl-4-oxo-3,4-dihydrophthalazine-1carboxylic acid (1.0 eq.) in DMSO (5 mL). The resulting solution was stirred for 2 h , and the relevant aniline added (1.5 eq .). The resulting solution was stirred for 5 min and allowed to stand overnight. The reaction mixture was partitioned between ethyl acetate (50 mL) and sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous layer was removed and the organic layer washed (3x sat. aq. NaHCO_{3} [10 mL], $1 x$ brine [10 mL]), dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography to give the amide product.

General Method C: Amide coupling using T3P®.
$50 \% \mathrm{w} / \mathrm{v}$ T3P ${ }^{\circledR}$ in ethyl acetate (2.0 eq .) was added to stirred mixtures of DIPEA (3.3 eq.), 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid (100 mg, 0.490 mmol) and the relevant amine (1.2 eq.) in DCM (5 mL). The resulting mixture was stirred for 45 min . The reaction mixtures were partitioned between sat. aq. $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and ethyl acetate (5 mL). The aqueous layer was removed and the organic layer washed ($2 x$ aq. $\mathrm{NaHCO}_{3}[5 \mathrm{~mL}$, 1x brine [5 mL]), dried over MgSO_{4} and evaporated in vacuo to dryness. The residues were purified by silica gel chromatography.

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 336.39

Synthesised using general method B. The silica gel chromatography was eluted with DCM:2 M methanolic ammonia (0 -> 5\%) to give the title compound 5.056 as a white solid (79 mg , $51 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 10.58(\mathrm{~s}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{dd}, \mathrm{J}=1.0$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.31(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}$: 337, 100\% a/a.

3-Methyl-4-oxo-N-phenyl-3,4-dihydrophthalazine-1-carboxamide (5.057)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ Molecular Weight: 279.29

Synthesised using general method A. The silica gel chromatography was eluted with cyclohexane:EtOAc (10 -> 50\%) to give the title compound 5.057 as a white solid (53 mg , $26 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 10.63(\mathrm{~s}, 1 \mathrm{H}) 8.49(\mathrm{dd}, \mathrm{J}=0.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}) 8.35(\mathrm{dd}, J=}=\right.$ $1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.89-8.03(\mathrm{~m}, 2 \mathrm{H}) 7.80(\mathrm{dd}, J=1.0,8.5 \mathrm{~Hz}, 2 \mathrm{H}) 7.40(\mathrm{app} . \mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$ 7.16 (app.t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) 3.85(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}$: 280, 100\% a/a.

4-((Dimethylamino)methyl)-2-iodoaniline (5.058) ${ }^{287}$

Chemical Formula: $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{IN}_{2}$
Molecular Weight: 276.12

Barluenga's reagent ($0.996 \mathrm{~g}, 2.68 \mathrm{mmol}$) was added to a vigorously stirred suspension of 4((dimethylamino)methyl)aniline, hydrochloride ($0.500 \mathrm{~g}, 2.68 \mathrm{mmol}$) in DCM (7 mL) under N_{2}. The resulting suspension was stirred for 1 h , and sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and $10 \% \mathrm{w} / \mathrm{v}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ added. The organic layer was removed, the aqueous layer was extracted (3 x DCM [10 mL]), the organic layers combined, dried over MgSO_{4} and evaporated in vacuo to a black oil. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia (0 -> 10\%) to give the title compound 5.058 as a brown oil (275 mg , $\left.37 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.59(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 277,83 \% \mathrm{a} / \mathrm{a}$.

2-Amino-5-bromobenzonitrile (5.061) ${ }^{290}$

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{BrN}_{2}$ Molecular Weight: 197.03

NBS ($753 \mathrm{mg}, 4.23 \mathrm{mmol}$) dissolved in acetonitrile (7.5 mL) was added dropwise to a solution of 2-aminobenzonitrile ($500 \mathrm{mg}, 4.23 \mathrm{mmol}$) dissolved in acetonitrile (5 mL), stirring in an ice bath. The resulting solution was stirred for 1 h and evaporated to dryness over 2 days open to the atmosphere. The residue was purified by silica gel chromatography eluting with cyclohexane:DCM (5 -> 20\%) to give the title compound 5.061 as a white solid ($779 \mathrm{mg}, 93 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.59(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42$ (dd, $\mathrm{J}=2.5,9.0$ Hz, 1H), $6.74(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.25$ (br.s, 2H); LRMS [M+H] ${ }^{+}: 197$ \& 199, 96\% a/a.

2-Amino-5-((dimethylamino)methyl)benzonitrile (5.059) ${ }^{291}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3}$
Molecular Weight: 175.23

XPhos ($44 \mathrm{mg}, 0.091 \mathrm{mmol}$) was added to a vacuum degassed suspension of 2-amino-5bromobenzonitrile ($300 \mathrm{mg}, 1.52 \mathrm{mmol}$), potassium dimethylaminomethyltrifluoroborate ($276 \mathrm{mg}, 1.68 \mathrm{mmol}$), palladium(II) acetate ($10 \mathrm{mg}, 0.046 \mathrm{mmol}$) and cesium carbonate $(1.49 \mathrm{mg}, 4.57 \mathrm{mmol})$ in a mixture of CPME $(5.5 \mathrm{~mL})$ and water $(0.550 \mathrm{~mL})$. The resulting suspension was vacuum degassed and heated to $100{ }^{\circ} \mathrm{C}$ with stirring under nitrogen for 40 h. Further XPhos ($44 \mathrm{mg}, 0.091 \mathrm{mmol}$) added. The resulting suspension was heated to 95 ${ }^{\circ} \mathrm{C}$ for 5 h and palladium(II) acetate (10 $\mathrm{mg}, 0.046 \mathrm{mmol}$), potassium dimethylaminomethyltrifluoroborate ($276 \mathrm{mg}, 1.675 \mathrm{mmol}$) and cesium carbonate (1488 $\mathrm{mg}, 4.57 \mathrm{mmol})$ added. The reaction was heated at $95{ }^{\circ} \mathrm{C}$ over the weekend, and partitioned between water $(10 \mathrm{~mL})$ and ethyl acetate $(40 \mathrm{~mL})$. The aqueous layer was removed, the organic layer washed ($2 x$ aq. NaHCO_{3} [5 mL], $1 x$ brine [10 mL]), dried over MgSO_{4} and evaporated in vacuo to an orange gum. The residue was purified on a preconditioned SCX cartridge eluting with MeOH followed by 2 M methanolic ammonia. The basic fractions were evaporated in vacuo to dryness and the residue purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->5 \%$) to give the title compound 5.059 as a brown gum ($20 \mathrm{mg}, 8 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.26-7.18}\right.$ (m, 2H), 6.78-6.72(m, 1H), 5.94 (br.s, 2H), $3.20(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H})$; LRMS [M+H] ${ }^{+}: 176$, 93\% a/a.

2-Amino-5-bromobenzamide $(5.065)^{287}$

Chemical Formula: $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrN}_{2} \mathrm{O}$
Molecular Weight: 215.05

NBS (1.31 g, 7.34 mmol) dissolved in MeCN (15 mL) was added to an ice cold stirred solution of anthranilamide ($1.00 \mathrm{~g}, 7.34 \mathrm{mmol}$) in $\mathrm{MeCN}(10 \mathrm{~mL})$ and warmed to $20^{\circ} \mathrm{C}$. The solution was stirred for 5 min , the resulting suspension warmed to room temperature, filtered, washed (1x MeCN [5 mL], 1x TBME [5 mL]) and dried in vacuo to give the title compound 5.065 as a pale grey solid ($834 \mathrm{mg}, 53 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.83$ (br.s, 1H), 7.69 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (dd, $J=2.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (br.s, 1H), 6.70 (br.s, 2H), 7.25 (d, J = 9.0 Hz, 1H); LRMS [M+H] ${ }^{+}: 215$ \& 217, 100\% a/a.

2-Amino-5-cyanobenzamide (5.066) ${ }^{150}$

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$
Molecular Weight: 161.16

Zinc cyanide ($1.64 \mathrm{~g}, 14.0 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1.08 \mathrm{~g}, 0.930 \mathrm{mmol})$ were added to a solution of 2-amino-5-bromobenzamide ($2.00 \mathrm{~g}, 9.30 \mathrm{mmol}$) in DMF (10 mL). The mixture was heated to $150^{\circ} \mathrm{C}$ under microwave conditions for 30 min . The mixture was filtered and the filtrate diluted with EtOAc (50 mL) washed with brine ($3 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo. The residue was purified by silica gel chromatography eluting with pet ether:EtOAc (0 -> 30\%) to give the title compound 5.066 as a white solid (1.30 g,
 3H), 7.46 (br.s, 1H), 6.77 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H})$; LRMS [M+H] ${ }^{+}$: 162, 100\% a/a.

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
Molecular Weight: 265.31
$\mathrm{NaBH}_{4}(1.88 \mathrm{~g}, 49.6 \mathrm{mmol})$ was added to a solution of 2-amino-5-cyanobenzamide (1.00 g, $6.20 \mathrm{mmol})$ and $\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}(1470 \mathrm{mg}, 6.20 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ over 30 min . Di-tert-butyl dicarbonate ($1.35 \mathrm{~g}, 6.20 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ and stirred at $20^{\circ} \mathrm{C}$ for 30 min . N^{1}-(2-Aminoethyl)ethane-1,2-diamine ($0.640 \mathrm{~g}, 6.20 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ and stirred at $20^{\circ} \mathrm{C}$ for 30 min . The mixture was diluted with aq. $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and extracted (2 x EtOAc [50 mL]). The combined organic phases were washed (2 x brine [50 mL]), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with pet ether:EtOAc ($0->60 \%$) to obtain a crude product, which was washed with DCM (5 mL) to give the title compound 5.067 as a white solid (814 mg , $49 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=2.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H})$, exchangeable protons not seen; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 266$, 99% a/a.
tert-Butyl 3-carbamoyl-4-(3-methyl-4-oxo-3,4-dihydrophthalazine-1-
carboxamido)benzylcarbamate (5.068)

50% T3P ${ }^{\circledR}$ in ethyl acetate ($312 \mathrm{mg}, 0.980 \mathrm{mmol}$) was added to a stirred suspension of 3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid ($100 \mathrm{mg}, 0.490 \mathrm{mmol}$), tert-butyl 4-amino-3-carbamoylbenzylcarbamate ($156 \mathrm{mg}, 0.588 \mathrm{mmol}$) and DIPEA ($0.28 \mathrm{~mL}, 1.6 \mathrm{mmol}$) in DCM (5 mL). The reaction mixture was stirred for 2 h and the resulting suspension
diluted with EtOAc (5 mL), filtered and the solid washed with EtOAc (5 mL) and dried in vacuo to give the title compound 5.068 as a white solid ($170 \mathrm{mg}, 77 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}\right.$, $400 \mathrm{MHz}) \delta 13.01(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.34$ (dd, J=1.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.26 (br.s, 1H), $8.03-7.96$ (m, 1H), $7.95-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.80(b r . s, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=1.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.85 (s, 3H), 1.41 (s, 9H); LRMS [M+H] ${ }^{+}$: 452, 100\% a/a

N-(4-(Aminomethyl)-2-carbamoylphenyl)-3-methyl-4-oxo-3,4-dihydrophthalazine-1-
carboxamide, hydrochloride salt (5.063)

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} . \mathrm{HCl}$
Molecular Weight: 387.82

5 M HCl in IPA ($5.0 \mathrm{~mL}, 25 \mathrm{mmol}$) was added to tert-butyl 3-carbamoyl-4-(3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxamido)benzylcarbamate ($170 \mathrm{mg}, 0.377 \mathrm{mmol}$) and the resulting suspension stirred for 3 h . The suspension was heated to $80^{\circ} \mathrm{C}$ for 30 min , cooled to $20^{\circ} \mathrm{C}$ and evaporated under a stream of nitrogen. The residue was stirred in TBME (3 mL) for 2 h and filtered. The resulting solid was washed ($2 x$ TBME [3 mL]) and dried in vacuo to a give the title compound as the HCl salt of 5.063 as a white solid ($127 \mathrm{mg}, 87 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.13(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.41 (br.s, 3H), 8.35 (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (br.s, 1H), 8.16 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.04-$ $7.89(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{dd}, J=2.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 170.8,162.0,159.3,139.3,135.5,134.1,133.3,132.5,130.7,128.7$, 128.1, 127.7, 127.1, 126.6, 120.6, 120.2, 42.4, 40.3; LRMS [M+H] ${ }^{+}: 352,100 \%$ a/a; HRMS: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}]^{+}$requires 352.1404 , found $[\mathrm{M}]^{+} 352.1416$; IR: solid $v 2990,1670,1638,1591$, $1527,1389,1355,1306 \mathrm{~cm}^{-1} ; \mathrm{mp}>250^{\circ} \mathrm{C}$

6-Fluoro-3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid (5.069) ${ }^{278}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{3}$
Molecular Weight: 222.17

Potassium permanganate ($21.3 \mathrm{~g}, 135 \mathrm{mmol}$) was added portionwise over 45 min to an emulsion of 4'-fluoro-2'-methylacetophenone ($4.88 \mathrm{~g}, 32.1 \mathrm{mmol}$) and potassium carbonate $(2.77 \mathrm{~g}, 20.04 \mathrm{mmol})$ in water $(150 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$. The resulting mixture was heated to $70^{\circ} \mathrm{C}$ overnight, ethanol (10 mL) added and the mixture cooled to room temperature. The suspension was filtered, the filtercake washed ($1 x$ water (10 mL) , 1 x ethanol:water (1:1 [10 mL]), 1 x water (10 mL]), partially evaporated in vacuo (20 min at 40 mbar), acidified with acetic acid (15 mL), methylhydrazine ($2.18 \mathrm{~mL}, 41.7 \mathrm{mmol}$) added and the solution heated to $70^{\circ} \mathrm{C}$ for 4 h . The solution was cooled in an ice bath, acidified with conc. HCl to pH 0 and the suspension filtered. The filtercake was washed [1x water (5 mL), 1 x water:acetone (1:1, $5 \mathrm{~mL}), 1 \mathrm{x}$ acetone $(5 \mathrm{~mL})$] and dried in vacuo at $40^{\circ} \mathrm{C}$ to give the title compound $\mathbf{5 . 0 6 9}$ as a pale yellow solid ($2.74 \mathrm{~g}, 39 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 13.72$ (br.s, 1 H$), 8.70$ (dd, $\mathrm{J}=$ $5.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{td}, J=3.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 223,98 \% \mathrm{a} / \mathrm{a}$.

6-((2-(Dimethylamino)ethyl)amino)-3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid $(5.071)^{292}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$
Molecular Weight: 290.32
N, N-Dimethylethyleneamine ($0.1 \mathrm{~mL}, 0.9 \mathrm{mmol}$) was added to a suspension of 6-fluoro-3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxylic acid (100 $\mathrm{mg}, 0.450 \mathrm{mmol}$) and potassium carbonate ($156 \mathrm{mg}, 1.13 \mathrm{mmol}$) in DMSO (2.5 mL). The resulting suspension was
stirred under microwave conditions at $150{ }^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was stirred under microwave conditions at $200^{\circ} \mathrm{C}$ for 1 h and stirred under microwave conditions at $150{ }^{\circ} \mathrm{C}$ for 8 h . The resulting mixture was dissolved in MeOH :Water (10 mL) and loaded on to a preconditioned SCX cartridge. The cartridge was eluted with MeOH followed by 2 M methanolic ammonia. The basic fractions were evaporated in vacuo to a brown gum, dissolved in MeOH and loaded on to a preconditioned aminopropyl cartridge. The column was eluted with MeOH , followed by acetic acid. The acetic acid fractions were evaporated in vacuo to give the title compound 5.071 as a pale brown solid ($52 \mathrm{mg}, 40 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=2.5,9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 4 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}$, 6H); LRMS [M+H] ${ }^{+}$: 291, 99\% a/a.

N -(2-Carbamoylphenyl)-6-((2-(dimethylamino)ethyl)amino)-3-methyl-4-oxo-3,4-dihydrophthalazine-1-carboxamide (5.054)

Synthesised using general method C. The silica gel chromatography was eluted with DCM:2 M methanolic ammonia (0 -> 6\%) to give an impure product. The residue was purified by MDAP (HPH method B) to give the title compound 5.054 as a brown gum ($2.2 \mathrm{mg}, 3 \%$): ${ }^{1} \mathrm{H}$ NMR (SO(CD $\left.)_{3}, 400 \mathrm{MHz}\right) \delta 13.02(\mathrm{~s}, 1 \mathrm{H}), 8.77-8.66(\mathrm{~m}, 2 \mathrm{H}), 8.28$ (br.s, 1H), 7.85 (dd, $J=$ 1.5, 8.0 Hz, 1H), 7.79 (br.s, 1H), 7.57 (ddd, J = 1.5, 7.5, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.28-7.22$ (m, 2H), 7.19 (td, J = $1.0 \mathrm{~Hz}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.50-$ 2.46 (peak obscured by DMSO), 2.21, (s, 6H); LRMS [M+H] ${ }^{+}$: 409, 88\% a/a.

