
University of Strathclyde

Department of Computer and Information Sciences

Type Inference, Haskell

and Dependent Types

Adam Michael Gundry

Doctor of Philosophy

2013

This thesis is the result of the author’s original research. It has been composed
by the author and has not been previously submitted for examination which has
led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde Regu-
lation 3.50. Due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

Signed:

Date:

i

Acknowledgements

I would like to thank my supervisor, Conor McBride, for everything he has taught
me, for his support when I needed it, and for always being ready to talk. None
of this would have been possible without him.

This work was supported by Microsoft Research through its PhD Scholarship
Programme. I am particularly grateful to Simon Peyton Jones and Dimitrios
Vytiniotis from Microsoft Research Cambridge for fascinating discussions about
the ins and outs of Haskell and GHC.

My thanks for their feedback on this work, and for the many interesting
discussions we shared, go to the rest of the FC crew: Stephanie Weirich, Richard
Eisenberg, José Pedro Magalhães and Iavor Diatchki. I thank Philippa Cowderoy,
Ben Kavanagh and James McKinna for their help and insight. Nathan Collins
kindly pointed out a bug in one of the appendices.

My colleagues in the Mathematically Structured Programming group have
each contributed to this in their own way. My thanks go to all of them: Guil-
laume Allais, Stevan Andjelkovic, Bob Atkey, Pierre-Évariste Dagand, Clément
Fumex, Neil Ghani, Peter Hancock, Patricia Johann, Clemens Kupke, Sam Lind-
ley, Lorenzo Malatesta, Federico Orsanigo and Tim Revell. Stuart Hannah and
Jason Smith, from the Strathclyde Combinatorics group, were always supportive.

My viva took place on Monday 25th November 2013, and the examiners were
Andrew Kennedy and Anders Claesson. I greatly valued the opportunity to
discuss the ideas with them, and thank them for their helpful comments. Of
course, the remaining errors are my responsibility alone.

Finally, I thank my wife, Christine, for everything.

But peace to vain regrets! We see but darkly
Even when we look behind us, and best things
Are not so pure by nature that they needs
Must keep to all, as fondly all believe,
Their highest promise. If the mariner,
When at reluctant distance he hath passed
Some tempting island, could but know the ills
That must have fallen upon him had he brought
His bark to land upon the wished-for shore,
Good cause would oft be his to thank the surf
Whose white belt scared him thence, or wind that blew
Inexorably adverse: for myself
I grieve not; happy is the gownèd youth,
Who only misses what I missed, who falls
No lower than I fell.

The Prelude, or Growth of a Poet’s Mind
William Wordsworth, 1850

iii

Contents

List of Figures ix

Abstract xi

I Foundations of type inference 1

1 Introduction 2
1.0.1 Contexts, variable scope and let-generalisation 3
1.0.2 Dependent types in GHC Haskell 4
1.0.3 The value of Π: going beyond GHC Haskell 5
1.0.4 Type inference and term inference 5

1.1 Outline . 6

2 A rationalised reconstruction of Hindley-Milner type inference 8
2.0.1 The occurs check . 9

2.1 A framework for contextual problem solving 11
2.1.1 Modelling statements-in-context 13
2.1.2 An information order for contexts 14
2.1.3 Constraints: problems at ground mode 17

2.2 Unification for the syntactic equational theory 19
2.2.1 Correctness of syntactic unification 22

2.3 Type inference with generalisation made easy 23
2.3.1 The Generalist’s lemma 24
2.3.2 Transforming type assignment into type inference 24
2.3.3 Correctness of type inference 25

2.4 Elaboration, zipper style . 27
2.5 Discussion . 29

2.5.1 Related work . 30

3 Unification and type inference for units of measure 31
3.0.1 A troublesome example . 32
3.0.2 Extending the framework 33

3.1 Unification for the theory of abelian groups 35
3.1.1 The abelian group unification algorithm 37
3.1.2 Correctness of abelian group unification 39

3.2 Unification for types with units of measure 39
3.2.1 Loss of generality and how to retain it 40
3.2.2 Correctness of type unification 42

3.3 Type inference for units of measure 45
3.4 Discussion . 46

3.4.1 Related work . 47

4 Miller pattern unification 48
4.0.1 Related work . 50
4.0.2 Intensional vs. extensional equality 51
4.0.3 Heterogeneous equality . 52

4.1 Back to basics . 53
4.1.1 Term representation . 53
4.1.2 Contexts and unification problems 55
4.1.3 Typing rules . 56
4.1.4 Twins . 63
4.1.5 Substitutions and metasubstitutions 64
4.1.6 Properties . 65

4.2 Specification of unification . 67
4.2.1 Solving problems by inversion 67
4.2.2 Solving flex-flex problems by intersection 70
4.2.3 Pruning . 71
4.2.4 Metavariable simplification 74
4.2.5 Problem simplification . 75
4.2.6 Summary of the algorithm 78

4.3 Correctness . 81
4.3.1 Solved problems and logical consistency 81
4.3.2 Soundness . 82
4.3.3 Generality . 83
4.3.4 Partial completeness . 84
4.3.5 Towards a proof of termination 85

4.4 Discussion . 86

v

II Haskell with dependent types 88

5 The inch language: adding dependent types to Haskell 89
5.1 Related work . 90

5.1.1 Full-spectrum dependently typed languages 90
5.1.2 Dependent ML . 92
5.1.3 Generalised algebraic datatypes 92
5.1.4 Haskell libraries . 93
5.1.5 GHC TypeNats . 94

5.2 Features of inch . 94
5.2.1 Down with kinds . 95
5.2.2 Dependent functions . 96
5.2.3 Dependent existential types 97
5.2.4 Implicit and explicit arguments 99
5.2.5 Type-level numbers . 101
5.2.6 Supported operations . 102
5.2.7 Constraints . 103

6 A language of evidence 106
6.1 Syntax . 108
6.2 Phase distinctions and promotion 112

6.2.1 The access policy . 113
6.2.2 Promoted data constructors 113
6.2.3 Promoted functions . 114
6.2.4 Dependent case analysis 115

6.3 Type system . 117
6.3.1 Well-formed signatures and contexts 117
6.3.2 Well-typed terms . 118
6.3.3 Well-typed coercions . 120
6.3.4 Vectors and telescoped coercions 123
6.3.5 Syntactic sugar . 123
6.3.6 Meta-theoretic properties 125

6.4 Operational semantics . 127
6.4.1 The push rule for scrutinees 129
6.4.2 Subject reduction . 130

6.5 Consistency and progress . 131
6.5.1 The definition of compatibility 132
6.5.2 Properties of compatibility 135

vi

6.5.3 Well-typed coercions are compatible 136
6.5.4 Progress . 137

6.6 Erasure . 137
6.7 Discussion . 140

6.7.1 Representing numbers . 140
6.7.2 Adding η-laws . 141
6.7.3 Related work . 142
6.7.4 Future work . 143

7 Producing the evidence: elaborating inch 144
7.1 Type schemes . 145
7.2 Formal syntax of inch . 147
7.3 Non-deterministic elaboration . 149

7.3.1 Non-deterministic elaboration of expressions 149
7.3.2 Subsumption . 153
7.3.3 Soundness of non-deterministic elaboration 154

7.4 Metavariables and information increase 155
7.5 Deterministic elaboration . 157

7.5.1 Unification . 163
7.5.2 Soundness of elaboration 164

7.6 Elaboration for case analysis . 165
7.6.1 Extending the non-deterministic system 167
7.6.2 Extending the deterministic system 168
7.6.3 Example of elaborating a function definition 170

7.7 Discussion . 171
7.7.1 Generalisation . 171
7.7.2 Related and future work 172

8 Applications 173
8.1 Vectors . 174
8.2 Merge sort . 176
8.3 Left-leaning red-black trees . 179

8.3.1 Enforcing red-black tree invariants via types 180
8.3.2 Search . 182
8.3.3 Insertion . 183
8.3.4 Deletion . 184

8.4 Tracking time complexity . 187
8.5 Units of measure . 191

vii

9 Conclusion 195

A Reference implementation of Hindley-Milner type inference 197
A.1 Representation of types and terms 198
A.2 Unification . 200
A.3 Type inference . 202
A.4 Elaboration, zipper style . 204

B Reference implementation of units of measure 206
B.1 Representation of units of measure 206
B.2 Representation of types . 208
B.3 Unification of unit expressions . 210
B.4 Unification of types . 212

C Reference implementation of Miller pattern unification 214
C.1 Representation of terms . 214
C.2 Problems and contexts . 218
C.3 Type and equality checking . 221
C.4 Unification . 223

C.4.1 Inversion . 225
C.4.2 Intersection . 228
C.4.3 Pruning . 229
C.4.4 Metavariable simplification 231
C.4.5 Problem simplification and unification 232
C.4.6 Solvitur ambulando . 235

D Selected proofs 236
D.1 Correctness of unification and type inference 236
D.2 Correctness of abelian group unification 239
D.3 Correctness of Miller pattern unification 242

D.3.1 Consistency of the unification logic 242
D.3.2 Soundness . 244
D.3.3 Generality . 247
D.3.4 Partial completeness . 249

D.4 Consistency of evidence language coercions 250

Bibliography 262

viii

List of Figures

2.1 Milner’s typing rules . 10
2.2 Syntax . 12
2.3 Rules for context validity, well-formed schemes and type equality . 12
2.4 Metasubstitutions . 14
2.5 Algorithmic rules for unification 21
2.6 Declarative rules for type assignment 23
2.7 Generic instantiation for type schemes 23
2.8 Transformed rules for type assignment 25
2.9 Algorithmic rules for type inference 26
2.10 Elaboration as state-transformation 28

3.1 Syntax . 33
3.2 Rules for context validity and well-formed type schemes 34
3.3 Rules for metasubstitutions . 34
3.4 Declarative rules for unit equivalence 36
3.5 Algorithmic rules for abelian group unification 37
3.6 Algorithmic rules for type unification (part 1) 43
3.7 Algorithmic rules for type unification (part 2) 44

4.1 Syntax . 53
4.2 Hereditary substitution . 54
4.3 Well-formed contexts . 58
4.4 Definitional equality: normal terms 59
4.5 Definitional equality: neutral terms 60
4.6 Unification logic . 61
4.7 Unification logic: congruence rules 62
4.8 Typing rules for substitutions and metasubstitutions 64
4.9 Equivalence of metasubstitutions 65
4.10 Intersection . 70
4.11 Pruning . 72

4.12 Evaluation context decomposition 76
4.13 Impossible constraints . 76
4.14 Problem decomposition steps . 79
4.15 Constraint solving steps . 80
4.16 Solved problems . 82
4.17 Pattern fragment . 84

6.1 Naming conventions . 109
6.2 Grammar of signatures, contexts and phases 109
6.3 Grammar of expressions . 110
6.4 Subgrammars of type expressions, coercions and terms 111
6.5 Validity of signatures and contexts 118
6.6 Typing rules . 119
6.7 Well-typed coercions . 121
6.8 Evidence for equality of case branches 122
6.9 Derivable rules for coercions . 122
6.10 Vectors and telescoped coercions 124
6.11 Syntactic sugar . 124
6.12 Relevance relation . 126
6.13 Operational semantics for shared terms 128
6.14 Erasure of terms and vectors . 138
6.15 Operational semantics of erased terms 138

7.1 Grammar and erasure of schemes and annotated telescopes 146
7.2 Grammar of inch expressions . 147
7.3 Grammar of inch type schemes, types, terms and vectors 148
7.4 Non-deterministic elaboration of expressions 150
7.5 Non-deterministic elaboration of vectors and type schemes 152
7.6 Non-deterministic subsumption 153
7.7 Validity of metacontexts . 156
7.8 Metasubstitutions . 156
7.9 Type-checking elaboration . 159
7.10 Type-reconstructing elaboration 160
7.11 Elaboration of type schemes . 161
7.12 Elaboration of spines and vectors 162
7.13 Subsumption . 163
7.14 Non-deterministic elaboration of case expressions 166
7.15 Elaboration of case expressions 169

x

Abstract

This thesis studies questions of type inference, unification and elaboration for lan-
guages that combine dependent type theory and functional programming. Lan-
guages such as modern Haskell have very expressive type systems, allowing the
programmer a great deal of freedom. These require advanced type inference and
unification algorithms to reconstruct details that were left implicit, and suitable
representation of the evidence delivered by such algorithms.

The first part proposes an approach to unification and type inference, based on
information increase in dependency-ordered contexts, and keeping careful track
of variable scope. Two existing systems are reviewed: the Hindley-Milner type
system, and units of measure in the style of Kennedy. Subtle issues relating to
let-generalisation become clearer as a result. Using the same approach, an algo-
rithm is described for Miller pattern unification in a full-spectrum dependent type
theory, forming a foundation for the elaboration of dependently typed languages.

The second part introduces inch, a language that extends Haskell with type-
level data and functions, and dependent product types. Type-level numbers and
arithmetic operations are specifically considered, as a particularly useful source
of applications, such as the perennial example of vectors (length-indexed lists).
The increased expressivity in the source language is matched by a suitable core
language of evidence, into which inch programs can be translated. This language
is based on System FC, the existing core language used by GHC, adapted to
clarify the relationships between the type and term levels. It gives a coherent op-
erational semantics to both levels, allowing shared data and dependent functions,
but retaining a clear phase distinction. The contextual approach of the first part
of the thesis is used to specify the elaboration of inch into the evidence language,
and applications of inch based on type-level arithmetic are demonstrated.

Part I

Foundations of type inference

Chapter 1

Introduction

This thesis explores the combination of the functional programming language
Haskell with dependent type theory. It is addressed to the functional program-
mer who wants a language that provides stronger static guarantees and a more
expressive type system than modern Haskell, while maintaining the phase dis-
tinction and useful, if not necessarily complete, type inference. I will assume the
reader has some familiarity with Haskell or a similar functional language, but not
necessarily a great deal of familiarity with type theory. Experience of advanced
type system features such as generalised algebraic datatypes and higher-rank
types would be beneficial.

Haskell is a functional language with Hindley-Milner type inference in the
tradition of ML. Thanks to type inference, the burden of type annotations is
minimised, if not necessarily eliminated.1 Moreover, the typeclass system enables
term inference: types function as a real aid to the programmer, not just a safety
net that prevents bad programs, as the compiler can write runtime code for the
user. For example, Haskell’s Eq typeclass can be used to compute an equality
test for complex structured data from the equality tests on the component types.

Dependent types allow term-level data into the static type system. This allows
more precise invariants to be specified: for example, rather than the type of lists
of arbitrary length, one can work with the type of vectors of a statically-known
length. Term inference becomes easier, because the presence of terms in types
leads to equational constraints on terms, and solving these constraints may allow
the compiler to discover runtime-relevant values. While typeclasses allow terms
to be discovered by evaluating logic programs, dependent types allow them to be
discovered by solving equations in the underlying functional language.

1I include approaches requiring a little annotation, sometimes called ‘type reconstruction’,
under the general term ‘type inference’. Type inference is pure if no annotations are required.

Haskell is a good basis for extension with dependent types because it is already
widely used as a testbed for type system extensions. Numerous advanced features,
that push the boundaries of type inference, have been adopted in the Glasgow
Haskell Compiler (GHC): notably higher-rank types, which allow universal quan-
tification in the domain of a function, and generalised algebraic datatypes, which
allow data constructors to introduce equational constraints on types. While such
extensions make pure type inference infeasible, this can be a price worth paying,
particularly given the huge increase in expressivity achieved, the potential for
term inference and the value of annotations as machine-checked documentation.

1.0.1 Contexts, variable scope and let-generalisation

One of the main themes of this thesis is the proper management of variable
scope, which is crucial for correctly implementing type inference. Type inference
algorithms create existential variables to stand for unknown type expressions,
then solve for these variables by unification. Once higher-rank types are available,
it is necessary to carefully manage which universally quantified variables are in
scope for each existential variable. Even in the Hindley-Milner system, however,
variable dependencies are key to understanding the process of let-generalisation.

Let-generalisation is used to assign polymorphic types to definitions. In

let f x = (x , x) in (f True, f 3) :: ((Bool,Bool), (Int, Int))

the term is well-typed because f is assigned the type ∀ a . a → (a, a). This type
is determined by inferring the type β → (β, β), where β is an existential variable,
then quantifying over β. In more complex examples it is not always possible to
quantify over all the existential variables, as they may have meaning outside the
local scope of the let-binding. This will be examined in more detail in Chapter 2.

All this motivates taking more care over metavariables than is traditional
for the Hindley-Milner system. I will introduce a notion of context that tracks
metavariable declarations and imposes a dependency-respecting order upon them.
Considering contextualised unification and type inference problems leads to a
precise notion of the minimal commitment necessary to solve a problem, and
reveals the underlying structure that makes sense of the let-generalisation step.
This structure makes it easier to deal with systems where variable dependency
is more subtle than in Hindley-Milner, such as units of measure in the style of
Kennedy (2010), considered in Chapter 3. Contexts can be extended to contain
universal as well as existential variables, a ‘mixed prefix’ in the language of Miller
(1992), allowing the analysis to be extended to dependent types, as in Chapter 4.

3

1.0.2 Dependent types in GHC Haskell

Simulating dependent types in Haskell is a cottage industry (McBride, 2002),
and recent extensions to GHC allow some dependent datatypes to be defined
reasonably neatly. The standard example of vectors of a fixed length is given by:

data N = Zero | Suc N

data Vec :: ∗ → N→ ∗ where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Suc n)

Datatype promotion (Yorgey et al., 2012) allows the datatype N to be used in the
kind of Vec, and correspondingly the Zero and Suc data constructors appear in
the types of Nil and Cons. Moreover, Vec a m is a generalised algebraic datatype
or GADT (Peyton Jones et al., 2006), meaning that pattern matching on its
constructors supplies information to the typechecker: a proof of the equation
m ∼ Zero in the Nil branch, and a proof of m ∼ Suc n in the Cons branch.

This type-level knowledge of length is useful for expressing more precise in-
variants in types, leading to more reliable code. The tail function for vectors

tail :: Vec a (Suc n)→ Vec a n
tail (Cons xs) = xs

statically enforces the invariant that its argument list must be non-empty, so this
definition is total, and it is guaranteed to return a result of the right length.

Type families (Chakravarty et al., 2005), which approximate functions on the
type level, allow the definition of operations on type-level data. Addition for
type-level naturals can be defined, then used in the type of vector concatenation:

type family (m :: N) + (n :: N) :: N
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)

append :: Vec a m → Vec a n → Vec a (m + n)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

However, type families do not correspond exactly to term-level functions, because
they are open, that is, defining equations can be added anywhere. They are not
translated into case analysis, but are understood as rewrite rules on the syntax
of type expressions. This gap between the term-level and type-level operational
semantics is problematic for dependent types, where the same expression may be
used both statically (in the typechecker) and dynamically (at runtime).

4

1.0.3 The value of Π: going beyond GHC Haskell

Vector concatenation relies only on (implicit) universal quantifiers and runtime
functions. However, consider the vector version of the replicate function, which
creates a vector of length n by repeating its second argument n times:

replicate :: Π (n :: N)→ a → Vec a n
replicate Zero = Nil
replicate (Suc n) x = Cons x (replicate n x)

Here the result type Vec a n depends on n, but the operational behaviour of the
function also makes uses of n, as it is defined by pattern matching. This shows
the need for the dependent product Π: it is a function space where the value
is available both statically and dynamically. GHC Haskell does not currently
support Π, but it can be encoded in some cases. Adding Π to Haskell is the main
contribution of part II of this thesis. Chapter 5 describes the resulting language.

1.0.4 Type inference and term inference

Dependent type theory offers a significant extension of the verification that can
be performed by types: ultimately, the full power of constructive mathematics
can be used to specify and prove properties of programs. However, this power
comes at a cost. Inferring the most general type of the composition operator

(g ◦ f) x = g (f x)

is straightforward in Haskell, where it has type

(b → c)→ (a → b)→ (a → c) .

If the codomain of f may depend on the value of x , and g may depend on x and
f x , then the type becomes more complicated. A possible type for composition is

{A : Set} {B : A→ Set} {C : (a : A)→ B a → Set}
(g : {a : A} (b : B a)→ C a b) (f : (a : A)→ B a) (a : A)→ C a (f a)

in Agda notation,2 ignoring universe polymorphism. It is not reasonable to ask
a machine to reconstruct this type from the definition.

As I have noted, types are not simply a form of statically-checked documen-
tation or a policing system that prohibits bad programs, important as these roles

2A dependent function space (Π-type) is written (x : S) → T or {x : S } → T , where x is
bound in T . The type Set is a universe of small types, resembling the Haskell kind ∗.

5

are. In exchange for writing more expressive types, the programmer can be re-
paid by having to write less of their program: term inference becomes feasible.
Typeclasses accomplish this to a certain extent, but the presence of computational
data in types means that constraints on types can determine runtime information.
The replicate function defined in Subsection 1.0.3 makes crucial runtime use of its
natural number argument. If it is used in a context demanding a value of type
Vec a 42, the programmer should not need to supply that argument explicitly!

Users of a dependently typed language, if they wish to prove properties of
their programs, have much work to do in choosing appropriate representations of
data structures and ways to enforce invariants. On the other hand, significant
benefits can be gained with less work by selectively establishing invariants that
use the type system to prevent certain errors, guaranteeing the absence of a class
of bugs, if not the absence of bugs altogether. Perhaps the way forward lies
in a mixed economy: a system that combines the flexibility of Haskell with the
reliability of dependent type theory. This is the approach that I will pursue.

1.1 Outline

This thesis falls into two parts: the first develops foundations for describing and
analysing type inference, and the second builds on this work to introduce the inch
system, extending Haskell with dependent types. Reference implementations of
the algorithms in part I and details of selected proofs are given in the appendices.

Part I: Foundations of type inference

In Chapter 2, I start at the very beginning with a rationalised reconstruction
of type inference for the Hindley-Milner type system, and its constraint-solving
algorithm, first-order unification. This introduces a method of contextualised
problem-solving that sustains the later development. Paying careful attention
to variable scope makes evident the underlying structure on first-order unifica-
tion that explains let-generalisation. Furthermore, I describe how to elaborate
Hindley-Milner terms into System F, representing term structure in the context.

Following on from this in Chapter 3, I extend the basic Hindley-Milner system
with Kennedy-style units of measure. This requires unification in the equational
theory of abelian groups. I show how the contextual structure introduced in
Chapter 2 makes let-generalisation straightforward, even in this more complex
setting where variable occurrence does not imply dependency on that variable.

6

Taking a different direction in Chapter 4, I apply the same techniques of con-
textualised problem-solving to higher-order unification, where the correct man-
agement of scope is crucial. I describe an algorithm for Miller pattern unification
in a full-spectrum dependent type theory. Higher-order unification is needed for
implementing type inference for dependently-typed programming languages, as
constraint-solving must take place in the definitional equality of the type theory.
Not all equations can be solved immediately, so the algorithm must represent
constraints explicitly and make most general progress where possible.

Part II: Haskell with dependent types

Having constructed the foundations, I build on them in the second part to create
inch, a language based on Haskell with Π-types and type-level data. In Chapter 5,
I introduce the main features of the language by example and compare it to related
work. This chapter contains a more thorough introduction to the encoding of
dependently-typed programs in Haskell via GADTs and type families.

To explain inch formally, I build an evidence language in Chapter 6, based
on GHC’s intermediate language System FC, but influenced by Martin-Löf Type
Theory. The evidence language is a very explicit calculus for which typechecking is
straightforward. I give a precise account of the phase distinction, as Π means that
the categories of runtime and type-level data are no longer mutually exclusive.
The operational semantics of the evidence language, with type safety proof, makes
explicit the computational role of dependent Π-types. Also, I present a new
approach to proving consistency of coercions (which witness type equalities).

In Chapter 7, I describe type inference for inch via elaboration into the evi-
dence language, using the ideas of contextualised problem-solving from the first
part of the thesis. In particular, the elaboration algorithm clarifies the man-
agement of implicit and explicit arguments. Elaboration relies on an underlying
constraint solver, which I do not study in detail, though it would use similar
techniques to the unification algorithms from Part I.

The payoff for all this work appears in Chapter 8, where I present applications
of inch, using dependent types to provide stronger guarantees of correctness. I
give examples of vector functions, merge sort and red-black tree insertion and
deletion, and show how the time complexity of such programs can be statically
checked. Additionally, I demonstrate an approach to units of measure as a library
based on type-level integers, in contrast to the built-in treatment in Chapter 3.

Finally, some concluding remarks form Chapter 9.

7

Chapter 2

A rationalised reconstruction of
Hindley-Milner type inference

In this chapter I rebuild first-order unification and Hindley-Milner type infer-
ence from the ground up. A key theme of this thesis is the proper understand-
ing of scope, achieved by keeping variables (especially ‘unification variables’ or
‘metavariables’) in contexts. Applying the variables-in-contexts approach to a
standard type inference problem allows me to emphasise this theme, before mov-
ing on to more advanced type systems. This chapter is based on the paper “Type
inference in context” by Gundry, McBride, and McKinna (2010). Appendix A
(page 197) contains a Haskell implementation of the algorithm described here.

The Hindley-Milner type system1 (Milner, 1978) consists of the simply-typed
λ-calculus plus ‘let-expressions’ for polymorphic definitions. For example,

let x =λy.y in x x

is well-typed: x is given the polymorphic type ∀α. α→ α, which is instantiated in
two different ways, first at type (β → β)→ (β → β) and second at type β → β.
In contrast, λ-bound variables are monomorphic, so λx .x x is ill-typed.

The syntax of terms and types is

t, s ::= x | λx .t | s t | let x =s in t

τ, υ ::= α | τ → υ

where x and y range over term variables, and α and β range over type variables.
For simplicity, the function arrow → is the only type constructor.

1The work of Hindley (1969) was in type inference for combinatory logic, unlike Milner’s
type system with let-polymorphism, but ‘Hindley-Milner’ is the name that has stuck.

To handle let-polymorphism, the context assigns each term variable a type
scheme σ rather than a monomorphic type. A type scheme is a type wrapped in
one or more ∀-quantified variables, with the syntax

σ ::= τ | ∀α. σ

Morally, one should distinguish between the ‘universally quantified’ variables in
type schemes, and ‘existentially quantified’ variables (known as ‘metavariables’,
‘unification variables’ or ‘holes’) for which solutions are found by unification dur-
ing type inference. However, for this chapter I can conflate the two: variables are
always bound in type schemes, while metavariables are always free in the context.

Milner’s typing rules, as presented by Clément et al. (1986) adapted into
algorithmic form, appear in Figure 2.1. The context A is an unordered set of
type scheme bindings, with Ax denoting ‘A minus any x binding’: such contexts
do not reflect lexical scope, so shadowing requires deletion and reinsertion.

AlgorithmW is a well-known type inference algorithm for the Hindley-Milner
system, due to Damas and Milner (1982), and based on the Unification Algo-
rithm of Robinson (1965). Most presentations of Algorithm W have treated the
underlying unification algorithm as a ‘black box’, but by considering both to-
gether I will show that the generalisation step (used when inferring the type of a
let-expression) becomes straightforward (Section 2.3).

Why revisit Algorithm W? As a first step towards a larger goal: explaining
how to elaborate high-level dependently typed programs into fully explicit calculi,
as in Chapter 7. Just as W specialises polymorphic type schemes, elaboration
involves inferring implicit arguments by solving constraints, but with fewer algo-
rithmic guarantees. Pragmatically, we need to account for stepwise progress in
problem solving from states of partial knowledge. I seek local correctness criteria
for type inference that guarantee global correctness.

2.0.1 The occurs check

Testing whether a variable occurs in a term is used by both Robinson unifica-
tion and Algorithm W . In unification, the check is usually necessary to ensure
termination, let alone correctness: the equation α ≡ α → β has no finite solu-
tion because the right-hand side depends on the left, so it does not make a good
definition for α.2

2Of course, this assumes types are inductively defined: coinductive systems, which allow
infinitary types as the solutions of such equations, are outside the scope of this thesis.

9

A ` t :σ (term t has type scheme σ under assumptions A)

x :σ ∈ A σ � τ

A ` x :τ
A ` t :τ ′ → τ A ` t ′ :τ ′

A ` t t ′ :τ
Ax ∪ {x :τ ′} ` t :τ
A ` λx .t :τ ′ → τ

A ` t ′ :τ ′ σ = gen(A, τ ′) Ax ∪ {x :σ} ` t :τ
A ` let x = t ′ in t :τ

σ � τ if τ is a generic instance of σ (specialising σ yields τ)

gen(A, τ) =

∀αi
i∈1..n. τ (FV (τ) \ FV (A) = {α1, . . . , αn})

τ (FV (τ) \ FV (A) = ∅)

Figure 2.1: Milner’s typing rules

In Algorithm W , the occurs check is used to discover type dependencies just
in time for generalisation. When inferring the type of let x = t ′ in t, the type
of t ′ must first be inferred, then ‘generic’ type variables, those occurring in t ′

but not the enclosing bindings, must be quantified over. The idea is that type
variables may be generalised over (and freely substituted) if they are not recording
a necessary coincidence. For example, a typing derivation for λy.let x = y in x
might have {y :α} ` y :α for the definiens. One is certainly not free to generalise
over α, as this would allow any type to be assigned to x ! On the other hand, a
derivation for let x = λy.y in x x could include ∅ ` λy.y :α → α, and α must be
generalised over for the whole expression to be well-typed.

In both unification and type inference, the occurs check is used to detect
dependencies between variables. The traditional approach of leaving unification
variables floating in space, without any structure, works for the Hindley-Milner
system because there are no scoping conditions on candidate solutions for vari-
ables. This will not always be the case, so it is better to expose the structure and
manage dependencies explicitly.

In further contrast to other presentations of unification and Hindley-Milner
type inference, the algorithm I will describe is based on contexts carrying variable
definitions as well as declarations. This allows the context to record the entire
result of the algorithm.

10

2.1 A framework for contextual problem solving

Let me begin by revisiting unification for type expressions with free variables.
In order to address the problem of solving equations, I must first explain which
types are considered equal, raising the question of which things a given context
admits as types, and which contexts make sense in the first place.

A context Θ is a dependency-ordered list of unknown type metavariables,
definitions of metavariables and given term variables:

Θ ::= · | Θ, α :∗ | Θ, α :=τ : ∗ | Θ, x :σ | Θ#

It is divided into ‘localities’ by the # marker, the role of which will be explained
in Subsection 2.1.2. I write Ξ for a context suffix containing only metavariables.

Contexts introduce named variables and ascribe properties to them, but the
properties should first make sense. The rules in Figure 2.3 define the judgment
Θ ` ctx, which checks that a context is valid, i.e. that every variable is distinct
and each property is well-formed for the preceding context. Definitions α :=τ : ∗
and term variable bindings x : σ make sense only if the type τ or scheme σ is
well-scoped, as verified by the judgment Θ ` σ :∗.

For example, the context α : ∗, β : ∗, x :α → β is valid, while x :α, α : ∗ is not,
because α is not in scope for x . This dependency-ordering means that entries on
the right are harder to depend on, and correspondingly easier to generalise.

Variables must not be duplicated in a context. In the rules, α#Θ means α is
fresh for (does not occur in) Θ. I will usually ignore freshness issues: in practice,
locally nameless representations (McBride and McKinna, 2004) are sufficient.

Metavariables definitions induce a nontrivial equational theory on types, as
given in Figure 2.3. The definitions in a context represent a substitution in
‘triangular form’ (Baader and Snyder, 2001), that can be applied on demand to
produce a type or type scheme that contains only unknown metavariables.

Unification is the problem of finding definitions for metavariables in order to
make an equation hold. Type inference involves solving unification problems and
finding a type that makes a typing judgment hold. Solutions to both problems
should be ‘most general’ in that they should make the least commitment necessary
to solve the equation or assign a type. In the following subsections, I will make this
more precise by introducing a general notion of ‘statements’ that can be judged in
contexts, and defining the permissible ‘information increases’ that move a context
toward making a statement hold.

11

Term variables x , y
Type metavariables α, β, γ
Contexts Θ ::= · | Θ, α :∗ | Θ, α :=τ : ∗ | Θ, x :σ | Θ#
Suffixes Ξ ::= · | Ξ, α :∗ | Ξ, α :=τ : ∗
Types τ, υ ::= α | τ → υ
Type schemes σ ::= τ | ∀α. σ
Terms t, s ::= x | λx .t | s t | let x =s in t
Statements J ::= ctx | σ :∗ | τ ≡ υ :∗ | t :σ | σ � σ′ | J ∧ J ′

Figure 2.2: Syntax

Θ ` ctx (Θ is a valid context)

· ` ctx

α#Θ
Θ ` ctx

Θ, α :∗ ` ctx

α#Θ
Θ ` τ :∗

Θ, α :=τ : ∗ ` ctx

x#Θ
Θ ` σ :∗

Θ, x :σ ` ctx
Θ ` ctx
Θ# ` ctx

Θ ` σ :∗ (σ is a well-formed type scheme in Θ)

Θ 3 α :∗ Θ ` ctx
Θ ` α :∗

Θ ` τ :∗ Θ ` υ :∗
Θ ` τ → υ :∗

Θ, α :∗ ` σ :∗
Θ ` ∀α. σ :∗

Θ ` τ ≡ υ : ∗ (τ and υ are equal types in Θ)

Θ ` τ :∗
Θ ` τ ≡ τ : ∗

Θ ` τ ≡ υ : ∗
Θ ` υ ≡ τ : ∗

Θ ` τ0 ≡ τ1 : ∗ Θ ` τ1 ≡ τ2 : ∗
Θ ` τ0 ≡ τ2 : ∗

Θ ` ctx Θ 3 α :=τ : ∗
Θ ` α ≡ τ : ∗

Θ ` τ ≡ τ ′ : ∗ Θ ` υ ≡ υ′ : ∗
Θ ` τ → τ ′ ≡ υ → υ′ : ∗

Figure 2.3: Rules for context validity, well-formed schemes and type equality

12

2.1.1 Modelling statements-in-context

Having introduced contexts, now I will give a general picture of ‘statements-in-
context’, allowing unification and type inference to be viewed in a uniform setting.
A statement is an assertion that can be judged in a context, with grammar

J ::=
| ctx context validity
| σ :∗ well-formed type scheme
| τ ≡ υ :∗ equivalent types
| t :σ well-typed term
| σ � σ′ generic instantiation of type schemes
| J ∧ J ′ conjunction of statements

The rules for valid contexts, well-formed type schemes and type equality are
given in Figure 2.3. The rules for well-typed terms and generic instantiation of
type schemes will be given in Section 2.3 (Figures 2.6 and 2.7). The conjunction
statement has a single introduction rule and admissible elimination rules:

Θ ` J Θ ` J ′

Θ ` J ∧ J ′

Θ ` J ∧ J ′

Θ ` J
Θ ` J ∧ J ′

Θ ` J ′

Each statement J has a corresponding sanity condition, San J , whose truth
is necessary for J to make sense. For example, the sanity condition for a typing
statement is that the type is well-formed. Sanity conditions cannot be presup-
posed when writing the rules; rather, care must be taken to ensure them. The
sanity conditions are given by the following lemma.

Lemma 2.1 (Sanity conditions). If Θ ` J then Θ ` San J , where

San ctx 7→ ctx
San (σ :∗) 7→ ctx

San (τ ≡ υ) 7→ τ :∗ ∧ υ :∗
San (t :σ) 7→ σ :∗

San (σ � σ′) 7→ σ :∗ ∧ σ′ :∗
San (J ∧ J ′) 7→ San J ∧ San J ′

Proof. By structural induction on derivations. The sanity condition for the ctx
statement is uninformative, as it merely says that Θ ` ctx implies itself.

Sanity conditions capture the requirements for a statement to be ‘meaningful’,
before one can ask whether it is ‘true’ (Martin-Löf, 1996).

13

θ : Θ0 v Θ1 (θ is a metasubstitution from Θ0 to Θ1)

[] : · v Ξ
θ : Θ0 v Θ1 Θ1 ` τ :∗
(θ, τ/α) : Θ0, α :∗ v Θ1

θ : Θ0 v Θ1 Θ1 ` τ ≡ θ υ : ∗
(θ, τ/α) : Θ0, α :=υ : ∗ v Θ1

θ : Θ0 v Θ1

θ : Θ0, x :σ v Θ1, x :θ σ,Ξ
θ : Θ0 v Θ1

θ : Θ0# v Θ1 # Ξ

θ ≡ θ′ :Θ0 v Θ1 (θ and θ′ are equivalent metasubstitutions from Θ0 to Θ1)

· ≡ · : · v Θ1

θ ≡ θ′ :Θ0 v Θ1 Θ1 ` τ ≡ τ ′ :∗
(θ, τ/α) ≡ (θ′, τ ′/α) :Θ0, α :∗ v Θ1

θ ≡ θ′ :Θ0 v Θ1 Θ1 ` τ ≡ θ υ :∗ Θ1 ` τ ≡ τ ′ :∗
(θ, τ/α) ≡ (θ′, τ ′/α) :Θ0, α :=υ : ∗ v Θ1

θ ≡ θ′ :Θ0 v Θ1

θ ≡ θ′ :Θ0, x :σ v Θ1, x :θ σ,Ξ
θ ≡ θ′ :Θ0 v Θ1

θ ≡ θ′ :Θ0# v Θ1 # Ξ

Figure 2.4: Metasubstitutions

2.1.2 An information order for contexts

In order to describe algorithms that make incremental progress by modifying the
context (substituting for variables or turning unknowns into definitions), I must
specify what constitutes progress. This amounts to giving an ‘information order’
on contexts, so that increasing in the order makes a context ‘more informative’,
i.e. more statements hold.

Let Θ0 and Θ1 be valid contexts. An information increase or metasubstitution
from Θ0 to Θ1 is a finite map θ from metavariables in Θ0 to well-formed types
in Θ1, that respects the structure and dependency order of Θ0. Figure 2.4 gives
rules for the judgment θ : Θ0 v Θ1 that explains when θ is a metasubstitution.
This can be understood by looking at the form of Θ0 in each rule. If it is empty,
then Θ1 may contain metavariable declarations Ξ but no fixed structure. If the
last entry in Θ0 is a metavariable, then θ must give a well-formed type in Θ1 to
substitute for the metavariable, which should agree with the existing definition
(if any). If the last entry is a term variable or # marker, then Θ1 must have
the same structure. Recall that a context suffix Ξ contains only metavariable
declarations, not term variables or # markers, so it may always be added without

14

changing the underlying structure.
Metasubstitutions act on types and statements in the obvious way, extending

the action on variables

θ α 7→ τ if τ/α ∈ θ

homomorphically on syntax. The identity metasubstitution ι : Θ v Θ′ where Θ′

includes all the variables of Θ, usually just written Θ v Θ′, replaces each variable
with itself. A finite list of type-metavariable pairs, such as [τ/α], represents a
metasubstitution that is the identity except where specified.

Equivalence of metasubstitutions, written θ ≡ θ′ : Θ0 v Θ1 or simply θ ≡ θ′

when the contexts are obvious, means that the corresponding types are equal, as
shown in Figure 2.4.

Stable statements

Intuitively, substituting a type τ for a metavariable α should not be able to falsify
any existing equations. More generally, making contexts more informative should
preserve derivability of judgments. What is it about the design of the deduction
system that ensures this?

A statement J is stable if it is preserved by metasubstitution, i.e., if

Θ0 ` J and θ : Θ0 v Θ1 ⇒ Θ1 ` θ J.

That is, a simultaneous substitution on syntax extends to apply to derivations
of stable statements: information increase is really the extension of simultaneous
substitution from variables-and-terms to declarations-and-derivations.

As context entries ascribe properties to variables, so statements ascribe prop-
erties to expressions. Each entry corresponds directly to a statement: α : ∗ and
x :σ are both entries and statements, while α :=τ : ∗ corresponds to α ≡ τ :∗. A
context entry causes the corresponding judgment to hold, that is, the rule

Θ 3 J
Θ ` J

lookup

is admissible. Compare this to the variable rule of a type theory: as variables
embed in terms, so contextual properties of variables embed in judgments.

There is a systematic technique to ensure the stability of statements by con-
struction of the deduction system: the only rules using information from the

15

context should correspond to lookup, asserting that an entry in the context
holds as a statement. It is then enough to check that recursive hypotheses occur
in strictly positive positions, so they are stable by induction.

Lemma 2.2 (Stability). If Θ0 ` J then J is stable.

Proof. By structural induction on derivations.

Stability means that information increases are closed under composition, where
θ2 · θ1 is defined by applying θ2 to every type in θ1.

Lemma 2.3 (Category of contexts). Contexts form a category with information
increases as morphisms. In particular,

θ1 : Θ0 v Θ1 and θ2 : Θ1 v Θ2 ⇒ θ2 · θ1 : Θ0 v Θ2.

Proof. It is straightforward to verify that composition is associative and has iden-
tity ι. To show closure under composition, proceed by induction on Θ0.

If Θ0 is empty, then θ1 is trivial, so θ2 · θ1 is trivial. Moreover Θ1 consists only
of metavariable declarations, so the same applies to Θ2.

If Θ0 = Θ′0, α : ∗ then θ1 = θ′1, τ/α where θ′1 : Θ′0 v Θ1 and Θ1 ` τ : ∗. Now
induction gives θ2 · θ′1 : Θ′0 v Θ2 and Θ2 ` θ2 τ :∗ by stability, so θ2 · θ1 : Θ0 v Θ2

since θ2 · (θ1, τ/α) = (θ2 · θ1), (θ2 τ)/α. The case where Θ0 ends with a defined
metavariable is similar, using stability of the equality statement.

If Θ0 = Θ′0, x :σ then Θ1 = Θ′1, x : θ1 σ,Ξ1 and θ1 : Θ′0 v Θ′1. Similarly Θ2 =
Θ′2, x : (θ2 · θ1)σ,Ξ2 and θ2 : Θ′1 v Θ′2. Now induction gives θ2 · θ1 : Θ′0 v Θ′2.

Preserving structure in the context: the # separator

The unification and type inference algorithms given later will exploit the decla-
ration order in the context, moving declarations left as little as possible. Thus
the rightmost entries will be the ‘most local’. Moving a declaration left (making
it ‘more global’) reduces the choice of solutions, but increases the visibility of the
variable, widening its scope. The ordering constraints will be particularly useful
for implementing type inference for the let-expressions, in order to generalise over
‘local’ type variables but not ‘global’ variables.

A locality is a section of a context Θ that contains only metavariables, so term
variables and the marker # separate localities. The definition of metasubstitution
θ : Θ0 v Θ1 makes the localities of Θ0 and Θ1 correspond, so that declarations
in any prefix of Θ0 can be interpreted over the corresponding prefix of Θ1. Thus

16

if θ : Θ0 # Θ′0 v Θ then Θ = Θ1 # Θ′1 where θ|Θ0 : Θ0 v Θ1. (Here θ|Θ0 is the
metasubstitution θ restricted to the metavariables in Θ0.)

As a consequence, moving a metavariable ‘left of a # separator’, into a new
locality, is an irrevocable commitment. For example, Θ # α : ∗,Θ′ v Θ, α : ∗ # Θ′

holds but the converse direction does not.
The # separators do not affect the statements that are provable in a context,

however: Θ # Θ′ ` J if and only if Θ,Θ′ ` J .
Just as with # separators, given variables in the context are preserved by meta-

substitution, and their type schemes must be updated appropriately. It would be
possible for the definition of θ : Θ0 v Θ1 to require Θ1 to assign a term variable
x all the types that Θ0 assigns it, but allow x to become more polymorphic and
acquire new types. For example, the identity ‘information increase’

Θ, x :τ → τ v Θ, x :∀α. α→ α

could be permitted. This notion certainly retains stability: every variable lookup
can be simulated in the more general context. However, it allows term variables
to be assigned arbitrarily generalised type schemes, which are incompatible with
the known and intended value of those variables. As Wells (2002) points out,
Hindley-Milner type inference is not in this respect compositional. He carefully
distinguishes principal typings, given the right to demand more polymorphism,
from Milner’s principal type schemes and analyses how the language of types
must be extended to express principal typings.

2.1.3 Constraints: problems at ground mode

I have described the information-increasing steps that a problem-solving algo-
rithm can take, but how are problems themselves represented? Given any state-
ment J for which the corresponding sanity conditions of Lemma 2.1 hold, it is
reasonable to ask for the least information increase needed to make J hold.

Formally, a constraint problem is a pair of a context Θ0 and a statement J ,
where Θ0 ` San J . A solution to such a problem is then a context Θ1 and an
information increase θ : Θ0 v Θ1 such that Θ1 ` θ J . Such a solution is minimal
if, for any other solution θ′ : Θ0 v Θ′, there exists a metasubstitution ζ : Θ′ v Θ1

such that θ′ ≡ ζ · θ (say θ′ factors through θ with cofactor ζ).
In this setting, a unification problem is a constraint problem where J is an

equation, that is, a pair of a context Θ0 and an equation τ ≡ υ, where Θ0 ` τ :∗
and Θ0 ` υ :∗. A solution to the problem (a unifier) is given by a context Θ1 and

17

a metasubstitution θ : Θ0 v Θ1 such that Θ1 ` θ τ ≡ θ υ :∗. A minimal solution
is a most general unifier.

Information increase allows variables to become more informative either by
definition or by substitution. The algorithms presented here exploit only the
former, always choosing solutions of the form Θ0 v Θ1. However, I will show the
solutions are minimal with respect to arbitrary information increases: making
progress by definition alone is enough to capture all possible solutions.

Stability permits sound sequential problem solving: if θ0 : Θ0 v Θ1 solves J
and θ1 : Θ1 v Θ2 solves θ0 J

′ then θ1 · θ0 : Θ0 v Θ2 solves J ∧ J ′. Perhaps
more surprisingly, composite problems acquire minimal solutions similarly. This
allows a ‘greedy’ minimal commitment strategy for problem solving.3

Lemma 2.4 (The Optimist’s lemma). If θ0 : Θ0 v Θ1 is a minimal solution of
J and θ1 : Θ1 v Θ2 is a minimal solution of θ0 J

′ then θ1 · θ0 : Θ0 v Θ2 is a
minimal solution of J ∧ J ′.

Proof. Any solution ζ : Θ0 v Θ to (Θ0, J ∧ J ′) must solve (Θ0, J), and hence
factor through θ0 : Θ0 v Θ1. But its cofactor solves (Θ1, θ0 J

′), and hence factors
through θ1 : Θ1 v Θ2.

I will use this lemma to prove that the unification algorithm delivers most
general unifiers. It also expresses the underlying reason why type inference gives
principal solutions, although a more general result is needed there, because state-
ments have outputs and the second statement may depend on the first.

This sequential approach to problem solving is not the only decomposition
justified by stability. The account of unification by McAdam (1998) amounts to
a concurrent, transactional decomposition of problems. One context is extended
by multiple substitutions, which are then unified to produce a single substitution.

Another reassuring property of problem solving is that minimal solutions are
well-defined up to isomorphism. A metasubstitution θ : Θ v Θ′ is an isomorphism
if there exists θ−1 : Θ′ v Θ such that θ−1 · θ ≡ ι and θ · θ−1 ≡ ι. The following
lemma allows the contexts Θ0 and Θ1 to be replaced with the isomorphic Θ and
Θ′, while retaining minimality.

Lemma 2.5 (Isomorphism lemma). Suppose Θ, Θ′, Θ0 and Θ1 are contexts, J is
a well-formed statement in Θ0 and ζ : Θ v Θ0 and ζ ′ : Θ1 v Θ′ are isomorphisms.
If θ : Θ0 v Θ1 is a minimal solution of J then ζ ′ · θ · ζ : Θ v Θ′ is a minimal
solution of ζ−1 J .

3The ‘optimistic optimisation’ of McBride (1999).

18

Proof. Composition gives that ζ ′ · θ · ζ : Θ v Θ′ is a metasubstitution, and since
Θ1 ` θ J we have Θ′ ` ζ ′ (θ J) by stability (Lemma 2.2), so Θ′ ` (ζ ′ ·θ · ζ) (ζ−1 J).
Hence ζ ′ · θ · ζ is a solution of ζ−1 J .

To see that it is minimal, suppose θ′′ : Θ v Θ′′ is such that Θ′′ ` θ′′ (ζ−1 J).
Now θ′′ · ζ−1 is a solution of J , so by minimality of θ there must be some ζ ′′ such
that ζ ′′ : Θ1 v Θ′′ and ζ ′′ · θ ≡ θ′′ · ζ−1. Hence (ζ ′′ · ζ ′−1) · (ζ ′ · θ · ζ) ≡ θ′′ so the
required cofactor is ζ ′′ · ζ ′−1 : Θ′ v Θ′′.

2.2 Unification for the syntactic equational the-
ory

Having set the scene, I will now present the unification algorithm itself. The al-
gorithm starts by structurally decomposing a constraint into multiple constraints
on variables, which can be solved sequentially (by the Optimist’s lemma). Each
remaining constraint is either an equation between two variables (a flex-flex con-
straint) or between a metavariable and another type (a flex-rigid constraint).
Either way, it is solved by moving through the context from right to left (most
local to most global), updating the constraint or context appropriately.

For example, consider the context α : ∗, β : ∗, α′ := β : ∗, γ : ∗ and problem
α → β ≡ α′ → (γ → γ). This equation decomposes into two constraints on
variables, α ≡ α′ and β ≡ γ → γ. The first is solved thus:

α : ∗, β : ∗, α′ :=β, γ : ∗, [α ≡ α′]
α : ∗, β : ∗, α′ :=β, [α ≡ α′], γ : ∗
α : ∗, β : ∗, [α ≡ β], α′ :=β, γ : ∗

� α : ∗, β :=α, α′ :=β, γ : ∗

To solve α ≡ α′, the algorithm ignores γ since it does not occur in the
constraint, moves past α′ by updating the constraint to α ≡ β, then defines β.

Solving the flex-rigid constraint β ≡ γ → γ requires γ to be moved back
through the context, since it occurs in the constraint but cannot be instantiated:

α : ∗, β :=α, α′ :=β, γ : ∗, [β ≡ γ _ γ]
α : ∗, β :=α, α′ :=β, [γ : ∗ | β ≡ γ _ γ]
α : ∗, β :=α, [γ : ∗ | β ≡ γ _ γ], α′ :=β

α : ∗, [γ : ∗ | α ≡ γ _ γ], β :=α, α′ :=β

� γ : ∗, α :=γ _ γ, β :=α, α′ :=β

19

Here the algorithm ignores α′, moves past the definition of β by updating the
constraint to α ≡ γ → γ, then defines α after pasting in γ. In general, when
solving an ‘flex-rigid’ equation between a metavariable and a type, the algorithm
must accumulate the type’s dependencies as it finds them, performing the occurs
check to ensure a solution exists. This is how variables move outward through
localities, acquiring a more global relevance.

The unification algorithm is formally defined by the rules in Figure 2.5. Each
inference rule can be read clockwise from the bottom-left: the inputs to the rule
determine the inputs to the first premise, then the outputs from the first premise
determine the inputs to the second premise, and so on, until the outputs from all
the premises determine the outputs of the conclusion.

The unify judgment Θ0 ` τ ≡ υ : ∗ a Θ1 means that given inputs Θ0, τ and
υ, unification succeeds with solution Θ0 v Θ1. The inputs must satisfy the sanity
conditions Θ0 ` τ :∗ and Θ0 ` υ :∗. Symmetric variants of the inst and define
rules have been omitted.

The instantiate judgment Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 means that given inputs Θ0,
Ξ, α and τ , instantiating α with τ succeeds, yielding solution Θ0 v Θ1. The idea
is that the bar (|) represents progress in examining context elements in order,
and Ξ contains exactly those declarations on which τ depends. Formally, the
inputs must satisfy the following conditions, where the set fmv(τ) records those
metavariables occurring free in type τ .

Definition 2.1. The quadruple (Θ0,Ξ, α, τ) satisfies the input conditions if

• Θ0 ` α :∗ where α is a metavariable,

• Θ0,Ξ ` τ :∗ where τ is not a metavariable, and

• Ξ contains only metavariable declarations β :∗ with β ∈ fmv(τ).

The main point of these conditions is to ensure that Ξ contains only genuine
dependencies of τ , so moving Ξ back in the context will not sacrifice generality.

Observe that no rule applies to deduce

Θ0, α :∗ |Ξ ` α ≡ τ : ∗ a Θ1 with α ∈ fmv(τ),

where the algorithm fails. This is an occurs check failure: α and τ cannot unify if
α occurs in τ , and τ is not a variable. Given the single type constructor symbol
(the function arrow →), there are no failures due to rigid-rigid mismatch, but
adding these will not significantly complicate matters.

The unification algorithm is implemented in Appendix A.2 (page 200).

20

Θ0 ` τ ≡ υ : ∗ a Θ1 (unifying τ with υ in Θ0 results in Θ1)

Θ0 ` τ0 ≡ υ0 : ∗ a Θ1 Θ1 ` τ1 ≡ υ1 : ∗ a Θ2

Θ0 ` (τ0 → τ1) ≡ (υ0 → υ1) : ∗ a Θ2
decompose

τ non-variable Θ0 | · ` α ≡ τ : ∗ a Θ1

Θ0 ` α ≡ τ : ∗ a Θ1
inst

Θ, α :∗ ` α ≡ α : ∗ a Θ, α :∗
idle

α 6= β

Θ, α :∗ ` α ≡ β : ∗ a Θ, α :=β : ∗
define

Θ0 ` [τ/γ]α ≡ [τ/γ] β : ∗ a Θ1

Θ0, γ :=τ : ∗ ` α ≡ β : ∗ a Θ1, γ :=τ : ∗
subs

Θ0 ` α ≡ β : ∗ a Θ1 α 6= γ β 6= γ

Θ0, γ :∗ ` α ≡ β : ∗ a Θ1, γ :∗
skip-ty

Θ0 ` α ≡ β : ∗ a Θ1

Θ0, x :σ ` α ≡ β : ∗ a Θ1, x :σ
skip-tm

Θ0 ` α ≡ β : ∗ a Θ1

Θ0# ` α ≡ β : ∗ a Θ1#
skip-semi

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 (instantiating α with τ in Θ0, Ξ results in Θ1)

α /∈ fmv(τ)
Θ0, α :∗ |Ξ ` α ≡ τ : ∗ a Θ0,Ξ, α :=τ : ∗

inst-define

Θ0,Ξ ` [υ/β]α ≡ [υ/β] τ : ∗ a Θ1

Θ0, β :=υ : ∗ |Ξ ` α ≡ τ : ∗ a Θ1, β :=υ : ∗
inst-subs

Θ0 | β :∗,Ξ ` α ≡ τ : ∗ a Θ1 α 6= β β ∈ fmv(τ)
Θ0, β :∗ |Ξ ` α ≡ τ : ∗ a Θ1

inst-depend

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 α 6= β β /∈ fmv(τ)
Θ0, β :∗ |Ξ ` α ≡ τ : ∗ a Θ1, β :∗

inst-skip-ty

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1

Θ0, x :σ |Ξ ` α ≡ τ : ∗ a Θ1, x :σ
inst-skip-tm

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1

Θ0 # |Ξ ` α ≡ τ : ∗ a Θ1#
inst-skip-semi

Figure 2.5: Algorithmic rules for unification

21

2.2.1 Correctness of syntactic unification

The contextual problem-solving discipline I have introduced allows soundness to
be linked with generality, showing that unification produces minimal solutions.

Lemma 2.6 (Soundness and generality of unification).
(a) If Θ0 ` τ ≡ υ : ∗ a Θ1 then Θ0 v Θ1 is a minimal solution of τ ≡ υ.

(b) If Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 then Θ0,Ξ v Θ1 is a minimal solution of α ≡ τ .

Proof. By induction on the structure of derivations. The key idea is that the type
variables of Θ0 and Θ1 are the same, and whenever θ : Θ0 v Θ′ is a solution,
the definitions made in Θ1 must hold as equations in Θ′ for the problem to be
solved, so θ can be rearranged to produce the necessary cofactor ζ : Θ1 v Θ′. For
details, see Appendix D.1 (page 236).

A lemma about the occurs check is needed for completeness of unification.

Lemma 2.7 (Occurs check). Let α be a metavariable and τ a non-metavariable
type in Θ such that α ∈ fmv(τ). There is no context Θ′ and metasubstitution
θ : Θ v Θ′ such that Θ′ ` θ α ≡ θ τ : ∗.

Proof. Suppose otherwise. By expanding definitions in Θ′ we have a type con-
taining no defined metavariables that is equal to a proper subterm of itself, but
induction on the definition of equality shows that this is impossible.

Exposing the structure underlying unification makes termination of the al-
gorithm evident (McBride, 2003). Each unification or instantiation step either
shortens the overall context, shortens the uninspected context left of the bar (for
instantiation) or preserves the context and decomposes types.

Lemma 2.8 (Completeness of unification).
(a) If θ : Θ0 v Θ′, Θ0 ` υ : ∗ ∧ τ : ∗ and Θ′ ` θ υ ≡ θ τ : ∗, then there is some

context Θ1 such that Θ0 ` υ ≡ τ : ∗ a Θ1.

(b) Moreover, if θ : Θ0,Ξ v Θ′ is such that Θ′ ` θ α ≡ θ τ : ∗ and the input
conditions (Definition 2.1) are satisfied, then Θ0 |Ξ ` α ≡ τ : ∗ a Θ1.

Proof. Since the algorithm terminates, it suffices to show that it covers every case
such that a solution can exist. Each step preserves solutions: if the equation in a
conclusion can be solved, so can those in its premises. The only omitted case is

Θ0, α :∗ |Ξ ` α ≡ τ : ∗ a Θ1 with α ∈ fmv(τ),

but Lemma 2.7 implies that this has no solutions.

22

Θ ` t :σ (term t has type scheme σ in Θ)

Θ 3 x :σ Θ ` ctx
Θ ` x :σ

Θ, x :τ ` t :υ
Θ ` λx .t :τ → υ

Θ ` t :τ → υ
Θ ` s :τ

Θ ` t s :υ

Θ ` s :σ
Θ, x :σ ` t :σ′

Θ ` let x =s in t :σ′
Θ, α :∗ ` t :σ
Θ ` t :∀α. σ

Θ ` t :∀α. σ
Θ ` τ :∗

Θ ` t : [τ/α]σ

Θ ` t :τ
Θ ` τ ≡ υ : ∗

Θ ` t :υ

Figure 2.6: Declarative rules for type assignment

Θ ` σ � σ′ (σ is more general than σ′ in Θ)

Θ ` τ ≡ υ : ∗
Θ ` τ � υ

α /∈ fmv(σ)
Θ, α :∗ ` σ � σ′

Θ ` σ � ∀α. σ′

Θ ` τ :∗
Θ ` [τ/α]σ � υ

Θ ` ∀α. σ � υ

Figure 2.7: Generic instantiation for type schemes

2.3 Type inference with generalisation made easy

The deduction rules for the typing statement t :σ are given in Figure 2.6. Type
inference involves making this statement hold, but unlike unification, the type
should be an output of problem-solving along with the solution context. The def-
inition of constraint problems in Subsection 2.1.3 is insufficiently general. Instead,
each parameter in a statement has a mode, either ‘input’ or ‘output’.

A type inference problem consists of a context Θ0 and a term t; a solution is a
metasubstitution θ : Θ0 v Θ1 and a type τ such that Θ1 ` t : τ . Such a solution
is most general or minimal if any other solution (θ′ : Θ0 v Θ′, υ) factors through
it with cofactor ζ, such that Θ′ ` υ ≡ ζ τ : ∗.

Similarly, a type scheme inference problem consists of a context Θ0 and a
term t; a solution is a metasubstitution θ : Θ0 v Θ1 and a scheme σ such that
Θ1 ` t : σ. Such a solution is most general or minimal if any other solution
(θ′ : Θ0 v Θ′, σ′) factors through it with cofactor ζ such that Θ′ ` ζ σ � σ′.

Here σ � σ′ is the generic instantiation relation, defined in Figure 2.7, meaning

23

that any type which is an instance of σ′ is also an instance of σ.
Type schemes arise by quantifying a context suffix (a list of type metavari-

ables) Ξ over a type τ , written ∀Ξ.τ and defined by

∀ · .τ 7→ τ

∀(α :∗,Ξ).τ 7→ ∀α. (∀Ξ.τ)
∀(α :=υ : ∗,Ξ).τ 7→ [υ/α] (∀Ξ.τ)

Any scheme σ = ∀αi
i . τ can be viewed in this way, using the suffix αi :∗ i .

Lemma 2.9. Θ ` t : (∀Ξ.τ) if and only if Θ,Ξ ` t :τ .

Proof. Straightforward induction on Ξ.

2.3.1 The Generalist’s lemma

Recall that # markers divide the context into localities. In the type inference
algorithm, the metavariables that can be generalised are exactly those in the
current locality. This relies on the following lemma, which states that a minimal
solution to a type scheme inference problem can be found from a minimal solution
to a type inference problem.

Crucially, a substitution for variables in a locality cannot depend on variables
in a ‘more local’ one: for example, [β/α, β/β] : α :∗ # β :∗ v · # β :∗ is forbidden.
This allows any θ : Θ # Ξ v Θ′ # Ξ′ to be restricted to variables in Θ, so that
θ|Θ : Θ v Θ′.

Lemma 2.10 (The Generalist’s lemma). If θ : Θ0# v Θ1 #Ξ is a minimal solution
of the type inference problem for t with output τ , then θ : Θ0 v Θ1 is a minimal
solution of the type scheme inference problem for t with output ∀Ξ.τ .

Proof. If θ : Θ0# v Θ1 # Ξ then θ : Θ0 v Θ1 by definition of v. Furthermore,
Θ1 ` t : (∀Ξ.τ) holds iff Θ1 # Ξ ` t :τ by Lemma 2.9.

For minimality, suppose θ′ : Θ0 v Θ′ is an information increase and ∀αi
i . υ is a

scheme such that Θ′ ` t :∀αi
i . υ. Then Θ′, αi :∗ i ` t :υ. Now θ′ : Θ0# v Θ′ #αi :∗ i

and Θ′ # αi :∗ i ` t : υ, so by minimality of the hypothesis there is a cofactor
ζ : Θ1 # Ξ v Θ′ # αi :∗ i such that θ′ = ζ · θ and Θ′ # αi :∗ i ` ζ τ ≡ υ : ∗. Then
ζ|Θ1 : Θ1 v Θ′, θ′ ≡ ζ|Θ1 · θ and Θ′ ` ζ|Θ1 (∀Ξ.τ) � ∀αi

i . υ as required.

2.3.2 Transforming type assignment into type inference

The typing rules in Figure 2.6 do not directly lead to a type inference algorithm,
as they permit unrestricted generalisation and instantiation of type schemes. To

24

Θ ` t :τ

Θ 3 x :σ Θ ` σ � τ

Θ ` x :τ
var

Θ, x :τ ` t :υ
Θ ` λx .t :τ → υ

lam

Θ ` s :τ ′ → τ Θ ` t :τ ′

Θ ` s t :τ
app

Θ # Ξ ` s :υ Θ, x : (∀Ξ.υ) ` t :τ
Θ ` let x =s in t :τ

let

Figure 2.8: Transformed rules for type assignment

resolve this, an equivalent system (assigning types rather than type schemes) is
given in Figure 2.8, where instantiation occurs only at variables, and generalisa-
tion at let-bindings. This transformation is well known: a clear presentation is
given by Clément et al. (1986) resulting in the rules of Figure 2.1.

From the transformed rules, an algorithm can be constructed to match. To
convert a rule into algorithmic form, proceed clockwise starting from the inputs
to the conclusion. For each premise, ensure that the problem inputs are fully
specified (by the inputs to the conclusion and the outputs of previous premises),
inserting metavariables to stand for unknown inputs. Instead of pattern matching
on problem outputs, ensure there are schematic variables in output positions, and
reintroduce unification constraints as necessary.

The type inference judgment Θ0 ` t : τ a Θ1 and the scheme inference
judgment Θ0 ` t : σ a Θ1 are defined by the rules in Figure 2.9. As they are
structural on terms, they yield a terminating algorithm. The Optimist’s lemma
means that sequential solution of problems delivers a minimal solution, and the
Generalist’s lemma makes it easy to reduce type scheme inference problems to
type inference problems.

The λ-rule now generates a metavariable for the argument type. The rule for
application assigns types to the function and argument separately, then inserts
an equation with a fresh name for the codomain type.

The type inference algorithm is implemented in Appendix A.3 (page 202).

2.3.3 Correctness of type inference

Since the algorithmic rules correspond directly to the transformed declarative
system in Figure 2.8, it is easy to prove soundness, completeness and generality
of type inference with respect to this system.

25

Θ0 ` t : σ a Θ1 (term t in context Θ0 has inferred scheme σ in context Θ1)

Θ0# ` t : τ a Θ1 # Ξ
Θ0 ` t : (∀Ξ.τ) a Θ1

infer-gen

Θ0 ` t : τ a Θ1 (term t in context Θ0 has inferred type τ in context Θ1)

x : (∀αi
i . υ) ∈ Θ0

Θ0 ` x : υ a Θ0, αi :∗ i infer-var

Θ0, α :∗, x :α ` t : τ a Θ1, x :α,Ξ
Θ0 ` λx .t : α→ τ a Θ1,Ξ

infer-lam

Θ0 ` s : υ a Θ1 Θ1 ` t : υ′ a Θ2 Θ2, α :∗ ` υ ≡ υ′ → α : ∗ a Θ3

Θ0 ` s t : α a Θ3
infer-app

Θ0 ` s : σ a Θ1 Θ1, x :σ ` t : τ a Θ2, x :σ,Ξ
Θ0 ` let x =s in t : τ a Θ2,Ξ

infer-let

Figure 2.9: Algorithmic rules for type inference

Lemma 2.11 (Soundness and generality of type inference). If Θ0 ` t : τ a Θ1,
then Θ0 v Θ1 is a minimal solution to the type inference problem for t with output
τ . Similarly, if Θ0 ` t : σ a Θ1 then Θ0 v Θ1 is a minimal solution to the type
scheme inference problem for t with output σ.

Proof. By induction on derivations, using the Optimist’s lemma (2.4) and Gen-
eralist’s lemma (2.10). For details, see Appendix D.1 (page 237).

Lemma 2.12 (Completeness of type inference).

(a) If (Θ0, t) is a type inference problem with solution (θ : Θ0 v Θ′, υ), then
Θ0 ` t : τ a Θ1 for some Θ1 and τ .

(b) If (Θ0, t) is a scheme inference problem with solution (θ : Θ0 v Θ′, σ′), then
Θ0 ` t : σ a Θ1 for some Θ1 and σ.

Proof. By induction on the derivation of Θ′ ` t :υ or Θ′ ` t :σ′ in the transformed
declarative system of Figure 2.8. Each case corresponds directly to an algorithmic
rule. For details, see Appendix D.1 (page 238).

26

2.4 Elaboration, zipper style

Elaboration is a step beyond type inference, where instead of merely generating
a type corresponding to the source term, a representation of the term in a more
explicit calculus is generated. This might seem excessive for the simple Hindley-
Milner system, but for more complex type systems (particularly those involving
dependent types) the distinction is helpful. In Chapter 7, I will discuss elaboration
of a Haskell-like language. Here, to introduce the idea of elaboration, I show how
to elaborate Hindley-Milner terms into explicitly-typed predicative System F.
This algorithm is implemented in Appendix A.4 (page 204).

The grammar of System F terms is

e ::= x | λx :σ.e | Λα :∗.e | e e′ | e τ

where λ-bound variables have type annotations, and type abstraction and ap-
plication are explicit. The type system is standard, and hence omitted; it is
essentially a syntax-directed version of the declarative system in Figure 2.6.

So far in this chapter, the context structure has carried the ‘linguistic’ context
of term variables and type metavariables, but the type inference algorithm has
separately managed the ‘syntactic’ context (the structure of the term). Variable
bindings and the # marker are vestiges of the syntactic context: a variable rep-
resents the fact that type inference is taking place under a λ- or let-binding, and
a # marker represents ‘being under a let-definiens’. Let me take this idea to its
natural conclusion, identifying the syntactic and linguistic contexts into a single
data structure that represents progress through a type inference problem.

Huet (1997) taught us how to use a ‘zipper’ data structure to represent a
position in a tree, such as a term. The path to the current location is represented
as a list of layers, where each layer corresponds to choosing a single branch at
a node, and stores the subtrees rooted at the other branches. McBride (2001)
observed that the type of the zipper can be computed by differentiation, and
further refined the structure to represent left-to-right progress through a term
(McBride, 2008). Terms ‘to the left’ of the current location have been elaborated
to a typed System F term, while those ‘to the right’ have not yet been visited.
Thus the syntax of layers is given by

` ::= []t | (e :τ)[] | λx :τ.[] | let x =[] in t | let x :σ=e in []

where a hole [] represents the current position. Contexts are adapted to include
layers rather than variables or # markers:

Θ ::= · | Θ, α :∗ | Θ, α :∗ := τ | Θ, `

27

Θ ↓ x 7→ Θ, αj :∗ j ↑ x αj
j : τ if Θ 3 x :∀αj

j . τ

Θ ↓ s t 7→ Θ, []t ↓ s
Θ ↓ λx .t 7→ Θ, α :∗, λx :α.[] ↓ t
Θ ↓ let x =s in t 7→ Θ, let x =[] in t ↓ s

Θ, λx :υ.[],Ξ ↑ e : τ 7→ Θ,Ξ ↑ λx :υ.e : υ → τ

Θ, let x =[] in t,Ξ ↑ e : τ 7→ Θ, let x :∀Ξ.τ=ΛΞ.e in [] ↓ t
Θ, let x :σ=e′ in [],Ξ ↑ e : τ 7→ Θ,Ξ ↑ (λx :σ.e) e′ : τ
Θ, []t,Ξ ↑ e : τ 7→ Θ,Ξ, (e :τ)[] ↓ t
Θ, (e′ :υ)[],Ξ ↑ e : τ 7→ Θ′ ↑ e′ e : β

where Θ,Ξ, β :∗ ` υ ≡ τ → β : ∗ a Θ′

Figure 2.10: Elaboration as state-transformation

Now that Θ represents the entire context of an elaboration problem, elabo-
ration can be implemented tail-recursively as an state-transforming automaton.
Figure 2.10 shows the elaboration algorithm. It is divided into two modes:

• The ‘downwards’ mode Θ ↓ t takes a context and a source term which is
being elaborated. If it is a variable, control switches to the ‘upwards’ mode,
otherwise it moves into an appropriate subterm by extending the context.

• The ‘upwards’ mode Θ ↑ e : τ takes a context and an elaborated System F
term with its type. It examines the context to move outwards, refocus on
the next subterm to elaborate, then switch back to downwards mode.

The algorithm should be invoked in downwards mode with the empty context
and the original term to be elaborated. Eventually, if the term is well-typed, the
upwards mode will run out of layers and terminate with the elaborated version
of the term and its type.

This explicit representation of partial progress through an elaboration problem
is very useful when constraints cannot always be solved immediately, as in a
dependently typed setting. Elaboration is no longer a left-to-right march through
the term structure, but may involve back-and-forth refocusing as the elaborator
finds places where progress can be made. This is the basis of the implementation
of elaboration in Epigram.

28

2.5 Discussion

In this chapter, I have given an implementation of Hindley-Milner type inference
involving all the same steps as Algorithm W , but not necessarily in the same
order. In particular, the dependency panic that seizes W in the let-rule becomes
an invariant that the unification algorithm maintain a well-founded context.

The algorithm is presented as a problem transformation system locally pre-
serving solutions, hence finding a most general global solution if any solutions
exist at all. Accumulating solutions to decomposed problems is justified simply
by stability of solutions on information increase. The discipline of problem solv-
ing established here is happily complete for Hindley-Milner type inference, but
in any case couples soundness with generality.

Maintain context validity, make definitions anywhere and only where there
is no choice, so the solutions you find will be general and generalisable locally:
this is a key design principle for elaboration of high-level code in systems like
Epigram and Agda, and bugs arise from its transgression. The account given
here of ‘current information’ in terms of contexts and their information ordering
provides a principled means to investigate and repair these troubles.

There is, however, some way to go. Algorithm W is a conveniently structural
type inference process for ‘finished’ expressions in a setting where unification is
complete. Each subproblem is either solved or rejected on first inspection—there
is never a need for a ‘later, perhaps’ outcome. As a result, ‘direct style’ recursive
programming is adequate to the task. If problems could get stuck, how might an
algorithm abandon them and return to them later? By storing their context, of
course! In Chapter 4, I will take exactly this approach to deal with higher-order
unification problems.

