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Abstract

In this thesis, we examine an infinite system of ordinary differential equations that
models the evolution of fragmenting and coalescing discrete-sized particle clusters.
We express this discrete coagulation–fragmentation system as an abstract Cauchy
problem posed in an appropriate Banach space of sequences. The theory of
operator semigroups is then used to establish the existence and uniqueness of
solutions. We also investigate properties of the solutions, such as positivity, mass-
conservation and asymptotic behaviour. A main aim of this thesis is to relax
the assumptions that have previously been required, when using a semigroup
approach, to obtain the existence and uniqueness of physically relevant solutions.
Moreover, we consider the case when the infinite system is non-autonomous due
to time-dependent coagulation and fragmentation coefficients.
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Chapter 1

Introduction

In this thesis, we consider a system consisting of clusters of particles that can
break apart (i.e. fragment) to produce smaller clusters and can merge together
(i.e. coagulate) to produce larger clusters. For example, in industry, the co-
agulation and fragmentation of clusters occur in polymer science, [1, 78, 79], in
the formation of aerosols, [29], and in the powder production industry, [69, 73].
Moreover, these processes also appear in nature, including in blood aggregation,
[62], in the formation of preplanetesimals, [36], and in animal groupings, [28].

The evolution of coalescing and fragmenting clusters can be described by
coagulation–fragmentation equations, and various methods have been developed
to analyse these equations; see, for example, [18, 19, 23] . We concentrate on the
approach discussed in [18], which is based upon the theory of strongly continuous
semigroups (C0-semigroups). In particular, semigroup perturbation theory plays
a pivotal role in the theory and results presented in this thesis.

Suppose that we wish to predict the density evolution in a system of frag-
menting and coalescing clusters, where density is the number per unit volume. If
we assume that each cluster is made up of identical units, then cluster size is a
discrete variable and a cluster of size n ∈ N, an n-mer, is made up of n identical
units. We refer to these identical units as monomers and we scale the mass such
that a monomer has unit mass. It follows that the size variable, n, also repres-
ents the mass of a cluster. In this case, the density evolution of clusters may be
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Chapter 1. Introduction

described by the infinite system of ordinary differential equations, [18, (2.2.1)],

u′n(t) = −anun(t) +
∞∑

j=n+1
ajbn,juj(t)

+ 1
2

n−1∑
j=1

kn−j,jun−j(t)uj(t)−
∞∑
j=1

kn,jun(t)uj(t), t > 0;

un(0) = ůn, n = 1, 2, . . . ,

(1.1.1)

where we define ∑0
j=1 here, and henceforth, to be the empty sum. In (1.1.1),

un(t) denotes the density of clusters of mass n ∈ N at time t ≥ 0. For n ∈ N,
the coefficient an ≥ 0 is the rate at which clusters of mass n fragment and, for
n, j ∈ N, j > n, bn,j is the average number, per unit volume, of clusters of
mass n that are created when a cluster of mass j fragments. Since monomers
cannot fragment, the case a1 > 0 represents a system in which monomers are
being removed from the system at rate a1. We interpret the coagulation kernel
kn,j = kj,n as the rate at which clusters of mass n merge with those of mass j,
when j 6= n, and as double the rate at which clusters of mass n merge with those
of the same size when n = j.

Hence, the first term in (1.1.1) represents the loss of clusters of mass n as they
fragment into smaller clusters and the second term represents the gain in clusters
of mass n due to the fragmentation of larger clusters. The third term in (1.1.1)
represents the gain in clusters of mass n due to smaller clusters merging together.
Note that, since kn,j = kj,n for all n, j ∈ N, the coefficient of 1

2 prevents the double
counting of n-mers produced when clusters of masses j and n− j merge together.
Finally, the fourth term represents the loss of n-mers as they merge with other
clusters. It is assumed in this model that the population of clusters is dilute so
that only binary collisions, and so binary coagulation, occurs, i.e. each coagulation
event occurs between exactly two clusters. It is also assumed that fragmentation
events do not arise due to interactions between clusters. In addition, (1.1.1) is
an infinite system of equations because we assume that there is no upper bound
on the size of a cluster. We note here that certain coagulation and fragmentation
coefficients can be shown to give rise to a phenomenon known as gelation, where
clusters of infinite size are created. However we do not study this phenomenon
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Chapter 1. Introduction

in this thesis. We refer to (1.1.1) as the coagulation–fragmentation system (or
the C–F system). If the coagulation and fragmentation rates are all independent
of time, then the associated C–F model is said to be autonomous. On the other
hand, if one or more of the rates depend on time, the model is non-autonomous.

