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Abstract 

One of the important significances of medical image segmentation is its key role 

in personalized medicine and precision treatment. With the advancement of medical 

imaging technology, three-dimensional visualization and quantitative analysis of the 

liver and its lesion areas have been achieved. By accurately segmenting and identifying 

anatomical structures and lesion areas, the processed images can provide high-

resolution and quantitative anatomical information to help clinicians develop more 

effective and personalized treatment plans. In liver surgery or tumour radiotherapy, 

accurate image segmentation can help plan surgical paths or ensure that drugs are 

accurately concentrated in the tumour area while avoiding healthy tissues and organs at 

risk (OARs), thereby improving treatment efficacy and reducing side effects. In the 

traditional liver segmentation process, radiologists need to manually depict the liver 

contour, abnormal lesions in the liver (such as cancerous tumour areas), and other key 

anatomical structures. However, this manual depiction process is easily affected by 

differences between observers and the same observer at different times, which may 

affect the accuracy of treatment. Therefore, with the help of advanced imaging and 

computing technologies, it is of practical significance and value to achieve automated 

and high-precision segmentation of the liver and liver cancer areas in clinical 

applications. This thesis designed a series of innovative deep learning methods to 

achieve automatic segmentation of the liver and liver cancer areas in computed 

tomography (CT) images, focusing on improving segmentation accuracy, robustness, 

and the ability to handle small tumour areas. The datasets used in this study are from 

the public liver segmentation dataset, The Liver Tumour Segmentation (LiTS).  

In view of the liver CT segmentation problem, this study proposed an improved U-

Net model based on multi-scale feature fusion, which significantly improved the 

segmentation performance. The model combines dilated convolution and pyramid 

pooling modules to enhance the ability to capture multi-scale features. Among them, 

dilated convolution improves the model's sensitivity to fine-grained features without 
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increasing the number of parameters by expanding the receptive field; the pyramid 

pooling module enhances the recognition ability of complex liver anatomical structures 

by aggregating multi-scale global features. Experimental results show that the multi-

scale feature fusion U-Net performs well in the liver segmentation task, with an average 

Dice coefficient of 0.95, and still shows stability and robustness when dealing with 

cases with blurred boundaries. 

In the liver cancer segmentation task, this study proposed two cascaded U-Net 

networks based on the attention mechanism, which solved the challenges in this field 

with different strategies. The first method introduces a custom attention mechanism 

module based on the cascaded U-Net to simulate the characteristics of humans 

automatically focusing on cancerous areas during the segmentation process, which 

significantly improves the accuracy of segmentation. The model can automatically 

focus on the key features of the tumour in the decoding stage while suppressing the 

interference of background noise, providing effective support for accurate segmentation.  

The second method proposes an end-to-end trained cascade hybrid attention 

network, whose main goal is to directly complete the liver cancer segmentation task 

through a single network, avoiding the process of using two independent networks in 

traditional methods. The network achieves precise focus on the liver region by adding 

a Bounding Box module based on the hard attention mechanism between two U-Nets. 

At the same time, the channel attention module and the spatial attention module are 

introduced in the feature extraction stage, so that the model can effectively capture the 

key features of the tumour region and further improve the segmentation performance. 

The improved U-Net model performs well in dealing with tumour regions with complex 

shapes and irregular boundaries. Experimental data show that both cascade U-Nets 

based on the attention mechanism show excellent performance in the liver cancer 

segmentation task, maintaining high accuracy even in the case of small tumours and 

blurred boundaries. The average Dice coefficient of the first method reaches 0.78, while 
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the second method is further optimised to 0.80, which is significantly better than the 

traditional U-Net of 0.70. 

In addition, this study developed a novel boundary optimisation method to improve 

the accuracy of the segmentation boundary by extracting the boundary area of the initial 

segmentation result and refining it. The optimisation module uses a deep learning-based 

boundary refinement network (BRN) to fine-tune the boundaries of the liver and tumour. 

Through block processing, this method effectively reduces false positive and false 

negative areas and significantly improves the continuity and accuracy of the 

segmentation results. Multiple case verification results show that the optimised model 

has improved boundary-related indicators (such as average symmetric distance and 

boundary overlap error) by about 10%. 
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Chapter 1. Introduction 

1.1 Preface 

Hepatocellular Carcinoma (HCC) refers to malignant tumours that mainly occur in 

the liver, including subtypes such as hepatocellular carcinoma and cholangiocarcinoma 

[1]. According to the World Health Organization (WHO) [2], there will be 

approximately 1 million [3] new cases of liver cancer and approximately 870,000 

cancer deaths worldwide in 2025. Liver cancer is more common in male patients, 

accounting for approximately 75% of all new cases. In addition, the global incidence 

of liver cancer has increased over the past few decades, especially in Asia and Africa 

[4]. In the United States, according to the National Cancer Institute (NCI) [4], new cases 

of liver cancer accounted for approximately 2.4% of all cancer cases in 2020, and liver 

cancer deaths accounted for approximately 5.3% of all cancer deaths. In the United 

Kingdom, the incidence of liver cancer is also rising, with approximately 6,000 new 

cases and approximately 4,000 deaths each year from 2017 [5]. 

The main risk factors for HCC include chronic hepatitis B (HBV) and hepatitis C 

(HCV) infection, cirrhosis, excessive alcohol consumption, non-alcoholic fatty liver 

disease (NAFLD), and aflatoxin exposure [6]. Treatments for early-stage HCC include 

surgical resection, radiofrequency ablation, and radiotherapy (RT). For advanced HCC, 

systemic therapies such as targeted therapy and immunotherapy are also important 

treatment options [7]. RT can be applied to both primary tumours and metastatic lesions. 

As an alternative to surgery, RT can achieve similar oncological outcomes while 

preserving organs at risk (OARs) [8]. 

Ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) 

are commonly used tools for auxiliary diagnosis. At the same time, quantitative analysis 

and three-dimensional visualization of scan results are also important bases for clinical 

diagnosis, pathological grading, and treatment decisions for liver cancer.  

However, manual segmentation of the liver and tumours from medical images not 
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only relies on clinical expertise and available facilities but is also time-consuming and 

susceptible to subjective differences. To address these issues, it is particularly important 

to develop automatic tumour delineation methods. Electronic computer-based 

automation technology can reduce subjective differences and provide objective and 

consistent support to oncologists, thereby reducing their workload and improving the 

effectiveness of treatment [9]. 

 

1.2 Motivation and Challenges 

1.2.1 Motivation 

The precise identification and quantification of liver structures through CT 

segmentation is crucial for surgical planning and postoperative evaluation. It allows for 

a detailed understanding of the liver's anatomy and pathological changes, essential for 

determining the surgical approach and techniques. Accurate segmentation helps in 

assessing the size and location of tumours, planning resections, and ensuring that 

enough healthy liver tissue remains post-surgery to maintain liver function.  The most 

intuitive function of liver CT image segmentation is to calculate the total liver volume 

(TLV) and future liver remnant (FLR). These two indicators are crucial for most liver 

surgeries, such as major hepatectomy, portal vein embolization, associating liver 

partition and portal vein ligation for staged hepatectomy (ALPPS) and liver transplant 

surgery [10]. As illustrated in Figure 1.1, for patients with normal liver function, 

postoperative FLR should usually be at least 20% of TLV; in patients with moderately 

diseased liver, the ratio should be higher than 30%; if the patient has cirrhosis or 

impaired liver function, this ratio may need to be higher, usually 40% or more [11]. 

Liver CT tumour segmentation plays a key role in surgical planning. It provides 

surgeons with a basis for decision-making by accurately delineating the tumour’s 

location, size, morphology, and its spatial relationship to surrounding critical structures, 

such as blood vessels and healthy liver tissue. This allows surgeons to develop optimal 

surgical paths and strategies to minimise damage to healthy tissue and potential surgical 
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risks. In addition, precise segmentation of the tumour allows doctors to evaluate the 

complete resection of the tumour and whether the remainder of the liver can maintain 

its normal function after surgery. This is critical in the selection of treatment options, 

monitoring for potential recurrence and whether further treatment is needed. 

 

 

Figure 1.1 Required functional liver ratio (FLR) after liver resection in patients with 

normal liver, moderate liver disease and cirrhosis. 

1.2.2 Challenges 

CT segmentation of liver and liver tumours is a complex task, which faces various 

challenges and difficulties in the field of medical image processing. Here are some of 

the main challenges: 

(1) Whether it is liver segmentation or tumour segmentation, motion artefacts, beam 

hardening artefacts and noise in CT images may affect the image quality, thus 

interfering with the accurate segmentation of targets [12]. 

(2) The contrast between the liver and other surrounding tissues (e.g., kidneys, stomach) 

may be low, making it more difficult to accurately distinguish boundaries. Similarly, 

the contrast between a tumour (in its early stages) and surrounding normal liver tissue 

may not be apparent, especially if the tumour has blurred edges or is similar to the 

surrounding tissue. In addition, changes in the contrast between the target and the 

background are affected by many factors, such as different contrast agents, different 

injection times and acquisition times [13]. 
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(3) The shape, size, and structure of the liver can vary greatly from patient to patient. 

This diversity makes it difficult to design a universal segmentation algorithm for all 

types of liver images. This problem is even more challenging for tumours, where the 

diversity in size, shape, borders, and internal structure of liver tumours (including 

benign and malignant tumours) complicates segmentation. In the case of chronic liver 

disease, the background information of the liver tissue may change significantly making 

tumour segmentation more difficult [14, 15]. 

(4) Small tumor segmentation in CT images is particularly challenging. Due to their 

limited volume, small tumours often occupy only a few pixels or slices, making them 

difficult to distinguish from surrounding liver tissue. Their intensity distribution may 

be very similar to that of healthy tissue, resulting in low contrast and blurred boundaries. 

In addition, the presence of imaging noise may completely cover these small lesions. 

These factors make small tumor detection extremely susceptible to false negatives, thus 

requiring segmentation algorithms to be both sensitive and spatially accurate. 

(5) Medical images are usually three-dimensional, high-resolution images. 

Segmentation algorithms need to process a large amount of volume data, which 

inevitably increases computational complexity. This requires the algorithm to be 

efficient while maintaining accuracy. 

 

Figure 1.2 Abdominal CT scan showing: (a) normal liver and stomach, (b) normal liver and 

heart, (c) liver tumour and surrounding tissues. 

Figure 1.2 show some examples to illustrate why liver segmentation is a 

challenging task. In the first two images, the liver tissue has to be separated from 

adjacent organs stomach (Figure 1.2a) and heart (Figure 1.2b). The gray-values in all 

structures are highly similar, which makes boundary detection difficult without a-priori 
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information about the expected shape in these regions. In the third image (Figure 1.2c), 

the tumour should be segmented as part of the liver. However, there is a considerable 

intensity difference between both structures, which often leads to misclassification of 

the tumour as non-liver tissue [16]. 

Furthermore, the morphology of lesions is difficult to predict due to the irregular 

growth of tumours and their changes after medical intervention such as surgical 

resection, undermining the effectiveness of segmentation strategies that rely on 

predefined lesion shapes. This is especially true for shape-based segmentation 

technology, which is already well established in the field of organ segmentation [17].  

1.3 Research objectives 

The aim of this thesis is to design an automatic liver and liver tumour segmentation 

framework based on image processing techniques and deep neural networks, which can 

obtain similar results when compared to the professional oncologist, but with less time. 

The framework is structured around three main goals: 

1. Liver Segmentation with an Improved U-Net: The first goal is to achieve 

precise segmentation of the liver from abdominal CT scans using an improved 

version of the U-Net architecture. The aim is to enhance the segmentation 

accuracy to above 90%, approaching the current state-of-the-art methods, which 

typically achieve accuracy in the range of 90% to 95%, thereby ensuring that 

the delineated liver regions are highly accurate and reliable. 

2. Tumour Segmentation: The second goal is to accurately segment the tumour 

regions within the liver. This involves developing a robust algorithm capable of 

identifying and marking all cancerous areas with high sensitivity. The focus will 

be on maximizing the detection of tumour regions to ensure comprehensive 

coverage of all malignant tissues. 

3. Optimisation Algorithm for Refinement: The third goal is to develop an 

optimisation algorithm that can further refine the segmentation results of both 

the liver and the tumours. This algorithm will enhance the initial segmentation 
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outputs, improving the overall performance and accuracy. The refined results 

are expected to exhibit superior quality, facilitating better diagnosis and 

treatment planning. 

1.4 Summary of contribution 

The main contributions of this thesis are described below: 

1. The first major contribution is an automatic liver segmentation method based 

on a multi-scale feature fusion U-Net (MSFU-Net) architecture. By using a 

two-stage U-Net network to first performs coarse segmentation of the liver and 

then utilising the MSFU-Net for fine segmentation. It is shown that this method 

significantly improves the accuracy of segmentation compared to the other 

leading approaches. In order to enhance network performance, residual 

modules and dense connections are introduced, and multi-dimensional 

information fusion technology is adopted. The network performs an average 

Dice score of 0.961 on the Liver Tumour Segmentation (LiTS) dataset [17], 

outperforming most existing methods. In addition, the class imbalance problem 

is effectively solved through image cropping and data augmentation. At the 

same time, the method has a simple structure and reduces computational 

complexity and overfitting risk. 

2. The second contribution is the design of a concise improved U-Net network to 

achieve automatic segmentation of liver tumours. By introducing a custom 

attention module, the sensitivity of the deep neural network to extracting 

features is increased to achieve accurate tumour segmentation. In addition, this 

method is also applicable to liver segmentation. 

3. The third contribution is an automatic segmentation method of liver and liver 

tumours based on an improved cascaded U-Net network. This method 

combines a hybrid attention mechanism and effectively enhances feature 

extraction and tumour detection capabilities by embedding hard attention 

modules and soft attention mechanisms. Evaluation on the LiTS dataset shows 
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that the new method achieves an average Dice score of 0.762, which is 

significantly improved compared to other methods. This method not only 

reduces computational complexity in automatic cropping of the liver region, 

but also improves the class imbalance problem, especially in small tumour 

detection. 

4. The fourth contribution in the research is a new liver tumour segmentation 

optimisation algorithm to improve the segmentation accuracy of tumour 

boundaries in CT images. This method significantly improves the segmentation 

accuracy by extracting boundary patches from the coarse segmentation results 

and optimizing them, with the average Dice coefficient reaching 0.805. A multi-

layer information fusion network combines the original image and coarse 

segmentation results to enhance the accuracy of semantic and location 

information. Experimental results show that this method is superior to existing 

methods in multiple evaluation indicators, demonstrating the ability to 

effectively optimise tumour boundaries and providing an important reference 

for future research and clinical applications. 

1.5 Author’s publications 

The following have been published and presented at technical conferences: 

1. M. Gong, J. Soraghan, G. Di-Caterina & D. Grose, “A U-Net based multi-scale 

feature extraction for liver tumour segmentation in CT images” in 2021 

Communications, Signal Processing, and Systems (CSPS), China. 

2. M. Gong, J. Soraghan, G. Di-Caterina, B. Zhao & D. Grose, “Hybrid attention 

mechanism for liver tumour segmentation in CT images” in 2022 European 

Workshop on Visual Information Processing (EUVIP), Portugal. 

3. M. Gong, J. Soraghan, G. Di-Caterina, X. Li & D. Grose, “A boundary 

optimisation scheme for liver tumours from CT images” in 2023 European 

Signal Processing Conference (EUSIPCO), Finland. 
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1.6 Thesis Outline 

This thesis is structured as follows: 

Chapter 2 provides a comprehensive overview of liver physiology, anatomy, and 

various hepatic diseases, with a particular focus on liver cancer. It begins with an 

introduction to the liver's anatomical structure and functions, detailing how the liver 

plays a crucial role in metabolic regulation, detoxification, and protein synthesis. The 

chapter then explores the different types of liver cancer, such as hepatocellular 

carcinoma, and discusses the main risk factors, including chronic hepatitis B and C 

infections, alcohol consumption, and non-alcoholic fatty liver disease. The chapter also 

covers the various diagnostic methods used to detect liver cancer, including blood tests, 

ultrasound, computed tomography, and magnetic resonance imaging. Each method's 

advantages and limitations are discussed to highlight their relevance in clinical practice. 

The chapter further delves into treatment options for liver cancer, ranging from surgical 

resection and radiofrequency ablation to chemotherapy and targeted therapies. The 

section on computed tomography includes a historical overview of its development, the 

principles of CT imaging, and a discussion of common CT artefacts that can affect 

image quality. 

Chapter 3 focuses on the various image segmentation and quantification techniques 

used in processing CT data. It begins with an introduction to image pre-processing 

techniques that prepare CT images for segmentation by enhancing image quality and 

removing noise. The chapter then examines classical image segmentation methods, 

including interactive and fully automatic segmentation techniques. Interactive methods, 

such as region growing and watershed algorithms, require user input to guide the 

segmentation process, while fully automatic methods use predefined criteria to segment 

images without human intervention. The chapter also provides an in-depth analysis of 

deep neural networks, particularly their application in image segmentation. It explores 

the architecture and functionality of deep convolutional neural networks (CNNs) and 

fully convolutional networks (FCNs). A significant portion of the chapter is dedicated 
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to the U-Net, a popular deep learning model for biomedical image segmentation.  

Chapter 4 describes the CT datasets used in this thesis, specifically the Liver 

Tumour Segmentation dataset, which includes CT scans from multiple patients 

annotated by professional radiologists. The chapter details the dataset composition, 

including the number of images, the variety of tumour types, and the labelling process. 

It also discusses the challenges associated with the dataset, such as class imbalance, 

where certain types of tumours are underrepresented, making the segmentation task 

more difficult. The chapter then outlines the evaluation parameters used to assess the 

performance of the segmentation algorithms developed in this thesis. These metrics 

provide a comprehensive evaluation framework to compare the proposed methods 

against existing techniques and ensure robust performance assessment. 

Chapter 5 introduces a novel liver segmentation method based on a modified U-

Net architecture designed to improve the accuracy of liver segmentation from CT scans. 

The chapter begins with an overview of the modified U-Net, highlighting its key 

components, such as dilated convolutions and pyramid pooling modules, which 

enhance the network's ability to capture multi-scale features and improve segmentation 

accuracy. The implementation details of the network are provided as well, including the 

training process, hyperparameter selection, and optimisation techniques. Experimental 

results demonstrate that the proposed method achieves superior performance compared 

to traditional U-Net and other existing segmentation methods. Visualization of the 

segmentation results is provided to illustrate the method's effectiveness in accurately 

delineating liver boundaries in CT images. 

Chapter 6 introduces two advanced liver tumour segmentation methods based on 

the cascaded U-Net architecture with integrated attention modules. This chapter first 

introduces the cascaded U-Net and explains how the network processes CT images in 

multiple stages to gradually refine the segmentation results. The designed attention 

module aims to enhance the network's ability to focus on relevant features and improve 

segmentation accuracy by selectively emphasizing important regions in the input image. 
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Experimental results are provided, showing significant improvement in segmentation 

performance compared to the traditional U-Net model.  

Chapter 7 introduces a novel framework to enhance the segmentation accuracy of 

liver tumours in CT images. This chapter first introduces the various stages of 

optimisation scheme and explains how these stages (including boundary patches 

extraction, boundary optimisation network and restoration) process CT images in 

multiple stages to gradually refine the segmentation results. The proposed boundary 

optimisation network will be described in detail, and how to use a multi-scale 

information fusion strategy to enhance the details and accuracy of the segmentation will 

be discussed. The results of liver segmentation and tumour segmentation of this scheme 

will be listed, analysed and discussed separately. 

The final chapter summarises the main contributions and findings of the thesis, 

reflects on the research objectives and discusses the limitations encountered during the 

research process. It provides a comprehensive overview of how the proposed methods 

advance the field of liver tumour segmentation on CT images and highlights their 

potential impact on clinical practice. 
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Chapter 2. Liver and Hepatic disease and Computed 

Tomography 

2.1 Introduction 

In modern medicine, understanding the functions of human organs and related 

diseases is the cornerstone for improving diagnostic accuracy and treatment 

effectiveness. The liver, as one of the largest internal organs in the human body, plays 

multiple vital physiological roles. The liver is mainly responsible for metabolic 

regulation, detoxification, protein synthesis and bile secretion [18], and is crucial for 

maintaining metabolic balance and internal environment stability throughout the body. 

However, due to its central position and multifunctionality, the liver is also highly 

susceptible to various pathological conditions, liver cancer being one of the most lethal. 

Liver cancer, especially hepatocellular carcinoma, is the fourth leading cause of 

death and the sixth most common cancer worldwide. Its development is often associated 

with chronic liver diseases such as hepatitis B and C virus infection, alcoholic liver 

disease, non-alcoholic fatty liver disease, and long-term exposure to liver carcinogens. 

Liver cancer develops through multiple stages, and early diagnosis is crucial to 

improving patient prognosis [19, 20]. 

The process of diagnosing and treating liver cancer involves multiple stages. 

Commonly used clinical liver cancer staging systems, such as the Barcelona Clinic 

Liver Cancer (BCLC) [21] staging system, can guide treatment selection and predict 

patient prognosis. There are various methods to treat liver cancer, including surgical 

resection, local ablation, chemotherapy, radiotherapy, and targeted therapy and 

immunotherapy [8, 22-24]. Which treatment is chosen depends on the stage of the 

cancer, the patient's overall health, and treatment availability. 

Medical imaging plays a central role in diagnosis and treatment planning. CT is a 

widely used imaging technology that synthesises X-ray measurement data to produce 

detailed cross-sectional images of the inside of the body. The high resolution and 
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scanning speed of modern CT scans make them ideal for identifying, localizing and 

evaluating liver tumours. However, although CT technology is extremely useful in 

diagnosing liver cancer, its image quality can be affected by various artefacts, such as 

motion artefacts, beam hardening, scattering, and noise, which can interfere with image 

interpretation [25]. 

Section 2.2 of this chapter will review the anatomy and functions of the liver. An 

accurate understanding of the liver's anatomy is critical to planning the surgical path, 

minimising damage to healthy tissue, and maintaining blood supply to the surgical area. 

Section 2.3 introduces the distribution and main causes of liver cancer around the world 

and introduces corresponding treatment methods. Section 2.4 then introduces the 

widely used medical imaging technology called CT, including its development, and 

working principles. In addition, various artefacts that may appear in CT imaging data 

are discussed in this section. Section 2.5 gives the motivation and challenges of this 

research. 

2.2 Liver Anatomy and Physiology 

In humans, liver is the largest internal organ in the body, it is usually in the right 

upper quadrant of the abdomen and partially extended to upper left, below the 

diaphragm and above the stomach. From the perspective of body surface projection, 

liver is generally located between the 5th and 11th ribs. The shape of the liver is an 

irregular wedge, blunt and thick on the right side and narrow on the left side. Generally, 

the left and right diameter (length) is about 25 cm, the upper and lower diameter (width) 

is about 15 cm, and the front and rear diameter (thickness) is about 6 cm. The liver is a 

reddish-brown colour and has a smooth, shiny surface due to the high amount of blood 

and haemoglobin [26-28]. 

Figure 2.1 is an anatomical illustration of the liver, showing both anterior and 

posterior views. The liver is divided into two primary lobes, the right and left lobes. 

The right lobe is larger, and the left lobe is situated to the left of the gallbladder and the 

falciform ligament, which separates the two lobes. Additionally, the liver features the 
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caudate and quadrate lobes; the caudate lobe is positioned near the inferior vena cava 

on the posterior aspect, while the quadrate lobe is adjacent to the gallbladder. The liver 

is a highly circulatory organ with a complex pipeline structure, including hepatic 

arteries, portal veins, hepatic sinusoids, and common bile ducts. The aorta, a major 

artery of the body, is shown behind the liver. The blood flow in the liver is provided by 

the portal vein and hepatic artery, the nutrient-rich portal blood from the visceral 

circulation is perfused through the portal vein, and the hepatic arterial blood with high 

oxygen content perfused by the hepatic artery, which forms a perfusion circuit of 

visceral-sine-systemic circulation. Blood undergoes metabolic processing in the hepatic 

sinusoids and hepatocytes before being transported out of the liver via the hepatic 

sinusoids and subsequently entering the inferior vena cava. The inferior vena cava runs 

along the back of the liver and carries deoxygenated blood from the lower body to the 

heart. The common bile duct is the conduit for bile produced in the liver to the 

gallbladder and eventually to the small intestine for digestion.  The gallbladder, shown 

in green, is situated beneath the liver, storing and concentrating bile. The liver is also 

connected to other structures by various ligaments: the falciform ligament, the left and 

right triangular ligaments, and the coronary ligament, which help to stabilize the liver's 

position within the abdominal cavity. 

In terms of liver anatomy, Couinaud's liver division divides the liver into eight 

independent functional segments based on the blood supply and bile duct structure of 

the liver. Each segment has its own hepatic artery branches, portal vein branches, and 

bile ducts [29]. Figure 2.2 illustrates an intuitive partition pattern. This method of 

partitioning is important for precise liver surgery and disease diagnosis, because it 

allows surgeons and radiologists to understand the liver's anatomy in detail, allowing 

for more refined resections or treatments. 
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Figure 2.1 The anatomical illustration of the liver, both anterior and posterior 

views[30] . 

 

Figure 2.2 Couinaud's liver segments [5]. (a) Anterior surface view; (b) visceral surface 

view. I, caudate/Spigel’s lobe; II, left, posterolateral segment; III, left anterolateral 

segment; IVa, left superomedial segment; IVb, left inferomedial segment; V, right 

anteroinferior segment; VI, right posteroinferior segment; VII, right posterosuperior 

segment; and VIII, right anterosuperior segment. 
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As the largest internal organ in the human body, the liver performs a variety of 

important functions, including filtering blood, producing bile to aid in digestion, storing 

nutrients, and detoxifying harmful substances [18, 31-34]. It regulates carbohydrate 

metabolism by converting monosaccharides absorbed from the intestine into glycogen, 

which helps stabilize blood glucose levels. In protein metabolism, the liver synthesises 

proteins and converts ammonia, a byproduct of amino acid breakdown, into urea for 

excretion. Lipid metabolism in the liver involves the breakdown of fatty acids for 

energy production via the citric acid cycle and the synthesis of fats, cholesterol, and 

phospholipids. These lipids are then transported to tissues for storage and utilization. 

Additionally, the liver detoxifies harmful substances, such as drugs and environmental 

toxins, transforming them into water-soluble metabolites for excretion. The liver also 

stores essential vitamins (A, B12, D), minerals (iron, copper), and glycogen, and it plays 

a key role in hormone regulation by metabolizing excess hormones. Overall, the liver 

is a crucial organ that performs a wide range of essential functions necessary for 

maintaining good health. 

2.3 Liver cancers 

2.3.1 Overview and Epidemiology of Liver Cancer 

Liver cancer refers to malignant tumours that affect the liver. There are two main 

types of liver cancer: primary liver cancer, which starts in the liver, and secondary liver 

cancer, which starts in another part of the body and spreads to the liver [5]. Primary 

liver cancer can be further classified into several types, with the most common being 

hepatocellular carcinoma, which accounts for about 75% of cases. Other types of 

primary liver cancer include intrahepatic cholangiocarcinoma, which starts in the bile 

ducts within the liver, and hepatoblastoma, which is a rare type of liver cancer that 

usually affects children. Secondary liver cancer is cancer that starts elsewhere in the 

body such as the pancreas, colon, stomach, breast, or lungs and spreads (metastasizes) 

to the liver. The liver is a common site for multiple tumour metastases, and the cancer 
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most likely to spread to the liver is bowel cancer. This is because the blood supply to 

the gut is connected to the liver via the portal vein. Other cancers including skin 

melanoma, lung cancer, breast cancer and neuroendocrine tumours have a chance of 

metastasizing to the liver [35-37].  

The liver cancer is the sixth commonly cancer the third most deadly malignant 

tumour in the world. According to statistics, around 564,000 new cases of liver cancer 

occurred worldwide in 2000 [38], and around 548,000 patients have already died from 

the disease. And these data have risen to 905,700 and 830,200 respectively by 2020 [1]. 

In most regions, the incidence and mortality rates for males are 2 to 3 times that of 

females. Liver cancer ranks fifth (6.3%) and second (10.4%) in global incidence and 

death rates among men, respectively; while in women, it is only <3% and 5.7% [39]. 

Transitioning countries have a higher incidence rate compared to transitioned countries, 

and this disease is the most common cancer in 11 geographically diverse countries in 

East Asia, South-Eastern Asia, and Northern and Western Africa [39]. The age 

distribution of liver cancer incidence is related to region. In areas with high liver cancer 

risk, such as Southeast Asia or West Africa, the incidence of liver cancer increases after 

the age of 20 and peaks or stabilizes over the age of 50. In contrast, in more developed 

high-risk countries, age-specific incidence rates increased steadily with age, similar to 

the pattern in low-risk areas, with most cases occurring in people aged 55 to 74 years 

[40].  

