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Abstract

We model nematic liquid crystals using the Landau-de Gennes continuum theory,

where equilibrium configurations are solutions of complex boundary-value prob-

lems of systems of coupled nonlinear partial differential equations. We analyse and

present the exotic defect structures in model geometries with different boundary

conditions and material properties. We study three-dimensional wells with tangent

boundary conditions on the lateral surfaces, and two physically relevant boundary

conditions on the top and bottom surfaces, and prove the existence of the globally

minimizing Well Order Reconstruction Solution for small geometries. This work

is corroborated by an exhaustive numerical study of three-dimensional wells with

square and rectangular cross-sections, where we have looked at the effects of geo-

metrical anisotropy and anchoring. We then consider a two-term elastic energy

density in the Landau-de Gennes free energy to investigate the role of elastic aniso-

tropy in different asymptotic limits, focusing on two-dimensional square wells with

tangent boundary conditions. We then model ferronematics in two-dimensional

polygonal wells, tailoring multistability of the equilibrium profiles, and presenting

new exotic states with interior domain walls and nematic point defects. Lastly, we

study the nematic-isotropic phase transition for a fourth-order thermotropic bulk

potential in a stochastic setting, where certain material-dependent parameters

are assumed to follow a non-Gaussian probability distribution.
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Chapter 1

Introduction

1.1 What are liquid crystals?

We are all familiar with the three basic states of matter - solids, liquids and gases.

If we heat up an ice cube above 0◦C, it becomes liquid water. This is one of the

simplest and most well-known examples of a phase transition where, at certain

temperatures or pressures, pure substances change state. Solid crystalline materi-

als consist of highly ordered molecules with a prescribed orientation and position,

whereas in a liquid, any sense of molecular order is lost, and the constituent

molecules can move freely. The term ‘liquid crystal’ therefore might seem quite

counterintuitive. However, many materials experience a liquid crystalline phase,

exhibiting both partial molecular order, and the fluidity of a conventional liquid.

The defining feature of liquid crystals is the constituent molecules are strongly

elongated in one or more dimension - usually rod, disc or board-like in shape [4]–[6].

The attractive forces between neighbouring particles are therefore directionally

dependent, and so liquid crystals display different material responses in different
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directions i.e., they are anisotropic. Most notably, the anisotropy of the liquid

crystal phase affects the polarisation and transmission of incident light, and the

optical response is different in different directions [7]. This can be clearly observed

in thin film samples under a polarising microscope, as seen in Figure 1.1. In these

figures, the different colours are a result of the changing molecular orientation

and some variation in the thickness of the film. In regions where the average

molecular orientation is parallel to either polarizer, we see black lines. We also see

these lines intersecting each other at junctions, referred to as ‘topological defects’.

These defects correspond to small regions of the liquid crystal where the average

molecular orientation is no longer defined. Depending on their chemical make up,

some liquid crystalline materials go through phase transitions due to a change in

temperature, for which they are deemed thermotropic, and others due to a change

in concentration, for which we call them lyotropic [8], [9]. In this thesis, we will

be focusing purely on thermotropic liquid crystals.

Liquid crystals were first discovered in 1888 by the Austrian botanist and chemist

Friederich Reinitzer [10]. Whilst studying the chemicals in plants, Reinitzer

heated a sample of cholesteryl benzoate which, at 145◦C, melted into a cloudy

fluid, and at 178.5◦C, changed once more into the originally expected clear liquid.

We now know the cloudy substance to be a cholesteric liquid crystal, and the

temperature at which it transitions to a clear liquid to be the clearing point.

Reinitzer sent two samples of the curious cloudy liquid to the German physicist

Otto Lehmann, along with an accompanying letter. It was Lehmann who, upon a

systematic study of the cholesteryl benzoate (and other related compounds that

presented two melting points), first used the term ‘liquid crystals’ to describe

this phenomenon. This work was expanded on by the German chemist Daniel

Vorländer at the beginning of the 20th century and, in 1907, determined that
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Figure 1.1: Thin-film liquid crystal samples under a polarising
microscope. Courtesy: Oleg Lavrentovich, Liquid
Crystal Institute, Kent State University, National
Science Foundation (www.nsf.gov).
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rod-like molecules were essential for the occurrence of two melting points [11].

Most liquid crystals are mesogenic i.e., they display a series of intermediate states

of matter between the solid and liquid phases called mesophases. In 1922, G.

Friedel [12] classified these mesophases into three broad categories which are still

in use today - the nematic, cholesteric and smectic phases.

1.1.1 The nematic phase

The simplest liquid crystalline phase is the nematic phase. Here, the constituent

molecules orient themselves in locally preferred directions, called directors in the

literature, but they do not display any sense of positional order. The term nematic

derives from the Greek νη̂µα, meaning ‘thread’, which stems from the dark lines

that are often observed in nematic liquid crystal samples, as in Figure 1.1. In many

nematic liquid crystals, the molecules tend to align parallel to a single director,

which defines an anisotropic axis, and are hence called uniaxial nematics [13].

The molecules in a uniaxial nematic are typically rod-like in shape, or elongated

in the direction of the anisotropic axis, for which we call them calamitic. Others

are disc-like in shape, or shortened in the direction of the anisotropic axis, for

which we call them discotic [14]. A typical calamitic liquid crystal molecule, such

as p-azoxyanisole (PAA), has a length of a few nanometers and is fairly rigid for

some portion of its length [15]. A schematic of the uniaxial nematic phase for a

calamitic liquid crystal is shown in Figure 1.2, which shows approximately how

these molecules tend to arrange themselves for very low and high temperatures.

When the temperature is low enough, the liquid crystal molecules acquire a degree

of positional order, and for high enough temperatures, the molecules lose any sense

of molecular order and enter an isotropic fluid phase [16]–[18].
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Figure 1.2: A schematic representation of the uniaxial nematic
liquid crystal phase for increasing temperature, T .
The ellipsoidal shapes represent calamatic molecules,
whose average direction of molecular alignment is
given by the unit vector n, called the director.

The key feature of nematic liquid crystals is that the axis of uniaxial symmetry

has no polarity. This means that if we describe the director by some vector n,

as in Figure 1.2, then n and −n will be indistinguishable from each other. It is

also possible for a nematic liquid crystal to have two locally preferred directions

of alignment. We refer to these as biaxial nematic liquid crystals [19].

1.1.2 The cholesteric phase

In the cholesteric phase, chiral molecules (which have a different left and right-

hand orientation) form a helical structure [20]. The helical axis is perpendicular

to the local director, as shown in Figure 1.3. The pitch of the cholesteric helix,

P , is the distance along the helical axis (typically of the order of microns), over

which the local director rotates through 360◦. The term cholesteric originates

from the word ‘cholesterol’, a substance for which many of its derivatives exhibit
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a cholesteric liquid crystalline phase. This may seem slightly ambiguous since

cholesterol itself is not a cholesteric liquid crystal, and so the expression chiral

nematic is also used to describe this phase [15].

Figure 1.3: A schematic representation of the cholesteric liquid
crystal phase, with cross-sections normal to the hel-
ical axis. Here, the director, represented by black
arrows, rotates through a full 360◦ along a distance
given by the pitch P .

1.1.3 The smectic phase

In a smectic liquid crystalline phase, the constituent molecules exhibit some degree

of positional order and arrange themselves in layers. These layers typically have a

prescribed thickness sometimes called the smectic interlayer distance. Unlike the

conventional solid crystal, these layers can still move over each other freely and,

within each layer, molecules behave like a nematic with an average orientation

given by a director. In Figure 1.4, we show a schematic of two common smectic

phases - smectic A and smectic C. In the smectic A phase, the layers are normal

to the director and, in the smectic C phase, the director may orient itself at an

angle to the layer normal [5], [9].
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Figure 1.4: A schematic representation of the smectic liquid crys-
tal phases. In the smectic A phase, the prescribed
layers of liquid crystal are positioned normal to the
director, n. In the smectic C phase, the director
aligns at some angle, θ, to the layer normal.

We will focus on nematic liquid crystals for the remainder of this thesis, but for a

more in depth mathematical introduction to these phases, the reader is referred

to the seminal work by De Gennes and Prost [9].

1.2 Applications of liquid crystals

The special properties of liquid crystals make them excellent working materials

in a number of industrial applications [21]. Most notably, the anisotropy of

liquid crystals means they are optically birefringent. In general, light entering

an isotropic medium will travel at a constant speed, regardless of the material’s

orientation relative to the direction of incident light. However, the director in a

uniaxial nematic defines an optic axis for the material, and the refractive index, n‖,

parallel to the director n, is different from the refractive index perpendicular to the

director, n⊥. The ‘birefringence’ of the material is simply defined by ∆n = n‖−n⊥
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[9]. Furthermore, a nematic liquid crystal’s orientational order is highly sensitive

to external electromagnetic fields and mechanical stresses [15]. An applied electric

field, E, for example, will induce a dipole moment per unit volume, P, referred

to as the polarisation. This quantity is proportional to the field strength and

electric susceptibility of the liquid crystal. The electric displacement, D, induced

by E and P is given by

D = ε0ε⊥E + ε0∆ε(n · E)n, (1.2.1)

where n is the director, ε0 is the dielectric permittivity of free space, and ∆ε =

ε‖ − ε⊥ is the dielectric anisotropy of the liquid crystal. The unitless dielectric

constants, ε‖ and ε⊥, are the relative permittivities parallel and perpendicular to

the director, respectively [13]. These important characteristics have led to the

explosion of interest in nematic liquid crystals and their use in the multibillion-

dollar display industry.

1.2.1 Liquid crystal displays

The liquid crystal display (LCD) was invented in 1964 at RCA Laboratories in

Princeton [22], [23]. These early designs didn’t become commercially viable until

the invention of the twisted nematic (TN) mode of operation in 1970 [24]. In

a TN device, the orientation of nematic liquid crystal molecules is imposed by

two suitably treated substrates where, in the absence of any external electric field

(the OFF state), polarized light is allowed to pass through a twisted nematic

layer. When an electric field is applied (the ON state), the nematic molecules are

oriented in such a way that the incident light cannot pass through. A diagram of

the fundamental mechanism in a TN device is shown in Figure 1.5. In this example,
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the nematic liquid crystal has positive dielectric anisotropy (∆ε > 0), and so the

director is attracted to be parallel to the applied electric field. The addition of

Figure 1.5: Diagrams of the OFF and ON states in a twisted
nematic (TN) liquid crystal device.

thin-film transistors (TFTs) to these devices made it possible to construct LCD

TV’s, and many of the modern displays used today. More complex modes of

operation, such as the in-plane switching (IPS) mode, have use in displays with

enhanced viewing angles and which can endure additional mechanical stresses

such the touch screens on smart phones [22], [25]. More modern inventions, such

as the zenithal bistable device (ZBD), utilise particular confining geometries that

permit multiple stable orientations for the nematic molecules, improving the

display’s efficiency [26], [27]. The prescribed molecular orientation on surfaces is

an important feature in display devices, and will play a large role in the modelling
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aspect of this thesis. For this reason, we briefly describe the types of anchoring

that are employed in applications.

1.2.2 Liquid crystals in confinement

The confining geometry of a liquid crystal sample can drastically alter the ori-

entational order in the absence of external fields. Interaction forces between the

nematic molecules and the bounding surface can impose variable degrees of ori-

entational order and preferred directions of alignment. The ways in which the

director in a nematic liquid crystal is aligned on the bounding surfaces of a con-

tainer is referred to as anchoring. The term homogeneous (or planar) alignment

refers to anchoring which aligns the director parallel to the bounding surface.

This is typically achieved by rubbing the surface in one direction. Other methods

that induce anchoring include chemical treatment of the bounding surfaces, which

may force the director to be perpendicular to the surface. This is referred to

as homeotropic anchoring. More generally, we may prescribe conical anchoring,

where the nematic director at the boundary makes a fixed angle, ϕ, with the

tangent plane of the surface, defining a cone of ‘easy directions’ for which it may

orient itself. In Figure 1.6 we present a simple schematic, which has been adapted

from [13], that shows these three anchoring alignments.

Figure 1.6: Homogeneous, homeotropic and conical anchoring
alignments with director given by n.
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1.2.3 Colloidal particles in a nematic host

In recent years, there has been substantial interest in liquid crystal nanoscience

and nanotechnology [28], [29]. This exciting field of research focuses its attention

on controlling and enhancing the distinctive physical properties of a liquid crystal

host using embedded inclusions, such as dispersed colloidal particles. The intro-

duction of foreign particles changes the local orientation of nematic molecules

through surface interactions, and in some cases can induce several topological

defect structures [30]. It has also been shown that dispersions of colloids in a

nematic host can change material properties such as phase transition temperat-

ures [31], and induce the self-assembly of highly organized defect structures and

anisotropic clusters [32]. The inclusion of magnetic nanorods was first theoretic-

ally investigated by Brochard and de Gennes [33], who proposed that rod-shaped

particles can drastically enhance the macroscopic responses of a nematic liquid

crystal to external magnetic fields. This class of soft matter is referred to as a

ferronematic, and is explored in more detail in Chapter 6.

For a time, the LCD industry dominated the focus of applied science, but we

are now seeing a renaissance of advanced and complex applications that have

liquid crystals at its core. Liquid crystals’ optical birefringence, susceptibility to

external fields, and interaction with solid surfaces, offers a wide range of potential

functions. To name but just a few of them, they are now being used to improve

the sensitivity of switchable metamaterials [34], to construct tunable photonic

band-gap devices [35], and as an important material in visualizing the presence

of proteins such as DNA [36].
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1.3 Modelling nematic liquid crystals

Liquid crystals present a challenge to mathematical modellers due to their aniso-

tropic properties. Nonetheless, several mathematical approaches have been used

to understand both the molecular behaviour, and macroscopic configurations in

the nematic phase. The first attempt at a theoretical formulation of nematic liquid

crystals is the ‘swarm theory’, proposed by Bose in 1909 [11]. This simple theory

adopts the notion that liquid crystal molecules group into collective bundles, or

swarms, in approximately the same direction. Whilst quite basic, this theory was

able to explain the cloudy appearance of liquid crystal samples at the time. It is

clear that molecular interactions within a liquid crystal instigate the orientational

behaviour that is observed, but the majority of liquid crystal applications involve

samples of liquid crystal with many molecules. For that reason, accurate molecu-

lar models of these samples are computationally expensive and hard to achieve.

A more manageable approach is to carry out molecular dynamics simulations,

which utilise an empirical potential for the intermolecular interaction, such as

the Gay-Berne potential [37]–[39]. Where these models succeed in modelling the

microscopic interactions of a liquid crystal, they are inadequate for calculating

the macroscopic outcome from these interactions, for which a continuum theory

is needed.

1.3.1 The scalar order parameter

Any robust continuum theory of nematic liquid crystals requires some measure

of the orientational order in the system. We have already touched on one such

measure, the director n(x, t). This unit vector effectively measures the mean

orientation of the molecules in a uniaxial nematic liquid crystal, at a point x
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in space, and time t. In this thesis we focus on the static continuum theory of

nematics, where any notion of flow can be ignored, and so we consider directors

n(x). As explained previously, the sign of n has no physical significance due to

the head-to-tail symmetry of the constituent molecules. Therefore it is conducive

to think of the molecular orientations, not as elements of a vector field, but as

elements of the real projective plane, RP 2. Another crucial parameter used to

describe a nematic liquid crystal is the scalar order parameter, typically denoted

by s, which measures the degree of orientational order about the director.

Consider a small region of the material, say a small ball B(x, δ) centred at the

point x with radius δ, containing a uniaxial nematic liquid crystal consisting of

calamitic (or rod-like) molecules. We pick δ small enough to describe the material

point x effectively, but large enough for a statistical approach to make sense. As

in [19], we may consider the probability distribution function, ρ(θm), of the angle,

−π
2 ≤ θm ≤ π

2 , between each molecule and the average orientation of molecules

in the region B(x, δ). The scalar order parameter is a measure of how spread

out this probability distribution function is. The standard way to define this is

to compute a Legendre polynomial decomposition of the probability distribution

function ρ. The first non-zero term is given by

s = 1
2

∫
B
(3 cos2 θm − 1)ρ(θm) dV. (1.3.1)

In a state of perfect alignment, we have that θm = 0 everywhere. Since ρ(θm) is a

probability distribution, its integral over the region B is equal to 1, and so we have

s = 1. In an isotropic fluid, the molecules are randomly oriented. In this scenario,

we have that ρ(θm) is a constant, since it resembles a uniform distribution. From

the head-to-tail symmetry of molecular orientations, this constant value is equal

to 1
2π since the integration in equation (1.3.1) may be performed over half the
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Figure 1.7: A diagram of the molecular orientation angles, adap-
ted from [19]. The blue arrow represents the molecu-
lar orientation of a single molecule, and the average
orientation of molecules in the region B is given by
the director n. θm is the zenithal angle between the
molecule and director, and φm is the azimuthal angle,
where ν is some fixed direction normal to the director.

boundary of the sphere, δB+, and

∫
δB+

dA =
∫ 2π

0

∫ π
2

0
sin θm dθmdφm = 2π,

where φm is the azimuthal angle of a molecule and the director. For clarity,

we present a diagram of these molecular angles in Figure 1.7. Therefore in the

isotropic setting, the scalar order parameter is given by

s = 1
4π

∫
δB+

(3 cos2 θm − 1) dA

= 1
2π

∫ 2π

0

∫ π
2

0
(3 cos2 θm − 1) sin θm dθm dφm

= −
∫ 0

1
(3x2 − 1) dx = 0,

where we have used the substitution x = cos θm in the last line. Another ex-

treme possibility, is that all of the molecules are randomly oriented in the plane

perpendicular to the director. In this scenario we have θm = π
2 and so s = −1

2 .
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1.3.2 Defects

Defects in a nematic liquid crystal can appear as isolated points or lines in the

material. They correspond to localised regions where the average orientation of

molecules can no longer be defined, and they typically present themselves as math-

ematical singularities in several theoretical frameworks [6]. Defects can occur as

a result of a phase transition, the application of an external field, or they simply

exist in equilibrium due to confinement or from the inclusion of colloidal particles

[30], [40]. For the purposes of this thesis, it is useful to introduce a topological

classification of point defects, which can be difficult since it depends on the topolo-

gical properties of the order parameter space being used [6]. For the case of planar

vector fields in 2D domains, we say that a defect has degree/topological charge k,

if the director rotates k times through 2π radians as an oriented circuit around

the defect [41]. Since the director is sign-invariant, this particular classification

allows for both integer and half-integer degrees. The archetypal configuration of

some of these defects is shown in Figure 1.8. We may classify point defects in

three dimensions using the homotopy invariant Brouwer degree [42], however most

of this thesis considers 2D systems or the reduced LdG setting with two degrees

of freedom. Informally speaking, the Brouwer degree is the oriented number of

times the image of the director field, restricted to a closed surface, covers or wraps

around the unit sphere when enclosing a point defect and, in work by [43], the

authors use fractional Brouwer degrees (also called wrapping numbers) to classify

a tangent unit-vector field on three-dimensional polyhedral geometries.
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Figure 1.8: Illustrations of point defects with topological charge
+1 (top left), −1 (top right), +1

2 (bottom left), and
−1

2 (bottom right).

1.3.3 The Oseen-Frank theory

The key idea in any variational theory of nematic liquid crystals is that equilibrium

configurations correspond to minimizers of some free energy functional. In the

Oseen-Frank model, first proposed by Oseen [44] and later developed by Frank in

1958 [45], the total free energy of the system depends on just a single parameter -

the director n. For a uniaxial nematic sample, contained in some bounded open

set Ω ⊂ R3, the Oseen-Frank free energy is given by

FOF (n) =
∫

Ω
W (n,∇n) dx,

where W is the energy density

W (n,∇n) = K1(∇ · n)2 +K2(n · ∇ × n)2 +K3(n×∇× n)2

+(K2 +K4)∇ · [(n · ∇)n− (∇ · n)n]. (1.3.2)
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Here, K1, . . . , K4 are the Frank elastic constants, derived from the components

of curvature, or curvature strains, obtained by considering a Taylor expansion for

the components of the director, n, about the origin [13]. These curvature strains

are referred to as splay, twist an bend, and correspond to the elastic constants

K1, K2 and K3, respectively. Schematic representations of these curvature strains

are shown in Figure 1.9.

Figure 1.9: The splay, twist and bend curvature strains from the
Oseen-Frank elastic energy density (1.3.2).

The last term in the elastic energy density (1.3.2) is referred to as the saddle-

splay term, which is typically ignored in boundary value problems with prescribed

strong anchoring, since its integral

(K2 +K4)
∫

Ω
∇ · [(n · ∇)n− (∇ · n)n] dx,

depends only on values of n at the boundary, ∂Ω. The elastic constants depend

on temperature and, as an example, at 125◦C the liquid crystal PAA has elastic

constants

K1 = 4.5× 10−12 N, K2 = 2.9× 10−12 N, K3 = 9.5× 10−12 N,

and these values typically decrease as the temperature of the system increases [13].

For analytical simplicity, the one-constant approximation of this energy functional
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is often taken [46]. In this approximation, we have K ≡ K1 = K2 = K3, K4 = 0,

which reduces the energy to the Dirichlet energy functional for harmonic maps

given by

FOF (n) = K
∫

Ω
|∇n|2 dx.

This classical continuum theory is still widely used today however, it depends only

on a single director and assumes a constant scalar order parameter throughout.

As a result, the theory fails to predict the isotropic-nematic phase transition,

biaxial nematic phases, and several classes of defects.

1.3.4 The Ericksen theory

Since not all defects can be accounted for within the Oseen-Frank framework, this

inspired Jerald Ericksen to formulate a modified continuum theory for uniaxial

nematics in 1991 [47]. Here, the free energy functional is designed to depend on

both the director, n, and the scalar order parameter, s, given by (1.3.1). The

one-constant approximation of this energy can be written as:

FE[s,n] =
∫

Ω
kel|∇s|2 + s2|∇n|2 + fb(s) dx,

where kel is some elastic constant, and fb is a bulk potential chosen to encapsulate

the phase transition behaviour of the system. We will clarify the details of a

suitable bulk potential in Section 1.4.2. The key idea of this theory is that

the scalar order parameter, s, vanishes in regions where the director, n, can no

longer be defined, and so defects may be modelled by regions of the material

where the molecular orientation is completely disordered, as in an isotropic fluid.

This mathematical framework, allows for line defects (or disclinations) and two-
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dimensional point defects, and can effectively model phase transitions from an

isotropic fluid to a uniaxial nematic phase. However, it is not able to sufficiently

describe biaxial nematic phases, for which a more sophisticated continuum theory

is required.

1.4 The Landau-de Gennes theory

A biaxial nematic phase has no axis of rotational symmetry, as in a uniaxial

phase, and two scalar order parameters are required to describe the degree of

orientational order in the system [19]. For this reason, both the classical Oseen-

Frank theory, and Ericksen theory for nematic liquid crystals, will be insufficient

at accurately modelling a biaxial phase and transitions between biaxial, uniaxial

and isotropic phases. We only consider calamitic or discotic molecules with only

one molecular axis, but for a detailed description of the associated continuum

theory involving plank-like molecules with two molecular axes, we refer the reader

to the work by Sonnet & Virga [48].

1.4.1 The de Gennes Q-tensor

In our derivation of the scalar order parameter (1.3.1), we considered a probab-

ility distribution function of the angle between each molecule and the average

molecular orientation within a small region. Following the approach in [49], we

will now consider the probability distribution function, ρ(x,p), of the molecular

orientations themselves. This distribution represents the probability of a ran-

domly chosen molecule in the region B(x, δ) having an orientation given by the

vector p ∈ S2 (where S2 is the unit sphere). Since p and −p are equivalent, we
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have that ρ satisfies the following properties:

ρ(x,p) ≥ 0,
∫
S2
ρ(x,p) dp = 1, ρ(x,p) = ρ(x,−p).

Now consider the finite moments of the probability measure p. We see that the

first moment,
∫
S2 p ρ(x,p) dp, vanishes and we denote the second moment by the

following symmetric second-order tensor:

M(x) =
∫
S2

p⊗ p ρ(x,p) dp,

where the tensor product is defined by the relation (a ⊗ b)ij = aibj, i, j = 1, 2, 3,

for arbitrary vectors a = (a1, a2, a3) and b = (b1, b2, b3). The de Gennes Q-tensor

is defined as

Q(x) = M(x)− 1
3I, (1.4.1)

and is a measure of the deviation of M from its isotropic value. It follows that Q

is a traceless, symmetric 3× 3 matrix i.e., Q ∈ S0 where,

S0 = {Q ∈M3×3 : Q = QT , trQ = 0}.

We note that S0 is a five-dimensional subspace of the space of 3× 3 matrices and,

as we will describe in more detail, the de Gennes Q-tensor (1.4.1) carries sufficient

information to describe the two directors, and two scalar order parameters, of a

biaxial nematic phase. The Q-tensor may be expressed in terms of its eigenvalues,

{λi}3
i=1, and its eigenvectors, {ni}3

i=1,

Q = λ1n1 ⊗ n1 + λ2n2 ⊗ n2 + λ3n3 ⊗ n3. (1.4.2)
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However, since Q is traceless, we must have that λ1 + λ2 + λ3 = 0, and since∑3
i=1 ni ⊗ ni = I3, we have that

Q = (2λ1 + λ2)n1 ⊗ n1 + (2λ2 + λ1)n2 ⊗ n2 − (λ1 + λ2)I3.

We say that the Q-tensor is isotropic if all its eigenvalues are equal and, by the

tracelessness of Q, we have that Q = 0. The Q-tensor is uniaxial if it has a pair

of degenerate non-zero eigenvalues, in which case it may be written as [50]

Q = s
(
n⊗ n− 1

3I
)
, (1.4.3)

where s ∈ R is the scalar order parameter and n ∈ S2 is the director, corresponding

to the associated non-degenerate eigenvalue, which labels the distinct direction of

uniaxial nematic alignment. Lastly, the Q-tensor is biaxial if it has three distinct

eigenvalues, in which case it can be written as

Q = s
(
n⊗ n− 1

3I
)

+ r
(
m⊗m− 1

3I
)
,

for unit-length eigenvectors n,m ∈ S2, with n·m = 0, and scalar order parameters

s, r ∈ R, which represent the two preferred directions of molecular alignment in a

biaxial nematic liquid crystal, and the degree of orientational order about these

directions, respectively.

We are now prepared to introduce the Landau-de Gennes continuum theory of

nematic liquid crystals, which relies on the Q-tensor order parameter (1.4.1) [9].

Suppose we have a sample of nematic liquid crystal, contained in an open bounded

set Ω ⊂ R3 with smooth boundary, ∂Ω. The total free energy of the sample is

given by

F =
∫

Ω
(fel + fb + fem) dV +

∫
∂Ω

(fs) dS,
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where the energy densities, fel, fb, fem and fs, represent the energy potentials of

elastic distortions, thermotropic contributions, externally applied electromagnetic

fields, and surface interactions, respectively. Surface anchoring conditions may

be broadly classified into two regimes: strong anchoring and weak anchoring

[6]. Strong anchoring conditions, typically referred to as Dirichlet boundary

conditions, encapsulate scenarios where the forces on the boundary are strong

enough to essentially prescribe a value for the order parameter at the surface,

that is,

Q = Qb, on ∂Ω. (1.4.4)

In this case, the surface energy contributions are so dominant in the free energy

that we may reduce this minimization problem to the case where fs = 0. When

modelling a weak anchoring condition, we have fs 6= 0. This surface energy is

introduced to give a preference for the director orientation along the boundary,

which may vary under the application of external fields [19]. One typical surface

energy density used in the Q-tensor framework is the Rapini-Papoular surface

energy [51]

f (i)
s (Q) = w(i)

2 tr(Q−Q(i)
s )2, (1.4.5)

which imposes a preferred orientation, determined by Q(i)
s , on the ith lateral

surface. The w(i) are the anchoring coefficients, which dictate the strength of

surface anchoring [52]. For the purposes of this thesis, we will disregard externally

applied electric/magnetic fields, but for an excellent review of how these terms

contribute to the Q-tensor model, see [9] and [19].
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1.4.2 Thermotropic contributions

The bulk thermotropic term, fb, essentially dictates which liquid crystalline state

we are in. By design, this energy potential is minimized by the isotropic state,

Q = 0, at high enough temperatures. The simplest form of fb that allows for

a first-order nematic-isotropic phase transition is a truncated Taylor series in Q

about the isotropic state i.e., the following quartic polynomial in the invariants

of Q:

fb(Q) = A

2 trQ2 − B

3 trQ3 + C

4 (trQ2)2. (1.4.6)

For clarity, we denote trQ2 = QijQij, and trQ3 = QijQjkQki, where the Ein-

stein summation convention is to be assumed, and Qij corresponds to the ijth

component of the tensor Q. The parameter A is approximated to be linear in

temperature i.e., A = α(T − T ∗), where α > 0 is a material-dependent constant,

T is the absolute temperature of the system, and T ∗ represents the characteristic

nematic supercooling temperature, at which the isotropic state becomes unstable.

The other parameters B,C > 0 are to be considered material-dependent constants.

We repeat an important result from [50], and its proof, concerning minimizers of

the thermotropic bulk energy contribution (1.4.6).

Proposition 1.4.1. [50] The bulk energy density defined by (1.4.6) attains its

minimum for either the isotropic state, or a continuum of uniaxial Q-tensors of

the form

Qu = s+

(
n⊗ n− 1

3I
)
, (1.4.7)

where n ∈ S2 is a unit eigenvector of Q and

s+ = B +
√
B2 − 24AC
4C . (1.4.8)
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Proof. We recall that for a symmetric, traceless matrix Q-tensor of the form

(1.4.2), we have that trQn = ∑3
i=1 λ

n
i , subject to the tracelessness condition

λ1 + λ2 + λ3 = 0. Therefore, the thermotropic bulk energy density, fb, only

depends on the eigenvalues λ1, λ2, λ3, and the stationary points of fb are given by

the stationary points of the function f : R3 → R defined by

f(λ1, λ2, λ3) := A

2

3∑
i=1

λ2
i −

B

3

3∑
i=1

λ3
i + C

4

( 3∑
i=1

λ2
i

)2

− 2δ
3∑
i=1

λi.

Here we have recast fb in terms of the eigenvalues of Q, and introduced a Lagrange

multiplier δ to account for the tracelessness constraint. The stationary points of

fb then satisfy the following system of algebraic equations:

∂f

∂λi
= 0 ⇐⇒ Aλi −Bλ2

i + C

( 3∑
k=1

λ2
k

)
λi = 2δ, i = 1, 2, 3, (1.4.9)

or equivalently,

(λi − λj)
[
A−B(λi + λj) + C

3∑
k=1

λ2
k

]
= 0, 1 ≤ i < j ≤ 3. (1.4.10)

Suppose, for a contradiction, we let {λi} be a solution of the system (4.2.10) with

three distinct eigenvalues λ1 6= λ2 6= λ3 i.e., fb is minimized by a biaxial Q-tensor.

Without loss of generality, we consider equation (1.4.10) for the pairs (λ1, λ2) and

(λ1, λ3). This yields two equations:

A−B(λ1 + λ2) + C
3∑

k=1
λ2
k = 0,

A−B(λ1 + λ3) + C
3∑

k=1
λ2
k = 0,

from which we obtain

−B(λ2 − λ3) = 0,
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contradicting our initial hypothesis λ2 6= λ3. We thus conclude that a stationary

point fb must have at least two equal eigenvalues, and therefore correspond to

either a uniaxial or isotropic liquid crystal state. Without loss of generality, we

consider an arbitrary uniaxial state given by (λ1, λ2, λ3) =
(

2s
3 ,−

s
3 ,−

s
3

)
. The

corresponding Q-tensor is

Q = s
(
e1 ⊗ e1 −

1
3I
)
.

The function fb is then a quartic polynomial in the order parameter s, that is

fb(s) = s2

27(9A− 2Bs+ 3Cs2),

and the stationary points are solutions of the algebraic equation

dfb
ds

= 0 ⇐⇒ 2As
3 − 2Bs2

9 + 4Cs3

9 = 0.

This cubic equation admits three solutions:

s = 0, and s± = B ±
√
B2 − 24AC
4C ,

where

fb(0) = 0, and fb(s±) = s2
±

54 (9A−Bs±),

and so fb(s−) > fb(s+). Symmetry considerations show that we obtain the same

set of stationary points for the remaining choices of eigenvalues. The global

minimizer is therefore either the isotropic state Q = 0, or an ordered nematic

state of the form (1.4.3), where s = s+.

We may check the stability of this family of stationary points by computing d2fb
ds2

.

We see that the isotropic state, s = 0, is globally stable for A > B2

27C , metastable

for 0 < A < B2

27C , and unstable for A < 0. The nematic state, s = s+, is globally



1.4. The Landau-de Gennes theory 26

stable for A < B2

27C , metastable for B2

27C < A < B2

24C , and undefined for A > B2

24C .

The s = s− state is metastable for A < 0, unstable for 0 < A < B2

24C , and undefined

for A > B2

24C . In summary there are 3 distinct temperature regimes for the variable

A:

• A = 0, below which the isotropic state loses its stability. This is commonly

referred to as the nematic supercooling temperature.

• A = B2

27C , at which both the nematic state and isotropic state have equal

energies (fb(s+) = fb(0)). This represents the nematic-isotropic transition

temperature.

• A = B2

24C , above which the nematic states, s±, are no longer defined and we

refer to this as the nematic superheating temperature.

We present a plot of fb as a function of the scalar order parameter s, for different

values of A, in Figure 1.10. Here we take B = 0.64 × 104 Nm−2, C = 0.35 ×

104 Nm−2 - typical values for the liquid crystal MBBA [8].

1.4.3 Elastic contributions

Liquid crystalline materials are anisotropic in their nature, and hence elicit a

directionally-dependent response to elastic deformations [16]. The elastic energy

density, fel in the total free energy, penalises any spatial inhomogeneities in the

system, and is composed of quadratic functions in ∇Q. That is,

fel(Q,∇Q) =L1

2 Qij,kQij,k + L2

2 Qij,jQik,k + L3

2 Qik,jQij,k

+ L4

2 εijkQilQjl,k + L5

2 QlkQij,lQij,k,
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Figure 1.10: Plots of the thermotropic bulk energy density, fb, as
a function of the scalar order parameter, s, for vari-
ous temperature regimes. The red circle represents
the isotropic state, s = 0.

where Qij,k = ∂Qij
∂xk

for i, j, k = 1, 2, 3, and where the Einstein summation con-

vention is to be assumed [53]. The L1, . . . , L5 are material-dependent elastic

constants which are related to the Frank elastic constants from (1.3.2). The

fourth term accounts for any molecular chirality in the system and so for nematic

liquid crystals we have L4 = 0. The last term is one of several potential cubic
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terms that can effectively model any broken symmetry of the K1 and K3 Frank

elastic constants [54]. Furthermore, the difference of the second and third elastic

terms, Qij,jQik,k−Qik,jQij,k, is a null lagrangian and so, for simplicity, we will only

be considering the first two elastic terms i.e., L3 = L4 = L5 = 0. The case where

Li = 0, for i = 2, . . . , 5, is referred to as the one-constant approximation of the

elastic energy density. For clarity, Q-tensors in the space S0 have the correspond-

ing matrix norm |Q|2 = trQ2 = QijQij, i, j = 1, 2, 3 and hence, the one-constant

approximation of the elastic energy density can be written as L|∇Q|2.

1.4.4 The biaxiality parameter

In confined systems, localized regions of biaxiality within the liquid crystal sample

can arise, especially in the vicinity of defects. For this reason, it is useful to utilize

a measure of the degree of biaxiality, which will also be key in proving some

results in this thesis. We define the biaxiality parameter, β2, as in [55] and [40]:

β2 := 1− 6(trQ3)2

(trQ2)3 . (1.4.11)

It was shown in [56] that, for any Q ∈ S0 \ {0}, the biaxiality parameter (1.4.11)

takes values in the interval [0, 1], where β2 = 1 corresponds to a state of maximum

biaxiality if, and only if, one eigenvalue of Q vanishes, and β2 = 0 for all uniaxial

states of the form (1.4.3). Moreover, for any Q ∈ S0, the following inequality

holds:

−|Q|
3

√
6

(
1− β2

2

)
≤ trQ3 ≤ |Q|

3
√

6

(
1− β2

2

)
. (1.4.12)
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1.4.5 Results on minimizers

Throughout this thesis, we consider the equilibrium configurations of a nematic

liquid crystal in confinement in the Landau-de Gennes theory. In this brief section,

we reproduce some of the key results concerning minimizers of the one-constant

approximation of the Landau-de Gennes energy functional in the absence of

external electromagnetic fields and surface energies, FLG, given by

FLG[Q] =
∫

Ω

L

2 |∇Q|2 + fb(Q) dV. (1.4.13)

Confined nematic systems evolve to a configuration that minimizes the LdG free

energy (1.4.13) i.e., FLG will be a minimum when the system is in equilibrium.

To this end, we consider the minimization problem of FLG with respect to the

tensor order parameter Q. We choose Dirichlet boundary conditions (1.4.4) such

that the thermotropic bulk potential is minimized along the boundary i.e., Qb is

of the form (1.4.7). We define our admissible space to be

A := {Q ∈ W 1,2(Ω;S0) : Q = Qb on ∂Ω}, (1.4.14)

where the Sobolev space W 1,2(Ω;S0) is given by

W 1,2(Ω;S0) =
{
Q ∈ S0 :

∫
Ω
|∇Q|2 + |Q|2 dV <∞

}
,

which is equipped with the following inner product:

(Q,P)W 1,2(Ω) :=
∫

Ω
{QijPij +Qij,kPij,k} dV, i, j, k = 1, 2, 3;

and norm and seminorm, respectively

||Q||2W 1,2(Ω) := (Q,Q), |Q|2W 1,2(Ω) :=
∫

Ω
Qij,kQij,k dV =

∫
Ω
|∇Q|2 dV.
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The existence of a global minimizer of FLG, over the admissible space A, is an

immediate consequence from the direct methods in the calculus of variations [57].

Since the elastic energy density is convex in ∇Q, then we have that FLG is weakly

lower semi-continuous. That is,

lim inf
n→∞

FLG[Qn] ≥ FLG[Q]

for all sequences Qn weakly converging to Q in W 1,2(Ω) i.e., (Qn, φ)W 1,2(Ω) →

(Q, φ)W 1,2(Ω) for all φ ∈ W 1,2(Ω). Furthermore, from (1.4.2), the bulk energy

density fb is bounded from below by some constant depending only on the material

parameters A,B and C, hence FLG is coercive over A. That is,

FLG[Q] ≥ C1||Q||W 1,2(Ω) + C2

for all Q ∈ A, and constants C1 > 0 and C2 ∈ R. Furthermore, any critical point

of the rescaled functional (1.4.13) in the admissible space (1.4.14) will satisfy the

following Euler-Lagrange equations:

L∆Q = AQ−B
(
QQ− I

3 |Q|
2
)

+ C|Q|2Q, (1.4.15)

which comprises of a system of up to five coupled partial differential equations.

From Proposition 13 in [50], solutions of the Euler-Lagrange equations (1.4.15)

are real analytic in Ω. For completeness, we now reproduce an important result,

and its proof, from [56] and [50].

Proposition 1.4.2. Suppose Q is a global minimizer of the LdG energy functional

FLG, in the admissible space A. Then we have the following a priori L∞ bounds,

independent of the elastic constant L:

||Q||L∞(Ω) = ess sup
x∈Ω

|Q(x)| ≤
√

2
3s+ =: M(A,B,C),
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where s+ is defined in (1.4.8).

Proof. Suppose for a contradiction, that there exists some point x∗ ∈ Ω̄, where

|Q| achieves its maximum, and |Q(x∗)| >
√

2
3s+. The function |Q|2 : Ω̄ → R

attains its maximum at the point x∗ ∈ Ω, and hence

∆
(1

2 |Q|
2
)

(x∗) ≤ 0. (1.4.16)

Multiplying both sides of the Euler-Lagrange equations (1.4.15) by Q, and using

the inequality trQ3 ≤ |Q|3√
6 in (1.4.12), we have that

L∆
(1

2 |Q|
2
)

= AtrQ2 −BtrQ3 + C(trQ2)2 + L|∇Q|2

≥ AtrQ2 −BtrQ3 + C(trQ2)2

≥ A|Q|2 − B√
6
|Q|3 + C|Q|4

> 0

when |Q| >
√

2
3s+. This yields ∆

(
1
2 |Q|

2
)

(x) > 0, for all interior points x ∈ Ω,

whenever |Q(x)| >
√

2
3s+, contradicting the statement in (1.4.16).

1.5 Thesis outline

In Chapter 2, we review the relevant literature and motivate the topics addressed

in this thesis.

In Chapter 3, we study nematic equilibria confined to three-dimensional square

wells, given planar degenerate Dirichlet conditions on the lateral surfaces. We

focus on the Well Order Reconstruction Solution (WORS), as a function of the

well-size λ, and the well height ε. The WORS are distinctive equilibria reported in
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[52] for square domains, without taking the third dimension into account, which

have two mutually perpendicular defect lines running along the square diagonals,

intersecting at the square centre. Firstly, assuming natural boundary conditions

on the top and bottom surfaces and secondly, with realistic surface energies, we

prove the existence of a general class of nematic equilibria (including the WORS)

in three dimensions, for arbitrary well heights, and for temperatures below the

nematic supercooling temperature. We show in both cases, that the WORS is

globally stable for λ small enough, and unstable as λ increases.

In Chapter 4, we complement the analysis of three-dimensional nematic equilibria

with numerical simulations using an energy-minimization based approach. We

numerically compute novel mixed 3D solutions for large λ and ε, followed by a

numerical investigation of the effects of surface anchoring on the WORS. These

simulations are then extended to rectangular three-dimensional domains, where

we study the effects of the confining geometrical aspect ratio, δ, as well as λ and

ε on the (numerical) stability of equilibrium configurations.

In Chapter 5, we consider a two-term elastic energy density in the Landau-

de Gennes framework, where the degree of ‘elastic anisotropy’ is given by the

rescaled elastic constant L2. We study nematic equilibria in two-dimensional

square wells, with tangent Dirichlet boundary conditions, as a function of the well

cross-sectional size λ, and L2. We prove that, for λ small enough, there exists a

unique global minimizer of the Landau-de Gennes energy. For L2 = 0, we simply

recover the WORS. For L2 6= 0, the solution landscape is more complex and the

unique global minimizer corresponds to either: (i) the ‘Ring’ solution with a +1-

defect at the square centre, for L2 small enough or; (ii) a ‘Constant’ solution, for

L2 large enough, which is constantly uniaxial with negative scalar order parameter

away from the edges of the square. We categorise the symmetries of these solutions
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in the λ→ 0 limit. We also prove, in the physically relevant Oseen-Frank limit,

λ→∞, that global minimizers converge strongly in W 1,2 to a global minimizer

with constant order parameter. We also show that critical points of the Landau-

de Gennes energy are stable, for L2 larger than some critical threshold that

depends on λ. This analysis is complemented by numerical simulations and

several bifurcation diagrams, as a function of λ, for different values of L2.