We can write any solution of the system (1.1.1) as a sequence u(t) = (un(t))∞n=1

and, if u(t) is a solution of (1.1.1), then the total mass of clusters in the system
at time t ≥ 0 is given by

M1(u(t)) =
∞∑
n=1

nun(t). (1.1.2)

The total mass of daughter clusters that are produced when a j-mer fragments
is given by

j−1∑
n=1

nbn,j.

To compare the mass before and after a fragmentation event we set

j−1∑
n=1

nbn,j = (1− λj)j, λj ∈ R, j = 2, 3, . . . . (1.1.3)

If λj = 0, then mass is conserved during the break up of a j-mer. On the other
hand, the case λj > 0 (resp. λj < 0) corresponds to mass being lost (resp. gained)
during the fragmentation of a j-mer. Using (1.1.1), (1.1.2) and (1.1.3) we find
that, at least formally, for t > 0,

d

dt
M1(u(t)) =

∞∑
n=1

nu′n(t) =
∞∑
n=1

n
(
− anun(t) +

∞∑
j=n+1

ajbn,juj(t)

+ 1
2

n−1∑
j=1

kn−j,jun−j(t)uj(t)−
∞∑
j=1

kn,jun(t)uj(t)
)

= −
∞∑
n=1

nanun(t) +
∞∑
j=2

( j−1∑
n=1

nbn,j

)
ajuj(t)

+ 1
2

∞∑
j=1

( ∞∑
n=j+1

nkn−j,jun−j(t)uj(t)
)
−
∞∑
n=1

( ∞∑
j=1

nkn,jun(t)uj(t)
)

= −
∞∑
n=1

nanun(t) +
∞∑
j=2

(
1− λj

)
jajuj(t)

3



Chapter 1. Introduction

+ 1
2

∞∑
j=1

∞∑
l=1

(l + j)kl,jul(t)uj(t)−
∞∑
n=1

∞∑
j=1

nkn,jun(t)uj(t)

= −a1u1(t)−
∞∑
j=2

λjjajuj(t).

Hence, the change of mass in the system is given by

d

dt
M1(u(t)) = −a1u(t)−

∞∑
j=2

λjjajuj(t). (1.1.4)

Motivated by (1.1.2), most previous investigations into (1.1.1), for example
[46], have concentrated on writing the system as an abstract Cauchy problem
(ACP) in the space X[1], where

X[1] :=

f = (fn)∞n=1 : fn ∈ R for all n ∈ N and
∞∑
n=1

n|fn| <∞

 (1.1.5)

is equipped with the norm
‖f‖[1] =

∞∑
n=1

n|fn|. (1.1.6)

The space X[1] is of physical relevance to the system since, from (1.1.2) and
(1.1.6), the norm of a non-negative solution (i.e. a solution in which un(t) ≥ 0 for
all n ∈ N, t ≥ 0) gives the total mass of clusters in the system.

However, for reasons that we explain later in this section, we formulate (1.1.1)
as an ACP in a more general weighted `1 space. Let w = (wn)∞n=1 be such that
wn > 0 for all n ∈ N. Then we write (1.1.1) as an ACP in `1

w, where

`1
w :=

f = (fn)∞n=1 : fn ∈ R for all n ∈ N and
∞∑
n=1

wn|fn| <∞

 (1.1.7)

is equipped with the norm

‖f‖
`

1
w

=
∞∑
n=1

wn|fn|. (1.1.8)

We refer to `1
w as the weighted `1 space with weight w = (wn)∞n=1.