6.4.6 Aminopyridazinones

4-Chloro-5-((4-fluorobenzyl)amino)-2-methylpyridazin-3(2H)-one (5.028) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{CIFN}_{3} \mathrm{O}$
Molecular Weight: 267.69

4-Fluorobenzylamine ($0.114 \mathrm{~mL}, 1.01 \mathrm{mmol}$) was added to a suspension of 4,5-dichloro-2-methyl-3(2H)-pyridazinone ($0.15 \mathrm{~g}, 0.838 \mathrm{mmol}$) in DIPEA ($0.468 \mathrm{~mL}, 2.68 \mathrm{mmol}$) and DMSO $(0.5 \mathrm{~mL})$. The resulting suspension was heated to $130^{\circ} \mathrm{C}$ for 1 h under microwave conditions. The reaction mixture was partitioned between water (10 mL) and DCM (10 mL). The organic layer was removed and the aqueous layer extracted [2x DCM (10 mL)]. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo to a brown solid. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (10 -> 80%) to give the title compound 5.028 as a white solid ($129 \mathrm{mg}, 57 \%$): 1H NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=5.5,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21$ - $7.14(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 161.3(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CF}}=244 \mathrm{~Hz}\right), 156.7,144.4,135.2,128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CF}}=8.0 \mathrm{~Hz}\right), 126.3,115.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=21 \mathrm{~Hz}\right)$, 105.2, 44.4, 39.4; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 268,100 \%$ a/a; HRMS: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{CIFN} 3 \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires 268.0647, found $[\mathrm{M}+\mathrm{H}]^{+}$268.0643; IR: v 3283, 1642, 1604, 1506, 1455, 1312, $1220 \mathrm{~cm}^{-1}$; mp 211-213 ${ }^{\circ} \mathrm{C}$

5-Chloro-4-methylpyridazin-3(2H)-one (5.092) ${ }^{304}$

Chemical Formula: $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CIN}_{2} \mathrm{O}$
Molecular Weight: 144.56

A solution of 3 M methylmagnesium bromide in diethyl ether ($91.0 \mathrm{~mL}, 273 \mathrm{mmol}$) was added dropwise over 15 min to a stirred suspension of 4,5-dichloropyridazin-3(2H)-one (15 $\mathrm{g}, 91 \mathrm{mmol})$ in THF (300 mL) was cooled in an ice/water bath under N_{2}. The resulting solution was stirred for 10 min , warmed to $20^{\circ} \mathrm{C}$ and stirred for 6 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(150$ mL) was added dropwise over 10 min . The reaction mixture was partitioned EtOAc (400 mL) and 2 M aq. hydrochloric acid (350 mL). The organic portions were removed, the aqueous portions extracted [EtOAc ($2 \times 200 \mathrm{~mL}$)] and the organic portions combined and evaporated in vacuo. The resulting dark orange solid was triturated with $\mathrm{Et}_{2} \mathrm{O}(600 \mathrm{~mL})$, filtered and the filtrate evaporated in vacuo to give the title compound 5.092 as an orange solid (10.20 g, 78\%): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 11.67$ (br.s, 1 H), 7.78 (s, 1H), $2.30(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 145,97 \%$ a/a.

5-Chloro-2,4-dimethylpyridazin-3(2H)-one (5.093) ${ }^{301}$

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{CIN}_{2} \mathrm{O}$
Molecular Weight: 158.59
$60 \% \mathrm{w} / \mathrm{w}$ Sodium hydride in mineral oil ($0.899 \mathrm{~g}, 22.48 \mathrm{mmol}$) was added portionwise to a stirred solution of 5-chloro-4-methylpyridazin-3(2H)-one ($2.5 \mathrm{~g}, 17 \mathrm{mmol}$) in DMF (60 mL) under N_{2}. The resulting purple suspension was stirred for 10 min and iodomethane (1.5 ml , 24 mmol) added dropwise over 1 min . The resulting solution was stirred for 2 h , quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and 2 M aq. $\mathrm{HCl}(100 \mathrm{~mL})$ added. The resulting green solution was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), the combined organic portions dried over MgSO_{4} and evaporated in vacuo to a brown oil. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc ($0->30 \%$) to give an impure solid. The residue was purified
by silica gel chromatography eluting with $\mathrm{DCM}: \mathrm{MeOH}(0->2 \%)$ to give the title compound 5.093 as a white solid ($640 \mathrm{mg}, 23 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 3.64$ (s, 3H), 2.15 (s, 3H); LRMS [M+H] ${ }^{+}$: 159, 100\% a/a.

5-((1H-Pyrazol-3-yl)amino)-4-chloro-2-isopropylpyridazin-3(2H)-one (5.101) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{CIN}_{5} \mathrm{O}$
Molecular Weight: 253.69

4,5-Dichloro-2-isopropylpyridazin-3(2H)-one ($100 \mathrm{mg}, 0.483 \mathrm{mmol}$), DIPEA ($200 \mathrm{mg}, 1.545$ mmol) and DIPEA ($200 \mathrm{mg}, 1.545 \mathrm{mmol}$) were suspended in DMSO (0.4 mL) and heated under microwave conditions at $120{ }^{\circ} \mathrm{C}$ for 4.5 h . The reaction mixture was purified by MDAP (HPH method B) to give an impure yellow solid which was purified by silica gel chromatography eluting with cyclohexane:EtOAc (40 -> 80\%) to give the title compound 5.101 as a white solid ($4 \mathrm{mg}, 3 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.90(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.83-8.52(\mathrm{~m}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 6.13(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{spt}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 1.35 (d, J = 6.5 Hz, 6H); LRMS: 254, 100\% a/a.

Method used for the synthesis of 4-methyl substituted aminopyridazinones General method $E^{305}(5.109,5.127,5.131,5.140)$

5-Chloro-2,4-dimethylpyridazin-3(2H)-one (1.0 eq.), the amine (1.5 eq.), Brettphos palladacycle (0.1 eq).), Brettphos (0.1 eq .) and sodium tert-butoxide (1.2 eq .) in 1,4-Dioxane (0.16 M) were heated under microwave conditions at $100^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled to $20^{\circ} \mathrm{C}$, diluted with water (20 mL) and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The organic phases were dried over MgSO_{4}, evaporated in vacuo to dryness and purified.

2,4-Dimethyl-5-(pyridin-2-ylamino)pyridazin-3(2H)-one (5.109)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 216.24

Synthesised using general method E. Heated for 30 min. Purified by MDAP (Formic method A) to give the title compound 5.109 as a white solid ($51 \mathrm{mg}, 37 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400\right.$ $\mathrm{MHz}) \delta 8.71$ (br.s, 1H), $8.49(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{dd}, \mathrm{J}=1.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=2.0,7.5,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}$: 217, 98\% a/a.
tert-Butyl 5-((1,5-dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline-2(1H)-carboxylate (5.107)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$
Molecular Weight: 370.45

Synthesised using general method E. Purified by silica gel chromatography eluting with cyclohexane:EtOAc (50 -> 80\%) to give the title compound 5.107 as a white solid (323 mg , $69 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}),(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{app} . \mathrm{d}, \mathrm{J}=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.30(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}$, 2H), $2.12(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 371,100 \%$ a/a.

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 270.33
tert-Butyl 5-((1,5-dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline$2(1 \mathrm{H})$-carboxylate ($320 \mathrm{mg}, 0.864 \mathrm{mmol}$) was stirred in a solution of 5 M HCl in IPA (5.00 $\mathrm{mL}, 25.0 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$ for 3 h . The resulting solution was evaporated in vacuo to a brown solid and dissolved in THF:water (1:1). The solution was loaded on to a preconditioned SCX cartridge and eluted with MeOH , followed by 2 M methanolic ammonia. The basic fractions were evaporated in vacuo to give the title compound 5.105 as a pale brown solid (212 mg , 91\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62$ (t, J = 6.0 Hz, 2H), $2.12(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 271,100 \% \mathrm{a} / \mathrm{a}$.

2,4-Dimethyl-5-((2-methyl-1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one

$(5.121){ }^{309}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 284.36

A solution of 37% formaldehyde in water with $10-15 \%$ methanol ($15 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) and formic acid $(30 \mu \mathrm{~L}, 0.78 \mathrm{mmol})$ were added to 2,4-dimethyl-5-((1,2,3,4-tetrahydroisoquinolin-5-yl)amino) pyridazin-3(2H)-one ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) in a sealed tube and heated to $80^{\circ} \mathrm{C}$ in an oven for 24 h . The solution was cooled to room temperature and diluted with $\mathrm{MeOH}(1 \mathrm{~mL})$. The solution was loaded on to a 2 g SCX cartridge and eluted with $\mathrm{MeOH}(10 \mathrm{~mL})$, followed by 2 M methanolic ammonia (10 mL). The basic fractions
were evaporated in vacuo to give the title compound 5.121 as an almost white solid (45 mg , $85 \%):{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.96(\mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.49$ ($\mathrm{s}, 3 \mathrm{H}$), $2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 101 \mathrm{MHz}$): 161.8, 142.8, 137.1, 137.0, 128.9, 128.6, 126.6, 124.2, 122.2, 112.8, 58.0, 52.5, 46.0, 39.9, 25.5, 9.1; LRMS [M+H] ${ }^{+}: 285,100 \%$ a/a; HRMS: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires 285.1340, found $[\mathrm{M}+\mathrm{H}]^{+}$285.1345; IR: solid v 3226, 1583, $1428,1397,1315,1128 \mathrm{~cm}^{-1}$; mp $211-216^{\circ} \mathrm{C}$.

5-((2-Isopropyl-1,2,3,4-tetrahydroisoquinolin-5-yl)amino)-2,4-dimethylpyridazin-3(2H)-one $\mathbf{(5 . 1 2 2)}^{310}$

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 312.41

Sodium triacetoxyborohydride ($78.0 \mathrm{mg}, 0.370 \mathrm{mmol}$) was added to a stirred suspension of 2,4-dimethyl-5-((1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one (50.0 mg, $0.185 \mathrm{mmol})$, acetic acid ($0.012 \mathrm{~mL}, 0.20 \mathrm{mmol}$) and acetone ($0.027 \mathrm{~mL}, 0.37 \mathrm{mmol}$) in DCM $(4 \mathrm{~mL})$. The resulting suspension was stirred overnight. Further acetone ($0.027 \mathrm{~mL}, 0.37$ mmol) and sodium triacetoxyborohydride ($78 \mathrm{mg}, 0.370 \mathrm{mmol}$) were added and the resulting suspension stirred for 4 h . The reaction mixture was quenched with water (2 mL) and $\mathrm{MeOH}(3 \mathrm{~mL})$. The resulting solution was loaded on to a preconditioned SCX cartridge and eluted with $\mathrm{MeOH}(20 \mathrm{~mL})$, followed by 2 M methanolic ammonia (20 mL). The basic fractions were evaporated in vacuo to give the title compound 5.122 as a white solid (48 $\mathrm{mg}, 87 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{spt}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.58$ (m, 4H), 1.93 (s, 3H), 1.05 (d, J = 6.5 Hz, 6H); LRMS [M+H]+: 313, 100\% a/a.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 312.41

Sodium triacetoxyborohydride ($78 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added to a stirred suspension of 2,4-dimethyl-5-((1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one (50.0 mg, $0.185 \mathrm{mmol})$, acetic acid ($0.012 \mathrm{~mL}, 0.20 \mathrm{mmol}$) and propionaldehyde ($0.027 \mathrm{~mL}, 0.37$ mmol) in $\mathrm{DCM}(4 \mathrm{~mL})$. The resulting solution was stirred for 30 min and sat. aq. $\mathrm{NaHCO}_{3}(5$ mL) was added to the reaction mixture. The resulting biphasic mixture was extracted with EtOAc (10 mL). The organic portion was washed [1x sat. aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL}), 1 x$ brine (2 $\mathrm{mL})$], dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->5 \%$) to give the title compound 5.123 as a white solid ($34 \mathrm{mg}, 59 \%$) : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.58(\mathrm{~s}$, $1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}$, 3 H), $2.69-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.54$ (app.sxt, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 0.89 (t, J = 7.5 Hz, 3H); LRMS [M+H] ${ }^{+}: 313,97 \% \mathrm{a} / \mathrm{a}$.

5-((2-acetyl-1,2,3,4-tetrahydroisoquinolin-5-yl)amino)-2,4-dimethylpyridazin-3(2H)-one

$(5.124)^{311}$

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
Molecular Weight: 312.37

Acetic anhydride ($0.021 \mathrm{~mL}, 0.22 \mathrm{mmol}$) was added to a stirred suspension of 2,4-dimethyl-5-((1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one ($50.0 \mathrm{mg}, 0.185 \mathrm{mmol}$) in acetonitrile (1 mL). The resulting suspension was stirred for 1 h and partitioned between EtOAc (10 mL) and aq. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The aqueous layer was separated, the organic layer washed [$1 x$ aq sat. $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, $1 x$ brine $(2 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to a white foam. The residue was purified by silica gel chromatography eluting with DCM: MeOH ($0->5 \%$) to give the title compound 5.124 as a white solid ($40 \mathrm{mg}, 69 \%$): ${ }^{1} \mathrm{H}$ NMR (SO(CD $\left.)_{2}, 400 \mathrm{MHz}\right) \delta 7.29$ (br.s, 1H), 7.20 (app.t, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (s, 1H), 7.05 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=6.0 \mathrm{~Hz}$, 2H), 2.05 (s, 3H), 1.94 (s, 3H); LRMS [M+H] ${ }^{+}$: 313, 100\% a/a.
tert-Butyl 8-((1,5-dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline-2(1H)-carboxylate (5.127)

Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$
Molecular Weight: 370.45

Synthesised using general method E. Purified by silica gel chromatography eluting with cyclohexane:EtOAc ($0->80 \%$) to give the title compound 5.127 as a brown solid (135 mg , $58 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 5 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}$, 9H); LRMS [M+H] ${ }^{+}: 371,100 \%$ a/a.

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O} . \mathrm{HCl}$
Molecular Weight: 306.79
tert-Butyl 8-((1,5-dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline$2(1 \mathrm{H})$-carboxylate ($128 \mathrm{mg}, 0.346 \mathrm{mmol}$) was added to a solution of 5 M HCl in IPA (2.00 $\mathrm{mL}, 10.0 \mathrm{mmol}$) and stirred at $20^{\circ} \mathrm{C}$ overnight. The reaction mixture was evaporated in vacuo to give the hydrochloride salt of the title compound 5.125 as a brown solid (102 mg , $96 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 9.57(b r . s, 2 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.11-2.98(\mathrm{~m}$, $2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 161.4$ 143.5, 137.9, 134.3, 129.8, 128.3, $126.2,125.2,123.7,113.3,41.2,25.3,10.9$ (some peaks obscured by DMSO); LRMS [M+H] ${ }^{+}$: 271, 100% a/a; $\mathrm{HRMS}: \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}]^{+}$requires 271.1534, found [M] ${ }^{+} 271.1533$; IR: solid v $3282,2746,1594,1581,1429,1396,1276,1181 \mathrm{~cm}^{-1} ; \mathrm{mp}>250^{\circ} \mathrm{C}$.

5-((2-(hydroxymethyl)phenyl)amino)-2,4-dimethylpyridazin-3(2H)-one (5.131)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight: 245.28

Synthesised by general method E. Purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->10 \%$) to give the title compound 5.131 as a brown gum (61 $\mathrm{mg}, 40 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.71$ (br.s, 1 H$), 7.47(\mathrm{dd}, \mathrm{J}=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$
$(\mathrm{s}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H})), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, \mathrm{J}=1.0,8.0 \mathrm{~Hz}), 5.35(\mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}$, 1 H), 4.52 (d, J = $5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$; LRMS: $[\mathrm{M}+\mathrm{H}]^{+}: 246,100 \% \mathrm{a} / \mathrm{a}$.

2-((1,5-Dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)benzaldehyde (5.132) ${ }^{313}$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$
Molecular Weight: 243.26

Manganese dioxide ($256 \mathrm{mg}, 2.50 \mathrm{mmol}$) was added to a solution of 5-((2-(hydroxymethyl)phenyl)amino)-2,4-dimethylpyridazin-3(2H)-one ($61 \mathrm{mg}, 0.25 \mathrm{mmol}$) in acetone (25 mL). The reaction was heated to reflux stirred overnight and filtered through celite and concentrated in vacuo. The residue purified by silica gel chromatography eluting with cyclohexane:EtOAc (10-> 60\%) to give the title compound 5.132 as a yellow solid (45 $\mathrm{mg}, 73 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 10.04$ (s, 1H), 9.47 (br.s, 1H), 7.94 (s, 1H), 7.86 (dd, J = 1.5, 7.5 Hz, 1H), 7.62-7.56 (m, 1H), 7.19-7.10(m, 2H), 3.64 (s, 3H), $2.01(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: \mathbf{2 4 4}, 100 \%$ a/a.

2,4-dimethyl-5-((2-((methylamino)methyl)phenyl)amino)pyridazin-3(2H)-one (5.133) ${ }^{314}$

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 258.32

Sodium triacetoxyborohydride ($434 \mathrm{mg}, 2.05 \mathrm{mmol}$) was added to a solution of 2-((1,5-dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)benzaldehyde ($83 \mathrm{mg}, 0.34 \mathrm{mmol}$) methylamine hydrochloride ($46 \mathrm{mg}, 0.68 \mathrm{mmol}$) and acetic acid ($2 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in DCM (5 mL). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 3 h . Methylamine $33 \% \mathrm{w} / \mathrm{v}$ in ethanol ($85 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) was added, the reaction mixture was stirred under N_{2} overnight. The
reaction mixture was diluted with $\operatorname{EtOAc}(20 \mathrm{~mL})$, washed [1 x sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$], the aqueous portion was extracted with [2x EtOAc (10 mL)] and the combined organic layers were dried over MgSO_{4} and evaporated in vacuo. The residue was purified by silica gel chromatography eluted with DCM: 2 M methanolic ammonia ($0->7.5 \%$) to give the title compound 5.133 as a white solid ($39 \mathrm{mg}, 44 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 9.35$ (br.s, $1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{app} . \mathrm{td}, \mathrm{J}=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS [M+H]+: 259, 100\% a/a.

5-((2-((dimethylamino)methyl)phenyl)amino)-2,4-dimethylpyridazin-3(2H)-one (5.134) ${ }^{314}$

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 272.35

Sodium triacetoxyborohydride ($233 \mathrm{mg}, 1.10 \mathrm{mmol}$) was added to a mixture of 2-($1,5-$ dimethyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)benzaldehyde ($45 \mathrm{mg}, 0.18 \mathrm{mmol}$), dimethylamine hydrochloride ($30 \mathrm{mg}, 0.37 \mathrm{mmol}$) and acetic acid ($1 \mu \mathrm{~L}, 0.02 \mathrm{mmol}$) in DCM $(5 \mathrm{~mL})$. The reaction mixture was stirred under $\mathrm{N}_{2} 2.5 \mathrm{~h}$ and further dimethylamine hydrochloride ($30 \mathrm{mg}, 0.37 \mathrm{mmol}$) added. The reaction mixture was stirred for 30 min and sodium triacetoxyborohydride ($233 \mathrm{mg}, 1.10 \mathrm{mmol}$) was added. The reaction was stirred for 2 h and 2 M dimethylamine solution in THF ($0.2 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added and the reaction was stirred for 30 min . Further sodium triacetoxyborohydride ($233 \mathrm{mg}, 1.10 \mathrm{mmol}$) was added, the reaction mixture was stirred for 3.5 h and concentrated in vacuo, loaded on to a preconditioned SCX cartridge and eluted with $\mathrm{MeOH}(20 \mathrm{~mL})$ followed by 2 M methanolic ammonia (20 mL). The basic fractions were concentrated in vacuo and the white residue purified by silica gel chromatography eluting with DCM: 2 M methanolic ammonia (0 -> 5\%) to give the title compound 5.134 as a white solid ($4 \mathrm{mg}, 8 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta$ 9.21 (br.s, 1H), 7.84 (s, 1H), $7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.02$ (app.td, J = 1.0, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 6 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$; LRMS [M+H]+: 273, 100\% a/a.
tert-Butyl 5-((5-chloro-1-isopropyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline-2(1H)-carboxylate (5.140)

Molecular Weight: 418.92

Synthesised using general method E. Purified by MDAP (Formic method D) to give the title
 7.31 - $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{spt}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H}) ; \operatorname{LRMS}[\mathrm{M}+\mathrm{H}]^{+}: 419$, 100\%, a/a.