First, though, I will extend the framework in another direction: handling units
of measure with the equational theory of abelian groups. Variable dependency
becomes more subtle in the presence of a nontrivial equational theory, and so
maintaining a well-founded context (in order to make generalisation straightfor-
ward) is even more crucial.

29

2.5.1 Related work

The idea of assertions consuming an input context and producing an output
context goes back at least to Pollack (1990). Nipkow and Prehofer (1995) use
unordered input and output contexts to pass information about Haskell typeclass
inference, with a conventional substitution-based presentation of unification.

The work of Dunfield and Krishnaswami (2013) on higher-rank polymorphism
in a bidirectional type system, based on earlier work by Dunfield (2009), uses well-
founded contexts that contain existential type variables (amongst other things).
They rely on a notion of context extension in a similar way to my definition of in-
formation increase between input and output contexts, and while their treatment
of unification is different (since they are dealing with subtyping for higher-rank
polymorphism, rather than let-generalisation) there are some similarities with the
approach I have described.

An alternative approach to generalisation, used in some ML implementations
for the sake of efficiency, involves assigning numeric ‘ranks’ to type variables
based on the number of bindings they are introduced under, then generalising
over variables whose rank is sufficiently large. Rémy (1992) implemented an
algorithm based on counting let-bindings as part of the OCaml typechecker, and
Kiselyov (2013) gives a clear explanation of Rémy’s algorithm which relates it to
region-based memory management. Kuan and MacQueen (2007) formalised and
compared approaches that count let- and λ-bindings; they attribute the idea for
counting λ-bindings to Damas (1984). The algorithm I described manages ranks
implicitly, by representing type variables in an ordered context, in which the #
marker corresponds to increasing the rank.

30

Chapter 3

Unification and type inference for
units of measure

In the previous chapter, I described a ‘problem solving’ rationalisation of syn-
tactic unification and Hindley-Milner type inference that provides a more refined
account of dependency analysis. Term and type variables live in a dependency-
ordered context. Problems are solved in small steps, each of which is most general
and involves minimal extra dependency. This makes let-generalisation particu-
larly easy: simply ‘skim off’ generalisable type variables from the end of the
context, as nothing can depend on them.

I now move on to consider one of the many extensions of the Hindley-Milner
system, namely units of measure in the style of Kennedy (1996a,b, 2010). My
approach to type inference gives a clearer account of the subtle issues surrounding
generalisation in the presence of a nontrivial equational theory on types. This
chapter is based on work presented at TFP 2011 (Gundry, 2011). A Haskell im-
plementation of the unification algorithm described here is given in Appendix B.

Consider this Haskell function, traditionally of type Float→ Float:

distanceTravelled t = velocity ∗ t + (acceleration ∗ t ∗ t) / 2
where {velocity = 2.0; acceleration = 3.6}

Kennedy (1996b) shows how to check units of measure for such terms: with
velocity and acceleration annotated with their units (m ∗ s−1 and m ∗ s−2), the
system could infer the type Float〈s〉 → Float〈m〉 for the whole function. Type
inference relies on unification, but units need a more liberal equational theory
than syntactic equality, as m ∗ s−1∗s should mean the same thing as m. Kennedy
uses the theory of abelian groups. He has introduced units of measure with
polymorphism into the functional programming language F# (Syme, 2010).

3.0.1 A troublesome example

Algorithm W relies on dependency analysis for let-generalisation. Using the
occurs check to identify generalisable variables (those that are free in the type but
not the typing environment) is problematic for the equational theory of abelian
groups, as variable occurrence does not imply variable dependency. Later I will
show another way of looking at this: given the equation α ≡ τ , where α is a
metavariable and τ is a type, the solution [τ/α] is not necessarily most general!
In this chapter, I will give an analysis of dependency that exposes and resolves
the difficulties with generalisation.

Kennedy (2010, p. 292) gives the example (notation adapted):

λx .let y =div x in (y mass, y time), where

div :∀α :U .∀β :U .F〈α ∗ β〉 → F〈α〉 → F〈β〉, mass :F〈kg〉, time:F〈s〉.

Here F〈ν〉 is a type of numbers with units ν, defined in Subsection 3.0.2. If
one adds constraint solving for units to Algorithm W with the usual occurrence-
based let-generalisation rule, the resulting algorithm fails to infer a type for this
term, because polymorphism is lost: y is given the monotype F〈α〉 → F〈β ∗ α−1〉
where α and β are unification metavariables, and α cannot unify with kg and s.
However, if y is given its principal type scheme ∀α :U .F〈α〉 → F〈β ∗ α−1〉, then
the term has type F〈β〉 → (F〈β ∗ kg−1〉,F〈β ∗ s−1〉), as described in Section 3.3.

The difficulty is that the algorithm fails to assign principal type schemes to
open terms because of the nontrivial equational theory on types. One way around
this difficulty is to apply a generaliser, “a substitution that ‘reveals’ the polymor-
phism available under a given type environment”1, due to Kennedy (1996a) and
Rittri (1995). Such a substitution preserves types in the context (up to the equa-
tional theory) but rearranges group variables so that the Algorithm W general-
isation rule can be used. Calculating a generaliser is specific to the equational
theory and technically nontrivial. It is not implemented in F#, so Kennedy’s
example does not type check:

> fun x -> let y z = x / z in (y mass, y time) ;;
---^^^^
error FS0001: Type mismatch.
Expecting a float<kg> but given a float<s>
The unit of measure ’kg’ does not match the unit of measure ’s’

1Kennedy (1996a, p. 23)

32

Term variables x , y
Type metavariables α, β, γ
Kinds κ ::= ∗ | U
Contexts Θ ::= · | Θ, α :κ | Θ, α :=ρ : κ | Θ, x :σ | Θ#
Suffixes Ξ ::= · | Ξ, α :κ | Ξ, α :=ρ : κ
Unit suffix Υ ::= · | α : U
Type expressions ρ ::= α | ρ→ ρ′ | F〈ρ〉 | b | 1 | ρ ∗ ρ′ | ρ−1

Types τ, υ ::= α | τ → υ | F〈ν〉
Units ν ::= α | b | 1 | ν ∗ ν ′ | ν−1

Base units b ::= kg | m | s | · · ·
Type schemes σ ::= ρ | ∀α :κ. σ
Terms t, s ::= x | λx .t | s t | let x =s in t
Statements J ::= ctx | σ :κ | ρ ≡ ρ′ :κ | t :σ | σ � σ′ | J ∧ J ′

Figure 3.1: Syntax

3.0.2 Extending the framework

In this chapter I extend the unification algorithm from Chapter 2 (and hence
type inference) to the theory of abelian groups. Mistaking occurrence for de-
pendency will show up as the source of the difficulty described above, leading to
a straightforward solution. With more structure in the context than just typ-
ing assumptions, it is easier to see where generality can be lost, and the loss of
polymorphism can be avoided in the first place instead of recovered after the fact.

The syntax of contexts, expressions and statements is given in Figure 3.1. As
before, a context is a list of metavariable declarations α :κ, definitions α :=ρ : κ,
term variable declarations x :σ and # markers. Now, however, metavariables may
have kind ∗ (a type) or U (a unit). Similarly, type schemes record the kind of
quantified variables, and the typing and equality statements include kinds. For
example,

α :∗, β : U , x : (∀γ :U . α→ F〈β ∗ γ〉)

is a valid context. A common syntax of type expressions ρ has subgrammars for
types τ and units ν.

Figure 3.2 gives rules to construct a valid context and interpret variables in
the context. These are similar to the rules for the Hindley-Milner system from the
previous chapter (Figure 2.3, page 12), with the addition of the kind U . Types are
extended to include a single new type F〈ν〉 representing a numeric type indexed
by a unit ν. A real implementation would allow user-defined unit-indexed types,
but one suffices for illustration.

33

Θ ` ctx (Θ is a valid context)

· ` ctx

α#Θ
Θ ` ctx

Θ, α :κ ` ctx

α#Θ
Θ ` ρ :κ

Θ, α :=ρ : κ ` ctx

x#Θ
Θ ` σ :∗

Θ, x :σ ` ctx
Θ ` ctx
Θ# ` ctx

Θ ` σ :κ (σ is a well-formed scheme of kind κ in Θ)

Θ 3 α :κ
Θ ` α :κ

Θ ` τ :∗ Θ ` υ :∗
Θ ` τ → υ :∗

Θ ` ν :U
Θ ` F〈ν〉 :∗

Θ, α :κ ` σ :∗
Θ ` ∀α :κ. σ :∗

Θ ` b :U
Θ ` ν :U Θ ` ν ′ :U

Θ ` ν ∗ ν ′ :U
Θ ` ν :U

Θ ` ν−1 :U Θ ` 1:U

Figure 3.2: Rules for context validity and well-formed type schemes

θ : Θ0 v Θ1 (θ is a metasubstitution from Θ0 to Θ1)

[] : · v Ξ
θ : Θ0 v Θ1 Θ1 ` ρ :κ
(θ, ρ/α) : Θ0, α :κ v Θ1

θ : Θ0 v Θ1 Θ1 ` ρ ≡ θ ρ′ :κ
(θ, ρ/α) : Θ0, α :=ρ′ : κ v Θ1

θ : Θ0 v Θ1

θ : Θ0, x :σ v Θ1, x :θ σ,Ξ
θ : Θ0 v Θ1

θ : Θ0# v Θ1 # Ξ

θ ≡ θ′ :Θ0 v Θ1 (θ and θ′ are equivalent metasubstitutions from Θ0 to Θ1)

· ≡ · : · v Θ1

θ ≡ θ′ :Θ0 v Θ1 Θ1 ` ρ ≡ ρ′ :κ
(θ, ρ/α) ≡ (θ′, ρ′/α) :Θ0, α :κ v Θ1

θ ≡ θ′ :Θ0 v Θ1 Θ1 ` ρ ≡ ρ′ :κ Θ1 ` ρ′ ≡ θ ρ′′ :κ
(θ, ρ/α) ≡ (θ′, ρ′/α) :Θ0, α :=ρ′′ : κ v Θ1

θ ≡ θ′ :Θ0 v Θ1

θ ≡ θ′ :Θ0, x :σ v Θ1, x :θ σ,Ξ
θ ≡ θ′ :Θ0 v Θ1

θ ≡ θ′ :Θ0# v Θ1 # Ξ

Figure 3.3: Rules for metasubstitutions

34

The updated rules for metasubstitutions are given in Figure 3.3. These are
obvious extensions of the rules given in Subsection 2.1.2 (page 14).

Recall that a statement J is an assertion that can be judged in a context. The
syntax of statements from the previous chapter is extended with kind information,
and the sanity conditions (Lemma 2.1) are updated appropriately:

Lemma 3.1 (Sanity conditions). If Θ ` J then Θ ` San J , where

San ctx 7→ ctx
San (σ :κ) 7→ ctx

San (τ ≡ υ :κ) 7→ τ :κ ∧ υ :κ
San (t :σ) 7→ σ :∗

San (σ � σ′) 7→ σ :∗ ∧ σ′ :∗
San (J ∧ J ′) 7→ San J ∧ San J ′

Proof. By structural induction on derivations.

The key results from the previous chapter, stability (Lemma 2.2, page 16),
the category structure of contexts (Lemma 2.3, page 16), the Optimist’s lemma
(Lemma 2.4, page 18) and the isomorphism lemma (Lemma 2.5, page 18) apply
to the updated notions of statement and metasubstitution without modification.

3.1 Unification for the theory of abelian groups

I now consider abelian group unification problems in the framework. The syntax
of types τ is extended with units of measure ν given by

ν ::=
| α metavariable
| b base unit
| 1 identity
| ν ∗ ν ′ product of units
| ν−1 inverse

where b ranges over some set of base units, which would be user-defined in a real
system for units of measure. Note that units of measure ν are just type expressions
of kind U , but the typing rules ensure they must belong to this grammar.

The rules for equivalence of types and units are given in Figure 3.4: reflexivity,
symmetry, transitivity and congruence, plus the four abelian group axioms of
commutativity, associativity, inverses and identity.

35

Θ ` ρ ≡ ρ′ :κ (ρ and ρ′ are equal expressions of kind κ in Θ)

Θ ` ρ :κ
Θ ` ρ ≡ ρ :κ

Θ ` ρ ≡ ρ′ :κ
Θ ` ρ′ ≡ ρ :κ

Θ ` ρ0 ≡ ρ1 :κ
Θ ` ρ1 ≡ ρ2 :κ
Θ ` ρ0 ≡ ρ2 :κ

Θ ` ctx
Θ 3 α :=ρ : κ
Θ ` α ≡ ρ :κ

Θ ` τ ≡ υ :∗
Θ ` τ ′ ≡ υ′ :∗

Θ ` τ → τ ′ ≡ υ → υ′ :∗
Θ ` ν ≡ ν ′ :U

Θ ` F〈ν〉 ≡ F〈ν ′〉 :∗

Θ ` ν0 ≡ ν2 :U
Θ ` ν1 ≡ ν3 :U

Θ ` ν0 ∗ ν1 ≡ ν2 ∗ ν3 :U

Θ ` ν0 ≡ ν1 :U
Θ ` ν0

−1 ≡ ν1
−1 :U

Θ ` ν :U
Θ ` 1 ∗ ν ≡ ν :U

Θ ` ν :U Θ ` ν ′ :U
Θ ` ν ∗ ν ′ ≡ ν ′ ∗ ν :U

Θ ` ν0 :U Θ ` ν1 :U Θ ` ν2 :U
Θ ` (ν0 ∗ ν1) ∗ ν2 ≡ ν0 ∗ (ν1 ∗ ν2) :U

Θ ` ν :U
Θ ` ν ∗ ν−1 ≡ 1:U

Figure 3.4: Declarative rules for unit equivalence

Let νk mean ν multiplied by itself k times and ν(−k) mean (νk)−1. Units have
a normal form ∏

νi ki
i representing the product of some distinct atoms (variables

or constants) νi , each raised to a nonzero integer power ki . For example, the
expression α ∗ α ∗ β ∗ 1 ∗ β ∗ α has normal form α3 ∗ β2.

Consider the equation α3 ∗ β2 ≡ 1 in the context α : U , β : U . As 2 does
not divide 3, β cannot be defined to solve this equation, but the problem can
be simplified by taking β := γ ∗ α−1 where γ is a fresh variable. This leaves
α ∗ γ2 ≡ 1 in the context α : U , γ : U , which is solved by rearranging and defining
α := γ−2. Thus the solution is γ : U , α := γ−2 : U , β := γ ∗ α−1 : U , and indeed
α3 ∗ β2 ≡ (γ−2)3 ∗ (γ ∗ α−1)2

≡ γ−6 ∗ γ6 ≡ 1. Along the way, the least common
multiple of 2 and 3 has been calculated.

More generally, when solving such an equation, one can ask whether a variable
has the largest power, and if not, reduce the other powers by it to simplify the
problem. Some notation is in order. Suppose ν ≡ ∏

νi ki
i , and define:

maxpow(ν) = max{ | ki | : νi metavariable}, highest absolute variable power;
Qk(ν) = ∏

νi (ki quot k) i
, quotient by k of every power;

Rk(ν) = ∏
νi (ki rem k) i

, remainder by k of every power;

where quot is truncated integer division and rem is the corresponding remainder.
The point is that ν ≡ (Qk(ν))k ∗ Rk(ν) and maxpow(Rk(ν)) < k.

36

Θ0 ‖Υ ` ν ≡ 1 : U a Θ1 (unifying ν with 1 in Θ0, Υ results in Θ1)

Θ ‖ · ` 1 ≡ 1 : U a Θ
u-trivial

Θ0 ‖Υ ` ν ≡ 1 : U a Θ1

Θ0 # ‖Υ ` ν ≡ 1 : U a Θ1#
u-skip-semi

α /∈ fmv(ν) Θ0 ‖Υ ` ν ≡ 1 : U a Θ1

Θ0, α :κ ‖Υ ` ν ≡ 1 : U a Θ1, α :κ
u-skip-ty

Θ0 ‖Υ ` ν ≡ 1 : U a Θ1

Θ0, x :σ ‖Υ ` ν ≡ 1 : U a Θ1, x :σ
u-skip-tm

Θ0, Υ ‖ · ` [ρ/α] ν ≡ 1 : U a Θ1

Θ0, α :=ρ : κ ‖Υ ` ν ≡ 1 : U a Θ1, α :=ρ : κ
u-subs

k 6= 0
Θ, α : U ‖Υ ` αk ∗ νk ≡ 1 : U a Θ, Υ, α :=ν−1 : U

u-define

| k | ≤ maxpow(ν) β fresh
Θ0, Υ ‖ β : U ` βk ∗ Rk(ν) ≡ 1 : U a Θ1

Θ0, α : U ‖Υ ` αk ∗ ν ≡ 1 : U a Θ1, α :=β ∗ Qk(ν) : U
u-reduce

| k | > maxpow(ν) Θ0 ‖α : U ` αk ∗ ν ≡ 1 : U a Θ1

Θ0, α : U ‖ · ` αk ∗ ν ≡ 1 : U a Θ1
u-collect

Figure 3.5: Algorithmic rules for abelian group unification

3.1.1 The abelian group unification algorithm

In this subsection, I give a new algorithm for unification problems ν ≡ ν ′ :U . The
inverse operation means it suffices to solve problems ν ≡ 1:U .

Figure 3.5 shows the algorithm presented as a collection of inference rules.
Given a context Θ0, Υ and a unit ν, the judgment Θ0 ‖Υ ` ν ≡ 1 : U a Θ1 means
that the algorithm outputs the context Θ1 such that Θ1 ` ν ≡ 1 :U . Note that
the rules are entirely syntax-directed (up to the equational theory for units): at
most one rule applies for any possible initial context and unit. They lead directly
to an implementation, which is given in Appendix B.3 (page 210).

So how does the algorithm work? If the problem is 1 ≡ 1, then it is solved by
u-trivial. Otherwise, the algorithm moves back through the context, skipping
over (meta)variables that do not occur in the problem using u-skip-ty or u-
skip-tm, and moving through localities using u-skip-semi.

37

The suffix Υ will either be empty (written ·) or contain only the unknown
variable with the strictly largest power in ν, if any. The u-reduce and u-
collect rules move this variable back in the context, since there is no useful
simplification that can be applied to it. Other rules will insert the variable into
the context when it no longer has the largest power.

The interesting cases arise when a metavariable α, that occurs in the problem,
in reached. This is written αk ∗ν ≡ 1, always meaning that α /∈ fmv(ν). Suppose
the normal form of ν is ∏

νi ki
i . There are four possibilities, either:

(1) k divides ki for all i;

(2) ν has at least one variable and | k | ≤ maxpow(ν) but case (1) does not
apply;

(3) ν has at least one variable and | k | > maxpow(ν); or

(4) ν has no variables.

Case (1). If k divides ki for all i, then there is some ν0 such that ν ≡ ν0
k .

The rule u-define applies and sets α :=ν0
−1 : U to give

αk ∗ ν ≡ αk ∗ ν0
k ≡ (ν0

−1)k ∗ ν0
k
≡ 1.

This is clearly a solution, and it is most general for the free abelian group.
Case (2). If not, and | k | ≤ maxpow(ν), then the u-reduce rule applies

and simplifies the problem by reducing the powers modulo k. Recall that we
have ν ≡ (Qk(ν))k ∗ Rk(ν) where Qk(ν) takes the quotient by k of the powers in
ν. Hence, generating a fresh variable β and defining α :=β ∗ Qk(ν)−1 gives

αk ∗ ν ≡ (β ∗ Qk(ν)−1)k ∗ ν ≡ βk ∗ Qk(ν)−k ∗ ν ≡ βk ∗ Rk(ν).

Case (3). Suppose | k | > maxpow(ν), so neither of the two previous cases
apply, but there is at least one variable in ν. Now k is the largest power of a
variable, so reducing the powers modulo k would leave them unchanged. Instead,
the u-collect rule moves α further back in the context. This rule maintains
the invariant that Υ contains only the variable with the largest power, if any; the
invariant also guarantees that Υ will be empty when the rule applies.

Case (4). If ν has no variables and k does not divide the powers of the
constants in ν, then αk ∗ ν ≡ 1 has no solution in the free abelian group.

38

3.1.2 Correctness of abelian group unification

The problem-solving apparatus introduced in Subsection 2.1.3 carries over with-
out change to this new setting, where the language of statements is more general.
In particular, abelian group unification delivers minimal solutions.

Lemma 3.2 (Soundness and generality of abelian group unification). If the group
unification algorithm succeeds with Θ0 ‖Υ ` ν ≡ 1 : U a Θ1, then Θ0, Υ v Θ1 is
a minimal solution of ν ≡ 1:U .

Proof. By induction on derivations, using the isomorphism lemma (Lemma 2.5).
For details, see Appendix D.2 (page 239).

Lemma 3.3 (Completeness of abelian group unification). If ν is a well-formed
unit of measure in Θ0, and there is some θ : Θ0 v Θ′ such that Θ′ ` θ ν ≡ 1 :U ,
then the algorithm produces Θ1 such that Θ0 ‖ · ` ν ≡ 1 : U a Θ1.

Proof. A suitable metric shows that the algorithm terminates. Completeness is
by the fact that the rules cover all solvable cases and preserve solutions: if no
rule applies then the original problem can have had no solutions. This occurs if
a constant is equated to 1 (e.g. kg ∗ s ≡ 1) or there is one variable and its power
does not divide the power of one of the constants (e.g. α2 ∗ kg ≡ 1). For details,
see Appendix D.2 (page 239).

3.2 Unification for types with units of measure

Having developed a unification algorithm for abelian groups, I now extend type
unification to support units of measure, calling group unification from Section 3.1
as a subroutine to solve constraints on units. As in the type unification algorithm
of the previous chapter (Figure 2.5, page 21), there are two kinds of rules:

• ‘Unify’ steps start the process: given an input context Θ0 and well-formed
types τ and υ, the judgment Θ0 ` τ ≡ υ : ∗ a Θ1 means that the unification
problem τ ≡ υ :∗ is solved with output context Θ1.

• ‘Instantiate’ steps handle flex-rigid unification problems:2 given a context
Θ0,Ξ, a type metavariable α in Θ0 and a well-formed non-variable type τ
over Θ0,Ξ, the judgment Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 means that the problem

2Recall that a flex-rigid problem is to unify a variable and a non-variable expression; a
flex-flex problem has two variables and a rigid-rigid problem has two non-variables.

39

α ≡ τ : ∗ is solved with output context Θ1. The context suffix Ξ collects
metavariable declarations that τ depends on but that cannot be used to
solve the problem.

Compared to the previous chapter, the language of types (of kind ∗) now
includes a single new type F〈ν〉 of numbers parameterised by units. I therefore
add a type unification rule that invokes abelian group unification:

Θ0 ‖ · ` ν0 ∗ ν1
−1 ≡ 1 : U a Θ1

Θ0 ` F〈ν0〉 ≡ F〈ν1〉 : ∗ a Θ1
unit

Now suppose the algorithm is used to solve F〈β0 ∗ β1〉 → α ≡ F〈β0〉 → F〈β1〉
in the context β0 : U , α : ∗, β1 : U . First the constraint F〈β0 ∗ β1〉 ≡ F〈β0〉 : ∗
is reduced to β0 ∗ β1 ≡ β0 : U by unit, and this is solved by group unification
(Section 3.1) to give β0 : U , α : ∗, β1 := 1 : U . Then the constraint α ≡ F〈β1〉 is
solved to give β0 : U , α :=F〈1〉 : ∗, β1 :=1 : U

Do the rules in Figure 2.5 extended with the unit rule give a correct unifica-
tion algorithm for the extended type system? The unification algorithm should
be sound and complete, as the new algorithmic rule corresponds directly to the
declarative rule, but generality fails. Most general unifiers are needed for com-
pleteness of type inference, so something had better be done.

3.2.1 Loss of generality and how to retain it

Suppose the algorithm is used to solve the constraint α ≡ F〈β0 ∗ β1〉 in the
context α : ∗ # β0 : U , β1 : U . As the rules stand, this flex-rigid problem is solved
by moving β0 and β1 into the previous locality, and defining α resulting in the
context β0 : U , β1 : U , α := F〈β0 ∗ β1〉 : ∗# . However, another solution exists,
namely γ : U , α := F〈γ〉 : ∗ # β0 : U , β1 := β0

−1 ∗ γ : U , where γ is a fresh group
variable. This solution is more general because β0 is still local (it has not been
moved past the # marker). Why did the algorithm fail to find this?

The trouble is that, to solve a flex-rigid constraint, the variable need not
be syntactically equal to the type: units need be equal only up to the theory
of abelian groups. The property that equivalent expressions have the same sets
of free variables3 holds for the syntactic theory and some other useful theories
(Rémy, 1992) but does not hold for groups. For example, the equation α ∗ α−1 ≡ 1

3This property is sometimes called regularity in the literature, but I avoid this term because
it means too many different things in other contexts.

40

has α free on the left but not the right. Thus variable occurrence does not imply
dependency. The occurs check in the unification algorithm is overly syntactic.

To solve this, a flex-rigid constraint can be decomposed into a constraint on
types, with fresh variables in place of units, and additional constraints to make
the fresh variables equal to the units. A rigid type decomposes into a ‘hull’,
or ‘type skeleton’, that must match exactly, and a collection of constraints in
the richer equational theory. Similar techniques are used for type inference in
annotated type systems (Nielson et al., 1999, §5.3.2).

In the example, the constraint α ≡ F〈β0∗β1〉 decomposes into two constraints
α ≡ F〈γ〉 : ∗ ∧ γ ≡ β0 ∗ β1 :U in the context α : ∗ # β0 : U , β1 : U , γ : U . Solving
the first constraint gives γ : U , α :=F〈γ〉 : ∗ # β0 : U , β1 : U , and solving the second
yields the most general solution β′ : U , α :=F〈γ〉 : ∗ # β0 : U , β1 :=(β0

−1 ∗ γ) : U .
Committing only to the hull is the minimal commitment entailed by the equa-

tion, as far as the equational theory on types goes. One could even go further
and solve every flex-rigid equation one constructor layer at a time, so α ≡ τ → υ

would be solved by α ≡ β0 → β1 ∧ β0 ≡ τ ∧ β1 ≡ υ.
The rules from Figure 2.5 (page 21) can be modified to maintain the invariant

that the only unit metavariables a flex-rigid problem depends on (i.e. those in the
rigid type τ or suffix Ξ) are fresh unknowns. Unit metavariables are never made
less local by collecting them in Ξ as dependencies. Type unification does not
prejudice locality of unit metavariables: they must be left for group unification.
The rule

τ non-variable Θ0 | · ` α ≡ τ : ∗ a Θ1

Θ0 ` α ≡ τ : ∗ a Θ1
inst

is replaced by

τ non-variable βi
i fresh

Θ0 | βi :U i ` α ≡ τ{ βi
i } : ∗ a Θ1

Θ1 ` βi ≡ νi :U i a Θ2

Θ0 ` α ≡ τ{ νi
i } : ∗ a Θ2

inst

where τ{ νi
i } is the hull of the type τ , parameterised by a vector of units (so

F〈ν0〉 → F〈ν1〉 has hull F〈_ 〉 → F〈_ 〉 and τ{α0, α1} = F〈α0〉 → F〈α1〉). Vectors
of equations are solved one at a time, threading the context:

Θ0 ‖ · ` β0 ∗ ν0
−1 ≡ 1 : U a Θ1 ... Θn−1 ‖ · ` βn−1 ∗ νn−1

−1 ≡ 1 : U a Θn

Θ0 ` β0 ≡ ν0 :U ∧ ... ∧ βn−1 ≡ νn−1 :U a Θn
conj

41

The updated rules are given in Figures 3.6 and 3.7. Apart from the addition
of the unit rule, and the modification to the inst rule, the only changes are
minor generalisations, such as changing rules to work with an arbitrary kind κ,
rather than just ∗. Again, symmetric variants of the inst and define rules have
been omitted. The implementation is given in Appendix B.4 (page 212).

Similarly to Definition 2.1 (page 20) in the previous chapter, the instantiation
part of the algorithm expects a number of conditions to be satisfied:

Definition 3.1. The quadruple (Θ0,Ξ, α, τ) satisfies the input conditions if

• Θ0 ` α :∗ where α is a metavariable,

• Θ0,Ξ ` τ :∗ where τ is not a metavariable,

• Ξ contains only metavariable declarations β :κ with β ∈ fmv(τ), and

• if F〈ν〉 is a subterm of τ then ν = β for some β with Ξ 3 β :U .

The crucial addition, maintained by the new inst rule, is the last condition.
This is necessary for generality, as it ensures that every unit metavariable in Ξ
is a true dependency of τ , and completeness, as it ensures that Ξ captures all
the unit metavariable dependencies of τ , so the algorithm will not encounter an
unexpected unit metavariable dependency and get stuck.

3.2.2 Correctness of type unification

With the above refinement, type unification gives most general results.

Lemma 3.4 (Soundness and generality of type unification).

(a) If Θ0 ` τ ≡ υ : ∗ a Θ1, then Θ0 v Θ1 is a minimal solution of τ ≡ υ :∗.

(b) If Θ0 |Ξ ` α ≡ τ : ∗ a Θ1, then Θ0,Ξ v Θ1 is a minimal solution of α ≡ τ :∗.

Proof. Proceed by induction on the structure of derivations, as in Lemma 2.6
(page 22). The majority of the cases are similar to the previous proof, but
the unit rule is new, the inst rule has been modified. The inst-skip-semi
rule requires a more subtle generality proof, in order to verify that instantiation
moves only genuine dependencies. The input conditions ensure that units always
occur in the form F〈α〉, so it is obvious that α is a dependency. For details, see
Appendix D.2 (page 240).

42

Θ0 ` τ ≡ υ : ∗ a Θ1 (unifying τ with υ in Θ0 results in Θ1)

Θ0 ` τ0 ≡ υ0 : ∗ a Θ1 Θ1 ` τ1 ≡ υ1 : ∗ a Θ2

Θ0 ` (τ0 → τ1) ≡ (υ0 → υ1) : ∗ a Θ2
decompose

Θ0 ‖ · ` ν0 ∗ ν1
−1 ≡ 1 : U a Θ1

Θ0 ` F〈ν0〉 ≡ F〈ν1〉 : ∗ a Θ1
unit

τ non-variable βi
i fresh

Θ0 | βi :U i ` α ≡ τ{ βi
i } : ∗ a Θ1 Θ1 ` βi ≡ νi :U i a Θ2

Θ0 ` α ≡ τ{ νi
i } : ∗ a Θ2

inst

Θ, α :∗ ` α ≡ α : ∗ a Θ, α :∗
idle

α 6= β

Θ, α :∗ ` α ≡ β : ∗ a Θ, α :=β : ∗
define

Θ0 ` [ρ/γ]α ≡ [ρ/γ] β : ∗ a Θ1

Θ0, γ :=ρ : κ ` α ≡ β : ∗ a Θ1, γ :=ρ : κ
subs

Θ0 ` α ≡ β : ∗ a Θ1 α 6= γ β 6= γ

Θ0, γ :κ ` α ≡ β : ∗ a Θ1, γ :κ
skip-ty

Θ0 ` α ≡ β : ∗ a Θ1

Θ0, x :σ ` α ≡ β : ∗ a Θ1, x :σ
skip-tm

Θ0 ` α ≡ β : ∗ a Θ1

Θ0# ` α ≡ β : ∗ a Θ1#
skip-semi

Θ0 ‖ · ` β0 ∗ ν0
−1 ≡ 1 : U a Θ1 ... Θn−1 ‖ · ` βn−1 ∗ νn−1

−1 ≡ 1 : U a Θn

Θ0 ` β0 ≡ ν0 :U ∧ ... ∧ βn−1 ≡ νn−1 :U a Θn
conj

Figure 3.6: Algorithmic rules for type unification (part 1)

43

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 (instantiating α with τ in Θ0, Ξ results in Θ1)

α /∈ fmv(τ)
Θ0, α :∗ |Ξ ` α ≡ τ : ∗ a Θ0,Ξ, α :=τ : ∗

inst-define

Θ0,Ξ ` [ρ/β]α ≡ [ρ/β] τ : ∗ a Θ1

Θ0, β :=ρ : κ |Ξ ` α ≡ τ : ∗ a Θ1, β :=ρ : κ
inst-subs

Θ0 | β :∗,Ξ ` α ≡ τ : ∗ a Θ1 α 6= β β ∈ fmv(τ)
Θ0, β :∗ |Ξ ` α ≡ τ : ∗ a Θ1

inst-depend

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 α 6= β β /∈ fmv(τ)
Θ0, β :κ |Ξ ` α ≡ τ : ∗ a Θ1, β :κ

inst-skip-ty

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1

Θ0, x :σ |Ξ ` α ≡ τ : ∗ a Θ1, x :σ
inst-skip-tm

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1

Θ0 # |Ξ ` α ≡ τ : ∗ a Θ1#
inst-skip-semi

Figure 3.7: Algorithmic rules for type unification (part 2)

44

Lemma 3.5 (Completeness of type unification).

(a) If the types υ and τ are well-formed in Θ0 and there is some θ : Θ0 v Θ′ with
Θ′ ` θ υ ≡ θ τ :∗, then unification produces Θ1 such that Θ0 ` υ ≡ τ : ∗ a Θ1.

(b) Moreover, if θ : Θ0,Ξ v Θ′ is such that Θ′ ` θ α ≡ θ τ : ∗ and the input
conditions (Definition 3.1) are satisfied, then there is some context Θ1 such
that Θ0 |Ξ ` α ≡ τ : ∗ a Θ1.

Proof. Termination of the algorithm can be established via an appropriate or-
dering. Proceed by structural induction on the call graph, observing that each
rule preserves solutions, and that all (potentially solvable) cases are covered.
Completeness of appeals to group unification follows from Lemma 3.3. For more
details, see Appendix D.2 (page 241).

3.3 Type inference for units of measure

I have given a unification algorithm for types containing units of measure in
Section 3.2, and this extends to a type inference algorithm for the corresponding
type system. Given the new types, amended unification algorithm and the ability
for type schemes to quantify over variables of kind U , no changes to the type
inference algorithm from Section 2.3 are required.

Generalisation is easy and there is no need to complicate the type inference
algorithm to deal with units of measure. The initial context can be extended
with constant terms that use the new types. Moreover, thanks to the refinement
of Section 3.2.1, the algorithm copes naturally with the problematic term from
Subsection 3.0.1, correctly inferring its most general type. Recall the example:

λx .let y =div x in (y mass, y time), where

div :∀α :U .∀β :U .F〈α ∗ β〉 → F〈α〉 → F〈β〉, mass :F〈kg〉, time:F〈s〉.

At the crucial point when the type of y is being inferred, the situation is

α :∗, x :α # β0 : U , β1 : U ` div x :F〈β0〉 → F〈β1〉 subject to α ≡ F〈β0 ∗ β1〉,

where α is an unknown fresh type variable standing in for the type of x . The
constraint decomposes into two simpler constraints α ≡ F〈γ〉 :∗ ∧ γ ≡ β0 ∗ β1 :U
with γ a fresh unit metavariable. These can be solved one at a time to give the
solution γ : U , α := F〈γ〉 : ∗, x : α # β0 : U , β1 := (γ ∗ β0

−1) : U . Generalising by

45

‘skimming off’ type variables in the locality gives the type scheme

γ : U , x :F〈γ〉 ` y :∀β0 :U .F〈β0〉 → F〈γ ∗ β0
−1〉,

which is principal. Type inference for the whole term succeeds, giving the type

F〈γ〉 → (F〈γ ∗ kg−1〉,F〈γ ∗ s−1〉).

3.4 Discussion

I have shown how to combine abelian group unification with syntactic unification
while carefully tracking dependencies in a structured context, so generalisation
is straightforward. Crucially, contexts capture an appropriate notion of locality,
so a local solution is more general than a global one. The algorithms presented
here solve unification problems by making gradual steps towards a solution, and
it is comparatively easy to check that each step is sound and most general. A key
point is that flex-rigid equations α ≡ τ cannot always be solved by substituting
τ for α, given a nontrivial equational theory. Instead, τ decomposes into a ‘hull’
(the outer structure that α must match exactly) and a collection of constraints
in the equational theory.

This technique can be applied to other equational theories and more advanced
type systems. The integers are an abelian group under addition, so the work in
this chapter could be combined with the account of elaboration in Chapter 7 to
elaborate types indexed by integers.

In this chapter I have been following the trail that Kennedy blazed, in the
representation of units of measure using a free abelian group, the observation that
unification has unique most general unifiers in this case, and the application of
these properties to type inference. To extend the technique to less convenient type
systems, I will need to deal with problems that cannot necessarily be solved on the
first attempt. In the next chapter, I will examine higher-order unification, which
is useful for elaborating higher-rank and dependent types. ‘Pattern unification’
as introduced by Miller (1992) provides a solid starting point, but here an explicit
representation of postponed unification problems will be essential, because not
all higher-order unification problems fall into the fragment that can be solved
immediately.

46

3.4.1 Related work

Many authors have proposed designs for systems of units of measure. I have
followed Kennedy’s design, using integer powers, so units form an abelian group.
Some authors use rational powers (giving a vector space), including Rittri (1995),
who discusses the merits of both approaches. Chen et al. (2003) give a useful
overview of work on units, and describe an alternative approach using static
analysis.

Several impressive implementations of units of measure use advanced type
system features such as GHC Haskell extensions (Buckwalter, n.d.) and C++
templates (Schabel and Watanabe, 2013). However, the difficulty of expressing a
nontrivial equational theory at the type level means that they are complex, have
limited inference capabilities and tend to expose the internal implementation in
unfriendly error messages. Making units a type system extension, as in F#,
results in a much more user-friendly system.

Rémy (1992) extends the ML type system with other equational theories for
which variable occurrence does imply dependency (specifically excluding abelian
groups). As discussed in the previous chapter, his unification algorithm achieves
easy generalisation by tracking the ‘ranks’ at which type variables are introduced.

Sulzmann et al. (1999) propose a version of the HM(X) framework for repre-
senting type systems in constraint form, which avoids the generalisation problems
discussed in this chapter by allowing constraints to be quantified over instead of
solving them immediately. This is a very useful technique, although it is practi-
cally desirable to solve unification constraints as soon as possible (in the interests
of efficiency and good error reporting).

47

Chapter 4

Miller pattern unification

Higher-order unification is the problem of finding definitions for metavariables in
order to solve an equation between two λ-calculus terms. It extends first-order
unification, as discussed in Chapter 2, in that

• terms have a binding structure, so unifiers must respect variable scope: e.g.
λx .α ≈ λx .x can only be solved by α := x if the metavariable α may depend
on the bound variable x ; and

• terms have a nontrivial equational theory, given by the β- and η-rules:1 for
example, λx .x ≈ λx .λy.α x y can be solved by α := λz .z since

λx .λy.(λz .z) x y ≡β λx .λy.x y ≡η λx .x .

Given these complications it is perhaps unsurprising that full higher-order unifi-
cation is undecidable (Huet, 1973). Most general unifiers do not necessarily exist
and terms may have infinite sets of unifiers, though they can be generated by a
semidecision procedure (Huet, 1975). Miller (1992) observed that a useful sub-
problem, unification in the pattern fragment, is decidable and has unique most
general unifiers if they exist at all. Here metavariables must be applied to spines
of distinct bound variables, so λx .x ≈ λx .λy.α x y is included but λx .α x x ≈ λx .x
is not; observe that the latter has two incompatible solutions α := λx .λy.x and
α := λy.λx .x . Equations that look like definitions, are definitions: α xi

i ≈ t can
be solved by α := λ xi

i .t. An application to variables determines a metavariable
fully, while an application to other terms determines it only in part (for example,
α (λx .x) ≈ t cannot easily be solved).

1One can consider β-equality alone, but for the purposes of this chapter I will need both.

Dependently typed programming languages rely on higher-order unification
for elaborating source programs, much as Hindley-Milner type inference makes use
of first-order unification. Languages with a kernel type theory, such as Coq (Coq
Development Team, 2013) and Epigram (McBride and McKinna, 2004), do not
need unification in the kernel, but they depend on it to elaborate human-readable
syntax. Likewise, Agda (Norell, 2007) uses higher-order unification for pattern
matching and implicit argument synthesis. During the elaboration of a source
language program, metavariables are inserted to stand for function arguments
that the user has omitted, and unification problems arise when types do not match
exactly. Elaboration will be considered in more detail in Chapter 7. Dependent
types naturally lead to higher-order unification problems, since functions express
dependency (for example, consider solving for α and β in Πx :α. β x ≈ T).

Programmers in a dependently typed language need to grasp the capabilities
of unification if they are to become productive users of the language. Knowing
what to omit, because the machine can reconstruct it for you, is a crucial aspect
of writing comprehensible programs.

Languages with simple pairs or Σ-types (pairs in which the type of the second
component may depend on the value of the first component) motivate extending
the pattern fragment to projections. For example, consider α hd x ≈ x where
postfix hd is first projection. This does not fall in the original pattern fragment
but has most general solution [(λx .x , β)/α] where β is a fresh variable.

For many applications, the static pattern fragment is overly restrictive: one
often has multiple constraints, some of which fall into the fragment and some of
which do not, but solving one constraint may make bring others into pattern form.
This leads to ‘dynamic’ pattern unification, where non-pattern constraints may
be postponed in case they are solvable later. For example, given the constraints
α x ≈ β and α y y ≈ t, the latter is not in the pattern fragment, but after solving
the first constraints via α := λx .β the second becomes β y ≈ t.

Dynamic treatment of constraints is necessary even in first-order problems,
because there is no fixed positional order of constraint solving that will work in all
cases. For example, consider the problem (α + β, α) ≈ (3, 0) where α and β are
natural number metavariables. If an algorithm always unifies the components
of pairs from left to right, it gets stuck on the constraint α + β ≈ 3. On the
other hand, after solving α ≈ 0, the first constraint computes to the much easier
β ≈ 3.2 The Coq proof assistant, used as a dependently typed programming
language, suffers from exactly this problem.

2Always unifying from right to left is no better: what if we swap the pair’s components?

49

In this chapter, I present a dynamic pattern unification algorithm for a lan-
guage with full-spectrum dependent types including Σ-types. It includes:

• the use of heterogeneous equality constraints to maintain typing discipline;

• a novel notion of ‘twin variables’ used to simplify problems heterogeneously
when a variable must be assigned two intensionally distinct types, as in
(λx .s :Πx :A.B) ≈ (λx .t :Πx :S .T);

• an extension of the context structure from previous chapters, suitable for
managing dependency and partial progress on unification problems; and

• the demonstration of a minimal-commitment unification algorithm that
makes it easy to deliver most general unifiers, when they exist.

In Section 4.1, I describe the type theory in which I will work. I give the algo-
rithm in Section 4.2, with a high-level specification via rewrite rules. Correctness
properties of the algorithm are proved in Section 4.3, although termination is
problematic. Finally, some concluding remarks form Section 4.4. A Haskell ref-
erence implementation of the algorithm is given in Appendix C (page 214).

4.0.1 Related work

Since Huet’s seminal work on higher-order unification for simply typed λ-calculus
(Huet, 1975), many people have sought to extend it to dependently typed calculi,
in particular the Edinburgh Logical Framework (Harper et al., 1993), also known
as λΠ-calculus. Elliott (1990) and Pym (1992) both demonstrated semidecision
procedures for unification based on Huet’s, using the fact that dependencies are
erasable in the LF to give notions of ‘type similarity’ (in Pym’s terminology) that
relate the types of terms being unified. Brown (1996) studied the metatheory of a
variant of λΠ-calculus with type similarity, and used this to re-present unification
as a system of reduction rules.

In contrast to Huet-style semidecision procedures, which generate a sequence
of unifiers, Miller’s pattern unification (Miller, 1992) finds most general unifiers
when they exist, but applies only to a fragment. Duggan (1998) generalised the
pattern condition to support System Fω with simple product types. Reed (2009a)
described how to apply dynamic pattern unification to LF. He introduced ‘typing
modulo’ (discussed in Subsection 4.0.3) as a neat simplification of type similarity
and similar invariants used to handle the complications of type dependency. Abel
and Pientka (2011) extended Reed’s algorithm to support λΠΣ-calculus (LF with
Σ-types) and implemented it for the Beluga language.

50

Separately, higher-order unification algorithms have been developed for lan-
guages based on Martin-Löf Type Theory, such as Agda, or the Calculus of Con-
structions, such as Coq. Here, unlike in LF, full-spectrum dependency means
that types may be recursively defined and computed from terms by large elim-
ination. Thus term dependencies in types are not erasable to produce simple
non-dependent types, and the work on unification for LF is not immediately ap-
plicable. Pfenning (1991b) extended pattern unification to the Calculus of Con-
structions, characterising exactly those terms that fall in the pattern fragment
statically; hence the types can always be unified first.

This chapter builds on the work of Reed (2009a) and Abel and Pientka (2011)
to describe unification for a full-spectrum dependent type theory, rather than LF.

4.0.2 Intensional vs. extensional equality

Definitional equality in an intensional type theory is the βδη-convertibility re-
lation, written s ≡ t. For a strongly normalising theory, it is easy to test in
a type-directed fashion, by checking that s and t have the same normal form
(up to α-equivalence) after computation (β-reduction), expansion of definitions
(δ-expansion) and η-expansion. It is intensional in the sense that extension-
ally equal terms need not be definitionally equal: for example, s = λx .tt and
t = λx .if x then x else tt are equal on all boolean inputs, but s 6≡ t.

Extensional type theories typically add a propositional equality type IdT s t
of proofs that s and t are equal, together with the equality reflection rule

Γ ` u : IdT s t
Γ ` s ≡ t : T

that embeds arbitrary proofs into the definitional equality. Extensional equality
is undecidable in general: given a description of a Turing machine M , consider
the function that maps a natural number n to the boolean indicating whether
M halts within n steps. One cannot hope to decide whether this function is
extensionally equal to the constantly false function!

The unification algorithm I will describe finds solutions up to the intensional
definitional equality, not extensional equality. Finding solutions up to extensional
equality involves proof search and most general solutions are not (intensionally)
unique. For example, if α : B → B is a metavariable and x : B is a variable,
the problem α x ≈ tt has unique solution λx .tt up to definitional equality, but
solutions up to extensional equality include λx .if x then x else tt and other terms.

51

Most type theories have some internal notion of propositional equality in which
equations can be proved, such as the identity type in Martin-Löf Type Theory
(Martin-Löf, 1984), which reflects the definitional equality as a type, or coercion
types in System FC (Sulzmann et al., 2007), where equality evidence is explicit
but in a different syntactic category to terms. Given a type theory with a suffi-
ciently expressive propositional equality, one could represent unification problems
as types, and unification could deliver terms (equality proofs) as evidence. How-
ever, in this chapter I prefer to make fewer assumptions about the object type
theory, emphasising that the work is more widely applicable.

4.0.3 Heterogeneous equality

Given the problem Πx :A.B ≈ Πx :S .T , a reasonable step to take is to simplify
it to A ≈ S ,B ≈ T . However, at this stage B and T expect different types for x ,
as the equation between A and S may not be solved immediately. This shows the
need for a heterogeneous notion of equality, in an intensional setting: it permits
the expression of equations where the two sides belong to provably (extensionally)
equal but not definitionally (intensionally) equal types. Such equations would be
homogeneous in an extensional setting. In general, unification must formulate
and solve equations between vectors of terms in a telescope, where unifying the
first n−1 terms will make the types of the nth terms equal. The unification
algorithm will maintain the heterogeneity invariant, that every heterogeneous
equation involves types whose equality is implied by preceding equations; thus
solutions will always be homogeneous.

Reed (2009a) elegantly dealt with heterogeneity using a weaker invariant on
homogeneous equations, typing modulo, which requires that the two sides be well
typed up to the equational theory of the constraints yet to be solved. However,
this means that if there are unsolved constraints left when the algorithm ter-
minates, then some solved metavariables may be ill typed, up to the definitional
equality. This is problematic for elaboration of a full-spectrum dependently typed
source language, where typechecking is interleaved with unification, so unification
must not create ill-typed terms. Norell (2007, Ch. 3) shows how ill-typed solutions
to metavariables can lead to non-normalising terms and hence non-terminating
elaboration. The algorithm I present avoids this difficulty by ensuring that all
outputs are well typed, provided it is given well typed input.

52

Variables x, y, z,X, Y, Z
Metavariables α, β, γ
Terms s, t, S, T ::= n | λx .t | c | Πx :S .T | Σx :S .T | (s, t)
Constructors c ::= Set | Type | B | tt | ff
Heads h ::= x | x́ | x̀ | α
Evaluation contexts e ::= • | e t | e hd | e tl | if (x.T) e s t
Neutral terms n ::= h · e
Metacontexts Θ ::= · | Θ, α :T | Θ, α := t :T | Θ, ? P
Contexts Γ, ∆ ::= · | Γ, x :T | Γ, x̂ :S‡T
Substitutions δ ::= · | δ, t/x | δ, (s, t)/x̂
Metasubstitutions θ, ζ ::= · | θ, t/α
Problems P, Q ::= > | ⊥ | P ∧Q | (s :S) ≈ (t :T) | ∀x :S .P

| ∀x̂ :S‡T .P

Figure 4.1: Syntax

4.1 Back to basics

The type theory for which I will describe pattern unification essentially consists
of Martin-Löf Type Theory with Π and Σ-types, a type of booleans B and one
small universe Set. The only form of dependency is a type-level if-expression,
allowing large elimination. It is based on Kipling, a theory described by McBride
(2010a) with a model construction in the dependently typed language Agda.

In this section, I introduce the representations of terms and contexts, give
the typing rules, discuss the use of ‘twins’ for representing variables with two
provably equal types, explain the role of substitutions, and recall some standard
metatheoretic properties. These concepts will be used in Section 4.2, where I
specify the unification algorithm.

4.1.1 Term representation

The syntax of terms is given in Figure 4.1. Types and terms live in a single
syntactic category, though I will typically write s, t, u or v for terms and S , T ,
U or V for types. A neutral (stuck) term n is represented as h · e where h is a
head and e is an evaluation context, generalising the spine form of Cervesato
and Pfenning (2003). This allows easy access to the head, which may be a
variable x , y, z or a metavariable α, β. The accents on variables will be used
to deal with heterogeneity, as discussed in Subsection 4.1.4. Evaluation contexts
include applications, if-expressions and projections from Σ-types (written postfix
hd for first projection and tl for second projection). Embedding neutral terms

53

s · e ⇓ t (redex s · e reduces to normal form t)

t · • ⇓ t
s · e ⇓ λx .u [t/x] u ⇓ v

s · (e t) ⇓ v
s · e ⇓ (t0, t1)
s · (e hd) ⇓ t0

s · e ⇓ (t0, t1)
s · (e tl) ⇓ t1

s · e ⇓ tt
s · (if (x.T) e t0 t1) ⇓ t0

s · e ⇓ ff
s · (if (x.T) e t0 t1) ⇓ t1

s · e ⇓ n
s · (e · e′) ⇓ n · e′

δ t ⇓ t ′ (applying substitution δ to normal form t reduces to t ′)

δ (h) = s δ e ⇓ e′ s · e′ ⇓ t
δ (h · e) ⇓ t δ c ⇓ c

δ t ⇓ t ′

δ (λy.t) ⇓ λy.t ′

δ S ⇓ S ′ δT ⇓ T ′

δ (Πy :S .T) ⇓ Πy :S ′.T ′
δ S ⇓ S ′ δT ⇓ T ′

δ (Σy :S .T) ⇓ Σy :S ′.T ′
δ t ⇓ t ′ δ u ⇓ u′

δ (t, u) ⇓ (t ′, u′)

δ e ⇓ e′ (applying substitution δ to evaluation context e reduces to e′)

δ • ⇓ •
δ e ⇓ e′ δ t ⇓ t ′

δ (e t) ⇓ e′ t ′
δ e ⇓ e′

δ (e hd) ⇓ e′ hd

δ e ⇓ e′

δ (e tl) ⇓ e′ tl

δ e ⇓ e′ δT ⇓ T ′ δ t ⇓ t ′ δ u ⇓ u′

δ (if (y.T) e t u) ⇓ if (y.T ′) e
′ t ′ u′

δ (x) 7→ t where t/x ∈ δ
δ (x́) 7→ s where (s, t)/x̂ ∈ δ
δ (x̀) 7→ t where (s, t)/x̂ ∈ δ
δ (α) 7→ α

θ (x) 7→ x

θ (α) 7→ t where t/α ∈ θ

Figure 4.2: Hereditary substitution

54

into normal forms is written n, though the underline will sometimes be omitted.
Evaluation contexts can be composed in the obvious way, written e · e′.

In this representation, terms t are always β-normal but not necessarily η-long.
This is possible thanks to hereditary substitution (Watkins et al., 2003), defined
in Figure 4.2. Here s ·e ⇓ t means s ·e reduces to t, while δ t ⇓ t ′ or δ e ⇓ e′ means
applying the substitution δ to the term t or evaluation context e results in the
normal form t ′ or e′ respectively. These reduction relations are all functional, and
are decidable for well-typed inputs. Moreover, projecting from any term (even
if it is ill typed), or applying any term to a variable, will terminate; I make use
of this in the definitional equality rules for functions and pairs. In the rules,
I sometimes write redexes in terms, where formally there should be additional
premises referring to the reduction relations.

A telescope ∆ = (xi :Ti
i) is a vector of name bindings with corresponding

types, where each type Ti may depend on the variables x0, . . . , xi−1. The single
binding notation Πx : S .T or λx .t generalises in the obvious way to bind a
telescope Π∆.T or λ∆.t. Similarly h ∆ is the application of the head h to the
variables bound in ∆. The non-dependent Π and Σ, where x does not occur in
the codomain T , are written S → T and S × T respectively.

4.1.2 Contexts and unification problems

In the style of contextual type theory (Nanevski et al., 2008), I separate the
metacontext Θ, which contains metavariables and unification problems, from the
context Γ, which binds variables. In terms of mixed quantifier prefixes, this
amounts to maintaining an ∃∀-prefix, a normalised representation of contexts
in which the existential quantifiers (metavariables) appear before the universal
quantifiers (variables). This avoids the need for Miller’s explicit ‘raising’ step.

Unlike contextual type theory, however, I do not represent metavariable con-
texts explicitly: metavariables simply have Π-types. This identification of the
object language function space with parametrisation in the metalanguage is con-
venient, when the object type theory is sufficiently expressive, but is not essential.
In Chapter 7, where the type language lacks first-class higher-order functions, I
will make use of parametrised metavariables instead.

A context Γ is a telescope that may also include a novel form of binding, to deal
with heterogeneous hypotheses for unification problems (see Subsection 4.1.4).
The set of variables bound by a context is written vars(Γ).

A metacontext Θ is a list of metavariables α, each carrying a type and possibly
a definition, and unification problems P. Scope is managed according to the

55

invariant that each entry depends only on those that precede it, and in terms,
metavariables are explicitly applied to all the variables they may depend upon.

Unification problems include heterogeneous equations (s : S) ≈ (t : T), uni-
versally quantified variables, truth, falsehood and conjunctions. For brevity, I
will sometimes omit the types in equations, writing s ≈ t. In Subsection 4.0.3 I
remarked on the need for the terms being unified to have different types.

For example,

α :B→ B, β :B, ?∀x :B→ B. (α (x β) :B) ≈ (x β :B)

is a valid metacontext, which declares metavariables α and β and has a single
unification problem with parameter x .

A substitution δ or metasubstitution θ contains terms with which to re-
place variables or metavariables from a context or metacontext. The identity
(meta)substitution is written ι, and a substitution written as a finite map (such
as [s/x]) implicitly acts as the identity on all other variables. I will sometimes
write t{s} instead of [s/x] t where the choice of free variable x is obvious, or to rep-
resent a term that includes s as a subterm. Typing rules for (meta)substitutions
are given in Subsection 4.1.5.

4.1.3 Typing rules

The typing rules are given in the following figures. They define judgments for
well-formed metacontexts, contexts and problems; for definitionally equal βδ-
normal terms; and for true propositions of the unification logic. In the usual
bidirectional style (Pierce and Turner, 2000), the definitional equality judgment
is split in two: there is one judgment for normal terms, where a type is given as
input, and one for neutral terms, where a type is produced as output. In the in-
terest of brevity, definitional equality is treated as a partial equivalence relation,
with the typing judgment being the diagonal of equality. Crucially, the defini-
tional equality, and hence typechecking, is decidable3 using standard techniques
(Coquand, 1996; Chapman et al., 2005; Löh et al., 2010). Appendix C.3 (page
221) gives a Haskell implementation of the typechecking algorithm.

In particular, the theory is well-founded because there is only one universe
Set :Type, and Type itself is not a well-typed term. (Formally, T :Type should
be considered a separate judgment to t :T .)

3Strictly speaking, it is not possible to decide well-formedness because it depends on the
truth of propositions in the unification logic, which is not decidable. In practice, this does not
matter, because I can always assume that the algorithms are given well-formed inputs.

56

The judgments Θ ` mctx, Θ |Γ ` ctx and Θ |Γ ` P wf , defined in Fig-
ure 4.3, mean respectively that Θ, Γ and P are well-formed. Contexts and
metacontexts must bind distinct variables, as x#Γ means x is fresh for Γ and
α#Θ means α is fresh for Θ. Note that well-formed problems are required
to satisfy the heterogeneity invariant: for (s : S) ≈ (t : T) to be well-formed,
(S :Type) ≈ (T :Type) must be true in the unification logic.

The judgment Θ |Γ ` T 3 s ≡[u]≡ t, defined in Figure 4.4, means that
s and t are definitionally equal terms checked at type T , with η-long standard
form u (regarded as an output). This ternary presentation of equality is novel, to
my knowledge. It is often useful to pick a canonical representative when working
up to an equivalence; for example, it makes the admissibility of symmetry easy
to prove. As in the work on Kipling by McBride (2010a), this judgment really
expresses the fact that s and t are equivalent syntactic presentations of u.

The definitional equality includes type-directed rules that compare functions
by applying them to a fresh variable, and compare pairs by computing their
projections, thereby covering both the η-laws and congruence for functions and
pairs. A type is atomic if it is not a Π- or Σ-type: this is used in the change of
direction rule to ensure that the equality judgment is syntax-directed, as otherwise
it would overlap with the rules for functions and pairs.

The judgment Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ T , defined in Figure 4.5,
means that the neutral terms h · e and h′ · e′ are definitionally equal with inferred
type T and standard form h′′ · e′′. Note that there is no rule for inferring the
type of a defined metavariable α := t :T ; rather, definitions must be immediately
substituted out, which simplifies the presentation of the algorithm.

The judgment Θ |Γ ` P, defined in Figures 4.6 and 4.7, means that P is true,
i.e. it follows from hypotheses in the metacontext. This defines a unification logic
in the sense of Pfenning (1991a), where the separation of the metacontext from
the context amounts to keeping all existential quantifiers outermost. In terms of
the analysis by Martin-Löf (1996), this judgment says that P ‘is true’, whereas
the judgment Θ |Γ ` P wf says that P ‘is a proposition’.

I will sometimes omit the standard form, writing Θ |Γ ` T 3 s ≡ t instead
of Θ |Γ ` T 3 s ≡[u]≡ t. The typing judgment Θ |Γ ` T 3 t is defined as
Θ |Γ ` T 3 t ≡ t, meaning the equivalence relation is reflexive on well-typed
terms by definition. Similarly, I will sometimes write Θ |Γ ` h · e ∈ T instead of
Θ |Γ ` h · e ≡[h′ · e′]≡ h · e ∈ T .

57

Θ ` mctx (Θ is a valid metacontext)

· ` mctx
Θ | · ` P wf

Θ, ? P ` mctx

α#Θ
Θ | · ` Type 3 T
Θ, α :T ` mctx

α#Θ Θ | · ` T 3 t
Θ, α := t :T ` mctx

Θ |Γ ` ctx (Γ is a valid context in metacontext Θ)

Θ ` mctx
Θ | · ` ctx

x#Γ
Θ |Γ ` Type 3 T
Θ |Γ, x :T ` ctx

x#Γ
Θ |Γ ` (S :Type) ≈ (T :Type)

Θ |Γ, x̂ :S‡T ` ctx

Θ |Γ ` P wf (P is a well-formed problem in Θ and Γ)

Θ |Γ ` ctx
Θ |Γ ` >wf

Θ |Γ ` ctx
Θ |Γ ` ⊥wf

Θ |Γ ` P wf
Θ, ?∀Γ.P |Γ ` Q wf

Θ |Γ ` P ∧Q wf

Θ |Γ ` ctx
Θ |Γ ` (Set :Type) ≈ (Set :Type) wf

Θ |Γ ` S 3 s Θ |Γ ` T 3 t
Θ |Γ ` (S :Type) ≈ (T :Type)

Θ |Γ ` (s :S) ≈ (t :T) wf

Θ |Γ, x :S ` P wf
Θ |Γ ` ∀x :S .P wf

Θ |Γ, x̂ :S‡T ` P wf
Θ |Γ ` ∀x̂ :S‡T .P wf

Figure 4.3: Well-formed contexts

58

Θ |Γ ` T 3 s ≡[u]≡ t (type T accepts s equal to t with standard form u)

Θ |Γ ` ctx
Θ |Γ ` Type 3 Set ≡[Set]≡ Set

Θ |Γ ` Set 3 S ≡[U]≡ T
Θ |Γ ` Type 3 S ≡[U]≡ T

Θ |Γ ` Set 3 S0 ≡[U]≡ S1 Θ |Γ, x :U ` Set 3 T0 ≡[V]≡ T1

Θ |Γ ` Set 3 Πx :S0.T0 ≡[Πx :U .V]≡ Πx :S1.T1

s x ⇓ s′ t x ⇓ t ′ Θ |Γ, x :U ` V 3 s′ ≡[u]≡ t ′

Θ |Γ ` Πx :U .V 3 s ≡[λx .u]≡ t

Θ |Γ ` Set 3 S0 ≡[U]≡ S1 Θ |Γ, x :U ` Set 3 T0 ≡[V]≡ T1

Θ |Γ ` Set 3 Σx :S0.T0 ≡[Σx :U .V]≡ Σx :S1.T1

s hd ⇓ s0 s tl ⇓ s1
t hd ⇓ t0 t tl ⇓ t1
Θ |Γ ` U 3 s0 ≡[u0]≡ t0
Θ |Γ ` V {u0} 3 s1 ≡[u1]≡ t1

Θ |Γ ` Σx :U .V 3 s ≡[(u0, u1)]≡ t
Θ |Γ ` ctx

Θ |Γ ` Set 3 B ≡[B]≡ B

Θ |Γ ` ctx
Θ |Γ ` B 3 tt ≡[tt]≡ tt

Θ |Γ ` ctx
Θ |Γ ` B 3 ff ≡[ff]≡ ff

S atomic
Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ T Θ |Γ ` Type 3 S ≡[U]≡ T

Θ |Γ ` S 3 h · e ≡[h′′ · e′′]≡ h′ · e′

Figure 4.4: Definitional equality: normal terms

59

Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ T (h · e equals h′ · e′ with inferred type T)

Θ 3 α :T Θ |Γ ` ctx
Θ |Γ ` α · • ≡[α · •]≡ α · • ∈ T

Γ 3 x :T Θ |Γ ` ctx
Θ |Γ ` x · • ≡[x · •]≡ x · • ∈ T

Γ 3 x̂ :S‡T Θ |Γ ` ctx
Θ |Γ ` x́ · • ≡[x́ · •]≡ x́ · • ∈ S

Γ 3 x̂ :S‡T Θ |Γ ` ctx
Θ |Γ ` x̀ · • ≡[x̀ · •]≡ x̀ · • ∈ T

Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ Πx :U .V Θ |Γ ` U 3 u ≡[u′′]≡ u′

Θ |Γ ` h · e u ≡[h′′ · e′′ u′′]≡ h′ · e′ u′ ∈ V {u′′}

Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ Σx :U .V
Θ |Γ ` h · e hd ≡[h · e′′ hd]≡ h · e′ hd ∈ U

Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ Σx :U .V
Θ |Γ ` h · e tl ≡[h′′ · e′′ tl]≡ h′ · e′ tl ∈ V {h′′ · e′′ hd}

Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ B Θ |Γ, x :B ` Type 3 S ≡[U]≡ T
Θ |Γ ` U{tt} 3 u ≡[u′′]≡ u′ Θ |Γ ` U{ff} 3 v ≡[v ′′]≡ v ′

Θ |Γ ` h · if (x.S) e u v ≡[h′′ · if (x.U) e u′′ v ′′]≡ h′ · if (x.T) e
′ u′ v ′ ∈ U{h′′ · e′′}

Figure 4.5: Definitional equality: neutral terms

60

Θ |Γ ` P (P is true in the unification logic)

Θ |Γ ` ctx
Θ |Γ ` >

Θ |Γ ` ⊥ Θ |Γ ` P wf
Θ |Γ ` P

Θ |Γ, x :S ` P
Θ |Γ ` ∀x :S .P

Θ |Γ ` (S :Type) ≈ (T :Type)
Θ |Γ, x̂ :S‡T ` P

Θ |Γ ` ∀x̂ :S‡T .P

Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ, x :U ` P{x , x}

Θ |Γ ` ∀x̂ :S‡T .P

Θ |Γ ` ∀x :S .P
Θ |Γ ` S 3 s

Θ |Γ ` P{s}

Θ |Γ ` ∀x̂ :S‡T .P
Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ ` U 3 u

Θ |Γ ` P{u, u}

Θ 3? P
Θ |Γ ` ctx
Θ |Γ ` P

Θ |Γ ` P Θ |Γ ` Q
Θ |Γ ` P ∧Q

Θ |Γ ` P ∧Q
Θ |Γ ` P

Θ |Γ ` P ∧Q
Θ |Γ ` Q

Θ |Γ ` Πx :A.B ≈ Πx :S .T
Θ |Γ ` A ≈ S ∧ ∀x̂ :A‡S .B{x́} ≈ T{x̀}

Θ |Γ ` Σx :A.B ≈ Σx :S .T
Θ |Γ ` A ≈ S ∧ ∀x̂ :A‡S .B{x́} ≈ T{x̀}

Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ ` U 3 s ≡ t

Θ |Γ ` (s :S) ≈ (t :T)

Θ |Γ ` ctx
Θ |Γ ` (Set :Type) ≈ (Set :Type)

Θ |Γ ` (t :T) ≈ (s :S)
Θ |Γ ` (s :S) ≈ (t :T)

Θ |Γ ` (t0 :T0) ≈ (t1 :T1)
Θ |Γ ` (t1 :T1) ≈ (t2 :T2)
Θ |Γ ` (t0 :T0) ≈ (t2 :T2)

Γ 3 x̂ :S‡T Θ |Γ ` ctx
Θ |Γ ` (x́ :S) ≈ (x̀ :T)

Figure 4.6: Unification logic

61

Θ |Γ ` P

Θ |Γ ` (S :Set) ≈ (U :Set) Θ |Γ, x̂ :S‡U ` (T{x́} :Set) ≈ (V {x̀} :Set)
Θ |Γ ` (Πx :S .T :Set) ≈ (Πx :U .V :Set)

Θ |Γ ` (S :Set) ≈ (U :Set) Θ |Γ, x̂ :S‡U ` (T{x́} :Set) ≈ (V {x̀} :Set)
Θ |Γ ` (Σx :S .T :Set) ≈ (Σx :U .V :Set)

Θ |Γ, x̂ :S‡U ` (s x́ :T{x́}) ≈ (t x̀ :V {x̀})
Θ |Γ ` (s :Πx :S .T) ≈ (t :Πx :U .V)

Θ |Γ ` (s hd :S) ≈ (t hd :U) Θ |Γ ` (s tl :T{s hd}) ≈ (t tl :V {t hd})
Θ |Γ ` (s :Σx :S .T) ≈ (t :Σx :U .V)

Θ |Γ ` (n :Πx :S .T) ≈ (n′ :Πx :U .V) Θ |Γ ` (s :S) ≈ (t :U)
Θ |Γ ` (n s :T{s}) ≈ (n′ t :V {t})

Θ |Γ ` (n :Σx :S .T) ≈ (n′ :Σx :U .V)
Θ |Γ ` (n hd :S) ≈ (n′ hd :U)

Θ |Γ ` (n :Σx :S .T) ≈ (n′ :Σx :U .V)
Θ |Γ ` (n tl :T{n hd}) ≈ (n′ tl :V {n′ hd})

Θ |Γ, x :B ` (T :Type) ≈ (T ′ :Type) Θ |Γ ` (n :B) ≈ (n′ :B)
Θ |Γ ` (t0 :T{tt}) ≈ (t ′0 :T ′{tt}) Θ |Γ ` (t1 :T{ff}) ≈ (t ′1 :T ′{ff})

Θ |Γ ` (if (x.T) n t0 t1 :T{s}) ≈ (if (x.T ′) n
′ t ′0 t ′1 :T ′{s′})

Figure 4.7: Unification logic: congruence rules

62

4.1.4 Twins

Unification will require the incremental simplification of unification problems. In
a heterogeneous setting, an immediate question is how to simplify the problem

(s :Πx :S .T) ≈ (t :Πx :U .V),

since it would not be type-correct (absent typing modulo) to produce

∀x :S . (s x :T) ≈ (t x :V).

We need x : S on the left and x : U on the right, and we need to know that they
are the same x . This motivates the introduction of twin variables, allowing the
problem to be simplified to

∀x̂ :S‡U . (s x́ :T{x́}) ≈ (t x̀ :V {x̀})

where x́ and x̀ represent the same variable at two different types, bound by
x̂ :S‡U . The heterogeneity invariant (Subsection 4.0.3) means that S and U will
be constrained to be equal by problems in the metacontext, but have not yet
necessarily been unified. If the types become definitionally equal, the twins can
be replaced with a single variable. On the other hand, the fact that they are
different might not prevent the problem from being solved (if at least one of s
and t is a constant function, for example).

Twins bind a single name, but occurrences of the variable mark which twin
they refer to. Thus they can be distinguished when typechecking, and substitution
must replace them with a pair of terms that are provably equal. Of course, twins
are bound as parameters of unification problems, not in terms, so β-reduction
never substitutes for twins. I write x ∼ y if x and y are identical or twins.

If unification problems were represented as types, twins could be distinct
variables with a proof of their (propositional) equality; replacing them with a
single variable would exploit the elimination principle for propositional equality.

Definitional equality is tested in the algorithm when typechecking a candidate
solution for a metavariable, but it treats twins as distinct, so the presence of
twins may prevent a metavariable being instantiated with a purported solution,
as indeed it should. When calculating the free variables of a term, the twin
annotations are ignored, so fv(x́) = fv(x̀) = fv(x) = {x}.

63

Θ |Γ ` δ :∆ (δ is a substitution from ∆ to Γ)

Θ |Γ ` ctx
Θ |Γ ` · : ·

Θ |Γ ` δ :∆
Θ |Γ ` δT 3 t

Θ |Γ ` (δ, t/x) :∆, x :T

Θ |Γ ` δ :∆
Θ |Γ ` (s :δ S) ≈ (t :δT)

Θ |Γ ` (δ, (s, t)/x̂) :∆, x̂ :S‡T

θ :Θ v Θ′ (θ is a metasubstitution from Θ to Θ′)

Θ′ ` mctx
· : · v Θ′

θ :Θ v Θ′ Θ′ | · ` θT 3 t ≡ θ s
(θ, t/α) :Θ, α := s :T v Θ′

θ :Θ v Θ′ Θ′ | · ` θT 3 t
(θ, t/α) :Θ, α :T v Θ′

θ :Θ v Θ′ Θ′ | · ` θP
θ :Θ, ? P v Θ′

Figure 4.8: Typing rules for substitutions and metasubstitutions

4.1.5 Substitutions and metasubstitutions

Figure 4.8 defines well-typed substitutions δ and metasubstitutions θ. They are
applied to terms as defined in Figure 4.2, and extended homomorphically to
syntax containing terms in the usual way.

The judgment Θ |Γ ` δ : ∆ means that δ substitutes a well-typed term in Γ
for every variable in ∆. Note that two provably equal terms may be substituted
for twins, since twins are not required to be definitionally equal.