2.3.2 Causative factors 

Liver cancer is primarily associated with liver cirrhosis, with 70-90% of cases 

occurring in patients with cirrhosis [20, 41]. The leading causes of liver cancer include 

chronic Hepatitis B and C infections, responsible for 56% and 20% of global cases, 

respectively, especially in regions like sub-Saharan Africa and parts of Asia [19]. These 

viruses act synergistically in promoting liver cancer development. 

Unhealthy lifestyle habits can also increase the risk of liver cancer, especially 

smoking and heavy drinking.  Globally, approximately 18% of the liver cancer burden 
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may be related to smoking, and an estimated 17% may be related to alcohol 

consumption [42]. Tobacco contains various carcinogens (such as nicotine, tar, 

benzopyrene, etc.) that can impair liver function, inhibit the regeneration and repair of 

liver cells, and these products are mainly metabolized and detoxified by the liver [43]. 

Excessive alcohol intake increases the risk of developing alcoholic hepatitis, cirrhosis, 

and fatty liver [20, 41, 44], which in turn increases the risk of developing liver cancer. 

According to research by Hiroshi et al. [45], excessive drinking of alcohol will increase 

the risk of liver cancer by 3-10 times. Alcohol is metabolized by alcohol dehydrogenase 

(ADH) in the liver into acetaldehyde, a toxic compound that is highly toxic to cells and 

carcinogenic. Furthermore, acetaldehyde can combine with deoxyribonucleic acid 

(DNA) to form DNA adducts, which interferes with the normal replication and repair 

process of DNA, leading to gene mutations and cell dysfunction, thereby promoting the 

development of cancer.  

Non-alcoholic fatty liver disease and diabetes are also important causes of liver 

cancer [46]. According to statistics, 10%-20% of HCC cases are related to NALFD 

globally [47], and the proportion of the elderly is more common than that of young 

patients. Liver cancer caused by NALFD accounts for a relatively high proportion in 

economically developed areas. The United States, Europe, and China are expected to 

witness rapid increases in the incidence and prevalence of NAFLD-related HCC by 

2030 [48]. 

In addition, some toxins such as Aflatoxins B1(AFB1) can also increase the risk of 

cancer if ingested into the body due to improper dietary habits. AFB1 is the most 

common in humans and animals and is classified as a Group 1 carcinogen by the 

International Agency for Research on Cancer (IARC). When AFB1 is metabolized by 

the liver in the body, it is converted into highly active metabolites that can cause DNA 

breakage, gene mutations, and other genetic material damage, thereby interfering with 

normal cell function and promoting the formation and development of cancer cells [49, 

50]. Aflatoxins are particularly common in tropical and subtropical regions, including 



18 

 

parts of Africa, Southeast Asia, South America, and Central America. The incidence of 

liver cancer in these areas with high AFB1 exposure is 3 times higher than in normal 

areas, and in synergy with hepatitis B virus, the risk of liver cancer is 30 times higher 

than with single exposure to AFB1 [51]. 

Liver cancer often has no obvious symptoms in the early stage, so it is difficult to 

find early liver cancer. As the disease progresses, the following symptoms will appear, 

such as fatigue, loss of appetite, weight loss and other systemic symptoms; upper 

abdominal discomfort or pain; jaundice, ascites, abnormal liver function; and liver 

cirrhosis-related complications, such as splenomegaly, hypersplenism, esophageal 

varices, etc.  

2.3.3 Diagnostic methods for liver diseases 

There are various methods for screening and examination of HCC, including blood 

tests, medical imaging tests and pathological tissue examinations [52]. Among these 

methods, performing pathological tissue examination on liver tissue samples is the most 

accurate way to determine if a person has cancer.  

Blood tests are one of the simplest and most convenient methods for screening liver 

cancer. Alpha-fetoprotein (AFP) in serum can serve as a tumour marker for liver cancer. 

The normal reference value for serum AFP concentration ranges from 0μg/L to 40μg/L 

[53]. When a patient's blood AFP level is higher than the normal value, the possibility 

of having cancer should be noted. However, this cannot be used as the sole criterion for 

diagnosing cancer [54]. A study in [55, 56] highlighted that AFP's sensitivity in 

diagnosing HCC is found to be around 54%, indicating that AFP levels may not be 

elevated in all HCC cases. 

Medical imaging examinations are also widely used in the detection of liver cancer, 

including ultrasound examination, computed tomography (CT) scans and magnetic 

resonance imaging (MRI) scans. Each of these methods has its advantages and 

disadvantages. Ultrasound is non-invasive, inexpensive, and has no radiation exposure, 

but its specificity in diagnosing benign and malignant lesions is not as good as enhanced 



19 

 

CT scans or MRI. CT scans can clearly display the size, number, morphology, location, 

boundaries, and intrahepatic ductal system of liver cancer, but they come with some 

radiation exposure. MRI can provide more information from cross-sectional, coronal, 

and sagittal images, and its sensitivity in detecting small HCCs and its ability to 

distinguish lesions are better than CT. However, MRI examinations take longer and 

have limited ability to display intrahepatic calcification lesions, such as intrahepatic 

bile duct stones and post-interventional iodized oil deposition [57]. In general, CT or 

enhanced CT scans are the most common medical imaging techniques used in clinical 

diagnosis. 

Liver biopsy is usually the last resort used to diagnose liver cancer because surgery 

is required, such as percutaneous liver biopsy (PLB) and trans-jugular liver biopsy 

(TJLB). Liver biopsy is a procedure that can directly understand the pathological 

changes of liver tissue, and it is the gold standard for the diagnosis of liver diseases [58, 

59]. 

2.3.4 Treatment Options and Clinical Interventions 

2.3.4.1 BCLC staging system. 

Under normal circumstances, when a patient is diagnosed with cancer, the cancer 

is staged to guide subsequent treatment and prognosis. The staging of cancer is 

determined based on the development and spread of the tumour. Internationally 

recognised methods for staging liver cancer include the Barcelona Clinic Liver Cancer 

(BCLC) staging system and the tumour–node–metastasis (TNM) staging system, etc. 

Next, the BCLC staging system [60] introduced in 1999 by European Association for 

the Study of the Liver (EASL) will be described in detail, which is widely used in 

Europe and North America. The BCLC system takes into consideration the patient's 

performance status (via Eastern Cooperative Oncology Group Physical Status Rating 

system), liver cirrhosis situation (via Child-Pugh Score System), and condition of liver 

tumour, providing corresponding treatment recommendations for each stage of liver 
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cancer [61]. 

The patient’s performance status system is introduced by the Eastern Cooperative 

Oncology Group (ECOG), which is used to quantify a patient's general health and 

activities of daily living. It is an important tool in assessing the progression of a patient's 

disease, the impact of the disease on the patient's ability to perform daily living and 

determining appropriate treatment and prognosis. Table 2.1 gives the corresponding 

scoring standards, with scores ranging from 0 to 5, with 0 indicating complete normality 

and no activity restrictions, and 5 indicating death. Scores of 1 to 4 correspond to mild 

to severe activity limitations respectively.  

Table 2.1 ECOG Physical Status Rating Criteria. 

The Child-Pugh classification system is a scoring system used by medical 

professionals to assess the severity and prognosis of chronic liver disease, particularly 

cirrhosis. The system measures five clinical indicators including bilirubin, serum 

albumin, prothrombin time, ascites condition and hepatic encephalopathy condition.  

Table 2.2 indicates the corresponding scoring standards, each indicator is scored as 1-3 

according to different situations, where 1 represents the best situation and 3 represents 

the worst situation. The sum of the scores for the patient's five clinical indicators results 

in the Child-Pugh score. A score of 5-6 is classified as Class A, representing normal 

liver function; a score of 7-9 is classified as Class B, representing mild to moderate 

damage; a score of 10-15 implies severe liver damage, at which point the patient is not 

ECOG Physical Status Rating Criteria 

PS rate Physical Condition Description 

0 Fully active, able to carry on all pre-disease performance without restriction. 

1 Restricted in physically strenuous but ambulatory and able to carry out of work of a 

light or sedentary nature. 

2 Ambulatory and capable of all selfcare but unable to carry out any work and 

activities. Up and about more than 50% of waking hours. 

3 Capable of only limited selfcare, confined to bed or chair more than 50% of waking 

hours. 

4 Completely disabled. Cannot carry on selfcare. Totally confined to bed or chair. 

5 Dead 
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suitable to undergo aggressive treatment. 

Table 2.2 Child-Pugh Score System Criteria. 

The final step of the BCLC staging involves the evaluation of the tumour, including 

the size of the tumour, the number of tumours, the presence of vascular invasion, and 

the status of regional lymph node metastasis and extrahepatic spread. Combining the 

three scoring systems is the complete Barcelona staging system. Table 2.3 indicates the 

BCLC scoring standards.  

Table 2.3 BCLC Staging System Criteria. 

BCLC provides a prognostic prediction and treatment recommendation strategy 

based on different cancer stages [21]. When the tumour occurs in BCLC-0 (very early 

Child-Pugh Scoring System 

Biochemical Indicators Score 

1 2 3 

Total bilirubin (mg/dl)  <2 2-3 >3 

Serum albumin (mg/ml) >3.5 2.8-3.5 <2.8 

Prothrombin time(INR) <1.7 1.7-2.3 >2.3 

Ascites None mild Moderate or severe 

Hepatic encephalopathy None I-II III-IV 

Class A = 5–6 point, Class B = 7–9 point, Class C = 10-15 point 

BCLC staging system 

Stage PS 

system 

Child-

Pugh 

level 

Tumour situation 

Tumour 

number 

Tumour 

size 

Vascular 

invasion lymph 

node metastasis 

Very Early (0) 0 A Single <2cm None 

Early (A) 0 A-B Single >2cm None 

0 A-B Less than 3 <3cm None 

Intermediate(B) 0 A-B Multiple Arbitrarily None 

Advanced(C) 1-2 A-B Arbitrarily Arbitrarily Yes 

Terminal(D) 3-4 C Arbitrarily Arbitrarily Yes 
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stage) or BCLC-A (early stage), the patient has a single or a small number (less than 3) 

of tumours, without vascular invasion and cancer-related symptoms. The recommended 

treatment currently is local ablation or surgery like resection and transplant. In BCLC-

B (intermediate stage), multiple tumours appear but there is no extrahepatic metastasis 

or vascular invasion, and liver function may be damaged. For patients at this stage, 

transcatheter arterial chemoembolization (TACE) is the treatment of choice [62]. In 

BCLC-C (advanced stage), there are multifocal tumours with vascular invasion or 

extrahepatic metastasis, or poor liver function, but the patient has a good general 

condition. Systemic therapy, such as targeted drugs such as sorafenib, should be a 

treatment option. In BCLC-D (end stage), the patient's liver function is severely 

impaired, and there are obvious symptoms and poor quality of life. At this stage, 

treatment focuses on relieving symptoms and improving quality of life, such as using 

best supportive care. 

2.3.4.2 Surgery Treatment 

Liver resection is mainly used to treat liver tumours, including benign tumours such 

as hepatocellular adenomas, hepatic hemangiomas, and focal nodular hyperplasia, as 

well as malignant tumours such as liver metastases (commonly such as metastases from 

colorectal cancer), primary hepatocellular carcinoma and cholangiocarcinoma [63]. 

Hepatectomy may also be used to treat intrahepatic gallstones or parasitic cysts in the 

liver. In living donor liver transplantation, partial hepatectomy is also used to remove 

part of the liver from a living donor for transplantation. Figure 2.3 shows four types of 

major hepatectomy. Anatomic resection is generally preferred due to the lower risk of 

bleeding and biliary fistulas. 

During liver resection surgery, major risks include bleeding, biliary fistulas 

(leakage of bile), and liver failure, particularly in patients with cirrhosis. The risk of 

these complications varies on an individual basis, and preoperative evaluation and 

postoperative management are critical to reducing risk [64]. In recent years, advances 
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in liver surgery have reduced blood loss, infectious morbidity, and operative mortality 

after extensive hepatectomy. Although advances in liver resection techniques have 

improved treatment outcomes, liver transplantation remains the preferred option for 

patients with underlying chronic liver disease [65]. 

 

Figure 2.3 Four types of major hepatectomy. White segments are planned for surgical 

resection. a: Complete right hepatectomy, keep I,II,II and IV part. B: Extended right 

hepatectomy, keep I,II and III part. C: Complete left hepatectomy, keep I,V,VI,VII and 

VIII part. D: Extended left hepatectomy, keep VI and VII part[10]. 

2.3.4.3 Radiofrequency ablation 

Radiofrequency ablation (RFA) technology began to be widely used in the field of 

cardiology in the 1990s to treat cardiac arrhythmias [66]. Subsequently, this technology 

was extended to tumour treatment, especially in the treatment of liver, kidney and bone 

tumours. RFA is a kind of minimally invasive treatment that can be used for early liver 

cancer. It is effective for tumours that are smaller in size, typically less than 3cm [67] 

in diameter. Prior to the procedure, imaging scans such as ultrasound, CT scan, or MRI 

are used to map out the exact location of the tumours in the liver, which helps the 

doctors to plan the procedure accurately. The fundamental principle of RFA is the use 

of high frequency alternating current to generate localised high temperatures within 
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tumour tissue, inducing protein denaturation and coagulative necrosis of the cells. 

Simultaneously, the thermal effect coagulates surrounding blood vessels, blocking the 

tumour's blood supply and ultimately eliminating the tumour. 

Ablation therapy is already a mature clinical technology with the advantages of 

minimal invasiveness, safety, high operability, good repeatability, and fast 

postoperative recovery. However, RFA also has some limitations and risks [68, 69]. For 

example, it may not be very effective for larger tumours or tumours close to large blood 

vessels because the heat dissipates too quickly. There is also a risk of extrahepatic 

complications in nearby structures, such as the bile ducts or intestines, and potential 

complications such as bleeding, infection, and liver damage could occur. Another major 

disadvantage of RFA is the high rate of disease recurrence after treatment. Tumours 

located deep in the liver, close to important blood vessels, or larger than 3 cm may be 

more difficult to completely eliminate by RFA [70], which increases the risk of 

recurrence. 

2.3.4.4 Chemotherapy 

For patients with intermediate or advanced liver cancer, a single surgery treatment 

may not be able to prevent the metastasis and spread of cancer cells. In this case, 

patients are usually treated with chemotherapy. This method uses drugs to kill or inhibit 

the growth and replication of cancer cells [71]. Common drugs used for treating 

advanced HCC cancer like Sorafenib, Regorafenib, and Lenvatinib [21], can inhibit the 

growth of tumour cells and the formation of new blood vessels.  

Chemotherapy methods for treating liver cancer mainly include systemic 

chemotherapy and local chemotherapy. Systemic chemotherapy is usually administered 

orally or intravenously to allow chemotherapy drugs to enter the blood circulation and 

reach all parts of the body. It is suitable for cancer cells that have spread to other parts 

of the body. Local chemotherapy is more concentrated in the area where the cancer is 

located, such as Hepatic Arterial Infusion Chemotherapy (HAIC) [22, 23] and 
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Transcatheter Arterial Chemoembolization (TACE) [72, 73], which injects 

chemotherapy drugs directly into the arteries of the liver to reduce the impact on other 

parts of the body. TACE is a minimally invasive procedure primarily used for treating 

liver cancer by blocking the blood supply to the tumour. Since liver cancer nodules 

receive most of their blood supply from the hepatic artery, TACE involves injecting 

chemotherapy drugs and embolic agents directly into the hepatic artery to induce 

tumour necrosis and shrinkage. However, tumour hypoxia from TACE can stimulate 

new blood vessel formation, potentially leading to recurrence. Compared with TACE 

alone, TACE combined with Sorafenib can prolong the overall survival of patients with 

liver cancer [74]. Additionally, combining TACE and RFA in the treatment of 

hepatocellular carcinoma has been shown to improve outcomes compared with TACE 

or RFA alone. In [75] this combined approach resulted in better overall survival and 

recurrence-free survival. Studies have shown that for tumours larger than 3 cm, 

combination therapy achieves better results than RFA alone without significantly 

increasing major complications [76]. 

In summary, which method to use to treat liver cancer needs to be decided 

according to the specific situation of the patient, including the patient's condition (such 

as the size, number, and location of the tumour), liver function, physical condition, and 

whether he can bear possible side effects. This decision should be made jointly by the 

patient and the healthcare team. 

2.4   Computed Tomography (CT) Technology 

2.4.1 Overview of Medical Imaging Modalities for Liver Diagnosis 

Medical imaging plays a vital role in the diagnosis, monitoring, and treatment 

planning of liver diseases. Among the numerous imaging modalities, computed 

tomography (CT), magnetic resonance imaging (MRI), and ultrasound are the most 

widely used in clinical hepatology. These methods have their own advantages and 

disadvantages in terms of image resolution, soft tissue contrast, acquisition time, cost, 
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and availability. 

CT imaging is widely used in liver disease diagnosis due to its high spatial 

resolution, fast acquisition time, and widespread availability in clinical settings. It 

provides detailed anatomical information and can precisely visualise the liver 

parenchyma, vasculature, and tumor location. CT is also the primary image source for 

several public datasets, such as the Liver Tumor Segmentation (LiTS) Challenge, 

making it a practical choice for algorithm development and benchmarking. 

On the other hand, MRI has superior soft tissue contrast and functional imaging 

capabilities, including diffusion-weighted imaging (DWI) and dynamic contrast-

enhanced scanning. MRI is particularly valuable in detecting small lesions and 

differentiating benign from malignant tumours. However, MRI is more expensive, 

difficult to obtain, and more susceptible to motion artefacts, which limits its widespread 

application in large-scale automated analysis. 

Ultrasound is commonly used for initial screening and interventional guidance due 

to its low cost, portability, and real-time imaging properties. However, ultrasound 

suffers from low reproducibility, operator dependence, and limited image quality, which 

makes it less suitable for automatic segmentation tasks. 

Table 2.4 Overview of Common Medical Imaging Techniques for Liver Disease Diagnosis 

Modality Strength Limitations Usage in Liver Tumor 

Segmentation 

CT High spatial resolution. 

widely available; fast 

Radiation exposure.  

less soft-tissue contrast. 

Preferred for automated 

segmentation. 

MRI Better soft-tissue 

contrast; no radiation 

Expensive.  

longer acquisition time; 

motion sensitivity 

Better for 

characterization but less 

used in public datasets. 

Ultrasound Real-time; low cost; 

portable 

Operator-dependent; low 

image quality; poor 

reproducibility 

Not suitable for 

automated segmentation 

pipelines. 

 

A summary of the comparison of these imaging modalities is presented in Table 
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2.4. Based on this evaluation, CT is selected as the primary imaging modality for this 

study because it strikes a balance between imaging quality, clinical usability, and 

compatibility with large, annotated datasets. The next section will focus on CT imaging 

techniques and their application in liver cancer detection. 

2.4.2 Overview of CT 

X-ray computed tomography is a method of obtaining structural information about 

biological tissues and engineered materials without destroying the sample, by using the 

sample's absorption of radiation energy, and it has the advantage of providing very 

detailed images of internal structures. CT imaging provides a very detailed image of 

the internal structure of the sample, which makes it an important tool in the medical 

field, especially in the diagnosis of diseases. CT imaging is irreplaceable in the 

diagnosis of diseases of the central nervous system, head and neck, chest, heart and 

abdomen. Particularly in tumour screening, CT has become an indispensable tool in the 

diagnosis and treatment planning of tumours because it can clearly show the tumour 

and its relationship to the surrounding tissue. 

The basic components of a modern spiral CT imaging system include X-ray sources, 

detectors, scanners, and computer systems. The X-ray sources emit X-rays, which pass 

through the object to be inspected and are then received by the detector on the opposite 

side. The X-ray source and detector are fixed on the scanning frame, and they rotate at 

high speed around the axis of the object being scanned. This rotation allows the system 

to capture X-ray images from multiple angles, providing data for subsequent three-

dimensional reconstruction. The X-ray attenuation information collected by the 

detector is transmitted to the computer system. The computer system processes these 

data and uses image reconstruction algorithms (such as back-projection algorithms) to 

reconstruct the two-dimensional projection data into a three-dimensional image to show 

the internal structure of the scanned object. The reconstructed images can be displayed 

directly on a computer screen for analysis by doctors or researchers. Alternatively, 

images can be recorded via specific output devices such as multi-frame cameras or laser 



28 

 

cameras for archiving or further analysis. 

The development of CT technology has undergone significant advancements since 

its inception, with each generation introducing innovations that improved image quality, 

scanning efficiency, and clinical applications. Table 2.5 summarises the evolution of 

scanning methods, scanning time, and working principles from the first to the fifth 

generation of CT scanners. 

 Early CT technology used single-row detectors and single-beam rotational 

scanning, which had long scanning times and low image quality, and was mainly used 

for head imaging. Subsequently, multi-row detectors and fan-shaped beams were 

introduced, which increased the scanning speed and improved the image quality, and 

CT began to be used in more clinical scenarios. With the advancement of technology, 

the third-generation CT technology with rotating X-ray tubes and full detector arrays 

emerged, achieving full 360-degree scanning, greatly improving image resolution, and 

further expanding the scope of application. The fourth-generation CT reduces artefacts 

and enhances imaging accuracy through the design of a fixed detector ring. The 

subsequent electron beam CT is widely used in cardiac imaging due to its extremely 

high scanning speed [14, 77, 78]. The third generation CT technology is currently 

widely used in clinical practice. From , it can be seen that the key components of a CT 

scanner include an X-ray tube, a high-voltage generator, a collimator, a control system, 

and a data measurement system. 

 

Figure 2.4 Components of a modern third generation CT system. The fan beam covering 

a whole-body scan field of view with a diameter of 50 cm is indicated. 
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Table 2.5 Introduction to CT scanners from the first to the fifth generation, including 

scanning methods, scanning times and working principle [79, 80]. 

 

 

Generation Scanning 

method 

Scan 

time 

Working Principle 

1st Single 

beam 

Scanning 

5min 

 

2nd Narrow 

angle fan 

beam 

Scanning 

20~60s 

 

3rd Wide Angle 

Fan Beam 

Scanning 

5~10s 

 

4th Wide Angle 

Fan Beam 

Scanning 

1~5s 

 

5th Electron 

Beam 

Scanning 

<1s 
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2.4.3 Imaging principle 

CT technology is an imaging technique that enables non-invasive visualisation and 

assessment of subtle structures within the human body by scanning the body using X-

rays. As X-rays pass through the body, they encounter different types of tissue (e.g. 

bone, muscle, fat, etc.), each of which absorbs X-rays to a different degree (attenuation 

coefficient). This attenuation is caused by three main physical processes: the 

photoelectric effect, the Compton scattering effect and the electron pair effect [25, 81]. 

This different results in the grey values of different areas on the CT image. Higher 

grey values correspond to lower X-ray attenuation and typically represent less dense 

tissues, whereas lower grey values correspond to higher attenuation and are generally 

associated with denser tissues. By scanning the body with X-rays at different angles, 

two-dimensional projections of the body at different angles can be obtained. These 2D 

projections contain information about the attenuation inside the body from all angles 

and implicitly about the spatial localisation. Subsequently, these 2D projections are 

reconstructed into 3D images using complex algorithms (e.g., inverse projection 

algorithms), which are able to show the detailed structure of the human body's interior. 

Raw CT values are based on the intensity of the detected X-rays and can range 

from a few thousand to tens of thousands, depending on the scanner manufacturer and 

scanning parameters. In order to provide a standardized method in medical imaging to 

quantify the density of different tissues or substances on CT images. Raw CT values 

are usually converted into Hounsfield Unit (HU) values to facilitate medical diagnosis 

and analysis. HU is the quantitative scale unit of Hounsfield scale opacity, which is a 

linear mapping of the attenuation coefficient of the measured medium. Among them, 

the radiodensity of distilled water and air at standard temperature and standard pressure 

is defined as 0HU and -1000HU respectively. Its mathematical expression is  

𝑈 = 
𝜇−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟−𝜇𝑎𝑖𝑟
          (2.1) 

where 𝜇𝑤𝑎𝑡𝑒𝑟 and 𝜇𝑎𝑖𝑟  are the linear attenuation coefficients of water and air 

respectively. 
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In CT imaging, HU are a measurement used to represent the CT number of each 

pixel on the image, with value range (-3024, +1410) or (-1024, +1410) according to 

different CT machines. Table 2.6 shows the HU values of some common tissues. 

In order to facilitate doctors to see different tissues and structures more clearly, the 

window width and window centre are adjusted to optimise the observation of different 

types of tissues. For instance, window settings specifically optimised for liver imaging 

enable better visualization of the liver and adjacent abdominal organs. 

Window width in CT imaging defines the range of CT values displayed on the 

image. Within this set range, different tissues and lesions are represented in varying 

shades of gray. When the CT values of a tissue exceed this range, they appear as pure 

white on the image, regardless of how much they exceed, and the subtle differences in 

grayscales are no longer visible. Similarly, if the CT values are below this range, they 

will appear as pure black, with no variation in grayscales either. Increasing the window 

width will include a wider range of CT values on the image, allowing for the display of 

a greater variety of tissue structures, but the grayscale contrast between different tissues 

will be reduced. Conversely, decreasing the window width will narrow the range of CT 

values, resulting in fewer tissue structures displayed on the image, but the contrast 

between them will become more pronounced.  

The window centre defines the midpoint of the window width range. The setting 

of the window centre determines the brightness of the image, since adjusting the 

window centre essentially changes the range of CT numbers mapped to grayscale 

display on the monitor. Usually, the CT value of the tissue to be observed is used as the 

window centre. By adjusting the window centre, the structures of interest (such as soft 

tissue, liver tissue, or bone) can be displayed with the correct brightness on the 

grayscale image, allowing for optimal visualization. Figure 2.5 shows the original CT 

image and the CT image after window transformation. It can be clearly observed that 

after window transformation, the differences between different tissues are more obvious, 

which is convenient for doctors to observe and perform data analysis using deep 
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learning. 

Table 2.6 HU values of different tissues 

 

  

Figure 2.5 Original CT image and CT image after window transformation. 

2.4.4 CT artefacts 

 

CT scan artefacts can originate from CT system hardware [25], patient interaction 

with the hardware, and fundamental physical limitations of CT imaging. Hardware-

related artefacts in CT can be caused by issues such as X-ray beam hardening, changes 

in detector sensitivity, and mechanical inaccuracies in the scanner's moving parts. 

Patient-related artefacts can arise from patient motion, differences in tissue density, 

streaking or starburst effects due to metallic implants in the body, and the presence of 

Tissue CT Number (HU) 

Bone +1000 

Liver 40 - 60 

White mater -20 to -30 

Blood 40 

Muscle 10-40 

Kidney 30 

Water 0 

Fat -50 to -100 

Air -1000 



33 

 

contrast media. Finally, the inherent physical limitations of CT imaging technology 

produce artefacts including beam hardening effects, scattering, partial volume effects, 

and quantum speckle, among others. If not handled properly, these artefacts can 

seriously affect the quality and analysis of medical images. Table 2.7 summarises the 

main CT artefacts according to different sources[25, 82, 83], including physics-based 

artefacts, patient-based artefacts and scanner-based artefacts. 

Table 2.7 Artefacts in CT scanning according to different sources 

 

2.4.4.1 Beam Hardening Effect 

The beam hardening effect is a common physical artefact in CT imaging that occurs 

when X-rays pass through the object being scanned. Since X-rays of different energies 

pass through objects at different absorption rates, low-energy X-rays are more easily 

absorbed than high-energy X-rays, resulting in uneven distribution of remaining X-ray 

energy after penetrating the object. This uneven energy distribution will cause 

unrealistic image density in imaging, which is usually manifested as bright or dark 

bands near the edges of the image, especially when penetrating thick or dense objects 

[25]. Beam hardening effects have a negative impact on the quality and accuracy of 

diagnostic images and need to be corrected and mitigated through software algorithms 

or scanning techniques.  

Physics-based Artefacts Patient-based Artefacts Scanner-based Artefacts 

Wire harness hardening Motion artefacts Ring artefact 

Streak artefacts Clothing artefacts Tube discharge artefact 

Cupping artefact Transient interruption of 

contrast 

Bubble artefact 

Metallic artefacts  Out of field artefact 

Partial volume effect  Stair step artefact 

Quantum spots  Zebra stripes 

Under sampling artefacts  Cone beam artefact 
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In CT imaging, the beam-stiffening effect caused by high-density materials (such 

as bone or iodine contrast media) may lead to two characteristic artefacts: streak (or 

dark band) artefact and cupping artefact. Streak artefact appears as dark stripes on the 

image, while cupping artefact causes the central area of the image to appear darker than 

the edges. These effects are particularly noticeable in brain scans, especially in the 

posterior fossa area due to dense the petrous bone structure is more prominent [84]. 