4-Chloro-2-isopropyl-5-((1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one

(5.141)

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 318.80
tert-Butyl 5-((5-chloro-1-isopropyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline-2(1H)-carboxylate ($10 \mathrm{mg}, 0.024 \mathrm{mmol}$) was stirred in a 5 M solution of HCl in IPA ($5.0 \mathrm{~mL}, 25 \mathrm{mmol}$) at $20^{\circ} \mathrm{C}$ for 1.5 h . The volatiles were removed in vacuo and the residue was purified on a preconditioned SCX cartridge eluting with $\mathrm{MeOH}(20 \mathrm{~mL})$ followed by 2 M methanolic ammonia (20 mL) to give the title compound 5.141 as a white solid (6.6 $\mathrm{mg}, 87 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}$, $2 \mathrm{H}), 6.60(\mathrm{spt}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.22(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 6 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 319,100 \%, \mathrm{a} / \mathrm{a}$.

4-Chloro-5-iodo-2-methylpyridazin-3(2H)-one (5.147) ${ }^{320}$

Chemical Formula: $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CIIN}_{2} \mathrm{O}$
Molecular Weight: 270.46

Sodium iodide ($3.00 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added to a stirred solution of 4,5-dichloro-2-methylpyridazin-3(2H)-one ($1.79 \mathrm{~g}, 10.0 \mathrm{mmol}$) in DMF $(20 \mathrm{~mL})$ under N_{2}. The reaction mixture was heated to $150{ }^{\circ} \mathrm{C}$ for 24 h . Further sodium iodide ($3.00 \mathrm{~g}, 20.0 \mathrm{mmol}$) was added and the reaction mixture stirred overnight. The resulting solution was slurried with water (20 mL), filtered and washed [2 x water (5 mL), 1 x TBME (4 mL)]. The solid was dried in vacuo to give the title compound 5.147 as a pale brown solid ($1.528 \mathrm{~g}, 56 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 271,86 \% \mathrm{a}$ a.
tert-Butyl
5-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline-2(1H)-carboxylate (5.143a) ${ }^{318}$

Chemical Formula: $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{CIN}_{4} \mathrm{O}_{3}$
Molecular Weight: 390.86
tert-Butyl 5-amino-3,4-dihydroisoquinoline-2(1H)-carboxylate ($92 \mathrm{mg}, 0.370 \mathrm{mmol}$), 4-chloro-5-iodo-2-methylpyridazin-3(2H)-one (100 $\mathrm{mg}, 0.370 \mathrm{mmol}$), palladium(II) acetate (11 $\mathrm{mg}, 0.048 \mathrm{mmol}$), cesium carbonate ($205 \mathrm{mg}, 0.629 \mathrm{mmol}$) and BINAP ($41 \mathrm{mg}, 0.067 \mathrm{mmol}$) were suspended in toluene (3 mL). The suspension was heated under microwave conditions at $80^{\circ} \mathrm{C}$ for 16 h . The resulting black solution was diluted with toluene (20 mL), washed [$2 x$ water $\left(10 \mathrm{~mL}\right.$), $1 x$ brine $(5 \mathrm{~mL})$], dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by MDAP (Formic method C) to give a the title compound 5.143a as white solid ($96 \mathrm{mg}, 66 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.33(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.23$
$(\mathrm{m}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}, J=5.5$ Hz, 2H), $2.64(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS [M+H]+: 391, 100\% a/a.

4-Chloro-2-methyl-5-((1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)-one (5.143)

Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 290.75
tert-Butyl 5-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)-3,4-dihydroisoquinoline-2(1H)-carboxylate ($16 \mathrm{mg}, 0.041 \mathrm{mmol}$) was stirred in a 5 M solution of HCl in IPA ($2.0 \mathrm{~mL}, 10 \mathrm{mmol}$) for 2 h . The reaction mixture was evaporated in vacuo to dryness and purified on to a 2 g SCX cartridge eluting with MeOH followed by 2 M methanolic ammonia to give unsubstituted the title compound 5.143 as a brown solid (6.4 $\mathrm{mg}, 54 \%):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.08$ - $7.01(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.53$ (peak obscured by DMSO); LRMS [M+H]+: 291, 99\% a/a.

4-Chloro-2-methyl-5-((2-methyl-1,2,3,4-tetrahydroisoquinolin-5-yl)amino)pyridazin-3(2H)one $(5.144)^{318}$

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 304.77

2-methyl-1,2,3,4-tetrahydroisoquinolin-5-amine ($70 \mathrm{mg}, 0.43 \mathrm{mmol}$), 4-chloro-5-iodo-2-methylpyridazin-3(2H)-one (117 mg, 0.431 mmol), palladium (II) acetate ($11 \mathrm{mg}, 0.048$ mmol), cesium carbonate ($205 \mathrm{mg}, 0.629 \mathrm{mmol}$) and BINAP ($41 \mathrm{mg}, 0.067 \mathrm{mmol}$) were suspended in toluene (3 mL) and heated to $80^{\circ} \mathrm{C}$ under microwave conditions for 4 h . The
reaction mixture was partitioned between EtOAc $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$ and the aqueous layer removed. The organic layer was washed ($1 x$ water [3 mL], 1 x brine [3 mL]), dried over MgSO_{4} and evaporated in vacuo to a brown gum. The residue was purified by MDAP (HPH method B) to give the title compound 5.144 as a white solid ($19 \mathrm{mg}, 14 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.29$ (br.s, 1 H), 7.22 (app.t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12 (s, 1H), $7.10-7.05$ $(\mathrm{m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right)_{2}, 101 \mathrm{MHz}\right) \delta 157.8,142.6,137.4,135.4,130.4,126.8,126.7,125.7,123.8$, 109.3, 57.9, 52.4, 45.9, 40.3, 25.6; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 305,100 \%$ a/a; HRMS: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ requires 305.1162 , found $[\mathrm{M}+\mathrm{H}]^{+} 305.1164$; IR: solid v 2789, 1635, 1610, 1334, 1301, 1127 $\mathrm{cm}^{-1} ; \mathrm{mp} 167-171^{\circ} \mathrm{C}$.
tert-Butyl 2-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)benzylcarbamate $\mathbf{(5 . 1 4 8)}^{318}$

Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{CIN}_{4} \mathrm{O}_{3}$
Molecular Weight: 364.83
tert-Butyl 2-aminobenzylcarbamate (99 mg, 0.44 mmol), 4-chloro-5-iodo-2-methylpyridazin-3(2H)-one ($100 \mathrm{mg}, 0.370 \mathrm{mmol}$), palladium (II) acetate ($11 \mathrm{mg}, 0.048$ mmol), cesium carbonate ($205 \mathrm{mg}, 0.629 \mathrm{mmol}$) and BINAP ($41 \mathrm{mg}, 0.067 \mathrm{mmol}$) were suspended in toluene (3 mL) and heated to $80^{\circ} \mathrm{C}$ under microwave conditions for 4 h . The reaction mixture was partitioned between EtOAc $(10 \mathrm{~mL})$ and water $(3 \mathrm{~mL})$ and the aqueous layer removed. The organic layer was washed ($1 x$ water [3 mL], 1 x brine [3 mL]), dried over MgSO_{4} and evaporated in vacuo to a brown gum. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (10-> 50\%) to give the title compound
 7.42-7.29 (m, 4H), 7.28-7.17 (m, 2H), $4.11(d, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 365,99 \%$ a/a.

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{O} . \mathrm{HCl}$
Molecular Weight: 301.17

A solution of 5 M HCl in IPA ($3.00 \mathrm{~mL}, 15.0 \mathrm{mmol}$) was added to tert-butyl 2-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)benzylcarbamate ($42 \mathrm{mg}, 0.115 \mathrm{mmol}$) and the suspension stirred for 2 h . The resulting solution was evaporated to dryness, triturated with TBME (2 mL), filtered, the solid washed (1x TBME [2 mL]) and dried in vacuo to give the title compound 5.145 as a pale brown solid ($28 \mathrm{mg}, 81 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right)}\right.$ $\delta 8.48$ (s, 1H), 8.31 (br.s, 3H), 7.63 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 - 7.38 (m, 2H), 7.34 (d, J = 7.5 Hz , $1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 101 \mathrm{MHz}\right)$ ס 157.5, 143.9, 137.6, 131.4, 131.3, 130.3, 128.3, 128.2, 127.6, 108.5, 38.6 (peak obscured by DMSO); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 265,99 \%$ a/a; HRMS: $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}]^{+}$requires 265.0851, found $[\mathrm{M}]^{+}$ 265.8052; IR: solid v 3226, 2860, 1600, 1578, 1494, 1390, $1315 \mathrm{~cm}^{-1} ; \mathrm{mp}>250{ }^{\circ} \mathrm{C}$.
tert-Butyl
3-()(5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4yl)amino)methyl)benzylcarbamate (5.150) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{CIN}_{4} \mathrm{O}_{3}$
Molecular Weight: 378.85

4,5-Dichloro-2-methyl-3(2H)-pyridazinone ($100 \mathrm{mg}, 0.559 \mathrm{mmol}$), DIPEA ($0.31 \mathrm{~mL}, 1.8$ $\mathrm{mmol})$ and 1-(N-Boc-aminomethyl)-3-(aminomethyl)benzene ($0.171 \mathrm{~mL}, 0.766 \mathrm{mmol}$) were heated to $120{ }^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was diluted with $\mathrm{MeOH}(1 \mathrm{~mL})$ to give a
homogenous solution and purified by MDAP (Formic method C) to give the title compound 5.150 as a white solid ($126 \mathrm{mg}, 60 \%$) : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.23$ (m, 1H), $7.22(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 379,100 \% \mathrm{a} / \mathrm{a}$.

5-((3-(Aminomethyl)benzyl)amino)-4-chloro-2-methylpyridazin-3(2H)-one (5.149)

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 278.74
tert-Butyl
3-(((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4yl)amino)methyl)benzylcarbamate ($98 \mathrm{mg}, 0.26 \mathrm{mmol}$) was stirred in a solution of 5 M HCl in IPA ($5.0 \mathrm{~mL}, 25 \mathrm{mmol}$) for 2 h , evaporated in vacuo to dryness, dissolved in MeOH and loaded on to a preconditioned SCX cartridge. The SCX cartridge was eluted with MeOH (20 mL) followed by 2 M methanolic ammonia (20 mL) and the basic fractions evaporated in vacuo to a colourless gum. The gum was triturated with TBME (2 mL) and dried in vacuo to give the title compound 5.149 a white solid ($65 \mathrm{mg}, 91 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta$ $7.68(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H})$, 3.54 (s, 3H), 1.87 (br.s, 2H); LRMS [M+H] ${ }^{+}: 279,100 \%$ a/a.

5-((4-(Aminomethyl)benzyl)amino)-4-chloro-2-methylpyridazin-3(2H)-one (5.152) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{CIN}_{4} \mathrm{O}$ Molecular Weight: 278.74

A solution of 4,5-dichloro-2-methyl-3(2H)-pyridazinone ($100 \mathrm{mg}, 0.559 \mathrm{mmol}$), DIPEA (0.312 $\mathrm{mL}, 1.788 \mathrm{mmol}$) and 4-xylylenediamine ($152 \mathrm{mg}, 1.117 \mathrm{mmol}$) in DMSO (0.4 mL) were
heated to $120^{\circ} \mathrm{C}$ for 45 min under microwave conditions. The resulting biphasic solution was partitioned between EtOAc (15 mL) and water (5 mL). The aqueous layer was separated and the organic layer washed ($2 x$ sat. aq. NaHCO_{3} [5 mL], 1 x brine [5 mL]), dried over MgSO_{4} and evaporated in vacuo to dryness. The combined aqueous portions were extracted ($3 \times$ DCM [10 mL]), combined and evaporated in vacuo to a white gum. The two residues were combined, dissolved in $\mathrm{DCM}: \mathrm{MeOH}(1: 1,5 \mathrm{~mL})$ and loaded on to a preconditioned SCX cartridge. The cartridge was eluted with $\mathrm{MeOH}(20 \mathrm{~mL})$ followed by 2 M methanolic ammonia (20 mL). The basic fractions were evaporated in vacuo to a colourless gum and purified by MDAP (HPH method B) to give the title compound 5.152 to a white solid (54 mg, 35\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.38-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 279,100 \% \mathrm{a} / \mathrm{a}$.

tert-Butyl ((cis)-3-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-

 yl)amino)cyclopentyl)carbamate (5.164) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{CIN}_{4} \mathrm{O}_{3}$
Molecular Weight: 342.82

DIPEA ($0.516 \mathrm{~mL}, 2.96 \mathrm{mmol}$) was added to a stirred suspension of 4,5-dichloro-2-methylpyridazin-3(2H)-one (126 mg, 0.704 mmol), and tert-butyl (3aminocyclopentyl)carbamate, hydrochloride ($217 \mathrm{mg}, 0.915 \mathrm{mmol}$) in DMSO (0.4 mL). The reaction mixture was heated to $110{ }^{\circ} \mathrm{C}$ under microwave conditions for 3 h . Methanol (1 mL) was added to the biphasic reaction mixture until a homogeneous solution formed and the mixture was purified by MDAP (TFA method B) and the product containing fractions evaporated to a brown residue. TLC analysis (EtOAc) indicated the presence of two products - likely to be cis and trans isomers. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (75 -> 100\%) to give the title compound 5.164 as a white solid ($28 \mathrm{mg}, 12 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 600 \mathrm{MHz}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, \mathrm{~J}=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{app} . \mathrm{sxt}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$
$(\mathrm{d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dt}, J=7.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.79$ (m, 1H), 1.61-1.67 (m, 1H), 1.55-1.60 (m, 1H), $1.47(\mathrm{dt}, \mathrm{J}=7.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H})$; LRMS [M+H] ${ }^{+}$: 343, 100\% a/a.

5-(((cis)-3-Aminocyclopentyl)amino)-4-chloro-2-methylpyridazin-3(2H)-one, hydrochloride salt (5.163)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{CIN}_{4} \mathrm{O} . \mathrm{HCl}$ Molecular Weight: 279.17

A solution of 5 M HCl in IPA ($3.00 \mathrm{~mL}, 15.0 \mathrm{mmol}$) was added to tert-butyl ((cis)-3-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)cyclopentyl)carbamate (22 mg, 0.064 mmol) and the resulting solution stirred for 2 h . The reaction mixture was evaporated under a stream of nitrogen, stirred in TBME (3 mL), evaporated under a stream of nitrogen and dried in vacuo to give the title compound 5.163 as a white solid (16 mg , 89\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.07$ (br.s, 3 H$), 7.77(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.19 (app.sxt, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.49(\mathrm{~m}$, partially obscured by DMSO), 2.10-1.82 (m, 4H), $1.72(\mathrm{dt}, J=7.0,14.0 \mathrm{~Hz}, 1 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 243$, 92\% a/a.

4-Chloro-2-methyl-5-((1-methylpiperidin-3-yl)amino)pyridazin-3(2H)-one (5.166) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 256.73

DIPEA ($0.29 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added to a solution of 1-methylpiperidin-3-amine (96 mg , 0.84 mmol) and 4,5-dichloro-2-methylpyridazin-3(2H)-one (100 mg, 0.56 mmol) in DMSO (2
mL). The solution was heated under microwave conditions at $130^{\circ} \mathrm{C}$ for 1 h . The resulting biphasic solution was made homogenous by the addition of DMSO (1 mL) and purified by MDAP (HpH method B) to give the title compound as a yellow solid ($37 \mathrm{mg}, 26 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.80(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H})$, 2.60-2.52 (m, 1H), 2.42-2.11 (m, 6H), 1.72-1.39 (m, 4H); LRMS [M+H] ${ }^{+}: 257,100 \% \mathrm{a} / \mathrm{a}$

(R)-tert-Butyl (1-methylpiperidin-3-yl)carbamate (5.172) ${ }^{309}$

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ Molecular Weight: 214.30

Formic acid ($1.94 \mathrm{~mL}, 50.5 \mathrm{mmol}$) was added to a solution of (R)-tert-butyl piperidin-3ylcarbamate ($5.06 \mathrm{~g}, 25.3 \mathrm{mmol}$) and $37 \% \mathrm{w} / \mathrm{v}$ formaldehyde in water ($3.88 \mathrm{~mL}, 52.1 \mathrm{mmol}$) in 2-MeTHF (135 mL). The resulting solution was stirred for 1 h at room temperature, heated to $80^{\circ} \mathrm{C}$ for 30 min and cooled to room temperature. The solution was evaporated in vacuo to a colourless oil and purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->10 \%$) to give the title compound 5.172 as a white solid (3.71 g , $\left.69 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 400 \mathrm{MHz}\right) \delta 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.34$ (m, obscured by water peak), $2.68(\mathrm{dd}, J=3.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.71$ $(\mathrm{m}, 1 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 10 \mathrm{H}), 1.14-1.02(\mathrm{~m}, 1 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 215$.