In Chapter 6, we study a dilute suspension of magnetic nanoparticles in a nematic

host, or ferronematic, on regular two-dimensional polygons. These systems are

described by the Landau-de Gennes Q-tensor and a spontaneous magnetization,

in the absence of any external fields. We study the stable states in terms of

stable critical points of an appropriately defined ferronematic free energy, with a

nemato-magnetic coupling energy. We numerically study the interplay between

the shape of the regular polygon, the size of the polygon, and the strength of the

nemato-magnetic coupling, for the multistability of this prototype system. We

present the co-existence of stable states with domain walls, and stable interior

and boundary defects, as well as the control of multistability through the nemato-

magnetic coupling parameter.

In Chapter 7, we introduce a new methodology, based on the approach of Mihai

et al. [58], [59], for stochastic elasticity. We consider a fourth-order thermotropic

bulk potential (1.4.6), where the material-dependent parameter B is assumed

to follow a non-Gaussian probability distribution. We then study the effects

of stochasticity on the Landau-de Gennes order parameter, as a function of

the temperature, by reviewing the classical bifurcation analysis of the nematic-

isotropic phase transition within this new framework.

In Chapter 8, we summarize our results and discuss some open problems and
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potential directions of future research based on this work.

1.6 Publication and collaboration details

Chapters 3 and 4 of thesis are joint work with Apala Majumdar, Giacomo Canevari

and Yiwei Wang, which has been published in the International Journal of Non-

linear Mechanics as reference [1]. The code used in Chapter 4 was produced by

Yiwei Wang and edited and implemented by the author.

Chapter 5 in this thesis is joint work with Apala Majumdar, Yucen Han and Lei

Zhang, which has been submitted to the SIAM Journal on Mathematical Analysis,

and with arxiv submission as reference [2].

Chapter 6 is joint work with Apala Majumdar, Yucen Han and Joshua Walton,

which has been published in Physical Review E as reference [3]. The bifurcation

diagrams and code for the stability checks in Chapter 5 and 6 were produced by

Dr Yucen Han, with the stability checks being implemented by the author.

The bifurcation diagrams seen in Chapter 7 are a result of important collaboration

with Angela Mihai and Thomas Woolley.



Chapter 2

Literature review

2.1 The planar bistable nematic device

Chapters 3 – 6 of this thesis are motivated by the bistable system reported in

Tsakonas et al. [60]. Here, the authors experimentally, and numerically, study

nematic liquid crystals (NLCs) inside a periodic array of shallow micron-sized

wells, with a square cross-section. The height of these square wells, and hence the

thickness of the NLC sample, was kept small enough to induce planar alignment

of the nematic director. The surfaces of these wells were treated in order to induce

planar degenerate molecular alignment on the lateral surfaces. We include a simple

schematic of this device in Figure 2.1. A similar system was studied in Luo et al.

[61], and then later Kralj and Majumdar [52], within the continuum Landau-de

Gennes (LdG) theory for NLCs. Within this theory, experimentally observable

states can be modelled by local or global minimizers of an appropriately defined

LdG free energy. It is assumed that the well height is typically much smaller

than the square cross-sectional length. In other words, the authors speculate that
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Figure 2.1: Side view and perspective view of the planar bistable
nematic device. Adapted from [60].

the structural characteristics only vary in the plane of the square cross-section,

and are translationally invariant along the height of the well, effectively reducing

this to a two-dimensional (2D) problem. Hence, the authors restrict attention

to the bottom square cross-section of the well geometry. They impose tangent

boundary conditions (TBCs) on the well surfaces, consistent with the surface

treatment of the well array i.e., the nematic directors, in the plane of the well

surfaces, are constrained to be tangent to those well surfaces. More specifically,

TBCs in their setup refer to planar degenerate anchoring on the well surfaces

where the azimuthal anchoring in the plane of the square domain is free and there

is no polar anchoring since the nematic molecules lie in the plane of these surfaces.

However, this necessarily means that the nematic director has to be tangent to

the square edges, creating defects at the connecting square vertices, where the

director is not defined. In [61], the authors report a bistable configuration that

exhibits six different equilibrium profiles. These profiles may be classified into two

optically contrasting states: the diagonal (D) state, for which there are two, where

the nematic director lies along one of the square diagonals; and the rotated (R)

state, for which there are four, where the director rotates by π radians between a

pair of parallel square edges. The authors also include a Rapini-Papoular surface
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energy term, and study the multiplicity of solutions as a function of the anchoring

strength. In [52], the authors study the nematic equilibria as a function of the

square size (in terms of the biaxial correlation length). For micron-sized squares,

the authors recover the D and R solutions, within a continuum LdG approach.

It was shown that, for small enough wells (on the nano-scale), a unique pattern

emerges with two mutually perpendicular defect lines, which emanate from the

square vertices. Coined the Well Order Reconstruction Solution (WORS), this

solution exhibits a constant set of eigenvectors, and is distinguished by a uniaxial

cross with negative scalar order parameter, along the square diagonals. This can

be physically interpreted as a nematic sample with preferred in-plane molecular

orientation, as well as locally disordered molecules in the plane along the defect

lines. These defect lines intersect at the centre of the square, partitioning the well

into four quadrants, with approximately constant director profiles in each. Indeed,

we speculate that this distinctive defect line could be a special optical feature of

the WORS, if experimentally realised. For clarity, we plot the typical director

profile of the diagonal, and rotated states, as well as the WORS, in Figure 2.2.

Figure 2.2: The director orientation of a diagonal (D) solution,
rotated (R) solution and WORS.

The WORS was further analysed for a special temperature in Canevari et al.

[62], in terms of solutions of the Allen-Cahn equation, and again in Wang et

al. [63], for square domains with an isotropic inclusion. It is rigorously proven

that the WORS is globally stable for sufficiently small squares i.e., for nano-scale
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geometries.

Although the WORS has been proven to exist in molecular simulations by Robin-

son et al. [64], a possible criticism is that the WORS has not been studied in

three-dimensional (3D) geometries with a finite height and thus, could just be

an artefact of the 2D square domain. In Chapter 3, we address the important

question - does the WORS survive in a 3D square box? We show that yes it does,

and we identify two physically relevant 3D scenarios for which the WORS exists,

for all values of the well height, and for all temperatures below the nematic su-

percooling temperature i.e., for temperatures that favour a bulk ordered nematic

phase.

In Chapter 3, we study nematic equilibria within confining geometries on the

nano-scale. NLC systems of this size are often difficult to study experimentally.

Moreover, the governing Euler-Lagrange equations of the LdG free energy in

three dimensions correspond to up to five nonlinear coupled partial differential

equations, which makes this a hard mathematical problem to solve analytically.

This motivates a numerical approach to studying this system, which is the aim of

Chapter 4. In Canevari et al. [62], the authors numerically solve the gradient flow

model for nematodynamics, in a 2D LdG framework. In this numerical scheme,

the dynamic solutions evolve along a path of decreasing energy, yielding a stable

equilibrium configuration, if a sufficiently good initial guess is chosen. They show

numerically that, for A < 0, the WORS is the unique LdG critical point in a

2D square, for sufficiently small well size, λ. In Wang et al. [63], the authors

numerically solve a similar system in a 2D square domain, by computing solutions

of the associated Euler-Lagrange system using standard finite difference methods,

and Newton’s method. They also numerically check the stability of these solutions

by minimizing the second variation of the LdG free energy, and they find two
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‘escaped’ configurations, where the leading eigenvector of the solution escapes into

the third dimension around a small isotropic inclusion, with a topological strength

±1. 3D NLC systems are much harder to solve numerically. In Chapter 4, we

employ the energy-minimization based numerical scheme from Wang, Zhang and

Chen [65], where the authors compute numerical solutions of the LdG free energy,

under the one-constant approximation, for systems of single and double spherical

colloidal particles immersed in a uniformly aligned NLC host. This numerical

scheme utilises the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithm, which is a type of quasi-Newton method, and is sufficient for our 3D

problem. The (numerical) local stability of solutions in [65], and in Robinson et

al. [64], is justified by checking the sign of the smallest eigenvalue associated with

the Hessian of the LdG free energy. We make similar justifications for numerical

stability in Chapters 4 – 6. In Chapter 4 specifically, we assess this quantity using

an optimization-based shrinking dimer method from Yin and Zhang [66], which

minimizes one Rayleigh quotient simultaneously using gradient flow. A high index

optimization-based shrinking dimer method was also used in Yin et al. [67], to

compute the full solution landscape for the 2D square problem, as a function of

the square cross-sectional size.

We complement this numerical study by computing nematic equilibria in 3D

rectangular wells with tangent boundary conditions, employing the same energy-

minimization based numerical scheme as for the 3D square wells. In Lewis et al.

[68], the authors study micron-sized rectangular wells within a two-dimensional

Oseen-Frank framework, with tangent boundary conditions. They obtain explicit

analytical expressions for the director fields, and energies, of the diagonal and

rotated solutions, and numerically show the existence of higher energy metastable

states with internal defects. In Fang et al. [69], the authors model a rectangular
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NLC system within a reduced 2D LdG framework, and compute limiting solution

profiles in two distinguished limits for the cross-sectional size: λ→ 0, and λ→∞,

in our framework. They also employ continuation methods to produce bifurca-

tion plots for these reduced equilibria, at three distinct values of the geometric

anisotropy, δ. In our work, we present novel mixed solutions which interpolate

between rotated and diagonal states, and study the stability of these 3D solutions

as a function of δ, λ, and the well height.

2.2 Elastic anisotropy

In the simplest setting, the LdG energy has two contributions - a bulk energy that

only depends on the eigenvalues of the LdG Q-tensor, and an elastic energy that

penalises spatial inhomogeneities of the Q-tensor (see Section 1.4). The elastic

energy is typically a quadratic and convex function of ∇Q and, in [52], [61],

the authors work with an isotropic elastic energy - the Dirichlet elastic energy.

However, NLCs are anisotropic in nature, and the inclusion of an anisotropic

elastic energy to the model is a natural extension to the analysis of nematic

equilibria in confinement in Chapter 3. To this end, we model NLCs in 2D square

wells with tangent boundary conditions, and a two-term elastic energy density

in the LdG theory in Chapter 5. In Golovaty, Montero and Sternberg [70], the

authors rigorously justify the study of thin NLCs systems by a 2D LdG model

using Gamma-convergence results. They show that it is sufficient to model this

reduced 2D system when studying the behaviour of LdG equilibria in the limit

of vanishing thickness, given strong Dirichlet boundary conditions on the lateral

surfaces, and weak tangential anchoring on the top and bottom surfaces of the

film. In Bauman et al. [71], the authors analyse thin NLC systems in general
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simply connected bounded domains, with a three-term elastic energy density in

the 2D LdG framework. They show that, for large domains, minimizers converge

to a limiting uniaxial nematic texture, with a finite number of defects of degree

±1
2 . We adopt a similar approach in Chapter 5, and consider thin NLC systems

in a 2D square with tangent Dirichlet boundary conditions. In the two papers

by Golovaty et al. [72], [73], the authors conduct an asymptotic analysis of this

model problem, for more general domains, where the elastic anisotropy is large.

To complement our analysis in Chapter 5, we also numerically compute the

equilibrium configurations, using standard finite difference methods, and Newton’s

method, to solve a weak form of the Euler-Lagrange equations associated with

the LdG free energy. This numerical approach is inspired by the work of Han

et al. [74], where the authors numerically compute LdG equilibria in regular 2D

polygons, given an isotropic elastic energy. The authors also employ continuation

methods to produce bifurcation diagrams for the equilibrium configurations, as

a function of the domain edge-length. In Chapter 5, we use the same numerical

scheme to compute bifurcation diagrams, as a function of the edge-length, for

different degrees of the elastic anisotropy.

2.3 Ferronematics

NLCs have historically relied on their dielectric responses to electric fields for

applications because the NLC dielectric anisotropy is several orders of magnitude

(e.g., 7 orders of magnitude) larger than the magnetic anisotropy [13]. This

implies that (unrealistically) large magnetic fields are needed to elicit macroscopic

NLC responses to magnetic fields, making it difficult to exploit the magneto-

mechanical, and magneto-optic, properties of NLCs. The addition of magnetic
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nanoparticles (MNPs) to a NLC host can substantially increase the magnetic

susceptibility of the suspension [75], and influence phase transition temperatures

and other material properties, all of which are largely determined by the surface

anchoring on the MNP surfaces. Some of these composite systems are referred to

as “ferronematics”, with non-zero net magnetization in the absence of an external

magnetic field. Ferronematics were theoretically predicted by the pioneering work

of Brochard and de Gennes [33], with further notable theoretical developments

by Burylov and Raikher [76], among others. Although ferronematic systems were

experimentally realized rather early on by Rault, Cladis and Burger [77], stable

MNP suspensions have only been recently achieved (see the papers by Mertelj et

al. [78], [79]).

In the papers by Bisht et al. [80], [81], the authors study a dilute suspension

of MNPs in a one-dimensional NLC-filled channel, and a NLC-filled 2D square,

respectively. They report exotic stable morphologies for the nematic director, and

the associated magnetization profile, without any external fields. They report

the co-existence of stable states with interior nematic defects, interior magnetic

vortices, states with defects pinned to the square vertices, and states with magnetic

domain walls that separate ordered polydomains i.e., two distinct domains with

different magnetizations. These results demonstrate the immense potential of 2D

polygons for tailored multistability in ferronematic-type systems, which would be

inaccessible in generic confined NLC systems (see e.g., [64], [61]). In Chapter 6, we

build on this work by studying dilute suspensions of MNPs in a nematic host, on

2D regular polygons without external magnetic fields, as a natural generalisation

of the work on square wells in [81]. A dilute suspension refers to a uniform

suspension of small MNPs (on the nanometer scale with length greater than the

diameter), such that the average distance between a pair of distinct MNPs is much



2.3. Ferronematics 43

greater than the MNP size, and the total volume fraction of suspended MNPs is

small. In [78], the authors designed a stable ferronematic suspension using barium

hexaferrite (BaHF) platelets, with a thickness of ∼ 5 nm and a mean diameter of

∼ 70 nm, with number concentrations in the range 1013−1014 cm−3 in 5CB. In the

papers by Calderer et al. [82], and Canevari and Zarnescu [83], the authors show

using homogenization techniques that, in this dilute limit, the MNP-interactions

are “small” compared to other effects, and the NLC-MNP interactions are captured

by an “effective energy”. This effective NLC-MNP energy depends on the shape

and size of the MNPs, the surface anchoring energies, and the nemato-magnetic

coupling which couples the magnetization and the nematic directors.

The pure NLC system has been well described in Han et al. [74] on 2D polygons,

where the authors demonstrate a unique Ring solution profile, with a unique

nematic point defect at the center, which is the generic stable solution for large

enough polygons except for the square. In large enough N -sided polygons, the

authors find at least
(
N
2

)
stable states. A key question we address in Chapter 6 is -

how does the solution landscape respond to the NLC-MNP coupling in regular 2D

polygons? We show that the multistability of solutions can be strongly enhanced

by the NLC-MNP coupling parameter, the cross-sectional size, and an increased

number sides for the domain. This work is accompanied by bifurcation diagrams

for positive and negative coupling values, as a function of the cross-sectional size

of the well.
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2.4 Stochastic models for nematic liquid

crystals

Throughout this thesis, we have modelled NLC systems in confinement given

deterministic model parameter choices. In reality, experimental data is rarely

deterministic, especially when it concerns small elastic constants or material-

dependent parameters in the Landau-de Gennes energy which are difficult to

measure. This intrinsic variability offers important information about the beha-

viour of nematic liquid crystals, motivating a stochastic framework for modelling

these systems. In Staber and Guilleminot [84], and the related papers by Mi-

hai et al. [58], [59], [85], the authors construct stochastic hyperelastic models

described by strain-energy densities, where the parameters are characterised by

non-Gaussian probability density functions. These are advanced phenomenolo-

gical models that rely on the finite elasticity theory, and the maximum entropy

principle for a discrete probability distribution introduced by Jaynes [86], to en-

able the propagation of uncertainties from input data to output quantities of

interest. The derivation of such probability density functions was shown in So-

ize [87], in order to model random uncertainties in the finite element models of

linear structural dynamics. One stochastic model of interest was constructed

in [58], where the authors studied isotropic incompressible hyperelastic bodies

under equitriaxial dead loads, where the random shear modulus follows a Gamma

distribution, with hyperparameters that depend on the mean value, and variance,

of data coming from experiments. In Chapter 7, we employ a similar approach to

a simple problem in nematic liquid crystals namely, the nematic-isotropic phase

transition for a fourth order thermotropic bulk potential in the Landau-de Gennes

theory. In the deterministic case, the transition between these phases occurs at
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a critical temperature. However, we argue that the inherent variability of the

material parameter choices implies that there is always competition between these

states of order. We ask the question: what is the influence of the stochastic model

parameter on the predicted order parameter responses? We actually show that

the isotropic and nematic phases which in the deterministic setting have distinct

may coexist for fixed temperatures, and the stochastic model parameter allows

us to quantify the likelihood of observing either state. This is different from the

deterministic modelling perspective, where a first-order phase transition occurs

at some critical temperature.



Chapter 3

Analysis of the well order

reconstruction solution in three

dimensions

In this chapter, we study nematic equilibria on three-dimensional (3D) square

wells in the Landau-de Gennes (LdG) theory, with tangent boundary conditions

on the lateral surfaces, motivated by the bistable system in [60]. To begin, we will

introduce the LdG free energy of the system in the absence of external fields and

surface energies, as well as the domain, and tangent Dirichlet boundary conditions

on the lateral surfaces of the well. We prove the existence of the WORS on 3D

square wells, for arbitrary well heights, with natural boundary conditions on the

top and bottom surfaces, as well as stability and qualitative properties of the

WORS as a special case of a more general family of LdG equilibria; we believe

these results to be of general interest. Furthermore, we work with 3D wells that

have realistic surface energies, that favour planar boundary conditions on the top
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and bottom surfaces, and again prove the existence of the WORS for arbitrary

well heights and low temperatures, accompanied by interesting companion results

for surface energy.

3.1 Model formulation

We begin by considering the total free energy of a nematic liquid crystal, in

the absence of external field effects and surface energies. Recall the following

one-constant approximation of the Landau-de Gennes free energy:

F [Q] :=
∫
V

L

2 |∇Q|2 + fb(Q) dV,

where V is our 3D domain. For clarity, L > 0 is the material-dependent elastic

constant, and fb is the thermotropic bulk energy density given by (1.4.6). We

take

V := Ω× (0, h),

where h is the height of the well, and Ω ⊂ R2 is some 2D cross-section to be

determined later. For ease of notation, we define Γ to be the union of the top

and bottom surfaces of the domain i.e., Γ := Ω× {0, h}. We will introduce a key

characteristic geometric-length scale, λ, to non-dimensionalise the system. We

define the change of variables x̄ = x
λ
, and hence the rescaled domain becomes

V̄ := Ω̄× (0, ε), (3.1.1)
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where Ω̄ is the rescaled two-dimensional cross-section, and ε := h
λ
is the rescaled

height of the well. We rescale the LdG energy functional, F , as follows:

Fλ[Q] := F [Q]
Lλ

=
∫
V̄

1
2 |∇̄Q|2 + λ2

L
fb(Q) dV,

where ∇̄ is the gradient with respect to the new rescaled spatial coordinates x̄,

and dV is the rescaled volume element. It is to be made clear that, in the rest of

this chapter, we will drop the ‘bars’ in our notation, and all calculations should

be thought of with respect to these rescaled quantities.

Now that we have rescaled the system with respect to the characteristic length

scale λ, the next step in setting up the model problem is defining the working

domain, and the boundary conditions, for our confining geometry.

3.1.1 The working domain

We wish to study nematic equilibria inside square wells of finite height, ε, with

planar degenerate boundary conditions that mimic the surface treatment in [60].

To this end, we consider the minimization problem of Fλ in the three-dimensional

rescaled domain (3.1.1). Following the literature on planar degenerate boundary

conditions on square domains [88], [62], [63], we take Ω ⊂ R2 to be a truncated

unit square, whose diagonals lie along the coordinate axes. That is, for some

small but fixed parameter η ∈ (0, 1),

Ω := {(x, y) ∈ R2 : |x| < 1− η, |y| < 1− η, |x+ y| < 1, |x− y| < 1},

(see Figure 3.1).

The reason for truncating the vertices of the domain is due to the choice of bound-

ary conditions we wish to impose. Tangent boundary conditions (TBCs) require
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Figure 3.1: The truncated unit square Ω ⊂ R2.

the nematic directors to be tangent to the square edges, creating a necessary

mismatch at the square vertices. By choosing appropriate boundary conditions,

we may avoid these discontinuities, whilst the qualitative solution trends you

would expect for a square well are not affected [62]. The boundary of the cross-

sectional geometry, ∂Ω, has four “long” edges, parallel to the lines y = x and

y = −x, which we define as C1, . . . , C4. In order to remove the sharp square

vertices, we have four additional “short” edges of length 2η, parallel to the co-

ordinate axes, which we define as S1, . . . , S4. The four long edges are labelled

counterclockwise, with C1 being the edge contained in the first quadrant i.e.,

C1 := {(x, y) ∈ R2 : x+ y = 1, η ≤ x ≤ 1− η}. The short edges are also labelled

counterclockwise, with S1 := {(1− η, y) ∈ R2 : |y| ≤ η}.

3.1.2 Boundary conditions on the lateral surfaces

There are a number of boundary conditions that are consistent with experimentally

induced tangential anchoring on the lateral surfaces of the domain, ∂Ω × (0, ε).
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In this chapter, we follow the approach taken in [61], [52] and [62], by imposing

tangent uniaxial Dirichlet conditions on the lateral surfaces of the well:

Q = Qb on ∂V \ Γ = ∂Ω× (0, ε), (3.1.2)

where Qb minimises the bulk energy density (1.4.6). As was shown in Proposition

1.4.1, it is suitable to impose

Qb(x, y, z) :=


s+
(
n1 ⊗ n1 − 1

3I
)
, (x, y) ∈ C1 ∪ C3,

s+
(
n2 ⊗ n2 − 1

3I
)
, (x, y) ∈ C2 ∪ C4,

where n1 := 1√
2(−1, 1, 0), n2 := 1√

2(1, 1, 0), and s+ is defined as in (1.4.8). The

Dirichlet conditions on the short edges, S1, . . . , S4, must be taken more carefully

as to eliminate the discontinuities of the tangent Dirichlet boundary condition.

We define

Qb(x, y, z) :=


g(y)(n1 ⊗ n1 − n2 ⊗ n2)− s+

2

(
ẑ⊗ ẑ− 1

3I
)

(x, y) ∈ S1 ∪ S3,

g(x)(n1 ⊗ n1 − n2 ⊗ n2)− s+
2

(
ẑ⊗ ẑ− 1

3I
)

(x, y) ∈ S2 ∪ S4,

where g : [−η, η]→ [− s+
2 ,

s+
2 ] is a smoothing function, such as

g(υ) = s+

2η υ, −η ≤ υ ≤ η.

Although the boundary condition, Qb, does not minimize the bulk energy on

S1, . . . , S4, and the Q-tensor is not tangent to these edges, they are short by

construction, and are chosen purely for mathematical convenience.
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3.2 The 3D WORS and related results

Consider the minimization problem of Fλ, with respect to the tensor order para-

meter Q. Given the Dirichlet TBCs (3.1.2), we define our admissible space to

be

A := {Q ∈ W 1,2(V ;S0) : Q = Qb on ∂Ω× (0, ε)},

where S0 is defined by the space of traceless, symmetric 3×3 matrices. The choice

of function space W 1,2 ensures the elastic energy in the Landau-de Gennes free

energy is finite. Furthermore, any critical point of the rescaled functional, Fλ, in

the admissible space, A, will satisfy the following Euler-Lagrange equations:

∆Q = λ2

L

{
AQ−B

(
QQ− I

3 |Q|
2
)

+ C|Q|2Q
}
, (3.2.1)

which comprises a system of up to five coupled partial differential equations. In

[52], the authors numerically compute critical points of Fλ, satisfying the Dirichlet

boundary conditions (3.1.2), on the 2D cross-section Ω. In [62], the authors analyse

these critical points at the special fixed temperature, A = −B2

3C . In this regime,

the WORS corresponds to a classical solution of the Euler-Lagrange equations,

(3.2.1), of the form

QWORS(x, y) = q(n1 ⊗ n1 − n2 ⊗ n2)− B

6C (2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2).

This solution is described by a single degree of freedom, q : Ω→ R, which satisfies

the Allen-Cahn equation, and exhibits the following symmetry properties:

q(x, 0) = q(0, y) = 0, xyq(x, y) ≥ 0.

They prove that, solutions of this type are globally stable for λ small enough,

and unstable for λ large enough in the 2D domain. Their analysis was restricted
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to the specific temperature, but numerically they were able to show the WORS

exists for all A < 0. The negative eigenvalue associated with ẑ implies that

nematic molecules lie in the (x, y)-plane and, for non-zero q, there is a locally

defined nematic director in the (x, y)-plane. In this section, we show that the

WORS survives in 3D scenarios, given natural boundary conditions on the top

and bottom surfaces of the well.

3.2.1 Natural boundary conditions on the top and

bottom plates

In this section, we will assume that the material dependent parameters L,B,C > 0

are fixed, while λ and A may vary. We consider all temperatures below the

nematic supercooling temperature (A < 0) that is, all temperatures that favour

a bulk ordered nematic phase. We also assume natural, or Neumann, boundary

conditions on the top and bottom plates of the well i.e.,

∂zQ = 0 on Γ, (3.2.2)

that is, the outward normal derivative is equal to zero on the top and bottom

surfaces of the well, and the liquid crystal sample is modelled to have planar

degenerate alignment on these surfaces. Whilst a surface anchoring term in the

free energy is more physically realistic, this is a boundary condition chosen for

mathematical simplicity which can shed more light on the physical set up in

[60] in three dimensions. In their experiment, the authors consider an array of

shallow square wells where each of the square edges were consistent with planar

degenerate alignment due to the treatment of SU8 photoresist onto each glass

substrate. Under the assumption (3.2.2), we may use a classic result in the
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calculus of variations to simplify the minimization problem.

Proposition 3.2.1. For any λ > 0 and A < 0, there exist minimizers Q, of

Fλ, in the admissible class A. Moreover, these minimizers are independent of the

z-variable, that is ∂zQ = 0 on V , and they minimize the 2D functional

I[Q] :=
∫

Ω

(
1
2 |∇Q|2 + λ2

L
fb(Q)

)
dA,

in the admissible class

A′ := {Q ∈ W 1,2(Ω,S0) : Q = Qb on ∂Ω}.

Proof. For this proof, we follow the argument used in Theorem 0 from [89].

Suppose that there exists some V0 ∈ A′ which minimizes the 2D energy functional

I i.e.,

κ = I[V0] = min
V∈A′

∫
Ω

1
2 |∇V|2 + λ2

L
fb(V) dx dy.

Then for each Q ∈ A, we have

∫
V

1
2 |∇Q|2 + λ2

L
fb(Q) dx dy dz ≥

∫
V

1
2 |∇x,yQ|2 + 1

2 |∂zQ|
2 + λ2

L
fb(Q) dx dy dz

≥
∫

Ω

1
2 |∇x,yQ|2 + λ2

L
fb(Q) dx dy ≥ κ (3.2.3)

and since we may choose Q ∈ A such that Q(x, y, z) = V0(x, y), we have

κ = min
Q∈A

∫
V

1
2 |∇Q|2 + λ2

L
fb(Q) dx dy dz.

Furthermore, if a given Q is a minimizer of the 3D functional Fλ in the admissible

class A, that is if

∫
V

1
2 |∇Q|2 + λ2

L
fb(Q) dx dy dz = κ,
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then, by (3.2.3),

∫
V

1
2 |∇x,yQ|2 + λ2

L
fb(Q) dx dy = κ,

which yields ∂zQ = 0.

We conclude, that any (z-independent) critical point of the energy functional I,

in the admissible class A′, is also a solution of the 3D system (3.2.1), subject to

the Dirichlet boundary conditions on the lateral surfaces (3.1.2), and the natural

boundary conditions on the top and bottom plates (3.2.2). This implies that

the WORS is a LdG critical point on 3D wells V , for arbitrary height ε, with

natural boundary conditions (3.2.2) on Γ. Hence, in the rest of this section, we

will restrict ourselves to a 2D problem - the analysis of critical points of I in A′.

Our first result concerns the existence of a WORS-like solution for all A < 0, as

proven below.

Proposition 3.2.2. For any λ > 0 and A < 0, there exists a solution,

(qWORS
1 , qWORS

3 ), of the system
∆q1 = λ2

L
q1 {A+ 2Bq3 + 2C(q2

1 + 3q2
3)} ,

∆q3 = λ2

L
q3 {A−Bq3 + 2C(q2

1 + 3q2
3)}+ λ2B

3L q
2
1,

(3.2.4)

subject to the boundary conditions

q1(x, y) = q1b(x, y) :=



s+
2 , (x, y) ∈ C1 ∪ C3,

− s+
2 , (x, y) ∈ C2 ∪ C4,

g(y), (x, y) ∈ S1 ∪ S3,

g(x), (x, y) ∈ S2 ∪ S4,

(3.2.5)
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and q3 = − s+
6 on ∂Ω, that satisfies

xyq1(x, y) ≥ 0, and q3(x, y) < 0 for any (x, y) ∈ Ω. (3.2.6)

Then

Q(x, y) = qWORS
1 (n1 ⊗ n1 − n2 ⊗ n2) + qWORS

3 (2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2),

(3.2.7)

is a WORS solution of the Euler-Lagrange system (3.2.1) on V , subject to the

Dirichlet boundary conditions (3.1.2), and natural boundary conditions (3.2.2),

on Γ.

Proof. We use a similar approach to the one adopted by [62]. Define the following

portion of Ω that is contained in the positive quadrant of the square:

Ω+ := {(x, y) ∈ Ω : x > 0, y > 0}. (3.2.8)

We first note that, for solutions of the form (3.2.7), the LdG energy I reduces to

the following energy functional, in terms of the scalar order parameters q1, q3 ∈

W 1,2(Ω+;R):

G[q1, q3] :=
∫

Ω+

{
|∇q1|2 + 3|∇q3|2 + λ2

L
fb(q1, q3)

}
dA,

where

fb(q1, q3) := A(q2
1 + 3q2

3) + C(q2
1 + 3q2

3)2 + 2Bq3(q2
1 − q2

3)

is the associated bulk energy term for solutions (3.2.7). We wish to minimise G

in the restricted admissible class

G :=
{

(q1, q3) ∈ W 1,2(Ω+;R2) : q3 ≤ 0 in Ω+, q1 = q1b on ∂Ω ∩ Ω+,
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q3 = −s+

6 on ∂Ω ∩ Ω+, q1 = 0 on ∂Ω+ \ ∂Ω
}
.

We impose no boundary conditions for q3 on ∂Ω+ \∂Ω. We note that the function

q1b is compatible with the Dirichlet boundary conditions, (3.1.2), imposed on Ω.

Since the boundary conditions here are continuous and piecewise of class C1, there

exist functions (q1, q3) ∈ W 1,2(Ω+;R2) belonging to the admissible space G. An

example of such a function could be (q1,− s+
6 ), where

q1(x, y) =



s+
2η2xy, x ∈ [0, η), y ∈ [0, η),

s+
2η x, x ∈ [0, η), y ∈ [η, 1− η],

s+
2η y, x ∈ [η, 1− η], y ∈ [0, η),

s+
2 , otherwise.

For clarity, we include an illustration of this choice of q1, in Figure 3.2. The

Figure 3.2: q1 ∈ W 1,2(Ω+) in the admissible space G.

existence of a global minimizer of G, in the admissible class G, follows from

a routine application of the direct methods in the calculus of variations. We

include the proof here for clarity. As the bulk energy term fb(q1, q3) is a quartic

polynomial with positive quartic coefficient, it is bounded below by some function

independent of q1 and q3. We recall that for A < 0, the bulk energy density is
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minimized by a uniaxial state prescribed on the edge ∂Ω ∩ Ω+. That is,

fb(q1, q3) ≥ fb

(
s+

2 ,−s+

6

)
= As2

+
3 −

2Bs3
+

27 + Cs4
+

9 =: K(A,B,C).

We therefore conclude that G is coercive in G. Furthermore, by linearity of ∇,

and the Minkowski’s inequality for 2-norms, we have that for any u, v ∈ R and

α ∈ (0, 1),

|∇(αu+ (1− α)v)|2 = |α∇u+ (1− α)∇v|2 ≤ α|∇u|2 + (1− α)|∇v|2.

Hence, the elastic energy potential in G is convex in both ∇q1 and ∇q3. This

condition, along with the fact that the admissible space G is non-empty, ensures

the weak lower semi-continuity of the reduced energy functional G (see Theorem

8.2.1 from [57]). Therefore, there exists a global minimizer (qWORS
1 , qWORS

3 ) of

the reduced LdG energy G, in the admissible space G. Moreover, we may assume

without loss of generality, that qWORS
1 ≥ 0 on Ω+. If not, we can replace qWORS

1

with |qWORS
1 |, since we have that

G[qWORS
1 , qWORS

3 ] = G[|qWORS
1 |, qWORS

3 ].

We now claim that qWORS
3 < 0 in Ω+. To prove this, consider a function ϕ ∈

W 1,2(Ω+), such that ϕ ≥ 0 in Ω+ and ϕ = 0 on ∂Ω ∩ Ω+. For sufficiently small

t ≥ 0, the function q3 := qWORS
3 − tϕ is an admissible perturbation of qWORS

3 , and

hence we have

d
dt

∣∣∣∣∣
t=0

G[qWORS
1 , q3] ≥ 0 (3.2.9)

because (qWORS
1 , qWORS

3 ) is a minimizer. Therefore, by explicitly computing the

left-hand side of (3.2.9), we obtain

∫
Ω+

{
−6∇qWORS

3 · ∇ϕ− λ2

L
f(qWORS

1 , qWORS
3 )ϕ

}
dA ≥ 0, (3.2.10)
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where

f(q1, q3) := 6q3(A−Bq3 + 6Cq2
3) + 2(B + 6Cq3)q2

1.

For |q3| sufficiently small, we have that A− Bq3 + 6Cq2
3 < 0 and B + 6Cq3 > 0.

Therefore, there exists some δ ∈ (0, s+6 ) (depending only on A,B,C), such that

f(q1, q3) > 0 for any q1 ∈ R and q3 ∈ [−δ, 0]. (3.2.11)

Now, we define

ϕ :=


qWORS

3 + δ if qWORS
3 > −δ,

0 if qWORS
3 ≤ −δ.

As we have chosen δ < s+
6 , we can make sure that ϕ = 0 on ∂Ω ∩ Ω+. By

substituting ϕ into (3.2.10), we obtain

∫
{qWORS

3 >−δ}

{
6|∇qWORS

3 |2 + λ2

L
f(qWORS

1 , qWORS
3 )(qWORS

3 + δ)
}

dA ≤ 0.

By (3.2.11), we conclude that qWORS
3 ≤ −δ < 0 in Ω+. In particular, (qWORS

1 , qWORS
3 )

lies in the interior of the admissible space G and hence, solves the Euler-Lagrange

system (3.2.4) for the functional G, together with the natural boundary condition

∂νq3 = 0 on ∂Ω+ \ ∂Ω. We extend (qWORS
1 , qWORS

3 ) to the whole of Ω by odd

reflections of qWORS
1 , and even reflections of qWORS

3 , about the coordinate axes

{x = 0} and {y = 0}:

qWORS
1 (x, y) := sign(xy)qWORS

1 (|x|, |y|), qWORS
3 (x, y) := qWORS

3 (|x|, |y|),

for any (x, y) ∈ Ω \ Ω+. The new solution, (qWORS
1 , qWORS

3 ), is a weak solution

of the system of equations (3.2.4) everywhere in Ω except at the origin, and

satisfies the necessary sign properties (3.2.6). We now follow an argument based
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on elliptic regularity, as in Theorem 3 of [90], to show that (qWORS
1 , qWORS

3 ) is

indeed a solution of (3.2.4), on the whole of Ω. By considering some small ball

around the origin, Bξ(0), for any test function φ ∈ W 1,2
0 (Ω), we have

∫
Ω\Bξ(0)

φ(x, y)f1(qWORS
1 , qWORS

3 ) =
∫

Ω\Bξ(0)
φ(x, y)∆qWORS

1

= −
∫

Ω\Bξ(0)
∇φ · ∇qWORS

1 −
∫
∂Bξ(0)

φ∂rq
WORS
1

where ∂r is the radial derivative on ∂Bξ(0), and

f1(q1, q3) = λ2

L
q1
{
A+ 2Bq3 + 2C(q2

1 + 3q2
3)
}
.

Since ∇qWORS
1 is uniformly bounded in Ω \ {0}, as we pass to the limit ξ ↓ 0, we

obtain

∫
Ω
φf1(qWORS

1 , qWORS
3 ) +

∫
Ω
∇φ · ∇qWORS

1 = 0.

Similarly, we have that

∫
Ω
φf2(qWORS

1 , qWORS
3 ) +

∫
Ω
∇φ · ∇qWORS

3 = 0,

for any test function φ ∈ W 1,2
0 (Ω) and f2(q1, q3) = λ2

L
q3 {A−Bq3 + 2C(q2

1 + 3q2
3)}+

λ2B
3L q

2
1. Therefore, the solution pair (qWORS

1 , qWORS
3 ) is a weak solution of (3.2.4) on

the whole of Ω including the origin, and satisfies the Dirichlet boundary conditions

(3.2.5), and sign properties (3.2.6), by construction.

In the remainder of this section, we show that the WORS-like solution (3.2.7) of

the Euler-Lagrange system (3.2.1) is the unique LdG critical point, for A < 0

and small enough λ. By adapting a general criterion for uniqueness of critical

points (see Lemma 8.2 from [91]), we can show that the energy functional Fλ has

a unique critical point in the admissible class A, when λ is below some critical
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threshold, irrespective of the well height ε.

Proposition 3.2.3. There exists a positive number λ0 such that, for λ < λ0, the

Euler-Lagrange system (3.2.1) has a unique solution that satisfies the boundary

conditions (3.1.2) and (3.2.2).

Proof. Consider the constantM given in Proposition 1.4.2, the maximum principle

result from [50] which shows that, all solutions of the Euler-Lagrange equations

(3.2.1) are naturally bounded. Given the natural boundary conditions (3.2.2) on Γ,

Proposition 3.2.1, and by a criterion for the uniqueness of critical points (as in [91]),

it suffices to show that there exists a positive number λ0 = λ0(M,A,B,C, L,Ω)

such that, for λ < λ0, the energy functional I is strictly convex in the admissible

class

XΩ = {Q ∈ W 1,2(Ω;S0) : |Q| ≤M, Q = Qb on ∂Ω}.

Suppose that Q1,Q2 ∈ XΩ, where Q1 6= Q2. Then

I
(Q1 + Q2

2

)
=
∫

Ω

1
8 |∇(Q1 + Q2)|2 + λ2

L
fb

(Q1 + Q2

2

)
dA

=
∫

Ω

1
4

{
|∇Q1|2 + |∇Q2|2 −

1
2 |∇(Q1 −Q2)|2

}
dA

+ λ2

L

∫
Ω
fb

(Q1 + Q2

2

)
dA

= 1
2I(Q1) + 1

2I(Q2)− 1
8

∫
Ω
|∇(Q1 −Q2)|2 dA

+ λ2

L

∫
Ω

{
fb

(Q1 + Q2

2

)
− 1

2fb(Q1)− 1
2fb(Q2)

}
dA (3.2.12)

Since Q1,Q2 ∈ XΩ, we have that Q1−Q2 = 0 on ∂Ω. By the Poincaré inequality

on Ω, there exists some positive constant, c1, that only depends on the geometry

of Ω, such that

∫
Ω
|Q1 −Q2|2 dA ≤ c1

∫
Ω
|∇(Q1 −Q2)|2 dA. (3.2.13)



3.2. The 3D WORS and related results 61

Since |Q1| ≤M and |Q2| ≤M everywhere in Ω, we have that

∫
Ω

∣∣∣∣fb (Q1 + Q2

2

)
− 1

2fb(Q1)− 1
2fb(Q2)

∣∣∣∣ dA ≤ ||fb||W 2,∞(BM )

∫
Ω
|Q1 −Q2|2 dA,

(3.2.14)

where BM = {Q ∈ S0 : |Q| ≤ M} and ||fb||W 2,∞(BM ) is a positive constant,

depending only on M,A,B and C, that bounds the second derivatives of fb

in BM . Combining both (3.2.13) and (3.2.14), there exists a positive constant

c2 = c2(Ω,M,A,B,C) := c1(Ω)||fb||W 2,∞(BM ) such that

∫
Ω

{
fb

(Q1 + Q2

2

)
− 1

2fb(Q1)− 1
2fb(Q2)

}
dA ≤ c2

∫
Ω
|∇(Q1 −Q2)|2 dA.

(3.2.15)

Substituting the inequality (3.2.15) into (3.2.12), we have that

I
(Q1 + Q2

2

)
≤ 1

2I(Q1) + 1
2I(Q2) +

(
c2λ

2

L
− 1

8

)∫
Ω
|∇(Q1 −Q2)|2 dA.

If we take λ < λ0 :=
(
L

8c2

)1/2
, then we have

I
(Q1 + Q2

2

)
≤ 1

2I(Q1) + 1
2I(Q2)

with equality if, and only if, Q1 = Q2. Thus, I is strictly convex in the admissible

class XΩ and hence, must have at most one critical point in XΩ.