Figure 2.6 shows the cupping artefact in a skull model. It can be seen that due to the 

presence of cupping artefacts, the central area of the scan is darker than without 

artefacts. Figure 2.7 and Figure 2.8 show the streak artefact caused by beam hardening 

effect in the posterior fossa region and thyroid isthmus respectively. The appearance of 

stripe artefacts will obscure the existence of some tissues and directly affect the doctor's 

judgment. 

 

Figure 2.6 Cupping artefacts (A) in the skull model and artefact-corrected image (B) 

[85] 
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Figure 2.7 Streaks artefacts located in the posterior fossa region of the brain [86].  

 

Figure 2.8 A, Beam hardening causing streak artefact at the level of the thyroid isthmus 

results in decreased soft-tissue contrast and obscures the vascular (arrow) B, clear 

vascular without artefact [87]. 

2.4.4.2 Partial Volume Effect 

As described in Section 2.4.2, CT scanning is used to reconstruct cross-sectional 

images of structures in the body. Each cross-sectional image can be regarded as a slice, 

and the thickness of this slice is called the "layer thickness". Layer thickness is an 

important factor in CT imaging parameters that directly affects the quality of the image 

and the level of detail in the image. Thinner layer thicknesses provide higher image 

resolution and finer anatomical detail, helping to better identify and evaluate small 
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structures and lesions. However, thin layer thickness also means that longer scan times 

and higher radiation doses are required, while potentially increasing image noise. 

Therefore, while using thinner slice thickness can improve spatial resolution and 

increase the sensitivity of detecting smaller anatomical structures, it also increases 

image noise due to the reduction of photon statistics per voxel. It is crucial to strike a 

proper balance between image quality, scan time and radiation dose in CT imaging 

protocols. 

The partial volume effect (PVE) is caused primarily by the inclusion of signals 

from multiple different tissues within a single voxel during imaging, resulting in 

imaging results that do not accurately reflect the true nature of any single tissue. When 

voxels are large or scanned with insufficient resolution, a voxel may contain many 

different tissue structures within it. Since the imaging process is performed based on 

voxels, if a voxel contains tissues of different natures within it, the signal reflected by 

this voxel is a mixture of the signals from these different tissues and does not accurately 

reflect the true nature of any one tissue. This results in blurring on the image, creating 

undesired artefacts.  

The partial volume effect is very likely to occur in skull imaging, e.g., in cross-

sectional CT reconstructions of the skull, where dark streaks are often connected to the 

rocky bone, and these artefacts can only be slightly reduced, even with double-

overhardening correction. However, these artefacts can be significantly reduced by 

decreasing the slice thickness [88]. In addition, for aliasing artefacts in helical cone-

beam CT (helical CT) image reconstruction, an algorithm was developed to understand 

these artefacts by simulating nonlinear partial volume averaging, and an interim scheme 

aimed at mitigating nonlinear partial volume and aliasing artefacts was proposed [89]. 

In liver CT imaging, partial volume effect produces artefacts mainly at the soft 

tissue-hard tissue or air interface, which include the bone-air and bone-fat interfaces. 

Figure 2.9 shows the improvement of artefacts in liver scans due to the partial volume 

effect by reducing the scan slice thickness. 



37 

 

 

Figure 2.9 Partial volume artefact (circled in yellow) decreased with decreased voxel size 

[89]. 

2.4.4.3 Photon Starvation 

During CT imaging, photon starvation [90] refers to an insufficient number of 

photons reaching the detector because of X-rays travelling through high-density areas 

or longer paths in the scanned object, due to the fact that CT scans are much more 

absorbent of X-rays than soft tissue when they involve areas that contain metals or other 

materials with high atomic numbers. The photon starvation effect can lead to projection 

data with large statistical errors in the reconstructed image, resulting in the formation 

of fine bright and dark bars along the direction of maximum attenuation, which severely 

affects the quality of the image reconstruction. They reduce the ability to recognise fine 

structures, increase uncertainty in the diagnostic process, and sometimes may even lead 

to misdiagnosis. For example, the photon starvation effect is particularly pronounced 

when evaluating patients containing metal implants, as metal attenuates X-rays much 

more than human soft tissue. Figure 2.10 shows a CT image of a shoulder phantom 

exhibiting streaking artefacts due to photon starvation. 

To reduce the effects of photon starvation artefacts, several strategies can be 

employed. Some approaches include optimizing scanning parameters (e.g., increasing 

the X-ray dose or adjusting the scanning geometry), using advanced image 

reconstruction algorithms (e.g., iterative reconstruction techniques), and developing 



38 

 

specialised artefact reduction techniques that are designed to improve the quality of the 

image and thus the accuracy and reliability of the diagnosis. By these methods [83], the 

photon starvation effect can be compensated for to a certain extent and its impact on 

CT image quality can be reduced. 

 

Figure 2.10 CT image of a shoulder phantom shows streaking artefacts by photon 

starvation [82]. 

2.4.4.4 Motion artefact 

Motion artefacts are a common problem during CT scanning, especially when 

imaging abdominal organs such as the liver. These artefacts can be caused by factors 

such as patient breathing, small movements of body parts or heartbeat, affecting the 

quality of the image and thus interfering with the diagnosis and assessment of disease. 

Motion artefacts during liver scans are of particular concern because the liver is 

positioned close to the lungs and is susceptible to breathing movements. Motion 

artefacts can occur during scanning if the patient is unable to maintain sufficient 

respiratory stillness, or if the scanning time is long making it difficult for the patient to 

maintain stillness. These artefacts appear as blurring, streaking or ghosting on the image 

and may mask lesions or simulate non-existent lesions, making diagnosis difficult. 

Figure 2.11 to Figure 2.12 show some examples of motion artefacts in CT. 
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Figure 2.11 Motion causes blurring and double images (left), as well as long range streaks 

(right) [25]. 

 

Figure 2.12 Clinical benefits of increasing CT scanner speed by increasing the number of 

rows. (a) 16-slice coronal image showing inconsistent cardiac motion. These 

inconsistencies are greatly reduced in (b) the coronal image obtained from the 64-slice 

scan [91].  

 

The use of high-speed scanning equipment is effective in reducing the occurrence 

of motion artefacts due to the fact that the patient only moves a small amount during 

image acquisition. This goal can be reached by accelerating the gantry rotation speed 

or increasing the number of X-ray sources [92]. Moreover, CT scanners that use more 
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detector rows can cover larger volumes in less time, thereby reducing artefacts caused 

by patient motion. For example, 256-slice or 320-slice CT can provide faster scanning 

speed than traditional 64-slice CT, which is especially important for cardiac imaging.  

Figure 2.13 shows the clinical advantages of increasing the number of detector rows for 

CT scanning. As the number of detector rows increases, CT scans gradually transform 

into a true volumetric imaging mode, allowing images to be reconstructed into sagittal 

and coronal views, minimising motion artefacts. 

Patients are trained and instructed on breathing control prior to the scan and are 

taught how to maintain smooth breathing or hold their breath at specific moments 

during the scan to minimise movement and consequent artefacts [93]. This process is 

often combined with respiratory gating techniques which used external equipment to 

track and record the patient's breathing pattern in real time. These devices monitor the 

patient's breathing in real time and predict the phases of the respiratory cycle, allowing 

the imaging device to capture images at the optimal time. Imaging during the breath-

hold phase minimises image blurring due to respiratory movements and improves 

diagnostic accuracy [24, 94]. 

 

Figure 2.13 a. Streak artefacts due to motion in abdominal scanning and b. Abdominal 

scanning results under ideal conditions [82]. 

On the other hand, reconstruction techniques for CT images have a direct impact 

on the effectiveness of scanning, from filtered back projection (FBP) proposed in the 

1970s to today's iterative reconstruction algorithms in image space. With the increase 

in computational power and advances in algorithms, iterative reconstruction techniques 
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have become the key to improving image quality at low radiation doses [95, 96]. 

2.4.4.5 Metal Artefact 

In liver CT scans, metal artefact is a common problem, occurring in 21% of a series 

of scans [97], which can significantly affect image quality and interfere with correct 

diagnosis. The generation mechanisms of metal artefacts are complex and diverse, 

including problems caused by the metal itself and multiple factors related to the metal 

edge. Figure 2.14 shows some examples of metal artefacts in different organs. 

Artefacts produced by the metal itself are primarily caused by metallic substances 

within the patient's body, such as surgical implants, dental fillings, or metal clips. The 

absorption and scattering of X-rays by these metal objects in CT scans is much greater 

than that of human tissues, resulting in stripe-like artefacts caused by the beam 

hardening effect or the photon starvation effect, which has been clearly introduced in 

previous sections. 

The high contrast at the edges of metallic objects requires very high spatial 

resolution to be accurately captured. In actual CT scans, such high contrast variations 

cannot be fully recorded due to the limited sampling rate. As a result, metal edges 

cannot be accurately reproduced in image reconstruction, leading to significant 

streaking artefacts. For example [98], the high-contrast sharp edges characteristic of 

metal crown borders may often appear in the oral cavity. In addition, when using a 

rotating CT scanner, image discontinuities created by the projection of metal edges at 

different angles can lead to streaking artefacts similar to the rotation of windmill blades 

in the image reconstruction [99].  
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2.4.4.6 Scanner Artefact 

Ring artefacts are a common type of artefact in CT images. This type of artefact is 

usually caused by the uneven response to incident X-rays when the detector unit of a 

CT scanner is inaccurately calibrated or damaged. Ringing artefact appears as a series 

of concentric rings on the image, which may affect image quality and interfere with 

doctors' diagnosis according to the image. Methods to address ring artefacts typically 

include hardware maintenance and calibration, such as replacing or recalibrating 

damaged detector units, and image post-processing using iterative reconstruction 

algorithms to reduce or eliminate these artefacts. 

In helical CT scans, some unique artefacts may appear due to the unique scanning 

method and data reconstruction process. The X-ray source and bed rotate and advance 

simultaneously during scanning. This scanning method allows for continuous and rapid 

collection of volumetric data. Collected data come from different planes need to be 

integrated into the same plane through interpolation algorithms for subsequent image 

reconstruction. Specific weighting functions used in helical interpolation algorithms 

may distort the shape of the reconstructed image. This causes the direction of the 

artefact to change with the position of the X-ray source at the centre of the image plane. 

In clinical images, this helical artefact can sometimes be misinterpreted as pathological 

changes, as shown in Figure 2.15. 

 

Figure 2.14 A. Dark streak between hip replacements is mostly due to beam 

hardening and scatter.  B. Sharp thin alternating streaks surrounding an aneurysm 

coil are mostly due to motion and under sampling. C. Smoothly undulating streaks 

around cholecystectomy clips are due to windmill artefact [25]. 
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Figure 2.15 Series of CT images from a helical scan of the abdomen shows helical artefacts 

(arrows) [25]. 

2.5 Conclusion 

In summary, this chapter provides an overview of the anatomical and physiological 

structure of the liver, as well as the pathological mechanisms, etiological factors, 

clinical staging systems, and current treatment options for liver cancer. A thorough 

understanding of these medical foundations is essential for the development of 

clinically meaningful image analysis techniques. In addition, the role of CT in liver 

disease diagnosis is examined, including its imaging principles, acquisition techniques, 

and the common artefacts encountered in abdominal imaging. These insights lay the 

foundation for the development of automated liver and tumour segmentation algorithms 

based on medical and imaging knowledge. In general, early and accurate diagnosis of 

liver cancer, along with effective treatment planning supported by advanced imaging 

technologies, plays a critical role in improving patient outcomes. 
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Chapter 3. Image segmentation and quantification 

techniques based on CT Data 

3.1 Introduction 

The previous chapter introduced the physiological characteristics of the liver and 

the causes and treatments of related cancers. Appropriate diagnosis and treatment of 

liver cancer at an early stage can provide patients with a higher chance of successful 

treatment, the possibility of minimally invasive surgery, and an overall improved 

prognosis. Early liver cancer can usually be treated with surgery to remove the tumour 

(resection) or with a liver transplant if the cancer is localised to the liver and has not 

spread. Accurate identification and quantification of liver structures through CT 

segmentation is critical for surgical planning and postoperative evaluation. 

This chapter is organised as follows, 

Section 3.2 reviews some conventional medical image preprocessing methods and 

emphasize the preprocessing methods of liver CT images. Section 3.3 describes the 

progression of segmentation methods from labour-intensive manual methods to 

sophisticated automated techniques. Section 3.4 reviews the development history of 

deep neural networks and its achievements in semantic segmentation. 

 

3.2  Image preprocessing techniques 

Medical image data is usually stored in NIFTI (Neuroimaging Informatics 

Technology Initiative) format or DICOM (Digital Imaging and Communications 

in Medicine) format files. Table 3.1 gives the information contained in both files. 

DICOM files have more detailed data and general acceptability in clinical settings, 

while NIFTI provides simplicity and ease of use for research and analysis. 

Before performing image processing operations such as image segmentation, the 

data needs to be converted into an appropriate image format in order to obtain 

visualization results. A suitable library, such as SimpleITK, is used to read the data and 
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convert it into common image formats such as JPG or PNG. During this period, the size, 

orientation or contrast of the image can be adjusted to facilitate subsequent image 

processing operations. For liver and tumours data, CT images are taken from the 

patient's abdominal scan results, and the data also need to be appropriately selected, 

sorted and organised to ensure their coherence during processing and reduce data 

redundancy. The selected label data must undergo noise reduction processing to 

eliminate artefacts introduced during image saving or compression. These artefacts may 

result in non-binary pixel values along the label boundaries. To ensure training 

consistency and model interpretability, all label masks are cleaned to contain only two 

discrete values (0 and 1, or 0 and 255). 

Table 3.1 Comparison between NIFTI file and DiCOM file commonly used in medical 

imaging. 

Feature NIFTI File DICOM File 

Primary Use Neuroimaging Clinical radiology, PACS 

systems 

Data Format .nii or .nii.gz file .dcm file  

Metadata Support Limited metadata, including 

image dimension, voxel size 

and spatial orientation   

Rich metadata 

(patient/equipment info, 

medical records) 

Time Series Support Yes Yes 

Patient Data Not included Included 

Image Orientation Fully supported Fully supported 

Interoperability Research-focused tools Widely supported in clinical 

settings 

 Image normalization [100] is an important image preprocessing technique that 

aims to improve the quality of image data and make it more suitable and consistent for 

further analysis and processing. Normalization can improve the contrast of images and 

make details clearer, especially in medical imaging, which helps to better observe and 

analyse structures and lesions. The consistency of normalized image data is critical to 

measuring the accuracy and efficiency of deep learning algorithms. Common image 
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normalization operations include histogram equalization operations, non-linear changes 

in pixels (gamma changes), image whitening, as well as other related methods. [101, 

102]. 

For CT images, it is necessary to perform a unified standardization operation on 

the image by adjusting the window width and window level to achieve the best 

visualization standard.  As given in Eq. 2.1, CT values are usually expressed in 

Hounsfield Units (HU). Depending on the scanner model, the scan results fluctuate 

within the range of (-3024, 1410). Due to inherent differences in CT values between 

different anatomical structures and pathological changes, appropriate window widths 

and window centres need to be selected for specific tissue structures or pathological 

observations. Window width is a parameter that determines the range of CT values 

displayed in the image. Tissues and lesions within this range are displayed in different 

grayscales. Increasing the window width will reveal more tissue structures of different 

densities, but the grayscale differences between these structures will be reduced. This 

is useful when you need to view an entire structure, such as viewing a large area of 

tissue in a chest or abdominal scan. Reducing the window width will reduce the 

displayed tissue structure, but improve the grayscale difference between each structure, 

which is beneficial to detailed observation of specific tissues or lesions, such as tumours 

or small blood vessels. The window level is a parameter that sets the grayscale centre 

of the image. It determines which CT values will be mapped to the midtones of the 

grayscale image. Adjusting the window level can help doctors see details of specific 

tissues more clearly.  Figure 3.1 shows the abdominal CT images before and after 

window level adjustment. It can be seen that after window level adjustment, the liver 

tissue is clearer and has high contrast. 
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3.3 Classical image segmentation techniques 

The segmentation technology of liver CT images has developed over time from 

manual segmentation to semi-automatic segmentation to fully automatic segmentation. 

These advancements aim to improve the accuracy, efficiency and versatility of liver 

tumour detection and delineation. Table 3.2 summarises the key segmentation 

techniques used in medical image analysis, highlighting their respective advantages and 

disadvantages. 

 

      

             (a)                                                    (c) 

      

                                       (b)                                                     (d) 

Figure 3.1 (a) and (b) Abdominal CT images before and (c) and (d) after window level 

adjustment, the first column is the original image, and the second column is the 

adjusted image. 
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Table 3.2 Summary of medical image segmentation techniques. 

 Manual segmentation was the earliest method, with the operator using computer 

software tools to manually outline the boundaries of the liver and lesions. This method 

requires significant time and effort while being highly reliant on the operator's 

knowledge and experience. The precision offered by this technique is seen as gold 

standard, but the process is subjective and labour-intensive [103]. In order to improve 

segmentation efficiency and accuracy, interactive segmentation methods were 

developed. Interactive segmentation reduces the degree of manual intervention but still 

requires some manual effort. Common interactive techniques include threshold 

segmentation, region growing, graph cut, etc [104]. These methods usually require user 

initialization (such as selecting seed points or providing a rough area), and then the 

algorithm automatically performs segmentation. Interactive segmentation improves 

efficiency while still retaining some user control. With the development of computer 

Techniques Description Advantages Disadvantages 

Manual 

Segmentation 

Manually delineate the 

boundaries of the liver 

and lesions, relying on 

experienced 

radiologist[10, 16]  

The highest 

level of 

precision. 

Time-consuming and 

labour-intensive. 

Subjective results. 

Interactive 

Segmentation 

Combines manual 

initialization and 

automatic 

segmentation 

algorithms. 

Segmentation 

efficiency is 

improved while 

still retaining a 

degree of user 

control. 

Requires a certain 

degree of manual 

intervention. 

Sensitive to the user's 

initialization quality. 

Automatic 

Segmentation 

Utilise advanced 

computer vision and 

machine learning 

techniques. 

Improve 

segmentation 

speed and 

consistency.  

Reduce manual 

intervention 

Face the challenges 

of data quality, 

algorithm 

generalization 

ability, and handling 

complex situations. 
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vision and machine learning technology, fully automatic segmentation methods have 

become a research hotspot. Early fully automatic methods relied on traditional image 

processing techniques such as edge detection, texture analysis, and morphological 

operations. In recent years, deep learning, especially convolutional neural networks, 

has achieved remarkable results in fully automatic segmentation. The U-Net 

architecture [105] and its variants are widely applied in medical image segmentation. 

3.3.1 Interactive Segmentation Method 

In terms of image processing, region-based segmentation techniques [106, 107] 

were among the earliest methods proposed to effectively delineate different regions in 

an image by utilising the similarity or continuity between pixels. Among them, 

threshold segmentation appears as a basic method. Its technical simplicity, small 

computational requirements [104] and good performance make it a typical and widely 

used technology in the field of image segmentation. Pixels belonging to different targets 

or regions often exhibit obvious grayscale differences, which can be clearly observed 

in the image histogram. The division of regions usually corresponds to different 

histogram peaks, and the optimal threshold selection lies in the valleys that separate 

these peaks. Region growing is another commonly used segmentation method based on 

intensity. The algorithm starts from a user-specified seed point (or an automatically 

selected seed point) and iteratively incorporates neighbouring pixels that are similar in 

intensity to the seed point into the growing region. This method has been effectively 

applied in liver and tumour  segmentation, where a seed point is often selected in the 

centre of a tumour and the region expands based on similar intensities in the 

surrounding tissue [108, 109]. 

The significant advantages of intensity-based segmentation lie in its simplicity of 

implementation and its efficacy in segmenting images when different objects exhibit 

significantly different grayscale values or other characteristics. On the contrary, the 

method has obvious limitations, especially in its applicability to multi-channel images 

or images with small differences in grayscale intensities or other local features. 
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Accurate segmentation of images that lack obvious grayscale differences or in which 

the grayscale value ranges of different objects overlap significantly remains a difficult 

challenge. Notably, in the context of liver CT segmentation, liver regions and other 

adjacent organ regions or tumours exhibit distinct parenchymal heterogeneity, with 

minimal overlap among their respective tissue characteristics, making threshold 

segmentation a feasible strategy [110]. However, the inevitable contact between liver 

tissue and adjacent muscle tissue, and the consequent similarity in boundary pixel 

values, often leads to unsatisfactory segmentation results [111]. 

Beyond basic intensity-based segmentation method, more advanced methods have 

been developed to address the limitations of simple thresholding. Wang et al. [112] 

proposed a liver segmentation method that calculate multiple thresholds based on the 

slope difference distribution. Based on these thresholds, the method segmented CT 

slices into meaningful regions and delineated the liver boundaries by incorporating 

surrounding tissue constraints, energy minimization, and morphological operations, 

ultimately enabling accurate three-dimensional reconstruction of the liver. Similarly. 

Sangeeta et al. [113] also employed slope difference distribution to determine multiple 

appropriate thresholds for organ differentiation. Subsequently, seed points for boundary 

expansion were identified using Sethian’s Fast Marching Method, a numerical algorithm 

that simulates the monotonic propagation of boundaries.  

Semi-automatic segmentation methods based on graph cuts are a powerful tool to 

address the limitations of traditional intensity-based methods, especially when dealing 

with complex boundaries and ambiguous intensity regions. The graph cut algorithm was 

originally proposed by Yuri and his colleagues [114]. This algorithm models image 

segmentation as an energy minimization problem on a graph, where pixels (or super pixels) 

are regarded as nodes connected by weighted edges. The user labels some pixels as 

background or target to provide hard constraints for segmentation, while soft constraints 

include boundary smoothness and regional intensity consistency [115]. Based on these 

constrains, an appropriate energy function can be established as well as using the maximum 
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flow or minimum cut algorithm to find the best segmentation result of the CT image, which 

is usually better than local intensity-based methods. Based on this, many researchers have 

proposed effective and reliable algorithms for liver segmentation [116-118]. 

In the field of liver segmentation, many studies have proposed effective 

improvements on this algorithm. For example, the method proposed by Liao et al. [119] 

effectively excluded complex background and highlights the liver region by combining 

an intensity-based model and an appearance model based on principal component 

analysis (PCA)[120]. Using intensity information, local context and spatial correlation 

of adjacent slices, combined with the position information of adjacent slices, the liver 

in each CT slice was automatically segmented through graph cutting technology. 

Ahmed et al. [121] proposed a method that based on case-specific knowledge, which 

estimated the shape and intensity information of the liver through the spatial relationship 

between adjacent CT slices. This information was integrated into a shape-based graph cut 

framework to segment the entire CT volume without the need for pre-built models or 

training data. The method was evaluated on ten CT scans containing various liver 

abnormalities and showed high accuracy, low user interaction requirements, and short 

processing time. In addition, Lu et al. [122] introduced a method that integrates multi-

dimensional features and shape constraints into a graph cut framework. The method first 

estimated the initial liver shape through multi-atlas segmentation and then automatically 

constructed a graph based on unsigned distance fields without manually annotating seed 

points. Combining shape constraints and multi-feature information, the method can 

effectively refine the liver boundary and achieve excellent segmentation accuracy on public 

CT datasets. 

3.3.2 Fully Automatic Segmentation 

Fully automatic segmentation technology reduces user intervention to increase 

efficiency and objectivity. However, they may be deficient in handling pathological or 

unusual situations and require manual tuning to ensure accuracy in these complex 

scenarios. The next part will introduce the application of automated segmentation 
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algorithms on medical images from two different directions. 

3.3.2.1 Model-Based Segmentation 

Deformable models have proven to be effective and powerful in many medical 

applications [123]. These models can be broadly divided into three categories as 

described in Table 3.3: Statistical model based, Geometric model based, and Physical 

model based [124-128]. 

Statistical shape models (SSMs) [129] are mainly used to analyse and understand 

the shape variation of anatomical structures between different individuals. By learning 

the statistical properties of shape from a set of training data, SSM can accurately capture 

and simulate the normal range of variation in target anatomy. 

Table 3.3 Summary of Model-based segmentation algorithm. 

 Liver CT image segmentation using SSM can utilise prior shape information to 

guide the segmentation process, even when the image quality is poor, or the boundaries 

are unclear [130]. Although there are inter-individual variations in the shape of the liver, 

these variations can be quantified through statistical methods. By analysing shape 

variation in a series of training images, SSM is able to capture the main changing 

patterns of liver shape. SSM exploits this variability to generate a model that predicts 

organ shape in new images. During the segmentation process, the model adapts to the 

Model Description Application 

Statistical model based Learn the statistical 

distribution of shape 

variability and appearance 

features 

Statistical Shape Models. 

Active Appearance 

Models. 

Point Distribution Models 

Geometric model based Adjust geometric properties 

to fit the target edge. 

Active Contour Models; 

Snakes. Level Set. 

Physical model based Simulate physical and 

mechanical properties to 

adapt to the target shape. 

Elastic model. 

Fluid model. 
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organs in a specific image based on statistics derived from the training dataset. Figure 

3.2 shows how to apply SSM for liver CT segmentation. First, an average model is 

located in the CT image data-show in Figure 3.2(a, b, c), usually based on a previously 

constructed statistical shape model. The goal of initial positioning is to achieve 

approximate alignment between the model and the target anatomy. To this end, an initial 

optimisation of the model's positional parameters is performed to improve the 

alignment. By progressively increasing the number of shape patterns involved in the 

optimisation process, the model’s fit to the target structure is gradually refined until 

optimal alignment is achieved, as shown in Figure 3.2(d, e, f). 

 

             (a)                         (b)                            (c) 

 

           (d)                           (e)                              (f) 

Figure 3.2 Segmentation process of data sets in statistical liver models. As the number of 

shape modes increases, the results of the optimised combination of position and shape 

gradually tend to the true contour [125]. 



54 

 

Figure 3.2 illustrates the progressive refinement process in liver segmentation 

using a statistical shape model. The top row (1–6) displays the 3D liver models 

generated at different stages of the optimisation, while the bottom row ((a)–(f)) shows 

their corresponding alignments with 2D CT slices. The process begins with an initial 

coarse model, often based on the mean liver shape derived from the training set. As the 

number of shape modes incorporated into the optimisation increases (from model 1 to 

model 6), the shape and position of the liver model are incrementally adjusted. This 

leads to progressively better alignment with the anatomical boundary observed in the 

CT images. By stage (f), the model closely approximates the true liver contour. 

Active contour model is an important method for image segmentation, especially 

suitable for liver segmentation. This method uses curve evolution to detect targets and 

obtain accurate edge information. The basic principle is to define an initial curve, then 

construct an energy function based on the image data and change the curve by 

minimising this energy function so that it gradually approaches the target edge. The 

advantage of this method is that it produces closed, smooth edge curves. 

The "Snake" model proposed by Kass et al. [131] is a classic parametric active 

contour model, which moves the curve to the target edge through the joint action of 

internal and external forces. It has the advantages of strong interactivity and fast 

implementation, but it is difficult to handle topological changes [132]. The geometric 

active contour method using the level set [133] framework effectively solves this 

problem by allowing the contour to naturally split or merge, making it more flexible for 

handling complex shapes or multiple objects in medical images. Applying these models 

in liver segmentation allows you to flexibly select the constraint force, initial contour, 

and scope to obtain better segmentation results. This makes active contour models have 

received a lot of attention in medical image processing tasks such as liver segmentation. 

For instance, Li et al. [134] used a region-based level set method for liver segmentation 

in CT images, which effectively integrated region and boundary information to handle 

low-contrast images. In the work of Li et al. [135], a liver segmentation framework was 
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developed that integrates a level set method with intensity bias correction and sparse 

shape composition (SSC), followed by a graph cut refinement step to address under-

segmentation in pathological livers. 