The judgment θ : Θ v Θ′ means that θ substitutes a well-typed term in Θ′

for every metavariable in Θ. Moreover, any problem hypothesised in the original
metacontext must be true somehow in the new metacontext. This allows meta-
substitutions to be lifted to apply on derivations, as shown by Lemma 4.2 below.
Thus they give rise to an appropriate notion of stability, as in Subsection 2.1.2
(page 14). Two metasubstitutions are equivalent if they assign definitionally equal
terms to each metavariable, as defined in Figure 4.9.

The identity substitution ι on ∆ includes x/x for each x : T and (x́ , x̀)/x̂ for
each x̂ :S‡T in ∆. Weakening is silent, so Θ |Γ ` ι :∆ holds whenever Γ binds all
the variables bound in ∆.

I will also use ι :Θ v Θ′ for metacontexts, to represent an identity or inclusion
metasubstitution. If Θ′ contains definitions for some of the metavariables in Θ
then these definitions will be expanded by ι, to maintain the invariant that well-
typed terms are always βδ-normal.

64

θ ≡ θ′ :Θ v Θ′ (θ and θ′ are equivalent metasubstitutions from Θ to Θ′)

Θ′ ` mctx
· ≡ · : · v Θ′

θ ≡ θ′ :Θ v Θ′
Θ′ | · ` θT 3 t ≡ t ′ Θ′ | · ` θT 3 t ′ ≡ θ s

(θ, t/α) ≡ (θ′, t ′/α) :Θ, α := s :T v Θ′

θ ≡ θ′ :Θ v Θ′
Θ′ | · ` θT 3 t ≡ t ′

(θ, t/α) ≡ (θ′, t ′/α) :Θ, α :T v Θ′

θ ≡ θ′ :Θ v Θ′
Θ′ | · ` θP

θ ≡ θ′ :Θ, ? P v Θ′

Figure 4.9: Equivalence of metasubstitutions

4.1.6 Properties

All the usual metatheoretic properties hold. Where proofs have been omitted,
they are by structural induction on derivations.

Lemma 4.1 (Substitution). Suppose Θ |Γ ` δ :∆. Then

(a) If Θ |Γ,∆,Γ′ ` ctx then Θ |Γ, δ Γ′ ` ctx.

(b) If Θ |Γ,∆,Γ′ ` P wf then Θ |Γ, δ Γ′ ` δ P wf .

(c) If Θ |Γ,∆,Γ′ ` T 3 s ≡[u]≡ t then Θ |Γ, δ Γ′ ` δT 3 δ s ≡[v]≡ δ t.

(d) If Θ |Γ,∆,Γ′ ` h0 · e0 ≡[h2 · e2]≡ h1 · e1 ∈ T then
Θ |Γ, δ Γ′ ` δT 3 δ (h0 · e0) ≡[u]≡ δ (h1 · e1).

(e) If Θ |Γ,∆,Γ′ ` P then Θ |Γ, δ Γ′ ` δ P.

(f) If Θ |Γ,∆,Γ′ ` δ′ :Γ′′ then Θ |Γ, δ Γ′ ` δ · δ′ :δ Γ′′.

Lemma 4.2 (Metasubstitution). Suppose θ :Θ v Θ′.

(a) If Θ |Γ ` ctx then Θ′ | θΓ ` ctx.

(b) If Θ |Γ ` P wf then Θ′ | θΓ ` θP wf .

(c) If Θ |Γ ` T 3 s ≡[u]≡ t then Θ′ | θΓ ` θT 3 θ s ≡[v]≡ θ t.

(d) If Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ T then Θ′ | θΓ ` θT 3 θ (h · e) ≡ θ (h′ · e′).

(e) If Θ |Γ ` P then Θ′ | θΓ ` θP.

(f) If Θ |Γ ` δ :∆ then Θ′ | θΓ ` θ δ :θ∆.

65

Lemma 4.3 (Sanity conditions).
(a) If Θ |Γ ` ctx then Θ ` mctx.

(b) If Θ |Γ ` P wf then Θ |Γ ` ctx.

(c) If Θ |Γ ` T 3 s ≡[u]≡ t then Θ |Γ ` ctx.

(d) If Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ T then Θ |Γ ` Type 3 T .

(e) If Θ |Γ ` P then Θ |Γ ` P wf .

Lemma 4.4 (Definitional equality is an equivalence relation).
(a) If Θ |Γ ` T 3 t then Θ |Γ ` T 3 t ≡ t.

(b) If Θ |Γ ` T 3 s ≡[v]≡ t then Θ |Γ ` T 3 t ≡[v]≡ s.

(c) If Θ |Γ ` T 3 t ≡[u]≡ t ′ and Θ |Γ ` T 3 t ′ ≡[v]≡ t ′′ then u = v and
Θ |Γ ` T 3 t ≡[v]≡ t ′′.

Proof. Reflexivity, part (a), is precisely the definition of the typing judgment.
Symmetry, part (b), is by structural induction on the derivation. Since the

standard form is preserved, it is easy to establish symmetry, because the rules use
the standard form rather than choosing one side arbitrarily (and asymmetrically).

Transitivity, part (c), is by structural induction on the first derivation and
inversion on the second. The rules are syntax-directed, so in each case, the last
rule of the second derivation must be the same as the last rule of the first.

Lemma 4.5 (Context conversion). Suppose Θ |Γ ` Type 3 S ≡ T . Then

(a) Θ |Γ, x :S ,∆ ` ctx implies Θ |Γ, x :T ,Γ′ ` ctx;

(b) Θ |Γ, x :S ,Γ′ ` P wf implies Θ |Γ, x :T ,Γ′ ` P wf ;

(c) Θ |Γ, x :S ,Γ′ ` U 3 s ≡[u]≡ t implies Θ |Γ, x :T ,Γ′ ` U 3 s ≡[u]≡ t;

(d) Θ |Γ, x :S ,Γ′ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ U implies there is some V such that
Θ |Γ, x :T ,Γ′ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ V and
Θ |Γ, x :T ,Γ′ ` Type 3 U ≡ V ;

(e) Θ |Γ, x :S ,Γ′ ` P implies Θ |Γ, x :T ,Γ′ ` P.

(f) Θ |Γ, x :S ,Γ′ ` δ :∆ implies Θ |Γ, x :T ,Γ′ ` δ :∆.

A similar result applies to twins.

Lemma 4.6 (Conversion). If Θ |Γ ` Type 3 S ≡ T and Θ |Γ ` S 3 s ≡[u]≡ t
then Θ |Γ ` T 3 s ≡[u]≡ t.

66

4.2 Specification of unification

Having shown how to represent unification problems in context, let me address the
question of how to solve them. Following the approach of the previous chapters,
the idea is always to make small, local changes to the metacontext, each of which
is type-correct, makes the problem simpler and makes no unforced intensional
choices. This ensures that any solution found is most general.

In the following subsections, I will examine the range of problems one might
encounter, and discuss the step to take in each case. Then I will summarise all
the steps of the algorithm. The steps are divided into five main groups:

• solving equations of the form α xi
i ≈ t by α := λ xi

i .t (Subsection 4.2.1);

• solving equations α xi
i ≈ α yi

i by limiting the domain of α (Subsection 4.2.2);

• gaining information via pruning (Subsection 4.2.3);

• simplifying metavariables by removing Σ-types (Subsection 4.2.4); and

• simplifying problems locally (Subsection 4.2.5).

The rules are not deterministic, as they permit working on problems in any
order, but the nondeterminism does not matter: every step is most general, so the
order will not affect the final result. A deterministic algorithm can be obtained
from the rules by choosing a suitable order (such as leftmost problem first).

Since definitions must be immediately substituted out, in order to keep ev-
erything δ-normal, I write Θ, α :=∗ t :T ,Ξ to represent Θ, α := t :T , [t/α]Ξ.

4.2.1 Solving problems by inversion

Given the metacontext

Θ, α :T → T , ?∀x :T . α x ≈ x ,

where the equation looks like a definition, it should be unsurprising that

Θ, α := λx .x :T → T , ?∀x :T . x ≈ x

is a most general solution. Miller (1992) observed that, in general, the problem
∀Γ. α xi

i ≈ t has unique solution α := λ xi
i .t provided that the evaluation context

of α is a list of distinct variables containing all the free variables of t, and α does
not occur in t.

67

On the other hand, an equation like α tt ≈ t is not a good definition for α:
taking α := λx .t is a solution but is not most general, because another equation
might require αff ≈ s for some s 6= t. Defining α by case analysis is not most
general as it makes an unforced intensional choice: a later equation might demand
α ≈ λx .ff . Intuitively, Miller’s pattern condition says that only an application
to variables ‘captures the whole nature’ of the metavariable; an application to
non-variables only determines it for those specific arguments.

Linearity

It is crucial that variables occurring in t appear linearly (exactly once) in xi
i .

The equation β x x ≈ x cannot be solved immediately, as β could project either
its first or second argument, so there is no unique most general solution. On the
other hand, γ y x y ≈ x can be solved unambiguously by γ := λy0 x y1.x despite
the repetition of y. The xi

i may include twins, which are treated as equal for the
purposes of this check.

Occurs check

If α occurs in t, then it is obviously unsound to use t as the definition for α.
However, the question of whether the problem can have a solution at all is more
subtle, and depends on the exact form of the occurrence.

A subterm occurs flexibly if it is in the evaluation context of a metavariable,
and rigidly if not. In the term α x → y z , α, y and z occur rigidly while x
occurs flexibly. Miller (1992, p. 26) describes rigid occurrences as ‘permanent’ and
flexible occurrences as ‘possible’, because flexible occurrences might be removed
by substituting for metavariables but rigid occurrences cannot. A rigid occurrence
is strong if it is not in the evaluation context of a variable, so no substitution for
variables can remove it. In the example, y occurs strong rigidly but z does not.

I write fmv(t) for the set of free metavariables and fv(t) for the set of free
variables of t. Either may have a ·rig or ·srig superscript to include only those that
occur rigidly or strong rigidly (respectively).

Reed (2009b, §5.1.5) observes that when performing the occurs check before
solving a metavariable, a problem is definitely unsolvable if

• the metavariable occurs strong rigidly in its own candidate solution, such
as in α x ≈ α tt→ αff ; or

• an application of the metavariable to variables occurs rigidly in its own
candidate solution, such as in α x ≈ x (α x).

68

If a weak rigid occurrence of a metavariable is applied to non-variables, the prob-
lem may have solutions, for example β y ≈ y (β (λx .x)) is solvable (by taking
β := λy.y tt, amongst other things). Again, Miller’s pattern condition appears:
only an application to variables determines the whole nature of a metavariable.

Permuting the metacontext

If t depends on some metavariables declared after α, these must be moved prior to
α for the definition to be well-scoped. However, other metavariables may depend
on α, so they must remain after it. For example, given the context

Θ, α :Set, β :Set, γ :α, ?α ≈ β → β

an appropriate solution is

Θ, β :Set, α := β → β :Set, γ :β → β.

In general, solving
Θ, α :T ,Ξ, ?∀Γ. α xi

i ≈ t

requires finding a dependency-respecting permutation of Ξ into two segments Ξ0

and Ξ1 (written Ξ ∼= Ξ0,Ξ1), where Ξ0 contains all the metavariables that occur in
t and its type, and does not depend on α. If the necessary permutation does not
exist, then α cannot be solved immediately, though solving other metavariables
may remove the dependency cycle. The existence of such a permutation can be
determined in a small-step fashion by scanning dependencies from right to left,
as in the instantiation judgment for first-order unification (Figure 2.5, page 21).

Typechecking

Once the algorithm has a candidate solution λ xi
i .t for α, it must check that

the solution is well typed, as heterogeneity means that this is not guaranteed. In
particular, the type of t might not be definitionally equal to the type of α xi

i , or if
some twin variable ý occurs in xi

i and ỳ occurs in t, then the solution will not be
valid until the types of ý and ỳ become definitionally equal. Strictly speaking it
is not necessary to fully recheck the solution: it is enough to test these conditions
directly and rely on the fact that the original problem was well-typed. A real
implementation would record the desired solution for α and the constraints that
must be solved before it can be applied, as in Agda (Norell, 2007, Ch. 3).

69

intersect · · · 7→ ·

intersect (∆, z :S) (xi
i , x) (yi

i , y) 7→

intersect ∆ xi
i yi

i , z :S if x ∼ y
intersect ∆ xi

i yi
i otherwise

Figure 4.10: Intersection

4.2.2 Solving flex-flex problems by intersection

As well as equations between an eliminated metavariable and an arbitrary term,
some equations have the form α · e ≈ α · e′, with the same metavariable on
both sides but different evaluation contexts. If both contexts are applications of
lists of variables, then a most general solution is given by restricting α to those
arguments on which the two lists of variables agree. For example, a solution of

Θ, α :T → T → T , ?∀x :T .∀y :T . α x x ≈ α y x

is possible only if α does not depend on its first argument, giving

Θ, β :T → T , α := λ_ .β :T → T → T , ?∀x :T . (β x :T) ≈ (β x :T)

where β is a fresh metavariable.
Figure 4.10 defines the operation intersect ∆ xi

i yi
i , which takes a telescope ∆

and two lists of variables to fit it, and produces the telescope on which they agree.
Twin variables are considered equal for the purposes of intersection, though in
any case, twins could be replaced with a single variable since they must share a
common type. Given the context

Θ, α :Π∆.T ,Ξ, ? ∀Γ. α xi
i ≈ α yi

i

the problem is solved by creating a fresh metavariable β and defining

Θ, β :Π∆′.T , α :=∗ λ∆.β∆′ :Π∆.T ,Ξ where ∆′ = intersect ∆ xi
i yi

i

provided the free variables of the codomain T are retained in the telescope ∆′.
In LF, one can define intersection for arbitrary argument lists that contain

no metavariables, but this is not possible in a type theory with large elimination.
For example, α tt x ≈ α tt y does not imply that α is independent of its second
argument, as it might be defined by case analysis on its first argument.

70

4.2.3 Pruning

The problem in

Θ, α : (T → T)→ T , ?∀x : (T → T).∀y :T . α x ≈ x y

is unsolvable, because there is no way for α to depend on y, since it does not
occur as an argument on the left-hand side. On the other hand,

Θ, β :T → T , α : (T → T)→ T , ?∀x : (T → T).∀y :T . α x ≈ x (β y)

can be solved by observing that β may not depend on its argument, so it must
be of the form λ_ .γ for some fresh metavariable γ. This gives

Θ, γ :T , β := λ_ .γ :T → T , α : (T → T)→ T , ?∀x : (T → T).∀y :T . α x ≈ x γ

which can be solved by

Θ, γ :T , β := λ_ .γ :T → T , α := λx .x γ : (T → T)→ T .

For a problem of the form ∀Γ. α ·e ≈ t to be solvable, all the free variables of t
must occur in e; otherwise, they will be out of scope for solutions of α. If any out-
of-scope variables occur rigidly in t, then the equation can never be solved. If an
out-of-scope variable occurs flexibly, in the evaluation context of a metavariable,
then it might be possible to remove the occurrence by pruning the metavariable,
restricting its telescope of arguments.

Pruning cannot always remove occurrences of out-of-scope variables. For ex-
ample, pruning the equation ∀x :T . α ≈ β (γ x) fails because it is not clear which
metavariable ignores its argument: either β or γ could be constant, so there is
no most general solution. In this situation, the unification algorithm will have to
tackle other constraints, which may result in the problem becoming easier.

Moreover, knowing β tt x cannot depend on x does not mean that β cannot
depend on its second argument, because it might be defined by case analysis on
the first argument (so removing other arguments might lose solutions). Pruning
therefore retains arguments only if they are variables, failing otherwise. Once
again, Miller’s pattern condition appears: a constraint captures the entire be-
haviour of a metavariable only if the metavariable is applied to a list of variables.

71

pruneTmV t 7→ (β,∆) (pruning t to V requires β to have telescope ∆)

Θ 3 β :Π∆.T pruneV ∆ ti
i 7→ ∆′

fv(T) ⊂ vars(∆′) ∆ 6= ∆′

pruneTmV (β ti
i) 7→ (β,∆′)

pruneTmV S 7→ (β,∆)
pruneTmV (Πx :S .T) 7→ (β,∆)

pruneTm (V ∪ {x}) T 7→ (β,∆)
pruneTmV (Πx :S .T) 7→ (β,∆)

pruneTmV S 7→ (β,∆)
pruneTmV (Σx :S .T) 7→ (β,∆)

pruneTm (V ∪ {x}) T 7→ (β,∆)
pruneTmV (Σx :S .T) 7→ (β,∆)

pruneTmV s 7→ (β,∆)
pruneTmV (s, t) 7→ (β,∆)

pruneTmV t 7→ (β,∆)
pruneTmV (s, t) 7→ (β,∆)

pruneTm (V ∪ {x}) t 7→ (β,∆)
pruneTmV (λx .t) 7→ (β,∆)

pruneTmV s 7→ (β,∆)
pruneTmV (x · (e s · e′)) 7→ (β,∆)

pruneTm (V ∪ {y}) T 7→ (β,∆)
pruneTmV (x · (if (y.T) e s t · e′)) 7→ (β,∆)

pruneTmV s 7→ (β,∆)
pruneTmV (x · (if (y.T) e s t · e′)) 7→ (β,∆)

pruneTmV t 7→ (β,∆)
pruneTmV (x · (if (y.T) e s t · e′)) 7→ (β,∆)

pruneV ∆ ti
i 7→ ∆′ (pruning arguments ti i in ∆ to V gives telescope ∆′)

pruneV · · 7→ ·
pruneV ∆ ti

i 7→ ∆′ y ∈ V fv(S) ⊂ vars(∆′)
pruneV (∆, x :S) (ti

i
, y) 7→ ∆′, x :S

pruneV ∆ ti
i 7→ ∆′ fvrig(s) 6⊂ V

pruneV (∆, x :S) (ti
i
, s) 7→ ∆′

Figure 4.11: Pruning

72

Pruning uses two auxiliary relations defined in Figure 4.11. Both depend on
a set V of variables that may occur in arguments, which will initially be fv(e) and
will accumulate locally bound variables.

• The relation pruneTmV t 7→ (β,∆′) means that t has an occurrence of β,
whose telescope has been pruned to ∆′. This works by searching t for a
subterm β ti

i then using the following function.

• The relation pruneV ∆ ti
i 7→ ∆′ computes the pruned telescope ∆′ for β,

where ∆ is its original telescope and ti
i is the list of its arguments.

These relations are partial, as pruning may fail, and the former is nondetermin-
istic, as there may be multiple ways to prune a term. The nondeterminism does
not matter, however, as pruning is always a most general step and can be applied
repeatedly if necessary.

To prune a telescope ∆, x :S corresponding to the list of arguments ti
i
, s, the

preceding telescope ∆ is pruned with the list of arguments ti
i . If this succeeds,

producing ∆′, then there are three possible cases:

• if s is a variable y ∈ V , whose type depends only on variables that remain in
the pruned telescope ∆′, then the binding x :S can be left in the telescope;

• if s has a rigid occurrence of a variable not in V , then the binding must be
removed from the telescope;

• otherwise, pruning fails.

If s has a flexible occurrence of a variable not in V , pruning fails because while
the whole term cannot depend on the variable, it is not clear which metavariable
projects it away, as in the α ≈ β (γ x) example.

Note that the potential presence of type dependencies means pruning must
check the well-formedness of types. For example, if β : Πx : S .T where x occurs
free in T , then the first argument of β cannot be pruned.

For the earlier example

Θ, β :T → T , α : (T → T)→ T , ?∀x : (T → T).∀y :T . α x ≈ x (β y)

we have pruneTm {x} (x (β y)) 7→ (β, ·), because y does not occur in the set of
allowed variables {x}, so prune {x} (z :T) y 7→ (·) , i.e. the telescope z :T of β is
pruned to the empty telescope.

73

In the metacontext

Θ, β :Π∆.T ,Ξ, ? ∀Γ. α · e ≈ t,

if pruneTm (fv(e)) t 7→ (β,∆′) and all the variables in T are retained in ∆′ then
pruning β results in the metacontext

Θ, γ :Π∆′.T , β :=∗ λ∆.γ∆′ :Π∆.T ,Ξ, ?∀Γ. α · e ≈ t

where γ is a fresh variable. This restricts the telescope in a similar way to
intersection, though it does not apply to α but a different metavariable.

4.2.4 Metavariable simplification

Suppose α :Σx :S .T ; how might the constraint α hd ≈ s be solved? One option is
to extend the pattern fragment to cover projections, as Duggan (1998) does for
System Fω, but I take the simpler option of aggressively lowering metavariables
to eliminate projections. In this case, replacing α with the pair (β0, β1) of fresh
metavariables β0 :S , β1 :T{β0} simplifies the constraint to β0 ≈ s.

In general, the metavariable α might be under a telescope of parameters, so
α :Π∆.Σx :S .T can be replaced with

α0 :Π∆. S , α1 :Π∆.T{α0 ∆}, α := λ∆.(α0 ∆, α1 ∆).

Similarly, a metavariable α : Πx : (Σy : S .T).U can be uncurried to produce
β : Πy : S .Πz : T . [(y, z)/x] U , which will transform the non-pattern constraint
α (y, z) ≈ t into the pattern α y z ≈ t. The general case is even worse here, as α
might have a telescope of parameters and the type of x might have parameters
preceding the Σ. Thus α :Π∆.Πx : (Π∆′.Σz :S .T).U can be replaced with

Θ, β :Π∆.Πy : (Π∆′. S).Πz : (Π∆′.T{y ∆′}).U{λ∆′.(y ∆′, z ∆′)},

α := λ∆.λx .β∆ (λ∆′.x ∆′ hd) (λ∆′.x ∆′ tl).

These transformations maintain the same set of solutions thanks to the η-rule
for Σ-types, otherwise known as surjective pairing, (n hd, n tl) ≡η n. This is built
into the definitional equality by the rule for pairs, which always η-expands the
terms being compared.

74

4.2.5 Problem simplification

The problem decomposition operation P Z⇒ Q locally replaces a problem with
a simpler problem without changing the rest of the metacontext. Each decom-
position step can be applied in an arbitrary context. Thus P Z⇒ Q means that
Θ, ?∀Γ.P can be replaced with Θ, ?∀Γ.Q. Additionally, conjunctions can be
split into their components, replacing Θ, ?∀Γ.P ∧ Q by Θ, ?∀Γ.P, ?∀Γ.Q, and
trivial problems can be removed, replacing Θ, ?> with Θ. First I will discuss
the decomposition steps, then later summarise them in Figure 4.14. Steps are
numbered for ease of reference.

Perhaps the most basic simplification step is the removal of equations that
are reflexive up to the definitional equality, and hence trivial:

(s :S) ≈ (t :T) Z⇒ > (4.1)
if Θ |Γ ` Type 3 S ≡[U]≡ T and Θ |Γ ` U 3 s ≡ t

η-expansion

Given an equation between two functions, we saw in Subsection 4.1.4 that both
sides can be η-expanded, even if the domains are not definitionally equal, by
introducing twin variables. Thus α ≈ λx .t becomes α x́ ≈ t{x̀}. Similarly, pairs
can be η-expanded, for example turning (α, β) ≈ s into α ≈ s hd and β ≈ s tl.

(f :Πx :S .T) ≈ (g :Πx :U .V) Z⇒ (4.2)
∀x̂ :S‡U . (f x́ :T{x́}) ≈ (g x̀ :V {x̀})

(s :Σx :S .T) ≈ (t :Σx :U .V) Z⇒ (4.3)
(s hd :S) ≈ (t hd :U) ∧ (s tl :T{s hd}) ≈ (t tl :V {t hd})

Rigid-rigid decomposition

A rigid-rigid equation is one where neither side is a metavariable in an evaluation
context, so either the same head symbol appears on both sides, or the equation
is unsolvable. For example, Πx : S .T ≈ Πx : U .V can be decomposed into
S ≈ U ∧ T ≈ V , though twins must be used because S and U might not be
definitionally equal. A similar decomposition applies to Σ-types.

Πx :S .T ≈ Πx :U .V Z⇒ S ≈ U ∧ ∀x̂ :S‡U .T{x́} ≈ V {x̀} (4.4)

Σx :S .T ≈ Σx :U .V Z⇒ S ≈ U ∧ ∀x̂ :S‡U .T{x́} ≈ V {x̀} (4.5)

If the equation is between two eliminated variables, x · e ≈ x′ · e′, it can be
decomposed into equations between the arguments contained in the evaluation

75

x · • ./ x′ · • 7→ > if x ∼ x′

x · (e s) ./ x′ · (e′ t) 7→ x · e ./ x′ · e′ ∧ s ≈ t
x · (e hd) ./ x′ · (e′ hd) 7→ x · e ./ x′ · e′
x · (e tl) ./ x′ · (e′ tl) 7→ x · e ./ x′ · e′

x · (if (y.T) e s t) ./ x′ · (if (y.T ′) e
′ s′ t ′) 7→ x · e ./ x′ · e′ ∧ (∀y :B.T ≈ T ′)

∧ s ≈ s′ ∧ t ≈ t ′

Figure 4.12: Evaluation context decomposition

s ⊥⊥ t (s and t are rigidly incompatible)

Πx :S .T ⊥⊥ Σy :U .V Πx :S .T ⊥⊥ c Σx :S .T ⊥⊥ c

c 6= c′

c ⊥⊥ c′

x · e ⊥⊥ Πy :S .T x · e ⊥⊥ Σy :S .T x · e ⊥⊥ c

x 6∼ x′

x · • ⊥⊥ x′ · •

x · • ⊥⊥ x′ · e s x · • ⊥⊥ x′ · e hd x · • ⊥⊥ x′ · e tl x · • ⊥⊥ if (y.T) x
′ · e s t

x · e s ⊥⊥ x′ · e hd x · e s ⊥⊥ x′ · e tl x · e s ⊥⊥ if (y.T) x
′ · e s t

x · e hd ⊥⊥ x′ · e tl x · e hd ⊥⊥ if (y.T) x
′ · e s t x · e tl ⊥⊥ if (y.T) x

′ · e s t

x · e0 ⊥⊥ x′ · e′0
x · e0 · e1 ⊥⊥ x′ · e′0 · e′1

s ⊥⊥ t
t ⊥⊥ s

Figure 4.13: Impossible constraints

76

contexts, provided they match. For example, the problem

∀x̂ : (S → U × U)‡(T → V × V). (x́ s hd :U) ≈ (x̀ t hd :V)

decomposes into the equation (s :S) ≈ (t :T). On the other hand, y hd ≈ y tl has
no solutions, because the projections do not match.

The evaluation context decomposition function x·e ./ x′ ·e′, which is defined in
Figure 4.12, computes the conjunction of problems required to make x ·e ≈ x′ ·e′.
It is made available via the step

x · e ≈ x′ · e′ Z⇒ x · e ./ x′ · e′ (4.6)

The outermost eliminator in the evaluation context is decomposed first, with the
equality of the variables (ignoring twin annotations) being checked last, to allow
for extension to handle proof-irrelevant types.4

The evaluation context decomposition function is partial because a mismatched
equation like x ≈ y for distinct x and y, or y hd ≈ y tl, has no solutions. Sim-
ilarly, equations between dissimilar canonical constructors (such as tt ≈ ff) are
unsolvable. To capture this, Figure 4.13 defines the relation s ⊥⊥ t, meaning that
s and t are rigidly incompatible, so s ≈ t can never be solved. The step

s ≈ t Z⇒ ⊥ if s ⊥⊥ t (4.7)

allows ⊥ to be derived from such a contradiction. This definition depends on the
fact that equations are being solved up to the intensional definitional equality:
(x :S) ≈ (y :S) can be solved up to extensionality if S has only one inhabitant.5

η-contraction of subterms

Miller’s pattern condition requires that a metavariable should be applied to a
list of variables. As the definitional equality includes η-conversion, however,
it is enough for the arguments to be η-contractible to variables. For example,
α (λx .y x) ≈ t can be η-contracted to α y ≈ t, potentially allowing the solution
α := λy.t. This motivates the steps
P{λx .n x} Z⇒ P{n} (4.8)

P{(n hd, n tl)} Z⇒ P{n} (4.9)
that permit η-contraction anywhere inside problems. In practice, these are useful
only to make steps that depend on the pattern condition apply, so an implemen-
tation would perform η-contraction only when testing the pattern condition.

4Eliminations of an empty type can be equal even if the eliminated terms are not equal.
5Also, given proof-irrelevant types, the definition of s ⊥⊥ t would need to check that the

types were not proof-irrelevant (and could not become so after instantiation of metavariables).

77

Parameter simplification

Parameters that do not occur in the problem can be discarded by the four steps

∀x :T .P Z⇒ P if x /∈ fv(P) (4.10)

∀x̂ :S‡T .P Z⇒ P if x /∈ fv(P) (4.11)

∀x̂ :S‡T .P{x́} Z⇒ ∀x :S .P if Θ |Γ, x :S ` P wf (4.12)

∀x̂ :S‡T .P{x̀} Z⇒ ∀x :T .P if Θ |Γ, x :T ` P wf (4.13)

The point of these steps is to remove unnecessary dependencies, making it eas-
ier to compute the dependency-respecting permutation required when solving a
metavariable by inversion. Again, they depend on intensionality, because exten-
sionally a problem that quantifies over an empty type is trivially solvable. Here
Θ and Γ are implicitly parameters to the decomposition relation Z⇒, used in steps
(4.12) and (4.13) to emphasise that P depends only on one of the twins.

Given a pair of twins whose types are definitionally equal, they can be replaced
with a single variable, potentially allowing further progress. For example, the
problem ∀x̂ :S‡S . s{x́} ≈ t{x̀} becomes ∀x :S . s{x} ≈ t{x}.

∀x̂ :S‡T .P Z⇒ ∀x :U .P{x , x} (4.14)
if Θ |Γ ` Set 3 S ≡[U]≡ T

If a parameter has a Σ-type, it can be replaced with two parameters in order
to eliminate projections from equations, as in metavariable simplification (Sub-
section 4.2.4). For example, the problem ∀x : (Σy : S .T). α (x tl) ≈ t{x} can
simplify to ∀y :S , z :T . α z ≈ t{(y, z)}. This simplification happens by the step

∀x : (Π∆.Σx0 :S .T).P Z⇒ (4.15)
∀y : (Π∆. S), z : (Π∆.T{y ∆}).P{λ∆.(y ∆, z ∆)}

4.2.6 Summary of the algorithm

Figure 4.14 summarises the problem decomposition steps, and Figure 4.15 sum-
marises the steps for transforming the metacontext, discussed in the previous
subsections. In addition to the steps already discussed, the latter figure includes
the symmetry step (4.26), which saves writing out symmetrical variants of all the
other steps, and the suffix step (4.27), which allows other steps to be applied at
an arbitrary point in the metacontext.

Any variables that appear on the right but not on the left are implicitly
assumed to be freshly generated, so they do not conflict with any existing names.

78

Reflexivity
(s :S) ≈ (t :T) Z⇒ > (4.1)

if Θ |Γ ` Type 3 S ≡[U]≡ T and Θ |Γ ` U 3 s ≡ t

η-expansion
(f :Πx :S .T) ≈ (g :Πx :U .V) Z⇒ (4.2)

∀x̂ :S‡U . (f x́ :T{x́}) ≈ (g x̀ :V {x̀})
(s :Σx :S .T) ≈ (t :Σx :U .V) Z⇒ (4.3)

(s hd :S) ≈ (t hd :U) ∧ (s tl :T{s hd}) ≈ (t tl :V {t hd})

Rigid-rigid decomposition
Πx :S .T ≈ Πx :U .V Z⇒ S ≈ U ∧ ∀x̂ :S‡U .T{x́} ≈ V {x̀} (4.4)
Σx :S .T ≈ Σx :U .V Z⇒ S ≈ U ∧ ∀x̂ :S‡U .T{x́} ≈ V {x̀} (4.5)
x · e ≈ x′ · e′ Z⇒ x · e ./ x′ · e′ (4.6)
s ≈ t Z⇒ ⊥ if s ⊥⊥ t (4.7)

η-contraction of subterms
P{λx .n x} Z⇒ P{n} (4.8)
P{(n hd, n tl)} Z⇒ P{n} (4.9)

Parameter simplification
∀x :T .P Z⇒ P if x /∈ fv(P) (4.10)
∀x̂ :S‡T .P Z⇒ P if x /∈ fv(P) (4.11)
∀x̂ :S‡T .P{x́} Z⇒ ∀x :S .P if Θ |Γ, x :S ` P wf (4.12)
∀x̂ :S‡T .P{x̀} Z⇒ ∀x :T .P if Θ |Γ, x :T ` P wf (4.13)
∀x̂ :S‡T .P Z⇒ ∀x :U .P{x , x} (4.14)

if Θ |Γ ` Set 3 S ≡[U]≡ T
∀x : (Π∆.Σx0 :S .T).P Z⇒ (4.15)

∀y : (Π∆. S), z : (Π∆.T{y ∆}).P{λ∆.(y ∆, z ∆)}

Figure 4.14: Problem decomposition steps

79

Solving equations by inversion (4.2.1)
Θ, α :T ,Ξ, ?∀Γ. α xi

i ≈ t 7→ Θ,Ξ0, α :=∗ λ xi
i .t :T ,Ξ1 (4.16)

if Ξ ∼= Ξ0,Ξ1; xi
i is linear on fv(t) and Θ,Ξ0 | · ` T 3 λ xi

i .t
Θ, ? ∀Γ. α xi

i ≈ t 7→ Θ, ?⊥ (4.17)
if t 6= α · e′ and either α ∈ fmvsrig(t) or α yi

i occurs rigidly in t

Solving flex-flex equations by intersection (4.2.2)
Θ, α :Π∆.T ,Ξ, ?∀Γ. α xi

i ≈ α yi
i 7→ Θ, β :Π∆′.T , α :=∗ λ∆.β∆′,Ξ (4.18)

if ∆′ = intersect ∆ xi
i yi

i and fv(T) ⊂ vars(∆′)

Pruning (4.2.3)
Θ, β :Π∆.T ,Ξ, ? ∀Γ. α · e ≈ t 7→ (4.19)

Θ, γ :Π∆′.T , β :=∗ λ∆.γ∆′,Ξ, ?∀Γ. α · e ≈ t
if pruneTm (fv(e)) t 7→ (β,∆′)

Θ, ? ∀Γ. α · e ≈ t 7→ Θ, ?⊥ if fvrig(t) 6⊂ fv(e) (4.20)

Metavariable simplification (4.2.4)
Θ, α :Π∆.Σx :S .T 7→ (4.21)

Θ, α0 :Π∆. S , α1 :Π∆.T{α0 ∆}, α := λ∆.(α0 ∆, α1 ∆)
Θ, α :Π∆.Πx : (Π∆′.Σz :S .T).U 7→ (4.22)

Θ, β :Π∆.Πy : (Π∆′. S).Πz : (Π∆′.T{y ∆′}).U{λ∆′.(y ∆′, z ∆′)},
α := λ∆.λx .β∆ (λ∆′.x ∆′ hd) (λ∆′.x ∆′ tl)

Problem simplification (4.2.5)
Θ, ? ∀Γ.P 7→ Θ, ?∀Γ.Q if P Z⇒ Q (4.23)
Θ, ? ∀Γ.P ∧Q 7→ Θ, ?∀Γ.P, ?∀Γ.Q (4.24)
Θ, ?> 7→ Θ (4.25)

Symmetry and metacontext suffix
Θ, ?∀Γ. s ≈ t 7→ Θ′ if Θ, ? ∀Γ. t ≈ s 7→ Θ′ (4.26)
Θ,Ξ 7→ Θ′, ιΞ if Θ 7→ Θ′ (4.27)

Figure 4.15: Constraint solving steps

80

4.3 Correctness

In order to prove that unification correctly solves equational problems, I must
first explain what it means for a problem to be solved. I will show that the
unification logic is consistent, and that the steps of the unification algorithm are
sound for the logic. Moreover, I will prove that every step is most general (in
an appropriate sense). Total completeness cannot be expected, but I will show
a partial completeness result for the pattern fragment under the assumption of
termination. However, it is difficult to prove termination and I conclude this
section with a discussion of the problems involved.

4.3.1 Solved problems and logical consistency

An equation (s : S) ≈ (t : T) is solved if it is true according to the definitional
equality, i.e. Θ |Γ ` Type 3 S ≡[U]≡ T and Θ |Γ ` U 3 s ≡ t. More generally,
a problem is solved if the equations it contains are true in the definitional equality.
This is captured by the judgment Θ |Γ ` P is, defined in Figure 4.16. This
requires twins to have equal types, so they can be replaced with a single variable.

Solved problems satisfy the expected substitution properties, proved by struc-
tural induction on derivations using Lemma 4.1 and Lemma 4.2:

Lemma 4.7. If Θ |Γ ` δ :∆ and Θ |Γ,∆,Γ′ ` P is then Θ |Γ, δ Γ′ ` δ P is.

Lemma 4.8. If θ :Θ v Θ′ and Θ |Γ ` P is then Θ′ | θΓ ` θP is.

A metacontext is solved if all its hypothesised problems are solved. If a prob-
lem is solved, it is true, that is, if Θ |Γ ` P is then Θ |Γ ` P. I will show that
the converse holds provided Θ is solved: problems assuming only solved hypothe-
ses are themselves solved. This is essentially a cut elimination or normalisation
result, as it says that any proof of a problem can be reduced to a normal form,
with the normal form proofs of equations being definitional equalities.

In Subsection 4.3.2, I will show that unification steps are sound in the sense
that they preserve provability of problems. Hence, if the algorithm steps to a
solved metacontext, then the problems it started from must be solved.

The potential presence of twins forces me to prove a slightly more general
result, which allows any twins in the context to be replaced with definitionally
equal terms. The desired result for the empty context is then an immediate
corollary. Say that a substitution Θ |∆ ` δ :Γ identifies twins if for all x̂ :S‡T ∈ Γ
we have Θ |∆ ` Type 3 δ S ≡[U]≡ δT and Θ |∆ ` U 3 δ s ≡ δ t.

81

Θ |Γ ` P is (P is solved in Θ and Γ)

Θ |Γ ` ctx
Θ |Γ ` > is

Θ |Γ, x :S ` P is
Θ |Γ ` ∀x :S .P is

Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ, x :U ` P{x , x} is

Θ |Γ ` ∀x̂ :S‡T .P is

Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ ` U 3 s ≡ t

Θ |Γ ` (s :S) ≈ (t :T) is
Θ |Γ ` ctx

Θ |Γ ` (Set :Type) ≈ (Set :Type) is

Θ |Γ ` P is Θ |Γ ` Q is
Θ |Γ ` P ∧Q is

Figure 4.16: Solved problems

Lemma 4.9. If Θ is solved, Θ |Γ ` P and δ is a substitution from Γ to ∆ that
identifies twins, then Θ |∆ ` δ P is.

Proof. By induction on the derivation of Θ |Γ ` P. The absence of hypothet-
ical problems or first-class quantification over problems makes it easy to show
that the rules of the unification logic (Figure 4.6) correspond to solved problems
(Figure 4.16). For details, see Appendix D.3.1 (page 242).

Corollary 4.10. If Θ is solved and Θ | · ` P then Θ | · ` P is.

Corollary 4.11 (Consistency). If Θ is solved, there is no derivation of Θ | · ` ⊥.

Ametasubstitution θ :Θ v Θ′ is a solution of Θ if Θ′ is solved. Now if ? P ∈ Θ,
then Θ′ | · ` θP by Lemma 4.2, and hence Θ′ | · ` θP is by Corollary 4.10.

4.3.2 Soundness

Since the algorithm works in small steps, it is easy to verify that each is type
safe. All permutations of the metacontext respect dependency. Whenever the
algorithm instantiates a metavariable, it does so with a term of the appropriate
type. Moreover, every unification problem is replaced with an equivalent conjunc-
tion of unification problems. Crucially, the algorithm uses heterogeneous equality
to make it easy to represent the telescopes of equations that arise from dependent
arguments, potentially allowing progress on some equations even if the equation
that makes their types equal is initially blocked. Despite this, and unlike typing
modulo, every solution is well typed up to the definitional equality, making the
algorithm useful when mixing typechecking with elaboration.

82

Lemma 4.12. If Θ |Γ ` P wf and P Z⇒ Q then

(a) Θ |Γ ` Q wf , and

(b) Θ |Γ ` Q implies Θ |Γ ` P.

Proof. By case analysis on the decomposition step. I must show that the truth
of Q implies the truth of P, so that replacing a hypothesis ? P with ? Q leads to
a valid metasubstitution. For details, see Appendix D.3.2 (page 245).

Lemma 4.13. If Θ ` mctx and Θ 7→ Θ′ then ι :Θ v Θ′.

Proof. By induction on the step taken, using Lemma 4.12 for problem decompo-
sition. For details, see Appendix D.3.2 (page 246).

Theorem 4.14 (Soundness). If Θ ` mctx and Θ 7→∗ Θ′ where Θ′ is solved,
then ι :Θ v Θ′ is a solution of Θ.

Proof. Follows from Lemma 4.13 by induction on the number of steps.

4.3.3 Generality

The algorithm is carefully designed to make no unforced intensional choices: that
is, metavariables are instantiated only if the value is unique up to definitional
equality. This corresponds to finding most general unifiers. The particular strat-
egy for tackling constraints is unimportant, as the order in which constraints are
solved does not make a difference to the result. Implementations are free to make
alternative choices, provided all constraints are eventually dealt with. Of course,
since vectors of equations arise from telescopes, it will usually make sense to solve
the leftmost equations first so that later equations become homogeneous. Indeed,
the reference implementation always works on the leftmost problem for which
progress can be made (see Appendix C.4.6, page 235).

Lemma 4.15 (Generality of problem decomposition). If Θ |Γ ` P wf , the meta-
substitution θ :Θ, ?∀Γ.P v Θ′ is a solution and P Z⇒ Q, then θ :Θ, ?∀Γ.Q v Θ′.

Proof. By case analysis on P Z⇒ Q, supposing that θ (∀Γ.P) is solved and showing
that θ (∀Γ.Q) is solved. For details, see Appendix D.3.3 (page 247).

Theorem 4.16 (Generality). If Θ0 ` mctx, the metasubstitution θ :Θ0 v Θ′ is
a solution and Θ0 7→ Θ1 then there exists a cofactor ζ :Θ1 v Θ′ such that θ ≡ ζ ·ι.

Proof. By induction on the step taken, using Lemma 4.15 for problem decompo-
sition. For details, see Appendix D.3.3 (page 248).

83

t pat

h pat c pat
S pat T pat

Πx :S .T pat
S pat T pat

Σx :S .T pat
t pat

λx .t pat

s pat t pat
(s, t) pat

α · e pat x /∈ fv(e)
α · e x pat

x · e pat t pat
x · e t pat

n pat
n hd pat

n pat
n tl pat

fmv(T) = ∅ x · e pat s pat t pat
if (y.T) x · e s t pat

Figure 4.17: Pattern fragment

4.3.4 Partial completeness

As I observed in the introduction, full higher-order unification is undecidable, so
the algorithm is incomplete in general. I will show that it is complete for the
static Miller pattern fragment, where all metavariables are applied to distinct
bound variables, assuming it terminates. It goes beyond the pattern fragment
in handling Σ-types, and postponing non-pattern problems in case they become
solvable later. I believe that it handles a sufficiently broad class of problems to
be useful for elaboration of a dependently typed language.

A term t is in the pattern fragment if, for every evaluation context of a
metavariable α · e in t, e consists solely of projections and applications to distinct
variables. This is captured by the judgment t pat defined in Figure 4.17. The
definition could be extended to allow projections of variables, provided they are
distinct in an appropriate sense. For technical reasons in the completeness proof,
the result type of an if-expression cannot contain metavariables. A problem is in
the pattern fragment if all the terms it equates are in the pattern fragment. A
metacontext is in the fragment if all its hypothesised problems are.

To show partial completeness, I will prove that the algorithm can always take
a step unless the metacontext is already solved or it contains a contradiction. A
metacontext is failed if it contains ⊥ as a hypothesised problem.

Lemma 4.17. Suppose Θ is a well-formed metacontext in the pattern fragment
that is not solved or failed. Then Θ 7→ Θ′ for some Θ′ in the pattern fragment.

Proof. By considering the structure of the first unsolved problem in Θ, demon-
strating that at least one step of the algorithm must apply. The heterogeneity
invariant means that twins or heterogeneous problems must have provably equal

84

types, and for the first unsolved problem, Corollary 4.10 implies that they must be
definitionally equal. Hence heterogeneity will not prevent progress. For details,
see Appendix D.3.4 (page 249).

Theorem 4.18. If Θ is a well-formed metacontext in the pattern fragment, and
Θ 7→∗ Θ′ such that no more steps apply, then Θ′ is solved or failed.

Proof. Follows immediately from Lemma 4.17: if Θ′ were not solved or failed,
then the algorithm could take a step.

4.3.5 Towards a proof of termination

Intuitively, it seems obvious that the algorithm terminates: each step makes the
metacontext simpler, either by decomposing a unification problem into smaller
components, by solving a metavariable, or by replacing a metavariable with one
or more metavariables of smaller type.

However, it is difficult to construct a termination ordering. The conventional
approach is to define a measure on the sizes of terms and types in the context,
then show that each step of the algorithm reduces the measure. Abel and Pien-
tka (2011) exhibit a suitable ordinal-based measure to show termination of their
algorithm for LF.

The picture is more complex for the full-spectrum dependent type theory
I have outlined, thanks to the presence of large elimination and metavariables
standing for types. Defining a metavariable that occurs in a type can result in
types becoming larger, which is not the case in LF. It is thus not clear how to
calculate the size of a metavariable. If one takes the supremum over all possible
instantiations of a metavariable when calculating its size, then splitting up in-
habitants of Σ-types by step (4.21) does not strictly decrease the measure in the
resulting ordering.

Any proof of termination will need to take account of the stratification of
the type theory. Obviously, if the underlying theory is not strongly normalising
then encoding a divergent term can result in non-termination of unification. How-
ever, in an inconsistent system even simpler non-termination is possible. Suppose
our type theory included the axiom that there is a type of all types, sometimes
written Set : Set. Martin-Löf (1975) had to abandon this axiom after Girard
demonstrated its inconsistency. Now consider the context

α :ΣX :Set.X , ?α ≈ (ΣX :Set.X , α).

85

As α has a Σ-type, a reasonable step is to split it into its components, giving

β :Set, γ :β, ? (β, γ) ≈ (ΣX :Set.X , (β, γ)).

Now the equation can be decomposed into

β :Set, γ :β, ? β ≈ ΣX :Set.X , ? γ ≈ (β, γ)

and solving β := ΣX :Set.X yields

γ :ΣX :Set.X , ? γ ≈ (ΣX :Set.X , γ)

which is the original problem. Applying the unification algorithm is therefore not
guaranteed to terminate, in the presence of the Set : Set axiom.

The lack of a termination proof for the unification algorithm (applied to the
correctly stratified version of the theory) is rather unsatisfactory, and it is left as
an open issue for future work.6 It should be possible to stratify the proof in the
same manner as the theory, demonstrating termination for small problems, then
extending the result to the full theory with large eliminations.

4.4 Discussion

I have presented an algorithm for higher-order dynamic pattern unification in a
full-spectrum dependent type theory. The approach to problem solving in this
thesis, based on representing metavariables and problems in an ordered context,
allows careful control over dependency and makes it easy to suspend work on one
problem while the algorithm tries to solve another.

The algorithm is optimised for clarity rather than performance, and I have not
considered its algorithmic complexity. A ‘real’ implementation would probably
need to use a representation of terms with more control over depth of evaluation,
rather than working solely with βδ-normal forms. Some care is also necessary to
determine when to attempt each step: the reference implementation uses a fairly
naïve approach, recording the fact that no more steps apply to a given problem,
but not the conditions under which this will change. Thus every problem must
be examined again whenever a substitution changes its type. Similarly, rather
than repeatedly checking to see if the types of metavariables can be simplified,

6Termination of higher-order unification can be surprisingly subtle: Dowek et al. (1996)
describe a pattern unification algorithm for which termination can fail, as Reed (2009b, §5.1.1)
explains. The algorithm I have described is at least not vulnerable to the same counterexample!

86

as in the reference implementation, projections could be eliminated only as they
arise in unification problems.

In this chapter, I described unification for a very restricted type theory, but the
algorithm can be extended to support inductive types, proof irrelevance and other
advanced features. It therefore forms the base on which to build an elaborator
for a full-spectrum dependently typed language, in the style of Agda or Epigram.

However, it is now time to take a different tack. In the second part of this
thesis I will describe an extension of Haskell with dependent types. Underlying the
elaboration algorithm for this language, as described in Chapter 7, is a constraint
solver that makes use of the techniques for unification and type inference described
in this chapter and those that preceded it.

87

Part II

Haskell with dependent types

Chapter 5

The inch language: adding
dependent types to Haskell

Modern Haskell’s poorly-concealed support for dependent types is increasingly be-
ing used to obtain correctness guarantees for Haskell programs (McBride, 2002).
From the ubiquitous vectors, to well-scoped λ-terms and more exotic examples,
dependent types allow programmers to express their intentions more precisely.
However, many of these experiments are testaments to the versatility of gener-
alised algebraic datatypes, multi-parameter type classes, functional dependencies
and type families, rather than practical programming techniques. In particular,
working with type-level numbers and teaching arithmetic to a compiler is a com-
plex, inefficient business; the syntax is ugly, error messages are convoluted and
typechecking is sometimes difficult to predict.

Wouldn’t it be nicer if we could write programs like the following?

data Vec :: ∗ → N→ ∗ where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Suc n)

append :: Vec a m → Vec a n → Vec a (m + n)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

replicate :: Π (n :: N)→ a → Vec a n
replicate Zero = Nil
replicate (Suc n) x = Cons x (replicate n x)

The inch language presented in this part extends Haskell with dependent func-
tions (Π-types), promoted datatypes (including the integers), type-level arith-
metic operations and integer constraints. This is not just an attempt to turn

Haskell into Agda or similar full-spectrum dependently typed languages. A clear
account of the phase distinction and the operational behaviour of programs is
needed. Working in a weaker system enables more powerful type inference. More-
over, the equational theory of arithmetic is not just β-reduction: programming
with dependent types can be made easier by automatically solving constraints
that depend on algebraic properties (such as the commutativity of addition).

This chapter consists of an overview of related systems (including those based
on current features of GHC) and an informal introduction to the syntax and
features of inch by means of examples. Following this introduction to the high-
level language, I will define a corresponding language of evidence in Chapter 6.
Typechecking the evidence language is straightforward, and it is suitable as an
intermediate language during compilation. It is very explicit (for example, all
type abstractions and applications must be present in the syntax), so information
omitted from inch programs must be inferred when producing the corresponding
evidence program. This translation, called elaboration, is the focus of Chapter 7.
I will demonstrate larger examples of the use of inch in Chapter 8.

The description of elaboration develops the approach to the Hindley-Milner
system studied in Chapter 2. I will not study constraint solving in detail, but
the unification algorithm for abelian groups in Chapter 3 and the higher-order
unification algorithm in Chapter 4 demonstrate the basic ideas.

5.1 Related work

No idea exists in a vacuum. In this section, I will summarise the ideas and pre-
decessor systems on which inch is based, including the current state of Haskell as
implemented in GHC, and more distantly related work. In the following section,
I will lay out the key features of inch, comparing it to these systems as I do so.

5.1.1 Full-spectrum dependently typed languages

In full-spectrum dependently typed languages such as Agda (Norell, 2007), based
on Martin-Löf Type Theory (Nordström et al., 1990), arbitrary terms can be
used to index types. Numbers can be modelled as an inductive datatype and
mathematical operations defined on them by recursion. The type theory can
be used to prove equations needed to make a program type check. There are no
limitations on the form of numeric expressions (to linear functions or polynomials,
for example), since the only automatic constraint solving arises from computation
(β-reduction) when checking definitional equality.

90

Suppose we have the following standard definitions (in Agda syntax):

data N : Set where
Zero : N
Suc : N→ N

+ : N→ N→ N
Zero + n = n
Suc m + n = Suc (m + n)

data Vec (A : Set) : N→ Set where
Nil : Vec A Zero
Cons : ∀{n} → A→ Vec A n → Vec A (Suc n)

Vector concatenation is easily defined by recursion on the first argument, because
the + function is also recursive on its first argument:

++ : ∀{A m n} → Vec A m → Vec A n → Vec A (m + n)
Nil ++ ys = ys
Cons x xs ++ ys = Cons x (xs ++ ys)

However, defining vector reverse is trickier, because + does not reduce if its first
argument is neutral and its second is canonical. Consider the following:

reverse : ∀{A m} → Vec A m → Vec A m
reverse xs = help xs Nil

where
help : ∀{A m n} → Vec A m → Vec A n → Vec A (m + n)
help Nil ys = ys
help (Cons x xs) ys = help xs (Cons x ys)

The definition of reverse is not accepted, because m + Zero 6≡ m, and the second
line of help is not accepted, because m + Suc n 6≡ Suc (m + n). Instead, the user
must insert explicit appeals to a proof of the commutativity of +. The equational
theory of addition is not merely given by a recursive definition!

In general, the user may need to prove many properties of the mathemati-
cal operators they have defined. There has been some work on automating this,
particularly via tactics in the interactive theorem prover Coq (Gregoire and Mah-
boubi, 2005), but integrating this with programming can be difficult.

91

5.1.2 Dependent ML

Xi (1998, 2007) describes Dependent ML (DML), a conservative extension of
ML that supports “a restricted form of dependent types.” Formally, DML is a
language schema parameterised on a constraint domain L from which type indices
are drawn. Type checking is reduced to constraint solving in L. Instantiating
L with a language of arithmetic expressions results in a system for type-level
numbers, but other choices are possible, such as the theory of free algebraic terms.
Xi and Pfenning (1998) demonstrate one application of dependent numeric types:
the safe elimination of runtime array-bounds checks.

The development of DML lead Xi and coworkers to design the Applied Type
System (AT S) framework (Xi, 2004) and the ATS language (Chen, 2006).

Dependent ML is a major inspiration for this work, but extending Haskell
with dependent types and type-level numbers requires more than adapting Xi’s
work to another syntax. While DML extends ML with a fixed domain of indices
and constraints, I show how extensions to the Haskell kind system allow indexing
by arbitrary type-level expressions, and I focus on the introduction on Π-types,
which are not supported by DML.

One feature of DML that is absent from inch is support for effects. Since
Haskell is more-or-less a pure language, with effects encapsulated in the IO monad,
there is no need for specific consideration of effects in the type system, nor for
the value restriction. I will not discuss effects further in this thesis.

5.1.3 Generalised algebraic datatypes

Unlike normal algebraic datatypes, generalised algebraic datatypes (GADTs) al-
low the return types of data constructors to specialise the indices of the datatype,
by imposing additional equality constraints that must be satisfied on construc-
tion and become available through pattern-matching. Thus they are a kind of
inductive family indexed by type-level expressions. By defining suitable type
constructors, numerically indexed types can be approximated, for example:

data ZeroType
data SucType :: ∗ → ∗

data VecGADT :: ∗ → ∗ → ∗ where
NilGADT :: VecGADT a ZeroType
ConsGADT :: a → VecGADT a n → VecGADT a (SucType n)

The GADT translation replaces each expression in an index of the result type
with a variable, and imposes an equality constraint between the variable and the

92

original expression. This gives:

NilGADT :: ∀a m .m ∼ ZeroType⇒ VecGADT a m
ConsGADT :: ∀a m n .m ∼ SucType n ⇒

a → VecGADT a n → VecGADT a m

The idea for GADTs dates back to a draft by Augustsson and Petersson (1994),
although the closely related inductive families (Dybjer, 1994) have a much longer
history in the dependent types community. A variety of names have arisen for
essentially the same concept. Early theoretical treatments of GADTs were given
by Xi et al. (2003) (under the name guarded recursive datatypes) and Cheney
and Hinze (2003) (as first-class phantom types). They were later studied by
Sheard and Pasalic (2008) (as equality-qualified types), Simonet and Pottier (2007)
(as guarded algebraic datatypes) and Peyton Jones et al. (2006) who christened
them GADTs. Much subsequent work has gone in to finding good type inference
algorithms, especially in the presence of other advanced type system features,
and they are well-supported in recent versions of GHC.

Moving beyond the free algebraic equational theory of type constructors, the
associated type families (Chakravarty et al., 2005) extension to GHC allows type-
level functions to be defined. For example, addition can be given thus:

type family m + n
type instance ZeroType + n = n
type instance SucType m + n = SucType (m + n)

A similar approach is possible using multi-parameter type classes and functional
dependencies (Jones, 2000). In both cases, however, the type-level programming
is effectively untyped (as all types have kind ∗). There is nothing to stop one
forming the type Z + Bool, or even declaring such nonsense as

type instance Z + Bool = Z

5.1.4 Haskell libraries

McBride (2002) showed that ‘faking it’ is a viable technique for simulating nu-
meric dependent types in Haskell, including type-safe vector operations and ma-
trix multiplication. Subsequently, there have been numerous implementations of
type-level numbers as libraries using existing features of Haskell. The Hackage
repository includes the packages sized-types, type-level, type-level-numbers,

93

type-level-natural-number, numtype and undoubtedly some with more equiv-
ocal names! Kiselyov (2005) discusses several possible encodings including a
particularly ingenious decimal representation, and manages to get a long way
without using any extensions to Haskell 98.

Many of these libraries have arisen in response to the need for type-level
numbers in a particular application. For example, the sized-types library is
part of Kansas Lava (Gill et al., 2009), a DSL for hardware description. The
ForSyDe project (Acosta, 2008) uses fixed-size vectors as part of a DSL for mod-
elling computation using signals and processes. Eaton (2006) describes a linear
algebra library that provides static guarantees about the dimensions of vectors
and matrices, ensuring compatibility when they are multiplied.

Impressive as these libraries are, they are all hampered by the limitations im-
posed by the language, in such areas as syntax, type inference and clarity of error
messages. Better language support for type-level data would make it possible to
move beyond these limitations and produce a more user-friendly system.

5.1.5 GHC TypeNats

Recently, Diatchki (n.d.) has developed an extension to GHC that supports type-
level natural numbers, adding a new kind Nat. The choice of natural numbers
rather than integers is motivated by the intended applications, such as measuring
the sizes of datatypes, but there is no fundamental reason why the alternative
choice could not be made. Of course, natural numbers are easily recovered from
integers and an inequality constraint, but the reverse is not so easy.

Work is underway to support arithmetic operations on natural numbers, in-
cluding addition, multiplication and exponentiation. The plan is for them to
be described by type families that trigger special behaviour in GHC’s constraint
solver (Vytiniotis et al., 2011).

5.2 Features of inch
Having described the giants on whose shoulders I am standing, I now give an
overview of the inch language and compare it to its predecessors. The reader may
wish to consult Chapter 8 alongside this section, for more extensive examples of
the use of some of these features.

94

5.2.1 Down with kinds

The Haskell kind system has been expanding for some time. From including just
the kind ∗ and function spaces, it has grown to encompass ‘promoted’ datatypes
and kind polymorphism, as described by Yorgey et al. (2012). Promotion allows
arbitrary algebraic datatypes to be used as kinds. For example,

data Nat = Zero | Suc Nat

allows Nat to be used as a kind, and its constructors to be used as types, as in:

data Vec :: ∗ → Nat→ ∗ where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Suc n)

This is a significant improvement on the essentially untyped type-level program-
ming that is otherwise required with GADTs. However, the class of types that can
be promoted is somewhat limited. In particular, GADTs cannot themselves be
promoted. This prevents indexing a type by a GADT, which is necessary for more
advanced dependently typed programming. For example, it is not straightforward
to extend the traditional GADT example of well-typed terms in the simply-typed
λ-calculus so that contexts are represented by vectors. The following is rejected,
because Vec cannot be promoted:

data Elem :: Vec k n → k → ∗ where
Top :: Elem (Cons a v) a
Pop :: Elem v a → Elem (Cons b v) a

data Tm :: Vec ∗ n → ∗ → ∗ where
Var :: Elem v a → Tm v a
Lam :: Tm (Cons a v) b → Tm v (a → b)
App :: Tm v (a → b)→ Tm v a → Tm v b

Now the kind system has algebraic datatypes, function spaces and polymorphism,
so it increasingly resembles the type system, or at least the type system without
recent extensions. Why not simplify matters by removing the distinction between
types and kinds? This eliminates the boundary between ‘promotable’ and ‘non-
promotable’ datatypes. It is a conceptual simplification, because users do not
need to learn two slightly different type systems, and it means that type and kind
checking become the same operation, which may reduce the burden of specifying
and implementing the compiler.

95

Weirich et al. (2013) show that this identification of types and kinds gives a
perfectly good intermediate language. They adopt the typing rule ∗ : ∗, rather
than a hierarchy of universes, because logical soundness of the system is not a con-
cern. Haskell has general recursion anyway! On the other hand, type soundness
(progress and preservation) is retained. The inch system follows their approach.

ML lacks higher kinds (all types are of kind ∗), so DML distinguishes between
types and indices, with the latter having a sort drawn from the underlying con-
straint language L. It adds a single index to each datatype, and ensures types
appear only applied to an index value. Multiple indices can be supplied as pairs.

Integrating type-level data into a single type and kind system, as in inch, gives
a great deal of extra expressivity. For example, the type of reflexive transitive
closures of binary relations on a can be defined in general, then specialised:

data RTC :: (a → a → ∗)→ a → a → ∗ where
Embed :: r m n → RTC r m n
Reflexive :: RTC r n n
Transitive :: RTC r l m → RTC r m n → RTC r l n

DML supports polymorphism over type indices, but since parametric polymor-
phism in ML is restricted to types of kind ∗, a separate quantifier is needed. It
uses Π a :γ . τ for the universally quantified type of elements of τ polymorphic in
an index of sort γ. Since this is a type, it can appear on the left of an arrow,
effectively permitting a limited form of higher-rank polymorphism. Unlike the
usual notion of a dependent function space (Π-type) in type theory, this construct
is parametric: the value a is not available at runtime and the function cannot
eliminate it by case analysis. It thus corresponds to ∀ in inch.

5.2.2 Dependent functions

How might the replicate function, which repeats a value n times to produce a list,
be extended to return vectors? The type of the resulting vector depends on the
integer argument, so the argument must be known statically (available during
typechecking), but the operational behaviour of the function also requires it, so
it must be available at runtime. It really requires a dependent Π-type:

replicate :: Π (n :: N)→ a → Vec a n
replicate Zero = Nil
replicate (Suc n) x = Cons x (replicate n x)

The variable n is bound in the range of the Π-type, just as for a universally
quantified type scheme, but it also appears in the patterns defining the function.

96

An alternative to introducing explicit Π-types is connecting the term and
type levels using singleton types. In this approach, a family of types is indexed
by type-level representations of term-level data, so that each type has a single
inhabitant. In Haskell with GADTs and datatype promotion, the example can
be expressed using a singleton type SingNat thus:

data SingNat :: Nat→ ∗ where
SingZero :: SingNat Zero
SingSuc :: SingNat n → SingNat (Suc n)

replicateSing :: SingNat n → a → Vec a n
replicateSing SingZero = Nil
replicateSing (SingSuc n) x = Cons x (replicateSing n x)

Converting between the representations requires additional functions. Here a
higher-rank function has been used to convert the runtime Nat into the singleton
SingNat; an alternative approach is to use existential types (see Subsection 5.2.3).

forget :: SingNat n → Nat
forget SingZero = Zero
forget (SingSuc n) = Suc (forget n)

remember :: Nat→ (∀n . SingNat n → t)→ t
remember Zero f = f SingZero
remember (Suc n) f = remember n (f ◦ SingSuc)

There is some duplication and redundancy inherent in this approach, since term-
level data must be re-expressed at the type level, but some of this can be taken
care of by the compiler. Monnier and Haguenauer (2010) show how to convert
from the Calculus of Constructions into a non-dependent language with singleton
types. The Strathclyde Haskell Enhancement (McBride, 2010b) supports defining
the type-level copy and singleton GADT for an algebraic datatype automatically,
and the singletons library of Eisenberg and Weirich (2012) goes even further
than this, using Template Haskell to automatically convert sufficiently simple
term-level functions into type families.

Dependent ML uses singletons, rather than Π-types in the sense above.

5.2.3 Dependent existential types

A key feature of DML is its support for dependent existential types, allowing (for
example) the type of lists to be replaced by vectors of existentially quantified

97

length. This is useful for abstraction purposes, or when the invariants being
maintained are difficult to express at the type level. For example, the length of
the list returned by filter depends on how many elements satisfy the predicate,
and rather than building this into the type, another option is to return a vector
of existentially quantified length, with a type like

filter :: (a → Bool)→ Vec a n → ∃m .Vec a m .

This is a powerful but complex feature, as the combination of parametric polymor-
phism and existential dependent types significantly complicates type inference.
An alternative, introduced by Läufer and Odersky (1992) and used in Haskell, is
to associate existential values with data constructors, closing the existential pack-
age when data is constructed and opening it when pattern-matching. A variable
is existentially quantified if it does not appear in the parameters associated with
its constructor. I use this option for inch. It is less flexible than genuine exis-
tential types, as in DML, but it is also significantly simpler for type inference
purposes and is familiar to Haskell programmers through its support in GHC.

Xi (2007) argues that connecting existential types with data constructors leads
to a need for too many datatypes with slightly different constraints, and Chen
(2006, p. 23) further suggests that “indirect support to existential types is sim-
ply impractical in the presence of dependent types”, using the example of the
singleton family of integers in DML. However, higher-kinded and higher-rank
polymorphism ameliorate the problem to an extent, as does native support for
Π-types rather than using the singleton encoding. For example, the datatype

data Ex :: (k → ∗)→ ∗ where
MkEx :: f x → Ex f

allows any singly-indexed type to be converted into an existential. It can safely
be eliminated via rank-2 polymorphism:

unEx :: ∀a f . (∀x . f x → a)→ Ex f → a
unEx g (MkEx x) = g x

Admittedly, the usual problems with argument order for higher-kinded types will
arise: Ex (Vec a) is conveniently the type of vectors of existentially quantified
length, but if its arguments were reversed, Ex (Vec n) would be the rather less
useful type of vectors of fixed length but unknown element type. In general, a
small amount of bureaucratic constructor shuffling may be necessary, but this
seems reasonable given the complications of type inference for existentials.

98

5.2.4 Implicit and explicit arguments

When should it be possible to omit the argument of a function? Milner (1978)
achieved a remarkable coincidence, as Lindley and McBride (2013) observe:

Syntactic category Types Terms
In source language Implicit Explicit
Abstraction Dependent (∀) Non-dependent (→)
Runtime Erased Present

So neat is this coincidence that one may forget to distinguish these concepts.
However, as more advanced type systems have been developed, Milner’s co-

incidence has been stretched. On the positive side, Wadler and Blott (1989)
introduced typeclasses, a system of implicit term-level arguments that are not
erased at runtime. More negatively, current GHC sometimes insists on playing a
frustrating guessing game, where it does not allow a type-level argument to be
specified but tries to reconstruct it by unification, which is not always possible.
That is, there are implicit static arguments that would be better made explicit.

For example, consider the following definitions:

type family F a

f :: F a → F a
f x = x

g :: F a → F a
g = f

The definition of g is rejected by GHC even though its type is syntactically
identical to that of f , because it helpfully freshens a to a0, then fails to solve for
the original a since F might not be injective.1

A folklore trick often used to solve this problem is to declare a ‘proxy type’
with a single phantom parameter. This allows an extra argument to be added to
each function where the type should be passed explicitly, annotating the proxy
constructor appropriately:

data Proxy (a :: k) = Proxy

f ′ :: Proxy a → F a → F a
f ′ x = x

g′ :: ∀b .F b → F b
g′ = f ′ (Proxy :: Proxy b)

1In fact, GHC even rejects g without a type signature, presumably because it tries to recheck
the type it has inferred and hits the same problem.

99

While this provides a workaround for the problem, it is quite invasive, as the
original definition of the function needs to be changed, and it is syntactically
noisy. The ability to write type application explicitly in source Haskell is long
overdue; the only major stumbling block is deciding upon the concrete syntax.

On the other hand, it is often desirable to omit arguments that can be re-
constructed mechanically. This does not necessarily correspond to the type-
level/term-level or compile-time/runtime distinctions: runtime terms may well
be inferred if the types determine them. This issue has been studied extensively
in the setting of dependently typed programming languages, in particular by Pol-
lack (1990). A common approach is to allow certain arguments of functions to
be designated implicit,2 with the idea that they will be found automatically dur-
ing type inference (typically by unification). For example, in Agda the replicate
function can be written

replicate : {a : Set} {n : N} → a → Vec a n
replicate {n = Zero} = Nil
replicate {n = Suc n} x = Cons x (replicate x)

Now n is implicit by default at use sites, since it can usually be inferred from the
context, even though it is critical for the runtime behaviour of the function. This
is a big win: the compiler is writing operationally relevant parts of the program!

Implicit arguments are written in curly braces in the type, and may be omitted
by default in patterns and expressions, or specified by wrapping them in curly
braces. Both positional and named variants on the notation are available. In
{n = Suc n}, the first n specifies the implicit argument to match, and the
second is a binding occurrence. The fact that an implicit argument can always be
specified explicitly if necessary avoids the problems discussed above. Agda-style
notation would allow a much neater solution to the problem discussed above:

g′′ :: ∀b .F b → F b
g′′ = f {a = b}

In Section 7.1, I will show how inch supports implicit argument notation. It
adopts a slight generalisation of the Haskell syntax for quantifiers in types: a dot
following the binder means the quantification is implicit, while an arrow means the
quantification is explicit. Thus ∀a . τ and Π (n :: N) . υ are implicitly quantified,
while ∀ (a :: ∗) → τ and Π n → υ are explicitly quantified. For applications, the
Agda-style named implicit argument notation is used, as in f {a = b}.

2Implicit arguments are not the same as the ‘implicit parameters’ of Lewis et al. (2000),
which are a construct for dynamic scoping.

100

Implicit Π-types

Typeclasses provide a form of term-level implicit arguments for Haskell. Along
with the singleton encoding, this allows an approximation of an implicit Π-type:

class ImplicitNat (n :: Nat) where
sing :: SingNat n

instance ImplicitNat Zero where
sing = SingZero

instance ImplicitNat n ⇒ ImplicitNat (Suc n) where
sing = SingSuc sing

A class context containing ImplicitNat n means that n is passed implicitly. It is
meaningful even though an obvious induction shows that the predicate holds for
every canonical Nat. An implicit version of replicate can be defined thus:

replicateImplicit :: ImplicitNat n ⇒ a → Vec a n
replicateImplicit = replicateSing sing

However, there are now three variations on a single type (Nat, SingNat and
ImplicitNat), all of which must be understood by the programmer. Moreover,
switching between explicit and implicit arguments is clumsy: sing :: Sing x must
be used in place of a simple x .

Implicit Π-types are often useful in class instances. For example, in order
to make Flip Vec n a monad, the length n must be supplied at runtime so that
replicate can be used in the implementation of return:

newtype Flip f x y = Flip {unFlip :: f y x }

instance Π (n :: N) .Monad (Flip Vec n) where
return = Flip ◦ replicate n
Flip xs >>= f = Flip (help xs (unFlip ◦ f))

where
help :: Vec a m → (a → Vec b m)→ Vec b m
help Nil g = Nil
help (Cons x xs) g = Cons (vhead (g x)) (help xs (vtail ◦ g))

5.2.5 Type-level numbers

I have already shown several examples of the use of type-level natural numbers in
measuring the lengths of vectors. For many applications involving measuring the

101

sizes of datatypes, natural numbers suffice, and they have an obvious inductive
definition from zero and successor constructors, as shown above. Most Haskell
libraries for type-level numbers use naturals, as does the TypeNats extension to
GHC (Diatchki, n.d.).

However, another choice is available: the integers. This increases expressivity
as natural numbers can be recovered from integers using inequality constraints
(see Subsection 5.2.7). DML (Xi, 2007) takes this choice.

The design considerations for a language extension are different to those of
a library. There is no restriction to ad-hoc type-level programming techniques.
Type inference may be easier for integers, because they form an abelian group,
allowing the unification algorithm from Chapter 3 to be used.

Moreover, there are some use cases that rely on negative as well as positive
integers, such as implementing a library for units of measure. Given a fixed set
of base units, a derived unit can be represented by its integer exponents: for
example, metres per second (m/s) could be represented by 1 as the exponent
of metres, −1 as the exponent of seconds and 0 as the exponent of other base
units. The NumType library of Buckwalter (2009) is one of the few libraries to
support negative numbers for exactly this reason. In Chapter 8, units of measure
are developed using the inch system.