(R)-1-methylpiperidin-3-amine, 2 hydrochloride (5.173)

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} .2 \mathrm{HCl}$
Molecular Weight: 187.11

A solution of 5 M HCl in IPA ($55.0 \mathrm{~mL}, 275 \mathrm{mmol}$) was added to (R)-tert-butyl (1-methylpiperidin-3-yl)carbamate ($3.70 \mathrm{~g}, 17.3 \mathrm{mmol}$) and the resulting suspension heated to $80^{\circ} \mathrm{C}$ for 1 h . The resulting suspension was cooled to room temperature and TBME (55 mL)
added. The suspension was filtered, washed ($2 x$ TBME [30 mL]) and dried in vacuo to give the title compound 5.173 as a white solid ($3.213 \mathrm{~g}, 100 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}, 120}\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 3.65(\mathrm{tt}, \mathrm{J}=4.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 1 \mathrm{H})$, 3.02-2.89(m, 1H), 2.75(s, 3H), 2.18-2.02(m, 1H), 2.01-1.84(m, 2H), 1.81-1.61(m, 1H), exchangeable protons not observed; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 115$.

(R)-4-Chloro-2-methyl-5-((1-methylpiperidin-3-yl)amino)pyridazin-3(2H)-one (5.169) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 256.73

DIPEA ($3.28 \mathrm{~mL}, 18.8 \mathrm{mmol}$) was added to a suspension of 4,5-dichloro-2-methyl-3(2H)pyridazinone ($0.8 \mathrm{~g}, 4.47 \mathrm{mmol}$) and (R)-1-methylpiperidin-3-amine, 2 hydrochloride (1.00 $\mathrm{g}, 5.36 \mathrm{mmol}$) in DMSO (2.4 mL). The mixture was heated to $130{ }^{\circ} \mathrm{C}$ for 4 h under microwave conditions. The reaction mixture was partitioned between DCM (20 mL) and aq. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The organic layer was removed and the aqueous layer extracted (3x DCM [20 mL]). The organic portions were combined, dried over MgSO_{4} and evaporated in vacuo to an orange oil. The residue was purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->5 \%$) to give the title compound 5.169 as a crystalline brown solid ($600 \mathrm{mg}, 52 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.79-3.67(\mathrm{~m}$, 4H), $2.67-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.22(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.47(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right) \delta 157.9,143.2,125.5,107.6,60.6,55.5,48.5,46.4$, 40.1, 29.2, 22.0; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 257,100 \%$ a/a; HRMS: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires 257.1164, found $[\mathrm{M}+\mathrm{H}]^{+}$257.1160.; IR: solid v 2938, 1630, 1602, 1445, $1345 \mathrm{~cm}^{-1}$; mp 111 $115^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+5^{\circ}$ at $23.9^{\circ} \mathrm{C}$ at $\mathrm{C}=1$ in chloroform.

(S)-tert-Butyl (1-methylpiperidin-3-yl)carbamate (5.170a)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$

Molecular Weight: 214.30

Formic acid ($0.391 \mathrm{~mL}, 10.2 \mathrm{mmol}$) was added to a suspension of (S)-tert-butyl piperidin-3ylcarbamate ($1.02 \mathrm{~g}, 5.09 \mathrm{mmol}$) and $37 \% \mathrm{w} / \mathrm{v}$ formaldehyde in water ($0.827 \mathrm{~mL}, 10.2$ mmol) in 2-MeTHF (50 mL). The suspension was heated to $80^{\circ} \mathrm{C}$ for 45 min and cooled to room temperature. The reaction mixture was evaporated in vacuo to a colourless oil. The residue purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia (0 -> 8\%) to give the title compound 5.170 a as a white solid ($985 \mathrm{mg}, 90 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}\right.$, $400 \mathrm{MHz}, 120^{\circ} \mathrm{C}$) $\delta 6.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.50-3.34$ (m, obscured by water peak), 2.68 (dd, J = 3.0, 10.0 Hz, 1H), 2.55 (d, J = $11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (s, 3H), $1.81-1.71$ (m, 1H), $1.71-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 10 \mathrm{H}), 1.14-1.02(\mathrm{~m}, 1 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 215 ;[\alpha]_{\mathrm{D}}=-17^{\circ}$ at 21.5 ${ }^{\circ} \mathrm{C}$ at $\mathrm{c}=1$ in MeOH .
(S)-1-methylpiperidin-3-amine, 2 hydrochloride (5.170b)

Chemical Formula: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} .2 \mathrm{HCl}$
Molecular Weight: 187.11

A solution of 5 M HCl in IPA (15 mL, 75 mmol) was added to (S)-tert-butyl (1-methylpiperidin-3-yl)carbamate ($985 \mathrm{mg}, 4.60 \mathrm{mmol}$) and the mixture heated to $50^{\circ} \mathrm{C}$ for 5 min and cooled to $20^{\circ} \mathrm{C}$. The resulting suspension was allowed to stand for 1 h , diluted with TBME (20 mL) and filtered. The resulting solid was washed (2 x TBME [5 mL]) and dried in vacuo to give the title compound 5.170 b as a white solid ($709 \mathrm{mg}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}, 120^{\circ} \mathrm{C}\right) \delta 3.65(\mathrm{tt}, \mathrm{J}=4.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.19$ $(\mathrm{m}, 1 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.84$
$(m, 2 H), 1.81-1.61(m, 1 H)$, exchangeable protons not observed; LRMS $[M+H]^{+}: 115 ;[\alpha]_{D}=$ $+2^{\circ}$ at $22.0^{\circ} \mathrm{C}$ at $\mathrm{c}=1$ in MeOH .
(S)-4-Chloro-2-methyl-5-((1-methylpiperidin-3-yl)amino)pyridazin-3(2H)-one (5.170) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 256.73

DIPEA ($0.41 \mathrm{~mL}, 2.4 \mathrm{mmol}$) was added to a stirred suspension of 4,5-dichloro-2-methylpyridazin-3(2H)-one (100 mg, 0.559 mmol), and (S)-1-methylpiperidin-3-amine, 2 hydrochloride ($136 \mathrm{mg}, 0.726 \mathrm{mmol}$) in DMSO (0.4 mL). The resulting suspension was heated to $130{ }^{\circ} \mathrm{C}$ for 5 h under microwave conditions and cooled to $20^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{MeOH}(2 \mathrm{~mL})$ and loaded on to a preconditioned SCX cartridge. The cartridge was eluted with $\mathrm{MeOH}(40 \mathrm{~mL}$), followed by 2 M methanolic ammonia (50 mL). The basic fractions were evaporated in vacuo to a brown oil and purified by MDAP (HPH method B) to give the title compound 5.170 as a pale brown solid ($13 \mathrm{mg}, 9 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.80(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~s}$, $3 H), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.72-1.39(\mathrm{~m}, 4 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 257,100 \%$ a/a; HRMS: $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires 257.1164, found $[\mathrm{M}+\mathrm{H}]^{+} 257.1161$; $[\alpha]_{\mathrm{D}}=-10^{\circ}$ at $23.2{ }^{\circ} \mathrm{C}$ at $\mathrm{c}=1 \mathrm{in}$ chloroform.
tert-Butyl 3-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)azepane-1carboxylate (5.175) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{3}$
Molecular Weight: 356.85

DIPEA ($1.61 \mathrm{~mL}, 9.22 \mathrm{mmol}$) was added to a solution of 4,5-dichloro-2-methylpyridazin$3(2 \mathrm{H})$-one ($0.50 \mathrm{~g}, 2.79 \mathrm{mmol}$) and 3-amino-1-N-Boc-azepane ($0.898 \mathrm{~g}, 4.19 \mathrm{mmol}$) in DMSO $(1.6 \mathrm{~mL})$. The resulting mixture was heated to $130^{\circ} \mathrm{C}$ under microwave conditions for 2 h . The reaction mixture was partitioned between water (20 mL) and DCM (20 mL). The organic layer was separated and the aqueous layer extracted ($2 x$ DCM [20 mL]). The combined organic portions were combined, dried over MgSO_{4} and evaporated in vacuo to a brown oil. The residue was purified by silica gel chromatography eluting with cyclohexane:DCM (25 -> 100\%) followed by cyclohexane:EtOAc (25 -> 75\%) to give a brown solid which was triturated with TBME to give the title compound 5.175 as a white solid (260 $\mathrm{mg}, 26 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.63-$ $3.54(\mathrm{~m}, 4 \mathrm{H}), 3.43-3.30(\mathrm{~m}, 3 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.34(\mathrm{~m}$, 10H); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 357,93 \%$ a/a.

The filtrate was stood overnight and a precipitate formed. The filtrate was evaporated under a stream of nitrogen, triturated with TBME (2 mL) and washed with TBME (1 mL). The resulting solid was dried in vacuo to give the title compound 5.175 as a white solid (53 $\mathrm{mg}, 5 \%)$: Analytical data as above.

(R)-5-(azepan-3-ylamino)-4-chloro-2-methylpyridazin-3(2H)-one (5.178)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 256.73

A solution of 5 M HCl in IPA ($5.0 \mathrm{~mL}, 25 \mathrm{mmol}$) was added to (R)-tert-butyl 3-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)azepane-1-carboxylate (126 mg, 0.353 mmol) and the resulting solution stirred for 1 h . The reaction mixture was evaporated in vacuo to dryness, dissolved in MeOH and loaded on to a preconditioned SCX cartridge. The cartridge was eluted with $\mathrm{MeOH}(50 \mathrm{~mL}$), followed by 2 M methanolic ammonia (50 mL). The basic fractions were evaporated in vacuo to give the title compound 5.178 as a colourless gum ($86 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$,

1H), 3.97-3.81 (m, 1H), $3.58(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.38(\mathrm{~m}, 6 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}$: 257, 100\% a/a.

(S)-5-(azepan-3-ylamino)-4-chloro-2-methylpyridazin-3(2H)-one (5.179)

Chemical Formula: $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 256.73

A solution of 5 M HCl in IPA ($5.00 \mathrm{~mL}, 25.0 \mathrm{mmol}$) was added to (S)-tert-butyl 3-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)azepane-1-carboxylate (110 mg, 0.353 mmol) and the resulting solution stirred for 1 h . The reaction mixture was evaporated in vacuo to dryness, dissolved in $\mathrm{MeOH}(5 \mathrm{~mL}$) and loaded on to a preconditioned SCX cartridge. The cartridge was eluted with $\mathrm{MeOH}(50 \mathrm{~mL}$), followed by 2 M methanolic ammonia (50 mL). The basic fractions were evaporated in vacuo to give the title compound 5.179 as a colourless gum ($74 \mathrm{mg}, 94 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.87(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.38(\mathrm{~m}, 6 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 257,100 \%$ a/a.

(R)-4-Chloro-2-methyl-5-((1-methylazepan-3-yl)amino)pyridazin-3(2H)-one (5.180) ${ }^{309}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 270.76

Formic acid ($0.019 \mathrm{~mL}, 0.506 \mathrm{mmol}$) was added to a solution of $37 \% \mathrm{w} / \mathrm{w}$ formaldehyde in water ($0.038 \mathrm{~mL}, 0.51 \mathrm{mmol}$) and (R)-5-(azepan-3-ylamino)-4-chloro-2-methylpyridazin$3(2 \mathrm{H})$-one ($65 \mathrm{mg}, 0.253 \mathrm{mmol}$) in 2-MeTHF (5 mL). The resulting suspension was heated to reflux overnight and evaporated in vacuo to dryness. The residue was dissolved in MeOH
$(10 \mathrm{~mL})$ and loaded on to a preconditioned SCX cartridge and eluted with $\mathrm{MeOH}(50 \mathrm{~mL})$ followed by 2 M methanolic ammonia (50 mL). The basic fractions were evaporated in vacuo to a give the title compound 5.180 as a colourless gum ($62 \mathrm{mg}, 90 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, 2.79-2.57(m,3H), 2.48-2.41(m, 1H), 2.36(s, 3H), 1.78-1.41(m, 6H); ${ }^{13} \mathrm{C}^{2}$ NMR ($\mathrm{CDCl}_{3}, 101$ $\mathrm{MHz})$ (158.0, 143.2, 126.1, 107.4, 58.6, 57.4, 50.6, 47.9, 40.1, 35.1, 28.2, 21.1; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 271,100 \%$ a/a; HRMS: $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$requires 271.1320 , found $[\mathrm{M}+\mathrm{H}]^{+}$ 271.1315; IR: solid v 3431, 1602, 1519, 1447, 1203, 1155, $1089 \mathrm{~cm}^{-1} ; \mathrm{mp} 71-73^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}=-$ 48° at $23.2^{\circ} \mathrm{C}$ at $\mathrm{c}=1 \mathrm{in}$ chloroform.

(S)-4-Chloro-2-methyl-5-((1-methylazepan-3-yl)amino)pyridazin-3(2H)-one (5.181) ${ }^{309}$

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 270.76

Formic acid ($15 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) was added to a solution of $37 \% \mathrm{w} / \mathrm{w}$ formaldehyde in water (29 $\mu \mathrm{L}, 0.39 \mathrm{mmol}$) and (S)-5-(azepan-3-ylamino)-4-chloro-2-methylpyridazin-3(2H)-one ($50.0 \mathrm{mg}, 0.195 \mathrm{mmol}$). The resulting suspension was heated to reflux overnight and evaporated in vacuo to dryness. The residue was dissolved in MeOH and loaded on to a preconditioned SCX cartridge and eluted with $\mathrm{MeOH}(50 \mathrm{~mL}$) followed by 2 M methanolic ammonia (50 mL). The basic fractions were evaporated in vacuo to give the title compound 5.181 as a colourless gum ($47 \mathrm{mg}, 89 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.57(\mathrm{~m}, 3 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.36$ $(\mathrm{s}, 3 \mathrm{H}), 1.78-1.41(\mathrm{~m}, 6 \mathrm{H}) ;$ LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 271,100 \% \mathrm{a} / \mathrm{a} ; \mathrm{mp} 67-69{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=+53^{\circ}$ at 23.2 ${ }^{\circ} \mathrm{C}$ at $\mathrm{c}=1$ in chloroform. carboxylate (5.182) ${ }^{295}$

Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{CIN}_{4} \mathrm{O}_{3}$
Molecular Weight: 342.82

DIPEA ($1.56 \mathrm{~mL}, 8.94 \mathrm{mmol}$) was added to a suspension of 4,5-dichloro-2-methyl-3(2H)pyridazinone ($0.500 \mathrm{~g}, 2.79 \mathrm{mmol}$) and (R)-(-)-3-amino-1-Boc-piperidine ($0.671 \mathrm{~g}, 3.35$ mmol) in DMSO (1.6 mL). The mixture was heated to $130^{\circ} \mathrm{C}$ for 2 h under microwave conditions and the reaction mixture partitioned between DCM (20 mL) and water (20 mL). The organic layer was removed and the aqueous layer extracted [2x DCM (20 mL)]. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo to dryness. The residue was purified by silica gel chromatography eluting with cyclohexane:EtOAc (40 -> 80%) to give the title compound 5.182 as a brown oil ($425 \mathrm{mg}, 44 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400\right.$ $\mathrm{MHz}) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.74-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.20-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.95$ - $1.79(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.26(\mathrm{~m}, 11 \mathrm{H}) ;$ LRMS [M+H] ${ }^{+}: 343,100 \% \mathrm{a} / \mathrm{a}$.
(R)-4-Chloro-2-methyl-5-(piperidin-3-ylamino)pyridazin-3(2H)-one (5.183)

Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{CIN}_{4} \mathrm{O}$
Molecular Weight: 242.71

A solution of 5 M HCl in IPA ($5.00 \mathrm{~mL}, 25.0 \mathrm{mmol}$) was added to (R)-tert-butyl 3-((5-chloro-1-methyl-6-oxo-1,6-dihydropyridazin-4-yl)amino)piperidine-1-carboxylate (420 mg, 1.23 $\mathrm{mmol})$, the resulting solution stirred for 1.5 h and evaporated in vacuo to dryness. The
residue was dissolved in the minimum amount of MeOH and loaded on to a preconditioned SCX cartridge. The cartridge was eluted with $\mathrm{MeOH}(50 \mathrm{~mL})$ followed by 2 M methanolic ammonia (50 mL) and the basic fractions were evaporated in vacuo to give the title compound 5.183 as a brown gum ($220 \mathrm{mg}, 74 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.88$ (s, $1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{dd}, J=3.0,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.75-2.65 (m, 2H), 2.60-2.46 (m, partially obscured), 1.82-1.71 (m, 1H), 1.63-1.49 (m, 2H), 1.47-1.34 (m, 1H); LRMS [M+H] ${ }^{+}$: 243, 100\% a/a.
(R)-4-Chloro-5-((1-(2-fluoroethyl)piperidin-3-yl)amino)-2-methylpyridazin-3(2H)-one (5.190)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{CIFN}_{4} \mathrm{O}$
Molecular Weight: 288.75
(R)-4-Chloro-2-methyl-5-(piperidin-3-ylamino)pyridazin-3(2H)-one ($70 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added to a stirred suspension of 1-bromo-2-fluoroethane ($0.064 \mathrm{~mL}, 0.87 \mathrm{mmol}$), sodium carbonate ($45.9 \mathrm{mg}, 0.433 \mathrm{mmol}$) and potassium iodide ($4.8 \mathrm{mg}, 0.029 \mathrm{mmol}$) in acetonitrile $(5 \mathrm{~mL})$. The resulting suspension was heated to $130{ }^{\circ} \mathrm{C}$ for 2 h under microwave conditions and cooled to $20^{\circ} \mathrm{C}$. The reaction mixture was evaporated in vacuo and purified by silica gel chromatography eluting with DCM:2 M methanolic ammonia ($0->5 \%$) to give the title compound 5.190 as a colourless gum ($59 \mathrm{mg}, 71 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.89$ (s, $1 \mathrm{H}), 5.94(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dt}, \mathrm{J}=5.0,48.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, 2.77-2.59 (m, 3H), peak obscured by DMSO, 2.44-2.33(m, 2H), 1.76-1.41 (m, 4H); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 289,100 \%$ a/a.