Physics-based liver segmentation methods incorporate biomechanical models or 

physical constraints to simulate tissue deformation, organ motion, or inter-organ 

interactions. These methods are beneficial in respiratory motion, surgical planning, or 

image registration across different phases or modalities. Common approaches include 

finite element modelling (FEM), mass-spring systems, and elastic or viscoelastic 

deformation models [136, 137]. Elastic models [127] treat the liver as a deformable 

solid, enabling the simulation of elastic tissue responses under mechanical forces, while 

fluid-based models represent the liver as a viscoelastic medium, allowing for 

continuous deformation under external constraints. By integrating prior knowledge of 

organ mechanics, these methods aim to enhance segmentation robustness and 

anatomical plausibility, particularly in complex clinical scenarios. It is worth noting 

that many physics-based methods in liver imaging focus primarily on registration or 

surgical guidance, rather than direct segmentation. While these approaches incorporate 

biomechanical models to simulate tissue deformation, their primary role is often to align 

preoperative and intraoperative images rather than delineate organ boundaries. 

3.3.2.2 Learning-Based Segmentation 

The development of learning-based methods in the field of image segmentation is 

a typical manifestation of the progress of machine learning technology. The core of 

these methods is to automatically recognise and exploit complex patterns in image data 

to distinguish different samples, thereby achieving effective image segmentation. 

Clustering algorithms, such as K-means, perform segmentation by grouping pixels 

or image regions into clusters with similar characteristics. These algorithms are often 

based on characteristics such as intensity, colour, or texture of pixels. Ramin et al. [138] 

used Fuzzy C-means to segment liver and tumour combined with Kirsch filter and mean 
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averaging algorithm to extract and smooth organ edges. Shraddha et al. [139] used K-

means method with a special localised contouring algorithm to process liver CT 

segmentation. 

However, clustering methods still face some limitations when applied to liver 

segmentation. Clustering algorithms depend on the initial selection of clusters, and their 

performance can vary significantly based on this initialization. Furthermore, the 

traditional fuzzy C-means algorithm, which relies on Euclidean distance, is not optimal 

for non-spherical structures like the liver as described in [140]. Additionally, the 

presence of noise in the image data can further impact the accuracy of these clustering 

methods [141]. 

Bayesian networks are probabilistic graphical models used to simulate complex 

relationships between pixels or regions in an image. They can effectively perform 

image segmentation by building a probabilistic model that describes the dependencies 

between pixel or region attributes. This enables them to distinguish pixels with similar 

gray levels that belong to different tissue types and to accurately assign them to their 

respective anatomical regions. Bayesian networks can integrate prior clinical and 

imaging knowledge into the segmentation process, improving the robustness of the 

segmentation results. In addition, they allow for probabilistic reasoning, offering not 

just segmentation results but also quantifiable confidence levels, which can be crucial 

for clinical decision-making [142]. 

The algorithm proposed by RG Mohamed [143] repeatedly applies multiresolution 

smoothed Bayesian classification followed by adaptive morphological operations and 

active contours refinement. M Freiman [144] proposed an adaptive fully automatic liver 

segmentation method for MRI images based on thresholding and Bayesian 

classification. However, as stated by Kyrimi et al. [145], Bayesian networks are rarely 

used in routine clinical practice despite hundreds of relevant papers, so there is still a 

large gap in implementation. 

Support vector machine (SVM) is a powerful classifier that can be used for image 
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segmentation, especially when the number of samples is small. SVM distinguishes 

different categories of pixels or regions by finding an optimal boundary in multi-

dimensional space. Suhuai Luo et al. [146] demonstrated that the combination of 

morphological operations and pixel-level support vector machine classifiers can 

accurately delineate liver volume. However, with the rise of deep learning, deep 

learning models can process more images in a short time and have higher accuracy 

compared to single SVM models [147]. 

With the continuous advancement of machine learning technology, these learning-

based image segmentation methods are becoming more and more mature and capable 

of handling more complex and diverse image segmentation tasks. These methods not 

only improve the accuracy of segmentation but also improve the efficiency of 

automated image analysis to a great extent. 

3.4 Deep Neural Network for image segmentation 

Research in the field of AI has experienced many ups and downs, from the 

perceptron in the 1950s to the introduction of the multi-layer perceptron and back 

propagation algorithm in the 1980s [148-150]. The invention of the perceptron was one 

of the earliest algorithms designed to simulate the function of biological neurons. 

However, due to its limitations in solving nonlinear problems, the field stagnated in the 

1970s and 1980s, known as the "AI winter". It was not until the 1980s that the 

introduction of multilayer perceptron and the application of backpropagation 

algorithms enabled complex nonlinear problems to be solved, which revitalized the 

field. In the 1990s, the development of support vector machines (SVMs) provided a 

powerful alternative for classification tasks, greatly enhancing people's confidence in 

machine learning to cope with diverse real-world challenges. 

In the 21st century, the rise of deep learning has brought about rapid innovation in 

algorithms and technologies. From convolutional neural networks (CNNs) to recurrent 

neural networks (RNNs), to generative adversarial networks (GANs) [151] and 

Transformers [152]. They have made breakthrough progress in many fields such as 
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image recognition, natural language processing, game strategy, medical diagnosis, and 

autonomous driving. The success of deep learning is due in part to the availability of 

big data, significant improvements in computing power, and continued innovation in 

algorithms. These factors jointly promote the rapid development and widespread 

application of deep learning technology, leading a new wave of artificial intelligence. 

 

Figure 3.3 History of AI research from 1958 to the present [149, 153, 154]. 

3.4.1 Deep Neural Network 

Artificial neuron is the basic unit that constitutes a neural network. It receives a set 

of input signals and generates output by simulating the structure and characteristics of 

biological neurons. Figure 3.4 depicts a typical neuron structure diagram. The neuron 

first multiplies each input with its corresponding weight and adds the bias term, then 

performs a nonlinear transformation through the activation function and finally outputs 

the result. 

Suppose a neuron receives N inputs 𝑥1, 𝑥2, 𝑥3, ⋯, 𝑥𝑛, let the vector  x =[𝑥1, 𝑥2, 𝑥3, 

⋯, 𝑥𝑛] represent this set of inputs, and let the net input 𝑧 ∈ ℝ represent the weighted 

sum of the input signals 𝑥 obtained by a neuron, 

Where 𝑤 = [𝑤1, 𝑤2, 𝑤3, ⋯, 𝑤𝑛]  ∈ ℝ  is the weight vector of N dimension, 𝑏 ∈ ℝ is 

the bias. After passing through a nonlinear function𝑓(⋅) , the value 𝑧 obtains the 

activation value of the neuron y. 

𝑧 =  ∑𝑤𝑛

𝑁

𝑛=1

𝑥𝑛 + 𝑏 =  𝑤
𝑇 + 𝑏  

 

 (3.1) 

𝑦 =  𝑓(𝑧)   (3.2) 
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Where the non-linear function 𝑓(⋅) is called the activation function.  

 

Figure 3.4 A typical neuron structure. 

The activation function introduces nonlinearity into the neural network, allowing the 

network to learn and represent more complex relationships. It is a continuous and 

differentiable nonlinear function that enables the direct use of numerical optimisation 

methods to learn network parameters. On the other hand, the activation function and its 

derivative function should be as simple as possible, and their value range should be 

within a suitable interval, otherwise it will affect the efficiency and stability of training. 

The following introduces several activation functions commonly used in neural 

networks. 

3.4.1.1 Activation functions 

The sigmoid function (Logistic function) is a non-linear function with an “S” curve 

shape between 0 and 1. Its mathematical expression is as follows. 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

 (3.3) 
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Figure 3.5 Sigmoid Function and its gradient expression. 

From Figure 3.5, it can be seen clearly that the output range of the logistic function 

is between 0 and 1. When the input value is near 0, the sigmoid function is 

approximately a linear function; when the input value is close to both ends, the input is 

suppressed. The smaller the input, the closer it is to 0; the larger the input, the closer it 

is to 1. In this case, the gradient of the Logistic function is close to 0, which may lead 

to the vanishing gradient problem and thus affect the training efficiency of the neural 

network based on the backpropagation algorithm. 

Tanh function is a function that is very similar to the sigmoid function which both 

have “S” shape, which is shown in Figure 3.6. It can be regarded as an enlarged and 

translated sigmoid function, and its value range is (−1, 1). Its mathematical expression 

is as follows. 

Compared with the sigmoid function, the output range of the Tanh function is -1 to 1. 

This feature makes the mean of its output value closer to 0 (zero centralization), which 

helps the data remain stable during the training process and accelerates the convergence 

speed. However, similar to the sigmoid function, the tanh function also suffers from the 

vanishing gradient problem when the input values are very high or very low, which may 

affect the update of the weights during backpropagation. 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
= 2𝜎(2𝑥)  − 1. 

 (3.4) 
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Figure 3.6 Tanh Function and its gradient expression. 

ReLU (Rectified Linear Unit) is an activation function commonly used in deep neural 

networks. From Figure 3.7, it can be seen that ReLU is a typical ramp function with 

mathematical formula  

Using ReLU as the activation function is computationally efficient because only 

comparison operations are required. In addition, the derivative is 1 if input is larger 0, 

which alleviates the vanishing gradient problem of the neural network that occurs when 

using the sigmoid function and the tanh function, and accelerates the convergence speed 

of gradient descent. 

 

 

Figure 3.7 ReLU Function and its gradient expression. 

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥    𝑥 ≥ 0
0    𝑥 < 0

= 𝑚𝑎𝑥(0, 𝑥)  (3.5) 
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3.4.1.2 Feedforward neural networks 

Combining multiple neurons into a network through a certain connection method 

is a neural network. Up to now, researchers have developed a variety of neural network 

structures. The three commonly used neural networks include feedforward neural 

networks, memory networks and graph networks. In this study, the network structures 

proposed are all feedforward neural networks.  

In feedforward neural networks, each neuron belongs to different layers. The 

neurons in each layer can receive signals from the neurons in the previous layer and 

generate signals to output to the next layer. The 0th layer is called the input layer and is 

responsible for accepting original data. The last layer is called the output layer and is 

used to produce the final result. The other intermediate layers are called hidden layers. 

The hidden layer processes data in a weighted manner and provides nonlinear 

transformation through the activation function. There is no feedback in the entire 

network, and the signal propagates in one direction from the input layer to the output 

layer. Figure 3.8 shows a simple structure diagram of a feedforward neural network. 

Let 𝑎(0) = 𝑥 , the feedforward neural network propagates information by 

continuously iterating the following formula: 

where 𝑧(𝑙) represents the input value of the current layer, and 𝑎(𝑙)represents the output 

value of the current layer. Calculate the input value 𝑧(𝑙)of the 𝑙th layer neuron based on 

the output value 𝑎(𝑙−1)of the 𝑙-1th layer neuron, and then obtain the output value 𝑎(𝑙) of 

the 𝑙th layer neuron through an activation function, After multiple iterations, 𝑎(𝐿)is used 

as the output of the entire network. 

Parameter learning is the core of deep feedforward networks, because the purpose 

of the neural network is to try to fit the required function with a series of suitable 

parameters. The network adjusts weights and biases to minimise the difference between 

the predicted and actual outputs. This process usually involves two key steps: forward 

𝑧(𝑙) = 𝑊(𝑙)𝑓𝑙−1(𝑧
(𝑙−1) + 𝑏(𝑙))  (3.6) 

𝑎(𝑙) = 𝑓𝑙(𝑊
(𝑙)𝑎(𝑙−1) + 𝑏(𝑙))  (3.7) 
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propagation and backward propagation. Input data is propagated forward through the 

network, and the output of each layer becomes the input to the next layer until the final 

output layer computes the final output. The error between the output and the target is 

calculated using a loss function (such as mean square error or cross entropy), and then 

this error is backpropagated through the network and used to calculate the gradient of 

each parameter. The training of neural networks is essentially an optimisation problem, 

and the goal is to minimise the loss function. Gradient descent method is the most 

commonly used optimisation method, which updates the weights in the gradient 

direction of the loss function. Since gradient descent can be very slow or get stuck in 

local minima, several variants of gradient descent have been developed, such as 

stochastic gradient descent (SGD), momentum methods, Adagrad, RMSprop, and 

Adam [155-158]. The backpropagation algorithm is used to compute the derivatives of 

the loss function with respect to each parameter. It applies the chain rule to recursively 

determine the influence of each weight on the final loss. 

 

 

Figure 3.8 The structure of one-layer neural network and a 6-layer deep neural 

network. 

3.4.2 Deep Convolutional Neural Network 

Deep Convolutional Neural Networks (DCNN) have made significant 

breakthroughs in computer vision, natural language processing and other fields. Yann 

LeCun introduced the LeNet-5 model [159], which represents one of the earliest 
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convolutional neural networks designed for handwritten digit recognition. This 

architecture consists of multiple convolutional and pooling layers, followed by fully 

connected layers, aimed at performing classification tasks. One of the key innovations 

of this model is the combination of convolution layer and pooling layer to reduce the 

number of parameters and computational cost. 

Building upon this foundation, Alex Krizhevsky and colleagues developed AlexNet 

[160], a deeper CNN that gained widespread attention by winning the 2012 ImageNet 

Large Scale Visual Recognition Challenge. AlexNet incorporates multiple 

convolutional and pooling layers with the ReLU activation function, and leverages 

GPU for efficient training. This network represented a major advancement in the field 

by demonstrating the scalability of deep learning models for large-scale visual 

recognition tasks. VGGNet [161] was proposed by Karen Simonyan and Andrew 

Zisserman. It is characterised by a unified architecture, using small-sized convolution 

kernels and deep network structures. Further advancing CNN architecture, Google-Net 

[162] introduced the Inception module, a novel approach allowing simultaneous 

application of multiple convolutional kernel sizes. This modular design significantly 

improves the network's capability for feature extraction, while also optimizing 

parameter efficiency. The Inception module has since been a cornerstone in designing 

large, wide and computationally efficient neural networks. Finally, Kaiming He [163] 

and his team proposed ResNet, which introduced the revolutionary concept of residual 

connections. These connections facilitate information bypassing across layers, 

effectively addressing the vanishing gradient problem prevalent in deep networks. With 

residual connections, networks comprising hundreds or even thousands of layers 

became feasible to train, significantly advancing the field of deep learning. 

Recent advancements such as MobileNet [156] and DenseNet [157] have further 

enhanced CNN architectures by focusing on parameter efficiency and feature reuse, 

respectively. These improvements address the limitations of earlier models like AlexNet 

and VGGNet, especially in terms of computational cost and gradient propagation in 
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deep networks. 

As shown in Figure 3.9, a typical convolutional network is composed of a 

convolutional layer, a pooling layer, and a fully connected layer. A convolutional block 

consists of consecutive 𝑀 convolutional layers and 1 pooling layer. A convolutional 

network can be stacked with 𝑁 consecutive convolution blocks, followed by 1 or 2 fully 

connected layers, and finally the output of the last layer of the neural network is 

converted into a probability distribution through the SoftMax function. 

 

Figure 3.9 The structure of a typical convolution neural network. 

3.4.2.1 Convolution layer 

Convolution is a mathematical operation widely used in signal processing, image 

processing, and deep learning. One-dimensional convolution is often used in signal 

processing to calculate the delay accumulation of the signal. Its mathematical 

expression is as follows. 

For two-dimensional functions (such as images), given an image 𝐼 ∈ ℝ𝑀×𝑁  and a 

convolution kernel 𝐾 ∈ ℝ𝑈×𝑉, the definition of 2-D convolution is: 

Where i and j are the position coordinates on the image. The mean filter commonly 

used in image processing is a 2-D convolution. In addition, convolution is also widely 

used as a common feature extractor. 

In the basic convolution operation, the stride and zero-padding can be added to 

(𝑓 ∗ 𝑔)(𝑡) = ∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
∞

−∞

 
 (3.8) 

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑∑𝐼(𝑢, 𝑣)𝐾(𝑖 − 𝑢, 𝑗 − 𝑣)

𝑉

𝑣=1

𝑈

𝑢=1

 

(3.9) 
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increase the diversity of the convolution. The stride refers to the interval at which the 

convolution kernel slides, and the zero-padding refers to the number of zeros padded at 

both ends of the input vector. Let the number of inputs of the convolution layer be M, 

the convolution kernel size be K, the step size be S, and P zeros are padded at both ends 

of the input, then the number of neurons N in the convolution layer is 

When the amount of zero padding varies, convolution can be categorized as narrow, 

wide, or equal-width convolution, corresponding to valid padding, full padding, and 

same padding, respectively. In the current literature, convolution generally defaults to 

equal-width convolution. 

Convolutional neural networks generally consist of convolutional layers, pooling 

layers and fully connected layers. The function of the convolutional layer is to extract 

features of a local area, and different convolution kernels are equivalent to different 

feature extractors. The convolution kernel slides horizontally and vertically on the input 

feature map according to the specified step size (stride). At each sliding position 

(window position), the convolution kernel performs an element-level product with the 

input feature map area it covers, and then all products are summed to obtain an output 

value, and this step is repeated until the convolution kernel covers all positions of the 

input feature map. Each output value forms a pixel of the output feature map. 

The choice of kernel size, stride, and padding in convolutional layers significantly 

influences the network's ability to capture fine-grained details versus broader contextual 

information. Smaller kernels, such as the 3x3 kernels employed in VGGNet, focus on 

extracting local features, while larger kernels provide more global contextual 

understanding. 

Since the image is a two-dimensional structure, in order to fully utilise the local 

information of the image, the neurons are usually constructed as layers with a three-

dimensional structure, whose size is Height H × Width W × Depth 𝐷.  For images, if it 

is a grayscale image, the depth of the input layer 𝐷 = 1; if it is a RGB image, the depth 

𝑁 =  
(𝑀 − 𝐾 + 2𝑃)

𝑆
+ 1 

 (3.10) 
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of the input layer 𝐷 = 3. The features extracted from an image (or other features) after 

convolution extraction are called feature maps. Each feature map can be used as a type 

of extracted image features. In order to improve the representation ability of the 

convolutional network, multiple different feature maps can be used in each layer to 

more fully represent the characteristics of the image. 

3.4.2.2 Pooling Layer 

Let the input feature map of the pooling layer be 𝑋 ∈ ℝ𝐻×𝑊×𝐷, for each feature 

map 𝑋𝑑 ∈ ℝ𝐻×𝑊 divide it into many areas 𝑅𝑚,𝑛
𝑑 . Pooling refers to down sampling each 

area to obtain a value as a representative of this area. There are usually two types of 

pooling methods, max pooling and average pooling.  

For a region 𝑅𝑚,𝑛
𝑑 , maximum pooling selects the maximum value of all neurons in 

this region as the representation of this region. 

Average pooling calculates the average value in a neighbourhood area, the average 

value in each block represents this part of information or feature. 

The pooling layer can effectively reduce the number of neurons, thereby reducing 

the feature dimension and avoiding overfitting. It can also make the network remain 

invariant to some small local morphological changes and have a larger receptive field. 

Figure 3.10 shows a schematic diagram of the maximum pooling and average pooling 

operations. However, an excessively large sampling area will drastically reduce the 

number of neurons and cause excessive information loss. How to set reasonable pooling 

parameters is an important process in adjusting deep networks. 

 

𝑦𝑚,𝑛
𝑑  =   𝑚𝑎𝑥(𝑥𝑖), 𝑖 ∈ 𝑅𝑚,𝑛

𝑑  (3.11) 

𝑦𝑚,𝑛
𝑑  =  

1

|𝑅𝑚,𝑛
𝑑 |

∑ 𝑥𝑖
𝑖∈𝑅𝑚,𝑛

𝑑

 
 (3.12) 
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Figure 3.10 Example of Max Pooling and Average Pooling[164]. 

CNNs have also been widely adopted beyond traditional image classification tasks, 

including applications in medical image analysis, autonomous driving, and natural 

language processing with the integration of attention mechanisms. As deep learning 

models continue to evolve, the integration of CNNs with other architectures promises 

further advancements in these fields. 

 

3.4.3 Fully Convolutional Network 

In recent years, Deep Learning has become the main research direction of computer 

vision problems. Especially after the amazing achievements of Convolutional Neural 

Network in image classification, a growing number of researchers choose to use deep 

neural networks to solve a series of image processing tasks, such as image recognition, 

object detection, and segmentation. With the rapid development of deep learning, deep 

neural networks have made amazing achievements in the field of computer vision. The 

advancements in deep learning have significantly impacted the field of computer vision 

and have also introduced novel approaches to medical imaging. The Fully 

Convolutional Neural Network (FCN) developed by Long et al [165]. has achieved 

excellent results in natural image segmentation tasks and provided ideas for future end-
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to-end segmentation networks later.  Avi et al. [166] further validated the effectiveness 

of FCN by showing that they can achieve high segmentation accuracy in clinical 

applications. 

In the early days, neural networks were primarily employed for classification tasks, 

rather than segmentation. However, Ciresan et al. [167] developed a neural network and 

this network became the category champion for ISBI2012. This network uses a sliding 

window to predict the class label for each pixel, while providing the area around the 

pixel as input. Despite its success, this approach exhibited two major limitations. First, 

it was computationally inefficient due to the extensive overlap in the input, leading to 

redundant calculations. The same features were processed multiple times, which not 

only wasted computational resources but also increased the risk of overfitting. Second, 

there was a trade-off between localization accuracy and contextual information. Larger 

patches required more pooling layers to capture high-level features, which in turn 

reduced the resolution of the feature map and caused loss of detail. Conversely, smaller 

patches focused on local information but lacked sufficient context to accurately classify 

the pixel.  

The power of CNN is that its multi-layer structure can automatically learn features 

and output specific results according to these features in image classification. Shallower 

convolutional layers capture local features with small receptive fields, while deeper 

layers have larger receptive fields, allowing them to extract more abstract features. And 

these features are strongly robust on the size, position and direction of the object target 

which helps to provide reliable predictions in all situations. These learned features are 

robust to variations in object size, position, and orientation, thereby enhancing the 

reliability of predictions. Although these features are highly effective for classification 

tasks, they are often insufficient for precisely delineating the fine contours of objects, 

thereby making pixel-level segmentation a challenging task. 

Traditional CNN-based segmentation algorithms typically classify individual 

pixels based on their surrounding pixels by treating each pixel block as an input to the 
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network. This approach leads to several significant challenges. First, the memory 

requirements increase dramatically. For example, if a 5 × 5  pixel block is used to 

represent a single pixel, the required memory space is 25 times than the initial picture. 

Second, computational efficiency is reduced because adjacent pixel blocks often 

contain overlapping elements, leading to redundant convolution operations without 

improving performance. Finally, small pixel blocks struggle to capture abstract features 

and fail to integrate information across regions, which negatively impacts the accuracy 

of segmentation results. 

To address this series of challenges, Jonathan Long et al. [165] in Berkeley 

proposed Fully Convolutional Networks (FCN) for image segmentation. This network 

is used to recover the classification according to the abstract features for each pixel. It 

also means to achieve the classification at the pixel level instead of the previous 

classification at the image level. FCNs achieve this by replacing the fully connected 

layers in traditional CNNs with convolutional layers, thereby allowing the network to 

perform dense predictions for each pixel. 

As shown in the following Figure 3.11, in the traditional CNN architecture, the first 

five layers consist of convolutional operations with activation functions, while the 6th 

and 7th layers are fully connected, each with 4096 units, followed by the 8th layer 

which outputs a 1000-dimensional vector representing the probabilities for 1000 

categories. In contrast, the FCN replaces the fully connected layers with convolutional 

layers, generating dense feature maps of sizes (7×7×4096), (7×7×4096), and 

(7×7×1000), respectively. These feature maps are obtained by applying 1×1 

convolutions to the outputs of the preceding layers, followed by a SoftMax function to 

assign a label to each pixel. Due to the fully convolutional nature of the hidden layers, 

this architecture is referred to as an FCN. 
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Figure 3.11 The simple structure of a Fully Convolutional Network [159]. 

The process of convolution and pooling progressively reduces the spatial resolution 

of the image, resulting in down sampled feature maps. FCN gradually restores the 

spatial resolution of the feature map by introducing up-sampling operations, thereby 

achieving full-size output for the input image. This up-sampling strategy is able to 

restore the feature map to the same resolution as the input image to generate a pixel-

level segmentation map. After five stages of convolution and pooling, the feature map 

is down sampled to 1/32 of its original size, such that the final layer's output has 

dimensions (7×7×1000). To recover the original resolution, the final layer is up sampled 

by a factor of 32. However, the output of this 32x up-sampling process lacks sufficient 

detail, prompting the authors to refine the segmentation by performing additional 

deconvolutions on the outputs of the 4th and 3rd layers, with 16x and 8x up-sampling, 

respectively. This multi-level up-sampling approach results in finer segmentation, 

although challenges related to blurring and insufficient separation of object boundaries 

remain. The following Figure 3.12 shows the process of various up sampling: 
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Figure 3.12 Up-sampling process in FCN, including 8 times and 16 times up-sampling 

prediction [159]. 

Compared with traditional CNN-based image segmentation methods, FCN has 

significant advantages in training efficiency. FCN reduces memory consumption and 

computational redundancy by removing the process of repeatedly processing pixel 

blocks containing overlapping pixels. However, FCN also exhibits certain limitations. 

First, the segmentation results are usually not precise enough. Although 8x up-sampling 

produces better results than 32x up-sampling, the output is still blurry, and the network 

has difficulty capturing fine details. Second, FCN classifies each pixel independently 

and does not fully consider the spatial dependencies between neighbouring pixels. The 

lack of spatial regularization commonly adopted in pixel-based segmentation methods 

leads to a lack of spatial consistency in the final segmentation output. 

To address these limitations in practical medical applications such as liver 

segmentation from CT images, various improvements to the standard FCN framework 

have been proposed. Christ et al. [168] proposed a cascaded fully convolutional neural 

network (CFCN) method for automatic segmentation of the liver and its lesions. The 

method first uses FCN to perform preliminary segmentation of the liver in CT images 

and then uses a second FCN to further segment the lesions in the liver region segmented 

by the first FCN. The advantage of this cascade structure is that by gradually 

segmenting the liver and lesions, the false positive problem in lesion segmentation is 
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effectively reduced. 

In addition, Sun et al. [169] proposed an automatic liver tumour segmentation 

method based on FCN, which demonstrated the effectiveness in this task. The study 

used multi-phase enhanced CT images, allowing FCN to perform well in capturing 

image features of different phases. The incorporation of multiphase contrast 

information improves the detection and segmentation performance of liver tumours, 

making it more widely applicable and effective in the field of medical image 

segmentation. 

3.4.4 U-Net 

U-Net is a convolutional neural network architecture for image segmentation. It 

was first proposed in the context of medical cell image segmentation by Olaf et al [105] 

but has been widely used in various image segmentation tasks. The main feature of U-

Net is its U-shaped structure, which includes a contraction down-sampling path and an 

expansion up-sampling path, and there are many skip connections between these two 

paths. 

U-Net consists of two parts including a downward encoder and an upward decoder, 

which is shown as Figure 3.13. The left half implements the function of the encoder. 

The encoder uses many convolution operations and pooling operations to gradually 

reduce the spatial dimension of the image and increase the number of feature channels 

to obtain feature maps of different levels. The encoder consists of 4 blocks, each block 

consists of repeated two 3×3 valid convolutional layers, followed by a ReLU activation 

function and a 2×2 maximum pooling operation to reduce the feature map the size. 

After each down-sampling, the number of feature maps is doubled to obtain more deep 

features, so there is a change in the size of the feature map shown in the Figure 3.13. 

Finally, a feature map with a size of 32×32 is obtained. The right half implements the 

function of the decoder, which performs the opposite operation to encoder, gradually 

recovering the spatial dimension of the image through up-sampling. The decoder first 

performs a 2×2 up-sampling operation and then merges the result with a skip connection 
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in the encoder part. At the end of the decoder, there is a 1×1 convolution operation to 

transform the multi-channel feature maps into the desired output categories. 

 

Figure 3.13 The architecture of a classical U-Net. 

In image segmentation tasks, it is usually necessary to combine the local details of 

the image (low-level features) and a larger range of contextual information (high-level 

features) to obtain more accurate results. The skip connections in U-Net connect the 

feature maps of each level in the encoder to the corresponding level in the decoder, 

which enables the network to obtain fine-grained features of the encoding stage in the 

decoding stage. Another effect of skip connections is to restore spatial resolution. In the 

encoding stage, the spatial resolution of the image (feature maps) gradually decreases 

due to successive pooling operations. In the decoding stage, deep features alone might 

not be sufficient to recover all the details of the original resolution despite the up-

sampling operation. Skip connections provide these lost details and help restore the 

original spatial structure of the image. 

To ensure that the predicted segmentation maps are closely aligned with the ground 

truth, it is crucial to use an appropriate loss function during training. The loss function 
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helps guide the network to learn the correct pixel-by-pixel classification by measuring 

the difference between the predicted output and the true segmentation label. 

In binary classification tasks such as foreground-background segmentation, the 

cross-entropy (CE) loss is often used. It effectively guides the model optimisation 

process by comparing the predicted probability of each pixel with the true label (0 or 1) 

and applying a larger penalty for incorrect predictions. This helps the network gradually 

improve its accuracy in distinguishing different regions in the image, especially when 

the difference between regions is small. 