4



Chapter 1. Introduction

As well as the space X[1], X[p] spaces, for p > 1, have also attracted attention
in previous examinations of (1.1.1) in, for example, [9, 15]. For p ≥ 1, the space
X[p] coincides with `1

w when the weight is of the form wn = np for all n ∈ N.
In this thesis, we show that it is possible to obtain results regarding the well-

posedness of the ACP associated with (1.1.1) when working with a more general
weight, w = (wn)∞n=1, which reduce to those obtained in previous investigations
on setting wn = np for p ≥ 1, n ∈ N. There are several advantages to be gained
by working with more general weights, including the ability to obtain results
regarding analytic semigroups that do not necessarily hold if the weight is of the
form wn = np for p ≥ 1. Also, even in the case when wn = np for p ≥ 1, we prove
stronger results than those deduced in prior examinations of (1.1.1). We note
that more general weighted spaces have been previously used when examining
(1.1.1) by Laurençot, [40, Theorem 2.5], who exploits an alternative method to
the semigroup approach investigated in this thesis.

We refer to a solution of (1.1.1) (or the corresponding ACP) as being physic-
ally relevant if it is non-negative and displays the expected change in mass. An
explicit definition of what we regard as a “classical” solution of a linear ACP is
given in Chapter 3 and definitions are given in Chapter 4 of “mild” and “clas-
sical” solutions to semi-linear ACPs. In Chapter 5, we begin our investigation
into (1.1.1) by examining the pure fragmentation system where we set kn,j = 0
for all n, j ∈ N. We write this fragmentation system as a linear ACP in `1

w in-
volving the sum of two operators, A(w) and B(w), which correspond, respectively,
to the first and second terms on the right-hand side of (1.1.1). In Theorem 5.2.7
we use a novel argument, based on a perturbation result from [68], to show that
A(w) +B(w) is the generator of a substochastic C0-semigroup, (S(w)(t))t≥0. The
approach that we use differs from that used in previous X[p]-based investigations
and this result allows us to establish that, for t ≥ 0, S(w)(t)̊u is the unique physic-
ally relevant classical solution of an ACP associated with the pure fragmentation
system, where ů = (̊un)∞n=1 is the initial condition. Moreover, we obtain an addi-
tional invariance result that can be used to prove that for t ≥ 0, S(w)(t)̊u provides
a solution of the pure fragmentation system (1.1.1) for all ů ∈ `1

w; see Section 5.3.
The main motivation for working with more general weighted `1 spaces is

the results that can be obtained regarding analytic semigroups. For example,

5



Chapter 1. Introduction

in Theorem 5.4.5 we show that for any given fragmentation coefficients we are
able to find a corresponding weight, w, such that the semigroup (S(w)(t))t≥0 on
`1
w is analytic and is generated by A(w) + B(w). This leads to the existence and

uniqueness of physically relevant classical solutions to the fragmentation ACP for
all initial conditions in `1

w; see Theorem 5.4.9.
Furthermore, to prove the existence and uniqueness of solutions, we require

the existence of some δ ∈ (0, 1] such that the weight, w = (wn)∞n=1, satisfies

j−1∑
n=1

wnbn,j ≤ δwj for all j = 2, 3, . . . . (1.1.9)

If we take the weight w to be such that wn = n for all n ∈ N, and (1.1.9) holds,
then

j−1∑
n=1

nbn,j ≤ δj.

Since δ ∈ (0, 1], it follows that (1.1.3) cannot hold with λj < 0 in this case, i.e. we
cannot consider mass gain. By working with a more general weight than wn = n

for all n ∈ N, we allow the possibility that mass is gained during fragmentation.
We also study the asymptotic behaviour of solutions and show that the unique

classical solution, S(w)(t)̊u, of the fragmentation ACP decays to zero as t → ∞
if and only if an > 0 for all n ∈ N; see Theorem 5.5.1(i). In Theorem 5.5.4, we
study the case where mass is conserved in the system and we show in part (i) that
the classical solution converges to a steady state consisting entirely of monomers
if and only if an > 0 for all n ≥ 2. In Theorem 5.5.1(ii) (resp. Theorem 5.5.4(ii)),
we investigate the case where A(w) + B(w) generates an analytic semigroup, and
we demonstrate that the solution decays to zero (resp. the solution decays to
the monomer state) at an exponential rate, which we quantify, if and only if
infn∈N an > 0 (resp. infn∈N:n≥2 an > 0).