Zenger (1997) describes a Haskell-like language with types indexed by poly-
nomials over the complex numbers. Gröbner basis techniques can then be used
to solve constraints. This is an interesting choice of constraint domain, but does
not quite match most of the examples, which expect integers or natural numbers.
This may lead to overly permissive type-checking (if constraints with no integer
solution can be solved in C) or failures to deduce desired properties (for example,
n > 0 does not imply n ≥ 1).

The prototype implementation of the inch language supports a kind Z of
integers, plus a kind N of natural numbers that is treated as syntactic sugar for
Z with an inequality constraint. I will focus on the addition of Π-types, rather
than numeric constraint solving, however.

5.2.6 Supported operations

Closely connected to the choice of numbers to represent is the signature of oper-
ations that are available on them. Addition is a must for any nontrivial use of
type-level numbers, even just appending vectors. If negative integers are permit-
ted, then subtraction is also useful. If not, it is less clear what meaning (if any)
to give subtraction; though there are several options (Runciman, 1989), perhaps

102

it is easiest to require types to be rewritten to avoid it.
With just addition (and perhaps subtraction) one can express multiplication

by constants and many useful linear properties, while remaining within the theory
of Presburger arithmetic. This theory is decidable (Presburger, 1930, translated
by Stansifer (1984)), so complete constraint solving is feasible. It should not be
dismissed out of hand, as many useful examples can be expressed in this fragment.

Diatchki’s TypeNats extension includes addition, multiplication and expo-
nentiation on natural numbers, but omits their (partial) inverses. This leads to
interesting challenges in designing a suitable constraint solver that is powerful
enough to handle common constraints but also allows the user to supply proofs.

Xi’s constraint solver for DML handles only linear constraints, though his
formalism allows for more complex numeric expressions, and he mentions the
possibility of postponing nonlinear constraints in the hope that they will become
linear and hence solvable. In his subsequent work on the ATS programming
language (Xi, 2004), he argues for the combination of programming and theorem
proving to allow the user to supply proofs of difficult constraints.

5.2.7 Constraints

When working with GADTs or type families, it is frequently useful to add equality
constraints to qualified types; indeed GADTs are implemented using equality con-
straints on constructors that are made available by pattern-matching. Similarly,
equality and inequality constraints are useful for type-level numbers.

The encoding of propositional equality in type theory (Nordström et al., 1990)
can be translated into Haskell thus (writing (∼) for built-in equality constraints):

data Id m n where
Refl :: m ∼ n ⇒ Id m n

elimEq :: ∀a m n . Id m n → (m ∼ n ⇒ a)→ a
elimEq Refl x = x

One could abstract a over an index in the definition of elimEq, giving

elimEq′ :: ∀(a :: t → ∗) m n . Id m n → a m → a n
elimEq′ Refl x = x

but since Haskell’s type-level function space lacks first-class λ-abstraction, it is
easier to work in the former style, using equality rather than abstraction.

A decision procedure that produces a witness to the equality can be given by

103

decideEq :: Π (m n :: Z)→ Maybe (Id m n)

or even

decideEq′ :: Π (m n :: Z)→ Either (Id m n) (Id m n → Void)

where negation is expressed as a function to the type Void with no constructors.
This encoding of negation is not entirely satisfactory in a non-total language,
however, since all types are inhabited.

Alternatively, a function to compare two integers can be given a rank-2 type:

ifEq :: Π (m n :: Z)→ (m ∼ n ⇒ a)→ a → a

In the third argument, the assumption that m and n are equal is available to
the typechecker. The kind of continuation-passing style demonstrated by ifEq
is frequently useful to introduce additional hypotheses or eliminate existential
type variables, showing the need for a system that integrates type-level data with
arbitrary-rank polymorphism. Of course, it also makes use of Haskell’s laziness
and the corresponding ease of writing control operators.

Going beyond equalities, inequality constraints (<,≤, >,≥) are useful in order
to express weak bounds. For example, they allow safe projection from a vector:

index :: ∀(m :: N) .Π (n :: N)→ n < m ⇒ Vec a m → a
index Zero (Cons x xs) = x
index (Suc n) (Cons x xs) = index n xs

Similar techniques can be used to create a safe array library that eliminates
runtime bounds checks, as Xi and Pfenning (1998) taught us.

When used in a quantifier, the natural number kind imposes a constraint on
the bound variable: Π (n :: N) . t translates to Π (n :: Z) . 0 6 n ⇒ t. This is
similar to (though simpler and less expressive than) DML’s notion of a ‘subset
sort’ (Xi, 1998), which allows a new sort to be formed by restricting an existing
sort with some constraints.3

Learning by testing

A crucial feature for working with type-level data is the ability to perform type-
refining dynamic tests, enabling “learning by testing” (Altenkirch et al., 2005).
Dependently typed programming languages typically exploit dependent pattern

3 A DML sort is similar to a Haskell kind, but restricted to terms in the index language L.

104

matching and techniques such as views (McBride and McKinna, 2004). Depen-
dent pattern matching is supported by inch, as in the replicate example.

A small extension to Haskell’s notation for guards is useful. I use curly braces
to mark a guard, written in the constraint language, that refines the type of the
corresponding branch. For example, the ifEq function can be implemented as:4

ifEq :: Π (m n :: Z)→ (m ∼ n ⇒ a)→ a → a
ifEq m n x y | {m ≡ n} = x

| otherwise = y

The runtime behaviour of such expressions is straightforward: drop the curly
braces to obtain the usual guard. If-expressions can be handled in a similar way.

Helping the constraint solver

Given an incomplete constraint solver, what can the user do if a program is
rejected because a true constraint was not solved by the system? Sometimes it
may be possible to extend the type signature by quantifying over the additional
constraint, requiring callers to prove it; eventually a caller may be reached that
supplies concrete values for variables, so the constraint is easily checked. However,
in some cases it may not be possible to quantify over the required hypothesis, for
example if the function pattern-matches on a GADT introducing local constraints.

One possibility is to supply additional information to the typechecker using a
higher-rank function. For example, a term for commutativity of multiplication

commutes :: ∀(m n :: Z)→ (m ∗ n ∼ n ∗m ⇒ a)→ a

would allow the user to write commutes m n x in place of an expression x that
depends on the assumption m ∗ n ∼ n ∗m. The quantification over m and n is
explicit, even though they are erased at runtime. This is necessary because the
typechecker will not be able to choose appropriate arguments.

A trusted library of properties could be implemented as ‘unsafe’ coercions.
If the variables were available at runtime (quantified over by Π rather than ∀),
such properties could be ‘proved’ by writing a recursive function to perform the
necessary induction, but in a partial language this function must be executed at
runtime in order to ensure type safety, which is likely to be undesirable.

4Here ∼ is the equality type constraint, ≡ the runtime equality test and = the Haskell
syntax for a definition!

105

Chapter 6

A language of evidence

In this chapter, I describe the evidence language, suitable as an intermediate
language for a Haskell compiler. The next chapter will describe how to elaborate
inch terms into evidence terms. The language presented here is based on System
FC, the core language of GHC1, with modifications inspired by dependent type
theory to support the new features of inch and make the presentation uniform.

One reason for compiling via an intermediate language, rather than directly
to a low-level language, is to ensure correctness. It is analogous to the use of an
easily checked kernel type theory in a proof assistant such as Coq. Typechecking
intermediate language code is straightforward, as expressions encode their own
typing derivations, and everything is fully explicit. Terms can be checked after
elaboration and during optimisation, leading to early detection of compiler bugs.

A key inspiration for this chapter is the work of Weirich, Hsu, and Eisenberg
(2013). Like them, I adopt the dangerous-sounding rule ∗ : ∗, so the kind of types
classifies itself. To a dependent type theorist, this instantly suggests paradox,2

but the system will permit general recursion at the type level in any case, so the
potential paradox is irrelevant. There is no hope of proving strong normalisation
in general, but the usual subject reduction and progress properties are maintained.
The system does include a logic of equality, and this must be kept consistent,
which can be achieved by keeping it weak. Coercions encode the exact amount
of computation to be done, so there is no risk that typechecking an evidence
term will fail to terminate. Moreover, “the point of writing a proof in a strongly
normalizing calculus is that you don’t need to normalize it”.3 There is no need
to compute coercions, whereas if coercions could be bogus, they would need to
be normalised before being relied upon to coerce values.

1System FC has developed over time; the main versions are discussed in Subsection 6.7.3.
2The 1971 type theory of Martin-Löf (1975, 1998) was inconsistent for this reason.
3A saying of Randy Pollack, quoted by Altenkirch et al. (2005).

The main feature that the evidence language adds to previous versions of
System FC is Π-types, allowing types to depend on a limited fragment of ‘shared’
runtime expressions. To enable a compact presentation of the system, I abstract
over the possible ‘phases’ of quantification and typing judgments, and write a
single set of typing rules covering both types and terms. This highlights the
common structure and avoids repetition. For example, a single application rule
replaces a multitude of rules for applying one sort of expression to another.

Moreover, a single syntax and type system for type and term-level constructs
allows them to have a common operational semantics, in the usual style of depen-
dent type theory. This is a fundamental difference in perspective from System
FC. It leads to the replacement of type families (that are axiomatically defined
and lacking operational behaviour) with honest-to-goodness case analysis. Type-
level functions are then mere recursive definitions. There is no λ-abstraction at
the type level, and type-level functions must be saturated (fully applied), so the
language of types is essentially first-order and elaboration is as simple as possible.

Unlike type families, type-level functions as I define them do not support case
analysis on types or the open world assumption. The two are not necessarily
mutually exclusive. One could certainly imagine a system in which type families
and true type-level (or shared type- and term-level) functions are both available.

In Subsection 5.2.2 (page 96), I gave the example of the replicate function:

replicate :: Π (n :: N)→ a → Vec a n
replicate Zero = Nil
replicate (Suc n) x = Cons x (replicate n x)

This uses its natural number argument both statically (as it occurs in the type)
and dynamically (for pattern-matching at runtime). It can be seen as a single
shared function that makes sense at the type level and the term level.

For comparison, here is the same thing implemented using a type family and
term-level singletons, the alternative to Π-types discussed in Subsection 5.2.2.4

type family Replicate (n :: N) (x :: a) :: Vec a n
type instance Replicate Zero = Nil
type instance Replicate (Suc n) x = Cons x (Replicate n x)

replicateSing :: SingNat n → a → Vec a n
replicateSing SingZero = Nil
replicateSing (SingSuc n) x = Cons x (replicateSing n x)

4The Replicate type family is rejected by GHC 7.6, because it involves a promoted GADT.
It is forbidden by the system of Weirich et al. (2013), which does not permit the result kind of
a type family to depend on its arguments, but this may not be a fundamental restriction.

107

The type family version can be defined directly on the kind of natural numbers,
but the term-level version must use a singleton copy to pattern-match at runtime.
The connection between the term and type-level functions has been lost.

In the sequel, I introduce the syntax of the evidence language (6.1), discuss
the key role that phase distinctions play (6.2) and give the type system for the
language (6.3). I then define its operational semantics and prove subject reduction
(6.4). Proving progress takes a little more work (6.5). Finally, I define a runtime
erasure operation that removes types and coercions (6.6) and conclude with a
discussion of possible extensions, related systems and future work (6.7).

6.1 Syntax

In this section, I present the syntax for the evidence language. It may be worth
skipping quickly through this on first reading, and returning to clarify details of
the syntax. Figure 6.1 shows the naming conventions in use in this chapter.

Figure 6.2 gives the syntax of signatures and contexts. The signature Σ con-
tains global top-level symbols that may appear in expressions, including type
constructors D, data constructors K, functions f and axioms C . The context or
telescope Γ, ∆ contains variables bound locally. Contexts will later be generalised
to metacontexts Θ, which include metavariables for use in elaboration (discussed
in Chapter 7).

The common syntax of expressions is shown in Figure 6.3. Unifying the syntax
avoids redundancy, as there are unique forms for abstraction, application and
quantification, and it simplifies the operational semantics. In Section 6.2, I will
explain the use of phases Φ, Ψ to distinguish the different roles of types, coercions
and terms. Saturated function applications f(δ) are syntactically distinguished
from normal application.

For the sake of familiarity, Figure 6.4 gives subgrammars of ρ for type ex-
pressions τ, υ, κ, coercions γ, η, runtime terms e and shared terms ε. Variables
are accounted for by a single production but I will frequently write a, b for type
variables, c for coercion variables and x , y, z for term variables. Propositions ϕ
are a subgrammar of types that represent quantified equations.

De Bruijn (1991) showed that working with telescopes of bindings ∆, and
vectors of expressions δ corresponding to them, rather than single bindings and
single substitution, is often a significant simplification. I write ψ for a vector
containing type expressions.

108

a, b type variable
c coercion variable
e expression
f function
i, j, k, l,m, n integer
r erased runtime term
v value expression
x , y, z term variable
C coercion axiom
D type constructor
H rigid constructor
K data constructor
γ, η coercion
δ vector of expressions
ε shared term
ι identity substitution

κ kind
λ abstraction
ξ value type
ρ expression
τ, υ type
ϕ proposition
ψ vector of type expressions
ω telescoped coercion
Γ,∆ context (telescope)
Λ abstraction
Π dependent function space
Σ signature
Υ type phase
Φ,Ψ phase
Ω non-type phase

Figure 6.1: Naming conventions

Σ ::= · | Σ,D :Φ κ | Σ,K :Φ κ | Σ,C :� ϕ | Σ, f [∆] :Φ κ | Σ, f [∆] = ρ :Φ κ
Γ, ∆ ::= · | Γ, a :Φ τ
Φ, Ψ ::= ∀ | Π | � | 	

Υ ::= ∀ | Π
Ω ::= � | 	

Figure 6.2: Grammar of signatures, contexts and phases

109

ρ ::= expression
| a variable
| ρΦρ′ application
| (a :Φ ρ)→ ρ′ quantification
| H constructor
| f(δ) saturated function
| ρ . γ type cast
| q coercion evidence
| (d)case ρof bri

i case expression
| Λa :Φκ . ρ abstraction

H ::= rigid constructor
| D type constructor
| K data constructor
| ∗ kind of types
| (∼) equality type

q ::= coercion evidence
| C axiom
| respω∆ τ congruence
| left γ left injectivity
| right γ right injectivity
| congaΥ γ η congruence of Υ application
| conga� γ (η1, η2) congruence of � application
| cong Φ η γ congruence of quantification
| γ@η congruence of Υ instantiation
| γ@(η1, η2) congruence of � instantiation
| coh γ η coherence
| kind γ equality of kinds
| step ρ computation step

δ ::= · | δ, ρ
ω ::= · | ω, (τ, τ ′, γ) | ω, (ρ, ρ′)

(d)case ::= dcase | case
br ::= K ∆→ ρ

Figure 6.3: Grammar of expressions

110

τ, υ, κ ::= type expression (phase ∀)
| a variable
| τΦρ application at phase Φ
| (a :Φκ)→ τ quantification
| H constructor
| f(δ) saturated function
| τ . γ type cast
| (d)case τ of bri

i case expression

γ, η ::= coercion (phase �)
| c variable
| γ . η cast
| q coercion evidence
| Λa :Φκ . γ proof abstraction

e ::= runtime term (phase)
| x variable
| eΦρ application at phase Φ
| K data constructor
| f(δ) saturated function
| e . γ type cast
| (d)case e of bri

i case expression
| Λa :Φκ . e abstraction

ε ::= shared term (phase Π)
| x variable
| εΦρ application at phase Φ
| K data constructor
| f(δ) saturated function
| ε . γ type cast
| (d)case εof bri

i case expression

ϕ ::= (∼)κ1 κ2 τ1 τ2 | (a :Φκ)→ ϕ

ψ ::= · | ψ, τ

Figure 6.4: Subgrammars of type expressions, coercions and terms

111

6.2 Phase distinctions and promotion

Existing work by Yorgey et al. (2012) on System F ↑C, which extends System FC

with type-level data, is based around the idea of ‘promoting’ datatypes to the
kind level and data constructors to the type level. By a fortuitous coincidence,
some terms turn out to be well-kinded type expressions, but there is no formal
relationship between well-typed terms and well-kinded types. Not all datatypes
can be promoted, since the kind system is more restrictive than the type system,
although work is underway to change this (Weirich et al., 2013).

Adding Π-types to a system with F ↑C-like promotion is possible, adding yet
more abstraction and application forms, and another typing judgment. However,
factoring out the common structure makes the relationships between the phases
clear. This is particularly true when it comes to the operational semantics: rather
than trying to juggle separate rules for runtime terms, shared terms and type
expressions, I can instead give a single system that covers them all. Of course,
the purpose of the phase distinction is maintained: type expressions and coercions
are erased at runtime, as discussed in Section 6.6.

The evidence language distinguishes between phases given by

Φ, Ψ ::= phase
| ∀ static phase (universal quantification)
| Π shared phase (dependent product)
| � proof phase (coercion quantification)
| 	 runtime phase (function space)

There is a single typing judgment, annotated by the phase at which it holds.
Phases occur on quantifiers, λ-abstractions and context bindings, to indicate the
phase at which variables are bound, and on applications, to indicate the phase
of the quantifier. This means that the typing rules have a single rule for each
construct, rather than a whole host of similar rules. It is not essential to unify
these concepts; one might choose to present the phases separately. The � phase
must sometimes be distinguished, in order to ensure it remains consistent. In
particular, it cannot admit case analysis or recursive functions.

The phase annotations on typing judgments will justify the subgrammars
given in Figure 6.4, as whenever an expression ρ is well-typed at phase Φ, it will
belong to the subgrammar corresponding to Φ.

The single syntax for quantifiers (a :Φ τ) → υ subsumes universal quantifica-
tion and the runtime function space: ∀ a : τ . υ becomes (a :∀ τ) → υ and τ → υ

112

becomes (x :	 τ)→ υ. The latter is never dependent, however, as the typing rules
ensure x cannot be used in υ, so I will often write the familiar syntax instead.

Similarly, the single syntax for abstractions Λa :Φτ . ρ subsumes λ-abstraction
over terms and Λ-abstraction over type expressions. Again, I will write the more
familar λx :τ . e instead of Λx :	τ . e, but this is merely syntactic sugar. Abstrac-
tions may occur only at phase 	 or �: there is no type-level λ-abstraction.

6.2.1 The access policy

The fortuitous coincidence that some terms are also well-kinded type expressions
now turns into a solid metatheoretic property: all well-typed shared terms are
both well-typed runtime terms and well-kinded type expressions. The ‘access
policy’ relation Φ ↪→ Ψ expresses when things at one phase can be used at
another. This is a partial order, defined by the following Hasse diagram:5

∀

� Π

	

The typing rule for variables (see Figure 6.6)

Γ ` ctx Γ 3 a :Φ κ Φ ↪→ Ψ
Γ ` a :Ψ κ

uses this relation: any variable bound at phase Φ is accessible at phase Ψ. A key
result (Lemma 6.4) extends this to show that if a typing judgment holds at phase
Φ, and Φ ↪→ Ψ, then it holds at phase Ψ.

6.2.2 Promoted data constructors

Where does promotion fit in to this system? The constructor Just has type
(a :∀ ∗, x :	 a) → Maybe a, so it seemingly expects a static and a runtime
argument. We want to be able to use it at the type level with static arguments,
so that Just ∗ Bool has type Maybe ∗. Thus the application rule

Γ ` ρ :Ψ (a :Φκ1)→ κ2 Γ ` ρ′ :Φ //Ψ κ1

Γ ` ρΦρ′ :Ψ [ρ′/a]κ2

5So Π ↪→ ∀ and Π ↪→ 	, while � is lonely.

113

calculates the phase Φ //Ψ at which to check the argument from the phase Φ of
the quantification and the phase Ψ at which the expression is being checked. The
relativisation operator Φ //Ψ, pronounced ‘Φ for Ψ’, is defined by

// 	 Π ∀ �
	 	 Π ∀ ∀
Π Π Π ∀ ∀
∀ ∀ ∀ ∀ ∀
� � � � �

When checking a runtime term, the phase of the typing judgment is 	, and
Φ //	 is just Φ, so arguments to runtime functions must be of the phase stated
in their type. However, when checking in a static context, the argument must
be known statically. This causes implicit promotion: 	 //∀ = ∀ means that
Just ∗ :∀ (x :	 ∗) → Maybe ∗ can be applied to Bool :∀ ∗. Since 	 6↪→ ∀ and
	 6↪→ Φ //∀ for all Φ, there is no way that a variable at phase 	 can be used in a
type expression at phase ∀.

I will usually omit the annotation on applications, writing ρ ρ′ instead of ρΦρ′,
since it is easily recovered from the type of ρ. It is useful for defining erasure as
an operation on syntax rather than on typing derivations in Section 6.6.

6.2.3 Promoted functions

The (+) function is useful in terms, but appears also in the type of append
for vectors. Therefore, the evidence language introduces a new style of ‘shared’
functions, which may occur in types and terms.

Shared functions may appear as arguments at phase Π, so type safety will
require that reduction (in the operational semantics for shared terms) implies
propositional equality (in the language of coercion proofs). An easy way to achieve
this is to give a consistent operational semantics at all phases, rather than the
different semantics of term-level functions and type families possible in Haskell.
The operational semantics will be given in Section 6.4.

Crucially, shared functions applications f(δ) must be saturated, to distin-
guish function application from normal application. This retains the injectivity
of type-level application from System FC, and avoids introducing type-level λ-
abstractions, which would complicate type inference.

The signature Σ contains function declarations f [∆] :Φ κ that record the
phase of the function, the telescope ∆ of arguments, and the resulting type κ,

114

which may depend on ∆. For example, the (+) function is declared at phase Π
(because it can be used in runtime terms and in type expressions) with telescope
x :	 N, y :	 N and result type N. I will write x + y instead of (+) (x , y).

Function definitions f [∆] = ρ :Φ κ are separate from declarations, because
the body ρ may call f recursively. They are expanded eagerly, with a call-by-
name semantics, and any pattern matching must be performed by explicit case
expressions (as discussed in the Subsection 6.2.4).

Since functions are not guaranteed to terminate, they may not appear at
phase �, which needs to be kept consistent. This means that type safety will
not depend on strong normalisation of functions used in types, although they
might lead to non-termination of type inference for the source language, just as
with type families in Haskell. Of course, it is possible to impose conditions that
guarantee termination for a class of programs, as in Agda.

Consider the type of the function

vsplitAt :: ∀a (n :: N) .Π (m :: N)→ Vec (m + n) a → (Vec m a,Vec n a)
vsplitAt Zero xs = (Nil, xs)
vsplitAt (Suc m) (Cons x xs) = (Cons x ys, zs)

where (ys, zs) = vsplitAt m xs

This type applies the function (+) to arguments at phases ∀ and Π respectively,
building a result at phase ∀. As with promoted constructors, this is possible due
to the relativisation operator, applied to the function’s telescope by the rule

Σ 3 f [∆] :Φ κ Γ ` δ : ∆ //Ψ Φ ↪→ Ψ
Γ ` f(δ) :Ψ [δ/∆]κ

Phases act on telescopes, written ∆ //Ψ, thus:

· //Ψ 7→ ·
(∆, a :Φ κ) //Ψ 7→ (∆ //Ψ), a :(Φ //Ψ) κ

This operation will also be used in the typing rule for dependent case branches,
so the arguments to the constructor will be available statically.

6.2.4 Dependent case analysis

The replicate and vsplitAt functions rely on dependent pattern matching: case
analysis on the N argument establishes that the result is type-correct. That is, it
allows ‘learning by testing’ (Altenkirch et al., 2005). Recall the replicate example,
reformulated to use a dependent case expression:

115

replicate :: ∀a :: ∗ .Π n :: N→ a → Vec a n
replicate n x = dcase n of

Zero → Nil
Suc m → Cons x (replicate m x)

In the Zero branch, Nil needs to have type Vec a n; this is possible because a local
constraint n ∼ Zero is brought into scope. Similarly, in the Suc branch, a local
constraint n ∼ Suc m is available. In general, each branch can make use of the
information that the scrutinee is equal to the matched constructor.

This resembles a GADT pattern match (see Subsection 5.1.3, page 92). Indeed
the singleton construction makes use of GADTs to encode dependent pattern
matching. The crucial difference is that here the constraint is not an implicit
argument to the data constructor, as with GADTs, but is separately brought into
scope by the dependent case expression.6

The dcase construct of the evidence language supports dependent case anal-
ysis. In the typing rule for dependent case branches, an additional variable is
brought into scope: a proof that the scrutinee is equal to the matched construc-
tor. The scrutinee must be well-typed at phase ∀, since it will appear in an
equality type. This is ensured by checking it at phase Π //Ψ where Ψ is the phase
of the case expression; the access policy gives Π //Ψ ↪→ ∀. A non-dependent case
construct is also available, allowing runtime expressions to appear as scrutinees.

Thus the body of replicate could be translated into the evidence term

dcase n of

Zero (c :� n ∼ Zero) → Nil a n c
Suc (m :Π N, c :� n ∼ Suc m)→ Cons a n m x (replicate (a,m, x)) c

where the types of the constructors, after the GADT translation, are:

Nil : (a :∀ ∗, n :∀ N, c :� n ∼ Zero)→ Vec a n
Cons : (a :∀ ∗, n :∀ N,m :∀ N,

x :	 a, xs :	 Vec a m, c :� n ∼ Suc m)→ Vec a n

The mechanism for reconstructing the implicit arguments will be discussed in
Chapter 7. Note that the recursive call to replicate uses an alternative syntax,
with a comma-separated vector of arguments, to emphasise the fact that it is a
fully-applied shared function (see Subsection 6.2.3).

6Of course, a GADT may appear as the scrutinee type in a dependent case expression.

116

6.3 Type system

The evidence type system consists of the following judgments:

Σ ` sig Σ is a valid signature
Γ ` ctx Γ is a valid context
Γ ` ρ :Ψ κ ρ has type κ at phase Ψ in context Γ
Γ ` br :Ψ υ I τ br is a case branch with scrutinee type υ, result type τ
Γ ` br :Ψ (ε : υ) I τ br is a dependent case branch, scrutinee ε : υ, result τ
Γ ` δ : ∆ δ is a vector in ∆
Γ `tc ω : ∆ ω is a telescoped coercion with domain ∆

All judgments except Σ ` sig are implicitly parameterised by a signature Σ.

6.3.1 Well-formed signatures and contexts

Figure 6.5 defines the signature and context well-formedness judgments. These
check that each declared name is fresh (written #) and well-typed in the appro-
priate sense, and that it is introduced at suitable phase. The signature Σ contains
global top-level definitions: type constructors D, data constructors K, functions
f and axioms C . The context Γ binds variables.

Type constructors are always static, whereas data constructors may be static,
dynamic or shared (but not proofs). A Haskell-style datatype declaration corre-
sponds to a single type constructor and a number of data constructors. System
FC encodes datatypes in the same way, although my use of telescopes ∆ to collect
type and term bindings represents a slight simplification. For GADT data con-
structors, the return type is an application of the type constructor to variables,
but the telescope will include constraints on the variables.

As discussed in Subsection 6.2.3, functions f are separated into declarations
f [∆] :Φ κ and definitions f [∆] = ρ :Φ κ, with the declaration appearing before
the definition in the signature, in order to permit general recursion. They have
a telescope ∆ of parameters, which the result type κ may depend on. Function
applications will always be saturated (written f(δ) where δ is a vector in ∆).

Axioms C :� ϕ assert that all closed instances of the proposition ϕ hold. For
example, the proposition (a :∀ N, b :∀ N)→ (a + b) ∼ (b + a) asserts that addition
is commutative, but this fact is not otherwise derivable as a coercion (because
the proof language does not permit induction). Adding this as an axiom makes it
available when generating evidence for equalities. Since the exact form of proofs
is unimportant, much like in Observational Type Theory (Altenkirch et al., 2007),
any consistent axiom may be added without affecting computation.

117

Σ ` sig (Σ is a valid signature)

· ` sig

Σ ` sig D#Σ
ai :∀ κi

i ` ctx
Σ,D :∀ (ai :∀ κi

i)→ ∗ ` sig

Σ ` sig K#Σ Φ 6= �
ai :∀ κi

i
,∆ ` D ai

i :∀ ∗
Σ,K :Φ (ai :∀ κi

i
,∆)→ D ai

i ` sig

f#Σ Φ 6= �
Σ ` sig ∆ ` κ :∀ ∗

Σ, f [∆] :Φ κ ` sig

Σ 3 f [∆] :Φ κ
Σ ` sig ∆ ` ρ :Φ κ

Σ, f [∆] = ρ :Φ κ ` sig

Σ ` sig C#Σ · ` ϕ :∀ ∗
Σ,C :� ϕ ` sig

Γ ` ctx (Γ is a valid context)

Σ ` sig
· ` ctx

a#Γ Γ ` κ :∀ ∗ Φ 6= �
Γ, a :Φ κ ` ctx

c#Γ Γ ` ϕ :∀ ∗
Γ, c :� ϕ ` ctx

Figure 6.5: Validity of signatures and contexts

In contexts, the validity rules require that the type of each variable is well-
kinded. They distinguish between coercion variables c and other variables a,
because the type of a coercion variable must be syntactically a proposition ϕ

rather than an arbitrary type κ, for technical reasons in the consistency proof.

6.3.2 Well-typed terms

Figure 6.6 defines the expression typing judgment Γ ` ρ :Ψ κ, meaning that ρ is
an expression of type κ when checked at phase Ψ. The same judgment is given
additional rules in Figure 6.7, as discussed in the next subsection. The variable,
application and function rules were introduced in Section 6.2.

Type constructors D and data constructors K are available as declared in the
signature. In addition, there are two built-in constants: ∗ (the kind of types)
and heterogeneous equality (∼). I will write the equality relation infix, using the
syntactic sugar introduced in Subsection 6.3.5.

The rule for casts ρ . γ explicitly changes the type of ρ using the coercion γ.
This replaces the conversion rule, which would prevent decidability of typecheck-
ing since type expressions are not strongly normalising. Casting a proof uses a
separate rule, described in the next subsection.

118

Γ ` ρ :Ψ κ (ρ has type κ at phase Ψ)

Γ ` ctx
Γ 3 a :Φ κ Φ ↪→ Ψ

Γ ` a :Ψ κ

Γ ` ctx
Σ 3 D :∀ κ
Γ ` D :∀ κ

Γ ` ctx
Σ 3 K :Φ κ Φ ↪→ Ψ

Γ ` K :Ψ κ

Σ 3 f [∆] :Φ κ
Γ ` δ : ∆ //Ψ
Φ ↪→ Ψ

Γ ` f(δ) :Ψ [δ/∆]κ

Γ ` ρ :Ψ (a :Φκ1)→ κ2
Γ ` ρ′ :Φ //Ψ κ1

Γ ` ρΦρ′ :Ψ [ρ′/a]κ2

Γ ` κ :∀ ∗
Γ, a :Φ κ ` τ :∀ ∗

Γ ` (a :Φκ)→ τ :∀ ∗

Γ ` ρ :Ψ κ
Γ ` γ :� κ ∼ κ′

Ψ 6= �
Γ ` ρ . γ :Ψ κ′

Γ ` ctx
Γ ` ∗ :∀ ∗

Γ ` ctx
Γ ` (∼) :∀ (a :∀ ∗)→ (b :∀ ∗)→ a → b → ∗

Γ, a :Φ κ ` ρ :Ω τ

Γ ` Λa :Φκ . ρ :Ω (a :Φκ)→ τ

Γ ` ρ :Ψ υ Ψ 6= �
Γ ` br0 :Ψ υ I τ ... Γ ` brn :Ψ υ I τ

Γ ` case ρof br0 ... brn :Ψ τ

Γ ` ε :Π //Ψ υ Ψ 6= �
Γ ` br0 :Ψ (ε : υ) I τ ... Γ ` brn :Ψ (ε : υ) I τ

Γ ` dcase εof br0 ... brn :Ψ τ

Γ ` br :Ψ υ I τ (br is a well-typed case branch)

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

Γ, [υi/ai
i] ∆ ` ρ :Ψ τ

Γ ` τ :∀ ∗ Φ ↪→ Ψ
Γ ` K ([υi/ai

i] ∆)→ ρ :Ψ D υi
i I τ

Γ ` br :Ψ (ε : υ) I τ (br is a well-typed dependent case branch)

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

∆′ = [υi/ai
i] ∆ //Π, c :� ε ∼ (K υi

i∆)
Γ,∆′ ` ρ :Ψ τ Γ ` τ :∀ ∗ Φ ↪→ Π //Ψ

Γ ` K ∆′ → ρ :Ψ (ε : D υi
i) I τ

Figure 6.6: Typing rules

119

Abstractions Λa : Φκ . ρ are available at phases Ω ∈ {	,�}, but may not
appear directly in types (at phase ∀ or Π).

Case expressions were discussed in Subsection 6.2.4. They may not occur in
proofs, since nontermination might result. Case branches are checked using two
auxiliary judgments, Γ ` br :Φ υ I τ and Γ ` br :Φ (ε : υ) I τ , meaning that
the branch br matches a scrutinee of type υ and returns an expression of type τ
at phase Φ. The second judgment makes an extra assumption, that the scrutinee
is equal to ε, available in the branch.

6.3.3 Well-typed coercions

Figure 6.7 adds rules for well-typed coercions to the typing judgment of Figure 6.6.
Thus variables, applications and abstractions are available for coercions as well
as other expressions. Coercions have a specialised version of the cast rule γ . η,
which ensures that the result of the cast is syntactically a proposition ϕ′.

The coercion syntax includes the general-purpose congruence rule respω∆ τ ,7

making various structural rules derivable by asserting that [←−ω /∆] τ ∼ [−→ω /∆] τ .
In particular, it means that reflexivity, symmetry, transitivity and congruence for
dynamic functions are all derivable rules, as shown in Figure 6.9.

Making congruence an explicit coercion form avoids the need to prove its
admissibility (called the ‘lifting theorem’ in previous work on System FC) and
reduces the number of structural rules required. The system is proof-irrelevant
so the exact form of the coercion language is unimportant. The formulation
given here is not general enough to prove the congruence rules for application
(congaΥ γ η and conga� γ (η1, η2)), quantification (cong Φ η γ) and case analysis
(cong (d)case γ ηi

i), so these must be present explicitly.8

The congruence rule for case analysis relies on the auxiliary definitions in
Figure 6.8 for computing the equality proposition between two case branches. The
operation ∆ ! ∆′ combines two telescopes that bind corresponding variables, but
may assign them types that are only propositionally equal. It produces a single
telescope that quantifies over variables of both types and a proof of their equality.
Equality between two case branches br ≈ br′ takes the proposition that the branch
results are equal and quantifies over the combined telescope.

Just like in System FC, injectivity rules left γ and right γ allow decomposition
7It is sometimes useful to optimise coercions (such as replacing a coercion whose subterms

are all reflexive with a direct appeal to reflexivity). This is possible with the resp formulation,
but may be easier if all the structural rules are introduced separately.

8A more general congruence rule, allowing local parameterisation in the telescope, could be
used to remove these.

120

Γ ` γ :� ϕ (γ has type ϕ at phase �)

Γ `tc ω : ∆ Γ,∆ ` τ :∀ κ
Γ ` respω∆ τ :� [←−ω /∆] τ ∼ [−→ω /∆] τ

Γ ` γ :� τ τ ′ ∼ υ υ′

Γ ` left γ :� τ ∼ υ

Γ ` γ :� τ τ ′ ∼ υ υ′

Γ ` right γ :� τ ′ ∼ υ′
Γ ` γ :� ((a1 :Φκ1)→ τ1) ∼ ((a2 :Φκ2)→ τ2)

Γ ` left γ :� κ1 ∼ κ2

Γ ` γ :� (κ1 → τ1) ∼ (κ2 → τ2)
Γ ` right γ :� τ1 ∼ τ2

Γ ` ctx Σ 3 C :� ϕ

Γ ` C :� ϕ

Γ ` γ :� (τ1 : (a1 :Υκ1)→ κ′1) ∼ (τ2 : (a2 :Υκ2)→ κ′2)
Γ ` η :� (υ1 :κ1) ∼ (υ2 :κ2)

Γ ` congaΥ γ η :� (τ1 υ1) ∼ (τ2 υ2)

Γ ` γ :� (τ1 : (c1 :�ϕ1)→ κ1) ∼ (τ2 : (c2 :�ϕ2)→ κ2)
Γ ` η1 :� ϕ1 Γ ` η2 :� ϕ2

Γ ` conga� γ (η1, η2) :� (τ1 η1) ∼ (τ2 η2)

Γ, a1 :Υ κ1 ` τ1 :∀ ∗ Γ, a2 :Υ κ2 ` τ2 :∀ ∗ Γ ` η :� κ1 ∼ κ2
Γ ` γ :� (a1 :Υ κ1, a2 :Υ κ2, c :� a1 ∼ a2)→ τ1 ∼ τ2

Γ ` cong Υ η γ :� ((a1 :Υκ1)→ τ1) ∼ ((a2 :Υκ2)→ τ2)

Γ, c1 :� ϕ1 ` τ1 :∀ ∗ Γ, c2 :� ϕ2 ` τ2 :∀ ∗
Γ ` η :� ϕ1 ∼ ϕ2 Γ ` γ :� (c1 :� ϕ1, c2 :� ϕ2)→ τ1 ∼ τ2

Γ ` cong � η γ :� ((c1 :�ϕ1)→ τ1) ∼ ((c2 :�ϕ2)→ τ2)

Γ ` γ :� ε ∼ ε′ Γ ` η0 :� br0 ≈ br′0 . . . Γ ` ηn :� brn ≈ br′n

Γ ` (cong (d)case γ ηi
i) :� ((d)case εof bri

i) ∼ ((d)case ε′ of br′i
i)

Γ ` γ :� ϕ
Γ ` η :� ϕ ∼ ϕ′

Γ ` γ . η :� ϕ′

Γ ` γ :� ((a1 :Υκ1)→ τ1) ∼ ((a2 :Υκ2)→ τ2)
Γ ` η :� (υ1 :κ1) ∼ (υ2 :κ2)

Γ ` γ@η :� [υ1/a1] τ1 ∼ [υ2/a2] τ2

Γ ` γ :� ((c1 :�ϕ1)→ τ1) ∼ ((c2 :�ϕ2)→ τ2)
Γ ` η1 :� ϕ1 Γ ` η2 :� ϕ2

Γ ` γ@(η1, η2) :� [η1/c1] τ1 ∼ [η2/c2] τ2

Γ ` γ :� (τ1 :κ1) ∼ (τ2 :κ2)
Γ ` η :� κ1 ∼ υ

Γ ` coh γ η :� τ1 . η ∼ τ2

Γ ` τ :∀ κ Γ ` τ ′ :∀ κ τ
kpush−−−→ τ ′

Γ ` step τ :� τ ∼ τ ′
Γ ` γ :� (τ1 :κ1) ∼ (τ2 :κ2)

Γ ` kind γ :� κ1 ∼ κ2

Figure 6.7: Well-typed coercions

121

(K ∆→ τ) ≈ (K ∆′ → τ ′) 7→ ((∆ ! ∆′))→ (τ ∼ τ ′)

· ! · 7→ ·
Γ, a :Υ κ ! Γ′, a′ :Υ κ′ 7→ Γ ! Γ′, a :Υ κ, a′ :Υ κ′, c :� a ∼ a′
Γ, x :Ω τ ! Γ′, x ′ :Ω τ ′ 7→ Γ ! Γ′, x :Ω τ, x ′ :Ω τ ′

Figure 6.8: Evidence for equality of case branches

Γ ` γ :� ϕ (derivable rules: γ has type ϕ at phase �)

Γ ` τ :∀ κ
Γ ` 〈τ〉 :� τ ∼ τ

Γ ` γ :� (τ1 :κ1) ∼ (τ2 :κ2)
Γ ` sym γ :� (τ2 :κ2) ∼ (τ1 :κ1)

Γ ` γ1 :� (τ1 :κ1) ∼ (τ2 :κ2)
Γ ` γ2 :� (τ2 :κ2) ∼ (τ3 :κ3)

Γ ` γ1; γ2 :� (τ1 :κ1) ∼ (τ3 :κ3)
Γ ` η :� τ1 ∼ τ2 Γ ` γ :� υ1 ∼ υ2

Γ ` cong 	 η γ :� (τ1 → υ1) ∼ (τ2 → υ2)

Γ ` γ :� (τ1 :κ1 → υ1) ∼ (τ2 :κ2 → υ2)
Γ ` η :� (τ ′1 :κ1) ∼ (τ ′2 :κ2)

Γ ` conga	 γ η :� (τ1 τ
′
1) ∼ (τ2 τ

′
2)

Γ ` γ :� H τi
i ∼ H υi

i

Γ ` nthi γ :� τi ∼ υi

〈τ〉 7→ resp · · τ
sym γ 7→ 〈τ1〉 . resp ((κ1, κ2,kind γ), (τ1, τ2, γ)) (a :∀ ∗, b :∀ a) (b ∼ τ1)
γ1; γ2 7→ γ1 . resp ((κ2, κ3,kind γ2), (τ2, τ3, γ2)) (a :∀ ∗, b :∀ a) (τ1 ∼ b)

cong 	 η γ 7→ resp ((τ1, τ2, η), (υ1, υ2, γ)) (a :∀ ∗, b :∀ ∗) (a → b)
conga	 γ η 7→ resp ((κ1, κ2, left (kind γ)), (υ1, υ2, right (kind γ)),

(τ1, τ2, γ), (τ ′1, τ ′2, η))
(a :∀ ∗, b :∀ ∗, x :∀ (a → b), y :∀ a) (x y)

nthi γ 7→ right(left . . . left︸ ︷︷ ︸
n−i times

γ) where τi
i and υi

i have n elements

Figure 6.9: Derivable rules for coercions

122

of an equation between applications or non-dependent function spaces. Instanti-
ation rules γ@η and γ@(η1, η2) play a similar role for dependent quantifications.

As in the work of Weirich et al. (2013), heterogeneous equality uses the ‘Σ-
interpretation’ in which an equation between expressions of different kinds implies
that the kinds themselves are equal. This is witnessed by the kind γ coercion.
Also present in their work and Observational Type Theory is the coherence rule
coh γ η, which states that casts do not change the identity of an expression.

New in the evidence language is the step τ rule, making a redex equal to its
reduct. Thus the operational semantics, given by the kpush−−−→ relation to be defined
in Section 6.4, is embedded in the propositional equality. The presence of step
constructors means that the computation necessary to typecheck a term is finite.

6.3.4 Vectors and telescoped coercions

Figure 6.10 gives the rules for vectors and telescoped coercions. A vector δ con-
tains expressions that can be substituted for a telescope ∆. Thus each expression
in the vector must be checked at the appropriate phase, with the type determined
by substituting for the preceding telescope.

Equality of types (∼) extends to equality of vectors. A telescoped coercion
ω represents two vectors (←−ω and −→ω) along with proofs of equality for the type
expressions they contain. Thus it consists of pairs of type expressions plus a co-
ercion between them (τ , υ , γ), and pairs of terms (e , e′) or coercions (γ , γ′).
No proof of equality is needed for runtime terms because they cannot appear in
types; no proof is needed for coercions because the system is proof-irrelevant.

6.3.5 Syntactic sugar

Some convenient abbreviations are given in Figure 6.11. Just as System FC for-
mally distinguishes between type, term and coercion application, so applications
ρΦρ′ carry a phase, but this is easily recoverable from the type of ρ, so I will
usually omit it. The presence of phase annotations on applications allows the
erasure operation (Section 6.6) to be defined on the syntax of terms, rather than
on typing derivations, but it is otherwise harmless to omit the annotations. I will
write the application of an expression to a vector ρ δ.

Since dynamic variables cannot occur in type expressions, thanks to the phase
distinction, the function space (x :	 τ) → υ may be written τ → υ, as there is
no possibility of x occurring in υ. The familiar notation λx : τ . e is used for
inhabitants of this function space.

123

Γ ` δ : ∆ (δ is a vector in ∆)

Γ ` ctx
Γ ` · : ·

Γ ` δ : ∆
Γ ` ρ :Φ [δ/∆]κ

Γ ` (δ, ρ) : (∆, a :Φ κ)

Γ `tc ω : ∆ (ω is a telescoped coercion in ∆)

Γ ` ctx
Γ `tc · : ·

Γ `tc ω : ∆ Γ ` γ :� τ ∼ υ
Γ ` τ :Υ [←−ω /∆]κ Γ ` υ :Υ [−→ω /∆]κ

Γ `tc (ω, (τ, υ, γ)) : (∆, a :Υ κ)

Γ `tc ω : ∆
Γ ` η :� [←−ω /∆]ϕ
Γ ` η′ :� [−→ω /∆]ϕ

Γ `tc (ω, (η, η′)) : (∆, c :� ϕ)

Γ `tc ω : ∆
Γ ` e :	 [←−ω /∆] τ
Γ ` e′ :	 [−→ω /∆] τ

Γ `tc (ω, (e, e′)) : (∆, x :	 τ)

←−· 7→ ·
←−−−−−−
ω, (τ, υ, γ) 7→ ←−ω , τ
←−−−−−
ω, (ρ, ρ′) 7→ ←−ω , ρ

−→· 7→ ·
−−−−−−→
ω, (τ, υ, γ) 7→ −→ω , υ
−−−−−→
ω, (ρ, ρ′) 7→ −→ω , ρ′

Figure 6.10: Vectors and telescoped coercions

ρ ρ′ 7→ ρΦρ′ where Γ ` ρ :Ψ (a :Φ τ)→ υ

ρ δ 7→

ρ if δ = ·
(ρ δ′) ρ′ if δ = δ′, ρ′

τ → υ 7→ (x :	 τ)→ υ

λx :τ . e 7→ Λx :	τ . e
(τ1 :κ1) ∼ (τ2 :κ2) 7→ (∼)κ1 κ2 τ1 τ2

τ1 ∼ τ2 7→ (∼)κ1 κ2 τ1 τ2 where Γ ` τ1 :∀ κ1 and Γ ` τ2 :∀ κ2

Figure 6.11: Syntactic sugar

124

6.3.6 Meta-theoretic properties

I will now prove some results for working with telescopes, the usual weakening and
substitution lemmas, and a more liberal form of the substitution lemma required
for subject reduction. Where proofs have been omitted, they are by induction on
derivations. Writing a vector of arguments instead of a single argument for an
application is justified by the first lemma, which I will often use implicitly.

Lemma 6.1. Suppose Γ ` ρ :Φ (∆)→ τ . Then Γ ` ρ δ :Φ [δ/∆] τ if and only if
Γ ` δ : ∆ //Φ.

Lemma 6.2. If Γ `tc ω : ∆ then Γ ` ←−ω : ∆ and Γ ` −→ω : ∆.

Lemma 6.3 (Weakening). Let J be an arbitrary judgment. If Γ,Γ′ ` J and
Γ,∆ ` ctx where the variables in ∆ and Γ′ are distinct, then Γ,∆,Γ′ ` J .

To prove the substitution lemma, I must show that judgments are preserved
under phase increases following the access policy, as described in Subsection 6.2.1.

Lemma 6.4 (Phase inclusion). Suppose Φ ↪→ Ψ.

(a) If Γ ` ρ :Φ κ then Γ ` ρ :Ψ κ.

(b) If Γ ` δ : ∆ //Φ then Γ ` δ : ∆ //Ψ.

(c) If Γ `tc ω : ∆ //Φ then Γ `tc ω : ∆ //Ψ.

Proof. By induction on derivations, following from the use of the access policy
Φ ↪→ Ψ for the variable rule, the right-monotonicity of // for application, and the
transitivity of Φ ↪→ Ψ for case analysis.

Lemma 6.5 (Substitution). Suppose Γ ` δ : ∆ and let Γ′ be a telescope.

(a) If Γ,∆,Γ′ ` ctx then Γ, [δ/∆] Γ′ ` ctx.

(b) If Γ,∆,Γ′ ` ρ :Φ κ then Γ, [δ/∆] Γ′ ` [δ/∆] ρ :Φ [δ/∆]κ.

(c) If Γ,∆,Γ′ ` δ′ : ∆′ then Γ, [δ/∆] Γ′ ` [δ/∆] δ′ : [δ/∆] ∆′.

(d) If Γ,∆,Γ′ `tc ω : ∆′ then Γ, [δ/∆] Γ′ `tc [δ/∆]ω : [δ/∆] ∆′.

Proof. By induction on derivations. The interesting case is for variables in ∆.
Here δ contains an expression that is well-typed at the phase of the variable, and
Lemma 6.4 means it is well-typed at the phase at which the variable is used.

125

Φ ∝ Ψ (checking types at phase Φ may involve checking types at phase Ψ)

Φ ∝ Φ Φ ∝ ∀
Φ ∝ Ψ

Φ ∝ (Φ′ //Ψ)

Figure 6.12: Relevance relation

To prove subject reduction in the presence of promotion, I will need a more
liberal substitution lemma (Lemma 6.8), where the vector being substituted in-
habits ∆ //Φ rather than ∆. This depends on the fact that if a typing judgment
holds at phase Φ, then it still holds when the //Φ operator is applied to part of
the context. However, a straightforward inductive proof of this property fails,
due to the phase change in the application rule. Instead, I must prove a more
general property relating the phases involved (Lemma 6.7), using the ‘relevance’
relation Φ ∝ Ψ defined in Figure 6.12.

Lemma 6.6. If Φ ∝ Ψ and Φ′ ↪→ Ψ then Φ′ //Φ ↪→ Ψ.

Lemma 6.7 (Context for phase). Suppose Φ ∝ Ψ.

(a) If Γ,∆,Γ′ ` ctx then Γ,∆ //Φ,Γ′ ` ctx.

(b) If Γ,∆,Γ′ ` ρ :Ψ κ then Γ,∆ //Φ,Γ′ ` ρ :Ψ κ.

(c) If Γ,∆,Γ′ ` δ : ∆′ //Ψ then Γ,∆ //Φ,Γ′ ` δ : ∆′ //Ψ.

(d) If Γ,∆,Γ′ `tc ω : ∆′ //Ψ then Γ,∆ //Φ,Γ′ `tc ω : ∆′ //Ψ.

Proof. By induction on derivations. In the variable case, if x :Φ′
κ ∈ ∆ and

Φ′ ↪→ Ψ, then Φ′ //Φ ↪→ Ψ by Lemma 6.6. Thus the variable rule still applies.
For application at phase Φ′, the argument is well-typed at phase Φ′ //Ψ, and
Φ ∝ Φ′ //Ψ by definition, so the result follows by induction.

Lemma 6.8 (Substitution at phase). Suppose Γ ` δ : ∆ //Φ and fix Γ′.

(a) If Γ,∆,Γ′ ` ctx then Γ, [δ/∆] Γ′ ` ctx.

(b) If Γ,∆,Γ′ ` ρ :Φ κ then Γ, [δ/∆] Γ′ ` [δ/∆] ρ :Φ [δ/∆]κ.

(c) If Γ,∆,Γ′ ` δ′ : ∆′ //Φ then Γ, [δ/∆] Γ′ ` [δ/∆] δ′ : [δ/∆] ∆′ //Φ.

(d) If Γ,∆,Γ′ `tc ω : ∆′ //Φ then Γ, [δ/∆] Γ′ `tc [δ/∆]ω : [δ/∆] ∆′ //Φ.

Proof. In each case, Lemma 6.7 gives that Γ,∆,Γ′ ` J implies Γ,∆ //Φ,Γ′ ` J
(by reflexivity of ∝). Then the result follows from Lemma 6.5.

126

Each judgment has associated sanity conditions, giving admissible rules:

Lemma 6.9 (Sanity conditions). Let Σ be the implicit signature.

Γ ` ctx implies Σ ` sig
Γ ` ρ :Φ τ implies Γ ` τ :∀ ∗ and Γ ` ctx
Γ ` δ : ∆ implies Γ ` ctx

Γ `tc ω : ∆ implies Γ ` ctx

Proof. By induction on derivations, using the preceding results. Consider the
application rule as an example:

Γ ` ρ :Ψ (a :Φκ1)→ κ2

Γ ` ρ′ :Φ //Ψ κ1

Γ ` ρΦρ′ :Ψ [ρ′/a]κ2

Induction on the first premise gives Γ ` (a :Φκ1)→ κ2 :∀ ∗, so Γ, a :Φ κ1 ` κ2 :∀ ∗
by inversion. Then Lemma 6.8 gives Γ ` [ρ′/a]κ2 :∀ ∗.

6.4 Operational semantics

In this section, I will give a small-step operational semantics for expressions.
The reduction rules are given in Figure 6.13. These are essentially the rules
of System FC (Sulzmann et al., 2007), with the addition of function definitions
and dependent case analysis. The other novelty is that the rules apply to type
expressions as well as terms.

The syntax of values v and value types ξ is:

v ::= H δ | (a :Φκ)→ τ | Λa :Φκ . e

ξ ::= Hψ | (a :Φκ)→ τ

A value type is a value that has kind ∗ at phase ∀ (so λ-abstraction is excluded).
In the usual System FC fashion, expressions reduce to values that may be wrapped
in a coercion, so there are rules to push coercions out of the way when they would
otherwise prevent reduction. Of particular note is the push rule for the scrutinee
of a case expression, described in Subsection 6.4.1.

The same rules apply to phases ∀, Π and 	, but coercions (at phase �)
are not evaluated. For type expressions, evidence that the redex is equal to
the reduct may be required. The usual practice in dependent type theory is to
build reduction into the definitional equality, but here there is no guarantee that

127

ρ −→ ρ′ (ρ reduces to ρ′ in one step)

ρ −→ ρ′

ρ . η −→ ρ′ . η

ρ −→ ρ′

ρ ρ′′ −→ ρ′ ρ′′
ρ

kpush−−−→ ρ′

case ρof brj
j −→ case ρ′ of brj

j

ε
kpush−−−→ ε′

br′0 = br0 . step ε ... br′n = brn . step ε
dcase εof br0 ... brn −→ dcase ε′ of br′0 ... br′n

K ∆→ ρ ∈ bri
i

case Kψ δ of bri
i −→ [δ/∆] ρ

K ∆→ ρ ∈ bri
i

dcase Kψ δ of bri
i −→ [(δ, 〈Kψ δ〉)/∆] ρ

Σ 3 f [∆] = ρ :Φ κ
f(δ) −→ [δ/∆] ρ

(Λa :Φκ . e)Φ
ρ −→ [ρ/a] e

Γ ` γ :� ((a1 :Υκ1)→ τ1) ∼ ((a2 :Υκ2)→ τ2)
γ0 = sym (left γ) γ1 = γ@(coh 〈τ〉 γ0)

(v . γ)Υτ −→ vΥ(τ . γ0) . γ1

Γ ` γ :� ((c1 :�ϕ1)→ τ1) ∼ ((c2 :�ϕ2)→ τ2)
γ0 = sym (left γ) γ1 = γ@(η . γ0, η)

(v . γ)�η −→ v�(η . γ0) . γ1

Γ ` γ :� ((a1 :	κ1)→ τ1) ∼ ((a2 :	κ2)→ τ2)
γ0 = sym (left γ) γ1 = right γ

(v . γ)	ρ −→ v	(ρ . γ0) . γ1 (v . γ) . γ′ −→ v . (γ; γ′)

ρ
kpush−−−→ ρ′ (ρ reduces to ρ′ as the scrutinee of a case expression)

Γ ` γ :� D τi
i ∼ D υi

i

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

ω = (τi , υi ,nthi γ)
i

: ai :∀ κi
i ≺ δ : ∆

(K τi
i δ) . γ kpush−−−→ K υi

i −→ω

ρ −→ ρ′

ρ
kpush−−−→ ρ′

Figure 6.13: Operational semantics for shared terms

128

reduction will terminate, so explicit coercions are required to retain decidability
of typechecking. The step coercion provides the necessary evidence:

Γ ` τ :∀ κ Γ ` τ ′ :∀ κ τ
kpush−−−→ τ ′

Γ ` step τ :� τ ∼ τ ′

The second premise is only to ensure that the relevant sanity property, that τ ∼ τ ′

is well-kinded, does not depend on subject reduction.
Computing an expression can change the type of a surrounding construction

to something provably equal but not syntactically identical.9 For example, sup-
pose f : (a :Π τ)→ υ and ρ −→ ε, then f(ρ) : [ρ/a] υ but f(ε) : [ε/a] υ. It is not
straightforward to construct the coercion manipulations required to preserve the
type, especially where there is a telescope of arguments, though the resp con-
gruence can be used to prove the required equations. I take a simpler approach.
By giving a call-by-name semantics to shared functions and lifting case analysis
to the type level, I avoid the need for reduction in an argument position.

In the rule for dependent case analysis, when the scrutinee takes a step, the
branches must be coerced so that they remain type correct, since their types
depend on a proof that the scrutinee is equal to the relevant constructor. Define
coercion of a branch br . γ by

(K (∆, c :� ε ∼ K δ)→ ρ) . γ 7→ K (∆, c′ :� ε′ ∼ K δ)→ [γ; c′/c] ρ

so that Γ ` br :Φ (ε : υ) I τ and Γ ` γ :� ε ∼ ε′ implies Γ ` br.γ :Φ (ε′ : υ) I τ .

6.4.1 The push rule for scrutinees

Each push rule has a similar form: given an expression with a coerced value that
blocks reduction, push the coercion deeper into the term. Coerced data construc-
tors may block reduction if they appear as the scrutinee of a case expression, so a
rule is needed to push the coercion inside the arguments of the data constructor.
For example, suppose Γ ` γ :� Maybe Bool ∼ Maybe a and consider the scru-
tinee (Just Bool True) . γ. Pushing the coercion inside the arguments produces
Just a (True . right γ), an applied constructor, so the case expression can reduce.

The push rule for scrutinees is formulated as an extra reduction step, available
when evaluating the scrutinee of a case expression, as shown in Figure 6.13. It
is not available elsewhere as this would lead to nondeterminism: in particular,
terms like (K . γ) ρ could reduce in two different ways.

9In Type Theory, definitional equality includes computation, so this problem does not arise.

129

Given a coerced data constructor K τi
i δ . γ, where Γ ` γ :� D τi

i ∼ D υi
i

and Σ 3 K :Φ (ai :∀ κi
i
,∆) → D ai

i , each τi needs to be replaced with υi and
the elements of the vector δ coerced appropriately. The telescoped coercion
(τi , υi , nthi γ)

i
is formed for ai :∀ κi

i , then extended by δ in ∆ to produce
a telescoped coercion (τi , υi ,nthi γ)

i
, ω in ai :∀ κi

i
,∆ such that υi

i ,−→ω is the new
vector of arguments for K.

Recall that a telescoped coercion ω represents two vectors in some telescope Γ,
given by←−ω and −→ω , plus proofs that they are equal. If ∆ is a telescope extending
Γ and δ is a vector in [←−ω /Γ] ∆, then ω′ = ω : Γ ≺ δ : ∆ is such that ω, ω′

is a telescoped coercion in Γ,∆, and
←−
ω′ = δ. The telescoped coercion extension

operation is defined thus:
ω : Γ ≺ · : · 7→ ·

ω : Γ ≺ (δ, τ) : (∆, a :Υ κ) 7→ ω′, (τ , τ . γ, sym (coh 〈τ〉 γ))
where ω′ = ω : Γ ≺ δ : ∆
and γ = resp (ω, ω′) (Γ,∆)κ

ω : Γ ≺ (δ, ρ) : (∆, x :Ω τ) 7→ ω′, (ρ, ρ . resp (ω, ω′) (Γ,∆) τ)
where ω′ = ω : Γ ≺ δ : ∆

The point of this definition, upon which subject reduction will depend, is:

Lemma 6.10 (Telescoped coercion extension). Suppose that Γ `tc ω0 : ∆0,
Γ ` ←−ω0, δ : ∆0,∆1 and ω1 = ω0 : ∆0 ≺ δ : ∆1. Then Γ `tc ω0, ω1 : ∆0,∆1.

Proof. By induction on the definition of telescoped coercion extension.

6.4.2 Subject reduction

The point of all the work pushing coercions around is that subject reduction is
easy to prove. It is enough to inspect the reduction steps and verify that each
one preserves the type up to syntactic equality.

Theorem 6.11 (Subject reduction). The operational semantics preserves types:
if Γ ` ρ :Φ τ and ρ kpush−−−→ ρ′ then Γ ` ρ′ :Φ τ .

Proof. By induction on the reduction step. I consider some illustrative cases.
For the β-reduction step

(Λa :Φκ . e)Φ
ρ −→ [ρ/a] e

inversion gives Γ ` (Λa : Φκ . e) ρ :	 [ρ/a] τ , so Γ ` Λa : Φκ . e :	 (a :Φκ)→ τ and
Γ ` ρ :Φ //	 κ. Then inversion on the first premise gives Γ, a :Φ κ ` e :	 τ and
substitution (Lemma 6.5) gives Γ ` [ρ/a] e :	 [ρ/a] τ as required.

130

If the scrutinee of a dependent case expression takes a step, its type is pre-
served by induction, and the definition of coercion for case branches ensures that
the whole expression is well-typed (by the substitution lemma).

For the dependent case analysis step

K ∆→ ρ ∈ bri
i

dcase Kψ δ of bri
i −→ [(δ, 〈Kψ δ〉)/∆] ρ

from Γ ` dcase Kψ δ of bri
i :Φ τ inversion gives that Γ ` Kψ δ :Π //Φ Dψ and

Γ ` bri :Φ (Kψ δ : Dψ) I τ . Suppose K has type (aj :∀ κj
j
,∆) → D aj

j , then
Γ ` ψ, δ : (aj :∀ κj

j
,∆) // (Π //Φ) by Lemma 6.1. Now substitution gives that

Γ ` δ, 〈Kψ δ〉 : [ψ/aj :∀ κj
j] ∆ //Π //Φ, c :� Kψ δ ∼ Kψ∆. Inversion on the rule

for case branches gives Γ, [ψ/aj :∀ κj
j] ∆ //Π, c :� Kψ δ ∼ Kψ∆ ` ρ :Φ τ and

applying Lemma 6.8 gives Γ ` [(δ, 〈Kψ δ〉)/∆] ρ :Φ τ .
For the scrutinee reduction step

Γ ` γ :� D τi
i ∼ D υi

i

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

ω = (τi , υi ,nthi γ)
i

: ai :∀ κi
i ≺ δ : ∆

(K τi
i δ) . γ kpush−−−→ K υi

i −→ω

from Γ `tc (τi , υi ,nthi γ)
i

: ai :∀ κi
i and Γ ` τi

i , δ : ai :∀ κi
i
,∆ //Φ, Lemma

6.10 gives Γ `tc (τi , υi ,nthi γ)
i
, ω : ai :∀ κi

i
,∆ //Φ. Hence Lemma 6.2 implies

that Γ ` υi
i ,−→ω : ai :∀ κi

i
,∆ //Φ and so Γ ` K υi

i −→ω :Φ D υi
i .

6.5 Consistency and progress

To prove progress, I must demonstrate the consistency of closed terms in the �
fragment, as the existence of a coercion between dissimilar types would lead to
stuck terms. For example, if · ` γ :� Bool ∼ (Bool→ Bool) then (True . γ) False
is well-typed but stuck. I will prove consistency as a corollary of a more gen-
eral theorem, by defining a compatibility relation between type expressions that
implies they have the same head constructor, and showing that provably equal
expressions are compatible. Compatibility will require that closed expressions re-
duce to head-normal forms with identical outermost constructors and compatible
subcomponents, if they terminate at all.

Consistency and progress depend on the usual canonical forms lemma, which
is easy to prove thanks to the very restricted definitional equality.

131

Lemma 6.12 (Canonical forms). If v is a value and Γ ` v :Φ τ then τ is a value
type. Moreover,

(a) If τ = (a :Φκ)→ υ then v is of the form Λa :Φκ . e or K δ.

(b) If τ = Dψ then v is of the form K δ.

(c) If τ = ∗ then v is a value type.

Proof. By induction on the typing derivation.

6.5.1 The definition of compatibility

Given the reduction relation on types, obvious choices for a type equivalence
relation include joinability or the equivalence closure of reduction. These en-
sure that equivalent types have the same head constructors, so would guaran-
tee consistency. However, they are too strong: for example, there is a coer-
cion between (c :� (D1 ∼ D2)) → D1 and (c :� (D1 ∼ D2)) → D2 given by
cong � 〈D1 ∼ D2〉 (Λc1 :� D1 ∼ D2, c2 :� D1 ∼ D2, c′ :� c1 ∼ c2.c1), but these
types are clearly not joinable if D1 and D2 are distinct constructors.

Weirich et al. (2013) get round this problem by restricting the well-typed
coercions so that they cannot use potentially inconsistent assumptions. This is
necessarily over-restrictive, because there can be no decision procedure for con-
sistency of a set of assumptions. A coercion between distinct types can exist
in an inconsistent context, and this does not endanger consistency of the whole
system. Instead, I define compatibility on closed types to ensure they have the
same head constructors, and extend it to open types by considering closed in-
stances. All types are equivalent in an inconsistent context, since there are no
closed instances. Thus the existence of a coercion between two types can imply
their compatibility. This novel approach works well for the evidence language,
where types have a well-defined operational semantics; it would be interesting to
see if it can be applied to System FC with type families.

The definitions and proofs in this section are rather technical, and can safely
be skipped by the casual reader. The payoff comes in Subsection 6.5.4: the
evidence language has the progress and type safety properties. I will present the
structure of the argument here, and defer the details of proofs to Appendix D.4.

I will define Ak(ϕ) where ϕ is a proposition and k is a natural number, to
mean that ϕ cannot be falsified within k steps. A proposition ‘really’ holds if the
relation holds for all k. This indexing ensures that the relation is well-founded,
and facilitates proof by induction on the index, like a step-indexed logical relation.

132

Definition 6.1 (Computational, coerced and structural type expressions). A
type expression is computational if it is a function application f(δ) or a case ex-
pression (d)case τ of bri

i ; coerced if it is a coercion τ .γ; otherwise it is structural.

Roughly speaking, Ak(τ ∼ υ) means that if τ and υ are computational, they
can both take a step and remain related, whereas if they are structural, they both
have the same structure and the substructures are compatible. Any coercions are
ignored (but must be between compatible types). Moreover, the kinds of the
expressions must be compatible.

Definition 6.2 (Compatibility). Define Ak(ϕ) inductively on k , provided there
exists γ such that · ` γ :� ϕ. For such a γ, I write Ak(γ : ϕ) to mean that
Ak(ϕ) holds. The index k represents the depth of comparison to perform. A0(ϕ)
holds for any well-typed coercion. For k > 0, Ak(ϕ) is defined based on ϕ.

If ϕ equates two computational expressions, their reducts must be compatible:

• Ak((τ1 : κ1) ∼ (τ2 : κ2)) for τ1 and τ2 computational if Ak− 1(κ1 ∼ κ2),
τ1 −→ υ1, τ2 −→ υ2 and Ak− 1(υ1 ∼ υ2).

If ϕ equates two structural expressions, these must be the same structure and
the subcomponents must be compatible:

• Ak((H :κ) ∼ (H :κ)) if Ak− 1(κ ∼ κ);

• Ak((τ1
Φυ1 : κ1) ∼ (τ2

Φυ2 : κ2)) for Φ 6= � if Ak− 1(κ1 ∼ κ2), Ak(τ1 ∼ τ2)
and Ak(υ1 ∼ υ2);

• Ak((τ1
�η1 :κ1) ∼ (τ2

�η2 :κ2)) if Ak− 1(κ1 ∼ κ2), Ak(τ1 ∼ τ2), Ak− 1(η1 : ϕ1)
and Ak− 1(η2 : ϕ2);

• Ak(τ1 → υ1 ∼ τ2 → υ2) if Ak(τ1 ∼ τ2) and Ak(υ1 ∼ υ2);

• Ak((a1 :Υ κ1) → τ1 ∼ (a2 :Υ κ2) → τ2) if Ak(κ1 ∼ κ2) and for all l < k,
Al((υ1 :κ1) ∼ (υ2 :κ2)) implies Al([υ1/a1] τ1 ∼ [υ2/a2] τ2).

• Ak((c1 :� ϕ1) → τ1 ∼ (c2 :� ϕ2) → τ2) if Ak(ϕ1 ∼ ϕ2) and for all l < k,
Al(γ1 : ϕ1) and Al(γ2 : ϕ2) imply Al([γ1/c1] τ1 ∼ [γ2/c2] τ2).

If one side is structural and the other is computational, the computational
expression must reduce to a compatible structure:

• Ak(τ1 ∼ τ2) where τ1 is structural and τ2 is computational if τ2 −→∗ υ
where υ is structural or coerced and Ak(τ1 ∼ υ);

133

• Ak(τ1 ∼ τ2) where τ1 is computational and τ2 is structural if τ1 −→∗ υ
where υ is structural or coerced and Ak(υ ∼ τ2).

If either side is coerced, the coercion must be between compatible types and
the underlying expressions must be compatible:

• Ak(τ1 . η ∼ τ2) if Ak(τ1 ∼ τ2) and Ak− 1(η : κ1 ∼ κ2);

• Ak(τ1 ∼ τ2.η) where τ1 is not coerced if Ak(τ1 ∼ τ2) and Ak− 1(η : κ1 ∼ κ2).

Now the definition of compatibility is extended to quantified equations, by
taking closed instances:

• Ak((a :Υκ)→ ϕ) if for all l < k, Al((τ :κ) ∼ (τ :κ)) implies Al([τ/a]ϕ);

• Ak((c :�ϕ′)→ ϕ) if for all l < k, Al(η : ϕ′) implies Al([η/c]ϕ);

• Ak((x :	 τ)→ ϕ) if Ak(ϕ).

This definition extends naturally to closed telescoped coercions, requiring that
all the coercions are between compatible types.

Definition 6.3. Define Ak(ω : ∆) where · `tc ω : ∆ by

• Ak(· : ·) always;

• Ak(ω, (τ, υ, γ) : ∆, a :Υ κ) if Ak(ω : ∆) and Ak(γ : τ ∼ υ);

• Ak(ω, (η, η′) : ∆, c :� ϕ) if Ak(ω : ∆) and both Ak− 1(η : [←−ω /∆]ϕ) and
Ak− 1(η′ : [−→ω /∆]ϕ);

• Ak(ω, (e, e′) : ∆, x :	 κ) if Ak(ω : ∆).

For consistency and progress, the signature Σ must not contain any inconsis-
tent axioms or malformed types (as they would invalidate consistency), or any
undefined runtime functions (as they would invalidate progress). These condi-
tions are encapsulated in the following definition.

Definition 6.4 (Good declaration and signature). A signature Σ is good if all
the entries in Σ are good, where:

• An axiom C :� ϕ is good if Ak(ϕ) and Ak(ϕ ∼ ϕ) for all k.

• A constructor H :Φ τ is good if Ak(τ ∼ τ) for all k.

134

• A static function declaration f [∆] :Υ κ is good if it has a unique corre-
sponding definition f [∆] = τ :Υ κ in Σ, such that Ak(ω : ∆) implies
Ak([←−ω /∆] τ ∼ [−→ω /∆] τ).

• A dynamic function declaration f [∆] :	 κ is always good, since it cannot
occur in types.

From now on I will implicitly assume that the signature Σ is good.

6.5.2 Properties of compatibility

I now prove that compatibility is a partial equivalence relation on types, that it
respects computation and is a congruence. It is reflexive on well-typed expres-
sions, but to prove this I must show that all well-typed coercions are compatible,
which is the main result in the following section.

Lemma 6.13 (Symmetry). If Ak(τ ∼ υ) then Ak(υ ∼ τ).

Proof. By inversion on the definition. It is clear that every case is symmetric.

Lemma 6.14 (Transitivity). If Ak(τ ∼ υ) and Ak(υ ∼ κ) then Ak(τ ∼ κ).

Proof. By induction on k and inversion on Ak(ϕ). For details, see Appendix D.4
(page 250).

In the usual step-indexed fashion, decreasing the step index preserves the
relation, because strictly less of the expressions’ structures are compared.

Lemma 6.15 (Downward closure).

(a) If Ak + 1(ϕ) then Ak(ϕ).

(b) If Ak + 1(ω : ∆) then Ak(ω : ∆).

