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Abstract 

Objective measurement of physical activity provides evidence of actually free-living 

mobility and insight into the efficacy of interventions in clinical populations. 

Free-living activity monitoring is not used routinely as an outcome assessment in the 

population of children with cerebral palsy.  Similarly there is a lack of quantification 

of physical activity level for lower limb amputees, leaving a gap in clinicians 

understanding of the suitability of prescribed prostheses. 

 

For this thesis, an uniaxial accelerometer based device, activPAL, was evaluated for 

use in children with cerebral palsy and to objectively measure their free-living activity 

levels. The study group consisted of 19 subjects with varying degree of mobility 

impairment. ActivPAL data were compared with video recordings which acted as the 

gold standard for activity categorization and stride count. There was lack of agreement 

in activity categorization and stride count between activPAL and video based data.  

Potential sources of errors were investigated.  Subjectivity in definitions of physical 

activity and adoption of postures that are not conveniently characterized proved to be 

the main sources of discrepancy between the activPAL and video based activity 

classification. The second part of this study was to quantify free-living activity levels 

of people with cerebral palsy. 15 subjects took part and their activity levels were 

measured using the activPAL. Results showed that activPAL with the use of simple 

diary offers a valuable tool for assessing physical activity in a free-living environment 

for this clinical population.  

 

To quantify trans-tibial amputees’ free-living physical activity levels and prosthetic 

usage, two monitoring devices (pressurePAL and forcePAL) were developed and 

evaluated. Data analysis algorithms were developed to automatically classify time 

spent in different activity states and count the number of strides made with the 

prosthesis. Reasonable accuracies were shown when data were compared to video 

recording for activity categorization, but further studies are required.  
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Glossary of Terms 
 
Angle of foot progression – angle between a reference line along the midline of the 
foot and the direction of progression. 
 
Ataxia – the shaky movements and unsteady gait that result from the brain’s failure to 
regulate the body’s posture and the strength and direction of limb movements. It may 
be due to disease of the sensory nerves or the cerebellum. In cerebellar ataxia there is 
clumsiness of willed movements. The patient staggers when walking and may not be 
able to pronounce words properly. 
 
Athetoid – a writhing involuntary movement especially affecting the hands, face, and 
tongue. It impairs the ability to speak or use his hands; intelligence is often unaffected.  
 
Cadence – the number of steps taken in a minute. The average for a person without 
any gait disorder is around 113 steps per minutes. 
 
Chorea – a jerky involuntary movement particularly affecting the head, face, or limbs. 
Each movement is sudden but the resulting posture may be prolonged for a few 
seconds. The symptoms are usually due to disease of the basal ganglia. 
 
Diplegia – paralysis involving both sides of the body and affecting the legs more 
severely than the arms. Cerebral diplegia is a form of cerebral palsy in which there is 
widespread damage, in both cerebral hemispheres, of the brain cells that control the 
movements of the limbs. 
 
Dysaesthesias – the abnormal and sometimes unpleasant sensations felt by a patient 
with partial damage to sensory nerve fibres when his skin is stimulated. 
 
Dyskinesia – a group of involuntary movements that appear to be a fragmentation of 
the normal smoothly controlled limb and facial movements.  
 
Dyssynergia – lack of coordination, especially clumsily uncoordinated movements 
found in patients with disease of the cerebellum.  
 
Dystonic – a postural disorder often associated with disease of the basal ganglia in the 
brain. There may be spasm in the muscles of the face, shoulders, neck, trunk, and limbs. 
The arm is often held in a rotated position and the head may be drawn back and to one 
side.  
 
Hemiplegia – paralysis in one side of the body. Movements of the face and arm are 
often more severely affected than those of the leg. It is caused by disease affecting the 
opposite hemisphere of the brain. 
 
Hypertonic – describing a solution that has a greater osmotic pressure than another 
solution. 
 
Muscle tone – the normal state of partial contraction of a resting muscle, maintained 
by reflex activity. 
 
Paralysis – muscle weakness that varies in its extent, its severity, and the degree of 
spasticity or flaccidity (decrease in muscle tone) according to the nature of the 
underlying disease and its distribution in the brain, spinal cord, peripheral nerves, or 
muscles.  
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Quadriplegia – paralysis/weakness in all four limbs. 
 
Spasticity – resistance to the passive movement of a limb that is maximal at the 
beginning of the movement and gives way as more pressure is applied. It is a symptom 
of damage to the corticospinal tracts in the brain or spinal cord. It is usually 
accompanied by weakness in the affected limb. 
 
Spastic paralysis – weakness of a limb or limbs associated with increased reflex 
activity. This results in resistance to passive movement of the limb. It is caused by 
disease affecting the nerve fibres of the corticospinal tract, which in health not only 
initiate movement but also inhibit the stretch reflexes to allow the movements to take 
place.  
 
Step length – distance by which the named foot moves forward in front of the other 
one. 
 
Stride length – distance between two successive placements of the same foot, 
consisting of two relatively similar step lengths in normal individuals. 
 
Stride width – the perpendicular distance between the mid-point of the heel for 
consecutive steps. 
 



 ix

List of Figures 
Chapter 2 
Figure 2.1: World Health Organization model for International Classification of 
Functioning, Disability and Health (WHO 2001)............................................................ 6 
Chapter 5 
Figure 5.1: ActivPAL professional physical activity monitor ....................................... 39 
Figure 5.2: ActivPAL docking station with USB interface ........................................... 40 
Figure 5.3: An example of the recorded raw acceleration signal from the activPAL and 
the filtered signal with an indication of upper and lower thresholds for posture 
classification. ................................................................................................................. 41 
Figure 5.4: General aspects of classifying walking episode and stride counts from the 
raw acceleration signal with the number of strides counted by the activPAL algorithm.42 
Figure 5.5: Orientation blocks position for observational analysis (a) and retroreflective 
marker placement for computerised gait analysis (b). ................................................... 47 
Figure 5.6: Calculated percentage discrepancy for each subject (except sub 8 and 13 as 
the % discrepancies were over 10%) analysed by different minimum setting for upright 
periods in the activPAL software .................................................................................. 60 
Figure 5.7: Calculated percentage discrepancy for each subject (except subject 13 as % 
discrepancies were over 15%) analysed by different minimum setting for sitting periods 
in the activPAL software. .............................................................................................. 63 
Figure 5.8: The total durations recorded from the video (video analysis 2) for walking 
periods plotted against total duration from the activPAL output................................... 66 
Figure 5.9: The total durations recorded from the video (video analysis 2) for standing 
periods plotted against total duration from the activPAL output................................... 66 
Figure 5.10: The total durations recorded from the video (video analysis 2) for 
sitting/lying periods plotted against total duration from the activPAL output .............. 67 
Figure 5.11: The total durations recorded from the video (analysis 2) for upright periods 
plotted against total duration from the activPAL output ............................................... 67 
Figure 5.12: The total stride counts recorded from video (all counts and forward counts 
only) plotted against the total stride counts from the activPAL software for each subject68 
Figure 5.13: Bland-Altman plot for the agreement between video (video analysis 2) and 
activPAL for the total walking durations of each subject.............................................. 70 
Figure 5.14: Bland-Altman plot for the agreement between video (video analysis 2) and 
activPAL for the total standing durations of each subject ............................................. 71 
Figure 5.15: Bland-Altman plot for the agreement between video (video analysis 2) and 
activPAL for the total sitting/lying durations of each subject ....................................... 71 
Figure 5.16: Bland-Altman plot for the agreement between video (video analysis 2) and 
activPAL for the total upright durations of each subject ............................................... 72 
Figure 5.17: Bland-Altman plot for the agreement between video (video analysis 2) and 
activPAL for the total stride counts (all counts) of each subject ................................... 73 
Figure 5.18: Bland-Altman plot for the agreement between video (video analysis 2) and 
activPAL for the total stride counts (forward counts only for video analysis) of each 
subject............................................................................................................................ 73 
Figure 5.19: An example of misclassified periods for subject 13. For the activity 
classifier 0, 1 and 2 for the activPAL data and 3, 4 and 5 for the video data representing 
sit/lie, stand and walk respectively. ............................................................................... 76 
Figure 5.20: An example of the raw activPAL output plotted against time showing a 
misclassification of sitting event with activPAL units between 40 and 90. .................. 81 
Chapter 6 
Figure 6.1: Average quiet standing times, stepping times and number of steps per day 
over 7 consecutive days for 15 subjects ........................................................................ 96 
Figure 6.2: Relationship between mobility score and average daily step count and 
average upright time per day for all subjects. ................................................................ 97 



 x

Figure 6.3: Relationship between mobility score and average cadence and average daily 
step count for all subjects. ............................................................................................. 97 
Figure 6.4: Relationship of average laboratory based cadence with average upright time 
and average step count per day for all subjects. ............................................................ 98 
Figure 6.5: An example of average number of upright events per day categorized into 
different durations during free-living monitoring (subject 1) for 3 settings of minimum 
sitting/lying and standing/walking times. ...................................................................... 99 
Figure 6.6: An example of average number of non-upright (sedentary) events per day 
categorized into different durations during free-living monitoring (subject 1) for 3 
settings of minimum sitting/lying and standing/walking times. .................................... 99 
Figure 6.7: The average number of sit-to-stand transitions per day for each subject that 
were analysed using 10, 5 and 3 seconds as the minimum setting for upright and 
sitting/lying periods. .................................................................................................... 100 
Figure 6.8: Mobility score plotted against average number of sit-to-stand transitions 
(minimum duration of upright and sitting/lying events =10 seconds) per day performed 
by each subject............................................................................................................. 101 
Figure 6.9: Subject’s age plotted against average number of sit-to-stand transitions 
(minimum duration of upright and sitting/lying events =10 seconds) per day performed 
by each subject............................................................................................................. 102 
Chapter 7 
Figure 7.1: A photograph of the pressurePAL with the T-piece connector (5p coin of 
170mm diameter included to indicate scale) ............................................................... 118 
Figure 7.2: U-tube mercury manometer configuration for the calibration of the 
pressurePAL ................................................................................................................ 119 
Figure 7.3: PressurePAL readings with the corresponding pressure values in kPa..... 120 
Figure 7.4: ForcePAL with the FlexiForce as the sensing element ............................. 121 
Figure 7.5: Flat bed calibration device connected to the mercury manometer ............ 123 
Figure 7.6: Calibration graph – forcePAL readings with the corresponding pressure 
values (mmHg) ............................................................................................................ 123 
Figure 7.7: The pressurePAL attached to the pressure relief valve of a trans-tibial suction 
socket with a T-piece connector and plastic tubing..................................................... 128 
Figure 7.8: Attachment of the ForcePAL to the prosthesis. The lead and data logger were 
securely attached with tapes over the top during the validation study. ....................... 129 
Figure 7.9: Long-term Activity Monitor, LAM (PAL Technologies Ltd, UK)........... 130 
Figure 7.10: An example of a subject’s (sub 7) pressure profile performing different 
activities using a suction socket with the pressurePAL attached................................. 131 
Figure 7.11: Flow chart for the pressurePAL signal analysis algorithm ..................... 134 
Figure 7.12:  Moving standard deviation pressure signal (grey) and the smoothed signal 
(black) for first 1500 seconds of recording from one of the subjects (Figure 7.10). The 
threshold of the smoothed standard deviation signal is shown to distinguish static and 
dynamic events. ........................................................................................................... 136 
Figure 7.13: Example of cyclical signals representing walking, the number of peaks that 
pass both upper and lower thresholds were counted as strides by the data analysis 
algorithm...................................................................................................................... 137 
Figure 7.14: An example of a subject’s (sub 10) pressure profile recorded using the 
forcePAL, while performing different activities.......................................................... 138 
Figure 7.15: Flow chart for the forcePAL signal analysis algorithm .......................... 140 
Figure 7.16: Raw forcePAL data (grey), with the moving averaged data (black) for 
subject 5. Threshold of the filtered moving average signal is shown to distinguish upright 
and non-upright events. ............................................................................................... 142 
Figure 7.17: Stage 1 moving standard deviation (grey) and stage 2 smoothed (black) 
standard deviation data for subject 5. A threshold of the stage 2 signal is shown to 
distinguish walking and standing activities for the upright events. ............................. 143 
Figure 7.18: Cyclical signal representing walking, number of peaks that passes both 
upper and lower thresholds were counted as stride by the data analysis algorithm..... 144 



 xi

Figure 7.19: An example of the video and pressurePAL data using the general Matlab 
algorithm for activity categorization. For the activity classifier 0, 1 and 2 for the video 
data and 3, 4 and 5 for the pressurePAL data representing ‘off’ state, static and dynamic 
events respectively....................................................................................................... 146 
Figure 7.20: An example of the video and forcePAL post-processed data using the 
Matlab algorithm for activity categorization. For the activity classifier 0, 1, 2 and 3 for 
the video data and 4, 5, 6 and 7 for the forcePAL data representing ‘off’ state, 
sitting/lying, standing and walking events respectively. ............................................. 146 
Figure 7.21: The total durations recorded from the video for dynamic (walking), static 
(standing and sitting) and ‘off’ events plotted against total duration from the 
pressurePAL post-processed output. ........................................................................... 150 
Figure 7.22: The total number of strides found from the video compared with the number 
of strides computed from the pressurePAL data.......................................................... 151 
Figure 7.23: Bland-Altman plot for the agreement between video and pressurePAL for 
the total dynamic durations for all subjects. ................................................................ 153 
Figure 7.24: Bland-Altman plot for the agreement between video and pressurePAL for 
the total static durations for all subjects. ..................................................................... 153 
Figure 7.25: Bland-Altman plot for the agreement between video and pressurePAL for 
the total ‘off’ durations for all subjects........................................................................ 154 
Figure 7.26: Bland-Altman plot for the agreement between video and pressurePAL for 
the total stride counts for all subjects. ......................................................................... 154 
Figure 7.27: The total durations recorded from the video for walking, standing, 
sitting/lying and ‘off’ events plotted against total duration from the forcePAL 
post-processed output for all subjects.......................................................................... 158 
Figure 7.28: The total number of strides found from the video compared with the number 
of strides computed from the forcePAL data for all subjects. ..................................... 159 
Figure 7.29: Bland-Altman plot of percentage agreement between video and forcePAL 
classification of total walking duration for all subjects. .............................................. 160 
Figure 7.30: Bland-Altman plot of percentage agreement between video and forcePAL 
classification of total standing duration for all subjects. ............................................. 161 
Figure 7.31: Bland-Altman plot of percentage agreement between video and forcePAL 
classification of total sitting/lying duration for all subjects......................................... 161 
Figure 7.32: Bland-Altman plot of percentage agreement between video and forcePAL 
classification of total ‘off’ duration for all subjects..................................................... 162 
Figure 7.33: Bland-Altman plot of percentage agreement between video and forcePAL 
classification of total stride count for all subjects........................................................ 162 
Figure 7.34: Active free-living monitoring results for subject 3 and subject 10 using the 
pressurePAL, shown as time spent in dynamic activities and stride counts per day. .. 166 
 



 xii

List of Tables 
Chapter 2 
Table 2.1: Examples of general health questionnaires and specific activity questionnaires
......................................................................................................................................... 7 
Table 2.2: Examples of commercially available accelerometer based activity monitoring 
devices ........................................................................................................................... 14 
Chapter 5 
Table 5.1: Information on CP subjects (M = Male, F = Female, AFO = Ankle Foot 
Orthosis) ........................................................................................................................ 44 
Table 5.2: ActivPAL analysis and video analysis 1 - Percentage sensitivities and 
discrepancies for posture categorization time for each subject ..................................... 53 
Table 5.3: Total time spent in each activity state measured by the activPAL and video 
analysis 2 for each subject. ............................................................................................ 54 
Table 5.4: ActivPAL analysis and video analysis 2 - Percentage sensitivities and 
discrepancies for posture categorization of each subject, with stand times that were less 
than 6 seconds between stepping periods classified as continuous walking activities in 
the video data................................................................................................................. 55 
Table 5.5: Percentage sensitivity and discrepancy for upright and non-upright postures of 
each subject using the default minimum sitting and upright setting (10 sec) for activPAL 
analysis .......................................................................................................................... 56 
Table 5.6: Percentage sensitivities for upright classification of each subject for different 
minimum setting for upright periods in the activPAL analysis compared with video 
analysis 2 ....................................................................................................................... 58 
Table 5.7: Percentage discrepancies for upright classification of each subject for 
different minimum setting for upright periods in the activPAL analysis compared with 
video analysis 2 ............................................................................................................. 59 
Table 5.8: Percentage sensitivities for non-upright classification of each subject for 
different minimum setting for sitting periods in the activPAL analysis compared with 
video analysis 2 ............................................................................................................. 61 
Table 5.9: Percentage discrepancies for non-upright classification of each subject for 
different minimum setting for sitting periods in the activPAL analysis compared with 
video analysis 2 ............................................................................................................. 62 
Table 5.10: Stride counts comparison between video and activPAL data with calculated 
percentage sensitivities and discrepancies for each subject........................................... 64 
Table 5.11: The calculated mean of the percentage difference between video (video 
analysis 2) and activPAL data and limits of agreement calculated according to Bland & 
Altman (1986, 1999) for each activity categorization. .................................................. 74 
Table 5.12: The 95% confidence interval for the lower and upper limits of agreement for 
all activity categories. .................................................................................................... 75 
Table 5.13: Sources of disagreement between the activPAL physical activity 
classification and that observed from video analysis 2.................................................. 82 
Table 5.14: Sources of disagreement between the activPAL stride count and that counted 
from the video when only forward strides were counted............................................... 87 
Chapter 6 
Table 6.1: Information on subjects who took part in this study .................................... 91 
Table 6.2: Mobility score of each subject using the Edinburgh mobility questionnaire 94 
Table 6.3: Number of complete free-living activity monitoring days for each subject . 95 
Chapter 7 
Table 7.1: RS Component gauge piezo-resistive sensor (24PC Series) characteristics117 
Table 7.2: FlexiForce, A201 sensor characteristics ..................................................... 121 
Table 7.3: The recorded forcePAL unit with correlated pressure data for the drift test 
using the FlexiForce as a pressure sensor.................................................................... 125 
Table 7.4: Amputee subjects’ information .................................................................. 127 



 xiii

Table 7.5: Time spent in each activity state found by video recordings and pressurePAL 
data for each subject .................................................................................................... 148 
Table 7.6: Percentage sensitivities and discrepancies for activity categorization and 
stride count of each subject.......................................................................................... 149 
Table 7.7: The calculated mean of the percentage difference between video and 
pressurePAL data and limits of agreement calculated according to Bland & Altman 
(1986, 1999) for dynamic, static, off and stride counts. .............................................. 155 
Table 7.8: The 95% confidence interval for the lower and upper limits of agreement for 
all activity categories. .................................................................................................. 156 
Table 7.9: Time spent in each activity state found by video recordings and forcePAL data 
for each subject ............................................................................................................ 156 
Table 7.10: Percentage sensitivities and discrepancies for activity categorization and 
stride count of each subject.......................................................................................... 157 
Table 7.11: The calculated mean of the percentage difference between video and 
forcePAL data and limits of agreement calculated according to Bland & Altman (1986, 
1999) for walking, standing, sitting/lying, off events and stride counts...................... 163 
Table 7.12: The 95% confidence interval for the lower and upper limits of agreement for 
all activity categories ................................................................................................... 164 
Table 7.13: Time spent in different activity states and stride counts by pressurePAL and 
LAM for subject 3. (Day 2 to 8) .................................................................................. 164 
Table 7.14: Time spent in different activity states and stride counts by pressurePAL and 
LAM for subject 10 (Day 2 to 8) ................................................................................. 165 
 
 



 1 
 

1 INTRODUCTION 
In clinical practice, there has been an increasing need to provide evidence based 

practice on the effectiveness of interventions in patient care. This had led to the 

development of various outcome measurement techniques for assessing 

intervention/treatment progress on the patient. Outcome measurements could be both 

physical and or psychological and one of the main outcomes in rehabilitation is their 

mobility level. For the monitoring of rehabilitation progress of these clinical groups of 

patient to be successful, their activities of daily living should be quantified in their 

home, educational/work and leisure environments as well as in a laboratory based 

settings.  

 

It is possible to study the free-living physical activity levels of different patient group in 

a number of ways. Questionnaires or interviews could take place, but might be biased 

and often non quantitative. Computerised gait analysis techniques could determine the 

walking ability of each person, however there is no clear link between walking ability 

and amount of actual walking performed in free-living environments. Energy 

expenditure measurements such as exchange of doubly labelled water (DLW), oxygen 

consumption and heart rate could offer characterizations of activity level of a person. 

Some of these methods such as DLW are very expensive to administer and would not 

be practical on a large scale or in routine measurement. In addition, these techniques 

measure energy expenditure which would not be useful in populations with various 

mobility levels, as one person might spend more energy in performing the same amount 

of stepping activities compared to another person.   

 

Small low cost devices with long term data recording capacity are needed to allow 

friendly physical activity monitoring. One example of a technology to do this is 

accelerometry. Accelerometer based devices could be used for routine monitoring of 

clinically relevant populations. Some accelerometer based devices provide outputs that 

have been linked to energy expenditure while others quantify time spent in different 

activity states by the individual, which would be more useful in patient populations 

with varying levels of mobility. Alternative technologies exist that potentially also offer 

the possibility for long term monitoring of physical activity in specific populations. The 

use of a device to record pressure and/or force at the stump socket interface within 

prosthetic sockets also offers this possibility. 
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Although it is useful to objectively document free-living physical activity level for all 

clinical rehabilitation groups, it is of paramount importance for people with mobility 

difficulties, such as people with cerebral palsy, stroke patients, people with multiple 

sclerosis and lower limb amputees. The quantification of free-living physical activity 

level in these clinical populations could be used to verify the effectiveness of the 

chosen intervention/prescription and also to document their rehabilitation progress.  

 

For this thesis, investigations into the physical activity monitoring of two populations 

of subjects (people with cerebral palsy and lower limb amputees) were performed.  

There appear to be no commercially available devices or studies reporting the use of 

experimental devices to monitor the quantity of lower limb amputees’ physical activity 

as well as the amount of prosthetic usage. The free-living physical activity level of this 

subject group could be indicative of correct prosthetic prescription and successful 

rehabilitation progress.  

 

People with cerebral palsy have varying degrees of mobility impairment, making it 

important to validate any monitoring device that relies on movement patterns for 

successful operation.  There appear to be no studies demonstrating the ability of 

commercially available devices to accurately monitor physical activity in this 

population.  

 

In this thesis, subjects with cerebral palsy were examined using an accelerometer based 

device. The validity of device output was investigated and data from multi-day records 

of physical activity reported. Secondly subjects with trans-tibial amputations and 

prosthetic limbs were studied using pressure and force measuring devices. Physical 

activity monitoring methods were developed for this population to allow the 

characterization of posture and stepping events.   

 

1.1 Thesis Overview 

Throughout the thesis, where appropriate, reference has been made to the literature. 

Terms in italics are defined in the glossary. Information on physical activity and 

rehabilitation with different methods of monitoring activity are discussed (Chapter 2). 

A description of aspects of cerebral palsy (CP) relevant to the thesis is included 

(Chapter 3). Details of prosthetic use and design are provided as a background for the 

reader (Chapter 4).  
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A description of the validation study on the use of an accelerometer based activity 

monitor, activPAL, for use with the CP population (Chapter 5), with details on the 19 

subjects studied (Section 5.2.2), methods (Section 5.2.3) and the equipment used are 

included. Data analysis procedures (Section 5.3) and results are presented for the 

comparison between activPAL and video recordings (Section 5.4) with statistical 

analysis. The relationship between the video and activPAL data is discussed (Section 

5.5) with possible areas of misclassification explored. A multi-day study of physical 

activity in people with CP in their free-living environment is included (Chapter 6). A 

comparison of multi-day activity with diary based physical activity logs and mobility 

levels of the subjects are made (Section 6.4). 

 

Two monitoring devices, the pressurePAL and forcePAL, for monitoring trans-tibial 

amputees’ activity levels and prosthetic usages (Chapter 7) are described and formal 

calibration results are given for both devices (Section 7.2). The details of the method of 

the validation studies are presented (Section 7.3), including details on the 10 subjects. 

Extensive details of the data analysis algorithms for activity categorization and stride 

identification are given (Section 7.5) for both the pressurePAL and forcePAL. Results 

are presented of the comparison between pressurePAL/forcePAL and video data 

(Section 7.6 and 7.7). Free-living activity monitoring using the pressurePAL is 

presented in Section 7.8, including comparison results with the LAM (Long-term 

Activity Monitor). Discussion of the results incorporates the possible errors in the data 

analysis algorithm to categorize activities for trans-tibial amputees using the 

pressurePAL and forcePAL (Section 7.9).  

 

Overall conclusions are drawn (Chapter 8) and recommendations made for further 

studies in this area of free-living activity monitoring for people with CP and in the 

amputee population (Chapter 9).  

 

1.2 Involvement of PAL Technologies Ltd 
This work was performed as part of Engineering Doctorate studies under the Doctoral 

Training Centre at the University of Strathclyde’s Bioengineering Unit. As part of this 

programme an industrial collaborator may be engaged. For the work reported in this 

thesis PAL Technologies Ltd, Glasgow, UK, was the named industrial collaborator. 

PAL Technologies Ltd provided standard activPAL devices and also custom modified 

devices (pressurePAL, forcePAL) at no cost to the project. No payment was made to 

the thesis author, Kit Tzu Tang, or the supervisory team for involvement with this work.   
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2 PHYSICAL ACTIVITY AND REHABILITATION 

2.1 Introduction 

The work reported in this thesis is concerned with the monitoring of physical activity. It 

is necessary to establish the importance for this type of monitoring before the more 

specific elements of the work performed is detailed.  

 

In our modern society, active lifestyle is thought to be important for all age groups. As 

sedentary way of life has been demonstrated to be detrimental as it increases the risk of 

developing many health problems (Lee and Skerrett 2001; Argiropoulor et al 2004; 

Berentzen and Sorensen 2007; Kamphuis et al 2007; Van der Horst et al 2007), such as 

cardiovascular diseases (Kohl 2001; Chen and Wu 2008), obesity (Chakravarthy et al 

2002; Officer 2004), type 2 diabetes mellitus (Lynch et al 1996; Smith and McFall 2005; 

Chyun et al 2006) and certain types of cancer (Thune and Furberg 2001). People with 

disabilities are as likely as people in the general population to develop health problems 

associated with inactivity.  

 

Physical activity is an essential part of daily functioning and there is increasing 

evidence to support its positive association with quality of life (Brown et al 2004; Bize 

et al 2007). Rehabilitation progress of patients after surgery or intervention may be best 

described by their level of physical activity in a free-living environment (Lyons et al 

2005). For the chronically diseased population, their health related quality of life is 

correlated with their level of physical activity (Nelson et al 2007). According to a 

review of 24 studies (Coumeya and Friedenreich 1999), it was found that increased 

levels of physical activity could improve cancer patients’ quality of life. In addition, 

most chronic disease groups comprised of mainly older individuals, and in general the 

elderly population usually present poorer physical health or lack physical strength when 

compared to the younger age groups (Hopman et al 2000). Therefore, they require 

specific attention in the recommendation of physical activity to maintain health. In 2002, 

statistics showed that inactivity was estimated to cost the NHS over £8.2 billion per 

year in England (Department of Culture 2002), consequently it is necessary to provide 

both healthy individuals as well as persons with chronic disease with a motivation to 

become more physically active to maintain their quality of life.  

 

In accordance with the American College of Sports Medicine (ACSM) and American 

Heart Association (AHA) guidelines for healthy adults under the age of 65, the 
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recommendation for reducing the risk of chronic disease is to perform either moderate 

intense physical activity 30 minutes a day, 5 days a week or 20 minutes vigorously 

intense exercise for 3 days a week. In addition to these physical activities, a person 

should carry out 8-10 strength-training exercise, 8-12 repetitions of each exercise twice 

a week. For the 30 minutes moderate activity, it can be accumulated throughout a day in 

10 minutes bouts (Haskell et al 2007; Nelson et al 2007).  

 

Stamatakis et al (2007) suggested that adults’ participation in sports had increased 

between 1991 and 2004 while their occupational physical activity had decreased during 

the same period. There is a general tendency for individuals to overestimate their 

activity level and underestimate the health related risk when asked to self-report, hence 

quantitative measurement of physical activity is needed. It is desirable to have reliable 

and objective techniques for measuring and monitoring physical activity in free-living 

environments. 

 

The problem of inactivity does not only occur in adults, it has also become of 

paramount importance in children. In fact, the levels of activity for those between the 

age of 9 to 18 years old can significantly predict adult physical activity (Telama et al 

2005). Studies have shown that inactive youths were at risk of becoming inactive and 

overweight in their adulthood, with increasing risk for developing numerous health 

problems (Van der Horst et al 2007; Chen and Wu 2008). The U.S. Physical activity 

guidelines state that adolescents should accumulate at least 60 minutes of moderate 

physical activity in most, if not all, days of the week (Physical Activity Guidelines 

Advisory Committee 2008). Although boys are generally more active than girls 

(Ridgers et al 2005; Butcher et al 2008), the majority of adolescents do not meet the 

above recommendation (Butcher et al 2008). 

 

With the increasing interest to improve health related quality of life, measurements of 

physical activity have become more important and widespread. First, it is necessary to 

understand the terms mobility and physical activity. Mobility is defined as ‘the 

individual’s ability to move about effectively in his surrounding’ (WHO 1980). 

Physical activity is any bodily movement produced by skeletal muscles that result in an 

energy expenditure and physical activity level is the ratio of total energy expenditure to 

basal energy expenditure.  

 

The Worth Health Organization model of the International Classification of 

Functioning, Disability and Health (ICF) provided a framework to define the 
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components of health and some health-related components of well-being, which include 

body function and structure (impairments), activities, and participation (Figure 2.1). 

Both ‘activities and participation’ are main components within the model (Figure 2.1). 

The ICF defined activity as the execution of a task or action by an individual, and 

participation is defined as involvement in a life situation. 

 

 
Figure 2.1: World Health Organization model for International Classification of 

Functioning, Disability and Health (WHO 2001). 

 

The ICF stated that activity can be measured through the constructs of capacity and 

performance, where capacity is the implementation of a task in a controlled 

environment showing what the person is ‘capable’ of doing when asked in a clinical 

situation; and performance is the execution of a task in a natural environment, which 

would show what the person ‘really does’ in the free-living setting. From the ICF model, 

intervention in one component may, potentially, have influence on one or more of the 

other entities. Therefore performance is as important as capacity for an individual with 

or without disabilities. In view of rehabilitation issues, the ability to monitor patients’ 

levels of activity can provide useful quantitative information about their physical 

activity patterns, including any changes. This would enable clinicians to make more 

informed decisions about diagnosis, choice of appropriate treatment and the evaluation 

of progress (Lincoln 1990; Geurts et al 1991; Keith 1994).  

 

2.2 Activity Monitoring Techniques 

Physical activity is theoretically a single entity, but extremely difficult to be measured 

as such. During any type of movement, more than one set of skeletal muscles would be 

working and the total work done by both arms and legs has to be found. In practice, it 

Activities 

Health Condition     
(physical & psychological) 

Body Functions & 
Structures 

Participation 

Environmental factors Personal factors 
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would be very difficult to measure every aspect which contributes to physical activity, 

therefore a choice must be made based upon which component of physical activity is 

most relevant to the research or clinical question.  

 

2.2.1 Questionnaires and diaries 

A convenient and inexpensive way to monitor physical activity is to use questionnaires 

or diaries. A diary is usually given to the subject to be completed at the time of activity 

or at the end of the day during daily free-living monitoring. However, the individual has 

to be motivated to keep full descriptions of his/her activity level at predetermined time 

intervals (Sirard et al 2000).  

 

For activity level assessment, a general health questionnaire with a mobility part or 

specific activity questionnaires could be used (Washburn and Montoye 1986; Panesar et 

al 2001; van der Dussen et al 2001; Meriwether et al 2006). Examples of these 

questionnaires can be seen in Table 2.1. These questionnaires usually have a scoring 

procedure to assess a person’s overall activity level. Although questionnaires are still 

one of the main techniques for assessing physical activity, their reliability and 

responsiveness remains problematic.  

 

Table 2.1: Examples of general health questionnaires and specific activity questionnaires 

General health questionnaires Reference 

Medical Outcome Study Short Form 36 (SF-36)  Ware 1993 

World Health Organization quality of life 

questionnaire – brief version (WHOQOL-BREF) 

World Health 

Organisation 2004 

Nottingham Health Profile Hunt et al 1980 

Functional Independence Measure (FIM)  Maynard et al 1997 

Specific activity questionnaires  

Physical activity assessment tool (PAAT) Meriwether et al 2006 

International Physical Activity Questionnaire  

– Long Form (IPAQ-Long) 

Craig et al 2003 

Barthel Index  Mahoney & Barthel 1965 

 

Questionnaires can provide useful information and have been widely used successfully 

in both clinical and research settings throughout the world for assessing free-living 

physical activity monitoring and many of these questionnaires have been validated for 

use in various clinical populations. However, questionnaires and diaries could be 
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subjective and prone to human errors. It is also possible that the accuracy of a 

questionnaire can be biased by leading or closed ended questions, which may contribute 

to errors in results interpretation. An interview may be required to improve the quality 

and reliability of the information.  

 

2.2.2 Observational techniques 

Observational gait analysis is a qualitative method of assessing walking patterns by 

identifying gait deviations in people through visual observation. However, good 

knowledge of normal gait and extensive experience of pathological gait is necessary to 

allow valuable observations to be made. There is no universal system for standardising 

observational gait analysis, causing difficulties with comparison between studies.  

 

Observational means of assessment have several problems. Performing this type of 

observation purely by eye limits the number of ‘pictures’ seen per second to only 16 

rendering events that last less than 1/16th of a second uncharacterisable. Also during 

gait, many events occur simultaneously making interpretation with no replay facility 

very difficult. The use of video technology clearly overcomes this issue and provides 

the capability for slow motion and pause during play back, allowing repeat viewing 

without fatiguing the patient. Advantages of observational assessment are that no extra 

external attachments to the patient are required therefore reducing the possibility of gait 

modification. However, it is a time consuming task and some important underlying 

causes for gait deviation may not be detected even by trained observers. 

 

Observational gait analysis can also be used outside the laboratory, where an observer 

with or without the aid of video equipment, registers a person’s activity levels in a 

given time period. However, this may influence the subject’s behaviour with the 

awareness of being observed and this procedure is very time-consuming both for data 

collection and the interpretation that follows.  

 

2.2.3 Gait Analysis 

Instrumented gait analysis is the study of walking that involves a detailed examination 

of movements of the limbs while a person walks, normally through the use of some 

form of motion analysis system. This type of analysis is useful for identifying the 

underlying causes for walking abnormalities in patients (Cappozzo 1984, Kirtley 2006, 

Perry 1992, Zanchi et al 2000). The results from gait analysis can be used to aid 
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planning of the most appropriate treatment for people with a gait deviation (Gage 1991). 

Motion analysis coupled with force plate data (a record of the forces acting between the 

foot and the ground during walking) can provide information on both the kinematic and 

kinetic events throughout the gait cycle (Simon 2004, White 1999).  

 

Kinematic is the term used to describe the geometric description of motion and 

information such as the position and orientation of body segment and angles of joints. 

The kinematic data is normally acquired using a body mounted marker system. The 

markers used can either be active, i.e. LEDs (e.g. CODA Motion Analysis (Dexterity 

Research Ltd, UK)) or passive reflective markers (e.g. ELITE system, BTS SrL, Milan, 

Italy, VICON, Oxford Metrics Ltd, Oxford, UK). The markers are placed in such a way 

as to allow the tracking of all body segments of interest. (Gage 1991, Perry 1992) 

 

On the other hand, kinetic events are those relating to the forces and the effects of these 

forces on the body, especially at the joints. The most commonly used method to gain 

kinetic information is by the use of a force recording device (force plate) with either 

piezoelectric or strain gauged instrumentation, that is embedded in the walkway flush 

with the surrounding floor. The ground reaction forces (vertical, anterior/posterior and 

medio-lateral components) between the foot and the ground are measured when a 

person steps onto the force plate. (Gage 1991, Perry 1992) 

 

The combination of kinematic and kinetic data allows the calculation of several key 

elements of activity performance throughout the observed movement including; joint 

angles, ground reaction forces, joint forces and joint moments. 

 

Other spatial parameters such as stride length and width, step length and angle of foot 

progression can be found using an instrumented gait analysis system. These temporal 

variables in turn reflect events throughout the gait cycle (e.g. stance time, swing time, 

single and double support times). Cadence and walking velocity can also be calculated 

from these temporal parameters. It has to be noted that the velocity of gait will alter the 

dynamic joint ranges, therefore gait with similar velocities should be used for 

comparison purposes.  

 

2.2.4 Methods for measuring energy expenditure 

The minimum amount of energy that is required to keep the body alive is termed the 

basal metabolic rate, which can be estimated in a quiet and restful environment for an 
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individual after at least 8 hours sleep the previous night and approximately 12 to 14 

hours since the last meal. Any energy expended over this basal metabolic rate is 

required to perform various physiological tasks (such as food digestion), may be 

associated with change in emotional state or could be required to perform physical 

activity. A key element of energy expenditure is the requirement to meet demands of 

physical activity. There are a number of methods which can be used to measure energy 

expenditure and the most widely used techniques include the use of doubly labelled 

water, the measurement of oxygen consumption or heart rate monitoring. 

 

2.2.4.1 Doubly labelled water (DLW) 

The doubly labelled water method is considered to be the gold standard for measuring 

energy expenditure under free-living conditions (Westerterp and Kester 2003; Plasqui 

and Westerterp 2007). Both the hydrogen and oxygen atoms of the water molecule are 

tagged with stable isotopes (18O and deuterium, 2H) in DLW for tracking purposes to 

assess energy expenditure (Lof et al 2003). The basis of the DLW method is to follow 

the decline in the stable isotopes in the body after the initial labelling, over time, 

through regular sampling of urine. This method can be used for both free-living and 

hospitalised patients, however, this technique is only accurate for average daily energy 

expenditure and cannot provide a temporal breakdown of activity. Also the labelled 

isotopes are very expensive, therefore not suitable for large scale studies. 

 

2.2.4.2 Oxygen cost measurements 

During physical activities, muscles are required to perform work using energy. By 

directly measuring the caloric expenditure at these sites of metabolism, the amount of 

physical activity can be determined (Maltais et al 2005). However, this has proved to be 

difficult to carry out, therefore an indirect measurement of the metabolic by-products 

was adopted. By sampling respiratory gases (relative proportion of O2 and CO2) in 

expired air, by portable systems such as the Cosmed K4b2 (Rome, Italy), energy 

expenditure during physical activities could be determined (Corry et al 1996; 

Littlewood et al 2004; Fredrickson et al 2007). However, the validity of these 

measurements can be adversely affected by environment conditions such as temperature 

and pressure, diet, prior exercise and intake of food. Another disadvantage linked to this 

method is the need to wear at least a nose clip and mouthpiece or a full face mask to 

collect the expired air, which could prove cumbersome and may result in the inhibition 
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of movements precluding certain activities. Therefore this method may not be feasible 

for use in free-living environments.  

 

2.2.4.3 Heart rate monitoring 

Heart rate monitoring is not a direct measure of physical activity, but provides an 

indication of the relative stress placed upon the cardiopulmonary system by the 

performed activity. Recordings of heart rate can be used to estimate oxygen 

consumption, which in turn determines energy expenditure (Bussmann et al 2004, 

Rowlands et al 1997). Oxygen uptake and heart rate have a linear relationship for a 

wide range of aerobic activities, with the exception at the resting heart rate and at the 

high end where maximal heart rate occurs for the anaerobic pathway. Heart rate data 

collected at specific time intervals can also provide information on the frequency, 

intensity and duration of the physical activity being performed. However, for the use of 

heart rate monitoring to be useful as a tool for activity monitoring purposes, the system 

has to be calibrated for each individual because heart rate varies from person to person 

and physical activity is not the only factor that affects the changes in heart rate. Other 

factors that could affect heart rate include emotional stress, medication, anxiety, level of 

fitness, hydration and environmental differences.  

 

2.2.4.4 Summary  

Although these methods for measuring energy expenditure are well established, they 

can present problems in practicality and the accuracy in the free-living situations. 

Furthermore, it is difficult to compare energy expenditure results between subjects, 

especially people with chronic disease or gait disorders, as these groups of patients may 

use more energy for the same physical activity when compared to an individual without 

any health problems. It is therefore more appropriate to characterize actual physical 

activity undertaken using methods other than energy consumption measurement.   

 

2.2.5 Ambulatory monitoring devices 

2.2.5.1 Pedometers 

A pedometer is an objective, cheap, unobtrusive device which counts the number of 

steps the wearer takes and is usually worn at the ankle or the hip. It is ideal for a large 

population survey for activity level as step counts. Although a pedometer can count the 
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number of steps and the information can be used to assess activity, some early studies 

have suggested that pedometers can be inaccurate in both step counting and measuring 

distance walked (Gayle et al 1977; Washburn et al 1980). As technology improved in 

the past decade, evidence from recent studies showed the reliability and validity of 

electronic pedometers to be good (Foster et al 2005; Tudor-Locke et al 2005; Crouter et 

al 2006), but still varying greatly depending on the brand of the device (Schneider et al 

2004; Tudor-Locke et al 2005). One other shortcoming of a pedometer is that it records 

the total count of stepping activity, therefore results have to be collected at the end of 

each day during free-living monitoring and participants may be able to check on the 

step count throughout the day (unless blinded), leading to exaggeration of activity to 

improve on the score of the pedometer. Furthermore, no information on posture or other 

physical activities performed is possible (e.g. cycling, work with the arm, sitting etc.).  

 

2.2.5.2 Foot switches, goniometers and gyroscopes 

Footswitches count the number of times the foot make contact with the ground (on/off), 

in effect counting steps. Footswitches normally use a pressure sensitive resistor as the 

sensing element to record heel strike and toe-off (Granat et al 1995). Analysis of the 

data obtained could be used to distinguish between continuous walking activities and 

small movements in standing.  

 

Goniometers measure joint angle and by knowing the position and actions of lower 

limb joints, posture and activities can be determined. Goniometer measurements have 

been used extensively around the knee joint to document the apparent range of knee 

motion, especially to assess the efficacy of surgery or other forms of therapy to improve 

mobility or reduce painful movements. (Piriyaprasarth and Morris 2007; Rowe et al 

2001) Goniometers can provide accurate measurement of angles, however the 

information obtained may not be useful in determining posture or activity level of 

people with gait deviations. For example, the range of knee joint angle for people who 

walk with flexed knees (crouch gait) or stiff knees might be small, making it difficult to 

distinguish standing episodes from walking periods. 

 

Gyroscopes measure orientation of the segment based on the principles of conservation 

of angular momentum, hence body position can be determined and postural information 

could be obtained (Aminian et al 2002, Scapellato et al 2005, Tong et al 1999).   

 



 13

Although these devices have been used widely in studies to provide information on gait 

events, little research has been done for measuring activity levels directly or to estimate 

energy expenditure with a single device. Some researchers examined the feasibility of 

using a combination of these mechanical tools with accelerometer based devices to 

identify gait events, hence activity levels (Lau and Tong 2007). 

 

2.2.5.3 Accelerometer based devices 

Accelerometer based devices have become widely used for physical activity monitoring, 

allowing assessment of temporal patterns and intensity of activity as well as total 

accumulated activity (Morris 1973; Kavanagh and Menz 2008). These devices can be 

sensitive to accelerations in one to three orthogonal planes (vertical, mediolateral and 

anteroposterior). Due to the design of accelerometers this output is typically a 

combination of acceleration along the sensitive axis and orientation with respect to 

gravity. It is likely that the output signal would be affected by other factors such as 

external vibration and acceleration due to jolting of the sensor on the body from a loose 

attachment leading to overlaying of errors on the signal. As accelerometers respond to 

both frequency and intensity of movement, they provide additional information 

compared to actometers or pedometers, which are attenuated by impact or tilt only.  

Uniaxial accelerometer based devices can provide valid and useful information on 

posture and stepping activities if positioned appropriately. Triaxial accelerometer based 

devices would be sensitive to a wider range of body movements/activities, as they can 

detect acceleration changes in all three planes.  