We conclude that the WORS survives in 3D wells, independently of the well height,

ε, given natural boundary conditions on the top and bottom surfaces. Moreover,

for sufficiently small λ and A < 0, the WORS is the unique LdG energy minimizer

in three dimensions.
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3.2.2 A more general class of critical points

It was shown in [52] that, for sufficiently large λ, there exist multiple critical

points of the LdG energy I. In this work, the authors consider the multiplicity

of solutions as a function of the bare biaxial correlation length, studying its

dependence on temperature and anchoring strength. In our framework, they show

the WORS exists for wells with side length λ ∼ 78− 138 nm, for temperatures in

the deep-nematic regime. Therefore, wells with λ ∼ µm will be sufficiently large

to observe the diagonal and rotated states reported in [60]. Indeed, the WORS

Q-tensor solution (3.2.7) belongs to a more general class of critical points, with

constant eigenvector ẑ. Solutions of this type can be completely described by

three degrees of freedom i.e., they can be written as

Q(x, y) = q1(x, y)(n1 ⊗ n1 − n2 ⊗ n2) + q2(x, y)(n1 ⊗ n2 + n2 ⊗ n1) (3.2.16)

+q3(x, y)(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2),

where q1, q2, q3 are scalar functions, and n1,n2 are as before. Solutions of the

form (3.2.16) mimic the WORS if we have q2 = 0 and q3 < 0 everywhere in V ,

while q1 = 0 in the coordinate axes {x = 0} and {y = 0}. We again impose the

Dirichlet boundary conditions (3.1.2) on the lateral surfaces of the well, and the

natural boundary conditions (3.2.2) on Γ. By constructing a similar argument,

we may show that there exists solutions of the Euler-Lagrange system (3.2.1), of

the form (3.2.16), that satisfy these boundary conditions in the three-dimensional

domain V . For solutions of the form (3.2.16), the Landau-de Gennes energy

I reduces to the following energy functional, with respect to the three scalar

functions q1, q2, q3 ∈ W 1,2(Ω;R):

J [q1, q2, q3] :=
∫

Ω

{
|∇q1|2 + |∇q2|2 + 3|∇q3|2 + λ2

L
fb(q1, q2, q3)

}
dA,
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where

fb(q1, q2, q3) := A(q2
1 + q2

2 + 3q2
3) + 2Bq3(q2

1 + q2
2 − q2

3) + C(q2
1 + q2

2 + 3q2
3)2

is the associated bulk energy potential for solutions of the form (3.2.16). Critical

points of J satisfy the following Euler-Lagrange system

∆q1 = λ2

L
q1 {A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)} ,

∆q2 = λ2

L
q2 {A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)} ,

∆q3 = λ2

L
q3 {A−Bq3 + 2C(q2

1 + q2
2 + 3q2

3)}+ λ2B
3L (q2

1 + q2
2);

(3.2.17)

and the Dirichlet boundary condition, Qb, on the lateral surfaces (3.1.2) corres-

ponds to the following boundary conditions for q1, q2 and q3:

q1 = q1b (as in (3.2.5)), q2 = 0, q3 = −s+

6 , on ∂Ω. (3.2.18)

We minimize J [q1, q2, q3] in the admissible class

J := {(q1, q2, q3) ∈ W 1,2(Ω;R3) : q1 = q1b, q2 = 0, q3 = −s+

6 on ∂Ω}.

Following the methods in [92], we can construct solutions (q1, q2, q3) to the system

(3.2.17), of the form (3.2.16), subject to the boundary conditions (3.2.18), that

satisfy q3 < 0 in Ω and are locally stable. The WORS is a specific example of

such a solution with constant eigenframe. In fact, the results in [63] show that the

WORS loses stability with respect to solutions of the form (3.2.16) with q2 6= 0,

as λ increases.

Definition 3.2.4. We say that a solution (q1, q2, q3) of the Euler-Lagrange system

(3.2.17) is locally stable if, for any perturbations ϕ1, ϕ2, ϕ3 ∈ C1
c (Ω), the second
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variation of J satisfies

δ2J(q1, q2, q3)[ϕ1, ϕ2, ϕ3] := d2

dt2

∣∣∣∣∣
t=0

J [q1 + tϕ, q2 + tϕ2, q3 + tϕ3] ≥ 0.

Given a locally stable solution (q1, q2, q3) of (3.2.17), the corresponding Q-tensor,

defined by (3.2.16), is a solution of (3.2.1) and is locally stable in the restricted

class of Q-tensors that have the constant eigenvector ẑ.

Proposition 3.2.5. For any A < 0 and λ > 0, there exists a solution (q∗1, q∗2, q∗3)

of the system (3.2.17), subject to the boundary conditions (3.2.18), that is locally

stable and has q∗3 < 0 everywhere in Ω.

Proof. The boundary data (3.2.18) are compatible with the Dirichlet boundary

conditions (3.1.2). Furthermore, the boundary conditions in (3.2.18) are continu-

ous piecewise of class C1, so there exist functions (q1, q2, q3) ∈ W 1,2(Ω;R3) that

satisfy (3.2.18). Therefore, the admissible class J is non-empty. To construct

solutions with q3 < 0, we first introduce the following restricted admissible class

J − := {(q1, q2, q3) ∈ J : q3 ≤ 0 a.e. on Ω}.

Note that J − is a non-empty, closed and convex subset of W 1,2(Ω;R3). As in

Proposition 3.2.2, we have that the LdG energy functional J is coercive in J −, and

weak lower semi-continuous. By the direct method in the calculus of variations,

we know that there exists a global minimizer (q∗1, q∗2, q∗3) of the functional J , in the

class J −. To complete the proof, it suffices to show that q∗3 ≤ −δ in Ω, for some

strictly positive constant δ. Once this is proven, it follows that (q∗1, q∗2, q∗3) lies in

the interior of J − and hence, it is a locally stable solution of the Euler-Lagrange

system (3.2.17).

To prove that q∗3 ≤ −δ in Ω, we follow the same method as in Proposition 3.2.2.
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Let Ω+ be the positive quadrant of Ω defined by (3.2.8), and let ϕ ∈ W 1,2(Ω+)

be such that ϕ ≥ 0 in Ω, and ϕ = 0 on ∂Ω, then

d
dt

∣∣∣∣∣
t=0

J [q∗1, q∗2, q∗3 − tϕ] ≥ 0,

since (q∗1, q∗2, q∗3) is a minimizer and hence,

∫
Ω+

{
−6∇q∗3 · ∇ϕ−

λ2

L
f ∗(q∗1, q∗2, q∗3)ϕ

}
dA ≥ 0,

where

f ∗(q1, q2, q3) := 6q3(A−Bq3 + 6Cq2
3) + 2(B + 6Cq3)(q2

1 + q2
2).

As in Proposition 3.2.2, there exists a number δ > 0 (depending only on A, B, C),

such that

f ∗(q1, q2, q3) > 0 for any q1, q2 ∈ R and q3 ∈ [−δ, 0].

By repeating the same arguments of Proposition 3.2.2, we can show that q∗3 ≤ −δ

in Ω.

We now consider the constructed solutions of (3.2.17), satisfying the boundary

conditions (3.2.18), with q3 < 0 in Ω, and prove bounds for q3 in the deep-nematic

temperature regime, A < 0.

Lemma 3.2.6. Any solution (q1, q2, q3) of the system (3.2.17), subject to (3.2.18),

satisfies the following inequality

q2
1 + q2

2 + 3q2
3 ≤

s2
+
3 in Ω.

Proof. Note that for any solutions Q ∈ A of the form (3.2.16), one can easily
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verify that

|Q|2 = 2q2
1 + 2q2

2 + 6q2
3.

Hence, the proof of this lemma follows immediately from the corresponding max-

imum principle approach for the full LdG system (3.2.1) in Proposition 1.4.2.

Lemma 3.2.7. Let (q1, q2, q3) be a solution of the system (3.2.17), subject to

(3.2.18), such that q3 < 0 everywhere in Ω. Then the following inequality holds:

q2
1 + q2

2 < 9q2
3, everywhere in Ω. (3.2.19)

Proof. Define the functions v1 := − q1
q3
, and v2 := − q2

q3
. Then, for k ∈ {1, 2}, we

have

∇vk = − 1
q3
∇qk + qk

q2
3
∇q3

∆vk =− 1
q3

∆qk + qk
q2

3
∆q3 + 2

q2
3
∇q3 · ∇qk −

2qk
q3

3
|∇q3|2

=− 1
q3

∆qk + qk
q2

3
∆q3 −

2
q3
∇q3 · ∇vk

Using the system (3.2.17), we have for k ∈ {1, 2},

∆vk + 2
q3
∇q3 · ∇vk =λ

2

L

{
−qk
q3

(A+ 2Bq3 + 2C(q2
1 + q2

2 + 3q2
3))

+ qk
q3

(A−Bq3 + 2C(q2
1 + q2

2 + 3q2
3))
}

+ λ2B

3L
qk
q2

3
(q2

1 + q2
2)

=λ
2B

3L qk(−9 + v2
1 + v2

2). (3.2.20)

Now, we define a non-negative function v by v2 := v2
1 + v2

2. Then, we obtain

∆(v2/2) = v1∆v1 + v2∆v2 + |∇v1|2 + |∇v2|2.
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Therefore, using (3.2.20), we have

∆(v2/2) + 2
q3
∇q3 · (v1∇v1 + v2∇v2) = λ2B

3L (q1v1 + q2v2)(v2 − 9)

+ |∇v1|2 + |∇v2|2.

Finally, we obtain the following differential inequality:

∆(v2/2) + 2
q3
∇q3 · ∇(v2/2) ≥ −λ

2B

3L
q2

1 + q2
2

q3︸ ︷︷ ︸
≥0

(v2 − 9). (3.2.21)

From the boundary conditions (3.2.18), we know that v = v1 ≤ 3 on ∂Ω. Then,

the strong maximum principle applied to (3.2.21) implies that v2 < 9, everywhere

inside Ω. Thus, the lemma is proved.

Recall the definition of the s+ and s− ordered nematic states from Proposition

1.4.1. We note that for temperatures below the nematic super-cooling temperature

(A < 0), we have the following equivalent definition:

s± :=
B ±

√
B2 + 24|A|C

4C .

Proposition 3.2.8. Let (q1, q2, q3) be any solution of the system (3.2.17), subject

to the boundary conditions (3.2.18), with q3 < 0 in Ω. Then the following bounds

on q3 hold:

• If −B2

3C ≤ A < 0, then − s+
6 ≤ q3 ≤ s−

3 in Ω;

• If A = −B2

3C , then q3 ≡ − s+
6 in Ω;

• If A ≤ −B2

3C , then
s−
3 ≤ q3 ≤ − s+

6 in Ω.
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Proof. If −B2

3C ≤ A < 0, then we necessarily have that

− B

6C ≤ −
s+

6 ≤
s−
3 . (3.2.22)

We will have to prove the inequalities separately, in several steps.

Step 1: We show the upper bound, q3 ≤ s−
3 in Ω, holds. Assume for a contradiction,

that the maximum of q3 is attained at some point (x0, y0) ∈ Ω, where 0 >

q3(x0, y0) > s−
3 . Then the following inequalities hold at the point (x0, y0):

Aq3 −Bq2
3 + 6Cq3

3 > A
(
− B

6C

)
+B

(
− B2

36C2

)
+ 6C

(
− B3

216C3

)

>

(
−B

2

3C

)(
− B

6C

)
− B3

18C2 = 0,

and

2Cq3 + B

3 > 2C
(
− B

6C

)
+ B

3 = 0.

Evaluating both sides of the equation for q3 in (3.2.17) at the point (x0, y0):

∆q3(x0, y0)︸ ︷︷ ︸
≤0

= λ2

L

{
Aq3(x0, y0)−Bq2

3(x0, y0) + 6Cq3
3(x0, y0)

}
︸ ︷︷ ︸

>0

+ λ2

L

{
2Cq3(x0, y0) + B

3

}
(q2

1(x0, y0) + q2
2(x0, y0))︸ ︷︷ ︸

>0

which leads to a contradiction. By (3.2.22), we have q3 = − s+
6 ≤

s−
3 on ∂Ω.

Therefore, we can conclude that q3 ≤ s−
3 everywhere in Ω.

Step 2: Now we will prove a weaker lower bound q3 ≥ − B
6C in Ω. Assume for

a contradiction, that the minimum of q3 is attained at some point (x1, y1) ∈ Ω,

with q3(x1, y1) < − B
6C . Then the following inequalities hold at the point (x1, y1):

Aq3 −Bq2
3 + 6Cq3

3 < A
(
− B

6C

)
+B

(
− B2

36C2

)
+ 6C

(
− B3

216C3

)

<

(
B2

3C

)(
B

6C

)
− B3

18C2 = 0,
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and

2Cq3 + B

3 < 2C
(
− B

6C

)
+ B

3 = 0.

Again, by evaluating both sides of the equation for q3 in (3.2.17) at the point

(x1, y1), we obtain a contradiction. The boundary conditions (3.2.18) conclude

the weak lower bound q3 ≥ − B
6C in Ω.

Step 3: We now prove the optimal lower bound q3 ≥ − s+
6 in Ω. Using (3.2.17),

the weak lower bound q3 ≥ − B
6C and Lemma 3.2.7, we obtain

∆q3 = λ2

L

{
Aq3 −Bq2

3 + 6Cq3
3

}
+ λ2

L

{
2Cq3 + B

3

}
(q2

1 + q2
2)

≤ λ2

L

{
Aq3 −Bq2

3 + 6Cq3
3

}
+ λ2

L

{
2Cq3 + B

3

}
9q2

3

= λ2

L

{
Aq3 + 2Bq2

3 + 24Cq3
3

}
in Ω

Now we may apply the same maximum principle argument as in Step 2. Assume

for a contradiction, that the minimum of q3 is attained at some point (x2, y2) ∈ Ω,

with q3(x2, y2) < − s+
6 , then the following inequality holds at the point (x2, y2):

Aq3 + 2Bq2
3 + 24Cq3

3 < A
(
−s+

6

)
− 2B

(
−
s2

+
36

)
+ 24C

(
−
s3

+
216

)

<

(
B2

3C

)(
s+

6

)
+ 2B

(
B2

36C2

)
+ 24C

(
−
s3

+
216

)

<
B3

9C2 −
B

9

(
B2

C

)
= 0.

Therefore,

∆q3(x2, y2)︸ ︷︷ ︸
≥0

≤ λ2

L

{
Aq3(x2, y2) + 2Bq2

3(x2, y2) + 24Cq3
3(x2, y2)

}
︸ ︷︷ ︸

<0

which leads to contradiction and hence proves the optimal lower bound q3 ≥ − s+
6

in Ω.
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Note that if we had chosen A = −B2

3C , then we necessarily have that

s−
3 ≡ q3 ≡ −

s+

6 in Ω.

Proving the last set of inequalities is completely analogous to the above arguments,

with inequalities reversed. Assuming A ≤ −B2

3C , we first prove the lower bound

q3 ≥ s−
3 , then the weaker upper bound q3 ≤ − B

6C , and finally the optimal upper

bound q3 ≤ − s+
6 . Each step is obtained by repeating almost word by word the

above arguments. We omit the details for brevity.

Now that we have proved bounds on q3 for various temperature regimes, we are in

a position to study the stability/instability of the WORS, with natural boundary

conditions on the top and bottom plates. As is standard in variational problems, a

solution is stable if it satisfies the requirement in Definition 3.2.4, and is unstable

if we can find any perturbation for which the second variation of the energy is

negative. With this in mind, we look at in-plane perturbations of solutions Q, of

the form (3.2.16), with q2 6= 0. First, consider a function ϕ ∈ C1
c (Ω), and consider

the perturbation

Qt(x, y) := Q(x, y) + tϕ(x, y)(n1 ⊗ n2 + n2 ⊗ n1)

where t ∈ R is a small parameter. When considering the WORS-type solutions

of the form (3.2.7), as discussed in Proposition 3.2.2, the second variation of the

LdG energy is

Hλ[ϕ] :=1
2

d2

dt2I[Qt]
∣∣∣∣∣
t=0

=1
2

d2

dt2J [q1, q2 + tϕ, q3]
∣∣∣∣∣
t=0

=
∫

Ω

{
|∇ϕ|2 + λ2

L
ϕ2(A+ 2Bq3 + 2C(q2

1 + 3q2
3))
}

dA (3.2.23)
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(see Section 5.3 in [63]). The following result shows that, for A low enough and

when λ is large, the WORS is unstable with respect to in-plane perturbations.

Proposition 3.2.9. Let A ≤ −B2

3C , and suppose (q1, q2, q3) is a solution of

(3.2.17), subject to the boundary conditions (3.2.18), such that q2 = 0 and q3 < 0

everywhere in Ω. For any function ϕ ∈ C1
c (Ω), that is not identically equal to

zero, there exists a number λ0 > 0 (depending on A, B, C, L and ϕ) such that

Hλ[ϕ] < 0 when λ ≥ λ0.

Proof. By Lemma 3.2.6 and Proposition 3.2.8, we have

A+ 2Bq3 + 2C(q2
1 + 3q2

3) ≤ A− Bs+

3 + 2Cs2
+

3

= A− B

3

B +
√
B2 + 24|A|C

4C


+ 2C

3

2B2 + 2B
√
B2 + 24|A|C + 24|A|C

16C2


= A+ |A| = 0

The equality holds if, and only if, q3 = − s+
6 and q2

1 + 3q2
3 = s2+

3 , that is if, and

only if, |q1| = s+
2 and q3 = − s+

6 . However, from Lemma 3.2.7, we know that

3q3 < q1 < −3q3 inside Ω. Therefore we must have

A+ 2Bq3 + 2C(q2
1 + 3q2

3) < 0, everywhere inside Ω.

Then, for any fixed ϕ ∈ C1
c (Ω), that is not identically equal to zero, the quantity

Hλ[ϕ] defined by (3.2.23) becomes strictly negative for λ large enough.
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3.2.3 Weak anchoring on the top and bottom plates

Experimentally, the surfaces of a confined nematic cell are treated chemically

in order induce the planar boundary conditions, which forces the liquid crystal

molecules to lie in plane of the surfaces [70], [93], [94]. With this in mind, a purely

z-independent condition on the top and bottom plates is less realistic. In this

section, we impose a surface energy term which is consistent with the preferred

planar orientation that is usually achieved on the top and bottom plates. We

define a revised Landau-de Gennes energy

Fλ,s[Q] :=
∫
V

(
1
2 |∇Q|2 + λ2

L
fb(Q)

)
dV + λ

L

∫
Γ
fs(Q) dS,

where fs is the surface anchoring energy density defined by

fs(Q) := αz

(
Qẑ · ẑ + s+

3

)2
+ γz|(I− ẑ⊗ ẑ)Qẑ|2,

where αz, γz > 0. This form of surface energy may be derived from the “bare”

surface energy with respect to Q-tensors, as in [70], with its minimum being

achieved by uniaxial or biaxial Q-tensors in the plane tangent to the surface

of the liquid crystal. The polar anchoring on these surfaces is fixed because

molecules lie in the plane of these surfaces, and the azimuthal anchoring is free

because the nematic molecules are free to rotate in the plane. Note that the term,

(I− ẑ⊗ ẑ)Qẑ = (Q13, Q23, 0), and hence |(I− ẑ⊗ ẑ)Qẑ|2 is equal to zero if, and

only if, Qẑ is parallel to ẑ. Hence, the surface energy density term, fs, favours

Q-tensors that have ẑ as an eigenvector, with constant eigenvalue − s+
3 , on the

top and bottom plates. We maintain the Dirichlet boundary conditions (3.1.2)

on the lateral surfaces of the well, and seek to minimize the revised LdG energy

Fλ,s in the admissible class A.



3.2. The 3D WORS and related results 73

Lemma 3.2.10. Critical points of Fλ,s, in the admissible class A, satisfy the

Euler-Lagrange system (3.2.1), subject to Dirichlet boundary conditions (3.1.2)

on the lateral surfaces and

∂νQ + λ

L
H(Q) = 0 on Γ, (3.2.24)

where ν is the outward-pointing unit normal to V and H is defined by

H(Q) :=


−2

3αz
(
Q33 + s+

3

)
0 γzQ13

0 −2
3αz

(
Q33 + s+

3

)
γzQ23

γzQ13 γzQ23
4
3αz

(
Q33 + s+

3

)



Proof. Suppose Q ∈ W 1,2(V ;S0) minimizes the revised LdG energy functional

Fλ,s in the admissible class A. Now, suppose P ∈ W 1,2(V ;S0) is some perturba-

tion such that P = 0 on ∂V \ Γ. We wish to calculate the first variation of the

LdG energy Fλ,s, with respect to the perturbations P. We have that,

Fλ,s[Q + tP] =
∫
V

1
2 |∇(Q + tP)|2 dV

+
∫
V

λ2

L

(
A

2 (Q + tP)2 − B

3 tr(Q + tP)3 + C

4 (Q + tP)4
)

dV

+ λ

L

∫
Γ
αz

(
(Q + tP)ẑ · ẑ + s+

3

)2
+ γz|(I− ẑ⊗ ẑ)(Q + tP)ẑ|2 dS

Therefore, the first variation of Fλ,s with respect to P is:

0 = d
dt

∣∣∣∣∣
t=0
Fλ,s[Q + tP]

=
∫
V

(
∇Q : ∇P + λ2

L
(AQ ·P−BQ2 ·P + C|Q|2Q ·P)

)
dV

+ λ

L

∫
Γ

(
2αz(Pẑ · ẑ)

(
Qẑ · ẑ + s+

3

)
+ 2γz(I− ẑ⊗ ẑ)Qẑ · (I− ẑ⊗ ẑ)Pẑ

)
dS.

Since Q,P ∈ S0, we have that Q · P := tr(QP) = QijPij. Integrating by parts,
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and noting that trP = 0, gives

0 =
∫
V

(
−∆Q + λ2

L

(
AQ−BQ2 + B

3 |Q|
2I + C|Q|2Q

))
·P dV

+
∫
V
∇Q ·P dV︸ ︷︷ ︸

=
div.thm.

∫
Γ ∂νQ·P dS

+ λ

L

∫
Γ

(
2αz(Pẑ · ẑ)

(
Qẑ · ẑ + s+

3

)
+ 2γz(I− ẑ⊗ ẑ)Qẑ · (I− ẑ⊗ ẑ)Pẑ

)
dS

(3.2.25)

We consider the surface energy terms in (3.2.25) separately. We remark that

(Pẑ · ẑ)
(
Qẑ · ẑ + s+

3

)
=
(
Q33 + s+

3

)
P33

=


−1

3

(
Q33 + s+

3

)
0 0

0 −1
3

(
Q33 + s+

3

)
0

0 0 2
3

(
Q33 + s+

3

)

 ·P

(3.2.26)

and

(I− ẑ⊗ ẑ)Qẑ · (I− ẑ⊗ ẑ)Pẑ =
2∑
i=1

Qi3Pi3 = 1
2


0 0 Q13

0 Q23

Q13 Q23 0

 ·P (3.2.27)

By combining (3.2.25), (3.2.26) and (3.2.27), we finally obtain

∫
V

(
−∆Q + λ2

L

(
AQ−BQ2 + B

3 |Q|
2I + C|Q|2Q

))
·P dV

+
∫

Γ

(
∂νQ + λ

L
H(Q)

)
·P dS = 0,

for any perturbation P ∈ W 1,2(V,S0) such that P = 0 on ∂V \ Γ, and the lemma

follows.
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Due to the boundary conditions (3.2.24) on Γ, z-independent solutions (∂zQ = 0)

may not, in general, be solutions of the 3D problem with weak anchoring on the

top and bottom plates. However, we may infer from previous results, that there

are z-independent 3D solutions for a specific temperature.

Corollary 3.2.11. There exist z-independent solutions of (3.2.1), that satisfy

(3.1.2) and (3.2.24), if A = −B2

3C .

Proof. We note from Proposition 3.2.5, the existence of solutions of (3.2.1) of

the form (3.2.16), that satisfy the Dirichlet boundary conditions (3.1.2) on the

lateral surfaces. Furthermore, from Proposition 3.2.8, we know that at the special

temperature A = −B2

3C , we have q3 = − s+
6 everywhere in Ω×(0, ε). It is necessarily

the case that Q33 = − s+
3 , and hence the condition (3.2.24) reduces to the z-

independent condition ∂zQ = 0 on Γ.

Lemma 3.2.12. There exists a constant M (depending only on A, B, and C)

such that any solution Q of the Euler-Lagrange system (3.2.1), subject to the

boundary conditions (3.1.2) and (3.2.24), satisfies

|Q| ≤M in V. (3.2.28)

Proof. This proof is analogous to the one in Proposition 1.4.2, where surface energy

terms were neglected in the LdG energy. To begin, we define P := Q + s+
2 (ẑ⊗ ẑ).

We have that ∂ν(1
2 |P|

2) = ∂νP ·P = ∂νQ ·P. Then, by the constraint on the top

and bottom plates (3.2.24), we deduce that

−L
λ
∂ν(

1
2 |P|

2) = H(Q) ·P

= 2γz
2∑
i=1

Q2
i3 + 2

3αz
(
Q33 + s+

3

)
(−Q11 −Q22 + 2Q33 + s+)



3.2. The 3D WORS and related results 76

= 2γz
2∑
i=1

Q2
i3 + 2αz

(
Q33 + s+

3

)2
≥ 0 on Γ. (3.2.29)

Similarly, we manipulate the Euler-Lagrange system (3.2.1) to obtain

L

λ2 ∆(|P|2/2) = L

λ2 ∆Q ·
(
Q + s+

2 ẑ⊗ ẑ
)

+ L

λ2 |∇Q|2

≥ A|Q|2 −BtrQ3 + C|Q|4

+ s+

2

(
(A+ C|Q|2)Q33 −BQ3kQ3k + B

3 |Q|
2
)

(3.2.30)

The right-hand side of (3.2.30) is a quartic polynomial in Q, with leading order

term C|Q|4 and C > 0. Therefore, there exists some positive number M1 :=

M1(A,B,C) such that the right-hand side of (3.2.30) is positive when |Q| ≥M1.

By the triangle inequality, we have

|P| ≥M2 := M1 + s+

2 =⇒ |Q| =
∣∣∣∣P− s+

2 ẑ⊗ ẑ
∣∣∣∣ ≥M1

and hence, the right-hand side of (3.2.30) is positive when P ≥M2. Finally, the

boundary datum Qb on the lateral surfaces, defined by (3.1.2), satisfies |Qb| ≤√
2
3s+ on ∂Ω× (0, ε). By applying the maximum principle to (3.2.29) and (3.2.30),

we obtain that

|P| ≤ max
M2,

√2
3 + 1

2

 s+

 in V.

By the triangle inequality, Q is also bounded in terms of A, B and C only.

We wish to construct WORS-like solutions for this 3D problem, with imposed

surface energies on the top and bottom plates. Recall that we may completely

describe these solutions in terms of two degree of freedom. In 3D, these solutions
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have the following form:

Q = q1(x, y, z)(n1 ⊗ n1 − n2 ⊗ n2) + q3(x, y, z)(2ẑ⊗ ẑ− n1 ⊗ n1 − n2 ⊗ n2).

(3.2.31)

We shall adapt the methods in [62], for all values of λ and ε, to prove the existence

of WORS-type solutions satisfying these boundary conditions.

Proposition 3.2.13. For any λ, ε and A, there exists a solution of the form

(3.2.31), of the system (3.2.1), subject to the boundary conditions (3.1.2) and

(3.2.24), which satisfies the symmetry property

xyq1(x, y, z) ≥ 0, for any (x, y, z) ∈ V,

with q1 = 0 along the square diagonals, and has q3 < 0 on V .

Proof. We use a similar approach to that used in Proposition 3.2.5. We define

the following quadrant of the 3D square well, V :

V+ := {(x, y, z) ∈ V : x, y > 0}.

Consider the associated LdG energy functional among the finite energy pairs

(q1, q3) ∈ W 1,2(V+;R2):

G[q1, q3] :=
∫
V+
|∇q1|2 + 3|∇q3|2 dV

+ λ2

L

∫
V+

{
A(q2

1 + q2
3) + C(q2

1 + 3q2
3)2 + 2Bq3(q2

1 − q2
3)
}

dV

+ 2λαz
L

∫
Γ∩V+

(
q3 + s+

6

)2
dS,

obtained by substituting the ansatz (3.2.31) into Fλ,s. We minimize G, subject
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to the constraint q3 ≤ 0 on V , and the following boundary conditions:

(q1, q3) = (q1b,−
s+

6 ) on (∂Ω× (0, ε)) ∩ V+, q1 = 0 on ∂V+ \ ∂V,

(3.2.32)

where the function q1b is defined by (3.2.5). As in Proposition 3.2.5, a routine

application of the direct method of the calculus of variations shows that a min-

imizer (q∗1, q∗3) exists. Without loss of generality, we may assume q∗1 ≥ 0 on V+;

otherwise we replace q∗1 with |q∗1|, and note that

G[q∗1, q∗3] = G[|q∗1|, q∗3].

We claim that q∗3 ≤ −δ for some strictly positive constant δ, depending only on

A, B and C. The proof of this claim follows the same argument as in Proposition

3.2.2. Consider a function ϕ ∈ W 1,2(V+) such that ϕ ≥ 0 in V+, and ϕ = 0

on ∂V ∩ V+. Then the admissible perturbation q̄3 := q∗3 − tϕ, for some small

parameter t ≥ 0, satisfies the following optimality condition

d
dt

∣∣∣∣∣
t=0

G[q∗1, q̄3] ≥ 0.

We deduce that

∫
V+

{
−6∇q∗3 · ∇ϕ−

λ2

L
f(q∗1, q∗3)ϕ

}
dV− 4λαz

L

∫
Γ∩V+

(
q3 + s+

6

)
ϕ dS ≥ 0,

(3.2.33)

where the function f(q∗1, q∗3) is defined in Proposition 3.2.2 and analogously, we

know that there exists a constant δ ∈ (0, s+6 ) such that f(q1, q3) > 0 for any q1 ∈ R

and any q3 ∈ [−δ, 0]. We choose ϕ as in Proposition 3.2.2 and, due to (3.2.33),

we deduce that q∗3 ≤ −δ in V+.

Since q∗3 is strictly negative, we can consider perturbations of the form qt3 :=
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q∗3 + tϕ, irrespective of the sign of ϕ, provided that |t| is sufficiently small. As a

consequence, (q∗1, q∗3) solves the Euler-Lagrange system (3.2.4) on V+ as well as

the boundary conditions

∂νq1 = 0, ∂νq3 + 4λαz
3L

(
q3 + s+

6

)
= 0 on Γ ∩ V+, (3.2.34)

and ∂νq3 = 0 on ∂V+ \ ∂V . We extend (q∗1, q∗3) to the whole of V by reflections

about the planes {x = 0} and {y = 0}:

q∗1(x, y, z) := sign(xy)q∗1(|x|, |y|, z), q∗3(x, y, z) := q∗3(|x|, |y|, z),

for any (x, y, z) ∈ V \ V+. The functions q∗1, q∗3, defined as above, solve the Euler-

Lagrange system (3.2.4) on Ω\ ({x = 0}∪{y = 0}). Applying the same argument

based on elliptic regularity as in Proposition 3.2.2, shows that (q∗1, q∗3) is a solution

of (3.2.4) on the whole of Ω. Finally, using (3.2.4), (3.2.32) and (3.2.34), we can

check that the Q-tensor associated with (q∗1, q∗3), as defined by (3.2.31), has all

the required properties.

Proposition 3.2.14. There exists a positive number λ0 (depending only on

A, B, C) such that, when λ < λ0 the system (3.2.1) has a unique solution that

satisfies the boundary conditions (3.1.2) and (3.2.24).

Proof. Consider the constant M := M(A,B,C) given by Proposition 1.4.2. Any

solution of the system (3.2.1), subject to the boundary conditions (3.1.2), (3.2.24),

must belong to the class

XV = {Q ∈ W 1,2(V,S0) : |Q| ≤M on V, Q = Qb on ∂Ω× (0, ε)}.

As in Proposition 3.2.3, it suffices to show that for any M > 0, there exists a

number λ0 = λ0(M,A,B,C, L,Ω) such that, for λ < λ0, the functional Fλ,s is

strictly convex in XV . For any Q1,Q2 ∈ XV , we have
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Fλ,s
(Q1 + Q2

2

)
=
∫
V

{
1
8 |∇(Q1 + Q2)|2 + λ2

L
fb

(Q1 + Q2

2

)}
dV

+ λ

L

∫
Γ
fs

(Q1 + Q2

2

)
dS

=
∫
V

1
4

{
|∇Q1|2 + |∇Q2|2 −

1
2 |∇(Q1 −Q2)|2

}
dV

+ λ2

L

∫
V
fb

(Q1 + Q2

2

)
dV + λ

L

∫
Γ
fs

(Q1 + Q2

2

)
dS

(3.2.35)

Since fs(Q) is a convex function of Q, then we have

∫
Γ
fs

(Q1 + Q2

2

)
dS ≤ 1

2

∫
Γ

(fs(Q1) + fs(Q2)) dS. (3.2.36)

We now focus our attention to the bulk term, fb. Both Q1 and Q2 are equal to

Qb on the lateral surfaces of the well, ∂Ω × (0, ε), and hence, Q1 −Q2 = 0 on

∂Ω× (0, ε). For a.e. fixed z0 ∈ (0, ε), by the Poincaré inequality on Ω, we have

||Q1(·, ·, z0)−Q2(·, ·, z0)||2L2(Ω) ≤ c1(Ω)||∇x,y(Q1(·, ·, z0)−Q2(·, ·, z0))||2L2(Ω)

(3.2.37)

where c1 > 0 is a constant that only depends on the cross-sectional geometry Ω.

By integrating (3.2.37) with respect to z0, we deduce that

∫
V
|Q1 −Q2|2 dV ≤ c1(Ω)

∫
V
|∇(Q1 −Q2)|2 dV. (3.2.38)

Since, |Q1| and |Q2| are bounded by M everywhere in V , we have

∫
V

∣∣∣∣fb (Q1 + Q2

2

)
− 1

2fb(Q1)− 1
2fb(Q2)

∣∣∣∣ dV ≤ ||fb||W 2,∞(BM )

∫
V
|Q1 −Q2|2 dV

(3.2.39)

where BM := {Q ∈ S0 : |Q| ≤ M} and ||fb||W 2,∞(BM ) is a positive constant

that bounds the second derivatives of fb in BM (in particular, ||fb||W 2,∞(BM ) only



3.3. Summary 81

depends on M, A, B and C). Combining (3.2.38) and (3.2.39), we find a positive

constant c2 = c2(fb,Ω,M) := c1(Ω)||fb||W 2,∞(BM ) such that

∫
V
fb

(Q1 + Q2

2

)
dV ≤ 1

2

∫
V

(fb(Q1) + fb(Q2)) dV + c2

∫
V
|∇(Q1 −Q2)|2 dV

(3.2.40)

Using (3.2.36) and (3.2.40) to bound the right-hand side of (3.2.35), we obtain

Fλ,s
(Q1 + Q2

2

)
≤ 1

2(Fλ,s(Q1) + Fλ,s(Q2)) +
(
c2λ

2

L
− 1

8

)∫
V
|∇(Q1 −Q2)|2 dV

If we take λ < λ0 :=
(
L

8c2

)1/2
, then we have

Fλ,s
(Q1 + Q2

2

)
≤ 1

2(Fλ,s(Q1) + Fλ,s(Q2))

and the equality holds if, and only if, Q1 = Q2. Thus proving that Fλ,s is strictly

convex in the class XV .

We conclude that for λ small enough, the LdG energy functional Fλ,s has at most

one critical point described by Q-tensor solutions of the form (3.2.31), where

(q1, q3) are the minimizers of the associated functional G from Proposition 3.2.13.

3.3 Summary

In this chapter we have analytically studied nematic equilibria on 3D square wells,

with an emphasis on the WORS as a function of the well size, characterized by λ,

and the well height, denoted by ε. Given the batch of papers on NLCs in square

wells [52], [61]–[63], which consider shallow wells and model equilibria on a 2D

square with tangent boundary conditions, it is natural to ask if the WORS is

relevant for 3D domains or if they are a 2D artefact. Our essential findings in this
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chapter show that the WORS is in fact a LdG critical point for 3D wells with

a square cross-section and experimentally relevant tangent boundary conditions

on the lateral surfaces. We have shown that the WORS exists, for arbitrary well

height, with both natural boundary conditions and realistic surface energies on

the top and bottom surfaces. In fact, for sufficiently small λ, the WORS is the

global LdG minimizer for these 3D problems, exemplifying the 3D relevance of

the WORS for all temperatures below the nematic supercooling temperature.



Chapter 4

Numerical simulations of

three-dimensional nematic

equilibria in confinement

Recently, there has been substantial interest in new applications for NLCs, where

the typical confining geometry is microscopic. NLC systems of this size are often

difficult to study experimentally, motivating a numerical approach to studying

these problems. In this chapter, we build upon the analysis of nematic equilib-

rium solutions in 3D wells, in Chapter 3. We employ an energy-minimization

based numerical approach to compute novel equilibrium solutions for square and

rectangular 3D wells, and a Rayleigh-quotient iterative minimization method to

assess the stability of these solutions. In Chapter 3, we proved that for small

enough wells in three dimensions, the WORS is the unique global minimizer of

the LdG free energy, given two physically relevant boundary conditions. In this

chapter, we numerically compute the WORS in three dimensions, and study the



4.1. The computational model 84

effects of varying domain size and anchoring strengths on the lateral surfaces

of the well. For large enough wells, we numerically compute 3D diagonal and

rotated configurations (as seen in [60] and [61] in the 2D case), as well as novel

mixed equilibrium configurations that interpolate between two different diagonal

director profiles on the top and bottom plates. We also compute two stable

escaped configurations by employing weak anchoring conditions on the top and

bottom surfaces of the domain. Furthermore, we study the effects of choosing

a rectangular cross-sectional geometry for this 3D problem, and how the added

geometrical anisotropy changes the solution landscape.

4.1 The computational model

Recall that we take a three-dimensional domain V = Ω × (0, ε), where ε is the

rescaled height of the well, Ω is the 2D cross-sectional domain, and Γ := Ω×{0, ε}

is the union of the top and bottom surfaces of the well. We wish to (numerically)

minimize the rescaled LdG energy, Fλ, defined in Chapter 3. As explained in

Chapter 1, we may describe the preferred directions of the constituent liquid

crystal molecules by the eigenvectors of the LdG Q-tensor (1.4.1), and the degree

of order about these preferred directions is given by the associated eigenvalues.

We consider the most general form of Q ∈ S0, in three dimensions:

Q(x, y, z) = q1(x, y, z)(x̂⊗ x̂− ŷ⊗ ŷ) + q2(x, y, z)(x̂⊗ ŷ + ŷ⊗ x̂)

+ q3(x, y, z)(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ)

+ q4(x, y, z)(x̂⊗ ẑ + ẑ⊗ x̂) + q5(x, y, z)(ŷ⊗ ẑ + ẑ⊗ ŷ),

(4.1.1)

where x̂, ŷ and ẑ are unit-vectors in the x-, y- and z-directions, respectively.

Instead of solving the Euler-Lagrange equations for Fλ, we reduce the problem
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to that of finding solutions Q that make it stationary i.e., DFλ(Q) = 0, where

DFλ(Q) is the Fréchet derivative of Fλ, evaluated at Q. To this end, we use an

energy-minimization based numerical method to find the minimizer of the current

system [65]. Furthermore, computing finite-energy Q-tensors is computationally

expensive. To remedy this problem, we may follow the approach of [95], by

analysing a function of the scalar coordinates q = (q1, . . . , q5), rather than the

energy functional Fλ directly. This is because the macroscopic order parameter

Q ∈ S0 is described by the unique representation Q = qiEi, where {Ei}5
i=1 is an

orthonormal basis of S0, and qi = tr(QEi) - forming an isometric isomorphism

betweenW 1,2(V ;S0) andW 1,2(V ;R5). For Q-tensors of the form (4.1.1), the LdG

energy functional reduces to the following functional with respect to the scalar

functions qi ∈ W 1,2(V ;R):

Fλ[q1, . . . , q5] =
∫
V

{
|∇q1|2 + |∇q2|2 + 3|∇q3|2 + |∇q4|2 + |∇q5|2

}
dV

+ λ2

L

∫
V

{
A(q2

1 + q2
2 + 3q2

3 + q2
4 + q2

5)

+B
(
q3(−2q2

1 − 2q2
2 + 2q2

3 + q2
4 + q2

5) + q1(q2
4 − q2

5) + 2q2q4q5
)

+ C(q2
1 + q2

2 + 3q2
3 + q2

4 + q2
5)2
}

dV (4.1.2)

For computational convenience, we take Ω ⊂ R2 to be a square with sides parallel

to the coordinate axes i.e., Ω = (−1, 1)2. We note that in the analysis of the

system, subject to infinite anchoring boundary conditions, it was necessary to

truncate the corners of Ω. Without this truncation, the boundary condition leads

to a natural mismatch at the vertices of the well, leading to point defects at

each corner with infinite Dirichlet/elastic energy in 2D. This can be rectified by

introducing a scalar order parameter which vanishes at the point defects. In our

numerical simulations, we will employ a surface energy term that mimics the

behaviour of an infinite anchoring condition, for sufficiently large values of the



4.1. The computational model 86

anchoring coefficient. This is a more physically realistic modelling choice, and is

computationally convenient as it allows us to study solutions without excluding

the corners of the well [88]. More precisely, we minimize the LdG energy functional

Fλ[Q] +
∫
∂V
fs(Q) dS. (4.1.3)

We impose surface energies on ∂Ω× (0, ε), given by [52] in the non-dimensionlized

setting:
fs(Q) = ω

(
Q− g(x)

(
x̂⊗ x̂− 1

3I
))2

, y = −1, 1;

fs(Q) = ω
(
Q− g(y)

(
ŷ⊗ ŷ− 1

3I
))2

, x = −1, 1.
(4.1.4)

In this weak anchoring condition, we take ω = Wλ
L

to be the non-dimensionalized

anchoring strength, whereW is the surface anchoring on the lateral surfaces of the

well. We take the function g ∈ C∞([−1, 1]) so as to eliminate the discontinuity

at the corners. In our simulations we choose

g(s) = s+, ∀s ∈ [−1 + η, 1− η], g(−1) = g(1) = 0,

for a small, but fixed value, η. The choice of g does not affect the numerical

results qualitatively. Note how the form of (4.1.4) enforces a preferred tangential

orientation on each of the lateral surfaces. Unless stated otherwise, we take

W = 10−2Jm−2, which is a suitable value to mimic strong anchoring on the

lateral sides of well [96]. In order to complement the analysis in Section 3.2.3, we

also impose finite tangential anchoring on the top and bottom surfaces, Γ, given

by

fs(Q) = wz

(
αz

(
Qẑ · ẑ + 1

3s+

)2
+ γz

∣∣∣ (I− ẑ⊗ ẑ) Qẑ
∣∣∣2) , (4.1.5)

where wz = Wzλ
L

is the non-dimensionalized anchoring strength on Γ, Wz is the

surface anchoring on Γ, and αz, γz > 0. The surface energy (4.1.5) favours Q-

tensors with ẑ as an eigenvector, with associated eigenvalue − s+
3 , and hence this
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choice of surface energy induces planar boundary conditions on Γ.