Proof. Part (a) is by induction on k and inversion on Ak + 1(ϕ). Part (b) follows
from part (a) by structural induction on ω.

To show that the step coercion preserves compatibility, use the following:

Lemma 6.16 (Reduction preserves compatibility). If τ kpush−−−→ υ and Ak(τ ∼ τ)
then Ak− 1(τ ∼ υ).

Proof. By induction on k and the reduction step τ
kpush−−−→ υ. For details, see

Appendix D.4 (page 252).

135

The definition of compatibility makes it a congruence for structural expres-
sions and coercions. I must prove that it is a congruence for case analysis.

Lemma 6.17 (Congruence for case analysis). If Ak(ε ∼ ε′) and Ak(bri ≈ br′i)
for all i, then Ak((d)case εof bri

i ∼ (d)case ε′ of br′i
i).

Proof. By induction on k and case analysis on ε and ε′, using Lemma 6.16. For
details, see Appendix D.4 (page 255).

To show compatibility of the kind γ coercion, which extracts a proof that the
kinds are equal from a proof that two types are equal, I will need the following:

Lemma 6.18 (Compatibility of kinds). If Ak((τ1 : κ1) ∼ (τ2 : κ2)) holds, then
Ak− 1((κ1 :∗) ∼ (κ2 :∗)).

Proof. By induction on k and inversion on Ak(ϕ).

6.5.3 Well-typed coercions are compatible

Finally, I can show that the existence of a coercion between types implies their
compatibility. Consistency is then an immediate corollary. Crucially, the logical
unsoundness of the type language, due to the presence of general recursion and
the paradoxical ∗ : ∗, does not affect the � fragment. General recursion is not
available in coercions, and they may perform only a finite amount of computation.

Lemma 6.19 (Basic Lemma).

(a) If Γ ` τ :∀ κ then for all k, Ak(ω0 : Γ) implies Ak([←−ω0/Γ] τ ∼ [−→ω0/Γ] τ).

(b) If Γ ` br :∀ υ I τ or Γ ` br :∀ (ε : υ) I τ then for all k, Ak(ω0 : Γ) implies
Ak([←−ω0/Γ] br ≈ [−→ω0/Γ] br).

(c) If Γ ` γ :� ϕ then for all k, Ak(ω0 : Γ) implies Ak([←−ω0/Γ]ϕ) and Ak([−→ω0/Γ]ϕ).

(d) If Γ `tc ω : ∆ then for all k, Ak(ω0 : Γ) implies Ak([ω0/Γ]ω : ∆).

Proof. By structural induction on typing derivations. Note that k is quantified
inside the inductive hypothesis. For details, see Appendix D.4 (page 256).

Theorem 6.20 (Consistency). If · ` γ :� (ξ0 :∗) ∼ (ξ1 :∗) then ξ0 and ξ1 have
the same head constructor (that is, either ξi = (ai :Φκi)→ τi or ξi = Hψi).

Proof. This follows from the special case of Lemma 6.19(c) where Γ is empty, since
A1(ξ1 ∼ ξ2) implies ξ1 and ξ2 have the same head constructor, by definition.

136

6.5.4 Progress

Thanks to the consistency proof, progress is straightforward, as in previous work.
Type safety is an immediate corollary.

Theorem 6.21 (Progress). If · ` e :	 τ then either e is a value, e is a coerced
value or there is some e′ such that e −→ e′.

Proof. By structural induction on the typing derivation. When a coerced value
prevents reduction, Theorem 6.20 ensures that the relevant push rule applies.

Corollary 6.22 (Type safety). If · ` e :	 τ and e −→∗ e′ then either e′ is a
value, e′ is a coerced value or there is some e′′ such that e′ −→ e′′.

6.6 Erasure

The erasure operation, defined in Figure 6.14, produces a runtime version ‖e‖
of an evidence term e (phase) by removing static subterms (phases ∀ and �).
Similarly, an erasure operation ‖δ : ∆‖ is defined for a vector δ in telescope ∆.

Runtime terms r are a subgrammar of evidence terms e, except that λ-
abstractions do not record their types and an additional marker _ is used to
indicate where a subterm has been erased. This could be implemented with a
unit type. No casts are present in runtime terms, and dependent case analysis has
been turned into normal case analysis. The grammar of runtime terms is:

r ::= a | λx .r | r r′ | K | f(rkk) | case r of Ki ∆i → ri
i | _

Erasure uses the phase annotations on applications to avoid reconstructing
the type of the term, but if they were not present it would be easy to define
erasure in a typed fashion, since the evidence term encodes its typing derivation.
Saturated function applications f(δ) are not annotated with phases, so erasure
for vectors ‖δ : ∆‖ uses the telescope ∆ from the declaration of the function.

The operational semantics of runtime terms is given in Figure 6.15. It is a
subset of the rules from Figure 6.13, omitting those related to coercions, and
erasing the bodies of functions defined in the signature.

The motivation for replacing erased subterms with the _ marker, rather than
removing them (and the corresponding λ-abstractions) altogether,10 is that it sim-
plifies the correspondence between the original and erased operational semantics.
This correspondence is shown by the following lemma.

10Of course, subsequent optimisation of runtime terms could remove the unnecessary redexes.

137

‖x‖ 7→ x
‖Λx :Φκ . e‖ 7→ λx .‖e‖

‖e∀τ‖ 7→ ‖e‖_
‖e�γ‖ 7→ ‖e‖_
‖eΠε‖ 7→ ‖e‖ ‖ε‖
‖e	e′‖ 7→ ‖e‖ ‖e′‖
‖K‖ 7→ K

‖f(δ)‖ 7→ f(‖δ : ∆‖) where Σ 3 f [∆] :Φ κ
‖(d)case e of Ki ∆i → ei

i‖ 7→ case ‖e‖of Ki ∆i → ‖ei‖
i

‖e . γ‖ 7→ ‖e‖

‖· : · ‖ 7→ ·
‖δ, τ : ∆, a :∀ κ‖ 7→ ‖δ : ∆‖,_
‖δ, γ : ∆, c :� ϕ‖ 7→ ‖δ : ∆‖,_
‖δ, ε : ∆, x :Π τ‖ 7→ ‖δ : ∆‖, ‖ε‖
‖δ, e : ∆, x :	 τ‖ 7→ ‖δ : ∆‖, ‖e‖

Figure 6.14: Erasure of terms and vectors

r −→ r′ (r reduces to r′)

r −→ r′

r r′′ −→ r′ r′′
r −→ r′

case r of Ki ∆i → ri
i −→ case r′ of Ki ∆i → ri

i

case Kj rk
k of Ki ∆i → ri

i −→ [rkk/∆j]rj

Σ 3 f [∆] = e :Φ κ
f(rkk) −→ [rkk/∆]‖e‖

(λx .r) r′ −→ [r′/x]r

Figure 6.15: Operational semantics of erased terms

138

Lemma 6.23. If · ` e :	 τ , then either

• e is a coerced value and ‖e‖ is a value; or

• e −→ e′ and either ‖e‖ = ‖e′‖ or ‖e‖ −→ ‖e′‖.

Proof. If e is a coerced value, it is easy to see that ‖e‖ is a value. If not, Theo-
rem 6.21 means that e can take a step to some e′; proceed by induction on the
step taken. For most steps, the result follows immediately by induction or the
fact that both e and e′ are identical after erasure. The cases for β-reduction and
definitional expansion make use of the fact that erasure commutes with substi-
tution, i.e. ‖[δ/∆] e‖ = [‖δ : ∆‖/∆]‖e‖. When the scrutinee of a case expression
takes a push step, this does not change its erasure.

The erasure operation described above removes all static information from
evidence terms. In some cases it is also possible to erase dependencies without
erasing types entirely: datatype indices are removed and Π-types become non-
dependent functions. For example, in inch syntax,

data Vec :: ∗ → N→ ∗ where
Nil :: Vec a Zero
Cons :: a → Vec a n → Vec a (Suc n)

would be erased to

data Vec :: ∗ → ∗ where
Nil :: Vec a
Cons :: a → Vec a → Vec a

otherwise known as the type of lists, and

replicate :: Π (n :: N)→ a → Vec a n

would be erased to

replicate :: N→ a → Vec a

Thus an inch term can sometimes be converted into a Haskell term, or an evi-
dence term can be converted into a System FC-like term. However, this is not
possible for terms containing large eliminations, where a type is computed from
a shared term by type-level case analysis. This approach is used in the prototype
implementation, as discussed in Chapter 8.

139

6.7 Discussion

I conclude this chapter with comments on possible extensions to the evidence
language, and a comparison to its predecessors. In the following chapter, I will
show how high-level inch source code can be translated to the evidence language
discussed in this chapter, by a process of elaboration.

6.7.1 Representing numbers

So far I have said a great deal about how to manage Π-types, and indeed phases
more generally, but I have not said much about numbers. How might the evidence
language described here be extended to support them?

One option is to adopt the traditional algebraic datatype presentation of nat-
ural numbers and integers:

data N = Zero | Suc N

data Z = NonNegative N | StrictlyNegative N

Mathematical operations such as addition can be defined on these representations
as pattern-matching functions, and the machinery in this chapter will allow them
to be used on the type level. This is rather inefficient, though perhaps the com-
piler could replace the representation with a native version after typechecking.

However, the equational theory desired for these operations is more than the
behaviour delivered by computation. By adding axioms to the signature, prop-
erties such as the commutativity of addition can be made available as coercions,
and hence used by the elaborator. Consistency of the system, and hence type
safety, are ensured provided the conditions of Definition 6.4 are satisfied.

In particular, any new axioms must be compatible, i.e. true on closed in-
stances. The commutativity of addition axiom

(a :∀ N, b :∀ N)→ (a + b) ∼ (b + a)

is fine, because (a + b) ∼ (b + a) holds by computation whenever a and b are
replaced with closed values, but a bogus axiom such as

(a :∀N)→ a ∼ Suc a

will not be compatible.
One problem with this approach is that some valid axioms do not satisfy the

140

compatibility relation, because they change termination properties. For example,

(a :∀Z)→ (a − a) ∼ Zero

is not accepted, because if a is instantiated with a closed divergent term, then the
left-hand side diverges but the right does not. This could be resolved by extending
the definition of compatibility, so that rather than considering reduction alone,
numeric expressions could be simplified via axioms. Consistency would then
depend on a global property of the axioms, that they could not be used to derive
Zero ∼ Suc Zero.

There is also more work to do on the evidence for inequality constraints. These
can be encoded using algebraic datatypes, for example

data m 6 n where
Z :: Zero 6 n
S :: m 6 n → Suc m 6 Suc n

but it might be preferable to make use of the � fragment to record known-
consistent (and hence erasable) inequality proofs, just as coercions are known-
consistent equality proofs.

6.7.2 Adding η-laws

Another desirable extension of the compatibility relation is support for η-conversion
of single-constructor (record) datatypes. For example, the usual fst and snd pro-
jections from pairs are perfectly good shared definitions, so they can be used at
the type level. It would be useful to support the η-axiom

(a :∀ ∗, b :∀ ∗, x :∀ (a , b))→ x ∼ (fst(x) , snd(x))

which says that any inhabitant of a pair type is equal to the pair of its projections.
For example, this is needed to show that the type of paths in a binary relation

data Path :: ((a, a)→ ∗)→ ((a, a)→ ∗) where
Stop :: Path r (x , x)
Step :: r (x , y)→ Path r (y, z)→ Path r (x , z)

forms an indexed monad. The following definition is accepted

returnIx :: r (x , y)→ Path r (x , y)
returnIx v = Step v Stop

141

but its type is insufficiently general; it should have the type

returnIx :: r c → Path r c

which requires η-expansion.
As in the previous section, η-axioms change termination properties, because

x might diverge, so they do not satisfy the existing definition of compatibility.
However, as with numeric axioms, compatibility could be modified to build in η-
expansion, by defining Ak((τ , τ ′) ∼ υ) for computational expressions υ to mean
Ak(τ ∼ fst(υ)) and Ak(τ ′ ∼ snd(υ)).

6.7.3 Related work

System FC(X) was introduced by Sulzmann et al. (2007) as a new core lan-
guage for GHC. It is based on System F, the second-order polymorphic λ-calculus
(Reynolds, 1974; Girard et al., 1989), but adds algebraic datatypes, higher kinds
and explicit coercions (proofs of type equality). It was motivated by the need to
elaborate GADTs and type families, both of which can be understood as exten-
sions to the equational theory of types: case analysis on GADTs introduces new
equational hypotheses, which may be used to show the body is well-typed, while
type families add axiomatically-defined type-level functions. This was a major
advance on the previous approach used in GHC, of adding GADTs to System F
directly. The (X) parameterisation in the system represents its dependence on
an unspecified decision procedure for checking that a context is consistent, i.e.
that the axioms and equational hypotheses do not entail a contradiction. The
system was subsequently revised by the authors in the light of implementation
experience (Sulzmann et al., 2009).

Weirich et al. (2011a) developed System FC2 to rectify a consistency problem
discovered in the implementation of GHC. This resulted from the combination
of newtypes, which introduce axioms asserting their equality with the underlying
representation type, and type families, which can distinguish between a newtype
and its representation. They proved that their system is consistent if type family
declarations are non-overlapping, using an approach based on rewriting.

Development continued with System F ↑C (Yorgey et al., 2012), which adds
datatype promotion and kind polymorphism. This allows algebraic datatypes
to be used as kinds, so type-level programming need not be entirely untyped:
for example, a datatype of Peano numerals can be promoted to the kind level
and used to index a GADT of vectors. However, kind equality in F ↑C is purely
syntactic, so it is not possible to promote GADTs. Vytiniotis et al. (2012) tweaked

142

System F ↑C to support deferred type errors, by distinguishing between an ‘unlifted’
type of known-good equality proofs and a ‘lifted’ type of potentially bogus proofs
that must be evaluated before use.

Weirich et al. (2013) took the datatype promotion and kind polymorphism
ideas to their logical conclusion, by eliminating the distinction between types
and kinds. The evidence language described in this chapter continues in this
direction, as it makes no distinction between types and kinds. It goes further
in that terms and types share a common syntax and typing rules, though the
phase restrictions mean not every expression form is available at every phase.
Moreover, it adds Π-types, allowing real dependency without the need for the
singleton construction.

6.7.4 Future work

A key idea of this chapter is the use of a common syntax for terms, types and
kinds, while the phase distinction is maintained by indexing typing judgments
with the phase at which they apply. Variables in the context carry a phase,
and application allows for promotion implicitly, as described in Section 6.2. An
ordering on phases makes it possible for data at one phase to be used at another,
thereby streamlining the presentation of Π-types.

Phases need not be confined to this system, however: they can be defined
for any Pure Type System. The set of phases need not be {∀,�,Π,	} as in
this chapter, but could be any partially ordered set with a suitable relativisation
operator Φ //Ψ. For example, a system with two phases could model a dependent
type theory that distinguishes between runtime and compile-time data. The
results of this chapter illustrate the properties required for a system of phases.
Work is ongoing to develop the theory of phases and investigate its applications.

The novel consistency proof for coercions given in Section 6.5 takes a different
approach to previous work, and thereby lifts a technical restriction on the use
of potentially inconsistent assumptions in coercions between �-quantified types.
However, this approach relies on the common operational semantics for types
and terms, and in particular the treatment of type functions via case analysis. It
remains to be seen whether the method can be extended to support the notion
of type families in System FC, which are defined axiomatically.

143

Chapter 7

Producing the evidence:
elaborating inch

Broadly construed, elaboration is a type-directed process of translating a high-
level source language into a more explicit intermediate language, inferring details
that were originally left implicit. Section 2.4 (page 27) showed how to elaborate
λ-calculus with let-expressions into explicitly-typed System F. GHC elaborates
Haskell programs into System FC, which adds algebraic datatypes, higher kinds
and type equality constraints to System F. Dependently typed languages such
as Epigram are explained by elaboration into a type theory, with the elaborator
synthesising implicit arguments and solving higher-order unification problems.

Following the Curry-Howard correspondence, elaboration of programming lan-
guages is closely connected to generating proof objects from proof scripts in in-
teractive theorem provers (such as Coq with its core language Gallina). Here,
the primary motivation is ensuring correctness through the de Bruijn criterion.
A well-understood kernel theory, with simple typechecking, allows the output
from complex tactics and decision procedures to be independently rechecked.
Likewise, GHC is an extremely complex program, and the ability to easily type-
check programs in the intermediate language is crucial to debugging the compiler.
Moreover, the intermediate language provides a good basis for implementing op-
timisations, as all the typing information is available explicitly.

In this chapter, I will describe the process for elaborating inch programs into
the evidence language defined in the last chapter. I begin by introducing ‘type
schemes’, which decorate evidence language types with information on implicit
arguments (7.1), inspired by the work of Pollack (1990). The formal syntax
of the inch language (7.2) includes a large fragment of the informally presented
syntax. Instead of giving this a type system directly, I supply a non-deterministic

elaboration system that relates inch terms to evidence terms (7.3).
I then explain how partial knowledge and progress can be represented (7.4),

and describe a definite (and necessarily incomplete) algorithm for elaboration
(7.5). This is based on the work on type inference in Part I, where unification
variables and unsolved constraints are explicitly represented using metacontexts.
The algorithm reduces elaboration to constraint solving in the underlying evi-
dence language. Designing a constraint solving algorithm is a complex task in
itself. I will specify its required properties and describe it at a high level, but I
will not describe constraint solving in detail.

Elaboration of case expressions, which is the basis for the treatment of pattern-
matching definitions, is somewhat involved and is therefore postponed (7.6). The
chapter concludes with some contextualising remarks (7.7).

7.1 Type schemes

As discussed in Subsection 5.2.4 (page 99), it is desirable to have finer-grained
control over which arguments are automatically inferred than the current Haskell
policy of forcing ∀-bound arguments to be implicit and other arguments to be
explicit. Instead, constants and variables in the context will be assigned a type
scheme σ, consisting of a quantified type with annotations indicating whether
each argument is implicit (:i) or explicit (:e). The grammar of schemes is given
in Figure 7.1. For example, the type scheme of the equality constructor is

(∼) : (a :∀i ∗, b :∀i ∗, x :	e a, y :	e b)→ ∗

meaning that the first two arguments are implicit and the last two are explicit,
thereby justifying the usual use of (∼) as a binary operator. The usual definition
of vectors gives rise to the following type schemes:

Vec : (a :∀e ∗, n :∀e N)→ ∗
Nil : (a :∀i ∗, n :∀i N, c :�i n ∼ Zero)→ Vec a n
Cons : (a :∀i ∗, n :∀i N,m :∀i N,

x :	e a, xs :	e Vec a m, c :�i n ∼ Suc m)→ Vec a n

I will not give formal rules for elaborating source language datatype declarations
into constructors with the appropriate type schemes.

Quantification over proofs (at phase �) will always be implicit, because co-
ercions are not written in the source language. On the other hand, dynamically
quantified variables will be explicit, as they cannot be determined by unification

145

σ ::= τ | (a :Φe σ′)→ σ | (a :Φi τ)→ σ

Γ, ∆ ::= · | Γ, a :Φe σ | Γ, a :Φi τ

bτc 7→ τ
b(x :Φe σ′)→ σc 7→ (x :Φ bσ′c)→ bσc
b(a :Φi τ)→ σc 7→ (a :Φ τ)→ bσc

b· c 7→ ·
bx :Φe σ,∆c 7→ x :Φ bσc, b∆c
ba :Φi τ,∆c 7→ a :Φ τ, b∆c

Figure 7.1: Grammar and erasure of schemes and annotated telescopes

constraints. Typeclasses can be seen as a form of implicit dynamic quantification,
with an alternative strategy for finding the corresponding arguments, based on
instance search rather than unification. This idea underlies Agda’s support for
instance arguments (Devriese and Piessens, 2011). I will not consider typeclasses
further, but it is straightforward to handle them using the elaboration framework.

Like schemes, telescopes can be annotated to indicate whether the argument
is implicit or explicit, writing ∆ instead of ∆. Erasing the annotations produces
a type or telescope in the evidence language, written bσc or b∆c and defined in
Figure 7.1. I will assume that the signature Σ assigns type schemes to constructors
H and annotated telescopes to shared functions f . In general, I will elide the
distinction between a quantified type (a :Φ κ) → τ and an explicitly-quantified
type scheme (a :Φe κ)→ τ .

Quantifying a scheme over a telescope (∆)→ σ and the relativisation operator
∆ //Φ extend the definitions on evidence expressions in the obvious way.

I do not extend the type system of the evidence language itself. This avoids
complicating the metatheory with details of implicit arguments. Rather, schemes
are a tool for explaining how elaboration should generate explicit evidence terms.

To obtain good inference behaviour, the elaboration algorithm should never
attempt to ‘guess’ type schemes, only propagate them through bidirectional type
inference. This avoids questions of how to unify type schemes. For this reason,
the domain of an implicit quantification is always a type rather than a scheme.

Following the Agda convention, the application syntax ρ{a = ρ′} is used to
supply explicitly an argument that is usually implicit, with name a. This means
type schemes cannot always be treated as equivalent up to α-conversion, as names
may appear outside the scope in which they are bound.

146

ρ ::= inch expression
| a variable
| ρ ρ′ explicit application
| ρ{a =ρ′} implicit application
| ∀(a :κ)→ τ explicit ∀ quantification
| Π(a :τ)→ υ explicit Π quantification
| τ→ υ function type (explicit 	 quantification)
| H constructor
| f(δ) saturated function
| ρ :σ type ascription
| λx . ρ abstraction
| let x =ρ in ρ′ let binding
| _ unknown

Figure 7.2: Grammar of inch expressions

7.2 Formal syntax of inch
The grammar of inch is presented in Figures 7.2 and 7.3. Like the evidence
language, there is a common syntax for expressions ρ, but I will usually use
τ, υ or κ for types and s or t for runtime terms (according to the respective
subgrammars). While the presentation using a common syntax is compact, it is
inessential and one may use different syntaxes for the term and type levels.

The main additions, compared to the evidence language, are: let-expressions;
the ability to ascribe a type scheme to an expression, written ρ : σ; and the
‘unknown’ marker _, which asks for a value to be inferred by the elaborator.
All coercion proofs are omitted (as they will be generated by constraint solving,
not supplied by the user). The inch syntax uses upright Greek letters such as ρ,
where the evidence syntax would use the italic ρ.

The syntax of inch type schemes σ is deliberately chosen to resemble Haskell
syntax. It will be translated by elaboration into the evidence language type
schemes of Section 7.1. There is no explicit quantifier at phase �, and the implicit
quantifier does not bind a variable, because proofs are invisible in the source
language. There is no implicit quantifier at phase 	, because no constraints would
be able to determine the value of a dynamic argument (absent typeclasses).

The source syntax should allow type ascriptions on quantifiers to be omitted,
but this can be dealt with by inserting _ markers as necessary. For example, the
universal quantifier ∀ a.σ can be desugared into ∀(a :_).σ before being elaborated
into the evidence type scheme (a :∀i κ)→ σ.

The treatment of (dependent) case analysis is postponed to Section 7.6.

147

σ ::= inch type scheme
| ∀(a :κ).σ implicit ∀ quantification
| ∀(a :κ)→ σ explicit ∀ quantification
| Π(a :τ)→ σ explicit Π quantification
| Π(a :τ).σ implicit Π quantification
| τ⇒ σ constraint (implicit � quantification)
| σ′ → σ function type (explicit 	 quantification)
| τ type

τ, υ, κ ::= inch type
| a variable
| τ υ explicit application
| τ{a =υ} implicit application
| ∀(a :κ)→ τ explicit ∀ quantification
| Π(a :τ)→ υ explicit Π quantification
| τ→ υ function type (explicit 	 quantification)
| H rigid constructor
| f(δ) saturated function
| τ :σ type ascription
| _ unknown

t, s ::= inch term
| a variable
| t ρ explicit application
| t{a =ρ} implicit application
| K data constructor
| f(δ) saturated function
| t :σ type ascription
| λx . t abstraction
| let x =s in t let binding
| _ unknown

δ ::= · | δ, ρ | δ, {a =ρ}

Figure 7.3: Grammar of inch type schemes, types, terms and vectors

148

7.3 Non-deterministic elaboration

I start by giving a non-deterministic presentation of elaboration that relates inch
syntax to well-typed evidence terms, following the account of elaboration for
implicit argument synthesis in the Calculus of Constructions by Luther (2003).
The non-deterministic presentation resembles a type system for inch, as it allows
types and evidence terms to be assigned, but does not indicate how they are to
be discovered. I will then show how missing information can be reconstructed
and give a deterministic algorithm.

The non-deterministic elaboration rules are presented in the Figures 7.4–7.6.
Intuitively, elaboration is built out of structural rules, which preserve the struc-
ture of the input term, and wrapping rules, which add information missing from
the input. It is a kind of ‘embedding’ of inch terms into evidence terms. The
judgments defined are:

• Γ ` ρ ρ :Φ σ, meaning that the inch expression ρ can be elaborated into
the evidence expression ρ with scheme σ;

• Γ ` δ δ : ∆, meaning that the inch vector δ elaborates to δ in the
telescope ∆, by inserting implicit arguments;

• Γ ` σ σ, meaning that the inch type scheme σ elaborates to the
evidence type scheme σ; and

• Γ ` e : σ ≺ e′ : σ′, meaning that the type scheme σ is subsumed by σ′ and
if e : σ then e′ : σ′.

7.3.1 Non-deterministic elaboration of expressions

The judgment Γ ` ρ ρ :Φ σ, defined in Figure 7.4, means that in a context Γ,
the inch expression ρ interpreted at phase Φ can be elaborated to the evidence
term ρ with type scheme σ. This judgment is not defined at phase � because
coercions do not appear in the source language. It uses annotated contexts Γ so
that variables record whether they were explicitly bound, and hence in scope for
the source language, or implicitly bound, and hence inaccessible.

Most of the elaboration rules simply preserve the structure of the source lan-
guage expression in the target language. An important exception is the ‘magic’
rule for implicit λ-abstraction

Γ, a :Φi τ ` t e :	 σ
Γ ` t Λa :Φτ . e :	 (a :Φi τ)→ σ

149

Γ ` ρ ρ :Ψ σ (ρ can elaborate to ρ with scheme σ at phase Ψ ∈ {∀,Π,	})

bΓc ` ctx
Γ 3 a :Φe σ Φ ↪→ Ψ

Γ ` a a :Ψ σ

bΓc ` ctx
Σ 3 H :Φ σ Φ ↪→ Ψ

Γ ` H H :Ψ σ

Σ 3 f [∆] :Φ κ Φ ↪→ Ψ
Γ ` δ δ : ∆ //Ψ
Γ ` f(δ) f(δ) :Ψ [δ/∆]κ

Γ ` ρ ρ :Ψ (∆)→ σ
Γ ` δ δ : ∆ //Ψ

Γ ` ρ δ ρ δ :Ψ [δ/∆]σ

Γ ` κ κ :∀ ∗
Γ, a :∀e κ ` τ τ :∀ ∗

Γ ` ∀(a :κ)→ τ (a :∀κ)→ τ :∀ ∗

Γ ` τ τ :∀ ∗
Γ, x :Πe τ ` υ υ :∀ ∗

Γ ` Π(x :τ)→ υ (x :Π τ)→ υ :∀ ∗

Γ ` τ τ :∀ ∗ Γ ` υ υ :∀ ∗
Γ ` τ→ υ τ → υ :∀ ∗

bΓc ` ctx
Γ ` ∗ ∗ :∀ ∗

bΓc ` ctx
Γ ` (∼) (∼) :∀ (a :∀i ∗)→ (b :∀i ∗)→ a → b → ∗

Γ, x :Φe τ ` t e :	 σ
Γ ` λx . t Λx :Φτ . e :	 (x :Φe τ)→ σ

Γ, a :Φi τ ` t e :	 σ
Γ ` t Λa :Φτ . e :	 (a :Φi τ)→ σ

Γ ` s e :	 σ
Γ, x :	e σ ` t e′ :	 σ′

Γ ` let x =s in t (λx :bσc . e′) e :	 σ′

Γ ` σ σ
Γ ` ρ ρ :Ψ σ

Γ ` (ρ :σ) ρ :Ψ σ

bΓc ` ρ :Ψ τ

Γ ` _ ρ :Ψ τ

Γ ` ρ ρ :Ψ τ bΓc ` γ :� τ ∼ υ

Γ ` ρ ρ . γ :Ψ υ

Γ ` t e :	 σ Γ ` e : σ ≺ e′ : σ′

Γ ` t e′ :	 σ′

Figure 7.4: Non-deterministic elaboration of expressions

150

This rule inserts an abstraction based on the type scheme, leaving the term t
unchanged. The variable is implicitly bound in the context, so it cannot be used
in the source language. Similarly, the rules for _ markers and conversion

bΓc ` ρ :Ψ τ

Γ ` _ ρ :Ψ τ

Γ ` ρ ρ :Ψ τ bΓc ` γ :� τ ∼ υ

Γ ` ρ ρ . γ :Ψ υ

invent evidence out of thin air. This shows the non-determinism of the system.
Applications are elaborated using the judgment for vectors of arguments, dis-

cussed below. For example, if f : Bool → Int then the source term map f will be
elaborated using the telescope (a :∀i ∗, b :∀i ∗, f :	e (a → b), x :	e [a])→ [b] of map,
inserting the two implicit arguments to produce map Bool Int f . Note that the
vector may be empty, allowing constants (e.g. Nil) to take implicit arguments.
Applications need not be saturated, except for applications of shared functions.

Non-deterministic elaboration of vectors

The judgment Γ ` δ δ : ∆, defined in Figure 7.5, means that the vector δ can
be elaborated to δ in the annotated telescope ∆. This inserts implicit arguments:
for example, the source vector containing the single entry Bool can be elaborated
in the telescope a :∀i ∗, b :∀e a to the two-element vector ∗ ,Bool where the first
component has been inserted. Usually-implicit arguments may also have been
explicitly specified by the user: for example, the source vector {a =Z}, 3 can be
elaborated in the telescope a :∀i ∗, b :∀e a to Z , 3.

Non-deterministic elaboration of type schemes

The judgment Γ ` σ σ, also defined in Figure 7.5, means that the inch
type scheme σ can be elaborated to σ. This is entirely structural; the only
interesting behaviour is when elaborating types. Elaborating the codomain of a
type scheme always takes place with the domain variable bound explicitly, even if
the quantification is implicit, since the variable is still in scope for the codomain.
As an example, the type scheme for replicate

∀a :: ∗ .Π n :: N→ a → Vec a n

can be elaborated to the evidence type scheme

(a :∀i ∗, n :Πe N, x :	e a)→ Vec a n .

151

Γ ` δ δ : ∆ (vector δ can elaborate to δ in telescope ∆)

Γ ` · · : ·
Γ ` ρ ρ :Φ σ Γ ` δ δ : [ρ/x] ∆

Γ ` ρ, δ ρ, δ : x :Φe σ,∆

Γ ` ρ ρ :Φ κ
Γ ` δ δ : [ρ/a] ∆

Γ ` {a =ρ}, δ ρ, δ : a :Φi κ,∆

bΓc ` ρ :Φ κ
Γ ` δ δ : [ρ/a] ∆

Γ ` δ ρ, δ : a :Φi κ,∆

Γ ` σ σ (scheme σ can elaborate to σ)

Γ ` τ τ :∀ ∗
Γ ` τ τ

Γ ` κ κ :∀ ∗ Γ, a :∀e κ ` σ σ

Γ ` ∀(a :κ).σ (a :∀i κ)→ σ

Γ ` κ κ :∀ ∗
Γ, a :∀e κ ` σ σ

Γ ` ∀(a :κ)→ σ (a :∀e κ)→ σ

Γ ` τ τ :∀ ∗
Γ, x :Πe τ ` σ σ

Γ ` Π(x :τ)→ σ (x :Πe τ)→ σ

Γ ` τ τ :∀ ∗
Γ, x :Πe τ ` σ σ

Γ ` Π(x :τ).σ (x :Πi τ)→ σ

Γ ` τ ϕ :∀ ∗
Γ, c :�e ϕ ` σ σ

Γ ` τ⇒ σ (c :�i ϕ)→ σ

Γ ` σ′ σ′ Γ ` σ σ

Γ ` σ′ → σ (x :	e σ′)→ σ

Figure 7.5: Non-deterministic elaboration of vectors and type schemes

152

Γ ` e : σ ≺ e′ : σ′ (scheme σ is subsumed by σ′, converting e to e′)

bΓc ` e :	 bσc
Γ ` e : σ ≺ e : σ

bΓc ` γ :� τ ∼ υ

Γ ` e : τ ≺ e . γ : υ

Γ, y :	e σ′0 ` y : σ′0 ≺ e′ : σ0 Γ, y :	e σ′0 ` e e′ : σ1 ≺ e′′ : σ′1
Γ ` e : (x :	e σ0)→ σ1 ≺ Λy :	bσ′0c . e′′ : (y :	e σ′0)→ σ′1

bΓc ` γ :� υ ∼ τ Γ, b :Υe υ ` e (b . γ) : [b . γ/a]σ ≺ e′ : σ′

Γ ` e : (a :Υe τ)→ σ ≺ Λb :Υυ . e′ : (b :Υe υ)→ σ′

bΓc ` ρ :Φ τ
Γ ` e ρ : [ρ/a]σ ≺ e′ : σ′

Γ ` e : (a :Φi τ)→ σ ≺ e′ : σ′
Γ, a :Φi τ ` e : σ ≺ e′ : σ′

Γ ` e : σ ≺ Λa :Φτ . e′ : (a :Φi τ)→ σ′

Figure 7.6: Non-deterministic subsumption

7.3.2 Subsumption

Programs involving higher-rank types may require the elaborator to do more than
insert implicit arguments in order to assign the right type. For example, if

x :: ∀a .Bool→ a
y :: (∀b . (∀c . c)→ b)→ Bool

then the application y x should be well-typed. The elaborator must check that
x has the scheme ∀ b . (∀ c . c) → b, which is more specific than ∀ a .Bool → a
thanks to the contravariance in the domain, as Bool is more specific than ∀c . c.

The conversion rule for terms

Γ ` t e :	 σ Γ ` e : σ ≺ e′ : σ′

Γ ` t e′ :	 σ′

invokes the subsumption judgment Γ ` e : σ ≺ e′ : σ′ to verify that σ′ is more
general than σ. This judgment, defined in Figure 7.6, constructs e′ corresponding
to e but with appropriate (implicit) abstractions and applications so that it has
type scheme σ′ rather than σ.

In the example given above, e = x with scheme σ = (a :∀i ∗, z :	e Bool) → a
and σ′ = (b :∀i ∗, z :	e ((c :∀i ∗)→ c))→ b. The variable b is bound in the context,
so it can be substituted for a. Then both schemes are explicit 	-quantifications,
so the contravariance rule applies and checks that (c :∀i ∗) → c is below Bool.

153

In turn, this instantiates c with Bool and applies reflexivity. Having checked the
domains, the contravariance rule checks the codomains, which are identical. The
resulting evidence term is y (Λb :∀ ∗ . λz : ((c :∀ ∗)→ c) . x b (z Bool)).

Since subsumption involves inserting implicit λ-abstractions, it is only avail-
able for terms (at phase). It is not possible at a static phase Υ because there
is no type-level λ-abstraction. Instead, the conversion rule for types

Γ ` ρ ρ :Ψ τ bΓc ` γ :� τ ∼ υ

Γ ` ρ ρ . γ :Ψ υ

can only appeal to a proof of type equality. This restricts the utility of higher-rank
definitions at the type level.

7.3.3 Soundness of non-deterministic elaboration

Obviously, the non-deterministic system should be sound in the sense that the
resulting evidence expression is actually well-typed.

Theorem 7.1 (Soundness of non-deterministic elaboration).

(a) If Γ ` ρ ρ :Ψ σ for Ψ ∈ {∀,Π,	}, then bΓc ` ρ :Ψ bσc.

(b) If Γ ` σ σ then bΓc ` bσc :∀ ∗.

(c) If Γ ` δ δ : ∆ then bΓc ` δ : b∆c.

(d) If Γ ` e : σ ≺ e′ : σ′ and bΓc ` e :	 bσc then bΓc ` e′ :	 bσ′c.

Proof. Straightforward structural induction on derivations.

While this system provides a helpful starting point, it does not define an
algorithm. The same syntax can be translated in many different ways depending
on the placement of implicit applications and quantifications. For example, the
inch term λx .λy.x y could be translated to Λa :∀∗ .Λb :∀∗ . λx : (a → b) . λy :a . x y
or Λb : ∀ ∗ . λx : ((a :∀ ∗) → a → b) . λy : Bool . x Bool y or many other mutually-
incompatible evidence terms, with no principal or canonical choice. Even if the
type scheme is known, there are many unspecified choices.

To describe the deterministic algorithm, I must first extend the type system
to support metavariables, which will stand for the unknown types and proof
obligations (constraints) that arise during elaboration.

154

7.4 Metavariables and information increase

Just as in the unification and type inference algorithms of Part I, a metacontext
Θ contains declarations of metavariables to represent unknowns that arise during
elaboration. This includes types, represented by metavariables α and β, and
coercion proofs ζ. Each metavariable has a telescope ∆ of parameters, and a
kind κ that may depend on ∆.

Metacontexts may also bind variables. Like the annotated contexts of Sec-
tion 7.1, these record whether the binding is implicit or explicit. Source language
programs may refer only to explicitly bound variables.

The grammar of metacontexts is given by

Θ ::= metacontext
| · empty
| Θ, α [∆] :Φ κ unknown metavariable
| Θ, α [∆] = ρ :Φ κ defined metavariable
| Θ, a :Φe σ explicitly-bound variable
| Θ, a :Φi τ implicitly-bound variable

I will use Ξ for a metacontext that contains only metavariables; the telescopes Γ,
∆ are metacontexts that contain only variables.

As in previous chapters, metacontexts are ordered by dependency. Figure 7.7
gives the rules for a valid metacontext, generalising the judgment Γ ` ctx defined
in Figure 6.5 (page 118). This ensures that metavariables are defined uniquely
and that their types are well-kinded. The sanity condition (Lemma 6.9, page 127)
continues to hold: if Θ ` mctx then Σ ` sig. The typing rules in the previous
chapter are generalised by replacing Γ with Θ and Γ ` ctx with Θ ` mctx.

The syntax of evidence expressions is extended with a new form α[δ] for
metavariable occurrences, where δ is a vector in ∆. I add a typing rule for
metavariables to the rules in Figure 6.6 (page 119):

Θ 3 α [∆] :Φ κ Γ ` δ : ∆ Φ ↪→ Ψ
Γ ` α[δ] :Ψ [δ/∆]κ

Metasubstitutions

A metasubstitution θ : Θ0 v Θ1 gives values for metavariables in the metacontext
Θ0 in terms of the metacontext Θ1. Since metavariables have parameters, each
component of a metasubstitution takes the form ∆.ρ / α where ∆ is the telescope

155

Θ ` mctx

Σ ` sig
· ` mctx

α#Θ Θ,∆ ` κ :∀ ∗
Θ, α [∆] :Φ κ ` mctx

α#Θ Θ,∆ ` ρ :Φ κ

Θ, α [∆] = ρ :Φ κ ` mctx

a#Θ Θ ` bσc :∀ ∗ Φ 6= �
Θ, a :Φe σ ` mctx

a#Θ Θ ` τ :∀ ∗ Φ 6= �
Θ, a :Φi τ ` mctx

c#Θ Θ ` ϕ :∀ ∗
Θ, c :�i ϕ ` mctx

Figure 7.7: Validity of metacontexts

θ : Θ0 v Θ1

· : · v Ξ
θ : Θ0 v Θ1 Θ1, θ∆ ` ρ :Φ θ κ

(θ,∆.ρ / α) : Θ0, α [∆] :Φ κ v Θ1

θ : Θ0 v Θ1 Θ1, θ∆ ` ρ ≡ θ ρ′ :Φ θ κ
(θ,∆.ρ / α) : Θ0, α [∆] = ρ′ :Φ κ v Θ1

θ : Θ0 v Θ1

θ : Θ0, a :Φe σ v Θ1, a :Φe θ σ,Ξ

θ : Θ0 v Θ1

θ : Θ0, a :Φi τ v Θ1, a :Φi θ τ,Ξ

Figure 7.8: Metasubstitutions

156

for α, and binds variables in ρ. Valid metasubstitutions are defined in Figure 7.8.
The rules ensure that metasubstitutions preserve the structure of variables in the
metacontexts, as in Subsection 2.1.2 (page 14).

Metasubstitutions act on syntax by the structural closure of

θ (α[δ]) 7→ [δ/∆] τ where θ contains ∆.τ / α.

The identity metasubstitution ι is defined in the usual way, replacing each
metavariable with itself. I write Θ0 v Θ1 where the information increase is by
the identity metasubstitution.

Lemma 7.2 (Metasubstitution). If θ : Θ0 v Θ1 and Θ0 ` J , then Θ1 ` θ J .

Proof. By induction on derivations.

7.5 Deterministic elaboration

The deterministic elaboration algorithm is built from the non-deterministic re-
lation by attaching input and output metavariable contexts, allowing missing
information to be replaced with metavariables. It is defined in a bidirectional
style, based on the following judgments defined in Figures 7.9 and 7.10:

• Θ0 `Ψ ρ sch ρ : σ a Θ1, meaning that ρ elaborates at phase Ψ to ρ with
assigned type scheme σ;

• Θ0 `Ψ ρ ρ : τ a Θ1, meaning that ρ elaborates at phase Ψ to ρ with
inferred type τ ; and

• Θ0 `Ψ ρ : σ ρ a Θ1, meaning that elaborating ρ with the type scheme σ
at phase Ψ produces the evidence term ρ.

The following auxiliary judgments are defined in Figures 7.11–7.13:

• Θ0 ` σ σ a Θ1, meaning that the type scheme σ elaborates to σ;

• Θ0 `Ψ (ρ : σ) δ ρ′ : τ a Θ1, meaning that elaborating the spine of
arguments δ applied to the elaborated head ρ : σ results in ρ′ : τ ;

• Θ0 ` δ : ∆ δ a Θ1, meaning that elaborating the components of the
vector δ in the telescope ∆ results in δ; and

• Θ0 ` e : σ ≺ σ′ e′ a Θ1, meaning that the scheme σ is subsumed by σ′

and if e has scheme σ then e′ is the corresponding term with scheme σ′.

157

Finally, the judgment Θ0 ` τ ∼ υ γ a Θ1, means that τ and υ are unified,
witnessed by the coercion γ. This is an invocation of the constraint solver, which
I do not specify in detail. I discuss this further in Subsection 7.5.1.

For all these judgments, the parameters before the arrow are inputs, and
they determine the outputs (which appear after the arrow). In general, informa-
tion flows clockwise through each inference rule, with the inputs to the conclusion
determining the inputs to the first premise, whose outputs determine the inputs to
the next premise, and so forth, until the outputs from all the premises determine
the outputs of the conclusion. In this way, the rules yield an algorithm.

The distinction between scheme assignment Θ0 `Ψ ρ sch ρ : σ a Θ1 and type
inference Θ0 `Ψ ρ ρ : τ a Θ1 is that schemes are not inferred, only looked up
in the context or explicitly annotated by the user. A single application rule allows
an expression with a scheme to have its type inferred, by checking the vector of
arguments (which may be empty) and completing the scheme to produce a type.
Expressions with inferred types are embedded in those with assigned schemes
because the head of an application may be a λ-expression (i.e. in a β-redex) or
other expression that does not have an assigned scheme.

Example of elaboration

Recall the example inch term λx .λy.x y. This is elaborated by generating fresh
metavariables for the domain types, so under the abstractions the context will be
α [·] :∀ ∗, x :	e α, β [·] :∀ ∗, y :	e β. The application x y is elaborated by looking
up the type α of x in the context, and checking the vector y against it. Since
the type does not start with a quantifier, fresh metavariables α0 and α1 for the
domain and codomain are created, and the constraint α ∼ (α0 → α1) passed
to the constraint solver. Then y is checked at type α0, but looking up its type
gives β and the subsumption judgment generates another constraint, β ∼ α0.
Assuming no constraint solving, the resulting evidence term is

λx :α . λy :β . (x . ζ) (y . ζ ′)

in the context

α [·] :∀ ∗, β [·] :∀ ∗, α0 [·] :∀ ∗, α1 [·] :∀ ∗, ζ [·] :� α ∼ (α0 → α1), ζ ′ [·] :� β ∼ α0.

In practice, the unifier will solve the constraints to give the context

α0 [·] :∀ ∗, α1 [·] :∀ ∗, α [·] = α0 → α1 :∀ ∗, β [·] = α0 :∀ ∗

158

Θ0 `Ψ ρ : σ ρ a Θ1 (checking ρ at scheme σ and phase Ψ delivers ρ)

Θ0, a :Φi κ `	 t : σ e a Θ1, a :Φi κ,Ξ
Θ0 `	 t : (a :Φi κ)→ σ Λa :Φκ . e a Θ1, (a :Φ κ)↗ Ξ

Θ0, x :Φe σ′ `	 t : σ e a Θ1, x :Φe σ′,Ξ
Θ0 `	 λx . t : (x :Φe σ′)→ σ (Λx :Φbσ′c . e) a Θ1, (x :Φ σ′)↗ Ξ

Θ0 `	 s sch e : σ a Θ1 Θ1, x :	e σ `	 t : σ′ e′ a Θ2, x :	e σ,Ξ
Θ0 `	 (let x =s in t) : σ′ (λx :bσc . e′) e a Θ2,Ξ

Θ0 `Ψ _ : τ β a Θ0, β [·] :Ψ τ

Θ0 `	 t sch e : σ a Θ1
Θ1 ` e : σ ≺ σ′ e′ a Θ2

Θ0 `	 t : σ′ e′ a Θ2

Θ0 `Υ ρ ρ : τ a Θ1 Θ1 ` τ ∼ υ γ a Θ2

Θ0 `Υ ρ : υ ρ . γ a Θ2

Figure 7.9: Type-checking elaboration

with reflexive proofs of the coercion metavariables, and the evidence term

λx : (α0 → α1) . λy :α0 . (x . 〈α0 → α1〉) (y . 〈α0〉).

Parameterisation

The operation ∆↗ Ξ parameterises the metavariables Ξ over a telescope ∆:

∆↗ · 7→ ·
∆↗ (α [Γ] :Φ κ,Ξ) 7→ α [∆,Γ] :Φ κ,∆↗ Ξ

This allows a telescope of variables to be taken out of scope during elaboration,
such that any metavariables introduced retain the appropriate parameters: if
Θ,∆,Ξ ` mctx then Θ,∆ ↗ Ξ ` mctx. It permutes existential quantifiers
from right to left past universal quantifiers, the ‘raising’ of Miller (1992).

This definition and its uses involve a slight abuse of notation, as formally
all occurrences of metavariables from Ξ should be replaced with occurrences in
which the parameters are prefixed by the identity substitution: for example,
a :∀e κ, β [·] :∀ κ ` β[·] :∀ κ but β [a :∀ κ] :∀ κ, a :∀e κ ` β[a] :∀ κ. In practice, I will
elide the necessary weakenings.

159

Θ0 `Ψ ρ sch ρ : σ a Θ1 (ρ elaborates to ρ with assigned scheme σ)

Θ0 3 x :Φe σ Φ ↪→ Ψ
Θ0 `Ψ x sch x : σ a Θ1

Σ 3 H :Φ σ Φ ↪→ Ψ
Θ0 `Ψ H sch H : σ a Θ1

Θ0 ` σ σ a Θ1
Θ1 `Ψ ρ : σ ρ a Θ2

Θ0 `Ψ (ρ :σ) sch ρ : σ a Θ2

Θ0 `Ψ ρ ρ : τ a Θ1

Θ0 `Ψ ρ sch ρ : τ a Θ1

Θ0 `Ψ ρ ρ : τ a Θ1 (ρ elaborates to ρ with inferred type τ)

Θ0 `Ψ ρ sch ρ : σ a Θ1
Θ1 `Ψ (ρ : σ) δ ρ′ : τ a Θ2

Θ0 `Ψ ρ δ ρ′ : τ a Θ2

Σ 3 f [∆] :Φ κ Φ ↪→ Ψ
Θ0 ` δ : ∆ //Ψ δ a Θ1

Θ0 `Ψ f(δ) f(δ) : [δ/∆]κ a Θ2

Θ0 `∀ κ : ∗ κ a Θ1 Θ1, a :∀e κ `∀ τ : ∗ τ a Θ2, a :∀e κ,Ξ
Θ0 `∀ ∀(a :κ)→ τ (a :∀κ)→ τ : ∗ a Θ2, (a :∀ κ)↗ Ξ

Θ0 `∀ τ : ∗ τ a Θ1 Θ1, x :Πe τ `∀ υ : ∗ υ a Θ2, x :Πe τ,Ξ
Θ0 `∀ Π(x :τ)→ υ (x :Π τ)→ υ : ∗ a Θ2, (x :Π τ)↗ Ξ

Θ0 `∀ τ : ∗ τ a Θ1 Θ1 `∀ υ : ∗ υ a Θ2

Θ0 `∀ τ→ υ τ → υ : ∗ a Θ2

Θ0, α [·] :∀ ∗, x :	e α `	 t e : τ a Θ1, x :	e α,Ξ
Θ0 `	 λx . t (λx :α . e) : (α→ τ) a Θ1,Ξ

Θ0 `	 s sch e : σ a Θ1 Θ1, x :	e σ `	 t e′ : τ a Θ2, x :	e σ,Ξ
Θ0 `	 (let x =s in t) (λx :bσc . e′) e : τ a Θ2,Ξ

Θ0 `Ψ _ β : α a Θ0, α [·] :∀ ∗, β [·] :Ψ α

Figure 7.10: Type-reconstructing elaboration

160

Θ0 ` σ σ a Θ1 (scheme σ elaborates to σ)

Θ0 `∀ τ : ∗ τ a Θ1

Θ0 ` τ τ a Θ1

Θ0 `∀ κ : ∗ κ a Θ1 Θ1, a :∀e κ ` σ σ a Θ1, a :∀e κ,Ξ
Θ0 ` ∀(a :κ).σ (a :∀i κ)→ σ a Θ1, (a :∀ κ)↗ Ξ

Θ0 `∀ κ : ∗ κ a Θ1 Θ1, a :∀e κ ` σ σ a Θ1, a :∀e κ,Ξ
Θ0 ` ∀(a :κ)→ σ (a :∀e κ)→ σ a Θ1, (a :∀ κ)↗ Ξ

Θ0 `∀ τ : ∗ τ a Θ1 Θ1, x :Πe τ ` σ σ a Θ1, x :Πe τ,Ξ
Θ0 ` Π(x :τ)→ σ (x :Πe τ)→ σ a Θ1, (x :Π τ)↗ Ξ

Θ0 `∀ τ : ∗ τ a Θ1 Θ1, x :Πe τ ` σ σ a Θ1, x :Πe τ,Ξ
Θ0 ` Π(x :τ).σ (x :Πi τ)→ σ a Θ1, (x :Π τ)↗ Ξ

Θ0 `∀ τ : ∗ ϕ a Θ1 Θ1, c :∀e ϕ ` σ σ a Θ1, c :∀e ϕ,Ξ
Θ0 ` τ⇒ σ (c :�i ϕ)→ σ a Θ1, (c :� ϕ)↗ Ξ

Θ0 ` σ′ σ′ a Θ1 Θ1 ` σ σ a Θ1

Θ0 ` σ′ → σ (x :	e σ′)→ σ a Θ1

Figure 7.11: Elaboration of type schemes

161

Θ0 `Ψ (ρ : σ) δ ρ′ : τ a Θ1 (applying ρ : σ to δ results in ρ′ : τ)

Θ `Ψ (ρ : σ) · ρ : bσc a Θ

Θ0 `Φ //Ψ ρ′ : σ′ ρ′ a Θ1
Θ1 `Ψ (ρ ρ′ : [ρ′/a]σ) δ ρ′′ : τ a Θ2

Θ0 `Ψ (ρ : (a :Φe σ′)→ σ) (ρ′, δ) ρ′′ : τ a Θ2

Θ0 `Φ //Ψ ρ′ : κ ρ′ a Θ1
Θ1 `Ψ (ρ ρ′ : [ρ′/a]σ) δ ρ′′ : τ a Θ2

Θ0 `Ψ (ρ : (a :Φi κ)→ σ) ({a =ρ′}, δ) ρ′′ : τ a Θ2

Θ0, α [·] :Φ κ `Ψ (ρα : [α/a]σ) δ ρ′ : τ a Θ1

Θ0 `Ψ (ρ : (a :Φi κ)→ σ) δ ρ′ : τ a Θ1

Θ0, α [·] :∀ ∗, β [·] :∀ ∗ ` υ ∼ (α→ β) γ a Θ1
Θ1 `Ψ (ρ . γ : α→ β) δ ρ′ : τ a Θ2

Θ0 `Ψ (ρ : υ) δ ρ′ : τ a Θ2

Θ0 ` δ : ∆ δ a Θ1 (vector δ in telescope ∆ elaborates to δ)

Θ ` · : · · a Θ

Θ0 `Φ ρ : σ ρ a Θ1
Θ1 ` δ : [ρ/a] ∆ δ a Θ2

Θ0 ` ρ, δ : a :Φe σ,∆ ρ, δ a Θ2

Θ0 `Φ ρ : κ ρ a Θ1
Θ1 ` δ : [ρ/a] ∆ δ a Θ2

Θ0 ` {a =ρ}, δ : a :Φi κ,∆ ρ, δ a Θ2

Θ0, α [·] :Φ κ ` δ : [α/a] ∆ δ a Θ1

Θ0 ` δ : a :Φi κ,∆ α, δ a Θ1

Figure 7.12: Elaboration of spines and vectors

162

Θ0 ` e : σ ≺ σ′ e′ a Θ1 (σ is subsumed by σ′, converting e to e′)

Θ ` e :	 bσc
Θ ` e : σ ≺ σ e a Θ1

Θ0 ` τ ∼ υ γ a Θ1

Θ0 ` e : τ ≺ υ e . γ a Θ1

Θ0, y :	e σ′0 ` y : σ′0 ≺ σ0 e′ a Θ1
Θ1 ` e e′ : σ1 ≺ σ′1 e′′ a Θ2, y :	e σ′0,Ξ

Θ0 ` e : (x :	e σ0)→ σ1 ≺ (y :	e σ′0)→ σ′1 λy :bσ′0c . e′′ a Θ2,Ξ

Θ0 ` υ ∼ τ γ a Θ1
Θ1, b :Υe υ ` e (b . γ) : [b . γ/a]σ ≺ σ′ e′ a Θ2, b :Υe υ,Ξ

Θ0 ` e : (a :Υe τ)→ σ ≺ (b :Υe υ)→ σ′ Λb :Υυ . e′ a Θ2, (b :Υ υ)↗ Ξ

Θ0, a :Φi κ ` e : σ ≺ σ′ e′ a Θ1, a :Φi κ,Ξ
Θ0 ` e : σ ≺ (a :Φi κ)→ σ′ Λa :Φκ . e′ a Θ1, (a :Φ κ)↗ Ξ

Θ0, α [·] :Φ κ ` e α : [α/a]σ ≺ σ′ e′ a Θ1

Θ0 ` e : (a :Φi κ)→ σ ≺ σ′ e′ a Θ1

Figure 7.13: Subsumption

7.5.1 Unification

The unification judgment Θ0 ` τ ∼ υ γ a Θ1 means that unifying τ with υ
in metacontext Θ0 produces the proof γ in metacontext Θ1. Conceptually, it is
defined using the single rule

Θ0, ζ [·] :� τ ∼ υ �∗ Θ1

Θ0 ` τ ∼ υ ζ a Θ1

where a new proof obligation ζ (a metavariable at phase �, also known as a goal)
is added to the metacontext and a backward chaining proof search procedure is
invoked to take as many steps Θ� Θ′ as possible, solving or simplifying goals.

I will not define the proof search algorithm (the� relation) fully, as my focus
is on elaboration rather than constraint-solving, but a few comments on the steps
it would take are in order.

The basic inference rules for backward chaining are the coercion constructors.
For example, if the metacontext includes a goal of type τ1

Υυ1 ∼ τ2
Υυ2, then

backward chaining on congruence of application would turn this into subgoals
with types τ1 ∼ τ2 and υ1 ∼ υ2. The coercion constructor allows a witness to

163

the original goal to be built from the subgoal metavariables. In this example, the
metacontext

Θ, ζ [∆] :� τ1 υ1 ∼ τ2 υ2

can be replaced with

Θ, ζ0 [∆] :� τ1 ∼ τ2, ζ1 [∆] :� υ1 ∼ υ2, ζ [∆] :=� congaΥ ζ0 ζ1.

Similarly, other congruence rules can be used to decompose rigid-rigid constraints,
the step ρ constructor can be used to reduce (compute) expressions and coherence
can be used to remove coercions from equational goals.

Flex-flex or flex-rigid constraints (between two metavariables or a metavari-
able and a rigid term) can be solved by inversion and intersection, along the lines
of the higher-order unification algorithm discussed in Section 4.2 (page 67).

The local parameter telescope of a goal contains the hypotheses available for
proving that goal, which may allow it to be solved or simplified via backward
chaining. For example, the goal ζ [c :� b ∼ a] :� a ∼ b can be solved by ζ [c :�

b ∼ a] :=� sym c. Introducing a hypothesis uses λ-abstraction for coercions.
Since the integers form an abelian group, constraint solving for linear integer

constraints can follow the approach taken in Chapter 3.
Assuming that the proof search algorithm is sound (i.e. all steps are identity

metasubstitutions), its embedding into elaboration is sound:

Lemma 7.3 (Soundness of unification). Suppose that for all Θ and Θ′, Θ� Θ′

implies Θ v Θ′. If Θ0 ` τ ∼ υ γ a Θ1 then Θ0 v Θ1 and Θ1 ` γ :� τ ∼ υ.

Proof. By transitivity of metasubstitution and the typing rule for metavariables.

7.5.2 Soundness of elaboration

The elaboration algorithm is related back to the non-deterministic specification
by the following theorem, which states that the algorithm produces one possible
elaboration of the input term.

Theorem 7.4 (Soundness of elaboration). Suppose Ψ ∈ {∀,Π,	}.

(a) If Θ0 `Ψ ρ sch ρ : σ a Θ1 then Θ0 v Θ1 and Θ1 ` ρ ρ :Ψ σ.

(b) If Θ0 `Ψ ρ ρ : τ a Θ1 then Θ0 v Θ1 and Θ1 ` ρ ρ :Ψ τ .

(c) If Θ0 `Ψ ρ : σ ρ a Θ1 then Θ0 v Θ1 and Θ1 ` ρ ρ :Ψ σ.

164

(d) If Θ0 ` σ σ a Θ1 then Θ0 v Θ1 and Θ1 ` σ σ.

(e) If Θ0 ` ρ ρ :Ψ σ and Θ0 `Ψ (ρ : σ) δ ρ′ : τ a Θ1 then Θ0 v Θ1 and
Θ1 ` ρ δ ρ′ :Ψ τ .

(f) If Θ0 ` δ : ∆ δ a Θ1 then Θ0 v Θ1 and Θ1 ` δ δ : ∆.

(g) If Θ0 ` e : σ ≺ σ′ e′ a Θ1 then Θ0 v Θ1 and Θ1 ` e : σ ≺ e′ : σ′.

Proof. By induction on derivations, using Lemma 7.3 for unification.

7.6 Elaboration for case analysis

The system I have presented so far lacks case analysis, which is rather important in
practice. Therefore, I will now present the elaboration rules for case expressions,
extending the previous non-deterministic and deterministic systems.

I will consider only flat (non-nested) pattern matches; nested pattern match-
ing is a well-studied topic (Augustsson, 1985) that can be presented via elabora-
tion, but would complicate the presentation further.

Moreover, I will continue to assume that case expressions are covering. It
is easy to amend the elaboration rules for case expressions to insert missing
branches that generate an appropriate runtime error. True coverage checking
is less straightforward, because for each omitted data constructor the constraint
solver must establish that the constraints it introduces are unsolvable. Goguen
et al. (2006) suggest extending the language of patterns with ‘refutations’, which
allow the programmer to indicate arguments that are uninhabited.

The grammar of expressions ρ (and correspondingly terms t and types τ) is
extended by case and dcase expressions:

ρ ::= (d)case ρof bri
i | · · ·

br ::= K vs→ ρ

vs ::= · | x , vs | {a =b}, vs

Each branch br in the inch source language matches a single data constructor K
and binds variables vs, some of which may be implicit. The syntax {a = b} means
that the implicitly bound variable a in the telescope of the data constructor should
be brought into scope with name b, that is, the right-hand side of the equation
is the binding occurrence.

165

Γ ` ρ ρ :Ψ σ (ρ can elaborate to ρ with scheme σ at phase Ψ)

Γ ` ρ ρ :Ψ D υi
i Γ ` τ :∀ ∗

Γ ` br0 br0 :Ψ D υi
i I τ ... Γ ` brn brn :Ψ D υi

i I τ

Γ ` case ρof br0 ... brn case ρof br0 ... brn :Ψ τ

Γ ` ρ ε :Π //Ψ D υi
i Γ ` τ :∀ ∗

Γ ` br0 br0 :Ψ (ε : D υi
i) I τ ... Γ ` brn brn :Ψ (ε : D υi

i) I τ

Γ ` dcase ρof br0 ... brn dcase εof br0 ... brn :Ψ τ

Γ ` br br :Ψ Dψ I τ (br can elaborate to br at phase Ψ)

Σ 3 K :Φ (ai :∀i κi
i
,∆)→ D ai

i Φ ↪→ Ψ
vs : [υi/ai

i] ∆ � ∆′
Γ,∆′ ` ρ ρ :Ψ τ

Γ ` (K vs→ ρ) (K b∆′c → ρ) :Ψ D υi
i I τ

Γ ` br br :Ψ (ε : Dψ) I τ (br can elaborate to br at phase Ψ)

Σ 3 K :Φ (ai :∀i κi
i
,∆)→ D ai

i Φ ↪→ Π //Ψ
vs : [υi/ai

i] ∆ //Π � ∆′
∆′′ = ∆′, c :�i ε ∼ (K υi

i∆′)
Γ,∆′′ ` ρ ρ :Ψ τ

Γ ` (K vs→ ρ) (K b∆′′c → ρ) :Ψ (ε : D υi
i) I τ

vs : ∆ � ∆′

· : · � ·
vs : [x/y] ∆ � ∆′

x , vs : y :Φe σ,∆ � x :Φe σ,∆′

vs : ∆ � ∆′

vs : a :Φi κ,∆ � a :Φi κ,∆′
vs : [b/a] ∆ � ∆′ Φ 6= �
{a =b}, vs : a :Φi κ,∆ � b :Φe κ,∆′

Figure 7.14: Non-deterministic elaboration of case expressions

166

7.6.1 Extending the non-deterministic system

Figure 7.14 gives the new non-deterministic elaboration rules (extending those
in Figure 7.4) for non-dependent and dependent case expressions. In each rule,
the scrutinee is elaborated to give an expression of type D υi

i , then each of the
branches is elaborated and must deliver a common type τ , the type of the whole
expression, which must not depend on variables in any of the branches. For the
dependent case, the scrutinee is elaborated at phase Π //Ψ (rather than Ψ) to
ensure that it can appear in types and at runtime (if necessary).

The judgment Γ ` br br :Ψ D υi
i I τ means that the case branch br can

be elaborated to br, where the scrutinee has type D υi
i , and the result has type

τ . Branches must be of the form K vs → ρ where K is a constructor of D and
is accessible at the current phase. The implicit and explicit variable bindings vs
are elaborated in the constructor’s telescope ∆ to produce another telescope ∆′

that is in scope when the result of the branch is elaborated. For GADT matches,
this telescope will include the equational constraints encoded by the GADT.

Similarly, the judgment Γ ` br br :Ψ (ε : D υi
i) I τ means that the

dependent case branch br can be elaborated to br, under the assumption that the
scrutinee is equal to ε.

The judgment vs : ∆ � ∆′ means that matching the source language
bindings vs against the annotated telescope ∆ of a data constructor results in the
annotated telescope ∆′. This gives the telescope needed to elaborate the result
of a case branch, using the binding names from vs but obtaining their types from
∆. Implicit bindings are introduced silently, or the user can explicitly bind a
name that would usually be implicitly bound. This resembles the judgment for
elaborating vectors in Figure 7.5, but for patterns rather than general expressions.

As an example, consider the following definition of append via case analysis:

append zs ys = case zs of

Nil → Nil
Cons {m = m′} x xs → Cons x (append xs ys)

To check the Cons branch, recall that the type scheme for Cons (after the GADT
translation), is (∆)→ Vec a b where

∆ = a :∀i ∗, b :∀i N,m :∀i N, x :	e a, xs :	e Vec a m, c :�i (b ∼ Suc m).

The bindings {m = m′}, x , xs are successfully matched against the telescope ∆,
renaming m to m′ and introducing a, b and c implicitly. The branch result
Cons x (append xs ys) is then elaborated under the renamed telescope of bindings.

167

Soundness of non-deterministic elaboration (Theorem 7.1) must be extended
with the following additional cases:

Lemma 7.5 (Soundness of non-deterministic elaboration for case analysis).

(a) If Γ ` br br :Φ D υi
i I τ then Γ ` br :Φ D υi

i I τ .

(b) If Γ ` br br :Φ (ε : D υi
i) I τ then Γ ` br :Φ (ε : D υi

i) I τ .

Proof. By structural induction, mutually with Theorem 7.1.

7.6.2 Extending the deterministic system

Extension of the deterministic elaboration system is mostly routine, following the
non-deterministic system. Figure 7.15 gives the additional elaboration rules for
case expressions (extending the rules in Figures 7.10 and 7.9). As in the non-
deterministic system, auxiliary judgments Θ0 `Ψ br : υ I τ br a Θ1 and
Θ0 `Ψ br : (ε : υ) I τ br a Θ1 describe elaboration for individual branches.
I write a list of semicolon-separated elaboration judgments to mean that the
metacontexts are threaded through from one to another.

In the deterministic system, case expressions are checked, rather than having
a type inferred. Inference is dealt with by generating a fresh metavariable β and
checking that the expression has type β. It is not immediately apparent how
the datatype D is to be determined: it might be obvious from the type υ of the
scrutinee, but it might not (if a constraint must be solved to show that υ is an
algebraic datatype). Alternatively, the types of the data constructors from the
branches can be consulted, provided the case expression is non-empty.

Soundness of elaboration (Theorem 7.4) is extended with the following:

Lemma 7.6 (Soundness of elaboration for case expressions).

(a) If Θ0 `Ψ br : D υi
i I τ br a Θ1 then Θ1 ` br br :Ψ D υi

i I τ and
Θ0 v Θ1.

(b) If Θ0 `Ψ br : (ε : D υi
i) I τ br a Θ1 then Θ1 ` br br :Ψ (ε : D υi

i) I τ

and Θ0 v Θ1.

Proof. By structural induction on derivations, mutually with Theorem 7.4.

168

Θ0 `Ψ ρ ρ : τ a Θ1 (ρ elaborates to ρ with inferred type τ)

Θ0, β [·] :∀ ∗ `Ψ (d)case ρof br0 ... brn : β ρ a Θ1

Θ0 `Ψ (d)case ρof br0 ... brn ρ : β a Θ1

Θ0 `Ψ ρ : σ ρ a Θ1 (checking ρ at scheme σ and phase Ψ delivers ρ)

Θ0 `Ψ ρ ρ : υ a Θ1 Θ1, αi [·] :∀ κi
i ` υ ∼ Dαi

i γ a Θ2
Θ2 `Ψ br0 : Dαi

i I τ br0 ; ... ; brn : Dαi
i I τ brn a Θ3

Θ0 `Ψ case ρof br0 ... brn : τ case ρ . γ of br0 ... brn a Θ3

Θ0 `Π //Ψ ρ ε : υ a Θ1 Θ1, αi [·] :∀ κi
i ` υ ∼ Dαi

i γ a Θ2
Θ2 `Ψ br0 : (ε . γ : Dαi

i) I τ br0 ; ... ; brn : (ε . γ : Dαi
i) I τ brn a Θ3

Θ0 `Ψ dcase ρof br0 ... brn : τ dcase ε . γ of br0 ... brn a Θ3

Θ0 `Ψ br : υ I τ br a Θ1 (case branch br elaborates to br)

Σ 3 K :Φ (ai :∀i κi
i
,∆)→ D ai

i Φ ↪→ Ψ
vs : [υi/ai

i] ∆ � ∆′
Θ0,∆′ `Ψ ρ : τ ρ a Θ1,∆′,Ξ

Θ0 `Ψ K vs→ ρ : D υi
i I τ K ∆→ ρ a Θ1,∆↗ Ξ

Θ0 `Ψ br : (ε : υ) I τ br a Θ1 (dependent case branch br elaborates to br)

Σ 3 K :Φ (ai :∀i κi
i
,∆)→ D ai

i Φ ↪→ Π //Ψ
vs : [υi/ai

i] ∆ //Π � ∆′
∆′′ = ∆′, c :�i ε ∼ K υi

i∆′
Θ0,∆′′ `Ψ ρ : τ ρ a Θ1,∆′′,Ξ

Θ0 `Ψ K vs→ ρ : (ε : D υi
i) I τ K ∆′ → ρ a Θ1,∆′ ↗ Ξ

Figure 7.15: Elaboration of case expressions

169

7.6.3 Example of elaborating a function definition

Recall the replicate example from previous chapters:

replicate :: ∀a :: ∗ .Π n :: N→ a → Vec a n
replicate n x = dcase n of

Zero → Nil
Suc m → Cons x (replicate m x)

How will this be elaborated, as a shared function? Elaborating the type scheme
produces (∆)→ Vec a n where ∆ = a :∀i ∗, n :Πe N, x :	e a, so the body should be
elaborated at phase Π in the context replicate [∆] :Π Vec a n,∆. Thus recursive
calls to replicate can be made at phase Π, and its arguments are in scope.

To elaborate the body, the dcase expression must be checked at type Vec a n.
The scrutinee n is inferred to have type N. It must then be checked that each of
the branches accepts this scrutinee and produces a result of type Vec a n.

In the Zero branch, the constructor telescope is empty so the only variable
brought into scope is an implicit proof c :�i n ∼ Zero. The result Nil must then
be elaborated at type Vec a n under this hypothesis. Since its type scheme is

(a :∀i ∗, n :∀i N, c :�i n ∼ Zero)→ Vec a n

the rule for elaborating a term applied to a spine of arguments (empty, in this
case) generates metavariables α, β, ζ for the implicit arguments, so Nil elaborates
to Nil α β ζ of inferred type Vec α β with the proof obligation ζ :� β ∼ Zero in
the context. Subsumption allows this term to be checked at type Vec a n, adding
another proof obligation ζ ′ :� Vec α β ∼ Vec a n and resulting in the term
Nil α β ζ . ζ ′. It should not be difficult for the unifier to solve α := a and β := n,
so ζ ′ is reflexive. Then ζ :� n ∼ Zero can be solved by c. The final branch is:

Zero (c :� n ∼ Zero)→ Nil a n c . 〈Vec a n〉

The coercion by reflexivity can be removed. Other solutions to the constraints are
possible, but they affect only the coercions, which are operationally irrelevant.

In the Suc branch, the constructor has telescope y :	e N, and matching the
source-level bindings against it gives m : (y :	e N) //Π � m :Πe N so the match
brings into scope m and a proof c :�i n ∼ Suc m. Insertion of implicit arguments
proceeds similarly to the Nil case. The scheme ∆ for the recursive call to replicate
is supplied by the context, and is used to check its vector of arguments a,m, x .
The final result of elaborating the branch (omitting coercions) is:

Suc (m :Π N, c :� n ∼ Suc m)→ Cons a n m x (replicate (a,m, x)) c

170

7.7 Discussion

In this chapter, I have presented an algorithm for elaborating the inch source
language of Chapter 5 to the evidence language of Chapter 6. While it does not
cover every feature available in Haskell, it does demonstrate the way in which an
elaborator can be built up to cover a large source language, retaining confidence
in the system through translation of source programs into an intermediate rep-
resentation. The elaborator supports dependent Π-types with type-refining case
analysis, higher-rank types and GADTs, though the exact capabilities will depend
on the underlying unification algorithm. I have also presented an approach to im-
plicit argument synthesis that generalises the current Haskell policy of ‘invisible
types, visible terms’ to allow for explicit type application and implicit Π-types.