 

These devices are divided into two broad categories, those which estimate energy 

expenditure and those which classify posture and activity types. The commercially 

available accelerometers most frequently referred to in the literature are shown in Table 

2.2. These devices are generally easy to fabricate, relatively cheap and small in size, 

therefore suitable for free-living activity monitoring, allowing unrestricted and 

minimally encumbered movement. 
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Table 2.2: Examples of commercially available accelerometer based activity monitoring devices 

Accelerometer based monitoring 

devices 

Type of 

accelerometer

Main Measure 

Outcomes 

Other characteristics References 

Actical 

(Mini-Mitter Co., Sunriver, OR, 

USA) 

Uniaxial; 

Dual-axial 

Energy expenditure, 

step counts 

Worn at waist using a belt; 

28x27x10mm; weighs 17.5g 

Welk et al 2004; Leenders et al 2006; 

Esliger et al 2007 

Actigraph  

(also known as CSA, MTI, WAM)  

(Fort Walton Beach, FL, USA) 

Uniaxial Energy expenditure, 

activity intensity and 

step counts 

Worn at waist using a belt; 

53x50x20mm ; weighs 42.5g 

Hendelman et al 2000; Sirard et al 2000; 

Metcalf et al 2002; Crouter et al 2006; 

Leenders et al 2006; Ham et al 2007; 

McClain et al 2007a 

Actitrac  

(IM Systems, Baltimore, MD, USA) 

Bi-axial Activity counts Worn at waist;  

56x38x13mm; weighs 34g 

Welk et al 2003 

ActivPAL  

(PALtechnologies, UK) 

Uniaxial Time spent in 

different posture and 

step counts 

Worn on the thigh; 

50x35x7mm; weighs 20g 

Grant et al 2006; Harris et al 2006; Ryan 

et al 2006 

ActiWatch  

(Cambridge Neurotechnology Ltd, 

UK)  

uniaxial 

Dual-axis 

Energy expenditure Hip or wrist worn; 

39x32x9mm; weighs 11g 

Finn et al 2000; Puyau et al 2002 

 

Biotrainer 

(IM Systems, Baltimore, MD, USA) 

uniaxial Energy expeniture; 

activity counts 

Worn at waist;  

76x50x22; weighs 51g 

Welk et al 2003 

Caltrac  

(Sports Research Corporation, CA, 

USA) 

Uniaxial Energy expenditure Worn at the waist; weighs 

78g 

Sallis et al 1990; Johnson et al 1998; 

Going et al 1999 
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DynaPort  

(McRoberts BV, Netherlands) 

Triaxial Time spent in 

different activities 

and body position 

Worn around the waist; 

62x41x18mm; weighs 53g  

Bussmann et al 1995; Uiterwaal et al 

1998; Van Lummel et al 2002 

IDEEA 

(Minisun, Fresno, CA) 

5 sets of 

accelerometers

Energy expenditure Sensors placed at 5 different 

locations; weighs 200g 

Sun & Hill 1993; Sun et al 1994; Zhang et 

al 2003 

PAM  

(Ossur, Iceland and Dynastream 

Innovations, Inc, Canada) 

Uniaxial Step counts and time 

in different posture 

Worn at the ankle; 

85x38x32mm; weighs 50g  

Bussmann et al 2004; Ramstrand and 

Nilsson 2007 

StepWatch Activity Monitor, SAM 

(Cyma, WA, USA) 

Dual-axis Step counts and time 

spent stepping 

Worn just above the ankle; 

65x50x15mm; weighs 65g  

Coleman et al 1999; Foster et al 2005; 

McDonald et al 2005; Boone and 

Colemann 2006 

Tracmor 

(Philips Research, Netherlands) 

Triaxial Energy expenditure Worn at the lower back; 

72x26x8mm; weighs 22g  

Levine et al 2001 

Tritrac-R3D /RT3 

(Stayheathy, Monrovia, CA, USA) 

Triaxial Energy expenditure Worn at the waist; 

71x56x28mm; weighs 65g  

Jakicic et al 1999; Nichols et al 1999; 

Hendelman et al 2000; Campbell et al 

2002; Powell et al 2003; Rowlands et al 

2004; Leenders et al 2006 

3dNX  

(BioTel Ltd, Bristol, UK) 

Triaxial Energy expenditure Worn at waist using a belt; 

125x58x8mm; weighs 93g  

Carter et al 2008 
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The most commonly used accelerometers consist of a piezoelectric element with a seismic 

mass and when acceleration is detected by the seimic mass, it causes the piezoelectric 

element to bend and record a voltage signal that is proportional to the applied acceleration. 

There are also piezoresistive or strain gauge based accelerometers. Piezoresistive 

accelerometers use a piezoresistive substrate such as polysilicon in place of the 

piezoelectric element and the acceleration is detected as the intertial effect on the seismic 

mass changes the its electrical resistance, which is proportional to the applied acceleration. 

A strain gauge based accelerometer uses a strain gauged element to detect the deflection of 

the seismic mass with a Wheatstone bridge network. The deflection is also directly 

proportional to the applied acceleration. 

 

In general, the commercially available devices have sufficient onboard data storage 

capacity for prolonged recording (more than 7 days), which is useful for free-living 

measurement. In addition, with the advancement in technology, continuous time based 

sampling is possible, therefore output can be saved and downloaded to computers for post- 

processing to identify duration, frequency and intensity of the physical activity performed, 

hence energy expenditure can be estimated. 

 

The output of an accelerometer based physical activity monitoring device is dependent 

upon the location of the monitor; its orientation; the posture of the subject and the 

movement/activity being performed. If the subject is at rest, the accelerometer output is 

determined by its inclination relative to the gravitational field. If the orientation of the 

accelerometer relative to the person is known, the posture of the subject relative to the 

gravitational field can then be determined by the accelerometer signal.  

 

The most commonly used interpretation of accelerometer signals include simple 

mathematical operations such as means and standard deviations in conjunction with 

thresholds to determine periods of static and dynamic events. Another frequently adopted 

method for data analysis is the use of simple integration to determine the relationship 

between the integral of absolute accelerometer output and energy expenditure. More 

recently there are other signal analysis techniques such as frequency spectrum analysis, 

multi-resolution analysis, wavelets analysis, pattern recognition and neural networks, which 

could be used for accelerometer signal analysis.  
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Apart from the commercially available accelerometer based devices for monitoring activity 

level (Table 2.2), there are others which have been developed over the past decade and used 

in different research studies. Moe-Nilssen (1998) validated a triaxial accelerometer based 

device placed over the lumbar spine for standing balance and walking activity monitoring 

in the healthy adult population (Moe-Nilssen 1998a; Moe-Nilssen 1998b). In another study, 

Moe-Nilssen et al (2002) used the same device to measure balance control during quiet 

standing in the elderly population and later they used the monitor to estimate gait cycle 

characteristics such as cadence, step length and measures of gait regularity and symmetry 

(Henriksen et al 2004; Moe-Nilssen and Helbostad 2004).  

 

Gait temporal parameters such as stance/swing relationship could be obtained from placing 

accelerometers on both legs (Aminian et al 1999) or different positions of the same leg 

(Willemsen et al 1990). Additional information on posture and activities can be found by 

placing more than one set of accelerometers on different body segments, such as on the 

trunk and legs (Veltink et al 1996; Bussmann et al 1998b; Bussmann et al 2000; Zhang et al 

2003; Culhane and Lyons 2004; Lyons et al 2005; Lord et al 2007; White et al 2007). 

When a sensor is also placed on a segment of the upper limb, activity of the upper limb 

could also be detected (Foerster et al 1999; Schasfoort et al 2002).  

 

Apart from general physical activity level, balance and fall detection can also be measured 

using triaxial accelerometer based devices (Lotters et al 1998; Mayagoitia et al 2002; 

Bourke et al 2006). Some research studies used accelerometers as well as gyroscopes to 

quantify posture and or activity levels and gait events (Najafi et al 2003; Paraschiv-Ionescu 

et al 2004; Jasiewicz et al 2006; Lau and Tong 2007). A combination of accelerometers 

with goniometers were used to assess gait events, while other studies used accelerometers 

with heart rate monitoring devices (Perkins et al 1995) to obtain data for physical activity 

level. 

 

2.2.6 Issues associating with activity monitoring techniques 

Nonetheless, with all kinds of free-living monitoring methods, problems with sampling size 

exist. The level of activity may vary greatly from day to day for most people and it is 

difficult to determine how many days to measure for an acceptable representation of daily 

physical activity for each individual. Another issue is that any attempt to measure physical 

activity may, alter the person’s mobility level. People may become self-conscious and 
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over-exaggerate their physical activity during the monitored period. Studies suggested that 

7 days monitoring would provide reliable estimates of daily activity level for both adults 

and children that would account for the potential differences in activities between 

weekdays and weekends (Trost et al 2000; Matthews et al 2002). Furthermore, each activity 

monitoring based device should be validated for each patient group before free-living 

monitoring. 

 

2.2.7 Summary – Activity monitoring techniques 

There are numerous types of instruments that are available to measure or assess aspects of 

physical activity. The choice of measurement technique will inevitably be dependent upon 

factors such as clinical needs and restrictions, related research questions, mobility aspects 

of interest, required methodological strength, cost and availability.  

 

Physical activity monitoring may be performed using a number of methods each with their 

own advantages and disadvantages. To monitor for periods of time extending to several 

days it is necessary to use subject feedback via questionnaire or to adopt techniques that 

offer the possibility of either automatic activity detection using worn devices. Objective 

measurement using worn devices overcomes the difficulty of subjectivity and recall bias in 

questionnaire based records. Accelerometry is one technology that fulfils most of the 

requirements for long term monitoring of physical activity in a free-living environment and 

these requirements include; acceptability by the subject (size and appearance); ease of 

attachment and reattachment; robust to withstand wear in all anticipated environments and 

for all activities; sufficient data storage capacity for prolonged, multi-days, recording (more 

than 7 days) with adequate battery lifespan; appropriate frequency response. Any other 

techniques adopted must be minimally encumbering (to maximise compliance) and provide 

feedback on critical aspects of posture and stepping. 

 

This thesis presents work based on the recording of accelerometer output as well as 

exploring the possibility of using pressure and force measurement for monitoring activity in 

the specific population of prosthetic users.  
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3 CEREBRAL PALSY 

3.1 Introduction 

One of the subject populations chosen for study in the work reported in this thesis, was that 

of people with cerebral palsy. It is important to understand the condition of cerebral palsy 

and its potential influence on a person’s mobility, to appreciate the need for work to 

specifically validate activity monitors in this group of subjects. 

 

Although cerebral palsy (CP) has probably existed since there have been children, it was 

not until the 1860s, when an English orthopaedic surgeon, Dr. William Little, first 

described it as a neuro-developmental condition and the term ‘cerebral palsy’ was 

introduced by Dr. William Osler in 1888. CP is the term used for referring to a group of 

non-progressive central nervous system (CNS) deficits, caused by an injury to the immature 

brain which usually occurs during or shortly after birth (Badawi et al 1998; Koman et al 

2004). CP is thought to be one of the most common life-long developmental disabilities, 

causing considerable problems to individuals and their families. The worldwide reported 

prevalence in children with CP is 1 to 2.4 per 1000 live births (Murphy and Such-Neibar 

2003; Koman et al 2004). The incidence and most important risk factors seem to be 

prematurity and low birth weight (Murphy and Such-Neibar 2003; Sankar and Mundkur 

2005). CP can be developed prenatally, during birth or postnatally. The age until which CP 

can be acquired is uncertain as it is difficult to determine the exact time when the brain 

develops fully. Hereditary, prenatal infections, foetal anoxia and placenta mal-development 

are some examples of prenatal causes of CP. During birth the damage to the brain can be 

initiated by asphyxia or trauma. Whereas postnatal factors include vascular accidents, 

intraventricular haemorrhage and head trauma while the brain is still developing. 

 

The motor cortex is believed to be the most vulnerable part of the brain in people diagnosed 

with CP, therefore almost all patients with CP have problems with movement. However, all 

other functions of the brain may also be affected due to the possibility of multiple lesions. 

Damage to the motor cortex usually leads to a loss of selective control of muscles, so 

contraction of these muscles may not be adequate at the appropriate time during specific 

movement such as walking. Spasticity and primitive patterns of contraction can also occur. 

Depending on the area of brain injuries, sensation which leads to a lack of balance, speech 

and posture may be impaired as well. CP affects many areas of the body, therefore there is 
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a need for a multidisciplinary approach to manage people with CP and the main fields 

include physiotherapy, speech therapy, orthopaedics and other associated rehabilitation 

specialists. Epilepsy (35-62%) and mental retardation (around 60%) are common in the CP 

population (Sankar and Mundkur 2005) along with other behaviour and neurological 

problems that can occur, depending on the extent of the defects in the brain.  

 

An early diagnosis of CP is important as this could reveal significant delays in growth of 

the child. Initial problems that might be associated with CP include abnormalities of tone 

and patterns of motor behaviour related to the control of the body in space affecting the 

ability to interact with the environment. These motor difficulties may eventually lead to 

fixed deficits reducing function. Hence appropriate treatment/intervention is essential to 

help the individual to maintain mobility. 

 

3.2 Classification of CP 

Cerebral palsy is a diverse condition where the type of motor deficit may take several forms, 

which leads to problems when classifying the type of CP. There are currently two main 

methods to classify CP patients, the physiological and the topographical (Liptak and 

Accardo 2004). Another system, Gross Motor Function Classification Systems, GMFCS, is 

also used by some professions to classify different types of CP (Oeffinger et al 2007). A 

classification system for CP is used to clarify the extent of the disorder in a patient. 

 

3.2.1 Physiological classification 

This system classifies CP patients by the physiological characteristics of their abnormality 

and there are four main types of CP in this group, which are spastic, dyskinetic, ataxic and 

mixed (Murphy and Such-Neibar 2003; Sankar and Mundkur 2005).  

 

Spastic CP is the most common type accounting for approximately 75 – 80% of the CP 

population. This type of CP usually correlates with a fixed lesion in the motor portion of 

the cerebral cortex, in which certain muscles are continuously contracted causing tightness 

or stiffness of these muscles, therefore affecting movement and gait.  
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Dyskinetic CP is classified as those who present problems maintaining posture and show 

fragmented involuntary movements of the limbs which would normally be controlled 

smoothly. Damage to the cerebellum and basal ganglia is the cause of dyskinetic CP. 

 

Ataxic CP is when a patient shows low muscle tone and poor coordination of movements, 

which include shaky movements and unsteady gait that result from the brain’s failure to 

regulate the body’s posture and the strength and direction of limb movements. Affected 

children usually have a wide-based gait for balance as they tend to sway when walking and 

a mild intention tremor can also be seen.  

  

The mixed type CP have damage to both the pyramidal and extrapyramidal portions of the 

brain, leading to both tight muscle tone seen in spastic CP and involuntary movements seen 

in athetoid CP. Children who fall into the mixed group have a more global neurological 

injury and so are more likely to have quadriplegia as opposed to diplegia and likely to 

present other forms of neurological disorders.  

 

3.2.2 Topographical classification 

The topographical classification was established using anatomical distribution of the 

deformity or abnormality. Monoplegia, diplegia, hemiplegia, quadriplegia and double 

hemiplegia (triplegia) are the terms used within this system. It is very rarely that children 

are diagnosed with monoplegic or double hemiplegic CP. Monoplegia refers to single limb 

involvement, whereas double hemiplegia relates to the involvement of all four limbs with 

both arms more severely affected. 

 

Diplegia, accounting for around 40-45% of the CP population, is paralysis involving both 

sides of the body and affecting the legs more severely than the upper body. When only one 

side of the body is paralysed, it is termed hemiplegia (approximately 20-30%). In this 

group, movements of the face and arm are usually more severely affected than those of the 

legs and it is caused by damage affecting the opposite hemisphere of the brain. 

Quadriplegia (15-20%) defines the condition involving weakness/paralysis in all four 

extremities affecting the lower limbs more severely. 
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3.2.3 Gross Motor Function Classification Systems (GMFCS) 

In 1997 another system, the Gross Motor Function Classification System (GMFCS), was 

developed to classify CP by their age-specific gross motor activity as well as their 

limitations (Palisano et al 1997). The GMFCS has five levels for describing the severity of 

motor disability, with level I as the more able-bodied, i.e. walks without limitations, and 

children in the level V category are those requiring a manual wheelchair for transportation. 

This system is reliable and valid, containing definitions and distinctions between levels.  

 

3.2.4 Summary 

The topographical classification is simple, therefore widely used. However by applying the 

topographical classification alone, limited information is given from the classification about 

the patient, therefore a combination of the physiological and topographical systems is 

usually used to describe a patient with CP, e.g. spastic diplegia, so that a more detailed 

diagnosis could be available.  

 

The GMFCS is a more specific classification system based on gross motor activities in 

relation to age, however, it is still not widely used in a clinical setting, which may be due to 

the possibility of reclassification as the child grows and extensive knowledge about the 

system is required for the clinician to use it correctly.  

 

3.3 Assessment methods of CP  

The features that are most commonly seen with CP are: 

• loss of selective muscle control 

• dependence on primitive reflex patterns for ambulation such as mass limb flexion 

or extension which leads to abnormal movements in gait 

• abnormal muscle tone 

• relative imbalance between muscle agonists and antagonists across joints 

 

A complete history, physical examination and ancillary investigation such as gait analysis 

are required for a full diagnosis of CP and its progression. Although the primary lesion in 

CP is non-progressive, the effects on the musculoskeletal system develop with growth. 

Therefore it is necessary to repeat these examinations at regular intervals to determine the 

rehabilitation progress of each patient. 
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During physical examination, different aspects of motor impairments are measured when 

the patient is in the prone and supine position. Range of motion (ROM) for both static and 

dynamic conditions are evaluated in all three planes (flexion/extension; 

abduction/adduction; internal/external rotation) by visual observations and measurement of 

angles. Muscle strength and selective control is tested. Muscle tone is rated and determined 

whether it is spastic, athetoid or mixed. Torsional deformation of bones and/or fixed foot 

deformities is assessed. Balance and equilibrium are appraised in both sitting and standing 

positions. 

 

Physical examination is thought to be more useful in the evaluation of torsional deformities, 

equilibrium and balance, and muscle strength compared to gait analysis. However, it does 

not provide all the information required for a full assessment on its own. Therefore 

observational and computerised gait analyses are performed to complete the assessment. 

(See Chapter 2.2.2 and 2.2.3 for observational techniques and gait analysis). Desloovere et 

al (2006) concluded from their study that both clinical examination and gait analysis 

provided important information for delineating problems in children with CP. Although 

gait analysis alone gives valuable data, it cannot replace the information gained from 

clinical examination. DeLuca (1991) reported that computerised gait analysis information 

modified the surgical treatment recommendations made by experienced clinicians for 

patients with CP in 52% of the patients evaluated, indicating the importance of performing 

gait analysis. However, gait analysis only provides information on the person’s capability 

of motion and no data are given for their physical activity outside the laboratory 

environment.  

 

Furthermore, electromyography (EMG) recordings can be used to show the activation of 

skeletal muscles during movement (Ricamato et al 2005). The net EMG signal is the 

summation of all the electrical potentials from the generation of motor unit action potentials 

when a muscle contracts. Surface or indwelling electrodes can be applied to obtain EMG 

signals. These signals are very difficult to interpret as it is hard to distinguish noise or 

artefacts from real data. However, clinically, dynamic EMG is the only method available to 

determine which muscles are active during movement and the duration of the activation.  
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3.4 Cerebral palsy management  

Abnormalities in cerebral palsied gait rarely occur in isolation, they normally consist of 

both primary and secondary anomalies. Primary deviations are directly due to the damage 

in the CNS, whereas secondary anomalies are those coping strategies used by individuals to 

get around the primary gait deviations. It may be difficult to distinguish between the 

primary and secondary abnormalities, but it is important to identify between the two and 

correct only the primary anomaly, which in effect abolishing the compensatory 

mechanisms as they are no longer required by the patient. Any gait impairments usually 

lead to reduced efficiency, requiring more energy compared to normal gait, therefore by 

giving the patient appropriate treatment/intervention, their physical capability should be 

maintained or improved.  

 

Early diagnosis of CP is essential to allow an opportunity to assess and initiate 

rehabilitation for any mobility difficulties, which may result in fixed deficits as the child 

grows reducing their functions. In normal children gait matures by 5 years old (Davies et al 

1997). However, children with CP in comparison with healthy children vary considerably 

in the nature and timing of the developmental changes in their walking abilities. Full 

examinations must be carried out to guide treatment plans, as it is likely that no two persons 

with CP will have exactly the same abnormalities. Therefore, intervention planning should 

be individualised, based on specific problems, taking physical and cognitive development 

into account and ensuring carer involvement. For motor difficulties, the appropriate options 

should reduce the deficits but help to maintain levels of mobility and physical fitness. 

 

3.5 Activity monitoring for people with CP 

In general, children with CP exhibit a higher energy cost for walking compared to healthy 

children and an increase of energy cost for ambulatory activities is seen as the child grows 

(Johnston et al 2004; Maltais et al 2005). In addition, the level of independence for people 

with CP decreases as the child develops (Johnston et al 2004; Day et al 2007). These 

limitations in walking skills and increased energy cost for ambulatory movements could 

lead to a decline in their ability to participate in day-to-day activities (Beckung and 

Hagberg 2002; Steenbergen and Gordon 2006). Bjornson et al (2007) reported that children 

with CP were less active compared to a group of age matched healthy children. It is 

important to document physical activity in CP children to assess if interventions are helping 

to maintain an active life style. 
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For people with the condition of CP, it is believed that those who are ambulatory would 

show limitations in their walking capacity, which might lead to implications for 

performance in the free-living environment. However, in clinical practice the main focus 

for assessment of people with CP has been measures of their walking capacity (e.g. gait 

analysis and tests on energy cost for walking). These methods are time consuming and high 

levels of skills are required to analyse the data. Usually no quantitative measurements are 

collected for activity levels within the context of the daily lives of people with CP, though 

questionnaires can be used (Graham  and Harvey 2007; Maher et al 2007; Oeffinger et al 

2007), they can be subjective and may be biased. A better understanding of physical 

activity in a free-living context for children with CP is warranted to enhance the 

perceptions of interventions aimed at mobility limitations and aid treatment decision 

making.  

 

Chapter 2.2.5 discussed the different types of devices available to monitor activity levels in 

the general population and specific adult patient groups. Most changes in the mobility of 

people with CP are generally in the growth phase, i.e. childhood. To use accelerometer 

based devices to monitor asymptomatic children’s activity levels, these devices must be 

sensitive enough to detect the highly transitory, short bursts and spontaneous movements 

that characterize children’s play behaviours (Rowlands et al 2007). This leads to difficulties 

in energy expenditure prediction for children when using accelerometer based devices 

(Rodriguez et al 2002; Puyau et al 2004; Trost 2006).  

 

Toschke et al (2007) used the Actigraph to monitor activity level in 205 asymptomatic 

children aged between 5 and 6, they found that low reliability might be caused by variable 

placement of the accelerometer device and the use of an elastic belt might cause slipping of 

the device. On the other hand, some validation studies in asymptomatic children have been 

carried out for different commercially available accelerometry devices and most studies 

reported good validity under supervised field conditions (Sallis et al 1990; Busser et al 

1997; Trost et al 1998; Ekelund et al 2001; Argiropoulor et al 2004; Puyau et al 2004; 

Freedson et al 2005; McDonald et al 2005; Brandes et al 2006; Pfeiffer et al 2006; Chu et al 

2007; Hussey et al 2007). The use of accelerometer devices for gaining information on the 

correlations between different interventions to increase activity level in asymptomatic 

children has been studied (Trost et al 1999; Ridgers et al 2005; Hager 2006; Heitzler et al 

2006; Butte et al 2007). However, each accelerometer based device should be validated 
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before measuring physical activity especially if applied in a group with mobility related 

symptoms. 

 

3.6 Summary 
Cerebral Palsy can affect the mental and physical development of children and therefore 

has an impact on the child’s ability to perform activities and on the likelihood that they will 

engage in community based physical activity. Children with cerebral palsy have a large 

range of mobility impairments and therefore to fully characterize the effect of the cerebral 

palsy on an individual it is necessary to perform an extensive assessment.   

 

Intervention is often aimed at reducing the effect of the condition on walking capability, 

either preventing deterioration or enhancing this ability. The ability to walk might be linked 

to actual performance of physical activity in a free-living environment. However, it is not 

possible to characterize actual physical activity unless this is measured. The use of 

accelerometer based devices offers the possibility of quantifying free-living physical 

activity in this population, but there is no evidence that valid or reliable data can be 

obtained using this method in this highly variable mobility impaired population.  
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4 LOWER LIMB PROSTHETICS 

4.1 Introduction 

The second subject population studied for the work reported in this thesis was that of 

lower-limb amputees. As people in this population wear prosthetic devices during walking 

activity a number of alternative monitoring methods might be used to quantify free-living 

physical activity. Aspects of amputation and the use of prosthetic devices are introduced in 

this chapter to provide insight into the requirements for development of techniques for 

free-living physical activity monitoring in this population. 

 

The earliest known prosthetic device was found in a tomb and was dated back to around 

300BC. However, it was not until World War II that rehabilitation services for amputees 

became visible, because of the high demand from returning veterans. In addition, the polio 

epidemic in the 1940’s and 1950’s added to the need for restorative care. With the 

advancement in medical technology and the universal trend towards health consciousness, 

life expectancy has increased which leads to a growing population of the elderly. This 

increased age brings a concomitant increase in the potential for disease and injury, hence 

increases the incidence of amputations (Pernot et al 1997) and therefore expands the need 

for rehabilitation, especially in the prosthetic area. In a global study, the incidence of lower 

limb amputation was shown to range from 3.7 – 88.7 per 100,000 men and from 0.5 – 32 

per 100,000 women (The Global lower extremity amputation study group 2000).  

 

The major indications for performing amputation are: vascular diseases, trauma or injury, 

congenital limb deficiency, tumours and chronic infection. The typical age for lower limb 

amputation is 51-69 years old (Esquenazi and Meler 1996) and the highest prevalence for 

lower limb amputation in North America and Europe is through vascular disease with 

approximately 70% of all amputations (Pernot et al 1997; Mayfield et al 2000). However, 

the frequency of prosthetic use is lowest among this group because of co-morbidities. 

Fletcher et al (2002) showed that the amputation rates in the US between 1956 and 1995 

declined, however, the total number of amputees increased due to the aging population 

(Fletcher et al 2002) and advancement in medical technology. Therefore, there is a clear 

need for effective ongoing prosthetic services. 
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Once the clinical evaluation and diagnostic techniques prove the necessity of amputation, it 

then becomes the goal of the rehabilitation team to ensure optimal recovery, restore 

function to the individual and to enable resettlement in society with an acceptable level of 

function. An artificial limb is used to replace the amputated part of the limb to restore 

functional losses and the main focus in the rehabilitation program for lower limb amputees 

is on standing and walking ability while using the prosthesis. The time from surgery to the 

first prosthesis fitting had been thought to contribute a significant effect on the frequency of 

prosthetic use and attainment of satisfactory walking ability with the prosthesis. Pezzin et al 

(2004) showed that those who were fitted at a later stage after amputation (>60 days) were 

less likely to be satisfied with the prosthesis fit, comfort, appearance, and overall 

performance, when compared to the persons with early prosthesis fitting (<30 days). 

However, early fitting may not always be feasible with the presence of non-healing wounds; 

infection; friable skin grafts or other co-morbidities and limb injuries that preclude 

ambulation. Well-fitting, comfortable, and easy-to-use prosthetic devices enable a patient to 

perform daily activities and maintain independence, which are of paramount importance for 

mental and physical health. 

 

Lower limb amputations cause a loss of physical function, a change in weight distribution, 

interference in coordination and proprioception, and a disturbance of balance. The common 

levels of amputation in the lower limb are hindquarter, hip disarticulation, trans-femoral, 

knee disarticulation, trans-tibial, syme, and partial foot. An amputee’s mobility level is 

influenced by the level of amputation and age (Holden and Fernie 1987). People with hip 

disarticulation and hind-quarter amputations have been shown to have reduced levels of 

independence. Trans-femoral amputees, with the loss of their nature knees, usually exhibit 

higher energy cost gait and are therefore less efficient with poorer quality of gait compared 

to trans-tibial amputees (Holden and Fernie 1987). 

 

4.2 Prosthetic requirements and components 

The essential elements of successful lower limb prosthesis are: 

- a good fit of socket onto the residual limb stump 

- alignment which positions the socket correctly in relation to the artificial foot 

- suitable artificial joints as required 

- some means of suspending the prosthesis on the stump 

- a total weight within clinical requirements 
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- a functional device within a cosmetically acceptable package 

 

The most common forms of lower limb amputations are either trans-femoral or trans-tibial, 

and for both types of amputations, the prosthesis would typically be composed of a 

prosthetic foot, a shank element, a custom made socket and some form of suspension. A 

suitable artificial knee joint would also be needed for trans-femoral prostheses. The 

prosthetic foot is designed to provide a base of support and shock absorption during 

ambulation. The shank corresponds to the anatomical lower leg and is used to connect the 

socket to the prosthetic foot. The custom made socket is in contact with the residual limb 

and disperses pressure around it. Suspension devices should keep the prosthesis firmly in 

place during use and prevent excessive relative motion between the residual limb and 

socket during walking.  

 

4.3 Problems encountered by lower limb amputees 

Van Velzen et al (2006) reviewed 48 studies and found that many factors (disease 

characteristics, personal and external factors) would influence a person’s walking ability 

after amputation (van Velzen et al 2006). These concerns could cause gait abnormalities in 

amputees which may lead to less use of the prostheses and eventually not using the 

prescribed prosthesis at all. Condition of the stump, problems due to the prosthesis itself 

and amputees’ reactions towards the use of an artificial limb could all lead to a decrease in 

the frequency of prosthetic use and physical activity of the individual, thus reduced quality 

of life. 

 

The effective use of any stump depends largely on the operative technique performed and 

thus on the residual muscles left after the amputation and the condition of the skin (or soft 

tissue envelope). The prosthesis itself generally has no activity functional capacity and is 

controlled by the stump and its muscles. Good amputation procedures may lead to 

improved stump condition and therefore improved transfer of loads between stump and 

socket allowing better control of the prosthesis and therefore improved ability in walking.  

 

Inadequate maintenance of hygiene levels and stump volume fluctuations are examples of 

other general stump problems which lower limb amputees can encounter. If the socket and 

or the stump are not cleaned regularly, debris accumulates causing skin irritation. On the 

other hand, volume fluctuation adds to the difficulty in providing the best socket fit. After 
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amputation the stump swells, especially distally as oedema occurs. This swelling can take 

up to 18 months to subside, but as mentioned previously it is best to fit an amputee with a 

prosthesis as soon after the amputation as possible (Pezzin et al 2004), so stump socks are 

added when the stump decreases in size. When the stump volume stabilises, the socket is 

recast to ensure adequacy of fit. Small volume fluctuations can also occur daily.  

 

Ill-fitting sockets, bad alignment and incorrect length all lead to abnormalities in amputee 

gait, which may lead to infrequent use of the prosthesis. Badly fitting sockets can create 

excessive pressure causing pain, irritation or skin ulcers, and therefore patients would not 

be able to use the prosthesis until the skin is healed and pain is relieved. In addition, 

phantom pain may occur, which can be disabling (Dillingham et al 2001). Lower limb 

amputees normally rank socket fit and comfort as the most important issue influencing 

prosthesis acceptability (Legro et al 1999). For good functional outcome it is important to 

ensure correct socket alignment, positioning the stump to allow the wearer efficient 

performance of functional tasks. The socket of the prosthesis must be well fitted and be 

comfortable in order for the user to wear it. The weight of the prosthesis is also important 

as patients would find it difficult to walk with a heavy prosthesis. The socket should 

support the patient’s weight comfortably including loads experienced during gait. 

 

For amputees the initial rehabilitation training tends to have long term aims; however the 

motivation of the patient is the main factor towards good progress. It is important to 

distinguish the non-wearers who experience uncomfortable gait due to problems with the 

prosthesis itself or the stump condition, from those who have no interest in using the 

artificial limb. When a person is not motivated, he/she will not wear the prescribed 

prosthesis at all. On the other hand, if a prosthesis causes discomfort to the patient, the 

amputee may wear the prosthesis when necessary such as moving around in the house, and 

they would use it when first received, but once the discomfort begins, the amount of wear 

may decrease. It might be expected that the activity levels for those who have prostheses 

with bad alignment or of incorrect length would be less compared to those patients who 

have been properly fitted.  

 

4.4 Outcome measurement - Activity monitoring and prosthetic use  

The expectations of successful rehabilitation and level of outcome after amputation vary 

greatly between amputees. From one end of the scale, Para-Olympic participants are able to 
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run 100 metres in under 11 seconds, but on the other hand a successful outcome might be 

for the amputee to be able to take a few steps to assist a carer during transfer. Therefore the 

assessment of outcome measures should be individualised and evaluated in relation to 

pre-morbid function. The success of prosthetic fitting as well as prosthetic usage and 

amputees’ overall functional ability in a community setting must be considered in their 

rehabilitation progress. 

 

Pernot et al (1997) suggested that ‘knowledge of daily functioning of amputees can 

enhance our understanding of the optimal care needed for amputees in our health care 

system’. Their review also found that the outcomes of studies showing the extent of 

prosthetic use cannot be compared as different selection criteria were used between studies 

and there were differences in the definition of functional walking (Pernot et al 1997). 

Therefore it would be useful to have an objective method to measure prosthetic usage that 

could be comparable between studies.  

 

Most outcome measures for amputees are based on a variety of scoring techniques from 

questionnaires or interviews (See Chapter 2.2.1) (Kegal et al 1978; Narang et al 1984; 

Johnson et al 1995; Leung et al 1996; Uiterwijk et al 1997; Fletcher et al 2001; Panesar et 

al 2001). However, the use of a questionnaire/ interview could be biased and subjective. It 

would be difficult to determine the efficacy of the prosthesis from questionnaires, 

especially if the recipients were not motivated in using the prosthesis in the first place or if 

they believed that an indication of non-use could lead to support services being withdrawn. 

Also they may not know or remember exactly how active they had been while using the 

prosthesis. A more quantitative assessment method is the 10-metre walk; when an amputee 

is asked to walk 10 metres in a laboratory based setting. Full-time prosthetic users usually 

complete the task in less than 30 seconds and longer time is required for partial users. Some 

might not be able to finish the 10 metres walk. Collin et al (1992) used the Barthel index to 

assess functional outcome of lower limb amputees with peripheral vascular disease, which 

showed correlation with their walking speed and three distinct subgroups identified as 

walkers, partial walkers and non-walkers (Collin et al 1992).  

 

In a study (Pezzin et al 2004), 960 amputees were interviewed to examine their prosthetic 

use and satisfaction with prosthetic limb devices. This survey showed that 94.5% surveyed 

used their artificial lower limb extensively and most people (75.7%) were satisfied with the 

overall performance of their prosthesis. In another study (Pohjolainen et al 1990), only 68% 
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of the amputees interviewed were extensive users of their prosthesis. Results from these 

studies cannot be compared as different methods of assessments were used.  

 

Successful outcome measurements should be based on the amputees’ performance and not 

just their capability. Furthermore, measures of mobility and independence may be useful in 

quantifying amputees’ quality of life. Regular assessment is desirable for lower limb 

amputees as active prosthetic users may deteriorate into non-wearers because of their 

ongoing pathology. Hence, a long-term monitor for quantifying the amount of wear and 

activity levels in the free-living environment would be a useful device in order to document 

the rehabilitation progress and effectiveness of the prosthesis in restoring mobility to the 

amputee.  

 

4.5 Compliance monitor for amputees 

Chapter 2.2.5 discussed the different types of ambulatory activity monitors available for 

use in the general population. However, for activity monitoring in the amputees population, 

it is not only important to document their activity levels on a day-to-day basis, but also to 

quantify prosthetic usage. Therefore it is desirable to have a device that monitors the 

amount of prosthetic use as well as activity level for lower limb amputees. The ideal 

compliance monitor should be concealed within the prosthesis; the battery life time must be 

relatively long (>3 months), so that it can monitor a representative free-living period. Long 

battery life would be required because exaggeration of activity may occur at the beginning 

of the monitoring period (Ross and Reece 2006). The device must be discrete, unobtrusive 

and must not affect the function of the prosthesis. 

 

There have been several attempts to develop devices to determine the wearing times for 

different types of orthosis and or prostheses. Holden and Fernie (1987) measured the extent 

of prosthetic use in 104 lower limb amputees from the onset of inpatient gait training up to 

2 years post discharge. Footswitches were used as an electronic counter of steps to 

document objective measurement of actual use of the artificial leg as well as patients’ 

ability in stepping (Holden and Fernie 1987). However, for the less active amputees, this 

method did not give any indication of the amount of prosthetic use and also counting steps 

did not describe the total activity level of a person. Holden and Fernie (1987) suggested 

that at least 600 steps per day were necessary for an amputee to manage a one-level home 

with moderate support (Holden and Fernie 1987). 
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Stam et al (1995) developed a device for continuous ambulatory monitoring of prosthetic 

walking (CAMP) in trans-tibial amputees. The device was attached around the shank 

element of the prosthesis and had a capacity to measure the walking time and number of 

walking periods per day for up to 5 days. However, this method only provided limited 

information towards activity level and prosthetic usage as only stepping activities were 

recorded (Stam et al 1995) and no information on prosthetic usage was given. 

 

Bussmann et al (1998a) validated and tested the reliability of an accelerometer based 

activity monitor, which was able to detect several types of activities/postures (lying, sitting, 

standing, transitions, movement-related activities) for people with and without amputation. 

A high correlation was found between the output from the activity monitor and data 

obtained from video recordings (Bussmann et al 1998a). Since this study, the activity 

monitor had been developed further and validated in different groups of people (Bussmann 

et al 1998b; Bussmann et al 2004). However, this device did not give any information on 

the frequency of prosthetic use.  

 

PAL Technologies Ltd (Glasgow, UK) developed a Long-term Activity Monitoring (LAM) 

device for use with lower limb amputees to document their stepping activities by counting 

steps. The LAM monitor consists of an uniaxial accelerometer and the device is placed 

inside the shank element of lower limb prostheses and is capable of recording for up to one 

year (Ross and Reece 2006). The outputs from the LAM include number of steps taken 

each day and were found that by using the LAM in conjunction with a validated prosthetic 

evaluation questionnaire, amputee’s free-living mobility level and success of rehabilitation 

could be provided.  

 

4.5.1 Stump/socket interface pressure measurements 

When a stump is placed inside the socket, pressure should be distributed in such a way as to 

off load sensitive areas and transfer load through only those areas that have high pressure 

tolerance. Some sockets are designed to have equal pressure over the stump/socket 

interface, while others were designed to have high pressure areas over those tissues which 

could bear load. However, it is difficult to achieve ideal pressure distribution practically.  

 



 34

Many studies have used the measurements of stump/socket interface pressure to identify 

areas of high pressure, hence determining prosthetic fit and comfort. However, currently no 

ideal transducer exists for these measurements. Ferguson-Pell and Bain (1980) and Grant et 

al (1985) stated that an ideal interface transducer should be: 

• small with thickness/diameter ratio of 1:10 

• highly flexible without distorting the readings 

• uniformly sensitive over the measuring surface 

• capable of collecting continuous electrical output 

• able to withstand ambient moisture and temperature of the body 

• inexpensive to build 

• highly sensitive, have negligible hysteresis, good linearity, negligible long term 

drift, suitable measuring range and good accuracy 

 

There have been suggestions that only thin sensors such as the diaphragm deflection 

strain-gauge sensors (Rae et al 1971; Pearson et al 1973), fluid-filled transducers 

(VanPijkeren et al 1980), pneumatic transducers (Kroupskop et al 1987) and printed circuit 

sheet sensors (Engsberg et al 1992; Houston et al 1994; Zhang et al 1996; Convery and 

Buis 1998; Zhang et al 1998) are suitable for insertion between the skin and socket. 

Mounting of these devices should be relatively easy, but due to the sensors finite thickness, 

the pressure pattern may be disturbed when a sensor is placed at the stump/socket interface 

(Appoldt et al 1968).  

 

For trans-femoral stump/socket interface measurements, Appoldt et al (1968) used four 

semiconductor strain gauges bonded on to a pressure sensitive diaphragm. They showed 

that the interface pressure can vary significantly from day to day due to donning of the 

prosthesis in a different position, fatigue, volumetric changes of the stump, and subject’s 

gait variation  (Appoldt et al 1968). Van Pijkeren et al (1980) used a hydraulic pressure 

transducer where the sensing element was a PVC bag filled with silicon oil and was 

connected to a National Semiconductor pressure transducer with an oil filled tube. They 

found that this method was affected by the variation of the radius of curvature of the 

measurement surface (VanPijkeren et al 1980). Lee et al (1997) measured the stump/socket 

interface pressure using strain gauged load cells which were integrated with the socket, 

with the transducer face flush with the socket’s inner wall. The sockets used were made 

specifically with openings to allow the pressure transducers to make contact with the stump 
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(Lee et al 1997), therefore would not be ideal for quantifying daily use of the prosthesis and 

activity level. 

 

For trans-tibial stump/socket interface pressure measurements, various force transducers 

were developed using strain gauges, mounted on the socket so the transducer face was 

flushed with the liner (Appoldt et al 1968; Sanders et al 1997; Zhang et al 1998; Sanders 

and Daly 1999; Goh et al 2003). These required the sockets to be made specifically and the 

transducers were cumbersome, therefore not suitable for free-living monitoring. Another 

commonly used method to measure stump/socket interface pressure was by force sensitive 

resistors (FSR) (Buis and Convery 1997; Convery and Buis 1998; Beil et al 2002). 

Although inaccuracies have been reported for the use of FSR technology (Cavanagh et al 

1992; Ferguson-Pell et al 1992; Sanders 1995), Buis and Convery (1997) suggested some 

techniques to improve reliability with a strict calibration procedure and test protocol to be 

followed. A commercially available transducer, the F-socket (Tekscan Inc., Boston, USA) 

consisting of 96 FSR sensor cells, was used to measure pressure distribution at the 

prosthetic socket-stump interface. 

 

For suction sockets, air pressure transducers connected to the one-way valve could also be 

used to determine pressure profiles during ambulation (Beil et al 2002). This allows the 

characterization of the negative pressure that occurs during the swing phase of a gait cycle.  

 

Interface pressure data could also be used for evaluation of stump/socket finite element 

models, which are computer-based analysis tools that calculate interface stresses based on 

residual limb and prosthesis geometries and material properties as well as the loading 

conditions specified at the model boundaries (Jia et al 2004, 2005).  

 

From the numerous studies on stump/socket interface pressure measurements, it was 

hypothesised that by determining pressure profile at the stump/socket interface, prosthetic 

usage and amputees’ activity levels could be quantified, as distinct pressure patterns could 

be seen during different activities. For the purpose of developing a compliance monitor to 

measure the pressure profile, a site at the stump/socket interface where contact always 

occurred when a prosthesis is being worn should be chosen for the point of application of 

the pressure transducer.  
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4.6 Summary 
Amputees are offered the opportunity to regain mobility through the use of prosthetic 

devices. The exact type of device and the fit are determined for each patient individually. 

There are, however, characteristics of the devices that provide the opportunity for 

monitoring of both prosthesis wearing times and physical activity. The published work on 

the variation of pressure profiles at the stump socket interface indicates that monitoring of 

this pressure would provide sufficient information to allow characterization of physical 

activity state. This promising route for physical activity characterization is explored in this 

thesis with both interface pressure and suction socket pressure relief valve pressure signals 

used. 
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5 CEREBRAL PALSY – VALIDATION STUDY 

5.1 Introduction 

Activity monitoring in the home, education and leisure environments can provide 

invaluable information on the rehabilitation progress for people with cerebral palsy (CP). 

This requires a wearable device that may be worn for multi-day periods and does not impair 

mobility. Physical activity is complex with many variables and it is therefore difficult to 

measure all aspects of physical activity with a single monitoring device. Depending on the 

reason for activity monitoring, it may be desirable to measure activity in various contexts. 

It is possible that the aim of measuring activity may be to obtain information on the energy 

expended by a subject to correlate with obesity levels. However, the fundamental quantity 

addressed in this thesis is activity patterns during daily living, characterized by standing 

and stepping phases with number of strides performed.  

 

Due to the heterogeneous nature of the CP population it was recognised that although 

subjects may have had gait deviations in common with one another, no two subjects would 

be exactly the same. The severity of, and the underlying reason for, a particular abnormality 

may differ greatly between subjects. By performing gait analysis only, a patient’s walking 

ability and the underlying causes of the disability may be determined, however, their 

walking activity during normal daily life is unknown.  

 

The activPAL (PAL Technologies Ltd, UK) is an uniaxial accelerometer based device, that 

is commercially available for monitoring activity level in a free-living environment. 

However, the device had not been validated for use with younger subjects (children), 

especially those with mobility difficulties. The current study was carried out to validate the 

activPAL for people with CP and to establish whether the proprietary activPAL algorithm 

for data analysis could be used to categorize posture and count strides in the CP population. 

It was hypothesised that the activPAL could accurately categorize posture (sitting/lying, 

standing and walking) and strides detection using a general algorithm and hence provides 

useful free-living activity data to document the activity patterns and rehabilitation progress 

of people with CP and to aid clinicians in decision making towards treatment planning.  