We then move on to investigate the full coagulation–fragmentation system
(1.1.1), which we write as a semi-linear ACP in a weighted `1 space. The system
(1.1.1) originates from work by Smoluchowski, [64, 65], who derived an equa-
tion to describe pure coagulation. Smoluchowski’s derivation of this equation

6



Chapter 1. Introduction

leads initially to a system involving time-dependent rates which is subsequently
reduced, via a simplifying assumption, to the more tractable case of constant
rate coefficients. Unlike previous analytical investigations into the discrete C–F
system, we allow the coagulation rates in (1.1.1) to be time-dependent. Under
particular assumptions on the weight and coagulation rates, we establish the ex-
istence and uniqueness of physically relevant mild and classical solutions of the
semi-linear ACP; see Propositions 6.3.4 and 6.3.7. Our results on the analyticity
of the fragmentation semigroup in the autonomous (time-independent) case can
be used in conjunction with the theory of interpolation spaces to further relax the
conditions required on the coagulation rates to obtain the existence and unique-
ness of physically relevant mild and classical solutions; see Theorems 6.5.9, 6.5.10
and 6.5.11. The analyticity of the fragmentation semigroup in the autonomous
case is also used in Theorem 7.2.4 to prove the existence of a unique classical
solution of the non-autonomous pure fragmentation ACP.

It should be noted that there is also a continuous version of (1.1.1), where the
size of a cluster is allowed to take any real positive value. The infinite system of
equations (1.1.1) is then replaced by an integro-differential equation of the form

∂

∂t
u(x, t) = −a(x)u(x, t) +

∞∫
x

a(y)b(x, y)u(y, t) dy

+ 1
2

x∫
0

k(x− y, y)u(x− y, t)u(y, t) dy

− u(x, t)
∞∫
0

k(x, y)u(y, t) dy, t > 0;

u(x, 0) = ů(x), x > 0,

(1.1.10)

where u(x, t) is the density of clusters of size x > 0 at time t ≥ 0. The coefficients
and terms in (1.1.10) are defined in an analogous way to those in (1.1.1). For some
function w : [0,∞) → [0,∞) such that w(x) > 0 for a.e. x > 0, the continuous
system can be posed as an ACP in L1

w, where

L1
w =

{
f : [0,∞)→ R :

∞∫
0

w(x)|f(x)| dx <∞
}

(1.1.11)

7



Chapter 1. Introduction

is equipped with the norm

‖f‖
L

1
w

=
∞∫
0

w(x)|f(x)| dx. (1.1.12)

At time t ≥ 0, the total number of clusters and the total mass of clusters in
the system are given, respectively, by

N̂(u(x, t)) =
∞∫
0

u(x, t) dx and M̂(u(x, t)) =
∞∫
0

xu(x, t) dx.

The case where w(x) = x is of physical relevance to the system since the norm
of a non-negative solution will then give the total mass in the system. However,
if we need to control both the number of clusters and the mass of clusters, then
it is clear that the weight w(x) = 1 + x is most appropriate. In this thesis we
concentrate on the discrete system (1.1.1), with the continuous system, (1.1.10),
being mentioned only briefly in relation to prior investigations into coagulation–
fragmentation.

We now provide an outline of the thesis. In the next chapter we discuss
coagulation–fragmentation models and previous results that have been obtained
using the semigroup approach that we adopt. In Chapter 3 we provide abstract
results regarding Banach lattices and linear operators. We introduce operator
semigroups, perturbation results relating to these semigroups and we discuss the
connection between operator semigroups and solutions of linear ACPs. These res-
ults are useful later when we examine pure fragmentation. We then move on to
examine non-linear operators in Chapter 4. In particular, we define what it means
for an operator to satisfy a Lipschitz condition and to be Fréchet differentiable.
These concepts are important when obtaining existence and uniqueness results for
the C–F system as we require the operator used to describe coagulation to possess
these properties. Moreover, in Chapter 4 we provide existence and uniqueness
results for semi-linear ACPs that we use when examining the ACP formulation
of (1.1.1). Chapters 3 and 4 contain mostly known results, and any that are
new, or that we have adapted or extended, will be highlighted as they arise. In
Chapter 5, we examine pure, autonomous fragmentation. We write this system as