7.7.1 Generalisation

Chapter 2 demonstrated that generalisation of polymorphic let-definitions can be
performed through ‘skimming off’ metavariables from the context after inferring
the type of the definiens. Chapter 3 extended this to deal with abelian group
unification. However, in the more complicated situation of inch elaboration,
generalisation becomes yet more problematic. The presence of local constraints
and parameterised metavariables means there is no reasonable way to decide
which metavariables to generalise: attempting to generalise over parameterised
metavariables leads to non-principal solutions.

For example, suppose the expression being generalised has type α → α, and
the context suffix is α [·] :∀ ∗, ζ [c :� β ∼ Bool] :� α ∼ Bool. In this case, the
type of ζ does not depend on its parameters, so we could discard the hypothesis
c and generalise to produce a result of type (a :∀i ∗)→ (z :�i a ∼ Bool)→ a → a,
i.e. Bool→ Bool up to isomorphism. However, if we refrain from generalising and
later discover that α ∼ β then the result has type α→ α for α an unconstrained
metavariable. The order of constraint solving is now crucial, different solutions
may be found as a result of slight variations in the program, and in general
elaboration becomes fragile.

What hope, then, for generalisation? In inch, I follow the advice of Vytiniotis
et al. (2010) that local ‘let should not be generalised’.1 This strategy has the ad-
vantage of simplicity, but other choices (some with a more heuristic character) are
available. One might choose to generalise whenever a let-expression did not give

1Top level let-bindings can be generalised, because parameterised metavariables can either
be solved or reported as errors.

171

rise to parameterised metavariables at all, perhaps because no local constraints
were introduced by case analysis of GADTs or subexpressions with higher-rank
types, or because all the constraints introduced were solved by unification on the
fly. This has the advantage of allowing generalisation in common cases, but it
may be difficult for programmers to predict whether generalisation will take place
without knowing the details of the inference algorithm.

7.7.2 Related and future work

The non-deterministic elaboration system is reminiscent of the approach taken in
the Definition of Standard ML (Milner et al., 1997), which specifies elaboration
via a syntax-directed inductive relation, but leaves matters such as the use of
metavariables in type inference to implementations. Such a declarative specifi-
cation can be turned into a logic program via mode assignment (Berghofer and
Nipkow, 2002), with the underlying constraints solved by first-order unification.
In the setting of this chapter, however, constraints are more complex and the
non-deterministic system is not so easily operationalised.

Brady (2013) describes elaboration for Idris in terms of imperative tactics,
taking inspiration from the work of McBride (1999) on the Oleg system.

A full specification of unification in such a rich setting is complex, and I have
only outlined the way it fits into the elaboration framework. The careful manage-
ment of variable scope means that unification could be specified similarly to the
Miller pattern unification algorithm of Chapter 4. The algorithm used by GHC,
described by Vytiniotis et al. (2011), is very powerful but not straightforward to
understand or implement. Further work in this area is desirable.

I have outlined the treatment of higher-rank types, but have not discussed the
role of bidirectional type inference in detail. Dunfield and Krishnaswami (2013)
give an excellent account of a sound and complete typechecking algorithm for
higher-rank polymorphism, in a similar spirit.

Soundness of the elaboration algorithm with respect to the non-deterministic
specification is easy to show, and termination2 follows from its structurally recur-
sive definition, but it would be valuable to prove further properties. In particular,
Luther (2003) discusses the coherence property, which requires that all possible
(non-deterministic) elaborations of a term should be behaviourally equivalent.
This formalises the intuition that elaboration should fill in details for which there
is only one sensible choice.

2Termination in the sense of reduction to constraint solving, that is; termination of the
constraint solver is another matter.

172

Chapter 8

Applications

In this chapter, the hard work of the previous chapters finally pays off. Having
introduced the inch language and explained how to elaborate it into the evidence
language, I now give examples of using it to write programs. I start with some
familiar operations on vectors (8.1), before implementing merge sort (8.2) and left-
leaning red-black tree insertion and deletion (8.3). I demonstrate an approach to
checking the time complexity of function definitions (8.4). Finally, I show how
to implement units of measure based on numeric constraints (8.5), in contrast to
the built-in support for abelian groups described in Chapter 3.

The inch preprocessor

The examples in this chapter have been checked with a prototype implementation
of inch1. The prototype consists of a preprocessor that typechecks a source file
and converts it into type-correct GHC Haskell, erasing type dependencies. This
means that certain features cannot be supported. For example, large eliminations
(where types depend on shared terms) are impossible to implement.

The prototype implementation differs from the language laid out in the previ-
ous chapters in a number of respects. In particular, it retains a strong distinction
between the term, type and kind levels, which limits its flexibility compared to
the final design. The kind system consists only of ∗, Z and higher kinds; other
promoted datatypes and kind polymorphism are not implemented.

The language of shared expressions, that may occur in terms and in types,
is heavily restricted: only integers and arithmetic operations are available. Sim-
ilarly, type equality constraints may involve only integers, and GADTs may use
only integer indices. The kind N is represented by Z with an inequality constraint.

1http://hackage.haskell.org/package/inch, https://github.com/adamgundry/inch

http://hackage.haskell.org/package/inch
https://github.com/adamgundry/inch

The flexible approach to implicit and explicit arguments based on type schemes,
described in Section 7.1 (page 145), is not implemented. Rather, ∀-quantifiers
are always implicit and Π-quantifiers are always explicit, even though they are
written with a dot (so Π (m :: N) . τ means Π (m :: N)→ τ).

Terms that lie in the shared fragment must be marked with braces. This
includes applications of Π-quantified functions and the patterns that define them.
For example, if f :: Π (n :: N) .Vec a n then f {x + 2} :: Vec a (x + 2). Otherwise,
the syntax is broadly that of Haskell extended with kind signatures, scoped type
variables, GADTs and higher-rank types. One minor extension is that multiple
variables may share a kind signature: for example, ∀(m n :: N) . t is legal.

Type inference is implemented along the lines of elaboration as described in
Chapter 7, although instead of generating evidence terms, dependency-erased
Haskell programs are produced. Constraint solving is based on the abelian group
unification algorithm in Chapter 3, extended to the ring Z. Any remaining purely
numeric constraints are checked using a decision procedure for Presburger arith-
metic (Diatchki, 2011). This works well for linear constraints, but means that
support for constraints involving multiplication is more limited.

Kind inference is not performed, so kinds must be annotated explicitly (oth-
erwise they default to ∗). This means that variables will usually be explicitly
quantified. In a more complete implementation, this would not be necessary.

Newtypes are not supported; where they are used in examples, they have been
manually translated to the corresponding single-constructor data type behind the
scenes. Support for typeclasses is extremely limited, and they will generally not
be used in the examples.

Despite these restrictions, it is still possible to implement useful examples.
Where relevant, I will point out opportunities to improve the examples given a
full-scale implementation of the inch system.

8.1 Vectors

Recall the definition of vectors as an indexed family of types:2

data Vec :: ∗ → N→ ∗ where
Nil :: Vec a 0
Cons :: ∀a (n :: N) . a → Vec a n → Vec a (n + 1)

2Sensitive Haskell programmers may wonder why the kind of Vec is not N → ∗ → ∗, since
then Vec n is a monad for any n with the diagonal join, as shown in Subsection 5.2.4 (page 99).
Unfortunately, this would make it harder to regard Vec as a type indexed by N, since Haskell
treats type application as injective.

174

Here are some standard functions on vectors. The types of head and tail ensure
they are never called on the empty vector, and lengths are tracked appropriately
in the other cases. Most of the function definitions use polymorphic recursion
and pattern-matching on GADTs, so their types must be specified. As discussed
in Subsection 5.1.1 (page 90), the helper function for reverse implicitly requires a
proof that (m + 1) + n ∼ m + (n + 1), so additional constraint solving beyond
the inductive definition of + is required. The lookup function demonstrates the
use of Π-types: the index m must be supplied at runtime, but statically known
to be below the length n.

head :: ∀(n :: N) a .Vec a (n + 1)→ a
head (Cons x) = x

tail :: ∀(n :: N) a .Vec a (n + 1)→ Vec a n
tail (Cons xs) = xs

append :: ∀a (m n :: N) .Vec a m → Vec a n → Vec a (m + n)
append Nil ys = ys
append (Cons x xs) ys = Cons x (append xs ys)

reverse :: ∀(n :: N) a .Vec a n → Vec a n
reverse xs = help xs Nil

where
help :: ∀(m n :: N) a .Vec a m → Vec a n → Vec a (m + n)
help Nil ys = ys
help (Cons x xs) ys = help xs (Cons x ys)

lookup :: ∀(n :: N) a .Π (m :: N) .m < n ⇒ Vec a n → a
lookup {0} (Cons x) = x
lookup {k + 1} (Cons xs) = lookup {k } xs

The fold for vectors has a rank-2 type, because for the Cons constructor it needs
to abstract over the length m of the tail. Apart from the more informative type
signature, it is essentially the same as the traditional foldr for lists. Indeed, it
will erase to such a function at runtime.

foldVec :: ∀(f :: N→ ∗) a (n :: N) .
f 0→ (∀(m :: N) . a → f m → f (m + 1))→ Vec a n → f n

foldVec n c Nil = n
foldVec n c (Cons x xs) = c x (foldVec n c xs)

As one would expect, foldVec Nil Cons is well-typed and equal to the identity
function on vectors. Unfortunately the usual definition of append via a fold,

175

append′ xs ys = foldVec ys Cons xs

does not typecheck, because of the lack of type-level λ-abstraction. It is possible
to work around this, at the cost of some syntactic overhead, using a newtype:

newtype Plus a m n = Plus {unPlus :: a (m + n)}

append′′ :: ∀a (m n :: N) .Vec a m → Vec a n → Vec a (m + n)
append′′ xs ys = unPlus (foldVec (Plus ys)

(\ z zs → Plus (Cons z (unPlus zs))) xs)

8.2 Merge sort

I now implement merge sort, based on a similar example by Altenkirch et al.
(2005) in the dependently typed programming language Epigram (McBride and
McKinna, 2004). The type of the sorting function guarantees that it preserves
the length of the vector and returns a sorted result, if anything. No proof ma-
nipulation is necessary, and the program erases to a natural implementation of
merge sort for lists of integers. I do not show that the result is a permutation of
the input, as this would require a more expressive type system; Xi (2008) does so
for quicksort in ATS. On similar lines, Xi (1998) gives an example of merge sort
in Dependent ML that verifies the length of the input is preserved.

Of course, Haskell’s type system does not check the totality of our programs,
so this is only a partial correctness result. Higher-rank types allow me to express
the fold-based recursion structure of the key functions, making the termination
reasoning more obvious to the reader, if not the compiler.

In principle, it is possible to express something similar using GADTs and
type families, but the complexity of the implementation and the manual proofs
involved would be much greater. Mu (2007) provides an impressive example that
verifies length-preservation, but not ordering, in this manner.

The point of this example is not that it is a verified implementation of merge
sort, as there are many such programs already. Rather, it shows the utility
of type-level numbers in Haskell and the ease with which they integrate with
Haskell programming idioms (such as folds) and features (higher-rank types and
polymorphic recursion).

A Tree is a leaf-labelled binary tree indexed by the number of leaves. Its
construction ensures that it is balanced, as the subtrees of each node differ in size
by at most one.

176

data Tree :: ∗ → N→ ∗ where
Empty :: Tree a 0
Leaf :: a → Tree a 1
Even :: ∀a (n :: N) . 1 6 n ⇒ Tree a n → Tree a n →

Tree a (2 ∗ n)
Odd :: ∀a (n :: N) . 1 6 n ⇒ Tree a (n + 1)→ Tree a n →

Tree a (2 ∗ n + 1)

Just like for vectors, the fold for trees uses higher-rank types. This version is
slightly simplified, as it hides the distinction between even and odd nodes.

foldTree :: ∀(f :: N→ ∗) a (n :: N) .
f 0→ (a → f 1)→ (∀(m n :: N) . f m → f n → f (m + n))→
Tree a n → f n

foldTree e l n Empty = e
foldTree e l n (Leaf a) = l a
foldTree e l n (Even x y) = n (foldTree e l n x) (foldTree e l n y)
foldTree e l n (Odd x y) = n (foldTree e l n x) (foldTree e l n y)

A tree can be built by folding over a vector, replacing Nil with Empty and
inserting elements using the balance-preserving insert function:

mkTree :: ∀a (n :: N) .Vec a n → Tree a n
mkTree = foldVec Empty insert

where
insert :: ∀a (n :: N) . a → Tree a n → Tree a (n + 1)
insert i Empty = Leaf i
insert i (Leaf j) = Even (Leaf i) (Leaf j)
insert i (Even l r) = Odd (insert i l) r
insert i (Odd l r) = Even l (insert i r)

A simple definition such as mkTree, which does not pattern-match on GADTs or
use polymorphic recursion, does not need a top-level type signature. The bidirec-
tional type inference algorithm is quite capable of inferring this type. However, I
include the signature for consistency and clarity.

Ordered vectors are indexed by lower and upper bounds, plus length. They are
restricted to containing integers (by the Π-quantifier). Ideally one should extend
Z with top and bottom elements, to allow unbounded data. These restrictions
derive from the limitations of the preprocessor; the theory given in Chapter 6 can
support the general case.

177

data OVec :: Z→ Z→ N→ ∗ where
ONil :: ∀(l u :: Z) . l 6 u ⇒ OVec l u 0
OCons :: ∀(l u :: Z) (n :: N) .Π (x :: Z) . l 6 x ⇒

OVec x u n → OVec l u (n + 1)

Given two ordered vectors, the merge function combines them to produce a
single ordered vector. It uses the syntax for guards that introduce local con-
straints described in Subsection 5.2.7. The second guard is redundant, but to see
this the implementation would need to negate the results of previous tests when
checking patterns, which is not currently supported.

merge :: ∀(l u :: Z) (m n :: N) .
OVec l u m → OVec l u n → OVec l u (m + n)

merge ONil ys = ys
merge xs ONil = xs
merge (OCons {x } xs) (OCons {y} ys)
| {x 6 y} = OCons {x } (merge xs (OCons {y} ys))
| {x > y} = OCons {y} (merge (OCons {x } xs) ys)

The type In l u represents integers in the interval [l, u]:

data In :: Z→ Z→ ∗ where
In :: ∀(l u :: Z) .Π (x :: Z) . (l 6 x , x 6 u)⇒ In l u

The flatten function converts a binary tree of numbers in an interval to an ordered
vector on that same interval, by invoking the higher-rank fold over the tree, calling
merge at each node and converting each leaf value into a vector of length 1.

flatten :: ∀(l u :: Z) (m :: N) . l 6 u ⇒ Tree (In l u) m → OVec l u m
flatten = foldTree ONil invec merge

where invec :: ∀(l u :: Z) . In l u → OVec l u 1
invec (In {i }) = OCons {i } ONil

To merge sort a vector of numbers in an interval to produce an ordered vector,
it is enough to construct and flatten a tree:

sort :: ∀(l u :: Z) (m :: N) . l 6 u ⇒ Vec (In l u) m → OVec l u m
sort = flatten ◦mkTree

Now evaluating sort (Cons (In {3}) (Cons (In {1}) (Cons (In {2}) Nil))) produces
the sorted list OCons {1} (OCons {2} (OCons {3} ONil)) as expected.

178

8.3 Left-leaning red-black trees

I now move on to a more advanced example data structure, red-black trees. A
left-leaning red-black tree is a self-balancing binary search tree, designed to give
good performance for insertion, deletion and membership test operations.3 Every
node is coloured either red or black, subject to the following invariants:

1. All leaves, and both children of a red node, are black.

2. The right child of a black node is black.

3. Both children of an internal node have the same black height (the number
of black nodes on any path to a leaf).

There has been much research on implementing red-black trees in functional
languages, building on foundations laid by Okasaki (1998), who dealt with inser-
tion but not deletion. Might (n.d.) showed how to extend Okasaki’s implemen-
tation to deletion by adding two extra colours for tracking temporary invariant
violations. Yamamoto (2011) applied Okasaki’s work to left-leaning trees.

Another strand of research focused on provably correct functional implemen-
tations. Kahrs (2001) demonstrated an ingenious technique for enforcing the bal-
ance invariant of red-black trees using the Haskell type system. Ek et al. (2011)
used Agda to verify the binary search tree and colour invariants of left-leaning
red-black tree insertion, and Oster (2011) extended this to deletion.

Most implementations of red-black trees (both functional and imperative)
work by constructing unbalanced trees and then applying a separate rebalancing
operation. This does not work well when enforcing the invariants through the
type system, because of the need to represent slightly malformed trees. Xi (2007)
implemented red-black trees in ATS, following Okasaki’s approach, indexing trees
by the number of red-red colour violations they contain, and requiring that well-
formed trees contain no colour violations. In this implementation, I will use
McBride and McKinna’s idea4 of representing the path to the point where there
would be an invariant violation using a Huet-style zipper. This avoids the need
to represent trees that do not obey the invariants.

The choice of left-leaning red-black trees here is not crucial. The technique of
avoiding malformed trees using a zipper works well for other self-balancing binary
search trees such as normal red-black trees or AVL trees.

3Left-leaning red-black trees were introduced by Sedgewick (2008), as a simplification of the
original red-black trees of Bayer (1972), obtained by omitting invariant 2. Regarding red nodes
as part of their parent nodes, an LLRBT is a 2-3 tree; a normal red-black tree is a 2-3-4 tree.

4Red-black tree insertion was implemented as an example with the Epigram 1 distribution.

179

8.3.1 Enforcing red-black tree invariants via types

To keep track of colours in the type system, I define the following singleton
GADT. This is a limitation of the preprocessor: in a full implementation, one
could simply define an algebraic data type for colours (or use the booleans) and
use its constructors promoted to the type level, which would be slightly neater.

type Black = 0
type Red = 1

data Colour :: Z→ ∗ where
Black :: Colour Black
Red :: Colour Red

The type RBTree represents well-formed red-black trees. Trees are indexed
by lower and upper bounds, their colour and black height, and the type checker
guarantees that all the invariants hold. Each leaf E stores a proof that its lower
bound is strictly smaller than its upper bound, ensuring that the keys are stored in
ascending order and there are no duplicated keys. There are separate constructors
for red and black internal nodes (TR and TB respectively). The indexing ensures
that the colour invariants are observed. A Π-type is used to store the key x on
an internal node, so that the ordering invariant can be maintained.

data RBTree :: Z→ Z→ Z→ N→ ∗ where
E :: ∀(i j :: Z) . i < j ⇒ RBTree i j Black 0
TR :: ∀(i j :: Z) (n :: N) .Π (x :: Z) .

RBTree i x Black n → RBTree x j Black n → RBTree i j Red n
TB :: ∀(i j c :: Z) (n :: N) .Π (x :: Z) .

RBTree i x c n → RBTree x j Black n → RBTree i j Black (n + 1)

The interface that would exposed to the user of the red-black tree library hides
the colour (always black) and the black height using the existential type RBT.
However, the lower and upper bounds are visible. This distinguishes between
invariants used only for the implementation of the library, which will change as
nodes are inserted and deleted, from those relevant for the user. Alternative
choices, such as concealing the bounds as well, are also possible.

data RBT :: Z→ Z→ ∗ where
RBT :: ∀(i j :: Z) (n :: N) .RBTree i j Black n → RBT i j

180

Given the type RBTree, the corresponding type of one-hole contexts can be
derived mechanically (McBride, 2001). These can be used to navigate a tree via
a zipper (Huet, 1997). The type of one-hole contexts is indexed by two copies of
the RBTree indices: those provided at the root, and those required at the hole.
Since the root is always black, however, I can do away with one of the indices.

data TreeZip :: Z→ Z→ N→ -- root indices
Z→ Z→ Z→ N→ -- hole indices
∗ where

Root :: ∀(i j :: Z) (n :: N) .TreeZip i j n i j Black n
ZRL :: ∀(i j i ′ j ′ :: Z) (n n′ :: N) .Π (x :: Z) .

TreeZip i ′ j ′ n′ i j Red n → RBTree x j Black n →
TreeZip i ′ j ′ n′ i x Black n

ZRR :: ∀(i ′ j ′ i j :: Z) (n′ n :: N) .Π (x :: Z) .
RBTree i x Black n → TreeZip i ′ j ′ n′ i j Red n →

TreeZip i ′ j ′ n′ x j Black n
ZBL :: ∀(i ′ j ′ i j c :: Z) (n′ n :: N) .Π (x :: Z) .

TreeZip i ′ j ′ n′ i j Black (n + 1)→ RBTree x j Black n →
TreeZip i ′ j ′ n′ i x c n

ZBR :: ∀(i ′ j ′ i j c :: Z) (n′ n :: N) .Π (x :: Z) .
RBTree i x c n → TreeZip i ′ j ′ n′ i j Black (n + 1)→

TreeZip i ′ j ′ n′ x j Black n

Given a context and a tree that fits in the hole, the whole tree can be rebuilt
by plug. This function is well-typed because the indexing discipline of TreeZip
exactly matches the demands of RBTree. This also could be obtained for free
using generic programming techniques (Löh and Magalhães, 2011).

plug :: ∀(i ′ j ′ i j c :: Z) (n n′ :: N) .
RBTree i j c n → TreeZip i ′ j ′ n′ i j c n → RBTree i ′ j ′ Black n′

plug t Root = t
plug t (ZRL {x } z r) = plug (TR {x } t r) z
plug t (ZRR {x } l z) = plug (TR {x } l t) z
plug t (ZBL {x } z r) = plug (TB {x } t r) z
plug t (ZBR {x } l z) = plug (TB {x } l t) z

181

8.3.2 Search

When searching for a key x in a red-black tree, it can either be Found z t, where
z is the context in which it was found and t is the subtree with x at the root,
or Missing z , where z is the context that should have contained x . This detailed
search result information will later be used to implement insertion and deletion.

data SearchResult :: Z→ Z→ Z→ N→ ∗ where
Found :: ∀(x i ′ j ′ i j c :: Z) (n′ n :: N) .

TreeZip i ′ j ′ n′ i j c n → RBTree i j c n →
SearchResult x i ′ j ′ n′

Missing :: ∀(x i ′ j ′ i j :: Z) (n′ :: N) . (i < x , x < j)⇒
TreeZip i ′ j ′ n′ i j Black 0→

SearchResult x i ′ j ′ n′

To search a tree, a context is built up by comparing the key x to the value y stored
at each node, and descending into the appropriate subtree, until the key is found
or a leaf is reached. The invariants make it hard to get wrong: if a conditional
test is omitted, or an invalid result returned, the typechecker will object.

search :: ∀(i ′ j ′ :: Z) (n′ :: N) .Π (x :: Z) . (i ′ < x , x < j ′)⇒
RBTree i ′ j ′ Black n′ → SearchResult x i ′ j ′ n′

search {x } = help Root
where

help :: ∀(i j c :: Z) (n :: N) . (i < x , x < j)⇒
TreeZip i ′ j ′ n′ i j c n → RBTree i j c n →

SearchResult x i ′ j ′ n′

help z E = Missing z
help z (TR {y} l r) | {x < y} = help (ZRL {y} z r) l
help z (TR {y} l r) | {x ∼ y} = Found z (TR {y} l r)
help z (TR {y} l r) | {x > y} = help (ZRR {y} l z) r
help z (TB {y} l r) | {x < y} = help (ZBL {y} z r) l
help z (TB {y} l r) | {x ∼ y} = Found z (TB {y} l r)
help z (TB {y} l r) | {x > y} = help (ZBR {y} l z) r

The user of the library can be presented with a simple membership test:

member :: ∀(i j :: Z) .Π (x :: Z) . (i < x , x < j)⇒ RBT i j → Bool
member {x } (RBT t) = case search {x } t of

Missing → False
Found → True

182

8.3.3 Insertion

To insert an element into a red-black tree, use search to find the appropriate
location, then add a new node and proceed back up the tree, rebalancing on
the way. The InsProb datatype represents the kind of problems that may be
encountered when rebalancing the tree: either it is on the level (inserting a tree
into a hole of the correct black height, though not necessarily the same colour)
or in a panic (because a red child would have a red parent).

data InsProb :: Z→ Z→ Z→ N→ ∗ where
Level :: ∀(i j c c′ :: Z) (n :: N) .

Colour c′ → RBTree i j c′ n →
InsProb i j c n

PanicRB :: ∀(i j :: Z) (n :: N) .Π (x :: Z) .
RBTree i x Red n → RBTree x j Black n →

InsProb i j Red n
PanicBR :: ∀(i j :: Z) (n :: N) .Π (x :: Z) .

RBTree i x Black n → RBTree x j Red n →
InsProb i j Red n

The insertRBT function searches for the element x , and if it is not present, calls
the ins function defined below with the appropriate insertion problem.

insertRBT :: ∀(i j :: Z) .Π (x :: Z) . (i < x , x < j)⇒
RBT i j → RBT i j

insertRBT {x } (RBT t) = solveIns (search {x } t)
where

solveIns :: ∀(n :: N) . SearchResult x i j n → RBT i j
solveIns (Missing z) = ins (Level Red (TR {x } E E)) z
solveIns (Found) = RBT t

To solve an insertion problem, move out through the context, updating the prob-
lem appropriately at each step. While this definition looks intimidating (!), the
types make it difficult to get wrong: the typechecker will object if a tree is ever
constructed that breaks the invariants (either ordering or colouring). It is much
easier to construct interactively than in batch mode. In fact, I first implemented
it in Agda using the support for interactive construction, then transcribed it for
inch. The Agsy proof search tool (Lindblad and Benke, 2006) is able to fill in
many cases automatically, further reducing the effort involved.

183

ins :: ∀(i ′ j ′ i j c :: Z) (n′ n :: N) .
InsProb i j c n → TreeZip i ′ j ′ n′ i j c n → RBT i ′ j ′

ins (Level Red (TR {x } t0 t1)) Root = RBT (TB {x } t0 t1)
ins (Level Black t) Root = RBT t

ins (Level Red t) (ZRL {x } z t ′) = ins (PanicRB {x } t t ′) z
ins (Level Red t) (ZRR {x } t ′ z) = ins (PanicBR {x } t ′ t) z
ins (Level Black t) (ZRL {x } z t ′) = ins (Level Red (TR {x } t t ′)) z
ins (Level Black t) (ZRR {x } t ′ z) = ins (Level Red (TR {x } t ′ t)) z
ins (Level c t) (ZBL {x } z t ′) = ins (Level Black (TB {x } t t ′)) z
ins (Level Black t) (ZBR {x } t ′ z) = ins (Level Black (TB {x } t ′ t)) z
ins (Level Red (TR {y} t1 t2)) (ZBR {x } E z) =

RBT (plug (TB {y} (TR {x } E t1) t2) z)
ins (Level Red (TR {y} t1 t2)) (ZBR {x } (TB {w} t t ′) z) =

RBT (plug (TB {y} (TR {x } (TB {w} t t ′) t1) t2) z)
ins (Level Red (TR {y} t1 t2)) (ZBR {x } (TR {w} t t ′) z) =

ins (Level Red (TR {x } (TB {w} t t ′) (TB {y} t1 t2))) z

ins (PanicRB {y} (TR {w} t0 t1) t2) (ZBL {x } z t) =
ins (Level Red (TR {y} (TB {w} t0 t1) (TB {x } t2 t))) z

ins (PanicBR {y} t0 (TR {w} t1 t2)) (ZBL {x } z t) =
ins (Level Red (TR {w} (TB {y} t0 t1) (TB {x } t2 t))) z

ins (PanicRB {y} (TR {w} t0 t1) t2) (ZBR {x } t z) =
ins (Level Red (TR {w} (TB {x } t t0) (TB {y} t1 t2))) z

ins (PanicBR {y} t0 (TR {w} t1 t2)) (ZBR {x } t z) =
ins (Level Red (TR {y} (TB {x } t t0) (TB {w} t1 t2))) z

8.3.4 Deletion

Deleting a key from a red-black tree is slightly more complicated than insertion.
The search function positions the focus on the node to be deleted, then calls
delFocus, assuming the key exists.

delete :: ∀(i j :: Z) .Π (x :: Z) . (i < x , x < j)⇒ RBT i j → RBT i j
delete {x } (RBT t) = solveDel (search {x } t)

where
solveDel :: ∀(n :: N) . SearchResult x i j n → RBT i j
solveDel (Missing) = RBT t
solveDel (Found z t) = delFocus t z

184

To delete the node at the focus, provided the right subtree has black height 1
or more, the deleted key can be replaced with the minimum of its right subtree
(using findMin defined below). The base cases (where the right subtree has black
height zero) are handled individually.

delFocus :: ∀(i ′ j ′ i j c :: Z) (n′ n :: N) .
RBTree i j c n → TreeZip i ′ j ′ n′ i j c n → RBT i ′ j ′

delFocus E z = RBT (plug E z)
delFocus (TR {x } E E) z = RBT (plug E (wantBlack z))
delFocus (TB {x } E E) z = del E z
delFocus (TB {x } (TR {y} E E) E) z = RBT (plug (TB {y} E E) z)
delFocus (TR {x } t0 (TB {y} t1 t2)) z =

findMin (TB {y} t1 t2) (\ {k } → ZRR {k } (wkTree t0) z)
delFocus (TB {x } t0 (TB {y} t1 t2)) z =

findMin (TB {y} t1 t2) (\ {k } → ZBR {k } (wkTree t0) z)

The only context in which a red node can occur is the left child of a black node,
which also accepts black nodes. Thus the wantBlack function can change the type
from the former to the latter.

wantBlack :: ∀(i ′ j ′ i j :: Z) (n′ n :: N) .
TreeZip i ′ j ′ n′ i j Red n → TreeZip i ′ j ′ n′ i j Black n

wantBlack (ZBL {x } z r) = ZBL {x } z r

Deletion may require the upper bound of a subtree to be weakened, which needs
a traversal of its right spine to satisfy the type checker. This could be replaced
with unsafeCoerce, since the inequality proofs being manipulated are not retained
at runtime, so it is operationally the identity function.

wkTree :: ∀(i j j ′ c n :: Z) . j < j ′ ⇒ RBTree i j c n → RBTree i j ′ c n
wkTree E = E
wkTree (TR {x } t0 t1) = TR {x } t0 (wkTree t1)
wkTree (TB {x } t0 t1) = TB {x } t0 (wkTree t1)

The findMin function works inside the right subtree of the node whose key is
being deleted, looking for the minimum key, which will be used to replace the
deleted one. The zipper context abstracts over the (as yet unknown) minimum
key. If the minimum is found on a red node, it can simply be removed and the
tree be reconstructed. However, if the minimum is on a black node or leaf, then
the del function is called to decrease the black height.

185

findMin :: ∀(i ′ j ′ i j c :: Z) (n′ n :: N) .RBTree i j c (n + 1)→
(Π (k :: Z) . i < k ⇒ TreeZip i ′ j ′ n′ k j c (n + 1))→

RBT i ′ j ′

findMin (TB {x } E E) f = del E (f {x })
findMin (TB {x } (TR {y} E E) t) f = RBT (plug E (ZBL {x } (f {y}) t))
findMin (TR {x } (TB {y} E E) t) f = del E (ZRL {x } (f {y}) t)
findMin (TR {x } (TB {y} (TR {k } E E) t0) t1) f =

RBT (plug E (ZBL {y} (ZRL {x } (f {k }) t1) t0))

findMin (TR {x } (TB {y} (TB {w} t0 t1) t2) t3) f =
findMin (TB {w} t0 t1) (\ {k } → ZBL {y} (ZRL {x } (f {k }) t3) t2)

findMin (TB {x } (TB {y} t0 t1) t2) f =
findMin (TB {y} t0 t1) (\ {k } → ZBL {x } (f {k }) t2)

When deleting a black leaf (either directly or because it is the minimum in the
right subtree of a deleted internal node), the black height must be decremented.
Generally, the problem is to fit a tree of black height n into a hole that expects
a tree of height n + 1. The del function works its way upwards, rebalancing after
deletion, in a similar way to ins. Again, this definition is much easier to write
than to read, thanks to the automation tool Agsy (Lindblad and Benke, 2006).

del :: ∀(i ′ j ′ i j :: Z) (n′ n :: N) .RBTree i j Black n →
TreeZip i ′ j ′ n′ i j Black (n + 1)→ RBT i ′ j ′

del t Root = RBT t
del t (ZRL {x } z (TB {y} t0 t1)) = colourOf t0

(RBT (plug (TB {y} (TR {x } t t0) t1) (wantBlack z)))
(\ {w} t ′0 t ′′0 → RBT (plug (TR {w} (TB {x } t t ′0) (TB {y} t ′′0 t1)) z))

del t (ZRR {x } (TB {y} t0 t1) z) = colourOf t0

(RBT (plug (TB {x } (TR {y} t0 t1) t) (wantBlack z)))
(\ {w} t ′0 t ′′0 → RBT (plug (TR {y} (TB {w} t ′0 t ′′0) (TB {x } t1 t)) z))

del t (ZBL {x } z (TB {y} t0 t1)) = colourOf t0

(del (TB {y} (TR {x } t t0) t1) z)
(\ {w} t ′0 t ′′0 → RBT (plug (TB {w} (TB {x } t t ′0) (TB {y} t ′′0 t1)) z))

del t (ZBR {x } (TR {y} t0 (TB {w} t1 t2)) z) = colourOf t1

(RBT (plug (TB {y} t0 (TB {x } (TR {w} t1 t2) t)) z))
(\ {v} t ′1 t ′′1 → RBT (plug (TB {w} (TR {y} t0 (TB {v} t ′1 t ′′1))

(TB {x } t2 t)) z))
del t (ZBR {x } (TB {y} t0 t1) z) = colourOf t0

(del (TB {x } (TR {y} t0 t1) t) z)
(\ {w} t ′0 t ′′0 → RBT (plug (TB {y} (TB {w} t ′0 t ′′0) (TB {x } t1 t)) z))

186

The colourOf eliminator determines if a tree is red or black, and calls the
corresponding argument. For red trees, it provides the children of the node to
the callback. This reduces the number of cases in del, because each case depends
on the colour of a subtree, but not whether it is a leaf or an internal node.

colourOf :: ∀a (i j c n :: Z) .
RBTree i j c n →
((c ∼ Black)⇒ a)→
((c ∼ Red)⇒ Π (x :: Z) .RBTree i x Black n →

RBTree x j Black n → a)→ a
colourOf E b g = b
colourOf (TB {x }) b g = b
colourOf (TR {x } t0 t1) b g = g {x } t0 t1

8.4 Tracking time complexity

Danielsson (2008) introduced the Thunk library for verifying the time complex-
ity of purely functional data structures in the dependently typed programming
language Agda. He indexes a monad by the number of computation steps re-
quired to deliver a value in weak head normal form. Function definitions must
be annotated with calls to an operation that increments this number.

newtype Cost (n :: N) a = Hide {force :: a}

The implementation of Cost and the primitive functions on it are hidden,
because Cost is really a newtype with phantom type parameter n. This avoids
runtime overhead, but if it was exposed to the user then the library invariants
would be easily violated. Agda provides a language construct abstract to support
this, and a similar abstraction barrier can be created in Haskell using modules.

The return and bind functions witness the fact that Cost is a monad indexed
by the monoid (N,+). That is, any value can be computed in no steps, and if
some a can be computed in m steps, and used to compute some b in n steps, then
the overall computation takes m + n steps.

return :: a → Cost 0 a
return = Hide

bind :: ∀(m n :: N) a b .Cost m a → (a → Cost n b)→ Cost (m + n) b
bind (Hide x) f = wait (f x)

187

If a value can be computed in m steps, then it can be computed in n steps for
any n larger than m. Unlike Danielsson’s version, which requires the caller to
specify a number of steps to wait, this exploits the inequality constraints of inch
to provide a more flexible interface.

wait :: ∀(m n :: N) a .m 6 n ⇒ Cost m a → Cost n a
wait (Hide a) = Hide a

A crucial part of the methodology is to annotate every line of every function
definition being counted with a call to tick, which increments the counter.

tick :: ∀(n :: N) a .Cost n a → Cost (n + 1) a
tick = wait

A useful helper function, returnW, allows a value to be injected into the monad
with an arbitrary weakening of the upper bound.

returnW :: ∀(n :: N) a . a → Cost n a
returnW x = wait (return x)

Danielsson’s approach works well for verifying the time complexity of the merge
sort and red-black tree operations defined in the previous sections. The inch
constraint solver is able to deal with the proof obligations automatically, rather
than requiring the user to supply proofs of trivial arithmetic properties. There are
some obligations on the user of the library not captured by the types: every user
function must be annotated with calls to tick, the force function must not occur
inside code being timed, and library functions must not be partially applied.

To show how the approach works, I will reimplement red-black tree search
with complexity annotations, proving that the time for the membership test is
linear in the height of the tree.5

5That is, it is logarithmic in the number of elements.

188

First, the data type declaration for the zipper must have an extra index, to
count its depth. This is needed to express some of the complexity invariants that
the helper functions satisfy.

data TreeZip′ :: Z→ Z→ N→ -- root indices
Z→ Z→ Z→ N→ -- hole indices
N→ -- depth
∗ where

Root′ :: ∀(i j :: Z) (n :: N) .TreeZip′ i j n i j Black n 0
ZRL′ :: ∀(i j i ′ j ′ :: Z) (n n′ d :: N) .Π (x :: Z) .

TreeZip′ i ′ j ′ n′ i j Red n d → RBTree x j Black n →
TreeZip′ i ′ j ′ n′ i x Black n (d + 1)

ZRR′ :: ∀(i ′ j ′ i j :: Z) (n′ n d :: N) .Π (x :: Z) .
RBTree i x Black n → TreeZip′ i ′ j ′ n′ i j Red n d →

TreeZip′ i ′ j ′ n′ x j Black n (d + 1)
ZBL′ :: ∀(i ′ j ′ i j c :: Z) (n′ n d :: N) .Π (x :: Z) .

TreeZip′ i ′ j ′ n′ i j Black (n + 1) d → RBTree x j Black n →
TreeZip′ i ′ j ′ n′ i x c n (d + 1)

ZBR′ :: ∀(i ′ j ′ i j c :: Z) (n′ n d :: N) .Π (x :: Z) .
RBTree i x c n → TreeZip′ i ′ j ′ n′ i j Black (n + 1) d →

TreeZip′ i ′ j ′ n′ x j Black n (d + 1)

The SearchResult type packs up the extra index, but is otherwise unchanged.

data SearchResult′ :: Z→ Z→ Z→ N→ ∗ where
Found′ :: ∀(x i ′ j ′ i j c :: Z) (n′ n d :: N) .

TreeZip′ i ′ j ′ n′ i j c n d → RBTree i j c n →
SearchResult′ x i ′ j ′ n′

Missing′ :: ∀(x i ′ j ′ i j :: Z) (n′ d :: N) . (i < x , x < j)⇒
TreeZip′ i ′ j ′ n′ i j Black 0 d →

SearchResult′ x i ′ j ′ n′

The searchCost function returns a result in the Cost monad, showing that it takes
2n′ + 2 steps where n′ is the black height of the tree. Some work is needed to
choose the appropriate invariant to be maintained in the helper function. In
this case, the invariant depends on the colour of the tree, so a separate helper
function is needed when the subtree is black. The lines of the helper functions
are annotated with calls to tick. Pure values are inserted into the Cost monad
with returnW. The wait function is used to weaken a bound where the result is
computed more quickly than the type requires.

189

searchCost :: ∀(i ′ j ′ :: Z) (n′ :: N) .Π (x :: Z) . (i ′ < x , x < j ′)⇒
RBTree i ′ j ′ Black n′ →

Cost (2 ∗ n′ + 2) (SearchResult′ x i ′ j ′ n′)
searchCost {x } t = tick (helpB Root′ t)

where

help :: ∀(i j c :: Z) (n d :: N) .
((1 + (2 ∗ n) + d) 6 (2 ∗ n′), i < x , x < j)⇒
TreeZip′ i ′ j ′ n′ i j c n d → RBTree i j c n →

Cost (2 + 2 ∗ n) (SearchResult′ x i ′ j ′ n′)
help z E = tick (returnW (Missing′ z))
help z (TR {y} l r) | {x < y} = tick (helpB (ZRL′ {y} z r) l)
help z (TR {y} l r) | {x ∼ y} = tick (returnW (Found′ z (TR {y} l r)))
help z (TR {y} l r) | {x > y} = tick (helpB (ZRR′ {y} l z) r)
help z (TB {y} l r) | {x < y} = tick (wait (help (ZBL′ {y} z r) l))
help z (TB {y} l r) | {x ∼ y} = tick (returnW (Found′ z (TB {y} l r)))
help z (TB {y} l r) | {x > y} = tick (wait (help (ZBR′ {y} l z) r))

helpB :: ∀(i j :: Z) (n d :: N) .
(((2 ∗ n) + d) 6 (2 ∗ n′), i < x , x < j)⇒

TreeZip′ i ′ j ′ n′ i j Black n d → RBTree i j Black n →
Cost (2 ∗ n + 1) (SearchResult′ x i ′ j ′ n′)

helpB z E = tick (returnW (Missing′ z))
helpB z (TB {y} l r) | {x < y} = tick (help (ZBL′ {y} z r) l)
helpB z (TB {y} l r) | {x ∼ y} = tick (returnW (Found′ z (TB {y} l r)))
helpB z (TB {y} l r) | {x > y} = tick (help (ZBR′ {y} l z) r)

The membership test can be implemented as before, inserting the necessary
monadic plumbing and calls to tick. Thus it returns a result in 2n+ 4 steps.

memberCost :: ∀(i j :: Z) (n :: N) .Π (x :: Z) . (i < x , x < j)⇒
RBTree i j Black n → Cost (2 ∗ n + 4) Bool

memberCost {x } t = tick (bind (searchCost {x } t) f)
where

f :: SearchResult′ x i j n → Cost 1 Bool
f (Missing′) = tick (return False)
f (Found′) = tick (return True)

The force function can be used to escape the Cost monad and acquire a value.

190

member′ :: ∀(i j :: Z) .Π (x :: Z) . (i < x , x < j)⇒ RBT i j → Bool
member′ {x } (RBT t) = force (memberCost {x } t)

This approach can be used to show that both insertion and deletion are linear
in the black height of the tree. The types given to the main functions are:

insert :: ∀(i j :: Z) (n :: N) .Π (x :: Z) . (i < x , x < j)⇒
Tree i j Black n → Cost (4 ∗ n + 6) (RBT i j)

delete :: ∀(i j :: Z) (n :: N) .Π (x :: Z) . (i < x , x < j)⇒
Tree i j Black n → Cost (5 ∗ n + 6) (RBT i j)

As in the member example, the main difficulty is in choosing appropriate in-
variants; the annotation is routine. Interactive program construction makes this
easier, as it enables exploratory programming.

8.5 Units of measure

This section demonstrates a use for type-level integers, rather than natural num-
bers: a library for representing units of measure. Unlike the approach taken in
Chapter 3, which requires a language extension but can support an arbitrary set
of base units, this library can be implemented using existing features of inch, but
the base units must be fixed ahead of time. Moreover, type errors will reveal
the underlying representation of units, rather than being expressed in an easy-
to-understand format. The dimensional package of Buckwalter (n.d.) is a much
more comprehensive implementation of units of measure using this approach, but
with type-level integers implemented via existing features of GHC Haskell.

The Unit constructor has arguments for the powers of three base units (metres,
seconds and kilograms). A real units of measure implementation would supply
more base units, but the number would still be fixed. The Quantity newtype wraps
a numeric value, and has a phantom type parameter that will be instantiated with
some application of Unit. This separation makes it easy to write functions that
are completely polymorphic in the units.

data Unit :: Z→ Z→ Z→ ∗
newtype Quantity u a = Q {value :: a}

The Q constructor should not be exported from the module in which it is
defined, in order to prevent clients of the library from changing units arbitrarily.
Instead, all access must be through the functions defined below.

191

In the full inch system, with support for promoted datatypes, Unit would be a
data constructor rather than a type constructor. Type synonyms can be defined
for common units. If type families or type-level functions were available, one
could define operations to combine units (such as multiplication of units).

type Dimensionless = Unit 0 0 0
type Metres = Unit 1 0 0
type Seconds = Unit 0 1 0
type Kilograms = Unit 0 0 1
type MetresPerSecond = Unit 1 (−1) 0
type Newtons = Unit 1 (−2) 1

Users of the library will have access to smart constructors, which wrap the un-
derlying newtype constructor Q, but specify the units.

dimensionless :: a → Quantity Dimensionless a
metres :: a → Quantity Metres a
seconds :: a → Quantity Seconds a
kilograms :: a → Quantity Kilograms a
(dimensionless,metres, seconds, kilograms) = (Q,Q,Q,Q)

The usual arithmetic operations can be defined on quantities, with the types
ensuring that the units are respected. However, Quantity u a cannot be made an
instance of the Num typeclass, because multiplication does not preserve units.

plus :: Num a ⇒ Quantity u a → Quantity u a → Quantity u a
plus (Q x) (Q y) = Q (x + y)

minus :: Num a ⇒ Quantity u a → Quantity u a → Quantity u a
minus (Q x) (Q y) = Q (x − y)

The type signatures of the following operations would be significantly simpler if
type-level functions could be defined.

times :: ∀(m s g m′ s′ g′ :: Z) a .Num a ⇒
Quantity (Unit m s g) a → Quantity (Unit m′ s′ g′) a →

Quantity (Unit (m + m′) (s + s′) (g + g′)) a
times (Q x) (Q y) = Q (x ∗ y)

inv :: ∀(m s g :: Z) a .Fractional a ⇒
Quantity (Unit m s g) a → Quantity (Unit (−m) (−s) (−g)) a

inv (Q x) = Q (recip x)

192

over :: ∀(m s g m′ s′ g′ :: Z) a . (Num a,Fractional a)⇒
Quantity (Unit m s g) a → Quantity (Unit m′ s′ g′) a →

Quantity (Unit (m −m′) (s − s′) (g − g′)) a
over x y = times x (inv y)

pow :: ∀(m s g :: Z) a .Fractional a ⇒
Π (k :: N) .Quantity (Unit m s g) a →

Quantity (Unit (k ∗m) (k ∗ s) (k ∗ g)) a
pow {k } (Q x) = Q (x ˆˆk)

Scaling a quantity by a dimensionless constant is useful:

scale :: Num a ⇒ a → Quantity u a → Quantity u a
scale x (Q y) = Q (x ∗ y)

minutes = scale 60 ◦ seconds
hours = scale 60 ◦minutes

More generally, unit prefixes can be written as transformers of the constructors
that scale by an appropriate constant:

type Prefix u a = (a → Quantity u a)→ a → Quantity u a

prefix :: Num a ⇒ a → Prefix u a
prefix n f = scale n ◦ f

kilo = prefix 1000
centi = prefix (recip 100)
milli = prefix (recip 1000)

This allows prefixed units to be expressed neatly:

km = kilo metres
cm = centi metres
mm = milli metres

Finally, a special case of flipped application allows expressions such as units 3 cm
and units 15 km ‘over‘ units 3 hours.

units :: a → (a → Quantity u b)→ Quantity u b
units x f = f x

As an example of using the library, here is a variant of the function from the
introduction to Chapter 3 that calculates the distance travelled over time by an

193

object with a fixed initial velocity and constant acceleration. The top-level type
annotation is entirely optional.

distanceTravelled :: (Num a,Fractional a)⇒
Quantity Seconds a → Quantity Metres a

distanceTravelled t = plus (times vel t) (times accel (pow {2} t))
where

vel = over (units 20 metres) (units 1 seconds)
accel = over (units 36 metres) (pow {2} (units 1 seconds))

Kennedy (2010, §3.10) gave an example of a function whose type cannot be
inferred by the units-of-measure type system in F#, because of difficulties with
generalisation, as explained in Subsection 3.0.1.

trouble = \ x → let d = over x
in (d mass, d time)

where
mass = units 5 kilograms
time = units 3 seconds

The inch system has no trouble inferring the most general type for this function

trouble :: ∀a (m :: Z) (s :: Z) (g :: Z) .
(Num a,Fractional a)⇒

Quantity (Unit m s g) a →
(Quantity (Unit m s (g − 1)) a,Quantity (Unit m (s − 1) g) a)

although the fixed basis of units means it is more limited than Kennedy’s solution
or the algorithm in Chapter 3.

194

Chapter 9

Conclusion

The inch language described in this thesis is an experiment in re-imagining GHC
Haskell. It shows how insights from work on dependent type theory can con-
tribute to the development of Haskell’s type system, intermediate language and
elaboration process. It is not intended as a finished product or a rival system;
rather, I have investigated some of the ways in which Haskell might develop.

Haskell as implemented in GHC is a moving target, with new language ex-
tensions being introduced frequently. The recent enrichment of the kind system
with polymorphism and datatype promotion paves the way for the identification
of kinds with types, a key aspect of the design of inch, and work to implement
this is ongoing. Weirich et al. (2013) and the evidence language of Chapter 6
show that this gives a reasonable core language; the discussion of elaboration in
Chapter 7 gives some idea of how type inference will continue to work.

The addition of Π-types to the language offers the possibility of significantly
simplifying Haskell programming with dependent types. In particular, it avoids
the need for singleton constructions that result in many incompatible names for
essentially the same object. If Haskell’s type system is to become more depen-
dent, the key requirement is for the operational semantics of the term and type
levels to be aligned, breaking the strict distinction between functions and type
families. The shared functions of this thesis offer a possible way forward. While
not requiring the identification of kinds and types, Π-types are much more useful
if the identification is made, since then indexed datatypes can be quantified over.

Another key aspect of Chapter 7 is the increased flexibility it offers for which
arguments are expected to be inferred by the machine. Milner’s compromise,
particularly the insistence that type-level expressions be invisible in terms, is
no longer tenable in a world of advanced type-level features. By providing the
machine with a small amount of help, we can gain significant expressive power.

The case for permitting explicit type application and quantification grows ever
stronger. Π-types benefit from case-by-case decisions on whether they should be
explicit or implicit, and extending the same mechanism to ∀-quantifiers seems
natural. In any case, wherever an argument is supposed to be inferred by the
machine, it should be possible for the user to supply it.

Type inference and unification with nontrivial equational theories has been a
key theme of the first part of this thesis, including the theory of abelian groups for
units of measure in Chapter 3 and the theory of βη-conversion in Chapter 4. A
desirable feature for a system of type-level numbers is automatically solving the
constraints that arise, and the abelian group structure of the integers provides
a starting point for this, though the presence of local hypotheses complicates
matters and more research is needed. As I have outlined, the careful management
of variable scope (using dependency-ordered contexts) can help make it clear how
to solve constraints in a most general fashion.

Elaboration of full-spectrum dependently-typed languages is another topic in
need of further work, as practical implementations are not always theoretically
well-understood. I hope that the higher-order unification algorithm in Chapter 4
may provide a useful base for describing elaboration more precisely.

196

Appendix A

Reference implementation of
Hindley-Milner type inference

In this appendix and the two that follow I will present reference implementa-
tions for the unification and type inference algorithms described in Part I of this
thesis. The implementations are presented in literate Haskell, and I will take
slight liberties with the Haskell syntax. In particular, I will use italicised capital
letters (e.g. A) for Haskell variables, while sans-serif capital letters (e.g. A) will
continue to stand for data constructors. This allows me to retain more of the
syntactic conventions of the earlier chapters, such as using Θ for a metacontext
and A for an object language type. I will omit boilerplate code such as module
import lists and straightforward typeclass instances, and routine support code
for pretty-printing and testing.

The code has been tested using version 7.6.3 of the Glasgow Haskell Compiler,
with version 2013.2.0.0 of the Haskell Platform and version 0.6 of the Strathclyde
Haskell Enhancement (McBride, 2010b). It is available online1 and with the
electronic version of this thesis. In addition to the standard libraries, the Binders
Unbound library of Weirich et al. (2011b) is used to represent syntax with names
and bindings, deriving α-equivalence and substitution functions automatically.

In this appendix, I implement syntactic unification and Hindley-Milner type
inference, as described in Chapter 2. Section A.1 gives datatypes representing
types, terms and contexts in the object language; Section A.2 gives the implemen-
tation of unification, and this is used in Section A.3 to implement type inference.
Finally, Section A.4 contains an implementation of elaboration from Hindley-
Milner terms into System F, based on a zipper.

1https://github.com/adamgundry/type-inference/

https://github.com/adamgundry/type-inference/

A.1 Representation of types and terms

This section implements type, contexts and terms, as in Section 2.1 (page 11).
The datatype Type represents types of the object language, which may contain

metavariables M and variables V as well as functions and a base type. The Name
constructor is provided by the Binders Unbound library.

data Type = M (Name Type) | V (Name Type) | Type _ Type

The fmv function computes the free metavariables of a type.

fmv :: Type→ Set (Name Type)
fmv (M α) = {α}
fmv (V a) = ∅
fmv (τ _ υ) = fmv τ ∪ fmv υ

The datatype Scheme represents type schemes. Binding variables uses a locally
nameless representation where bound variables have de Bruijn indices and free
variables (those bound in the context) have names (McBride and McKinna, 2004).

data Scheme = T Type | All (Bind (Name Type) Scheme)

Bwd is the type of backwards lists with • for the empty list and :< for snoc.
Lists are traversable functors, and monoids under concatenation (�), in the usual
way. Datatype declarations are cheap, so rather than reusing the forwards list
type [], I prefer to make the code closer to the specification.

data Bwd a = • | Bwd a :< a

Contexts are backwards lists of entries, which are either metavariables E (pos-
sibly carrying a definition), term variables Z or generalisation markers #. A con-
text suffix contains only metavariable entries, and can be appended to a context
with the ‘fish’ operator (<><).

type Context = Bwd Entry
type Suffix = [(Name Type,Decl Type)]
data Decl v = HOLE | DEFN v
data Entry = E (Name Type) (Decl Type) | Z (Name Tm) Scheme | #

(<><) :: Context→ Suffix → Context
Θ <>< ((α, d) : es) = (Θ :< E α d) <>< es
Θ <>< [] = Θ

198

The Contextual monad represents computations that can mutate the context,
generate fresh names and throw exceptions. It thus encapsulates the effects
needed to implement unification and type inference. I will use the throwError
operation in the monad to abort due to ‘expected’ errors, such as impossible uni-
fication problems, and the Haskell built-in error for violations of invariants that
would indicate bugs in the implementation itself.

newtype Contextual a = Contextual
(StateT Context (FreshMT (ErrorT String Identity)) a)

The popL function removes and returns an entry from the metacontext.

popL :: Contextual Entry
popL = do Θ :< e ← get

put Θ
return e

The freshMeta function generates a fresh metavariable name and appends a
HOLE to the context.

freshMeta :: String→ Contextual (Name Type)
freshMeta a = do α← fresh (s2n a)

modify (:<E α HOLE)
return α

The datatype Tm represents terms in the object language. As with type
schemes, it uses a locally nameless representation.

data Tm = X (Name Tm) | App Tm Tm
| Lam (Bind (Name Tm) Tm) | Let Tm (Bind (Name Tm) Tm)

The Contextual monad supports the find function, which looks up a term
variable in the context and returns its scheme.

find :: Name Tm→ Contextual Scheme
find x = get >>= help

where
help :: Context→ Contextual Scheme
help • = throwError $ "Out of scope: " ++ show x
help (Θ :< Z y σ) | x ≡ y = return σ
help (Θ :<) = help Θ

199

The inScope operator runs a Contextual computation with an additional term
variable in scope, then removes the variable afterwards.

inScope :: Name Tm→ Scheme→ Contextual a → Contextual a
inScope x σ m = do modify (:<Z x σ)

a ← m
modify dropVar
return a

where
dropVar • = error "Invariant violation"
dropVar (Θ :< Z y) | x ≡ y = Θ
dropVar (Θ :< e) = dropVar Θ :< e

A.2 Unification

Having set up the necessary data structures, I will now implement the unification
algorithm of Section 2.2 (page 19).

The onTop operator delivers the typical access pattern for contexts, locally
bringing the top variable declaration into focus and working over the remainder.
The local operation f , passed as an argument, may restore the previous entry, or
it may return a context extension (containing at least as much information as the
entry that has been removed) with which to replace it.

data Extension = Restore | Replace Suffix

onTop :: (Name Type→ Decl Type→ Contextual Extension)
→ Contextual ()

onTop f = popL >>= \ e → case e of

E α d → f α d >>= \m → case m of

Replace Ξ → modify (<>< Ξ)
Restore → modify (:<e)

→ onTop f >> modify (:<e)

restore :: Contextual Extension
restore = return Restore

replace :: Suffix → Contextual Extension
replace = return ◦ Replace

200

The unify function actually implements unification. This proceeds structurally
over types. If it reaches a pair of metavariables, it examines the context, using
onTop to pick out a declaration to consider. Depending on the metavariables, it
then either succeeds, restoring the old entry or replacing it with a new one, or
continues with an updated constraint.

unify :: Type→ Type→ Contextual ()
unify (τ0 _ τ1) (υ0 _ υ1) = unify τ0 υ0 >> unify τ1 υ1

unify (M α) (M β) = onTop $ \ γ d → case

(γ ≡ α, γ ≡ β, d) of
(True, True,)→ restore
(True, False, HOLE)→ replace [(α,DEFN (M β))]
(False, True, HOLE)→ replace [(β,DEFN (M α))]
(True, False, DEFN τ)→ unify (M β) τ >> restore
(False, True, DEFN τ)→ unify (M α) τ >> restore
(False, False,)→ unify (M α) (M β)>> restore

unify (M α) τ = solve α [] τ
unify τ (M α) = solve α [] τ
unify = throwError "Rigid-rigid mismatch"

The solve function is called to unify a metavariable with a rigid type (one that
is not a metavariable). It works similarly to the way unify works on pairs of
metavariables, but must also accumulate a list of the type’s dependencies and
push them left through the context. It performs the occurs check and throws an
exception if an illegal occurrence (leading to an infinite type) is detected.

solve :: Name Type→ Suffix → Type→ Contextual ()
solve α Ξ τ = onTop $
\ γ d → case

(γ ≡ α, γ ∈ fmv τ, d) of
(, , DEFN υ)→ modify (<>< Ξ)

>> unify (subst γ υ (M α)) (subst γ υ τ)
>> restore

(True, True, HOLE)→ throwError "Occurrence detected!"
(True, False, HOLE)→ replace (Ξ � [(α,DEFN τ)])
(False, True, HOLE)→ solve α ((γ,HOLE) : Ξ) τ

>> replace []
(False, False, HOLE)→ solve α Ξ τ

>> restore

201

A.3 Type inference

Building on the implementation of unification in the previous section, I now
implement the type inference algorithm described in Section 2.3 (page 23).

The metaBind and metaUnbind functions extend the bind and unbind functions
provided by the Binders Unbound library, so that binding a metavariable converts
it into a variable, and vice versa.

metaBind :: (Alpha t, Subst Type t)⇒
Name Type→ t → Bind (Name Type) t

metaBind α = bind α ◦ subst α (V α)

metaUnbind :: (Alpha t, Subst Type t,Fresh m)⇒
Bind (Name Type) t → m (Name Type, t)

metaUnbind b = do (a, t)← unbind b
return (a, subst a (M a) t)

Specialisation of type schemes is implemented by the specialise function, which
unpacks a scheme with fresh metavariables for the bound variables.

specialise :: Scheme→ Contextual Type
specialise (T τ) = return τ
specialise (All b) = do (β, σ)← metaUnbind b

modify (:<E β HOLE)
specialise σ

Generalisation turns a type into a scheme by ‘skimming’ entries off the top of
the metacontext. The generaliseOver control operator runs a Contextual computa-
tion in a new locality (extending the context by #), then generalises the resulting
type until it finds the # again. This depends on the ⇑ function which generalises
a suffix of metavariables over a type to produce a scheme.

202

generaliseOver :: Contextual Type→ Contextual Scheme
generaliseOver x = do modify (:<#)

τ ← x
Ξ ← skimContext []
return (Ξ ⇑ τ)

where
skimContext :: Suffix → Contextual Suffix
skimContext Ξ = popL >>= \ e → case e of

E α d → skimContext ((α, d) : Ξ)
→ return Ξ

(⇑) :: Suffix → Type→ Scheme
[] ⇑ τ = T τ

((α,HOLE) : Ξ) ⇑ τ = All (metaBind α (Ξ ⇑ τ))
((α,DEFN υ) : Ξ) ⇑ τ = subst α υ (Ξ ⇑ τ)

Finally, the infer function implements the type inference algorithm. It pro-
ceeds structurally through the term, following the rules in Figure 2.9 (page 26)
and using the monadic operations defined earlier.

infer :: Tm→ Contextual Type

infer (X x) = find x >>= specialise

infer (Lam b) = do (x , t)← unbind b
α ← M 〈$〉 freshMeta "alpha"
υ ← inScope x (T α) $ infer t
return (α_ υ)

infer (App f s) = do χ ← infer f
υ ← infer s
β ← M 〈$〉 freshMeta "beta"
unify χ (υ _ β)
return β

infer (Let s b) = do σ ← generaliseOver (infer s)
(x , t)← unbind b
inScope x σ $ infer t

203

A.4 Elaboration, zipper style

In this section, I implement the zipper-based elaboration algorithm described in
Section 2.4 (page 27). This transforms source language terms Tm (defined in
Section A.1) into System F terms FTm, represented thus:

data FTm = VarF (Name FTm) | AppTm FTm FTm | AppTy FTm Type
| LamTm Scheme (Bind (Name FTm) FTm)
| LamTy (Bind (Name Type) FTm)

As described in the text, context entries now consist of metavariables and layers:

data TermLayer = AppLeft () Tm
| AppRight (FTm,Type) ()
| LamBody (Name Tm,Type) ()
| LetBinding () (Bind (Name Tm) Tm)
| LetBody (Name Tm) (FTm, Scheme) ()

data Entry = E (Name Type) (Decl Type) | L TermLayer

Most functions from the previous sections, including the unification algorithm,
remain unchanged. The find function, which looks up a term variable in the
context and returns its type scheme, is easily adapted to the new structure:

find :: Name Tm→ Contextual Scheme
find x = get >>= help

where
help :: Context→ Contextual Scheme
help • = throwError $ "Out of scope: " ++ show x
help (Θ :< L (LamBody (y, τ) ())) | x ≡ y = return (T τ)
help (Θ :< L (LetBody y (, σ) ())) | x ≡ y = return σ
help (Θ :<) = help Θ

The specialise function takes an elaborated term and its scheme, and applies the
term to fresh metavariables to produce a witness of the specialised type.

specialise :: FTm→ Scheme→ Contextual (FTm,Type)
specialise t (T τ) = return (t, τ)
specialise t (All b) = do (β, σ)← metaUnbind b

modify (:<E β HOLE)
specialise (t 8AppTy8M β) σ

204

Now elaboration can be implemented as a tail-recursive function elab. To
elaborate a variable, it looks up the type scheme and instantiates it with fresh
metavariables, then calls the next function to navigate the zipper structure and
find the next elaboration problem. For λ-abstractions, applications and let-
bindings, it extends the zipper and elaborates the appropriate subterm.

elab :: Tm→ Contextual (FTm,Type)
elab (X x) = do σ ← find x

next [] =<< specialise (VarF x) σ
elab (Lam b) = do (x , t)← unbind b

α ← freshMeta "alpha"
modify (:<L (LamBody (x ,M α) ()))>> elab t

elab (f 8App8 a) = modify (:<L (AppLeft () a))>> elab f
elab (Let s b) = modify (:<L (LetBinding () b))>> elab s

The next function is called with the term at the current location and its type.
It navigates through the zipper structure to find the next elaboration problem,
updating the current term and type as it does so. The accumulator Ξ collects
metavariables that encountered along the way. These are reinserted into the
context once the new problem is found, or if a LetBinding layer is encountered, Ξ
contains exactly the metavariables to generalise over.

next :: Suffix → (FTm,Type)→ Contextual (FTm,Type)
next Ξ (t, τ) = optional popL >>= \ e → case e of

Just (L (AppLeft () a)) → do modify (<>< Ξ)
modify (:<L (AppRight (t, τ) ()))
elab a

Just (L (AppRight (f , σ) ())) → do modify (<>< Ξ)
β ← M 〈$〉 freshMeta "beta"
unify σ (τ _ β)
next [] (f 8AppTm8 t, β)

Just (L (LamBody (x , υ) ())) → next Ξ (λx :υ. t, υ _ τ)
Just (L (LetBinding () b)) → do (x ,w)← unbind b

let (t ′, σ) = (ΛΞ . t,Ξ ⇑ τ)
modify (:<L (LetBody x (t ′, σ) ()))
elab w

Just (L (LetBody x (s, σ) ()))→ next Ξ (λx :σ. t 8AppTm8 s, τ)
Just (E α d) → next ((α, d) : Ξ) (t, τ)
Nothing → modify (<>< Ξ)>> return (t, τ)

205

Appendix B

Reference implementation of
units of measure

This appendix extends the implementation of unification in Appendix A to sup-
port the units of measure of Chapter 3. Section B.1 introduces the data types
representing units of measure in normal form, using the signed-multiset library
of Holdermans (2013). Section B.2 extends the representation of types and con-
texts from Section A.1 to support the syntax of units. The implementation of
unification for units of measure is given in Section B.3, and this is used to imple-
ment type unification in Section B.4. There is no change to the implementation of
type inference from Section A.3, other than using the new unification algorithm.

B.1 Representation of units of measure

I begin by introducting the semantic representation of units of measure, along
with operations on them, as described in Section 3.1 (page 35). A unit of measure
is represented as a Unit value with signed multisets of metavariables and constants.
For simplicity, the type of base units is fixed.

data Unit = Unit (SignedMultiset (Name Type)) (SignedMultiset BaseUnit)
data BaseUnit = METRE | SEC | KG

The mkUnit function creates a unit from lists of powers of metavariables and
base units. As a special case, metaUnit creates a unit from a single metavariable.

mkUnit :: [(Name Type, Int)]→ [(BaseUnit, Int)]→ Unit
mkUnit vs bs = Unit (fromList vs) (fromList bs)

metaUnit :: Name Type→ Unit
metaUnit a = mkUnit [(a, 1)] []

Utility functions determine if a unit is the identity or constant, the number
of variables it contains, and the power of a metavariable in it.

isIdentity :: Unit→ Bool
isIdentity (Unit vs bs) = null vs ∧ null bs

isConstant :: Unit→ Bool
isConstant (Unit vs bs) = null vs

numVariables :: Unit→ Int
numVariables (Unit vs) = size vs

powerIn :: Name Type→ Unit→ Int
α 8powerIn8 Unit vs = multiplicity α vs

The dividesPowers function determines if an integer divides all the powers of
metavariables and base units.

dividesPowers :: Int→ Unit→ Bool
n 8dividesPowers8 (Unit vs bs) = dividesAll vs ∧ dividesAll bs

where
dividesAll :: SignedMultiset a → Bool
dividesAll = all ((0 ≡) . (‘mod‘n) . snd) . toList

The notMax function determines if the power of a variable is less than the
power of at least one other variable.

notMax :: (Name Type, Int)→ Unit→ Bool
notMax (α, n) (Unit vs) = any bigger (toList vs)

where bigger (β,m) = α 6≡ β ∧ abs n 6 abs m

The (�), (�) and (7) operators respectively multiply and divide units, and
raise a unit to a constant power.

(�) :: Unit→ Unit→ Unit
Unit vs bs � Unit vs′ bs′ = Unit (additiveUnion vs vs′) (additiveUnion bs bs′)

(�) :: Unit→ Unit→ Unit
d � e = d � invert e

(7) :: Unit→ Int→ Unit
Unit vs bs 7 k = Unit (multiply k vs) (multiply k bs)

invert :: Unit→ Unit
invert (Unit vs bs) = Unit (shadow vs) (shadow bs)

207

The pivot function removes the given metavariable from the unit, inverts it
and takes the quotient of its powers by the power of the removed variable.

pivot :: Name Type→ Unit→ Unit
pivot α e = invert $ quotient $ e � (metaUnit α7 n)

where
n = α 8powerIn8 e

quotient (Unit vs bs) = mkUnit (map (second (8quot8 n)) (toList vs))
(map (second (8quot8 n)) (toList bs))

The substUnit function substitutes a unit for a metavariable in another unit.

substUnit :: Name Type→ Unit→ Unit→ Unit
substUnit α d e = ((d � metaUnit α) 7 (α 8powerIn8 e)) � e

B.2 Representation of types

Now I extend the representation of types and contexts from Section A.1 to include
units of measure, as described in Subsection 3.0.2 (page 33). The datatype of
types retains metavariables, variables and functions, and gains syntax for units
(types of kind U): the identity, multiplication, constant expontentiation and base
units. The Float constructor is an example of a type parameterised by a unit.

data Kind = ? | U
data Type = M (Name Type) | V (Name Type) | Type _ Type

| Float Type | One | Type :∗Type | Type :∧ Int | Base BaseUnit

The set of free metavariables is computed in the obvious way.

fmv :: Type→ Set (Name Type)
fmv (M α) = {α}
fmv (V a) = ∅
fmv (τ _ υ) = fmv τ ∪ fmv υ
fmv (Float ν) = fmv ν
fmv One = ∅
fmv (ν :∗ ν ′) = fmv ν ∪ fmv ν ′

fmv (ν :∧) = fmv ν
fmv (Base) = ∅

208

It is easy to convert a semantic Unit to a syntactic expression Type, while the
other direction may fail if the type is not well-kinded.

unitToType :: Unit→ Type
unitToType (Unit xs ys) = foldr (\α k τ → (M α :∧ k) :∗ τ) One xs

:∗ foldr (\ u k τ → (Base u :∧ k) :∗ τ) One ys

typeToUnit :: Type→ Unit
typeToUnit (M α) = metaUnit α
typeToUnit One = mkUnit [] []
typeToUnit (ν :∗ ν ′) = typeToUnit ν � typeToUnit ν ′

typeToUnit (ν :∧ k) = typeToUnit ν 7 k
typeToUnit (Base b) = mkUnit [] [(b, 1)]
typeToUnit = error "typeToUnit: kind error"

Type schemes are defined as in Appendix A, except that each ∀ quantifier
carries a kind.

data Scheme = T Type | All Kind (Bind (Name Type) Scheme)

Similarly, contexts are generalised to record the kinds of metavariables:

type Context = Bwd Entry
type Suffix = [(Name Type,Kind,Decl Type)]
data Entry = E (Name Type) Kind (Decl Type)

| Z (Name Tm) Scheme
| #

data Decl v = HOLE | DEFN v

The type Tm of terms is unchanged from Appendix A. Likewise, the Contextual
monad and popL, find and inScope operations use the new definition of Context
but are otherwise identical. The freshMeta operation is parameterised over the
kind of the metavariable to create:

freshMeta :: String→ Kind→ Contextual (Name Type)
freshMeta a κ = do α← fresh (s2n a)

modify (:<E α κ HOLE)
return α

209

The unification algorithm must searching the context for metavariable decla-
rations (perhaps of a particular kind), make some changes and either choose to
restore the existing declaration or replace it with a new one. As before, the onTop
function captures this pattern, and it is used to implement onTop? and onTopU

that look for a metavariable of the corresponding kind.

data Extension = Restore | Replace Suffix

restore :: Contextual Extension
restore = return Restore

replace :: Suffix → Contextual Extension
replace = return ◦ Replace

onTop :: (Name Type→ Kind→ Decl Type→ Contextual Extension)→
Contextual ()

onTop f = popL >>= \ e → case e of

E α κ d → f α κ d >>= \m → case m of

Replace Ξ → modify (<>< Ξ)
Restore → modify (:<e)

→ onTop f >> modify (:<e)

onTop? :: (Name Type→ Decl Type→ Contextual Extension)→
Contextual ()

onTop? f = onTop $ \α κ d → case κ of

? → f α d
U → onTop? f >> restore

onTopU :: (Name Type→ Decl Type→ Contextual Extension)→
Contextual ()

onTopU f = onTop $ \α κ d → case κ of

U → f α d
? → onTopU f >> restore

B.3 Unification of unit expressions

I now implement the abelian group unification algorithm given in Section 3.1
(page 35). This is based around an algorithm for unifying single expressions with
the group identity. A pair of expressions can then be unified thus:

unifyUnit :: Type→ Type→ Contextual ()
unifyUnit d e = unifyId Nothing $ typeToUnit d � typeToUnit e

210

To unify a unit expression e with the identity, first check if it is already the identity
(and win) or is another constant (and lose). Otherwise, search the context for
group variables that occur in e. When one is found, either substitute it into the
expression (if it has a definition) or examine the coefficients to determine how to
proceed. If its coefficient n divides all the others, it can be defined to solve the
equation. Otherwise, either reduce the coefficients modulo n or just collect the
variable and move it back in the context.

unifyId :: Maybe (Name Type)→ Unit→ Contextual ()
unifyId Ψ e
| isIdentity e = return ()
| isConstant e = throwError "Unit mismatch!"
| otherwise = onTopU $ \α d →
let n = α 8powerIn8 e in

case d of

| n ≡ 0 → do unifyId Ψ e
restore

DEFN x → do modify (ins Ψ)
let e′ = substUnit α (typeToUnit x) e
unifyId Nothing e′

restore
HOLE
| n 8dividesPowers8 e → do modify (ins Ψ)

let p = pivot α e
replace [(α,U ,DEFN (unitToType p))]

| (α, n) 8notMax8 e → do modify (ins Ψ)
β ← fresh (s2n "beta")
let p = pivot α e � metaUnit β
unifyId (Just β) $ substUnit α p e
replace [(α,U ,DEFN (unitToType p))]

| numVariables e > 1→ do unifyId (Just α) e
replace []

| otherwise → throwError "No way!"

ins :: Maybe (Name Type)→ Context→ Context
ins Nothing Θ = Θ
ins (Just α) Θ = Θ :< E α U HOLE

211

B.4 Unification of types

Here I implement the type unification algorithm given in Section 3.2 (page 39).
The implementation of unify for types with units of measure is very similar to the
version in Section A.2, except that it calls unifyUnit to unify the unit annotations
of Float types, and uses startSolve in place of solve as discussed below.

unify :: Type→ Type→ Contextual ()
unify (τ0 _ τ1) (υ0 _ υ1) = unify τ0 υ0 >> unify τ1 υ1

unify (Float d) (Float e) = unifyUnit d e
unify (M α) (M β) = onTop? $ \ γ d → case

(γ ≡ α, γ ≡ β, d) of
(True, True,)→ restore
(True, False, HOLE)→ replace [(α, ?,DEFN (M β))]
(False, True, HOLE)→ replace [(β, ?,DEFN (M α))]
(True, False, DEFN τ)→ unify (M β) τ >> restore
(False, True, DEFN τ)→ unify (M α) τ >> restore
(False, False,)→ unify (M α) (M β)>> restore

unify (M α) τ = startSolve α τ
unify τ (M α) = startSolve α τ
unify = throwError "Rigid-rigid mismatch"

When starting to solve a flex-rigid constraint, one has to be careful not to ac-
cidentally lose polymorphism, as explained in Subsection 3.2.1 (page 40). The
syntactic occurs check performed by solve is not quite right, because the richer
equational theory of abelian groups may exhibit apparent dependency when there
is in fact none. Thus startSolve replaces units in the rigid type with fresh variables,
solves the flex-rigid constraint first, then unifies the units.

startSolve :: Name Type→ Type→ Contextual ()
startSolve α τ = do (ρ, xs)← rigidHull τ

solve α (constraintsToSuffix xs) ρ
solveConstraints xs

The rigidHull operation computes the ‘hull’ of a type of kind ?, replacing unit
subexpressions with fresh variables. Along with the hull, it returns the constraints
between the fresh variables and the units they replaced.