 

The abilities of the activPAL to characterize free-living activity into periods spent 

sitting/lying, standing and walking using a proprietary algorithm has been validated in 
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healthy adult populations (Jamieson 2002; Godfrey et al 2007; Grant et al 2008) and results 

showed that overall agreement between observer and activPAL were 95.9%-98% with 

excellent inter-device reliability (ICC ranged from 0.79-0.99). Studies also demonstrated 

the use of the activPAL to characterize free-living physical activity levels of older adults 

(Egerton 2005), stroke patients (Egerton et al 2002; Harris et al 2006) and people with heart 

disease (Lean et al 2007). However, subjects with CP may have althered anatomy and 

motion patterns, therefore it was important, before using the activPAL in this subject 

population, to validate the output under controlled conditions.  

 

The activPAL outputs should be validated against a ‘gold standard’ test in order to examine 

its ability to accurately classify posture and count strides for people with CP. ‘Gold 

standard’ is the term used as a benchmark that is regarded as definitive for the required 

measurements and a hypothetical ideal gold standard test has a sensitivity or statistical 

power, of 100%, however this is very difficult to achieve. Doubly labelled water, DLW, 

(see Chapter 2.2.4.1) is thought to be the ‘gold standard’ to validate accelerometry based 

activity monitoring devices which are used to infer energy expenditure. For the current 

study the aim was to evaluate the ability of the activPAL to characterize physical activity 

state. The widely used ‘gold standard’, observation by means of video recorder, was 

employed to validate the accuracy of the activPAL outputs for use with the CP population. 

An observer can distinguish postures and count the number of steps that the wearer 

performs. Visual analysis provides a gold standard for data on posture and movement 

patterns. 

 

This validation study was carried out at the Anderson Gait Laboratory, Edinburgh, which 

specialises in gait analysis for people who show a wide range of gait disorders and thus 

provided the ideal setting for recruitment of subjects with CP and conducting data 

collection. Clinical gait analysis is routinely performed at the Anderson Gait Laboratory for 

treatment planning and review of rehabilitation progress for people with gait disabilities. 

The process involved each patient being evaluated individually through physical 

examination, observational and computerised gait analysis in a single visit to the centre. 

 

Evaluation of the ability of the activPAL general analysis algorithms to correctly 

characterize physical activity state and stepping activity in a CP population is reported in 

this chapter. 
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5.2 Methods 

5.2.1 Introduction 

The activPAL was used in this study to attempt to characterize physical activity. To 

understand the way in which this evaluation study was carried out, the device and the 

proprietary data analysis algorithms are first described (section 5.2.2). The subject 

population is detailed and then the context in which the evaluation was conducted is given 

(section 5.2.3). Specific aspects of the experimental protocol are covered (sections 5.2.4 to 

5.2.10).  

 

5.2.2 The activPAL device and data analysis algorithms 
The activPAL (Figure 5.1) is an uniaxial accelerometer based activity monitoring device 

worn on the thigh. It is a lightweight device of approximately 20g with a dimension of 

50x35x7mm. A range of sampling frequency 0-100Hz is available, and 10Hz is normally 

used for daily activity recording. The uniaxial accelerometer used in the activPAL was an 

ADXL31 (Analog Devices, Inc.).  

 

 
Figure 5.1: ActivPAL professional physical activity monitor 

 

For standard use, it is advocated that the activPAL is attached to the anterior mid thigh, 

which was the position used in this study. The activPAL has a sensitive axis aligned with 

the long axis of the thigh, which is affected by both gravity and movement of the lower 

limb. Although the device output is referred to as ‘acceleration’ from an ‘accelerometer’, 

the signal output is actually a combination of acceleration and also orientation with respect 

to gravity. In this thesis the output from the device will be referred to as ‘acceleration’ 

although there is some ambiguity in the use of this term unless the gravitational component 

is also considered to be due to the potential acceleration effect that would arise in a 

gravitational field.  
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The difference between signals produced when the activPAL is placed statically (i.e. with 

only orientation effect due to gravity and no acceleration effect) in a horizontal and then a 

vertical position was equivalent to 1g (g = acceleration due to gravity). Hence, the 

acceleration signal measured from the activPAL could be calculated (Equation 5.1).  
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Where PALsignal = output signal, PALsignalH = output signal with device horizontal, 

PALsignalV = output signal with device vertical. 

 

Within the activPAL, the signal noise was reduced by using an anti-aliasing low pass filter 

with a cut-off at 5Hz and then the signal was digitised (8bits) by internal microprocessors 

and information stored on the internal memory. The microprocessor controlled the 

processing and recording of the sensor signal and communication with a host computer. 

The device was capable of recording for in excess of 7 days continuously and it recorded 

the acceleration signal, which was then downloaded to a computer for analysis. A serial 

cable linked the docking station (Figure 5.2) to the USB port of a computer with the 

activPAL professional software (version 5.8.1.6, PAL Technologies Ltd), which was used 

to analyse the data.   

 

 
Figure 5.2: ActivPAL docking station with USB interface 

 

5.2.2.1 ActivPAL proprietary signal analysis algorithm 

The interpretation of the activPAL signal by the proprietary algorithm allowed the 

categorization of posture as sitting/lying, standing and walking periods with the number of 

strides determined. Although the author does not know the exact algorithm that was used 
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by the activPAL software, general aspects of the acceleration signal interpretation were 

known.  

 

Sitting/lying and upright posture classification 

The proprietary algorithm first employed some form of filtering techniques, possibly a 10 

second moving average filter and then two thresholds were identified for the filtered signal 

(Figure 5.3), an upper threshold for the classification of upright postures and a lower 

threshold to distinguish sedentary events. Hence for a change in activity state, it is 

necessary for the signal to go through both thresholds. For example, when a person is in an 

upright state, a change of activity would not occur until the filtered acceleration signal 

passed through the lower threshold, and if in a sitting posture a change would not occur 

unless the upper threshold was crossed. 

 
Figure 5.3: An example of the recorded raw acceleration signal from the activPAL and the 

filtered signal with an indication of upper and lower thresholds for posture classification. 

 

Stepping classification 

After the classification of upright and non-upright events, the algorithm then identified 

stepping activities within the upright posture. When a cyclical signal was detected within 

the upright events, it was expected to be stepping episodes. The start time of each stepping 

activity was recognised by the first trough in a cyclical signal after a small peak was 

detected (Figure 5.4). This trough was considered as the first stride within this walking 

period. The number of every other trough within the stepping activity was counted to 

represent the number of strides performed. The last trough was used as the finish time of 
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the associated stepping episode, which did not seem to be counted as a stride. As the exact 

algorithm was unknown, information was only obtained from data collected to determine 

when a stride was counted. A diagrammatic summary of the general aspects of the 

classification of walking period and stride counts from the acceleration signal recorded by 

the activPAL are presented in Figure 5.4 with the number of strides counted by the 

activPAL algorithm. 

55 60 65 70 75 80
0

50

100

150

200

250

time(s)

P
A

L 
M

ag
ni

tu
de

1

2 3 4 5
6

7 8

9
10

11

raw data

walking period

 
Figure 5.4: General aspects of classifying walking episode and stride counts from the raw 

acceleration signal with the number of strides counted by the activPAL algorithm. 

 

Energy expenditure analysis 

The activPAL post-processing software was capable of maintaining a running count of the 

number of strides the device wearer took, providing estimates of energy expenditure and 

producing cadence data associated with the stepping activities. Energy expenditure is often 

expressed as multiples of resting metabolic rate termed MET (metabolic equivalents), 

which is defined as ‘the ratio of the work metabolic rate to the resting metabolic rate’.  

 

1 MET is the rate at which adult burns 1 kcal at rest. In general, sitting quietly and other 

sedentary activities have MET values close to 1 as these activities do not require any more 

kcal than one would burn at just resting. The default estimated energy expenditure in the 

activPAL software used 1.25 METs, 1.4 METs and 4 METs for sitting/lying, standing and 

stepping (at 120 steps per minute) respectively. These energy values could be changed 

manually in the activPAL professional software.  
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Minimum duration of events 

The activPAL proprietary signal analysis algorithm included a minimum setting for the 

duration of sitting/lying and upright events, which was set at a default of 10 seconds. I.e. it 

was not possible to record a transition to a sitting/lying posture from an upright posture 

unless the posture lasted for in excess of 10s. If the sitting/lying period was less than 10s 

then the posture was recorded as continuous upright time and the person was characterized 

as being in continuous stepping if stepping occurred both before and after this short 

sedentary period (less than 10s).  

 

The minimum sitting/lying and upright duration could be changed from 1 to 100 seconds in 

the activPAL professional software. The setting of this time would affect the interpretation 

of the data stream if short periods of activity were undertaken. 10 seconds was chosen as 

the default, but it is not clear why this setting is chosen as it would be ideal to be able to 

detect all instances of posture change no matter how rapid these were. Ideally it would be 

possible to detect changes in posture that lasted for only very short periods, e.g. less that a 

second.  

 

The author assumes that this element of the proprietary algorithm was implemented based 

purely on the assumption that such short transitions would not occur in free-living activity. 

It might be anticipated that if this parameter was set to as low as 1 second that errors may 

arise in the signal analysis due to the use of smoothing of the signal to detect posture 

transitions. However, the value of 10s seems to be very high if all periods of posture 

change are to be characterized correctly. For this study the default value of 10s was used 

except specifically to examine the affect of this parameter on the results of the validation 

study where the value was varied between 1 and 10s.   

 

5.2.3 Subjects 

Prior to data collection for the validation study, ethical approval was granted through the 

NHS Lothian local research ethics committee (LREC3) and the University of Strathclyde 

Ethics Committee. Written consent was routinely obtained for all subjects who undergo gait 

analysis at the Anderson Gait Laboratory, and also covers the use of data for research 

purposes and for publication. A separate consent form was provided for the use of the 

activity monitor, activPAL, for each subject prior to their routine gait analysis session. 
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19 subjects in the age range of 5 to 17 years old (mean age of 11) with the condition of CP 

(Table 5.1), who attended for routine gait analysis at the Anderson Gait Laboratory, took 

part in this study. No attempt was made to identify subjects within particular pathological 

groups or with particular pathological patterns. The sample was taken by convenience from 

those attending for gait analysis. For subjects under the consent age of 16 years old, their 

parents/guardians were informed and consent obtained. If the subjects were over the age of 

16 years old, but were unable to give informed consent they were excluded from the study. 

 

Table 5.1: Information on CP subjects (M = Male, F = Female, AFO = Ankle Foot Orthosis) 

Subject 

number  Age Sex Type of CP Mobility aids currently used 

1 5 M Diplegic Bilateral AFO 

2 5 M Diplegic Left AFO 

3 6 M Right hemiplegic Left AFO 

4 6 F Diplegic K-walker 

5 7 F Diplegic None 

6 7 F Left hemiplegic Right AFO 

7 8 M Diplegic Bilateral AFO 

8 9 M Right hemiplegic Wheelchair 

9 10 M Spastic diplegic Bilateral AFO 

10 12 M Spastic diplegic None 

11 13 F Quadriplegia Bilateral AFO, walking frame, wheelchair 

12 13 F Diplegic Bilateral AFO 

13 14 F Spastic diplegic Bilateral AFO, insoles, K-walker, wheelchair 

14 14 M Spastic quadriplegia Bilateral AFO, K-walker, wheelchair 

15 15 M Spastic diplegic None 

16 15 M Left hemiplegic None 

17 15 M Diplegic None 

18 17 M Mild diplegic Insoles 

19 17 M Right hemiplegic Left AFO 

 

5.2.4 Evaluation study context 

Details of the routine gait analysis are included here to establish the context in which the 

validation exercise was implemented. The gait analysis sessions involved sets of short 
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activity sequences with time spent in the different postures that could be used to validate 

the activPAL data analysis algorithm, which was of primary importance for the current 

thesis.  

 

The procedures were completed concurrently with a routine gait analysis session, which 

consisted of observational and computerised gait analyses and physical examination 

performed by trained physiotherapists. The existing facilities at the Anderson Gait 

Laboratory included a three dimensional (3D) motion analysis system (VICON 460 

datastation (Oxford Metrics Ltd, Oxford, UK)), 2 floor mounted force plates (AMTI 

BP400600 Force platform) and planar video. The motion analysis system comprised of 6 

wall mounted cameras (VICON MCam2 cameras, 100Hz, 1.3 mega pixels, 12.5mm lens) 

which tracked and recorded the 3D coordinates of the retro-reflective markers placed on the 

lower limbs and pelvis of an individual to quantify walking ability. The markers used were 

14mm in diameter, lightweight polystyrene spheres covered with highly retro-reflective 

tape and mounted on plastic bases. These were either directly stuck onto the skin with 

double sided tape, or were mounted on wands before being attached to the limbs to improve 

visibility and facilitate determination of the segment axes. Forces on the feet of the subject 

were recorded with the 2 floor mounted force plates (AMTI BP400600 Force platform, 

1000lb capacity). The motion and the forces on the lower limb were recorded and by 

combining the motion and force plate data, quantification of the kinematic and kinetic 

information could be performed by using the Vicon Workstation, BodyBuilder and Polygon 

software packages (Oxford Metrics Ltd, Oxford, UK).  

 

Observational gait analysis was carried out using a planar video for each person when they 

walked both the length and width of the laboratory for observing the coronal and sagittal 

views of gait patterns. Sometimes EMG data on muscle activities during gait were also 

collected by the Motion Lab Systems MA-100. Typically a written functional assessment 

questionnaire (Appendix I) was used to gain information on the subject’s activity/ability 

outside of the gait laboratory environment; however no monitoring of activity levels 

outside of the gait laboratory was performed at the Anderson Gait Laboratory. The 

questionnaire used at the Anderson Gait Laboratory was the Gillette Functional Assessment 

Questionnaire (Novacheck et al 2000), which was a 10 level scale to evaluate walking 

ability with an additional assessment questionnaires on 22 higher level skills, such as stair 

climbing and navigating curbs. 
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For this study, an additional activity monitor, the activPAL was introduced during the 

routine gait analysis procedures. The validation of the accuracy of the activPAL analysis 

algorithms in the CP population was achieved by comparing the activPAL data with video 

recordings, which acted as the ‘gold standard’.  

 

5.2.4.1 Routine Gait Analysis session at the Anderson Gait Laboratory 

For a routine gait analysis session at the Anderson Gait Laboratory (Edinburgh), a patient 

was required to walk set distances during both the standard video and computerised gait 

analysis parts. The procedure for routine gait analysis was as follow: 

1. Observational gait analysis (Figure 5.5a) 

a. Orientation blocks were placed at both thighs and the trunk while subjects 

were either seated or standing. 

b. Both patellae were marked using marker pencil when the patient was either 

seated or standing. Then both heels were marked when subjects were in the 

standing position. 

c. Subjects walked the length of the gait laboratory at least 6 times 

(approximately 10m long) for anterior/ posterior observations. 

d. Subjects walked the width of the laboratory at least 6 times (approximately 

5m wide) for lateral observations. 

e. Subjects were seated while orientation blocks were removed. 

2. Computerised gait analysis 

a. Retro-reflective markers were placed at anatomical landmarks (Figure 5.5b) 

while subjects were seated. 

b. A static test was carried out when the subject was asked to stand quietly for 

a few seconds in the centre of the gait laboratory. 

c. Subjects were asked to walk the length of the gait laboratory at least 6 

times depending on the number of strides that made contact with the force 

plates. 

d. After the standard motion analysis, all markers were removed. 

3. Physical examination 

a. Subjects were asked to lie on a plinth for testing of muscle tone, muscle 

strength and lower limb joints range of movements.  
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 (a)  (b) 

Figure 5.5: Orientation blocks position for observational analysis (a) and retroreflective 

marker placement for computerised gait analysis (b). 

 

If the subject usually wears Ankle-foot orthoses (AFO), procedure 1 and 2 were repeated 

with the use of the AFO. Subjects were allowed to rest as required during the routine gait 

analysis session and resume when they were ready.  

 

The following procedures were developed to allow the validation of the activity monitor on 

the activities a subject undertook as part of a routine gait analysis session. The subject did 

not perform any additional walking over and above that required during normal routine gait 

analysis. Each subject walked several hundreds steps with start and stop phases during a 

routine gait analysis session allowing for evaluation to take place. Also throughout the 

session, there were periods spent sitting/lying, standing and walking to enable the 

validation of the proprietary signal analysis algorithm’s ability to accurately categorize the 

type of postures of the subject. 

 

5.2.5 Protocol for activPAL use 

The following default values were set in the PAL professional software to configure the 

activPAL before use: 

Sampling frequency – 10Hz 

Minimum upright and sitting/lying period – 10 seconds 
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Default estimated energy expenditure - 1.25 METs, 1.4 METs and 4 METs for sitting/lying, 

standing and stepping activity respectively. 

 

At the beginning of each routine gait analysis session, the activPAL was switched on before 

attaching to the anterior mid thigh segment of each subject (Figure 5.5b), either on the leg 

with more pronounced gait abnormality or the right thigh if both limbs had similar mobility 

difficulties. The recommended PALstickies (PAL Technologies Ltd) were used to attach 

the activPAL to each subject. The PALstickies employed a patented dual layer hydrogel to 

provide optimum skin adhesion without the need to shave the skin surface. The direct 

attachment of the device onto skin as compared to clothing was aimed at reducing any error 

that might be associated with relative motion of clothing to underlying skin.  

 

On the completion of the gait analysis session, the activPAL was removed from the subject, 

and the data were downloaded directly onto a laptop using the activPAL professional 

software (version 5.8.1.6, PAL Technologies Ltd).  

 

5.2.6 Protocol for video recording 

A digital video camera (Model GR-DVX509SH, JVC, Japan) was used to provide a visual 

record of the subjects’ posture, stride counts and rate of stepping during the routine gait 

analysis sessions. The camera was placed at one end of the laboratory. The zoom was set at 

the widest angle in order to ensure the subject was in view at all times. Recording started 

before any procedures took place. On the completion of each testing session the digital 

video recorder was turned off after the monitoring device was switched off. The video tapes 

were stored for later analysis.  

 

5.2.7 Protocol for synchronization of activPAL and video 

The video and the activPAL were not electronically linked therefore there was a 

requirement to develop a method to synchronise the two sets of data. The solution chosen 

was to set the digital video camera to record first, and then switch on the activPAL in front 

of the video camera so that the time at which the activPAL was switched on could be noted. 

It was not clear as to the exact instant of initiation of data recording on the activPAL. The 

flashing green light (5 flashes indicated data collection initiation) on the activPAL was used 

to set the time of activPAL data collection starting. The last flash was used to set the time 
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point at which data collection commenced. There remained an uncertainty in 

synchronisation due to video frame rate resolution and time at which the activPAL deemed 

to start recording.   

 

5.2.8 activPAL data output 
The proprietary algorithm used by the activPAL software categorized posture and counted 

strides (1 stride = 2 steps). Two files were generated automatically from the activPAL 

software when the recorded data were retrieved. One of the files was an activity profile 

with a break down of hourly events (time spent in sit/lie, stand and walk) and total hourly 

step counts. The second file was an activity summary profile with the accumulated time 

spent in each posture and step counts for the entire recording session. (See Appendix II for 

an example of the activity profile and activity summary profile generated from the 

activPAL software.) 

 

For further information on the activity profile, an event file (.csv file) was retrieved for 

each recording using the activPAL software, which provided the initial time (sampling data 

point) at which a change of posture or a stride took place. The durations for each of these 

activities were also shown with corresponding activity code and an accumulated stride 

count. The activity code adopted in this file was 0 for sitting/lying, 1 for standing and 2 for 

stepping activities. From the .csv event file, the sampling data points were used to calculate 

the time at which a change of posture took place. The calculated times with the 

corresponding activity codes were then saved as a .txt file for later comparison purposes 

with the video data. 

 

5.2.9 Video classification protocol and data output 

5.2.9.1 Video analysis 1 

The first video analysis was used to provide a classification of posture and stepping that 

best matched the observer’s (author) understanding of physical activity state (sitting/lying, 

upright) and stepping. This did not take into account certain elements of the way in which 

the activPAL interpreted the data stream to classify physical activity.   

 

From the continuous video recording, the time for each change in posture was noted with 

the associated activity code (sit/lie as 3, stand as 4 and walk as 5) and the information was 
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saved as a .txt file for use to compare with the .txt file created from the activPAL data. The 

total number of strides that each subject took during the gait analysis session was also 

counted.  

 

In order to reduce error and misclassification for the analysis of the video data it was 

necessary to provide a definition of physical activity state and what constituted a stride. The 

following definitions were used in video analysis 1: 

1. Subjects were classified as sitting only when it appeared that the gluteus muscle 

region was in contact with the intended seat. When the gluteus muscle region lost 

contact with the seat, posture was classified as upright, either standing or walking 

depending on whether a stride was taken. 

2. The time at which a change of activity occurred was noted to the nearest twentieth 

of a second, which was determined as the start point of the transition in posture. 

3. Two methods were used for the classification of a stride: 

a. All counts – This method counted a stride when the foot (ipsilateral to 

actiPAL attachment) struck the ground after having been lifted from it in 

the upright posture. This count included small side steps and turning steps. 

b. Forward counts – A stride was only counted when a forward progression 

had been produced as a result of the foot (ipsilateral to activPAL 

attachment) striking the ground after having been lifted from it.  

 

5.2.9.2 Video analysis 2 

It was recognised that the activPAL data analysis algorithms contained mechanisms to 

minimise misinterpretation of data that might affect classification of the data. Video 

analysis 2 was implemented to provide a set of posture and stepping classifications that 

might match the characterization as provided by the activPAL. 

 

The activPAL did not register stand times which were less than 6 seconds between walking 

periods. Although the minimum sitting and upright period could be altered, the minimum 

duration for standing events could not be changed in the proprietary algorithm. These 

intervals of standing between walking episodes were classified as continuous stepping 

activities in the activPAL output. Consequently, for the validation of the activPAL 

algorithm to categorize activities, an extension of video analysis 1 was carried out to match 
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the activPAL categorization criteria. The stand times that were less than 6 seconds between 

walking periods were re-classified as continuous stepping activities. 

 

5.2.10 Comparison of activPAL and video analysis outputs 

The video data was manually coded and entered into a spreadsheet with the initial time for 

each change in posture and its associated activity code. This information was saved as a .txt 

file for comparison with the activPAL data using a Matlab program.  

 

5.2.10.1 Posture categorisation comparison 

A software program was written using Matlab (student version 7.1, the MathWorks Inc) to 

automatically compare the activPAL and video data (See Appendix III for the Matlab code). 

The Matlab program imported the .txt files for the video and activPAL data. Continuous 

time lines for both data sets with corresponding activity codes were created based on 

the .txt files. The total times spent in each posture were found for both data sets and the 

percentage sensitivity and discrepancy for each subject’s activity profile were calculated 

using equation 5.2 and 5.3 respectively.  

 

100(%) ×=
video

PAL

time
timeysensitivit         [Equation 5.2] 
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time
timetimeabsydiscrepanc      [Equation 5.3] 

 

In equation 5.2 and 5.3, timePAL and timevideo are the duration of each posture registered by 

the activPAL and video recordings respectively. 

 

The calculated percentage sensitivities showed whether the activPAL over- or 

under-estimated time spent in each posture and the calculated percentage discrepancies 

showed the accuracy of the activPAL to categorize posture, which would be easier to 

compare between subjects. This evaluation of the activPAL output is based on the 

assumption that the video data presents a ‘gold standard’ for the characterization of 

physical activity data. 
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The percentage sensitivities and discrepancies were first found between activPAL and 

video data (using both video analysis 1 and video analysis 2) for time spent in walking, 

standing and sitting/lying events. Additional analysis was carried out to compare the 

activPAL and video data (analysis 2) for upright (walking and standing) and non-upright 

(sitting/lying) activities. It was thought that younger subjects/ children would have more 

frequent short bouts of activities compared to adults, therefore it would be important to 

determine whether shorter minimum sitting/lying and upright times were required to 

analyse young subjects’ free-living behaviours. The activPAL software had a default 

setting of 10 seconds for minimum sitting/lying and upright periods for posture 

categorization. For further analysis, the percentage sensitivities and discrepancies were 

calculated for each subject with a range of minimum setting for sitting and upright periods 

(1-10 seconds) in the activPAL software, and compared to video data (video analysis 2).  

 

5.2.10.2 Stride count comparison 

The ‘all counts’ and ‘forward counts’ found from the video recordings for each subject 

were compared with the activPAL total stride counts from the event summary files, and 

percentage sensitivity and discrepancy were calculated using equations 5.2 and 5.3, with 

the number of stride counts replacing time in both equations.  

 

5.3 Results 

The general gait pattern of each subject was observed within the video data and brief 

description can be found in Appendix IV with information on the leg to which the 

activPAL was attached during the validation study. In this section, first the posture 

classification results are presented followed by the stride count results. Also results from 

variation in the minimum times of sitting/lying and upright duration are included. 

 

5.3.1 Posture categorization comparison 

5.3.1.1 ActivPAL analysis compared with video analysis 1 

For posture categorization comparison between the activPAL algorithm and the video data 

(video analysis 1), the percentage sensitivities and discrepancies for each subject are 

presented in Table 5.2.  
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Table 5.2: ActivPAL analysis and video analysis 1 - Percentage sensitivities and discrepancies 

for posture categorization time for each subject 

sensitivity (%) discrepancy (%) 

subject number walk stand sit walk stand sit 

1 110.70 96.74 98.97 10.70 3.26 1.03 

2 150.95 81.78 98.63 50.95 18.22 1.37 

3 158.11 80.93 99.56 58.11 19.07 0.44 

4 128.34 90.85 98.45 28.34 9.15 1.55 

5 103.52 97.81 100.41 3.52 2.19 0.41 

6 105.55 100.37 97.38 5.55 0.37 2.62 

7 112.92 94.41 97.40 12.92 5.59 2.60 

8 106.61 120.76 87.62 6.61 20.76 12.38 

9 98.41 101.01 98.02 1.59 1.01 1.98 

10 142.09 89.99 89.21 42.09 10.01 10.79 

11 101.46 104.35 98.88 1.46 4.35 1.12 

12 97.77 102.14 98.82 2.23 2.14 1.18 

13 101.53 295.20 77.82 1.53 195.20 22.18 

14 132.75 94.77 98.00 32.75 5.23 2.00 

15 95.25 101.94 94.73 4.75 1.94 5.27 

16 115.83 96.32 96.28 15.83 3.68 3.72 

17 82.55 107.86 95.29 17.45 7.86 4.71 

18 110.22 96.48 96.68 10.22 3.52 3.32 

19 116.90 92.76 97.53 16.90 7.24 2.47 

average 114.29 107.71 95.77 17.03 16.88 4.27 

 

Table 5.2 shows activPAL data compared to video analysis 1, the activPAL generally 

over-estimated the walking periods and under-estimated time spent in sedentary events. 

The percentage sensitivities for walking were over 100% for all subjects, except subject 9, 

12, 15 and 17, while the percentage sensitivities for sitting/lying were less than 100% for 

all subjects except subject 5. The average percentage discrepancies for walking and 

standing were 17.03% and 16.88% respectively, which indicated differences between the 

video and the activPAL data for these events. On the other hand, an average discrepancy of 

4.27% was found for the sitting/lying periods. Although this was a lower percentage 

discrepancy compared to the walking and standing events, subject 8, 10 and 13 showed 

percentage discrepancies over 10% for the sitting periods (Table 5.2). The calculated 

percentage sensitivity (295.2%) and discrepancy (195.2%) for standing posture 
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categorization of subject 13 were very high in comparison to other subjects’ results. This 

indicated a high level of misclassification occurred for subject 13 between standing and 

sitting states. 

 

5.3.1.2 ActivPAL analysis compared with video analysis 2 

Table 5.3 shows the total time spent in each activity state measured by the activPAL and 

video recording for each subject, after setting extra criteria for analysing the video data by 

classifying stand times that were less than 6 seconds between walking activities as 

continuous stepping activities (video analysis 2). Table 5.4 details the percentage 

sensitivities and discrepancies for posture classification of each subject.  

 

Table 5.3: Total time spent in each activity state measured by the activPAL and video analysis 

2 for each subject.   

walk duration (sec) stand duration (sec)
sit duration  

(sec) 
upright duration 

(sec) 

subject video PAL video PAL video PAL video PAL 

1 575.8 618.7 1868.7 1824.4 1829.4 1810.6 2444.5 2443.1

2 442.1 582.5 1019.6 881.1 1466.6 1446.5 1461.7 1463.6

3 643.5 892.7 1636.9 1389.6 2245.7 2235.9 2280.4 2282.3

4 314.2 372.3 847.6 792.5 1013.4 997.7 1161.8 1164.8

5 324.0 317.9 503.4 509.2 1196.1 1201.0 827.4 827.1 

6 335.2 329.2 791.7 816.6 1289.7 1257.9 1126.9 1145.8

7 1028.4 1033.3 1411.8 1443.2 1292.3 1258.7 2440.2 2476.5

8 397.9 401.7 398.3 507.2 952.2 834.3 796.2 908.9 

9 286.2 266.3 919.4 944.7 1019.1 998.9 1205.6 1211.0

10 503.3 515.8 808.2 807.1 694.5 619.5 1311.5 1322.9

11 604.5 603.1 361.6 388.2 2341.8 2315.5 966.1 991.3 

12 486.9 451.9 1174.5 1225.5 1980.1 1956.8 1661.4 1677.4

13 585.4 590.4 387.6 1156.0 3501.9 2725.1 973.0 1746.4

14 393.5 506.7 933.0 895.9 4083.7 4001.9 1326.5 1402.6

15 148.2 138.3 414.9 426.1 104.4 98.1 563.1 564.4 

16 429.9 450.8 1053.1 1054.5 803.4 773.5 1483.0 1505.3

17 339.5 273.0 927.1 1009.8 515.4 491.1 1266.6 1282.8

18 698.3 712.1 1113.4 1126.1 940.6 909.4 1811.7 1838.2

19 967.2 1045.8 1648.7 1601.2 1978.2 1929.4 2615.9 2647.0

average 500.2 531.7 958.9 989.4 1539.4 1466.4 1459.1 1521.1
 



 55

Table 5.4: ActivPAL analysis and video analysis 2 - Percentage sensitivities and discrepancies 

for posture categorization of each subject, with stand times that were less than 6 seconds 

between stepping periods classified as continuous walking activities in the video data.  

sensitivity (%) discrepancy (%) 

subject number walk stand sit walk stand sit 

1 107.45 97.63 98.97 7.45 2.37 1.03 

2 131.76 86.42 98.63 31.76 13.58 1.37 

3 138.73 84.89 99.56 38.73 15.11 0.44 

4 116.56 94.08 98.45 16.56 5.92 1.55 

5 98.12 101.15 100.41 1.88 1.15 0.41 

6 98.21 103.43 97.38 1.79 3.43 2.62 

7 100.48 102.22 97.40 0.48 2.22 2.60 

8 100.96 127.34 87.62 0.96 27.34 12.38 

9 93.05 102.75 98.02 6.95 2.75 1.98 

10 102.48 99.86 89.20 2.48 0.14 10.80 

11 99.77 107.36 98.88 0.23 7.36 1.12 

12 92.81 104.34 98.82 7.19 4.34 1.18 

13 100.85 298.25 77.82 0.85 198.25 22.18 

14 128.77 96.02 98.00 28.77 3.98 2.00 

15 93.32 102.70 94.73 6.68 2.70 5.27 

16 104.86 100.13 96.28 4.86 0.13 3.72 

17 80.41 108.92 95.29 19.59 8.92 4.71 

18 101.98 101.14 96.68 1.98 1.14 3.32 

19 108.13 97.12 97.53 8.13 2.88 2.47 

average 105.19 111.36 95.77 9.86 15.98 4.27 

 

By performing video analysis 2 for the video recordings, the average percentage 

discrepancies for walking and standing periods were reduced from 17.03% and 16.88% 

(video analysis 1) to 11.14% and 16.70% (analysis 2) respectively. From Table 5.4, it can 

be seen that for subject 13, the percentage discrepancy for standing and sitting/lying 

posture was 212.36% and 23.96% respectively, which indicated a high level of 

misclassification for this subject that affected the average discrepancy greatly, and therefore 

should be investigated separately. When subject 13 was removed from the calculation, the 

average percentage sensitivity and discrepancy for standing was reduced to 101.20% and 

5.66% respectively. The average percentage discrepancy for sitting/lying was reduced to 

3.60%. The large change in average percentage sensitivity and discrepancy were due to the 
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large amount of misclassification between sitting/lying and standing postures for subject 13 

using the general activPAL algorithm for activity categorization.  

 

Upright and non-upright events 

Upright (stand and walk periods) and non-upright (sit and lie events) times recorded from 

the video and activPAL data were compared to determine the accuracy of the activPAL 

algorithm (default setting for minimum sitting/lying and upright period – 10 seconds) to 

categorize upright events without the needs to distinguish between standing and walking 

activities. The percentage sensitivities and discrepancies for upright and non-upright events 

for each subject are presented in Table 5.5.  

 

Table 5.5: Percentage sensitivity and discrepancy for upright and non-upright postures of each 

subject using the default minimum sitting and upright setting (10 sec) for activPAL analysis 

sensitivity (%) discrepancy (%) 

subject number upright non-upright upright non-upright

1 99.93 98.97 0.07 1.03 

2 100.02 98.63 0.02 1.37 

3 100.03 99.56 0.03 0.44 

4 100.21 98.45 0.21 1.55 

5 99.93 100.41 0.07 0.41 

6 101.80 97.38 1.80 2.62 

7 101.34 97.40 1.34 2.60 

8 114.07 87.62 14.07 12.38 

9 100.42 98.02 0.42 1.98 

10 100.80 89.21 0.80 10.79 

11 102.58 98.88 2.58 1.12 

12 100.93 98.82 0.93 1.18 

13 179.47 77.82 79.47 22.18 

14 105.70 98.00 5.70 2.00 

15 100.21 94.73 0.21 5.27 

16 101.44 96.28 1.44 3.72 

17 101.26 95.29 1.26 4.71 

18 101.37 96.68 1.37 3.32 

19 101.00 97.53 1.00 2.47 

average 105.92 95.77 5.94 4.27 
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Although the average percentage discrepancies for upright and non-upright activities were 

low, 6.70% and 4.59% respectively, results showed that sometimes misclassifications of 

posture took place. For most subjects, the percentage discrepancies for upright events were 

less than 5% (Table 5.5), with the exceptions of subject 8, 13 and 14. For the non-upright 

classifications, the percentage discrepancies for subject 8, 10, 13 and 15 were higher than 

5%. From table 5.5, only results for subject 13 had percentage discrepancies over 20% for 

both upright and non-upright events when compared to video data. These high percentages 

indicated misclassification occurred and would affect the overall average calculated 

percentage sensitivity and discrepancy. When subject 13 was removed from the 

calculations, the average percentage discrepancies for upright and non-upright events were 

reduced to 2.30% and 3.51% respectively. 

 

Effect of variation in minimum sitting/lying and upright times 

The standard setting for the minimum sitting/lying and upright times of 10s was 

systematically varied to assess its effect on the activPAL results generated in comparison 

with video analysis 2 output.   

 

Although video analysis 2 was chosen, it would be the same results as video analysis 1 as 

the change in setting was used for distinguishing upright and non-upright periods and the 

extra criteria for video analysis 2 was performed for upright periods to categorize standing 

activities less than 6 seconds between walking episodes as continuous stepping, therefore 

this would not affect the overall upright times.  

 

The effect of changing the minimum setting for upright and sitting/lying periods is 

investigated in this study.  

 

The calculated percentage sensitivities and discrepancies for upright events are shown in 

Table 5.6 and 5.7 respectively. A graphical representation of the percentage discrepancy for 

each subject with 1-10 seconds setting for minimum upright periods is shown in Figure 5.6 

(except subject 8 and 13 as the percentage discrepancies were much higher (over 10%) than 

the other subjects).  
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Table 5.6: Percentage sensitivities for upright classification of each subject for different 

minimum setting for upright periods in the activPAL analysis compared with video analysis 2 

upright % sensitivity  

subject 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec

1 100.16 100.16 100.16 100.16 100.16 99.94 99.94 99.94 99.94 99.94

2 102.21 102.07 102.07 102.07 102.07 101.70 101.70 101.70 101.70 101.05

3 101.38 101.38 101.48 101.48 101.48 101.48 101.48 101.82 101.43 101.43

4 99.77 99.86 100.26 100.26 100.26 100.26 100.26 100.26 100.26 100.26

5 100.41 99.86 99.93 99.93 99.26 99.96 99.96 99.96 99.96 99.96

6 103.35 103.22 102.99 102.68 102.30 102.30 101.68 101.68 101.68 101.68

7 101.50 101.38 101.38 101.38 101.49 101.49 101.49 101.49 101.49 101.49

8 115.47 115.27 115.27 114.86 114.86 114.86 114.04 113.07 114.15 114.15

9 100.59 100.45 100.45 100.45 100.45 100.45 100.45 100.45 100.45 100.45

10 105.12 105.12 105.12 105.12 105.12 105.12 105.12 105.12 105.12 105.12

11 101.68 101.45 101.54 101.15 101.15 101.95 101.95 101.95 102.78 102.78

12 102.22 102.55 102.55 101.75 101.73 101.35 101.35 100.49 100.96 100.96

13 183.99 183.63 183.62 183.62 183.62 183.62 185.51 184.74 184.74 185.89

14 107.86 107.92 107.92 107.08 107.08 107.08 107.08 107.06 107.06 105.74

15 100.23 100.23 100.23 100.23 100.23 100.23 100.23 100.23 100.23 100.23

16 101.13 101.13 100.94 100.94 100.94 100.94 100.94 100.94 101.50 101.50

17 101.13 101.13 101.34 100.87 101.25 101.25 101.25 101.88 101.88 101.88

18 101.35 101.46 101.32 101.13 101.13 101.13 101.13 100.58 101.47 101.47

19 101.36 101.36 101.36 101.36 101.19 101.19 101.19 101.19 101.19 101.19

average 106.89 106.82 106.84 106.66 106.62 106.65 106.67 106.56 106.74 106.69
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Table 5.7: Percentage discrepancies for upright classification of each subject for different 

minimum setting for upright periods in the activPAL analysis compared with video analysis 2 

upright % discrepancy   

subject 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec 
max 

deviation 

1 0.16 0.16 0.16 0.16 0.16 0.06 0.06 0.06 0.06 0.06 0.10  

2 2.21 2.07 2.07 2.07 2.07 1.7 1.7 1.7 1.7 1.05 1.16  

3 1.38 1.38 1.48 1.48 1.48 1.48 1.48 1.82 1.43 1.43 0.10  

4 0.23 0.14 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.12  

5 0.41 0.14 0.07 0.07 0.74 0.04 0.04 0.04 0.04 0.04 0.70  

6 3.35 3.22 2.99 2.68 2.3 2.3 1.68 1.68 1.68 1.68 1.67  

7 1.5 1.38 1.38 1.38 1.49 1.49 1.49 1.49 1.49 1.49 0.12  

8 15.47 15.27 15.27 14.86 14.86 14.86 14.04 13.07 14.15 14.15 2.40  

9 0.59 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.14  

10 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 5.12 0.00  

11 1.68 1.45 1.54 1.15 1.15 1.95 1.95 1.95 2.78 2.78 1.63  

12 2.22 2.55 2.55 1.75 1.73 1.35 1.35 0.49 0.96 0.96 1.59  

13 83.99 83.63 83.62 83.62 83.62 83.62 85.51 84.74 84.74 85.89 2.27  

14 7.86 7.92 7.92 7.08 7.08 7.08 7.08 7.06 7.06 5.74 2.18  

15 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.00  

16 1.13 1.13 0.94 0.94 0.94 0.94 0.94 0.94 1.5 1.5 0.56  

17 1.13 1.13 1.34 0.87 1.25 1.25 1.25 1.88 1.88 1.88 1.01  

18 1.35 1.46 1.32 1.13 1.13 1.13 1.13 0.58 1.47 1.47 0.34  

19 1.36 1.36 1.36 1.36 1.19 1.19 1.19 1.19 1.19 1.19 0.17  

average 6.91 6.85 6.85 6.67 6.7 6.66 6.68 6.57 6.75 6.7 0.86  
 

From Tables 5.6 and 5.7 and Figure 5.6, it could be seen that there were no general trends 

for all subjects when the minimum upright setting was changed from 1 to 10 seconds. The 

percentage discrepancies for each setting were constant for subject 10 and 15. For subject 1, 

2, 5, 6, 8, 9, 12, 14 and 19 the percentage discrepancies increased when the minimum 

setting was changed from 10 to 1 second. On the other hand, the percentage discrepancies 

decreased when the minimum setting was changed from 10 to 1 second for subject 4, 7, 11, 

13, 16, 17 and 18.  
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Figure 5.6: Calculated percentage discrepancy for each subject (except sub 8 and 13 as the % 

discrepancies were over 10%) analysed by different minimum setting for upright periods in 

the activPAL software. 

 

The overall outputs for most of the other subjects did not appear to change more than a 

small amount (average 0.86%) when the minimum threshold was changed, the differences 

between the maximum and minimum percentage discrepancies for subjects 1, 3, 4, 5, 7, 9, 

16, 18 and 19 were within 1%, whereas the differences between maximum and minimum 

percentage discrepancies for subjects 2, 6, 8, 11, 12, 13, 14 and 17were between 1 and 3%.  

 

For sitting/lying events comparison, the calculated percentage sensitivities and 

discrepancies for sitting events are shown in Table 5.8 and 5.9 respectively. A graphical 

representation of the percentage discrepancy for each subject (except subject 13 with 

percentages discrepancy over 15%) with 1-10 seconds setting for minimum sitting periods 

is shown in Figure 5.7. 
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Table 5.8: Percentage sensitivities for non-upright classification of each subject for different 

minimum setting for sitting periods in the activPAL analysis compared with video analysis 2 

sitting % sensitivity 

subject 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec 

1 98.68 98.68 98.68 98.68 98.68 98.68 98.97 98.97 98.97 98.97 

2 96.56 96.70 96.70 96.70 96.70 96.70 97.07 97.07 97.07 97.71 

3 98.25 98.25 98.14 98.14 98.14 98.14 98.14 97.80 98.19 98.19 

4 99.01 98.90 98.45 98.45 98.45 98.45 98.45 98.45 98.45 98.45 

5 100.10 100.48 100.29 100.29 100.89 100.29 100.41 100.41 100.41 100.41

6 96.07 96.19 96.39 96.66 96.99 96.66 97.53 97.53 97.53 97.53 

7 97.51 97.74 97.74 97.74 97.40 97.74 97.40 97.40 97.40 97.40 

8 86.52 86.68 86.68 87.03 87.03 87.03 87.71 88.52 87.62 87.62 

9 97.85 98.02 98.02 98.02 98.02 98.02 98.02 98.02 98.02 98.02 

10 89.21 89.21 89.21 89.21 89.21 89.21 89.21 89.21 89.21 89.21 

11 105.50 105.60 105.56 99.48 99.48 99.48 99.15 99.15 98.80 98.80 

12 97.77 97.40 97.40 98.08 98.09 98.08 98.50 98.38 98.82 98.82 

13 76.74 76.84 76.84 76.84 76.84 76.84 76.14 76.36 76.36 76.04 

14 97.31 97.29 97.29 97.56 97.56 97.56 97.56 97.57 97.57 98.00 

15 94.73 94.73 94.73 94.73 94.73 94.73 94.73 94.73 94.73 94.73 

16 96.98 96.98 97.31 97.31 97.31 97.31 97.31 97.31 96.28 96.28 

17 95.65 95.65 95.13 96.29 95.36 96.29 95.36 93.81 93.81 93.81 

18 96.36 96.15 96.42 96.80 96.80 96.80 96.80 97.85 96.14 96.14 

19 97.31 97.31 97.31 97.31 97.53 97.31 97.53 97.53 97.53 97.53 

average 95.69 95.73 95.70 95.54 95.54 95.54 95.58 95.58 95.42 95.46 
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Table 5.9: Percentage discrepancies for non-upright classification of each subject for different 

minimum setting for sitting periods in the activPAL analysis compared with video analysis 2 

% discrepancy sitting   

subject 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec 
max 

deviation 

1 1.32 1.32 1.32 1.32 1.32 1.32 1.03 1.03 1.03 1.03 0.29  

2 3.44 3.3 3.3 3.3 3.3 3.3 2.93 2.93 2.93 2.29 1.15  

3 1.75 1.75 1.86 1.86 1.86 1.86 1.86 2.2 1.81 1.81 0.45  

4 0.99 1.1 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 0.56  

5 0.1 0.48 0.29 0.29 0.89 0.29 0.41 0.41 0.41 0.41 0.79  

6 3.93 3.81 3.61 3.34 3.01 3.34 2.47 2.47 2.47 2.47 1.46  

7 2.49 2.26 2.26 2.26 2.6 2.26 2.6 2.6 2.6 2.6 0.34  

8 13.48 13.32 13.32 12.97 12.97 12.97 12.29 11.48 12.38 12.38 2.00  

9 2.15 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 0.17  

10 10.79 10.79 10.79 10.79 10.79 10.79 10.79 10.79 10.79 10.79 0.00  

11 5.5 5.6 5.56 0.52 0.52 0.52 0.85 0.85 1.2 1.2 5.08  

12 2.23 2.6 2.6 1.92 1.91 1.92 1.5 1.62 1.18 1.18 1.42  

13 23.26 23.16 23.16 23.16 23.16 23.16 23.86 23.64 23.64 23.96 0.80  

14 2.69 2.71 2.71 2.44 2.44 2.44 2.44 2.43 2.43 2 0.71  

15 5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27 5.27 0.00  

16 3.02 3.02 2.69 2.69 2.69 2.69 2.69 2.69 3.72 3.72 1.03  

17 4.35 4.35 4.87 3.71 4.64 3.71 4.64 6.19 6.19 6.19 2.48  

18 3.64 3.85 3.58 3.2 3.2 3.2 3.2 2.15 3.86 3.86 1.71  

19 2.69 2.69 2.69 2.69 2.47 2.69 2.47 2.47 2.47 2.47 0.22  

average 4.9 4.91 4.92 4.49 4.56 4.49 4.46 4.46 4.63 4.59 1.09  
 

From Table 5.9 and Figure 5.7, it could be seen that there were no general trends for all 

subjects when the minimum sitting period setting was changed from 1 to 10 seconds. The 

percentage discrepancies for each setting were constant for subjects 10 and 15. For subject 

1, 2, 6, 8, 9, 11, 12, 14 and 19 the percentage discrepancies increased when the minimum 

setting was changed from 10 to 1 second. However, the percentage discrepancies decreased 

for subject 4, 7, 13, 16, 17 and 18.  
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Figure 5.7: Calculated percentage discrepancy for each subject (except subject 13 as % 

discrepancies were over 15%) analysed by different minimum setting for sitting periods in the 

activPAL software. 