8



Chapter 1. Introduction

a linear ACP in an `1
w space and use semigroup perturbation theory to obtain the

existence and uniqueness of classical solutions. In Chapter 5 we also investigate
properties of this solution including positivity, mass conservation and asymptotic
behaviour. The results in Chapter 6 relate to the full coagulation–fragmentation
system, (1.1.1), where the coagulation rates are allowed to be time-dependent.
We write this system as a semi-linear ACP and show that, under certain assump-
tions on the coagulation rates, the operator that is used to describe coagulation is
Lipschitz and Fréchet differentiable. This then leads to the existence and unique-
ness of physically relevant mild and classical solutions to the semi-linear ACP. In
Chapter 7 we return to the pure fragmentation system, where the fragmentation
coefficients are now time dependent. Under certain assumptions we establish the
existence and uniqueness of physically relevant classical solutions for the ACP
related to this system. Finally, in Chapter 8, we discuss the conclusions of the
work presented in this thesis and possible future steps that can be taken.

We note that part of the material in Chapter 3 and much of Chapter 5 has
been accepted for publication in the Journal of Evolution Equations.

9



Chapter 2

Coagulation–Fragmentation
Systems

In this chapter we provide a brief historical account of coagulation–fragmentation
(C–F) models and previous investigations into (1.1.1).

2.1 Coagulation–Fragmentation Models

We first turn our attention to C–F models. As mentioned in Chapter 1, the system
(1.1.1) originates from work by Smoluchowski, [64, 65], who in 1916 introduced
an infinite system of ordinary differential equations, known as the Smoluchow-
ski equation, to model pure coagulation. The coagulation in this case occurs
as a result of Brownian motion, where two clusters merge into a larger cluster
whenever they become sufficiently close together. A continuous size version of
the Smoluchowski equation was later introduced by Müller in 1928, [58]..

C–F equations with binary fragmentation have been extensively studied. In
binary fragmentation, each fragmentation event results in the creation of exactly
two daughter clusters. This means that we have

j−1∑
n=1

bn,j = 2 for j ≥ 2, (2.1.1)

since the left-hand side of (2.1.1) gives the total number of daughter clusters pro-

10



Chapter 2. Coagulation–Fragmentation Systems

duced during the fragmentation of a j-mer. In the case of binary fragmentation,
(1.1.1) can be written as

u′n(t) = 1
2

n−1∑
j=1

(
kn−j,jun−j(t)uj(t)− Fn−j,jun(t)

)

−
∞∑
j=1

(
kn,jun(t)uj(t)− Fn,jun+j(t)

)
, t > 0;

un(0) = ůn, n = 1, 2, . . . ,

(2.1.2)

where Fn,j = an+jbn,n+j is the rate at which clusters of mass n + j fragment to
produce a cluster of mass n and a cluster of mass j; see [18, Equations (2.2.6)
and (2.2.7)].

The first discrete model to include both coagulation and fragmentation was
due to Becker and Döring in 1935, [20], and models a specific form of binary
fragmentation. The Becker–Döring cluster equations examine the particular case
where clusters can only merge with one single monomer at a time and each
fragmentation of an n-mer results in the production of a monomer and an (n−1)-
mer. In this case, the coefficients (bn,j)n,j∈N:j>n are given by

b1,2 = 2; b1,j = bj−1,j = 1, j ≥ 3;

bn,j = 0, 2 ≤ n ≤ j − 2,
(2.1.3)

and the coefficients (kn,j)n,j∈N satisfy

kn,j = 0, n, j > 1. (2.1.4)

It is assumed that monomers cannot fragment so that a1 = 0. In this case, as in
[6, Equation 1.1], we can write the C–F system as

u′1(t) = −J1(t)−
∞∑
n=1

Jn(t);

u′n(t) = Jn−1(t)− Jn(t), n ≥ 2;

un(0) = ůn, n = 1, 2, . . . ,

(2.1.5)

11



Chapter 2. Coagulation–Fragmentation Systems

where

Jn(t) = kn,1un(t)u1(t)− Fn,1un+1(t) = kn,1un(t)u1(t)− an+1bn,n+1un+1(t)

for all n ∈ N. We note here that in [20], Becker and Döring consider the case in
which the concentration of monomers is constant. Hence the equation for u1 in
(2.1.5) does not appear in [20] and was introduced by Burton in 1977, [24].