4.2 The numerical methods

In the Landau-de Gennes framework, numerical simulations of equilibrium con-

figurations within these confining geometries have so far been restricted to the

two-dimensional case [61], [62]. The extension to solving the full 3D system is

computationally expensive and hence, we employ an energy minimization based

numerical scheme which we describe in this section. To begin, we re-scale the

physical domain to be

Vc = {(x̄, ȳ, z̄) | x̄ ∈ [0, 2π], ȳ ∈ [0, 2π], z̄ ∈ [−1, 1]}.

Since Q ∈ S0 is a symmetric and traceless matrix, it may be written as a matrix

involving five scalar order parameters, pi ∈ W 1,2(Vc;R), i = 1, . . . , 5:

Q =


p1 p2 p3

p2 p4 p5

p3 p5 −p1 − p4

 .

The pi are simply linear combinations of the original qi scalar order parameters

in (4.1.1). We expand the pi in terms of special functions: Fourier series on x̄ and

ȳ, and Chebyshev polynomials on z̄ i.e.,

pi(x̄, ȳ, z̄) =
L−1∑
l=1−L

M−1∑
m=1−M

N−1∑
n=0

plmni Xl(x̄)Ym(ȳ)Zn(z̄), (4.2.1)
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where L, M , N specify the truncation limits of the expanded series, and Xl and

Ym are defined as

Xl(x̄) =


cos lx̄, l ≥ 0,

sin |l|x̄, l < 0,
Ym(ȳ) =


cosmȳ, m ≥ 0,

sin |m|ȳ, m < 0.

The derivative of this periodic extension is continuous, and the smoothing function,

g ∈ C∞([−1, 1]), prevents any discontinuities that form around the corners of the

domain. Inserting the coefficients of the spectral expansion of Q, (4.2.1), into

the LdG free energy (4.1.3), we obtain a function of p = (plmni ) ∈ RD, where

D = (2L− 1)× (2M − 1)×N . We wish to minimize this discretized energy using

numerical optimization methods which we shall describe below. By discretizing

the LdG free energy, with respect to p, we avoid any computation of nonlinear

terms in the Euler-Lagrange equations. By using the chain rule, and numerical

integration, we may obtain the derivatives of the discrete free energy required.

4.2.1 Limited-memory BFGS

Define the LdG free energy (4.1.3), with with respect to the discretized Q-tensor,

as F (p). Minimizers of F (p) can be found by some standard optimization methods.

In any numerical optimization method, one key concept is that of a line search.

This is an iterative approach to find the local minimum of an objective function.

The iteration itself is given by

pk+1 = pk + αkdk, (4.2.2)

where αk is a positive scalar value called the ‘step length’, and a ‘search direction’,

dk. In our numerical method, we use the strong Wolfe conditions for our line

search requirements [97]. These conditions guarantee that the step length at the
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kth iteration, αk, should give a sufficient decrease in the objective function F ,

measured by

F (pk + αkdk) ≤ F (pk) + c1αk∇F T
k dk, c1 ∈ (0, 1). (4.2.3)

This condition enforces the reduction in F to be proportional to the step length αk,

and the directional derivative∇F T
k dk. To avoid step lengths that are unacceptably

short, a second requirement is employed - typically referred to as the ‘curvature

condition’, which requires αk to satisfy the following inequality:

|∇F (pk + αkdk)Tdk| ≥ c2|∇F T
k dk|, c2 ∈ (c1, 1). (4.2.4)

This condition guarantees that, the gradient of the new objective function at

αk, is greater than c2 times the original gradient, whilst excluding points that

are far from the stationary points. A backtracking approach ensures that these

line search conditions are fulfilled. In the following simulation, we mainly use

L-BFGS, which is a type of quasi-Newton method, and approximates the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm using a restricted amount of com-

puter memory [98]. The benefit of using a quasi-Newton method is that search

directions do not require the expensive computation of the Hessian (as in regular

Newton methods), but an approximation Bk, which is updated after each iteration.

The new Hessian approximation, Bk+1, is given by the following formula:

Bk+1 = Bk −
BksksTkBk

sTkBksk
+ gkg

T
k

gTk sk
, (4.2.5)

where the displacement vector, sk, and change of gradient vector, gk, are given by

sk = pk+1 − pk, gk = ∇Fk+1 −∇Fk. (4.2.6)
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Note that the Hessian approximation, according to (4.2.5), will satisfy the secant

equation Bk+1sk = gk. This is a requirement of any quasi-Newton scheme in

order to simulate the properties of the true Hessian. In the BFGS method, each

update can be derived by imposing conditions on the inverses of the Hessian

approximations, Hk = B−1
k . The solution to the new approximation is then given

by the following formula

Hk+1 = (I− ρkskgTk )Hk(I− ρkgksTk ) + ρksksTk , (4.2.7)

where ρk = 1
gT
k

sk
. Provided a sufficiently good initial guess for the Hessian is

chosen, this method usually converges to a local minimizer, but it is not necessarily

guaranteed. Limited-memory BFGS (L-BFGS) is based on this updating formula,

but only stores recent information to construct the Hessian approximations, and

is therefore less computationally expensive. The L-BFGS algorithm uses the

curvature information from the m most recent iterations and, in our simulations,

we have m = 20 which is sufficient for our problem. We state the typical L-BFGS

algorithm below for clarity.

Choose starting point p0, integer m > 0;
k ← 0;
repeat

Choose initial matrix H0
k ;

Compute dk ← −Hk∇Fk;
Compute pk+1 ← pk + αkdk, where αk satisfies the strong Wolfe
conditions (4.2.3);
if k > m then

Discard the vector pair {sk−m, gk−m} from storage;
end
Compute and save sk ← pk+1 − pk, gk = ∇Fk+1 −∇Fk;
k = k + 1;

until convergence;
Algorithm 1: L-BFGS

Provided we have set a suitable initial guess, this algorithm runs until the termin-
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ation criterion ||∇F || ≤ 10−5 is satisfied.

4.2.2 Stability of solutions

Given the twice Fréchet differentiable energy functional F (p), found numerically

by the procedure described above, we denote its Hessian by G(p) = ∇2F (p). A

point p is called a critical point of F (p), if ||∇F (p)|| = 0 holds. A saddle point

of F (p) is any unstable critical point which is not a local extremum. As stated in

Morse theory, the index of a saddle point p is defined as the maximal dimension of

a subspace K, on which the operator G(p) is negative definite. Similarly to [64],

we can justify the stability of an obtained solution p by computing the smallest

eigenvalue, λ1, of Hessian matrix G(p) corresponding to p:

λ1 = min
v 6=0,v∈RD

〈G(p)v, v〉
〈v,v〉

, (4.2.8)

where 〈·, ·〉 is the standard inner product in RD. This optimization problem

corresponds to searching for index-1 saddle points numerically (see [66] for further

explanation on the numerical methodology of finding saddle point solutions). The

right-hand side of (4.2.8) is equivalent to taking general admissible perturbations

with respect to the five independent basis directions, and minimizing the second

variation of the discretized LdG energy, F (p), with respect to those perturbations

- a common approach to studying the stability of solutions in the calculus of

variations. If the smallest eigenvalue λ1 is positive, this indicates that the second

variation is positive for all admissible perturbations, and hence a solution is

(numerically) locally stable. Note that the optimization problem in (4.2.8) is

equivalent to minimizing 〈G(p)v,v〉, provided we impose the constraint 〈v,v〉 = 1.
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The associated Lagrangian function is then given by

L(v; ξ) = 〈G(p)v,v〉
〈v,v〉

− ξ(〈v,v〉 − 1),

where ξ is a Lagrangian multiplier. The dynamics of v is then given by the

equation

∂v
∂t

= −γ ∂

∂v
L(v; ξ) = −2γ

(
G(p)v
〈v,v〉

− ξv
)
, (4.2.9)

where γ > 0 is a relaxation parameter. Since we assume 〈v,v〉 = 1 always holds,

the dynamics in (4.2.9) should satisfy 〈v, ∂v
∂t
〉 = 0, which implies ξ = 〈G(p)v,v〉

〈v,v〉 ,

and hence we are left with the the following gradient flow equation for v:

∂v
∂t

= − 2γ
〈v, v〉

(
Gv− 〈Gv, v〉

〈v, v〉
v
)
. (4.2.10)

The key idea behind this method is that the dynamic solutions evolve along a path

of decreasing energy, and hence converge to a stable equilibrium over long times

[99]. In our code, we find the smallest eigenvalue of the Hessian matrix G(p),

by solving (4.2.10), and Gv = G(p)v is approximated by a central difference

formula:

G(p)v ≈ −∇DF (p + `v)−∇DF (p− `v)
2` ,

for some small constant `. The approximation error here is O(`). We can choose

γ to appropriately accelerate the convergence of the dynamic system (4.2.10) but

in our numerical simulations, we simply take γ = 1.

4.2.3 Initial guesses

It was shown in [64], that for λ large enough, there exist multiple stable states

within the two-dimensional setting. Therefore, a ‘close’ initial guess is important
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in achieving proper convergence in the 3D numerical procedure. The states we are

referring to are commonly called the diagonal and rotated configurations. These

are solutions described by Q-tensors of the form

Q = q
(
n⊗ n− I2

2

)
+ q3

(
ẑ⊗ ẑ− I3

3

)
, (4.2.11)

where n = (cos θ, sin θ, 0), and I2, I3 are the identity matrices in two and three

dimensions, respectively. Furthermore, q > 0, q3 < 0. What this means physically

is that, nematic molecules prefer to orient themselves perpendicular to the z-

direction i.e., molecules lie in the (x, y)-plane. In this chapter, we will frequently

refer to the two diagonal states as D1, D2, where the nematic director n roughly

aligns along one of the diagonals of Ω. We also refer to the four possible rotated

states as R1, . . . , R4, where θ rotates approximately π radians between a pair

of opposite edges. In our numerical simulations, when choosing an initial step

for the L-BFGS algorithm, we set Q = s+(n ⊗ n − 1
3I3), where our choice of n

determines the director profile. In order to simulate any of the diagonal/rotated

configurations in the domain, we choose the director as follows:
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Configuration Director n(x, y, z)

(D1) 1√
2(1, 1, 0)

(D2) 1√
2(−1, 1, 0)

(R1)



(0, 1, 0), x ≤ 0,

1√
2(1, 1, 0), x, y > 0,

1√
2(−1, 1, 0), x > 0, y ≤ 0,

(R2)



(1, 0, 0), y ≥ 0,

1√
2(1, 1, 0), x, y < 0,

1√
2(−1, 1, 0), x ≥ 0, y < 0,

(R3)



(0, 1, 0), x ≥ 0,

1√
2(1, 1, 0), x, y < 0,

1√
2(−1, 1, 0), x < 0, y ≥ 0,

(R4)



(1, 0, 0), y < 0,

1√
2(1, 1, 0), x, y ≥ 0,

1√
2(−1, 1, 0), x < 0, y ≥ 0.

We frequently refer to these initial choices (configurations in the table above)

when presenting the numerical results.

4.3 Numerical results

In this section, we present Q-tensor solutions which minimize the discretized LdG

energy described in the previous section. We choose different initial guesses for

a solution Q in the L-BFGS algorithm, and plot the results. We regularly plot
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the biaxiality parameter β2(Q) (defined in (1.4.11)), which takes values from

0 to 1, given by colours blue to red, respectively. We also plot the director n,

which is found by computing the eigenvector corresponding to the largest positive

eigenvalue of Q. Following [63] for the two-dimensional numerical study, we fix

the material constants in the LdG free energy to be typical values for the liquid

crystal MBBA, and choose A = −B2

3C where

B = 0.64× 104 Nm−2, C = 0.35× 104 Nm−2, L = 4× 10−11 N.

As expected from our analysis in Proposition 3.2.8, at this special temperature

we have q3 = − s+
6 = − B

6C everywhere. The two key dimensionless variables are

λ̄2 = 2Cλ2

L
, ε = h

λ
,

which describe the cross-sectional size and height of the well, respectively.

4.3.1 Strong anchoring on the lateral surfaces

In this section, we focus on nematic equilibria inside wells with strong anchoring

conditions on the lateral surfaces. More specifically, we find minimizers of the

LdG energy functional Fλ using the numerical scheme described above, subject to

infinite tangential Dirichlet conditions on ∂Ω×(0, ε). As described in the numerical

methods section, we mimic the strong anchoring condition by minimizing the

energy functional (4.1.3), with W = 10−2Jm−2 in (4.1.4). For the top and bottom

surfaces, we also take Wz = 10−2Jm−2 in (4.1.5), which is sufficient to mimic the

natural boundary condition on Γ from (3.2.2). We recall from Chapter 3, there

exist z-independent critical points of the Landau-de Gennes energy Fλ, subject to

natural boundary conditions on the top and bottom plates, indeed our numerical
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simulations throughout this section have |∂zQ|2 ≈ 10−12.

For sufficiently small values of λ̄2, we always get the WORS for arbitrary ε, in

accordance with the uniqueness results for small λ in Chapter 3. Since we run our

numerical simulations at the fixed temperature A = −B2

3C , the WORS corresponds

(see [62]) to a solution of the form

QWORS(x, y, z) = q1(x̂⊗ x̂− ŷ⊗ ŷ)− B

6C (2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ). (4.3.1)

We plot the WORS for λ̄2 = 5 and ε = 4 in Figure 4.1. This includes plots of (from

left to right): a 3D representation of the full solution; the biaxiality parameter;

the director profile; and the q1 and q2 components of the numerical solution Q

in (4.1.1). As expected, we see that q2 is close to zero throughout the domain.

Each 2D plot is taken from the middle slice of the full 3D solution (z = ε
2). Since

this solution is the global minimizer for λ̄2 = 5, the choice of initial guess in the

numerical procedure does not affect the final solution.

Figure 4.1: The 3D WORS with λ̄2 = 5 and ε = 4.

For relatively large values of λ̄2, we find the well-known diagonal and rotated

solutions. More specifically, the diagonal solutions exist for λ̄2 ≥ 6, and the rotated

solutions exist for λ̄2 ≥ 29, in our simulations. If we consider the dimensionless

parameters λ̄ and ε, as well as our choice of material-dependent parameters (based

on the typical values for the liquid crystal MBBA), diagonal solutions exist for
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wells with an edge-length on the order of 180nm, and rotated solutions exist for

wells with an edge-length on the order of 440nm. This is consistent with the

work by [52], where the authors report the WORS is observable for cells with

edge length λ ∼ 78− 138nm with respect to the bare biaxial correlation length.

Another liquid crystal such as 5CB would typically take values B = 2.1×106 Jm−3

and C = 1.7×106 Jm−3 (as in [96]), but this does not drastically change the order

of magnitude of our numerical findings with respect to molecular length scales. In

fact, as stated in [52], the size of well for which we would expect to see the WORS

does depend on temperature, with larger wells on the order of λ ∼ 240− 420nm

exhibiting the WORS for larger temperatures. In our simulations, we have simply

taken A = −B2

3C to complement our analysis in Chapter 3, and a further exploration

of different temperature regimes would be an exciting avenue for future research.

These z-invariant solutions were numerically reported in [60] in two dimensions,

and are stable configurations in our simulations, for arbitrary well height, ε. These

solutions are presented in Figures 4.2 and 4.3, respectively, where λ̄2 = 100 an

ε = 4. We obtain the diagonal solution by choosing the (D1) initial guess, and the

rotated solution by choosing the (R1) initial guess. In both figures we plot: 3D

representations of the numerical solution; the biaxiality parameter; the director

profile n; and the contributions from the q1, q2 scalar order parameters in (4.1.1).

At the special temperature regime A = −B2

3C we have q3 = − B
6C everywhere in

these numerical solutions, as expected from our analysis in Chapter 3. We may

find the other diagonal and rotated configurations but they are equivalent under

rotation about the z-axis, so we do not present these plots for brevity.



4.3. Numerical results 98

Figure 4.2: The 3D diagonal solution with λ̄2 = 100 and ε = 4.

Figure 4.3: The 3D rotated solution with λ̄2 = 100 and ε = 4.

Interestingly, for ε large enough, we observe locally stable solutions with mixed

diagonal profiles on the top and bottom plates. These are obtained by prescribing

the (D1) and (D2) initial conditions described earlier, on the top and bottom

surfaces of the domain, respectively. For example, we set Q = s+
(
n⊗ n− 1

3I3
)

with

n(x, y, z) =


1√
2(1, 1, 0), z ≥ ε

2

1√
2(1,−1, 0), z < ε

2 .

This leads to a 3D solution with two different diagonal profiles on the top and

bottom surfaces, with a mismatch at the centre of the well. In the middle slice,

the L-BFGS procedure converges to a BD-like profile (referring to the terminology

in [62]), where the corresponding Q-tensor is of the form

QBD = q1(x̂⊗ x̂− ŷ⊗ ŷ) + q3 (2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ) .
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The two-dimensional BD solution is characterized by uniaxial bands of q1 = 0

near a pair of parallel square edges. These q1 = 0 nodal lines form transition

layers between two distinct values of q1. At the special temperature A = −B2

3C , we

have q3 = − B
6C everywhere in the domain. We present these mixed 3D solutions

in Figures 4.4 and 4.5, for wells of height ε = 4, and where λ̄2 = 100 and

10, respectively. By computing the smallest eigenvalue of the Hessian matrix

corresponding to these solutions, we find that they are numerically stable. Indeed,

these solutions actually have a lower energy than the rotated solutions seen

in Figure 4.3, for the same size of domain. In both figures, we plot: a 3D

representation of the mixed solution; the biaxiality parameter; and the director

profile. We show five cross-sections in the (x, y)-plane to illustrate how the

profile changes in the z-direction. These cross-sections are at z = ε, 9ε
16 ,

ε
2 ,

7ε
16 , 0,

respectively. In Figure 4.4, we additionally present the q1 and q2 components

of the solution at the respective cross-sections. We see that q2 = 0 at z = ε
2 in

both of these mixed solutions - an indicator that the solution resembles the BD

profile described above. Numerical simulations show that these mixed profiles

cease to exist when λ̄2 or ε is too small. For example when λ̄2 = 100, we

cannot observe such solutions for ε ≤ 0.8. If we consider our choice of material-

dependent parameters, this would correspond to wells with λ ∼ 820 nm for roughly

h ≤ 330 nm. This does pose an interesting question, however - can wells of this

size be physically produced? As indicated by these numerical results, we may

only observe height invariant solutions for wells with sufficiently small height, and

we must consider wells with edge-length on the order of one hundred nanometers

for the WORS configuration to be numerically stable. This is a difficult system

to produce in practice however, as was discussed in [52], we may enhance the

stability of the WORS in larger domains if we consider higher temperatures, or



4.3. Numerical results 100

even polymeric liquid crystals with a larger molecular length. Whilst we do not

consider these regimes numerically, this would be a very interesting topic of future

research which would shed light on the possibility of observing these interesting

equilibrium configurations in practice.

Figure 4.4: A locally stable mixed diagonal solution for λ̄2 =
100 and ε = 4 with 2D cross-sections (from left to
right) at z = ε, z = 9ε

16 , z = ε
2 , z = 7ε

16 and z = 0,
respectively.
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Figure 4.5: A mixed diagonal solution for λ̄2 = 10 and ε = 4.
Colours given by the biaxiality parameter and the
director orientation is given by white lines. Cross-
sectional heights as in Figure 4.4.

We can generate more 3D configurations by mixing combinations of the 2 diagonal

and 4 rotated configurations on the top and bottom surfaces, but these are

unstable according to our numerics. We may even simulate a repeated twist in

the director profile in the domain by taking the (D1) initial condition in the top

and bottom thirds of the well, and the (D2) condition elsewhere. More specifically,

to take Q = s+
(
n⊗ n− 1

3I3
)
where

n(x, y, z) =



1√
2(1, 1, 0), z ≥ 2ε

3

1√
2(1,−1, 0), ε

3 ≤ z < 2ε
3

1√
2(1, 1, 0), z < ε

3 .

however, the L-BFGS procedure converges to a z-invariant diagonal solution, as

in Figure 4.2.

4.3.2 Weak anchoring on the lateral surfaces

In this section, we study the effect of weak anchoring conditions on the lateral

surfaces. Our main findings in this subsection are:
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• For a small enough anchoring strength coefficient, we lose the defect cross

structure of the WORS, and solutions approach a uniformly aligned nematic

director is preferred as we weaken the anchoring.

• The anchoring strength on the lateral surfaces has a stabilising effect on the

WORS, and this is corroborated by a bifurcation diagram as a function of

the cross-sectional size.

• We may tailor the defect pattern of the WORS by employing different

surface anchoring terms in the LdG free energy.

To begin, we minimize the LdG energy functional (4.1.3), where the strong an-

choring condition simulation on the top and bottom plates is preserved by taking

Wz = 10−2Jm−2 in (4.1.5). We vary the anchoring strength coefficient, W , in the

surface energy term (4.1.4), defined on ∂Ω× (0, ε). In Figures 4.6 – 4.8, we plot

numerical solutions for λ̄2 = 5 and ε = 0.2, with W = 2 × 10−3, 1 × 10−3 and

1 × 10−4Jm−2, respectively. As expected, Wz is sufficiently large to mimic the

natural boundary conditions on Γ from (3.2.2). Therefore, all of these numerical

solutions are z-invariant and thus, we present the 2D cross-sections from z = ε
2 .

For each solution, we plot: the biaxiality parameter described by (1.4.11); the dir-

ector profile, n; and the q1 and q2 components of the solution. We have q3 = − B
6C

throughout the well in each simulation. All three solutions are obtained by using

the (D1) initial condition. In the strong anchoring case (W = 10−2Jm−2), we get

the WORS as expected, since the WORS is the unique critical point when λ̄2 is

small enough. However, for W = 10−3Jm−2, we get a diagonal-like solution in

which maximal biaxiality is achieved around the corners of the well. By further de-

creasing the anchoring strength, the nematic director is almost uniformly aligned

along the diagonal direction. Similar results were reported in [52]. According to
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our numerical procedure, all three of these solutions are numerically stable.

Figure 4.6: A locally stable solution with λ̄2 = 5 and ε = 0.2 and
W = 2× 10−3Jm−2 in (4.1.4).

Figure 4.7: A locally stable solution with λ̄2 = 5 and ε = 0.2 and
W = 10−3Jm−2 in (4.1.4).

Figure 4.8: A locally stable solution with λ̄2 = 5 and ε = 0.2 and
W = 10−4Jm−2 in (4.1.4).

We see from Figures 4.6 – 4.8, that the numerical solution converges to a uniform

profile close to the initial guess, as the anchoring strength is weakened. By taking

different initial guesses in our code, we are able to find other, unstable states,

for W small enough. These solutions have q2 = 0 everywhere in the well but

exhibit different defect patterns. In Figure 4.9, we plot the numerical solution for

W = 10−4Jm−2, with λ̄2 = 5 and ε = 0.2, when an isotropic solution (Q = 0) was

chosen as the initial guess. For W small enough, we get a WORS-like solution

with strong biaxial regions near the lateral surfaces of the well. In Figure 4.10, we



4.3. Numerical results 104

plot the numerical solution for W = 8× 10−4Jm−2, also with λ̄2 = 5 and ε = 0.2,

where we take a uniform horizontal initial condition Q = s+
(
x̂⊗ x̂− 1

3I3
)
. For

W small enough, we get a BD-like solution with a pair of uniaxial bands across

two opposing sides of the well.

Figure 4.9: An unstable numerical solution with λ̄2 = 5 and
ε = 0.2 and W = 10−4Jm−2 given an isotropic initial
guess (Q = 0).

Figure 4.10: An unstable numerical solution with λ̄2 = 5 and
ε = 0.2 and W = 8 × 10−4Jm−2 given a uniform
horizontal initial guess.

For W = 10−3Jm−2, we can get the WORS by further decreasing λ̄2. However,

the WORS ceases to exist for W = 10−4Jm−2. Quantitatively, we can compute

bifurcation points λ̄2
∗, such that the WORS is the unique solution for λ̄2 < λ̄2

∗,

as a function of anchoring strength W , shown in Figure 4.11. We can find λ̄2
∗

by decreasing λ̄2 till diagonal-like (D1) initial conditions converge to the WORS,

since diagonal solutions cease to exist for λ̄2 < λ̄2
∗. The result in Figure 4.11 is

computed with ε = 0.2. However, this result is independent of ε, as both diagonal

and the WORS are z-invariant solutions for A = −B2

3C . By comparing with our

choice of values for L and C, we find that the WORS is the unique solution for
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wells with an edge-length, λ, of the order ∼ 60 nm with an anchoring strength

W = 5× 10−4 Jm2 and, as indicated by the blue dashed line in Figure 4.11, the

WORS is the unique solution for wells smaller than λ ∼ 190 nm with a Dirichlet

boundary condition in a 2D square domain.

10
-3

10
-2

10
-1

1

2

3

4

5

6

Figure 4.11: Bifurcation points λ̄∗, such that the WORS is the
unique solution for λ̄2 < λ̄2

∗, as a function of anchor-
ing strength W . The blue dashed line indicates the
bifurcation point of the WORS for Dirichlet bound-
ary condition in a 2D square domain (λ̄2 ≈ 6.4).

Another way to relax the surface anchoring is to consider the surface energy

fs(Q) = ω

(
α
(
Qx̂ · x̂− 2

3s+

)2
+ γ

∣∣∣ (I− x̂⊗ x̂) Qx̂
∣∣∣2) ; y = −1, 1;

fs(Q) = ω

(
α
(
Qŷ · ŷ− 2

3s+

)2
+ γ

∣∣∣ (I− ŷ⊗ ŷ) Qŷ
∣∣∣2) ; x = −1, 1;

(4.3.2)

where ω = Wλ
L

is the non-dimensionalized anchoring strength, and α > 0 and

γ > 0 are constants. We minimize the LdG energy (4.1.3) with surface energy
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terms (4.3.2) and (4.1.5). Here, we fix Wz = W = 10−2Jm−2, and vary the

constants α and γ. Note how the surface energy term (4.3.2) enforces a preferred

tangential boundary condition on the lateral surfaces of the domain. For example,

the condition on the planes y = −1, 1 in (4.3.2) favours Q-tensors with an x̂

eigenvector, with corresponding eigenvalue of 2
3s+. Furthermore, since the second

term in (4.3.2) can be zero if we take Q = s+
(
ẑ⊗ ẑ− 1

3I
)
, which also makes the

surface energy on the top and bottom plates (Γ) zero, we keep α non-zero to get

interesting defect patterns. In Figures 4.12 – 4.15, we show different configurations

in wells of size λ̄2 = 5, and height ε = 0.2, as we vary both α and γ. For each

of the four solutions, we use the (D1) configuration as the initial guess, and they

are locally stable according to our numerical check. In Figure 4.12, we choose

α = γ = 1. We obtain a WORS-like solution with strong biaxial regions near the

corners of the square cross-section, and q2 approximately zero everywhere. As we

reduce α in Figure 4.13, these biaxial regions extend to the edges of the square,

and therefore the lateral surfaces of the well, whilst the distinctive uniaxial cross

of the WORS is maintained. If we fix α and reduce γ, as presented in Figures 4.14

and 4.15, we see the nematic director (the leading eigenvector of the Q-tensor) is

no longer tangent to the square edges and the WORS ceases to exist - indicated

by non-zero q2. In each plot, we show the middle slice (z = ε
2) of the well, showing

the biaxiality parameter, the nematic director profile, q1 and q2. In all of these

solutions, we have q3 = − B
6C everywhere in the domain. These examples show

that the WORS ceases to exist if the anchoring on the lateral surfaces is weak

enough, and we always get a diagonal-like solution when the WORS ceases to

exist (the non-diagonal solutions like in Figures 4.9 and 4.10 are unstable). It

should be remarked that the diagonal-like solutions tend to be defect-free around

the corners with weak anchoring, as the nematic directors aren’t forced to be
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tangential to the square edges, and there is no biaxial-uniaxial or biaxial-isotropic

interface near the corners.

Figure 4.12: The stable WORS-like solution with λ̄2 = 5, ε = 0.2
and α = γ = 1 in (4.3.2).

Figure 4.13: A locally stable numerical solution with λ̄2 = 5,
ε = 0.2 and α = 0.1, γ = 1 in (4.3.2).

Figure 4.14: A locally stable numerical solution with λ̄2 = 5,
ε = 0.2 and α = 1, γ = 0.2 in (4.3.2).

Figure 4.15: A locally stable numerical solution with λ̄2 = 5,
ε = 0.2 and α = 1, γ = 0.1 in (4.3.2).
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4.3.3 Escaped solutions

In this subsection, we show that:

• By weakening the anchoring strength on the top and bottom surfaces of the

well, we may observe two stable configurations with a non-zero z-component,

which exhibit a ±1-disclination line along the z-axis.

• These out-of-plane configurations cease to exist if either the well height, ε,

is small enough or if the anchoring on the top and bottom plates, Wz, is

large enough.

The numerical simulations so far have only presented solutions (4.1.1) that have

q4 = q5 = 0, along with q3 < 0. This implies that solutions lie in the (x, y)-

plane and do not ‘escape’ to the z-direction. In [63], the authors show that

there exists two escaped solutions with non-zero q4 and q5, and q3 > 0, in the

reduced 2D square domain, for relatively large λ̄2. Our simulations show that

these two escaped solutions can exist in 3D wells, for similar values of λ̄2, if the

anchoring strength on the top and bottom plates is weak enough. We find that

these escaped solutions are locally stable according to our numerical check. As

done previously in this chapter, we minimize the LdG energy functional (4.1.3)

with surface energy terms (4.1.4) on ∂Ω × (0, ε), and (4.1.5) on Γ. We mimic

strong anchoring conditions on the lateral surfaces by taking W = 10−2Jm−2 in

(4.1.4). In this section, we weaken the anchoring on the top and bottom plates to

see if escaped solutions can exist in 3D. To this end, we take Wz = 10−5Jm−2 in

(4.1.5).

Both of the stable escaped configurations that we present are taken with λ̄2 = 100,

and ε = 4. We see that both are quite similar to the escaped configurations in a
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cylindrical cavity [100]. In both figures, we plot a 3D representation of the solution

by plotting both the biaxiality parameter (1.4.11), and the nematic director profile.

In the remaining plots, we take the middle 2D slice (z = ε
2) of the domain. As

well as the biaxiality parameter and director profile, we plot all five of the scalar

order components of the Q-tensor solution in (4.1.1). We see that q3 > 0 in the

centre of the well. In Figure 4.16, we present an escaped configuration with a

−1-disclination line in the centre of the well along the z-axis and, in Figure 4.17,

we present an escaped configuration with a +1-disclination line in the centre of

the well. We see that the escaped solutions in Figures 4.16 and 4.17 cease to

Figure 4.16: Escaped configuration with −1-disclination line in
the center of the well where λ̄2 = 100, ε = 4 and
Wz = 10−5Jm−2 in (4.1.5).

exist if either, ε is small enough, or if the anchoring Wz is large enough. We can

compute the critical anchoring strength, Wz, on the top and bottom plates, for

which the escaped configurations cease to exist, as a function of ε, for λ̄2 = 100,

and this is shown in Figure 4.18. Comparing with our choice of values for L and

C, we can see that the escaped configurations lose (numerical) stability for an

anchoring strength, Wz, of 10−6 Jm−2 for wells with a height, h, of ∼ 80 nm, and
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Figure 4.17: Escaped configuration with +1-disclination line in
the center of the well where λ̄2 = 100, ε = 4 and
Wz = 10−5Jm−2 in (4.1.5).

7× 10−5 Jm−2 for wells with a height of ∼ 3µm.
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Figure 4.18: Critical anchoring strengthWz, in (4.1.5), for which
the escaped configurations lose stability as a func-
tion of ε.
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4.3.4 Simulations in a rectangular domain

In this section, we build upon the analytical and numerical study of nematic

equilibrium solutions in three-dimensional square wells, by extending our numer-

ical search for 3D rectangular wells. To this end, we consider minimizers of the

rescaled LdG energy functional, Fλ, in the 3D domain V = Ω× (0, ε). However,

we take the 2D cross-section of the well to be

Ω := {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ δ},

where δ > 0 represents the geometric anisotropy of the cross-sectional domain,

and measures the ratio of the side lengths of the rectangle. All other parts of

the computational model remain unchanged however, the y-coordinate should

be thought of with respect to the rescaling ȳ := δy e.g., in the definition of the

surface energies (4.1.4). Clearly, when δ = 1, we recover the square cross-sectional

domain as shown earlier in this chapter. We avoid values of the aspect ratio

0 < δ < 1, since the solutions are equivalent, up to a rotation of 90◦ about the

z-axis, to those solutions with aspect ratio 1
δ
. However it must be noted, that

due to choice of boundary conditions on q1, the sign of q1 is reversed by taking

the aspect ratio 1
δ
, instead of δ. This is essentially because transition lines for q1,

that separate the two distinct values on the boundary, traverse either the short,

or long edges of the rectangle, and so it is dependent on whether the rectangle is

‘portrait’ or ‘landscape’. All other solutions such as the biaxiality parameter, the

director profile, and q2 remain unchanged. In this section, we show:

• For δ 6= 1, we lose the defect cross-structure of the WORS, and the globally

minimizing solution corresponds to the 3D sBD2 profile (referring to the

terminology in [69]), with two bands of uniaxiality across each of the shorter
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rectangle edges.

• The geometrical anisotropy has a stabilising effect on the sBD2 profile and

lower energy rotated states, shown by a complete bifurcation diagram for

the various profiles, as a function of δ.

• The height of the well, and the geometric anisotropy, also have a stabilising

effect on mixed configurations which interpolate between diagonal and ro-

tated profiles. Novel mixed solutions, with mixed rotated cross-sectional

profiles, exist for δ and ε large enough.

Similarly to the numerical simulations on 3D square wells, we consider Q-tensors

of the form (4.1.1) that minimize the LdG energy functional (4.1.3), subject to

surface anchoring conditions which mimic strong tangential boundary conditions

(W = Wz = 10−2Jm−2 in (4.1.4) and (4.1.5)). The parameters A,B,C and L

remain at their fixed values, and we vary the key dimensionless parameters for the

size and height of the well: λ̄ and ε, respectively. In these figures, we present a

3D representation of the solution, as well as the biaxiality parameter (1.4.11), the

nematic director profile, and the q1 and q2 components of the Q-tensor solution.

We recall that the director profile is given by the eigenvector corresponding to the

largest eigenvalue of the numerical solution. All of these solutions exhibit almost

zero z-component (indeed in our simulations we have |∂zQ|2 ∼ 10−12), which is

expected given such strong anchoring, Wz, on the top and bottom surfaces, Γ. At

the special temperature, A = −B2

3C , we have q3 = − B
6C everywhere in the domain.

For λ̄2 large enough, there exist multiple stable states within the two-dimensional

setting. These states are similar in nature to that of a square well, however

the geometrical anisotropy of the rectangular well does lead to some differences.

As mentioned previously, the diagonal and rotated configurations are solutions
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described by Q-tensors of the form (4.2.11). The two diagonal (D1 and D2) states

are distinguished by the nematic director, n = (cos θ, sin θ, 0), which roughly

aligns along one of the diagonals of Ω. The main difference involves the four

possible rotated states. These states prescribe the director angle, θ, to rotate

approximately π radians between a pair of opposite edges, as in the square case.

However, in a rectangular geometry, two of the rotated states (which we will refer

to as R1 and R2) involve a director rotation about the shorter opposing sides,

meanwhile the remaining two rotated states (which we refer to as U1 and U2)

correspond to higher energy states, and involve a director rotation across the two

longer opposing sides [68]. We plot illustrations of the typical director formation

of these states in Figure 4.19.

Figure 4.19: Director orientations for the D, R and U states in
a rectangular domain.

As before, when choosing an initial step for the L-BFGS algorithm, we set Q =

s+(n⊗ n− 1
3I3), where our choice of n determines the solution profile. The (D1)

and (D2) initial configurations remain unchanged in the rectangular geometry,

and are sufficient at finding diagonal solutions. In order to simulate any of the

rotated R and U configurations in the domain, we choose the director as follows:
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(R1)



(0, 1, 0), x ≤ 0,

1√
2(1, 1, 0), x, y > 0,

1√
2(−1, 1, 0), x > 0, y ≤ 0,

(R2)



(0, 1, 0), x ≥ 0,

1√
2(1, 1, 0), x, y < 0,

1√
2(−1, 1, 0), x < 0, y ≥ 0,

(U1)



(1, 0, 0), y ≥ 0,

1√
2(1, 1, 0), x, y < 0,

1√
2(−1, 1, 0), x ≥ 0, y < 0,

(U2)



(1, 0, 0), y < 0,

1√
2(1, 1, 0), x, y ≥ 0,

1√
2(−1, 1, 0), x < 0, y ≥ 0.

For relatively large λ̄2, we find the 6 possible diagonal and rotated states, for

arbitrary ε. However, in our numerical simulations, we can only find the higher

energy U1 and U2 rotated states for δ ≤ 1.5. In Figures 4.20 – 4.22, we plot

three-dimensional solutions for λ̄2 = 100, ε = 4 and δ = 1.45, where the 2D cross-

sections are taken from the middle slice (z = ε
2). In Figure 4.20, we plot a diagonal

solution, where the (D1) initial guess was taken in the numerical procedure. We

plot a lower energy rotated state in Figure 4.21, where the (R1) initial guess was

chosen, and a higher energy rotated state in Figure 4.22, given the (U1) condition.

Figure 4.20: A 3D diagonal (D) solution in a rectangle with δ =
1.45, λ̄2 = 100 and ε = 4.



4.3. Numerical results 115

Figure 4.21: A 3D lower energy rotated (R) solution in a rect-
angle with δ = 1.45, λ̄2 = 100 and ε = 4.

Figure 4.22: A 3D higher energy rotated (U) state in a rectangle
with δ = 1.45, λ̄2 = 100 and ε = 4.

For sufficiently small λ̄2, we obtain a solution with nodal lines along the shorter

rectangular edges. This solution matches the description of the limiting profile in

a two-dimensional framework, described as the sBD2 solution in [69] where, at

the special temperature A = −B2

3C , the corresponding Q-tensor is of the form

QsBD2 = q1(x̂⊗ x̂− ŷ⊗ ŷ)− B

6C (2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ) .

This two-dimensional solution is characterized by nodal q1 = 0 lines of uniaxiality.

These lines form transition layers between two distinct values of q1. In Figure 4.23,

we plot this solution profile in three dimensions, for λ̄2 = 5, δ = 1.45 and ε = 4.

This profile is characterised by an approximately zero q2-component, everywhere

in the domain.

We know that for δ = 1, the WORS is the unique global minimizer, for λ̄2 small

enough. Similarly, for any δ > 1, we can get the sBD2 solution for λ̄2 small
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Figure 4.23: The 3D sBD2 state with δ = 1.45, λ̄2 = 5 and ε = 4.

enough. For example, when δ = 2, the sBD2 solution ceases to exist for λ̄2 ≥ 13.

Comparing with our choice of values for L and C, we see that wells of this size

would correspond to dimensions 270× 550 nm2. Quantitatively, we can compute

bifurcation points λ̄2
c , such that the sBD2 is the unique solution for λ̄2 < λ̄2

c , as a

function of the geometric anisotropy δ, shown by the red markers in Figure 4.24.

We can find λ̄2
c by decreasing λ̄2 till diagonal-like (D1) initial conditions converge

to the sBD2, since diagonal solutions cease to exist for λ̄2 < λ̄2
c . This is difficult to

see numerically, but we may justify the loss of stability of the sBD2 by a sudden

increase in the q2-component of the numerical solution. For clarity, we take λ̄2
c to

be the smallest well size, λ̄2, such that

max
(x,y)∈Ω

q2(x, y) > 0.01.

Furthermore, we observe an interesting interplay between the appearance of the

rotated states, and the geometric anisotropy δ. By choosing appropriate initial

conditions, we find both the R rotated states (for any δ), and the U rotated

states (for δ ≤ 1.5), provided λ̄2 is sufficiently large. If λ̄2 is too small, then

the numerical procedure converges to a diagonal state. To visualize this, we

can compute bifurcation points such that the rotated states lose their stability,

as a function of δ. The blue markers in Figure 4.25 present the critical well

size, λ̄2
c , such that the R rotated states lose their stability. The green markers
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Figure 4.24: Bifurcation points λ̄2
c , such that the sBD2 is the

unique solution for λ̄2 < λ̄2
c , as a function of δ.

in Figure 4.25 present the critical well size, λ̄2
c , such that the higher energy U

rotated states lose their stability. Figure 4.25 also includes the bifurcation points

from Figure 4.24, for comparison. The results in these figures are computed with

ε = 0.2. However, this is independent of ε, since the diagonal, rotated and the

sBD2 solutions are z-invariant for A = −B2

3C .
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Figure 4.25: Bifurcation points λ̄2
c , such that the rotated states

lose their stability for λ̄2 < λ̄2
c , as a function of

geometric anisotropy δ. Blue markers for the R
states and green markers for the U states. For δ >
1.5 we cannot obtain the U rotated states in our
numerical simulations. We include the bifurcation
points from Figure 4.24, shown by the red markers.

In the case δ = 1, for ε large enough, we find (numerically) locally stable mixed

3D solutions consisting of two distinct diagonal profiles on the top and bottom

surfaces of the well. These solutions exhibit a BD-type solution in the middle

cross-section of the domain. We now study the effect that geometric anisotropy

has on the stability of mixed 3D solutions. Similarly to when δ = 1, we find a

locally stable mixed diagonal solution, with an sBD2-type profile in the middle

cross-section of the domain, for any δ > 1, if ε is large enough. For example, if
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we take δ = 1.5 then we find mixed diagonal solutions for ε ≥ 1.1. This mixed

solution can be obtained by taking a mixed initial condition Q = s+(n⊗n− 1
3I3)

with

n(x, y, z) =


(D1), z ≥ ε

2

(D2), z < ε
2 .

(4.3.3)

In Figure 4.26, we plot a mixed 3D diagonal solution, for λ̄2 = 100, δ = 1.45

and ε = 4. We present the solution as a 3D representation, taking three 2D

cross-sections at z = ε, ε2 , 0. We also show: the biaxiality parameter; the director

profile; q1; and q2 at (from left to right) z = ε, 9ε
16 ,

ε
2 ,

7ε
16 , 0.

Interestingly, for δ and ε large enough, we find another mixed 3D solution. This

solution consists of two distinct (R1 and R2) rotated configurations on the top

and bottom surfaces, with an sBD2-type profile in the middle cross-section of the

domain. These solutions are locally stable according to our numerical simulations.