(5.191)

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{ClF}_{2} \mathrm{~N}_{4} \mathrm{O}$
Molecular Weight: 306.74
(R)-4-chloro-2-methyl-5-(piperidin-3-ylamino)pyridazin-3(2H)-one ($70 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added to a stirred suspension of 2-bromo-1,1-difluoroethane ($0.037 \mathrm{~mL}, 0.420 \mathrm{mmol}$), sodium carbonate ($45.9 \mathrm{mg}, 0.433 \mathrm{mmol}$) and potassium iodide ($4.79 \mathrm{mg}, 0.029 \mathrm{mmol}$) in acetonitrile (5 mL). The resulting suspension was heated to $60^{\circ} \mathrm{C}$ for 4 h . Further 2-bromo-1,1-difluoroethane ($0.037 \mathrm{~mL}, 0.42 \mathrm{mmol}$) was added, the reaction heated overnight. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 21 h under microwave conditions. The temperature was increased to $130{ }^{\circ} \mathrm{C}$ for 2 h under microwave conditions. The temperature was increased to $140{ }^{\circ} \mathrm{C}$ for 6 h and cooled to room temperature. The reaction mixture was evaporated in vacuo to dryness and purified by silica gel chromatography eluting with cyclohexane:EtOAc (50 -> 100\%) to give the title compound 5.191 as a colourless gum (59 mg, 77\%): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.14$ (tt, J = 4.5, $55.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.94(\mathrm{~d}, \mathrm{~J}=9.0,1 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.17(\mathrm{~m}$, 3H), 2.69-2.57 (m, 1H), 2.58-2.31 (m, partially obscured by DMSO); LRMS [M+H] ${ }^{+}: 307$; 100\% a/a.

1 Steinbrook, R. N. Engl. J. Med. 2008, 359, 1977 - 1981.
2 Munos, B. M. Nat. Rev. Drug Discov. 2009, 8, 959-968.
3 Scannell, J. W.; Blanckley, A.; Boldon, H.; Warrington, B. Nat. Rev. Drug. Discov. 2012, 11, 191 200.

4 Kola, I; Landis, J Nat. Rev. Drug Discov. 2004, 3, 711 - 715.
5 Grabowski, H. G.; Vernon, J. M. Int. J. Technology Management 2000, 19, 98 - 120.
6 Simon, W. A.; Herrmann, M.; Klein, T.; Shin, J. M.; Huber, R.; Senn-Bilfinger, J.; Postius, S. J. Pharmacol. Exp. Ther. 2007, 321, 866-874.

7 Kotz, J. SciBX 2012, 5, 1 - 3.
8 Chanda, S. K.; Caldwell, J. S. Drug Discov. Today 2003, 8, 168 - 174.
9 Swinney, D. C.; Anthony, J. Nat. Rev. Drug Discov. 2011, 10, 507 - 519.
10 Cook, D.; Brown, D.; Alexander, R.; March, R.; Morgan, P.; Satterthwaite, G.; Pangalos, M. N. Nat. Rev. Drug. Discov. 2014, 13, 419-431.

11 Annunziato, A. T. Nature Educ. 2008, 1, 1 - 3.
12 Widom, J. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 285 - 327.
13 Georgopoulos, K. Nat. Rev. Immunol. 2002, 2, 162 - 174.
14 Arrowsmith, C. H.; Bountra, C.; Fish, P. V.; Lee, K.; Schapira, M. Nat. Rev. Drug Discov. 2012, 11, 384-400.

15 Jenuwein, T.; Allis, C. D. Science 2001, 293, 1074 - 1080.
16 Robinson, P. J.; Fairall, L.; Huynh, V. A.; Rhodes, D. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 6506 6511.

17 Woodcock, C. L.; Ghosh, R. P. Cold Spring Harb. Perspect. Biol. 2010, 2, 1-25.
18 Tonna, S.; El-Osta, A.; Cooper, M. E.; Tikellis, C. Nat. Rev. Nephrol. 2010, 6, 332 - 341.
19 Kouzarides, T. Cell 2007, 128, 693-705.
20 Dekker, F. J.; Haisma, H. J. Drug Discov. Today 2009, 14, 942 - 948.
21 Josling, G. A.; Selvarajah, S. A.; Petter, M.; Duffy, M. F. Genes 2012, 3, 320-343.
22 Bannister, A. J.; Kouzarides, T. Cell Res. 2011, 21, 381 - 395.
23 Zhang, Y.; Reinberg, D. Genes Dev. 2001, 15, 2343 - 2360.
24 Martin, C.; Zhang, Y. Nat. Rev. Mol. Cell Biol. 2005, 6, 838-849.
25 Xiao, B.; Jing, C.; Wilson, J. R.; Walker, P. A.; Vasisht, N.; Kelly, G.; Howell, S.; Taylor, I. A.;
Blackburn, G. M.; Gamblin, S. J. Nature 2003, 421, 652-656.
26 Hojfeld, J. W.; Agger, K.; Helin, K. Nat. Rev. Drug Discov. 2013, 12, 917 - 930.
27 Zeng, L.; Zhou, M. M. FEBS Lett. 2002, 513, 124 - 128.

28 Herold, J. M.; Wigle, T. J.; Norris, J. L.; Lam, R.; Korboukh, V. K.; Gao, C.; Ingerman, L. A.; Kireev, D. B.; Senisterra, G.; Vedadi, M.; Tripathy, A.; Brown, P. J.; Arrowsmith, C. H.; Jin, J.; Janzen, W. P.; Frye, S. V. J. Med. Chem. 2011, 54, 2504 - 2511.

29 De Ruijter, A. J. M.; Van Gennip, A. H.; Caron, H. N.; Kemp, S. Van Kuilenburg, A. B. P. Biochem J. 2003, 370, 737 - 749.

30 Dokmanovic, M. Clarke, C.; Marks, P. A. Mol. Cancer. Res. 2007, 5, 981 - 989.
31 Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.; Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P. Nature 1999, 401, 188-193.

32 Pedersen, M. T.; Helin, K. Trends Cell Biol. 2010, 20, 662 - 671.
33 Martin-Puig, S.; Temes, E.; Olmos, G.; Jones, D. R.; Aragones, J.; Landazuri, M. O. J. Biol. Chem. 2004, 279, 9504 - 9511.

34 Butler, L. M.; Zhou, X.; Xu, W.-S.; Scher, H. I.; Rifkind, R. A.; Marks, P. A.; Richon, V. M. P. Natl. Acad. Sci. U.S.A. 2002, 99, 11700-11705.

35 Nakajima, H.; Kim, Y. B.; Terano, H.; Yoshida, M.; Horinouchi, S. Exp. Cell Res. 1998, 241, 126-133. 36 Huang, L.; Pardee, A. B. Molecular Medicine 2000, 6, 849-866.
37 Nasevicius, A.; Ekker, S. C. Nat. Genet. 2000, 26, 216 - 220.
38 Hamilton, A. J.; Baulcombe, D. C. Science 1999, 286, 950 - 952.
39 Mulligan, C. G.; Zhang, J.; Kasper, L. H.; Lerach, S.; Payne-Turner, D.; Phillips, L. A.; Heatley, S. L; Holmfeldt, L.; Collins-Underwood, R.; Ma, J.; Buetow, K. H.; Pui, C.-H.; Baker, S. D.; Downing, J. R. Nature 2011, 471, 235 - 241.

40 Huryn, D. M.; Resnick, L. O.; Wipf, P. J. Med. Chem, 2013, 56, 7161 - 7176.
41 Frye, S. V. Nat. Chem. Biol. 2010, 6, 159 - 161.
42 Bunnage, M. E.; Piatnitski, C.; Jones, L. H. Nat. Chem. Biol. 2013, 9, 195 - 199.
43 Morgan, P.; Van Der Graaf, P. H.; Arrowsmith, J.; Feltner, D. E.; Drummond, K. S.; Wegner, C. D.; Street, S. D. A. Drug Discov. Today 2012, 17, 419 - 424.
44 Alberts, B.; Johnson, A. Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, $5^{\text {th }}$ ed.; Garland Science: New York, 2004; pp 704-712.

45 Chung, C.-W.; Coste, H.; White, J. H.; Mirguet, O.; Wilde, J.; Gosmini, R. L.; Delves, C.; Magny, S. M.; Woodward, R.; Hughes, S. A.; Boursier, E. V.; Flynn, H.; Bouillot, A. M.; Bamborough, P.; Brusq, J.-M. G.; Gellibert, F. J,; Jones, E. J.; Riou, A. M.; Homes, P.; Martin, S. L.; Uings, I. J.; Toum, J.; Clément, C. A.; Boullay, A.-B.; Grimley, R. L.; Blandel, F. M.; Prinjha, R. K.; Lee, K.; Kirilovsky, J.; Nicodeme, E. J. Med. Chem. 2011, 54, 3827 - 3838.

46 D’Arcy, P.; Brnjic, S.; Olofsson, M. H.; Frysknas, M.; Lindsten, K.; De Cesare, M.; Perego, P.; Sadeghi, B.; Hassan, M.; Larsson, R.; Linder, S. Nat. Med. 2011, 17, 1636 - 1641.
47 Ju, K.-S.; Parales, R. E. Microbiol. Mol. Biol. R. 2010, 74, 250-272.

48 Ishizaki, M.; Muromoto, R.; Akimoto, T.; Sekine, Y.; Kon, S.; Diwan, M.; Maeda, H.; Togi, S.; Shimoda, K.; Oritani, K.; Matsuda, T. Int. Immunol. 2013, 26, 257-267.

49 Du, C.; Bright, J. J.; Sriram, S. J. Neuroimmunol. 2001, 114, 69 - 79.
50 Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F. J. Biol. Chem. 1994, 269, 5241 - 5248.
51 Dittmann, A.; Werner, T.; Chung, C.-W.; Savitski, M. M.; Savitski, M. F.; Grandi, P.; Hopf, C.; Lindon, M.; Neubauer, G.; Prinjha, R. K.; Bantscheff, M.; Drewes, G. ACS Chem. Biol. 2014, 9, 495 - 502 .

52 Abdul-Ghani, R.; Serra, V.; Gyorffy, B.; Jurchott, K. Solf, A.; Dietel, M.; Schafer, R. Oncogene 2006, 25, 1743-1752.

53 Takeuchi, T.; Yamazaki, Y.; Katoh-Fukui, Y.; Tsuchiya, R.; Kondo, S.; Motoyama, J.; Higashinakagawa, T. Gene Dev. 1995, 9, 1211-1222.
54 Johansson, C.; Tumber, A.; Che, K.; Cain, P.; Nowak, R. Gileadi, C. Oppermann, U. Epigenomics 2014, 6, 89-120.

55 Hublitz, P.; Albert, M.; Peters, A. H. F. M. Int. J. Dev. Biol. 2009, 53, 335 - 354.
56 Klose, R. J.; Kallin, E. M.; Zhang, Y. Nat. Rev. Genet. 2006, 7, 715-727.
57 Shi, Y.; Whetstine, J. R. Mol. Cell 2007, 25, 1-14.
58 Tsukada, Y.; Fang, J.; Erdjment-Bromage, H.; Warren, M. E.; Borchers, C. H.; Tempst, P.; Zhang, Y. Nature 2006, 439, 811 - 816.

59 Livolsi, A.; Busuttil, V.; Imbert, V.; Abraham, R. T.; Peyron, J.-F. Eur. J. Biochem. 2001, 268, 1508 1515.

60 Brauchle, M.; Yao, z.; Arora, R.; Thigale, S.; Clay, I.; Inverardi, B.; Fletcher, J.; Taslimi, P.; Acker, M. G.; Gerrits, B.; Voshol, J.; Bauer, A.; Schübeler, D.; Bouwmeester, T.; Ruffner, H. PLoS ONE 2013, 8, e60549 - e60549.

61 Hillringhaus, L.; Yue, W. W.; Rose, N. R.; Ng, S. S.; Gileadi, C,; Loenarz, C.; Bello, S. H.; Bray, J. E.; Schofield, C. J.; Oppermann, U. J. Biol. Chem. 2011, 286, 41616-41625.

62 Zhu, Y.; Van Essen, D.; Saccani, S. Mol. Cell 2012, 46, 408-423.
63 Patsialou, A.; Wilsker, D.; Moran, E. Nucl. Acids Res. 2005, 33, 66-80.
64 Pointon, J. J.; Harvey, D.; Karaderi, T.; Appleton, L. H.; Farrar, C.; Wordsworth, B. P. Genes Immun. 2011, 12, 395 - 398.

65 Sieper, J.; Braun, J.; Rudwaleit, M.; Boonen, A.; Zink, A. Ann. Rheum. Dis. 2002, 61, iii8 - iii18.
66 Hong, S.; Cho, Y. W.; Yu, L. R.; Yu, H.; Veenstra, T. D.; Ge. K. Proc. Natl Acad. Sci. U.S.A. 2007, 104, 18439-18444.
67 Horton, J. R.; Upadhyay, A. K.; Qi, H. H.; Zhang, X.; Shi, Y.; Cheng, X. Nat. Struct. Mol. Biol. 2010, 17, 38-43.

68 Arteaga, M. F.; Mikesch, J.-H.; Qiu, J.; Christensen, J.; Helin, K.; Kogan, S. C.; Dong, S.; So, C. W. E. Cancer Cell 2013, 23, 376-389.

69 Stender, J. D.; Pascual, G.; Liu, W.; Kaikkonen, M. U.; Do, K.; Spann, N. J.; Boutros, M.; Perrimon, N.; Rosenfeld, M. G.; Glass, C. K. Mol. Cell 2012, 48, 28 - 38.

70 Chang, K.-H.; King, O. N. F.; Tumber, A.; Woon, E. C. Y.; Heightman, T. D.; McDonough, M. A.; Schofield, C. J.; Rose, N. R. ChemMedChem 2011, 6, 759 - 764.

71 Horton, J. R.; Upadhyay, A. K.; Qi, H. H.; Zhang, X.; Shi, Y.; Cheng, X. Nat. Struct. Mol. Biol. 2010, 17, 38-43.
72 Berry, W. L.; Janknecht, R. Cancer Res. 2013, 73, 2936 - 2942.
73 Krishnan, S.; Trievel, R. C. Structure 2013, 21, 98 - 108.
74 Cloos, P. A.; Christensen, J.; Agger, K.; Maiolica, A.; Rappsilber, J.; Antal, T.; Hansen, K. H.; Helin, K. Nature 2006, 442, 307-311.

75 Hamada, S.; Kin, T.-D.; Suzuki, T.; Itoh, Y.; Tsumoto, H.; Nakagawa, H.; Janknecht, R.; Miyata, N. Bioorg. Med. Chem. Lett. 2009, 19, 2852 - 2855.

76 McDonough, M. A.; McNeill, L. A.; Tilliet, M.; Papamicael, C. A.; Chen. Q.-Y.; Banerji, B.; Hewitson, K. S.; Schofield, C. J. J. Am. Chem. Soc. 2005, 127, 7680 - 7681.

77 Rose, N. R.; Ng, S. S.; Mecinovic, J.; Lienard, B. M. R.; Bello, S. H.; Sun, Z.; McDonough, M. A.; Oppermann, U.; Schofield, C. J. J. Med. Chem. 2008, 51, 7053 - 7056.
78 Loenarz, C.; Rose, N. R.; Schofield, C. J.; Thalhammer, A.; Mecinovic, J.; Heightman, T. D.; Tumber, A. Org. Biomol. Chem. 2011, 9, 127-135.

79 King, O. N. F.; Li, X. S.; Sakurai, M.; Kawamura, A.; Rose, N. R.; Ng, S. S.; Quinn, A. M.; Rai, G., Mott; B. T.; Beswick, P.; Klose, R. J.; Oppermann, U.; Jadhav, A.; Heightman, T. D.; Maloney, D. J.; Schofield, C. J.; Simeonov, A. PLoS ONE 2010, 5, e15535-e15535.

80 Kruidenier, L.; Chung, C.-W.; Cheng, Z.; Liddle, J.; Che, K.-H.; Joberty, G.; Bantscheff, M.; Bountra, C.; Bridges, A.; Diallo, H.; Eberhard, D.; Hutchinson, S.; Jones, E.; Katso, R.; Leveridge, M.; Mander, P. K.; Mosley, J.; Ramirez-Molina, C.; Rowland, P.; Schofield, C. J.; Sheppard, R. J.; Smith, J. E.; Swales, C.; Tanner, R.; Thomas, P.; Tumber, A.; Drewes, G.; Oppermann, U.; Patel, D. J.; Lee, K.; Wilson, D. M. Nature 2012, 488, 404-408.

81 Rose, N. R.; McDonough, M. A.; King, O. N. F.; Kawamura, A.; Schofield, C. J. Chem Soc. Rev. 2011, 4364-4397.

82 Hamada, S.; Itoh, Y.; Miyata, N.; Nakagawa, H.; Ogasawara, D.; Ozasa, H.; Suzuki, T.; Tsumoto, H.; Suzuki, T.; Hasegawa, M.; Kato, A.; Komaarashi, H.; Koseki, K.; Mino, K.; Mizukami, T.; Flamme, I.; Oehme, F.; Sasaki, R. J. Med. Chem. 2010, 53, 5629 - 5638.

83 Luo, X.; Liu, Y.; Kubicek, S.; Myllyharju, J.; Tumber, A.; Ng, S.; Che, K. H.; Podoll, J.; Heightman, T. D.; Oppermann, U.; Screiber, S. L.; Wang, X. J. Am. Chem. Soc. 2011, 133, 9451 - 9456.

84 Fang, T. C.; Schaefer, U.; Mecklenbrauker, I.; Stienen, A.; Dewell, S.; Chen, M. S.; Rioja, I.; Parravicini, V.; Prinjha, R. K.; Chandwani, R.; MacDonald, M. R.; Lee. K.; Rice, C. M.; Tarakhovsky, A. J. Exp. Med. 2012, 209, 661 - 669.

85 Golding, A.; Rosen, A.; Petri, M.; Akhter, E.; Andrade F. Immunology 2010, 131, 107-117.
86 Campbell, I. L.; Kay, T. W. H.; Oxbrow, L.; Harrison, L. C. J. Clin. Invest. 1991, 87, 739 - 742.
87 Schindler, U.; Beckmann, H.; Cashmore, A. R. Plant J. 1993, 4, 137 - 150.
88 Shin, S.; Janknect, R. Biochem. Bioph. Res. Co. 2006, 353, 973 - 977.
89 Katoh, M; Katoh, M. Int. J. Oncol. 2004, 24, 1623-1628.
90 Vanin, E. F. Annu. Rev. Genet. 1985, 19, 253 - 272.
91 Ozbal, C. C.; LaMarr, W. A.; Linton, J. R.; Green, D. F.; Katz, A.; Morrison, T. B.; Brenan, C. J. H. Assay Drug Dev. Techn. 2004, 2, 373-381.