The first time that a model appeared featuring both coagulation and multiple
fragmentation was in 1957, when Melzak formulated a continuous C–F model of
the form

∂

∂t
u(x, t) = −u(x, t)

x

x∫
0

yϕ(x, y) dy +
∞∫
x

ϕ(y, x)u(y, t) dy

+ 1
2

x∫
0

k(x− y, y)u(x− y, t)u(y, t) dy

− u(x, t)
∞∫
0

k(x, y)u(y, t) dy, t > 0;

u(x, 0) = ů(x), x > 0,

(2.1.6)

see [52]. Note that by setting ϕ(y, x) = a(y)b(x, y) we can obtain (1.1.10) from
(2.1.6). In 1957, Melzak also considered a more general form of (2.1.6), where the
coefficients ϕ(x, y) and k(x, y) are allowed to be time-dependent, [53], resulting
in (2.1.6) being a non-autonomous model.

It is worthwhile noting that the system (1.1.1) is not the only model for dis-
crete C–F processes. For example, equations have been studied in which the frag-
mentation terms are non-linear; see, for example, [38, 66]. The case of collision-
induced fragmentation is considered in [38]. Here, fragmentation occurs due to
two clusters colliding, resulting in one of them breaking into two smaller clusters.
Another case of collisional fragmentation is studied in [41]. In [41], the authors
consider the possibility that a collision between two clusters can produce clusters
that are larger than the colliding clusters, e.g. a j-mer and k-mer colliding may
produce a (j + k− 1)-mer and a monomer. Moreover, stochastic models for C–F
have also been developed; see, for example, [2, 23, 44, 45].

12



Chapter 2. Coagulation–Fragmentation Systems

2.2 Semigroup Approach

There are various approaches that have been used to examine (1.1.1) and we
concentrate on a method that is based upon the theory of operator semigroups.
The idea is to first consider the case where only fragmentation occurs. The cor-
responding discrete fragmentation system is given by (1.1.1) with kn,j = 0 for all
n, j ∈ N. Similarly, the continuous fragmentation equation is given by (1.1.10),
with k(x, y) = 0 for all x, y > 0. The associated initial-value problem describing
the fragmentation process is first written as an abstract Cauchy problem (ACP)
posed in some Banach space using two operators, A and B. As mentioned in
Chapter 1, in the discrete case, the most physically relevant Banach space to
work in is the space X[1], defined by (1.1.5). We also note that the operators A
and B will reflect, respectively, the first and second terms on the right-hand side
of (1.1.1). A unique classical solution of the fragmentation ACP is then shown to
exist and to be defined in terms of a substochastic C0-semigroup. Finally, the full
C–F system is written as a semi-linear ACP and, by treating the operator arising
from the coagulation terms as a perturbation of the fragmentation operator, ex-
istence and uniqueness results are obtained. One of the major benefits of using
the semigroup approach is that the existence and uniqueness of solutions can be
obtained simultaneously, while these must be proven separately using other meth-
ods. However, the semigroup approach does have restrictions. In particular, the
semigroup approach relies on the ability to treat coagulation as a perturbation of
fragmentation and so it cannot be used to deal with the case of pure coagulation.
We now provide some background on the history of this method in dealing with
C–F equations.

Operator semigroups were used for the first time to analyse C–F equations in
1979 when Aizenman and Bak, [1], examined the binary fragmentation version
of the continuous C–F equation (1.1.10). In [1], the coagulation and fragmenta-
tion coefficients are assumed to be constant and mass is assumed to be conserved
during each fragmentation event. The authors begin by considering the linear
fragmentation integro-differential equation which they write as an ACP in L1

w,
where w(x) = x for all x ≥ 0. The strategy used is to examine a sequence of “trun-
cated” ACPs that involve functions which are identically equal to zero on [n,∞),

13
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n = 1, 2, . . .. Each of these truncated problems is expressed in terms of an ap-
propriately truncated fragmentation operator, which, being bounded, generates a
uniformly continuous semigroup. It is then shown that these semigroups converge
(as n →∞) in an appropriate sense to a contraction semigroup, which, in turn,
provides a unique, non-negative, mass-conserving classical solution of the original
(untruncated) fragmentation ACP for suitably restricted initial conditions. Fi-
nally, the full C–F equation is dealt with by expressing it as a semi-linear ACP
and treating the coagulation operator as a perturbation of the fragmentation
operator.