 

The overall outputs for most of the other subjects did not appear to change more than a 

small amount (average 1.09%) when the threshold was changed, the differences between 

the maximum and minimum percentage discrepancies for subjects 1, 3, 4, 5, 7, 9, 13, 14 

and 19 were within 1%. Whereas the differences between maximum and minimum 

percentage discrepancies for subjects 2, 6, 8, 11, 12, 16, 17 and 18 were between 1% and 

5.5%. 

 

5.3.2 Stride counts comparison 

Within the walking periods, the total strides made by each subject during their routine gait 

analysis sessions were counted from the video recordings using two methods, ‘all counts’ 

and ‘forward counts’. ‘All counts’ included all movements of the leg with the activPAL 

attached and ‘forward counts’ only included forward progression movement of the leg with 

the activPAL attached. These stride counts from the video data were compared to the 

output from the event summary profiles obtained from the activPAL software. The number 

of strides from the activPAL software, video ‘all counts’ and video ‘forward counts’ with 

associated percentage sensitivities and discrepancies are presented in Table 5.10. 
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Table 5.10: Stride counts comparison between video and activPAL data with calculated 

percentage sensitivities and discrepancies for each subject. 

sensitivity (%) discrepancy (%) 

subject 

number 

activPAL 

stride 

counts 

video all 

counts 

video 

forward 

counts 
all 

counts

forward 

counts 

all 

counts 

forward 

counts 

1 557 661 605 84.27 92.07 15.73 7.93 

2 409 497 409 82.29 100.00 17.71 0.00 

3 710 722 642 98.34 110.59 1.66 10.59 

4 243 286 267 84.97 91.01 15.03 8.99 

5 218 281 249 77.58 87.55 22.42 12.45 

6 301 321 284 93.77 105.99 6.23 5.99 

7 739 828 782 89.25 94.50 10.75 5.50 

8 289 307 248 94.14 116.53 5.86 16.53 

9 163 224 196 72.77 83.16 27.23 16.84 

10 358 366 310 97.81 115.48 2.19 15.48 

11 373 394 355 94.67 105.07 5.33 5.07 

12 363 422 365 86.02 99.45 13.98 0.55 

13 324 345 303 93.91 106.93 6.09 6.93 

14 298 312 278 95.51 107.19 4.49 7.19 

15 104 135 103 77.04 100.97 22.96 0.97 

16 347 412 358 84.22 96.93 15.78 3.07 

17 234 307 263 76.22 88.97 23.78 11.03 

18 473 491 418 96.33 113.16 3.67 13.16 

19 756 807 635 93.68 119.06 6.32 19.06 

average 382  427  372  88.04 101.82 11.96 8.81 

 

For all subjects, the percentage sensitivities for ‘all counts’ were below 100%, indicating 

the activPAL under estimated the stride counts for all the subjects when compared to 

strides counted from the video recordings, which included side steps and small steps for 

turning. This shows the activPAL might not include all the small side steps and turning 

steps that an individual took. For the ‘forward counts’ comparison, the activPAL 

sometimes under estimated stride counts and occasionally over estimated the stride counts, 

which led to average percentage sensitivity of 101.82% that indicates high average 

sensitivity. 
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The average percentage discrepancy for ‘forward counts’ was lower than ‘all counts’ 

(8.81% and 11.96% respectively), however it appeared that the activPAL included the 

small side and turning steps for 7 subjects (subjects 3, 8, 10, 13, 14, 18 and 19), with the 

percentage discrepancies for ‘forward counts’ higher than the ‘video all counts’. The 

percentage sensitivities for these subjects were closer to 100% when the ‘video all counts’ 

were used for comparison.  

 

5.3.3 Statistical analysis 

For the following statistical tests only results from the activPAL analysis using the default 

setting of 10 seconds for minimum upright and sitting/lying periods were used and 

compared to video analysis 2 data as the default setting would normally be used for 

free-living monitoring. For every subject, the total time spent in each posture during the 

gait analysis session was found for both the video (video analysis 2) and activPAL data 

using the Matlab program (Appendix III). These computed times were used for statistical 

testing. For stride count analysis, both ‘all counts’ and ‘forward counts’ from the video 

analysis were compared to the activPAL output.  

 

5.3.3.1 Correlations between activPAL and video data  

For each subject, the total durations from the video and activPAL data for each posture 

were found and graphs were plotted to find the correlations between the two data sets 

(Figure 5.8-5.11 for walking, standing, sitting/lying, and upright durations respectively). 

Correlation coefficients were calculated using equation 5.4, where x and y were video and 

activPAL times for each posture respectively, n was the number of subjects and SD 

represents standard deviation. A significance test was performed using equation 5.5 to 

evaluate whether the association between the two sets of data was apparent. 
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The correlation coefficients r were calculated as 0.9599, 0.9004, 0.9867 and 0.9576, t = 

13.42, 8.53, 25.03 and 13.70 (p < 0.001) for walking, standing, sitting/lying and upright 

posture respectively, indicating highly significant positive correlations between the video 

and activPAL outputs.  
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Figure 5.8: The total durations recorded from the video (video analysis 2) for walking periods 

plotted against total duration from the activPAL output 

line of equality

0

500

1000

1500

2000

0 500 1000 1500 2000

video duration (sec)

ac
tiv

PA
L 

du
ra

tio
n 

(s
ec

) r = 0.9004

 
Figure 5.9: The total durations recorded from the video (video analysis 2) for standing periods 

plotted against total duration from the activPAL output. 



 67

line of equality

0

1000

2000

3000

4000

0 1000 2000 3000 4000

video duration (sec)

ac
tiv

PA
L 

du
ra

tio
n 

(s
ec

) r = 0.9867

 
Figure 5.10: The total durations recorded from the video (video analysis 2) for sitting/lying 

periods plotted against total duration from the activPAL output 
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Figure 5.11: The total durations recorded from the video (analysis 2) for upright periods 

plotted against total duration from the activPAL output 

 

For sitting/lying and upright comparisons (Figure 5.10 and 5.11), good correlations were 

found between the video (video analysis 2) and activPAL outputs, with only one outlier 

(subject 13) and most of the data points very close to the line of equality. However, Figure 

5.8 and 5.9 seem to be more scattered for the durations in walking and standing time 
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comparisons. The outliers, data points which were not close to the trend lines, would affect 

the average percentage discrepancies. These outliers with higher percentage discrepancies 

indicated misclassification between postures that occurred for some subjects during this 

validation study. 

 

For the correlation of stride counts between activPAL and video data, Figure 5.12 shows 

the total strides counted from the video recordings (‘all counts’ and ‘forward counts’) with 

the total number of strides from the activPAL algorithm. The correlation coefficient, r, 

were calculated as 0.9886 and 0.9742, t = 27.07 and 17.80 (p < 0.001) for ‘all counts’ and 

‘forward counts’ respectively, showing highly significant positive correlation between both 

data sets compared with the activPAL output. 

 
Figure 5.12: The total stride counts recorded from video (all counts and forward counts only) 

plotted against the total stride counts from the activPAL software for each subject 

 

Although all the calculated r values showed highly significant positive correlation between 

the video and activPAL data for stride counts and posture categorization, r only measured 

the strength of relation between two variables, and not the agreement between them. The 

calculated correlation coefficients, r (Figure 5.8 – 5.12) show data points in relation to lines 

of best fit and not line of equality. Perfect agreement between the two data sets could only 

be achieved when points lay perfectly on the line of equality. Therefore further statistical 

tests were required to investigate the limits of agreements between the two methods as the 
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primary aim of comparison studies would be to determine whether two methods agree 

sufficiently to be used interchangeable.   

 

5.3.3.2 Reliability Analysis 

The intraclass correlation coefficient (ICC) is a measure of correlation, consistency or 

conformity for a data set when it has multiple groups (Strout and Fleiss 1979). Reliability 

analysis was carried out to find the ICC(2,1) using an absolute agreement definition, that 

was based on a two-way random effects model, with the measuring methods and subjects 

considered as random variables, which measured agreement emphasizing the 

interchangeability of the measuring methods. ICC(2,1) was computed using a statistical 

analysis software, SPSS Statistics (Version 16, SPSS Inc, USA) and an ICC value of ≥0.75 

was considered to be good and ≥0.9 was deemed excellent.  

 

The calculated ICC(2,1) were 0.976, 0.944, 0.992 and 0.978 for walking, standing, 

sitting/lying and upright classification respectively. For stride count, when all the strides 

were counted from the video ICC(2,1) was found to be 0.994 and when only forward 

progression stride were counted ICC(2,1) was 0.986. ICC(2,1) was >0.9 for all activity 

categorization and stride count, which demonstrated excellent reliability and that the video 

and activPAL measurements were interchangeable.  

 

5.3.3.3 Agreement between video and activPAL data 

It was hypothesised that although both methods measured the same data (duration of 

activity), they would not agree exactly in their measurements as measurement errors exist 

in both methods. Furthermore, time is a continuous parameter and both video and activPAL 

measurements of duration would contain errors as the precise times at which an activity 

was deemed to be initiated and terminated were difficult to define. 

 

It was thought that statistical analysis to determine the agreement between the two methods 

would be more appropriate to identify how much activPAL results might differ from the 

video data. For this study, the method for assessing agreement between the two activity 

monitoring techniques was based on Bland and Altman statistical method (Bland & Altman 

1986, 1999). Agreement between video and the activPAL was assessed by comparing the 

mean value of total time spent in each posture for video and activPAL with the percentage 
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difference between the two data sets for each subject. Agreement was defined as the 

percentage difference between the video and activPAL and calculated using the equation 

5.6. 

 

[(activPAL duration – video duration)/mean duration x 100%]    [Equation 5.6] 

 

The mean of such differences indicates the estimated bias (difference between methods) 

and the standard deviation (SD) of the different measures random fluctuations around this 

mean. If the ‘limits of agreement’ (mean percentage difference ±2SD) between two 

methods are not clinically important or significant, the two methods could be used 

interchangeably. Graphical representation of the data of percentage differences plotted 

against the average value allows the evaluation of relationship between measurement error 

and assumed value. Confidence intervals (CI) values for mean -2SD and mean +2SD in 

Bland & Altman analysis showed a range of values based on the observed data with a 

specified probability, the population value lies.  

 

Figures 5.13 – 5.16 illustrate the Bland & Altman plots for the level of agreement between 

video analysis 2 and the activPAL for the total time spent in each activity during the gait 

analysis session. Values above zero represented the activPAL over-estimated the time spent 

in the activity state and values below zero showed under-estimation of time spent in the 

activity.  
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Figure 5.13: Bland-Altman plot for the agreement between video (video analysis 2) and 

activPAL for the total walking durations of each subject 
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Figure 5.14: Bland-Altman plot for the agreement between video (video analysis 2) and 

activPAL for the total standing durations of each subject 
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Figure 5.15: Bland-Altman plot for the agreement between video (video analysis 2) and 

activPAL for the total sitting/lying durations of each subject 
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Figure 5.16: Bland-Altman plot for the agreement between video (video analysis 2) and 

activPAL for the total upright durations of each subject 

 

The ranges of the percentage differences between subjects were -21.7 to 32.4% for walking 

(Figure 5.13), -16.3 to 99.6% for standing (Figure 5.14), -25.0 to 0.4% for sitting/lying 

(Figure 5.15) and -0.04 to 56.9% for upright (Figure 5.16).   

 

Figure 5.17 and 5.18 show the Bland & Altman plots for the level of agreement between 

video and activPAL for stride counts during the testing sessions for each subject. The range 

of the percentage differences between subjects were -31.55 to -2.2% for all stride counts 

and -18.4 to 17.4% for forward counts only.  

 

For durations of walking, standing, sitting/lying events and stride count, there are no 

obvious relation between the differences and mean from the video and activPAL data. The 

activPAL over-estimated time spent in each activity category for some subjects while 

under-estimating for others. From Figure 5.17, it could be noted that the activPAL 

under-estimated strides when all small strides were counted from the video as all values 

were below 0%. However, this effect was removed when only forward progression stride 

counts were recorded from the video to compare with activPAL data.  
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Figure 5.17: Bland-Altman plot for the agreement between video (video analysis 2) and 

activPAL for the total stride counts (all counts) of each subject 

 

-30

-20

-10

0

10

20

30

0 100 200 300 400 500 600 700 800

mean stride counts

%
 d

iff
er

en
ce

s
(a

ct
iv

PA
L-

vi
de

o)
/m

ea
n 

x1
00

 (%
)

+1.96SD
21.77

-1.96SD
-19.20

mean
1.29

 
Figure 5.18: Bland-Altman plot for the agreement between video (video analysis 2) and 

activPAL for the total stride counts (forward counts only for video analysis) of each subject 

 

It was assumed that the percentage differences were Normally distributed (Gaussian), 

hence 95% of the differences should be expected to lie between ±1.96 standard deviation 

from the mean and these were called the limits of agreement (Bland and Altman 1986, 

1999). Table 5.11 shows the calculated limits of agreements with the mean value. The 

limits of agreements lie between -21.69 to 30.23% for walking events (Figure 5.13), -41.78 
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to 53.30% for standing activity (Figure 5.14), -16.42 to 7.39% for sitting/lying episodes 

(Figure 5.15), -20.75 to 30.19% for upright periods and -31.50 to 5.29% for all stride 

counts (Figure 5.16) and -19.20 to 21.77% for forward stride counts only (Figure 5.17).  

 

Table 5.11: The calculated mean of the percentage difference between video (video analysis 2) 

and activPAL data and limits of agreement calculated according to Bland & Altman (1986, 

1999) for each activity categorization.  
Activity category Mean (%) Lower limit of 

agreement (%) 

Upper limit of 

agreement (%) 

Walking 4.27 -21.69 30.23 

Standing 5.76 -41.78 53.30 

Sitting/lying -4.51 -16.42 7.39 

Upright 4.72 -20.75 30.19 

Stride (All counts) -13.10 -31.50 5.29 

Stride (forward counts) 1.29 -19.20 21.77 

 

However, these limits of agreement are only estimates of the values for this particular set of 

data. Hence standard errors (SE) and confidence intervals were used to determine the 

accuracy of these estimates. SE was calculated using the equation 5.7. The 95% confidence 

intervals for the bias were calculated using equation 5.8 with 18 degrees of freedom, t = 

2.101 was found. Hence 95% confidence intervals for the bias were -2.11 to 10.65%, -5.93 

to 17.45%, -7.44 to -1.59%, -1.54 to 10.98%, -17.63% to -8.58% and -3.75 to 6.33% for 

walking, standing, sitting/lying, upright and stride count (all) and stride count (forward) 

respectively. 

 

n
SDdSE =)(             [Equation 5.7] 

)( SEtd ×±             [Equation 5.8] 

 

The standard error of the limits (equation 5.9) and 95% confidence interval (equation 5.10) 

were calculated. Table 5.12 shows the 95% confidence interval for the lower limits of 

agreement, which  were -24.72 to -18.65%, -45.89 to -37.67%, -18.47 to -14.36%, -23.76 

to -17.74%, -34.05 to -28.94% and -21.89 to -16.50% for walking, standing, sitting/lying, 

upright, all stride count and forward stride count respectively. The 95% confidence interval 

for the upper limits of agreement were found to be 27.19 to 33.26%, 49.19 to 57.41%, 5.33 
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to 9.45%, 27.18 to 33.20%, 2.73 to 7.85% and 19.07 to 24.47% for walking, standing, 

sitting/lying, upright, stride count (all) and stride count (forward) respectively.  

 

nSDSDd /32 2≈±          [Equation 5.9] 

(lower or upper limits )/3( 2 nSDt ×± )      [Equation 5.10] 

 

Table 5.12: The 95% confidence interval for the lower and upper limits of agreement for all 

activity categories.  

95% CI for lower limits 

agreement 

95% CI for upper limits of 

agreement Activity category 

lower value upper value lower value upper value 

walking -24.72 -18.65 27.19 33.26 

standing -45.89 -37.67 49.19 57.41 

sitting/lying -18.47 -14.36 5.33 9.45 

upright -23.76 -17.74 27.18 33.2 

stride (all) -34.05 -28.94 2.73 7.85 

stride (forward) -21.89 -16.5 19.07 24.47 

 

5.4 Discussion 

This study attempted to validate the activPAL as an activity monitor for people with CP. 

Video recordings of posture and stride count acted as the ‘gold standard’ for comparison 

with the activPAL data to validate its use for the CP population. 

 

The exact proprietary algorithm used by the activPAL was not known, therefore the 

classification criteria for the video data could not be matched fully for ideal analysis. 

However, the general aspects of the activPAL proprietary algorithm suggested that the 

acceleration signals were classified into upright and non-upright events first by identifying 

threshold levels. Then within the upright periods, the activPAL algorithm would detect 

cyclical signals to identify walking episodes. The algorithm counts the number of troughs 

to represent strides. It was also believed that a minimum cadence was set by the activPAL 

algorithm. However, it was not known whether a threshold was set for the amplitude of the 

cyclical signal to classify each trough as a stride. It appeared that the algorithm counted 

every other trough to represent one stride during the walking episodes (Figure 5.4). 
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The identifiable misclassification periods were established from the graphs of continuous 

timelines against activity codes/classifiers for the activPAL and video data (video analysis 

2) using the Matlab program (Appendix III). An example of the misclassified periods is 

shown in Figure 5.19 for subject 13. The pattern of the activity codes against time should 

be identical if 100% accuracy was achieved. In Figure 5.19, it can be seen that there were 

periods classified as standing by the activPAL algorithm that were seen as sitting events in 

the video recording. 

 
Figure 5.19: An example of misclassified periods for subject 13. For the activity classifier 0, 1 

and 2 for the activPAL data and 3, 4 and 5 for the video data representing sit/lie, stand and 

walk respectively. 

 

For the misclassified episodes the raw activPAL acceleration signals were exploited and the 

videos were re-examined to determine the position of the activPAL during these 

occurrences. 

 

5.4.1 ActivPAL posture categorization and stride count 

5.4.1.1 Walking and standing categorization  

Misclassification between standing and walking times were seen in all subjects. The 

average percentage discrepancies between video analysis 1 and 2 and the activPAL data for 

the walking and standing times were much higher than those associated with sitting/lying 

periods (Table 5.2 and 5.4). In comparison to video analysis 1, video analysis 2 (performed 

to match the characterization that would have resulted from the activPAL) did lead to 
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decreased average percentage discrepancies for both standing and walking periods. 

However, the discrepancies in standing and walking classification were not removed 

completely. One reason for this was that it was still difficult to determine the exact duration 

of standing and walking episodes from the video data. This difficulty arose due to the 

complexity of the subject’s movements which were highly individual specific.  

 

Standing is defined as a human position in which the body is constantly in an orthostatic 

state. However, this does not clearly distinguish standing periods, as it is difficult to 

identify a minimum duration to classify standing episodes, which would also lead to the 

problem of classifying walking periods. If 100% accuracy for non-upright classification 

was achieved, the error in categorizing standing and walking episodes would be related as 

over-estimation of time spent in standing would lead to under-estimation of time spent in 

walking. Furthermore, it was unclear as to how many strides were required for the 

activPAL to classify a period as stepping activity and whether there was a requirement to 

exceed a certain speed (cadence) of such events. The followings are some examples of 

activities that would contribute to the classification complications between standing and 

walking occurrences:  

- A period of quiet standing (i.e. legs not moving) interrupted by the person taking 

one step forward with both legs, then standing quietly again. 

- Very low cadence stepping activities such as taking a step every 5 second. 

- In the upright posture, small movements of the lower limbs to maintain balance. 

- Side steps or shuffling gait. 

 

In addition, standing posture relies on dynamic balance as the human centre of mass is 

situated in front of the ankle and the base of support of the two feet is narrow, therefore 

humans would fall forward during static upright posture without muscle action. Constant 

external and internal perturbations such as breezes and respiration also lead to the necessity 

for dynamic balance during standing. Internal mechanisms that are not obvious to the 

human eyes (e.g. spring action in muscles and higher control from the nervous system or 

core muscles) prevent a person from falling forward while standing. However, these 

mechanisms might be disrupted in people with CP, which leads to the use of other coping 

strategies such as small amounts of leg movement. This would make these events appear as 

perturbations in the activPAL data stream hence making classification of these events more 

challenging. For this study these episodes were categorized as standing in the video data 

and not walking. However, it was not known exactly how these activities would be 
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classified by the activPAL algorithm. Discrepancies of both walking and standing times 

would increase if the activPAL classified these incidents as walking activities.  

 

5.4.1.2 Walking categorization 

Apart from the misclassification between walking and standing events, another type of 

error for the durations of walking periods was due to the activPAL being attached to one 

leg only, therefore when a person started or ended a walking episode with the opposite leg, 

the time for that walking event would be less than it should be. In this validation study, it 

was seen that the subjects with gait affected on one side would start their walking episodes 

with the affected limb. However, when both limbs were affected, there was no dominant 

starting leg. 

 

In a free-living environment, the percentage of this error would be small if the individual 

being monitored was active with long walking periods. Nonetheless, the error would 

increase for people with higher mobility difficulties as they might only perform household 

walking distances involving only small amounts of short walking periods per day. 

 

5.4.1.3 Upright and non-upright categorization 

The complications associated with the separation of walking and standing events discussed 

in the previous sections would not have affected the calculated total times spent in the 

upright posture. An examination of the total time spent upright, i.e. including both walking 

and standing should remove this element of potential misclassification from the comparison 

between the activPAL and the video analysis 2.  

 

Analyses were carried out for upright and non-upright events (Table 5.5 page 55). The 

average percentage discrepancies calculated for all subjects were much lower for upright 

events (5.9%) compared to 9.9% for standing and 16.0% for walking activities. In a 

free-living environment, therefore it might be best to consider the average daily time spent 

in the upright posture rather than attempting to separate standing and walking times when 

using the activPAL and to use stride/step counts to determine amount of stepping activities 

performed. 
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Any errors in the classification of walking time would affect the classification of standing 

time as upright time could be accurately distinguished from non-upright time. For the 

majority of subjects it appeared that this was the case. In general non-upright and upright 

total times were correctly determined. Misclassification was occurring between standing 

and walking times (Table 5.4, page 54) more apparently.  

 

For subject 10 and 15, the percentage discrepancies for non-upright events were much 

higher than for upright episodes. This was caused by the short overall duration spent for 

sitting/lying events during the laboratory validation study for these two subjects, hence a 

small discrepancy in the total duration caused a large percentage difference compared to the 

relatively longer time spent in upright activity.  

 

The use of the gait laboratory visit as the validation period presented both advantages and 

disadvantages to the study. It was possible to study the subjects performing a range of 

activities in a limited environment, thus allowing continuous video recording. The subjects 

performed a range of activities with various postures. There were periods where posture 

was not prescribed, allowing the signal analysis algorithms to be tested in self selected 

postures. Also the transition from walking to standing to sitting and general movements in 

the upright posture were not prescribed allowing examples of movement patterns to occur 

that might also occur in a free-living environment. Although the activity classification that 

is adopted in this thesis appears straightforward and unambiguous, the video records 

demonstrated that the subjects adopted postures and executed movements that could not be 

easily classified. This difficulty in activity classification using video was reflected in the 

variability in interpretation of posture and stepping by the activPAL.   

 

An alternative method of performing a validation study might have been to prescribe set 

periods of activity, i.e. sitting/lying, standing and walking with set stepping pattern and 

distance. It is possible that this would have lead to a 100% agreement between video 

analysis and activPAL data interpretation, however, this would not have reflected the 

classification that would occur when applying the instrument in a free-living context. It was 

considered essential that the validation study include elements of subject choice in posture 

adoption and movement to obtain insight into the ability of the activPAL algorithms to 

classify physical activity. A rigid protocol would not have achieved this. Perhaps the ideal 

setting for a validation study would be free-living community based. However, continuous 

video recording in a free-living environment presents problems of consent (where other 
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people are interacting with the subject of study) and basic logistical difficulties. The use of 

the laboratory based session was considered a suitable compromise. 

 

One type of misclassification that appeared to occur was that the activPAL categorized 

sitting events as standing episodes (Figure 5.19). This type of misclassification was seen 

specifically in subject 13. It was noted that for these periods, the raw acceleration signals 

from the activPAL were between 40 and 90 activPAL units (Figure 5.20), whereas the 

general quiet sitting posture should have generated signals below 10 as the activPAL 

should have been in a horizontal orientation and quiet standing should have been around 

150 as the activPAL would have been in a vertical orientation. From the video recordings 

for these misclassification events it was observed that the activPAL was generally slightly 

at an angle and not horizontal. There were two ways in which this occurred. Firstly, some 

of the small subjects tended to perch on the side of chairs rather than sit completely on the 

seat. This resulted in their thighs being inclined to the horizontal even though in the video 

they might be classified as sitting. This may have been a preference for the subjects rather 

than a necessity. There would be no way of knowing if this type of perching would lead to 

misclassification of the activPAL if the current proprietary algorithms were used for signal 

analysis. Secondly due to the variation in anatomy of the subjects, it was possible for the 

activPAL to be placed such that it was not entirely horizontal when the subjects were sitting. 

The activPAL was placed on the anterior mid thigh. The geometry of the thigh varied 

between individuals, potentially leading to changes in orientation in sitting. Also any 

misalignment around the axis of the thigh would have altered the signal output.   

 

Although full instructions on the placement of the activPAL could be given to participants 

and their parents for free-living monitoring, the actual position of the device for each 

monitoring day would be unknown, therefore misclassification due to this problem could 

not be eliminated completely. 
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Figure 5.20: An example of the raw activPAL output plotted against time showing a 

misclassification of sitting event with activPAL units between 40 and 90. 

 

It was believed that the activPAL software employed a moving average filter before 

identifying threshold levels to distinguish upright and non-upright events. One solution to 

improve the misclassification of sitting with legs at a slight angle would be to increase the 

lower threshold, so that it could include a wider range of sitting postures. However, this 

might be problematic with other gait abnormalities that could be seen in people with CP 

such as crouch gait, when knees are flexed during walking. Hence thighs would not be in a 

vertical orientation.  

 

Another possible misclassification was caused by people with very limited mobility that 

required to be lifted for change of posture, such as from a seated position to standing. For 

example Subject 14 could not stand or walk without support. For the video data, standing 

was not classified until the subject’s feet were in contact with the ground, however vertical 

thighs were seen during transfer between the sitting and standing postures as the subject 

was lifted with support under their arms. Hence a difference in classification occurred. 

 

A summary of differences between activPAL interpretation of physical activity and that 

derived from video analysis 2 are summarised in Table 5.13. The misclassification caused 

by sitting in a non-horizontal position occurred in 8 subjects. The uncategorized differences 

between walking and standing events were not taken into account in Table 5.13 (except for 

subject 6 when a longer period of misclassification occurred). The error of misclassification 
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between standing and walking occurred in all subjects, as it was difficult to interpret real 

standing times as discussed previously.  

 
Table 5.13: Sources of disagreement between the activPAL physical activity classification and 
that observed from video analysis 2.  
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Uncategorizable differences 

1  1829.4 0.0  

2 20 1466.6 1.4 10s Walking categorized as Sitting 

3 46 2245.7 2.0 9s Standing categorized as Sitting 

4  1013.4 0.0  

5  1196.1 0.0  

6  1289.7 0.0 

4s Standing categorized as Sitting 

136s Walking categorized as Standing 

7  1292.3 0.0  

8 8 952.2 0.8  

9  1019.1 0.0  

10 65.6 694.5 9.4  

11 35.9 2341.8 1.5  

12 26 1980.1 1.3 

34.3s Standing categorized as Sitting 

13s Walking categorized as Sitting 

13 361.4 3501.9 10.3  

14  4083.7 0.0 10s Standing categorized as Sitting 

15  104.4 0.0  

16 24.9 803.4 3.1  

17  515.4 0.0 14s Standing categorized as Sitting 

18  940.6 0.0  

19  1978.2 0.0  

 

Although from Table 5.13 some subjects did not have any misclassification between 

activity states, there were small percentage discrepancies when compared to the video data, 

which were mainly caused by error in identifying the exact time when an activity changed 

occurred. Furthermore, standing posture was always seen before and after sitting periods in 

the activPAL algorithm. However, in the video if the subject was seated straight after a 

walking episode or vice versa, then no standing times would be included in the video data. 
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Once again, this error was introduced by the difficulties in the interpretation of standing 

posture.  

 

5.4.1.4 Setting for minimum sitting and upright periods 

The activPAL algorithm used a default setting of 10 seconds for minimum sitting and 

upright periods to categorize activity. One of the main classification problems noted from 

the activPAL software using the default setting was its inability to categorize activities that 

were less than 10 seconds in duration, with a change in posture (i.e. from upright to 

non-upright and vice versa). For example, the activPAL default algorithm did not pick out 

events when an individual was seated for less than 10 seconds between two upright events 

(occurred in subject 2, 3, 11, 12, 14 and 17), and standing for less than 10 seconds between 

two seated periods (occurred in subject 3). In subject 12, the activPAL classified two 

stepping episodes that were less than 10 seconds in duration between seated events as 

continuous sedentary periods.  

 

Furthermore, the activPAL default setting was not able to detect falls when subjects took 

less than 10 seconds to return back to an upright posture. Subject 12 fell over after a 

walking period, sat on the floor for approximately 7 seconds before getting back on her feet 

with some help and then stood quietly following the incident. The activPAL classified this 

fall episode as a standing event. On the other hand subject 2 fell forward during walking 

and was in the prone position for approximately 5 seconds before getting up and started to 

walk again. For this subject, the activPAL classified the fall period as continuous walking 

activity.  

 

By using the default setting on the activPAL algorithm, the need for posture changes to be 

longer than 10 seconds in duration clearly limits the ability of the activPAL data analysis 

algorithm to correctly categorize the subjects’ activities even though the raw acceleration 

signals clearly indicated postural change. Orendurff et al (2009) found that 17% of adult 

walking bouts during free-living monitoring were less than 5 steps. It might be 

hypothesised that younger subjects (children) generally perform more frequent short bouts 

of activities compare to adults. Therefore further data analyses were carried out for a range 

of minimum upright and sitting periods in the algorithm, so events that were less than 10 

seconds in duration could be included in the activPAL analysis. The setting of 1 to10 

seconds for minimum upright and sitting periods were investigated and results were 
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compared to the video data (video analysis 2). Table 5.6-5.9 (pages 57 to 61) and Figure 

5.6 and 5.7 showed that there were no general patterns to the effect of changing the 

minimum sitting and upright periods in the activPAL software on the sensitivity of 

classification of posture. The percentage discrepancy/sensitivity for some subjects seemed 

to increase as the minimum setting for upright and sitting periods were increased from 1 to 

10 seconds, but for other subjects these percentages decreased. Some subjects had 

fluctuating sets of results when the minimum threshold was changed, however two subjects 

(10 and 15) had constant percentage sensitivity for all minimum settings indicating that 

they did not perform activities that were less than 10 seconds during the gait analysis 

sessions and no difference was introduced when the minimum setting was reduced from 10 

seconds for these two subjects. The fluctuation in percentage sensitivity indicated that there 

may have been additional misinterpretation of the signal induced by changing the minimum 

setting, however, the cause of this change could not be determined as there were no 

consistent patterns in the data. It is possible that a combination of signal filtering to 

determine posture and the minimum settings being too low could lead to misclassification. 

It was not possible to determine any distinct pattern in this misclassification. 

 

By changing the default setting to 1 second for minimum sitting and upright periods, the 

problem with the misclassification for sitting events that were less than 10 seconds should 

be removed. Also the activPAL was able to detect falls and correctly classified those 

periods as sitting/lying events. However, for subject 5, this did not eliminate the 

misclassified periods of stepping activities that were less than 10 seconds between two 

seated events, which indicated that the activPAL algorithm was unable to identify short 

stepping activities between seated periods although the default setting was changed to its 

lowest value of 1 second.  

 

Overall, the average percentage discrepancy was greater when results were analysed using 

1 second setting for minimum upright and sitting/lying events, indicating errors in the 

analysis when the algorithm becomes more sensitive to changes of posture. From the set of 

data collected, setting of 7 or 8 seconds for minimum upright and sitting/lying events were 

found to have the lowest average discrepancy when compared between video and activPAL 

data. However, the real effects of decreasing the minimum upright and sitting/lying periods 

were not known and further investigation is required.  
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The default setting of 10 seconds for minimum sitting and upright periods in the activPAL 

software clearly limits its ability to accurately classify activities that were less than 10 

seconds in duration. By reducing the setting on the activPAL software, short bouts and 

spontaneous movements could then be monitored. Although most events less than 10 

seconds were correctly classify when the default setting was changed from 10 to 1 second, 

the accuracy of the activPAL data did not increase when compared to the video data. The 

overall outputs for percentage discrepancy did not appear to change more than small 

amount (approximately 1%) when the minimum threshold was altered. This might be due 

to only small amount of short transitions being performed in the laboratory for routine gait 

analysis procedures. The number of short bouts of activity (< 10 seconds) might be 

expected to be significant for children in a free-living environment. The fluctuation of 

percentage discrepancy might be caused by errors in the analysis when the algorithm 

became more sensitive to small changes in the acceleration signals with a reduced 

minimum threshold for sitting and upright periods, hence creating misclassified activities.  

 

5.4.1.5 Counting strides 

The stride count algorithm employed by the activPAL software looked for the number of 

troughs during the upright posture, as stepping activities were represented by cyclical 

signals with one cycle corresponding to one stride (Figure 5.4). The activPAL algorithm 

under-estimated the stride counts when all strides and turning steps were counted from the 

video recording for all subjects indicated that the activPAL might not always include small 

side or turning steps. For counting forward strides only in the video data, comparison with 

activPAL data showed that some subjects had percentage discrepancies that were higher 

compared to the percentage discrepancies for counting all strides in the video data. This 

occurred in almost half of the subjects (subject 3, 8, 10, 13, 14, 18 and 19).  

 

The video recordings were analysed with a stride by stride comparison to the activPAL 

outputs and it was found that miscounts occurred at the end of walking episodes, especially 

if the subject was required to turn round 180˚ to walk back to the other side of the 

laboratory. There might be a small amount of discrepancy between video and activPAL 

data for the time at which a change of posture occurred. The video analysis protocol used 

did not classify sitting/lying events until the gluteus muscle was in contact with the 

intended seat, and vice versa for upright categorization. However, people with lower limb 

disabilities, may take a longer time for transition between postures. It was not known from 
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the activPAL algorithm the exact time at which posture change was deemed to occur, hence 

time discrepancy between video and activPAL data might exist.  

 

When all strides were counted from the video, the activPAL under-estimated for all 

subjects as end strides for most walking episodes were not counted. It was found that when 

the last step of a walking episode was the leg with the activPAL attached, this stride was 

not counted by the activPAL algorithm. However, if the last step was produced by the 

opposite leg, the last stride was counted. Hence it showed that a complete gait cycle was 

required for the last stride to be counted by the activPAL algorithm.  

 

When only forward progression strides were counted from the video, the activPAL 

sometimes over-estimated, which indicated that small turning and side steps were included 

for some subjects (e.g. subject 8 and 18). In spite of this, the activPAL occasionally did not 

include these small steps (e.g. subject 12 and 15). At times, the activPAL missed out the 

end stride that caused a stopping action (e.g. subject 1 and 17). Sometimes there were extra 

strides which were random, such that there might be a stride counted from a seated position 

to a standing posture or extra strides being counted within a walking episode. By looking at 

the video recordings, there was no consistent pattern to indicate when the activPAL would 

count the small steps. By examining the raw acceleration signals, large amplitude of 

acceleration signal was seen indicating movement of the lower limb, however these were 

not seen in the video recordings. The exact algorithm employed by the activPAL software 

was not known, it was therefore difficult to understand the exact criteria used to classify a 

stride.  

 

Table 5.14 summarised the differences between the activPAL interpretation of stride count 

and that derived from the video analysis. In general, the misclassification of first and last 

stride within walking episodes came from the difficulty in identifying what were a real first 

and last stride and the motion of turning round 180º. From the activPAL accelerometer 

signals, it could be seen that slow turning was not counted as a stride, whereas large 

movement of the thigh while turning was included as a stride.  
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Table 5.14: Sources of disagreement between the activPAL stride count and that counted from 
the video when only forward strides were counted.  
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1 37 15 1 2 -49 15 14 1 -48 605 81 

2 8 9 15 11 9 31 40 -9 0 409 57 

3 10 5 27 11 23 46 1 45 68 642 81 

4 17 1 2 3 -13 17 28 -11 -24 267 33 

5 9 9 3 6 -9 18 40 -22 -31 249 30 

6 7 3 11 2 3 17 3 14 17 284 37 

7 24 5 4 8 -17 20 46 -26 -43 782 78 

8 1 2 12 9 18 25 2 23 41 248 31 

9 12 12 4 1 -19 9 23 -14 -33 196 24 

10 5 1 16 8 18 30 0 30 48 310 48 

11 7 2 13 2 6 18 6 12 18 355 29 

12 12 1 8 4 -1 17 18 -1 -2 365 48 

13 10 2 5 3 -4 35 10 25 21 303 25 

14 5 11 4 1 -11 37 6 31 20 278 32 

15 3 5 2 3 -3 6 2 4 1 103 15 

16 21 3 9 3 -12 11 10 1 -11 358 57 

17 28 2 0  0 -30 4 3 1 -29 263 39 

18 7 2 24 0 15 46 6 40 55 418 54 

19 7 2 27 43 61 62 2 60 121 635 79 

 

For mid posture misclassification of a stride, this usually occurred when leg movements 

were seen during standing periods with no forward progression. For example, with toe 

walkers (people who cannot put down their heels due to tight gastronomies) they have lack 

of balance and small movements could be seen when they tried to stand still. Additional 

strides were counted in the activPAL algorithm for some subjects as the acceleration 

signals had additional peaks and troughs, which may be due to the gait pattern of those 
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individuals. However, there was no general trend and errors seemed to be random which 

might be representative of real error that could occur in free-living monitoring and would 

be difficult to eliminate for this population.  

 

For the Bland & Altman agreement plots, the mean percentage difference was 1.29% for 

‘forward count’, which was closer to 0% compared to -13.1% for ‘all count’. Hence it was 

shown that there was better average agreement between video data with ‘forward count’ 

results, which indicated that the activPAL generally did not count small side and turning 

strides. It was thought that this might be due to another threshold level being used, and the 

troughs in the cyclical signal had to pass through this threshold in order to be counted as a 

stride. Therefore, a slow small stride with small changes in the activPAL acceleration 

signal would not be considered as a stride by the activPAL algorithm. This might lead to 

error when gait abnormalities are present, e.g. for toe walkers who do not have heel strike 

and, therefore, have acceleration profiles that might be different to those of ‘normal’ gait. 

However, when gait patterns of each subject were investigated (Appendix IV), no general 

relationship could be identify between gait patterns (toe walkers, foot flat walkers, walking 

on lateral border and relatively normal gait) and percentage discrepancy for counting 

strides.  

 

5.5 Summary 

The validation study of the activPAL as an activity monitor for use in the CP population 

was carried out concurrently with gait analysis sessions that involved many short periods of 

walking and sitting with numerous transitions between postures and activity states, thus 

providing challenging conditions for the implementation of the proprietary signal 

processing algorithm employed by the activPAL. Determination of events from the video 

recording was not straightforward and it was necessary to prepare clear definitions of what 

was considered to be a stride and at what time a transition should be precisely defined. 

Attempts were made to match the characterization that would result from ideal analysis of 

the thigh worn activPAL output. From this study, it was found that the activPAL could 

count the number of strides a person took (101.82% average sensitivity for forward counts 

only) and categorize activity into periods spent in sitting/lying, standing and walking with a 

reasonable accuracy (105.19%, 111.36% and 95.77% respectively). Misclassification could 

be seen and wide intervals for Bland & Altman agreement plots were found indicating large 

variations between subjects. 
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Direct comparison of the activPAL output with the video analysis allowed examination of 

discrepancies in classification that occurred. The classification of rapid changes from one 

posture/activity state to another and then back again were affected by the minimum settings 

of parameters within the activPAL software. It is therefore, important that these parameters 

are set appropriately. For this validation study there were only a small number of these 

short posture/activity states so there was not a large effect on outcomes when the 

parameters were modified. However, if physical activity involved many of these short 

postural/activity states then there is a possibility that the setting of the minimum allowable 

duration in the activPAL software would become critical for accurate classification.   

 

Discrepancies between classifications also occurred for activities that were not easily 

categorized. This included non-forward stepping and sitting with thighs in an orientation 

other than horizontal, i.e. perching on the side of a chair. It was not possible to identify 

clear patterns within or between subjects as to the occurrence of these types of discrepancy 

in classification between the activPAL and video based analyses.   

 

From this laboratory based validation study, it was difficult to predict the effects of 

changing the minimum upright and sitting thresholds on the output of the activPAL for 

free-living activity monitoring. It was believed that the discrepancies observed in the 

validation study might be under-estimates of those that might occur in the 

community/home environment as there were restrictions on the activities performed by the 

subjects in the laboratory. It is possible that in a free-living environment the subjects would 

perform activities that did not fit the standard classifications of activity used and would 

therefore potentially be misclassified. Particularly short bursts of activity and regular rapid 

transitions may be expected in a population of younger subjects (children). 

 

Although there were identified limitations in the physical activity characterization that the 

activPAL produced, with careful setting of the software parameters for minimum event 

duration it would be possible to gain insight into free-living physical activity levels.  
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6 CEREBRAL PALSY – 7 DAYS FREE-LIVING ACTIVITY MONITORING 

6.1 Introduction 

The population of people with cerebral palsy (CP) has varying levels of mobility 

impairments (van der Dussen et al 2001) and one of the primary aims of clinical 

interventions in CP is to maintain and improve mobility. Therefore knowledge of daily 

activity levels will provide critical information about the success of the clinical intervention. 

However, there is limited information pertaining to the mobility of people with CP in their 

free-living environments (Bjornson et al 2007) and typically no routine monitoring of 

activity levels is performed. Questionnaires are sometimes used to obtain information on 

free-living activity levels for people with CP, but this method could be subjective. CP is 

diagnosed in young children, therefore questionnaires would normally be completed by 

their parents. This might lead to errors in reporting as the parents may not be with the child 

all the time, hence parents might not document all the activity performed by their child. 

Furthermore, people with CP may have cognitive difficulties due to lesions in the brain, 

therefore even when the child grows up, information obtained from questionnaires 

completed by them may not be reliable. 

 

Activity monitoring in a free-living environment may be used to assess the effectiveness of 

interventions aimed at increasing activity, and to quantify rehabilitation progress for people 

with CP. There are many commercially available activity monitors that could be used to 

assess daily activity levels for people with CP (examples of commercially available activity 

monitors are listed in Table 2.2, Chapter 2). However, most of the monitors’ measure 

outcomes are in terms of energy expenditure. This information has limited applicability in a 

CP population due to the large range of mobility impairment and altered gait patterns in this 

population. Daily activity patterns in the CP population would provide more useful 

information than measures of energy expenditure.  

 

The activity monitor, activPAL, can be worn for multi-day periods and potentially provides 

a useful tool for physical activity monitoring. The validation study reported in Chapter 5 

indicates that, although there are limitations in use of this device in this population, it can 

be used to monitor physical activity in the free-living environment as long as the results are 

interpreted taking into account potential misclassification.   