In Figure 4.27, we plot a mixed 3D rotated solution, for λ̄2 = 100, δ = 1.45 and

ε = 4. This mixed solution can be obtained by taking a mixed initial condition

Q = s+(n⊗ n− 1
3I3), with

n(x, y, z) =


(R1), z ≥ ε

2 ,

(R2), z < ε
2 .

(4.3.4)

For ε = 4, mixed rotated solutions lose their stability if δ < 1.4. In both mixed

solutions, we see that q3 = − B
6C throughout the domain and q2 = 0 in the middle

cross-section of the well - a distinctive feature of the sBD2 profile.
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Figure 4.26: A locally stable mixed 3D diagonal solution in a
rectangle with λ̄2 = 100, ε = 4 and δ = 1.45. Cross-
sectional heights as in Figure 4.4.
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Figure 4.27: A locally stable mixed 3D rotated (R1 and R2)
solution in a rectangle with λ̄2 = 100, ε = 4 and
δ = 1.45. Cross-sectional heights as in Figure 4.4.
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For δ and ε large enough, we find other mixed combinations, such as the mixed

D and R configuration. This solution, presented in Figure 4.28, consists of two

distinct nematic profiles on the top and bottom plates. On the top surface of

the well, we have a diagonal D1 state, while on the bottom surface, we have a

rotated R2 state. This particular simulation was obtained by taking the (D1) and

(R2) initial configurations in the top and bottom halves of the well, respectively.

This mixed solution exhibits a different type of profile in the interior of the well,

but not at the middle slice (z = ε
2). This profile involves one nodal q1 = 0

line across a short edge of the rectangle, which separates two distinct values of

q1. In Figure 4.28, we present the mixed diagonal and rotated solution by a 3D

representation, with 2D cross-sections at z = 4, 1.53, and 0. We also plot: the

biaxiality parameter; the director profile; q1; and q2 at the (asymmetric) cross-

sectional heights z = 4, 1.8, 1.53, 1.26, 0. We only observe solutions of this type if

ε and δ are large enough.

Indeed, all of these mixed 3D configurations exhibit some dependence on ε and δ.

In Figure 4.29, we plot the critical well-height, ε∗, such that for ε < ε∗, the mixed

solutions lose their stability, as a function of δ. We see that we can only find the

mixed rotated solutions, as in Figure 4.27, for δ ≥ 1.3, and mixed diagonal and

rotated solutions, as in Figure 4.28, for δ ≥ 1.9. These findings are in accordance

with the numerical study of mixed solutions for δ = 1, in Section 4.3.1.
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Figure 4.28: A mixed 3D diagonal (D) and rotated (R) solu-
tion in a rectangle with λ̄2 = 100, ε = 4 and
δ = 2.1. 2D cross-sections (from left to right) at
z = 4, 1.8, 1.53, 1.26, 0.
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Figure 4.29: Bifurcation points ε∗, such that the mixed solutions
lose their stability for ε < ε∗, as a function of δ. The
red markers indicate the critical well heights for the
mixed diagonal solutions, the blue markers for the
mixed rotated solutions, and the green markers for
the mixed diagonal and rotated solutions.
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4.4 Summary

In this chapter, we have employed an energy minimization based numerical scheme

to simulate nematic equilibria, in three-dimensional confinement. In order to

complement the analysis of three-dimensional nematic equilibria in Chapter 3,

we have computed local minimizers of the LdG free energy in the absence of

external fields, in square wells of finite height. We imposed strong anchoring

conditions on the lateral surfaces, as well as surface energies on the top and

bottom surfaces with a large anchoring coefficient. We have also numerically

studied the stability of these solutions, by solving the dynamic equation of a

Rayleigh quotient corresponding to the Hessian of the computational solution.

This essentially determines the sign of the smallest eigenvalue of the Hessian,

which is sufficient at verifying (at least numerically) locally stable configurations.

We have presented solutions in a square with either a diagonal or rotated profile

in the (x, y)-plane for λ large enough, or the 3D WORS for λ small enough, for

arbitrary well height, as predicted by the analysis of LdG minimizers. We also

numerically demonstrated the existence of stable mixed 3D solutions with two

different diagonal profiles on the top and bottom well surfaces, for wells with

sufficiently large ε and λ. These are again interesting from an applications point

of view, and are 3D solutions that are not covered by a purely 2D study. It is

interesting to see that whilst the BD solution is an unstable LdG critical point on

a 2D square domain, it interpolates between the two distinct diagonal profiles for

a stable mixed 3D solution. This was then followed by a numerical investigation

of the effect of surface anchoring on the WORS, exemplifying the relevance of this

solution in a 3D context. We showed that the WORS loses its stability, at smaller

values of well-size, as the anchoring strength on the lateral surfaces is reduced, and
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that the numerical procedure will converge to a uniform configuration, if anchoring

is weak enough. We completed our numerical investigation on square wells by

reporting two novel escaped configurations, given a weak anchoring condition on

the top and bottom surfaces of the well. These escaped configurations exhibit

±1-disclination lines in the centre of the well, along the z-axis, and are stable for

ε large enough and Wz small enough. Furthermore, the anchoring, Wz, required

to find these stable escaped solutions, must decrease as we lower the height of the

well.

We have extended our numerical investigation to three-dimensional rectangular

wells. We considered minimizers of the LdG free energy, and the effects of the

geometric anisotropy δ, λ and ε, on the stability of equilibrium configurations

in this 3D geometry. We showed that for large enough λ, we can find diagonal

and rotated states. However, the higher energy rotated (U) states may only be

found for δ small enough. For λ small enough, we always find the sBD2 limiting

profile in three dimensions, for arbitrary ε. For λ less than some critical value, the

diagonal and rotated states cease to exist. However, as δ increases, the U states

are increasingly hard to find, and the R states become easier to find. We present

a bifurcation diagram which demonstrates how these critical values of λ change,

as a function of δ, for the D, R and U states. Interestingly, δ has a stabilising

effect on the appearance of mixed solutions. For δ and ε large enough, we find

stable mixed 3D solutions not previously found in 3D square wells, such as mixed

combinations of the D1, D2, R1, and R2 states on the top and bottom surfaces.

This is different from the 3D square wells as only mixed diagonal solutions were

found to be stable, for ε large enough. We complement this with bifurcation

diagrams for the mixed configurations, which illustrate the stabilising effect of δ

and the well height.



Chapter 5

Elastic anisotropy in a 2D square

domain

In [60], the authors experimentally and numerically study NLCs inside periodic

arrays of 3D wells, with a square cross-section, such that the well height is

typically much smaller than the square cross-sectional length. In other words, the

authors speculate that the structural characteristics only vary in the plane of the

square cross-section, and are translationally invariant along the height of the well,

effectively reducing this to a two-dimensional (2D) problem. Hence, the authors

restrict attention to the bottom square cross-section of the well geometry, where

the square edge length is denoted by λ, and typically on the micron scale. The

authors impose tangent boundary conditions (TBCs) on the well surfaces i.e., the

nematic directors, in the plane of the well surfaces, are constrained to be tangent

to those well surfaces. As we explained in Chapter 3, the authors observe two

classes of stable NLC states in this geometry: the diagonal (D) states, for which

the nematic director aligns along one of the square diagonals; and the rotated

(R) states, for which the director rotates by π radians between a pair of opposite
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square edges. The typical nematic director profile for these states is shown in

Figure 2.2. In [52], [61], the authors model this square system within the 2D LdG

framework, where the elastic energy is an isotropic elastic energy - the Dirichlet

elastic energy. In this chapter, we study the same problem of NLCs on a 2D

square domain, with Dirichlet TBCs on the square edges, but with a two-term

anisotropic elastic energy as opposed to the isotropic energy.

We model the degree of elastic anisotropy by the anisotropy parameter, L2. We

prove that, for λ small enough, there exists a unique global minimizer of the

revised LdG energy, for all values of L2. We show that with the addition of elastic

anisotropy to our model, the solution landscape is more complex, and the unique

global minimizer corresponds to either: (i) the ‘Ring’ solution with a +1-defect

at the square centre, for L2 small enough or; (ii) a ‘Constant’ solution, for L2

large enough, which is constantly uniaxial with negative scalar order parameter

away from the edges of the square. This corresponds to a NLC system which

is uniformly aligned in the direction of the well height. We then categorise the

symmetries of these solutions in the λ→ 0 limit. We show that critical points of

the Landau-de Gennes energy are stable, for L2 larger than some critical threshold

that depends on λ. This analysis is then complemented by numerical simulations

and several bifurcation diagrams as a function of λ, for different values of L2.

5.1 Model formulation

As we described in Chapter 1, the LdG Q-tensor (1.4.1) describes the nematic

state of order. The eigenvectors of Q represent the averaged directions of preferred

molecular alignment, and the corresponding eigenvalues measure the degree of

order about these eigen-directions. In this chapter, we assume a 2D confining
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geometry, Ω ⊂ R2, in the context of modelling thin 3D systems. Consider a 3D

well, such as

B =
{

(x, y, z) ∈ R3 : (x, y) ∈ Ω, z ∈ (0, h)
}
,

where h� λ, and λ is a characteristic length scale associated with Ω e.g., edge

length of a regular 2D polygon. In this limit, one can assume (at least for modelling

purposes) that physically relevant Q-tensors are independent of the z-coordinate

i.e., the profiles are invariant across the height of the well, and that ẑ is a fixed

eigenvector (see [70] and [71] for some rigorous analysis and justification). This

implies that we can restrict ourselves to Q-tensors with three degrees of freedom

(see (3.2.16)). For clarity, we consider

Q = q1(x, y)(x̂⊗ x̂− ŷ⊗ ŷ) + q2(x, y)(x̂⊗ ŷ + ŷ⊗ x̂)

+q3(x, y)(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ), (5.1.1)

where x̂, ŷ and ẑ are unit vectors in the x-, y- and z-axis, respectively. The

degree of nematic order in the plane is captured by the scalar functions q1, and

q2, whereas q3 measures the out-of-plane order, such that positive (negative) q3

implies that the nematic director lies out of the plane (in the plane) of the square,

respectively. The TBCs will naturally constrain q3 to be negative on the square

edges, but q3 could be positive in the interior, away from the square edges, for

energetic reasons.

In the absence of a surface anchoring energy and external electric/magnetic fields,

the LdG free energy is given by

F [Q] :=
∫

Ω
fel(Q,∇Q) + fb(Q) dA,

where fel and fb are the elastic and thermotropic bulk energy densities, respectively.

We define our thermotropic energy density by (1.4.6), just as we did in the
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preceding analysis, in Chapter 3. For clarity, we take

fb(Q) = A

2 trQ2 − B

3 trQ3 + C

4 (trQ2)2,

where A encodes the temperature of the system, and B,C > 0 are material-

dependent constants. We work with low temperatures, A < 0, for which fb is

minimized by a continuum of uniaxial states of the form (1.4.7). In this model

problem, we consider a two-term elastic energy density given by

fel(Q) = L

2
(
|∇Q|2 + L2(div Q)2

)
,

where L > 0 is an elastic constant, and L2 ∈ (−1,∞) is the “elastic anisotropy”

parameter. In terms of notation, we use |∇Q|2 := Qij,kQij,k, and (div Q)2 :=

Qij,jQik,k, for i, j, k = 1, 2, 3, where the Einstein summation convention is assumed

and Qij,k = ∂Qij
∂xk

. Since we assume a 2D confining geometry, Ω, we have that

Qij,3 = 0, for all 1 ≤ i, j ≤ 3. Comparing the Q-tensor elastic constants above

with the Frank elastic constants described in (1.3.2), we see that L ∝ K2 and

L2 ∝ K1−K2
K2

, where K1 = K3 (see [19]). This implies that, for our choice of elastic

energy density, splay and bend deformations of the nematic director (see Figure

1.9) are energetically expensive compared to out-of-plane twist deformations, for

L2 positive i.e., we would expect the physically observable states to have positive

q3 in the square interior, as L2 increases. Therefore, we would expect to see

competing effects between the TBCs on the square edges, and the preferred out-

of-plane director orientation in the square interior, for larger values of L2. We may

consider the measured Frank elastic constants for real liquid crystals given in the

table below and, utilizing the relation to the elastic constants in the Landau-de

Gennes free energy in [19], estimate real values for the elastic anisotropy L2.
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PAA at 120◦C [9] MBBA at 25◦C [13]

K1 5× 10−12 N 6× 10−12 N

K2 3.8× 10−12 N 3.8× 10−12 N

L2 ∼ 0.6 ∼ 1.2

We non-dimensionalize the system using a change of variables, x̄ = x
λ
, where λ is

the characteristic edge length of Ω. The rescaled LdG energy functional (up to a

multiplicative constant) is given by:

Fλ[Q] := F [Q]
Lλ

=
∫

Ω̄

{
1
2 |∇x̄Q|2 + L2

2 (div x̄Q)2 + λ2

L
fb(Q)

}
dA, (5.1.2)

where differentiation is with respect to the new rescaled coordinates, Ω̄ is the

rescaled domain in R2, and dA is the rescaled area element. We drop the ‘bars’

in the rest of this chapter, but all computations should be interpreted in terms of

the rescaled variables.

Next, we define the working domain and Dirichlet boundary conditions for this

model problem, although we believe that our methods can be generalised to

arbitrary 2D domains and other types of Dirichlet conditions. We focus on square

domains, building on the substantial work in [88], [62], [63], and following the

same approach as the one taken in Chapter 3. We impose Dirichlet tangent

boundary conditions on the square edges, which require the nematic director to

be tangent to the edges, necessarily creating a mismatch at the square vertices.

To avoid the discontinuities at the vertices, we take Ω ⊂ R2 to be a truncated

unit square, whose edges are parallel to the coordinate axes:

Ω := {(x, y) ∈ R2 : |x| < 1, |y| < 1, |x+ y| < 2− η, |x− y| < 2− η}.

Provided η << 1, the truncation does not change the qualitative properties of the
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Figure 5.1: The truncated unit square, Ω ⊂ R2.

LdG energy minimizers, away from the square vertices. The boundary, ∂Ω, has

four “long” edges, parallel to the coordinate axes, which we define in a clockwise

fashion as C1, . . . , C4, where C1 lies parallel to the x-axis at y = 1. The truncation

creates four additional “short” edges of length
√

2η, parallel to the lines y = x

and y = −x, which we label as S1, . . . , S4 in a clockwise fashion, starting at the

top-left corner of the domain. The domain is illustrated in Figure 5.1.

We impose tangent uniaxial Dirichlet conditions on the long edges, consistent

with the experimentally and numerically investigated TBCs in [60], [61] and [52].

In particular, we fix the director to be n = (±1, 0) on the edges, C1 and C3,

and n = (0,±1) on C2 and C4. From a physical standpoint, this constitutes

strong (infinite) anchoring on the long edges. One could also model a weak (finite)

anchoring condition with an additional surface energy in the LdG free energy [19],

but that would make the analysis more complicated for the time being. We set

Q = Qb on ∂Ω, (5.1.3)
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where

Qb(x, y) :=


s+
(
x̂⊗ x̂− 1

3I
)
, (x, y) ∈ C1 ∪ C3,

s+
(
ŷ⊗ ŷ− 1

3I
)
, (x, y) ∈ C2 ∪ C4,

(5.1.4)

where I is the identity matrix in 3 dimensions. In particular, Qb minimizes the

thermotropic bulk potential on C1, . . . , C4. On the short edges, S1, . . . , S4, we

effectively prescribe a continuous interpolation between the boundary conditions

on the associated long edges (5.1.4), given by:

Qb(x, y) :=



g(x+ y)(x̂⊗ x̂− ŷ⊗ ŷ)− s+
2

(
ẑ⊗ ẑ− 1

3I
)
, (x, y) ∈ S1,

g(y − x)(x̂⊗ x̂− ŷ⊗ ŷ)− s+
2

(
ẑ⊗ ẑ− 1

3I
)
, (x, y) ∈ S2,

g(−x− y)(x̂⊗ x̂− ŷ⊗ ŷ)− s+
2

(
ẑ⊗ ẑ− 1

3I
)
, (x, y) ∈ S3,

g(x− y)(x̂⊗ x̂− ŷ⊗ ŷ)− s+
2

(
ẑ⊗ ẑ− 1

3I
)
, (x, y) ∈ S4,

(5.1.5)

where g : [−η, η]→ [− s+
2 ,

s+
2 ] is a smoothing function, defined as

g(υ) = s+

2η υ, −η ≤ υ ≤ η.

Although the boundary conditions (5.1.5) do not minimize fb on S1, . . . , S4, and

do not respect TBCs, they are short by construction and are chosen purely for

mathematical convenience. Given the Dirichlet boundary conditions (5.1.4) and

(5.1.5), we define our admissible space to be

A := {Q ∈ W 1,2(Ω;S0) : Q = Qb on ∂Ω}, (5.1.6)

where we recall S0 is the space of traceless symmetric 3× 3 matrices. The energy

minimizers, indeed any critical point of the LdG energy (5.1.2), are solutions of
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the associated Euler-Lagrange equations:

∆Qij+
L2

2

(
Qik,kj +Qjk,ki −

2
3δijQkl,kl

)
= λ2

L

{
AQij −B

(
QikQkj −

1
3δijtrQ

2
)

+ CQijtrQ2
}
,

(5.1.7)

which comprise a system of up to five nonlinear, coupled partial differential equa-

tions. The terms 2
3Qkl,kl, and 1

3trQ2, are simply Lagrange multipliers associated

with the tracelessness constraint. Given that we restrict ourselves to studying

Q-tensors of the form (5.1.1), the Euler-Lagrange equations (5.1.7), and the TBCs

(5.1.3), reduce to the following system of PDEs, and constraints, on the scalar

functions q1, q2, q3:

(
1 + L2

2

)
∆q1+L2

2 (q3,yy − q3,xx)

= λ2

L
q1(A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)), (5.1.8)(
1 + L2

2

)
∆q2−L2q3,xy

= λ2

L
q2(A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)), (5.1.9)(
1 + L2

6

)
∆q3+L2

6 (q1,yy − q1,xx − 2q2,xy)

= λ2

L
q3(A−Bq3 + 2C(q2

1 + q2
2 + 3q2

3)) + λ2B

3L (q2
1 + q2

2),

(5.1.10)
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subject to the boundary conditions

q1(x, y) = qb(x, y) =



s+
2 , (x, y) ∈ C1 ∪ C3;

− s+
2 , (x, y) ∈ C2 ∪ C4;

g(x+ y), (x, y) ∈ S1;

g(y − x), (x, y) ∈ S2;

g(−x− y), (x, y) ∈ S3;

g(x− y), (x, y) ∈ S4,

(5.1.11)

and

q3(x, y) = −s+

6 , and q2 = 0 on ∂Ω. (5.1.12)

It is easy to verify that the boundary conditions (5.1.11), and (5.1.12), are equi-

valent to the Dirichlet conditions in (5.1.3).

5.2 Numerical methods

In this chapter, we numerically compute the solutions of the nonlinear system

of equations (5.1.8)–(5.1.10), subject to the tangent Dirichlet boundary condi-

tions (5.1.11) and (5.1.12), which are necessarily critical points of (5.3.1). In

our simulations, we set the square vertices at (−1,±1) and (+1,±1), such that

(q1, q2, q3) = (qb, 0,− s+
6 ) on the square edges. We use the DOLFIN library [101],

from the popular open-source computing platform FEniCS [102], to solve the

weak formulation of (5.1.8)–(5.1.10) given by
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0 =
∫

Ω

{(
1 + L2

2

)
∇q1 · ∇v1 + L2

2 (q3,y · v1,y − q3,x · v1,x)

+λ
2

L
q1
(
A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)
)
· v1

}
dA

0 =
∫

Ω

{(
1 + L2

2

)
∇q2 · ∇v2 − L2q3,x · v2,y

+λ
2

L
q2
(
A+ 2Bq3 + 2C(q2

1 + q2
2 + 3q2

3)
)
· v2

}
dA

0 =
∫

Ω

{(
1 + L2

6

)
∇q3 · ∇v3 + L2

6 (q1,y · v3,y − q1,x · v3,x − 2q2,x · v3,y)

+λ
2

L
q1
(
A−Bq3 + 2C(q2

1 + q2
2 + 3q2

3)
)
· v3 + λ2B

3L (q2
1 + q2

2) · v3

}
dA

for arbitrary test functions v1, v2, v3 ∈ W 1,2
0 (Ω). We apply the finite element

method on a triangular mesh, with mesh-size h ≤ 1
256 , for the discretization of

the square domain. This then defines a large, but finite-dimensional nonlinear

problem of the form: F (q) = 0, where q is the finite element approximation of

(q1, q2, q3), and F is the sum of the integrals above. This nonlinear system is solved

using Newton’s method [103]. In Chapter 4, we described standard line search

algorithms and properties of quasi-Newton methods, which optimize the nonlinear

problem, without the expensive computation of the Hessian, G(q) = ∇2F (q). For

our purposes, Newton’s method is sufficient [104], [105], and DOLFIN automates

much of this computation using a linear LU solver for each iteration. The iterative

scheme has converged when the residual at an iteration k, ||F (qk)||, is less than

the absolute tolerance which we set to 10−13. Due to the high multiplicity of the

solutions, convergence may be highly sensitive to the choice of initial condition.

We also check the stability of the solutions by numerically calculating the smallest

real eigenvalue, λ1, of the Hessian G(q) of the computed solution, q, with three
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degrees of freedom using the LOBPCG (locally optimal block preconditioned

conjugate gradient) method [106]. This method follows a similar approach to the

Rayleigh quotient iterative minimization method explained in Chapter 4, where

λ1 > 0 is essentially a signature of local stability, and the numerical solution is

unstable if λ1 < 0. A full description of this iterative algorithm can be found in

[66].

In the figures of our numerical solutions, we regularly plot the scalar order para-

meter s2 = q2
1 + q2

2, labelled by the colour chart, and the nematic director, n,

shown by white lines, where n is given by

n = (cos θ, sin θ), θ = 1
2atan2(q2, q1). (5.2.1)

Here, the function atan2 is found in many modern programming languages and

atan2(y, x) returns the angle θ between the ray to the point (x, y) and the positive

x-axis, confined to (−π, π]. These measures capture the nematic order parameter

for the system. In order to make comparisons with the numerical simulations in

[62], [63], and the results in Chapter 4, we fix B = 0.64× 104 Nm−2, C = 0.35×

104 Nm−2 and the special temperature A = −B2

3C , and we define the dimensionless

parameter

λ̄2 := 2Cλ2

L
.

We frequently refer to this rescaled parameter, which describes the cross-sectional

size of the domain, in our numerical simulations. We also compute bifurcation

diagrams as a function of λ̄2, for various fixed values of L2. In these diagrams, we

plot solid lines to represent stable solution branches, and dashed lines correspond

to unstable branches. The numerical computation of the bifurcation diagrams re-

quires continuation techniques, for which we first locate different stable solutions,
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for fixed L2 and λ̄2. Depending on the solution branch, we perform a increas-

ing/decreasing λ̄2 sweep to produce these diagrams (we solve for a value of λ, and

then use that numerical solution as the initial guess in the procedure to solve for

a larger/smaller λ), and we plot two measures to distinguish between separate

solution branches:
∫
Ω q1 (1 + x+ y) dxdy and

∫
Ω q2 (1 + x+ y) dxdy. These par-

ticular measures were chosen in order to compare with the results in [64], [74]

for the L2 = 0 modelling scenario. The multiplier (1 + x + y) has been chosen

in order to distinguish between the symmetry of the diagonal solutions and the

Ring and WORS configurations.

5.3 Qualitative properties of the equilibrium

configurations

In [52], the authors numerically compute critical points of (5.1.2) with L2 = 0,

satisfying the Dirichlet boundary conditions (5.1.3), on the square cross-section

Ω, with edge length λ. For λ small enough, the authors report a new Well Order

Reconstruction Solution (WORS). The WORS has a constant set of eigenvectors,

x̂, ŷ, and ẑ, which are the coordinate unit vectors. The WORS is further dis-

tinguished by a uniaxial cross, with negative scalar order parameter, along the

square diagonals. Physically, this indicates the nematic molecules prefer to be

in the plane of the square, there is a planar defect cross along the square diag-

onals, and the nematic molecules are disordered in the square plane along the

square diagonals. In [62], the authors analyse this system at the fixed temper-

ature A = −B2

3C , at which, the WORS is a classical solution of the associated
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Euler-Lagrange equations given by:

QWORS(x, y) = q(x̂⊗ x̂− ŷ⊗ ŷ)− B

6C (2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ).

There is a single degree of freedom, q : Ω → R, which satisfies the Allen-Cahn

equation

∆q = λ2

L

(
2Cq3 − B2

2C q
)
,

and exhibits the following symmetry properties:

q = 0 on {y = x} ∪ {y = −x}, (y2 − x2)q(x, y) ≥ 0.

Notably, q2 = 0 everywhere for the WORS, which is equivalent to having a set of

constant eigenvectors in the plane of Ω. They prove that the WORS is globally

stable for λ small enough, and unstable for λ large enough, demonstrating a

pitchfork bifurcation in a scalar setting. Their analysis is restricted to the specific

temperature and, in Chapter 3, we have extended the analysis to all A < 0, with

L2 = 0. In this section, we analyse the equilibrium configurations with L2 6= 0,

in the small λ limit, including their symmetry properties. Notably, we show that

the cross-structure of the WORS does not survive with L2 6= 0, in the following

propositions. Our first result concerns the existence of minimizers of the rescaled

LdG energy functional (5.1.2).

Proposition 5.3.1. There exists at least one solution to the Euler-Lagrange

equations (5.1.7) of the form (5.1.1) in A, given the Dirichlet boundary conditions

(5.1.4) and (5.1.5), provided the functions q1, q2, q3 satisfy the PDE system (5.1.8)–

(5.1.10) subject to the boundary conditions (5.1.11) and (5.1.12).
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Proof. Our proof is analogous to Theorem 2.2 in [71]. Substituting the Q-tensor

ansatz (5.1.1) into the general form of the LdG energy (5.1.2), we let

J [q1, q2, q3] :=
∫

Ω
fel(q1, q2, q3) + λ2

L
fb(q1, q2, q3) dA, (5.3.1)

where we have substituted our Q-tensor (5.1.1) into our elastic and thermotropic

bulk energy densities to obtain

fel(q1, q2, q3) :=
(

1 + L2

2

)
|∇q1|2 +

(
1 + L2

2

)
|∇q2|2 +

(
3 + L2

2

)
|∇q3|2

+ L2(q1,yq3,y − q1,xq3,x − q2,yq3,x − q2,xq3,y) + |L2|(q2,yq1,x − q1,yq2,x), (5.3.2)

and

fb(q1, q2, q3) :=A(q2
1 + q2

2 + 3q2
3) + C(q2

1 + q2
2 + 3q2

3)2 + 2Bq3(q2
1 + q2

2 − q2
3),

(5.3.3)

respectively. We prove the existence of minimizers of J in the admissible class

A0 := {(q1, q2, q3) ∈ W 1,2(Ω;R3) : q1 = qb, q2 = 0, q3 = −s+

6 on ∂Ω},

which will also be solutions of (5.1.7), in the admissible space A. Since the

boundary conditions (5.1.11) and (5.1.12) are piece-wise of class C1, we have

that the admissible space A0 is non-empty. The next step, is to check that J

is coercive in A0. The elastic energy density can be rewritten as a function of

q1, q2, q3 ∈ W 1,2(Ω;R) in the following two ways (depending on the sign of L2):

fel = |∇q1|2 + |∇q2|2 + 3|∇q3|2 + L2

2 ((q1,x + q2,y − q3,x)2 + (q2,x − q1,y − q3,y)2),

(5.3.4)

if L2 ∈ [0,∞), and
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fel = (1 + L2)(|∇q1|2 + |∇q2|2 + 3|∇q3|2)

− L2

2 ((−q3,x − q1,x − q2,y)2 + (q2,x − q1,y + q3,y)2 + 4|∇q3|2),

(5.3.5)

if L2 ∈ (−1, 0). The difference between the expressions for fel in (5.3.4) and (5.3.5),

is a null Lagrangian, and hence can be ignored under the Dirichlet boundary

condition. Since we assume that 1 + L2 > 0, we see that the elastic energy

density can be written as the sum of non-negative terms, for any L2 > −1 and,

furthermore,

fel(q1, q2, q3) ≥ min{1, 1 + L2}
(
|∇q1|2 + |∇q2|2 + 3|∇q3|2

)
. (5.3.6)

Also, the bulk energy potential, fb, is minimized along the boundary of the domain

by design and hence it also satisfies

fb(q1, q2, q3) ≥ fb(±
s+

2 , 0,−s+

6 ) =: M1(A,B,C),

for some constant M1, depending only on A,B and C. Hence J [q1, q2, q3] is

coercive in A0. Finally, we note that J is weakly lower semi-continuous on

W 1,2(Ω), which follows immediately from the fact that fel is quadratic and convex

in ∇(q1, q2, q3). Thus, the direct method in the calculus of variations yields the

existence of a global minimizer of the functional J among the finite energy triplets

(q1, q2, q3) ∈ W 1,2(Ω;R3), satisfying the boundary conditions (5.1.11) and (5.1.12)

[57]. One can verify that the semilinear elliptic system (5.1.8)–(5.1.10) corresponds

to the Euler-Lagrange equations associated with J , and the minimizers for J are

C∞(Ω) ∩ C2(Ω̄) solutions of (5.1.8)–(5.1.10). The corresponding Q-tensor is an

exact solution of the LdG Euler-Lagrange equations (5.1.7).
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Now that we have proved the existence of a critical point of the LdG energy (5.1.2)

of the form (5.1.1), our next result constructs a symmetric critical point, for any

L2 > −1, for which q1 = 0 on the square diagonals, and q2 = 0 on the coordinate

axes, where the axes are parallel to the square edges. Furthermore, the WORS is

simply a special case of this critical point with q2 = 0 everywhere in the square

domain, for L2 = 0.

Proposition 5.3.2. There exists a critical point, (qs1, qs2, qs3), of the energy func-

tional (5.3.1) in the admissible space A0, for all λ > 0, such that q1 = 0 on the

square diagonals y = x and y = −x, and q2 = 0 on x = 0 and y = 0.

Proof. We follow the approach in [62] and in Proposition 3.2.2. We define the

following octant of a square, located in the positive quadrant of Ω:

Ωq := {(x, y) ∈ Ω : 0 < y < x, 0 < x < 1}.

The boundary conditions (5.1.11) and (5.1.12), on the whole of Ω, are consistent

with the following boundary conditions on Ωq:

q1 = qb, q2 = 0, q3 = − s+
6 , (x, y) ∈ ∂Ωq ∩ ∂Ω;

q1 = ∂νq2 = ∂νq3 = 0, (x, y) ∈ ∂Ωq ∩ {y = x};

∂νq1 = q2 = ∂νq3 = 0, (x, y) ∈ ∂Ωq ∩ {y = 0},

(5.3.7)

where ∂ν represents the outward normal derivative. We minimize the associated

LdG energy functional in Ωq, given by:

J [q1, q2, q3] =
∫

Ωq
fel(q1, q2, q3) + λ2

L
fb(q1, q2, q3) dA,

on the admissible space

Aq := {(q1, q2, q3) ∈ W 1,2(Ωq;R3) : (5.3.7) is satisfied}.
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Figure 5.2: The reflected solution qs1(x, y).

As the boundary conditions on Ωq are continuous and piecewise of class C1, we

have that Aq is non-empty. Furthermore, we have shown that J is coercive on

Aq, and convex in the gradient ∇(q1, q2, q3). Thus, by the direct method in the

calculus of variations, we have the existence of a minimizer (q∗1, q∗2, q∗3) ∈ Aq. We

define a function qs1 ∈ Ω, by odd reflection of q∗1 ∈ Ωq about the square diagonals,

and even reflection about x- and y-axis. An illustration of the reflected solution

qs1(x, y) is given in Figure 5.2. We can do the same for the function qs2 ∈ Ω, defined

by even reflections of q∗2 about the square diagonals, and odd reflection about x-

and y-axis and lastly, for the function qs3 ∈ Ω, defined by even reflections of q∗3
about the square diagonals and the x- and y-axis. By repeating the arguments

in [90], and Proposition 3.2.2, we can prove that the new triple, (qs1, qs2, qs3), is a

weak solution of the associated Euler-Lagrange equation on Ω. One can verify

that (qs1, qs2, qs3) is a critical point of J on A0, with the desired properties.

As we mentioned previously, the WORS is distinguished by its uniaxial cross

structure, with q1 = 0 on the square diagonals, and q2 ≡ 0 in the square domain.

Our next result shows that the symmetric critical point from Proposition 5.3.2
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cannot have q2 identically zero on the domain, for L2 6= 0. This essentially proves

that the addition of anisotropy to the elastic energy destroys the perfect cross

symmetry of the WORS.

Proposition 5.3.3. For A < 0 and L2 6= 0, the critical point constructed in

Proposition 5.3.2, denoted by (qs1, qs2, qs3), has non-constant qs2 on Ω, for all λ > 0.

Proof. We proceed by contradiction. Assume that qs2 is constant on Ω. Recalling

the boundary conditions (5.1.12), we necessarily have that qs2 ≡ 0 in Ω. Substi-

tuting qs2 ≡ 0 into (5.1.9), we obtain

qs3(x, y) = F (x) +G(y),

for arbitrary real-valued functions F,G, with qs3 = − s+
6 on ∂Ω. Therefore, qs3 ≡

− s+
6 in Ω. Substituting qs2 ≡ 0 and qs3 ≡ −

s+
6 into (5.1.8) and (5.1.10) yields the

following reduced PDEs:

qs1,yy + qs1,xx = f(qs1), (5.3.8)

qs1,yy − qs1,xx = g(qs1) + Cg, (5.3.9)

where f, g : R→ R and Cg is a constant given by:

f(qs1) = 4Cλ2

(2 + L2)L(qs1)3 + 2λ2

(2 + L2)L

(
A− Bs+

3 + Cs2
+

6

)
qs1,

g(qs1) = 2λ2

LL2
(B − Cs+)(qs1)2,

Cg =− λ2s+

LL2

(
A+ Bs+

6 + Cs2
+

6

)
.

By manipulating the equations (5.3.8) and (5.3.9), and taking second derivatives

by applications of the chain rule and product rule of differentiation, one can
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calculate

2(qs1,xx)yy − 2(qs1,yy)xx = f ′′(qs1)((qs1,y)2 − (qs1,x)2)− g′′(qs1)((qs1,y)2 + (qs1,x)2)

+ f ′(qs1)(qs1,yy − qs1,xx︸ ︷︷ ︸
=g(qs1)+Cg

)− g′(qs1)(qs1,yy + qs1,xx︸ ︷︷ ︸
=f(qs1)

) (5.3.10)

From the symmetry properties of qs1 in Proposition 5.3.2, we have

qs1|(0,0) = qs1,x|(0,0) = qs1,y|(0,0) = 0.

Substituting this into (5.3.10), we obtain

(2qs1,xxyy − 2qs1,yyxx)|(0,0) = (f ′(qs1)Cg)|(0,0)

=− 2λ4s+

(2L2 + L2
2)L2 (A− Bs+

3 + Cs2
+

6 )(A+ Bs+

6 + Cs2
+

6 )

(5.3.11)

If A 6= −B2

3C , then the right hand side of equation (5.3.11) at (0, 0) is non-zero

which, from the equality of mixed partial derivatives, leads to a contradiction. If

A = −B2

3C , then q
s
3 ≡ −

s+
6 = − B

6C and (5.3.9) reduces to

qs1,yy − qs1,xx = 0,

which implies that qs1 is of the following form:

qs1(x, y) = F1(x− y) + F2(x+ y),

for arbitrary real-valued functions F1, F2. By construction of the symmetric

critical point from Proposition 5.3.2, we know that for any λ > 0, qs1 satisfies the

symmetry property qs1(x, y) = qs1(x,−y) and hence,

F1(x− y) + F2(x+ y) = F1(x+ y) + F2(x− y), ∀(x, y) ∈ Ω. (5.3.12)
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Subtracting F2(x− y) + F2(x+ y) on both sides of the equality (5.3.12), we get

G(x− y) =F1(x− y)− F2(x− y)

=F1(x+ y)− F2(x+ y) = G(x+ y), ∀(x, y) ∈ Ω.

Therefore, defining another real-valued function with zero derivative,

G(z) = F1(z)− F2(z) ≡ K, z ∈ (−2, 2),

for some constant K (as a result of the property G′ = −G′). Given this fact, the

function qs1 may now be rewritten as

qs1(x, y) = F1(x+ y) + F1(x− y)−K, (x, y) ∈ Ω.

This formulation cannot be extended continuously on the boundary since, for

(x, y) = (0, 1), (−1, 0) and (1, 0), we have

F1(1) + F1(−1)−K = s+

2 , 2F1(−1)−K = −s+

2 , 2F1(1)−K = −s+

2 ,

which again, leads to the required contradiction.

Proposition 5.3.4. There exists some critical edge length, λ0 > 0, such that for

any λ < λ0, the critical point, (q1, q2, q3), constructed in Proposition 5.3.2 is the

unique critical point of the LdG energy (5.3.1).

Proof. We adapt the uniqueness criterion argument in Lemma 8.2 of [91]. Let

(qλ1 , qλ2 , qλ3 ) be a global minimizer of energy functional J in (5.3.1), for some fixed

λ > 0. Let (q∞1 (x, y), q∞2 (x, y), q∞3 (x, y)) ∈ A0 be such that fb(q∞1 , q∞2 , q∞3 ) =

min fb, a.e. (x, y) ∈ Ω. Defining the always positive quantity, f̄b(q1, q2, q3) =
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1
L

(fb(q1, q2, q3)−min fb(q1, q2, q3)), where L is fixed, we have
∫

Ω
fel(qλ1 , qλ2 , qλ3 ) dA ≤

∫
Ω
fel(qλ1 , qλ2 , qλ3 ) + λ2f̄b(qλ1 , qλ2 , qλ3 ) dA

≤
∫

Ω
fel(q∞1 , q∞2 , q∞3 ) dA

=M2(A,B,C, L2),

(5.3.13)

where M2 > 0 is some constant, depending only on A,B,C and the elastic

anisotropy L2. For more details, see Section 5.4.3. Thus, we restrict ourselves to

the following admissible space of Q-tensors:

Aupper =
{
Q ∈ A :

∫
Ω

1
2 |∇Q|2dA ≤M2(A,B,C, L2)

}
.

We aim to prove the strict convexity of the LdG energy functional J in Aupper.

Firstly, we note that the second derivatives of fb are quadratic polynomials in

(q1, q2, q3). By an application of the relevant embedding theorem in [107] (Theorem

9.16 which implies that for a bounded domain Ω in RN with Lipschitz boundary,

for any u ∈ C1
c (Ω), ||u||Lp ≤ C||u||W 1,2 , ∀p ∈ [N,∞), with constant C depending

only on Ω), we have that there exists some constant c0, depending only on A,B,C

and Ω, such that

(∫
Ω
|f ′′b |2dA

)1/2
≤ c0(A,B,C,Ω)

∫
Ω
|∇Q|2 dA ≤ c0M2.

Utilizing the second order central finite difference formula for fb, and by an

application of the Hölder inequality we get, for any x, y ∈ Aupper,

∫
Ω
fb

(
x+ y

2

)
− 1

2fb(x)− 1
2fb(y) dA ≤ 1

8 sup
Aupper

(∫
Ω
|f ′′b |2dA

) 1
2
(∫

Ω
|x− y|4dA

) 1
2

≤ c0M2

8 ||x− y||2L4
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Therefore, for any (q1, q2, q3), (q̃1, q̃2, q̃3) ∈ Aupper, we have
∫

Ω

{
fb

(
q1 + q̃1

2 ,
q2 + q̃2

2 ,
q3 + q̃3

2

)
− 1

2fb(q1, q2, q3)− 1
2fb(q̃1, q̃2, q̃3)

}
dA

≤ c1||q1 − q̃1, q2 − q̃2, q3 − q̃3||2L4

(5.3.14)

where c1 = c1(Ω, A,B,C, L2) > 0. We note that fel is positive definite quadratic

in the gradient of (q1, q2, q3), for all L2 > −1 (see (5.3.6)). By an application of

the Poincaré inequality, and by repeating the same arguments as above using the

relevant embedding theorem, we have for any (q1, q2, q3), (q̃1, q̃2, q̃3) ∈ Aupper:∫
Ω
fel(q1 − q̃1, q2 − q̃2, q3 − q̃3) dA

≥ min{1, 1 + L2}
∫

Ω

{
|∇(q1 − q̃1)|2 + |∇(q2 − q̃2)|2 + 3|∇(q3 − q̃3)|2

}
dA

≥ min{1, 1 + L2}K(Ω)
(
||q1 − q̃1||2W 1,2 + ||q2 − q̃2||2W 1,2 + 3||q3 − q̃3||2W 1,2

)
≥ c2(Ω, L2)||q1 − q̃1, q2 − q̃2, q3 − q̃3||2L4

(5.3.15)

for some constant c2, depending only on Ω and the sign of L2. Using both (5.3.14)

and (5.3.15) we have, where q = (q1, q2, q3) and q̃ = (q̃1, q̃2, q̃3):

J
[q + q̃

2

]
= 1

2J [q] + 1
2J [q̃]− 1

4

∫
Ω
fel(q − q̃) dA

+ λ2

L

∫
Ω

{
fb

(q + q̃
2

)
− 1

2fb(q)− 1
2fb(q̃)

}
dA

≤ 1
2J [q] + 1

2J [q̃]− c2

4 ||q − q̃||2L4 + c1λ
2

L
||q − q̃||2L4

= 1
2J [q] + 1

2J [q̃]− c2

8 ||q − q̃||2L4 − c1

(
c2

8c1
− λ2

L

)
||q − q̃||2L4

Thus, J is strictly convex for the finite energy triplets (q1, q2, q3), for λ ≤ λ0 :=√
c2L
8c1 , and has a unique critical point, for λ < λ0. We deduce that the sym-

metric critical point, constructed in Proposition 5.3.2, is the unique minimizer

of J [q1, q2, q3] and, in fact, the unique global LdG energy minimizer (when we

consider Q-tensors with the full five degrees of freedom as opposed to this reduced
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setting, (5.1.1), with three degrees of freedom), for sufficiently small λ.

Lemma 5.3.5. Suppose that (q1, q2, q3) ∈ W 1,2(Ω,R3) is the unique global min-

imizer of the energy (5.3.1), for λ < λ0 given by Proposition 5.3.4. Then for any

L2 > −1, the function q1 : Ω→ R vanishes along the square diagonals y = x and

y = −x and the function q2 : Ω→ R vanishes along y = 0 and x = 0.