McLaughlin, Lamb and McBride build upon the work of Aizenman and Bak
in [47, 48], where they also examine the continuous equation (1.1.10). However,
unlike [1], they allow more than two daughter clusters to be created during a single
fragmentation event, and non-constant coagulation and fragmentation coefficients
are permitted. The methods used in [47, 48] are similar to those in [1]. In
[47], the fragmentation ACP is considered and a classical solution is obtained by
considering first a sequence of truncated, and more tractable, ACPs, and then
using a limit argument. The full C–F equation is then examined in [48], where
the coagulation terms are treated as a perturbation of the fragmentation terms.

The first time that results associated with substochastic semigroups were used
to deal with pure fragmentation was in 2001 by Banasiak, [7], who examined
continuous fragmentation with specific fragmentation coefficients. As in [1], the
fragmentation equation is written as an ACP in L1

w, with w(x) = x for all x ≥ 0,
using two operators, A and B. Banasiak then shows that these operators satisfy
the conditions of the Kato–Voigt Perturbation Theorem, [71, Proposition 1.4],
and concludes that there exists an extension, G, of A + B that generates a sub-
stochastic C0-semigroup. It is then shown that G = A+B is the generator using
a method based on Arlotti extensions; see [12, §6.3].

In 2010, the Kato–Voigt Perturbation Theorem was applied to the discrete
fragmentation system by McBride, Smith and Lamb, [46]. The authors work
with general fragmentation coefficients which satisfy the natural assumptions that
monomers cannot fragment and that mass is conserved during each fragmentation
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event. Mathematically, this leads to the assumptions

a1 = 0 and
j−1∑
n=1

nbn,j = j. (2.2.1)

The discrete fragmentation system is posed as a linear ACP in X[1] using two
operators A and B. The Kato–Voigt Perturbation Theorem and an Arlotti ex-
tension argument is then used to show that G = A+B is the generator of a
stochastic C0-semigroup, (S(t))t≥0. In the particular case where (an)∞n=1 is mono-
tone increasing, the authors show that the domain of A, D(A) = D(A + B), is
invariant under (S(t))t≥0 and it is concluded that (S(t))t≥0 provides a unique,
non-negative, mass-conserving classical solution to the fragmentation ACP for
any initial condition in D(A). The authors then move on to examine the full sys-
tem (1.1.1), where the coagulation rates are uniformly bounded, i.e. there exists
some k > 0 such that

kn,j ≤ k for all n, j ∈ N. (2.2.2)

The full C–F system is written as a semi-linear ACP in X[1] and the non-linear
operator, corresponding to the coagulation terms, is shown to satisfy a Lipschitz
condition and to be Fréchet differentiable. This yields the local existence of
unique mild and classical solutions of the semi-linear ACP. These solutions are
shown to be positive for positive initial conditions and, by proving that there is
no finite-time blow up, it is concluded that the solutions also exist globally.

The discrete fragmentation system has since attracted a lot of interest and a
number of subsequent investigations have been carried out. In 2012, these equa-
tions were examined by Smith, Lamb, Langer and McBride, [63], who, rather than
assuming (2.2.1), allow the possibility that mass is lost during a fragmentation
event and that monomers may be removed from the system. The fragmentation
system is written as a linear ACP in the space X[1], as in [46]. The same methods
as used in [46] for the mass-conserving case then show that G = A+B is the
generator of a substochastic semigroup, (S(t))t≥0, and, when (an)∞n=1 is increas-
ing, (S(t))t≥0 provides a unique classical solution of the fragmentation ACP for
any initial condition in the domain D(A).