Where 𝑝𝑖 is the predicted probability for pixel i and 𝑔𝑖 is the true label (0 or 1) for pixel 

i. 

While the cross-entropy loss performs well in binary pixel classification tasks, it 

can be challenging to handle data imbalance problems, especially when the background 

occupies a large area in the image. For example, in the liver tumour segmentation task, 

the tumour region usually occupies only a small part of the image, making it difficult 

for the model to accurately segment the tumour tissue. To address this issue, the Dice 

loss is often combined with the cross-entropy loss. The Dice loss focuses on the 

similarity of pixel sets by directly maximizing the overlap between the predicted 

segmentation and the true segmentation, so that it focuses on the pixel sets of the target 

object, thereby improving segmentation accuracy. 

Where 𝑝𝑖 is the predicted probability for pixel i, 𝑔𝑖 is the true label (0 or 1) for pixel i, 

and N is the number of all pixels. 

The application of U-Net-based neural networks in medical image segmentation 

has made significant progress. Han [170] proposed a 2.5D deep convolutional neural 

network that integrates U-Net and ResNet architectures for liver and lesion 

segmentation. This model takes multiple adjacent CT slices as input and generates a 

segmentation map for the central slice, effectively addressing the significant variability 

𝐶𝐸 𝐿𝑜𝑠𝑠 = −[𝑔𝑖 log(𝑝𝑖) + (1 − 𝑔𝑖)log (𝑝𝑖)] (3.13) 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 −
2 × |𝑃 ∩ 𝐺|

|𝑃 + 𝐺|
= 1 − 

2 × ∑ 𝑝𝑖𝑔𝑖
𝑁
𝑖

∑ 𝑝𝑖
2𝑁

𝑖 + ∑ 𝑔𝑖
2𝑁

𝑖

 
(3.14) 
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in liver anatomy, including variations in shape, size, and intensity. The innovation of 

this network lies in combining the long-range feature connections of U-Net with the 

short-range residual connections of ResNet, enabling it to handle issues like low 

contrast and noise artefacts in CT images with high efficiency  

In another study, Li et al. [171] introduced a modified U-Net variant called 

Bottleneck Supervised (BS) U-Net, designed for pixel-wise segmentation of the liver 

and liver tumours. The base U-Net model incorporates dense modules, inception 

modules, and dilated convolution in the encoding path, which significantly enhances 

segmentation accuracy. The BS U-Net first uses an encoding U-Net to learn anatomical 

features from the label maps and then utilises this information to guide the segmentation 

network during training. This approach ensures that the segmentation results maintain 

the anatomical structure of the liver while effectively reducing false positives and false 

negatives. Experiments demonstrated that this model not only achieved excellent 

overall segmentation performance but also addressed issues such as shape distortion 

and boundary segmentation, which are common challenges in liver segmentation. 

3.4.5 Application of deep learning in liver and tumour segmentation 

In terms of automatic segmentation of liver and liver tumours, in addition to the 

above-mentioned fully convolutional network and U-net, derivative models of U-Net 

are also widely used. In recent years, many studies have improved U-Net to improve 

its segmentation accuracy. For example, Residual U-Net [172, 173] alleviates the 

vanishing gradient problem in deep networks by adding residual connections, thereby 

effectively improving the stability and accuracy of the network. Attention U-Net [174] 

introduces an attention mechanism to significantly improve the segmentation effect by 

focusing on the liver and tumour areas and ignoring irrelevant background noise. Jiang 

et al. [175] also proposed the AHCNet which combines soft and hard mechanism and 

long-short skip connection to achieve liver and tumour CT image segmentation. They 

also proposed a cascade network structure, including a liver localization network, a 

liver segmentation network and a tumour segmentation network. The collaborative 
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work of the three networks significantly improved the accuracy of tumour segmentation 

and effectively dealt with the class imbalance problem. 

In addition to simply adding some mechanisms, there are also network models such 

as U-Net++ [176] that enhance their performance by introducing more complex 

hierarchical structures. The basic principle of U-Net++ is to introduce multi-level dense 

skip connections between the encoder and decoder, so that the high-resolution feature 

maps are gradually enhanced before being fused into the semantically rich decoder 

features. This progressive feature fusion method can effectively reduce the semantic 

difference between the encoder and decoder, allowing the model to better capture the 

fine-grained details and boundary information of the foreground object, thereby 

improving the accuracy of segmentation. U-Net sends high-resolution feature maps 

directly from the encoder to the decoder network through skip connections, and 

semantically different feature maps are combined, resulting in a semantic gap problem 

between the encoder and decoder feature maps. U-Net++ uses stacked skip connections 

and thick skip connections to achieve progressive feature fusion, allowing the encoder 

to gradually increase the integration of low-level and high-resolution information 

during the decoding process, so that the decoder can better adapt to the deep semantic 

features extracted by the encoder while gradually restoring spatial information. 

Moreover, dense blocks and convolutional layers are added between the encoder and 

decoder to improve segmentation accuracy. Due to the stacked skip paths, U-Net++ 

builds high-resolution feature maps at multiple semantic levels, that is, at different 

depths, and uses four semantic levels to quantify the loss. These improvements enable 

U-Net++ to achieve higher accuracy in the segmentation tasks of liver and liver tumours. 

Li et al. [177] used the U-Net++ architecture with an attention-aware mechanism to 

segment the liver from CT images and achieved excellent results with 98.15% dice 

score. 

Huang et al. [178] proposed U-Net 3+, which considers full-size skip connections 

and deep supervision. Deep supervision learns hierarchical representations from 
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aggregated feature maps of multiple sizes by adding support loss functions at multiple 

levels. This means that while the final output is supervised, losses are calculated at 

different stages of the decoder to guide feature learning at each stage, ensuring that the 

features of each layer contribute to the final segmentation task. They applied the U-Net 

3+ architecture to liver segmentation and achieve superior performance with 96.75% 

dice score compared to other U-Net architectures. 

In addition to U-Net based architectures and their variants, Mask R-CNN has 

demonstrated remarkable performance in various medical imaging tasks. Originally 

proposed by He et al. [179] for pixel-level instance segmentation, Mask R-CNN 

extends the Faster R-CNN framework, which is specifically designed for object 

detection [180]. The extension involves the addition of a mask prediction branch, 

enabling pixel-wise segmentation for individual objects. Moreover, a key innovation 

introduced by Mask R-CNN is the ROI Align operation, which replaces the ROI 

Pooling mechanism used in Faster R-CNN [180]. ROI Align decreases the quantization 

errors associated with ROI Pooling by employing bilinear interpolation, thereby 

achieving spatial alignment and enhancing segmentation accuracy. This architectural 

refinement makes Mask R-CNN particularly well-suited for high-precision tasks in 

medical imaging, such as tumour segmentation and organ delineation. 

Haq et al. [181] proposed a liver segmentation method based on Mask R-CNN. 

First, the CT volume is pre-processed and normalized into standardized CT image slices 

to obtain the basic outline of the liver. These normalized slices were then input into the 

ResNet-101 network for feature extraction. Finally, Mask R-CNN is used to segment 

the tumour in the liver. This method has demonstrated the effectiveness of Mask R-

CNN for liver CT segmentation on public datasets. Chen et al. [182] proposed an 

enhanced Mask R-CNN algorithm for liver segmentation in CT images, which 

contained the following innovations. First, the k-nearest neighbour (K-NN) algorithm 

is introduced in the training stage to cluster the target liver pixels and obtain a suitable 

aspect ratio for adjusting the size and shape of the anchor points, thereby improving the 
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accuracy of liver positioning. Second, a fully convolutional network (FCN) is used to 

perform pixel-level segmentation of foreground objects and refine the detection of liver 

areas. 

H-DenseUNet, proposed by Li et al. [183], is a hybrid architecture that integrates 

2D DenseUNet for intra-slice feature extraction and 3D DenseUNet for volumetric 

context aggregation. This design leverages hybrid feature fusion to combine 2D and 3D 

features, effectively avoids the limitation of 2D networks ignoring volume context 

information and the high computational cost of 3D networks. The network incorporates 

dense connectivity for efficient feature reuse and employs a cascaded segmentation 

approach to sequentially localise the liver and refine tumour segmentation within the 

ROI.  

Similar designs come from the X-Net proposed by Chi et al. [184], which takes full 

advantage of the ability of intra-slice and inter-slice feature extraction. Global features 

are extracted through the backbone Dense U-Net, and they are combined with the liver 

segmentation branch and tumour segmentation branch to optimise the feature extraction 

and segmentation performance of local areas respectively. The network significantly 

reduces the computational cost of 3D feature extraction by stacking 2D features instead 

of traditional 3D convolution. On this basis, the contextual information between slices 

is efficiently integrated with the detailed information in the two-dimensional slices, 

thereby improving the segmentation performance. 

Zhang et al. [185] proposed a liver and tumour segmentation framework with a 

coarse-to-fine approach. Initially, a 3D U-Net is employed to segment the liver, 

followed by a Multi-Scale Candidate Generation (MCG) step to identify tumour 

candidates, leveraging superpixel-based techniques to extract all potential tumour 

regions. Subsequently, a 3D Fractal Residual Network is introduced to refine the 

tumour region delineation, serving as the coarse segmentation output. Finally, an Active 

Contour Model is applied to refine the tumour segmentation further, achieving precise 

boundary delineation. 
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Generative Adversarial Networks (GANs) were proposed by Ian et al. in 2014 

[151], have become a powerful tool in various computer vision tasks, particularly in 

image synthesis. In medical imaging, GANs have been successfully applied to tasks 

such as image enhancement, modality translation, and image segmentation [186, 187]. 

Their ability to learn complex data distributions makes them particularly useful in 

settings with limited labelled data or domain shifts. GANs consist of two neural 

networks, one for the generator and the other for the discriminator. The generator is 

used to create new data, while the discriminator evaluates the generated data based on 

its similarity to the training data. The GAN architecture has been shown to achieve good 

performance in liver and liver tumour segmentation. Xie et al. [188] proposed a 

radiomics-guided GAN for liver tumour segmentation without contrast agents. This 

method achieves segmentation through the mapping relationship between contrast 

images and non-contrast images and uses the radiomics features in the discriminator as 

guidance information to help extract features in non-contrast images. Experiments 

show that this method achieves a segmentation accuracy of 95.85% and a Dice 

coefficient of 92.17% on the data of 200 subjects. Enokiya et al. [189] combined U-Net 

and Wasserstein GAN for automatic liver segmentation. Wasserstein GAN is mainly 

used to improve the training of U-Net under small data set conditions. Experimental 

results show that this method can obtain a dice score of 90% with only 10 training 

images. 

Zhang et al. [190] proposed a tumour 3D conditional generation confrontation 

segmentation network (T3scGAN) based on conditional generation confrontation 

network. T3scGAN only fuses feature of two scales, while ensuring the accuracy of 3D 

segmentation, it minimises network parameters and computational complexity to avoid 

losing details of small tumour areas due to excessive down-sampling. At the same time, 

they adopted a coarse-to-fine 30 segmentation framework to achieve fine segmentation 

from liver to tumour. 

To overcome challenges in medical image segmentation, such as limited annotated 
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data and differences between different patients and imaging protocols, researchers have 

adopted a variety of techniques, including data augmentation, multi-scale feature 

extraction, and transfer learning. Among these methods, transfer learning has proven to 

be particularly effective when insufficient training data is available. Transfer learning 

involves using models that have been pre-trained on large-scale natural image datasets. 

These pre-trained models can capture general features that are applicable to different 

visual tasks. In the field of medical imaging, transfer learning enables models to benefit 

from previously learned representations and reduces the need for large-annotated 

datasets. This is particularly important because collecting and labelling high-quality 

medical data requires expert efforts and is often resource intensive. By applying transfer 

learning, researchers can improve model performance and training efficiency in 

medical image segmentation tasks. 

Heker et al. [191] used SE-RESNet to achieve the goal of liver segmentation. 

Before training, they used pre-trained ImageNet for feature extraction. The authors 

found that using transfer learning significantly improved weight initialization and faster 

convergence speed. In order to solve with the challenge of insufficient 3D medical 

image data, Chen et al. [192] have aggregated data sets from multiple medical 

challenges, constructed the 3DSeg-8 data set, and designed the Med3D pre-training 

model to accelerate the training of 3D medical tasks and improve accuracy. 

Experiments showed that the Med3D model significantly improved the training 

convergence speed and accuracy in multiple 3D medical tasks. A dice score of 94.6% 

was achieved for liver segmentation based on the LiTS challenge dataset. 

In recent years, the Transformer architecture, originally developed for natural 

language processing, has been successfully applied to various computer vision tasks, 

including image segmentation. Various models based on convolutional neural networks 

have dominated this field, especially architectures such as U-Net, DeepLab, and Mask-

R-CNN. However, the emergence of transformer models has broken this status quo. 

The development of transformer-based models shows that the self-attention mechanism 
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can capture long-range dependencies and global contextual connections more 

effectively than CNN, which helps to improve the performance of segmentation models. 

The basic principle of Transformer relies on the self-attention mechanism, which can 

effectively process the global information of sequence data through multi-head 

attention, position encoding, and encoder-decoder structure.  Figure 3.14 shows the 

encoder-decoder architecture of the Transformer model. 

Transformer-based image segmentation architectures include Vision Transformer 

(ViT), Swin Transformer, Segmentation Transformer (SETR), Detection Transformer 

(DETR), Mask Former, etc. ViT is one of the early models that applied Transformer to 

visual tasks, mainly for image classification and segmentation. ViT divides the input 

image into fixed-size, non-overlapping patches, and subsequently transforms each 

patch into a feature representation known as a patch embedding. After undergoing a 

linear transformation, these patch embeddings serve as input tokens for the Transformer 

encoder. This patch-based segmentation approach enables the model to consider the 

entire image and capture global contextual information. To retain the spatial position of 

each patch, ViT incorporates positional embeddings, allowing the model to remain 

aware of each patch’s original arrangement within the image. 

Swin Transformer is an improved version of ViT, especially optimised for the needs 

of vision tasks. It introduces a hierarchical structure with shifted windows, where self-

attention is calculated within a local window instead of the entire image. This design 

reduces the computational cost and enables the model to scale to high-resolution inputs. 

The hierarchical design also allows Swin Transformer to capture multi-scale features 

by reducing the resolution of feature maps layer by layer. These properties make Swin 

Transformer well suited for dense prediction tasks, including semantic and instance 

segmentation, as it balances local and global feature extraction. Coa et al. [193] 

introduced Swin-U-Net for medical image segmentation. Their architecture is based on 

Swin Transformer, where the encoder adopts a shifted window method and has patch 

embedding layers in the decoder. Both encoder and decoder architectures are designed 
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hierarchically to enhance segmentation accuracy and robustness.  

 

Figure 3.14 The encoder-decoder architecture of the Transformer model [147]. The core 

structure of the Transformer model includes the encoder module on the left and the 

decoder module on the right. Each module consists of multiple layers of stacked 

substructures: multi-head attention mechanism, feedforward network, residual 

connection and layer normalization. 

Transformer U-Net (TransUNet) is a hybrid architecture that combines the 

strengths of Transformer models and CNNs for medical image segmentation tasks. It 

extends the traditional U-Net structure by incorporating Transformer blocks into the 

encoder to capture long-range dependencies and global contextual information more 

effectively. The encoder of TransUNet use a ViT to process flattened image patches, 
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allowing the network to maintain a global perception of the input data. This is 

particularly effective in medical imaging, where lesions and organs often exhibit 

varying scales, shapes, and locations. Meanwhile, the decoder follows the U-Net design, 

which employs convolutional layers to reconstruct high-resolution segmentation maps, 

effectively combining the global features extracted by the Transformer with local 

details learned through convolution. 

Li et al. [194] proposed a U-Net-based hybrid variable structure, RDCTrans U-Net 

for liver tumour segmentation in computed tomography (CT)examinations. They 

design a backbone network dominated by ResNeXt50 and supplement by dilated 

convolution to increase the network depth, expand the perceptual field, and improve 

the efficiency of feature extraction without increasing the parameters. At the same time, 

a Transformer is introduced in down-sampling to increase the network’s overall 

perception and global understanding of the image and to improve the accuracy of liver 

tumour segmentation.  

Table 3.4 summarises the various liver and tumour segmentation methods proposed 

over the years. It includes the datasets used, the liver dice score and tumour dice score 

obtained by each method. 
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Table 3.4 Comparative Analysis of Liver and Tumour Segmentation Methods. 

 

3.5 Conclusion 

In Chapter 3, various image segmentation technologies based on CT data are 

introduced, including semi-automatic segmentation technology and fully automatic 

segmentation methods. This chapter shows the evolution from simple thresholding and 

graph cut techniques to more complex statistical model algorithms and learning 

segmentation methods, especially the application of deep learning in medical image 

Ref  Year Proposed Method Dataset Liver Dice 

Score 

Tumour Dice 

Score 

[164] 2020 Attention U-Net LiTS 

3DIRCADb 

0.961 

0.977 

0.59 

0.830 

[165] 2019 AHC-Net LiTS 0.953 0.734 

[167] 2023 Eres-UNet++ LiTS 0.956 0.913 

[168] 2020 Unet3+ LiTS 0.960 / 

[171] 2021 Mask-R-CNN LiTS 0.95 / 

[172] 2021 Mask-R-CNN Codalab 

competition 

0.943 / 

[173] 2018 H-DenseUNet LiTS 

3DIRCADb 

0.965 

0.982 

0.824 

0.937 

[174] 2021 X-net LiTS 0.971 0.843 

[175] 2019 3D MCG-FRN 3DIRCADb / 0.764 

[177] 2019 Radiomics-guided 

GAN  

Clinical CT 

data sets 

/ 0.92 

[178] 2018 U-Net with GANs Clinical CT 

data sets 

0.94 / 

[179] 2021 T3scGAN LiTS 0.961 0.796 

[180] 2020 Transfer learning LiTS / 0.71 

[181] 2019 Med3d LiTS 0.946 / 

[182] 2022 Swin-Unet ACDC 0.943 / 

[183] 2022 RDCtrans U-Net LiTS 0.934 0.898 
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segmentation, marking a major advance in this field. With the improvement of 

computing power and the continuous optimisation of algorithms, image segmentation 

technology based on deep learning is expected to play a greater role in improving the 

accuracy and efficiency of medical image processing. 

In the section on semi-automatic segmentation techniques, the principles of 

threshold setting, and graph cut techniques and their applications in medical image 

processing are discussed. Although these techniques require a certain degree of manual 

intervention to select parameters or markers, they are still effective when processing 

specific types of images. Subsequently, among the fully automatic segmentation 

methods, methods based on statistical models are first introduced. This type of method 

automatically performs segmentation by establishing a statistical model of image data 

without manual intervention. Learning-based segmentation methods include machine 

learning-based algorithms and deep learning-based algorithms, greatly improving the 

accuracy and efficiency of segmentation by manually selecting or automatically 

learning image features from large amounts of data. 

This chapter focuses on the application of deep learning in medical image 

segmentation; the history and basic theory of deep learning are reviewed. The 

development and iteration of a large number of deep learning algorithms reveals how 

this technology is driving the development of medical image processing. In particular, 

the introduction of fully convolutional neural networks (FCN) and U-net architectures 

demonstrates how deep learning can be specifically optimised to adapt to the unique 

needs of medical image segmentation. U-net architecture has received special attention 

due to its high sensitivity to small objects in medical images and effective utilization of 

image context information and has become an important development in the field of 

medical image segmentation. 
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Chapter 4. CT dataset and evaluation parameters 

As one of the most widely used benchmark datasets for liver tumour segmentation, 

the Liver Tumour Segmentation (LiTS) dataset [17] is selected in this study due to its 

clinical diversity, expert-validated annotations, and widespread adoption in academic 

research. Advances in medical imaging technology have resulted in an explosion of 

high-quality imaging data, necessitating the development of efficient and accurate 

image analysis methods. Among them, liver and tumour segmentation from abdominal 

CT images is a critical task for diagnosis, treatment planning, and disease progression 

monitoring. The LiTS dataset [17] is derived from seven clinical sites around the world 

and represents a comprehensive collection of such images. The dataset is both large and 

diverse, covering a variety of liver tumour types of varying stages, sizes and stages of 

treatment. Segmentation of liver and tumour structures was validated by experienced 

radiologists, providing a solid basis for developing and testing automated segmentation 

algorithms. This chapter describes the complexity of the dataset, including the 

distribution of liver volumes, tumour incidence, and the complexity of tumour 

characteristics. Furthermore, it outlines the basic evaluation parameters that are crucial 

for evaluating the performance of segmentation models, thereby guiding researchers 

and developers to improve their methods to achieve higher accuracy and reliability in 

medical image processing. 

4.1  The Liver Tumour Segmentation (LiTS) Dataset 

The image data for the LiTS [17] challenge is collected from seven clinical sites 

all over the world, including medical centres in Germany, the Netherlands, Canada, 

Israel, and France. The LiTS dataset includes abdominal CT images of 201 patients, of 

which 194 have liver lesions.  This dataset covers a variety of liver tumour types, 

including primary and secondary liver tumours. The images are of varying quality and 

resolution, showing different tumour-to-background ratios, as these images contain a 

mixture of pre- and post-treatment abdominal CT scans and are acquired using different 

CT scanners and acquisition protocols. 
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Data collection encompasses a wide range of imaging technologies from different 

vendors, employing a variety of CT scanners and protocols, resulting in significant 

variation in image resolution and quality. The axial resolution of the data ranges from 

0.56 𝑚𝑚  to 1.0 𝑚𝑚 , while the z-axis resolution ranges from 0.45 𝑚𝑚  to  6.0 𝑚𝑚 . 

Furthermore, the number of z-axis slices varies from 42 to 1026, and some scans show 

imaging artefacts such as metal artefacts, reflecting challenges encountered in real 

clinical settings. 

The initial ground truth segmentation of the liver and tumour structures are 

generated by trained radiologists at each participating clinical site. After the initial 

annotation, the segmentation masks undergo a verification process by three experienced 

radiologists in a blinded review. This additional step is crucial for maintaining the 

quality and reliability of the dataset. By involving multiple radiologists in both the 

annotation and verification phases, the dataset aims to minimise subjective bias and 

maximise the accuracy and reliability of the segmentation masks provided for training 

and testing automated segmentation algorithms. 

The distribution of liver volumes in the training and test data sets is approximately 

normal. The incidence of tumours in these datasets varies widely, from none to as many 

as 12, with the test set showing a higher incidence of tumours compared to the training 

set. Tumour sizes range from 38 𝑚𝑚3  to 1231 𝑚𝑚3 . Mean difference in intensity 

between liver and tumour tissue, calculated as the mean absolute difference in 

Hounsfield unit (HU) values between liver and tumour voxels, ranging from 0 to 98 

with a mean of 31.94 (SD = 20) and the median is 29.61. Figure 4.1 shows four CT 

scans of the abdominal cavity with different HU values. This variation in tumour 

characteristics and imaging conditions highlights the complexity and diversity of LiTS 

challenge datasets. 

 From a total of 201 CT volumes, 131 are chosen randomly for training and 70 CT 

volumes for the test set. The split is performed in such a way to have the same clinical 

site distribution in training and test set. The participants could download training data 
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from the LiTS Challenge website including training reference data, The test data 

without ground truth segmentation is also available for download. 

 

Figure 4.1 Four CT scans with different HU values, which can be seen from the depth of 

the liver. 

To enable model training, the original NIFTI-format 3D CT volumes are converted 

to 2D axial slices and stored as PNG images. A standard liver window is used to 

normalize the intensity values, which has been described in Section 3.2. In addition, 

histogram equalization is applied to enhance image contrast, and all slices are resized 

to 512×512 pixels to retain sufficient anatomical details. All images are normalized to 

a fixed intensity range to ensure consistency across the dataset. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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The LiTS dataset also suffers from a severe class imbalance problem, as tumor 

voxels account for a very small proportion of the entire image volume. Moreover, the 

features of tumours vary greatly in size, number, and intensity. To alleviate this problem, 

we carefully construct the test set to contain a balanced representation of large, medium, 

and small tumours (with a ratio of 1:1:1). In addition, the training loss function is 

designed to combine Dice loss and binary cross entropy loss to enhance the robustness 

of the model under imbalanced conditions. 

4.2 Evaluation Parameters 

In the field of medical image processing, especially in tasks like semantic 

segmentation, model evaluation plays an indispensable role in the entire development 

process. Quantifying the performance of the model through different evaluation metrics 

can help developers or researchers intuitively evaluate the performance of the model 

and make subsequent adjustments and optimisations. 

The Confusion Matrix is an important tool for evaluating model performance and 

the basis for evaluating classification task performance. It provides an intuitive way to 

identify the model's performance on different categories by comparing the model's 

predictions with the true values, revealing the model's accuracy and error in predicting 

positive and negative categories. The confusion matrix involves four basic terms: True 

Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN). Table 

4.1 Confusion Matrix provides the discriminant conditions of the confusion matrix. 

Table 4.1 Confusion Matrix. 

  
Predict Class 

 
Reality/Prediction Predict Positive Predict Negative 

A
ct

u
a

l 
C

la
ss

 

Actual Positive True Positive False Negative 

Actual Negative False Negative True Negative 
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The four elements of the confusion matrix are defined as follows: 

1.  True Positives (TP): When the model predicts a positive class, and the prediction 

is correct, this situation is called a true positive. In the liver/tumour segmentation 

task, TP represents the number of pixels or voxels correctly predicted by the model 

to be liver/tumour.  

2. False Positives (FP): When the model incorrectly predicts a negative class as a 

positive class, this situation is called a false positive. In the liver/tumour 

segmentation task, FP represents the model incorrectly predicted non-liver regions 

as pixels or voxels of the liver/tumour. 

3. True Negatives (TN): When the model predicts a negative class, and the prediction 

is correct, this situation is called a true negative. In the liver/tumour segmentation 

task, TN represents the number of pixels or voxels correctly predicted by the model 

as non-liver/non-tumour. 

4. False Negatives (FN): When the model incorrectly predicts a positive class as a 

negative class, this situation is called a false negative. In the liver/tumour 

segmentation task, FN represents the model failed to predict the liver/tumour 

region as the number of pixels or voxels of the liver/tumour. 

Figure 4.2 indicates four elements in liver tumour segmentation. The difference between 

segmentation tasks and classification tasks is that segmentation tasks require attention 

to the classification performance of each pixel or voxel. 
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Figure 4.2 Confusion matrix in the liver tumour segmentation. 

From the confusion matrix, more advanced classification indicators can be 

obtained, including Accuracy, Precision, Recall, Specificity and F1score.  

Accuracy measures the overall ability of a classifier to predict correctly. It is the 

ratio of correctly predicted samples (positive and negative classes) to the total number 

of samples. Its mathematical expression is: 

Although accuracy is one of the most intuitive evaluation indicators, it does not always 

provide sufficient information to judge the quality of an algorithm. Especially when the 

data set is imbalanced, accuracy can be misleading. 

Specificity measures the proportion of true negative samples that are correctly 

identified by the model. A high specificity indicates the model's effectiveness in 

correctly recognizing negative cases, resulting in fewer false positives. Its mathematical 

expression is: 

Precision measures the proportion of samples correctly identified as positive by the 

model that are actually positive. A high precision means that among the elements 

predicted by the model to be positive, the proportion of elements that are actually 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

   (4.1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(4.2) 
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positive is higher. Its mathematical expression is: 

Recall also called Sensitivity measures the proportion of all actual positive classes 

that are correctly recognised by the model. A high recall means that the model can 

capture more positive examples, as well as lower false negative. Its mathematical 

expression is: 

It is not scientific and comprehensive enough to evaluate an algorithm model solely by 

one standard. For example, sensitivity and precision are often a pair of contradictory 

indicators in classification problems. When improving precision, some true positives 

may be missed, resulting in a decrease in sensitivity. On the contrary, when sensitivity 

is improved, but false positives are increased at the same time, resulting in decreased 

precision. The F1 Score can be used to balance precision and sensitivity. It is the 

harmonic mean of accuracy and sensitivity and can be used as a comprehensive 

indicator of both.  

The F1 score ranges from 0 to 1, where 1 indicates perfect precision and recall, and 0 

indicates that at least one metric is zero. 

In the LiTS challenge set, six official evaluation criteria are provided to measure 

the performance of liver or tumour segmentation. A brief introduction on six statistical 

performance measures commonly utilised in liver related segmentation methods is 

given below [17]. 