 



 91

The work reported in this thesis was aimed at characterising the activity patterns of people 

with CP throughout daily living, as quantified by stepping, standing and sedentary phases 

of activity.  

 

The application of the activPAL in the free-living environment is explored with the activity 

of a group of children with CP being monitored over multi-day periods. The absolute 

values of physical activity recorded are reported and the effect of modification of activPAL 

software settings on results quantified.  

 

6.2 Methods 

15 participants (Table 6.1) who took part in the validation study (Chapter 5) agreed to wear 

the activPAL in their free-living environments to monitor their daily activity levels. All 

subjects were of school age, hence required to attend school during weekdays. However, it 

was half term or holiday periods for subject 2, 6 and 11 during part or whole of their 

free-living monitoring week. Subject 15 and 17 worked after school on certain days of the 

week. 

 

Table 6.1: Information on subjects who took part in this study 

Subject 

number  Age Sex Type of CP Mobility aids currently used 

1 5 M Diplegic Bilateral AFO 

2 5 M Diplegic Left AFO 

3 6 M Right hemiplegic Left AFO 

5 7 F Diplegic None 

6 7 F Left hemiplegic Right AFO 

7 8 M Diplegic Bilateral AFO 

8 9 M Right hemiplegic Wheelchair 

10 12 M Spastic diplegic None 

11 13 F Quadriplegia Bilateral AFO, walking frame, wheelchair 

12 13 F Diplegic Bilateral AFO 

14 14 M Spastic quadriplegia Bilateral AFO, K-walker, wheelchair 

15 15 M Spastic diplegic None 

17 15 M Diplegic None 

18 17 M Mild diplegic Insoles 

19 17 M Right hemiplegic Left AFO 
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Subjects or their parents completed the standard functional assessment questionnaire 

(Appendix I) during their routine gait analysis sessions. The questionnaire used at the 

Anderson Gait Laboratory was the Gillette Functional Assessment Questionnaire 

(Novacheck et al 2000), which is a 10 level scale to evaluate walking ability with an 

additional assessment questionnaires on 22 higher level skills, such as stair climbing and 

navigating curbs. A comparison was made between the physical activity characterization 

accomplished with the activPAL and the outcome of the functional assessment 

questionnaire.  

 

Subjects were asked to attach the activPAL to the same thigh throughout the 7 day 

monitoring period, either on the leg with more pronounced gait abnormality or the right 

thigh if both legs showed similar gait difficulties. This was the same thigh as used during 

the laboratory based evaluation study. Subjects were instructed to remove the activPAL 

during any water-based activities (e.g. bathing and swimming), and the device could be 

removed for over nights periods when the subject was sleeping. Full instructions on the 

attachment methods of the activPAL using the PALstickies (PAL Technologies Ltd) were 

given to each subject and their parents.  

 

Each subject and their parents were also asked to keep a simple diary/timetable of the 

activities that the subject performed within the 7 days monitoring period, so that 

comparison of the collected data with the diaries could be achieved. A timetable with 

hourly slots (Appendix V) was given to each subject and they were asked to record the 

activities they performed during the 7 day monitoring period. The timetable could be 

completed by either the subjects themselves or their parents (especially for younger 

subjects and those who had cognitive difficulties). Instructions were given to record where 

they were during the day and any physical activities performed (e.g. sporting activities, 

shopping, walking the dogs etc). Each subject was provided with a stamped addressed 

envelope, so the activPAL could be posted back to the researcher with the diary/timetable 

after the monitoring period. 

 

6.3 Data Analysis 

The activPAL data were downloaded onto a computer using the activPAL professional 

software (version 5.8.1.6, PAL Technologies Ltd). Data was first analysed using the default 

setting of 10 seconds as the minimum duration for sitting and upright periods. The total 
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time spent in each activity (sitting/lying, standing and walking with total step count) for 

each monitored day was found using the activPAL professional software. The average 

times spent in stepping, quiet standing and numbers of steps per day were calculated. 

 

Further analysis of the activPAL data were carried out to determine the most appropriate 

setting for the minimum duration of upright and sitting periods. The activPAL data analysis 

algorithm first employed some form of filtering techniques and two thresholds were 

identified to distinguish upright and non-upright (sedentary) events. The algorithm then 

associated stepping episodes with cyclical signals within upright periods and counted the 

number of strides (See Section 5.2.1.1 for details of the activPAL signal analysis algorithm). 

For upright and non-upright (sedentary) classification, the activPAL algorithm set a 

minimum duration for which sitting/lying and standing period had to last in order that a 

change in posture state might be registered. The default setting in the activPAL 

professional software was 10 seconds for the minimum duration of sitting/lying and 

standing periods, and this setting could be changed manually in the software from 1 to 100 

seconds.  

 

In the activPAL software the default setting for the minimum upright and sitting periods 

were set as 10 seconds. Although it was shown that altering these values between the 

values of 1 and 10 seconds did not have a major impact on the results of the validation 

study it was not possible to know how these setting might affect free-living activity. The 

type of activity engaged by the subjects in their free-living environment could have been 

very different to that of the semi-prescribed and observed laboratory based environment. 

Interpretation of the acceleration signal by the activPAL software was made using a 

smoothing filter to establish posture. If very short postural events occurred, i.e. less than 3s 

in duration, it is possible that these would not be characterized correctly. Also it might be 

questioned whether a change of activity that occurred for less than 3 seconds should be 

counted as important activity change in the context of multi-day physical activity 

monitoring. It was believed that activity performed in the validation study did not represent 

the full range of children’s activity patterns. It was not possible to determine whether the 

proportion of time spent in short posture events in the laboratory were good representations 

compared to daily life situations. Hence different settings of minimum duration for sitting 

and upright periods were investigated (3, 5 and 10 seconds) for the free-living activPAL 

data. A minimum of 3 second was chosen to avoid potential errors associated with the 

smoothing algorithm implemented in the activPAL software.   
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The data were analysed using a Visual Basic program using the .pal files created from the 

activPAL software and all activity events were identified. For each minimum setting of 

upright and sitting period (3, 5 and 10 seconds), the durations for each sedentary and 

upright event were established for each day for each subject and the average number of 

events per day were categorized into different bins (< 20, 20-60, 60-120, 120-300, 300-600, 

600-1800, 1800-3600, 3600-7200 and >7200 seconds). These ranges were chosen so that 

good representations of the number of events could fall within each category, as it was 

assumed that there would be more short periods of activity during free-living monitoring. 

 

The average numbers of sit-to-stand transitions per day were also identified for each subject, 

which would provide information on the subject’s ability to perform sit-to-stand transitions, 

which could give extra indication to the mobility level of an individual.  

 

6.4 Results  

All subjects were of school age, and free-living monitoring were carried out during school 

weeks except for subject 2, 6 and 11 who wore the activPAL during holiday weeks. 

Therefore physical activity levels were expected to be different compared to normal school 

weeks. Subject 15 and 17 worked after school on certain days of the week.  

 

6.4.1 Functional assessment questionnaire 

The mobility score (Table 6.2) described the subject’s typical walking ability with the use 

of any assistive devices. The scores were found from the standard functional assessment 

questionnaire used in the Edinburgh Gait Laboratory (Appendix I). The scale ranged from 1 

to 10, where 10 described the more mobile subjects who would be able to run without any 

difficulties or assistance and 1 indicated the subject could not take any steps at all, therefore 

dependent on wheelchair for mobility.  

 

Table 6.2: Mobility score of each subject using the Edinburgh mobility questionnaire 

subject number 1 2 3 5 6 7 8 10 11 12 14 15 17 18 19

mobility score  8 8 8 8 8 8 6 9 5 7 5 9 9 9 6

 

The mobility scores for the 15 subjects ranged from 5 to 9. Subject 10, 15, 17 and 18 had 

the highest mobility score of 9 indicating they were able to perform general activities 
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without any difficulties or assistance. Subject 11 and 14 had the lowest mobility score of 5, 

which showed that they had mobility difficulties that correlated to the use of wheelchair 

(Table 6.1).  

 

6.4.2 ActivPAL results 

ActivPAL data was obtained from the activPAL professional software (version 5.8.1.6, 

PAL Technologies Ltd) and an example of a subject’s activPAL free-living 7 days results 

can be found in Appendix VI, which included the weekly summary data and activities 

broken down for each day with annotated information from their diary. 

 

Although each subject was asked to wear the activPAL for 7 consecutive days, some 

subjects forgot to put it on or did not want to wear it on certain days. Table 6.3 shows the 

number of complete days (midnight to midnight), of which each subjects worn the activity 

monitor. Although subjects did not wear the device during overnight sleeping, the 

activPAL was placed horizontally to represent sitting/lying events, hence indicating time 

spent in sedentary events. This ranged from 1 to 7 days. The activPAL was switched on and 

attached to each subject after their routine gait analysis sessions, usually between 11am – 

1pm. Therefore only half a day of activity could be recorded during this first day. This was 

not used in data analysis presented here.  

 

Table 6.3: Number of complete free-living activity monitoring days for each subject 

subject number 1 2 3 5 6 7 8 10 11 12 14 15 17 18 19

Monitoring days  6 6 7 6 3 5 1 5 2 5 7 6 6 6 7

 

Figure 6.1 shows the range of activity levels for the 15 subjects during free-living 

monitoring, indicating the average quiet standing times, stepping times and number of steps 

per day (2 steps = 1 stride). The standard deviations for the average quiet standing, stepping 

and number of steps per day are also shown in Figure 6.1.  

 

The activPAL data for each subject were used to calculate the average quiet standing, 

stepping and number of steps per day. There was no standard deviation for subject 8 as only 

one full day of activPAL data was recorded. 
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Figure 6.1: Average quiet standing times, stepping times and number of steps per day over 7 

consecutive days for 15 subjects. 

 

There were large variations in the average daily step count (642 to 12330 steps per day) and 

upright time (0.89 to 5.67 hours per day) of subjects. Figure 6.1 indicates that subject 14 

had step counts below 1000 per day and subject 2, 8, 11 and 19 had step counts below 5000 

per day. All other subjects had step counts over 5000 per day. For free-living activity 

monitoring of people with CP, the average quiet standing times ranged from 0.4 to 2.57 

hours per day and the average stepping times ranged from 0.29 to 2.94 hours per day 

(Figure 6.1), indicating the wide range of daily activity performed by each individual. 

 

Different parameters were investigated against mobility scores from the questionnaire. The 

relationship between mobility scores, average daily step count and average upright time per 

day is illustrated in Figure 6.2 and the relationship between mobility scores and average 

cadence and average daily step count is shown in Figure 6.3. 

 

From Figure 6.2 it could be seen that subjects with mobility scores of 5 and 6 had lower 

average step count and upright time per day than those with higher mobility scores. 

Subjects with mobility score of 5 had the lowest average cadence (Figure 6.3). 
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Figure 6.2: Relationship between mobility score and average daily step count and average 

upright time per day for all subjects. 

 
 

 
Figure 6.3: Relationship between mobility score and average cadence and average daily step 

count for all subjects. 

 

The correlation coefficient, r, were calculated as 0.767, 0.767 and 0.483 for average upright 

time per day, average step count per day and average cadence per day respectively with 

mobility score, showing strong positive correlation between average upright time and 

average step count per day compared with mobility score. There was only medium positive 

correlation between average cadence per day compared with mobility score. 
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Apart from this small pattern, there was no other general trend between mobility scores and 

average upright times, average daily step count or average cadence for the subject 

population (Figure 6.2 and 6.3).  

 

Laboratory based average walking cadence is plotted against average step count per day 

and upright time per day in Figure 6.4.  

 

 
Figure 6.4: Relationship of average laboratory based cadence with average upright time and 

average step count per day for all subjects. 

 

The correlation coefficients, r, were calculated as 0.560 and 0.615 for average step count 

per day and average upright time per day respectively against average cadence. No other 

general trend could be seen from Figure 6.4 for any relationships between average cadence 

with average upright time and average step count per day for the subject population.  

 

6.4.2.1 Effect of minimum setting for upright (sitting/lying) and sitting/lying 

(non-upright) period duration in the activPAL software 

Different settings of the minimum duration for sitting/lying and upright (standing/walking) 

periods were investigated, as it was hypothesised that in this subject population short bursts 

of activity might occur frequently. Children’s free-living physical activity might consist of 

many spontaneous changes in posture and short transitory activity bursts. It was not 

possible to know if this was true for this population of children unless the minimum 
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settings for upright and sitting/lying period duration within the activPAL software were 

reduces below 10s. Figure 6.5 and 6.6 show examples of a subject’s free-living monitoring 

results, with the average number of upright and non-upright (sedentary) events per day 

respectively, which were categorized into different bins (< 20, 20-60, 60-120, 120-300, 

300-600, 600-1800, 1800-3600, 3600-7200 and >7200 seconds) for data analysis using 3, 5, 

and 10 seconds for the minimum setting of upright and sitting/lying periods. Appendix VII 

and VIII show the average number of upright and sedentary events per day categorized into 

different bins for all subjects.  
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Figure 6.5: An example of average number of upright events per day categorized into different 

durations during free-living monitoring (subject 1) for 3 settings of minimum sitting/lying and 

standing/walking times. 
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Figure 6.6: An example of average number of non-upright (sedentary) events per day 

categorized into different durations during free-living monitoring (subject 1) for 3 settings of 

minimum sitting/lying and standing/walking times. 

 
For both upright and non-upright (sedentary) analysis with all the subjects, as the minimum 

setting for sitting and upright period reduced from 10 seconds to a lower value (i.e. 5 and 3), 
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the average number of events that occurred less than 20 seconds in duration increased. For 

sedentary analysis, the average numbers of events that were longer than 2 hours (7200 

seconds) for all 3 settings were the same for subject 1, 5, 6, 10, 11, 15 and 17, but different 

for subject 2, 7, 8, 12, 14, 18 and 19. These longer sedentary events usually indicated 

overnight sleeping episodes, as subjects placed the device on a horizontal surface during 

overnight sleeping periods.  

 

Apart from the trend seen in the <20 seconds bin, there was no general pattern for the 

number of events within each bin when the minimum setting for upright and sitting were 

changed from its default of 10 seconds to 5 and 3 seconds. Also the number of events 

increased for 20-60 second duration bin as the minimum setting decreased, apart from 

subject 2, 3, 6 and 8. 

 

6.4.2.2 Sit-to-stand transitions 

The average number of sit-to-stand transitions per day for each subject for the 3 settings of 

minimum upright and sitting/lying periods (10, 5 and 3 seconds) are shown in Figure 6.7, 

which indicates that as the minimum setting for upright and sitting periods decreased, the 

average number of transitions per day increased. For the setting of 10, 5 and 3 seconds of 

minimum sitting/lying and upright periods, the average number of sit-to-stand transitions 

per day ranged from 31-101, 35-147 and 39-185 respectively. 
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Figure 6.7: The average number of sit-to-stand transitions per day for each subject, analysed 

using 10, 5 and 3 seconds as the minimum setting for upright and sitting/lying periods. 

 



 101

Subject 1, 3, 5 and 6 appeared to perform over 80 sit-to-stand transitions per day for all 

three settings of minimum upright and sitting/lying periods in the activPAL software for the 

data analysis algorithm. The percentage change resulting from a shortening of the minimum 

times from 10 seconds to 3 seconds ranged from a 14% to a 49% increase.   

 

The relationship between mobility scores with the average number of sit-to-stand 

transitions is illustrated in Figure 6.8. No general pattern could be noted from Figure 6.8 for 

correlation between number of sit-to-stand transitions and mobility level. It showed that the 

daily average sit-to-stand transitions ranged from 31 to 101, indicating the range of activity 

level for the subject population in this study.  

 

 
Figure 6.8: Mobility score plotted against average number of sit-to-stand transitions 

(minimum duration of upright and sitting/lying events =10 seconds) per day performed by 

each subject. 

 

The relationship between the ages of each subject with corresponding average number of 

sit-to-stand transitions per day during free-living monitoring is shown in Figure 6.9.  
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Figure 6.9: Subject’s age plotted against average number of sit-to-stand transitions (minimum 

duration of upright and sitting/lying events =10 seconds) per day performed by each subject. 

 

It could be seen that there was a threshold of average sit-to-stand transition per day that is 

around 40. Only the younger subjects (5 to 7 years old) performed more than 60 average 

sit-to-stand transitions per day.  

 

6.5 Discussion 

6.5.1 Functional assessment questionnaire 

The mobility scores (Table 6.2) were either the subjects’ or their parents’ perception of the 

subjects’ ability to perform daily physical activities with the use of any assistive devices, 

which could be subjective. The Gillette Functional Assessment Questionnaire used at the 

Anderson Gait Laboratory was a 10 level parent/patient reporting scale encompassing a 

range of walking abilities with additional assessment questions on higher level skills. 

Parents could be biased as they might mislead the clinical staff by under- or 

over-estimating the subject’s mobility status. Table 6.2 showed that the mobility score 

ranged from 5 to 9 for the subjects who took part in this study. Although the walking ability 

for people with CP could range from 1 to 10, the lowest mobility score obtained from 

subjects who took part in this study was 5 because subjects were recruited when they 

attended routine gait analysis sessions, and for a person with CP to be able to have clinical 

gait assessment, the minimum requirement would be the ability to walk with assistance. 

Hence it was unlikely that subjects with a mobility score below 3 would have been 

recruited to this study, as these people with CP would have been dependent on the use of a 
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wheelchair and could not have walked or stood unaided, therefore would not have been 

assessed in routine gait analysis sessions and would not have been in an unsupported 

upright posture in daily situations.  

 

Although the questionnaire consisted of other parameters, only the overall mobility score 

was used to compare between subjects. The higher level mobility skills within the 

questionnaire were not used as these activities might be related to developmental age at 

which children normally acquire the skills. For example, younger subjects (< 5 year old) 

might not be able to carry a fragile object or a glass of water because they were too young 

and had not yet developed these skills. Also a subject might not have performed other 

activities such as riding a two wheeler bike or a trike and ice skating because they never 

had the opportunity or did not enjoy such activity, and not because of their ability. Hence 

only their general mobility skills were used as mobility scores to compare with activPAL 

data.  

 

Furthermore, the functional assessment questionnaire only provided information on the 

capability of each individual with CP and did not give any indications on their free-living 

activity patterns or the amount of daily activity being performed. A subject might be able to 

perform all activity types stated on the questionnaire but could choose to have a sedentary 

lifestyle. For example, subject 2 had a mobility score of 8 but had average step count of 

<5000 per day. 

 

The mobility scores were used and it was established that although there was correlation 

between mobility score (range from 4 to 10) with average upright time and average step 

count per day, mobility score could not be used to predict free-living physical activity due 

to the variability of the measures within the scores (Figure 6.2 and 6.3). There were no 

other general relationships between functional mobility levels attained from 

subjects/parents and parameters measured in the free-living environment such as average 

upright times per day, average daily step count and number of sit-to-stand transitions. 

Figures 6.2 and 6.3 indicate that for lower mobility scores of 5 and 6, subjects had the 

lowest average number of steps per day, however for mobility score of 7 or higher, the 

range of daily average step count increased. The range of average daily step count for 

subjects with higher mobility varied greatly from 4011 to 12330. 
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From the activPAL free-living data, it could be seen that results could be useful to predict 

mobility level into 2 groups, either below 7 (< 3000 steps per day) or above 7 (> 3000 steps 

per day). However, it is more ambiguous for people with mobility score of 7 as they might 

fall into either category. It was seen that if mobility score was below 7, these subjects 

tended to have limited mobility, hence lower level of daily activities. Free-living activity 

results showed that although a subject might have high mobility skills, they might not carry 

out high amount of physical activity.  

 

The results demonstrate that to determine free-living physical activity level it is not 

possible to use the mobility score derived from a questionnaire alone, and that it would be 

necessary to make direct measurement with an objective monitor such as the activPAL.   

 

6.5.2 Free-living activPAL data 

General activity patterns of people with CP 

Complete days of no data (i.e. sedentary event for 24 hours), were not included in the 

calculation of averaged time spent in each activity state and stride count, as this was taken 

to indicate that the subject was not wearing the activPAL. 

 

By identifying the average quiet standing times, stepping times and number of steps per day 

for people with CP, their general daily activity patterns could be evaluated. It can be 

hypothesised that people who walk only short distances, i.e. have only short walking bouts, 

are only walking within the home or for short transits to transport etc. To extend physical 

activity beyond the home it would be necessary to undertake longer periods of walking and 

to stay upright for longer. It can be hypothesised that those with poor walking ability might 

only perform essential walking to allow independence during daily activities. Those with 

greater walking ability might tend to perform voluntary physical activity in addition to this 

essential walking activity. This additional physical activity would involve both increased 

stepping and increased standing times. 

 

From the results (Figure 6.1) it can be seen that subjects 11 and 14 perform only a small 

number of steps per day and that they might therefore be classed as ‘household’ walkers 

performing only essential stepping to maintain independent within indoor environment but 

would require assistance for outdoor activities. This is in contrast to other subjects (subject 

1, 3, 5, 6, 7, 10, 12, 15, 17 and 18) who performed over 5000 steps per day, above the level 
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required for performance of essential daily tasks, and so indicating additional activity that 

might be classified as ‘community’ based walking. Subject 2, 8 and 19 might fall in 

between these two groups as they appeared to perform more steps or upright time per day 

than those who were ‘household’ walkers, however not as many as those who were 

‘community’ walkers. Three categorisations of physical activity level are proposed, those 

involving household stepping; short community based stepping; and active community 

based stepping.  

 

ActivPAL activity patterns corresponded to the mobility scores from the functional 

assessment questionnaire. Subjects 8, 11, 14 and 19 had the lowest mobility scores, 5 or 6, 

which matched with the activPAL results as they exhibited the lowest average step counts. 

However, subject 2 had a mobility score of 8 but had an average step count below 5000. 

This suggested that the functional assessment questionnaire might only indicate a person’s 

capability and not their actual daily activity levels. Free-living activity levels not only 

include ability to perform such activities, but are also influenced by other factors such as 

motivation, environment, family circumstances and possibly economical constraints.  

 

There was a wide range of step counts per day for the more active subjects as characterized 

by large standard deviations of the data. This variation could have been due to a wide 

number of factors including general fatigue, weather, visiting friends, scheduled activity 

sessions, confined sitting (e.g. watching films), etc. Less active subjects with CP might 

need support in stepping activities; the lower variation in step count within this group was 

probably caused as these subjects only performed essential activities such as toileting, walk 

to transportation and indoor activities. Also those steps recorded might be due to daily 

exercise prescribed by physiotherapists, therefore less variation in the number of steps was 

seen for the less active subjects.  

 

The average quiet standing times ranged from 0.83 to 3.58 hours per day and the average 

stepping times ranged from 0.21 to 2.35 hours per day. All subjects seemed to spend more 

times in the quiet standing posture compared to stepping activities, with the exception of 

subject 8. There might be many reasons for higher standing times, for example, subject 15 

and 17 worked in a shop that involved a lot of standing. Also the use of walking frames 

would increase time spent in quiet standing posture (e.g. subject 11 and 14), as these 

subjects might need assistance to move in and out of their walking frame, so once in the 

frame they might remain in an upright position until they were helped back into a seated 
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posture. In addition, physiotherapy programs varied from person to person. Some people 

with CP might be required to perform daily exercise in the quiet standing position, while 

others might need to carry out these exercises in a prone or supine position for muscle 

stretching/strengthening.  

 

To maintain good health, it is recommended in U.S Dietary guideline that children engage 

in at least 60 minutes of moderate to vigorous physical activity per day (2008 Physical 

Activity Guideline for Americans). For adults, the well known 10,000 steps per day is 

indicative of an active lifestyle (Tudor-Locke and Bassett 2004; Le Masuier et al 2003), but 

this recommendation is likely to be too low for children who are more active than adults.  

 

From the activPAL results, most subjects who took part in this study had an average of over 

60 minutes of stepping activity per day (subject 1, 3, 5, 6, 7, 10, 12, 15, 17 and 18). These 

were the more active ‘community’ walkers who engaged in higher amounts of physical 

activity. However, for the recommended step count of 10,000, only 4 subjects achieved this 

(subject 3, 5, 10 and 15). This indicated that although the subjects studied are engaging in 

stepping activity, they are not performing to the recommended levels for maintenance of 

good physical health. 

 

6.5.3 Effects of minimum setting for upright and sitting periods 

3, 5 and 10 second settings of minimum upright and sitting/lying periods were investigated 

for its effect on free-living activity monitoring outcomes. 10s was chosen as this was the 

default setting for the activPAL software. It was hypothesised, however, that there might be 

a number of posture bouts shorter than 10s as children/younger subjects have a tendency 

for engaging in play activity with a significant physical activity component. It is commonly 

observed that this play activity involves many posture changes in short periods of time. The 

two settings of 5 and 3 seconds were chosen to provide examples of the effect of this 

setting on the data characterization. 5 second was half the value of the default setting. 3 

second was chosen as the shortest time that it was considered a meaningful event would last. 

It would have been possible to use 1 second as the minimum, however it was not felt that 

this would offer a meaningful interpretation of the data as it may have lead to error in 

classification of rapid transitory motions as posture state changes. Hence a longer duration 

of 3 seconds was used instead of the lowest minimum setting.  
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The time bins were selected pragmatically to ensure a manageable number of bins and a 

suitable spread across the duration span. The longest duration bin was set as over 7200 

seconds (2 hours) to provide information on any times where no change in physical state 

was made for what was considered a ‘long time’. The shortest durations was set as less than 

20 seconds so that it could include events for the default setting (10 seconds). For a 10 

second setting of minimum sitting/lying and upright times there would have been no events 

less than 10 seconds making it unreasonable to use a bin of 10 seconds and less. After 

preliminary analysis the following data bin sizes were used: 20 seconds to 1 minute, 1 – 2 

minutes, 2-5 minutes, 5-10 minutes, 10-30 minutes, 30-60 minutes, 1-2 hours and then over 

2 hours. Although it might have been possible to use different bin sizes, there was no clear 

logic to choosing alternative values.  

 

For the default minimum setting of upright and sitting period of 10 seconds, any events that 

occurred with durations less than 10 seconds would not be categorized correctly. Therefore 

as the setting was reduced, the number of events that were less than 20 seconds increased. 

Although the number of episodes for less than 20 seconds was expected to increase when 

the minimum setting of upright and sitting periods decreased, it was not known whether the 

increased was errors caused by the activPAL analysis algorithm, or whether these episodes 

were real in the free-living data.  

 

The increase in the number of episodes that were less than 20 seconds resulting from 

changing the minimum time for upright and sitting/lying events would affect the durations 

of other events to an unknown extent, as it was not known whether this short transition 

occurred in a previously categorized longer period of activity (e.g. >7200 seconds) or 

whether it occurred within a shorter period of activity (e.g. 60-120 seconds). There was no 

general trend for the effect of reducing the minimum setting for upright and sitting period 

on other duration bins except that of less than 20 seconds. This indicated that the extra 

periods detected were not systematically within any particular length of bout as 

characterized with a longer minimum time setting. In addition, when the data was analysed 

using a minimum setting for upright and sitting period of 3 or 5 seconds, the difference of 

number of events compared to those analysed using a minimum setting of 10 seconds could 

not be predicted. For example, an episode of sedentary activity that was 1800 seconds long 

when using the default setting might contain one or more very short periods of upright 

activity of less than 5 seconds, thus when analysed with a 5 seconds minimum period 

would be split into perhaps three shorter duration elements. (e.g. 1800 seconds with the 
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default setting, the same period of activity might be split into 95 seconds and 1700 seconds 

of sedentary with 5 seconds upright period, or 600, 600 and 590s sedentary periods and two 

5s upright periods). This effect might explain why for some subjects, there were increases 

in number of events when minimum duration setting changed from 10 to 5 seconds, but 

then decreased numbers when the setting was changed from 5 to 3 seconds. More than one 

short transition could occur within a previously categorized long period of posture.  

 

One way to reduce this unknown effect would be to modify the bins so that each bin would 

be shorter and that the maximum value would not be larger than twice the lower value of 

that bin so that when a short transition occurred, only one episode would remain in the 

same bin and the other would fall into a lower bin. This would make sure, when the activity 

was split into shorter periods, the number of events would always increase in the lower bins 

and would not split into 2 or more events within the same bin. However, this method would 

increase the number of bins and there might be no event in some bins. 

 

If it is assumed that all the transitions that were detected using the 3s setting were real then 

it must be considered that this setting was the best to use for the free-living data. It is 

difficult to say if a setting less than 3 seconds would have been better as this might have 

lead to erroneous interpretation of the data. A possible way to validate the effect of 

changing the minimum upright and sitting threshold for free-living monitoring was to video 

record each subject’s activity patterns during their daily lives. However this would have 

been extremely time consuming and a large amount of data analysis would have been 

required. Furthermore, subject’s activity patterns might not be true when an observer was 

noting down their daily life activities. 

 

6.5.4 Number of sit-to-stand transitions 

Although there was no general relationship seen between mobility level and number of 

average daily sit-to-stand transitions per day, it appeared that there was a ‘threshold’ 

number of sit-to-stand transitions of approximately 40 per day, indicating functional task 

performances only such as toileting and bathing. There was however four younger subjects 

(subject 1, 3, 5 and 6) who performed over twice the number indicating engagement with 

additional discretionary activity. From Figure 6.9, it could be seen that generally younger 

active subjects with CP (aged 5 to 7) performed higher number of sit-to-stand transitions, 

which might be indicating younger children’s play behaviour. However, if their mobility is 



 109

reduced, the average number of sit-to-stand transitions per day might reduce to functional 

task performance only.  

 

Short bouts and spontaneous activities might represent young children’s activity pattern, 

however when a child grows, this characteristic of activity pattern might change with less 

short bouts and spontaneous transitions between activity states, hence decreasing the 

number of transitions as age increases.  

 

The less active younger household walkers performed similar sit-to-stand transitions 

compared to the older active community walkers. For the age range in this study, all 

subjects were required to go to school during week days, which would be included in their 

daily activity routine. Subject 15 and 17 worked after school during certain days of the 

week, hence this information has to be taken into account when analysing the data, as rigid 

lifestyle might influence free-living physical activity level.  

 

6.5.5 Activity patterns of people with CP using activPAL with diary 

By combining the activPAL results with the diary, it could be seen that the more active 

subjects usually carried out some form of outdoor sporting activities, such as football 

(subject 3, 10, 15, 17 and 18). The less active household walkers were limited by their 

mobility, hence could not take part in many sporting activities, which were confirmed by 

their diaries (e.g. subject 2, 8, 11, 14 and 19). Subject 11 and 14 required a walking frame 

for stepping activities and usually used a wheelchair for mobility in the community. Subject 

8 also used a wheelchair for long distance community travel. Subject 2 normally stayed at 

home during leisure times, indicating household activities rather than long periods of 

stepping episodes. Subject 19 was 17 years old and preferred to stay at home and did not do 

any outdoor activities, apart from travelling to school on the bus.  

 

Although all subjects were of school aged, their weekly activity pattern would include 

school days, but part or all of the monitoring weeks for subjects 2, 6 and 11 were during the 

holidays, hence their activity patterns might have been different compared to the normal 

school week. This information has to be taken into consideration when assessing their 

free-living activity levels and such information would be missing if the activPAL was the 

only method used for monitoring free-living activity levels.  
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Without the addition of a diary, information such as reasons for fewer activities on certain 

days would not be revealed. For example, subject 15 went paint balling on Saturday but did 

not wear the activPAL as he was worried that it might fall off, hence no activity was 

recorded for that day. The subject then stayed at home on the following day to relax after a 

full day of activity the previous day. However, with activPAL information alone, it showed 

that the subject was less active over the weekend. Subject 17 stated he was less active 

because of injuries, hence less badminton was played during the monitoring week 

compared to his normal week.  

 

Nonetheless, some activities such as playing football and snooker were correctly identified 

by the activPAL algorithm, where high cadence stepping periods were seen while playing 

football (subject 3, 10, 15, 17 and 18) and standing periods with occasional stepping 

activities were recorded for snooker playing (subject 15).  

 

Only 2 full days of results were found for subject 11, which was due to the activPAL being 

placed inside a washing machine by mistake on the evening of the third day of monitoring. 

The activPAL stopped automatically and saved the recorded data. Although the subject 

wore the device again after the incident, no additional data was logged. 

 

With the activPAL recordings alone, some information might be missing such as times at 

which the device was not worn but activities took place (e.g. swimming for subject 5 and 

18) or activPAL misclassified the active events such as cycling (subject 5), horse riding 

(subject 12) and wheelchair tennis (subject 12). ActivPAL results showed horse riding and 

wheelchair tennis as continuous sitting/lying events, while cycling was classified as either 

standing or sitting/lying episodes. These types of misclassification indicated limitation for 

the activPAL. It was also not possible to monitor upper limb activity levels and activities 

performed in a seated posture.  

 

Some movements performed by people with CP might not be registered by the activPAL 

(e.g. compensatory or coping strategies such as crawling and moving around on the knees) 

even though these allowed change of location. It was noted from the validation study that 

subject 14 had limited mobility and required to be lifted between activity states, for 

example from wheelchair to walking frame, and these lifting movements would have been 

classified as sit-to-stand transitions. However no work was done by the subject himself for 

the change in posture.  
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The diary revealed that sometimes subjects did not wear the activPAL for either a whole 

day (e.g. subject 6) or just part of a day (e.g. subject 7, 10), as these subjects forgot to put 

the monitor on. Subject 2 did not want to wear the device at school indicating compliance 

issues with device wear. Subject 8 only had one full day of activPAL data, as he did not 

want to have the activPAL attached to his leg. This subject had cognitive difficulties and 

required longer periods to accommodate changes. When this subject visually noticed the 

activPAL device on the third day of monitoring he took it off and did not want to wear it 

again. Hence only one complete day of data was collected with 2 half days for the first and 

third day. 

 

It was noted that sometimes the activPAL was placed incorrectly even though full 

instructions on its placement were given to each subject and their parents. It was seen that 

for subject 12, even though the subject’s diary revealed the use of the activPAL, no activity 

data were recorded for day 3 and 5 during the free-living monitoring. It was assumed that 

this was a result of placing the monitor upside down. If the device was placed upside down, 

sitting/lying events would have been registered throughout the recording times. It was not 

possible to automatically tell when the activPAL was being worn. It was necessary to use 

the diary to ensure that wear times were correctly identified. Examination of the activPAL 

output could be used to identify very long periods of non-compliance, but short periods 

when the monitor was not worn could not be identified from the output data as these could 

have been genuine sitting/lying times. A number of the subject demonstrated poor levels of 

compliance with monitor wear (subjects 2, 6, 7 and 10). 

 

A possible way to overcome misplacement of the activPAL was to place the device inside a 

discrete pocket of a tightly fitted pair of shorts. This would remove the problem of incorrect 

attachment of the activPAL and also other people could not see the device and no contact 

of the skin would be required. However, people might still forget to put on the shorts in the 

morning and compliance would still be an issue.  

 

Limitations to dairy reporting alone 

Each subject was asked to write a simple diary/timetable of the activities they performed 

throughout the monitoring period. Apart from subject 1 who forgot to complete a 

diary/timetable of activities, all subjects posted back their timetable of activities along with 

the activPAL device after the monitoring period. Although verbal instructions were given 

to each subject and/or their parents for recording information onto the timetable, the 
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contents of the diary for each subject varied in its quantity and quality. Some subjects only 

wrote down the time the activPAL was attached or took off or days at which they wore the 

device, while others wrote down more detail such as events broken down hourly. Appendix 

VI shows an example of activPAL data with annotated notes from each subject’s 

diary/timetable.  

 

Some methods for diary reporting require the subject to write down extensive details of 

daily activities in 10 minutes intervals with the type of activity (e.g. occupation, sport, 

walking, house/yard, inactive, personal care, transportation); a brief description; estimated 

intensity (low, medium or high); position of activity (lying, sitting, standing or moving 

around); and time spent (Eason et al 2002). This type of diary reporting would be very time 

consuming and subjects might not be compliant in including all details. Other studies relied 

on subjects to rate the intensity of their activity level using a numeric activity code such as 

the Bouchard activity diary (Bouchard et al 1983). For this method, subjects might be 

biased or over-exaggerate intensity of all active periods.  

 

The timetable/diary given to each subject in this study was broken down into hourly event, 

so that subjects/carers would not be required to spend excessive amounts of time 

completing the diary each day and they were only asked to write down brief descriptions of 

the activity performed, as this would provide information on the posture and activity 

intensity for comparison with the activPAL data. However, the information obtained varied 

greatly between subjects with valuable information only collected for some subjects.  

 

Limitations to activPAL monitoring alone 

People with CP have a wide range of gait abnormalities that are different between 

individuals, and each individual may have their own coping strategies to overcome their 

mobility difficulties. Activities such as moving around using their knees (kneel walking) 

and crawling might not be categorized appropriately by the activPAL algorithm, even 

though functional movement is achieved and high levels of energy might be expended 

during these actions. In addition, it is commonly observed that children tend to engage in a 

wider range of ‘activities’ than adults, such as jumping, skipping and hopping during play. 

Although the activPAL was found to reliably categorize activity into sitting/lying, standing 

and walking for people with CP, it would be best to develop the activPAL algorithm further 

in order to include a wider range of activities, so that an accurate representation of daily 

physical activities could be monitored for this group of people. 
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It might be difficult to interpret the data if the activPAL was only worn for part of the day, 

as it might be mistaken that the subject was inactive (sitting/lying events only) for long 

period of time, but in fact the activPAL was not worn at all. Information from a diary 

would be useful to exclude these data for which the activPAL was not worn. 

 

The periods for which the device was not worn might be identified from the activPAL data 

where continuous sedentary or quiet upright events were seen. However, it would be 

difficult to note a specific cut-off point for non-wear periods. For example, a subject could 

be sleeping during the day if not feeling well, which would lead to long sedentary periods 

during the day time when activity was expected, but on the other hand this long sedentary 

period might be due to the device not being worn for part of the day. Therefore it would be 

difficult to find out non usage of the monitoring device and this might contribute to errors 

in the data analysis process.  

 

6.5.6 Summary 

The activPAL could provide information on activity patterns for people with CP in their 

free-living environment and could be used to distinguish the more active ‘community’ 

walkers from those limited ‘household’ walkers. However, some activities such as cycling, 

crawling, moving with knees and falls might not be classified by the activPAL data analysis 

algorithm. Furthermore, activities such as swimming and wheelchair tennis would be 

shown as inactive periods as the activPAL would classify these periods as sedentary events.  

 

Compliance issues were also noticed as some subjects did not wear the device on certain 

days so that 24 hours of sedentary activity was recorded. There was also indication of 

misplacement of the device. Fitting the monitor inside a discrete pocket of a pair of tightly 

fitted shorts might reduce these compliance problems. 

 

The subjects’ activities were often in short bouts, which could be seen in the analysis of 

sitting and upright durations. A large number of events occurred for less than 20 seconds in 

duration, showing the short bouts of activity performed by the children. It was shown that 

short bouts of activity could only be seen in the more active subjects with CP, those who 

were less active spent longer time in each posture perhaps indicating their reluctance or 

inability to perform transitions between postures. 
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There was no clear relationship between laboratory based cadence or questionnaire derived 

mobility score and free-living physical activity. These results indicate that a typical gait 

laboratory assessment does not allow full characterization of mobility and could not predict 

free-living physical activity level. It is therefore desirable to include objective free-living 

monitoring as a component of typical mobility assessment to provide evidence of actual 

daily mobility of each subject.  

 

By using a diary in addition to the activPAL, a better understanding of the results could be 

achieved as some information could not be seen with the activPAL data alone. Furthermore, 

a short description of the monitoring week would also provide additional information such 

as the general health of the individual, as a person might be less active with an illness (e.g. 

cold or flu). This information could not be found by the activPAL results alone.  

 

Information gained from the diary may have been subjective and dependent upon memory 

if it was completed at the end of each day, possibly leading to errors in reporting, but this 

information still provided some useful insight and provided useful information for 

interpretation of the activPAL data. Hence standard diary reporting method should have 

been used in conjunction with activPAL to achieve full detailed free-living activity of 

people with CP. 

 

The results of this study indicate the wide range of physical activity levels exhibited by this 

population of subjects and highlights the importance of device software parameter settings 

on signal interpretation outcomes.    

 

The information gained on the daily activity levels of subjects with CP, especially for the 

monitoring of pre- and post-intervention physical activity levels obtained from an activPAL 

device could provide invaluable insight into the efficacy of the treatment and the 

rehabilitation progress of the individual. The level of mobility in a free-living environment 

could also aid clinicians in decision making towards the most appropriate treatment 

planning.  
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7 AMPUTEES STUDY – ACTIVITY MONITORING FOR TRANS-TIBIAL 

SUCTION SOCKET USERS 

7.1 Introduction 

The goal of rehabilitation for amputees is to foster a rapid return to activities of daily living, 

including the ability to walk and independently perform social and physical tasks. In order 

to achieve this goal, a comfortable, effective and easy-to-use prosthesis is essential. 

Currently, observations and gait analysis are carried out in gait laboratory environment for 

capability based assessment to determine rehabilitation progress. However, this is time 

consuming and does not give an insight into the day-to-day activities of amputees within 

the environment they live. Questionnaires (Rommers et al 2001, Leung et al 1996, Panesar 

2001) are sometimes used to establish amputees’ quality of life. Nonetheless, the use of 

questionnaires is subjective and there is a lack of free-living monitoring devices which can 

quantify the amount of prosthetic use and activity levels of amputees. Therefore, device 

development must be undertaken to allow the quantification of prosthetic use, giving 

insights into the rehabilitation progress of amputees. It is essential to separate those 

functional wearers from those partial and non wearers in order to determine rehabilitation 

progress and aid prosthetic prescription and treatment planning.  

 

The fundamental issue addressed in this study was activity patterns during daily living of 

trans-tibial amputees, characterized by stepping activities and amount of prosthetic usage. 

There are several types of suspension methods available for trans-tibial sockets, and the 

best way to achieve suspension varies from person to person, which is influenced by body 

contours, climate, activity level and personal preferences. One of the commonly used 

methods is called the suction suspension, which is based on the creation of a seal between 

the stump and the prosthesis so a partial vacuum is formed, thus atmospheric pressure 

keeps the socket in place on the stump. The simplest method to create a seal is to apply an 

external sleeve over the prosthesis which extends from the socket to mid-thigh. Another 

method of creating a seal against the skin is the use of a roll-on elastomeric liner that fits 

inside the socket. Once the system is sealed, the one-way valve situated at the distal end of 

the socket allows air to be expelled during weight bearing, facilitating the development of a 

partial vacuum such that atmospheric pressure holds the prosthesis securely against the 

residual limb. Other types of suspension includes those that are based on anatomical 

contour such as the supracondylar suspension (SC) where the medial and lateral brims of 
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the socket extend higher and fully encompass the femoral condyles holding the stump itself; 

and the supracondylar suprapatellar suspension (SCSP) socket, where the anterior, medial 

and lateral walls are higher, encompassing the patellar and femoral condyles to hold the 

stump. Straps and the use of metal side hinges are other forms of suspension methods for 

trans-tibial sockets. The work reported in this thesis focused on trans-tibial amputees using 

suction sockets as this is one of the main types and widely used suspension method.  

 

Chapter 4.5.1 discussed the different stump/socket interface pressure measurement 

techniques for the measurement of socket comfort. By determining pressure profile at the 

stump/socket interface, prosthetic usage and amputees’ activity levels could, potentially, be 

quantified.  Distinct pressure patterns are seen during different activities. For suction 

socket users it was hypothesised that the amount of prosthetic wearing times and activity 

levels could be quantified by measuring the pressure profile at the suction valve or at the 

stump/socket interface. 

 

The aim of this study was to develop activity monitoring devices with a general signal 

analysis algorithm that could describe trans-tibial suction socket usage as well as amputees’ 

free-living activity levels. Hence, clinicians and prosthetists could be able to document the 

rehabilitation progress of amputees, incorporating changes to the prosthesis when 

necessary. 

 

7.2 Device development 

This project was performed with collaboration from PAL Technologies Limited (Glasgow, 

UK). Two activity monitors, the pressurePAL and the forcePAL were developed for use 

with trans-tibial amputees to quantify their prosthetic usage and free-living activity levels. 

The pressurePAL measured pressure profile at the pressure relief valve and the forcePAL 

measured pressure profile at the stump/socket interface of trans-tibial amputees. Detailed 

descriptions of the two devices and the output signal analysis algorithms developed to 

characterize physical activity and prosthesis wearing times are given in the following 

sections. 
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7.2.1 PressurePAL 

As discussed previously, suction sockets are based on atmospheric pressure, therefore a 

gauge piezoresistive pressure transducer (24PC Series, RS Components, UK) with its 

reference as atmospheric pressure, was used as the sensing element to monitor prosthetic 

usage. Hence atmospheric pressure is recorded as 0psi/Pa. It measured both vacuum and 

positive pressure in the range of ±15psi (103.4kPa), which was within the range (-30 to 

70kPa) expected at the pressure relief valve of trans-tibial suction sockets (Beil 2002). The 

piezoresistive pressure transducer (24PC Series, RS Components, UK) specifications stated 

that it could provide a highly accurate and linear voltage output, which was directly 

proportional to the applied pressure. The 24PC Series piezoresistive pressure transducer 

characteristics are shown in Table 7.1.  