92 Fitch, D. M.; Shaw, A. N.; Wigall, K. Int. Patent 150011, 15 October, 2013.
93 Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discov. Today 2004, 9, 430-431.
94 Reynolds, C. H.; Tounge, B. A.; Bembenek, S. D. J. Med. Chem 2008, 51, 2432 - 2438.
95 Kuntz, I. D.; Chen, K.; Sharp, K. A.; Kollman, P. A. Proc. Natl. Acad. Sci. USA 1999, 96, 9997 10002.

96 Carr, R. A. E.; Congreve, M.; Murray, C. W., Rees, D. C. Drug Discov. Today 2005, 10, 987 - 992.
97 Alberts, B.; Johnson, A. Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, $4^{\text {th }}$ ed.; Chapter 11. Garland Science: New York, 2002; pp 704-712

98 Gleeson, M. P. J.Med. Chem. 2008, 51, 817 - 834.
99 Zhu, C.; Jiang, L.; Chen, T.-M.; Hwang, K.-K. Eur. J. Med. Chem. 2002, 37, 399 -407.
100 Waring, M .J. Bioorg. Med. Chem. Lett. 2009, 19, 2844 - 2851.
101 Hughes, J. D.; Blagg, J.; Price, D. A.; Bailey, S.; DeCrescenzo, G. A.; Devraj, R. V.; Ellsworth, E.; Fobian, Y. M.; Gibbs, M. E.; Gilles, R. W.; Greene, N.; Huang, E.; Krieger-Burke, T.; Loesel, J.; Wager, T.; Whiteley, L.; Zhang, Y. Bioorg. Med. Chem. Lett. 2008, 18, 4872 - 4875.
102 Los, G. V.; Encell, L. P.; McDougall, M. G.; Hartzell, D. D.; Karassina, N.; Zimprich, C.; Wood, M. G.; Learish, R.; Ohana, R. F.; Urh, M.; Simpson, D.; Mendez, J.; Zimmerman, K.; Otto, P.; Vidugiris, G.; Zhu, J.; Darzins, A.; Klaubert, D. H.; Bulleit, R. F.; Wood, K. V. ACS Chem. Biol. 2008, 3, 373 - 382. 103 X-ray crystallography performed by Biomolecular Sciences, GSK Stevenage.

104 Substructure searching performed by Humphreys, P.
105 Malik, M. A.; Wani, M. Y.; Al-Thabaiti, S. A.; Shiekh, R. A. J. Incl. Phenom. Macrocycl. Chem. 2014, 78, 15-37.

106 Ballatore, C.; Huryn, D. M.; Smith, A. B. ChemMedChem 2013, 8, 385-395.
107 Farkas, E.; Enyedy, E. A.; Csoka, H. Polyhedron 1999, 18, 2391 - 2398.

108 O’Brien, E. C.; Farkas, E.; Gil, M. J.; Fitzgerald, D.; Castineras, A.; Nolan, K.B. J. Inorg. Biochem. 2000, 79, 47-51.

109 Asakawa, H.; Matano, M. Chem. Pharm. Bull. 1979, 27, 1287-1298.
110 Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734 - 736.
111 Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827 - 10852.
112 Valeur, E.; Bradley, M. Chem. Soc. Rev, 2009, 38, 606-631.
113 Sekikawa, I.; Nishie, J.; Tono-oka, S.; Tanaka, Y.; Kakimoto, S. J. Het. Chem. 1973, 10, 931 - 932.
114 McGaughey, G. B.; Gagne, M., Rappe, A. K. J. Biol. Chem. 1998, 273, 15458 - 15463.
115 Rodgers, M. T. J. Phys. Chem. A. 2001, 105, 8145 - 8153.
116 Epsztajna, J.; Jóźwiaka, A.; Szcześniaka; A. K. Synth. Commun. 1994, 24, 1789 - 1798.
117 Snieckus, V. Chem. Rev. 1990, 90, 879-933.
118 Amunugama, R.; Rodgers, M. T. Int. J. Mass Spectrom. 2000, 195/196, 439 - 457.
119 Albrecht, M.; Witt, K.; Frohlich, R.; Kataeva, O. Tetrahedron 2002, 58, 561 - 567.
120 Abraham, M. H.; Duce, P. P.; Prior, D. V. J. Chem. Soc. Perkin Trans. II 1989, 1355 - 1375.
121 Khan, K. M.; Maharvi, G. M.; Choudhary, M. I.; Rahman, A.; Perveen, S. J. Heterocyclic Chem. 2005, 42, 1085-1093.

122 Gellibert, F.; Fouchet, M.-H.; Nguyen, V.-L.; Krysa, G.; de Gouville, A.-C.; Huet, S.; Dodic, N.; Wang, R. Bioorg. Med. Chem. Lett. 2009, 19, 2277 - 2281.

123 Kabri, Y.; Gellis, A.; Vanelle, P. Eur. J. Org. Chem. 2009, 4059 - 4066.
124 Kostakis, I. K.; Elomri, A.; Seguin, E.; Iannelli, M.; Besson, T. Tetrahedron Lett. 2007, 48, 6609 6613.

125 Meredith, E. L.; Beattie, K.; Burgis, R.; Capparelli, M.I; Dipietro, L.; Gamber, G.; Enyedy, I.; Hosagrahara, V.; Jewell, C.; Lee, W.; Miranda, K.; Rao, C.; Rozhitskaya, O.; Springer, C.; Vega, R. B.; Yan, W.; Zhu, Q.; Monovich, L. G.; Chapo, J.; Hood, D. B.; Koch, K. A.; Lemon, D. D.; Mckinsey, T. A.; Pagratis, N.; Phan, D.; Plato, C.; Soldermann, N.; Van Eis, M. J Med. Chem. 2010, 53, 5422 5438.

126 Gelling, I. R.; Wibberley, D. G. J. Chem. Soc. (C) 1969, 931 - 934.
127 Shvedov, V. I.; Sycheva, T. P.; Sakovich, T. V. Chem. Heterocycl. Compd. 1979, 15, 1074 - 1077.
128 Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215 - 221.
129 True, J. E.; Thomas, T. D.; Winter, R. W.; Gard, G. L. Inorg. Chem. 2003, 42, 4437-4441.
130 Tanford, C. The Hydrophobic Effect, 1973: Wiley, New York, Chapter 2.
131 Gleeson, M. P.; Hersey, A.; Montanari, D.; Overington, J. Nat. Rev. Drug. Discov. 2011, 10, 197 208.

132 Katritzky, A. R.; Pilarski, B.; Urogdi, L. Synthesis 1989, 949 - 950.
133 Kukushkin, V. Y.; Pombeiro, A. J. L. Inorg Chim Acta 2005, 358, 1-21.

134 Muller, C. W.; Schlauderer, G. J.; Reinstein, J.; Schulz, G. E. Structure 1996, 4, 147 - 156.
135 Kempner, E. S. FEBS Lett. 1993, 326, 4-10.
136 Wissner, A.; Berger, D. M.; Boschelli, D. H.; Brawner, F.; Greenberger, L. M.; Gruber, B. C.; Johnson, B. D.; Mamuya, N.; Nilakantan, R.; Reich, M. F.; Shen, R.; Tsou, H.-W.; Upeslacis, E.; Wu, B.; Ye, F.; Wang, Y. F.; Zhang, N. J. Med. Chem. 2000, 43, 3244-3256.

137 Perrissin, M.; Favre, M.; Duc, C. L.; Huguet, F.; Gaultier, C.; Narcisse, G. Eur. J. Med. Chem. 1988, 23, 453-456.

138 Bauer, P. H.; Wright, S. W.; Schnur, R. C. U.S. Patent 144308, July 31, 2003.
139 Kabri, Y.; Gellis, A.; Vanelle, P. Eur. J. Org. Chem. 2009, 24, 4059-4066.
140 Glide, version 5.5, Schrödinger Inc., New York, NY, 2009.
141 Benfield, A. P.; Teresk, M .G.; Plake, H. R.; DeLorbe, J. E.; Millspaugh, L. E.; Martin, S. F. Angew. Chem. Int. Ed. 2006, 45, 6830-6835.

142 CCG The Molecular Operating Environment (MOE) 2012 [Windows XP] version 2012.10; http://www.chemcomp.com.

143 Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437-3440
144 Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457 - 2483.
145 Dick, G. R.; Woerly, E. M.; Burke, M. D. Angew. Chem. Int. Ed. 2012, 51, 2667 - 2672.
146 Schofield, C. J.; McDonough, M.; Rose, N.; Thalhammer, A. Int. Patent 043866, 22 April, 2010.
147 Bakke, J. M.; Ranes E. Synthesis, 1997, 281 - 283.
148 Bakke, J. M.; Riha, J. J. Heterocyclic Chem. 2001, 38, 99 - 104.
149 Fisher, R.; Lund, A. Int. Patent 059103, 8 June, 2006.
150 Burgey, C. S.; Robinson, K. A.; Lyle, T. A.; Sanderson, P. E. J.; Lewis, D. S.; Lucas, B. J.; Krueger, J.
A.; Singh, R.; Miller-Stein, C.; White, R. B.; Wong, Bradley; Lyle, E. A.; Williams, P. D.; Coburn, C.
A.; Dorsey, B. D.; Barrow, J. C.; McDonough, C. M.; Stranieri, M. T.; Holahan, M. A.; Sitko, G. R.;

Cook, J. J.; McMasters, D. R.; Sanders, W. M.; Wallace, A. A.; Clayton, F. C.; Bohn, D.; Leonard, Y. M.; Detwiler; T. J.; Lynch; J. J.; Yan, Y.; Chen, Z.; Kuo, L.; Gardell, S. J.; Shafer, J. A.; Vacca, J. P. J. Med. Chem. 2003, 46, 461-473.

151 Shen, H. C.; Ding, F.-X.; Wang, S.; Deng, Q.; Zhang, X.; Chen, Y.; Zhou, G.; Xu, Suoyu; Chen, H.-S.; Tong, X.; Tong, V.; Mitra, K.; Kumar, S.; Tsai, C.; Stevenson, A. S.; Pai, L.-Y.; Alonso-Galicia, M.; Chen, X.; Soisson, S. M.; Roy, S.; Zhang, B.; Tata, J. R.; Berger, J. P.; Colletti, S. L. J. Med. Chem. 2009, 52 , 5009-5012

152 Fina, N. J.; Edawrds, J. O. Int. J. Chem. Kin. 1973, 5, 1 - 26.
153 Childs, B. J.; Craig, D. C.; Scudder, M. L.; Goodwin, H. A. Aust. J. Chem. 1999, 52, 673 - 680.
154 Escalante, J.; Flores, P.; Ortiz-Nava, C.; Priego, J. M.; Garcia-Martinez, C. Molecules 2007, 12, 173 - 182.

155 Carson, D. A.; Chao, Q.; Cottam, H. B.; Deng, L.; Genini, D.; Leoni, L. M.; Shih, H. J. Med. Chem. 1999, 42, 3860 - 3873.

156 Meyer, M. D.; Altenbach, R. J.; Bai, H.; Basha, F. Z.; Carroll, W. A.; Kerwin, J. F.; Lebold, S. A.; Lee, E.; Pratt, J. K.; Sippy, K. B.; Tietje, K.; Wendt, M. D.; Brune, M. E.; Buckner, S. A.; Hancock, A. A.; Drizin, I. J. Med. Chem. 2001, 44, 1971-1985.

157 Escalante, J.; Flores, P.; Priego, J. M. Heterocycles 2004, 63, 2019-2032
158 Bernabeu, M. C.; Diaz, J. L.; Jimenez, O.; Lavilla, R. Synth. Comm. 2004, 34, 137 - 149.
159 Notte, G. T.; Sammakia, T. J. Am. Chem. Soc. 2006 128, 4230-4231.
160 Gronowitz, S.; Liljefors, S. Acta Chem. Scand. B 1977, 31, 771 - 780.
161 Dosa. S.; Daniels, J.; Gutschow, M. J. Heterocyclic Chem. 2011, 48, 407 - 413.
162 Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett. 2001, 42, 4033 - 4036.
163 Iwamua, H.; Naka, T. Int. Patent 51924, 9 June, 2005.
164 Deng, J. Z.; Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S. A.; Stauffer, S. R.; Burgey, C. S. Org. Lett. 2009, 11, 345 - 347.

165 Knapp, D. M; Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2009, 131, 6961 - 6963.
166 Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14073 - 14075.
167 Murata, N.; Sugihara, T.; Kondo, Y.; Sakamoto, T. Synlett. 1997, 298 - 300.
168 Adam, W.; Grimison, A.; Rodriguez, G. Tetrahedron 1967, 23, 2513 - 2521.
169 Kim, S.-H.; Rieke, R. D.; Slocum, T. B Synthesis 2009, 22, 3823-3827.
170 Zhang, D.; Dufek, E. J.; Clennan, E. L. J. Org. Chem. 2006, 71, 315 - 319.
171 Do, H.-Q.; Fu, G. C.; Chandrashekar, E. R. R.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 16288 16291.

172 Jackson, R. W. Tetrahedron Lett. 2001, 42, 5163 - 5165.
173 Drewe, W. C.; Nanjunda, R.; Gunaratnam, M.; Beltran, M; Parkinson, G. N.; Reszka, A. P.; Wilson, W. D.; Niedle, S. J. Med. Chem. 2008 , 51, 7751 - 7767.

174 Luzung, M. R.; Patel, J. S.; Yin J. Org. Chem. 2010, 75, 8330-8332.
175 Amb; C. M.; Rasmussen, S. C, J. Org. Chem, 2006, 71, 4696-4699.
176 Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651 - 1660.
177 Mello, J. V.; Finney, N. S. J. Am. Chem. Soc. 2005, 127, 10124 - 10125.
178 Berlin, M.; Aslanian, R.; de Lera Ruiz, M.; McCormick, K. D. Synthesis 2007, 16, 2529 - 2533.
179 Calculations performed by Thomas, P.
180 Childs, B. J.; Craig, D. C.; Scudder, M. L.; Goodwin, H. A. Aust. J. Chem. 1999, 52, 673 - 680.
181 Cox, C. D.; Raheem, I. T.; Flores, B. A.; Whitman, D. B. US Patent, 29 December, 2011.
182 Somers, F.; Ouedraogo, R.; Antoine, M.-H.; de Tullio, P.; Becker, B.; Fontaine, J,; Damas, J.; Dupont, L.; Rigo, B.; Delarge, J.; Lebrun, P.; Pirotte, B. J. Med. Chem. 2001, 44, 2575 - 2585.

183 Font, D.; Heras, M.; Villalgordo, J. M. Synthesis 2002, 1833 - 1842.
184 Arkin, M. R.; Wells, J. A. Nat. Rev. Drug Discov. 2004, 3, 301 - 317.
185 Mullard, A. Nat. Rev. Drug Discov. 2012, 11, 173 - 175.
186 Wilson, A. J. Chem. Soc. Rev. 2009, 38, 3289-3300.
187 Scott, D. E.; Ehebauer, M. T.; Pukala, T.; Marsh, M.; Blundell, T. L.; Venkitaraman, A. R.; Abell, C.; Hyvonen, M. ChemBioChem 2013, 14, 332 - 342.

188 Clackson, T.; Wells, J. A. Science 1995, 267, 383 - 386.
189 Morelli, X.; Bourgeas, R.; Roche, P. Curr. Opin. Chem. Biol. 2011, 15, 475 - 481.
190 Lipinski, C. A. Drug Discov. Today Tech. 2004, 1, 337 - 341.
191 Rudin, C. M.; Hann, C. L.; Garon, E. B.; Ribeiro de Oliveira, M.; Bonomi, P. D.; Camidge, D. R.; Chu, Q.; Giaccone, G.; Khaira, D.; Ramalingam, S. S.; Ranson, M. R.; Dive, C.; McKeegan, E. M.; Chyla, B. J.; Dowell, B. L.; Chakravartty, A.; Nolan, C. E.; Rudersdorf, N.; Busman, T. A.; Mabry, M. H.; Krivoshik, A. P.; Humerickhouse, R. A.; Shapiro, G. I.; Gandhi, L. Clin. Cancer Res. 2012, 18, 3163 3169.

192 Biswas, S.; Killick, E.; Jochemsen, A. G.; Lunec, J. Expert Opin. Investig. Drugs 2014, 23, 629-645.
193 Vu, B.; Wovkulich, P.; Pizzolato, G.; Lovey, A.; Ding, Q.; Jiang, N.; Liu, J.-J.; Zhao, C.; Glenn, K.;
Wen, Y.; Tovar, C.; Packman, K.; Vassilev, L.; Graves, B. ACS Med. Chem. Lett. 2013, 4, 466-469. 194 Strahl, B. D.; Allis, C. D. Nature 2000, 403, 41 - 45.

195 Tamkun, J. W.; Deuring, R.; Scott, M. P.; Kissinger, M. Pattatucci, A. M.; Kaufman, T. C.; Kennison, J. A. Cell 1992, 68, 561 - 572.

196 Dhalluin, C.; Carlson, J. E.; Zeng, L.; He, C.; Aggarwal, A. K.; Zhou, M.-M. Nature 1999, 399, 491 496.

197 Chung, C.; Tough, D. F. Drug Disov. Today. Ther. Strat. 2012, 9, e111 - e120.
198 Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Muller, S.; Pawson, T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S. Cell 2012, 149, 214 - 231.

199 Hewings, D. S.; Rooney, T. P.C.; Jennings, L. E.; Hay, D. A.; Schofield, C. J.; Brennan, P. E.; Conway, S. J.; J. Med. Chem. 2012, 55, 9393 - 9413.

200 Chung, C.-W.; Dean, A. W.; Woolven, J. M.; Bamborough, P. J. Med. Chem. 2012, 55, 576 - 586.
201 Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.; Fedorov, O.; Morse, E. M. Keates, T.; Hickman, T. T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y.; Christie, A. L.; West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La Thangue, N.; French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E. Nature 2010, 468, 1067 - 1073.

202 Sanchez, R., Zhou, M.-M. Curr. Opin. Drug Discov. Devel. 2009, 12, 659-665.
203 Bamborough, P. Personal communication.