212

rigidHull :: Type→ Contextual (Type, [(Name Type,Type)])
rigidHull (M a) = return (M a, [])
rigidHull (V a) = return (V a, [])
rigidHull (τ _ υ) = do (τ ′, xs)← rigidHull τ

(υ′, ys)← rigidHull υ
return (τ ′ _ υ′, xs � ys)

rigidHull (Float d) = do β ← fresh (s2n "beta")
return (Float (M β), [(β, d)])

A list of constraints can be turned into the appropriate context suffix by discard-
ing the types and adding unit declarations for the metavariables:

constraintsToSuffix :: [(Name Type,Type)]→ Suffix
constraintsToSuffix = map (\ (α,)→ (α,U ,HOLE))

Or they can be solved by repeatedly invoking unifyUnit:

solveConstraints :: [(Name Type,Type)]→ Contextual ()
solveConstraints = mapM_ (uncurry $ unifyUnit ◦M)

The implementation of solve is almost identical to the version in Appendix A.

solve :: Name Type→ Suffix → Type→ Contextual ()
solve α Ξ τ = onTop? $
\ γ d → case

(γ ≡ α, γ ∈ fmv τ, d) of
(, , DEFN υ)→ modify (<>< Ξ)

>> unify (subst γ υ (M α)) (subst γ υ τ)
>> restore

(True, True, HOLE)→ throwError "Occurrence detected!"
(True, False, HOLE)→ replace $ Ξ � [(α, ?,DEFN τ)]
(False, True, HOLE)→ solve α ((γ, ?,HOLE) : Ξ) τ

>> replace []
(False, False, HOLE)→ solve α Ξ τ

>> restore

213

Appendix C

Reference implementation of
Miller pattern unification

Having specified the pattern unification algorithm in Chapter 4, I now implement
it in Haskell. The code is organised along similar lines to the previous two appen-
dices, although the details differ substantially. First I describe the representation
of object language terms (Section C.1) and the domain-specific language in which
I will implement the algorithm (Section C.2). I then give implementations of type
and equality checking (Section C.3), and unification (Section C.4).

C.1 Representation of terms

First I define terms and machinery for working with them (including evaluation
and occurrence checking), based on the description in Subsection 4.1.1 (page 53).

Object language terms are represented using the data type Tm. The Binders
Unbound library of Weirich et al. (2011b) defines the Bind type constructor
and gives a cheap locally nameless representation with operations including α-
equivalence and substitution for first-order datatypes containing terms. I use a
single constructor for all the canonical forms (that do not involve binding) so as
to factor out common patterns in the typechecker.

data Tm where
λ :: Bind Nom Tm→ Tm
· :: Head→ Bwd Elim→ Tm
C :: Can Tm→ Tm
Π,Σ :: Type→ Bind Nom Type→ Tm

type Nom = Name Tm

data Can t = Set | Type | Pair t t | Bool | Tt | Ff | N | Ze | Su t
data Head = V Nom Twin | M Nom
data Twin = Only | TwinL | TwinR
data Elim = A Tm | Hd | Tl | If (Bind Nom Type) Tm Tm
type Type = Tm

The non-binding canonical forms Can induce a Foldable functor (which can be
derived automatically by GHC). Annoyingly, Elim cannot be made a functor in
the same way, because Bind Nom is not a functor on ∗ but only on the subcategory
induced by Alpha. However, the action on morphisms can be defined thus:

mapElim :: (Tm→ Tm)→ Elim→ Elim
mapElim f (A a) = A (f a)
mapElim Hd = Hd
mapElim Tl = Tl
mapElim f (If T s t) = If (bind x (f T ′)) (f s) (f t)

where (x ,T ′) = unsafeUnbind T

foldMapElim :: Monoid m ⇒ (Tm→ m)→ Elim→ m
foldMapElim f (A a) = f a
foldMapElim Hd = mempty
foldMapElim Tl = mempty
foldMapElim f (If T s t) = f T ′ � f s � f t

where (,T ′) = unsafeUnbind T

Despite the single-constructor representation of canonical forms, it is often
neater to write code as if Tm had a data constructor for each canonical constructor
of the object language. This is possible thanks to pattern synonyms (Aitken and
Reppy, 1992) as implemented by the Strathclyde Haskell Enhancement (McBride,
2010b). Pattern synonyms are abbreviations that can be used ‘on the left’ (in
patterns) as well as ‘on the right’ (in expressions).

pattern Type = C Type
pattern Set = C Set
pattern pair s t = C (Pair s t)
pattern B = C Bool
pattern tt = C Tt
pattern ff = C Ff
pattern N = C N
pattern ze = C Ze
pattern su n = C (Su n)

215

Free variables

Rather than definining functions to determine the free metavariables and variables
of terms directly, I use a typeclass to make them available on the whole syntax.

data Flavour = Vars | RigVars | Metas

class Occurs t where
free :: Flavour→ t → Set Nom

fv, fvrig, fmv :: Occurs t ⇒ t → Set Nom
fv = free Vars
fvrig = free RigVars
fmv = free Metas

instance Occurs Tm where
free l (λ b) = free l b
free l (C c) = free l c
free l (Π S T) = free l S ∪ free l T
free l (Σ S T) = free l S ∪ free l T

free RigVars (V x · e) = {x} ∪ free RigVars e
free RigVars (M ·) = ∅
free l (h · e) = free l h ∪ free l e

instance Occurs t ⇒ Occurs (Can t) where
free l (Pair s t) = free l s ∪ free l t
free l (Su n) = free l n
free l = ∅

instance Occurs Head where
free Vars (M) = ∅
free RigVars (M) = ∅
free Metas (M α) = {α}
free Vars (V x) = {x}
free RigVars (V x) = {x}
free Metas (V) = ∅

instance Occurs Elim where
free l (A a) = free l a
free l Hd = ∅
free l Tl = ∅
free l (If T s t) = free l T ∪ free l s ∪ free l t

216

Evaluation by hereditary substitution

Substitutions are implemented as finite maps from names to terms; as a technical
convenience there is no distinction between substitution and metasubstitution.

type Subs = [(Nom,Tm)]

(◦) :: Subs→ Subs→ Subs
δ′ ◦ δ = unionBy ((≡) ‘on‘ fst) δ′ (substs δ′ δ)

The evaluator is an implementation of hereditary substitution defined in Fig-
ure 4.2 (page 54): it proceeds structurally through terms, replacing variables
with their values and eliminating redexes using the (%%) operator defined below.

eval :: Subs→ Tm→ Tm
eval g (λ b) = λ (evalUnder g b)
eval g (h · e) = foldl (%%) (evalHead g h) (fmap (mapElim (eval g)) e)
eval g (C c) = C (fmap (eval g) c)
eval g (Π S T) = Π (eval g S) (evalUnder g T)
eval g (Σ S T) = Σ (eval g S) (evalUnder g T)

evalHead :: Subs→ Head→ Tm
evalHead g (V x) | Just t ← lookup x g = t
evalHead g (M α) | Just t ← lookup α g = t
evalHead g h = h · •

evalUnder :: Subs→ Bind Nom Tm→ Bind Nom Tm
evalUnder g b = bind x (eval g t)

where (x , t) = unsafeUnbind b

The (%%) operator reduces a redex (a term with an eliminator) to normal form:
this re-invokes hereditary substitution when a λ-abstraction meets an application.

(%%) :: Tm→ Elim→ Tm
λ b %% (A a) = eval [(x , a)] t where (x , t) = unsafeUnbind b
pair x %% Hd = x
pair y %% Tl = y
tt %% If t = t
ff %% If f = f
h · e %% z = h · (e :< z)
t %% a = error "bad elimination"

217

I define some convenient abbreviations: ($$) for applying a function to an
argument, ($∗$) for applying a function to a telescope of arguments, ·{·} for
substituting out a single binding and hd and tl for the projections from Σ-types.

($$) :: Tm→ Tm→ Tm
f $$ a = f %% A a

($∗$) :: Tm→ Bwd (Nom,Type)→ Tm
f $∗$ Γ = foldl ($$) f (fmap (var . fst) Γ)

· {·} :: Bind Nom Tm→ Tm→ Tm
f {s} = λ f $$ s

hd, tl :: Tm→ Tm
hd = (%% Hd)
tl = (%% Tl)

C.2 Problems and contexts

I will now define unification problems, metacontexts and operations for working
on them in the Contextual monad. The notions of metacontext and context in use
were given in Subsection 4.1.2 (page 55), and the monadic approach develops that
of the previous appendices. Metacontext entries now consist of metavariables, as
before, or problems, which carry a status bit used to record whether they have
been solve as far as possible given their current type (see Subsection C.4.6).
Problems are equations under universally quantified parameters, and parameters
may include twins.

data Decl v = HOLE | DEFN v
data Entry = E (Name Tm) (Type,Decl Tm) | Q Status Problem
data Status = Blocked | Active

data Param = P Type | Type‡Type
type Params = Bwd (Nom,Param)

data Equation = (Tm : Type) ≈ (Tm : Type)
data Problem = Unify Equation | All Param (Bind Nom Problem)

The sym function swaps the two sides of an equation:

sym :: Equation→ Equation
sym ((s : S) ≈ (t : T)) = (t : T) ≈ (s : S)

218

The metacontext is represented as a list zipper: a pair of lists representing
the entries before and after the cursor. Entries after the cursor may include
substitutions, being propagated lazily.

type ContextL = Bwd Entry
type ContextR = [Either Subs Entry]
type Context = (ContextL,ContextR)

The Contextual monad stores the current context and parameters, generates
fresh names when required for going under binders, and handles exceptions.

newtype Contextual a = Contextual
(ReaderT Params (StateT Context (FreshMT (ErrorT String Identity))) a)

Reading and modifying state

I define versions of the usual state-manipulating get, modify and put operations
that act on the left or right part of the context (before or after the cursor).

getL :: Contextual ContextL
getL = gets fst

getR :: Contextual ContextR
getR = gets snd

modifyL :: (ContextL→ ContextL)→ Contextual ()
modifyL = modify ◦ first

modifyR :: (ContextR→ ContextR)→ Contextual ()
modifyR = modify ◦ second

putL :: ContextL→ Contextual ()
putL = modifyL ◦ const

putR :: ContextR→ Contextual ()
putR = modifyR ◦ const

Here are operations to push to, or pop from, either side of the cursor, or move
the cursor one entry to the left:

pushL :: Entry→ Contextual ()
pushL e = modifyL (:<e)

pushR :: Either Subs Entry→ Contextual ()
pushR e = modifyR (e:)

219

pushLs :: Traversable f ⇒ f Entry→ Contextual ()
pushLs es = traverse pushL es >> return ()

popL :: Contextual Entry
popL = do Θ ← getL

case Θ of (Θ′ :< e)→ putL Θ′ >> return e
• → throwError "popL: out of context"

popR :: Contextual (Either Subs Entry)
popR = do Θ ← getR

case Θ of (x : Θ′) → putR Θ′ >> return x
[] → throwError "popR: out of context"

goLeft :: Contextual ()
goLeft = popL >>= pushR ◦ Right

Variable and metavariable lookup

The context of local parameters is tracked using the ReaderT monad transformer,
so the local operation can be used to bring a parameter into scope, and the ask
operation can be used to look up a variable.

inScope :: Nom→ Param→ Contextual a → Contextual a
inScope x p = local (:<(x , p))

lookupVar :: Nom→ Twin→ Contextual Type
lookupVar x w = help w =<< ask

where
help Only (Γ :< (y,P T)) | x ≡ y = return T
help TwinL (Γ :< (y, S‡T)) | x ≡ y = return S
help TwinR (Γ :< (y, S‡T)) | x ≡ y = return T
help w (Γ :<) = help w Γ
help • = throwError $ "lookupVar: missing " ++ show x

The type of a metavariable can be determined from its name by searching the
metacontext. Only metavariables left of the cursor are in scope.

lookupMeta :: Nom→ Contextual Type
lookupMeta x = look =<< getL

where
look (Θ :< E y (T ,)) | x ≡ y = return T
look (Θ :<) = look Θ
look • = error $ "lookupMeta: missing " ++ show x

220

C.3 Type and equality checking

Here I give a typechecker and definitional equality test for the type theory defined
in Subsection 4.1.3 (page 56). With the Contextual monad operations, I define
a bidirectional typechecker, based on a typed definitional equality test between
βδ-normal forms that produces an η-long standard form. The equalise T s t
function implements the judgment Θ |Γ ` T 3 s ≡[u]≡ t, defined in Figure 4.4
(page 59), where u is the result.

equalise :: Type→ Tm→ Tm→ Contextual Tm
equalise Type Set Set = return Set
equalise Type S T = equalise Set S T
equalise Set B B = return B
equalise B tt tt = return tt
equalise B ff ff = return ff
equalise Set (Π A B) (Π S T) = do

U ← equalise Set A S
Π U 〈$〉 bindsInScope U B T

(\ x B ′ T ′ → equalise Set B ′ T ′)
equalise (Π U V) f g =
λ 〈$〉 bindInScope U V

(\ x V ′ → equalise V ′ (f $$ var x) (g $$ var x))
equalise Set (Σ A B) (Σ S T) = do

U ← equalise Set A S
Σ U 〈$〉 bindsInScope U B T

(\ x B ′ T ′ → equalise Set B ′ T ′)
equalise (Σ U V) s t = do

u0 ← equalise U (hd s) (hd t)
u1 ← equalise (V {u0}) (tl s) (tl t)
return (pair u0 u1)

equalise U (h · e) (h′ · e′) = do

(h′′, e′′,V)← equaliseN h e h′ e′

equalise Type U V
return (h′′ · e′′)

Similarly, the equaliseN h e h′ e′ function implements the equality judgment
Θ |Γ ` h · e ≡[h′′ · e′′]≡ h′ · e′ ∈ T , defined in Figure 4.5 (page 60), where h′′, e′′

and T are the results.

221

equaliseN :: Head→ Bwd Elim→ Head→ Bwd Elim→
Contextual (Head,Bwd Elim,Type)

equaliseN h • h′ • | h ≡ h′ = (h, •,) 〈$〉 infer h
equaliseN h (e :< A s) h′ (e′ :< A t) = do

(h′′, e′′,Π U V)← equaliseN h e h′ e′

u ← equalise U s t
return (h′′, e′′ :< A u,V {u})

equaliseN h (e :< Hd) h′ (e′ :< Hd) = do

(h′′, e′′,Σ U V)← equaliseN h e h′ e′

return (h′′, e′′ :< Hd,U)
equaliseN h (e :< Tl) h′ (e′ :< Tl) = do

(h′′, e′′,Σ U V)← equaliseN h e h′ e′

return (h′′, e′′ :< Tl,V {h′′ · (e′′ :< Hd)})
equaliseN h (e :< If T u v) h′ (e′ :< If T ′ u′ v ′) = do

(h′′, e′′,B)← equaliseN h e h′ e′

U ′′ ← bindsInScope B T T ′ (\ x U U ′ → equalise Type U U ′)
u′′ ← equalise (U ′′{tt}) u u′

v ′′ ← equalise (U ′′{ff}) v v ′

return (h′′, e′′ :< If U ′′ u′′ v ′′,U ′′{h′′ · e′′})

The infer function looks up the type of a head, using lookupVar or lookupMeta
from the previous section as appropriate.

infer :: Head→ Contextual Type
infer (V x w) = lookupVar x w
infer (M x) = lookupMeta x

The bindInScope and bindsInScope helper operations introduce a binding or two
and call the continuation with a variable of the given type in scope.

bindInScope :: Type→ Bind Nom Tm→
(Nom→ Tm→ Contextual Tm)→
Contextual (Bind Nom Tm)

bindInScope T b f = do (x , b′)← unbind b
bind x 〈$〉 inScope x (P T) (f x b′)

bindsInScope :: Type→ Bind Nom Tm→ Bind Nom Tm→
(Nom→ Tm→ Tm→ Contextual Tm)→
Contextual (Bind Nom Tm)

bindsInScope T a b f = do Just (x , a′, , b′)← unbind2 a b
bind x 〈$〉 inScope x (P T) (f x a′ b′)

222

Equality checking can return a Boolean instead of throwing an error when the
terms are not equal. Since typing is the diagonal of equality, it is easy to define
a typechecking function as well.

equal :: Type→ Tm→ Tm→ Contextual Bool
equal T s t = (equalise T s t >> return True) : (return False)

typecheck :: Type→ Tm→ Contextual Bool
typecheck T t = equal T t t

Finally, a convenience function that tests if a heterogeneous equation is re-
flexive, by checking that the types are equal and the terms are equal.

isReflexive :: Equation→ Contextual Bool
isReflexive ((s : S) ≈ (t : T)) = optional (equalise Type S T)>>=

maybe (return False) (\U → equal U s t)

C.4 Unification

With the preliminaries out of the way, I can now present the pattern unification
algorithm as specified in Section 4.2 (page 67). I begin with utilities for working
with metavariables and problems, then give the implementations of inversion,
intersection, pruning, metavariable simplification and problem simplification. Fi-
nally, I show how the order of constraint solving is managed.

Making and filling holes

A telescope is a list of binding names and their types. Any type can be viewed
as consisting of a Π-bound telescope followed by a non-Π-type.

type Telescope = Bwd (Nom,Type)

telescope :: Type→ Contextual (Telescope,Type)
telescope (Π S T) = do (x ,T ′)← unbind T

(∆,U)← telescope T ′

return ((• :< (x , S)) � ∆,U)
telescope T = return (•,T)

The hole control operator creates a metavariable of the given type (under a tele-
scope of parameters), and calls the continuation with the metavariable in scope.
Finally, it moves the cursor back to the left of the metavariable, so it will be

223

examined again in case further progress can be made on it. The continuation
must not move the cursor.

hole :: Telescope→ Type→ (Tm→ Contextual a)→ Contextual a
hole Γ T f = do α← fresh (s2n "alpha")

pushL $ E α (ΠΓ .T ,HOLE)
r ← f (meta α $∗$ Γ)
goLeft
return r

Once a solution for a metavariable is found, the define function adds a defi-
nition to the context. (The declaration of the metavariable should already have
been removed.) This also propagates a substitution that replaces the metavari-
able with its value.

define :: Telescope→ Nom→ Type→ Tm→ Contextual ()
define Γ α S v = do pushR $ Left [(α, t)]

pushR $ Right $ E α (T ,DEFN t)
where T = ΠΓ . S

t = λΓ . v

Postponing problems

When a problem cannot be solved immediately, it can be postponed by adding
it to the metacontext. The postpone functions wraps a problem in the current
context (as returned by ask) and stores it in the metacontext with the given
status. The active function postpones a problem on which progress can be made,
while the block function postpones a problem that cannot make progress until its
type becomes more informative, as discussed in Subsection C.4.6.

postpone :: Status→ Problem→ Contextual ()
postpone s p = pushR ◦ Right ◦ Q s ◦ wrapProb p =<< ask

where
wrapProb :: Problem→ Params→ Problem
wrapProb = foldr (\ (x , e) p → All e (bind x p))

active, block :: Problem→ Contextual ()
active = postpone Active
block = postpone Blocked

224

A useful combinator

The following combinator executes its first argument, and if this returns False
then it also executes its second argument.

(6) :: Monad m ⇒ m Bool→ m ()→ m ()
a 6 b = do x ← a

unless x b

C.4.1 Inversion

A flexible unification problem is one where one side is an applied metavariable
and the other is an arbitrary term. The algorithm moves left in the context,
accumulating a list of metavariables Ξ that the term depends on, to construct
the necessary dependency-respecting permutation. Once the target metavariable
is reached, it can attempt to find a solution by inversion. This implements step
(4.16) in Figure 4.15 (page 80), as described in Subsection 4.2.1 (page 67).

flexTerm :: [Entry]→ Equation→ Contextual ()
flexTerm Ξ q@(M α · ≈) = do

Γ ← fmap snd 〈$〉 ask
popL >>= \ e → case e of

E β (T ,HOLE)
| α ≡ β ∧ α ∈ fmv Ξ → do pushLs (e : _ Xi)

block (Unify q)
| α ≡ β → do pushLs Ξ

tryInvert q T
6 (block (Unify q)>> pushL e)

| β ∈ fmv (Γ ,Ξ , q) → flexTerm (e : Ξ) q
→ do pushR (Right e)

flexTerm Ξ q

A flex-flex unification problem is one where both sides are applied metavari-
ables. As in the general case above, the algorithm proceeds leftwards through the
context, looking for one of the metavariables so it can try to solve one with the
other. If it reaches one of the metavariables and cannot solve for the metavariable
by inversion, it continues (using flexTerm), which ensures it will terminate after
trying to solve for both. For example, consider the case α ti

i ≈ β xj
j where only

xj
j is a list of variables. If it reaches α first then it might get stuck even if it

225

could potentially solve for β. This would be correct if order were important in
the metacontext, for example when implementing let-generalisation as discussed
in Chapter 2. Here it is not, so the algorithm can simply pick up α and carry on.

flexFlex :: [Entry]→ Equation→ Contextual ()
flexFlex Ξ q@(M α · ds ≈ M β · es) = do

Γ ← fmap snd 〈$〉 ask
popL >>= \ e → case e of

E γ (T ,HOLE)
| γ ∈ [α, β] ∧ γ ∈ fmv (Ξ)→ do pushLs (e : Ξ)

block (Unify q)
| γ ≡ α → do pushLs Ξ

tryInvert q T 6 flexTerm [e] (sym q)
| γ ≡ β → do pushLs Ξ

tryInvert (sym q) T 6 flexTerm [e] q
| γ ∈ fmv (Γ ,Ξ , q)→ flexFlex (e : Ξ) q

→ do pushR (Right e)
flexFlex Ξ q

Given a flexible equation whose head metavariable has just been found in
the context, the tryInvert control operator calls invert to seek a solution to the
equation. If it finds one, it defines the metavariable.

tryInvert :: Equation→ Type→ Contextual Bool
tryInvert q@(M α · e ≈ s) T = invert α T e s >>= \m → case m of

Nothing→ return False
Just v → do active (Unify q)

define • α T v
return True

Given a metavariable α of type T , spine e and term t, invert attempts to find
a value for α that solves the equation α · e ≈ t. It will throw an error if the
problem is unsolvable due to an impossible occurrence.

invert :: Nom→ Type→ Bwd Elim→ Tm→ Contextual (Maybe Tm)
invert α T e t | occurCheck True α t = throwError "occur check"

| α /∈ fmv t, Just xs ← toVars e, linearOn t xs = do

b ← local (const •) (typecheck T (λxs. t))
return $ if b then Just (λxs. t) else Nothing
| otherwise = return Nothing

226

Note that the solution λxs. t is typechecked under no parameters, so typechecking
will fail if an out-of-scope variable is used.

The occur check, used to tell if an equation is definitely unsolvable, looks for
occurrences of a metavariable inside a term. In a strong rigid context (where the
first argument is True), any occurrence is fatal. In a weak rigid context (where it
is False), the evaluation context of the metavariable must be a list of variables.

occurCheck :: Bool→ Nom→ Tm→ Bool
occurCheck w α (λ b) = occurCheck w α t

where (, t) = unsafeUnbind b
occurCheck w α (V · e) = getAny $ foldMap

(foldMapElim (Any ◦ occurCheck False α)) e
occurCheck w α (M β · e) = α ≡ β ∧ (w ∨ isJust (toVars e))
occurCheck w α (C c) = getAny $ foldMap (Any ◦ occurCheck w α) c
occurCheck w α (Π S T) = occurCheck w α S ∨ occurCheck w α T ′

where (,T ′) = unsafeUnbind T
occurCheck w α (Σ S T) = occurCheck w α S ∨ occurCheck w α T ′

where (,T ′) = unsafeUnbind T

Here toVars tries to convert a spine to a list of variables, and linearOn determines
if a list of variables is linear on the free variables of a term. Since it is enough
for a term in a spine to be η-convertible to a variable, the etaContract function
implements η-contraction for terms.

linearOn :: Tm→ Bwd Nom→ Bool
linearOn • = True
linearOn t (as :< a) = ¬ (a ∈ fv t ∧ a ∈ as) ∧ linearOn t as

etaContract :: Tm→ Tm
etaContract (λ b) = case etaContract t of

x · (e :< A (V y ′ · •)) | y ≡ y ′,¬ (y ∈ fv e)→ x · e
t ′ → λy. t ′

where (y, t) = unsafeUnbind b
etaContract (x · as) = x · (fmap (mapElim etaContract) as)
etaContract (pair s t) = case (etaContract s, etaContract t) of

(x · (as :< Hd), y · (bs :< Tl)) | x ≡ y, as ≡ bs → x · as
(s′, t ′) → pair s′ t ′

etaContract (C c) = C (fmap etaContract c)

227

toVar :: Tm→ Maybe Nom
toVar v = case etaContract v of V x · • → Just x

→ Nothing

toVars :: Traversable f ⇒ f Elim→ Maybe (f Nom)
toVars = traverse (unA >=> toVar)

where unA (A t) = Just t
unA = Nothing

C.4.2 Intersection

When a flex-flex equation has the same metavariable on both sides, i.e. it has
the form α xi

i ≈ α yi
i where xi

i and yi
i are both lists of variables, the equation

can be solved by restricting α to the arguments on which xi
i and yi

i agree (i.e.
creating a new metavariable β and using it to solve α). This implements step
(4.18) in Figure 4.15 (page 80), as described in Subsection 4.2.2 (page 70).

The flexFlexSame function extracts the type of α as a telescope and calls
intersect to generate a restricted telescope. If this succeeds, it calls instantiate to
create a new metavariable and solve the old one. Otherwise, it leaves the equation
in the context. Twin annotations can be ignored here here because any twins will
have definitionally equal types anyway.

flexFlexSame :: Equation→ Contextual ()
flexFlexSame q@(M α · e ≈ M α · e′) = do

(∆,T)← telescope =<< lookupMeta α
case intersect ∆ e e′ of

Just ∆′ | fv T ⊂ vars ∆′ → instantiate (α,Π∆′.T , \ β → λ∆. β $∗$ ∆)
→ block (Unify q)

Given a telescope and the two evaluation contexts, intersect checks the evaluation
contexts are lists of variables and produces the telescope on which they agree.

intersect :: Telescope→ Bwd Elim→ Bwd Elim→ Maybe Telescope
intersect • • • = return •
intersect (∆ :< (z , S)) (e :< A s) (e′ :< A t) = do

∆′ ← intersect ∆ e e′

x ← toVar s
y ← toVar t
if x ≡ y then return (∆′ :< (z , S)) else return ∆′

intersect = Nothing

228

C.4.3 Pruning

Given a flex-rigid or flex-flex equation, it might be possible to make some progress
by pruning the metavariables contained within it, as described in Subsection 4.2.3
(page 71). The tryPrune function calls pruneTm: if it learns anything from prun-
ing, it leaves the current problem active and instantiates the pruned metavariable.

tryPrune :: Equation→ Contextual Bool
tryPrune q@(M α · e ≈ t) = pruneTm (fv e) t >>= \ u → case u of

d : _ → active (Unify q)>> instantiate d >> return True
[] → return False

Pruning a term requires traversing it looking for occurrences of forbidden
variables. If any occur rigidly, the corresponding constraint is impossible. If
a metavariable is encountered, it cannot depend on any arguments that contain
rigid occurrences of forbidden variables, so it can be replaced by a fresh metavari-
able of restricted type. The pruneTm function generates a list of triples (β,U , f)
where β is a metavariable, U is a type for a new metavariable γ and f γ is
a solution for β. It maintains the invariant that U and f γ depend only on
metavariables defined prior to β in the context.

pruneTm :: Set Nom→ Tm→ Contextual [Instantiation]
pruneTm V (Π S T) = (++) 〈$〉 pruneTm V S 〈∗〉 pruneUnder V T
pruneTm V (Σ S T) = (++) 〈$〉 pruneTm V S 〈∗〉 pruneUnder V T
pruneTm V (pair s t) = (++) 〈$〉 pruneTm V s 〈∗〉 pruneTm V t
pruneTm V (λ b) = pruneUnder V b
pruneTm V (M β · e) = pruneMeta V β e
pruneTm V (C) = return []
pruneTm V (V z · e) | z ∈ V = pruneElims V e

| otherwise = throwError "pruning error"

pruneUnder :: Set Nom→ Bind Nom Tm→ Contextual [Instantiation]
pruneUnder V b = do (x , t)← unbind b

pruneTm (V ∪ {x}) t

pruneElims :: Set Nom→ Bwd Elim→ Contextual [Instantiation]
pruneElims V e = fold 〈$〉 traverse pruneElim e

where
pruneElim (A a) = pruneTm V a
pruneElim (If T s t) = (++) 〈$〉 ((++) 〈$〉 pruneTm V s 〈∗〉 pruneTm V t)

〈∗〉 pruneUnder V T
pruneElim = return []

229

Once a metavariable has been found, pruneMeta unfolds its type as a telescope
Π∆.T , and calls prune with the telescope and list of arguments. If the telescope
is successfully pruned (∆′ is not the same as ∆) and the free variables of T remain
in the telescope, then an instantiation of the metavariable is generated.

pruneMeta :: Set Nom→ Nom→ Bwd Elim→ Contextual [Instantiation]
pruneMeta V β e = do

(∆,T)← telescope =<< lookupMeta β
case prune V ∆ e of

Just ∆′ | ∆′ 6≡ ∆, fv T ⊂ vars ∆′

→ return [(β,Π∆′.T , \ beta′ → λ∆. beta′ $∗$ ∆′)]
→ return []

The prune function generates a restricted telescope, removing arguments that
contain a rigid occurrence of a forbidden variable. This may fail if it is not clear
which arguments must be removed.

prune :: Set Nom→ Telescope→ Bwd Elim→ Maybe Telescope
prune V • • = Just •
prune V (∆ :< (x , S)) (e :< A s) = do

∆′ ← prune V ∆ e
case toVar s of

Just y | y ∈ V , fv S ⊂ vars ∆′ → Just (∆′ :< (x , S))
| fvrig s 6⊂ V → Just ∆′

| otherwise → Nothing
prune = Nothing

A metavariable α can be instantiated to a more specific type by moving left
through the context until it is found, creating a new metavariable and solving for
α. The type must not depend on any metavariables defined after α.

type Instantiation = (Nom,Type,Tm→ Tm)

instantiate :: Instantiation→ Contextual ()
instantiate d@(α,T , f) = popL >>= \ e → case e of

E β (U ,HOLE) | α ≡ β → hole • T (\ t → define • β U (f t))
→ do pushR (Right e)

instantiate d

230

C.4.4 Metavariable simplification

Given the name and type of a metavariable, lower attempts to simplify it by
removing Σ-types, according to the metavariable simplification steps (4.21) and
(4.22) in Figure 4.15 (page 80), as described in Subsection 4.2.4 (page 74).

lower :: Telescope→ Nom→ Type→ Contextual Bool
lower Φ α (Σ S T) = hole Φ S $ \ s →

hole Φ (T{s}) $ \ t →
define Φ α (Σ S T) (pair s t)>>
return True

lower Φ α (Π S T) = do x ← fresh (s2n "x")
splitSig • x S >>= maybe

(lower (Φ :< (x , S)) α (T{var x}))
(\ (y,A, z ,B, s, (u, v))→

hole Φ (Πy :A.Πz :B.T{s}) $ \w →
define Φ α (Π S T) (λx .w $$ u $$ v)>>
return True)

lower Φ α T = return False

Lowering a metavariable needs to split Σ-types (possibly underneath a bunch
of parameters) into their components. For example, y :Πx :X .Σz :S .T splits into
y0 : Πx : X . S and y1 : Πx : X .T{y0 x}. Given the name of a variable and its type,
splitSig attempts to split it, returning fresh variables for the two components of
the Σ-type, an inhabitant of the original type in terms of the new variables and
inhabitants of the new types by projecting the original variable.

splitSig :: Telescope→ Nom→ Type→
Contextual (Maybe (Nom,Type,Nom,Type,Tm, (Tm,Tm)))

splitSig Φ x (Σ S T) = do y ← fresh (s2n "y")
z ← fresh (s2n "z")
return $ Just (y,ΠΦ. S , z ,ΠΦ. (T{var y $∗$ Φ}),

λΦ.pair (var y $∗$ Φ) (var z $∗$ Φ),
(λΦ. var x $∗$ Φ %% Hd,
λΦ. var x $∗$ Φ %% Tl))

splitSig Φ x (Π A B) = do a ← fresh (s2n "a")
splitSig (Φ :< (a,A)) x (B{var a})

splitSig = return Nothing

231

C.4.5 Problem simplification and unification

Given a problem, the solver simplifies it according to the rules in Figure 4.14
(page 79), introduces parameters and calls unify defined below if it is not already
reflexive. In particular, problem simplification removes Σ-types from parameters,
potentially eliminating projections, and replaces twins whose types are defini-
tionally equal with a single parameter. This implements the steps described in
Subsection 4.2.5 (page 75).

solver :: Problem→ Contextual ()
solver (Unify q) = do b ← isReflexive q

unless b (unify q)
solver (All p b) = do

(x , q)← unbind b
case p of

| x /∈ fv q → active q
P S → splitSig • x S >>= \m → case m of

Just (y,A, z ,B, s,)→ solver (∀y :A. ∀z :B. subst x s q)
Nothing → inScope x (P S) $ solver q

S‡T → equal Set S T >>= \ c →
if c then solver (∀x :S . subst x (var x) q)

else inScope x (S‡T) $ solver q

The unify function performs a single unification step: η-expanding elements of
Π or Σ types via the problem simplification steps (4.2) and (4.3) in Figure 4.14
(page 79), or invoking an auxiliary function in order to make progress.

unify :: Equation→ Contextual ()

unify ((f : Π A B) ≈ (g : Π S T)) = do

x ← fresh (s2n "x")
active $ ∀x̂ :A‡S . (f $$ x́ : B{x́}) ≈ (g $$ x̀ : T{x̀})

unify ((t : Σ A B) ≈ (w : Σ C D)) = do

active $ (hd t : A) ≈ (hd w : C)
active $ (tl t : B{hd t}) ≈ (tl w : D{hd w})

unify q@(M α · e ≈ M β · e′)
| α ≡ β = tryPrune q 6 tryPrune (sym q) 6 flexFlexSame q

unify q@(M α · e ≈ M β · e′) = tryPrune q 6 tryPrune (sym q) 6 flexFlex [] q
unify q@(M α · e ≈ t) = tryPrune q 6 flexTerm [] q
unify q@(t ≈ M α · e) = tryPrune (sym q) 6 flexTerm [] (sym q)
unify q = rigidRigid q

232

A rigid-rigid equation (between two non-metavariable terms) can either be de-
composed into simpler equations or it is impossible to solve. For example,
Πx : A.B ≈ Πx : S .T splits into A ≈ S ,B ≈ T , but Πx : A.B ≈ Σx : S .T
cannot be solved. The rigidRigid function implements steps (4.4)–(4.7) from Fig-
ure 4.14 (page 79), as described in Subsection 4.2.5 (page 75). Both unify and
rigidRigid will be called only when the equation is not already reflexive.

rigidRigid :: Equation→ Contextual ()

rigidRigid ((Π A B : Set) ≈ (Π S T : Set)) = do

x ← fresh (s2n "x")
active $ (A : Set) ≈ (S : Set)
active $ ∀x̂ :A‡S . (B{x́} : Set) ≈ (T{x̀} : Set)

rigidRigid ((Σ A B : Set) ≈ (Σ S T : Set)) = do

x ← fresh (s2n "x")
active $ (A : Set) ≈ (S : Set)
active $ ∀x̂ :A‡S . (B{x́} : Set) ≈ (T{x̀} : Set)

rigidRigid (V x w · e ≈ V x ′ w ′ · e′) =
matchSpine x w e x ′ w ′ e′ >> return ()

rigidRigid q | orthogonal q = throwError "Rigid-rigid mismatch"
| otherwise = block $ Unify q

A constraint has no solutions if it equates two orthogonal terms, with different
constructors or variables, as defined in Figure 4.13 (page 76).

orthogonal :: Equation→ Bool
orthogonal ((Π : Set) ≈ (Σ : Set)) = True
orthogonal ((Π : Set) ≈ (B : Set)) = True
orthogonal ((Σ : Set) ≈ (Π : Set)) = True
orthogonal ((Σ : Set) ≈ (B : Set)) = True
orthogonal ((B : Set) ≈ (Π : Set)) = True
orthogonal ((B : Set) ≈ (Σ : Set)) = True
orthogonal ((tt : B) ≈ (ff : B)) = True
orthogonal ((ff : B) ≈ (tt : B)) = True

orthogonal ((Π : Set) ≈ (V · :)) = True
orthogonal ((Σ : Set) ≈ (V · :)) = True
orthogonal ((B : Set) ≈ (V · :)) = True
orthogonal ((tt : B) ≈ (V · :)) = True
orthogonal ((ff : B) ≈ (V · :)) = True

233

orthogonal ((V · :) ≈ (Π : Set)) = True
orthogonal ((V · :) ≈ (Σ : Set)) = True
orthogonal ((V · :) ≈ (B : Set)) = True
orthogonal ((V · :) ≈ (tt : B)) = True
orthogonal ((V · :) ≈ (ff : B)) = True

orthogonal = False

When there are rigid variables at the heads on both sides, proceed through
the evaluation contexts, demanding that projections are identical and unifying
terms in applications. Note that matchSpine returns the types of the two sides,
used when unifying applications to determine the types of the arguments. For
example, if y :Πx :S .T{x} → U then the constraint y s t ≈ y u v will decompose
into (s :S) ≈ (u :S) ∧ (t :T{s}) ≈ (v :T{u}).

matchSpine :: Nom→ Twin→ Bwd Elim→
Nom→ Twin→ Bwd Elim→

Contextual (Type,Type)
matchSpine x w • x ′ w ′ •
| x ≡ x ′ = (,) 〈$〉 lookupVar x w 〈∗〉 lookupVar x ′ w ′

| otherwise = throwError "rigid head mismatch"
matchSpine x w (e :< A a) x ′ w ′ (e′ :< A s) = do

(Π A B,Π S T)← matchSpine x w e x ′ w ′ e′

active $ (a : A) ≈ (s : S)
return (B{a},T{s})

matchSpine x w (e :< Hd) x ′ w ′ (e′ :< Hd) = do

(Σ A B,Σ S T)← matchSpine x w e x ′ w ′ e′

return (A, S)
matchSpine x w (e :< Tl) x ′ w ′ (e′ :< Tl) = do

(Σ A B,Σ S T)← matchSpine x w e x ′ w ′ e′

return (B{V x w · (e :< Hd)},T{V x ′ w ′ · (e′ :< Hd)})
matchSpine x w (e :< If T s t) x ′ w ′ (e′ :< If T ′ s′ t ′) = do

(B,B)← matchSpine x w e x ′ w ′ e′

y ← fresh (s2n "y")
active $ ∀y :B. (T{var y} : Type) ≈ (T ′{var y} : Type)
active $ (s : T{tt}) ≈ (s′ : T ′{tt})
active $ (t : T{ff}) ≈ (t ′ : T ′{ff})
return (T{V x w · e},T ′{V x ′ w ′ · e′})

matchSpine = throwError "spine mismatch"

234

C.4.6 Solvitur ambulando

Constraint solving is started by the ambulando function, which lazily propagates
a substitution rightwards through the metacontext, making progress on problems
where possible. It maintains the invariant that the entries to the left of the
cursor include no active problems. This is not the only possible strategy: indeed,
it is crucial for guaranteeing most general solutions that solving the constraints in
any order would produce the same result. However, it is simple to implement and
often works well with the heterogeneity invariant, because the problems making
a constraint homogeneous will usually be solved before the constraint itself.

ambulando :: Subs→ Contextual ()
ambulando θ = optional popR >>= \ x → case x of

Nothing → return ()
Just (Left θ′) → ambulando (θ ◦ θ′)
Just (Right e)→ case update θ e of

e′@(E α (T ,HOLE))→ do lower • α T 6 pushL e′

ambulando θ
Q Active p → do pushR (Left θ)

solver p
ambulando []

e′ → do pushL e′

ambulando θ

Each problem records its status, which is either Active and ready to be worked
on or Blocked and unable to make progress. The update function applies a sub-
stitution to an entry, updating the status of a problem if its type changes.

update :: Subs→ Entry→ Entry
update θ (Q s p) = Q s′ p′

where p′ = substs θ p
s′ | p ≡ p′ = s
| otherwise = Active

update θ e = substs θ e

For simplicity, Blocked problems do not store any information about when they
may be resumed. An optimisation would be to track the conditions under which
they should become active, typically when particular metavariables are solved or
types become definitionally equal.

235

Appendix D

Selected proofs

This appendix contains details of selected proofs from Chapters 2–6.

D.1 Correctness of unification and type infer-
ence

Lemma 2.6 (Soundness and generality of unification).

(a) If Θ0 ` τ ≡ υ : ∗ a Θ1 then Θ0 v Θ1 is a minimal solution of τ ≡ υ.

(b) If Θ0 |Ξ ` α ≡ τ : ∗ a Θ1 then Θ0,Ξ v Θ1 is a minimal solution of α ≡ τ .

Proof. By induction on the structure of derivations. For each ‘unify’ rule, one
must verify that it gives a solution (i.e. Θ0 v Θ1 and Θ1 ` τ ≡ υ : ∗), and
that this solution is minimal (i.e. given any other solution θ : Θ0 v Θ′ such that
Θ′ ` θ τ ≡ θ υ : ∗, there is a cofactor ζ : Θ1 v Θ′ with θ ≡ ζ · ι).

For each ‘instantiate’ rule one must verify Θ0,Ξ v Θ1, Θ1 ` α ≡ τ : ∗ and
that given any other solution θ : Θ0,Ξ v Θ′ such that Θ′ ` θ α ≡ θ τ : ∗ there is
a cofactor ζ : Θ1 v Θ′ with θ ≡ ζ · ι.

The key idea is that the type variables of Θ0 and Θ1 are the same, and the
definitions made in Θ1 must hold as equations in Θ′ for the problem to be solved,
so the solution θ can be rearranged to produce the necessary cofactor. I consider
some of the more interesting cases.

For the decompose rule, solutions to τ0 → τ1 ≡ υ1 → υ1 are exactly those
that solve τ0 ≡ υ0 ∧ τ1 ≡ υ1, so it gives a minimal solution by the Optimist’s
lemma (Lemma 2.4).

For the skip-semi rule, suppose that θ : Θ0# v Θ′ # Ξ solves α ≡ β, so
Θ′ # Ξ ` θ α ≡ θ β : ∗. Now θ|Θ0 : Θ0 v Θ′ by definition of the v relation, so by

induction there exists ζ : Θ1 v Θ′ with θ ≡ ζ · ι. Then ζ : Θ1# v Θ′ # Ξ is the
required cofactor.

For the inst-skip-semi rule, suppose that θ : Θ0 #Ξ v Θ′ #Ξ′ solves α ≡ τ , so
Θ′ #Ξ′ ` θ α ≡ θ τ : ∗. Now Θ0 declares α by the input conditions (Definition 2.1),
so θ α is a Θ′-type and θ τ is equal to it. Hence θ τ does not depend on any
metavariables in Ξ′. Now all the metavariables declared in Ξ occur in τ , giving
θ : Θ0 # Ξ v Θ′# and hence θ : Θ0,Ξ v Θ′. By induction there exists ζ : Θ1 v Θ′

such that θ ≡ ζ · ι.

Lemma 2.11 (Soundness and generality of type inference). If Θ0 ` t : τ a Θ1,
then Θ0 v Θ1 is a minimal solution to the type inference problem for t with output
τ . Similarly, if Θ0 ` t : σ a Θ1 then Θ0 v Θ1 is a minimal solution to the type
scheme inference problem for t with output σ.

Proof. Proceed by induction on derivations. It is straightforward to show that
Θ0 v Θ1 and Θ1 ` t : τ or Θ1 ` t : σ. The more interesting part is establishing
that the solution is minimal, for which suppose θ : Θ0 v Θ′ is a solution, and
exhibit a cofactor ζ : Θ1 v Θ′.

The Generalist’s lemma proves the property required for the infer-gen rule.
For the infer-var rule, suppose x : (∀Ξ.υ) ∈ Θ0, θ : Θ0 v Θ′ and Θ′ ` x :υ′.

By inversion, the proof must consist of the var rule, so Θ′ ` θ (∀Ξ.υ) � υ′.
Thus there is some substitution ζ : Θ′, θΞ v Θ′ such that Θ′ ` ζ (θ υ) ≡ υ′ : ∗
and ζ is the identity on Θ′. Weakening θ gives θ′ : Θ0,Ξ v Θ′, θΞ and hence
ζ · θ′ : Θ0,Ξ v Θ′ is the required cofactor.

For the infer-lam rule, suppose θ : Θ0 v Θ′ and Θ′ ` λx .t : υ → τ ′, then
Θ′, x :υ ` t : τ ′ by inversion. Now (θ, υ/α) : Θ0, α :∗, x :α v Θ′, x :υ so induction
on the first premise gives ζ : Θ1, x :α,Ξ v Θ′, x :υ such that (θ, υ/α) ≡ ζ · ι and
Θ′ ` τ ′ ≡ ζ τ : ∗. Thus ζ : Θ1,Ξ v Θ′ is the required cofactor.

For the infer-app rule, the Optimist’s lemma does not directly apply because
it does not apply to problems with outputs, but the same reasoning applies.1

Suppose θ : Θ0 v Θ′ and Θ′ ` s t : τ . By inversion, Θ′ ` s : τ ′ → τ and Θ′ ` t : τ ′

for some τ ′. Thus induction on the first premise gives ζ : Θ1 v Θ′ such that
θ ≡ ζ · ι and Θ′ ` ζ υ ≡ τ ′ → τ : ∗. Now induction on the second premise gives
ζ ′ : Θ2 v Θ′ such that ζ ≡ ζ ′ · ι and Θ′ ` ζ ′ υ′ ≡ τ ′ : ∗. Since there is a solution
(ζ ′, τ/α) : Θ2, α : ∗ v Θ′ such that Θ′ ` (ζ ′, τ/α) υ ≡ (ζ ′, τ/α) (υ′ → α) : ∗,
Lemma 2.6 applied to the third premise gives ζ ′′ : Θ3 v Θ′ with (ζ ′, τ/α) ≡ ζ ′′ · ι.
Now θ ≡ ζ ′′ · ι so ζ ′′ is the required cofactor.

1The lemma can be generalised to apply to this rule (Gundry et al., 2010), but I omit the
more general formulation here for simplicity of presentation.

237

For the infer-let rule, suppose θ : Θ0 v Θ′ gives Θ′ ` let x =s in t :τ ′, then
by inversion, Θ′#Ξ′ ` s :υ and Θ′, x : (∀Ξ′.υ) ` t :τ ′ for some υ. Now Θ′ ` s : (∀Ξ′.υ)
so by induction on the first premise there must be some ζ : Θ1 v Θ′ such that
θ ≡ ζ · ι and Θ′ ` ζ σ � (∀Ξ′.υ). Now ζ : Θ1, x : σ v Θ′, x : ζ σ so by induction
on the second premise there must be some ζ ′ : Θ2, x :σ,Ξ v Θ′, x : ζ σ such that
ζ ≡ ζ ′ · ι and Θ′, x : ζ σ ` ζ ′ τ ≡ τ ′ : ∗. Thus ζ ′ : Θ2,Ξ v Θ′ is the required
cofactor since θ ≡ ζ ′ · ι and Θ′ ` ζ ′ τ ≡ τ ′ : ∗.

Lemma 2.12 (Completeness of type inference).

(a) If (Θ0, t) is a type inference problem with solution (θ : Θ0 v Θ′, υ), then
Θ0 ` t : τ a Θ1 for some Θ1 and τ .

(b) If (Θ0, t) is a scheme inference problem with solution (θ : Θ0 v Θ′, σ′), then
Θ0 ` t : σ a Θ1 for some Θ1 and σ.

Proof. Proceed by induction on the derivation of Θ′ ` t : υ or Θ′ ` t : σ′ in the
transformed declarative system (Figure 2.8, page 25).

For the var case, Θ′ 3 x : σ so Θ0 3 x : σ0 for some σ0 by definition of
information increase, and hence the infer-var rule applies.

For the lam case, (θ, τ/α) : Θ0, α : ∗, x : α v Θ′, x : τ with υ is a solution to
the type inference problem for t, so by induction, Θ0, α :∗, x :α ` t : τ ′ a Θ′1 for
some Θ′ and τ ′. Moreover, Θ′1 = Θ1, x :α,Ξ by soundness of type inference and
they definition of information increase, so the infer-lam rule applies.

For the app case, inversion gives Θ′ ` s : τ ′ → τ and Θ′ ` t : τ ′. Two appeals
to the inductive hypothesis show that inference succeeds for s and t, with types
υ and υ′. Now generality of type inference gives ζ : Θ2 v Θ′ such that θ ≡ ζ · ι
and Θ′ ` ζ υ ≡ τ ′ → τ ∧ ζ υ′ ≡ τ ′. Then (ζ, τ/α) : Θ2, α : ∗ v Θ′ and
Θ′ ` ζ υ ≡ ζ υ′ → τ : ∗ so Lemma 2.8 shows that the infer-app rule applies.

For the let case, observe that Θ′ ` s : ∀Ξ.υ so by induction using part (b),
Θ0 ` s : σ a Θ1 for some Θ1 and σ. By generality of type inference, there exists
ζ : Θ1 v Θ′ such that Θ′ ` ζ σ � ∀Ξ.υ. Note that ζ : Θ1, x :σ v Θ′, x : ζ σ. Now
Θ′, x : ∀Ξ.υ ` t : τ and hence Θ′, x : ζ σ ` t : τ , so the infer-let rule applies by
induction.

In part (b), suppose θ : Θ0 v Θ′ is a solution to the scheme inference problem
for t, with output ∀Ξ′.υ. Then Θ′ # Ξ′ ` t :υ. Now θ : Θ0# v Θ′ # Ξ′ so induction
using part (a) gives Θ0# ` t : τ a Θ1#Ξ and hence the infer-gen rule applies.

238

D.2 Correctness of abelian group unification

Lemma 3.2 (Soundness and generality of abelian group unification). If the group
unification algorithm succeeds with Θ0 ‖Υ ` ν ≡ 1 : U a Θ1, then Θ0, Υ v Θ1 is
a minimal solution of ν ≡ 1:U .

Proof. Proceed by induction on derivations. For soundness, it is easy to verify
that θ : Θ0, Υ v Θ1 and Θ1 ` θ ν ≡ 1 : U . Now consider generality for each
rule in Figure 3.5 (page 37). In each case, suppose θ : Θ0, Υ v Θ′ is such that
Θ′ ` ν ≡ 1:U , and exhibit a cofactor ζ : Θ1 v Θ′.

For u-trivial, the result is obvious.
For u-skip-semi, if Υ is empty then the result is straightforward. Otherwise,

Υ contains a single unknown variable β : U ; let ν ≡ βk ∗ ν ′. Moreover, suppose
θ : Θ0 # β : U v Θ′ # Ξ is such that Θ′ # Ξ ` θ (βk ∗ ν ′) ≡ 1. Rearranging gives
Θ′ # Ξ ` (θ β)k ≡ (θ ν ′)−1 but θ ν ′ is defined over Θ′ so θ β must be defined over
Θ′. Thus θ : Θ0, β : U v Θ′ and the result follows by the inductive hypothesis.

For u-skip-ty, u-skip-tmand u-subs, it is straightforward to check that the
inductive hypothesis gives the required cofactor.

For u-define, suppose θ : Θ0, α : U , Υ v Θ′ is such that Θ′ ` θ (αk ∗ νk) ≡ 1.
Then Θ′ ` (θ (α ∗ ν))k ≡ 1 and hence Θ′ ` θ (α∗ν) ≡ 1 for the free abelian group.
Thus Θ′ ` θ α ≡ θ (ν−1) and so θ ≡ θ · [ν−1/α] :Θ0, Υ v Θ′.

For u-reduce, apply the isomorphism lemma (Lemma 2.5, page 18). The
inductive hypothesis gives that Θ0, Υ, β : U v Θ1 is a minimal solution of
βk ∗ Rk(ν) ≡ 1. Moreover [α ∗ Qk(ν)−1/β] : Θ0, Υ, β : U v Θ0, α : U , Υ is an
isomorphism with inverse [β ∗ Qk(ν)/α] : Θ0, α : U , Υ v Θ0, Υ, β : U , so the iso-
morphism lemma gives that Θ0, α : U , Υ v Θ1, α := β ∗ Qk(ν) : U is a minimal
solution of αk ∗ ν ≡ 1.

For u-collect, appeal directly to the inductive hypothesis.

Lemma 3.3 (Completeness of abelian group unification). If ν is a well-formed
unit of measure in Θ0, and there is some θ : Θ0 v Θ′ such that Θ′ ` θ ν ≡ 1 :U ,
then the algorithm produces Θ1 such that Θ0 ‖ · ` ν ≡ 1 : U a Θ1.

Proof. First, establish termination of the rules when viewed as an algorithm,
where hypotheses correspond to recursive calls. Termination is by the lexico-
graphic order on the total length of the context (including Υ), the maximum
power of a variable in the expression being unified, and the length of the first
part of the context (excluding Υ). Only the u-reduce and u-collect rules do

239

not decrease the total length on recursive calls; moreover, u-reduce decreases
the maximum power of a variable and u-collect decreases the length of the first
part of the context. Note that the final result may be longer than the original
context, due to u-reduce.

The algorithm terminates, so proceeding by induction on the call graph allows
reasoning about completeness. By inspection of the rules, observe that only two
possible cases are not covered: either ν is a constant that is not equal to 1, or ν
contains exactly one variable α, and the power of α does not divide the powers
of the constants. In either case, there are no possible solutions of the unification
problem ν ≡ 1:U .

Finally, note that each rule preserves solutions: that is, if the initial problem
(conclusion of the rule) has a solution then the rewritten problem (hypothesis of
the rule) must also have a solution. Hence failure of the algorithm indicates that
the original problem had no solutions.

Lemma 3.4 (Soundness and generality of type unification).

(a) If Θ0 ` τ ≡ υ : ∗ a Θ1, then Θ0 v Θ1 is a minimal solution of τ ≡ υ :∗.

(b) If Θ0 |Ξ ` α ≡ τ : ∗ a Θ1, then Θ0,Ξ v Θ1 is a minimal solution of α ≡ τ :∗.

Proof. Proceed by induction on the structure of derivations, as in Lemma 2.6
(page 22). The majority of the cases are similar to the previous proof, but
the unit rule is new, the inst rule has been modified. The inst-skip-semi rule
requires a more subtle generality proof, in order to verify that instantiation moves
only genuine dependencies. The input conditions ensure that units always occur
in the form F〈α〉, so it is obvious that α is a dependency.

For the unit rule, the result follows from the soundness and generality of
abelian group unification (Lemma 3.2).

For the inst rule, use the Optimist’s lemma (Lemma 2.4, page 18), which
states that the minimal solution to a conjunction of problems is found by ‘op-
timistically’ solving the first problem in the original context, then solving the
second problem in the resulting context. This rule fits the pattern as solutions
to α ≡ τ{ νi

i } :∗ are the same as solutions to (α ≡ τ{ βi
i } :∗) ∧ βi ≡ νi :U i up

to the equational theory.
Recall the inst-skip-semi rule

Θ0 |Ξ ` α ≡ τ : ∗ a Θ1

Θ0 # |Ξ ` α ≡ τ : ∗ a Θ1# ,

240

and suppose θ : Θ0 #Ξ v Θ′ #Ξ′ is such that Θ′ #Ξ′ ` θ α ≡ θ τ :∗. Now α :∗ ∈ Θ0

by the conditions for the algorithmic judgment, so θ α is a Θ′-type and θ τ is
equal to it. In the previous proof, I argued that θ τ could not depend on Ξ′, but
this does not hold for the equational theory of abelian groups, because equivalent
expressions can have different sets of free variables. However, if β : U ∈ Ξ then
F〈β〉 is a subterm of τ , so F〈θ β〉 is a subterm of θ τ and hence there is some of
Θ′-unit ν with θ β ≡ ν. Similarly, if γ : ∗ ∈ Ξ then γ ∈ fmv(τ) so θ γ is defined
over Θ′. Hence there is some θ′ : Θ0 # Ξ v Θ′# with θ ≡ θ′, so θ′ : Θ0,Ξ v Θ′

and by induction there exists ζ : Θ1 v Θ′ as required.

Lemma 3.5 (Completeness of type unification).

(a) If the types υ and τ are well-formed in Θ0 and there is some θ : Θ0 v Θ′ with
Θ′ ` θ υ ≡ θ τ :∗, then unification produces Θ1 such that Θ0 ` υ ≡ τ : ∗ a Θ1.

(b) Moreover, if θ : Θ0,Ξ v Θ′ is such that Θ′ ` θ α ≡ θ τ : ∗ and the input
conditions (Definition 3.1) are satisfied, then there is some context Θ1 such
that Θ0 |Ξ ` α ≡ τ : ∗ a Θ1.

Proof. First establish that the system terminates, if viewed as an algorithm with
inputs Θ0 (and Ξ), υ (or α) and τ , giving outputs Θ1 and θ. The ‘unify’ judg-
ments terminate because each recursive call removes a type metavariable from the
context, decomposes the types or removes a unit metavariable. The ‘instantiate’
judgments either shorten the whole context or the part of the context before the
bar. Note that the inst rule may add unit metavariables, but a type variable will
be removed from the context by instantiation. Only the decompose rule makes
more than one recursive call to type unification, and it decomposes types so it
does not matter that the intermediate context may have more unit metavariables.

Now proceed by structural induction on the call graph, observing that each
rule in turn preserves solutions, and that all (potentially solvable) cases are
covered. The only cases not covered are rigid-rigid mismatches (e.g. unifying
υ → τ with F〈ν〉) and the flex-rigid problem α ≡ τ in context Θ0, α :∗,Ξ where
α ∈ fmv(τ). The latter has no solutions because the occurs check fails (if α is
in Ξ then the conditions of the lemma ensure τ depends on it), as in Lemma 2.8.
The algorithm may also fail in abelian group unification, for which completeness
is by Lemma 3.3.

241

D.3 Correctness of Miller pattern unification

D.3.1 Consistency of the unification logic

To prove consistency of the unification logic, as described in Section 4.3 (page
81), it is enough to show that every derivation has a normal form.

Lemma 4.9. If Θ is solved, Θ |Γ ` P and δ is a substitution from Γ to ∆ that
identifies twins, then Θ |∆ ` δ P is.

Proof. By induction on the derivation of Θ |Γ ` P.

Case
Θ |Γ ` ctx

Θ |Γ ` >
. Trivial.

Case
Θ |Γ ` ⊥ Θ |Γ ` P wf

Θ |Γ ` P
. By induction, Θ |∆ ` ⊥ is, which is

impossible.

Case
Θ |Γ, x :S ` P

Θ |Γ ` ∀x :S .P
. Θ |∆, x :δ S ` δ P is follows from the inductive hypoth-

esis, and hence Θ |∆ ` ∀x :δ S . δ P is.

Case

Θ |Γ ` (S :Type) ≈ (T :Type)
Θ |Γ, x̂ :S‡T ` P

Θ |Γ ` ∀x̂ :S‡T .P
. Similarly to the previous case, induc-

tion gives Θ |∆ ` Type 3 δ S ≡[U]≡ δT and Θ |∆, x : U ` δ P{x , x} is, and
hence Θ |∆ ` ∀x̂ :δ S‡δT . δ P is.

Case

Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ, x :U ` P{x , x}

Θ |Γ ` ∀x̂ :S‡T .P
. Similar to the previous case.

Case

Θ |Γ ` ∀x :S .P
Θ |Γ ` S 3 s

Θ |Γ ` P{s}
. By induction, Θ |∆ ` ∀x :δ S . δ P is, so inversion gives

Θ |∆, x :δ S ` δ P is. Then Θ |∆ ` δ P{s} is by the substitution lemma.

242

Case

Θ |Γ ` ∀x̂ :S‡T .P
Θ |Γ ` Type 3 S ≡[U]≡ T
Θ |Γ ` U 3 u

Θ |Γ ` P{u, u}
. By induction, Θ |∆ ` ∀x̂ : δ S‡δT . δ P is,

so Θ |∆ ` Type 3 δ S ≡[U]≡ δT and Θ |∆, x : U ` δ P{x , x} is by inversion.
Then Θ |∆ ` U 3 δ u so substitution gives Θ |∆ ` δ P{δ u, δ u} is.

Case
Θ 3? P Θ |Γ ` ctx

Θ |Γ ` P
. P is solved, so use Lemma 4.7 (page 81).

Conjunction introduction and elimination. Straightforward appeal to the
inductive hypotheses.

Case
Θ |Γ ` Πx :A.B ≈ Πx :S .T

Θ |Γ ` A ≈ S ∧ ∀x̂ :A‡S .B{x́} ≈ T{x̀}
. The inductive hypothesis gives

Θ |∆ ` Πx : δA. δB ≈ Πx : δ S . δT is so inversion using the definition of is gives
Θ |∆ ` Set 3 Πx : δA. δB ≡ Πx : δ S . δT . Then inversion on the definitional
equality gives Θ |∆ ` Set 3 δA ≡[U]≡ δB and Θ |∆, x : U ` Set 3 δB ≡ δT .
Thus Θ |∆ ` δA ≈ δB ∧ ∀x̂ :δ S‡δT . δB{x́} ≈ δT{x̀} is.

Case
Θ |Γ ` Σx :A.B ≈ Σx :S .T

Θ |Γ ` A ≈ S ∧ ∀x̂ :A‡S .B{x́} ≈ T{x̀}
. Similar to the previous case.

Reflexivity, symmetry and transitivity. By Lemma 4.1 (page 65) and the
definition of Θ |∆ ` (s :S) ≈ (t :T) is.

Case
Γ 3 x̂ :S‡T Θ |Γ ` ctx

Θ |Γ ` (x́ :S) ≈ (x̀ :T)
. Here δ identifies twins, so it must be the

case that Θ |∆ ` (δ x́ :δ S) ≈ (δ x̀ :δT) is.

Congruence rules (Figure 4.7, page 62). Each congruence rule corresponds
to a rule of the definitional equality, except for the presence of twins. The hetero-
geneity invariant means that the types of twins are provably equal, so induction
means they are definitionally equal and can be replaced with a single variable.

243

D.3.2 Soundness

If twins have definitionally equal types, they can be replaced with a single variable:

Lemma D.1. Suppose Θ |Γ ` Type 3 A ≡[U]≡ S . Then Θ |Γ ` ∀x̂ :A‡S .P if
and only if Θ |Γ ` ∀x :U .P{x , x}.

Proof. For the forward direction, observe that Θ |Γ, y : U ` ∀x̂ : A‡S .P and in-
stantiate this with (y, y)/x̂ to get Θ |Γ, y :U ` P{y, y}, so Θ |Γ ` ∀y :U .P{y, y}.
For the reverse direction, if Θ |Γ ` ∀x : U .P{x , x} then Θ |Γ, y : U ` ∀x :
U .P{x , x} so Θ |Γ, y : U ` P{y, y} and hence Θ |Γ ` ∀x̂ : S‡T .P{s, t} by an
inference rule.

The following lemma justifies decomposition of rigid-rigid equations between
eliminated variables, which is part of the soundness of problem decomposition.

Lemma D.2. Suppose x · e ./ x′ · e′ 7→ P, Θ |Γ ` x · e ∈ S and Θ |Γ ` x′ · e′ ∈ S ′.
Then Θ |Γ ` P wf , and if Θ |Γ ` P then Θ |Γ ` x · e ≈ x′ · e′.

Proof. Prove both parts simultaneously by induction on e.

All the judgments are insensitive to η-contraction:

Lemma D.3.

(a) If Θ |Γ ` T 3 t{λx .n x} then Θ |Γ ` T 3 t{λx .n x} ≡ t{n}.

(b) If Θ |Γ ` T 3 t{(n hd, n tl)} then Θ |Γ ` T 3 t{(n hd, n tl)} ≡ t{n}.

(c) If Θ |Γ{λx .n x} ` P{λx .n x} then Θ |Γ{n} ` P{n}.

(d) If Θ |Γ{(n hd, n tl)} ` P{(n hd, n tl)} then Θ |Γ{n} ` P{n}.

(e) If Θ |Γ{λx .n x} ` P{λx .n x} is then Θ |Γ{n} ` P{n} is.

(f) If Θ |Γ{(n hd, n tl)} ` P{(n hd, n tl)} is then Θ |Γ{n} ` P{n} is.

(g) If Θ |Γ{λx .n x} ` P{λx .n x}wf and Θ |Γ{n} ` P{n} then
Θ |Γ{λx .n x} ` P{λx .n x}.

(h) If Θ |Γ{(n hd, n tl)} ` P{(n hd, n tl)}wf and Θ |Γ{n} ` P{n} then
Θ |Γ{(n hd, n tl)} ` P{(n hd, n tl)}.

Proof. Parts (a) and (b) are by structural induction on derivations. The remain-
ing parts follow from them by induction on derivations, using context conversion
(Lemma 4.5) and conversion (Lemma 4.6).

244

The problem decomposition operation, summarised in Figure 4.14 (page 79),
is sound in that it preserves well-formedness and provability of problems:

Lemma 4.12. If Θ |Γ ` P wf and P Z⇒ Q then

(a) Θ |Γ ` Q wf , and

(b) Θ |Γ ` Q implies Θ |Γ ` P.

Proof of part (a). For reflexivity (4.1), Q is trivial and hence well-formed.
For η-expanion of functions (4.2), Θ |Γ ` Πx : A.B ≈ Πx : S .T from the

definition of problem well-formedness, so Θ |Γ ` A ≈ S ∧∀x̂ :A‡S .B{x́} ≈ T{x̀}
by injectivity. The case of η-expansion of pairs (4.3) is similar.

For rigid-rigid decomposition of equations between Π-types (4.4) or Σ-types
(4.5), the second component of the conjunction is well-formed because the first
component may be assumed as a hypothesis.

For rigid-rigid decomposition of variable applications (4.6), use Lemma D.2.
For rigid-rigid mismatch (4.7), Q is false and hence well-formed.
For η-contraction of subterms (4.8), (4.9), use Lemma D.3.
The cases that drop unused parameters or twins (4.10)–(4.13) correspond to

proving admissibility for appropriate forms of strengthening.
Simplification of identical twins (4.14) and Σ-splitting of parameters (4.15)

give well-formed results by the substitution lemma (Lemma 4.1, page 65).

Proof of part (b). For reflexivity (4.1), P holds definitionally.
For the steps that perform η-expansion and rigid-rigid decomposition of Π or

Σ-types (4.2)–(4.5), in each case, P follows from Q by a single application of the
appropriate congruence rule from Figure 4.7.

For rigid-rigid decomposition of variable applications (4.6), use Lemma D.2.
For rigid-rigid mismatch (4.7), the proof of Q = ⊥ can be eliminated to

produce a proof of P.
For η-contraction steps (4.8) and (4.9), use Lemma D.3.
The cases that drop unused parameters or twins (4.10)–(4.13) correspond to

proving admissibility for appropriate forms of weakening.
Lemma D.1 proves the required property for simplification of twins (4.14).
For Σ-splitting of parameters (4.15), instantiating Q with λ∆.x ∆ hd for y and

λ∆.x ∆ tl for z gives the P (up to uses of surjective pairing, using Lemma D.3).

245

Lemma D.4 (Soundness of pruning). Suppose Θ = Θ0, β :Π∆.T ,Θ1.

(a) If Θ ` mctx and pruneV ∆ ti
i 7→ ∆′ then Θ0 |∆′ ` ctx, vars(∆′) ⊂ vars(∆).

(b) If Θ ` mctx and pruneTmV t 7→ (β,∆′) then Θ0 | · ` Type 3 Π∆′.T and
Θ0, γ :Π∆′.T | · ` Π∆.T 3 λ∆.γ∆′.

Proof. Part (a) is by induction on the definition of prune, observing that the
bindings in ∆′ are a subset of those in ∆, and that prune retains a binding x : S
only if the free variables of S have been retained in ∆′. Part (b) then follows
from part (a), and the fact that pruneTm checks that fv(T) ⊂ vars(∆′), so the
type Π∆′.T is well-formed.

Lemma 4.13. If Θ ` mctx and Θ 7→ Θ′ then ι :Θ v Θ′.

Proof. By induction on the step taken.
For inversion (4.16), ι :Θ, α : T ,Θ v Θ,Θ0, α := λ xi

i .t : T ,Θ1 since Θ0,Θ1 is
a dependency-respecting permutation of Θ and the solution for α is well-typed.
Moreover ∀Γ. α xi

i ≈ t holds since α xi
i ≡ (λ xi

i .t) xi
i ≡ t.

For occurs check failure (4.17), the result is trivial since any problem is true
in a failed metacontext.

For equation solving by intersection (4.18), observe that ∀Γ. α xi
i ≈ α yi

i

holds since α xi
i ≡ (λ∆.β∆′) xi

i ≡ β∆′ by the definition of intersection, and
similarly α yi

i ≡ (λ∆.β∆′) yi
i ≡ β∆′.