Proof. This is in fact an immediate consequence of Proposition 5.3.2 but we

present an alternative short proof based on symmetry observations. Suppose that

(q1, q2, q3) ∈ W 1,2(Ω,R3) is a global minimizer of the associated energy functional

J , in the admissible class A0, for a given λ > 0. Then (q1(x, y), q2(x, y), q3(x, y)) is

a solution of the Euler-Lagrange system (5.1.8)–(5.1.10), subject to the boundary

conditions (5.1.11) and (5.1.12). It is easy to verify from applications of the chain

rule that the triples

(q1(−x, y),−q2(−x, y), q3(−x, y)), (q1(x,−y),−q2(x,−y), q3(x,−y)),

(−q1(y, x), q2(y, x), q3(y, x))

also solve the Euler-Lagrange system and are compatible with the imposed bound-

ary conditions. We combine this symmetry result with the uniqueness result

in Proposition 5.3.4 to get the desired conclusion. For example, we simply

use q1(x, y) = −q1(y, x), with x = y, to deduce that q1(x, x) = 0. Also,

q1(−x, y) = q1(x, y), with x = y, yields that q1(x,−x) = q1(x, x) = 0. Fur-

thermore, we use the relation q2(x, y) = −q2(−x, y), with x = 0, to deduce that

q2(0, y) = 0, and similarly, q2(x, y) = −q2(x,−y), with y = 0, to deduce that

q2(x, 0) = 0.

Corollary 5.3.6. For A < 0 and L2 6= 0, the unique global minimizer, (q1, q2, q3),

given in Proposition 5.3.4 when λ < λ0, also has the symmetry property q1(x, y) =
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q1(−x, y) = q1(x,−y) in Lemma 5.3.5. If q3 is constant in Ω then, in order

to satisfy the boundary conditions, we must have q3 ≡ − s+
6 in Ω. Therefore,

equations (5.1.8)–(5.1.9) become

(
1 + L2

2

)
∆q1 = λ2

L
q1

(
A− Bs+

3 + 2C(q2
1 + q2

2) + Cs2
+

6

)
,

(
1 + L2

2

)
∆q2 = λ2

L
q2

(
A− Bs+

3 + 2C(q2
1 + q2

2) + Cs2
+

6

)
.

From Proposition 5.3.4, we know that for λ < λ0(A,B,C, L, L2), the solution is

unique, and hence we have q2 ≡ 0 in Ω. This directly contradicts the result of

Proposition 5.3.3, and thus we have q2 and q3 non-constant throughout Ω.

In Figure 5.3, we plot the unique stable solution of (5.1.8)–(5.1.10), with λ̄2 =
2Cλ2

L
= 5, for L2 = −0.5, 0, 1, 10. When L2 = 0, the solution is the WORS

with q2 ≡ 0 and q3 ≡ − s+
6 = − B

6C in Ω. When L2 = −0.5, 1, and 10, q2 and

q3 are non-constant, as proven above. One can check that q1 : Ω → R vanishes

along the square diagonals, y = x and y = −x, and the function q2 : Ω → R

vanishes along y = 0 and x = 0, as proven in Lemma 5.3.5. When L2 = −0.5, 1,

and 10, we observe a central +1-point defect in the profile of (q1, q2), and we

label this as the Ring+ solution. By comparing our elastic constants with those

in [71], and utilising the connection with the Frank elastic constants in [19], we

see that the L2 ∈ (−1, 0) regime corresponds to materials with K1 < K2 i.e.,

out-of-plane twist deformations are energetically expensive compared to splay

and bend deformations of the nematic director. This is substantiated by the

strictly negative value of q3 throughout the domain in the first row of Figure 5.3

- indicating the nematic molecules strongly prefer in-plane alignment.
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We perform a parameter sweep of λ̄2, from 5 to 500, and find one of the symmetric

solution branches constructed in Proposition 5.3.2, such that q1 : Ω→ R vanishes

along the square diagonals, y = x and y = −x, and q2 : Ω → R vanishes along

y = 0 and x = 0. This branch is a continuation of the Ring+ branch. The solu-

tions with λ̄2 = 500 are plotted in Figure 5.4. When L2 = 0, we find the WORS

for all λ > 0, although it is unstable for λ large enough. When −1 < L2 < 0,

the solution exhibits a +1-defect at the square center, continued from the Ring+

branch and hence, we refer to it as the Ring+ solution. When L2 is positive

and moderate in value, we recover the Ring+ solution branch and, the essential

Figure 5.3: The unique stable solution of the Euler-Lagrange
equations (5.1.8)–(5.1.10) with λ̄2 = 5, and (from
the first to fourth row) L2 = −0.5, 0, 1 and 10,
respectively. We plot s2, q1, q2 and q3, in the first to
fourth columns, respectively.
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difference between Ring+ for positive and negative L2, is that q3 < − s+
6 at the

center for negative L2, but q3 > − s+
6 for positive L2. When L2 is large enough,

we recover a solution which is approximately constant (0, 0, s+3 ), away from the

square edges, as shown in the third row of Figure 5.4, for L2 = 10, and labelled

as the Constant solution branch in the remainder of this chapter. This is the only

stable solution in Figure 5.4, for λ̄2 = 500.

Figure 5.4: Solutions of (5.1.8)–(5.1.10) with λ̄2 = 500, and (on
the first, second and third row) L2 = −0.5, 0, 1 and
10, respectively. We plot s2, q1, q2 and q3, in the first
to fourth columns, respectively.
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5.4 Asymptotic studies

In Figures 5.3 and 5.4, we present solutions of the Euler-Lagrange system (5.1.8)–

(5.1.10), in the small and large λ regimes, for several values of L2, and it is clear

that the solution landscape is affected by these parameters. For small λ, and

L2 6= 0, we lose the uniaxial cross-structure of the WORS, and observe stable

Ring+ solutions with a central +1-point defect in the square. For large λ, the

WORS and Ring+ lose their stability and, for large L2, we find the Constant

solution. In this section, we study these solutions in three asymptotic limits: the

L2 → 0 limit, about the uniquely minimizing solution for small λ; the L2 → ∞

limit and; the λ→∞ limit, for L2 6= 0.

5.4.1 The L2 → 0 limit for small λ

We work at the special temperature, A = −B2

3C , to facilitate comparison with the

results in [108], where the authors investigate solution landscapes with L2 = 0.

Notably, for L2 = 0 and A = −B2

3C , reduced LdG solutions have q3 ≡ − s+
6 = − B

6C

for our choice of TBCs on 2D polygons, and it is natural to investigate the

effects of the elastic anisotropy parameter, L2, in these 2D frameworks. We

consider solutions, (q1, q2, q3), of the Euler-Lagrange equations (5.1.8)–(5.1.10) at

the special temperature, satisfying q1 = qb, q2 = 0, and q3 = − B
6C , on ∂Ω. We

take a regular perturbation expansion of the functions q1, q2, q3, in the L2 → 0

limit. The leading order approximation is given by the WORS, (q, 0,− B
6C ), where

q satisfies the Allen-Cahn equation, as in [62]:

∆q = 2Cλ2

L
q

(
q2 − B2

4C2

)
, q = qb on ∂Ω. (5.4.1)
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We may assume that q1, q2, q3 can be expanded in powers of L2, as follows:

q1(x, y) = q(x, y) + L2f(x, y) + . . .

q2(x, y) = L2g(x, y) + . . .

q3(x, y) = − B

6C + L2h(x, y) + . . .

(5.4.2)

for some functions f, g, h, which vanish on the boundary. Up to O(L2), the

governing partial differential equations for f, g, h are given by:

∆f = Cλ2

L

(
4q2f + (2f − q)

(
q2 − B2

4C2

))
, (5.4.3)

∆g = 2Cλ2

L
g

(
q2 − B2

4C2

)
, (5.4.4)

∆h = 2Cλ2

L
h

(
q2 + B2

4C2

)
− 1

6(q,yy − q,xx), (5.4.5)

where q = qb, f = g = h = 0, on ∂Ω. One can easily verify that system (5.4.3)–

(5.4.5) are the Euler-Lagrange equations for the following energy functional, with

respect to f, g and h:

F (f, g, h) :=
∫

Ω

{
|∇f |2 + |∇g|2 + |∇h|2 + 1

3(q,yh,y − q,xh,x)
}

dA

+ 2Cλ2

L

∫
Ω

{
(f 2 + g2 − fq)(q2 − B2

4C2 ) + h2(q2 + B2

4C2 )− 2f 2q2
}

dA.

For λ small enough, there exists a unique solution (f, g, h) ∈ W 1,2
0 (Ω;R3) of

the system (5.4.3)–(5.4.5), by following the approach in [91] to show that F

is strictly convex in W 1,2
0 (Ω;R3), for sufficiently small λ. Hence, for λ small

enough, we have g ≡ 0 on Ω. Similarly to Proposition 5.3.5, we can check that

if (q(x, y), f(x, y), g(x, y), h(x, y)) is a solution of (5.4.1),(5.4.3)–(5.4.5), then the

quadruplets,

(−q(y, x),−f(y, x), g(y, x), h(y, x)), (q(−x, y), f(−x, y), g(−x, y), h(−x, y)),
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are also solutions of (5.4.1),(5.4.3)–(5.4.5). Thus, we have f(x, y) = 0 on the

square diagonals, for λ small enough. Hence, for λ small enough, the cross

structure of the WORS is lost, mainly because of effects of L2 on the component

q3, as we show below.

From [69], the solutions of (5.4.1) with λ = 0 (the limiting equations for small

λ or equivalently, the leading order approximations in the asymptotic limit of

large elastic constant), are a good approximation to the solutions of (5.4.1), for

sufficiently small λ. When λ = 0, q = q0 where

∆q0(x, y) = 0, (x, y) ∈ Ω,

q0 = qb, on ∂Ω.
(5.4.6)

The analytical solution of (5.4.6) is given by [68]:

q0(x, y) = s+

2
∑
k odd

4
kπ sinh(kπ)Ξ(x, y; k), (5.4.7)

where

Ξ(x, y; k) =
{

sin
(
kπ(x+ 1)

2

)(
sinh

(
kπ(1− y)

2

)
+ sinh

(
kπ(1 + y)

2

))

− sin
(
kπ(y + 1)

2

)(
sinh

(
kπ(1− x)

2

)
+ sinh

(
kπ(1 + x)

2

))}
.

When λ = 0, the unique solution of (5.4.3)–(5.4.5) is f = f0 ≡ 0, g = g0 ≡ 0, and

h = h0, where

∆h0 = −1
6(q0,yy − q0,xx), (5.4.8)

with boundary condition h0 = 0 on ∂Ω. In Figure 5.5, we plot the difference

between the solution of (5.1.8)–(5.1.10), (q1, q2, q3), and the λ = 0 approximation

of the leading asymptotic term of (5.4.2), (q0, 0,− s+
6 + L2h0).
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Figure 5.5: Error of the O(L2) small λ approximations. Plots
(from left to right) of q1 − q0, q2, and q3 + s+

6 −L2h0,
respectively, with λ̄2 = 0.01, L2 = 0.1.

Proposition 5.4.1. The analytical solution of (5.4.8) is given by

h0(x, y) =
∑

m,n odd

16s+mn

3π2(m2 + n2)2 sin
(
mπ(x+ 1)

2

)
sin

(
nπ(y + 1)

2

)
, (5.4.9)

where h0(0, 0) is positive.

Proof. Firstly, we calculate the analytical solution of (5.4.8). Substituting (5.4.7)

into (5.4.8), we have

∆h0 = −
∑
k odd

s+

3kπ sinh(kπ)(Ξyy − Ξxx),

which is the homogeneous Poisson equation on Ω. For mathematical convenience,

we consider the transformations x̂ = x+1, ŷ = y+1, such that h0(x̂, ŷ) : [0, 2]2 →

R. We apply a method of eigenfunction expansion,

h0(x̂, ŷ) =
∞∑
n=1

∞∑
m=1

Emn sin
(
mπx̂

2

)
sin

(
nπŷ

2

)
,

where Emn are double Fourier sine series coefficients. Following standard Fourier

series calculations, we obtain:

h0(x̂, ŷ) =
∑

m,n odd

16s+mn

3π2(m2 + n2)2 sin
(
mπx̂

2

)
sin

(
nπŷ

2

)
,

which yields the desired series expansion (5.4.9). Substituting (x, y) = (0, 0) into
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(5.4.9), we obtain

h0(0, 0) = 16s+

3π2

∑
m,n odd

mn

(m2 + n2)2 sin
(
mπ

2

)
sin

(
nπ

2

)

= 16s+

3π2

∑
m,n odd

mn

(m2 + n2)2 (−1)m+n−2
2

= 16s+

3π2

 ∑
m odd

1
4m2 + 2

∑
m>n odd

mn

(m2 + n2)2 (−1)m+n−2
2


= s+

6 + 32s+

3π2

∑
m>n odd

mn

(m2 + n2)2 (−1)m+n−2
2 (5.4.10)

We rewrite the summed term in (5.4.10), in terms of the positive and negative

terms, for s ∈ N, s ≥ 1:

∑
m>n odd

mn

(m2 + n2)2 (−1)m+n−2
2

=
∑

n odd,m=n+4s−2

mn

(m2 + n2)2 (−1)m+n−2
2 +

∑
n odd,m=n+4s

mn

(m2 + n2)2 (−1)m+n−2
2

≥
∑

n odd,m=n+4s−2

mn

(m2 + n2)2 (−1)m+n−2
2 (5.4.11)

We now set k = m+n, and l = m−n. Therefore, we have mn
(m2+n2)2 = k2−l2

(k2+l2)2 and,

for integers s, r ≥ 1, p ≥ 0. Since n is odd, we have k = m+ n = 2n+ 4s− 2 =

2(2p+ 1) + 4s− 2 = 4(p+ s) = 4r and l = m− n = 4s− 2. Substituting this into

(5.4.11), we obtain

∑
n odd,m=n+4s−2

mn

(m2 + n2)2 (−1)m+n−2
2 =

∑
k>l,k=4r,l=4s−2

k2 − l2

(k2 + l2)2 (−1) k−2
2

= −
∑

k>l,k=4r,l=4s−2

k2 − l2

(k2 + l2)2

≥ −
∑
k=4r

1
k2 = −

∞∑
r=1

1
16r2 = −π

2

96

Hence, from (5.4.10), we have h0(0, 0) ≥ s+
6 + 32s+

3π2

(
−π2

96

)
> 0.
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5.4.2 The L2 →∞ limit

Consider a regular perturbation expansion, in powers of 1
L2
, of the solutions,

q1, q2, q3, of the Euler-Lagrange system (5.1.8)–(5.1.10), subject to the boundary

conditions (5.1.11) and (5.1.12). Let ρ, σ, τ be the leading order approximations

of q1, q2, q3, respectively in the L2 →∞ limit. Then we have:

1
2∆ρ+ 1

2(τyy − τxx) = 0, (5.4.12)
1
2∆σ − τxy = 0, (5.4.13)

1
6∆τ + 1

6(ρyy − ρxx)−
1
3σxy = 0, (5.4.14)

with ρ = qb, σ = 0, τ = − s+
6 , on ∂Ω.

Proposition 5.4.2. The leading order system of Euler-Lagrange equations in the

L2 →∞ limit, (5.4.12)–(5.4.14), is not an elliptic PDE system.

Proof. The system of equations (5.4.12)–(5.4.14) can be written as

Aq0,xx + 2Bq0,xy + Cq0,yy = 0,

where q0 = (ρ, σ, τ), and

A =


1
2 0 −1

2

0 1
2 0

−1
6 0 1

6

 , B =


0 0 0

0 0 −1
2

0 −1
6 0

 , C =


1
2 0 1

2

0 1
2 0

1
6 0 1

6

 .

The system is said to be elliptic, in the sense of I.G. Petrovsky [109], if the

determinant

|Aα2 + 2Bαβ + Cβ2| 6= 0,
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for any real numbers α, β 6= 0. We can check that for this system, we have

|Aα2 + 2Bαβ + Cβ2| ≡ 0.

for any real numbers α, β. Hence, the limiting problem (5.4.12)–(5.4.14) is not

an elliptic problem.

Proposition 5.4.3. There is no classical solution, q0 ∈ C2(Ω), of the limiting

problem (5.4.12)–(5.4.14), with the boundary conditions (5.1.11) (in the η → 0

limit) and (5.1.12), where η is the short edge length of the truncated unit square,

Ω.

Proof. As L2 →∞, the minimizers (q1, q2, q3) of the energy J in (5.3.1), with fel

as in (5.3.4), are constrained to satisfy

fdiv(q1, q2, q3) = (q1,x + q2,y − q3,x)2 + (q2,x − q1,y − q3,y)2 = 0, a.e. (x, y) ∈ Ω,

subject to the Dirichlet TBCs, (5.1.11) and (5.1.12). Up toO(L2), this corresponds

to the following PDEs for the leading order approximations, ρ, σ, τ :

(ρ− τ)x + σy = 0, (5.4.15)

σx − (ρ+ τ)y = 0, (5.4.16)

almost everywhere, subject to the same TBCs, ρ = qb, σ = 0, τ = − s+
6 , on ∂Ω.

As η → 0, the boundary conditions for ρ, σ, τ are piecewise constant, and hence

the tangential derivatives of ρ, σ and τ vanish on the long square edges. On

y = ±1, the tangential derivative (ρ− τ)x = 0, hence we obtain σy = 0 in (5.4.15).

Similarly, we have σx = 0 on x = ±1. This implies that ∂σ
∂ν

= 0 on ∂Ω, where ∂
∂ν

is the outward pointing normal derivative, and we view the equation (5.4.13) to



5.4. Asymptotic studies 160

be of the form

∆σ = f(x, y), ∂σ

∂ν

∣∣∣∣∣
∂Ω

= 0.

By the Hopf Lemma, when ∂σ
∂ν

= 0 on the boundary, we have σ ≡ 0. Following

the same arguments as in Proposition 5.3.3, this requires that τ ≡ − s+
6 , and

substituting τ ≡ − s+
6 into equations (5.4.15) and (5.4.16), we obtain ρx = ρy = 0,

contradicting the boundary condition (5.1.11). Hence, there are no classical

solutions of the system (5.4.12)–(5.4.14).

Although there is no classical solution of (5.4.12)–(5.4.14) subject to the imposed

boundary conditions, we can use finite difference methods to calculate a numerical

solution, see Figure 5.6. We label this solution, (ρ, σ, τ) ≡ (0, 0, s+3 ) on Ω, as the

Constant solution, where ρ and τ are discontinuous on ∂Ω.

Figure 5.6: Solutions, ρ, σ, τ , of the leading order Euler-Lagrange
system (5.4.12)–(5.4.14) in the L2 →∞ limit. Plots
of (from left to right) ρ, σ, τ , and (x, y, τ). Taken
from [2].

We now give a heuristic argument to explain the emergence of the Constant

solution in the interior of Ω, as L2 →∞. Assuming ρ = a, σ = b, and τ = c, where

a, b, c ∈ R are constants, we have fdiv = 0 in Ω, up to O(L2). On the boundary,

using finite difference methods, the first derivatives e.g., ρx, are calculated from

the difference between the interior value, and the value on the boundary i.e.,



5.4. Asymptotic studies 161

ρx|x=−1 = ρ|interior−ρ|boundary
h

= a−(− s+2 )
h

, where h is the size of the square mesh. We

compute the choices of a, b, and c, that ensure fdiv = 0 on the boundary, below:

(a+ s+

2 − c−
s+

6 )2 + b2 = 0 on x = −1,

(−a− s+

2 + c+ s+

6 )2 + (−b)2 = 0 on x = 1,

b2 + (−a+ s+

2 − c−
s+

6 )2 = 0 on y = −1,

(−b)2 + (a− s+

2 + c+ s+

6 )2 = 0 on y = 1,

and hence a = b = 0, c = s+
3 . Therefore, ρ = σ = 0, τ = s+

3 , is the unique

stable solution of (5.4.12)–(5.4.13), except for zero measure sets, and we label

(q1, q2, q3) = (0, 0, s+3 ) as the physically relevant Constant solution, in the L2 →∞

limit. This is consistent with the numerical results in Figure 5.6.

5.4.3 The λ→∞ limit

The set of minimizers of the thermotropic bulk energy density, fb, in the (q1, q2, q3)-

plane can be written as S = S1 ∪ S2, where

S1 =
{

(q1, q2, q3) : q2
1 + q2

2 = s2
+
4 , q3 = −s+

6

}
, S2 =

(
0, 0, s+

3

)
.

The λ → ∞ limit is equivalent to the vanishing elastic constant limit, and the

bulk energy density, fb, converges uniformly to its minimum value in this limit

[56].

Proposition 5.4.4. Let Ω ∈ R2 be a simply connected bounded open set with

smooth boundary. Let (qλ1 , qλ2 , qλ3 ) be a global minimizer of J(q1, q2, q3) in the

admissible class A0 when L2 > −1. Then there exists a sequence λk → ∞ such

that (qλk1 , qλk2 , qλk3 )→ (q∞1 , q∞2 , q∞3 ) strongly in W 1,2(Ω;R3) where (q∞1 , q∞2 , q∞3 ) ∈ S.
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If (q∞1 , q∞2 , q∞3 ) ∈ S1, i.e.,

q∞1 = s+ cos(2θ∞), q∞2 = s+ sin(2θ∞), q∞3 = −s+

6 ,

then θ∞ is a minimizer of ∫
Ω
|∇θ|2dA, (5.4.17)

in the admissible class

Aθ = {θ ∈ W 1,2(Ω); θ = θb on ∂Ω},

where the boundary condition, θb, is compatible with (q1, q2) on ∂Ω by the relation

(q1b, q2b) = s+
2 (cos(2θb), sin(2θb)). Otherwise, (q∞1 , q∞2 , q∞3 )(x, y) ∈ S2, i.e.,

(q∞1 , q∞2 , q∞3 ) =
(

0, 0, s+

3

)
.

Proof. Our proof is analogous to Lemma 3 of [56]. Firstly, we note that the limit-

ing solution, (q∞1 , q∞2 , q∞3 ), belongs to the admissible space A0. As in Proposition

5.3.4, we can show that theW 1,2-norms of the (qλ1 , qλ2 , qλ3 )’s are uniformly bounded.

Hence, there exists a weakly convergent subsequence, (qλk1 , qλk2 , qλk3 ), such that

(qλk1 , qλk2 , qλk3 ) ⇀ (q1
1, q

1
2, q

1
3) in W 1,2, for some (q1

1, q
1
2, q

1
3) ∈ A0, as λk →∞. Using

the lower semicontinuity of the W 1,2 norm with respect to the weak convergence,

we have that

∫
Ω
|∇(q1

1, q
1
2, q

1
3)|2 dA ≤

∫
Ω
|∇(q∞1 , q∞2 , q∞3 )|2 dA. (5.4.18)

The relation in (5.3.13) shows that

∫
Ω
f̄b(qλk1 , qλk2 , qλk3 ) dA ≤ 1

λ2
k

∫
Ω
fel(q∞1 , q∞2 , q∞3 ) dA→ 0 as λk →∞,

where f̄b = 1
L

(fb−min fb). Since f̄b(q1, q2, q3) ≥ 0, ∀(q1, q2, q3) ∈ R3, we have that,



5.4. Asymptotic studies 163

on a subsequence λkj ,

f̄b(q
λkj
1 (x, y), q

λkj
2 (x, y), q

λkj
3 (x, y))→ 0,

for almost all (x, y) ∈ Ω. We know that f̄b(q1, q2, q3) = 0 if, and only if,

(q1, q2, q3) ∈ S. On the other hand, the sequence (qλk1 , qλk2 , qλk3 ) converges weakly

in W 1,2 and, on a subsequence, strongly in L2 to (q1
1, q

1
2, q

1
3). Therefore, the

weak limit (q1
1, q

1
2, q

1
3) is in the set S a.e. Ω. If (q1

1, q
1
2, q

1
3) is in the set S1, then

|∇(q1
1, q

1
2, q

1
3)|2 = s2

+|∇θ1|2, where q1
1 = s+ cos(2θ1) and q1

2 = s+ sin(2θ1). Also,

recalling (q∞1 , q∞2 , q∞3 ) ∈ S1, we have that |∇(q∞1 , q∞2 , q∞3 )|2 = s2
+|∇θ∞|2, where

q∞1 = s+ cos(2θ∞) and q∞2 = s+ sin(2θ∞). If (q1
1, q

1
2, q

1
3) is in the set S2, then

(q∞1 , q∞2 , q∞3 ) = (q1
1, q

1
2, q

1
3) = (0, 0, s+3 ). Combining (5.4.18) with the definition of

(q∞1 , q∞2 , q∞2 ), we obtain that
∫

Ω |∇θ1|2 dA =
∫

Ω |∇θ∞|2 dA and therefore,

∫
Ω
|∇(q∞1 , q∞2 , q∞3 )|2 dA =

∫
Ω
|∇(q1

1, q
1
2, q

1
3)|2 dA

≤ lim inf
λkj→∞

∫
Ω
|∇(q

λkj
1 , q

λkj
2 , q

λkj
3 )|2 dA

≤ lim sup
λkj→∞

∫
Ω
|∇(q

λkj
1 , q

λkj
2 , q

λkj
3 )|2 dA

≤
∫

Ω
|∇(q∞1 , q∞2 , q∞3 )|2 dA,

which demonstrates that lim
λkj→∞

||∇(q
λkj
1 , q

λkj
2 , q

λkj
3 )||L2(Ω) = ||∇(q∞1 , q∞2 , q∞3 )||L2(Ω).

This, together with the weak convergence (q
λkj
1 , q

λkj
2 , q

λkj
3 )→ (q∞1 , q∞2 , q∞3 ), suffices

to show the strong convergence (q
λkj
1 , q

λkj
2 , q

λkj
3 ) → (q∞1 , q∞2 , q∞3 ) in W 1,2. Since

fb(q∞1 , q∞2 , q∞3 ) is constant for (q∞1 , q∞2 , q∞3 ) ∈ S1, we can recast our minimization

problem to minimizing the elastic energy alone i.e., minimization of the limiting

functional:

J∞[q1, q2, q3] =
∫

Ω
fel (q1, q2, q3) dA.

Substituting q1 = s+
2 cos(2θ), q2 = s+

2 sin(2θ), and q3 = − s+
6 , into J∞, we obtain a
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natural upper bound for the elastic energy density, which we utilized in (5.3.13):

J∞ = s2
+

(
1 + L2

2

) ∫
Ω
|∇θ|2 dA.

The corresponding Euler-Lagrange equation for (5.4.17) is simply the Laplace

equation:

∆θ = 0,

subject to θ = θb on ∂Ω, where (q1, q2, q3) = ( s+2 cos(2θb), s+2 sin(2θb),− s+
6 ) on

∂Ω.

For large λ i.e., large square domains, there are two classes of stable equilibria

which are almost in the set S1. The diagonal (D) states are such that the nematic

director (in the plane) is aligned along one of the square diagonals. The rotated

(R) states are such that the director rotates by π radians between a pair of opposite

square edges. There are 2 rotationally equivalent D states, and 4 rotationally

equivalent R states, and the corresponding boundary conditions in terms of θ

above are given by θb = θDb or θRb respectively, where


θDb = π

2 , on x = ±1,

θDb = 0, on y = ±1,



θRb = π
2 , on x = −1,

θRb = −π
2 , on x = 1,

θRb = 0, on y = ±1.

Illustrations of the typical director profile in the D and R states are presented in

Figure 2.2. In Figure 5.7, we plot a D and R solution with L2 = 3.5 and λ̄2 = 1000.

These configurations correspond to solutions of the Euler-Lagrange system (5.1.8)–

(5.1.10). In these plots we show the order parameter and director pair, (s2,n),

as well as the q3-component of the solution. We see that q3 is approximately

constant on Ω, except for near the square vertices.
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D RD RD RD RD RD RD RD RD RD RD RD RD RD RD RD R

Figure 5.7: The D and R solutions with L2 = 3.5 and λ̄2 = 1000.

In Figure 5.8, we study the effect of increasing L2 on a D state, with λ̄2 = 1000.

When L2 = 0, we see that q2
1 + q2

2 = s2+
4 , q3 = − s+

6 , almost everywhere on Ω. In

[74], the authors show that the limiting profiles, described in Proposition 5.4.4,

are a good approximation to the solutions of (5.1.8)-(5.1.10), for large λ. The

differences between the limiting profiles and the numerically computed D solutions

concentrate around the vertices, for large λ. A square vertex is referred to as

splay, or bend, according to whether the planar director rotates by π
2 , or −

π
2 ,

radians along a circle centered at the vertex, oriented in an anticlockwise sense.

As L2 increases, q3 deviates significantly from the limiting value q∞3 = − s+
6 , near

the square vertices; the deviation being more significant near the bend vertices

compared to the splay vertices. Notably, the value of q3 near the vertices increases

as L2 increases and, from an optical perspective, we expect to observe larger

defects near the square vertices for more anisotropic materials, with L2 � 1, on

large square domains.

5.4.4 The novel pWORS

For all λ > 0, and L2 = 0, the WORS is a solution of (5.1.8)–(5.1.10) given by

(q, 0,− B
6C ), where q satisfies (5.4.1). In Section 5.4.1, we study the Euler-Lagrange

equations, in the small λ and small L2 limit, up to O(L2); see (5.4.3)–(5.4.5).

However, g ≡ 0 is a solution of (5.4.4) for all λ, and so we need to consider terms
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Figure 5.8: The D solution with λ̄2 = 1000, and L2 = 0, 10, 30,
and 45, respectively.

of O(L2
2) when dealing with the q2 component. We assume that the solution,

(q1, q2, q3), of (5.1.8)-(5.1.10), can be expanded as follows:

q1(x, y) = q(x, y) + L2f(x, y) + L2
2ϕ(x, y) + . . .

q2(x, y) = 0 + L2g(x, y) + L2
2γ(x, y) + . . .

q3(x, y) = − B

6C + L2h(x, y) + L2
2µ(x, y) + . . .

Using the O(L2) equations in (5.4.3)–(5.4.5), with respect to the quadruples

(q, f, g, h), and rearranging, we can calculate the second order Euler-Lagrange

system given by the corresponding partial differential equations for ϕ, γ, µ as

shown below:

∆ϕ+ 1
2(h,yy − h,xx) =2Cλ2

L

{
q2(2ϕ− f) + q(3f 2 + g2 + 3h2)

−1
4(2f − q − 4ϕ)

(
q2 − B2

4C2

)}
,

(5.4.19)

∆γ − h,xy =2Cλ2

L

{
2qfg +

(
γ − 1

2g
)(

q2 − B2

4C2

)}
,

(5.4.20)
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∆µ+ 1
6(f,yy − f,xx)−

1
3g,xy =2Cλ2

L

{
2h
(
qf − B

C
h
)

+
(
µ− 1

6h
)(

q2 + B2

4C2

)}
+ 1

36(q,yy − q,xx),

(5.4.21)

where ϕ = γ = µ = 0, on ∂Ω. In Figure 5.9, we plot a branch of the γ solutions of

(5.4.20). As λ increases, we observe an increasing number of zeroes on the square

diagonals, where γ = 0.

Figure 5.9: The O(L2
2) contribution of q2, γ, with λ̄2 = 5, 100

and 500, respectively.

For any λ > 0, we can use the initial condition (q1, q2, q3) = (q + L2f, L2g +

L2
2γ,−

s+
6 + L2h) to numerically find a new branch of unstable solutions, referred

to as pWORS configurations in Figure 5.10. f, g, h, γ are the solutions of (5.4.3),

(5.4.4), (5.4.5), and (5.4.20), respectively. In the (q1, q2) plane, the pWORS has a

constant set of eigenvectors away from the diagonals, and has multiple ±1
2 -point

defects on the two diagonals, so that the pWORS is similar to the WORS, away

from the square diagonals. As λ increases, the number of alternating +1
2 and

−1
2 point defects on the square diagonals increases, for the numerically computed

pWORS. This is mirrored by the function γ, in (5.4.20), that encodes the second

order effect of L2 on the WORS.
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pWORS
pWORS

Figure 5.10: The pWORS with L2 = 3.5 and λ̄2 = 350, 1000
(top and bottom, respectively). We plot (from left
to right), s2, q1, q2, and q3, respectively.

5.5 Bifurcation diagrams

As explained in Section 5.2, we use the open-source package FEniCS [103] to

perform all the finite-element simulations, numerical integration, and stability

checks in this chapter [102], [103]. In what follows, we compute bifurcation

diagrams for the solution landscapes, as a function of λ̄2, for five different values

of L2.

For λ small enough, say λ < λ0, there is a unique solution for any value of L2;

see the results in Section 5.4. For L2 = 0, the unique stable solution, for λ small

enough, is the WORS. The unique solution deforms to the Ring+, with a central

+1-point defect, for L2 = 1 and L2 = 2.6. For L2 = 3 and L2 = 10, the unique

solution is the Constant solution, on the grounds that this solution approaches

the constant state, (q1, q2, q3) → (0, 0, s+3 ), in the square interior as λ → ∞. In

Figure 5.11, we plot the energies of the WORS, Ring+, and Constant solutions

for two distinct values of λ̄2, as a function of L2. The energy is taken to be

J [q1, q2, q3]−
∫

Ω
min fb dA,
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where J [q1, q2, q3] is as in (5.3.1), and min fb = fb(± s+
2 , 0,−

s+
6 ), so that the

energy is non-negative by definition. The WORS only exists for L2 = 0. The

Ring+ solution branch only gains stability for L2 large enough. The Constant

solution branch exists if L2 is large enough, and the Ring+ and Constant solution

branches coexist for some values of L2 (L2 ∈ [2.7, 3.4] for λ̄2 = 100, L2 ∈ [2.85, 5.5]

for λ̄2 = 200). When L2 is large enough, the Constant solution has lower energy

than the Ring+ solution and, as L2 further increases, the Ring+ solution ceases

to exist. When λ < λ0, there is unique solution for any L2 (see Proposition 5.3.4),

which means the WORS, Ring+, and Constant solution branches are connected.

+
+ +

+

Figure 5.11: Energy of the WORS, Ring+ and Constant solutions
verses L2 when λ̄2 = 100 and 200, respectively.

As mentioned in Section 5.2, we distinguish between the distinct solution branches

by plotting the two measures
∫

Ω q1(1 + x+ y)dxdy, and
∫

Ω q2(1 + x+ y)dxdy. In

addition to the WORS, Ring+, and Constant solutions, there also exist the un-

stable Ring−, and unstable pWORS solution branches with the same symmetries,

which are indistinguishable by these measures. Hence, they appear on the same

solution branch for all L2 > 0 in our bifurcation diagrams. The difference between

the Ring+, Ring−, WORS, Constant, and pWORS, can be spotted from the asso-

ciated q2-profiles. If q2 < 0 on x = y and x > 0, the corresponding solution is the



5.5. Bifurcation diagrams 170

Ring+ solution. If q2 > 0 on x = y and x > 0, the corresponding solution is the

Ring− solution. The Ring+ and Ring− solutions also exist for L2 = 0. If q2 ≡ 0,

the solution is either the WORS, or the Constant solution. If q2 has isolated zero

points on the square diagonals, the corresponding solution is the pWORS.

We numerically solve the Euler-Lagrange equations (5.1.8)-(5.1.10), with λ̄2 = 0.1,

by using Newton’s method to obtain: the unique stable WORS with L2 = 0; the

Ring+ solution, with L2 = 1 and L2 = 2.6 and; the Constant solution, with

L2 = 3 and L2 = 10. The initial condition is not important here, since the

solution is unique and the nonlinear term is small for λ̄2 = 0.1. We perform an

increasing λ̄ sweep for the WORS, Ring+ and Constant solution branches, and

a decreasing λ̄ sweep for the diagonal D, and rotated R solution branches. The

stable Ring+ branch, with L2 = 3, is obtained by taking the stable Ring+ branch,

with L2 = 2.6, as the initial condition for our numerical procedure. The unstable

WORS and Ring+ solutions are tracked by continuing the stable WORS and stable

Ring+ solution branches. If the Ring+ branch is given by (q1, q2, q3) for a fixed

L2 > 0, then the initial condition for the unstable Ring− solution is given by the

corresponding (q1,−q2, q3) solution, for any λ > 0. The initial condition for the

unstable pWORS branch is given by (q1, q2, q3) = (q+L2f, L2g+L2
2γ,−

s+
6 +L2h),

where q, f, g, h, γ are the solutions of (5.4.3)–(5.4.5), and (5.4.20), respectively,

for any λ > 0 (see Figure 5.10).

Consider the case L2 = 0. For λ < λ∗, there is the unique WORS. For λ = λ∗,

the stable WORS bifurcates into an unstable WORS, and two stable D solutions.

When λ = λ∗∗ > λ∗, the unstable WORS bifurcates into two unstable BD solution

branches, which are featured by isotropic lines or defect lines, localised near a

pair of opposite square edges. When λ = λ∗∗∗ > λ∗∗, unstable Ring± solutions

appear simultaneously. When L2 = 0, the Ring+ and Ring− solutions have the
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same energy, and so they are indistinguishable in Figure 5.12. Each unstable BD

solution branch further bifurcates into two unstable R solutions. As λ increases,

the unstable R solutions gain stability. The WORS has the highest energy amongst

the numerically computed solutions for L2 = 0, for large λ.
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Figure 5.12: Bifurcation diagram as a function of λ̄2, and corres-
ponding energy (J−

∫
Ω min fb dA) plot, for the LdG

model in square domain with L2 = 0.
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For L2 = 1, the WORS ceases to exist and the unique solution, for λ small enough,

is the stable Ring+ solution. At the first bifurcation point, λ = λ∗, the Ring+

solution bifurcates into an unstable Ring+ and two stable D solutions. At the

second bifurcation point, λ = λ∗∗ > λ∗, the unstable Ring+ bifurcates into two

unstable BD solutions, and for λ = λ∗∗∗ > λ∗∗, the unstable Ring− and unstable

pWORS solution branches appear. The Ring− and pWORS are always unstable.

When L2 6= 0, the Ring+ solution has lower energy than the Ring− solution. The

unstable pWORS has higher energy than the unstable Ring± solutions, when λ

is large. The picture for large λ is qualitatively similar to the L2 = 0 case, with

the BD solution branches bifurcating into two unstable R solutions, which gain

stability as λ increases.
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The solution landscape for L2 = 1, and L2 = 2.6, are qualitatively similar but,

for L2 = 2.6, the unique Ring+ solution, for small λ, is stable for λ̄2 ≤ 200, and

the unstable pWORS and Ring− appear for larger values of λ.

For L2 = 3, the unique stable solution for small λ is the Constant solution, which

is stable for λ̄2 ≤ 200. We can clearly see that the Constant solution approaches

(q1, q2, q3) → (0, 0, s+3 ) as λ gets large. The BD and D solution branches which,
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Figure 5.13: Bifurcation diagram and energy plot for L2 = 1.
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Figure 5.14: Bifurcation diagram and energy plot for L2 = 2.6.

for smaller values of L2 were connected to the unique solution branch for small

λ, are now disconnected from the stable Constant solution branch. For λ = λ∗,

the stable Ring+ solution appears and, for λ = λ∗∗ > λ∗, the unstable Ring− and

pWORS appear. Similarly to the solution landscapes for smaller values of L2, the

unstable BD bifurcate into two unstable R solutions which then gain stability for

larger λ.
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Figure 5.15: Bifurcation diagram and energy plot for L2 = 3.

For L2 = 10, the pWORS and Ring± states disappear, and the Constant solu-

tion does not bifurcate to any known states. The BD and D branches remain

disconnected from the stable Constant branch. As λ increases, the BD branches

bifurcate into two unstable R branches, which gain stability for λ large. As we

perform a decreasing λ sweep for the D or BD solution branches, we cannot find

a D or BD solution for λ < λD or λ < λBD, for λD and λBD small enough. For L2
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large enough, the Constant solution has lower energy than the R and D solutions

for large λ. For L2 large enough, we only observe the Constant solution branch.
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Figure 5.16: Bifurcation diagram and energy plot for L2 = 10.
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To summarise, the primary effect of the anisotropy parameter, L2, is on the unique

stable solution for small λ. The elastic anisotropy destroys the cross structure of

the WORS, and also enhances the stability of the Ring+ and Constant solutions.

A further interesting feature for large L2, is the disconnectedness of the D and R

solution branches from the parent Constant solution branch. This indicates novel

hidden solutions for large L2, which may have different structural profiles to the

discussed solution branches, and could be investigated in greater detail, in future

work.

In the next proposition, we prove a stability result which gives partial insight into

the stabilising effects of positive L2. Let (q1, q2, q3) be an arbitrary critical point

of the energy functional (5.3.1). As is standard in the calculus of variations, we

say that a critical point is locally stable if the associated second variation of the

energy (5.3.1) is positive for all admissible perturbations, and is unstable if there

exists an admissible perturbation for which the second variation is negative. To

this end, we consider perturbations of the form Q + εV, where V vanishes at the

boundary, ∂Ω. In the following proposition, we prove the stability of these critical

points with respect to two classes of admissible perturbations V, for large L2.