The first one to introduce is the dice score. On the two-classification problem, the 

dice score can be considered to be equivalent to the F1 score introduced before. The 

dice coefficient is a set similarity measure function, used to calculate the similarity 

between samples, and the value range is between [0, 1]. Its mathematical expression is 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4.3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) =  

2𝑇𝑃

2𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃
 

  (4.5) 
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For semantic segmentation problems, as shown in Figure 4.3, the dice coefficient can be 

understood as 

Where X∩Y represents the intersection of X and Y, and X and Y represent the number 

of elements in the sets X and Y. The coefficient of 2 for the numerator part is due to 

double counting of common elements between X and Y. When X represents prediction 

result, Y represents the ground truth. 

 

Figure 4.3 Dice score in segmentation problem. 

In LiTS challenge, Global Dice score and Dice per Case are commonly employed.   

Global Dice Score is calculated by aggregating all true positive (TP), false positive (FP), 

and false negative (FN) voxels across the entire dataset before computing the Dice 

coefficient. It measures the overall segmentation accuracy across all slices and patients, 

and it is especially sensitive to cases with large volumes or a high number of slices. 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐷𝑖𝑐𝑒 =  
2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

(4.8) 

Dice per Case, in contrast, is calculated individually for each patient by evaluating the 

Dice score for that patient's entire scan (or tumour region), and then averaging the 

results over all patients. This metric gives equal weight to each patient regardless of 

𝐷𝑖𝑐𝑒(𝑋, 𝑌) =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 (4.6) 

𝐷𝑖𝑐𝑒(𝑋, 𝑌) =  
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

   (4.7) 
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tumour size or the number of tumour-containing slices. 

𝐷𝑖𝑐𝑒 𝑝𝑒𝑟 𝐶𝑎𝑠𝑒 =  
1

𝑁
∑

2 · 𝑇𝑃𝑖
2 · 𝑇𝑃𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖

𝑁

𝑖=1

 

(4.9) 

 These two metrics complement each other, while Global Dice reflects overall 

volumetric performance, Dice per Case captures case-wise consistency and fairness. 

Significant discrepancies between the two may indicate dataset imbalance or 

inconsistent model performance across cases with different tumour sizes. 

Volume Overlap Error, as its name suggests, is used to quantify the overlap error 

between two volumes or areas. Its mathematical formula is as follows: 

Where 
|𝑋∩𝑌|

|𝑋∪𝑌|
 represents the Jaccard index, which is the intersection and union ratio. 

When the Jaccard index is equal to 1, VOE equals 0 means that the two parts completely 

overlap, which means that the image is perfectly segmented. 

Relative Volume Distance is another metric used to evaluate the difference between 

two volumes. Its mathematical formula is as follows: 

Where X is the predicted volume and Y is the true volume. RVD can be positive or 

negative depending on whether the predicted volume is larger or smaller than the true 

volume. If the predicted volume is greater than the true volume, RVD is positive; 

otherwise, RVD is negative. It is clear that smaller absolute value of RVD means better 

segmentation result. 

𝑉𝑂𝐸(𝑋, 𝑌) =  1 −
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
 

(4.10) 

𝑅𝑉𝐷(𝑋, 𝑌) =  
|𝑋| − |𝑌|

|𝑌|
 

(4.11) 
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Figure 4.4 Example of calculating the ASSD and MSD of two graphs. 

Average symmetric surface distance (ASSD) and Maximum symmetric distance 

(MSD) are measures of similarity between two sets of points in a space. ASSD is 

calculated by taking the average distances from each point in one set and its closest 

point in the other set. In the biomedical image segmentation field, it is the average of 

all distances from points on the segmentation boundary to the boundary of ground truth. 

Its calculation formula is as follows, 

Where S(A) and S(B) denote the set of surface voxels of A and B, d(𝑠𝐴,S(B)) represents 

minimum Euclidean distance from each point on A to edge B, d(𝑠𝐵,S(A)) represents 

minimum Euclidean distance from each point on B to edge A, as shown in Figure 4.4. A 

smaller ASSD value indicates better segmentation results. Similar to ASSD, MSD still 

finds the distance between each point in one set and its closest point in the other set. 

But it selects the maximum distance from points between two image voxels as the 

measurement results, which can be calculated as: 

 

 

𝐴𝑆𝐷(𝐴, 𝐵) =
1

|𝑆(𝐴) + 𝑆(𝐵)|
( ∑ 𝑑(𝑠𝐴 , 𝑆(𝐵))

𝑠𝐴∈𝑆(𝐴)

+ ∑ 𝑑(𝑠𝐵, 𝑆(𝐴))

𝑠𝐵∈𝑆(𝐵)

) 
(4.12) 

MSD (A, B) = max{ 𝑚𝑎𝑥
𝑠𝐴∈𝑆(𝐴)

𝑑(𝑠𝐴, 𝑆(𝐵)) , 𝑚𝑎𝑥
𝑠𝐵∈𝑆(𝐵)

𝑑(𝑠𝐵, 𝑆(𝐴))} 
(4.13) 
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4.3 Conclusion 

The LiTS dataset presents unique challenges and opportunities to the field of 

medical image analysis. Through a detailed exploration of their composition, 

characteristics, and the rigorous validation process they undergo; this chapter highlights 

the critical role of high-quality, diverse datasets in advancing automated segmentation 

technology. Evaluation metrics, including confusion matrix, accuracy, precision, recall, 

and F1 score, are essential tools for evaluating the effectiveness of segmentation models. 

These metrics are complemented by more specialized metrics such as Dice score, 

volumetric overlap error, and average symmetry distance, allowing for a nuanced 

assessment of model performance on different aspects of segmentation tasks. The 

analysis presented here not only highlights the inherent complexity of liver tumour 

segmentation but also points to the ongoing need for innovative methods that can 

expertly handle the variability of real medical imaging data. 
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Chapter 5. Liver segmentation method using an 

improved Multi Scale Feature U-Net (MSF U-Net) 

5.1 Introduction 

Successful liver image segmentation can yield accurate liver volume, which has an 

important impact on liver surgery and patient's postoperative recovery evaluation. 

However, due to highly variable shape, close proximity to other organs and diverse 

pathologies, the liver tissue in the abdominal CT image will have the same intensity 

value as the adjacent organs like stomach, heart, pancreas, kidney [195]; and 

furthermore its shape will be deformed. In clinical applications, liver segmentation is 

usually done by experienced radiologists. This remains an extremely time-consuming 

task that can reach 90 minutes or more per patient, with a degree of inter and intra 

segmentation errors. 

This chapter introduces an improved U-Net model, which aims to automatically 

carry out image segmentation of the liver from CT data. Building on the foundational 

architecture U-Net covered in Section 3.4.4, the improved model proposed in this 

chapter makes several innovations based on the original architecture to improve 

segmentation performance and efficiency. These include the use of techniques such as 

pyramid pooling and dilated convolution, that aim to enhance the model's ability to 

obtain contextual information and the size of the receptive field when processing 

complex liver CT images. 

The remainder of the chapter is organised as follows. Section 5.2 reviews the basic 

structure and function of the classic U-Net and then elaborates on the concepts of 

pyramid pooling modules and dilated convolutions and their specific applications in the 

improved Multi Scale Feature U-Net. Specific implementation details of using this 

model for liver segmentation, including the processing of the dataset, the network 

training process, and the visualisation analysis of the results are described in Section 

5.3. Section 5.4 provides the conclusion of this Chapter. 
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5.2 Liver CT scans segmentation using Modified MSF U-Net 

5.2.1 Overview of Modified MSF U-Net 

A modified U-Net is proposed to achieve automatic liver segmentation from CT 

scans. As introduced in Section 3.4, a classic U-Net is mainly composed of a down-

sampling path, an up-sampling path, and skip connections. The down-sampling path 

extracts features at different levels through convolution, pooling, and dropout, and the 

up-sampling path restores the features to the input image size through deconvolution or 

interpolation. The skip connections introduce the down-sampled feature information 

into the up-sampling process, providing multi-scale information to support image 

segmentation. Finally, the feature map is mapped to between 0 and 1 through the 

sigmoid function to generate the prediction result.  

However, the original U-Net architecture has limitations when applied to liver 

segmentation in CT scans. Specifically, it may struggle to capture complex boundaries 

or small lesions accurately, and the decoder may not fully utilise deep semantic 

information. To address these issues, modifications are introduced to the U-Net 

structure. These changes aim to enhance feature representation, improve boundary 

delineation, and increase the model’s robustness in handling liver shape and intensity 

variation. The rationale behind these changes is based on the need for finer localization 

and stronger contextual understanding in challenging medical imaging processing. 

Based on the original U-Net, several adjustments are made to achieve better 

segmentation performance, including using pyramid pooling to obtain contextual 

information at different scales and using dilated convolution to obtain a larger receptive 

field in high-dimensional channels. These two parts will be introduced in detail in the 

following part. 

The main path of U-Net contains four down-sampling and up-sampling. On the 

encoder path, the number of convolution kernels is increased from 64 to 1024 in a 

double increment and the size of the convolution kernel is set to 3×3. As illustrated in 

Figure 5.1, each dense block contains two convolution layers, each followed by batch 
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normalization and ReLU activation, with ‘same padding’ (described in Section 3.4.2.1) 

to ensure that the final prediction result matches the input image. The 2×2 max pooling 

with stride of 2 is used to halve the feature map size. On the decoder path, deep features 

are restored to feature map size through bilinear interpolation [105]. Subsequently, the 

feature map obtained by the corresponding encoder and the feature map obtained by 

up-sampling are concatenated together through skip connection; these feature blocks 

containing deep feature and shallow feature are passed through the feature extraction 

module (dense block) again to obtain more detailed features. The up-sampling 

operation is repeated four times to restore the abstract high-dimensional features to the 

same size as the original input. The number of convolution kernels is consistent with 

the number of convolution kernels used for feature extraction in the encoder path, which 

is reduced from 1024 to 64 by a factor of 2 each time. At the end of the network, the 

sigmoid function is used to classify the feature map between 0-1 to obtain the prediction 

probability map. The model generates two values for each pixel, corresponding to the 

probability that the pixel belongs to each category. Therefore, the last layer has two 

channels, and each channel outputs a probability map of the corresponding category. 

5.2.2 Dilated Convolution 

In deep neural convolutional networks, as the depth of the network increases and 

the pooling operation is involved, the number of the feature maps will gradually 

increase (As shown in Figure 5.1, the number of features is 1024).  In order to obtain a 

larger receptive field without excessively increasing parameters, dilated 

convolutions[196] are used in the deep layers of the network to obtain broader 

contextual information and global features.  
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Figure 5.1 The architecture of proposed modified U-Net for automatic liver segmentation. 

Section 3.4.2 described the definition of reception and the calculation method of 

convolution. Compared with traditional convention operation, a dilated convolution 

introduces a dilated rate parameter based on the conventional convolution. The hole 

ratio indicates the "gap" between adjacent elements in the convolution kernel.  

 

Figure 5.2 Normal Convolution calculation vs Dilated Convolution with a dilated ratio of 2. 

As shown in Figure 5.2, when the dilated ratio is 2, there will be a "hole" between 

each element in the convolution kernel, so that the convolution kernel covers a larger 

space. In this way, dilated convolution can extract feature information in a larger range 

without increasing the size of the convolution kernel, thereby expanding the network's 
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perceptual field while maintaining computational efficiency. It seems confusing 

because the size of the convolution kernel increases from 3 × 3 to 5 × 5, but in fact 

only a 3 × 3  convolution kernels (9 kernel values) are used with the corresponding 

feature values for convolution, the extra 16 positions are replaced by holes, which are 

zeros. Therefore, although the physical size of the convolution kernel remains 3 × 3,  

the receptive field is significantly increased. Dilated convolution allows the network to 

enlarge the receptive field without reducing the resolution of the feature maps, enabling 

it to capture broader contextual information. This is particularly beneficial in liver 

segmentation, where livers may vary in size and shape, and spatial context is critical 

for distinguishing organ boundaries from surrounding tissues. By incorporating dilated 

convolutions, the model can better aggregate global and local features, improving 

segmentation accuracy, especially in cases involving small or diffuse lesions. 

In the proposed modified U-Net, as illustrated in Figure 5.1 in the red block, the 

dilated convolution is used in the fourth resolution dimension, where the feature map 

size is 64 × 64 with dilated ratio 2. The reason for merely using dilated convolution in 

the deep layer rather than at all resolution layer is to avoid excessive information loss.  

Since a large number of holes are filled in the convolution kernel, numerous local 

information will be ignored during the calculation process. Shallow features extraction 

requires continuous convolution kernels to process in shallow layers. Currently, using 

dilated convolution is not conducive to feature extraction in the early layers.  In order 

to ensure the richness of information, the normal convolution kernel is used in another 

branch, and down-sampling is performed again to obtain more abstract deep 

segmentation information. The three feature maps generated by the two branches are 

fused together for the subsequent up-sampling process. 

5.2.3 Pyramid Pooling Module 

In image semantic segmentation, information at different scales is crucial for 

understanding objects and context in images, from tiny details to overall objects, which 

may have an important impact on the task. In a cross-section of a CT scan of the 
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abdomen, the liver will appear in the image in different sizes and proportions. To better 

capture this multi-scale information, a pyramid pooling module [189] is introduced to 

ensure that the network can effectively handle features of different scales. 

In order to make full use of the features in each scale, a pyramid pooling structure 

is employed in the information extraction stage to capture more contextual details, 

which is to extract image features at different regional scales. First, several feature maps 

are extracted from the input image using one CNN. Then, these feature maps undergo 

pooling at different scales, resulting in multiple down-sampled versions of the original 

feature map. As shown in Figure 5.3, the input feature map is divided into multiple grids 

of different scales (1 × 1 , 2 × 2 , 3 × 3  , 6 × 6) , and then perform a global average 

pooling operation which is described in Section 3.4.2 on the features in each grid to 

obtain feature maps of various scales. Next, a 1×1 convolutional kernel is used to reduce 

the number of channels, thus reducing the network parameters. The feature maps after 

pooling need to be resized as the original feature map and then are concatenated along 

channels with the original feature map. The merged multi-scale feature map is passed 

to the decoder part via short skip connections. 

 

Figure 5.3 Architecture of Pyramid Pooling Module. 

In the proposed modified U-Net, the pyramid pooling module is applied on the 

third to fifth resolution layers (feature map size equals 128 × 128, 64 × 64, 32 × 32). 

When the feature map is in this interval, the network can extract abstract semantic 
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information, applying pyramid pooling at these layers can ensure that multi-scale 

information is integrated in features that contain richer semantic information. On the 

other hand, using pyramid pooling operations in the first few layers, the feature layer 

will generate too many sub-feature maps after being divided into grids of different sizes 

due to high resolution of feature map, which will inevitably require increased memory 

and computational consumption. A joint loss function of dice loss and binary entropy 

loss, which is described in Section 3.4.4, is used to optimise the parameters of model. 

5.3 Visualisation and statistical analysis of liver segmentation 

results 

5.3.1 Network Implementation 

The data set used for training and testing is the Liver Tumour Segmentation 

Challenge (LiTS), which is described in Chapter 4. The data set contains CT scans of 

130 patients, which are divided into training sets and test sets. The training set and test 

set contained 100 patients and 30 patients, respectively. All scans have been provided 

in nii format with an axial size of 512×512.  

To improve the generalization ability and robustness of the network, data 

augmentation techniques are applied during training. This is particularly important in 

medical image segmentation, where annotated datasets are often limited in size, and 

organs like the liver can vary significantly in shape, size, and location across patients. 

Following the strategy used in the original U-Net, the applied augmentations include 

small random rotation (0.2 range), shift on horizontal (0.05) and vertical (0.05) 

direction, shear (0.05), zoom (0.05), and flip (horizontal). 

 The new algorithms are implemented in Anaconda with Python, running on PC with 

32GB RAM, 3.8GHz AMD Ryzen7 3800X 8-core CPU, and a NVIDIA RTX2080 GPU 

with a total 8GB memory. This work is implemented using Keras based on the 

TensorFlow backend. The proposed modified cascaded U-Net is trained for 80 epochs 

using the Adam optimiser, and the learning rate is gradually reduced from 1e-4 to 1e-5 



105 

 

when the accuracy did not change within 5 epochs. In this approach, a batch size of 2 

is set during training. This choice is primarily due to the high spatial resolution of 

abdominal CT images and the limited GPU memory available, which constrained the 

number of images that could be processed simultaneously. While large batch sizes may 

promote more stable convergence by narrowing the range of learning rates and 

producing smoother gradient estimates, they typically require much higher 

computational resources. In contrast, small batch sizes have been shown to improve 

generalization in some scenarios [197, 198], as they introduce stochasticity into the 

gradient estimation process, potentially helping the model avoid sharp local minimum. 

This is particularly important in medical image segmentation, where overfitting is a 

common challenge. 

5.3.2 Statistical Analysis 

To evaluate the effectiveness of the proposed segmentation method, a statistical 

analysis is conducted based on multiple evaluation metrics, including global Dice score, 

Dice per case, volume overlap error (VOE), relative volume distance (RVD), average 

symmetric surface distance (ASSD) and maximum symmetric distance (MSD), which 

have been discussed in Section 4.2. These metrics together reflect the volume accuracy 

and boundary precision, thus providing a comprehensive evaluation of the 

segmentation performance. 

Table 5.1 presents six relative metrics of ten different liver segmentation methods. 

The method proposed in this study, as the improved U-Net using multi-scale feature 

fusion, achieves a global Dice coefficient of 0.961, which is comparable to the manual 

annotation results of professional radiologists [199]. To ensure the robustness and 

statistical reliability of the proposed method, experiments are conducted across seven 

random training–testing splits, and the results are visualised in Figure 5.4. 
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(a) (b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.4 Statistical analysis of segmentation performance across seven random training-testing 

splits using six evaluation metrics. 

Figure 5.4 presents the statistical evaluation of the proposed segmentation model 

across seven independent random training–testing splits, using six commonly adopted 

metrics. The global Dice scores and Dice per case across seven runs show a narrow 

standard deviation of ±0.20 and ±1.33, respectively, indicating high consistency and 

robustness of the model across different data splits. Similarly, the variability in VOE 

(±0.20), RVD (±0.096), ASSD (±0.094 mm), and MSD (±0.698 mm) remains within 

acceptable bounds reinforcing the generalization capability of the model. 

VOE and RVD assess volumetric agreement between predicted and ground truth 

regions, where lower values denote more accurate and balanced volume estimates. The 

proposed method achieves a mean VOE of 7.56% and a mean RVD of 0.74%, reflecting 

reliable volumetric performance. ASSD and MSD evaluate boundary precision. A lower 
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ASSD indicates finer alignment of the predicted segmentation with the true anatomical 

boundary. The model obtains a mean ASSD of 0.392 mm and a mean MSD of 5.941 

mm, demonstrating high accuracy even in delineating complex or irregular boundaries. 

Table 5.1 Comparison of the proposed model with other nine liver segmentation methods 

based on six measured metrics. The symbol “N/A” represents unreported result. Bold font 

represents the highest score on each measurement. 

 

The following is a comparative analysis: Comparing traditional methods such as 

region growing and level set with the proposed model, it is evident that the MSF U-Net 

significantly outperforms these methods, particularly in terms of average surface ASSD 

and MSD. For instance, MSF U-Net achieves an ASSD of 0.282 mm, compared to 10.2 

mm for region growing, demonstrating its superior accuracy in liver contour 

segmentation. Moreover, traditional methods necessitate multiple iterative steps for 

parameter optimisation, requiring over 20 minutes to process a set of ten images. In 

contrast, the proposed deep neural network significantly accelerates this process, 

achieving the same task with an obviously reduced inference time. MSF U-Net 

processes each image in approximately 0.2 seconds, making it more efficient for 

Methods Global 

Dice(%) 

Dice per 

case (%) 

VOE 

(%) 

RVD 

(%) 

ASSD 

(mm) 

MSD 

(mm) 

Manual [196] 98.6 N/A N/A N/A N/A N/A 

Level sets[135] N/A N/A 10.4 2.7 1.9 28.9 

Region growing[200] N/A N/A 26.4 -11.5 10.2 74.0 

U-Net+TL loss[201] 94 95 10 5 1.89 32.71 

U-Net+Level set[202] 95.6 N/A N/A N/A N/A N/A 

Semi-supervised[203] 84.85 N/A N/A N/A N/A N/A 

DAR-Net[204] 96.13 N/A 5.03 0.38 N/A 5.32 

RDCTrans-Unet[194] 93.38 N/A N/A N/A N/A N/A 

MCI-Net[205] 96.22 N/A 2.802 -0.637 1.711 N/A 

Cascade ResNet[206] 95.51 N/A 8.55 N/A N/A N/A 

MSF U-Net 96.10 93.66 7.56 0.74 0.392 5.941 
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clinical applications where time-sensitive decision-making is crucial. This marked 

improvement in both accuracy and speed highlights the clear advantages of using deep 

learning models over traditional approaches. 

Compared to the standard U-Net architecture with special Tversky loss functions 

or post-processing the U-Net output using the level set method, the proposed method 

still slightly improves the Dice score of the model, thereby intuitively achieving a better 

image segmentation effect. Compared to cascaded network architectures, the proposed 

model achieves a comparable Dice score and superior Volume Overlap Error (VOE) 

with a more concise and lighter structure, utilising fewer network layers. 

In comparison with the RDCTrans U-Net model, although Li et al. integrated a 

Transformer module at the bottom layer of the network to capture the dependencies 

between different positions in the image and establish a feature representation of the 

global context, the proposed method still shows a higher Dice score. In addition, the 

pyramid pooling strategy adopted in the deeper network layers also effectively 

incorporates contextual information, further enhancing the performance of the model. 

The result is not as good as MCI-Net and DAR-Net. In the MCI network, Xie et al. 

designed a structure called Multi-scale Context Extraction Module, which is embedded 

in each feature extraction layer. The structure of this module is similar to the pyramid 

structure, but unlike the traditional pyramid, it uses more sparse convolutional layers to 

enhance the network's ability to capture contextual information. This design enables the 

MCI network to show higher accuracy in feature extraction and context information 

integration. From the experimental results, the MCI network shows better accuracy than 

the proposed network on the target task. However, when evaluated from the perspective 

of network capacity and computational cost, the proposed network has higher efficiency. 

Although the MCI network improves performance through its unique structure, it also 

leads to a larger amount of network parameters and computing resource consumption.  

In another article published by Xie [204], dynamic adaptive pooling are used to 

replace the commonly used max pooling. This method also applies mathematical 
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modelling to analyse the relationship between the maximum value and other values of 

the pooling area to achieve a more refined pooling effect. In addition, they post-process 

the network's predicted values using CRF to further improve the accuracy. 

In summary, although the proposed method does not to surpass all the best methods 

of the same kind in terms of Dice coefficient, it demonstrates outstanding performance 

in key metrics such as average surface distance and maximum surface distance, where 

it significantly outperformed traditional methods. These metrics are critical for 

accurately capturing the liver contour. In addition, the proposed method shows potential 

in terms of ease of use, computational efficiency, and generalization ability. Future 

work will explore further architecture optimisation and training strategies to 

comprehensively improve the performance of the model. 

Figure 5.5 shows the visualisation of liver segmentation using the improved U-Net 

method on a patient's abdominal CT scan. The images are arranged in rows, each row 

corresponds to a different patient, and the columns represent the original scan, the 

predicted result, the true label, and the boundary overlay result. The first column 

presents the original CT scans for three different patients. These scans serve as the 

baseline images against which the segmentation results are compared. The second 

column displays the segmentation predictions generated by proposed modified U-Net 

method. The areas predicted to be liver are highlighted in green. This visualisation 

allows for a direct comparison of the model's output with the ground truth. The third 

column provides ground truth annotations for the livers, marked in red. 

These annotations represent the manually labelled tumour regions by experts, 

serving as a reference standard for evaluating the accuracy of the model's predictions. 

The final column shows an overlay of the original CT scan, the prediction, and the 

ground truth. In this overlay, correctly predicted tumour regions appear as a blend of 

green and red, while discrepancies between the prediction and ground truth are visible 

in their respective colours. This visualisation helps in assessing the degree of overlap 

and identifying areas where the model either succeeded or failed to match the ground 
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truth. 

Since the liver has a relatively regular morphological structure and is highly 

recognizable in CT images, most prediction results can usually accurately approximate 

the true label. This morphological stability and predictability enable the model to 

achieve high accuracy when performing liver segmentation. It is also easy to see from 

the visualisation results given that the prediction results are almost the same as the true 

label. Of course, under-segmentation or over-segmentation may still occur on some 

fuzzy boundaries. 

 

 

Figure 5.5 Visualisation results of liver segmentation from three patients, each row 

corresponding to a different patient, and columns representing different stages of the 

analysis process. 

Although the proposed method performs well in most cases, there are still some 

limitations in some challenging scenarios. As shown in Figure 5.5, the model 

incorrectly classifies the area around the liver as part of the liver due to the similar 

contrast. In addition, anatomical abnormalities, compressed liver morphology, or large 

lesions with unclear boundaries make the segmentation task more complicated. These 
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issues show that the model still has difficulty distinguishing complex boundary regions, 

especially in cases of poor image quality or abnormal anatomical structures. Future 

improvements may include the use of multimodal imaging (such as enhanced CT or 

MRI), combined with anatomical prior knowledge, to alert clinicians to potential 

unreliable predictions. 

 

Figure 5.6 A challenging case where the liver segmentation model produces significant 

errors. (a), (b), (c), and (d) represent the original image, liver prediction result, liver label, 

and overlapped image, respectively. The green contour shows the predicted liver region, 

while the red represents the ground truth.  

5.4 Conclusion 

In this chapter, an MSF U-Net model tailored for automatic liver segmentation 

from CT scans is present. The modifications introduced to the traditional U-Net 

architecture, such as the incorporation of pyramid pooling and dilated convolutions, are 

designed to improve the model's ability to capture contextual information and manage 

complex variations in liver morphology. The enhancements in the model's structure 

allowed for more effective processing of the liver's diverse shapes and proximity to 

other abdominal organs, which often present similar intensity values in CT images. 

The chapter began by revisiting the foundational structure of the classic U-Net, 

followed by a detailed discussion of the new components integrated into the modified 

U-Net. The contribution of the pyramid pooling module and dilated convolutions to the 
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model’s improved performance is explored, focusing on their roles in expanding the 

receptive field and capturing multi-scale features. Additionally, the implementation 

details, including data preprocessing, network training, and the visualization of 

segmentation results are elaborated to provide a comprehensive understanding of the 

proposed approach. 

The experimental results demonstrated that the modified U-Net achieves 

competitive performance across multiple metrics. Through a comparative analysis with 

other state-of-the-art methods, the proposed model illustrated a balanced performance 

with notable strengths in computational efficiency and generalization ability. Despite 

not surpassing all benchmark methods, particularly in terms of Dice coefficient, the 

proposed approach proved to be a robust and efficient solution for liver segmentation 

tasks. 
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Chapter 6. Novel CT liver tumour segmentation 

method based on Attention Module 

6.1 Introduction 

This chapter will focus on the segmentation method of liver tumours. Compared to 

liver CT image segmentation, tumour segmentation is more challenging due to the 

diversity and complexity of tumours in terms of shape, size, borders, density and serious 

class imbalance problem.  

Tumour segmentation from CT images is crucial for early cancer diagnosis, 

treatment planning, efficacy monitoring, and medical research. It not only helps doctors 

detect tiny tumour lesions, but also provides detailed information about tumours such 

as volume, shape, location, and density. This aids in quantitative analysis, surgical 

planning, radiotherapy and chemotherapy planning, and monitoring of treatment effects. 

In addition, tumour segmentation plays a key role in cancer research and clinical trials, 

driving advancements in the medical field. Through accurate tumour segmentation, 

patients' survival rate and quality of life can be better improved. 

In this Chapter, deep learning for liver tumour segmentation from CT data will be 

presented. The work will involve two modified versions of U-Net. The remainder of 

this chapter is organised as follows. Section 6.2 introduces the use of a cascaded U-Net 

with a custom attention mechanism (CAU-Net) to complete tumour segmentation. The 

custom attention module focuses on the approximation of feature regions in the up-

sampling stage, guiding the network to focus on key features in the ROI region. Section 

6.3 describes another cascaded hybrid attention network (CHAU-Net) which can be 

trained end-to-end. The proposed hard attention module allows the network to obtain 

the ROI region during training, and the soft attention mechanism is responsible for 

feature weighting during feature extraction, thereby selecting more critical semantic 

information. In the Section 6.4, the conclusion of this chapter will be summarised. 
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6.2 A novel Cascade U-Net with customised attention mechanism 

(CAU-Net) for liver tumour segmentation  

6.2.1 Overview of the liver tumour segmentation process 

The proposed segmentation workflow is shown in Figure 6.1. The workflow 

consists of three major steps. The first step includes data selection and data 

preprocessing for the network. In the second step, a cascade of a U-Net followed by a 

CAU-Net are used to jointly segment the liver and tumour, where the tumour 

segmentation is based on the segmentation result of the liver. This two-stage design 

reduces false positives by limiting the tumor search space to anatomically plausible 

regions, which is particularly important in abdominal CT where tumours may have low 

contrast and appear similar to surrounding tissues. In the final step, the predicted tumour 

lesions are restored to the original image size according to the boundary of the cropping 

within the network. 