204 Wu, S.-Y.; Chiang, C.-M. J. Biol. Chem. 2007, 282, 13141 - 13145.
205 Thompson, M. Biochimie 2009, 91, 309-319.
206 Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., Gingras, A.C., Arrowsmith, C.H., Knapp, S. Cell 2012, 149, 214 - 231.

207 Dorr, A.; Kiermer, V.; Pedal, A.; Rackwitz, H.-R.; Henklein, P.; Schubert, U.; Zhou, M.-M.; Verdin, E.; Ott, M. EMBO J. 2002, 21, 2715 - 2723.

208 Hassan, A. H.; Prochasson, P.; Neely, K. E.; Galasinski, S. C.; Chandy, M.; Carrozza, M. J.; Workman, J. L. Cell 2002, 111, 369 - 379.

209 Muller, S.; Filippakopoulos, P.; Knapp, S. Expert Rev. Mol. Med. 2011, 13, 1 - 21.
210 Philpott, M.; Yang, J.; Tumber, T.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.;
Keates, T.; Felletar, I.; Ciulli, A.; Knapp, S.; Heightman, T. D. Mol. BioSyst, 2011, 7, 2899-2908.
211 Zhou, Q.; Li, T.; Price, D. H. Annu. Rev. Biochem. 2012, 81, 119-143.
212 Schroder, S.; Cho, S.; Zeng, L.; Zhang, Q.; Kaehlcke, K.; Mak, L.; Lau, J.; Bisgrove, D.; Schnlzer, M.;
Verdin, E.; Zhou, M.-M.; Ott, M. J. Biol. Chem. 2012, 287, 1090 - 1099.
213 Kalashnikova, E. V.; Revenko, A. S.; Gemo, A. T.; Andrews, N. P.; Tepper, C. G.; J Zou, J. X.;
Cardiff, R. D.; Borowsky, A. D.; Chen, H.-W. Cancer Res. 2010, 70, 9402-9412.
214 Santer, F. R.; Höschele, P .P. S.; Oh, S. J.; Erb, H. H. H.; Bouchal, J.; Cavarretta, I. T.; Parson, W.; Meyers, D. J.; Cole, P. A.; Culig Z. Mol. Cancer Ther. 2011, 10, 1644 - 1655.

215 Roelfsema, J. H.; Peters, D. J. Expert Rev. Mol. Med. 2007, 9, 1-16.
216 Makino, S.; Kaji, R.; Ando, S.; Tomizawa, M.; Yasuno, K.; Goto, S.; Matsumoto, S.; Tabuena, M. D.; Maranon, E.; Dantes, M.; Lee, L. V.; Ogasawara, K.; Tooyama, I.; Akatsu, H.; Nishimura, M.; Tamiya, G. Am. J. Hum. Genet. 2007, 80, 393 - 406.

217 Aulchenko, Y. S.; Ripatti, S.; Lindqvist, I.; Boomsma, D.; Heid, I. M.; Pramstaller, P. P.; Penninx, B. W. J. H.; Janssens, A. C. J. W.; Wilson, J. F.; Spector, T.; Martin, N. G.; Pederson, N. L.; Kyvik, K. O.; Kaprio, J.; Hofman, A.; Freimer, N. B.; Jarvelin, M.-R.; Gyllensten, U.; Campbell, H.; Rudan, I.; Johansson, I.; Pattaro, C.; Wright, A.; Hastie, N.; Pichler, Hicks, A. A.; Falchi, M.; Willemsen, G.; Hottenga, J.-J.; de Geus, E. J.C.; Montgomery, G. W.; Whitfield, J.; Magnusson, P.; Saharinen, J.; Perola, M.; Silander, K.; Isaacs, A.; Sijbrands, E. J. G.; Uitterlinden, A. G.; Witteman, J. C. M.; Oostra, B. A.; Elliot, P.; Ruokonen, A.; Sabatti, C.; Gieger, C.; Meitinger, Kronenberg, F.; Doring, A.; Wichmann, H.-E.; Smit, J. H.; McCarthy, M. I.; van Duijn, C. M.; Peltonen, L. Nat. Genet. 2009, 41, 47-55.

218 Chidambaram, M.; Venkatesan, R.; Mohan, V. Metabolism 2010, 59, 1760 - 1766.
219 Lu, Y.; Feskins, E. J.; Boer, J. M.; Imholz, S.; Verschuren, W. M.; Wijmenga, C.; Vaarhost, A.; Slagboom, E.; Muller, M.; Dollé, M. E. Atherosclerosis 2010, 213, 200 - 205.

220 Mirguet, O.; Gosmini, R.; Toum, J.; Clement, C. A.; Barnathan, M.; Brusq, J.-M.; Mordaunt, J. E.; Grimes, R. M.; Crowe, M.; Pineau, O.; Ajakane, M.; Daugan, A.; Jeffrey, P.; Cutler, L.; Haynes, A. C.; Smithers, N. N.; Chung, C.-W.; Bamborough, P.; Uings, I. J.; Lewis, A.; Witherington, J.; Parr, N.; Prinjha, R. K.; Nicodeme, E. J. Med. Chem. 2013, 56, 7501 - 7515.

221 Bloch, D. B.; Nakajima, A.; Gulick, T.; Chiche, J.-D.; Orth, D.; de la Monte, S. M.; Bloch, K. D. Mol. Cell Biol. 2000, 20, 6138-6146.

222 Hu N.; Qiu, X.; Luo, Y.; Yuan, J.; Li, Y.; Lei, W.; Zhang, G.; Zhou, Y.; Su, Y.; Lu, Q. J. Rheumatol 2008, 35, 804-810.

223 Pimentel-Santos F. M.; Ligeiro, D.; Matos, M.; Mourão, A. F.; Costa, J.; Santos, H.; Barcelos, A.; Godinho, F.; Pinto, P.; Cruz, M.; Fonseca, J. E.; Guedes-Pinto, H.; Branco, J. C.; Brown, M. A.; Thomas, G. P. Arthritis Res. Ther. 2011, 13, R57.

224 Ford, E.; Thanos, D. Biochim. Biophys. Acta 2010, 1799, 328-336.
225 Mahdi, H. Benjamin A Fisher, B. A.; Källberg, H.; Plant, D.; Malmström, V.; Rönnelid, J.; Charles, P.; Ding, B.; Alfredsson, L.; Padyukov, L.; Symmons, D. P. M.; Venables, P. J.; Klareskog, L.; Lundberg, K. Nat. Genet. 2009, 41, 1319 - 1324.

226 Wang, L.; Pratt, J. K.; McDaniel, K. F.; Dal, Y.; Fidanze, S. D.; Hasvold, L.; Holms, J. H.; Kati, W. M.; Liu, D.; Mantei, R. A.; McClellan, W. J.; Pard, G. S. Wada, C. K. Int. Patent 097601, 4 July, 2013.

227 Miyoshi, S., Ooike, S., Iwata, K., Hikawa, H. \& Sugaraha, K. Int. Patent 084693, 26 Decemeber, 2009.

228 Matzuk, M. M.; McKeown, M. R.; Filippakopoulos, P. Li, Q.; Ma, L.; Agno, J. E.; Lemieux, M. E.; Picaud, S.; Yu, R. N.; Qi, J.; Knapp, S.; Bradner, J. E. Cell 2012, 150, 673-684.

229 Nicodeme, E.; Jeffrey, K. L.; Schaefer, U.; Beinke, S.; Dewell, S.; Chung C.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.; White, J.; Kirilovsky, J.; Rice, C. M.; Lora, J. M.; Prinjha, R. K.; Lee, K.; Tarakhovsky, A. Nature 2010, 468, 1119 - 1123.

230 Khmelnitsky, Y. L.; Mozhaev, V. V.; Cotterill, I. C.; Michels, P. C.; Boudjabi, S.; Khlebnikov, V.;
Reddy, M. M.; Wagner, G. S.; Hansen, H. C. Eur. J. Med. Chem. 2013, 64, 121-128.
231 Bailey, D.; Jahagirdar, R.; Gordon, A.; Hafiane, A.; Cambell, S.; Chatur, S.; Wagner, G. S.; Hansen, H. C.; Chiacchia, F. S.; Johansson, J.; Krimbou, L.; Wong, N. C. W.; Genest, J. J. Am. Coll. Cardiol. 2010, 55, 2580 - 2589.

232 McNeill, E. Curr. Opin. Investig. Drugs 2010, 11, 357 - 364.
233 Filippakopoulous, P., Knapp, S. Nat. Rev. Drug Discov. 2014, doi:10.1038/nrd4286
234 Dawson, M. A.; Kouzarides, T.; Huntly, B. J. P. N. Eng. J. Med. 2012, 367, 647 - 657.
235 Barter, P. J.; Nicholls, S.; Rye, K.; Anantharamaiah, G. M.; Navab, M.; Fogelman, A. M. Circ. Res. 2004, 95, 764 - 772.

236 Knapp, S. Selective Targeting of Protein Interactions Mediated by Epigenetic Effector Domains. Presented at SGC-DiscoveRx Symposium, Oxford, UK, September 12, 2013.

237 Zhang, G.; Plotnikov, A. N.; Rusinova, E.; Shen, T.; Morohashi, K.; Joshua, .; Zeng, L,; Mujtaba, S.; Ohlmeyer, M.; Zhou, M.-M. J. Med. Chem. 2013, 56, 9251 - 9264.

238 Fish, P. V.; Bish, G.; Bunnage, M. E.; Cook, A. S.; Owen, D. R.; Ralph, M. J.; Sciammetta, N.; Filippakopoulos, P.; Brennan, P. E.; Federov, O.; Knapp, S.; Marsden, B.; Philpott, M.; Picaud, S.; Gerstenberger, B. S.; Jones, H.; Nocka, K.; Primiano, M. J.; Trzupek, J. D.; Owen, D. R. J. Med. Chem. 2012, 55, 9831-9837.

239 Hay, D.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Philpott, M.; Picaud, S.; Hewings, D. S.; Uttakar, S.; Heightman, T. D.; Conway, S. J.; Knapp, S.; Brennan, P. E.; Med. Chem. Commun. 2013, 4, 140-144.

240 Garnier, J.-M.; Sharp, P. P.; Burns, C. J. Expert Opin. Ther. Patents 2014, 24, 185-199.
241 Vidler, L. R.; Filippakopoulos, P.; Fedorov, O.; Picaud, S.; Martin, S.; Tomsett, M.; Woodward, H.; Brown, N.; Knapp, S.; Hoelder, S. J. Med. Chem. 2013, 56, 8073 - 8088.

242 Picaud, S.; Wells, C.; Felletar, I.; Brotherton, D.; Martin, S.; Savitsky, P.; Diez-Dacal, B.; Philpott, M.; Bountra, C.; Lingard, H.; Fedorov, O.; Muller, S. Brennan, P. E.; Knapp, S.; Filippakopoulos, P. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 19754 - 19759.

243 Zeng, L.; Li, J.; Muller, M.; Yan, S.; Mujtaba, S.; Pan, C.; Wang, Z.; Zhou, M.-M. J. Am. Chem. Soc. 2005, 127, 2376 - 2377.

244 Sachchidanand; Silverman-Resnick, L.; Yan, S.; Mutjaba, S.; Liu, W.-J.; Zeng, L.; Manfredi, J. J.; Zhou, M.-M. Chem. Biol. 2006, 13, 81 - 90.

245 Filippakopoulos, P., Picaud, S., Felletar, I., Hay, D., Fedorov, O., Martin, S., Chaikuad, A., Von Delft, F., Brennan, P., Arrowsmith, C.H., Edwards, A.M., Bountra, C., Knapp, S. In press.

246 Hay, D. A.; Fedorov, O.; Martin, S. Singleton, D. C.; Tallant, C.; Wells, C.; Picaud, S.; Philpott, M.; Monteiro, O. P.; Rogers, C. M.; Conway, S. J.; Rooney, T. P. C.; Tumber, A.; Yapp, C.; Filippakopoulos, P.; Bunnage, M. E.; Müller, S. Knapp, S.; Schofield, C. J.; Brennan, P. E. J. Am. Chem. Soc. 2014, 136, 9308-9319.

247 Borah, J. C.; Mujtaba, S.; Karakikes, I.; Zeng, L.; Muller, M.; Patel, J.; Moshkina, N.; Morohashi, K.; Zhang, W.; Gerona-Navarro, G.; Hajjar, R. J.; Zhou, M.-M. Chem. Biol. 2011, 18, 531 - 541.

248 Chaikuad, A., Felletar, I., Chung, C.W., Drewry, D., Chen, P., Filippakopoulos, P., Fedorov, O., Krojer, T., von Delft, F., Arrowsmith, C.H., Edwards, A.M., Bountra, C., Knapp, S. In press

249 Fedorov, O.; Lingard, H.; Wells, C.; Monteiro, O. P.; Picaud, S.; Keates, T.; Yapp, C.; Philpott, M.; Martin, S.J.; Felletar, I.; Marsden, B. D.; Filippakopoulos, P.; Müller, S.; Knapp, S.; Brennan, P. E. J. Med. Chem. 2014, 57, 462-476.

250 Salcius, M.; Bauer, A. J.; Hao, Q.; Li, S.; Tutter, A.; Raphael, J.; Jahnke, W.; Rondeau, J.-M.; Bourgier, E.; Tallarico, J.; Michaud, G. A. J. Biomol. Screen. 2014, 19, 917 - 927.

251 Yang, X.-J.; Ogryzko, V. V.; Nishikawa, J.-I.; Howard, B. H.; Nakatani, Y. Nature 1996, 382, 319 324.

252 Vassilev, A.; Yamauchi, J.; Kotani, T.; Prives, C.; Avantaggiati, M. L.; Qin, J.; Nakatani, Y. Mol. Cell 1998, 2, 869 - 875.

253 Linares, L. K.; Kiernan, R.; Triboulet, R.; Chable-Bessa, C.; Latrielle, D.; Cuvier, O.; Lacroix, M.; Le Cam, L.; Coux, O. Benkirane, M. Nat. Cell Biol. 2007, 9, 331 - 338.

254 Schiltz, R. L.; Nakatani, Y. Biochim Biophys Acta 2000, 1470, M37-M53.
255 Tora, L.; Nagy, Z. Oncogene 2007, 26, 5341 - 5357.
256 Modak, R.; Basha, J.; Bharathy, N.; Maity, K.; Mizar, P.; Bhat, A. V.; Vasudevan, M.; Rao, V. K.; Kok, W. K.; Natesh, N.; Taneja, Kundu, T. K. ACS Chem. Biol. 2013, 8, 1311-1323.

257 Roth, S. Y.; Denu, J. M.; Allis, C. D. Annu. Rev. Biochem. 2001, 70, 81 - 120.
258 Stimson, L.; Rowlands, M. G.; Newbatt, Y. M.; Smith, N. F.; Raynaud, F. I.; Rogers, P.; Bavetsias, V.; Gorsuch, S.; Jarman, M.; Bannister, A.; Kouzarides, T.; McDonald, E.; Workman, P.; Aherne, G. W. Mol. Cancer Ther. 2005, 4, 1521-1532.

259 Masumi, A.; Wang, I.-M.; Lefebvre, B.; Yang, X.-J.; Nakatani, Y.; Ozato, K. Mol. Cell Biol. 1999, 19, 1810-1820.

260 Blanco, J. C. G.; Minucci, S.; Lu, J.; Yang, X.-J.; Walker, K. K.; Chen, H.; Evans, R. M.; Nakatani, Y.; Ozato, K. Genes \& Dev. 1998, 12, 1638 - 1651.

261 Nagy, Z.; Tora, L. Oncogene 2007, 26, 5341-5357.
262 Marmorstein, R.; Berger, S. L. Gene 2001, 272 1-9.
263 Wu, C.; Orozco, C.; Boyer, J.; Leglise, M.; Goodale, J.; Batalov, S.; Hodge, C. L.; Haase, J.; Janes, J.; Huss, J. W.; Su, A. I. Genome Biol. 2009, 10, R130.1 - R130.8.

264 Su, A. I.; Wiltshire, T.; Batalov, S.; Lapp, H.; Ching, K. A.; Block, D.; Zhang, J.; Soden, R.; Hayakawa, M.; Kreiman, G.; Cooke, M. P.; Walker, J. R.; Hogenesch, J. B. P. Natl. Acad. Sci. U.S.A., 2004, 101, 6062-6067.

265 Pan, C.; Mezei, M.; Mujtaba, S.; Muller, M.; Zeng, L.; Li, J.; Wang, Z.; Zhou, M.-M. J. Med. Chem. 2007, 50, 2285-2288.

266 Wang, Q.; Wang, R.; Zhang, B.; Zhang, S.; Zheng, Y.; Wang, Z. Med. Chem. Comm. 2013, 4, 737 740.

267 Zhou, M.-M.; Ohl-Meyer, M.; Mujtaba, S.; Plotnikov, A.; Kastrinsky, D.; Zhang, G. Borah, J. Int. Patent 116170 A1 23 February, 2012.

268 Lea, W. A.; Simeonov, A. Expt. Opin. Drug Discov. 2011, 6, 17-32.

269 Degorce, F.; Card, A.; Soh, S.; Trinquet, E.; Knapik, G. P.; Xie, B. Curr. Chem. Genom. 2009, 3, 22 32.

270 Panchuk-Voloshina, N.; Haugland, R. P.; Bishop-Stewart, J.; Bhalgat, M. K.; Millard, P. J.; Mao, F.; Leung, W.-Y.; Haugland, R. P. J. Histochem. Cytochem. 1999, 47, 1179-1188.

271 Cheng, Y.-C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099-3108.
272 Lui, X.; Testa, B.; Fahr, A. Pharm. Res. 2011, 28, 962 - 977.
273 van Braun, J. Ber. Dtsch. Chem. Ges. 1923, 56, 2332 - 2343.
274 Ishikawa, M.; Hasimoto, Y. J. Med. Chem. 2011, 54, 1539 - 1554.
275 CCG The Molecular Operating Environment (MOE) 2012 [Windows XP] version 2012.10; http://www.chemcomp.com.
276 Prime, M. E.; Courtney, S. M.; Brookfield, F. A.; Marston, R. W.; Walker, V.; Warne, J.; Boyd, A. E.; Kairies, N. A.; von der Saal, W.; Limberg, A.; Georges, G.; Engh, R. A.; Goller, B.; Rueger, P.; Rueth, M. J. Med. Chem. 2011, 54, 312 - 319.