Proposition 5.5.1. For L2 ≥ λ2

L
c(A,B,C,Ω), where c is some constant depend-

ing only on A,B,C and Ω, the critical points of the energy functional (5.3.1) in

the restricted admissible space

A∗ = {(q1, q2, q3) ∈ A0 :
∫

Ω
|∇q1|2 ≤M1,

∫
Ω
|∇q2|2 ≤M2,

∫
Ω
|∇q3|2 ≤M3}

(whereM1,M2,M3 are constants depending only on A,B and C), are locally stable

with respect to the perturbations

V(x, y) = v1(x, y)(x̂⊗ x̂− ŷ⊗ ŷ) + v2(x, y)(x̂⊗ ŷ + ŷ⊗ x̂), (5.5.1)
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and

V(x, y) = v3(x, y)(2ẑ⊗ ẑ− x̂⊗ x̂− ŷ⊗ ŷ). (5.5.2)

Proof. To begin, consider the admissible perturbation (5.5.2). The second vari-

ation of the LdG energy (5.3.1), with respect to this perturbation, is given by

δ2F [v3] =
∫

Ω
(6 + L2)|∇v3|2 dA

+ λ2

L

∫
Ω
v2

3

{
6A− 12Bq3 + 72Cq2

3 + 6C(2q2
1 + 2q2

2 + 6q2
3)
}

dA,

where v3 ∈ W 1,2
0 (Ω). By an application of the Poincaré inequality, and use of the

relevant embedding theorem as in Proposition 5.3.4, there exists some constant

c0, which depends on the domain Ω, such that

∫
Ω

(6 + L2)|∇v3|2 dA = (6 + L2)
1 +K(Ω)

∫
Ω
|∇v3|2 dA + (6 + L2)K(Ω)

1 +K(Ω)

∫
Ω
|∇v3|2 dA

≥ (6 + L2)
1 +K(Ω) ||v3||2W 1,2(Ω)

≥ L2c0(Ω)||v3||2L4(Ω)

We will now restrict ourselves to studying critical points in the admissible space,

A∗, which respect the Dirichlet energy bounds for the scalar order parameters

q1, q2, q3. By applications of the Hölder inequality, and further applications of

the embedding theorem and Poincaré inequality in A∗, we have that there exists

some constant c1, depending only on A,B,C and Ω, such that

δ2F [v3] ≥ L2c0||v3||2L4(Ω) −
λ2

L
c1(A,B,C,Ω)||v3||2L4(Ω)

=
(
L2c0 −

λ2

L
c1

)
||v3||2L4(Ω) (5.5.3)

The quantity (5.5.3) is positive if, and only if, L2 ≥ λ2

L
c, where c := c1

c0
. Similarly,

we may consider the admissible perturbation (5.5.1). The second variation of the
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energy (5.3.1), with respect to this perturbation, is given by

δ2F [v1, v2] =
∫

Ω
(2 + L2)|∇v1|2 + (2 + L2)|∇v2|2 + 2L2(v1,xv2,y − v1,yv2,x) dA

+ λ2

L

∫
Ω

2A+ 4Bq3 + 2C(2q2
1 + 2q2

2 + 6q2
3)(v2

1 + v2
2) dA

+ λ2

L

∫
Ω

8C(q1v1 + q2v2)2 dA

Since v1, v2 ∈ W 1,2
0 (Ω), the term

v1,xv2,y − v1,yv2,x

is a null Lagrangian and hence, applying the same reasoning as before, we have

that there exist constants ξ0, ξ, depending only on A,B,C and Ω, such that

δ2F [v1, v2] ≥
(
L2ξ0 −

λ2

L
ξ1

)
(||v1||2L4(Ω) + ||v2||2L4(Ω)). (5.5.4)

The right hand side of (5.5.4) is positive if, and only if, L2 ≥ λ2

L
c where c := ξ1

ξ0
,

thus completing the proof.

5.6 Summary

We study the effects of L2 on stable nematic equilibria on a square domain, with

tangent boundary conditions - primarily focusing on the interplay between the

square edge length, λ, and the elastic anisotropy, L2. We study LdG critical

points with three degrees of freedom: q1 and q2, which measure the degree of

nematic order in the plane of the square, and q3, which measures the degree of

out-of-plane order in terms of the eigenvalue about ẑ. More specifically, q3 < 0

indicates that the nematic molecules prefer to align in the plane of the square,
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and q3 < 0 indicates they prefer to align in the ẑ-direction. We use symmetry

arguments on an eighth of the square domain, to construct a LdG critical point

for which q1 vanishes on the square diagonals, and q2 vanishes on the coordinate

axes. The WORS is a special class of these critical points for L2 = 0, with q2 ≡ 0

on the square domain. In particular, q2 cannot be identically zero for a reduced

LdG critical point, for L2 6= 0. This symmetric critical point is the unique LdG

energy minimizer for λ small enough, as follows from a uniqueness proof. There

are different classes of these symmetric critical points for large λ. We perform

asymptotic studies in the small λ, and large L2, limits and provide good asymptotic

approximations for the novel Ring+ and Constant solutions, both of which are

stable for small λ and relatively large values of L2, when these solutions exist.

We also provide asymptotic expansions for the novel unstable pWORS solution

branches, featured by alternating zeroes of q2 on the square diagonals. The WORS,

Ring±, Constant, and pWORS belong to the class of symmetric critical points

constructed in Proposition 5.3.2. The large λ-picture, for L2 6= 0, is qualitatively

similar to the L2 = 0 case, with the stable diagonal D and rotated R solutions.

The notable difference is the emergence of the competing stable Constant solution

for large L2, which is energetically preferable to the D and R solutions, for large

L2 and large λ. This suggests that for highly anisotropic materials with large L2,

the experimentally observable state is the Constant solution, with q2
1 + q2

2 ≈ 0 in

the square interior. In other words, the Constant state is almost perfectly uniaxial

with uniaxial symmetry along the z-direction, and will offer highly contrasting

optical properties compared to the D and R solutions. This offers novel prospects

for multistability for highly anisotropic materials.

Another noteworthy feature is the stabilising effect of L2, as discussed in Sec-

tion 5.5. The Ring+ solution has a central +1-point defect in the square interior,
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and is unstable for L2 = 0. However, it gains stability as L2 increases, and ceases

to exist for very large positive values of L2. We note some similarity with the work

on ferronematics in the next chapter, where the coupling between the nematic

director and an induced spontaneous magnetisation stabilises interior nematic

point defects, with L2 = 0. It remains an open question as to whether elastic

anisotropy, or coupling energies (perhaps with certain symmetry and invariance

properties), can stabilise interior nematic defects, and help us tune the locations,

dimensionality and multiplicity of defects for tailormade applications.



Chapter 6

Ferronematic equilibria on 2D

polygons

The directional dependent properties of NLCs make them the preferred working

material of choice for a plethora of electro-optic devices [29]. In recent years, there

has been substantial interest in controlling nematic directors, and defects, by

embedded inclusions e.g., dispersed colloidal nanoparticles, geometric frustration

leading to complex self-assembled structures, new bio-materials, and topological

materials etc. [28], [110]–[112]. In this chapter, we focus on dilute suspensions

of magnetic nanoparticles (MNPs) in a nematic host. Here, the NLC-MNP

interactions can lead to a spontaneous magnetization in addition to the nematic

directors, in the absence of any external fields. The two effects: magnetization

and nematic directors, are coupled by means of a nemato-magnetic mechanical

coupling. This coupling is dictated by the surface treatment of the MNPs [75],

[113]. In a purely NLC confined system, the sharp vertices of polygons play a key

role in stabilising multiple optically contrasting states by the control of location,

and multiplicity, of defects [74]. These 2D polygons thus have the potential to
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become a new unit of liquid crystal display devices, and a full ferronematic system

has yet to be fully studied in these geometries. In this chapter, we choose the

square domain with right angle vertices, the hexagon with an even number of

obtuse angle vertices, and the pentagon with an odd number of vertices, as generic

examples of 2D polygons to systematically demonstrate how the confined nematic

system responds to the inclusion of MNPs.

We present various new solutions for these nemato-magnetic systems, as will

be described in the sections below, which are not reported for the pure nematic

system in [74]. We show that, by tuning the model parameters, we can control the

location of interior magnetic and nematic defects and the multiplicity of solutions,

and we numerically observe stable solutions supporting magnetic domain walls.

6.1 Model formulation

We study partially ordered 2D systems on a square, pentagon and hexagon,

with nematic orientational order and polar magnetic order, motivated by recent

studies of dilute ferronematic suspensions [81]. As mentioned in Chapter 5, 2D

polygons are an excellent approximation to shallow three-dimensional wells with

a 2D polygon cross-section, such that the well height is much smaller than the

polygon edge length. From a modelling perspective, it is reasonable to assume

that the structural details are invariant across the well height, and it suffices to

model the ferronematic profiles on the 2D polygonal cross-section; this reduced

2D approach can be rigorously justified (see [70], [63]). These 2D systems have

two macroscopic order parameters: (i) the nematic order parameter, the Landau-

de Gennes Q-tensor order parameter, defined by (1.4.1); and (ii) a polar order

parameter, described by the average spatial magnetization vector, M = (M1,M2),
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of the suspended MNPs without external magnetic fields. In two dimensions, the

reduced LdG Q-tensor order parameter can be written as [74]:

Q = S(2n⊗ n− I),

where the nematic director, n = (cos θ, sin θ)T , describes the preferred in-plane

alignment of the nematic molecules, and S is the scalar order parameter which

measures the degree of orientational order about the planar director. Therefore,

Q has two independent components:

Q =

Q11 Q12

Q12 −Q11

 ,
where Q11 = S cos 2θ, and Q12 = S sin 2θ. In this framework, we will not detect

biaxial regions since trQ3 = 0, and we have trQ2 = |Q|2 = 2Q2
11 + 2Q2

12. We

assume that M is the spontaneous magnetization induced by the MNPs with

an internal magnetic moment, which interacts with n through surface anchoring

conditions on the MNP surfaces. We also will assume M has variable magnitude,

where magnetic vortices are defined by |M| = 0, and defective regions are identified

by reduced values of |M|.

6.1.1 The effective ferronematic free energy

We model the experimentally observable profiles as minimizers of an appropriately

defined energy, as in [80], [81], which in turn builds on the free energy descriptions

in [79], [113], [114]. The proposed free energy has three essential contributions: a

conventional nematic free energy that includes an elastic term to penalise spatial

inhomogeneities, and a bulk term for temperature-dependent ordering transitions;

a magnetic energy that coerces a preferred value of |M|, as in [113]–[115], and
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includes a Dirichlet energy density term to penalise arbitrary rotations between

M and −M; and crucially, a nemato-magnetic coupling energy parameterized by

a coupling parameter. To this end, we define the generalized total free energy by:

F [Q,M] =
∫

Ω

{
K

2 |∇Q|2 − A

2 trQ2 + C

4 (trQ2)2
}

dA

+
∫

Ω

{
κ

2 |∇M|2 − α

2 |M|
2 + β

4 |M|
4
}

dA

−
∫

Ω

γµ0

2 MTQM dA,

where Ω is our working domain, to be determined later. A is the same Landau

temperature coefficient from the fourth order bulk potential (1.4.6), with A = 0

at some characteristic transition temperature for the NLC. Analogously, we take

α = α0(T − Tc), where α0 > 0 is some constant, T is the absolute temperature in

the system, and Tc is a critical temperature for the spontaneous magnetization.

C and β are positive material-dependent constants, K > 0 is the nematic elastic

constant, and κ > 0 is an elastic constant related to the magnetic stiffness. The

Dirichlet energy density for M is, mathematically speaking, a regularisation term

and does not introduce new physics into the problem for judicious parameter

choices. Lastly, γ is the NLC-MNP coupling parameter, with µ0 > 0 representing

some material-dependent constant related to the magnetic susceptibility of the

composite material [76], [81], [116]. We note that from the form of the nemato-

magnetic coupling energy density, −γµ0
2 MTQM, positive γ favours (n ·M)2 = 1,

so the nematic directors prefer to be parallel or anti-parallel to M, whereas negat-

ive γ favours n ·M = 0, so the directors tend to be perpendicular to M (see [81]).

From [82], both cases of positive and negative γ are physically relevant, and γ may

be an experimentally tunable parameter. In the dilute limit, the nemato-magnetic

coupling energy contribution is the homogenized limit of a Rapini-Papoular type of

surface anchoring energy on the MNP surfaces [83]. Furthermore, in this limit we
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do not see the individual MNPs, but rather account for the collective NLC-MNP

interactions mediated by the surface anchoring energies in terms of this effective

nemato-magnetic coupling energy. In principle, one could use homogenization

methods to compute effective nemato-magnetic coupling energies, for arbitrary

MNP shapes, and other types of MNP surface anchoring energies e.g., we expect

the coupling energies to be different for platelet-shaped MNPs, but we adopt the

simplest approach here.

We assume our domain to be a regular 2D polygon, with a physical edge length

given by λ. We then define the rescaled 2D coordinates, x̄ := x
λ
, as well as

the rescaled nematic and polar magnetic order parameters, Q̄ :=
√

2C
|A|Q, and

M̄ :=
√

β
|α|M, respectively. We can thus define the following dimensionless

ferronematic free energy for which we will minimize in the rest of this chapter:

F̄ [Q̄, M̄] := C

A2λ2F [Q,M]

=
∫

Ω̄

1
4

{
`1|∇̄Q̄|2 + 1

4 |Q̄|
4 − |Q̄|2

}
dA

+
∫

Ω̄

ξ

2

{
`2|∇̄M̄|2 + 1

2 |M̄|
4 − |M̄|2

}
dA

−
∫

Ω̄

c

2M̄T Q̄M̄ dA,

(6.1.1)

where Ω̄ is the rescaled domain, ∇̄ is the gradient with respect to the new rescaled

spatial coordinates x̄, and dA is the rescaled area element. We will drop the ‘bars’

in the rest of this chapter, for brevity, but all calculations should be thought of

with respect to these rescaled coordinates and order parameters. There are four

key dimensionless parameters above:

`1 = K

|A|λ2 ; `2 = κ

|α|λ2 ; ξ = α2C

A2β
; c = γµ0

|A|

√
C

2|A|
|α|
β
,

which represent the rescaled nematic elastic constant, the rescaled elastic constant

associated with the magnetic stiffness, a magnetic coherence length, and the
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rescaled nemato-magnetic coupling parameter, respectively. We work with low

temperatures (A,α < 0) so that the bulk favours an ordered nematic and magnetic

phase, with |Q| 6= 0, |M| 6= 0. The total bulk potential is given by

1
4 |Q|

4 − |Q|2 + ξ|M|4 − 2ξ|M|2 − 2cMTQM;

for which the corresponding stationary points (in terms of c and ξ) are computed

in [117].

As is standard in the calculus of variations, the physically observable equilibria are

local or global minimizers of (6.1.1), subject to the boundary conditions. However,

unstable critical points of (6.1.1) play a crucial role in transition pathways between

distinct equilibria, see [118]. The critical points (stable or unstable) of (6.1.1) are

solutions of the associated Euler-Lagrange equations:

`1∆Q11 = Q̃Q11 −
c

2(M2
1 −M2

2 ),

`1∆Q12 = Q̃Q12 − cM1M2,

ξ`2∆M1 = ξM̃M1 − c(Q11M1 +Q12M2),

ξ`2∆M2 = ξM̃M2 − c(Q12M1 −Q11M2),

(6.1.2)

where ∆ is the two-dimensional Laplacian operator, and Q̃ =
(

1
2trQ2 − 1

)
and

M̃ = (|M|2 − 1). The phenomenological parameters, `1, `2, ξ and c, are typically

estimated from experimentally measured quantities, in the presence of external

magnetic fields [113], but the available data is limited. We investigate the sensitiv-

ity of the solution landscapes with respect to the rescaled elastic constants and c.

The elastic constants depend on the temperature, material-dependent constants

and the physical length λ of the domain, and hence, they are tunable parameters.

The parameter c depends on the ratios of material-dependent constants, and the

strength of the NLC-MNP interactions, so this could also be a tunable parameter.
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The last parameter, ξ, is the ratio of NLC material constants and MNP-dependent

constants, and again could be reasonably tuned in moderate regimes. For simpli-

city, we fix ξ = 1, and assume that the re-scaled nematic and magnetic elastic

constants satisfy `1 = `2 = `, unless stated otherwise. These choices improve

the efficiency of our numerical procedure, and allow us to capture the complex

solution landscapes. For a dilute system, we expect `2 to be (much) smaller than

`1, but the qualitative properties of the bifurcation diagrams remain unchanged

compared to the `1 = `2 case, with shifted bifurcation points. It now remains to

specify our choice of 2D domain, and boundary conditions for Q and M.

6.1.2 The working domains and boundary conditions

We focus on NLC-MNP systems in a square, pentagon, and hexagon; these three

examples are generic, and illustrate the role of geometry in defect-induced tailored

multistability. More specifically, we define our working domain, Ω, to be a regular

N -sided polygon, centered at the origin and, in our model problem, we take

N = 4, 5, 6. We note that the physical edge length, λ, has been absorbed into the

phenomenological parameters above. The polygon vertices are defined by

vk =
(

cos
(

2π(k − 1)
N

)
, sin

(
2π(k − 1)

N

))
(6.1.3)

for k = 1, . . . , N . The polygon edges are labelled counterclockwise, as C1, . . . , CN ,

such that C1 connects v1 to v2, and so on.

Boundary conditions are a crucial consideration for confined systems. We impose

fixed Dirichlet tangent boundary conditions for Q and M, which requires both

the nematic director, n, and M, to be tangent to the edges of Ω. Specifically, we

specify the boundary conditions for Q and M on the edges, Ck, for k = 1, . . . , N ,
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as follows:

(Q11b, Q12b) =
(
− cos

(
2π(2k − 1)

N

)
, sin

(
2π(1− 2k)

N

))
, (6.1.4)

and

(M1b,M2b) =
(

sin
(
π(2k − 1)

N

)
,− cos

(
π(2k − 1)

N

))
. (6.1.5)

These boundary conditions create a natural mismatch for the nematic director

at the polygon vertices, vk, making them natural candidates for defect sites [61],

[74], [88]. As was explored in previous chapters of this thesis, tangent boundary

conditions are well accepted for confined NLC systems, both experimentally and

theoretically; see [60]. We impose a fixed topologically non-trivial tangent bound-

ary condition for the spontaneous magnetization of the suspended MNPs. We

assume that M rotates by 2π radians around ∂Ω, which naturally leads to interior

magnetic vortices, offering a wonderful playground for exploring exotic solution

landscapes of these ferronematic systems. This is a purely theoretical choice for

the time being. For a dilute system, it is reasonable to assume that the boundary

conditions for the magnetization follow the tangent boundary conditions for the

nematic director. From an experimental perspective, in [119], the authors argue

that tangent boundary conditions for the spontaneous magnetization can arise

from energetic considerations. We speculate that, the boundary conditions for

the magnetization could be controlled, by applying an external magnetic field

to fix the orientation, and position, of the MNPs on the boundaries, followed

by the removal of the magnetic field, although this is largely open to the best

of our knowledge. There are multiple choices of boundary conditions for the

nematic director and the magnetization (including free boundary conditions for

the magnetization, or weak anchoring effects), but our choice of Dirichlet tangent
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boundary conditions offers rich possibilities, that could guide future experimental

studies on these lines.

6.1.3 Numerical methods

We numerically compute the solutions of the system (6.1.2), subject to the tangent

Dirichlet boundary conditions (6.1.4)–(6.1.5), which are necessarily critical points

of (6.1.1). In our simulations, we define the square domain separately from

the definition in (6.1.3). Here we set the square vertices at (−0.5,±0.5) and

(+0.5,±0.5), such that

(Q11b, Q12b,M1b,M2b) =



(−1, 0, 0,−1), on x = 0.5;

(−1, 0, 0, 1), on x = −0.5;

(1, 0, 1, 0), on y = 0.5;

(1, 0,−1, 0), on y = −0.5.

(6.1.6)

This is purely for computational convenience, and to make comparisons with the

numerical investigations in [81], and has no effect on the qualitative results. We

employ the same numerical procedure to compute the local minimizers of (6.1.1)

as in Chapter 5. For clarity, we use the DOLFIN library [101], from the popular

open-source computing platform FEniCS [102], to solve the weak formulation of

(6.1.2) (with ` = `1 = `2 and ξ = 1), given by

0 =
∫

Ω
`∇Q11 · ∇v11 +

(
Q̃Q11 −

c

2(M2
1 −M2

2 )
)
v11 dA,

0 =
∫

Ω
`∇Q12 · ∇v12 +

(
Q̃Q12 − cM1M2

)
v12 dA,

0 =
∫

Ω
`∇M1 · ∇u1 +

(
M̃M1 − c(Q11M1 +Q12M2)

)
u1 dA,

0 =
∫

Ω
`∇M2 · ∇u2 +

(
M̃M2 − c(Q12M1 −Q11M2)

)
u2 dA,
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for arbitrary test functions v11, v12, u1, u2. This nonlinear system is solved using

standard Finite Element Methods and Newton’s method [103], with a linear LU

solver for each iteration and with a tolerance set to 1e− 13. In our simulations,

we use a fixed triangular mesh for the domain, with Lagrange elements of order

1, for the spacial discretization. Due to the high multiplicity of the solutions,

convergence may be highly sensitive to the choice of initial condition. We will go

into more detail on the choice of initial condition in the next sections. We also

study the stability of the solutions by numerically calculating the smallest real

eigenvalue, λ1, of the Hessian of the reduced energy (6.1.1) with four degrees of

freedom, Q11, Q12, M1, and M2, using the LOBPCG method, as summarized in

Chapter 5 (also, see [106]). Essentially, λ1 > 0 is a signature of local stability,

and the numerical solution is unstable, if λ1 < 0. In the figures of our numerical

solutions, we regularly plot the scalar order parameter, S =
√
Q2

11 +Q2
12, labelled

by the colour chart, and the nematic director, n, shown by white lines, where n

is given by

n = (cos θ, sin θ), θ = 1
2atan2(Q12, Q11). (6.1.7)

These measures capture the nematic order parameter for the system. We also

plot the magnetization profile, with |M| =
√
M2

1 +M2
2 labelled by the colour

chart, and the accompanying white arrows describe the magnetic orientation,

(M1,M2)/|M|, for |M| 6= 0. We also compute bifurcation diagrams as a function

of `, the rescaled parameter which is inversely proportional to λ2. We plot solid

lines to represent stable solution branches, and dashed lines correspond to unstable

branches. The numerical computation of bifurcation diagrams requires continu-

ation techniques, for which we first locate different stable solutions, for fixed c and

`. Depending on the solution branch, we perform a increasing/decreasing ` sweep
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to produce these diagrams, and we plot two measures to distinguish between

separate solution branches:

∫
Ω
Q11 (0.5 + x+ y) dxdy, and

∫
Ω
Q12 (0.5 + x+ y) dxdy. (6.1.8)

We will now present our numerical findings for the square, hexagon, and pentagon.

We complement the investigation on a square with an asymptotic analysis of the

minimizers of (6.1.1), in the `→ 0 and `→∞ limits, which correspond to large

and small well-size limits, respectively.

6.2 Solution landscape on a square

We first recall the essential results for the purely nematic system (c = 0) in

a square domain from [64], where the authors track the Q-solutions of (6.1.2),

subject to (6.1.6), as a function of the square edge-length, λ, at a fixed temperature.

For large ` or small λ (` > 0.1 or λ < 10−7m approximately), there is a unique

WORS [52], distinguished by a pair of mutually orthogonal defect lines along

the square diagonals (with Q ≈ 0). The WORS is a special case of the more

general Ring solution for N -sided polygons, reported in [74], and exists for all

` > 0 on a square domain, with tangent boundary conditions (6.1.6) for Q. As

` decreases, the WORS loses stability, and bifurcates into two stable diagonal

(D) solutions, for which n aligns along one of the square diagonals in the interior.

As ` further decreases, there is a further bifurcation point, with two unstable

BD solution branches bifurcating from the WORS branch. The BD solutions

have two defect lines, parallel to a pair of opposite square edges, and the BD

solutions further bifurcate into 4 unstable rotated (R) solutions, as ` decreases.

The nematic director, n, rotates by π radians between a pair of opposite square
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edges for a R solution, and there are 4 rotationally equivalent R solutions, related

by a π
2 -rotation. The R solutions gain stability as ` decreases, and for ` small

enough (` < 10−3 or λ > 10−6m approximately), there are six distinct stable

nematic equilibria; 2 D solutions and 4 R solutions. We presented illustrations of

the typical nematic director profile in D and R solutions, in Figure 2.2.

These “small `” solutions can also be distinguished by the director orientation

at the domain vertices and, for the purposes of this chapter, we introduce some

terminology. The D solutions have two diagonally opposite splay vertices, such

that the corresponding director, n = (cos θ, sin θ), has a splay pattern near the

splay vertex. At a splay vertex, θ rotates by 2π
N
− π, where N is the number of

polygon edges. In contrast to the D solutions, each R solution has a pair of splay

vertices connected by a square edge. The director orientation on the remaining

vertices displays a bend pattern, and so we refer to these as bend vertices. Here,

θ rotates by 2π
N
. We include an illustration of a typical splay and bend vertex, in

Figure 6.1.

Figure 6.1: Director orientation at a splay and bend vertex.

Our main results in this section include:

• The computation of solution landscapes for positive and negative coupling,

c, as a function of `, with multistability being strongly enhanced in the

c < 0 regime, as ` decreases.
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• The existence of solutions with a pair of +1
2 interior nematic point defects,

for ` small enough, coerced by the interior magnetic vortex at the square

center.

• Heuristic arguments for the multistability in “large” domains by considering

the asymptotic of minimizers in the `→ 0 limit.

• The unique energy minimizer loses the cross structure of the WORS in the

nematic profile, for ` large enough and c 6= 0, and minimizers in the `→∞

limit are shown to make good numerical approximations.

For the ferronematic configurations, (Q,M), we consider the c > 0, and c < 0,

cases separately. For positive c, we observe the coexistence of stable (Q,M)

profiles, with nematic defects pinned at the polygon vertices, and magnetic domain

walls along polygonal diagonals, and polygon edges, that separate distinct domains

of magnetization. These profiles maintain the typical D and R profiles for Q,

whilst M is coerced to align parallel to n. We present the numerical solutions

in Figure 6.2, for ` = 10−3 and c = 0.25. In this figure, and all subsequent

figures, the nematic profiles are shown in the top row, and magnetization profiles

in the bottom row. These configurations are in accordance with the numerical

investigations of [81], and we find that solutions with magnetic domain walls

become increasingly difficult to find, as c increases.
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D

R

Figure 6.2: The plots of two D and four R solutions with ` = 10−3

and c = 0.25.

We observe a novel feature for c > 0 and ` small enough. By taking the D solution

(for c = 0) as the initial condition in our numerical procedure, we find 2 solutions

with a pair of +1
2 interior nematic point defects, along one of the square diagonals,

and a corresponding magnetic vortex at the square center. We refer to this class

of (Q,M)-solutions as the Peppa solution. The Peppa solutions are stable for

c = 0.25, and we speculate that they exist for all c > 0 but are unstable for

c = 0. The corresponding M-profiles have a smeared out vortex along the line

connecting the nematic defect pair. We present the (Q,M)-profiles for the two

Peppa solutions in Figure 6.3, for c = 0.25 and ` = 10−3.
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D

R

D

R

Figure 6.3: The two Peppa solutions with ` = 10−3 and c = 0.25.

Our numerical observations for c > 0 are an interesting example of how nemato-

magnetic coupling stabilises domain walls in M (for the D and R solutions in

Figure 6.2), and interior point defects in Q (for Peppa solutions in Figure 6.3).

We present the bifurcation diagram as a function of `, for c = 0.25, in Figure 6.5.

In comparison with the bifurcation diagram for c = 0, the qualitative features

are relatively unchanged for c > 0, apart from the addition of the Peppa solution

branches. For c = 0 and ` large enough, the unique Q-solution is the WORS

reported in [52], and the unique M-solution has a magnetic vortex of degree +1

(determined by the degree of the boundary conditions) at the square centre. For

c 6= 0 and ` finite, the WORS loses its defect cross structure, and collapses into the

unique Ring solution, with a circular nematic +1-degree point defect, analogous

to the magnetic vortex, at the square centre. We refer to this solution branch,

which is unique and globally stable for ` large enough, as the Ring branch. This

solution branch exists for all ` > 0, but loses stability as ` decreases. The Ring

solution branch is distinguished by Q11 = 0 nodal lines along the square diagonals,

and Q12 = 0 along the coordinate axes, {x = 0} ∪ {y = 0}. We present the Ring

solution for c = 0.25, and ` = 0.05, in Figure 6.4. We include plots of Q, and
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the corresponding M profile, as well as the components Q11, Q12,M1, and M2.

As ` decreases, the Ring branch loses stability, and bifurcates into two stable D

Figure 6.4: The Ring solution for c = 0.25 and ` = 0.05.

solutions (with regards to the Q-solutions). The corresponding M-profiles have

domain walls (with reduced |M|) along the corresponding square diagonals. As we

will explain below, these domain walls correspond to a π-rotation in the M-vector.

As ` decreases further, the unstable Ring branch bifurcates into two unstable

BD branches (with regards to the Q-solutions). Each BD solution bifurcates

into two unstable R solutions, which gain stability when ` is small enough. The

M-solutions, corresponding to the stable R solutions, exhibit a domain wall along

the square edge with the two splay vertices. The stable D solutions bifurcate into

two Peppa solution branches that have two +1
2 -nematic defects along the square

diagonal, for ` small enough. We also present orthogonal 2D projections of the

bifurcation diagram, in Figure 6.5, which plot the two measures, (6.1.8), versus `,

respectively.
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Figure 6.5: Bifurcation diagram for (6.1.1) as a function of ` on
a square domain with c = 0.25.
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The picture with negative c is more complex. In this regime, n and M tend to

be perpendicular to each other in the polygon interior, and this naturally creates

fascinating boundary layers near the polygon edges. We effectively double the

number of stable states for small `, compared to the results in [74], for c = 0.

These stable states are distinguished by vertex defects for Q, and vertex vortices

for M, and illustrate how c < 0 strongly enhances multistability in the square.

Informally speaking, the symmetry between the splay vertices is broken in the

nematic D solution, rendering 4 different D profiles for negative c. One splay

vertex is more asymmetric than the other splay vertex, and the corresponding M-

profile orients perpendicular to the the nematic director (which follows a diagonal

D profile), with the magnetic vortex localised near the asymmetric splay vertex.

In the same vein, when ` is small enough, we find 8 stable R solution branches.

The reasoning for observing twice the number of R solutions for the Q-solution

profile, for negative c, is the same as for the D solutions. The symmetry between

the splay vertices is broken for the R solutions, with one splay vertex being more

defective/asymmetric than the other splay vertex. The corresponding M-profiles

again orient perpendicular to the nematic director, and the magnetic vortex

localises near the more asymmetric splay vertex. We plot the four D solutions,

and eight R solutions, in Figure 6.6, for c = −0.25 and ` = 10−3.
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D

RD

R

Figure 6.6: The plots of four D and eight R solutions with ` =
10−3 and c = −0.25.
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Additionally, for small `, we find twice as many Peppa solutions as were found

for c > 0. These stable (Q,M)-profiles are also distinguished by a pair of interior

+1
2 -nematic point defects along one of the square diagonals, accompanied by

the interior magnetic vortex in the M-profile. The novelty for c < 0 is that

we find two separate classes of these configurations, referred to as Peppain and

Peppaout solutions, which have M pointing into, or out of, the interior magnetic

vortex, respectively. We present plots of the (Q,M)-profiles for the two Peppain,

and two Peppaout, solutions in Figure 6.7, for c = −0.25 and ` = 10−3. The

new Peppain and Peppaout solutions, for c = −0.25, are obtained by taking the

profiles (Q, (M2,−M1)) and (Q, (−M2,M1)), respectively as initial conditions,

where (Q,M = (M1,M2)) is the Peppa solution for c = 0.25.
D

R

D

R

Figure 6.7: Plots of the two Peppain and two Peppaout solutions
with ` = 10−3 and c = −0.25.

The case of negative c illustrates how we can use nemato-magnetic coupling to

break symmetry, increase the multiplicity of stable solutions (for small `), and

generate exotic permutations of defect profiles in Q and M, all of which offer new

prospects for engineered multistability. In Figure 6.9, we explore the solution

landscape as a function of `, for c = −0.25. There are striking novelties here.
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For ` large, we observe the unique Ring branch, which is globally stable for

large `, and exists for all ` > 0. The Ring branch loses stability as ` decreases.

We note that the Ring profile for small `, and c = −0.25, is different from its

positive coupling counterpart at c = 0.25. This is essentially because n and M

tend to be perpendicular in the square interior, since c < 0. In particular, the

Q-solution in the Ring branch adopts a hyperbolic-like central nematic defect

structure, in sharp contrast to the vortex structure, for c = 0.25. The M-

profile has an interior magnetic vortex because of the topologically non-trivial

Dirichlet conditions, as explained above. We present the (Q,M)-profiles, and

the corresponding Q11, Q12,M1, and M2 components, for the Ring solution with

c = −0.25 and ` = 0.05, in Figure 6.8. As ` decreases, the Ring branch bifurcates

Figure 6.8: The Ring solution for c = −0.25 and ` = 0.05.

into the 4 stable D solutions, presented in Figure 6.6. This is notably different

from the c ≥ 0 case. We no longer find unstable BD profiles for c < 0, and

the 8 stable R configurations, and Peppain, Peppaout solution branches, are not

connected in our numerical search. The bifurcation diagram in Figure 6.9 once

again plots the measures (6.1.8) versus `, and we also plot the 2D orthogonal

projections below.
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6.2.1 The `→ 0 limit

In this section, we study the asymptotics of minimizers of (6.1.1), in the ` → 0

limit, which is relevant for macroscopic domains on the length scale of microns,

or larger. We have seen that, as ` decreases, the multiplicity of stable (Q,M)-

solutions in the square increases, and the solution landscape becomes increasingly

complicated. Recall that for `1 = `2 = `, ξ = 1, the dimensionless free energy of

this NLC-MNP coupled system is given by:

F [Q,M] =
∫

Ω

1
4

{
`|∇Q|2 + 1

4 |Q|
4 − |Q|2

}
dA

+
∫

Ω

1
2

{
`|∇M|2 + 1

2 |M|
4 − |M|2

}
dA

−
∫

Ω

c

2{Q11(M2
1 −M2

2 ) + 2Q12M1M2} dA.

(6.2.1)

In a 2D framework, we can parameterize Q and M as:

Q11 = S cos(2θ), Q12 = S sin(2θ), M1 = R cos(φ), M2 = R sin(φ),

where θ, φ, are orientation angles for n, and M, respectively. We note that

|Q|2 = 2S2, and |M| = R. Substituting the parameterization above into (6.2.1),

we obtain,

1
`
F [S,R, θ, φ] =

∫
Ω

{1
2 |∇S|

2 + 2S2|∇θ|2
}

dA

+
∫

Ω

{1
2 |∇R|

2 + 1
2R

2|∇φ|2
}

dA

+ 1
`

∫
Ω

{1
4S

4 − 1
2S

2 + 1
4R

4 − 1
2R

2
}

dA

−
∫

Ω

c

2`SR
2 cos(2(θ − φ)) dA.

For c > 0 and small `, we numerically solved for two D solutions and four R

solutions, with nematic profiles similar to purely nematic solutions with zero

coupling, as seen in Figure 6.2. The M-profiles were less affected too, as they
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retain the interior central magnetic vortex, with some distortion. The case of small

` and c < 0, where n prefers to align perpendicular to M, is more complicated.

The four D and eight R solutions we find in this regime, keep the nematic defect

sites pinned to the vertices of the square well, but the magnetic vortex in the

M-profile is coerced to a square vertex - breaking a line of symmetry. These

solutions were presented in Figure 6.6. Heuristically, the coupling energy density,

− c
2`SR

2 cos(2(θ − φ)), determines the preferred relative orientation of n and M.

If c > 0, this term is minimized when

θ = φ+ πk, k ∈ Z (6.2.2)

i.e., when the director angle, θ, and the magnetization angle, φ, differ by a multiple

of π, so that (n ·M) = ±1. In particular, the coupling energy does not distinguish

between M and −M, and the energetic term, |∇M|2, penalises such arbitrary

rotations. If c < 0, the coupling energy is minimized when

θ = φ+
(

2k + 1
2

)
π, k ∈ Z (6.2.3)

i.e., when the director angle, θ, and the magnetization angle, φ, differ by an odd

multiple of π
2 , so that n ·M = 0.

In [117], the authors compute the minimizers, (Sc, Rc), of the bulk potential

f(S,R, θ, φ) =
(1

4S
4 − 1

2S
2
)

+
(1

4R
4 − 1

2R
2
)
− c

2SR
2 cos(2(θ − φ)).

They show that

Sc =

 |c|4 +

√√√√ c2

16 −
1
27

(
1 + c2

2

)3


1/3

+

 |c|4 −
√√√√ c2

16 −
1
27

(
1 + c2

2

)3


1/3

;

Rc =
√
|c|Sc + 1.
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As ` → 0, for a fixed c, minimizers of (6.2.1) converge to appropriately defined

minimizers, (Q∗,M∗), where |Q∗| =
√

2Sc, |M∗| = Rc, almost everywhere away

from the polygon edges. This is in accordance with our numerical simulations

for small ` and c = ±0.25, where the value of S, and R, approach 1.1 in the

interior of the domain. We see that for c = ±0.25, Sc ≈ 1.07 and Rc ≈ 1.12. The

corresponding orientation angles, θ∗ and φ∗, are solutions of the Laplace equation

(∆θ = 0 and ∆φ = 0, respectively), and θ∗ and φ∗ are related by (6.2.2) for c > 0,

and (6.2.3) for c < 0, respectively, away from the polygon edges.

We can illustrate these concepts by considering the diagonal solutions in Figure 6.2,

and the corresponding M-profiles with domain walls along the square diagonals.

For c > 0 and small `, the preceding discussion suggests that θ and φ only differ by

a multiple of π in the interior. Let c = 0.25, and consider one of the D solutions.

The corresponding boundary conditions for θ are

θ =


π
2 , x = ±0.5;

0, y = ±0.5.

However, this does not agree with the boundary conditions for φ, which are fixed

by the boundary condition on M, given by the Dirichlet conditions (6.1.6) i.e.,

φ =



0, y = 0.5;

π, y = −0.5;
π
2 , x = −0.5;
3π
2 , x = 0.5.

Comparing the boundary conditions for θ, for this D solution, and φ above, along

with the constraints imposed by (6.2.2), we deduce that θ ≈ φ, for y ≥ x, and

φ ≈ θ + π, for y < x. Hence, there is a π-wall in the corresponding M-profile

along x = y (see Figure 6.2). Analogous comments apply to the second D solution
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(the second column in the first two rows of Figure 6.2), where we observe a π-wall

in the M-profile, along y = −x, such that φ flips by π radians across the wall.

M 6= 0 on either side of the π-wall in these figures, so these domain walls separate

ordered magnetic polydomains. We refer to such π-walls as domain walls for

the remainder of this chapter. In Figure 6.2, there are also 4 stable R solutions,

labelled by say, R1, . . . , R4. These rotated states can be defined by their boundary

conditions on the director angle e.g.,

R1 : θ(x,±0.5) = 0; θ(−0.5, y) = 3π
2 ; θ(0.5, y) = π

2 ,

R2 : θ(±0.5, y) = π

2 ; θ(x,−0.5) = 0; θ(x, 0.5) = π,

R3 : θ(x,±0.5) = 0; θ(−0.5, y) = π

2 ; θ(0.5, y) = 3π
2 ,

R4 : θ(±0.5, y) = π

2 ; θ(x,−0.5) = π; θ(x, 0.5) = 0.

These boundary conditions are incompatible with the boundary conditions for φ

in (6.1.6). In the ` → 0 limit, with fixed c > 0, we need θ and φ to differ by a

multiple of π almost everywhere. Comparing (6.1.6) with the above, we deduce

that the M-profile, corresponding to R1, has a domain wall near the edge y = 0.5

i.e., φ rotates from φ = 0, to φ = π, across a domain wall parallel to y = 0.5, as

can be clearly seen from the first column, of the fourth row, in Figure 6.2. In

other words, θ ≈ φ for y < 0.5, and φ ≈ θ + π on y = 0.5. Analogous remarks

apply to the M- profiles corresponding to R2, . . . , R4, where we observe domain

walls along one of the square edges, such that θ ≈ φ on one side of the wall, and

|θ − φ| = π on the other side that contains the square edge in question.

The Peppa solution branch for positive coupling, is an example of the nematic

profile being tailored by the magnetization profile. The boundary conditions

for φ are fixed in (6.1.6), but the boundary conditions for θ are not fixed by

(6.1.6), except that 2θ is a multiple of 2π, on y = ±0.5, and that 2θ is an odd
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multiple of π, on x = ±0.5. In other words, θ can also assume the topologically

non-trivial boundary conditions satisfied by φ, and this is indeed observed in the

Peppa solution branch, for which the corresponding nematic director rotates by

2π radians along the boundary. The 2π rotation around the square perimeter

necessarily means that n must have interior topological defects, with a total

charge of +1. For topological and energetic reasons, the +1-defect splits into two

non-orientable +1
2 -nematic defects in the interior, conserving the total topological

charge. This is allowed in the reduced LdG framework, since the Q-tensor includes

non-orientable director fields, outside the scope of a vector field description. By

contrast, the corresponding M-profile has a single interior +1-vortex due to

orientability constraints.

To summarize, for small ` and c > 0, the D and R solution branches illustrate

that the nematic profile can generate domains walls in the M-profile, and the

Peppa solution branch demonstrates how the topologically non-trivial M-profile

can stabilise interior nematic point defects. The story with negative c is more

complex and fascinating, as we describe below.

We consider the diagonal solutions in Figure 6.6, for c = −0.25. Consider D1,

such that the nematic director, n, is aligned along the square diagonal y = x. The

corresponding M vector tends to be perpendicular to n in the interior, so that

φ ≈ 3π
4 , or φ ≈ −π

4 , along y = x. Furthermore, the negative coupling breaks the

symmetry between the two diagonally opposite splay vertices at (0.5, 0.5), and

(−0.5,−0.5). In the first column of the first row, the splay vertex at (0.5, 0.5) is

“more defective” than the second splay vertex, in the sense that |Q|(0.5, 0.5) <

|Q|(−0.5,−0.5), and in the first column of the second row we see that φ ≈ 3π
4

along y = x, for the corresponding M-profile. Similarly, in the third column of

the first and second rows, the splay vertex at (−0.5,−0.5) of the D1 solution is



6.2. Solution landscape on a square 209

more defective than the splay vertex at (0.5, 0.5), and φ ≈ −π
4 along y = x, for the

corresponding M-profile. Analogous remarks apply to the D2 solution, with two

splay vertices at (−0.5, 0.5), and (0.5,−0.5), respectively, with φ ≈ π
4 , or φ ≈

5π
4 ,

along y = −x. These can be seen in the second and fourth columns, of the first

two rows, in Figure 6.6. The same reasoning applies to the 8 rotated solutions

in the last four rows of Figure 6.6, for c = −0.25. Each of the rotated solutions

for the Q-profile is distinguished by two splay defects along one of the square

edges. For each rotated solution, we have θ ≈ 0, or θ ≈ π
2 , at the square centre,

which occurs when the two splay vertices are pinned to one of the edges, y = ±0.5

or x = ±0.5, respectively. Each possibility for the director angle generates two

possibilities for the corresponding M-profiles, and the approximate value of φ,

seen in the fourth and sixth rows of Figure 6.6. For example, φ ≈ π
2 or 3π

2 if

θ ≈ 0 at the square centre, for the M-profile, since negative c coerces θ and φ

to differ by an odd multiple of π
2 . For the same reason, φ ≈ 0 or π when θ ≈ π

2 .

The negative coupling further breaks the symmetry between the splay vertices, so

that one vertex is “more asymmetric” than the other. This doubles the number of

admissible rotated solutions. These heuristic arguments corroborate the existence

of 8 rotated (Q,M)-stable solution profiles for small `, with c = −0.25.