 

Figure 6.1 The flow chart for proposed liver tumour segmentation process. 
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The liver is segmented using the method proposed in Chapter 5 to determine the 

approximate location of the liver and the tumour on the liver. The purpose of 

segmenting the liver is to exclude those tumour predictions out of the liver organ. Based 

on the prediction results of the first liver segmentation network, the input image is 

cropped to obtain a smaller input image to increase the ratio of foreground to 

background, which can improve the class imbalance problem. The centre position (𝑥𝑖, 

𝑦𝑖) of the tumour distribution can be calculated using the four boundary points of the 

tumour, and a 512 × 512 image is then cropped around this centre point. The specific 

cutting position is: 

where 𝑤𝑙  and 𝑤𝑟  represent the starting and ending points of horizontal cutting 

respectively, and ℎ𝑢  and ℎ𝑏  respectively represent the starting and ending points of 

longitudinal cutting. All images in the dataset were individually reviewed and 

automatically cropped to obtain slices containing the liver region. The cropping 

positions were recorded for each case to ensure that the tumor predictions could be 

accurately mapped back to the original image space. However, the image resolution is 

not altered during this process, and no contrast enhancement or other intensity 

adjustments were applied after cropping. A CAU-Net with a custom attention module 

is used to perform high-precision tumour segmentation on the cropped ROI. The 

predicted segmentation result is restored to the size of the original CT scan, and the 

final predicted area of the tumour is restored according to the cropping position. 

6.2.2 Details of proposed Customised Attention U-Net (CAU-Net) 

As illustrated in Figure 6.2, the fine tumour segmentation process comprises a U-Net 

structure. The initial U-net designed 4 or 5 pooling layers for extracting deeper features. 

However, the excessive pooling process will inevitably lead to the loss of information, 

which is not negligible in small target segmentation. The size of earlier liver tumours is 

usually less than 3 cm, and it only accounts for approximately 5%-8% of the entire CT 

𝑤𝑙 = 𝑥𝑖 − 128, 𝑤𝑟 = 𝑥𝑖 + 127 (6.1) 

ℎ𝑢 = 𝑦𝑖 − 128, ℎ𝑏 = 𝑦𝑖 + 127     (6.2) 
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image. After several times of down-sampling, this important tumour information will 

be reduced or even disappear completely. Based on experiments, using three pooling 

layers provides a good balance between feature abstraction and spatial detail 

preservation. Increasing the depth to four pooling layers does not lead to noticeable 

improvements in segmentation performance, while adding additional computational 

complexity. Both three and four pooling layer configurations are tested, with the four-

layer version resulting in only marginal changes in Dice score (<0.3%) while increasing 

model size and training time. Therefore, the three-pooling-layer configuration is 

selected as a more efficient design. 

 

Figure 6.2 The architecture of CAU-Net with attention block. 

A novel attention module is incorporated into the traditional U-Net to selectively 

emphasize specific features. This attention module is applied to the original skip 

connection path. The decoder in U-Net gradually restores the highly abstract semantic 

information to the original spatial dimension of the image through multiple up-

sampling operations. However, this will inevitably lead to information loss, so skip 

connections are used to attach fine details to the up-sampled feature blocks at a deep 

level. The attention block’s function is to attach a strong guidance to the up-sampled 

feature block to reweight the features in the skip connection, so that the network can 
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focus on those regions that are more relevant to the target structure. 

As illustrated in Figure 6.3, 𝑥𝑙 is the feature maps from the encoder, while g is the 

gate signal that carries information from the decoder. The extracted feature 𝑥𝑙 consists 

of the current layer’s feature map, which is concatenated with the upsampled feature 

map from the lower layer. This ensures that 𝑥𝑙 retains both high-level semantic 

information and spatial details. The gate signal is g obtained by up sampling the feature 

maps from the current decoder layer, ensuring that it retains high-level semantic 

information. This gate signal is then used to guide the attention mechanism by selecting 

the most relevant spatial regions in 𝑥𝑙 , allowing the model to focus on meaningful 

features while suppressing irrelevant ones. 

 

Figure 6.3 The structure of Customised Attention Block. 

Then g and 𝑥𝑙are converted to the same number of channels using two different 

1×1 convolutional layers for subsequent operations. The inner product between g and 

𝑥𝑙  is calculated, which can be simply understood as a measure of the similarity of 

vectors. If the directions of g and 𝑥𝑙 are the same (or tend to be similar), the value of 

the dot product will be large, which means that the corresponding 𝑥𝑙 should be assigned 

a higher weight. The ReLU function is followed by adding non-linearity to the attention 

module, which allows the attention mechanism to capture more complex relationships 

between features, not just simple linear mappings. Another 1×1×1 convolution is used 

to reduce the number of channels, which can reduce the number of parameters and 
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calculations of the model. On the other hand, 1×1×1 convolution allows information 

interaction between different channels, which means the multi-channel information is 

compressed into a more compact form to calculate the attention weight. The attention 

weight is normalised by the sigmoid function to have a value between 0 and 1. Then it 

will pass through a resampling module to align them with the dimensions of the input 

features 𝑔 to ensure that the shape of the weights and input data matches so that they 

can be multiplied element by element. Finally, the resulting attention weights  are 

element-wise multiplied with the original decoder feature map 𝑥𝑙  to obtain a new 

feature map �̂�𝑙, thereby adjusting the importance of each location in the feature map. 

In this architecture, the attention gate is applied to the encoder feature map before it is 

fused with the decoder feature. This attention mechanism filters out irrelevant or low-

response regions in the encoder output, allowing only the most informative features to 

be retained. The refined encoder feature map is then concatenated with the up-sampled 

decoder feature map, enabling the network to focus selectively on contextually relevant 

regions. This targeted feature fusion enhances the decoder’s ability to reconstruct fine 

structures and contributes to improved segmentation accuracy. 

As mentioned above, the proposed tumour segmentation method is a two-stage 

segmentation process, which requires first locating and extracting the liver part in the 

CT scan using the method proposed in Chapter 5. In addition, the coordinates of the 

liver extraction need to be recorded to facilitate the subsequent restoration step. In the 

second step, the cropped CT images are processed by the modified U-net to obtain the 

corresponding tumour prediction results, and the predicted images are restored to the 

size of the original image according to the cropping coordinates. 
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6.3 A novel end-to-end Cascade Hybrid Attention U-Net (CHAU-

Net) for liver tumour segmentation 

6.3.1 Overview of proposed end-to-end Cascade Hybrid Attention U-Net 

Another cascaded hybrid attention U-Net with different mechanisms is now 

described. In Section 6.2, the liver organs in the CT scans are classified and segmented 

with an original U-Net, images need further cropping to reduce the image size. The 

system is based on the fact that network can automatically determine the location of the 

liver and reduce the area of interest during training. Therefore, the following cascade 

network structure is designed to achieve end-to-end liver tumour segmentation. A hard 

attention module is designed into the cascade network to reduce the size of the image 

so that the network can pay more attention to liver part feature extraction.  The hard 

attention block significantly reduces the size of the input image by locating the region 

of interest (ROI) and cropping out irrelevant background areas, thereby optimizing the 

model's computational efficiency and feature expression capabilities. In addition, a soft 

attention mechanism is employed in the second tumour segmentation block to enhance 

the detection of small lesions. This mechanism consists of spatial attention and channel 

attention and run through the entire feature extraction process. Channel attention 

emphasizes the modelling ability of global important features by assigning weights to 

feature channels, while spatial attention strengthens the localization ability of key areas 

by weighting spatial positions. Introducing soft attention in the feature selection stage 

effectively improves the network's ability to selectively focus on relevant features, 

thereby optimizing segmentation performance. 

6.3.2 Details of end-to-end cascade attention U-Net 

 As illustrated in Figure 6.4, two basic U-Nets called U-Net1 and U-Net2 are used as 

the basic segmentation tools. A grayscale image with size 256×256×1 is used as the 

input to the whole network, corresponding to liver and tumour label as output. The image 

resolution provided by the public datasets used for research is usually 512×512. Due to 
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the limitation of computing power, all images are reduced to 1/4 of their original size to 

reduce the hardware requirements. Each U-Net has 4 down-sampling blocks, one bottle 

neck block and 4 up-sampling blocks with pre-processed CT scans. In the feature 

extraction path, 64,128,256 and 512 3×3 convolution kernels followed by ReLU 

functions are used, corresponding to 4 down-sampling paths. Then max pooling is used 

to halve the size of feature map and obtain the higher-level sematic features after each 

feature extraction path. In the bottleneck block, two 3×3 convolution layers are used to 

compute the most abstract information. In the up-sampling path, bilinear interpolation is 

used to double the size of features from the previous layer. The subsequent feature 

extraction steps are the same as in down-sampling path, except that the number of 

convolution kernels are 512,256,128 and 64, decreasing from deep layer to shallow layer. 

Short skip-connection connects the features in the corresponding down-sampling and 

up-sampling path, to obtain more contextual information in the process of up-sampling. 

In the last step, one 1×1 convolution kernel and sigmoid function are employed to 

generate the segmentation prediction of liver or tumour. 

Excessive use of pooling inevitably leads to information loss. Moreover, tumour 

segmentation pays more attention to detailed information than liver segmentation due to 

relatively small size. Therefore, in the U-Net2, in the last two steps of the down sampling 

path, a convolution operation with stride 2 is used instead of the pooling operation to 

ensure the integrity of the information as much as possible. 

As seen in Figure 6.4, the two U-Nets are concatenated sequentially with a hard 

attention block. The output of U-Net1 is concatenated with initial input passed through 

the hard attention block, to generate a smaller size CT image based on the liver 

segmentation result, including location and size, which is used as the input of U-Net2. 

Since the input image size of U-Net2 is reduced, the calculation cost of U-Net2 is relative 

lower than U-Net1. The details of hard attention block are described in the following 

part. 
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Figure 6.4 The architecture of proposed modified cascade attention U-Net 
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The main contribution of this chapter is in the use of a hard attention block between 

two U-Nets, to extract the main area of liver through simple mathematical calculations 

without training. A liver prediction mask with values [0,1] is obtained from the last layer 

of U-Net1 using the sigmoid function, enabling direct determination of the liver location. 

The prediction mask passes through a thresholding function, so it contains only 0 or 1. 

Then this mask is multiplied by the initial input as in the following operation. 

Define a row vector 𝐴 ∈ ℝ1×𝑁  with continuous real values ranging from 1 to N, 

where N equals the size of image. Define 𝑀 ∈ ℝ𝑁×𝑁 is the processed prediction mask 

from U-Net1, where 𝑀𝑛 is the nth row of M, 𝑛 ∈ [1, 𝑁]. The matrix O is the element-

wise product of these, where the liver part gets assigned while the rest remains 0. For 

each row in O, the following holds: 

Then the left (𝑤𝑥) and right (𝑤𝑦) boundary of ROI (region of interest) in O can be 

obtained by determining the indexes of columns, where the global minimum and 

maximum values occur in O, respectively. Likewise, the same method is used to 

achieve the value of up and bottom boundary. The difference is to use the transpose 

matrix of A and multiply it with M, to get 𝑂𝑛
′ . The top (𝑡𝑥) and bottom (𝑡𝑦) boundaries 

can be obtained by determining the indexes of row where the global minimum and 

maximum values occur in O, respectively. 

Then the centre point of ROI can be calculated with 

Let the size of the image to be cropped be 𝑎 × 𝑎, four boundary points are 

𝑂𝑛 = A · 𝑀𝑛   (6.3) 

𝑂𝑛
′  = AT · 𝑀𝑛  (6.4) 

𝑐𝑥,𝑦 =
1

2
(𝑤𝑦 − 𝑤𝑥),

1

2
(𝑡𝑦 − 𝑡𝑥) 

 (6.5) 
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To ensure the cutting point does not exceed the boundaries of the image, three points 

are set. First of all, the image size is defined as 𝑛 × 𝑛; 

(1) The horizontal coordinate or vertical coordinate is less than 0.5a.  

(2) The horizontal coordinate or vertical coordinate is between 0.5a and n-0.5a.  

(3) The horizontal coordinate or vertical coordinate is bigger than n-0.5a. 

 

The corresponding boundary points can be calculated as 

In this research, n is set to 256 and a is set to 176, so the cropped image as the input of 

the U-Net2 has size 176×176. According to the observation, the maximum size of the 

liver in the abdominal CT cross-section does not exceed 2/3 of the entire image, which 

𝑤𝑜𝑓𝑓 = 𝑐𝑥 −
1

2
𝑎,𝑤𝑒𝑛𝑑 = 𝑐𝑥 +

1

2
𝑎 

  (6.6) 

ℎ𝑜𝑓𝑓 = 𝑐𝑦 −
1

2
𝑎, ℎ𝑒𝑛𝑑 = 𝑐𝑦 +

1

2
𝑎 

  (6.7) 

𝑤𝑜𝑓𝑓
′ =

{
 
 

 
 10, 𝑖𝑓 𝑐𝑥 <

1

2
𝑎 

𝑐𝑥 −
1

2
𝑎 

𝑛 − 𝑎, 𝑖𝑓 𝑐𝑥 > 𝑛 −
1

2
𝑎

 

   (6.8) 

ℎ𝑜𝑓𝑓
′ =

{
 
 

 
 10, 𝑖𝑓  𝑐𝑦 <

1

2
𝑎

𝑐𝑦 −
1

2
𝑎 

𝑛 − 𝑎, 𝑖𝑓 𝑐𝑦 > 𝑛 −
1

2
𝑎 

  

    (6.9) 

𝑤𝑒𝑛𝑑
′ = 𝑤𝑜𝑓𝑓

′ + 𝑎   (6.10) 

ℎ𝑒𝑛𝑑
′ = ℎ𝑜𝑓𝑓

′ + 𝑎   (6.11) 
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is why the size of the boundary box is set to 176×176. As the input size is reduced by 

2/3, the computation cost of U-Net2 is also reduced accordingly. However, the label of 

tumour still has size 256×256.  As indicated on Fig 6.4(a), restore operation is needed 

after the last sigmoid layer. According to the boundary conditions of the cropping, 

padding the corresponding number of 0 around it can restore the prediction map to the 

initial input size. In this work, 𝑤𝑜𝑓𝑓 zeros are padded to the left, 80 − 𝑤𝑜𝑓𝑓 zeros to the 

right, ℎ𝑜𝑓𝑓 zeros to the top and 80 − ℎ𝑜𝑓𝑓 zeros to the bottom. 

 

 

Figure 6.5 The structure of channel attention module and spatial attention module 

respectively. 

In addition, a soft attention mechanism is added to enhance the ability to detect small 

tumours. A combination of spatial and channel attention is applied to each feature block 

[207]. As shown in Figure 6.5(a), the input feature map F is processed through global 

max pooling (GMP) and global average pooling (GAP) along the spatial dimensions, 

generating two one-dimensional vectors with the same number of channels  as the input 

features. These two vectors are then passed through a shared multi-layer perceptron 

(MLP), which consists of a dimension reduction layer, a ReLU activation function, and 

a dimension expansion layer. The outputs of the MLP are then combined using an 
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element-wise summation, followed by a sigmoid activation function to produce the final 

channel attention map. The channel attention mechanism assigns different importance 

weights to each channel, highlighting those that contain more meaningful features. The 

computed channel attention map is broadcasted along the spatial dimensions to match 

the shape of the input feature map and then multiplied element-wise with the input 

feature map, generating an enhanced feature representation, which serves as the input 

for the subsequent spatial attention module.  

The spatial attention mechanism ensures that the network focuses on the most 

important regions of the image. As shown in Figure 6.5(b), the feature map 𝐹′ after 

channel attention block is processed through the global max pooling and global average 

pooling along the channel axis to generate two weight maps with size width×height×1. 

These two maps are concatenated along the channel dimension and passed through a 

7×7 convolution, which helps capture a broader spatial context. Finally, a sigmoid 

activation function is applied to produce the spatial attention map. The computed spatial 

attention map is then broadcasted along the channel dimensions and element-wise 

multiplied with the input feature map to enhance relevant spatial locations. 

The spatial attention features are multiplied by the spatial attention block’s input to 

access the final features. The combined spatial and channel attention block is applied 

only on each feature extraction path in U-Net2. It is a compromise between increasing 

accuracy and control the parameters of the network because a very precise liver 

segmentation result is not necessary. In the current tumor segmentation task, there is no 

need to achieve high-precision liver boundary segmentation, only liver localization is 

needed to provide spatial constraints for tumor detection. Liver segmentation is only 

used as a means to limit the image size rather than the main goal. 
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6.4 Visualisation and Statistical analysis of tumour segmentation 

results 

6.4.1 CAU-Net and CHAU-Net Implementation for tumour segmentation 

The data set used for training and testing is still the Liver Tumour Segmentation 

Challenge (LiTS), which comes from clinical sites around the world [208]. The data set 

contains CT scans of 130 patients. All scans have been provided in nii format with an 

axial size of 512*512.  

Unlike liver segmentation, where the target organ typically exhibits a well-defined 

anatomical structure across patients, liver tumours show substantial variability in 

location, size, morphology, and intensity. Furthermore, tumour voxels usually constitute 

only a small portion of a CT slice relative to the surrounding healthy liver tissue, leading 

to a severe class imbalance problem. In the absence of a public LiTS test set for tumour 

segmentation, the allocation scheme of public datasets needs to be carefully designed. 

Without such planning, arbitrary split could lead to unbalanced or unrepresentative test 

sets, thus compromising the fairness and reliability of the evaluation. 

A total of 7,184 CT slices from 118 patients were used for training and testing. While 

the official LiTS dataset labels all 118 patients as having liver tumours, further 

inspection revealed that only 73 of them had tumours appearing in more than 15 axial 

slices. Given that each patient typically has around 150 liver slices, these 73 cases 

represent tumours with sufficient spatial extent for reliable segmentation. To ensure fair 

and meaningful evaluation, especially for metrics like global Dice score and Dice per 

case, the 45 patients with limited tumour presence were allocated exclusively to the 

training set. Including them in the test set would introduce a bias, potentially inflating 

global Dice while lowering Dice per case due to the sparse tumour distribution. 

Additionally, to enhance generalization and robustness, the test set is constructed to 

include a 1:1:1 ratio of large tumour, medium tumour and small tumour cases. This 
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ensured that the model could be evaluated across diverse tumour types. As a result, the 

final dataset is split into 88 patients for training and 30 patients for testing. 

The cascaded CAU-Net proposed in Section 6.2 is a two-stage segmentation process, 

which requires first locating and extracting the liver part in the CT scan. Therefore, the 

liver segmentation results from Chapter 5 are used as the baseline to extract the area 

containing the liver as the training set of the neural network. This step is performed 

simultaneously on the label. In addition, the coordinates of the liver extraction need to 

be recorded to facilitate the subsequent restoration step. In the second step, the cropped 

CT images are processed by the CAU-net to obtain the corresponding tumour prediction 

results, and the predicted images are restored to the size of the original image according 

to the cropping coordinates. 

For the method CHAU-Net described in Section 6.3, since this is an end-to-end 

network, only one network needs to be trained, eliminating the need for additional data 

preprocessing as required by the before mentioned methods. However, considering the 

network's capacity and GPU memory limitations, all data are downscaled by half to 

256×256 to satisfy the computational requirements. 

The training protocol for this model follows that of the modified U-Net described in 

Chapter 5, including the same experimental environment. However, the hardware 

configuration is upgraded to include two RTX 2080 GPUs, providing a total of 16 GB 

of video memory. In addition, the number of training epochs is increased to 150 to 

support more extensive learning. All other hyperparameter settings (including learning 

rate strategy and batch size) remain unchanged. 

6.4.2 Discussion with segmentation results 

In order to evaluate the effectiveness of the proposed methods, the experimental 

results are compared with several mainstream tumour segmentation methods, the 

specific comparison is shown in Table 6.1. It is obvious that the accuracy of tumour 

segmentation is far inferior to that of liver segmentation due to the variability of number 
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and shape. Nevertheless, the performance of the proposed two different attention-based 

models on this complex task still reaches a satisfactory level. 

The Table 6.1 presents a comparative analysis of various models based on their 

performance in tumour segmentation tasks, as measured by several key metrics: Global 

Dice, Dice per Case, Volume Overlap Error (VOE), Relative Volume Difference (RVD), 

Average Symmetric Surface Distance (ASSD), and Maximum Surface Distance (MSD).   

Global Dice and Dice per Case evaluate the overall segmentation accuracy of the 

models. The H-Dense U-Net [164] achieves the highest Global Dice score of 0.824 and 

a strong Dice per Case score of 0.722, indicating its superior ability to accurately 

segment tumours compared to other models. However, the Hybrid Attention model also 

performs very well, with a Global Dice of 0.798 and the highest Dice per Case of 0.762, 

suggesting that incorporating attention mechanisms can significantly enhance 

segmentation accuracy. 

Table 6.1 Comparison of proposed model with other seven tumour segmentation 

methods based on six measured metrics. The symbol “N/A” represents unreported 

result. Bold font represents the highest score on each measurement. 

VOE measures the volumetric overlap error, where a lower value indicates better 

performance. The MCG-FRN [166] model performs best in this regard, with a VOE of 

0.324%, closely followed by the Hybrid Attention model at 0.395%. These models also 

Model Tumour 

Global 

dice 

Dice per 

case 

VOE (%) RVD (%) ASSD   

(mm) 

MSD 

(mm) 

Shape-parameter[209] N/A 0.754 0.709 0.124 1.6 N/A  

U-Net+Level set[202] 0.700 N/A  N/A  N/A  N/A  N/A  

AHCnet[175] 0.591 0.574 1.507 0.329 1.462 7.538 

2D-dense[210] N/A  0.725 0.589 N/A  N/A  N/A  

H-dense U-net[183] 0.824 0.722 N/A  N/A  N/A  N/A  

CU-Net[211] N/A  0.595 0.460 N/A  N/A  N/A  

MCG-FRN[185] 0.764 0.674 0.324 0.194 4.408 7.113 

CAU-Net 0.782 0.736 0.422 0.272 0.898 9.075 

CHAU-Net 0.798 0.762 0.395 0.327 0.912 7.302 
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show competitive performance in RVD, with MCG-FRN achieving 0.194% and the 

Hybrid Attention model achieving 0.327%, indicating their effectiveness in minimising 

volume discrepancies between predicted and true segmentations. 

ASSD and MSD evaluate the boundary accuracy of the segmentation. Lower 

values indicate better boundary delineation. The customised attention model achieves 

the best ASSD of 0.998 mm, suggesting it is particularly effective in capturing detailed 

boundary information. However, the Hybrid Attention model shows a balance between 

both ASSD (0.912 mm) and MSD (7.302 mm), indicating a well-rounded performance 

in both overall accuracy and boundary precision. 

Overall, the H-Dense U-Net demonstrates the highest overall segmentation 

accuracy, while the Hybrid Attention model shows strong, balanced performance across 

multiple metrics, highlighting the importance of attention mechanisms in enhancing 

segmentation results. 

 Compared with the Shape-parameter method, although this method performs better 

in terms of Dice per case coefficient, reaching 0.754, it is not effective in dealing with 

tumour boundaries, resulting in a higher VOE value. This shows that this method has 

certain limitations when dealing with tumours with complex shapes. Compared with the 

basic U-Net, although the method combining U-Net and Level Set can effectively handle 

some simple tumour segmentation tasks, it performs poorly when dealing with complex 

tumours (such as small tumours or tumours with blurred boundaries). This is mainly 

limited by the insensitivity of U-Net itself to tiny tumours. Although the use of Level 

Set can further segment the detected tumours, using only U-Net will still miss a large 

number of small tumour targets. 

 The H-Dense U-Net achieved state-of-the-art results in the LiTS Challenge, ranking 

first in lesion segmentation and delivering highly competitive performance in liver 

segmentation. This is due to its ability to effectively combine 2D and 3D convolutional 

neural networks to capture both intra-slice (2D) and inter-slice (3D) features. This hybrid 

approach takes full advantage of the strengths of both 2D and 3D convolutions, enabling 
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the network to efficiently extract detailed spatial features. However, the introduction of 

3D convolution significantly increases the parameter amount and computational 

complexity of the network, and also requires more stringent hardware resources, which 

limits the training speed of the network to a certain extent. In contrast, the proposed 

hybrid attention method just requires an additional 10496 non-trainable parameters to 

build hard-attention block which result more focus area of interest without manually 

cropping operation.  

Most of the alternative mentioned networks discussed focus on the exchange of 

information and feature integration between layers within the network. In contrast, the 

proposed approach emphasizes feature selection. To enable the deep neural network to 

prioritize and identify key regions of the image before performing detailed segmentation, 

the attention mechanism is incorporated into the proposed model.  

 In the experiment, an in-depth comparative analysis was conducted between the 

proposed customised attention cascade U-Net and hybrid attention U-Net. Both have 

excellent overall performance, but they differ in specific scenarios: The cascade CAU-

Net effectively locates the liver area through prior information and reduces unnecessary 

background areas by cropping CT images. This method is particularly suitable for 

processing large tumours because its segmented area is more concentrated and accurate. 

However, since the cropping operation depends on prior information, when the tumour 

location is complex or close to or even away from the liver boundary, part of the tumour 

area may be cropped, thus affecting the integrity of the segmentation. In addition, the 

CAU-Net has a high dependence on the quality of the input features, especially when 

extracting small tumour features, which may lead to incomplete input features due to 

information loss, thus limiting the module performance and even causing segmentation 

failure. The last disadvantage is that this is not an end-to-end network. From coarse 

segmentation to fine segmentation, manual intervention is required to achieve the goal 

of accurate tumour segmentation. 
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 To overcome these limitations, a second CHAU-Net architecture is introduced, 

effectively combining hard attention and soft attention mechanisms to enhance 

performance on small and complex-shaped tumours. The soft attention module can 

dynamically adjust the model's attention focus, making the model more sensitive in 

capturing details and complex boundaries, thereby improving the detection rate and 

accuracy of small tumours. However, compared with the CAU-Net, the CHAU-Net has 

higher computational complexity and longer training time. In addition, when dealing 

with some simpler tumour segmentation tasks, the performance improvement is not 

significant, which may cause unnecessary waste of computing resources. 

The following Figure 6.5 to Figure 6.8 show qualitative visualisation results of 

tumour segmentation from four patients with two proposed methods separately. Each 

figure displays the original CT slice, ground truth segmentation, model prediction, and 

the overlay of prediction and ground truth. The predicted tumor regions are shown in 

blue or green depending on the different algorithms, while the ground truth is 

consistently highlighted in red. Patients 1 and 2 both present cases with a single liver 

tumour. As shown in Figures 6.5 and 6.7, the model predictions of both methods closely 

match the annotated ground truth, with minor differences primarily along the tumor 

boundaries. These results demonstrate that the model performs robustly on solitary 

tumours with well-defined edges, achieving nearly perfect overlap in most slices. 

Patients 3 and 4 both present with multiple liver tumours of varying sizes and shapes, 

offering a more complex segmentation challenge. The visualisations in Figures 6.6 and 

6.8 demonstrate that both models are capable of accurately segmenting most lesions, 

including small nodules and larger masses. Despite minor mismatches at the boundaries 

of some smaller lesions, the overall agreement between prediction and ground truth 

remains high. The overlay images confirm the models' effectiveness in managing tumor 

distributions, suggesting strong generalization to multi-lesion cases with diverse 

morphological characteristics. 
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Figure 6.6 Visualization of tumour segmentation results using the proposed CAU-Net 

method across patients with small and medium tumours. The first row shows the original 

CT slices, followed by the ground truth annotations (in red), model predictions (in green), 

and the overlay of prediction and ground truth. 
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Figure 6.7 Visualization of tumour segmentation results using the proposed CAU-Net method 

across patients with multiple medium tumours and large tumours. Overlay images confirm high 

spatial correspondence, with minor discrepancies on smaller lesions. 
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Figure 6.8 Visualization of tumour segmentation results using the proposed CHAU-Net 

method across patients with small and medium tumours. The first row shows the original 

CT slices, followed by the ground truth annotations (in red), model predictions (in blue), 

and the overlay of prediction and ground truth. 
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Figure 6.9 Visualisation of tumour segmentation results using the proposed CAU-Net method 

across patients with multiple medium tumours and large tumours. Overlay visualizations show 

good alignment for multiple and medium-sized tumours, with slight bound. 
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Figure 6.10 Visualisation results after hard attention stage. The second column is the 

cropped liver label, and the third column is the corresponding cropped input image. 