For pruning (4.19), use Lemma D.4.
For pruning failure (4.20), the result is trivial since Θ′ is failed.
For Σ-splitting (4.21), it suffices to check that if Θ | · ` Type 3 Π∆.Σx :S .T

then Θ | · ` Type 3 Π∆. S ; Θ, α0 : Π∆. S | · ` Type 3 Π∆.T{α0 ∆} and
Θ, α0 :Π∆. S , α1 :Π∆.T{α0 ∆} | · ` Π∆.Σx :S .T 3 λ∆.(α0 ∆, α1 ∆).

For uncurrying (4.22), a similar check is needed.
For problem decomposition (4.23), Lemma 4.12 gives that Θ, ?∀Γ.P ` mctx

and P Z⇒ Q implies Θ, ?∀Γ.Q | · ` ∀Γ.P, since Θ, ?∀Γ.Q |Γ ` Q.
For conjunction splitting (4.24) and removing trivial problems (4.25), the

result is trivial.
For the symmetry step (4.26), the result follows by induction and symmetry

of the definitional equality (Lemma 4.4).
For the suffix step (4.27), observe that if θ : Θ v Θ′ and Θ,Θ0 ` mctx then

Θ′, θΘ0 ` mctx and weakening means that (θ, ι) :Θ,Θ0 v Θ′, θΘ0.

246

D.3.3 Generality

I will need standard no confusion and no cycle results for the definitional equality,
in order to prove that the steps that reject impossible equations are most general.

Lemma D.5 (No confusion). If s ⊥⊥ t then there are no Θ and Γ such that
Θ |Γ ` T 3 s ≡ t. Moreover, if s ⊥⊥ t then θ s ⊥⊥ θ t for any metasubstitution θ.

Proof. By induction on the derivation of s ⊥⊥ t, and inversion on the definitional
equality relation for the first part.

Lemma D.6 (No cycle). Suppose t contains a strong rigid occurrence of α ti
i,

or a rigid occurrence of α yi
i. Then there are no Θ, Γ, θ and T such that

Θ |Γ ` T 3 θ (α xi
i) ≡ θ t.

Proof. Suppose otherwise, and without loss of generality assume that θ substi-
tutes λ xi

i .s for α, so θ (α xi
i) = s. If α ti

i occurs strong rigidly (under a canonical
constructor such as Π) in t, then [ti/xi

i] s = [ti/xi
i] (θ t) occurs strong rigidly in

θ t. But substitution cannot remove strong rigid occurrences of subterms, so re-
peating this observation shows that s contains an infinitely deep tree of canonical
constructors, which is a contradiction.

If α yi
i occurs rigidly (under a canonical constructor or variable) in t, then

[yi/xi
i] s occurs rigidly in θ t. Now renaming does not change the size of a term,

so s is the same size as a subterm of itself, which is a contradiction.

Lemma D.7. If Θ |Γ ` T 3 s ≡ t then fv(s) = fv(t).

Proof. By induction on the derivation.

Lemma 4.15 (Generality of problem decomposition). If Θ |Γ ` P wf , the meta-
substitution θ :Θ, ?∀Γ.P v Θ′ is a solution and P Z⇒ Q, then θ :Θ, ?∀Γ.Q v Θ′.

Proof. Lemma 4.2 (page 65) implies Θ′ | · ` θ (∀Γ.P), so Θ′ | · ` θ (∀Γ.P) is by
Corollary 4.10 (page 82). Now proceed by case analysis on P Z⇒ Q, supposing
that θ (∀Γ.P) is solved and showing that θ (∀Γ.Q) is solved. Without loss of
generality assume that Γ contains no twins,2 so suppose Θ′ | θΓ ` P is and show
that Θ′ | θΓ ` Q is.

For reflexivity (4.1), Q is trivial.
For the η-expansion and rigid-rigid decomposition steps (4.2)–(4.6), each case

follows from inversion on the definitional equality: for example, consider the rule
2By definition, a problem involving twins is solved if the types are equal and the correspond-

ing problem without twins is solved.

247

for Π-types (4.4). If Θ′ | θΓ ` Set 3 Πx :θA. θB ≡[Πx :U .V]≡ Πx :θ S . θT then
Θ′ | θΓ ` Set 3 θA ≡[U]≡ θ S and Θ′ | θΓ, x : U ` Set 3 θB ≡[V]≡ θT by
inversion. Hence Θ′ | · ` θ (∀Γ.A ≈ S ∧ ∀x̂ :A‡S .B{x́} ≈ T{x̀}) is.

For the rigid-rigid mismatch step (4.7), observe that metasubstitution cannot
remove rigid differences, and rigidly different terms cannot be definitionally equal,
by Lemma D.5. Thus there can be no solution θ.

For the η-contraction steps (4.8) and (4.9), use Lemma D.3.
The cases that drop unused parameters or twins (4.10)–(4.13) correspond to

proving admissibility for appropriate forms of strengthening.
For simplification of twins (4.14), there is nothing to prove, as the definition

of ∀x̂ :S‡T .P is means Θ |Γ ` Type 3 S ≡[U]≡ T and ∀x :U .P{x , x} is.
For Σ-splitting of parameters (4.15), use Lemma 4.7 (page 81).

Lemma D.8 (Generality of pruning). If pruneTm (fv(e)) t 7→ (β,∆′) and there
is some θ :Θ, β :Π∆.T ,Θ′ v Θ1 such that Θ1 | θΓ ` U 3 θ (α · e) ≡ θ t, then there
exists ζ :Θ, γ :Π∆′.T , β := λ∆.γ∆′ :Π∆.T ,Θ′, ?∀Γ. α · e ≈ t v Θ1 with θ ≡ ζ · ι.

Proof. Let θ = (θ0, s/β, θ1) and observe that s ≡ λ∆.u up to η-conversion. To
see that fv(u) ⊂ vars(∆′), suppose otherwise, i.e. assume xj ∈ fv(u)\vars(∆′). By
definition of pruning there is some subterm β ti

i of t such that pruneV ∆ ti
i 7→ ∆′.

Thus θ t contains some θ tj with fvrig(θ tj) 6⊂ V . Hence fv(θ t) 6⊂ fv(θ (α ·e)), which
contradicts Lemma D.7. Thus fv(u) ⊂ vars(∆′), so the cofactor ζ can be taken to
be (θ0, (λ∆′.u)/γ, (λ∆.u)/β, θ1).

Theorem 4.16 (Generality). If Θ0 ` mctx, the metasubstitution θ :Θ0 v Θ′ is
a solution and Θ0 7→ Θ1 then there exists a cofactor ζ :Θ1 v Θ′ such that θ ≡ ζ ·ι.

Proof. By induction on the step taken. In each case, construct a suitable cofactor
ζ. If the induced metasubstitution ι :Θ0 v Θ1 is an isomorphism, its inverse can
be composed with θ to obtain the required cofactor (Lemma 2.5, page 18).

For equation solving by inversion (4.16), let ζ be the appropriate permutation
of θ. Observe that θ is a solution so Θ′ | · ` θ (∀Γ. α xi

i ≈ t) is and hence
Θ′ | θΓ ` T 3 (θ α) xi

i ≡ θ t. Then Θ′ | · ` Π∆.T 3 θ α ≡ θ (λ xi
i .t) by

congruence of λ, η-expansion and strengthening, so θ ≡ ζ · ι.
For occurs check failure (4.17), there can be no solution θ by Lemma D.6.
For equation solving by intersection (4.18), Θ′ | · ` θ (∀Γ. α xi

i ≈ α yi
i) is

implies Θ′ | θΓ ` T 3 (θ α) xi
i ≡ (θ α) yi

i . Up to η, θ α is of the form λ∆.t,
and any variable bound in ∆ corresponding to distinct variables in xi

i and yi
i

248

must not occur in t, as the above definitional equality would fail. Hence ζ can
substitute λ∆′.t for β.

For pruning (4.19), use Lemma D.8.
For pruning failure (4.20), observe that metasubstitution cannot add free

variables (i.e. fv(θ s) ⊂ fv(s)) or remove rigid occurrences of free variables (i.e.
fvrig(s) ⊂ fvrig(θ s)), so the existence of a solution would contradict Lemma D.7.

For Σ-splitting (4.21), the induced metasubstitution is an isomorphism, with
the inverse given by substituting λ∆.α hd for α0 and λ∆.α tl for α1.

Similarly, uncurrying (4.22) induces an isomorphism (with the inverse given
by currying).

For problem decomposition (4.23), Lemma 4.15 shows that ζ = θ suffices.
For conjunction splitting (4.24) and removal of trivial problems (4.25), the

induced metasubstitution is an isomorphism.
For the symmetry step (4.26), the result follows from the inductive hypothesis

and the fact that definitional equality is symmetric.
For the suffix step (4.27), the result follows by induction.

D.3.4 Partial completeness

Lemma 4.17. Suppose Θ is a well-formed metacontext in the pattern fragment
that is not solved or failed. Then Θ 7→ Θ′ for some Θ′ in the pattern fragment.

Proof. By case analysis on the first unsolved problem in Θ, using step (4.27) to
skip later problems. If the first problem is a conjunction, step (4.24) applies. If
not, it is of the form ∀Γ. (s : S) ≈ (t : T). Without loss of generality, assume
that Γ contains no twins (otherwise they can be removed by step (4.14)). Now
Θ |Γ ` (S : Type) ≈ (T : Type) by the heterogeneity invariant, and hence
Θ |Γ ` Type 3 S ≡ T by Corollary 4.10. In particular, fv(S) = fv(T) by
Lemma D.7.

If β · e′ is a subterm of s or t, the pattern condition means that e′ consists
only of projections and applications to variables. But any projections may be
eliminated by the lowering step (4.21), so assume it includes only variables.

Now consider the possible cases for s and t. If they are identical, then step
(4.1) removes the reflexive equation. If one of them is a function or pair, then
the appropriate η-expansion step (4.2) or (4.3) applies.

If they are both rigid, then either the heads match so one of the decomposition
steps (4.4)–(4.6) applies, or they do not and the algorithm fails with (4.7).

249

Otherwise, one of them is flexible. Suppose without loss of generality, using
the symmetry step (4.26) if necessary, that s = α xi

i , and consider the possible
cases for t.

If t = α yi
i then step (4.18) applies: intersection always succeeds, and the

condition on the free variables must hold since S and T have the same free
variables, so any variable removed by intersection cannot occur in the type of α.

If t has a flexible occurrence of a variable that is not one of the xi
i , then

pruning will take a step (4.19); the pattern condition ensures it will not get
stuck. If t has a rigid occurrence of a forbidden variable, then unification will fail
with step (4.20).

If t contains a rigid occurrence of α, then the occur check step (4.17) ap-
plies, since the evaluation context of α consists only of variables. By the pattern
condition, t contains no flexible occurrences of α.

Finally, to apply the solution step (4.16), an appropriate permutation of the
metacontext must exist, so that all the dependencies of t can be moved before
α. Observe that the type of t does not transitively depend on α, since it is equal
to the type of α xi

i . Now by induction on the typing derivation for t, using the
pattern condition and the fact that t does not contain α, none of the subterms of t
have types that depend on α. In particular, none of the metavariables that occur
in t have types that depend on α, so an appropriate permutation exists. (This
induction requires the result type of an if-expression to contain no metavariables.)

D.4 Consistency of evidence language coercions

The overall structure of the consistency proof for coercions in the evidence lan-
guage is described in Section 6.5 (page 131). Here I will detail the proofs that
were previously omitted, and prove required additional results.

Note that the reduction relation is closed under substitution:

Lemma D.9. If ρ kpush−−−→ ρ′ then [δ/∆] ρ kpush−−−→ [δ/∆] ρ′.

Proof. By induction on the reduction step used.

Lemma 6.14 (Transitivity). If Ak(τ ∼ υ) and Ak(υ ∼ κ) then Ak(τ ∼ κ).

Proof. Proceed by induction on k and inversion on Ak(ϕ).
Consider the case for quantifiers, where Ak((a1 :Υκ1)→ τ1 ∼ (a2 :Υκ2)→ τ2)

and Ak((a2 :Υ κ2) → τ2 ∼ (a3 :Υ κ3) → τ3). By definition, Ak(γ1 : κ1 ∼ κ2)

250

for some γ1, and Ak(κ2 ∼ κ3), so induction gives Ak(κ1 ∼ κ3). In order to
demonstrate that Ak((a1 :Υ κ1) → τ1 ∼ (a3 :Υ κ3) → τ3), suppose υ1 and υ3 have
Al((υ1 : κ1) ∼ (υ3 : κ3)) for l < k, and seek to prove Al([υ1/a1] τ1 ∼ [υ3/a3] τ3).
But Al([υ1/a1] τ1 ∼ [υ1 . γ1/a2] τ2) and Al([υ1 . γ1/a2] τ2 ∼ [υ3/a3] τ3), so the
result follows by induction.

The other cases where all three types are structural are similar.
If all three types are computational, then they can each take a step by defini-

tion, and the reducts are related by induction.
If τ is computational but υ and κ are structural, then the definition gives τ ′

structural or coerced such that τ −→∗ τ ′ and Ak(τ ′ ∼ υ). Then induction gives
Ak(τ ′ ∼ κ) and hence Ak(τ ∼ κ) by definition.

If τ and υ are computational but κ is structural, then the definition gives υ′

structural or coerced such that υ −→∗ υ′ and Ak(υ′ ∼ κ). Then there exists τ ′

such that τ −→∗ τ ′ and Ak(τ ′ ∼ υ′), so induction gives Ak(τ ′ ∼ κ) and hence
Ak(τ ∼ κ).

The other cases where some of the types are computational and some are
structural are similar.

If any of τ , υ and κ are coerced, then the coercion(s) can be removed and the
underlying types are compatible by induction.

I need a couple of auxiliary results to prove that compatibility is closed under
reduction. The first is straightforward.

Lemma D.10. Suppose · ` H :∀ (∆) → τ and · `tc ω : ∆. Then for any k,
Ak(H←−ω ∼ H−→ω) if and only if Ak(ω : ∆).

Proof. By induction on the length of ω.

Showing that compatible expressions satisfy progress is more interesting. This
does not imply progress in general, because only type expressions (at phase ∀)
are covered and they must be in the diagonal of compatibility.

Lemma D.11 (Progress for compatible expressions). If Ak(τ ∼ τ) for k > 0
then either τ is a coerced value type or τ can take a step.

Proof. By induction on τ and inversion on Ak(τ ∼ τ). If τ is computational
then the definition states that it can take a step. If τ = τ ′ . γ is coerced then
Ak(τ ′ ∼ τ ′) so by induction either τ ′ is a coercion, a coerced value or can take a
step, which implies the result. Otherwise, τ is structural: either it is immediately
a value type, or it is an application τ ′ ρ and Ak(τ ′ ∼ τ ′) so induction on τ ′ implies
the result.

251

To deal with one coercion being cast by another, I need to show that compat-
ibility of two propositions (ϕ1 ∼ ϕ2) means compatibility of ϕ1 implies compati-
bility of ϕ2. Observe that ϕ1 and ϕ2 are syntactically restricted to be quantified
equations, not arbitrary types. Proving this lemma is the motivation for restrict-
ing quantification at phase � to syntactic propositions only.

Lemma D.12. If Ak(ϕ1) and Ak(ϕ1 ∼ ϕ2) then Ak(ϕ2).

Proof. Proceed by induction on k and case analysis on ϕ1 and ϕ2. Since they are
both equations or quantified propositions, the definition of Ak(ϕ1 ∼ ϕ2) implies
that they have the same form.

If ϕ1 = τ1 ∼ υ1 then ϕ2 = τ2 ∼ υ2 where Ak(τ1 ∼ τ2) and Ak(υ1 ∼ υ2).
Moreover Ak(τ1 ∼ υ1), so Ak(τ2 ∼ υ2) by transitivity (Lemma 6.14).

If ϕ1 = (c1 :� ϕ′1) → ϕ′′1 then ϕ2 = (c2 :� ϕ′2) → ϕ′′2. For Ak((c2 :� ϕ′2) → ϕ′′2),
suppose η is such that Al(η : ϕ′2) for some l < k. Now Al(γ : ϕ′2 ∼ ϕ′1) for some
γ by definition of Ak(ϕ1 ∼ ϕ2) and downward closure (Lemma 6.15, page 135).
By induction, Al(η . γ : ϕ′1). Then Al([η . γ/c1]ϕ′′1 ∼ [η/c2]ϕ′′2) by definition
of Ak(ϕ1 ∼ ϕ2). Moreover, Al([η . γ/c1]ϕ′′1) by definition of Ak(ϕ1). Hence
Al([η/c2]ϕ′′2) by induction, so Ak((c2 :�ϕ′2)→ ϕ′′2) as required.

If ϕ1 = (x1 :	 τ1)→ ϕ′1 then ϕ2 = (x2 :	 τ2)→ ϕ′2. Now the assumptions imply
Ak(ϕ′1) and Ak(ϕ′1 ∼ ϕ′2), so Ak(ϕ′2) by induction, and hence Ak(ϕ2).

Finally, if ϕ1 = (a1 :Υ κ1) → ϕ′1 then ϕ2 = (a2 :Υ κ2) → ϕ′2. To show
Ak((a2 :Υ κ2) → ϕ′2), suppose · ` τ :∀ κ2 and Al(τ ∼ τ) for some l < k. Now
Ak(ϕ1 ∼ ϕ2) implies Ak(η : κ2 ∼ κ1) for some η. Moreover, Al([τ . η/a1]ϕ′1)
and Al([τ . η/a1]ϕ′1 ∼ [τ/a2]ϕ′2) follow from the assumptions, so Al([τ/a2]ϕ′2)
by induction. Hence Ak((a2 :Υκ2)→ ϕ′2) as required.

The following result shows that the step coercion preserves compatibility.

Lemma 6.16 (Reduction preserves compatibility). If τ kpush−−−→ υ and Ak(τ ∼ τ)
then Ak− 1(τ ∼ υ).

Proof. By induction on k and the reduction step τ −→ υ.

Case
ρ −→ ρ′

ρ . η −→ ρ′ . η
. If Ak(ρ . η ∼ ρ . η) then Ak(ρ ∼ ρ) and Ak− 1(η : ϕ).

Hence Ak− 1(ρ ∼ ρ′) by induction, so Ak− 1(ρ . η ∼ ρ′ . η) as required.

252

Case
ρ −→ ρ′

ρ ρ′′ −→ ρ′ ρ′′
. If Ak(ρ ρ′′ ∼ ρ ρ′′) then Ak(ρ ∼ ρ) so by induction

Ak− 1(ρ ∼ ρ′) and hence Ak− 1(ρ ρ′′ ∼ ρ′ ρ′′).

Case
ρ

kpush−−−→ ρ′

case ρof brj
j −→ case ρ′ of brj

j . If Ak(case ρof bri
i ∼ case ρof bri

i)

then Ak− 1(case ρ′ of bri
i ∼ case ρ′ of bri

i) by definition. By Lemma D.11, there
is τ with case ρ′ of bri

i −→ τ , and induction gives Ak− 2(case ρ′ of bri
i ∼ τ).

Hence by definition Ak− 1(case ρof bri
i ∼ case ρ′ of bri

i).

Case

ε
kpush−−−→ ε′

br′0 = br0 . step ε ... br′n = brn . step ε

dcase εof br0 ... brn −→ dcase ε′ of br′0 ... br′n
. Similar to previous case.

Case
K ∆→ ρ ∈ bri

i

case Kψ δ of bri
i −→ [δ/∆] ρ

.

If Ak(case Kψ δ of bri
i ∼ case Kψ δ of bri

i) then Ak− 1([δ/∆] ρ ∼ [δ/∆] ρ) by
definition. If [δ/∆] ρ is computational, then proceed as in the previous two cases.
If it is structural, then Ak− 1(case Kψ δ of bri

i ∼ [δ/∆] ρ) is immediate from
the definition. If it is coerced, then unwrap coercions until a computational or
structural type is reached, and the required property follows as before.

Case
K ∆→ ρ ∈ bri

i

dcase Kψ δ of bri
i −→ [(δ, 〈Kψ δ〉)/∆] ρ

. Similar to previous case.

Case
Σ 3 f [∆] = ρ :Φ κ
f(δ) −→ [δ/∆] ρ

. Similar to previous case.

Case

Γ ` γ :� ((a1 :Υκ1)→ τ1) ∼ ((a2 :Υκ2)→ τ2)
γ0 = sym (left γ) γ1 = γ@(coh 〈τ〉 γ0)

(v . γ)Υτ −→ vΥ(τ . γ0) . γ1
.

If Ak((v . γ) τ ∼ (v . γ) τ) then the definition gives Ak(v ∼ v), Ak(τ ∼ τ) and
Ak− 1(γ : (a1 :Υ κ1) → τ1 ∼ (a2 :Υ κ2) → τ2). Hence Ak− 1(v . γ ∼ v). Now
Ak− 1(γ0 : κ2 ∼ κ1), so Ak− 1(τ ∼ τ .γ0) and Ak− 2(γ1 : [τ .γ0/a1] τ1 ∼ [τ/a2] τ2).
Thus Ak− 1((v . γ) τ ∼ v (τ . γ0) . γ1).

253

Case

Γ ` γ :� ((c1 :�ϕ1)→ τ1) ∼ ((c2 :�ϕ2)→ τ2)
γ0 = sym (left γ) γ1 = γ@(η . γ0, η)

(v . γ)�η −→ v�(η . γ0) . γ1
. If Ak((v .γ) η ∼ (v .γ) η)

then Ak(v ∼ v), Ak− 1(η : ϕ2) and Ak− 1(γ : (c1 :�ϕ1) → τ1 ∼ (c2 :�ϕ2) → τ2).
Hence Ak− 1(v . γ ∼ v). Now Ak− 1(γ0 : ϕ2 ∼ ϕ1), so Ak− 2(η . γ0 : ϕ1) by
Lemma D.12, and Ak− 2(γ1 : [η . γ0/c1] τ1 ∼ [η/c2] τ2). From this it follows that
Ak− 1((v . γ) η ∼ v (η . γ0) . γ1).

Case

Γ ` γ :� ((a1 :	κ1)→ τ1) ∼ ((a2 :	κ2)→ τ2)
γ0 = sym (left γ) γ1 = right γ

(v . γ)	ρ −→ v	(ρ . γ0) . γ1
. If Ak((v .γ) ρ ∼ (v .γ) ρ)

then Ak(v ∼ v), Ak(ρ ∼ ρ) and Ak− 1(γ : (a1 :	 κ1) → τ1 ∼ (a2 :	 κ2) → τ2).
Hence Ak− 1(v .γ ∼ v). Now Ak− 1(γ0 : κ2 ∼ κ1) and Ak− 2(γ1 : τ1 ∼ τ2). Hence
Ak− 1(ρ ∼ ρ . γ0) and so Ak− 1((v . γ) ρ ∼ v (ρ . γ0) . γ1).

Case
(v . γ) . γ′ −→ v . (γ; γ′)

. If Ak((v.γ).γ′ ∼ (v.γ).γ′) then Ak(v ∼ v),

Ak− 1(γ : τ0 ∼ τ1) and Ak− 1(γ′ : τ1 ∼ τ2). Transitivity gives Ak− 1(τ0 ∼ τ2) and
hence Ak((v . γ) . γ′ ∼ v . (γ; γ′)).

Case

Γ ` γ :� D τi
i ∼ D υi

i

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

ω = (τi , υi ,nthi γ)
i

: ai :∀ κi
i ≺ δ : ∆

(K τi
i δ) . γ kpush−−−→ K υi

i −→ω
.

If Ak((K τi
i δ) . γ ∼ (K τi

i δ) . γ) then the definition gives Ak(K τi
i δ ∼ K τi

i δ)
and Ak− 1(γ : D τi

i ∼ D υi
i). Lemma D.10 gives Ak− 1((τi , υi ,nthi γ)

i
: ai :∀ κi

i)
and Ak− 1((τi , υi ,nthi γ)

i
, ω : ai :∀ κi

i
,∆) follows from the definition on coerced

types since telescoped coercion extension appends coerced copies of types. Hence
Ak− 1(K τi

i←−ω ∼ K υi
i −→ω) and so Ak− 1((K τi

i δ) . γ ∼ K υi
i −→ω) as required.

To prove congruence for case analysis, I need that whenever an expression is
equivalent to an applied constructor, the expression reduces to the same head
constructor (possibly under a coercion). This follows from the definition of com-
patibility on structural expressions.

254

Lemma D.13. If Ak(H δ ∼ τ) then either τ −→∗ H δ′ or τ −→∗ H δ′ . γ, and
Ak(H δ ∼ H δ′).

Proof. By induction on the length of δ and the structure of τ .

Lemma 6.17 (Congruence for case analysis). If Ak(ε ∼ ε′) and Ak(bri ≈ br′i)
for all i, then Ak((d)case εof bri

i ∼ (d)case ε′ of br′i
i).

Proof. By induction on k, ε and ε′.
If ε kpush−−−→ ε0 and ε′

kpush−−−→ ε′0, then Lemma 6.16 (page 135) and transitivity give
Ak− 1(ε0 ∼ ε′0), and Ak− 1((d)case ε0 of bri

i ∼ (d)case ε′0 of br′i
i) by induction,

so the result follows.
Suppose without loss of generality that ε cannot step, then by Lemma D.11

either k = 0 (and the result is trivial) or ε is a value. It cannot have an outer-
most coercion, since Lemma D.13 ensures the case scrutinee push step would be
applicable. The canonical forms lemma (Lemma 6.12) means that ε = K τj

i δ.
By Lemma D.13, ε′ −→∗ K τ ′j

i
δ′ and Ak(K τj

i δ ∼ K τ ′j
i
δ′).

For case expressions, there are K ∆0 → τ0 ∈ bri
i and K ∆′0 → τ ′0 ∈ br′i

i , so

case K τj
i δ of bri

i −→ [δ/∆0] τ0 and case K τ ′j
i
δ′ of br′i

i −→ [δ′/∆′0] τ ′0.

Moreover Ak(K ∆0 → τ0 ≈ K ∆′0 → τ ′0) gives Ak((∆0 ! ∆′0) → (τ0 ∼ τ ′)).
Instantiating this with δ and δ′ yields Ak− 1([δ/∆0] τ0 ∼ [δ′/∆′0] τ ′0), so

Ak(case K τj
i δ of bri

i ∼ case K τ ′j
i
δ′ of br′i

i).

Now Ak(case ε′ of br′i
i ∼ case K τ ′j

i
δ′ of br′i

i) follows from Lemma 6.16 since the
left side reduces to the right side, so Ak(case εof bri

i ∼ case ε′ of br′i
i).

The argument for dcase expressions is similar: δ and δ′ are replaced with
δ, 〈K τj

i δ〉 and δ′, 〈K τ ′j
i
δ′〉; proof irrelevance means nothing more is needed.

If δ is a vector then let 〈〈δ〉〉 be the telescoped coercion with
←−−
〈〈δ〉〉 = δ =

−−→
〈〈δ〉〉

and the coercion proofs given by reflexivity. Note that Γ ` δ : ∆ is equivalent to
Γ `tc 〈〈δ〉〉 : ∆.

Finally, I can prove the key result, that well-typed coercions are compatible.
This is a massive mutual structural induction on typing derivations, using the
preceding results. Unlike most of the previous results, however, k is quantified
inside the inductive hypothesis, because some cases need to increase it when
making appeals to induction.

255

Lemma 6.19 (Basic Lemma).

(a) If Γ ` τ :∀ κ then for all k, Ak(ω0 : Γ) implies Ak([←−ω0/Γ] τ ∼ [−→ω0/Γ] τ).

(b) If Γ ` br :∀ υ I τ or Γ ` br :∀ (ε : υ) I τ then for all k, Ak(ω0 : Γ) implies
Ak([←−ω0/Γ] br ≈ [−→ω0/Γ] br).

(c) If Γ ` γ :� ϕ then for all k, Ak(ω0 : Γ) implies Ak([←−ω0/Γ]ϕ) and Ak([−→ω0/Γ]ϕ).

(d) If Γ `tc ω : ∆ then for all k, Ak(ω0 : Γ) implies Ak([ω0/Γ]ω : ∆).

Proof of part (a). Fix k and ω0 such that Ak(ω0 : Γ). Proceed by induction on
the derivation of Γ ` τ :∀ κ to show Ak([←−ω0/Γ] τ ∼ [−→ω0/Γ] τ).

Case

Γ ` ctx
Γ 3 a :Φ κ Φ ↪→ Ψ

Γ ` a :Ψ κ
. Here Ak(ω0 : Γ) gives Ak([←−ω0/Γ] a ∼ [−→ω0/Γ] a).

Cases

Γ ` ctx
Σ 3 D :∀ κ
Γ ` D :∀ κ

and

Γ ` ctx
Σ 3 K :Φ κ Φ ↪→ Ψ

Γ ` K :Ψ κ
. Trivial.

Case
Σ 3 f [∆] :Φ κ Γ ` δ : ∆ //Ψ Φ ↪→ Ψ

Γ ` f(δ) :Ψ [δ/∆]κ
. Let ω = [ω0/Γ]〈〈δ〉〉 so

that←−ω = [←−ω0/Γ] δ and−→ω = [−→ω0/Γ] δ. Then the goal Ak([←−ω0/Γ] f(δ) ∼ [−→ω0/Γ] f(δ))
is Ak(f(←−ω) ∼ f(−→ω)). Now f(←−ω) −→ [←−ω /∆] τ and f(−→ω) −→ [−→ω /∆] τ where
Σ 3 f [∆] = τ :Φ κ. Moreover, induction using part (d) gives Ak− 1(ω : ∆), and
Ak− 1([←−ω /∆] τ ∼ [−→ω /∆] τ) follows since the function definition is good. Hence
Ak(f(←−ω) ∼ f(−→ω)) as required.

Case
Γ ` ρ :Ψ (a :Φκ1)→ κ2 Γ ` ρ′ :Φ //Ψ κ1

Γ ` ρΦρ′ :Ψ [ρ′/a]κ2
.

By induction, Ak([←−ω0/Γ] ρ ∼ [−→ω0/Γ] ρ) and Ak([←−ω0/Γ] ρ′ ∼ [−→ω0/Γ] ρ′). Now
Ak− 1([←−ω0/Γ] ((a :Φ κ1) → κ2) ∼ [−→ω0/Γ] ((a :Φ κ1) → κ2)) by Lemma 6.18, so
the definition on quantifiers gives Ak− 1([←−ω0/Γ] ([ρ′/a]κ2) ∼ [−→ω0/Γ] ([ρ′/a]κ2)).
Hence Ak([←−ω0/Γ] (ρ ρ′) ∼ [−→ω0/Γ] (ρ ρ′)) as required.

256

Case
Γ ` κ :∀ ∗ Γ, a :Φ κ ` τ :∀ ∗

Γ ` (a :Φκ)→ τ :∀ ∗
.

To show Ak([←−ω0/Γ] ((a :Φ κ) → τ) ∼ [−→ω0/Γ] ((a :Φ κ) → τ)), first observe that
Ak([←−ω0/Γ]κ ∼ [−→ω0/Γ]κ) follows by induction. Suppose l < k, υ and υ′ with
Al(υ ∼ υ′), then Al([υ/a] [←−ω0/Γ] τ ∼ [υ′/a] [−→ω0/Γ] τ) also follows by induction.

Case
Γ ` ρ :Ψ κ Γ ` γ :� κ ∼ κ′ Ψ 6= �

Γ ` ρ . γ :Ψ κ′
.

Here Ak([←−ω0/Γ] ρ ∼ [−→ω0/Γ] ρ) by induction, and Ak− 1([←−ω0/Γ] (κ ∼ κ′)) and
Ak− 1([−→ω0/Γ] (κ ∼ κ′)) by part (c). Hence Ak([←−ω0/Γ] (ρ . γ) ∼ [−→ω0/Γ] (ρ . γ)).

Cases
Γ ` ctx

Γ ` ∗ :∀ ∗
and

Γ ` ctx

Γ ` (∼) :∀ (a :∀ ∗)→ (b :∀ ∗)→ a → b → ∗
. Trivial.

Case

Γ ` ρ :Ψ υ Ψ 6= �
Γ ` br0 :Ψ υ I τ ... Γ ` brn :Ψ υ I τ

Γ ` case ρof br0 ... brn :Ψ τ
. By induction, using part (b),

and congruence for case analysis (Lemma 6.17).

Case

Γ ` ε :Π //Ψ υ Ψ 6= �
Γ ` br0 :Ψ (ε : υ) I τ ... Γ ` brn :Ψ (ε : υ) I τ

Γ ` dcase εof br0 ... brn :Ψ τ
. As previous case.

Proof of part (b). Fix k and ω0 such that Ak(ω0 : Γ). Proceed by induction on
the derivation to show Ak([←−ω0/Γ] br ≈ [−→ω0/Γ] br).

Case

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

Γ, [υi/ai
i] ∆ ` ρ :Ψ τ

Γ ` τ :∀ ∗ Φ ↪→ Ψ

Γ ` K ([υi/ai
i] ∆)→ ρ :Ψ D υi

i I τ
. First let ∆′ = [υi/ai

i] ∆ and

∆′′ = [←−ω0/Γ] ∆′ ! [−→ω0/Γ] ∆′. The goal is Ak((∆′′) → [←−ω0/Γ] ρ ∼ [−→ω0/Γ] ρ).
Equivalently, suppose ω is such that Ak(ω0, ω : Γ,∆′), then it suffices to show
Ak([

←−−−−
(ω0, ω)/Γ,∆′] ρ ∼ [

−−−−→
(ω0, ω)/Γ,∆′] ρ), which follows from part (a).

257

Case

Σ 3 K :Φ (ai :∀ κi
i
,∆)→ D ai

i

∆′ = [υi/ai
i] ∆ //Π, c :� ε ∼ (K υi

i∆)
Γ,∆′ ` ρ :Ψ τ Γ ` τ :∀ ∗ Φ ↪→ Π //Ψ

Γ ` K ∆′ → ρ :Ψ (ε : D υi
i) I τ

. Similar.

Proof of part (c). Fix k and ω0 such that Ak(ω0 : Γ). Proceed by induction on the
derivation of Γ ` γ :� ϕ to show Ak([←−ω0/Γ]ϕ). In each case, it is straightforward
to further show Ak([−→ω0/Γ]ϕ).

Case

Γ 3 c :� ϕ

Γ ` ctx

Γ ` c :� ϕ
. Here the definition of Ak(ω0 : Γ) gives Ak([←−ω0/Γ]ϕ).

Case

Γ ` γ :� (a :Φκ)→ ϕ

Γ ` τ :∀ κ Φ 6= �

Γ ` γΦτ :� [τ/a]ϕ
. Here Ak([←−ω0/Γ] ((a :Φ κ) → ϕ)) by induc-

tion, and part (a) gives Ak([←−ω0/Γ] τ ∼ [−→ω0/Γ] τ), so Ak([←−ω0/Γ] [τ/a]ϕ) follows
immediately from the definition.

Case

Γ ` γ :� (c :�ϕ′)→ ϕ

Γ ` η :� ϕ′

Γ ` γ�η :� [η/c]ϕ
. Induction gives Ak([←−ω0/Γ] (c :�ϕ′)→ ϕ) from the

first hypothesis and Ak([←−ω0/Γ]ϕ′) from the second, so Ak([←−ω0/Γ] [η/c]ϕ) follows
from the definition.

Case
Γ, a :Φ κ ` γ :� τ

Γ ` Λa :Φκ . γ :� (a :Φκ)→ τ
. First suppose Φ 6= �, and let τ be such

that · ` τ :∀ κ and Ak(τ ∼ τ). Induction gives Ak([(←−ω0, τ)/Γ, a :Φ κ]ϕ), so
Ak([←−ω0/Γ] ((a :Φκ)→ ϕ)) as required. The case Φ = � is similar.

Case
Γ ` ctx Σ 3 C :� ϕ

Γ ` C :� ϕ
. Here the goodness of Σ gives Ak(ϕ) and

hence Ak([←−ω0/Γ]ϕ) since ϕ is closed.

258

Case
Γ `tc ω : ∆ Γ,∆ ` τ :∀ κ

Γ ` respω∆ τ :� [←−ω /∆] τ ∼ [−→ω /∆] τ
. Part (d) gives Ak([ω0/Γ]ω : ∆),

then part (a) gives Ak([←−ω0/Γ] ([←−ω /∆] τ ∼ [−→ω /∆] τ)) as required.

Case
Γ ` γ :� τ τ ′ ∼ υ υ′

Γ ` left γ :� τ ∼ υ
. By induction, Ak([←−ω0/Γ] (τ τ ′ ∼ υ υ′)), and hence

Ak([←−ω0/Γ] (τ ∼ υ)) by definition.

Case
Γ ` γ :� τ τ ′ ∼ υ υ′

Γ ` right γ :� τ ′ ∼ υ′
. Similar to the previous case.

Case
Γ ` γ :� ((a1 :Φκ1)→ τ1) ∼ ((a2 :Φκ2)→ τ2)

Γ ` left γ :� κ1 ∼ κ2
.

By induction, Ak([←−ω0/Γ] (((a1 :Φ κ1) → τ1) ∼ ((a2 :Φ κ2) → τ2))), and hence
Ak([←−ω0/Γ] (κ1 ∼ κ2)) by definition.

Case
Γ ` γ :� (κ1 → τ1) ∼ (κ2 → τ2)

Γ ` right γ :� τ1 ∼ τ2
. Here the inductive hypothesis gives

Ak([←−ω0/Γ] ((κ1 → τ1) ∼ (κ2 → τ2))), so Ak([←−ω0/Γ] (τ1 ∼ τ2)) by definition.

Case

Γ ` γ :� (τ1 : (a1 :Υκ1)→ κ′1) ∼ (τ2 : (a2 :Υκ2)→ κ′2)
Γ ` η :� (υ1 :κ1) ∼ (υ2 :κ2)

Γ ` congaΥ γ η :� (τ1 υ1) ∼ (τ2 υ2)
.

By induction, Ak + 1([←−ω0/Γ] (τ1 ∼ τ2)) and Ak([←−ω0/Γ] (υ1 ∼ υ2)). Moreover
Lemma 6.18 gives Ak([←−ω0/Γ] (((a1 :Φ κ1) → κ′1) ∼ ((a2 :Φ κ2) → κ′2))) and hence
Ak− 1([←−ω0/Γ] ([υ1/a1]κ′1 ∼ [υ2/a2]κ′2)). Thus Ak([←−ω0/Γ] (τ1 υ1 ∼ τ2 υ2)) as re-
quired. Note that this case relies on the fact that k is universally quantified
inside the inductive hypothesis.

Case

Γ ` γ :� (τ1 : (c1 :�ϕ1)→ κ1) ∼ (τ2 : (c2 :�ϕ2)→ κ2)
Γ ` η1 :� ϕ1 Γ ` η2 :� ϕ2

Γ ` conga� γ (η1, η2) :� (τ1 η1) ∼ (τ2 η2)
.

Similar to previous case.

259

Case

Γ, a1 :Υ κ1 ` τ1 :∀ ∗ Γ, a2 :Υ κ2 ` τ2 :∀ ∗ Γ ` η :� κ1 ∼ κ2

Γ ` γ :� (a1 :Υ κ1, a2 :Υ κ2, c :� a1 ∼ a2)→ τ1 ∼ τ2

Γ ` cong Υ η γ :� ((a1 :Υκ1)→ τ1) ∼ ((a2 :Υκ2)→ τ2)
.

Ak([←−ω0/Γ] (κ1 ∼ κ2)) and Ak([←−ω0/Γ] ((a1 :Φ κ1, a2 :Φ κ2, c :� a1 ∼ a2)→ τ1 ∼ τ2))
by induction. Hence Ak([←−ω0/Γ] (((a1 :Φκ1)→ τ1) ∼ ((a2 :Φκ2)→ τ2))).

Case

Γ, c1 :� ϕ1 ` τ1 :∀ ∗ Γ, c2 :� ϕ2 ` τ2 :∀ ∗
Γ ` η :� ϕ1 ∼ ϕ2 Γ ` γ :� (c1 :� ϕ1, c2 :� ϕ2)→ τ1 ∼ τ2

Γ ` cong � η γ :� ((c1 :�ϕ1)→ τ1) ∼ ((c2 :�ϕ2)→ τ2)
.

Similar to previous case.

Case
Γ ` γ :� ε ∼ ε′ Γ ` η0 :� br0 ≈ br′0 . . . Γ ` ηn :� brn ≈ br′n

Γ ` (cong (d)case γ ηi
i) :� ((d)case εof bri

i) ∼ ((d)case ε′ of br′i
i)

.

By induction and Lemma 6.17.

Case

Γ ` γ :� ϕ

Γ ` η :� ϕ ∼ ϕ′

Γ ` γ . η :� ϕ′
. By induction, Ak([←−ω0/Γ]ϕ) and Ak([←−ω0/Γ] (ϕ ∼ ϕ′)).

Then Lemma D.12 gives the required result.

Case

Γ ` γ :� ((a1 :Υκ1)→ τ1) ∼ ((a2 :Υκ2)→ τ2)
Γ ` η :� (υ1 :κ1) ∼ (υ2 :κ2)

Γ ` γ@η :� [υ1/a1] τ1 ∼ [υ2/a2] τ2
.

Here induction gives Ak + 1([←−ω0/Γ] (((a1 :Υ κ1) → τ1) ∼ ((a2 :Υ κ2) → τ2))) and
Ak([←−ω0/Γ] (υ1 ∼ υ2)), so by definition, Ak([←−ω0/Γ] ([υ1/a1] τ1 ∼ [υ2/a2] τ2)).

Case

Γ ` γ :� ((c1 :�ϕ1)→ τ1) ∼ ((c2 :�ϕ2)→ τ2)
Γ ` η1 :� ϕ1 Γ ` η2 :� ϕ2

Γ ` γ@(η1, η2) :� [η1/c1] τ1 ∼ [η2/c2] τ2
. Similar to previous case.

Case

Γ ` γ :� (τ1 :κ1) ∼ (τ2 :κ2)
Γ ` η :� κ1 ∼ υ

Γ ` coh γ η :� τ1 . η ∼ τ2
. By induction, Ak([←−ω0/Γ] (τ1 ∼ τ2)) and

Ak− 1([←−ω0/Γ] (κ1 ∼ κ2)). Hence Ak([←−ω0/Γ] (τ1 . η ∼ τ2)) as required.

260

Case
Γ ` τ :∀ κ Γ ` τ ′ :∀ κ τ

kpush−−−→ τ ′

Γ ` step τ :� τ ∼ τ ′
.

Here induction using part (a) gives Ak + 1([←−ω0/Γ] (τ ∼ τ)), and Lemma D.9 gives
[←−ω0/Γ] τ kpush−−−→ [←−ω0/Γ] τ ′, so Lemma 6.16 gives Ak([←−ω0/Γ] (τ ∼ τ ′)).

Case
Γ ` γ :� (τ1 :κ1) ∼ (τ2 :κ2)

Γ ` kind γ :� κ1 ∼ κ2
. By induction and Lemma 6.18.

Proof of part (d). Fix k and ω0 such that Ak(ω0 : Γ). Proceed by induction on
the derivation of Γ `tc ω : ∆ to show Ak([ω0/Γ]ω : ∆).

Case
Γ ` ctx

Γ `tc · : ·
. Trivial.

Case

Γ `tc ω : ∆ Γ ` γ :� τ ∼ υ

Γ ` τ :Υ [←−ω /∆]κ Γ ` υ :Υ [−→ω /∆]κ
Γ `tc (ω, (τ, υ, γ)) : (∆, a :Υ κ)

. Here Ak([ω0/Γ]ω : ∆) by

induction, and Ak([←−ω0/Γ] τ ∼ [←−ω0/Γ] υ) and Ak([−→ω0/Γ] τ ∼ [−→ω0/Γ] υ) from part
(c). Moreover Ak([←−ω0/Γ] τ ∼ [−→ω0/Γ] τ) from part (a). Hence symmetry and
transitivity give Ak([←−ω0/Γ] τ ∼ [−→ω0/Γ] υ) as required.

Case

Γ `tc ω : ∆
Γ ` η :� [←−ω /∆]ϕ
Γ ` η′ :� [−→ω /∆]ϕ

Γ `tc (ω, (η, η′)) : (∆, c :� ϕ)
. Let ω′ = ω0, [ω0/Γ]ω. By induction,

Ak([ω0/Γ]ω : ∆), Ak− 1([
←−
ω′/Γ,∆]ϕ) and Ak− 1([

−→
ω′/Γ,∆]ϕ) as required.

Case

Γ `tc ω : ∆
Γ ` e :	 [←−ω /∆] τ
Γ ` e′ :	 [−→ω /∆] τ

Γ `tc (ω, (e, e′)) : (∆, x :	 τ)
. By induction, Ak([ω0/Γ]ω : ∆).

261

Bibliography

Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification
for dependent types and records. In Typed Lambda Calculi and Applications
(TLCA ’11), pages 10–26. Springer, 2011.

Alfonso Acosta. ForSyDe tutorial, 2008. URL http://www.ict.kth.se/
forsyde/files/tutorial/.

W. E. Aitken and J. H. Reppy. Abstract value constructors. Technical Report
92-1290, Department of Computer Science, Cornell University, 1992.

Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent
types matter. Unpublished manuscript, 2005. URL http://www.cs.nott.ac.
uk/~txa/publ/ydtm.pdf.

Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational
equality, now! In Proceedings of the 2007 workshop on Programming Lan-
guages meets Program Verification (PLPV ’07), pages 57–68. ACM, 2007.

Lennart Augustsson. Compiling pattern matching. In Jean-Pierre Jouannaud, ed-
itor, Functional Programming Languages and Computer Architecture (FPLCA
’85), LNCS 201, pages 368–381. Springer, 1985.

Lennart Augustsson and Kent Petersson. Silly type families. Unpublished
manuscript, 1994. URL http://web.cecs.pdx.edu/~sheard/papers/silly.
pdf.

Franz Baader and Wayne Snyder. Unification theory. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 445–532.
Elsevier and MIT Press, 2001.

Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algo-
rithms. Acta Informatica, 1:290–306, 1972.

http://www.ict.kth.se/forsyde/files/tutorial/
http://www.ict.kth.se/forsyde/files/tutorial/
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
http://web.cecs.pdx.edu/~sheard/papers/silly.pdf
http://web.cecs.pdx.edu/~sheard/papers/silly.pdf

Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs (TYPES 2000), LNCS 2277, pages 24–40. Springer, 2002.

Edwin Brady. Idris, a general-purpose dependently typed programming language:
Design and implementation. Journal of Functional Programming, 23:552–593,
2013.

Jason J. Brown. Presentations of Unification in a Logical Framework. PhD thesis,
University of Oxford, 1996.

Björn Buckwalter. The numtype package, 2009. URL http://hackage.haskell.
org/package/numtype. Haskell package.

Björn Buckwalter. Dimensional — statically checked physical dimensions for
Haskell, n.d.. URL http://dimensional.googlecode.com/.

Iliano Cervesato and Frank Pfenning. A linear spine calculus. Journal of Logic
and Computation, 13(5):639–688, 2003.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated
type synonyms. In Proceedings of the tenth ACM SIGPLAN International Con-
ference on Functional Programming (ICFP ’05), pages 241–253. ACM, 2005.

James Chapman, Thorsten Altenkirch, and Conor McBride. Epigram reloaded: a
standalone typechecker for ETT. In Trends in Functional Programming (TFP
’05), pages 79–94, 2005.

Chiyan Chen. Type inference in applied type system. PhD thesis, Boston Univer-
sity, 2006.

Feng Chen, Grigore Roşu, and Ram Prasad Venkatesan. Rule-based analysis of
dimensional safety. In Robert Nieuwenhuis, editor, Rewriting Techniques and
Applications (RTA ’03), LNCS 2706, pages 197–207. Springer, 2003.

James Cheney and Ralf Hinze. First-class phantom types. Technical Report
TR2003-1901, Cornell University, 2003.

Dominique Clément, Thierry Despeyroux, Gilles Kahn, and Joëlle Despeyroux.
A simple applicative language: Mini-ML. In Proceedings of the 1986 ACM con-
ference on LISP and Functional Programming (LFP ’86), pages 13–27. ACM,
1986.

263

http://hackage.haskell.org/package/numtype
http://hackage.haskell.org/package/numtype
http://dimensional.googlecode.com/

Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.4,
2013. URL http://coq.inria.fr/refman/. Software manual.

Thierry Coquand. An algorithm for type-checking dependent types. Science of
Computer Programming, 26(1):167–177, 1996.

Luís Damas. Unpublished manuscript, 1984.

Luís Damas and Robin Milner. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages (POPL ’82), pages 207–212. ACM, 1982.

Nils Anders Danielsson. Lightweight semiformal time complexity analysis
for purely functional data structures. In Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL ’08), pages 133–144. ACM, 2008.

N.G. de Bruijn. Telescopic mappings in typed lambda calculus. Information and
Computation, 91(2):189–204, 1991.

Dominique Devriese and Frank Piessens. On the bright side of type classes:
instance arguments in Agda. In Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP ’11), pages 143–155,
2011.

Iavor Diatchki. The presburger package, 2011. URL http://hackage.haskell.
org/package/presburger. Haskell package.

Iavor Diatchki. Type-level naturals, n.d.. URL http://hackage.haskell.org/
trac/ghc/wiki/TypeNats.

Gilles Dowek, Thérèse Hardin, Claude Kirchner, and Frank Pfenning. Unification
via explicit substitutions: The case of higher-order patterns. In Michael Maher,
editor, Proceedings of the 1996 Joint International Conference and Syposium
on Logic Programming (JICSLP ’96). MIT Press, 1996.

Dominic Duggan. Unification with extended patterns. Theoretical Computer
Science, 206(1–2):1–50, 1998.

Joshua Dunfield. Greedy bidirectional polymorphism. In Proceedings of the 2009
ACM SIGPLAN workshop on ML (ML ’09), pages 15–26, 2009. URL http:
//www.cs.cmu.edu/~joshuad/papers/poly/.

264

http://coq.inria.fr/refman/
http://hackage.haskell.org/package/presburger
http://hackage.haskell.org/package/presburger
http://hackage.haskell.org/trac/ghc/wiki/TypeNats
http://hackage.haskell.org/trac/ghc/wiki/TypeNats
http://www.cs.cmu.edu/~joshuad/papers/poly/
http://www.cs.cmu.edu/~joshuad/papers/poly/

Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirec-
tional typechecking for higher-rank polymorphism. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming (ICFP
’13), pages 429–442. ACM, 2013.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465, 1994.

Frederik Eaton. Statically typed linear algebra in Haskell. In Proceedings of
the 2006 ACM SIGPLAN workshop on Haskell (Haskell ’06), pages 120–121.
ACM, 2006.

Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming
with singletons. In Proceedings of the 2012 symposium on Haskell (Haskell
’12), pages 117–130. ACM, 2012.

Linus Ek, Ola Holmström, and Stevan Andjelkovic. Formalizing Arne Andersson
trees and left-leaning red-black trees in Agda. Unpublished manuscript, 2011.
URL http://web.student.chalmers.se/groups/datx02-dtp/.

Conal Elliott. Extensions and Applications of Higher-Order Unification. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1990. URL
http://conal.net/papers/elliott90.pdf.

Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and Brett
Werling. Introducing Kansas Lava. In 21st International Symposium on Im-
plementation and Application of Functional Languages (IFL ’09), LNCS 6041.
Springer, 2009.

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge
University Press, 1989. ISBN 0-521-37181-3.

Healfdene Goguen, Conor McBride, and James McKinna. Eliminating dependent
pattern matching. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors, Algebra, Meaning, and Computation, LNCS 4060, pages
521–540. Springer, 2006.

Benjamin Gregoire and Assia Mahboubi. Proving equalities in a commutative
ring done right in Coq. In Theorem Proving in Higher Order Logics (TPHOLs
2005), LNCS 3603, pages 98–113. Springer, 2005.

Adam Gundry. Type inference for units of measure. In Ricardo Peña
and Marko van Eekelen, editors, Draft Proceedings of the 12th Interna-
tional Symposium on Trends in Functional Programming (TFP ’11), pages

265

http://web.student.chalmers.se/groups/datx02-dtp/
http://conal.net/papers/elliott90.pdf

17–35, 2011. URL http://federwin.sip.ucm.es/sic/investigacion/
publicaciones/pdfs/SIC-7-11.pdf.

Adam Gundry, Conor McBride, and James McKinna. Type inference in con-
text. In Proceedings of the third ACM SIGPLAN workshop on Mathematically
Structured Functional Programming (MSFP ’10), pages 43–54. ACM, 2010.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, 1993.

R. Hindley. The principal type-scheme of an object in combinatory logic. Trans-
actions of the American Mathematical Society, 146:29–60, 1969.

Stefan Holdermans. The signed-multiset package, 2013. URL http://
hackage.haskell.org/package/signed-multiset. Haskell package.

Gérard Huet. The undecidability of unification in third order logic. Information
and Control, 22(3):257–267, 1973.

Gérard Huet. A unification algorithm for typed lambda-calculus. Theoretical
Computer Science, 1(1):27–57, 1975.

Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–554,
1997.

Mark P. Jones. Type classes with functional dependencies. In Gert Smolka, editor,
Programming Languages and Systems, LNCS 1782, pages 230–244. Springer,
2000.

Stefan Kahrs. Red-black trees with types. Journal of Functional Programming,
11(4):425–432, July 2001.

Andrew Kennedy. Type inference and equational theories. Research Re-
port LIX/RR/96/09, École Polytechnique, 1996a. URL http://research.
microsoft.com/en-us/um/people/akenn/other/EqnTypeInf.ps.

Andrew Kennedy. Programming Languages and Dimensions. PhD thesis, Uni-
versity of Cambridge, 1996b. URL http://research.microsoft.com/en-us/
um/people/akenn/units/ProgrammingLanguagesAndDimensions.pdf.

Andrew Kennedy. Types for units-of-measure: Theory and practice. In Zoltán
Horváth, Rinus Plasmeijer, and Viktória Zsók, editors, Central European Func-
tional Programming (CEFP ’09), LNCS 6299, pages 268–305. Springer, 2010.

266

http://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/SIC-7-11.pdf
http://federwin.sip.ucm.es/sic/investigacion/publicaciones/pdfs/SIC-7-11.pdf
http://hackage.haskell.org/package/signed-multiset
http://hackage.haskell.org/package/signed-multiset
http://research.microsoft.com/en-us/um/people/akenn/other/EqnTypeInf.ps
http://research.microsoft.com/en-us/um/people/akenn/other/EqnTypeInf.ps
http://research.microsoft.com/en-us/um/people/akenn/units/ProgrammingLanguagesAndDimensions.pdf
http://research.microsoft.com/en-us/um/people/akenn/units/ProgrammingLanguagesAndDimensions.pdf

Oleg Kiselyov. Number-parameterized types. The Monad.Reader, 5, 2005. URL
http://okmij.org/ftp/Haskell/number-parameterized-types.html.

Oleg Kiselyov. How OCaml type checker works — or what polymorphism and
garbage collection have in common, February 2013. URL http://okmij.org/
ftp/ML/generalization.html.

George Kuan and David MacQueen. Efficient ML type inference using ranked
type variables. In Claudio V. Russo and Derek Dreyer, editors, Proceedings of
the 2007 workshop on ML (ML ’07), pages 3–14. ACM, 2007.

Konstantin Läufer and Martin Odersky. An extension of ML with first-class
abstract types. In Proceedings of the ACM SIGPLAN Workshop on ML and
its Applications (ML ’92). ACM, 1992.

Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields. Implicit
parameters: dynamic scoping with static types. In Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL ’00), pages 108–118. ACM, 2000.

Fredrik Lindblad and Marcin Benke. A tool for automated theorem proving in
Agda. In Proceedings of the 2004 international conference on Types for Proofs
and Programs (TYPES ’04), pages 154–169. Springer, 2006.

Sam Lindley and Conor McBride. Hasochism: The pleasure and pain of depen-
dently typed Haskell programming. In Proceedings of the 2013 ACM SIGPLAN
Symposium on Haskell (Haskell ’13), pages 81–92. ACM, 2013.

Andres Löh and José Pedro Magalhães. Generic programming with indexed func-
tors. In Proceedings of the seventh ACM SIGPLAN Workshop on Generic
Programming (WGP ’11), pages 1–12. ACM, 2011.

Andres Löh, Conor McBride, and Wouter Swierstra. A tutorial implementation
of a dependently typed lambda calculus. Fundamenta Informaticæ, 102(2):
177–207, 2010.

Marko Luther. Elaboration and Erasure in Type Theory. PhD thesis, Univer-
sität Ulm, Germany, 2003. URL ftp://ftp.informatik.uni-ulm.de/pub/
KI/papers/luther03-diss.pdf.

Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H.E. Rose
and J.C. Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic

267

http://okmij.org/ftp/Haskell/number-parameterized-types.html
http://okmij.org/ftp/ML/generalization.html
http://okmij.org/ftp/ML/generalization.html
ftp://ftp.informatik.uni-ulm.de/pub/KI/papers/luther03-diss.pdf
ftp://ftp.informatik.uni-ulm.de/pub/KI/papers/luther03-diss.pdf

Colloquium, volume 80 of Studies in Logic and the Foundations of Mathematics,
pages 73–118. Elsevier, 1975.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984. ISBN 88-7088-105-
9. Notes by Giovanni Sambin.

Per Martin-Löf. On the meanings of the logical constants and the justifications of
the logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, May 1996.

Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and
Jan Smith, editors, Twenty-Five Years of Constructive Type Theory. Oxford
University Press, 1998. ISBN 9780198501275.

Bruce J. McAdam. On the unification of substitutions in type inference. In
Implementation of Functional Languages (IFL’ 98), pages 139–154. Springer,
1998.

Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD
thesis, University of Edinburgh, 1999. URL http://www.lfcs.informatics.
ed.ac.uk/reports/00/ECS-LFCS-00-419/.

Conor McBride. The derivative of a regular type is its type of one-hole con-
texts, 2001. URL http://strictlypositive.org/diff.pdf. Unpublished
manuscript.

Conor McBride. Faking it: Simulating dependent types in Haskell. Journal of
Functional Programming, 12:375–392, 6 2002.

Conor McBride. First-order unification by structural recursion. Journal of Func-
tional Programming, 13(6), 2003.

Conor McBride. Clowns to the left of me, jokers to the right. Unpub-
lished manuscript, 2008. URL https://personal.cis.strath.ac.uk/conor.
mcbride/Dissect.pdf.

Conor McBride. Outrageous but meaningful coincidences: dependent type-safe
syntax and evaluation. In Proceedings of the 6th ACM SIGPLAN Workshop
on Generic Programming (WGP ’10), pages 1–12. ACM, 2010a.

Conor McBride. Strathclyde Haskell Enhancement, 2010b. URL http:
//personal.cis.strath.ac.uk/conor.mcbride/pub/she/. Computer soft-
ware.

268

http://www.lfcs.informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/
http://www.lfcs.informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/
http://strictlypositive.org/diff.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Dissect.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Dissect.pdf
http://personal.cis.strath.ac.uk/conor.mcbride/pub/she/
http://personal.cis.strath.ac.uk/conor.mcbride/pub/she/

Conor McBride and James McKinna. Functional pearl: I am not a number–I
am a free variable. In Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell (Haskell ’04), pages 1–9. ACM, 2004.

Conor McBride and James McKinna. The view from the left. Journal of Func-
tional Programming, 14(1):69–111, 2004.

Matt Might. The missing method: Deleting from Okasaki’s red-black trees, n.d..
URL http://matt.might.net/articles/red-black-delete/.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,
14(4):321–358, 1992.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, 1978.

Robin Milner, Mads Tofte, and David MacQueen. The Definition of Standard
ML. MIT Press, 1997. ISBN 9780262631815.

Stefan Monnier and David Haguenauer. Singleton types here, singleton types
there, singleton types everywhere. In Proceedings of the 4th ACM SIGPLAN
workshop on Programming Languages meets Program Verification (PLPV ’10),
pages 1–8. ACM, 2010.

Shin-Cheng Mu. Developing programs and proofs spontaneously us-
ing GADT, 2007. URL http://www.iis.sinica.edu.tw/~scm/2007/
developing-programs-and-proofs-spontaneously-using-gadt/.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal
type theory. ACM Transactions on Computational Logic, 9(3):23:1–23:49, 2008.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, 1999. ISBN 3-540-65410-0.

Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201–224, 1995.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf’s Type Theory: An Introduction. Oxford University Press, 1990. URL
http://www.cse.chalmers.se/research/group/logic/book/.

Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

269

http://matt.might.net/articles/red-black-delete/
http://www.iis.sinica.edu.tw/~scm/2007/developing-programs-and-proofs-spontaneously-using-gadt/
http://www.iis.sinica.edu.tw/~scm/2007/developing-programs-and-proofs-spontaneously-using-gadt/
http://www.cse.chalmers.se/research/group/logic/book/

Chris Okasaki. Purely functional data structures. Cambridge University Press,
1998. ISBN 9780521631242.

Julien Oster. An Agda implementation of deletion in left-leaning red-black
trees. Unpublished manuscript, 2011. URL http://www.reinference.net/
llrb-delete-julien-oster.pdf.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple unification-based type inference for GADTs. In Proceedings of
the eleventh ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’06), pages 50–61. ACM, 2006.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet
and Gordon Plotkin, editors, Logical Frameworks, pages 149–182. Cambridge
University Press, 1991a.

Frank Pfenning. Unification and anti-unification in the calculus of constructions.
In Logic in Computer Science (LICS ’91), pages 74–85. IEEE, 1991b.

Benjamin C. Pierce and David N. Turner. Local type inference. ACM Transac-
tions on Programming Languages and Systems, 22(1):1–44, January 2000.

Robert Pollack. Implicit syntax. In Gérard Huet and Gordon Plotkin, editors,
Informal Proceedings of First Workshop on Logical Frameworks, 1990.

Możesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In Sprawozdanie z I Kongresu matematyków krajów slowiańskich, Warszawa
1929 (Comptes-rendus du I Congrés des Mathématiciens des Pays Slaves,
Varsovie 1929), pages 92–101, 395, 1930.

David Pym. A unification algorithm for the λπ-calculus. International Journal
of Foundations of Computer Science, 3(3):333–378, 1992.

Jason Reed. Higher-order constraint simplification in dependent type theory. In
Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP ’09),
pages 49–56. ACM, 2009a.

Jason Reed. A Hybrid Logical Framework. PhD thesis, School of Computer
Science, Carnegie Mellon University, 2009b. URL http://www.cs.cmu.edu/
~rwh/theses/reed.pdf.

270

http://www.reinference.net/llrb-delete-julien-oster.pdf
http://www.reinference.net/llrb-delete-julien-oster.pdf
http://www.cs.cmu.edu/~rwh/theses/reed.pdf
http://www.cs.cmu.edu/~rwh/theses/reed.pdf

Didier Rémy. Extension of ML type system with a sorted equational theory on
types. Research Report RR-1766, INRIA, 1992.

John C. Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Programming Symposium, LNCS 19, pages 408–425. Springer, 1974.

Mikael Rittri. Dimension inference under polymorphic recursion. In Functional
Programming and Computer Architecture (FPCA ’95), pages 147–159. ACM,
1995.

John Alan Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

Colin Runciman. What about the natural numbers? Computer Languages, 14:
181–191, 1989.

Matthias C. Schabel and Steven Watanabe. Boost.Units 1.1.0, 2013. URL http:
//www.boost.org/doc/libs/1_54_0/doc/html/boost_units.html. Com-
puter software.

Robert Sedgewick. Left-leaning red-black trees. Unpublished manuscript, 2008.
URL http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf.

Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. In
Proceedings of the Fourth International Workshop on Logical Frameworks and
Meta-Languages (LFM 2004), ENTCS 199, pages 49–65, 2008.

Vincent Simonet and François Pottier. A constraint-based approach to guarded
algebraic data types. ACM Transactions on Programming Languages and Sys-
tems, 29, 2007.

Ryan Stansifer. Presburger’s article on integer arithmetic: Remarks and trans-
lation. Technical Report TR84–639, Computer Science Department, Cornell
University, 1984.

Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style
type systems in constraint form. Technical Report ACRC-99-009, University
of South Australia, School of Computer and Information Science, July 1999.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System F with type equality coercions. In Types in Language Design
and Implementation (TLDI ’07), pages 53–66. ACM, 2007.

271

http://www.boost.org/doc/libs/1_54_0/doc/html/boost_units.html
http://www.boost.org/doc/libs/1_54_0/doc/html/boost_units.html
http://www.cs.princeton.edu/~rs/talks/LLRB/LLRB.pdf

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin
Donnelly. System F with type equality coercions. Unpublished manuscript,
2009. URL http://research.microsoft.com/en-us/um/people/simonpj/
papers/ext-f/tldi22-sulzmann-with-appendix.pdf.

Don Syme. The F# 2.0 Language Specification. Microsoft, 2010. URL http:
//research.microsoft.com/apps/pubs/default.aspx?id=79948.

Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. Let should not
be generalized. In Types in Language Design and Implementation (TLDI ’10),
pages 39–50. ACM, 2010.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann.
OutsideIn(X): Modular type inference with local assumptions. Journal of Func-
tional Programming, 21(4–5):333–412, 2011.

Dimitrios Vytiniotis, Simon Peyton Jones, and José Pedro Magalhães. Equality
proofs and deferred type errors: a compiler pearl. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming (ICFP
’12), pages 341–352. ACM, 2012.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages (POPL ’89), pages 60–76. ACM, 1989.

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concur-
rent logical framework I: Judgments and properties. Technical Report CMU-
CS-02-101, School of Computer Science, Carnegie Mellon University, 2003.

Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve
Zdancewic. Generative type abstraction and type-level computation. In Pro-
ceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages (POPL ’11), pages 227–240. ACM, 2011a.

Stephanie Weirich, Brent A. Yorgey, and Tim Sheard. Binders unbound. In Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’11), pages 333–345. ACM, 2011b.

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with ex-
plicit kind equality. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’13), pages 275–286. ACM,
2013.

272

http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/tldi22-sulzmann-with-appendix.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/tldi22-sulzmann-with-appendix.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=79948
http://research.microsoft.com/apps/pubs/default.aspx?id=79948

J. B. Wells. The essence of principal typings. In Proceedings of the 29th Inter-
national Colloquium on Automata, Languages and Programming (ICALP ’02),
pages 913–925. Springer, 2002.

Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, 1998. URL http://
www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps.

Hongwei Xi. Applied Type System. In Stefano Berardi, Mario Coppo, and
Ferruccio Damiani, editors, Types for Proofs and Programs (TYPES 2003),
LNCS 3085, pages 394–408. Springer, 2004.

Hongwei Xi. Dependent ML: an approach to practical programming with depen-
dent types. Journal of Functional Programming, 17(2):215–286, 2007.

Hongwei Xi. A verified implementation of quicksort on lists, 2008. URL http:
//www.ats-lang.org/EXAMPLE/MISC/quicksort_list_dats.html.

Hongwei Xi and Frank Pfenning. Eliminating array bound checking through
dependent types. In Proceedings of the ACM SIGPLAN 1998 conference on
Programming Language Design and Implementation (PLDI ’98), pages 249–
257. ACM, 1998.

Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype con-
structors. In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL ’03), pages 224–235. ACM, 2003.

Kazu Yamamoto. Purely functional left-leaning red-black trees. 2011. URL
http://www.mew.org/~kazu/proj/red-black-tree/.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dim-
itrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a promotion. In
Proceedings of the 8th ACM SIGPLAN workshop on Types in Language Design
and Implementation (TLDI ’12), pages 53–66. ACM, 2012.

Christoph Zenger. Indexed types. Theoretical Computer Science, 187:147–165,
1997.

273

http://www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps
http://www.cs.bu.edu/~hwxi/academic/papers/thesis.2.ps
http://www.ats-lang.org/EXAMPLE/MISC/quicksort_list_dats.html
http://www.ats-lang.org/EXAMPLE/MISC/quicksort_list_dats.html
http://www.mew.org/~kazu/proj/red-black-tree/

This thesis was written in literate Haskell and converted to LATEX by lhs2TeX
version 1.17, developed by Ralf Hinze and Andres Löh. Formal grammars and
typing rules (but sadly no machine-checked proofs) were produced using Ott
version 0.21.1, developed by Francesco Zappa Nardelli, Peter Sewell, and Scott
Owens. It was typeset in 12 point Latin Modern using pdfTeX version 1.40.13.

	List of Figures
	Abstract
	I Foundations of type inference
	Introduction
	Contexts, variable scope and let-generalisation
	Dependent types in GHC Haskell
	The value of : going beyond GHC Haskell
	Type inference and term inference

	Outline

	A rationalised reconstruction of Hindley-Milner type inference
	The occurs check
	A framework for contextual problem solving
	Modelling statements-in-context
	An information order for contexts
	Constraints: problems at ground mode

	Unification for the syntactic equational theory
	Correctness of syntactic unification

	Type inference with generalisation made easy
	The Generalist's lemma
	Transforming type assignment into type inference
	Correctness of type inference

	Elaboration, zipper style
	Discussion
	Related work

	Unification and type inference for units of measure
	A troublesome example
	Extending the framework

	Unification for the theory of abelian groups
	The abelian group unification algorithm
	Correctness of abelian group unification

	Unification for types with units of measure
	Loss of generality and how to retain it
	Correctness of type unification

	Type inference for units of measure
	Discussion
	Related work

	Miller pattern unification
	Related work
	Intensional vs. extensional equality
	Heterogeneous equality

	Back to basics
	Term representation
	Contexts and unification problems
	Typing rules
	Twins
	Substitutions and metasubstitutions
	Properties

	Specification of unification
	Solving problems by inversion
	Solving flex-flex problems by intersection
	Pruning
	Metavariable simplification
	Problem simplification
	Summary of the algorithm

	Correctness
	Solved problems and logical consistency
	Soundness
	Generality
	Partial completeness
	Towards a proof of termination

	Discussion

	II Haskell with dependent types
	The inch language: adding dependent types to Haskell
	Related work
	Full-spectrum dependently typed languages
	Dependent ML
	Generalised algebraic datatypes
	Haskell libraries
	GHC TypeNats

	Features of inch
	Down with kinds
	Dependent functions
	Dependent existential types
	Implicit and explicit arguments
	Type-level numbers
	Supported operations
	Constraints

	A language of evidence
	Syntax
	Phase distinctions and promotion
	The access policy
	Promoted data constructors
	Promoted functions
	Dependent case analysis

	Type system
	Well-formed signatures and contexts
	Well-typed terms
	Well-typed coercions
	Vectors and telescoped coercions
	Syntactic sugar
	Meta-theoretic properties

	Operational semantics
	The push rule for scrutinees
	Subject reduction

	Consistency and progress
	The definition of compatibility
	Properties of compatibility
	Well-typed coercions are compatible
	Progress

	Erasure
	Discussion
	Representing numbers
	Adding -laws
	Related work
	Future work

	Producing the evidence: elaborating inch
	Type schemes
	Formal syntax of inch
	Non-deterministic elaboration
	Non-deterministic elaboration of expressions
	Subsumption
	Soundness of non-deterministic elaboration

	Metavariables and information increase
	Deterministic elaboration
	Unification
	Soundness of elaboration

	Elaboration for case analysis
	Extending the non-deterministic system
	Extending the deterministic system
	Example of elaborating a function definition

	Discussion
	Generalisation
	Related and future work

	Applications
	Vectors
	Merge sort
	Left-leaning red-black trees
	Enforcing red-black tree invariants via types
	Search
	Insertion
	Deletion

	Tracking time complexity
	Units of measure

	Conclusion
	Reference implementation of Hindley-Milner type inference
	Representation of types and terms
	Unification
	Type inference
	Elaboration, zipper style

	Reference implementation of units of measure
	Representation of units of measure
	Representation of types
	Unification of unit expressions
	Unification of types

	Reference implementation of Miller pattern unification
	Representation of terms
	Problems and contexts
	Type and equality checking
	Unification
	Inversion
	Intersection
	Pruning
	Metavariable simplification
	Problem simplification and unification
	Solvitur ambulando

	Selected proofs
	Correctness of unification and type inference
	Correctness of abelian group unification
	Correctness of Miller pattern unification
	Consistency of the unification logic
	Soundness
	Generality
	Partial completeness

	Consistency of evidence language coercions

	Bibliography