 

Table 7.1: RS Component gauge piezo-resistive sensor (24PC Series) characteristics 

Excitation 10V (dc) 

Full scale span Min 165mV , typical 225mv, max 285mV 

Pressure range -15 to +15psi 

Input resistance 5kΩ 

Output resistance 5kΩ 

Linearity ±0.25 % Span 

Repeatability & Hysteresis ±0.15% Span 

Response time 1ms 

Sensitivity  15 mV/psi 

Stability over one year ±0.5% Span 

Operating temperature range -40 to +85˚C 

 

The pressurePAL (Figure 7.1) was a lightweight (approximately 25g) device with 

dimensions 50x50x7mm, which was designed to monitor trans-tibial suction socket users’ 

activity levels and prosthetic usage. The microprocessor controlled the processing and 

recording of the sensor signal and communication with a host computer when connected for 

parameter setting and data download. A sampling frequency of 10Hz was selected to record 

pressure profile during daily activities, the signal was digitised (8 bits) by internal 

microprocessors and information stored on the internal memory. The pressurePAL was 

capable of recording continuously for over 7 days. A custom built serial cable linked the 

device to the USB port of a computer and the recorded data could be retrieved using the 

activPAL professional software (version 5.8.1.6, PAL Technologies Ltd). Four files 
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(.dat, .pal, .cfg and .def) were created from the activPAL professional software. These files 

contained different formats of the data which could be used for signal post-processing to 

determine time spent in different activity states and count the number of strides an amputee 

performed during the recorded period. 

 

       
Figure 7.1: A photograph of the pressurePAL with the T-piece connector (5p coin of 170mm 

diameter included to indicate scale) 

 

7.2.1.1 Calibration of pressurePAL 

Meaningful interpretation of the pressure recorded by the pressurePAL could only be 

achieved if the device was calibrated appropriately. Hydrostatic calibration was possible 

and involved placing the sensor under a column of water. The height of the water column 

above the sensor would provide an accurate measure of hydrostatic pressure acting on it. To 

calculate pressure, equation 7.1 could be used, where p was the pressure, ρ the density of 

the medium, g gravitational acceleration and h the height difference between the sensor and 

the top of the water column. However, this method was height limited as water has a 

density of 998.2kg/m3 at 20˚C, therefore with a maximum possible height of 2 metres, the 

measured pressure was limited to 20kPa (3psi) which did not reach the range (-30 to 70kPa) 

required for the pressure measurements for trans-tibial suction sockets at the suction valve 

during ambulation (Beil 2002).  

 

ghp ρ=              [Equation 7.1] 

 

Mercury with a density of 13524kg/m3 was therefore used in a U-tube manometer 

configuration (Figure 7.2) to calibrate the pressurePAL, which was connected to one end of 

the mercury U-tube (the reservoir side). A syringe was used to introduce air into the system 

creating a positive pressure leading to a rise of mercury at the open end of the U-tube 

manometer (Figure 7.2). For negative pressure measurements, the syringe was connected to 
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the open end and air was extracted from the system. The pressure was increased or 

decreased from atmospheric in steps of approximately 100mmHg and was repeated 5 times. 

The height differences, h, between the two mercury levels were noted for each change of 

pressure, so that pressure values could be calculated using equation 7.1. 

 

 

 

     
    

 

Figure 7.2: U-tube mercury manometer configuration for the calibration of the pressurePAL. 

 

The range of the pressurePAL readings with the corresponding pressure measurements are 

presented in Figure 7.3. Zero value on the y-axis in Figure 7.3 represents atmospheric 

pressure, which was the reference for the gauge piezoresistive transducer. Values in the 

negative pressure range indicated the system was in vacuum creating a suction effect and 

values above atmospheric pressure indicate positive pressure being applied to the system. A 

linear relationship was found between the pressurePAL outputs and the pressure values. 

The calibration equation to obtain pressure value was found to be 

43.59)4853.0( −×= outputPALpressure with correlation coefficient r = 0.9999 indicating 

a strong positive correlation for the calibration data.  

 

The pressure sensor had an analog output which was sampled by the analog to digital (A/D) 

converter onboard. The A/D converter used in the pressurePAL was 8 bits, containing a 

maximum number of 256 values. Figure 7.3 shows saturation of the pressurePAL device 

before the full range of the pressure sensor was reached, therefore limited by its gain. The 

maximum range of the pressure recorded on the device before saturation was shown to be 

open end 

pressurePAL

syringereservoir of mercury

ruler 
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+60kPa (10psi) in Figure 7.3, which was within the range required for pressure 

measurement at the trans-tibial suction valve for ambulatory activities (Beil 2002). By 

matching the range of the device to the expected signal range the maximum sensitivity 

could be achieved. 
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Figure 7.3: PressurePAL readings with the corresponding pressure values in kPa. 

 

7.2.2 ForcePAL 

Another activity monitor was developed using a force sensing resistor (FSR), which could 

be placed at the stump/socket interface to measure pressure profile, hence quantifying 

prosthetic usage and amputees’ activity levels.  

 

The monitor is referred to in this thesis as the ForcePAL. It used a force sensitive element 

that measured average pressure over the sensor element. For convenience the term ‘force’ is 

used to refer to this monitor configuration. 

 

FlexiForce (A201, Tekscan, Boston, MA, USA) was used as the sensing element, which 

was an ultra-thin, flexible printed circuit that sensed contact force, as the resistance 

changed inversely with the applied force and the conductance (1/R) varied proportionally 

with the applied force. The FlexiForce sensor was constructed from two layers of polyester 

film and on each layer, a conductive material (silver) was applied, followed by a layer of 

pressure-sensitive ink. The two layers were laminated together using adhesive to form the 

sensor, which acted as a force sensing resistor in an electrical circuit. The FlexiForce, A201 

sensor’s performance characteristics are shown in Table 7.2. 
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Table 7.2: FlexiForce, A201 sensor characteristics  

Linearity ±5% 

Repeatability ±2.5% of full scale 

Hysteresis <4.5% of full scale 

Drift <3% per logarithmic time scale 

Operating range -9 to +60˚C 

 

The FlexiForce (Figure 7.4b) used was 8" (203mm) in length, 0.55" (14mm) wide and 

0.005" (0.127mm) thick with an active sensing area of 0.375" (10mm) in diameter, hence 

7.8 x10-5m2.  

 

        
Figure 7.4: ForcePAL with the FlexiForce as the sensing element 

 

The FlexiForce was linked to the data logger part of the monitoring device, which 

contained the microprocessor that controlled the processing and recording of the sensor 

signal and the communication with the host computer. A sampling frequency of 10Hz was 

selected to record the pressure profile at the stump/socket interface during daily activities, 

the signal was digitised (8 bits) by internal microprocessors and information stored on the 

internal memory. The combination of the FlexiForce and the data logger was called the 

forcePAL (Figure 7.4), which was a lightweight (approximately 20g) device with 

dimensions 50x35x7mm for the data logger part. The forcePAL was designed to monitor 

trans-tibial amputees’ activity levels and prosthetic usage for all socket types. The 

forcePAL was capable of recording continuously for over 7 days. A custom built serial 

cable linked the docking station to the USB port of the computer and the device was placed 

at the docking station for the retrieval of recorded data using the activPAL professional 

software (version 5.8.1.6, PAL Technologies Ltd). Four files (.dat, .pal, .cfg and .def) were 

created from the activPAL professional software. These files contained different formats of 

the data being stored in the internal memory of the device. 

 

Data logger part

FlexiForce 

Active area 
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The forcePAL could potentially be used with all types of lower limb prostheses to quantify 

the duration of wearing times and not be limited for use with suction sockets only. The 

active part of the FlexiForce could be placed anywhere at the stump/socket interface to 

record pressure profile during different activities.  

 

The suitability of the FlexiForce for low interface pressure measurement was evaluated by 

Ferguson-Pell (2000) demonstrating that the sensor had acceptable static loading drift, 

repeatability, linearity and hysteresis for measurement of low interface pressure such as 

might occur at the stump bandage interface.  

 

Although Ferguson-Pell (2000) suggested that the FlexiForce was best used under static 

conditions and that the accuracy might be reduced for measurement of force during 

dynamic events, the FlexiForce was chosen as the stump/socket interface pressure 

measurement sensor as it provided sufficient accuracy for the purpose of this study to 

determine postural state of an amputee while using the prosthesis. The FlexiForce provided 

the range required for the pressure measurement and was simple to integrate with the data 

logger part of the monitoring device. It was noted that interpretation of the signal could not 

rely on high levels of accuracy, hence only ranges of signal were used to identify 

activity/postural status and not the absolute values.. 

 

7.2.3 Calibration of forcePAL 

The forcePAL was calibrated using a flat bed device which was initially used to calibrate 

the F-scan socket in the Bioengineering Unit. Dick (2003) used the device to calibrate a 

FlexiForce based sensor for bandage pressure measurements. The flat-bed device (Figure 

7.5) had 2 outlet nozzles, nozzle A which was connected to the mercury manometer and 

nozzle B was blocked to create a sealed environment. The FlexiForce part of the sensor was 

placed between the two flat surfaces and bolted down to ensure no air could escape or 

enter. 
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Figure 7.5: Flat bed calibration device connected to the mercury manometer 

 

A syringe was used to introduce air into the system, hence increasing pressure, which 

would be evenly distributed along an air tight film that applied pressure evenly to the 

FlexiForce active area and the mercury U-tube. The pressure was increased to 650mmHg 

and then decreased back to zero in steps of 50mmHg. The height differences between the 

mercury levels were noted each time a change of pressure was achieved, while the 

ForcePAL was set to record continuously. This was repeated 5 times.  

 

Figure 7.6 shows the recorded outputs from the forcePAL plotted against the applied 

pressure (mmHg), the blue data corresponded to the readings for increasing pressure from 0 

to 650mmHg and red data corresponded to the decreasing pressure from 650 to 0mmHg. 

The averages for forcePAL readings for each pressure were found and a linear relationship 

was apparent (Figure 7.6).  
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Figure 7.6: Calibration graph – forcePAL readings with the corresponding pressure values 
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The calibration equation to obtain pressure value in mmHg for any forcePAL unit was 

found using the following equation: 

646.22)4459.5()( −×= outputPALmmHgpressure  

with correlation coefficient r = 0.9997, indicating a strong positive correlation between the 

two data sets. Pressure measured in mmHg was converted to kPa or psi (1mmHg = 

0.133kPa = 0.0193psi). 
 

The maximum height of mercury for the calibration study of the forcePAL was set at 

650mmHg as the peak stump/socket interface pressure measured by Beil et al (2000) was 

85kPa (640mmHg) The range of pressure calibration was set within the range required for 

pressure measurement at trans-tibial stump/socket interface during ambulation activities.  

 

Hysteresis 

From Figure 7.6, it could be seen that the FlexiForce exhibited the characteristic of 

hysteresis. Hysteresis was calculated from the largest difference in the readings between 

increasing and decreasing output values at the same applied force and divided by the 

maximum output reading in the range of loading. It can be seen that the FlexiForce had a 

high degree of hysteresis. The maximum difference in the output reading between 

increasing and decreasing forcePAL output for the same applied pressure was +16PAL unit 

on average, with the percentage hysteresis being higher for lower pressure measurements. 

 

Drift 

Drift was tested by taping the FlexiForce part of the sensor securely to a flat surface, and a 

constant weight was applied to the active area for 60 minutes continuously. The forcePAL 

reading was noted every 5 minutes. The weight was made of brass with a diameter of 

10mm, which was the same as the FlexiForce active area, and weighed 366g, which was 

equivalent to 45.7kPa (343mmHg). 

 

Table 7.3 shows the recorded forcePAL units with corresponding pressure in kPa for the 

drift test that was noted every 5 minutes for one hour. When the constant force was applied 

to the FlexiForce, small random drift occurred as no pattern for the drift was noted. 
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Table 7.3: The recorded forcePAL unit with correlated pressure data for the drift test using 

the FlexiForce as a pressure sensor.  

Time (min) Applied pressure (kPa) forcePAL unit Recorded pressure (kPa) 

0 45.7 60 40.41 

5 45.7 62 41.86 

10 45.7 68 46.20 

15 45.7 68 46.20 

20 45.7 66 44.76 

25 45.7 67 45.48 

30 45.7 68 46.20 

35 45.7 63 42.58 

40 45.7 68 46.20 

45 45.7 67 45.48 

50 45.7 66 44.76 

55 45.7 67 45.48 

60 45.7 69 46.93 

Mean 

(std) 

45.7 

 

66.08 

(2.72) 

44.81 

(1.97) 

  

The forcePAL provided the means of measuring the interface loading between the 

prosthesis and the stump. The calibration indicated that there might be considerable error 

present in the output signal from the forcePAL being affected by hysteresis and drift. This 

measurement solution provided a relatively simple means of measuring interface loading, 

but its use required the acceptance of errors in the signal output. 

 

7.3 Laboratory based validation study  

The first part of the study was to perform a laboratory based validation of the pressurePAL 

and the forcePAL as activity monitoring devices for trans-tibial suction socket users and to 

establish whether generalised algorithms for data analysis could be used to categorize 

activity events and count strides. The second part of the study (reported in subsequent 

sections) was to quantify trans-tibial amputees’ activity level and prosthetic usage in their 

free-living environment. 

 

The use of video recording provided visual identification of posture and stride count. This 

video record was used to inform the interpretation of the synchronised pressure profiles to 
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allow physical activity classification. Features of the pressure profiles that were repeatable 

within and across the subjects studied were used to characterize activity. A general data 

analysis algorithm for each monitoring device was developed to interpret the data and to 

automatically categorize activities and count strides. The accuracy and reliability of the 

signal analysis codes were explored using a comparison with video data, which acted as a 

‘gold standard’ for activity categorization and stride count.  

 

It was hypothesised that a general data analysis algorithm for each monitoring device could 

be developed that would accurately categorize activities, detect strides and quantify 

prosthetic usage, hence providing useful free-living activity data to document trans-tibial 

amputees’ rehabilitation progress. 

 

7.3.1 Subjects 

Prior to data collection for the validation study, ethical approval was granted through the 

University Ethics Committee and written, informed consents were obtained from all 

participants who took part. Selection of subjects with trans-tibial amputation was based on 

a number of criteria. Only those subjects who had been an amputee for at least one year, 

with a prescribed prosthesis and good stump condition were selected. They were able to 

perform all activities comfortably including stair climbing. The use of walking stick by 

subject 4 was the only support used by any of the subjects. All other subjects were able to 

perform activities with no requirement for additional support.  

 

10 trans-tibial amputees (Table 7.4) participated in this study, which was carried out at the 

Human Performance Laboratory, Bioengineering Unit, University of Strathclyde. The mean 

age of subjects was 57 years old and all were unilateral trans-tibial amputees except for 

subject 3 who was a bilateral trans-tibial amputee. All 10 subjects took part in the 

pressurePAL validation study and only 8 subjects (Sub 1, 2, 3, 5, 6, 7, 9 and 10) 

participated in the forcePAL validation study. Subject 4 and 8 did not participate in the 

forcePAL validation study because the device was not available during those sessions due 

to malfunction (damage).  
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Table 7.4: Amputee subjects’ information 

Subject 

number  Age Sex

cause of 

amputation Years since amputation 

1 32 M trauma 7 

2 47 F tumour 4 

3 49 M vascular 9 

4 55 M vascular 10 

5 56 M trauma 15 

6 59 M trauma 27 

7 60 M trauma 11 

8 63 M vascular 2 

9 71 M vascular 14 

10 76 M vascular 11 

 

7.3.2 Methods 

Each subject was required to visit the Bioengineering Unit at least twice. On their first visit, 

casting of the residual limb was carried out, so that custom suction sockets could be made. 

Each suction socket was fabricated following normal procedures with an air expulsion 

adaptor fitted to the standard centre hole and a valve to allow air expulsion, but prevent air 

ingress during unloading.  

 

Subjects tried on their custom made suction sockets at their second visit to the 

Bioengineering Unit and necessary alignment and adjustments were performed until they 

were comfortable with the prosthesis. If subjects did not feel comfortable with the custom 

made suction sockets, they were asked to revisit after further alterations were carried out to 

the socket. 

 

Testing of the monitoring devices did not take place until subjects had familiarized 

themselves with the prosthesis and felt secure and comfortable walking with the artificial 

limb. This usually took approximately 5 to 15 minutes.  

 

When the subject was comfortable with their custom made lower limb prosthesis, the 

pressurePAL or the forcePAL was attached to the socket. Subjects were then asked to don 

the prosthesis in their usual manner and to perform activities such as sitting, standing, 

walking in the laboratory, stair ascending and descending, doffing of the prosthesis and 
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sitting without the artificial limb for different lengths of time while they were being video 

recorded. The testing of each device did not last longer than 1 hour and participants were 

allowed to rest as required during the session and resume when they were ready. The 

durations of each activity were dependent upon the capability of each individual as some 

subjects required to rest for longer period after walking episodes. 

 

On the completion of each testing, the pressurePAL/forcePAL was removed from the 

socket and the data was downloaded directly to a computer using the activPAL professional 

software (version 5.8.1.6, PAL Technologies Ltd). 

 

7.3.2.1 Attachment methods 

The pressurePAL was attached securely to the prosthesis and connected via plastic tubing 

to the pressure relief valve with an additional T-piece connector (Figure 7.7). Any change 

in air pressure inside the socket adjacent to the valve was therefore detected by the 

pressurePAL when amputees performed different activities.   

 

       
Figure 7.7: The pressurePAL attached to the pressure relief valve of a trans-tibial suction 

socket with a T-piece connector and plastic tubing. 

 

For the attachment of the forcePAL, the FlexiForce part of the sensor was attached securely 

with micropore tapes at the mid-anterior socket/stump interface with no irritation to the 

subjects. The FlexiForce was connected externally to the main data logger part of the 

device (Figure 7.8) with a long lead that ran over the anterior socket brim. The main data 

logger part of the device was attached externally to the anterior of the socket. 

 

pressurePAL 

Pressure relief 
valve with T-piece 
adaptor 

Plastic tubing 
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Figure 7.8: Attachment of the ForcePAL to the prosthesis. The lead and data logger were 

securely attached with tapes over the top during the validation study. 

 

7.3.2.2 Video recordings 

A digital video camera (Model GR-DVX509SH, JVC, Japan) was used to provide a visual 

record of the subject’s types of activities and stride counts during the testing sessions. The 

camera was held by an operator and the zoom was set at its widest angle in order to ensure 

the subject was in view at all times. Recording started before any procedures took place. On 

the completion of each testing session the digital video recorder was turned off after the 

monitoring device was switched off. The video tapes were stored for later analysis. 

 

7.3.2.3 Synchronization 

The video and the pressurePAL/forcePAL were not linked therefore there was a need to 

provide a means of synchronizing the two sets of data. The solution opted for was to set the 

digital video camera to record first, and then to switch on the pressurePAL/forcePAL in 

front of the video camera, so that the time at which the monitoring devices were switched 

on could be noted. The pressurePAL had a visible red light that flashed when sampling 

began. This red flash was used to indicate time zero on the video data. The forcePAL had a 

visual indicator which flashed green light 5 times when sampling began, so the last flash on 

the forcePAL was used to indicate time zero on the video data. For this solution, a small 

error remained as the time between the red/green flash and the commencement of data 

recording was still unknown. However, this small error would be consistent throughout all 

the data sets.  

 

forcePAL – data 
logger part FlexiForce  
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7.4 Free-living multi-days monitoring using the pressurePAL 

After the pressurePAL was validated in a laboratory based setting, the second part of the 

study was performed to determine the efficacy of the pressurePAL data analysis algorithm 

to categorize activity and count strides for trans-tibial suction socket users over extended 

periods of time (multiple days). Free-living activity monitoring with the additional 

information on prosthetic usage could provide clinicians and prosthetists with invaluable 

insights into amputees’ activity patterns and their rehabilitation progress which could aid 

decision makings towards treatment planning (e.g. training, physiotherapy) and assessment 

of prosthetic prescription.   

 

Two participants who took part in the validation study (subject 3 and 10) agreed to use their 

own prostheses with the pressurePAL attached to the pressure relief valve for 7 days, so 

their free-living activity levels and prosthetic usage could be monitored. 

 

An extra monitoring device, the Long-term Activity Monitor, LAM (PAL Technologies Ltd) 

(Figure 7.9) was also mounted in the shank element of the prosthesis near the distal end. 

The LAM is a commercially available accelerometer based device, specifically designed for 

use with lower limb prostheses to document amputees’ stepping activities with the number 

of strides performed by the individual.  

 

 
Figure 7.9: Long-term Activity Monitor, LAM (PAL Technologies Ltd, UK) 

 

The LAM is capable of recording continuously and gathering stride information over a 

one-year period, with graphical overview of daily stepping information once the data is 

downloaded onto a computer. The use of the LAM in this study provided information on 

amputees’ free-living stepping activities to compare with the stride counts obtained from 

the pressurePAL during long term monitoring. The LAM was validated by Ross and Reece 

(2006), who found that the use of information gathered using the monitor together with that 

from a validated prosthetic evaluation questionnaire could be provide valuable insight into 

the success of rehabilitation protocols.  
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In the laboratory, the LAM was inserted into the shank tube near the distal end and the 

pressurePAL was attached to the pressure relief valve with an additional T-piece and plastic 

tubing (as described in Chapter 7.3.2.1). Subjects were asked to perform activities as they 

normally would throughout the 7 days monitoring period and both devices were removed to 

facilitate data download after the 7 days.  

 

7.5 Data Analysis 

The recorded suction socket pressure and stump/socket interface pressure profiles for each 

subject were downloaded to a computer using the activPAL professional software (version 

5.8.1.6), which automatically created 4 files (.dat, .cfg, .pal and .def files). 

 

7.5.1 Development of the pressurePAL signal analysis algorithm 

The raw pressure signals measured from the pressurePAL were retrieved using the 

activPAL professional software with the .pal files. The pressurePAL raw pressure data was 

plotted against time for each subject. An example is presented in Figure 7.10. 
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Figure 7.10: An example of a subject’s (sub 7) pressure profile performing different activities 

using a suction socket with the pressurePAL attached. 
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By inspecting the pressure profiles of each subject with different lengths of time spent in 

various activities, it could be seen that certain features were consistent across all of the 

subjects’ pressure profiles when compared to the time of each activity found from the video 

recordings. Constant atmospheric pressure was noted when amputees were not wearing 

their prostheses and cyclical signals represented stepping activities. The pressure profiles 

for standing and sitting postures were similar in some subjects, while having some 

distinguishing features in other subjects’ pressure profiles. The pressure profile at the 

beginning of each sitting episode consisted of repeatable patterns (Figure 7.10) for all 

subjects except for subjects 1, 3 and 7. This feature is noted in Figure 7.10 as the pressure 

gradually returned back to atmospheric pressure. This might be caused as the seal between 

the stump and socket not being complete leading to air leaking out allowing equilibration 

with atmospheric pressure. The pressure profiles for subjects 3 and 7 did not contain this 

pattern as pressure immediately returned to atmospheric pressure for all sitting and standing 

episodes. Subject 1 had distinct threshold levels for sitting and standing events, indicating a 

strong seal was created and partial vacuum was achieved without leaking of air quickly into 

the atmosphere. This would be an ideal situation for identifying an appropriate data 

analysis algorithm, however only one subject had distinct thresholds for different postures.  

 

It was not possible to develop a reliable technique to distinguish between sitting and 

standing times due to the variability of the signals between individuals. The difference in 

pressure profile for the sitting and standing episodes between subjects was probably due to 

the different amount of pressure exhibited at the pressure relief valve by each amputee. 

Some amputees might not weight bear on their prostheses before sitting down, hence the 

pressure would return back to atmospheric pressure instantly, without a ‘leaking’ effect that 

would be seen in other subjects who would weight bear on the prosthesis before sitting 

down.  

 

It was observed from examining all the pressure profiles that if an amputee sat very quietly 

without any stump movement inside the socket, the pressure recorded at the suction valve 

would be recorded as atmospheric pressure.  

 

It was decided to develop a general data analysis algorithm to determine its sensitivity for 

quantifying prosthetic usage and amputees’ activity level. The need of a customised 

algorithm for each amputee would not be required if the general data analysis algorithm 

was sufficiently accurate.  
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A signal analysis software, Matlab (Student version 7.1, MathWorks Inc) was used to 

develop a general algorithm that could be used to identify activity levels and prosthetic 

usage for trans-tibial amputees using the pressurePAL for suction socket users. In order to 

automatically categorize activity levels and prosthetic use, different filtering techniques 

(e.g. Butterworth high pass and low pass filter and convolution) and methods such as 

pattern recognition or wavelet analysis were explored to identify a suitable solution for data 

analysis. Pattern recognition and wavelet analysis were not chosen because they were 

complex to perform and furthermore gait patterns for amputees could vary dramatically 

from individual to individual, leading to the difficulty of identifying a pressure profile to 

represent a general gait cycle of an amputee. Also, it was thought that a simple method 

should be employed to reduce processing time. Filtering of data signals was necessary to 

reduce noise and therefore produce a smoother signal for implementation of any analysis 

algorithm.  

 

It was difficult to distinguish activities into walking, standing, sitting with and without 

prosthesis, as the pressure signals after filtering were still similar for standing and sitting 

periods. However, it was seen that repeatable signal components could be interpreted into 

period spent in dynamic, static and ‘off’ periods to quantify prosthetic usage and amputees’ 

activity levels. Walking, including stair ascend and descend, could be classified as dynamic 

episodes, while standing and sitting with prosthesis could be categorized as static when 

only small amount of stump movement occurred inside the socket. The time spent when the 

prosthesis was not worn could be found by identifying periods of constant atmospheric 

pressure.  

 

Although many filtering techniques had been trialled, a simple and effective way to 

distinguish between dynamic and static events was to used a moving window to calculate 

standard deviations, so that high variability in the data was expected for dynamic activities 

(e.g. walking), and low variability for static events. The Matlab signal analysis program can 

be found in Appendix IX. A summary of the program control flow is shown in Figure 7.11 

with the following descriptions. 
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Figure 7.11: Flow chart for the pressurePAL signal analysis algorithm 

 

a. The Matlab program first read in the .dat file created from the activPAL 

professional software (version 5.8.1.6, PAL Technologies Ltd). An algorithm was 

used to decompress the signals, as the .dat files contained compressed raw pressure 

data. 

b. A 1 second window was moved over the decompressed signal to calculate the 

corresponding standard deviation for each window, which was then smoothed 

using a 5 seconds average moving window. 

c. Static and dynamic events were distinguished using a set threshold for the filtered 

standard deviation signal.  

d. The ‘off’ state was identified by recognising signals that were constant atmospheric 

pressure for longer than 5 minutes.  

e. Strides were counted by identifying the number of peaks during the dynamic 

periods identified in (c).  

f. A computer-generated summary of the detected activities was created and saved. 

 

7.5.1.1 Decompressing the raw pressure signals 

The Matlab analysis code first read in the .dat files created by the activPAL professional 

software (version 5.8.1.6). The .dat files consisted of raw pressure signals that were 

compressed to decrease the number of data points stored in the internal memory of the 

device. The data had to be decompressed before any post-processing of the signal could be 

performed. The algorithm for decompressing the data was that when zero was seen in the 

data set, the value before the zero was repeated, and the algorithm used the number after the 
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zero for the number of repeats. This method was based on information obtained from 

PALTechnologies Ltd for their compression algorithm.  

 

7.5.1.2 Categorization of static and dynamic events 

A 1 second window (11 data points) was employed to move over the decompressed 

pressure signal, the standard deviation, for that second, was computed. The function used in 

Matlab analysis code was ‘movingstd (x, k, window mode)’, where x was the data series 

and k was the size of the moving window. The function ‘movingstd’ used filter to compute 

the standard deviation, using equation 7.2 where x represented the data point and x was 

the mean for the data series and n the number of data points. The window mode chosen for 

this data analysis algorithm was the central window mode, which was a sliding window 

centred on each point, with k points on each side and the total width was (2k +1). In the 

algorithm k = 5, so a 1 second window was produced. There was no phase shift with this 

function and the output contained the same number of data points as the input series and 

because the total width was (2k+1), therefore 11 data points were included as 10 Hz 

sampling frequency was used (1 data point correspond to 0.1 second).  

 

1
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−
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n
xx

SD           [Equation 7.2] 

 

The standard deviation signal was then smoothed using a moving average filter and the 

function used in Matlab analysis code was ‘moving_average (x, f)’, where x was the data 

series and f was the number of elements on each side of the data point. The function 

‘moving_average’ smoothed the data series via averaging each element with f number of 

data points on each side of it. In the algorithm, f = 50, so a 10 seconds window was 

produced to move over the data series. Figure 7.12 shows the standard deviation of the 

pressure signal in grey and the smoothed standard deviation signal in black for one of the 

subjects during part of the testing session. 
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Figure 7.12:  Moving standard deviation pressure signal (grey) and the smoothed signal 

(black) for first 1500 seconds of recording from subject 7 (Figure 7.10). The threshold of the 

smoothed standard deviation signal is shown to distinguish static and dynamic events. 

 

From Figure 7.12, it could be seen that if the signal was not smoothed by the use of a 

moving average window, some periods would be classified incorrectly. The variability of 

the decompressed pressure signal was seen from the filtered standard deviation signal, 

where high variability was expected during dynamic activities and low variability for static 

events. A static/dynamic threshold was determined and applied to the filtered standard 

deviation signals. If the signals were above the threshold, the activity was considered to be 

dynamic and if it was below the threshold, the activity was deemed static (Figure 7.12). 

The threshold was determined based on all the pressure profiles. The most suitable 

threshold appeared to require an element of adaption to the individual. This was achieved 

by using a multiple of the standard deviation signal. The static/dynamic threshold which 

was set at 2/5 of the maximum value for each filtered standard deviation signal. 

 

7.5.1.3 Identify the ‘off’ periods 

When the lower limb prosthesis was not worn, constant atmospheric pressure was detected. 

The algorithm classified ‘off’ periods when constant atmospheric pressure was recorded for 

over 5 minutes. Periods that were less than 5 minutes would be categorized as static events. 
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7.5.1.4 Algorithm to count strides 

For counting the number of strides within the dynamic periods, initially only one threshold 

was used but it was seen that there were small peaks that were above the thresholds which 

should not be counted as strides. The cycles representing strides were not identical and so it 

was difficult to detect peaks that correspond correctly to each stride by setting only one 

threshold. Therefore it was decided to set 2 thresholds to count the peaks that would 

correspond to the number of strides performed, as the signal had to pass through both 

thresholds.  

 

During the dynamic periods, cyclical signals were seen in the decompressed pressure data. 

A peak in the cyclical signal that passed through both the lower and upper thresholds was 

counted as a stride (Figure 7.13) Two thresholds were set so that any small amplitude 

pressure signal cycles which were probably due to small movements of the stump that were 

not corresponded to strides would not be miscounted. In some amputees, double pressure 

peaks could be seen in a gait cycle (e.g. stride 3 in Figure 7.13), similar to forces measured 

at a ground based force plate during a normal gait cycle. However, other amputees only had 

one pressure peak corresponding to a gait cycle. Therefore by setting 2 thresholds, the 

percentage miscount was expected to decrease, hence increasing accuracy for counting the 

number of strides from the pressure signal. The upper and lower thresholds were decided 

after all the pressure profiles were investigated for best thresholds to be used. 
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Figure 7.13: Example of cyclical signals representing walking, the number of peaks that pass 

both upper and lower thresholds were counted as strides by the data analysis algorithm. 
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7.5.1.5 Activity summary generation 

For each subject, the associated activity codes (‘off’ state = 3, static (sitting and standing) = 

4, dynamic (walking) = 5) were created and saved as an activity summary. 

 

7.5.1.6 Summary 

The developed signal analysis algorithm was based on visual examination of all of the 

pressure profiles recorded for the subject group. It was designed to allow static and 

dynamic event characterization with steps counted and any off periods identified. Although 

it might have been possible to develop algorithms that were tailored to individuals using 

some form of calibration process, this was not desired and completely automatic algorithms 

were developed. The validation of the suitability of the developed algorithm is detailed in 

the following sections. 

 

7.5.2 Developing data analysis algorithm for the forcePAL 

The raw stump/socket interface pressure signals recorded from the forcePAL were retrieved 

using the activPAL professional software with the .pal files. The forcePAL raw pressure 

data was plotted against time for each subject. An example is shown in Figure 7.14. 
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Figure 7.14: An example of a subject’s (sub 10) pressure profile recorded using the forcePAL, 

while performing different activities. 



 139

Similar to the pressurePAL data, by inspecting the stump/socket pressure profiles of each 

subject recorded by the forcePAL, it could be seen that certain features were consistent 

across all of the subjects’ pressure profiles for the different activities/postures when 

compared to the time at which each activity was performed that was found from the video 

recordings. Constant zero pressure was noted when amputees were not wearing the 

prosthesis as there would have been no contact force acting against the sensor at the 

stump/socket interface. Upright and non-upright events could be distinguished from the 

different range of forcePAL units as the pressure acting on the FlexiForce was higher 

during upright activities compared to non-upright events. Within the upright episodes, 

cyclical signals were seen, which represented stepping activities. By identifying the time at 

which each stride (heel strike) occurred in the video, it was found that by counting signal 

cycles, the number of strides could be determined. These repeatable signal components 

could be interpreted as activity, which allowed automatic detection of walking, standing, 

sitting and ‘off’ events to take place.  

 

In order to automatically categorize amputees’ activity levels and prosthetic usage, 

different filtering techniques were explored to identify the best but yet simple solution for 

data analysis. It was decided that a general algorithm should be developed first to determine 

its sensitivity for use to quantify amputees’ activity levels and prosthetic use. The 

development of customised algorithms for individuals might have provided improved 

results, but would have required subject specific calibration. Although many filtering 

techniques (e.g. Butterworth) and methods such as pattern recognition and wavelet analysis 

could be used, a simple and effective algorithm using moving window techniques was 

developed. Pattern recognition and wavelet analysis could only be used to identify walking 

periods. To use these techniques to identify steps it would have been necessary to have 

been able characterize a typical stepping signal profile. However, signals generated during 

gait appeared to vary considerably between subjects making it difficult to identify a single 

representative wave form representing an amputee’s stride..  

 

A custom designed signal analysis code was implemented using Matlab (Student version 

7.1, MathWorks Inc) to allow activity categorization and stride counts. The Matlab signal 

analysis program can be found in Appendix X. A summary of the program control flow is 

shown in Figure 7.15 with the following descriptions.  
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Figure 7.15: Flow chart for the forcePAL signal analysis algorithm 

 

a. The Matlab program first read in the .dat file created from the activPAL 

professional software (version 5.8.1.6, PAL Technologies Ltd). An algorithm was 

used to decompress the signals, as the .dat files contained compressed raw data. 

b. The raw data was passed through a 20 seconds moving window to calculate 

average of each window.  

c. Upright and non-upright events were distinguished using set threshold for the 

averaged signal. 

d. The raw signal was passed through a 2 second moving window to calculate its 

standard deviation (stage 1). The standard deviation signal was then smoothed 

using a 10 second moving average window (stage 2).  

e. For the upright periods, walking and standing events were separated using set 

threshold for the smoothed standard deviation signal (stage 2).  

f. The ‘off’ state was identified by recognising signals that were zero constant 

pressure for longer than 5 minutes.  

g. Strides were counted by identifying the number of peaks within cyclical signals 

that represented walking activities. 

h. A computer-generated summary of the detected activities was created and saved. 

 

7.5.2.1 Decompressing the raw pressure signals 

The Matlab analysis code first read in the .dat files created by the activPAL professional 

software (version 5.8.1.6). The .dat files consisted of raw pressure signals that were 
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compressed to decrease the number of data points stored in the internal memory of the 

device, therefore the data had to be decompressed before any post-processing of the signal 

could be performed. The algorithm for decompressing the data was that when zero was 

seen in the data set, the value before the zero was repeated, and the algorithm used the 

number after the zero for the number of repeats. 

 

7.5.2.2 Categorization of upright and non-upright events 

A 20 second window (201 data points) was used to move over the decompressed pressure 

signal, the mean for each window was computed. Figure 7.16 shows the raw forcePAL 

signal and the averaged signal for subject 5. The Matlab analysis code was the 

‘moving_average (x, f)’, where x was the data series and f was the number of elements on 

each side of the data point. The function ‘moving_average’ smoothed the data series via 

averaging each element with f number of data points on each side of it, f = 5, while for 

stage 2, f =100 in the data analysis algorithm.  

 

Figure 7.16 shows the raw forcePAL data and moving average forcePAL pressure data for 

one of the subject. It could be seen that distinct levels of upright and non-upright events 

could be determined from the amplitude of the moving average signal. As the amplitude of 

upright moving average signals varied between subjects, it was decided to use a threshold 

which was calculated dependent upon the maximum value of the averaged signal. It was 

found that a threshold set at 1/2.8 of the maximum value of the averaged signal of each 

subject could be used to identify upright from non-upright episodes. For the moving 

averaged signal, if data were above the threshold, the activity was considered to be upright 

(walking and standing) and if it was below the threshold, the activity was deemed 

non-upright (sitting/lying and ‘off).  
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Figure 7.16: Raw forcePAL data (grey), with the moving averaged data (black) for subject 5. 

Threshold of the filtered moving average signal is shown to distinguish upright and 

non-upright events. 

 

7.5.2.3 Categorization of walking and standing events 

During upright events, it was necessary to separate walking and standing activities. This 

was accomplished in two states. For stage 1, a 2 second window (21 data points, f = 10) 

was moved over the decompressed pressure signal and its standard deviation calculated. 

The function used in Matlab analysis code was ‘movingstd (x, k, window mode)’, where x 

was the data series and k was the size of the moving window. The function ‘movingstd’ 

used equation 7.2 to compute the standard deviations of each window. The window mode 

chosen for this data analysis algorithm was the central window mode, which was a sliding 

window centred on each point, with k points on each side and the total width was (2k +1). 

In the algorithm k =10, so a 2 second window was produced. There was no phase shift with 

this function and the output contained the same number of data points as the input series. 

 

The standard deviation signal was then smoothed using a moving average filter (stage 2) 

with a 10 second window (f=50) with the Matlab code ‘moving_average (x, f)’. Figure 7.17 

shows the standard deviation of the pressure signal in grey and the filtered standard 

deviation signal in black for subject 5.  

 

The variability of the decompressed pressure signal was seen from the smoothed standard 

deviation signal (stage 2), where high variability was expected during stepping activities 

and low variability for standing periods during the upright events. A walking/standing 

threshold was determined and applied to the smoothed standard deviation signals. If the 
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signals were above the threshold, the activity was considered to be walking and if it was 

below the threshold, the subject was deemed to be in a standing posture (Figure 7.17). The 

threshold was set at a fixed level of 22 for all subjects, as this threshold was found to be 

suitable for all subjects.  
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Figure 7.17: Stage 1 moving standard deviation (grey) and stage 2 smoothed (black) standard 

deviation data for subject 5. A threshold of the stage 2 signal is shown to distinguish walking 

and standing activities for the upright events. 

 

7.5.2.4 Identify the ‘off’ periods 

When the lower limb prosthesis was not worn, no force would be acting on the sensor at the 

stump/socket interface, hence zero pressure was recorded by the forcePAL. The algorithm 

classified ‘off’ periods when zero pressure was recorded for over 5 minutes. Periods that 

were less than 5 minutes would be categorized as sitting/lying events. It was assumed that 

sitting and lying would produce similar pressure profiles, therefore they were categorized 

into the same posture. However, lying events were not included in the protocol for the 

validation study due to laboratory constraints.  

 

Drift occurred for the FlexiForce (see Section 7.2.3), however, when it was tested with no 

force acting on the active area, the sensor signal remained constant. Hence constant zero 

pressure would be seen when the prosthesis was not worn, even during longer periods such 

as during the nights and this characteristic of pressure profile was used to identify times as 

‘off’ periods.  
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7.5.2.5 Stride counts 

For counting the number of strides within the dynamic periods, initially only one threshold 

was used but it was seen that there were small peaks that were above the thresholds which 

should not be counted as strides. The cycles representing each stride were not identical and 

it was difficult to detect peaks that corresponded correctly to each stride by setting one 

threshold. Therefore it was decided to set 2 thresholds to count the peaks that would 

correspond to the number of strides performed, as the signal had to pass through both 

thresholds.  

 

The number of peaks in the cyclical signal that passed through both the lower and upper 

thresholds was counted as the number of strides (Figure 7.18). Two thresholds were set so 

that any small amplitude cycles which were probably due to small movements of the stump 

inside the socket, that did not correspond to strides would not be counted. The upper and 

lower thresholds were decided based on data from all subjects.  
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Figure 7.18: Cyclical signal representing walking, number of peaks that passes both upper and 

lower thresholds were counted as stride by the data analysis algorithm. 

 

7.5.2.6 Activity summary generation 

For each data set, the associated activity codes (‘off’ state = 4, sitting = 5, standing =6 and 

walking =7) were created and saved as an activity summary.  
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7.5.2.7 Summary 

The forcePAL signal output analysis algorithm was designed to be able to automatically 

analyse all subjects’ data with no requirement for individual calibration. The algorithms 

were developed to allow characterization of prosthesis wearing times and to divide this into 

sitting, standing and walking with stride counted. The developed algorithms were then 

validated as detailed in the following sections. 

 

7.5.3 Comparing video data to pressurePAL or forcePAL algorithm 

Reference data for the activity status and stride count was obtained using video recording. 

From the continuous video recording, the initial time for a change in activity was noted 

with the associated activity code. For the pressurePAL study, the activity classifiers for the 

video recordings were 0 = ‘off’ state, 1 = static (sitting and standing) and 2 = dynamic 

(walking). For the forcePAL study, the video activity classifiers were 0 = ‘off’ state, 1 = 

sitting/lying, 2 = standing and 3 = walking. This information was saved as .txt files. The 

total number of strides that each subject took during the testing session was also counted 

from the video recordings.  

 

In order to reduce error and misclassification for the analysis of the video data clear 

definitions of activity state and stride were used: 

1. Subjects were classified as sitting only when it appeared that the gluteus muscle 

region was in contact with the intended seat. When the gluteus muscle region lost 

contact with the seat, posture was classified as upright, either standing or walking 

depending on whether a stride was taken. 

2. The classification of a stride was made when the artificial limb struck the ground 

each time after having been lifted from it in the upright posture. Strides were also 

counted for stair ascending and descending. Each stride was counted at the instance 

of first contact of the prosthesis with the floor after been lifted from it. (This is 

equivalent to all counts as stated in the CP validation study.)  

3. The time at which a change of activity occurred was noted to the nearest twentieth 

of a second, which was determined as the start point of the transition in that 

activity. 

 

An additional Matlab algorithm (Appendix XI) was used to compare the post-processed 

pressurePAL/forcePAL data with the associated activity codes to the video data (.txt files) 



 146

automatically. The Matlab program imported the .txt files for the video data and created 

continuous time lines with corresponding activity codes. Figure 7.19 and 7.20 are example 

graphs computed using the Matlab algorithm to compare the post-processed pressurePAL 

and forcePAL data respectively with the results obtained from the video recordings for 

activity categorization.  
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Figure 7.19: An example of video and pressurePAL data using the general Matlab algorithm 

for activity categorization. For the activity classifier 0, 1 and 2 for the video data and 3, 4 and 5 

for the pressurePAL data representing ‘off’ state, static and dynamic events respectively. 
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Figure 7.20: An example of the video and forcePAL post-processed data using the Matlab 

algorithm for activity categorization. For the activity classifier 0, 1, 2 and 3 for the video data 

and 4, 5, 6 and 7 for the forcePAL data representing ‘off’ state, sitting/lying, standing and 

walking events respectively. 
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The total times spent in each activity were found for both the video and post-processed 

pressurePAL/forcePAL data and the percentage sensitivity and discrepancy for each 

subject’s activity profile were calculated using equations 7.3 and 7.4, which were included 

in the Matlab analysis code.   

 

100(%) ×=
video

PAL

time
timeysensitivit         [Equation 7.3] 
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In equations 7.3 and 7.4, timePAL and timevideo are the duration of each activity as 

determined by the pressurePAL/forcePAL and video recordings respectively.  

 

The total number of strides counted from the video recordings was also compared to the 

computed number of peaks in the pressurePAL/forcePAL signals and percentage sensitivity 

and discrepancy were calculated using equation 7.3 and 7.4 respectively (time was replaced 

with count in both equations).  

 

The calculated percentage sensitivities showed whether the pressurePAL/forcePAL over- or 

under-estimated time spent in each activity or stride count in comparison with the video 

based classification and the calculated percentage discrepancies showed the accuracy of 

each device to categorize activity and count strides, which would be easier to compare 

between subjects. 