Figure 6.9 shows some visualisation results after cropping box block. It can be clearly 

seen that the embedded hard attention module can successfully extract the liver region 

and cut the corresponding region on the original input image as the input of the tumour 

segmentation network. Moreover, the tumour segmentation made on the cropped image 

can be correctly mapped to the original image without position shift. 

6.5 Conclusion 

This chapter explores advanced methods for liver tumour segmentation from CT 

images using modified U-Net architectures incorporating attention mechanisms. 

Tumour segmentation presents unique challenges due to the diversity in tumour shapes, 

sizes, and boundaries, as well as the inherent class imbalance in the dataset. The two 

approaches called customised attention cascade U-Net and hybrid attention U-Net are 

developed to address these challenges effectively. 

The customised attention cascade U-Net leverages a two-stage segmentation 

process, where the liver is first segmented to narrow down the region of interest, 

followed by detailed tumour segmentation. This method excels in segmenting large 
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tumours by concentrating on relevant areas and reducing background noise through 

image cropping. However, its reliance on prior information for cropping can lead to 

incomplete segmentation in cases where the tumour is located near or outside the liver 

boundary. 

To overcome the limitations of the cascade approach, the hybrid attention U-Net is 

designed, which combines hard and soft attention mechanisms. This model dynamically 

adjusts its focus, improving segmentation accuracy for small and complex-shaped 

tumours. While the hybrid attention U-Net demonstrates superior performance in 

handling small tumours, it also introduces higher computational complexity and longer 

training times. 

Comparative analysis with other state-of-the-art methods revealed that both  

proposed models achieve competitive results, with the hybrid attention U-Net offering 

a balanced performance across multiple metrics, particularly excelling in boundary 

delineation. Visualisation of the segmentation results confirmed the models' ability to 

accurately segment tumours of various sizes, with good agreement between predictions 

and ground truth. 

Although the proposed tumor segmentation method performs well in terms of 

accuracy, its results are not directly used for final clinical decision-making. After the 

automatic segmentation is completed, the radiologist still needs to review and optimize 

the tumor boundaries, if necessary, especially in complex cases where the lesions are 

small, low in contrast, or located near ambiguous areas of anatomical structures. This 

interactive process involving doctors not only improves the reliability of diagnosis, but 

also generates high-quality correction annotations for subsequent model fine-tuning or 

retraining, thus forming an effective user feedback mechanism. This closed-loop 

approach of human-computer collaboration helps to improve the efficiency of clinical 

workflows while enhancing the generalization and robustness of the model under 

different anatomical structures and imaging conditions. 
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Chapter 7.  A Boundary Optimisation Scheme for 

Liver Tumours from CT Images 

7.1 Introduction 

In Chapter 6, two tumour segmentation networks were introduced based on 

different attention mechanisms and can achieve acceptable results. To further improve 

the segmentation performance, this chapter introduces an optimised tumour 

segmentation workflow that improves the accuracy and reliability of segmentation 

results. 

In Section 7.2, a segmentation optimisation algorithm based on tumour boundaries 

is proposed and discussed. After the initial segmentation, the workflow advances by 

extracting image and mask patches based on the rough results. These patches are 

specifically targeted at the tumour boundaries due to the irregular shape of the tumour 

and the complex anatomical structures. Next, an optimisation network dedicated to 

refining the segmentation of these boundary patches is introduced. The network adopts 

a multi-level information fusion strategy to enhance the details and accuracy of the 

segmentation. By integrating features at different scales with residual structure and 

multi-resolution feature fusion, the network is designed to produce highly refined 

segmentation results for tumour boundaries. Finally, the optimised boundaries are 

mapped back to the original image, ensuring that the enhanced segmentation results are 

accurately aligned with the actual tumour location, which is critical to maintain the 

integrity of the spatial information. 

In Section 7.3, the statistical analysis and visualisation of segmentation 

performance is discussed to demonstrate the effectiveness of the proposed optimisation 

methodology. A brief summary is given in Section 7.4, illustrating the benefits provided 

by the adopted optimisation approach in the context of liver tumour segmentation. 

Through this optimised workflow, the goal is to achieve a level of segmentation 

accuracy that supports clinical decision making and ultimately improves patient 
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outcomes in oncology treatment. 

7.2 Boundary Optimisation Process for liver tumour scans 

7.2.1 Overview of Proposed Optimisation Workflow 

The proposed segmentation optimisation workflow shown in Figure 7.1 consists of 

four major steps. The first step is to obtain all coarse segmentation results for all images 

in the training set. While the coarse segmentation provides a general location of the 

regions of interest, it may lack precision, especially at the boundaries of the segmented 

areas. This coarse result is crucial as it guides the subsequent refinement process. The 

second step is to extract all image patches and mask patches according to the coarse 

prediction result. The extraction of these focused patches allows the network to 

concentrate computational resources on refining the segmentation specifically where it 

is needed the most, improving the accuracy of the boundary delineation. The third step 

is an optimised refined segmentation network for boundary patch segmentation. By 

focusing on smaller and detailed patches of the image, the network can learn to correct 

the inaccuracies in the coarse segmentation, particularly around the edges of the 

segmented regions. The final step is to restore optimised boundaries to the 

corresponding position of the image. After the refined network has processed all the 

patches, the optimised boundary segments are stitched back together, aligning them 

with their original positions in the full-sized image. This reassembly step produces a 

final segmentation output that retains the benefits of both the coarse segmentation's 

global context and the refined segmentation's local accuracy. 

 



140 

 

  

Figure 7.1 Proposed optimisation workflow, (a) liver CT image and corresponding ground 

truth, (b) extracted coarse segmentation (c) image and (d) mask boundary patches from 

the coarse segmentation (e) mask boundary patches from the ground truth (f) all patches 

pass the boundary refinement network (g) final refined segmentation result. 

7.2.2 Boundary Patch Extraction 

Expert radiologists’ complete segmentation tasks, by first finding the target area 

and then carefully depicting the boundary. Segmentation results provide location 

information to determine the distribution of target regions. Boundary patches are then 

obtained on these target areas for subsequent optimisation. Initially, the original training 
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datasets consist of pairs of medical images and their corresponding ground truths. All 

images are used in the training data set through a deep segmentation network such as 

cascaded U-Net to obtain a coarse segmentation result. The coarse segmentation step 

generates a preliminary mask of the tumour regions. This step is crucial as it offers a 

baseline segmentation that captures the approximate location and shape of the tumour, 

which also simulates the coarse segmentation results in actual applications. 

The Dice coefficient at the coarse segmentation stage is critical to supporting the 

effectiveness of subsequent fine segmentation. A sufficiently high Dice score ensures 

that most tumor regions are correctly located, providing a reliable basis for extracting 

boundary blocks and performing targeted refinement. If the coarse segmentation result 

deviates significantly from the true value (mis-segmentation or severe under-

segmentation), the selected optimized region may not contain the true tumor region. In 

this case, even applying complex refinement strategies to non-tumor regions is unlikely 

to produce meaningful improvements. To reduce this risk, the improved U-Net 

architecture proposed in Chapter 6 is used, which combines an attention mechanism 

and a context enhancement module to improve the reliability of the initial coarse 

segmentation. However, given the limitations in detecting small tumours, especially 

those with sizes below 3cm in the early cancer stage, manual intervention is required. 

For these undetected regions, a small 5×5 pixel block is manually marked in the image 

to assume that the tumour is present there, which is crucial to ensure the richness of the 

training set. Consequently, the dataset has been expanded from a pair of image and 

ground truth set, to an image set, a ground truth set, and a coarse segmentation set as in 

Figure 7.1(a) and (b).  

Following the coarse segmentation, the predicted masks are processed as binary 

images, where tumour boundaries are explicitly defined. Boundary patches, as shown 

in Figure 7.1(d), are then extracted by sliding a window along the tumour's perimeter. 

The centre of each patch is positioned on a pixel belonging to the tumour boundary. 

This extraction is performed not only on the coarse segmentation output but also on the 
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original image and the corresponding ground truth (Figure 7.1 c and e), thereby creating 

a rich dataset focused on boundary information. The size of each boundary patch is set 

to 1/8 of the original image size to balance detail capture and computational efficiency. 

However, this patch size can introduce significant redundancy, which would increase 

the computational load without providing additional useful information. To mitigate 

this, the patches are extracted using a sliding stride of 2/3 the patch length. This 

approach reduces overlaps between adjacent patches, thereby minimising redundancy 

and computational cost. 

7.2.3   Boundary Refinement Network (BRN) 

For achieving precise segmentation, a multi-level information fusion boundary 

refinement network (BRN) is implemented, as visually detailed in Figure 7.2. This 

network is designed as a two-input, single-output architecture where the original image 

and the coarse segmentation map are concatenated and fed into the network. The 

purpose behind this concatenation is to impose a robust constraint on the input image, 

thereby directing the network's focus towards the boundary regions. By emphasizing 

these boundary areas, the network is able to accelerate the convergence process, 

ensuring it converges more rapidly and accurately towards the right direction. 

 

 

Figure 7.2 The architecture of proposed boundary refinement segmentation network. 
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The BRN shown in Figure 7.1(f) and in more detail in Figure 7.2 comprises a feature 

extraction module, several down-sampling, up-sampling, and concatenation. As shown 

in the red dotted box in Figure 7.2, the basic feature extraction is processed with four 

3×3 convolutions with batch normalization and ReLU activation function. The size of 

convolution kernels increases from 64 to 512 in a double increment with the number of 

down-sampling.  This approach allows the network to capture increasingly abstract and 

complex features as the spatial dimensions of the input decrease. As the size of input 

images has significantly decreased compared to the original images, a convolution 

operation with a stride of 2 is used to accomplish the down-sampling rather than pooling. 

Although it will inevitably increase some computational costs, more information can 

be retained in the case of less input information, which is crucial given the reduced size 

of the input images compared to the original images. 

Each feature extraction block is passed with residual structure to avoid gradient 

vanishing caused by the increase of network depth. We set 7,5,3,1 feature extraction 

block in four different resolutions respectively. As the number of down sampling 

increases, more abstract features and information are extracted with a smaller feature 

size as shown in Figure 7.2. Fully fusing information in different layers enables the 

model to learn more complex patterns and better capture the correlation of data. When 

the features received by each basic feature extractor come from different dimensions, 

the information is fused together through a cascade operation as shown in the purple 

bar in Figure 7.2 to extract new features. The previous feature map is adjusted to an 

appropriate size using a 1×1 convolution, down sampling (convolution with a stride 

size of 2) or up sampling (bilinear interpolation) to satisfy the concatenation 

requirements.  

More fine-grained information is obtained in the low resolution by using multiple 

feature extractors which are used in multi-level information fusion. The fine-grained 

information in the shallow layer reduces the resolution by down sampling, while 

abstracted information in deep layer expands the feature size by interpolation. Features 
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in different dimensions are fused together by concatenation for information interaction 

to obtain richer semantic information and precise location information. 

7.2.4 Reassembling Process 

In the initial data preparing phase, boundary patches are extracted along the 

contours of the coarse segmentation results, and their spatial coordinates are recorded, 

as illustrated in Figure 7.3, which shows 8 overlapping patches. These patches, along 

with corresponding coarse segmentation patches, are fed into the trained refined 

segmentation network to produce accurate local predictions. After refinement, each 

patch is mapped back to its original location according to its recorded boundary 

coordinates, reconstructing the entire prediction map. 

Due to the boundary patch extraction strategy, there is inevitably partial overlap 

between adjacent image patches. In the overlapping area, a majority voting scheme is 

used to determine the final label of each pixel. Specifically, for each overlapping pixel, 

the number of times it is classified as a tumor across all contributing patches is counted. 

If the majority of the predictions label the pixel as a tumor, it is classified as a tumor in 

the final segmentation map; otherwise, it is marked as background. This approach 

ensures consistency and robustness in handling overlapping predictions, especially in 

boundary areas. 

 

 

Figure 7.3 Patches are captured with a step size of 40 on the tumour boundaries. 
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7.3 Visualisation and Statistical analysis of segmentation results 

As described in Section 7.2.2, the boundary optimisation scheme requires the 

reconstruction of the training set and test set based on the existing coarse segmentation 

results. Each dataset should contain the initial image patch, the coarse segmentation 

patch, and its corresponding true label patch. Therefore, the liver segmentation results 

in Chapter 5 are used and the tumour segmentation results in Chapter 6 as coarse 

segmentation predictions to generate a new dataset containing hundreds of thousands 

of patches, where the patch size is 6464. Considering the high similarity between 

adjacent CT images in the liver dataset, the data were screened to reduce redundancy 

and improve computational efficiency. For large liver areas that appear continuously, 

the strategy of selecting every other image is adopted. This method significantly 

reduces the data size while retaining key information. And the tumour dataset maintains 

the same number as Chapter 6, containing 7184 images. The training set consists of 

90,064 liver patches and 30,183 tumour patches, which are used to train the refinement 

segmentation network. 

The Boundary Refinement Net is implemented in Anaconda with Python, running 

on PC with 32G RAM, 3.8GHz AMD Ryzen7 3800X 8-core CPU, and NVIDIA 

RTX3090Ti GPU with total 24GB memory. The proposed Boundary Refinement Net is 

trained for 100 epochs using the Adam optimiser, and the learning rate is gradually 

reduced from 1e-4 to 1e-5 when the accuracy did not change within 5 epochs. The batch 

size is set to 16 based on the increase in available video memory and smaller image size 

to fully utilise hardware resources and improve training efficiency. 

Table 7.1 shows the key metrics of ten models in tumour segmentation tasks on 

LiTS datasets. From the perspective of the global Dice coefficient, X-Net performed 

the best, reaching 0.843, which shows that its overall performance in the tumour 

segmentation task is excellent. The 2.5DnnU-Net also achieved a high score of 0.814, 

performing well in balancing computational efficiency and accuracy. The proposed 

optimisation algorithm also achieved an excellent score of 0.805. In terms of the three 
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indicators of VOE, RVD, and ASSD, our algorithm achieved the best results because 

the boundary of the predicted image is closer to the true value by growing or shrinking. 

While X-Net also performed well in these indicators. 

Table 7.1 Comparison of proposed model with other seven tumour segmentation 

methods based on six measured metrics. The symbol “N/A” represents unreported 

result. Bold font represents the highest score on each measurement. 

The tumour segmentation algorithm based on Mask-RCNN [212] first uses the 

Mask R-CNN model to segment the liver part in the CT image. The secondary 

processing of the obtained liver image includes using power law transformation to 

enhance pixel differences and median filtering to remove noise. Then the MSER 

method is used to detect the tumour part from the processed liver image. MSER is a 

region detection algorithm based on image brightness changes, which can extract stable 

regions from CT images. Compared with deep neural networks, it can only detect areas 

with stable brightness and cannot capture complex high-level features such as edges, 

textures, contextual information. The morphological and texture characteristics of 

tumours are complex and diverse, and there may be brightness differences in CT images 

of different patients, while MSER is less sensitive to these details. 

T3scGAN proposed by Liu et al. [190] is a 3D liver and tumour segmentation 

model built based on conditional generative adversarial network (cGAN). This method 

Model Tumour 

Global dice Dice per 

case 

VOE (%) RVD (%) ASSD 

(mm) 

MSD 

(mm) 

Mask-RCNN[212] 0.71 N/A 0.476 0.43 4.1 N/A 

X-Net[184] 0.843 0.764 0.357 0.369 0.969 5.407 

T3scGAN[190] 0.796 N/A N/A N/A N/A N/A 

2.5DnnU-Net[213] 0.814 N/A N/A N/A N/A N/A 

H-dense U-net[183] 0.824 0.722 \N/A N/A N/A N/A 

FCN+PP[214] 0.796 0.676 N/A N/A N/A N/A 

2.5D P-U-Net[215] 0.735 N/A N/A N/A N/A N/A 

Customised attention 0.782 0.736 0.422 0.272 0.898 9.075 

Hybrid attention 0.798 0.762 0.395 0.327 0.912 7.302 

Refinement result 0.805 N/A 0.325 0.191 0.841 7.359 
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adopts a coarse-to-fine 3D automatic segmentation framework, from liver to tumour. 

The Dice coefficient of tumour segmentation of T3scGAN on the LiTS dataset was 

0.796. The innovation of this method lies in the loss function mechanism of cGAN, 

which allows the network to perform adversarial training between the generator and the 

discriminator to optimise the segmentation accuracy. 

The innovation of 2.5D nnU-Net [213] is that it uses a 2.5D convolutional network, 

which can capture 3D information at the same time by utilising the efficiency of 2D 

convolution, thereby improving the segmentation effect. In addition, it combines the 

Dense-Sparse sampling strategy and the depth-separable convolution to maintain high-

precision tumour segmentation while reducing the number of model parameters. A Dice 

coefficient of 81.5% was achieved for tumour segmentation based on the LiTS dataset. 

A similar 2.5D Perpendicular U-Net [215] fuses three 2.5D Res-UNets in the coronal, 

sagittal, and axial planes, and then fuses their segmentation results. This multi-view 

combination can effectively improve the receptive field of the model, thereby 

enhancing the segmentation performance of the model. A Dice coefficient of 0.735 was 

achieved for tumour segmentation based on the LiTS dataset. Compared with the 3D 

model, the 2.5D P-U-Net has smaller parameters and memory usage, and is more 

efficient in training and inference, making it suitable for clinical application scenarios 

with limited hardware resources. 

The fully convolutional network proposed by Grzegorz et al. [214] combined with 

an object-level post-processing strategy achieved a dice score of 0.796. Segmentation 

results generated solely by a fully convolutional network (FCN) may produce more 

false positives, so a post-processing step is introduced to further screen and classify 

these segmented tumour objects. Tumour objects are determined based on the 3D 

connected components output by the FCN and then classified as true positive or false 

positive using a random forest classifier containing 36 manually designed features, 

which cover information such as the shape, location, and distance from the liver 

boundary of the tumour. In contrast, the proposed boundary optimisation network 
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focuses on the precise correction of tumour boundaries through a multi-level 

information fusion network. The optimisation processing object in FCN is the 

classification of tumour candidate regions, while the boundary optimisation method 

deals with the refinement of tumour boundaries, which makes the final segmentation 

result closer to the real boundary. 

Compared with the tumour segmentation algorithm proposed in Chapter 6, the 

proposed method shows significant improvement in multiple indicators, especially in 

the three evaluation indicators of VOE, RVD and ASSD. This shows that our proposed 

optimisation scheme is significantly effective in improving segmentation accuracy and 

boundary processing capabilities. 

 

Figure 7.4 Visualisation results of four different patients. Red line presents the ground 

truth of tumour boundary, yellow line present segmentation results need to be refined, 

green line presents refined segmentation boundary. 



149 

 

 

Figure 7.5 Comparison of boundary optimisation segmentation network with and without 

mask patch. Red: Ground Truth; Yellow: Coarse Segmentation; Green: Refined 

Segmentation. Yellow boxes show the Dice score between the coarse result and ground 

truth, while green boxes show the Dice score between the refined result and ground truth. 

 shows some visualisations of tumour segmentation for four patients. The green 

line represents the optimised tumour boundary, the yellow line represents the coarsely 

segmented tumour boundary, and the red line represents the ground truth boundary. It 

can be seen that the proposed optimisation algorithm has a significant improvement in 

the segmentation results of small tumours. The optimisation algorithm can effectively 

shrink or expand the rough segmentation results to approach the real results. Figure 7.5 

shows the effect of the mask patch on the optimisation algorithm. Column (a) displays 

the original CT images, column (b) shows segmentation results without using the mask 
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patch, and column (c) shows results with the mask patch. Red, yellow, and green 

contours represent the ground truth, coarse segmentation, and refined segmentation 

boundaries, respectively. The yellow boxes indicate Dice scores between the coarse 

segmentation and ground truth, while the green boxes represent Dice scores between 

the refined segmentation and ground truth. 

When the model remains unchanged, the prediction results without the 

participation of the mask patch become very unreliable. For some small tumours, the 

model cannot obtain accurate prediction results or even completely wrong predictions, 

which are not as good as the results before optimisation. The use of the mask patch 

allows the network to focus more on the pixels near the area to be optimised, so that the 

optimisation result is closer to the real value. This improvement is clearly reflected in 

both the visual segmentation boundaries and the quantitative Dice Score gains shown 

in Figure 7.5. 

7.4 Conclusion 

This chapter presents a new fully automatic method to optimise liver tumours 

segmentation results from CT scans, which can achieve end-to-end refinement for liver 

tumour segmentation. By leveraging image patches and mask patches derived from 

coarse segmentation, the proposed boundary refinement network enhances the model’s 

attention to critical boundary areas, leading to improved segmentation accuracy. Unlike 

traditional U-shaped deep neural networks, the method employs additional feature 

extraction blocks in place of skip connections to maximise information extraction under 

limited input conditions. Experimental results on the liver tumour segmentation 

challenge demonstrate the effectiveness of the approach, achieving an average Dice 

score of 0.805 and a volume overlap error of 0.325. Furthermore, the reduced input 

image size contributes to alleviate the class imbalance problem, underscoring the 

method’s potential for robust clinical application. 
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Chapter 8. Conclusion 

8.1 Conclusion 

This thesis presents a comprehensive approach to the segmentation of liver and 

liver tumours in CT images, utilising advanced deep learning techniques to enhance the 

accuracy and efficiency of the segmentation process. The research aimed to address the 

critical need for precise identification and delineation of liver structures and tumours, 

which is essential for effective surgical planning and treatment in hepatocellular 

carcinoma (HCC) cases. Through the integration of advanced image processing 

techniques and deep learning frameworks, the research has successfully enhanced 

segmentation accuracy, robustness, and efficiency, providing valuable tools for clinical 

applications. 

Chapter 2 reviews the literature related to the liver and liver diseases in detail, 

introduces the physiological structure and function of the liver, and common liver 

diseases, especially the epidemiology, causes, diagnosis and treatment of liver cancer. 

In addition, the basic principles of CT imaging and its application in the diagnosis of 

liver diseases are discussed, including common artefacts in CT imaging and their 

impact on image quality. Chapter 3 introduces image segmentation techniques based on 

CT data, covering classic image segmentation methods and modern methods based on 

deep learning. This chapter also discusses the role of preprocessing techniques and 

segmentation techniques in improving CT image quality and segmentation accuracy. 

Chapter 4 discusses CT datasets for liver and liver cancer segmentation, especially the 

composition and characteristics of the LiTS dataset. In addition, this chapter also 

introduces in detail the evaluation indicators of segmentation model performance, 

which provides a basis for the experiments and performance analysis in subsequent 

chapters. 

The first key contribution, detailed in Chapter 5, proposed a modified Multi Scale 

Feature U-Net architecture designed for the automatic semantic segmentation of liver 

regions from CT scans. This modified MSF U-Net introduced dilated convolutions in 
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the deep layers of the U-Net, which effectively expand the receptive field, enabling the 

model to more sensitively capture subtle anatomical features and fuzzy boundaries 

without increasing the number of parameters. At the same time, the pyramid pooling 

module further aggregated multi-scale global features, significantly enhancing the 

model's ability to recognise complex liver anatomical structures. Experimental results 

demonstrated that the proposed MSF U-Net achieved an average dice score of 0.95 on 

the LiTS dataset, outperforming traditional U-Net models and exhibiting strong 

generalization even in challenging cases. 

The second contribution in this thesis focuses on the tumour segmentation problem 

and proposed two modified cascaded U-Net models with the attention mechanism to 

address the challenges of tumour segmentation, especially when dealing with small and 

irregularly shaped tumours. The first tumour segmentation method reduces the 

interference of irrelevant areas by manually cropping the liver segmentation results. 

The introduction of a customised attention module in the CAU-Net can dynamically 

adjust the feature weight distribution during the decoding stage, thereby significantly 

improving the model's attention to the tumour area and improving the segmentation 

performance. The second proposed cascaded hybrid attention CHAU-Net implements 

an end-to-end training and inference process. The model introduces a hard attention 

mechanism for bounding box generation, which reduces the amount of unnecessary 

input data by dynamically adjusting the size of the image during the training phase. In 

the tumour segmentation phase, the encoder combines the channel attention module 

and the spatial attention module to enhance the feature extraction capability. The 

synergy of the two attention mechanisms enables the network to accurately focus on 

key tumour features while effectively reducing the interference of surrounding tissues, 

thereby improving the accuracy and robustness of segmentation. Both models achieved 

DSCs of 0.78 and 0.80, respectively, demonstrating better performance compared to 

baseline models. 

In addition, this thesis also described a novel boundary refinement framework 
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aimed at optimizing liver and liver tumour segmentation results. This method extracts 

boundary patches from the coarse segmentation results and refines them using a 

boundary refinement network (BRN). Specifically, boundary patches are generated by 

sliding cropping along the contours of the coarse segmentation results, and then these 

boundary patches are jointly input into the boundary refinement network with the 

corresponding original image. By combining the semantic information of the original 

image and the structure of the coarse segmentation results, it aims to provide robust 

constraints for the input and guide the network to focus on key boundary areas. This 

can significantly enhance the network's perception of boundary features, accelerate the 

model's convergence process, and ensure that the segmentation results are more 

accurately optimised in the right direction. At the same time, the BRN network further 

enhances the ability to extract and fuse features by effectively utilising the information 

interaction between multiple layers. The boundary refinement framework improves 

boundary-related indicators by about 10%, providing clearer and more accurate 

segmentation contours for clinical use. 

8.2 Future Work 

Although the liver and tumour segmentation methods proposed in this paper have 

made significant progress, there are still many possible research directions worth 

exploring to further improve the algorithm performance and promote its practical 

application. 

First, the model can be trained with larger and more diverse datasets. The current 

method is mainly based on the LiTS dataset, which is limited in size and diversity. 

Future research can introduce multi-centre and multi-modal datasets, especially 

combining CT and MRI imaging data to capture a wider range of liver and tumour 

characteristics. This multi-modal integration helps to improve the segmentation model's 

ability to recognise complex pathological features. 

Second, future research can explore the combination of 3D network architecture 

and Transformer technology to further improve segmentation performance. The current 
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work is mainly based on 2D segmentation strategies, which may have certain 

limitations when processing three-dimensional spatial information. The use of 3D 

networks can make full use of the volume information of CT images, thereby more 

accurately capturing the spatial structural characteristics of the liver and tumours. 

However, since 3D networks are usually accompanied by higher computational 

complexity, future research can consider introducing hierarchical or lightweight 3D 

network structures to balance performance and computing resource requirements. In 

addition, Transformer architecture provides a new perspective to handle medical image 

segmentation tasks. Compared with traditional convolutional neural networks, 

Transformers can capture long-range dependencies of global and local features through 

self-attention mechanisms and show higher flexibility and accuracy in complex 

scenarios. Combining the advantages of 3D networks and Transformers, embedding 

Transformer modules into 3D networks can achieve multi-scale feature fusion across 

levels and spaces, significantly enhancing the expressive power of the model.  

Third, the proposed algorithm can be improved to learn from time-dependent data, 

such as CT or MRI scans of the same patient at different stages of treatment. This 

approach enables the model to capture the dynamic changes of the tumour, helping 

clinicians monitor the effectiveness of treatment and supporting personalised treatment 

planning. Segmentation algorithms combined with time series data are expected to play 

an important role in treatment evaluation and prediction. 

Fourth , translating the proposed algorithms into practical applications requires the 

development of efficient and user-friendly clinical tools. Future research can integrate 

algorithms into software platforms, such as mobile applications or dedicated diagnostic 

systems, allowing clinicians to upload patients' CT scans, automatically run 

segmentation algorithms, and interactively visualise tumour areas. Such tools can 

accelerate the segmentation process, reduce the burden of manual operations, and 

improve diagnostic efficiency. Conducting usability studies with radiologists would 

help evaluate the reliability, interpretability, and practical value of such systems. 



155 

 

Integration with existing radiology platforms (such as PACS) and diagnostic workflows 

would be critical for adoption. 

Finally, to ensure clinical deployment and patient safety, future efforts must 

consider regulatory compliance and interdisciplinary collaboration. Partnerships with 

radiologists, software engineers, and regulatory experts will be necessary to meet data 

protection standards, ensure system reliability, and navigate regulatory pathways. Early 

consideration of these aspects will help reduce translation gaps between algorithm 

design and clinical implementation. 
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