Additionally, we find the Peppa solution branches with stable interior nematic

defects, as with positive c. For c < 0, θ and φ tend to differ by an odd multiple of
π
2 in the square interior, as `→ 0. In particular, this implies two choices for φ in

the square interior, resulting in the Peppain and Peppaout branches. There are two

Peppain solution branches, since the nematic defect pair can align along one of

two square diagonals. Similarly, there are two Peppaout solution branches by the

same reasoning. The case of negative coupling strongly enhances multistability for

small `, effectively doubling the number of admissible stable states compared to
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positive coupling (compare Figures 6.5 and 6.9). We do not observe domain walls

in M for negative coupling, rather we observe magnetic vortices at the square

vertices, which are induced by the D and R nematic profiles. These corner defects

may act as distinguished sites/binding sites for devices based on such NLC-MNP

systems.

6.2.2 The `→∞ limit

The `→∞ limit is relevant for small nano-scale domains. Mathematically, this

limit is much simpler than the ` → 0 limit, since we lose the nemato-magnetic

coupling contribution, in this limit. Referring to [69], the leading order equations,

in this limit, are:
∆Q = 0,

∆M = 0,
(6.2.4)

subject to the Dirichlet conditions (6.1.6). The limiting solution is unique. It is

straightforward to recover the WORS for the Q-profile, and to show that there

is a magnetic vortex of degree +1 at the square centre (with M(0, 0) = 0), for

the M-profile, in this limit. However, we see (at least numerically) that for c 6= 0,

for sufficiently large but crucially, finite values of `, we lose the cross structure of

the WORS, and we have |Q12| 6= 0 in the interior of the square. This is precisely

the solution along the Ring branch for large `, in the bifurcation diagrams in

Figures 6.5 and 6.9, which is the unique energy minimizer in this limit. The

Ring solution branch is distinguished by Q11 = 0 nodal lines, along the square

diagonals, and Q12 = 0, along the coordinate axes, {x = 0} ∪ {y = 0}, as shown

in Figures 6.4 and 6.8.
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Following the methods in [69], the limiting solution, (Q∞,M∞), of (6.2.4) is an

excellent approximation to the solutions, (Q`,M`), of (6.1.2), for fixed c, subject to

the same boundary conditions, for ` large enough i.e., |(Q`,M`)− (Q∞,M∞)|2 ∼
1
`2
. Hence, these solutions can be physically relevant for physically attainable, but

large values of `. The unique limiting solution, (Q∞,M∞), remains an excellent

approximation to the Ring solution, even for values of ` as small as unity. We

demonstrate this by comparing two solutions along the Ring branch, for ` = 1

and ` = 100, denoted by (Q1,M1) and (Q100,M100), respectively. The solution

(Q100,M100) is effectively identical to the limiting solution, (Q∞,M∞) described

above, and serves as our numerical limiting solution. We define the components

of Q1,Q100,M1, and M100, as:

(Q11, Q12)|`=1 = S1(cos 2θ1, sin 2θ1),

(Q11, Q12)|`=100 = S100(cos 2θ100, sin 2θ100),

(M1,M2)|`=1 = R1(cosφ1, sinφ1),

(M1,M2)|`=100 = R100(cosφ100, sinφ100).

In Figure 6.10, we plot the (Q1,M1) Ring solution profile, for c = 0.25, the

constituent components Q11, Q12,M1,M2, and the differences between the dir-

ector and magnetization orientation angles, given by S1S100 sin(2θ100 − 2θ1) and

R1R100 sin(φ100 − φ1), respectively. We see that these differences are of the order

of 10−4, for both positive and negative values of c, from which we deduce that

(Q∞,M∞) is a reliable approximation to (Q`,M`) along the Ring branch, for

` ≥ 1.
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Figure 6.10: The Ring solution with c = 0.25. Plots in the first
row from left to right are: Q1; the Q11 and Q12
components; and the difference S1S100 sin(2θ100 −
2θ1). The second row from left to right shows: the
corresponding M1; the M1 and M2 profile; and the
difference R1R100 sin(φ100 − φ1).

6.3 Ferronematics on 2D hexagons

Next, we consider a NLC-MNP suspension on a 2D regular hexagon, subject to

the Dirichlet conditions for Q and M in (6.1.4) and (6.1.5), for N = 6 respectively.

The purely nematic case, c = 0, has been well studied in [74]. For large `1 =

`2 = ` and c = 0, there is a unique Ring solution on the hexagon, for which the

corresponding Q and M profiles have a single +1-vortex at the centre of the well.

This Ring solution branch loses stability as ` decreases. In the limit of small `,

with c = 0, there are at least 15 different stable states, with topologically trivial

boundary conditions i.e.,

deg(nb, ∂Ω) = 0. (6.3.1)

This represents the winding number, or kink number (referring to the terminology

in [120]), of nb considered as a map from ∂Ω into S1, where nb and Qb are related
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by the following:

Qb =

Q11b Q12b

Q12b −Q11b

 = (2nb ⊗ nb − I) . (6.3.2)

These 15 states are categorised by permutations of defects which are pinned to

the hexagon vertices. There are 6 vertices, two of which have +1
3 -charge (referred

to as the splay vertices), and four of which have −1
6 -charge (referred to as the

bend vertices). We presented illustrations of the typical director orientation at

the splay and bend vertices, in Figure 6.1. These 15 solutions are split into 3

rotationally invariant classes: (i) the 3 Para states, where the splay defects are

opposite each other; (ii) the 6 Meta states, where the splay defects are separated

by one vertex; and (iii) the 6 Ortho states, where the splay defects are connected

by an edge. We give illustrations of the typical director orientation for a Para,

Meta and Ortho state in a hexagon, in Figure 6.11.

Figure 6.11: Nematic director orientation for the Para, Meta,
and Ortho states in a hexagon.

In [74], the authors show that as ` decreases, the unique Ring solution bifurcates

into either, the three stable Para states, or three unstable BD solution branches.

The BD solutions in a hexagon, much like in a square, serve as transition states

for the six Meta states, which gain stability, for ` small enough. As ` decreases

further, they find the six stable Ortho states.
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The main results of this section are as follows:

• Multistability is strongly enhanced in the negative coupling regime, as `

decreases, and the increase in the number of polygon vertices increases the

number of potential defect sites.

• In the c > 0 regime, solutions with magnetic domain walls are hard to find

for ξ = 1, and rely on a judicious interplay of ξ and c to be observed.

For a square domain, we observe diagonal (D) and rotated (R) solution branches

for ` small enough, for c = 0.25, for which the corresponding M-profile exhibits a

domain wall either along a square diagonal, or along a square edge, respectively.

These domain walls are characterized by a sharp drop in |M| compared to the

surrounding values. It is evident that these domain wall M-profiles are increasingly

difficult to find in a hexagon for positive c, and in a pentagon as will be shown later.

Therefore, in contrast to a square domain, we lose the Para, Meta, and Ortho

solutions for c > 0. We will explore this in greater detail, but magnetic domain

walls connecting pairs of diagonally opposite vertices for the Para-nematic state

on a regular hexagon, have greater length than their corresponding counterparts

on a square domain. Magnetic domain walls for Meta-nematic states have lesser

symmetry. Heuristically, this may explain the absence of magnetic domain walls

in stable (Q,M)-profiles on a hexagon, with c = 0.25.

For positive c and ` small enough, we only recover three Peppa solution branches,

featured by a pair of stable interior +1
2 -nematic defects aligned along one of the

hexagon diagonals, near the center of the hexagon. There are three hexagon

diagonals, and hence there are three Peppa solution branches. The corresponding

M-profiles have a slightly smeared magnetic vortex along the line connecting the
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nematic defect pair. We can find the three Para solutions, for very small values

of c, but they quickly bifurcate into the Peppa solutions. To understand how the

splay defects evolve in the Para solution branch for c > 0, we use the Para-nematic

solution (for c = 0) as an initial condition, for small values of c = 5, 6, 7× 10−3,

` = 10−4, to trace the Para branch using continuation methods. We present the

Q-profile of the numerical solutions in Figure 6.12. As we move from left to

right i.e., from c = 5 × 10−3 to c = 7 × 10−3, it is clear that the defects detach

from the splay vertices as c increases, and migrate towards the hexagon interior,

aligning on one of the hexagon diagonals. The interior nematic defects localise

near the centre of the hexagon, yielding the Peppa solution branches. The Peppa

solution branches are clear examples of nematic profiles being tailored by the

magnetic profile. Namely, the central magnetic vortex coerces the creation of two

+1
2 -stable interior nematic defects, due to the positive nemato-magnetic coupling

that favours co-alignment of n and M.

Figure 6.12: The nematic Q-profile for ` = 10−4 and (from left
to right) c = 5, 6, 7× 10−3, respectively.

In Figure 6.13, we track the different solution branches as a function of `, with

c = 0.25, using the Ring solution, the Para, Meta and Ortho states as initial

conditions for the Q-solver. The Ring branch exists for all ` > 0, is unique and

globally stable for ` large enough, but loses stability as ` decreases, as expected by

analogy with the c = 0 case. For ` small enough, we obtain the three stable Peppa
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solution branches, but we find no other stable configuration in this parameter

regime. Equally, our numerical methods are not exhaustive, and we may have

omitted certain solution branches e.g., high energy Meta and Ortho solution

branches. To visualize the different solution branches, we plot the two measures

(6.1.8), versus `.

Ring

RingPeppa

Figure 6.13: Bifurcation diagram for (6.1.1) as a function of ` on
a hexagon domain with c = 0.25.

In the preceding simulations, we have assumed ξ = 1 in (6.1.1). We conjecture

that smaller values of ξ will coerce the Q-profile to tailor the M-profile, for c > 0

i.e., the M-texture will be determined by n, leading to the creation of domain

walls in M. A smaller value of ξ suppresses the magnetic energy and hence,

the nematic effects dominate in this regime. The domain walls are essentially a

consequence of the topologically non-trivial boundary conditions for M, so that

n ·M ≈ 1 on one side of the wall, and n ·M ≈ −1 on the other side of the wall i.e.,
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φ jumps by π radians across the domain wall. In Figure 6.14, we take ξ = 0.01,

` = 5×10−4, and use the Para, Meta and Ortho-nematic solutions (for c = 0), and

the M-solution with a central magnetic vortex (for c = 0), as initial conditions.

We do indeed recover the Para solution for the Q-profile, with two defects pinned

at a pair of diagonally opposite splay vertices, and the corresponding M-profile

has a clear domain wall along the diagonal connecting the splay vertices, for

c ≤ 0.02. Analogous remarks apply to the Meta solutions, for which the M-profile

has a distinct domain wall along the line connecting the two splay vertices. In

other words, we can numerically find Meta solutions for which the Q-profile has

two splay vertices (separated by a vertex), and M has an associated domain wall,

for 0 < c ≤ 0.02. The Ortho solutions are easier to find for small ξ, with a

short magnetic domain wall along the hexagon edge connecting the two adjacent

splay vertices in the Q-solution. We find these Ortho solutions by continuation

methods for c ≤ 1. This domain wall is hard to see in our numerical simulations

as the sharp reduction in |M| occurs extremely close to the edge of the domain.

However, we can clearly see that (M1,M2) (presented by white arrows in the

M-profile plot) does not satisfy the boundary conditions (6.1.5) along this edge,

and a magnetic domain wall is required in order to remedy this constraint.

We also note that these small ` solutions (in Figure 6.14) converge to different

values of S, and |M|, in the hexagon interior away from domain walls. This

is because, in the ` → 0 limit, minimizers of (6.1.1) with ξ 6= 1 converge to

appropriately defined minimizers (Q∗,M∗), with |Q∗| =
√

2Sc, |M∗| = Rc, where

Sc =

 |c|4 +

√√√√ c2

16 −
1
27

(
1 + c2

2ξ

)3


1/3

+

 |c|4 −
√√√√ c2

16 −
1
27

(
1 + c2

2ξ

)3


1/3

;

Rc =
√
|c|
ξ
Sc + 1.
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Therefore, when ξ = 0.01 and c = 0.02, we have Sc ≈ 1.0 and Rc ≈ 1.74 (as seen

in the plots of the Para and Meta solutions in Figure 6.14), and when c = 1, we

have Sc ≈ 7.15 and Rc ≈ 26.8 (as seen in the Ortho solution in Figure 6.14). The

reason S and |M| do not achieve their maximum colorbar value in the hexagon

interior for the Ortho solution is due to numerical noise.

Figure 6.14: Para and Meta solution profiles for c = 0.02 and
Ortho solution profile for c = 1, respectively with
ξ = 0.01 and ` = 5× 10−4.

We now focus on the negative c regime in a hexagon. Here, as with a square

domain, we effectively double the number of stable states, in the small ` limit,

due to the broken symmetry between the splay vertices. We numerically observe

six Para, twelve Meta, and twelve Ortho-nematic states. The corresponding

M-profiles are distinguished by the location of the magnetic vortex at one of

the hexagon vertices (six possibilities) and the orientation of M, since M is

preferentially perpendicular to n in the hexagon interior, for c < 0. For example,

there are six Para (Q,M)-states, corresponding to six possibilities for the location

of the, more asymmetric, splay vertex. For c = 0, there are six Meta stable states
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for ` small enough, with two splay vertices separated by a vertex. When c < 0,

the symmetry between the splay vertices is broken, and we obtain two stable Meta

states for each admissible splay vertex pair, yielding a total of 12 Meta states.

Analogous remarks apply to the Ortho solution branch.

We also observe three Peppain and Peppaout solution branches, for ` small enough

and c < 0, with pairs of stable interior +1
2 -nematic defects along one of three

hexagon diagonals. The in-branches refer to inwards-pointing M-profiles, and out-

branches refer to outward-pointing M-profiles, from the central magnetic vortex.

In Figure 6.15, we plot a Peppain and Peppaout solution (the (Q,M) profiles), for

c = −0.1, with ξ = 1 and ` = 5× 10−4.

Figure 6.15: Peppain and Peppaout solution profiles (from left to
right) for c = −0.1, with ξ = 1, and ` = 5× 10−4.
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In Figure 6.16, we plot the solution landscape on the re-scaled hexagon, as a

function of `, for c = −0.25. As before, we have a unique and globally stable

Ring solution branch for large `, which exists for all ` > 0, and loses stability as

` decreases. As with a square domain, the Ring branch bifurcates into the six

Para states, for ` small enough. Then as we decrease `, we find the three Peppain

and three Peppaout solution branches, which are disconnected in our numerical

simulation, which may possibly be a shortcoming of the numerical method which

is not picking up on higher energy configurations, or transition states. For `

smaller, we find the 12 Meta solution branches which are again disconnected. For

ξ = 1 and negative coupling, we can only find the stable Ortho solutions for very

small values of `. In order to find these states numerically, for ` ∼ 10−4, we must

reduce ξ, as in Figure 6.14 for the c > 0 case. We do not find the 12 Ortho states

for c = −0.25 and ` > 10−4, and so they do not appear in our bifurcation diagram.
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RingRingParaMeta Peppa Peppain out

Figure 6.16: Bifurcation diagram for (6.1.1) on a hexagon domain
as a function of ` with c = −0.25.

We deduce that we can stabilise either interior nematic point defects, or magnetic

domain walls, depending on a judicious interplay of ξ and c, and this interplay

depends onN - the number of sides of the regular polygon. We will now investigate

the extent to which N can tailor the multistability of this ferronematic composite

system. So far we have studied N = 4, 6, with high degrees of symmetry, and

thus it is a natural extension to consider a domain with an odd number for N .
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6.4 Ferronematics on 2D pentagons

We now consider a regular pentagon, withN = 5, and study the solution landscape

as a function of `, for positive c and negative c, respectively. The case of c = 0

has been well studied in [74]. For c = 0 and ` large enough, there is a unique

Ring solution for the Q-solution (with a central +1-nematic defect), and a unique

M-profile with a degree +1 central vortex. This Ring branch is globally stable for

` large enough, exists for all ` > 0, and is unstable for ` small enough. For small

`, there are at least 10 different stable solutions (with c = 0) for the Q-solutions,

for topologically trivial boundary conditions (6.3.1). As with the hexagon, the

tangent boundary conditions, (6.1.4), naturally create a mismatch in nb at the

pentagon vertices, so that the vertices are natural candidates for nematic defects.

The different vertices are classified as “splay” and “bend” vertices, as presented

in Figure 6.1, and there are two splay, and three bend vertices for topologically

trivial boundary conditions in a pentagon. The 10 solutions are classified into

2 rotationally invariant classes: (i) the 5 Meta states, where the splay vertices

are separated by one vertex; and (ii) the 5 higher energy Ortho states, where the

splay vertices are connected by an edge. In [74], the authors show that for ` small

enough, the unique Ring solution bifurcates into either one of the five stable Meta

states, or one of five unstable BD solutions. For ` even smaller, they find the five

stable Ortho states. We give illustrations of the typical director orientation for a

Meta and Ortho state in a pentagon, in Figure 6.17.

The main results of this section show that:

• Solutions with magnetic domain walls are easier to find in a pentagon

than for a hexagon, indicating that they are observable for ξ < ξ(N) and

0 < c < c(N), where N is the number of polygon edges.
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Figure 6.17: Nematic director orientation for the Meta, and Or-
tho states in a pentagon.

• There exist solutions with a pair of +1
2 interior nematic point defects, for `

small enough, coerced by the interior magnetic vortex at the center of the

well, and these defects align parallel to a polygon edge due to the loss of

symmetry for N odd.

For positive c in a hexagon, solutions which preserved the nematic profile, and

exhibit magnetic domain walls (with reduced |M|), were hard to find. We could

only find solutions of this type for c, and ξ, small enough. Domain walls are easier

to find in pentagons. In Figure 6.18, we recover the Meta and Ortho-nematic

states in a pentagon, with c = 0.05 for ξ = 1, and ` small enough, which is not

observed in a hexagon. For c small enough, the nematic profile is maintained, and

the corresponding M-profiles exhibit domain walls along straight lines connecting

the splay vertices. We take the Meta and Ortho-nematic solutions on a pentagon

for c = 0 as the initial guesses, and fix ` = 5× 10−4 and ξ = 1.
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Figure 6.18: Meta and Ortho solutions in a pentagon for c = 0.05,
` = 5× 10−4.

As we increase c, the qualitative features are similar to those for a hexagon. We

lose the Ortho and Meta states, and obtain stable Peppa solution branches for `

small enough, with two stable interior +1
2 -nematic defects. For each Peppa branch,

the nematic defect pair is localised near the centre of the pentagon, parallel to one

of the pentagon edges. For this reason, we find five rotationally equivalent stable

Peppa solutions, for c > 0. These solutions are similar to the Peppa solutions in

a square and hexagon, as the magnetic profile retains the central vortex, and are

examples of nematic profiles tailored by the magnetic profile. In Figure 6.19, we

plot the bifurcation diagram for the (Q,M)-solutions in a pentagon as a function

of `, for c = 0.25. For ` large enough, we find the unique globally minimizing Ring

branch, which loses stability for ` small enough, as in a hexagon. For c = 0.25 and

ξ = 1, the Ring solution branch bifurcates into the five Peppa solution branches,

for ` large enough. We distinguish the solution branches by plotting the measures

(6.1.8), versus `.
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Peppa RingRing

Figure 6.19: Bifurcation diagram for (6.1.1) as a function of ` on
a pentagon domain with c = 0.25.

The case of negative c is similar to the square and hexagon. The preferential

perpendicular co-alignment between n, and M, essentially doubles the number of

admissible stable states for negative coupling, in the `→ 0 limit. This provides an

ingenious mechanism for stabilising exotic point defects at polygon vertices and

in the interior, which could offer novel optical and material responses for future

applications. As described in Section 6.2.1 for the square, we lose the symmetry

between the splay vertices, and for small `. In Figure 6.20, we plot the bifurcation

diagram for the (Q,M)-solutions as a function of `, for c = −0.25. For ` large

enough, we have the unique Ring solution, and this solution loses its stability

for ` small enough. The Ring solution branch bifurcates into the stable Meta

solution branches and, for ` smaller, we find the Peppain, Peppaout and Ortho

solution branches. The symmetry breaking of the splay vertices means we have 5
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stable Peppain, 5 stable Peppaout, 10 Meta and 10 Ortho stable solution branches.

These classes of solutions are analogous to those in a hexagon, for c < 0.

RingMeta

Ortho

Ring

Peppa Peppain out

Figure 6.20: Bifurcation diagram (6.1.1) as a function of ` on a
pentagon domain with c = −0.25.
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6.5 Summary

In this chapter, we have studied 2D systems with nematic orientational order,

and directional magnetic order, on regular 2D polygons, with Dirichlet conditions

for Q, and M, on the polygon edges. The Dirichlet conditions are special in the

sense that we impose a topologically non-trivial boundary condition on M, which

necessarily creates an interior magnetic +1-vortex for the M-profiles. Our work

is motivated by dilute ferronematic suspensions in 2D frameworks (see [80], [81],

[83]), and we study observable, physically relevant states, in terms of local or

global minimizers of an appropriately defined free energy. This approach may

apply more widely to model systems with polar, and apolar, order parameters.

The free energy has three contributions - a nematic energy, a magnetic energy, and

a nemato-magnetic coupling energy. There are four phenomenological parameters

in the free energy and, with some assumptions, we study the interplay between

two parameters: a re-scaled elastic constant, `, and a nemato-magnetic coupling

parameter, c. We study the solution landscapes on a 2D square, hexagon, and

pentagon, in terms of bifurcation diagrams for c = 0.25 and c = −0.25, as a

function of `. The asymptotics for large ` are well understood in terms of the

Ring branch, since there is a unique critical point/global minimizer of the free

energy, in the ` → ∞ limit. As ` decreases, the multiplicity of stable (Q,M)-

solutions increases, and the solution landscape becomes increasingly complicated.

The multistability can be partially understood for small ` (which correspond

to “large” domains on the micron scale or larger) in terms of boundary-value

problems for φ, and relations between θ and φ, which define the nematic director

and magnetization vector, respectively.
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For c = 0 and ` small enough, the polygon vertices act as defect sites for stable

Q-profiles and in fact, there are at least N(N−1)
2 stable Q-states, on a regular

polygon with N sides. For positive c, that favours co-alignment between n and

M, the number of stable states decreases as c increases, as ` → 0. In fact, we

conjecture that there are only N stable states on a polygon with N sides, for

odd N , and only N
2 stable states for a polygon with N sides, for N even, in

the ` → 0 limit, and for large c. These stable states are featured by a pair of

stable interior +1
2 -nematic point defects in the polygon interior, aligned either

parallel to a polygon edge (N odd), or along a polygon diagonal (N even). As

N → ∞ and ` → 0, we recover the solution landscape on a circle, with tangent

boundary conditions for the Q-profiles: infinitely many stable states, with an

interior nematic defect pair along one of the circle diagonals [121], for c > 0,

and these states cannot be obtained for c = 0. The M-profiles are less affected

in the regime of c > 0 and small `, as they retain the interior central magnetic

vortex, with some distortion. We refer to these novel solution branches, with

interior nematic defect pairs, as Peppa solution branches for c > 0 and small `.

Informally speaking, positive c has the same effect as regularising the boundary,

or rounding off the vertices, so that the nematic defects detach from the polygon

vertices and localise near the polygon centre. Stable domain walls are observed in

the M-profile, for very small positive values of c, or small values of ξ, whilst the

corresponding Q-solutions retain their nematic profiles with defects pinned at the

polygon vertices. We deduce that we can stabilise either interior nematic point

defects, or magnetic domain walls, depending on a judicious interplay of ξ and c,

and this interplay depends on N - the number of sides of the regular polygon. A

reasonable conjecture is that magnetic domain walls are observable for ξ < ξ(N),

and 0 < c < c(N), for the boundary conditions in (6.1.4) and (6.1.5). We expect
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that ξ(N) and c(N) are decreasing functions of N i.e., ξ(N) → 0, c(N) → 0

as N → ∞, so that domain walls are increasingly difficult to find for coupled

systems.

The case of c < 0, that favours (n ·M) = 0 in the polygon interior, is more

complicated. The picture in the ` → ∞ limit (small nano-scale domains) is

qualitatively unchanged in terms of the unique Ring solution branch, but c < 0

strongly enhances multistability in the ` → 0 limit. We obtain stable solution

branches with interior defects for both Q and M, and additionally, we also find

stable solution branches with point defects at the polygon vertices in both the

nematic and magnetic profiles. These solution branches with vertex defects, and

interior defects, co-exist, and could offer exciting optical and electro-magnetic

responses to light and external fields. Of course, the experimental tuning of c

is expected to be hugely challenging and perhaps a material property, and we

expect the case of positive c to be more common in applications than negative c.

As mentioned in Section 6.1, one might expect `2 << `1 for a dilute ferronematic

system. We have carried out preliminary numerical investigations by varying the

ratio `2
`1
, with `1 = 0.005, c = 0.25, ξ = 1. As this ratio decreases from unity, the

defects in the Peppa solution branch move towards the vertices, and we recover

the Para-nematic solution branch on a hexagon, which is not attainable for `2 = `1

and c = 0.25. However, we recover the Peppa solution branch for `2 << `1, for

large enough values of c. Hence, we argue that the solution branches for `1 = `2

survive for `2 << `1, for large values of c.

Our study is by no means exhaustive, but it does illustrate some generic features

of positive and negative c, and the roles of ` and the geometry, in terms of N .

We do not comment on physical relevance at this stage, but our methods have

applications to generic systems, with multiple order parameters, of which dilute
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ferronematics are an example [78], [82], [119]. Our numerical findings suggest that

we will observe multistability in this regime, with co-existence of stable solutions

supporting a variety of singular structures: magnetic domain walls, stable interior

magnetic and nematic defects, and boundary vortices, all of which depend on a

subtle interplay between N , c and `. It may also be possible to stabilise multiple

interior defect pairs, or interior and boundary vortices simultaneously, with a

judicious interplay of the model parameters. Of course, we have neglected a num-

ber of crucial physical considerations e.g., elastic anisotropy, dipolar interactions,

weak anchoring, mixed anchoring, the topology of the boundary conditions and

flow effects, all of which offer new horizons for complex systems and tailor-made

applications.



Chapter 7

The nematic-isotropic phase

transition for a stochastic bulk

potential

In this short chapter, we model the classic bifurcation analysis of the nematic-

isotropic phase transition, as a function of temperature, within a stochastic mod-

elling framework. Following the theory of stochastic elasticity, introduced in the

papers by Mihai et al. [58], [59], we treat certain material-dependent terms as ran-

dom variables following a non-Gaussian distribution. We then study the effects of

stochasticity on the Landau-de Gennes order parameter, as a function of the tem-

perature, and how this influences the well-studied deterministic nematic-isotropic

phase transition in the Landau-de Gennes theory. In this preliminary research, we

will show that within this stochastic framework, the nematic-isotropic transition,

which occurs at some critical temperature in a deterministic setting, is modelled

by a probability distribution which quantitatively describes the ‘likelihood’ of
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observing an ordered nematic or isotropic fluid phase. This is believed to be of

wider interest as the material-dependent parameters, for which the classic bifurc-

ation analysis depends on, are difficult to measure in practice, and introduce an

inherent degree of randomness to the system.

We consider uniaxial Q-tensors of the form Q = s(n ⊗ n − I
3), where s ∈ R

is the scalar order parameter which measures the degree of orientational order

about the director, n ∈ S2. We consider one of the simplest modelling scenarios

in the Landau-de Gennes theory - the nematic-isotropic phase transition for the

fourth order thermotropic bulk potential, fb(Q), given by (1.4.6). We recall the

following results on minimizers of this bulk potential, from Section 1.4.2, in the

deterministic setting: when A > B2

24C , the isotropic fluid phase, characterized by

s = 0, is the unique global minimizer of fb; for 0 < A < B2

24C , fb is minimized by

either the isotropic state or a continuum of uniaxial nematic states with s = s+

and; for A < 0, the isotropic state loses its stability.

7.1 Stochastic problem formation

We next consider a stochastic version of this minimization problem. Consider a

large number of NLC samples. Following the approach of [58], [59], we assume

that the material-dependent constants, B (which are experimentally measured

material-dependent quantities, [9]), are distributed according to a known probab-

ility function which appropriately models inherent uncertainties of this parameter

using only the available information of the mean value, and the variance, of the

measurements. For mathematical simplicity, we do not consider a liquid crys-

talline system with spatially inhomogeneous terms, such as the inclusion of an

elastic energy density term. Furthermore, we do not wish to introduce any thermal



7.1. Stochastic problem formation 233

fluctuations by treating the temperature-dependent parameter A as a random

variable in this framework. As a simplest proof of concept study, we consider this

unbounded modelling problem for liquid crystals where either parameter, B > 0

or C > 0, could be redefined in this way. We assume for any given temperature,

the parameter B is a second-order random variable, with finite mean value and

finite variance. To this end, we assume that

E[B] = B̄ > 0, E[logB] = ν, such that |ν| < +∞. (7.1.1)

We do not believe there to be any physical relevance of the quantity ν, but

simply we restrict the variance of the data for measured values of B to be finite.

Following the approach in [87], and the related papers in [58], [59], we base our

stochastic model on the notion of entropy of discrete probability distributions

initially introduced by [122], and employ the maximum entropy principle for

a discrete probability distribution, introduced by [86] i.e., of all the choices of

probability distribution that encode prior data, the best choice is the one with

largest entropy. Under the above constraints, we have that the material-dependent

parameter, B, follows a Gamma probability distribution with hyperparameters

ρ1, ρ2 > 0, satisfying

B̄ = ρ1ρ2, Var(B) = ρ1ρ
2
2.

The corresponding probability density function takes the form [84]

g(B; ρ1, ρ2) = Bρ1−1e−B/ρ2

ρρ1
2 Γ(ρ1) , for B > 0, (7.1.2)

where Γ : R∗+ → R is the complete Gamma function:

Γ(z) =
∫ +∞

0
tz−1e−t dt.
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We consider only the nematic-isotropic transition problem for uniaxial Q-tensors,

but other phase transitions can be studied in this way. Assuming A > 0 that is,

temperatures above the nematic super-cooling temperature, and that the material-

dependent parameter, B, follows the Gamma distribution defined by (7.1.2), with

hyperparameters ρ1, ρ2 > 0, then the probability of observing the isotropic state

only, at a given temperature A, is given by

P1(A) =
∫ √24AC

0
g(B; ρ1, ρ2) dB, (7.1.3)

since it is the unique stable state in the range A > B2

24C i.e., 0 < B <
√

24AC.

Since both the ordered nematic state, and isotropic state, are stable in the lower

temperature range 0 < A < B2

24C i.e.,
√

24AC < B < ∞, the probability of

observing two states, at a given temperature A, corresponds to

P2(A) = 1− P1(A). (7.1.4)

From our understanding of the deterministic model, we would expect a high

probability of observing just one solution (the isotropic fluid state) for higher

temperatures, and we expect a high probability of observing two solutions (either

the isotropic or ordered nematic states) for temperatures near the nematic super-

cooling temperature. At temperatures below the nematic super-cooling temper-

ature (A < 0), the isotropic state loses its stability, however the ordered nematic

state corresponding to s = s− is metastable in this temperature range. Therefore,

the probability of observing two possible NLC states, for A < 0, approaches unity,

which is what we see as we extend our results for A > 0 to the negative A region

(P2(0) = 1).



7.2. Numerical results 235

7.2 Numerical results

For a given temperature A, we simulate the nematic-isotropic transition. In our

simulations, we have ρ2 = B̄
ρ1
, and use fixed values for B̄ and ρ1 > 0. These

values would, in practice, be determined by the data obtained but, for now, we

fix ρ1 = 40, and B̄ = 0.64× 104 1. We sample a number of Gamma distributed

values for B to simulate and plot a cumulative distribution function of the two

possible configurations. Again, in practice, the number of samples would be given

by the number of experimental observations. In our cumulative distribution plot,

we take the number of samples to be 100. We also include a tally of the number

of randomly generated samples that observe one (or two) solutions, as a function

of the temperature. This is calculated by the percentage of samples with A above

(or below) B2

24C , where B is Gamma distributed. As a direct comparison with

these simulated results, we plot the probabilities (7.1.3) and (7.1.4). What we

see is a clear competition between states across the nematic-isotropic transition

temperature. This competition is so far just for illustrative purposes, as the

probability distribution is heavily dependent on the variance of the data. In

Figure 7.1, we plot the analytical and simulated probabilities of observing either

one, or two, NLC states, as a function of the temperature, A > 0. We take

C = 0.35×104 and so the deterministic phase transition occurs at A = B̄2

24C ≈ 490.

In the deterministic case, the possible equilibria of the thermotropic bulk potential

are well understood. However, if we are to assume that B follows the Gamma

distribution given by (7.1.2), then the bifurcation diagram is far from complete.

In our numerical simulations, we produce a stochastic bifurcation diagram as a

probability distribution, for the various nematic states, as a function of temper-

1B̄ and ρ1 would be determined by experimental data and our choices are simply for numerical
fitting.
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Figure 7.1: Probability distributions (7.1.3) and (7.1.4) given
by the blue and red solid lines, respectively. Sim-
ulated data is given by the yellow and purple lines.
The vertical dashed line represents the (deterministic)
nematic super-heating temperature, A = B̄2

24C .

ature, which is presented in Figure 7.2. The probability of observing either the

isotropic or nematic phase is also dictated by the relative energy well depths of

the thermotropic bulk potential. In the deterministic model, between the super-

heating temperature and the super-cooling temperature (0 < A < B2

24C ), there is

a competition between the isotropic state and the ordered nematic state. In our

stochastic model, we assume that the probability of finding an ordered nematic

state, over the isotropic state, is

P = fb(s+)− fb(s−)
fb(s+) + fb(0)− 2fb(s−) × 100%, (7.2.1)

where B follows the Gamma distribution (7.1.2). This represents the depth of

the ordered nematic state critical point as a percentage of the total depths of

the two possible states. Therefore, when A = B2

27C and the two states have equal

energies, the probability is 50%. As expected, we see that s = 0 is for large

values of A, but as we approach A = B̄2

24C , there is a competition between the

possible states. As A decreases, the probability of observing the isotropic state

decreases and, for A small enough, we only observe the ordered nematic state.

Since the order parameter of the nematic state depends on the material-dependent
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parameter B, the probability distribution is more spread out in this diagram. As

in Figure 7.1, we assume a number of experimental values and assume the variance

of data. In practice, this would be determined by actual findings. We take 1000

samples and assume that ρ1 = 40, purely for illustrative purposes. We again take

B̄ = 0.64× 104 and C = 0.35× 104, and B is generated from Gamma distribution

functions. For each value of the temperature, we plot the relative probabilities

of the order parameter s, given by stationary points of the bulk energy potential,

fb(s). As was indicated by the probability distributions shown in Figure 7.1,

we see a competition of states around the nematic super-heating temperature,

A = B̄2

24C , where there is a small probability of observing the ordered nematic

state, for temperatures above this deterministic value.

In summary, we assume inherent variation, and material uncertainty, in a spatially

homogeneous liquid crystalline system. For mathematical simplicity, we consider

a system without an elastic energy density as a first step. Following the approach

of Mihai et al. [58], [59], we treat the parameter B, in the thermotropic bulk

potential, as a random variable following a non-Gaussian distribution which can

be derived from the maximum entropy principle in [87]. There is no obvious

reason why this distribution cannot apply to B, however it may be an interesting

research problem to consider random elastic or thermal effects. In contrast to the

deterministic nematic-isotropic phase transition, where a deterministic critical

temperature strictly separates the cases where either the isotropic fluid phase or

a stable ordered nematic phase occurs, for the stochastic problem, there are prob-

abilistic temperature intervals, where there is a quantifiable chance for both the

isotropic and nematic phases to be observed. We have numerically shown, assum-

ing B is Gamma distributed, that there is a probability, depending on the variance

of the data, that ordered nematic phases can be observed above the deterministic
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Figure 7.2: Completed probability distribution of the order para-
meter, s, as a function of temperature, A, when B
follows the Gamma distribution (7.1.2) with ρ1 = 40,
B̄ = 0.64 × 104. C = 0.35 × 104. The determin-
istic values are shown by the black lines (stable is
solid and unstable is dashed). We also include a 3D
surface plot of the same diagram.



7.2. Numerical results 239

phase transition temperature, and that the scalar order parameter of the nematic

state varies due its dependence on this random parameter. These preliminary

findings present a new framework for studying liquid crystal phenomena, which

shows that it is possible to quantify, and study, the influence of inherent variation

in measured parameters and stochastic behaviour, not previously captured by

deterministic approaches.



Chapter 8

Conclusions and future work

The aim of this thesis has been to analyse, and present, the exotic defect structures

of nematic liquid crystalline systems in confinement, with different geometrical and

material properties. These systems are modelled using the Landau-de Gennes con-

tinuum theory, and long-time behaviour is described by complex boundary-value

problems for systems of coupled elliptic nonlinear partial differential equations.

We have been able to manipulate the location of defects and tailor the multiplicity

of equilibrium profiles by altering geometrical, material, and anchoring properties,

and present delicate bifurcation analyses using sophisticated numerical tools for

tracking solution branches. We now summarize each chapter, and discuss the

open problems and future avenues of research generated from this work.

In Chapter 3, we consider three-dimensional square wells with both tangent Dirich-

let boundary conditions, and physically relevant surface energies, in the Landau-de

Gennes theory. We have shown that for sufficiently small cross-sectional edge

length, λ, the WORS constructed in [52] for the 2D problem is the global LdG

minimizer in the full 3D scenario. A natural extension of this work would include
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an analytical study of three-dimensional solutions that are not z-invariant, and

whether these solutions can be constructed by, or related to, the plethora of

two-dimensional LdG critical points on a square domain, reported in previous

work. In particular, we could include an isotropic inclusion, as in [63], for truly

three-dimensional confining geometries, or consider the exotic zoo of unstable equi-

libria in two-dimensional domains in [64] as transitional cross-sections of a stable

three-dimensional configuration. Another possible avenue for future research is

to consider how homeotropic boundary conditions on the lateral surfaces of a 3D

square well changes the solution landscape, which would be of both mathematical

and applications-oriented interest.

Chapter 4 of this thesis continues on from Chapter 3, by computing three-

dimensional nematic equilibria in confinement, using an energy minimization-

based numerical approach. We presented 3D solutions with diagonal or rotated

profiles in the plane of the well cross-section, for λ large enough, and the 3D

WORS for λ small enough, for arbitrary well height, ε, corroborating our analysis

in Chapter 3. We also numerically demonstrate the existence of stable mixed 3D

solutions, which interpolate between two distinct diagonal profiles on the top and

bottom well surfaces, for wells with sufficiently large ε and λ. We also extend

this numerical study for domains with a rectangular cross-section to address the

effects of geometrical anisotropy on confined NLC systems. In our numerical

scheme, we employed a one-dimensional optimal shrinking dimer method from

[66] to assess stability. This essentially determines the smallest eigenvalue of the

Hessian, associated with the numerical solution. In the future, one could utilize

the multi-dimensional approach of this work to discover new LdG critical points,

and determine the degree of instability (or amount of unstable directions), of

each configuration, such as the work in [121]. This would be of great interest
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for switching device applications, as it would give insight into possible transition

states between LdG minimizers, in three-dimensional scenarios. With regard to

the numerical search itself, an extension of this work would be to employ different

boundary conditions on the lateral surfaces of the computational domain, such as

homeotropic anchoring or mixed boundary conditions.

Chapter 5 focuses on a reduced two-dimensional study of nematic equilibria,

but with the addition of an anisotropic elastic energy term in the LdG free

energy. We study the interplay between the square edge length, λ, and the elastic

anisotropy, L2, considering LdG critical points with three degrees of freedom,

which measure the degree of nematic order in the plane of the square, and the

degree of out-of-plane order. We prove that for L2 6= 0, we effectively lose the

defect cross structure of the WORS, and show the stabilising effect of large L2 on

solutions with almost constant uniaxial alignment out of the plane. Our results for

highly anisotropic materials (in the L2 →∞ limit) are so far based on heuristic

arguments with respect to the choice of boundary conditions. An open problem

for the future would be to rigorously determine the true nature of the Constant

solution in this regime. As we have shown, the leading order approximations

of solutions, in this physically relevant limit, solve a non-elliptic system, and so

this a great mathematical challenge which we were unfortunately unable to solve.

Furthermore, our bifurcation diagrams in this chapter distinguish between the

different solution branches by taking two measures, as in [74], however for large

L2, and large λ, we cannot distinguish between the Constant solution, the Ring±

solutions, or the pWORS, and so other choices of measure could be considered

to give more insight into the nature of these distinctive profiles. In our stability

analysis we proved that, for L2 larger than some constant that depends on λ, the

critical points of the LdG free energy are locally stable with respect to two special
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classes of admissible perturbations. In future work, it would be interesting to

prove similar results with respect to more general perturbations, as our numerical

investigations would suggest.

In Chapter 6, we consider a dilute suspension of magnetic nanoparticles in a

nematic liquid crystal host. We study the equilibrium configurations of an appro-

priately defined ferronematic free energy in a two-dimensional square, hexagon,

and pentagon. We have shown that we can stabilise either interior nematic point

defects, or magnetic domain walls, depending on a judicious interplay of the res-

caled elastic constant, `, the magnetic coherence, ξ, and the nemato-magnetic

coupling parameter, c, and this interplay depends on N - the number of sides of

the regular polygon. This work offers up several potential directions for studying

ferronematic equilibria with boundary defects. As in Chapter 5, one possibility

is to compute high-index saddle points, with the numerical approach in [66], to

determine transition pathways for the different equilibrium configurations. An-

other option would be to analyse the critical points on regular polygons, as in

[74], and prove stability results with respect to the domain edge length, and other

local parameters. Furthermore, we briefly consider solutions with a small ξ, and

a more rigorous study of this physically relevant parameter regime would be of

wider interest.

Finally in Chapter 7, we introduce a new methodology for studying nematic

equilibria by assuming certain material-dependent parameters, in the fourth-

order thermotropic bulk potential, follow a non-Gaussian probability distribution.

This preliminary research is based on the assumption that uncertainties in the

measurement of these parameters may alter the critical behaviour of the nematic-

isotropic phase transition in a deterministic framework. We argue that instead of

a phase transition occurring at some critical temperature, determined by concrete
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parameter choices, we observe a competition of liquid crystal states in a range of

temperature values, and this range is dependent on the mean value, and variance,

of experimental data. Our findings do not suggest any unexpected phenomena

for this simple problem but it does pave the way for future research in the wider

liquid crystal community. One potential approach would be to study the stochastic

Allen-Cahn equation with some added Gaussian space-time white noise term, as

in [123], to model the two-dimensional system in [62], in a stochastic setting.

Another approach is to employ similar modelling assumptions, following the work

of [58], to study the more complicated nematic-isotropic phase transition problem

for a sixth-order thermotropic bulk potential, which allows for biaxial nematic

configurations.
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