 

7.5.4 Data analysis for free-living monitoring 

7.5.4.1 pressurePAL data 

The free-living pressurePAL recorded data were analysed using the Matlab algorithm 

(Appendix IX) to categorize activity into period spent as dynamic (walking) events, static 

(standing and sitting/lying) episodes and ‘off’ periods when the prescribed prosthesis was 

not worn. Also the number of strides undertook by the subject with the artificial limb 

during the free-living monitoring period was counted. The .dat file from the pressurePAL 
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was analysed using the Matlab data analysis code and the time spent in each activity per 

day was found.  

 

7.5.4.2 LAM data 

The .dat and .cfg files created from the activPAL professional software were used in a 

Visual Basic program written by PAL Technologies Ltd (UK) to analyse the LAM data. 

The program produced a graphical overview of daily walking activity as stride counts per 

day with associated cadence for each walking episode. The daily stride count was 

compared to the outcome from the pressurePAL recordings. 

 

7.6 Results – PressurePAL validation study 

7.6.1 Activity categorization comparison 

The pressurePAL algorithm (see Appendix IX) classified activity into period spent in the 

‘off’ state when the prosthesis was not worn, static events which included both sitting and 

standing activities, dynamic episodes such as walking, and the number of strides taken. For 

activity categorization, the total time spent in each activity was compared between the 

pressurePAL algorithm and the video data (Table 7.5). 

 

Table 7.5: Time spent in each activity state found by video recordings and pressurePAL data 

for each subject 

  dynamic time (sec) static time (sec) off time (sec) stride count 

subject video PAL video PAL video PAL video PAL

1 374.5 366 1058.1 1087.2 891.2 891.8 299 296 

2 548.1 539.6 2488.7 2572.5 228.2 218.3 423 414 

3 889.6 872.8 1617.5 1668.1 187 175.1 552 540 

4 621.9 682.4 2322.4 2266.5 267.1 266.7 463 482 

5 149.2 147.3 3391.2 3399.6 0 0 116 116 

6 720 586.4 1974.3 2117.1 1387.1 1302.5 542 404 

7 357.3 383.1 1706.7 1723 251.1 251.5 301 309 

8 671.2 689.5 2013.8 1987.6 552.2 550.9 451 448 

9 443.3 464.6 1445.8 1447.4 280.1 266.1 241 244 

10 426.1 390.1 1443.5 1483.7 131.1 126.6 269 278 
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Additional Matlab code (see Appendix XI) was used to calculate percentage sensitivity and 

percentage discrepancy for each subject, which are presented in Table 7.6.  

 
 
Table 7.6: Percentage sensitivities and discrepancies for activity categorization and stride 

count of each subject 

sensitivity (%) discrepancy (%) subject 

number dynamic static off strides dynamic static off strides 

1 93.5  104.2 100.1 99.0  6.5  4.2  0.1  1.0  

2 92.2  104.7 95.7 97.9  7.8  4.7  4.3  2.1  

3 97.3  103.6 93.6 97.8  2.7  3.6  6.4  2.2  

4 107.0  97.9  99.9 104.1 7.0  2.1  0.1  4.1  

5 94.5  105.2 N/A 100.0 5.5  5.2  N/A 0.0  

6 91.8  102.9 93.9 93.0  8.2  2.9  6.1  7.0  

7 106.9  101.0 100.2 102.7 6.9  1.0  0.2  2.7  

8 99.4  99.8  99.8 99.3  0.6  0.2  0.2  0.7  

9 92.4  103.9 95.0 101.2 7.6  3.9  5.0  1.2  

10 91.2  102.9 96.6 103.3 8.8  2.9  3.4  3.3  

Average 

(sd) 

96.6  

(6.02) 

102.6 

(2.34) 

97.2 

(2.80)

99.8  

(3.27) 

6.2  

(2.59) 

3.1  

(1.60) 

2.9  

(2.72) 

2.4  

(2.04) 

 

The pressurePAL data were analysed by a generalised algorithm which classified an 

amputee’s activity into dynamic (walking), static (standing and sitting) and ‘off’ (prosthesis 

not worn) periods with average sensitivities of 96.6%, 102.6% and 97.2% respectively for 

the 10 subjects who took part in this study. The calculated average discrepancies for 

activity categorization were found to be 6.2%, 3.1% and 2.9% for dynamic, static and ‘off’ 

events respectively. No subjects had a percentage discrepancy over 10% for any event 

categorization. For subject 5, there were no ‘off’ periods information from the pressurePAL 

as the device’s battery ran out in the middle of the testing session, hence only 

approximately 20 minutes of pressure data was recorded.  

 

The Matlab algorithm counted the number of peaks within the dynamic periods to correlate 

with stride counts. The average sensitivity of 99.8% and average discrepancy of 2.4% were 

found for stride count comparison between the video and pressurePAL data. 

 



 150

7.6.2 Statistical analysis 

7.6.2.1 Correlation between pressurePAL and video data 

For each subject, the total durations for each activity category from the video and 

pressurePAL data were computed using the Matlab algorithm. Figure 7.21 shows the 

correlations between the two data sets for dynamic, static and ‘off’ durations. Correlation 

coefficient, r, was calculated using equation 7.5, where x and y were video and 

pressurePAL times for each activity respectively, n was the number of subjects and SD 

represents standard deviation. Significance test, t, was calculated using equation 7.6 to 

evaluate whether the association between the two sets of data was apparent. 
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Figure 7.21: Total durations recorded from the video for dynamic (walking), static (standing 

and sitting) and ‘off’ events plotted against total duration from the pressurePAL 

post-processed output. 

 
The correlation coefficients r were calculated as 0.9889, 0.9978 and 0.9990, with t = 18.81, 

42.07 and 63.18 (p < 0.001) for dynamic, static and ‘off’ events respectively, indicating 

highly significant positive correlations between the video and pressurePAL outputs. 
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Figure 7.22 shows correlation between video total stride counts and pressurePAL stride 

counts using the Matlab algorithm for the 10 amputees in this study. The correlation 

coefficient, r = 0.9950 with t = 28.14 (p < 0.001), indicating a strong positive correlation 

between the two data sets. 
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Figure 7.22: The total number of strides found from the video compared with the number of 

strides computed from the pressurePAL data. 

 

Although all the calculated r values showed highly significant positive correlation between 

the video and pressurePAL data for activity categorization and stride count, r only 

measured the strength of relation between two variables, and not the agreement between 

them. As both video and pressurePAL measured the same variables, they should be 

correlated. The calculated correlation, r values (Figure 7.21 and 7.22), relates to the fit of 

data points to lines of best fit and not lines of equality. Perfect agreement between the two 

data sets could only be achieved if all points lay perfectly on a line of equality. Therefore 

further statistical tests were required to investigate agreements between the pressurePAL 

results and video data. 

 

7.6.2.2 Reliability Analysis 

The intraclass correlation coefficient (ICC) is a measure of correlation, consistency or 

conformity for a data set when it has multiple groups (Strout and Fleiss 1979). Reliability 

analysis was carried out to find the ICC(2,1) using an absolute agreement definition, that 

was based on a two-way random effects model, with the measuring methods and patients 
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considered as random variables, which measured agreement emphasizing the 

interchangeability of the measuring methods. ICC(2,1) was computed using a statistical 

analysis software, SPSS Statistics (Version 16, SPSS Inc, USA) and an ICC value of ≥0.75 

was considered to be good and ≥0.9 was deemed excellent.  

 

The calculated ICC(2,1) were 0.994, 0.999, 0.999 and 0.997 for dynamic, static, off events 

and stride count respectively. ICC(2,1) was >0.99 for all activity categorization and stride 

count, which demonstrated excellent reliability and that the video and pressurePAL 

measurements were interchangeable. 

 

7.6.2.3 Agreements between pressurePAL and video data 

It was hypothesised that although both methods measured the same variables (duration of 

activities and stride count), they would not agree perfectly, as measurement errors exist in 

both methods. In addition, time is a continuous parameter and both video and pressurePAL 

measurements would contain errors in regards to the precise time of event occurrence. 

However, it was hypothesised that the limits of agreements for the percentage difference 

between video and pressurePAL data would not be clinically significant.  

 

It was thought that statistical analysis to determine the agreement between the two methods 

would be more appropriate to identify how much the pressurePAL results might differ from 

the video data. Agreement between video and the pressurePAL was assessed by comparing 

the mean value of total time spent in each posture for video and pressurePAL with the 

percentage difference between the two data sets for each subject. Percentage difference was 

calculated using the equation 7.6.  

 

[{(pressurePAL duration – video duration)/mean duration} x 100%]   [Equation 7.6] 

 

Figure 7.23 – 7.26 illustrate the level of agreement according to the method of Bland and 

Altman (1986, 1999) between video and pressurePAL for the total time spent in each 

activity (dynamic, static, off and stride count) during the testing session. Values above zero 

represented that the pressurePAL over-estimated the time spent in the activity state and 

values below zero showed under-estimation of time spent in the activity compared to the 

video record.    
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Figure 7.23: Bland-Altman plot for the agreement between video and pressurePAL for the 

total dynamic durations for all subjects. 
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Figure 7.24: Bland-Altman plot for the agreement between video and pressurePAL for the 

total static durations for all subjects. 

 

From Figure 7.23 to 7.26, it can be seen that the pressurePAL over-estimated for some 

subjects while under-estimating for others for activity categorization for dynamic 

classification and stride counts. However, the pressurePAL algorithm under-estimated time 

spent in static postures for all subjects and also under-estimated time spent in the ‘off’ state 

for all subjects except subject 7 and 10, which were only over-estimated by 0.2% and 0.1% 

respectively.  
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Figure 7.25: Bland-Altman plot for the agreement between video and pressurePAL for the 

total ‘off’ durations for all subjects. 
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Figure 7.26: Bland-Altman plot for the agreement between video and pressurePAL for the 

total stride counts for all subjects. 

 

It was assumed that the percentage differences were Normally distributed (Gaussian), 

hence it would be expected that 95% of the differences should lie between ±1.96 standard 

deviation from the mean and these were called the limits of agreement (Bland and Altman 

1986, 1999). Table 7.7 shows the calculated limits of agreements with the mean value. The 

limits of agreements were -15.07 to +8.73% for dynamic events (Figure 7.23), -3.13 to 

+1.24% for static activity (Figure 7.24), -8.50 to 2.71% for off periods (Figure 7.25) and 

-6.70 to +6.28% for stride count (Figure 7.26).  
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Table 7.7: The calculated mean of the percentage difference between video and pressurePAL 

data and limits of agreement calculated according to Bland & Altman (1986, 1999) for 

dynamic, static, off and stride counts. 
Activity category Mean (%) Lower limit of 

agreement (%) 

Upper limit of 

agreement (%) 

Dynamic -3.17 -15.07 8.73 

Static -0.94 -3.13 1.24 

Off -2.90 -8.50 2.71 

Stride -0.21 -6.70 6.28 

 

However, these limits of agreement were only estimates of the values for this particular set 

of data. Hence standard error (SE) and confidence intervals were used to determine the 

accuracy of these estimates. SE was calculated using equation 7.7. The 95% confidence 

intervals for the bias were calculated using equation 7.8, with 9 degrees of freedom, t = 

2.262 was found. Hence 95% confidence intervals for the bias were -7.51 to 18.67, -1.74 to 

11.48, -4.94 to 16.47 and -2.58 to 10.80 for dynamic, static, off events and stride count 

respectively.  

 

n
SDdSE =)(            [Equation 7.7] 

)( SEtd ×±            [Equation 7.8] 

 

The standard error of the limits (equation 7.9) and 95% confidence interval (equation 7.10) 

were calculated. Table 7.8 shows the 95% confidence interval for the lower limits of 

agreement, which were -22.59 to -7.54, -4.51 to -1.74, -12.04 to -4.96 and -10.80 to -2.60 

for dynamic, static, off periods and stride count respectively. The 95% confidence interval 

for the upper limits of agreement were found to be 1.21 to 16.25, -0.14 to 2.62, -0.83 to 

6.25 and 2.18 to 10.38 for dynamic, static, off periods and stride count respectively (Table 

7.8). 

 

nSDSDd /32 2≈±          [Equation 7.9] 

(lower or upper limits )/3( 2 nSDt ×± )      [Equation 7.10] 
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Table 7.8: The 95% confidence interval for the lower and upper limits of agreement for all 

activity categories. 

95% CI for Lower limits agreement (%) 95% CI for Upper limits of agreement (%)Activity 

Category Lower value Upper value Lower value Upper value 

Dynamic -22.59 -7.54 1.21 16.25 

Static -4.51 -1.74 -0.14 2.62 

Off -12.04 -4.96 -0.83 6.25 

Stride -10.80 -2.60 2.18 10.38 

 

7.7 Results – ForcePAL validation study 

7.7.1 Activity categorization comparison 

The forcePAL algorithm (see Appendix X) classified activity into four categories – walking, 

standing, sitting/lying and ‘off’ states (when the prosthesis was not worn). The algorithm 

also counted the total number of strides performed with the prescribed prosthesis. For 

activity classification, the time spent in each activity was compared between the forcePAL 

and video data (Table 7.9). 

 

Table 7.9: Time spent in each activity state found by video recordings and forcePAL data for 

each subject 

  walk time (sec) stand time (sec) sit time (sec) off time (sec) stride count

subject  PAL video PAL video PAL video PAL video PAL video

1 687.8 701.4 436.3 471.6 1353.4 1319.1 869.0 841.2 474 444

3 406.5 381.0 139.6 151.1 520.6 521.3 869.1 871.0 254 237

5 292.6 302.8 148.0 161.0 408.0 390.4 1046.1 1033.0 205 201

6 547.9 561.3 207.2 198.1 993.5 991.4 343.7 341.1 331 357

7 720.9 714.2 706.6 696.7 928.0 904.3 580.4 603.2 486 562

8 505.4 487.5 187.3 206.1 493.6 484.4 374.1 366.9 328 271

9 355.6 338.0 516.7 529.5 900.8 891.2 325.5 334.9 279 266

10 504.6 471.5 606.5 624.6 1035.3 1077.3 343.1 349.0 374 344

 

Additional Matlab code (see Appendix XI) was used to calculate percentage sensitivity and 

discrepancy for each subject, which are presented in Table 7.10. 
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Table 7.10: Percentage sensitivities and discrepancies for activity categorization and stride 

count of each subject 

sensitivity (%) discrepancy (%) 

subject walk stand sit off stride walk stand sit off stride

1 104.0 102.2 97.0 97.6 101.5 4.0 2.2 3.0 2.4 1.5 

2 98.7 105.0 97.0 104.7 97.4 1.3 5.0 3.0 4.7 2.6 

3 100.4 105.3 98.7 101.5 93.3 0.4 5.3 1.3 1.5 6.7 

5 101.6 101.8 98.4 102.2 104.7 1.6 1.8 1.6 2.2 4.7 

6 93.5 101.0 97.2 103.1 94.0 6.5 1.0 2.8 3.1 6.0 

7 94.4 95.0 103.0 104.2 93.9 5.6 5.0 3.0 4.2 6.1 

9 103.7 95.6 99.6 101.2 94.9 3.7 4.4 0.4 1.2 5.1 

10 102.1 98.5 100.5 101.0 105.9 2.1 1.5 0.5 1.0 5.9 

Average 

(std) 

99.8 

(3.99) 

100.5 

(3.88) 

98.9 

(2.09)

101.9

(2.23)

98.2

(5.13)

3.2 

(2.15)

3.3 

(1.80)

2.0 

(1.14) 

2.5 

(1.38) 

4.8 

(1.84)

 

The forcePAL data were processed using a general algorithm and then compared with 

video data, the average percentage sensitivities of 99.8%, 100.5%, 98.9% and 101.9% were 

found for walking, standing, sitting/lying and ‘off’ events respectively for the eight subjects 

who took part in the study. The calculated average percentage discrepancies for activity 

categorization were found to be 3.2%, 3.3%, 2.0% and 2.5% for walking, standing, 

sitting/lying and ‘off’ periods respectively. The percentage discrepancy for each subject 

was below 5% for all activity categories. 

 

The total number of strides were counted from the video recordings and compared to the 

number of peaks found within the walking periods using the Matlab algorithm, which 

represented stride counts. The average percentage sensitivity and discrepancy for stride 

count were found to be 98.2% and 4.8% respectively.  

 

7.7.2 Statistical analysis 

7.7.2.1 Correlation between forcePAL and video data 

For each subject, the total durations of each activity category from the video and forcePAL 

data were found and Figure 7.27 was plotted to show the correlations between video and 

forcePAL data for walking, standing, sitting/lying and ‘off’ events. Correlation coefficient, 
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r, was calculated using equation 7.5 and significance test, t, was calculated using equation 

7.6 to evaluate whether the association between the two sets of data was apparent. 

 

 
Figure 7.27: Total durations recorded from the video for walking, standing, sitting/lying and 

‘off’ events plotted against total duration from the forcePAL post-processed output. 

 

The correlation coefficients, r, were calculated as 0.9928, 0.9981, 0.9980 and 0.9992, with 

t= 20.27, 39.66, 39.14 and 61.12 (p < 0.001) for walking, standing, sitting/lying and ‘off’ 

events respectively, indicating highly significant positive correlations between the video 

and forcePAL outputs. 

 

Figure 7.28 shows correlation between video and forcePAL total stride counts using the 

Matlab algorithm for 8 amputees in this study. The correlation coefficient, r = 0.9857 with 

t= 14.33 (p < 0.001), indicating a strong positive correlation between the two data sets. 

 

Although all the calculated r values showed highly significant positive correlations between 

the video and forcePAL data for activity categorization and stride count, r only measures 

the strength of the relationship between two variables, and not the agreement between them. 

The calculated correlation coefficients, r values, were in relation to a line of best fit and not 

to a line of equality. Perfect agreement between the two data sets could only be achieved 

when all points were perfectly on the line of equality. Therefore further statistical tests were 

required to investigate the agreements between the forcePAL results and video data. 
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Figure 7.28: The total number of strides found from the video compared with the number of 

strides computed from the forcePAL data for all subjects. 

 

7.7.2.2 Reliability Analysis 

The intraclass correlation coefficient (ICC) is a measure of correlation, consistency or 

conformity for a data set when it has multiple groups (Strout and Fleiss 1979). Reliability 

analysis was carried out to find the ICC(2,1) using an absolute agreement definition, that 

was based on a two-way random effects model, with the measuring methods and patients 

considered as random variables, which measured agreement emphasizing the 

interchangeability of the measuring methods. ICC(2,1) was computed using a statistical 

analysis software, SPSS Statistics (Version 16, SPSS Inc, USA) and an ICC value of ≥0.75 

was considered to be good and ≥0.9 was deemed excellent.  

 

The calculated ICC(2,1) were 0.996, 0.999, 0.999, 0.999 and 0.991 for walking, standing, 

sitting/lying, ‘off’ events and stride count respectively. ICC(2,1) was >0.99 for all activity 

categorization and stride count, which demonstrated excellent reliability and that the video 

and forcePAL measurements were interchangeable. 

 

7.7.2.3 Agreement between video and forcePAL data 

It was hypothesised that although both methods measured the same variables (duration of 

activities and stride count), they would not agree perfectly, as measurement errors exist in 

both methods. In addition, time is a continuous parameter and both video and forcePAL 

measurements would contain errors as the precise time at which an activity was deemed to 
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happen could not be identified. However, it was hypothesised that the limits of agreements 

for the percentage difference between video and forcePAL data would not be clinically 

significant. 

 

It was thought that statistical analysis to determine the agreement between the two methods 

would be appropriate to identify how much the forcePAL results might differ from the 

video data. Agreement between video and the forcePAL was assessed by comparing the 

mean value of total time spent in each posture for video and forcePAL with the percentage 

difference between the two data sets for each subject. Percentage difference was calculated 

using the equation [(forcePAL duration – video duration)/mean duration x 100%].  

 

Figures 7.29 – 7.33 illustrate the level of agreement according to the method of Bland and 

Altman (1986, 1999) between video and forcePAL for the total time spent in each activity 

(walking, standing, sitting/lying, off periods and stride count) during the testing session. 

Values above zero represented the forcePAL over-estimating the time spent in the activity 

state and values below zero showed under-estimation of time spent in the activity compared 

to the video based record.  
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Figure 7.29: Bland-Altman plot of percentage agreement between video and forcePAL 

classification of total walking duration for all subjects. 
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Figure 7.30: Bland-Altman plot of percentage agreement between video and forcePAL 

classification of total standing duration for all subjects. 
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Figure 7.31: Bland-Altman plot of percentage agreement between video and forcePAL 

classification of total sitting/lying duration for all subjects. 
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Figure 7.32: Bland-Altman plot of percentage agreement between video and forcePAL 

classification of total ‘off’ duration for all subjects. 
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Figure 7.33: Bland-Altman plot of percentage agreement between video and forcePAL 

classification of total stride count for all subjects. 

 

Figures 7.29 to 7.33 illustrate that the forcePAL over-estimated for some subjects while 

under-estimating for others for all activity categories and stride count, except ‘off’ period 

classification. The forcePAL over-estimated time spent in the ‘off’ state for all subjects 

except for subject 1, which under-estimated by 2.5%.  
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It was assumed that the percentage differences were Normally distributed (Gaussian), 

hence 95% of the differences should be expected to lie between ±1.96 standard deviation 

from the mean and these were called the limits of agreement (Bland & Altman 1986, 1999). 

Table 7.11 shows the calculated limits of agreements with the mean values. The limits of 

agreement were -8.21 to 7.67% for walking (Figure 7.29), -7.13 to 8.09% for standing 

(Figure 7.30), -5.22 to 3.01% for sitting/lying (Figure 7.31), -2.44 to 6.21% for off periods 

(Figure 7.32) and -12.04 to 8.17% for stride count (Figure 7.33).  

 

Table 7.11: The calculated mean of the percentage difference between video and forcePAL 

data and limits of agreement calculated according to Bland & Altman (1986, 1999) for walking, 

standing, sitting/lying, off events and stride counts. 
Activity category Mean (%) Lower limit of 

agreement (%) 

Upper limit of agreement 

(%) 

Walking -0.27 -8.21 7.67 

Standing 0.48 -7.13 8.09 

Sitting/lying -1.10 -5.22 3.01 

Off 1.88 -2.44 6.21 

Stride -1.93 -12.04 8.17 

 

However, these limits of agreement were only estimates of the values for this particular set 

of data. Hence standard error (SE) and confidence intervals were used to determine the 

accuracy of these estimates. SE was calculated using equation 7.7. The 95% confidence 

intervals for the bias was calculated using equation 7.8 with 7 degrees of freedom, t = 2.365 

was found. Hence 95% confidence intervals for the bias were -3.66 to 3.12, -2.76 to 3.73, 

-2.86 to 0.65, 0.04 to 3.73 and -6.25 to 2.37 for walking, standing, sitting/lying, off periods 

and stride count respectively.  

 

The standard error of the limits (equation 7.9) and 95% confidence interval (equation 7.10) 

were calculated. Table 7.12 shows the 95% confidence interval for the lower limits of 

agreement, which were -14.08 to -2.34, -12.75 to -1.5, -8.26 to -2.18, -5.63 to 0.76 and 

-19.51 to -4.57 for walking, standing, sitting/lying, off periods and stride count respectively. 

The 95% confidence interval for the upper limits of agreement were found to be 1.80 to 

13.54, 2.47 to 13.71, -0.03 to 6.05, 3.01 to 9.40 and 0.70 to 15.63 for walking, standing, 

sitting/lying, off periods and stride count respectively (Table 7.12).  
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Table 7.12: The 95% confidence interval for the lower and upper limits of agreement for all 

activity categories 

95% CI for Lower limits agreement 95% CI for Upper limits of agreementActivity 

Category Lower value Upper value Lower value Upper value 

Walking -14.08 -2.34 1.80 13.54 

Standing -12.75 -1.50 2.47 13.71 

Sitting/lying -8.26 -2.18 -0.03 6.05 

Off -5.63 0.76 3.01 9.40 

stride -19.51 -4.57 0.70 15.63 

 

7.8 Results – Free-living monitoring using the pressurePAL 

For free-living data collected using the pressurePAL, the total times spent per day in 

dynamic, static and ‘off’ states are shown in Table 7.13 and 7.14 for subject 3 and 10 

respectively. Only full days of collected data are shown in Tables 7.13 and 7.14. Data for 

the first and last days of monitoring were excluded from the results as only part of these 

days were monitored. 9 days of data were collected for both subjects, hence 7 full days of 

data are shown in Table 7.13 and 7.14.  

 

Table 7.13: Time spent in different activity states and stride counts by pressurePAL and LAM 

for subject 3. (Day 2 to 8) 

time (hr) Stride count 

Day Dynamic Static Off pressurePAL LAM 

2 1.72  12.18 10.11  3718 4350 

3 1.30  13.02 9.66  3026 2959 

4 2.30  12.79 8.92  4885 3401 

5 1.49  11.84 10.68  3071 2500 

6 1.54  11.53 10.94  3252 1892 

7 1.04  11.28 11.70  2220 1761 

8 1.30  13.50 9.20  3263 3058 

average 1.53  12.31 10.17  3348  2846  
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Table 7.14: Time spent in different activity states and stride counts by pressurePAL and LAM 

for subject 10 (Day 2 to 8) 

time (hr) stride count 

Day Dynamic Static Off pressurePAL LAM 

2 0.45  10.18 13.42  110 83 

3 0.87  17.11 6.03  1967 1200 

4 0.62  17.32 6.11  1720 1605 

5 1.33  12.91 9.76  2128 2369 

6 0.55  10.41 13.03  853 897 

7 0 0 24.00 0 0 

8 0 0 24.00 0 2 

Average 

(exclude day 7 and 8) 0.76  13.59 9.67  1356  1231  

 

It was found that for subject 3, an average of 1.53 hours, 12.31 hours and 10.17 hours were 

spent in dynamic, static and ‘off’ activity per day respectively. For subject 10, 24 hours of 

‘off’ periods were recorded for day 7 and day 8. The subject used a different prosthesis on 

these two days. Averages of 0.76 hours, 13.59 hours and 9.67 hours per day were spent in 

dynamic, static and ‘off’ activity respectively, when day 7 and 8 were excluded from the 

calculation.  

 

Strides were counted using the pressurePAL algorithm and compared to the LAM stride 

count data (Table 7.13 and 7.14). For pressurePAL data, subject 3 had an average 3348 

strides per day and subject 10 had an average of 1356 strides per day, indicating subject 3 

was more active compared to subject 10. Figure 7.34 shows the total time spent each day in 

the dynamic state with stride count from the pressurePAL for the two subjects. It can be 

seen that subject 3 was more active compared to subject 10 as subject 3 spent more time in 

the dynamic state with higher stride count compared to subject 10.  

 

Figure 7.34 is a graphical representation of the time spent in dynamic activity and number 

of strides performed by subject 3 and 10 during the free-living monitoring period. It could 

be seen that subject 3 was more active compared to subject 10 as subject 3 spent more time 

in the dynamic state each day (moving the stump inside the prosthesis) and higher stride 

count per day was recorded for subject 3. 
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Figure 7.34: Active free-living monitoring results for subject 3 and subject 10 using the 

pressurePAL, shown as time spent in dynamic activities and stride counts per day. 

 

7.9 Discussion 

7.9.1 Subject population 

Although the size of subject sample was small, the subjects recruited for this study 

represented a range of trans-tibial amputees as they had different indications for amputation 

and the duration of being an amputee ranged from 2 to 27 years. In addition, not all subjects 

were prescribed with the use of suction sockets but they were comfortable and able to carry 

out activities with their custom made suction sockets in the laboratory for the validation of 

the pressurePAL and forcePAL.  

 

7.9.2 PressurePAL 

7.9.2.1 Calibration of device 

The pressurePAL was found to have a linear relationship to pressure readings without 

hysteresis and no drift was seen when the pressurePAL was tested at constant atmospheric 

pressure. Therefore drift should not pose any problems or cause errors in the identification 

of ‘off’ periods when the prosthesis was not worn.  
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7.9.2.2 Development of the signal analysis algorithm and its limitations 

The signal analysis algorithm was based upon certain consistent features that were seen in 

the pressure profiles for all subjects. Originally, it was thought that amputees’ activities 

could be categorized into walking, standing, sitting/lying and ‘off’, with the number of 

stride counts within the walking activities. Although different filtering techniques were 

considered, it was decided to use a moving window to compute averages and standard 

deviations of the pressure signal, which were then used to identify thresholds for activity 

categorization. It was not possible to distinguish between standing and sitting events due to 

the similarity in pressure profiles obtained from both standing and sitting postures. When 

amputees did not move their residual limb during standing, sitting or lying periods, the 

pressure profile was close to constant atmospheric pressure. Therefore, it was decided to 

use an algorithm that grouped standing and sitting/lying events into ‘static’ activity. This 

constraint on activity characterization would be difficult to eliminate as the amputees did 

not exhibit identical trends in relief valve pressure. Difficulties with signal interpretation 

may arise for a number of reasons including the fact that amputees would have 

individualised movement inside the socket depending on the fit and comfort of the 

prosthesis. It is also likely that the amount of soft tissue and general health of the amputee 

would affect pressure within the socket. Lying events were not included in the protocol for 

the validation study, but it was thought that the pressure profile for lying events would be 

similar to sitting episodes and therefore it would be necessary to group lying events into the 

static category.  

 

Another limitation of the algorithm for categorization of the amputees’ activity was that it 

required a minimum of 5 minutes of constant atmospheric pressure to characterize the ‘off’ 

state. The algorithm classified any times that an amputee removed the prosthesis for less 

than 5 minutes as static events. When the ‘off’ times were less than 5 minutes, these usually 

represent the need to perform some alteration to the placement of the stump inside the 

socket or adding stump socks, therefore classifying these periods as static would not be 

misleading.  

 

For discrimination between dynamic and static events, the filtering techniques used in the 

data analysis algorithm contained two stages. The first stage was a moving window of 1 

second to compute the standard deviation and the second stage was a 10 second moving 

average window. A threshold was then identified which was dependent upon the maximum 

value of the data after stage 2 filtering. The time at which an activity change occurred 
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might not be exactly determined depending on the location of the threshold. A small error 

(< 1 second) was expected for the time of activity change as the threshold was 2/5 of the 

maximum value. It was believed that this would not cause large amounts of 

misclassification during free-living monitoring as amputees do not generally perform short 

bouts of activities (less than 5 seconds), hence the error caused, in proportion of time spent 

in short periods of transition, would not be significant in daily life situations. Furthermore, 

no phase shift occurred with the use of the moving window to calculate standard deviation 

and average with the Matlab code used, therefore once an appropriate threshold was 

identified, accurate duration of each activity would be categorized. 

 

7.9.2.3 Disagreement between video and pressurePAL data 

For the validation of the data analysis algorithm for quantifying amputees’ activity levels 

and prosthetic usage with the pressurePAL data, pressure results were compared with the 

video data. Pressure profiles at the pressure relief valve were dependent upon movement of 

the stump inside the socket as this in turn altered the air distribution of the socket creating 

pressure difference. Although all the average sensitivities were close to 100%, the 

pressurePAL sometimes over-estimated time spent in an activity state, while 

under-estimating for other subjects, which made the average sensitivities close to 100%. On 

the other hand, the average discrepancies were below 10%, but there were still 

misclassification between activity states. By comparing the post-processed pressurePAL 

data to the video data, the misclassified periods were identified. 

 

For the video data analysis, the amputees’ activities were originally categorized into 

walking, standing, sitting with and without prosthesis. Walking activities included both 

stair ascend and descend. As the pressurePAL data analysis algorithm could only 

distinguish dynamic and static events (with and without prosthesis), the video data were 

re-classified accordingly, by categorizing all walking activities (include stair ascend and 

descend) as dynamic events, and both standing and sitting periods shown in video were 

categorized as static episodes.  

 

‘Off’ periods 

The average percentage discrepancy was 2.9% for ‘off’ categorization. Although this 

percentage was low, small amounts of misclassification occurred. It was found that the 

pressurePAL under-estimated time spent in the ‘off’ state prior to the device being switched 
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off. This error could have been caused by the method adopted for synchronising the video 

and pressurePAL data. Although a visual indicator was used to identify device on/off, it did 

not diminish error as it required the observer to determine the exact time for this to occur. 

However, this type of error would not affect free-living monitoring as the device only 

required to be switched off once and would only under-estimate by a very small amount, < 

1 second within a much longer total daily ‘off’ period of approximately 8 hours. 

 

Static categorization 

One type of misclassification that was seen between the video and pressurePAL data arose 

as a result of differences in donning procedure used by amputees. There were two types of 

suspension used to create a seal between the stump and the prosthesis. Apart from subject 7 

who used the silicone liner with a ring at the distal end, all other subjects used sleeve 

suspension to create a seal between the stump and the socket. For subject 7, who used a 

silicone liner with the suction socket, during donning procedures the amputee was required 

to push the stump inside the socket so any excess air could be expelled through the 

one-way pressure relief valve and a seal between the stump and the prosthesis could be 

created. The procedure sometimes required the amputee to push the stump into the socket a 

few times during the donning process, causing cyclical pressure signals to be recorded at 

the pressure relief valve, which would be classified as dynamic activity and strides might 

also be counted. However, if a suspension sleeve was used, amputees were only required to 

place their stump inside the socket and then roll the sleeve over the socket to mid thigh to 

create an air tight situation. Therefore with the sleeve suspension method, the donning 

procedure was usually classified as static event by the algorithm. Hence amputee’s donning 

method had to be considered as well.  

 

Another type of misclassification was found as the algorithm categorized static events as 

dynamic. This was seen in subject 4, 5, 7 and 9. Noise in the pressure signal was reduced 

by using a moving average window.  However, when large movements of the stump 

occurred while the amputee was in a ‘static’ posture, misclassification would take place as 

these signals were above the dynamic threshold. This indicated that the ‘dynamic’ category 

potentially contained non-walking stump-socket relative movements. It could be argued 

that categorization of stump movements in a ‘static’ posture as dynamic event is reasonable 

if general physical activity is being characterized. For this study, all standing and sitting 

events were classified as ‘static’ activities.  
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Small single pressure peaks would not cause misclassification as the standard deviation 

signal would not be above the dynamic threshold after a 10 second moving average 

window was used. However, for larger pressure changes inside the socket which lasted for 

5 seconds or longer, misclassification might have occurred, as a 10 seconds moving 

average would still produce signal above the dynamic threshold. On the other hand, a real 

single stride would not be categorized correctly as the signal would be reduced to below the 

dynamic threshold after the average window was used.   

 

Furthermore it was noted that amputees might sit or stand very still, e.g. subject 4, which 

led to almost constant atmospheric pressure being recorded during sitting periods. Although 

constant atmospheric pressure signals would be possible during quiet standing when no 

stump movement occurred, it would be unlikely that an amputee would stand over 5 

minutes without any movement of the lower limbs. Weight shift between legs generally 

occur during long standing episodes. Subject 4 was the only amputee who walked with 

support using a walking stick, it was thought that subject 4 might not have put any weight 

onto the amputated leg during standing, leading to the measurement of near constant 

atmospheric pressure during these episodes. This might lead to misclassification of the ‘off’ 

events for long term monitoring, as the classification of ‘off’ periods relied on constant 

atmospheric pressure being recorded over a longer period of time. However, if an amputee 

sat or stood without any stump movement for a long time, these periods might be 

misclassified as ‘off’. The discrepancy caused by this could be altered as the minimum 

duration for ‘off’ period could be changed in the algorithm. Therefore for long term 

monitoring, the minimum duration for ‘off’ period could be changed to a longer time, as in 

general when amputees do not wear their prosthesis, it would be for longer period (i.e. 30 

minutes or more). Originally 5 minutes was chosen for identifying ‘off’ events as the 

validation study could not be excessively long, hence the ‘off’ periods during the testing 

sessions were limited.  

 

It is questionable whether it was correct to categorize all standing periods as static events. 

Short standing occurrences might involve some leg movements or stump movements as 

even with normal populations, quiet standing involved internal muscle movements and it 

would be difficult to examine the strategy adopted by each amputee to remain in a quiet 

standing position, as this could vary between amputees. All standing periods were 

classified as static for the video data in this validation study, and hence an algorithm which 

could distinguish between standing and sitting episodes would be desirable. Nonetheless 



 171

due to the similar pressure profiles of these events with the use of the pressurePAL, this 

caused limitation in the data analysis algorithm, which could not be improved upon.  

 

Dynamic activity and stride count 

It was found that the ability of the data analysis algorithm to determine stair ascend and 

descend was 100% as these activities were always between level ground walking during the 

validation study. Hence initial and end stride for stair activities would not be misclassified. 

However, in free-living situation, amputees might stop and stand quietly at the end of stair 

walking activities and the effect of this was unknown. Furthermore, the high accuracy for 

identifying stair activities as dynamic events was because higher pressure amplitudes were 

seen during stair ascends and descends. As standard deviations were used to distinguish 

between static and dynamic events, larger amplitude for the pressure cycles would lead to 

larger standard deviation in the signal. It might be hypothesised that larger amplitudes of 

pressure cycles were created during stair activities because amputees were required to lift 

their prosthesis to reach the next step, therefore creating larger pressure changes as 

movement of the stump inside the socket increased. Hence signals for these periods would 

always be above the dynamic threshold.  

 

When the total strides counted from the video data were compared with stride count from 

the pressurePAL data an average discrepancy of 2.4% was found. The number of peaks 

within the pressure cyclical signal was used to represent the number of strides an amputee 

performed. The pressure signal had to pass through 2 thresholds in order for the algorithm 

to count the peak as a stride. Two thresholds were set to minimise small peaks being 

counted as strides, as the gait cycle was characterized by a double peak in some subjects. 

Occasionally the last stride in a stepping sequence was not counted by the data analysis 

algorithm as the pressure amplitude was not high enough to pass the upper threshold. This 

was due to the last step sometimes being small and slow with partial weight bearing, 

leading to the generation of pressure profiles that would not correspond to a gait cycle. This 

type of miscount mainly occurred for subject 3 and 6 and was thought to be associated with 

their walking patterns, however the exact reason could not be identified.  

 

On the other hand, additional strides were sometimes counted by the pressurePAL data 

analysis algorithm. This occurred when dynamic activities were misclassified due to large 

pressure signals during static events. If it was possible to reduce this type of dynamic 

misclassification, additional strides would not be included.  
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It is possible that individualised threshold values could be identified to improve the 

sensitivity of stride count, as developed algorithm used set thresholds value for all subjects 

to count peaks within cyclical signals. It would be more time consuming to find 

individualised stride count threshold as each amputee would be required to perform a set 

activity sequence in a controlled environment before an appropriate algorithm could be 

identified. This sequence would have to include set walking distances and times spent in 

each activity.  However, activities performed in a laboratory might not be representative 

of free-living activity.  

 

Another method to improve stride count accuracy was to use pattern recognition or wavelet 

analysis. However with wavelet analysis, a template of stride waveform has to be known. 

For amputees, their gait varies from person to person, therefore it would be difficult to 

identify a general waveform to represent a general gait cycle. These methods are explained 

in Chapter 9.  

 

7.9.2.4 Statistical anslysis 

From the statistical analysis, 95% confidence interval for the lower and upper limits of 

agreement between video and pressurePAL data were calculated according to Bland & 

Altman (1986, 1999), for activity classification and the range of the intervals were -15.07 to 

8.73, -3.13 to 1.24, -8.50 to 2.71 and -6.70 to 6.28 for dynamic, static, ‘off’ and stride count 

respectively. The intervals were relatively narrow for static and ‘off’ events, indicating that 

the degree of agreement would be clinically acceptable for these events using the general 

data analysis algorithm for the pressurePAL. However, the intervals for dynamic 

classification and stride count were wider, reflecting the large variations within data set, as 

the sample size was relatively small. 

 

7.9.2.5 Long term monitoring using pressurePAL 

The pressurePAL could be used to quantify prosthetic usage and categorize amputees’ 

activity into period spent in dynamic or static events with the number of stride counts 

performed, however some differences were seen when compared to the LAM data. This 

information gained by the pressurePAL could aid clinicians or prosthetists to determine 

amputees’ rehabilitation progress and the effectiveness of the prescribed prosthesis. For the 

two subjects who had worn the pressurePAL for 9 consecutive days, only subject 3 used the 
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prosthesis for the full 9 days. Although the pressurePAL data showed subject 10 did not use 

the prosthesis for the full 9 days, it was known that subject 10 had another prosthesis which 

he used occasionally when he felt uncomfortable with one prosthesis. This showed that 

subject 10 might not have felt comfortable wearing the same prosthesis continuously, 

which the subject agreed with and reported that he could not find a suitable socket that he 

could use continuously. The LAM data corresponded with the pressurePAL data as no 

stride count was recorded for subject 10 on day 7. However 2 strides were counted on day 8 

on the LAM, which was miscounted as the subject did not use the prosthesis at all on day 8. 

On day 9, subject 10 wore the prosthesis with the pressurePAL attached for returning to the 

laboratory, but only half a day of data was recorded and therefore not used in the data 

analysis comparison. The LAM device could only count the number of steps an amputee 

performed and no additional information on activity level or prosthetic usage was possible. 

From the study, it could be found that subject 3 was more active with more strides and time 

spent in dynamic state compared to subject 10.  

 

Discrepancies in the number of stride counts were seen between the LAM and the 

pressurePAL data. The LAM has been validated (Ross and Reece 2006), however, this 

validation was in a laboratory based environment. It was not known how well the LAM 

would characterize small or incomplete steps or prosthesis movement other than stepping, 

all of which might occur in the free-living environment. As noted previously, the LAM 

measured 2 steps for subject 10 on day 8, however the subject did not use the prosthesis on 

that day, hence exhibiting error. It was not possible to be sure whether the inconsistency 

between the data was caused by miscounting of strides by the pressurePAL algorithm or the 

LAM data or errors in both sets of data. It was noted from the pressurePAL validation study 

that improvement to the pressurePAL algorithm was necessary for 100% accuracy for 

stride count, hence this could have contributed to the differences between the two data sets. 

From this study, it was difficult to conclude how accurate the pressurePAL was when used 

in a free-living context. A possible way to validate free-living monitoring using the 

pressurePAL was to video record each subject’s activity patterns during their daily lives. 

However, this would be time consuming for both data collection as well as data analysis. In 

addition subjects might exaggerate their activity levels when an observer is present. 

 

The pressure data recorded would be a true representation of any stump movement inside 

the socket during amputees’ daily activities. It would be difficult to change the pressure 

measurement without the stump being inside the socket. The types of activities are limited 
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with standard lower limb prosthesis, as running or other sporting activities would require 

another type of prosthesis. Although additional categories such as time spent in sitting and 

standing could add value to these data by knowing the posture of the amputee, the 

pressurePAL provided useful information for time spent in dynamic, static and off events. 

Further study with more subjects was required to examine the effectiveness of the 

pressurePAL as a free-living monitoring device.  

 

7.9.2.6 Summary 

It was necessary to attach the pressurePAL to the pressure relief valve of a suction type 

socket. There were therefore clear limitations in the use of the device to a subgroup of the 

amputee population. Within this group such a device would offer minimal interference with 

use of the prosthesis and no adaptations in prosthetic design are required. The signal 

analysis algorithms developed allowed high levels of accuracy in the characterization of 

physical activity into periods spent in dynamic and static states with stride counts. This 

method of using the pressurePAL presents the opportunity for long term monitoring of 

prosthetic use. 

 

7.9.3 ForcePAL 

7.9.3.1 Calibration of forcePAL 

The forcePAL was found to exhibit hysteresis as loading and unloading the sensor did not 

produce the same forcePAL units with the same applied pressure. Although hysteresis 

occurred in the FlexiForce, it was anticipated that this would not adversely affect the 

chances of being able to use the device to quantify prosthetic usage as accurate pressure 

readings were not required. For activity categorization, only the relative changes and 

general magnitude of the pressure profiles were needed to classify posture, hence if the 

range of pressure units was known for each activity, an appropriate data analysis algorithm 

could be used for activity categorization. 

 

Drift was also found for the forcePAL as pressure measurements did not remain constant 

when a constant weight was applied to the active area of the FlexiForce. However, drift 

appeared to be random as forcePAL measurements fluctuated around the applied pressure 

by small amounts (± 2kPa). It was anticipated that this random fluctuation in pressure 
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measurements would not cause problems in the quantification of prosthetic usage and 

amputees’ activity levels, as it was small compared to the overall signal range. The data 

analysis algorithm used a moving window to calculate averages and standard deviations to 

identify thresholds for activity categorization. The only possible error that the 

characteristics of drift or hysteresis could cause was in the identification of ‘off’ periods, as 

this relied on constant atmospheric pressure being recorded for over 5 minutes. However, 

when the forcePAL was left at atmospheric pressure with no force acting on the active area 

of the FlexiForce, constant measurements were recorded, hence no drift occurred at 

atmospheric pressure, which allowed the data analysis algorithm to categorize ‘off’ 

durations.  