277 Prime, M. E.; Courtney, S. M.; Brookfield, F. A.; Marston, R. W.; Walker, V.; Warne, J.; Boyd, A. E.; Kairies, N. A.; von der Saal, W.; Limberg, A.; Georges, G.; Engh, R. A.; Goller, B.; Rueger, P.; Rueth, M. J. Med. Chem. 2011, 54, 312 - 319.

278 Sugimoto, A.; Sakamoto, K.; Fujino, Y.; Takashima, Y.; Ishikawa, M. Chem. Pharm. Bull. 1985, 33, 2809-2820.

279 Fischer, E.; Speier, A. Ber. Dtsch. Chem. Ges. 1895, 28, 3252 - 3258.
280 Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc. 1967, 40, 935 - 939.
281 Curtius, T. Ber. Dtsch. Chem. Ges. 1890, 23, 3023 - 3033.
282 Wacker, D. A.; Rossi, K. A.; Wang, Y.; Wu, G. Int. Patent 009183 A1 21 Jan, 2008.
283 Saga, Y.; Motoki, R.; Makino, S.; Shimizu, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 7905 - 7907.
284 Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K. Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637-643.

285 Milbank, J. B. J.; Tercel, M.; Atwell, G. J.; Wilson, W. R.; Hogg, A.; Denny, W. A. J. Med. Chem. 1999, 42, 649-658.
286 Bavetsias, V.; Skelton, L. A.; Yafai, F.; Mitchell, F.; Wilson, S. C.; Allan, B.; Jackman, A. L. J. Med. Chem. 2002, 45, 3692 - 3702.

287 Ezquerra, J.; Pedregal, C.; Lamas, C. J. Org. Chem. 1996, 61, 5804-5812.
288 Barluenga, J.; Campos.P. J.;Gonzalez, J. M.;Suarez, J. L.; Asensio, G. J. Org. Chem. 1991, 56, 2234.
289 Koreeda, T.; Kochi, T.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 7238-7239.
290 Zysman-Colman, E.; Arias, K.; Siegel, J. S. Can. J. Chem. 2009, 87, 440 - 447.
291 Molander, G. A.; Sandrock, D. L.; Org. Lett. 2007, 9, 1597 - 1600.

292 McQueen, A. J.; Green, C.; Butlin, R. J.; Graeme, R. R.; Wood, J. M.; McCoull, W. Int. Patent 047558, 16 April, 2009.

293 Ritchie, T. J.; Macdonald, D. J. F. Drug Discov. Today 2009, 14, 1011 - 1020.
294 Young, R. J.; Green, D. V. S.; Luscombe, C. N.; Hill A. P. Drug Discov. Today 2011, 16, 822 - 830.
295 Polonka-Balint, A.; Saraceno, C.; Matyus, P.; Ludanyi, K.; Benyei, A. Synlett 2008, 2846 - 2850.
296 Betti, L.; Corelli, F.; Floridi, M.; Giannaccini, G.; Maccari, L.; Manetti, F.; Stappaghetti, G.; Botta, M. J. Med. Chem. 2003, 46, 3555 - 3558.

297 Varga, I.; Jerkovich, G.; Matyus, P. J. Het. Chem. 1991, 28, 493 - 496.
298 Kaji, K.; Nagashima, H.; Oda, H. Chem. Pharm. Bull. 1984, 32, 1423 - 1432.
299 Atkins, P. W. The Elements of Physical Chemistry, 2nd ed.; Oxford University Press: Oxford, U.K., 1996; pp 356.

300 Vega, A.; Alonso, J.; Diaz, J. A.; Junquera, F.; Perez, C.; Darias, V.; Bravo, L.; Abdallah, S. Eur. J. Med. Chem. 1991, 26, 323 - 329.

301 Lim, C. J.; Kim, S. H.; Lee, B. H.; Oh, K.-S.; Yi, K. Y. Bioorg. Med. Chem. Lett., 2012, 22, 427 - 430.
302 Huang, D.; Wang, H.; Xue, F.; Guan, H.; Li, L.; Peng, X.; Shi, Y. Org. Lett. 2011, 13, 6350 - 6353.
303 Bernal, I.; Levendis, D. C.; Fuchs, R.; Reisner, G. M.; Cassidy, J. M. Struct. Chem. 1997, 8, 275 285.

304 Purohit, A.; Radeke, H.; Azure, M.; Hanson, K.; Su, F.; Yu, M.; Hayes, M.; Guaraldi, M.; Kagan, M.; Robinson, S.; Casebier, D.; Benetti, R.; Yalamanchili, P. J. Med. Chem. 2008, 51, 2954 - 2970. 305 Biscoe, M. R.; Fors, B. P.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 6686 - 6687.
306 Grignard, V. C. R. Hebd. Acac. Sci. 1900, 1322-1324.
307 Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969-5970.
308 Lee, H.-G.; Kim, M.-J.; Lee, I.-H.; Kim, E. J.g; Kim, B. R.; Yoon, Y.-J. B. Kor. Chem. Soc. 2010, 31, 1061-1063.

309 Edben, M. R.; Simpkins, N. S.; Fox, D. N. A. Tetrahedron, 1998, 54, 12923-12952
310 Betschmann, P.; Carroll, W. A.; Ericsson, A. M.; Fix-Stenzel, S. R.; Friedman, M.; Hirst, G. C.; Josephson, N. S.; Li, B.; Perez-Medrano, A.; Morytko, M. J.; Rafferty, P. US Patent 015192, 10 January, 2008.

311 Woodward, R. B.; Doering, W. E. J. Am. Chem. Soc. 1945, 67, 860 - 874.
312 Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27 - 50.
313 Feng, S.; Panetta, C. A.; Graves, D. E. J. Org. Chem. 2001, 66, 612 - 616.
314 Koshio, H.; Hirayama, F.; Ishihara, T.; Shiraki, R.; Shigenaga, T.; Taniuchi, Y.; Sato, K.; Moritani, Y.; Iwatsuki, Y.; Kaku, S.; Katayama, N.; Kawasakia, T.; Matsumotoa, Y.; Sakamotoc, S.; Tsukamoto, S. Bioorg. Med. Chem. 2005, 13, 1305-1323.

315 Assay generation performed by Biological Sciences, GSK Stevenage.

316 Chemoproteomic experiments performed by Cellzome (GSK), Heidelburg, Germany.
317 Garnier, E.; Audoux, J.; Pasquinet, E.; Suzenet, F.; Poullain, D.; Lebret, B.; Guillaumet, G. J. Org. Chem. 2004, 69, 7809-7815.

318 Marlow, A. L.; Wallace, E.; Seo, J.; Lyssikatos, J. P.; Yang, H. W.; Blake, J.; Storey, R. A.; Booth, R. J.; Pittam, J. D.; Leonard, J.; Fielding, M. R. Int. Patent 044084, 19 April, 2007.

319 Fitton, P.; Rick, E. A. J. Organomet. Chem. 1971, 28, 287 - 291.
320 Krajsovszky, G.; Karolyhazy, L.; Reidl, Z.; Csampai, A.; Dunkel, P.; Lernyei, A.; Dajka-Halasz, B.; Hajos, G.; Matyus, P. J. Mol. Struct. (THEOCHEM) 2005, 713, 235 - 243.

321 Andrews, P. R.; Craik, D. J.; Martin, J. L. J. Med. Chem 1984, 27, 1648 - 1657.
322 Hann, M. M.; Leach, A. R.; Harper, G. J. Chem. Inf. Comput. Sci. 2001, 41, 856-864.
323 Atkins, P. W. Physical Chemistry, $6^{\text {th }}$ Ed.; Oxford University Press: Oxford, U.K., 2000.
324 Stephens, P. J. J. Phys. Chem. 1985, 85, 748-752.
325 Buckingham, A. D.; Fowler, P. W.; Galwas, P. A. Chem. Phys. 1987, 112, 1 - 14.
326 VCD experiments and calculation performed by Minick, D.
327 Biel, M.; Kretsovali, A.; Karatzali, E.; Papamatheakis, J.; Giannis, A. Angew. Chem. Int. Ed. 2004, 43, 3974 - 3976.
328 Cheng, K.-C.; Li, C.; Uss, A. S. Expert Opin. Drug Metab. Toxicol. 2008, 4, 581-590.
329 Auld, D. S.; Thorne, N.; Maguire, W. F.; Inglese, J. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 3585 3590.

330 Guha, M. Nat. Biotechnol. 2011, 29, 373 - 374.
331 Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G. F.; Faller, B.; Fischer, H.; Gerebtzoff, G.; Lennernaes, H.; Senner, F. Nat. Rev. Drug Discov. 2010, 9, 597-614.

332 Veach, D. R.; Namavari, M.; Pillarsetty, N.; Santos, E. B.; Beresten-Kochetkov, T.; Lambek, C.; Punzalan, B. J.; Antczak, C.; Smith-Jones, P. M.; Djaballah, H.; Clarkson, B.; Larson, Steven M. J. Med. Chem. 2007, 50, 5853 - 5857.
333 Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug. Discov. 2007, 6, 881 - 890.
334 Deutch, C.; Taylor, J. S., Wilson, D. F. Proc. Natl. Acad. Sci. U.S.A. 1982, 79, 7944 - 7948.
335 Schlosser, M.; Michel, D. Tetrahedron 1996, 52, 99 - 108.
336 Atkins, P. W. The Elements of Physical Chemistry, 2 ${ }^{\text {nd }}$ Ed.; Chapter 9.6; Oxford University Press: Oxford, U.K., 1996.

337 Docking by Hussein, J.
338 Santagati, N. A.; Duro, F.; Caruso, A.; Trombadore, S.; Amico-Roaxas, M. Farmaco Sci. 1985, 40, 921-929.
339 Price, D. A.; Blagg, J.; Jones, L.; Greene, N.; Wager, T. Expert Opin. Drug Metab. Toxicol. 2009, 5, 921-931.

340 Lovering, F. Med. Chem. Commun. 2013, 4, 515 - 519.
341 Boute, N.; Jockers, R.; Issad, T. Trends Pharmacol. Sci. 2002, 23, 351 - 354.
342 O'Mahony, A.; Treiber, D. Novel Assays and Human Model Systems for Epigenetic Drug Discovery, Presented at SGC-DiscoveRx Symposium, Oxford, UK, September 12, 2013.

343 Forbes, S. A.; Bhamra, G.; Bamford, S.; Dawson, E.; Kok, C.; Clements, J.; Menzies, A.; Teague, J. W.; Futreal, P. A.; Stratton, M. R. Current Protocols in Human Genetics; John Wiley \& Sons: Chicester, U.K. 2008; Unit 10.11.

Appendix A Phthalizinone amide compounds

Removal of Boc groups General method D.

A solution of 5 M HCl in IPA was added to the starting material and heated to $80^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was cooled, sufficient MeOH added to form a solution and the solution loaded on to an SCX cartridge. The cartridge was eluted with MeOH followed by a solution of 2 M methanolic ammonia. The basic fractions were evaporated in vacuo to give the title compounds.

Number	Structure	General method used	Analytical data
A. 001	 Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{FN}_{4} \mathrm{O}_{3}$ Molecular Weight: 340.31	A	$\left.{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 400 \mathrm{MHz}\right) \delta$ $11.79(\mathrm{~s}, 1 \mathrm{H}), 9.09-9.00(\mathrm{~m}, 1 \mathrm{H})$, 8.38 - 8.30 (m, 2H), 8.21 (br.s, 1H), 8.15 (br.s, 1 H), $8.04-7.97$ (m, 1H), 7.96-7.90 (m, 1H), 7.57 ($\mathrm{td}, \mathrm{J}=6.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 7.06 (m, 1H), 3.85 (s, 3H); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 341,96 \% \mathrm{a} / \mathrm{a}$.
A. 002	 Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ Molecular Weight: 309.32	A	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)} \mathrm{I}_{2}, 400 \mathrm{MHz}\right) \delta^{1} \mathrm{H}$ NMR ($\mathrm{SO}_{\left.\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) ~ \delta ~}^{8}$ 10.74 (br.s, 1H), 8.92 (d, $\mathrm{J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 8.35$ (dd, J = 1.0, 8.0, 1H), 8.06-7.96(m, 2H), 7.95-7.89 (m, 1H), 7.42-7.31 (m, 2H), 7.17 (td, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70 (br.s, 1H), 4.65 ($\mathrm{s}, 2 \mathrm{H}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}$); LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 310,99 \% \mathrm{a} / \mathrm{a}$.

A. 003	 Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ Molecular Weight: 304.30	A	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 10.82(\mathrm{~s}$, 1 H), $8.74(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, \mathrm{J}$ $=1.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.00(\mathrm{td}, \mathrm{J}=1.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.75$ (m, 2H), 7.49-7.43(m, 1H), 3.87 (s, $3 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 305,100 \% \mathrm{a} / \mathrm{a}$.
A. 004	 Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{CIN}_{3} \mathrm{O}_{2}$ Molecular Weight: 313.74	C	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 10.74(\mathrm{~s}$, $1 \mathrm{H}), 8.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, \mathrm{J}$ $=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.88(\mathrm{~m}, 2 \mathrm{H})$, 7.88-7.80 (m, 2H), 7.49-7.42 (m, 2H), 3.85 (s, 3H); LRMS [M+H] ${ }^{+}$: 314, 100\% a/a.
A. 005		C	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 10.50$ (br.s, 1H), 8.73 (d, J=8.0 Hz, 1H), 8.35 (dd, J = 1.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.02-7.88$ (m, $2 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.40$ (m, 1H), 7.38-7.30 (m, 2H), 7.29-7.21 ($\mathrm{m}, 1 \mathrm{H}$), $4.18(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, 3H), 1.35 (s, 9H); LRMS [M+H] ${ }^{+}$: 409, 100% a/a.
A. 006	 Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ Molecular Weight: 308.33	D	${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.96(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.17(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.03-7.95(\mathrm{~m}$, 1H), 7.95-7.88(m, 1H), 7.35-7.24 (m, 2H), $7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H})$, exchangeable protons not observed; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 309,99 \%$ a/a.

A. 007	 Chemical Formula: $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ Molecular Weight: 328.37	C	${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{SO}_{\left(\mathrm{CD}_{3}\right)}{ }_{2}, 400 \mathrm{MHz}\right) \delta 8.61$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.30 (dd, J = 8.0, 1.0 Hz, 1H), 7.98-7.83 (m, 2H), 7.36 (br.s, 1H), 6.94 (br.s, 1H), 4.30-4.20(m, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.61$ (dt, J = 4.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.09-1.97 (m, 1H), 1.95-1.82 (m, 1H), 1.67-1.30 (m, 6H); LRMS [M+H] ${ }^{+}$: 329, 100\% a/a.
A. 008	 Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$ Molecular Weight: 400.47	C	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.51(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.30 (dd, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.97-7.86$ (m, 2H), 6.74 (br.d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 (s, 3H), 3.76-3.67 (m, 1H), 3.26-3.15 $(\mathrm{m}, 1 \mathrm{H}), 1.93-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.37$ (m, 11H), $1.33-1.22(\mathrm{~m}, 2 \mathrm{H})$; LRMS $[\mathrm{M}+\mathrm{H}]^{+}: 401,100 \% \mathrm{a} / \mathrm{a}$.
A. 009	 Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ Molecular Weight: 300.36	D	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}_{(}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.46$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.30(\mathrm{dd}, \mathrm{J}=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.84$ (m, 2H), 3.80-3.67 (m, 4H), 2.57-2.52 (m, 1H), 1.91-1.75 (m, 4H), 1.52 (br.s, 2H), 1.43-1.31 (m, 2H), 1.20-1.06 (m, 2H); LRMS [$\mathrm{M}+\mathrm{H}]^{+}: 301,100 \%$ a/a.
A. 010	 Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4}$ Molecular Weight: 400.47	C	${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{SO}\left(\mathrm{CD}_{3}\right)_{2}, 400 \mathrm{MHz}\right) \delta 8.42(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35-8.28(\mathrm{~m}, 2 \mathrm{H}), 7.99$ - 7.86 (m, 2H), 6.67 (br.s, 1H), 3.95 $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.40$ $(\mathrm{m}, 1 \mathrm{H}), 1.80-1.52(\mathrm{~m}, 8 \mathrm{H}), 1.39(\mathrm{~s}$, 9H); LRMS [M+H] ${ }^{+}$: 401, 97\% a/a.

(m.011

Graph 5: Reprinted with permission from Chung, C.-W.; Coste, H.; White, J. H.; Mirguet, O.; Wilde, J.; Gosmini, R. L.; Delves, C.; Magny, S. M.; Woodward, R.; Hughes, S. A.; Boursier, E. V.; Flynn, H.; Bouillot, A. M.; Bamborough, P.; Brusq, J.-M. G.; Gellibert, F. J,; Jones, E. J.; Riou, A. M.; Homes, P.; Martin, S. L.; Uings, I. J.; Toum, J.; Clément, C. A.; Boullay, A.-B.; Grimley, R. L.; Blandel, F. M.; Prinjha, R. K.; Lee, K.; Kirilovsky, J.; Nicodeme, E. J. Med. Chem. 2011, 54, 3827 - 3838. Copyright 2011 American Chemical Society."

Graph 6: Reprinted with permission from Chung, C.-W.; Dean, A. W.; Woolven, J. M.; Bamborough, P. J. Med. Chem. 2012, 55, 576 - 586. Copyright 2012 American Chemical Society."

Figure 3: From Jenuwein, T.; Allis, C. D. Science 2001, 293, 1074 - 1080. Reprinted with permission from AAAS.

Figure 15: From Johansson, C.; Tumber, A.; Che, K.; Cain, P.; Nowak, R. Gileadi, C. Oppermann, U. Epigenomics 2014, 6, 89 - 120. Republished with permission from Future Medicine Ltd.

Figure 19: Adapted from Berry, W. L.; Janknecht, R. Cancer Res. 2013, 73, 2936 - 2942 KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells, with permission from AACR.

Figure 57: Adapted from Histone Recognition and Large-Scale Structural Analysis of the Human Bromodomain Family, Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Muller, S., Pawson, T., Gingras, A.C., Arrowsmith, C.H., Knapp, S. Cell 2012, 149, 214 - 231. Used under a Creative Commons licence - http://creativecommons.org/licenses/by/3.0/legalcode.