 

7.9.3.2 Limitations of the forcePAL 

The placement of the FlexiForce at the stump/socket interface caused some problem during 

the validation study. It was essential that the active area of the FlexiForce was placed at the 

stump/socket interface where contact of the stump would take place when it was worn. For 

the validation study, the sensor was placed at the anterior mid-thigh so that the wire could 

run over the brim of the socket without interference with the amputee, especially during 

ambulation. However, the amount of soft tissue around the stump would be different from 

amputee to amputee, hence the contact force with the FlexiForce sensor would be different 

between subjects. This led to difficulty in locating the sensor in an area that would produce 

the same pressure profile patterns for all subjects. The popliteal area was considered as a 

potential location for the sensor due to high pressure is typically generated here. However, 

placement of the FlexiForce sensor in this location might interfere with gait.   

 

Another limitation of the forcePAL would be the need to carry out alteration to the socket 

in order to accommodate the sensor and a way to run the connected lead to the outside of 

the socket to connect the FlexiForce with the data logger. A hole in the socket wall would 

be needed to allow the wire connection between the FlexiForce and the main part of the 

forcePAL. This was not performed for this current study, as the focus for the validation 

study was to determine whether the forcePAL would produce pressure profiles that allowed 

the use of a general data analysis algorithm to categorize trans-tibial amputees’ activity and 

prosthetic usage. However, for free-living monitoring to take place using the forcePAL, 

alterations to the socket would have been necessary.  
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7.9.3.3 Development of signal analysis algorithm and its general limitations 

The forcePAL data analysis algorithm was developed and was based upon certain 

consistent features that were seen in the pressure profiles of each subject. It was thought 

that a general algorithm could be developed to quantify trans-tibial amputees’ activity 

levels into time spent in walking, standing, sitting/lying and ‘off’ when the prosthesis was 

not worn. Throughout the process of developing the data analysis algorithm for analysing 

the forcePAL data, different filtering techniques were considered and it was decided to use 

moving window to compute standard deviation and average for the pressure signal, which 

was then used to identify thresholds for activity categorization. This method was chosen as 

it did not require long data processing time and no exact pattern of pressure profile for each 

activity state was required.  

 

Limitation of data analysis algorithm 

One of the limitations of the data analysis algorithm was that to detect times when the 

prosthesis was not worn it was required that a constant atmospheric pressure was recorded 

for a period longer than 5 minutes. The algorithm categorized any times that an amputee 

removed the prosthesis for less than 5 minutes as sitting/lying events. ‘Off’ periods less 

than 5 minutes were normally associated with the need to perform some alteration to the 

stump position inside the socket or to add stump socks as stump volume changed 

throughout the day. It might be considered therefore that classifying these periods as sitting 

would not be misleading.   

 

Lying events were not included in the validation protocol as it was thought that the 

amputees would usually remove their prostheses when carrying out lying episodes, 

therefore pressure profiles at the stump/socket interface for lying with prosthesis were not 

known. However, it was thought that sitting and lying should have similar pressure profiles 

as only small stump movements would occur inside the socket during these events and 

stump contact force would be similar for each subject. Furthermore, similar energy 

expenditure would be expected for sitting and lying events, therefore grouping the two 

activities would be appropriate as it provides equivalent information on free-living activity 

patterns of amputees.  

 

As a threshold was used to identify the transition from one activity state to the next it is 

possible that errors occurred in determining the precise time instant of transition. These 

errors might have been up to ±1 second and the exact threshold for activity change could be 



 177

different between subjects. It was believed that these would not cause large amounts of 

misclassification during free-living monitoring as it is unlikely that amputees would 

perform lots of short burst, spontaneous activity, hence the number of transitions would be 

relatively low. 

 

7.9.3.4 Disagreement between video and forcePAL data 

For the validation of the data analysis algorithm for quantifying amputees’ activity levels 

and prosthetic usage with the forcePAL, pressure results were compared to video data 

which acted as the gold standard for activity categorization in this study. Pressure profiles 

at the stump/socket interface were dependent upon movement of the stump inside the 

socket as this in alters the force acting on the sensitive area of the FlexiForce.  

 

The general data analysis algorithm categorized the recorded pressure data into walking, 

standing, sitting and ‘off’ events and average sensitivities of 99.8%, 100.5%, 98.9% and 

101.9% were found respectively. For stride count comparison 98.2% average sensitivity 

was found. Although average sensitivities for all classification were close to 100%, the 

forcePAL sometimes over-estimated time spent in an activity state, while under-estimated 

for other subjects, which were averaged together to produce sensitivity that were close to 

100%.  

 

Misclassification between activity states occurred. Average discrepancy of 3.2%, 3.3%, 

2.0% and 2.5% were found respectively for walking, standing, sitting and ‘off’ periods. For 

stride count, 4.8% average discrepancy was found.  

 

‘Off’ periods 

The average percentage discrepancy was 2.5% for ‘off’ categorization, although the 

percentage was low, small amounts of misclassification occurred. It was found that the 

pressurePAL under-estimated time spent in the ‘off’ state prior to the device being switched 

off. This error might have been caused by the method adopted for synchronising the video 

and pressurePAL data. Although a visual indicator was used to identify device on/off, it did 

not diminish error as it required the observer to determine the exact time for this to occur. If 

the forcePAL were to be used in as free-living monitor, this type of error would not affect 

the outcomes as the device only required to be switched off once giving a very small 

percentage error in outcomes.   



 178

 

Sitting classification 

Constant zero pressures were seen for some subjects during sitting episodes, which were 

caused by no forces acting on the sensor during these times. This would cause 

misclassification between sitting/lying and ‘off’ events. It was thought that sitting without 

any stump movement would not be likely to occur for a long period in the free-living 

environment, hence reducing the error caused by this type of misclassification. The 

discrepancy caused by this error was also reduced by setting a minimum duration for 

constant zero pressure measurement before it could be categorized as ‘off’ events, so that if 

there were small movements in between constant zero pressure, these periods would be 

classified as sitting/lying. 

 

Although the average percentage discrepancy was low and the Bland & Altman agreement 

test showed good agreement between video and forcePAL data for sitting classification, 

some misclassification did occur. It was seen that sometimes sitting events were 

misclassified as standing. This was seen in subjects 2, 3, 5, 6 and 9 with short periods (<5 

seconds) of misclassification. This occurred when large pressure signals were detected and 

also large movement of the limb was seen on the video data. These movements caused 

higher stump/socket pressure compared to quiet sitting episodes. This type of 

misclassification would only be seen when amputees performed large amounts of leg 

movement during seated periods, such as lifting the leg and placing it down on the floor. 

From the validation study, the amount of this type of error was low (2.5%), hence should 

not cause high amount of misclassification for free-living monitoring. 

 

Standing classification 

When large movements of the stump were created during standing, the algorithm would 

misclassify these periods as walking episodes because the standard deviation signal would 

be high if movement of the stump occurred. However, this type of misclassification would 

not take place unless the movement of the stump produced high pressure signals. Random 

short periods of pressure changes inside the socket would be considered as noise when the 

standard deviation of the pressure signals were smoothed using the moving average filter 

and would therefore be correctly classified as standing events.  
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Walking classification and stride counts 

It was found that the ability of the data analysis algorithm to determine stair ascend and 

descend was 100% as these activities were always between level ground walking during the 

validation study. Hence initial and end stride for stair activities would not be misclassified. 

However, in a free-living situation amputees might stop and stand quietly at the end of stair 

walking activities and the effect of this was unknown. Furthermore, the high accuracy for 

identifying stair activities as dynamic events was because higher pressure amplitudes were 

seen during stair ascends and descends. As standard deviations were used to distinguish 

between static and dynamic events, larger amplitude for the pressure cycles would lead to 

larger standard deviation in the signal. Larger amplitudes of pressure cycles were created 

during stair activities than in level walking as amputees were required to lift their prosthesis 

to reach the next step. This would have lead to larger force acting on the active area of the 

FlexiForce at the stump/socket interface and, therefore, signals for these periods would 

always have been above the dynamic threshold.  

 

For stride count comparison between the forcePAL and video data, average sensitivity of 

98.2% and average discrepancy of 4.8% were found. The number of peaks within the 

pressure cyclical signal was used to represent the number of strides an amputee performed. 

The pressure signal had to pass through two thresholds in order for the algorithm to count 

the peak as a stride. Miscount could occur when movements of the stump take place in the 

standing position. It was difficult to determine the thresholds for the data analysis algorithm 

for use with all subjects as gait varied from amputee to amputee. Variability in gait or 

stump condition (e.g. stump volume) on a daily basis might affect pressure. For example, 

when stump volume increases throughout the day, the force acting on the sensor would 

increase. This would lead to the problem of identifying a correct threshold to be used.  

 

Individualised threshold values could potentially be used to reduce the error for stride count. 

The current algorithm used set threshold values for all subjects to count peaks within 

cyclical signals. It would be more time consuming to find individualised stride count 

threshold as each amputee would be required to perform set activities in a controlled 

environment/ laboratory before an appropriate algorithm could be identified. The activities 

might include a set walking distance and time spent in each activity. However, activities 

performed in a laboratory might not be representative of free-living activity.  
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Another method to improve stride count accuracy was to use pattern recognition or wavelet 

analysis. However with wavelet analysis, a template of stride waveform has to be known. 

For the amputees studied, the pressure profiles varied from person to person and it was 

therefore difficult to identify a specific waveform to represent a general gait cycle. These 

methods are explained in Chapter 9.  

 

7.9.3.5 Statistical analysis 

From the statistical analysis, 95% confidence interval for the lower and upper limits of 

agreement between video and forcePAL data were calculated according to Bland & Altman 

(1986, 1999), the range of intervals were -8.21 to 7.67, -7.13 to 8.09, -5.22 to 3.01, -2.44 to 

6.21 and -12.04 to 8.17 for walking, standing, sitting, ‘off’ and stride count respectively. 

The intervals were relatively narrow for sitting/lying and ‘off’ periods, indicating the 

agreement was acceptable for these activity categorization, with small variation within the 

data sets. However, for walking, standing and stride count, the range of the intervals of 

agreement were wider, reflecting the variation within the data sets, as the sample size was 

relatively small. 

 

7.9.3.6 Summary 

The forcePAL offered a solution for monitoring the use of all types of sockets. In this thesis 

details of work with trans-tibial amputees is presented indicating the possibility of 

characterising walking, standing, sitting and ‘off’ times and stride counts with good levels 

of accuracy. The algorithms developed allowing automatic analysis of the pressure signals 

recorded by the forcePAL. The forcePAL does not present such a user friendly device as 

the pressurePAL as its sensing element must be placed within the socket and this must be 

connected via a wire to the outside of the prosthesis and the data logging element of the 

device. However, the forcePAL does offer the possibility of free-living physical activity 

classification over extended periods of time providing valuable information on all type of 

lower limb prosthetic use. 
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7.10 Summary 

Suction suspension of trans-tibial sockets is based on atmospheric pressure by creating a 

seal between the stump and the prosthesis. A one-way pressure relief valve at the distal end 

of the socket expels air automatically during weight bearing, thus removing trapped air 

from the socket leading to the creation of a partial vacuum to hold the socket on the stump 

when weight bearing is reduced on the limb. The pressure at the pressure relief valve is 

influenced by the loading on the stump socket interface and therefore on the activity that 

the amputee is performing. For this thesis the pressure at the pressure relief valve was 

monitored using the pressurePAL and an algorithm developed to characterize physical 

activity state and stepping from this signal. The interpretation of the pressurePAL signal by 

a general algorithm (Appendix IX) allowed the categorization of activity into dynamic 

(walking) with the number of strides, static (standing and sitting/lying with the use of the 

prosthesis) and ‘off’ periods (prosthesis not worn) with good accuracy (average percentage 

discrepancies less than 6% for activity categorization). The pressurePAL was externally 

attached, without the need to alter the prosthesis itself and therefore did not interfere with 

the amputees’ gait and the device had no contact with the skin. The pressurePAL could be 

attached to the prosthesis when free-living monitoring was required and removed easily 

after the monitoring period, as shown in the long term monitoring study with 2 subjects.  

 

The pressurePAL was only suitable for suction socket users. Although suction suspension 

is a widely used method to suspend trans-tibial sockets, there are other types of suspension 

used by amputees. The forcePAL was developed to allow the monitoring of physical 

activity in users of other types of socket. For the forcePAL an FSR sensor was placed at the 

stump/socket interface to allow pressure measurement. The interpretation of the forcePAL 

signal by a general algorithm (Appendix X) allowed the categorization of amputees’ 

activities into periods spent in walking with the number of strides, standing, sitting/lying 

and ‘off’ (when prosthesis was not worn), with good accuracy (average percentage 

discrepancies were below 5% for activity categorization). However, for the forcePAL to be 

implemented, alteration to the socket was required, which would not be ideal for free-living 

monitoring.  

 

The signal analysis algorithms did not provide results that were in 100% agreement with a 

video based record of physical activity and it is clear that they could be developed further 

using observation of a larger study population in a free-living environment.   
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Both the pressurePAL and the forcePAL allowed the collection of signals that could be 

used to characterize the physical activity that the amputees were undertaking. The signal 

analysis algorithms that were developed as part of this work provided accurate information 

on physical activity state and stride count. Both monitors present promise for long term 

physical activity monitoring in this population of subjects.   
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8 CONCLUSION 

This work was conducted in two study populations, those subjects with CP and adults with 

trans-tibial amputation. The aim of the work performed in both groups was to examine the 

efficacy of monitoring devices to characterize physical activity with the overall aim of 

providing devices that could be used for free-living community based physical activity 

monitoring. For both populations it was important that a validation study of the device 

being used was performed to provide insight into its value as a clinical monitoring tool. 

 

8.1 ActivPAL for use with the CP population  

The uniaxial accelerometer based activPAL was validated in a laboratory environment 

concurrent with a clinical gait analysis session to determine its efficacy for use to monitor 

activity patterns for people with CP. Video recording of activity was used to act as the 

‘gold standard’ to compare with the activPAL data, poor agreement (Bland & Altman 

agreement test) was found indicating misclassification between activity states and count 

strides. The validation study showed that the range of limits of agreements between the 

video and activPAL data were wide, indicating the lack of agreement between activPAL 

and video data. Although there was lack of agreements in activity categorization and stride 

count, there were potential sources of error in both video measurements as well as the 

activPAL proprietary algorithm. Reasons for poor agreement might be due to gait 

abnormalities of the subject group, difficulty in identifying exact time at which an activity 

change occurred on the video and the exact activPAL algorithm for activity categorization 

was not known. Furthermore, high discrepancy between video and activPAL data was 

found in some cases due to short total duration in an activity state, so small time deviation 

(a few second) would lead to large percentage error.  

 

Most studies used a set physical activity sequence to validate an accelerometer based 

device, which would diminish the problem with different total duration in each activity 

state between subjects. However, a set protocol of activities would not represent daily 

activity patterns, especially for younger subjects as they tend to perform short bouts of 

activity. Video based validation study in the subjects’ free-living environment should be 

carried out for a better understanding of the validity of activPAL for use with people with 

CP and data should be analysed by 3 or more assessor to remove any bias or error when 

only one person evaluates the video recordings.  
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The activPAL was used to assess free-living activity patterns of people with CP. Despite 

the lack of agreements between video and activPAL data, the activPAL was able to 

distinguish the more active community walkers from those limited household walkers in 

their free-living environment. The information gained from the daily activity levels of 

subjects with CP, especially for the monitoring of pre- and post-intervention physical 

activity levels obtained from activPAL devices could provide invaluable insight into the 

efficacy of the treatment and the rehabilitation progress of the individual. The level of 

mobility in a free-living environment could also aid clinicians in decision making towards 

the most appropriate treatment planning. 

 

There was no clear relationship between laboratory based cadences or questionnaire 

derived mobility score and free-living physical activity. These results indicate that a typical 

gait laboratory assessment does not allow full characterization of mobility and could not 

predict free-living physical activity level. It is therefore desirable to include objective 

free-living monitoring as a component of typical mobility assessment to provide evidence 

of actual daily mobility of each subject. However, it would be essential to combine 

accelerometry based activity monitoring with other forms of self-reporting (e.g. diary) as 

information could be missing or misleading without some description of subject’s daily 

activity pattern.  

 

Overall, if the misclassification of perching against a seat could be resolved by increasing 

the upright threshold in the data analysis algorithm and providing researchers or clinicians 

understood the other limitations in the activPAL algorithm for use in people with cerebral 

palsy, the activPAL could be a useful tool to quantify free-living activity patterns of people 

with CP in conjunction with one form of self-reporting method such as diary. 

 

8.2 Quantifying amputees’ activity patterns with pressurePAL and forcePAL 

For the quantification of trans-tibial amputees’ activity levels and prosthetic usages, the 

pressurePAL and the forcePAL were developed with customised data analysis algorithm to 

categorize activities. The pressurePAL was connected to the suction valve of suction 

sockets and the forcePAL measured stump/socket interface pressure. The data were 

analysed using a customised signal analysis algorithm that classified pressurePAL signals 

into dynamic, static, off events and stride counts; and forcePAL data into periods spent 
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walking, standing, sitting, ‘off’ and count strides. Video recordings acted as the ‘gold 

standard’ for comparison to the monitoring devices and good agreement was found for 

static and ‘off’ events using the pressurePAL and sitting and ‘off’ for the forcePAL. 

Although the intervals for limits of agreement for stride count and dynamic/walking events 

were wider for both devices, the discrepancies were relatively low for all activity 

categorization (< 6%). The wide intervals might be due to large deviation within a 

relatively small sample. A larger number of subjects would inevitably provide a greater 

range of signal types to test the generated algorithms. 

 

The pressurePAL was also tested for use in the free-living environment and was able to 

quantify periods spent in different activity states with the number of stride counts. 

Although stride count could be compared to LAM data for validation, the error in the LAM 

data was unknown as a free-living activity monitoring tool, hence only a comparison and 

not a validation was possible. Video based validation study in the subjects’ free-living 

environment should be carried out for a better understanding of the validity of pressurePAL 

and video data should be analysed by 3 or more assessors to remove any bias or error when 

only one person evaluates the video recordings. 

 

Both the data analysis algorithm for pressurePAL and forcePAL could potentially be 

improved by identifying individualised thresholds to count the number of strides a subject 

performed, as the amplitudes of the pressure cycles representing walking were subject 

dependent. In addition, other data analysis algorithms should be explored to determine the 

best solution with the least error. 

 

Overall, both the pressurePAL and forcePAL could quantify amputees’ activity level and 

prosthetic usage with reasonable accuracy. Clinicians may find the forcePAL more useful 

as it could potentially be used with all types of lower limb prostheses and could classify 

activities into off periods, sitting/lying, standing, walking and count the number of strides, 

whereas the pressurePAL could only be used with suction sockets and also pressurePAL 

would not be able to distinguish between sitting/lying and standing events.  
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9 RECOMMENDATIONS FOR FUTURE WORK 

9.1 Cerebral Palsy Study 

The activPAL was validated for use to monitor activity levels in people with CP. The 

validation study was carried out concurrently with a clinical gait analysis which involved 

many short periods of walking, standing and sitting with numerous transitions between 

postures and activity states. This combination of functional physical activity provided 

challenging conditions for the implementation of the activPAL proprietary signal processing 

algorithm and posed difficulties for visual, video based characterization of physical activity.  

 

Young subjects are likely to engage in play activity and no attempt has been made in the 

present study to provide characterization of non-functional motions. An alternative evaluation 

protocol might have used a standard walking track with set periods of sitting and quiet 

standing. However, this might be too restrictive for subjects to adopt their preferred body 

position as in free-living related poses. Perhaps an ideal evaluation would have been based on 

multiple long periods (e.g. 8 hours) of video based analysis in the subjects’ free-living 

environment. This form of evaluation was unfortunately beyond the scope of this work, but 

may be pursued for future study.  

 

Device variability (i.e. inter-device differences) was not tested in the current study, this could 

be investigated to determine whether there would be any significant differences between 

different activPAL monitoring devices.  

 

Although the activPAL was found to be able to categorize activity into sitting/lying, standing 

and walking for people with CP, it would be best to develop the activPAL algorithm further 

in order to include a wider range of activities (e.g. crawling, cycling), so that an accurate 

representation of daily physical activities could be monitored for this group of people. 

Furthermore, it would be beneficial to develop the data analysis algorithm to identify 

intervals of non device usage, so that data collected from those periods could be discarded 

and hence reasons for compliance might be recognized.  

 

It would also be useful to carry out a study to monitor free-living activity levels pre- and 

post-intervention (Botulinum toxin injection, surgical intervention) for subjects with CP 
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using the activPAL, to determine the effects of different forms of interventions to improve 

mobility level of people with CP.  

 

9.2 Amputees study 

The testing procedures for the validation of both pressurePAL and forcePAL were carried out 

in a purpose built laboratory and subjects followed set protocols (small variation between 

subjects due to their walking abilities), hence they might not be able to adopt their preferred 

body position as in their free-living environment. Perhaps again an ideal evaluation would 

have been based on multiple long periods (e.g. 8 hours) of video based analysis in the 

subjects’ free-living environment. This form of evaluation was unfortunately beyond the 

scope of this study and would be time consuming, but might be investigated in future study. 

In addition, the number of subjects for the amputee study was small, and so recruiting more 

subjects and repeating the validation study would be valuable, especially to the statistical 

analysis.  

 

Only two subjects were tested in a free-living environment using the pressurePAL and no 

subjects were tested using the forcePAL and it would be best to collect free-living data for 

amputees using these monitoring devices. However, the forcePAL would need to be 

developed further before it could be used in the community. A method to incorporate the 

forcePAL to the prosthesis would be needed and it would be ideal if no alteration to the 

prosthesis was necessary. It may be possible to manufacture each socket with the pressure 

sensor (FlexiForce) attached to reduce external alteration to the prosthesis and the data logger 

part could be attached when monitoring is required.  

 

Both the data analysis algorithms for the pressurePAL and forcePAL could be improved by 

identifying individualised threshold for counting the number of strides that a subject 

performed. A few possible solutions would be pattern recognition or wavelet analysis, 

however, the pressure signals obtained from either the pressurePAL or the forcePAL for a 

gait cycle have to be investigated closely, as not all amputees adopt the general gait pattern, 

hence it might be difficult to identify a general pattern to represent a typical amputee gait 

cycle. Furthermore, the current signal analysis code was written using Matlab (Matlab Inc) 

and investigation into possibility to convert into a Visual Basis program would be beneficial 

to PALtechnologies Ltd, as this is the software they use to analysis activPAL data.  
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An ideal device to quantify prosthetic usage and amputees’ activity levels should not require 

alteration to the socket and simple attachment method that could be carried out in a clinical 

setting and patients could then be monitored in their free-living environment before returning 

for removal of device. Other possible sensors could be used to measure stump/socket 

interface pressure, such as a fluid filled pressure bag placed at the distal end of the socket. 

This type of sensor could be used with all lower-limb prostheses for both trans-tibial and 

trans-femoral amputees. However, once again alterations of the socket would be required as a 

hole would be needed at the distal end to connect the sensor to the external electronic 

components of an activity monitoring device, but might be investigated in future study to 

determine its efficacy for use to monitor amputees’ activity level and prosthetic usage. 

 

For the pressurePAL or the forcePAL to be viable for use in a clinical setting, a study with an 

increased number of subjects (at least 30 subjects) should be carried out to validate the data 

analysis algorithm for activity categorization and then the devices should be evaluated in 

free-living environment.  
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Appendix I – Functional Assessment Questionnaire 

The following questionnaire was used to identify mobility level of individual attended for gait analysis 

at the Anderson Gait Laboratory, Edinburgh, UK. Higher levels of mobility skills are also indicated.  

 
Functional Assessment Questionnaire 

Date:………………… 
 
Mobility Levels 
Choose the one answer below that best describes your child’s typical walking ability (with the use of 
any needed assistive devices).  
My child... 

1. Cannot take any steps at all. 
2. Can do some stepping on his/her own with the help of another person.  Does not take full 

weight on feet; does not walk on a routine basis.   
3. Walks for exercise in therapy and less than typical household distances.  Usually requires 

assistance from another person.  
4. Walks for household distances, but makes slow progress.  Does not use walking at home as 

preferred mobility (primarily walks in therapy).   
5. Walks more than 15-50 feet but only inside at home or school (walks for household 

distances).   
6. Walks more than 15-50 feet outside the home, but usually uses a wheelchair or buggy for 

community distances or in congested areas.  
7. Walks outside the home for community distances, but only on level surfaces (cannot manage 

kerbs, uneven ground, or stairs without assistance of another person).  
8. Walks outside the home for community distances, is able to manage kerbs and uneven ground 

in addition to level surfaces, but usually requires minimal assistance or supervision for safety.    
9. Walks outside the home for community distances, easily gets around on level surfaces, kerbs, 

and uneven ground, but has difficulty or requires minimal assistance with running, climbing, 
and/or stairs. 

10. Walks, runs and climbs on level and uneven ground without difficulty or assistance.   
 
Higher Level mobility skills 
Please tick all the things your child is able to do: 

 Walk carrying an object 
 Walk carrying a fragile object or a glass of liquid 
 Walk up and downstairs without using the banister 
 Steps up and down a kerb independently 
 Run 
 Runs well including around a corner with good control 
 Can take steps backwards 
 Can manoeuvre in tight areas 
 Able to get on/off the bus independently 
 Able to jump over a rope 
 Able to jump off a single step 
 Hop on the right foot 
 Hop on the left foot 
 Kick a ball with the right foot 
 Kick a ball with the left foot 
 Ride a two wheeler bike 
 Ride a trike 
 Ice skate or roller skate/blade 
 Ride an escalator, stepping on/off by her/himself
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Appendix II – Activity profile and Activity summary generated by activPAL 

For activPAL data retrieved using the activPAL software, two types of files are generated, the 

activity profile and the activity summary. For all activPAL data, yellow represents sedentary 

events (sitting/lying); green represents standing episodes and red corresponds to stepping 

activity. The intensity of the activity can be seen by the amplitude of the data in the activity 

profile graphs.  

 

The start time and end time of the recording period is shown with the total monitoring 

duration. On the right hand side of the activity profile graph is a pie chart indicating the 

proportion of time spent in different activity in that hour and the total duration of time spent is 

also stated. The results are shown in hourly interval, so 24 similar graphs as Figure II.a would 

be found in a complete day of recording (midnight to midnight).  

 
 

 
Figure II.a: Example of activity profile obtained from the activPAL 
 

 

For the activity summary (Figure II.b), information on the number of steps performed within 

different cadence bands, number of upright events and number of sedentary events is 

presented. The overall time spent in each activity state is also noted. The total time spent in 

each activity state during either the recording time (if less than 24 hours) or daily (if 

multi-days were recorded) is shown in the activity summary, with a pie chart indicating the 

proportion of time spent in each activity state.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 
 

 

 
Figure II.b: Example of the activity summary obtained from the activPAL 
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Appendix III - Matlab code for posture categorization comparison between video 
and activPAL data 
 
This is the data analysis algorithm written using Matlab for comparing video and activPAL 

data collected during the validation study. The duration of time spent in each activity state 

was found for both video and activPAL data and was compared. The percentage sensitivity 

and discrepancy were then calculated.  

 
Within Matlab code ‘%’ indicates notes and hence not part of the algorithm itself.  
 
clear all 
% Load video data and create continuous time 
line 
load CPvideo.txt 
A=CPvideo; 
aa=diff(A(:,1)); 
time_continuous=[]; 
activity_code=[]; 
for i=1:length(A)-1 
t_beg=A(i,1); 
t_end=A(i+1,1); 
time=t_beg:0.1:t_end; 
time_continuous=[time_continuous; time']; 
activity_beg(i)=A(i,2); 
c=ones(size(time))*activity_beg(i); 
activity_code=[activity_code;c']; 
end 
  
B=[time_continuous activity_code]; 
D=diff(B(:,1)); 
aa=find(D==0); 
B(aa,:)=[]; 
Figure %plot video data 
plot(B(:,1),B(:,2),'r') 
hold on 
  
% calculate time spent in each posture for video 
data 
C=B(:,2); 
total_time_walk_video=length(find(C==5))/10 
total_time_stand_video=length(find(C==4))/10 
total_time_sit_video=length(find(C==3))/10; 
  
% load activPAL data 
load CPPALprog.txt 
Z=CPPALprog; 
aa=diff(Z(:,1)); 
time_continuous=[]; 
activity_code=[]; 
for i=1:length(Z)-1 
t_beg=Z(i,1); 
t_end=Z(i+1,1); 
time=t_beg:0.1:t_end; 
time_continuous=[time_continuous; time']; 
activity_beg(i)=Z(i,2); 
f=ones(size(time))*activity_beg(i); 

activity_code=[activity_code;f']; 
end 
  
Q=[time_continuous activity_code]; 
f=diff(Q(:,1)); 
aa=find(f==0); 
Q(aa,:)=[]; 
  
plot(Q(:,1),Q(:,2),'k') %plot activPAL data 
ylabel('activity classifier'), xlabel('time(s)') 
 
% calculate time spent in each posture for 
activPAL data 
E=Q(:,2); 
total_time_walk_PAL=length(find(E==2))/10; 
total_time_stand_PAL=length(find(E==1))/10; 
total_time_sit_PAL=length(find(E==0))/10; 
  
% calculate percentage discrepancies 
error_walk=((abs(total_time_walk_PAL-total_ti
me_walk_video))/total_time_walk_video)*100; 
error_stand=((abs(total_time_stand_PAL-total_ti
me_stand_video))/total_time_stand_video)*100; 
error_sit=((abs(total_time_sit_PAL-total_time_sit
_video))/total_time_sit_video)*100; 
  
% calculate percentage sensitivities 
sensitivity_walk = 
(total_time_walk_PAL/total_time_walk_video)*
100 
sensitivity_stand = 
(total_time_stand_PAL/total_time_stand_video)*
100 
sensitivity_sit = 
(total_time_sit_PAL/total_time_sit_video)*100 
  
error_upright=((abs((total_time_walk_PAL+total
_time_stand_PAL)-(total_time_walk_video+total
_time_stand_video)))/ 
(total_time_walk_video+total_time_stand_video)
)*100; 
sensitivity_upright = 
((total_time_walk_PAL+total_time_stand_PAL)/ 
(total_time_walk_video+total_time_stand_video)
)*100; 
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Appendix IV - Gait patterns of subject with CP 

subject 

Leg attached 

to activPAL Barefoot gait pattern 

1 Right 

For the right, no heel strike, sometimes toe walk, sometimes foot 

flat. The left gait is relatively normal. 

2 Left Bilateral toe walking and crouch gait 

3 Left Bilateral toe walking 

4 Right Bilateral toe walking 

5 Right Foot flat on right and relatively normal for left side gait 

6 Right Foot flat bilaterally 

7 Right Foot flat bilaterally 

8 Right 

Walk on lateral border of right foot and sometimes drag foot along 

the floor. Left side was foot flat 

9 Right Foot flat bilaterally, and drag foot on right 

10 Left Foot flat on right and relatively normal for left side gait 

11 Right Toe walking bilaterally and crouch gait 

12 Right Toe walking bilaterally and slight crouch gait 

13 Right Toe walking bilaterally and slight crouch gait 

14 Right Toe walking bilateral and crouch gait 

15 Right Foot flat bilaterally 

16 Right 

Foot flat and walk on lateral border on right foot, left gait was 

without major abnormality 

17 Right Relatively normal gait bilaterally 

18 Right Relatively normal gait bilaterally with slight flat foot 

19 Left Toe walking on left foot and flat footed on right 
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Appendix V – Example of timetable/diary given to each subject for recording hourly activity 
Time Thursday Friday Saturday Sunday Monday Tuesday Wednesday Thursday 

6.00                 

7.00                 

8.00                 

9.00                 

10.00                 

11.00                 

12.00                 

13.00                 

14.00                 

15.00                 

16.00                 

17.00                 

18.00                 

19.00                 

20.00                 

21.00                 

22.00                 

23.00                 
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Appendix VI – Free-living activPAL results for people with CP annotated with 

notes from diary 

Multi-day free-living activity monitoring for people with CP was recorded using the 

activPAL and hourly events for each subject were retrieved using the activPAL professional 

software. This Appendix shows the activPAL results broken down hourly for each subject. 

Notes from subject’s diaries for the monitoring periods are included alongside the activPAL 

results to enhance understanding of the collected data.  

As mentioned in Appendix II, for activPAL activity profiles, yellow represents sedentary 

events, green correlates to standing episodes and red associates with stepping activity. The 

total duration of each activity state within each hour is shown on the right.  

 

Subject 3 – Day 1 

 
 

home 

Car journey 
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Subject 3 - Day 2 

 

school 

Play outside 

home 
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Subject 3 - Day 3 

 

school 

Car journey 

Car journey 

Orthopeadic clinic 

Car journey 

Car journey 

football 

home 
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Subject 3 - Day 4 

 

Home all day and 

play with friends 
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Subject 3 - Day 5 

 

shopping 

Practicing football at home 

home 

home 
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Subject 3 - Day 6 

 

school 

home 
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Subject 3 - Day 7 

  

school 

home 
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Appendix VII – Average number of upright events per day for 3 minimum 
settings for each subject 
 
The average number of upright events per day for different minimum settings (3, 5 and 10 
seconds) of upright periods in the activPAL software for each subject who took part in the 
free-living monitoring is shown in this Appendix. The number of events might not be whole 
numbers as the graphs show average number of events per day.  
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Appendix VIII – Average number of sedentary events per day for 3 minimum 
settings for each subject 
 
Average number of sedentary events per day for different minimum settings (3, 5 and 10 
seconds) of upright periods in the activPAL software for each subject who took part in the 
free-living monitoring is shown in this Appendix. The number of events might not be whole 
numbers as the graphs show average number of events per day.  
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Appendix IX - Matlab data analysis algorithm for activity categorization of 

pressurePAL data.  

The Matlab code categorized trans-tibial amputees’ activity level using the pressure signal 
recorded at the pressure relief valve of a suction socket with the pressurePAL. The algorithm 
categorizes activity into time spent in dynamic, static and ‘off’ events; also strides performed 
by the amputee were counted.  
 
Within Matlab code ‘%’ indicates notes and hence not part of the algorithm itself.  
 
Clear all 

% GUI to prompt user to select desired PAL 

session for analysis 

prompt ={'Enter program you wish to analyse 

e.g. filename.dat'};  

title = 'Input PAL session'; 

num_lines= 1; 

file_name = 

char(inputdlg(prompt,title,num_lines)); 

  

% Load file into MATLAB workspace 

file_id=fopen(file_name,'r'); 

% Read File 

x=fread(file_id); 

 

% decompress data  

n = length(x); 

k = 1; 

j = 0; 

for i = 1:n 

if j == 0 

y(k,1) = x(i,1); 

if x(i,1) == 0 

y(k,1) = x(i-1,1); 

p = x(i-1,1).*ones(x(i+1,1),1); 

y = [y(1:k,1); p]; 

k = k + x(i+1,1); 

j = 1; 

continue 

end 

k = k+1; 

end 

j = 0; 

end 

 

% Calculate Sample times based on a sampling 

rate of 10Hz 

time_div=1/10; 

n=length(y); 

% Find number of samples 

sample_num=size(y); 

t=sample_num(1:1); 

 

%Create matrix of time divisions 

time_div_matrix=[0:time_div:time_div*(t-1)]; 

z=time_div_matrix';  

% moving window of 1 second to compute 

standard deviation  

a=movingstd(y,5); 

%Plot PAL values w.r.t. time 

figure; 

plot(time_div_matrix,y,time_div_matrix,a,'k'); 

xlabel('time(s)'), ylabel('PAL Magnitude') 

 

% moving average window of 10 second 

b=moving_average(a,50); 
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figure; 

plot(time_div_matrix,b,'r'); 

  

t=b; 

F=[z t]; 

% distinguish static and dynamic events 

m=max(t); 

threshold=(m/5)*2; 

n=length(t); 

for i=1:n; 

if t(i,1)> threshold; 

e(i,1)=5; 

elseif t(i,1)<= threshold; 

e(i,1)=4; 

end 

end 

  

% count stride 

f=min(y); 

b = 1;  %to indicate passing the baseline  

peaks = 0;  %counts the number of peaks > 

threshold  

threshold = 121;   % threshold value  

baseline = 110;    % baseline value  

ti = 0.1;      %time to start counting  

tf = time_div*(t-1);  %time to finish counting  

for i=ti*10:tf*10 

if (y(i,1) > threshold) && (b == 1)  

peaks = peaks+1; 

j=i; 

A=[j peaks]; 

b = 0; 

end 

if y(i,1) < baseline 

b = 1; 

end 

end 

peaks 

 

% identify ‘off’ periods 

n=length(y); 

b = 1; c = 0; d = 0; k = 0; 

for i = 1:n-1 

if y(i,1) == y(i+1,1) 

if b == 1 

k = i; c = 1; b = 0; 

else 

c = c+1; 

end 

elseif (y(i,1) ~= y(i+1,1)) && (b == 0) 

d = 1; 

end 

if (y(i,1) ~= y(i+1,1)) && (d == 1) && (b == 0) 

&& (c > 1500) 

y(k:k+c,1) = 1000*ones(c+1,1); 

b = 1; d = 0; c = 0; 

elseif (y(i,1) ~= y(i+1,1)) && (d == 1) && (b 

== 0) && (c < 1500) 

b = 1; d = 0; c = 0; 

end 

end 

  

% doff event for any period which is static for 

over 5 min 

s=y; 

n=length(s); 

for i=1:n; 

if s(i,1)==1000; 

s(i,1)=3;   

else s(i,1)=e(i,1); 

end 

end 

  
figure 
plot(time_div_matrix,s,'g') % graph of activity 

pattern
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Appendix X - Matlab data analysis algorithm for activity categorization from 
forcePAL data.  
 
The Matlab code categorized trans-tibial amputees’ activity level by stump/socket interface 
pressure measured using the forcePAL. The algorithm categorized activity into periods spent 
walking (with the number of strides performed), standing, sitting and ‘off’.  
 
Within Matlab code ‘%’ indicates notes and hence not part of the algorithm itself.  
 
clear all 
  
% GUI to prompt user to select desired PAL 

session for analysis 
prompt ={'Enter program you wish to analyse 

e.g. filename.dat'};  
title = 'Input PAL session'; 
num_lines= 1; 
file_name = 

char(inputdlg(prompt,title,num_lines)); 
  
% Load file into MATLAB workspace 
file_id=fopen(file_name,'r'); 
  
% Read File 
x=fread(file_id); 
% decompress data 
n = length(x); 
k = 1; 
j = 0; 
for i = 1:n 
if j == 0 
(k,1) = x(i,1); 
if x(i,1) == 0 
y(k,1) = x(i-1,1); 
p = x(i-1,1).*ones(x(i+1,1),1); 
y = [y(1:k,1); p]; 
k = k + x(i+1,1); 
j = 1; 

continue 
end 
k = k+1; 
end 
j = 0; 
end 
  
% Calculate Sample times based on a sampling 

rate of 10Hz 
time_div=1/10; 
  
% Find number of samples 
sample_num=size(y); 
t=sample_num(1:1); 
  
%Create matrix of time divisions 
time_div_matrix=[0:time_div:time_div*(t-1)]; 
z=time_div_matrix';  
%Plot PAL values w.r.t. time 
figure (2) 
plot(z,y,'k'); 
xlabel('time(s)'), ylabel('PAL Magnitude') 
%title('PAL readings w.r.t. time of',file_id,'data') 
hold on; 
  
% moving average window of 20 second 
t=moving_average(y,100); 
figure(2); 
plot(z,t,'r') 
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hold on; 
  
% distinguish upright and non-upright events 
n=length(t); 
q=max(t); 
m=q/2.8; 
for i=1:n; 
if t(i,1)>52; 
e(i,1)=6; % upright event e.g standing and 

walking 
elseif t(i,1)<=52; 
e(i,1)=5; % non-upright event e.g sitting and 

lying 
end 
end 
  
% moving standard deviation of raw data 
v=movingstd(y,10); 
figure(2); 
plot(z,v,'y') 
hold on; 
  
% moving average window of 10 second 
u=moving_average(v,50); 
figure(2); 
plot(time_div_matrix,u,'b') 
  
% distinguish dynamic and static events i.e. 

separate standing and walking 
n=length(u); 
for i=1:n; 
if u(i,1)>22; 
u(i,1)=7;  % dynamic event e.g walking 
else u(i,1)=e(i,1); 
end 
end 
  

%count steps  

b = 1; % to indicate passing the baseline  
peaks = 0; %counts the number of peaks > 

threshold  
threshold = 82; % threshold value  
baseline = 70; % baseline value  
ti = 0.1; %time to start counting  
tf = time_div*(t-1); %time to finish counting  
  
for i=ti*10:tf*10 
if (d(i,1) > threshold) && (b == 1)  
peaks = peaks+1; 
b = 0; 
end 
if d(i,1) < baseline 
b = 1; 
end 
end 
steps=(peaks) 
 
% separating the doff period 
n = length(y); 
b = 1; c = 0; d = 0; k = 0; 
for i = 1:n-1 
if y(i,1) == y(i+1,1) 
if b == 1 
k = i; 
c = 1; 
b = 0; 
else 
c = c+1; 
end 
elseif (y(i,1) ~= y(i+1,1)) && (b == 0) 
d = 1; 
end 
if (y(i,1) ~= y(i+1,1)) && (d == 1) && (b == 0) 

&& (c > 5000) 
y(k:k+c,1) = zeros(c+1,1); 
b = 1; d = 0; c = 0; 
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elseif (y(i,1) ~= y(i+1,1)) && (d == 1) && (b 

== 0) && (c < 5000) 
b = 1; d = 0; c = 0; 
end 
end 

 
 

s=y; 
n=length(s); 
for i=1:n; 

if s(i,1)==0; 
s(i,1)=4;   
else s(i,1)=u(i,1); 
end 
end 
  
  
figure 
plot(time_div_matrix,s,'g') % graph of activity 

patterns
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Appendix XI - Matlab code for posture categorization comparison between video 
and pressurePAL/forcePAL data 
 
This is the data analysis algorithm written using Matlab for comparing video and 
pressurePAL/forcePAL data collected during the validation study. The duration of time spent 
in each activity state was found for both video and activPAL data and was compared. The 
percentage sensitivity and discrepancy were then calculated to evaluate the pressurePAL and 
forcePAL for use to quantify amputees’ activity level and prosthetic usage. This part of the 
Matlab code was added at the end of Matlab algorithm for activity categorization (Appendix 
IX and X) for comparison between video and pressure/forcePAL data.  
 
Within Matlab code ‘%’ indicates notes and hence not part of the algorithm itself.  
 

load video.txt 

A=video; 

A=A*10; 

a=round(A); 

A=A/10; 

time_global=[]; 

action_global=[]; 

for i=1:length(A)-1 

t_beg=A(i,1); 

t_end=A(i+1,1); 

time=t_beg:0.1:t_end; 

time_global=[time_global; time']; 

action_beg(i)=A(i,2); 

c=ones(size(time))*action_beg(i); 

action_global=[action_global;c']; 

end 

  

B=[time_global action_global]; 

D=diff(B(:,1)); 

aa=find(D==0); 

 

 

B(aa,:)=[]; 

  

figure; 

plot(B(:,1),B(:,2),'k'); 

hold on; 

  

figure; 

plot(time_div_matrix,s,'b') 

G=B(:,2); 

  

% calculate error and sensitivity in each activity 

group for pressurePAL data  

walk=(length(find(s==5)))/10 

static=(length(find(s==4)))/10 

doff=(length(find(s==3)))/10 

  

walk_video=length(find(G==2))/10; 

static_video=length(find(G==1))/10; 

doff_video=(length(find(G==0))/10); 
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sensitivity_walk = (walk/walk_video)*100 

sensitivity_static = (static/static_video)*100 

sensitivity_doff = (doff/doff_video)*100 

  

error_walk=((abs(walk-walk_video))/walk_video)*100; 

error_static=((abs(static-static_video))/static_video)*100; 

error_doff=((abs(doff-doff_video))/doff_video)*100; 

 

% calculate error and sensitivity in each activity group for forcePAL data 

walk=(length(find(s==7)))/10; 

stand=(length(find(s==6)))/10; 

sit=(length(find(s==5)))/10; 

doff=(length(find(s==4)))/10; 

  

walk_video=length(find(G==3))/10; 

stand_video=length(find(G==2))/10; 

sit_video=(length(find(G==1))/10); 

doff_video=(length(find(G==0))/10); 

 

sensitivity_walk = (walk/walk_video)*100 

sensitivity_stand = (static/stand_video)*100 

sensitivity_sit = (sit/sit_video)*100 

sensitivity_doff = (doff/doff_video)*100 

  

error_walk=((abs(walk-walk_video))/walk_video)*100; 

error_stand=((abs(stand-stand_video))/stand_video)*100; 

error_sit=((abs(sit-sit_video))/sit_video)*100; 

error_doff=((abs(doff-doff_video))/doff_video)*100; 

 

 