The authors of [63] proceed to examine the particular example of “random
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bond annihilation”. Here, it is assumed that clusters are long strings of particles
that are linked by bonds. A fragmentation event occurs when a bond is broken.
The mass is taken to be contained within the bonds between particles and so each
fragmentation event results in mass being lost from the system. It is assumed
that only binary fragmentation occurs and that bonds are annihilated randomly
and with equal probability. This results in

an = n and bn,j = 2
j

for all n, j ∈ N such that j > n. (2.2.3)

In this particular case, the authors use an inductive argument to obtain an ex-
plicit expression for the semigroup (S(t))t≥0 and then for the resolvent of its
infinitesimal generator, G. These expressions enable the analyticity of (S(t))t≥0

to be established. An explicit description of the domain D(G) is also deduced and
a unique, non-negative classical solution of the fragmentation ACP is obtained
for all non-negative initial conditions in D(G). Analytic semigroups have very
desirable properties, as we discuss later. In particular, in [63], the analyticity of
the semigroup (S(t))t≥0 is exploited to enable an extrapolation space to be con-
structed and used to explain an apparent non-uniqueness of solutions emanating
from a zero initial condition.

While the majority of past investigations into (1.1.1) have concentrated on
writing the system as an ACP in X[1], the system has also been considered in the
moment spaces X[p], for p ≥ 1. We recall that X[p] = `1

w with wn = np for all
n ∈ N. When we work in X[p], we denote the fragmentation operators as A[p] and
B[p]. In 2012, Banasiak considered the mass-conserving fragmentation system
(i.e. (2.2.1) is satisfied) in X[p] spaces, [9]. The same methods as in [46] show that
G[p] = A[p] +B[p] is the generator of a substochastic C0-semigroup and additional
assumptions are provided under which we can conclude that G[p] = A[p] + B[p].
Moreover, for p > 1, conditions are given under which the semigroup generated
by G[p] = A[p] +B[p] is analytic and, in this case, the theory of interpolation spaces
is used to examine the full C–F system.

We note, however, that simple examples of fragmentation coefficients are given
in an appendix to [9] for which G[p] 6= A[p] + B[p] for any p ≥ 1, and the semi-
group generated is not analytic. It is noted that this is true, in particular, if the
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coefficients (bn,j)n,j∈N:j>n are defined as in (2.1.3) and we take a1 = 0, an = n for
n ≥ 2.

After the existence and uniqueness of solutions has been established, another
area of interest is the long-term behaviour of solutions. The asymptotic behaviour
of solutions to the pure fragmentation system was examined in 2011 by Banasiak,
[8], where he considers the discrete, mass-conserving fragmentation system in X[1].
He shows that the solution converges to a state consisting entirely of monomers
if and only if an > 0 for all n ≥ 2. Additional conditions are also provided in
[8] under which the solution can be shown to converge to the monomer state at
an exponential rate. In 2012, this work was extended by Banasiak and Lamb in
[15], where the results in [8] are shown to also hold in the moment spaces, X[p],
for p ≥ 1.

As well as the long-term behaviours mentioned above, there are other asymp-
totic behaviours that have been shown to arise for certain coagulation and frag-
mentation coefficients. Since the asymptotic behaviour of solutions is of great
interest and importance, we include some references in the following paragraph
to results regarding asymptotic behaviour that have been obtained by alternative
methods to the semigroup approach that is adopted in this thesis.

As mentioned in the introduction, a phenomenon known as gelation is possible
for certain coagulation and fragmentation coefficients, where clusters of infinite
size are created at some finite gel time Tgel > 0. Gelation was shown to occur
for the first time in [42], for coagulation coefficents that grow “fast enough” as
cluster size increases. It was then shown in [39] that gelation can also occur
when fragmentation, satisfying a certain boundedness assumption, is added to
the system in [42]. There has been a lot interest in the topic of gelation and
related work can be found, for example, in [26, 31, 77]. Moreover, the approach
of solutions to similarity solutions has also been studied extensively in the case
of pure fragmentation, pure coagulation and the full coagulation–fragmentation
system; see, for example, [51, 55, 54, 56, 60, 79]

It is worthwhile noting that equations based on (1.1.1) but incorporating
other factors have also been considered. For example, [13] examines the system
(1.1.1), where additional growth and decay terms are included. These additional
terms are important in applications such as animal groupings, where groups of
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animals can split apart, merge together, lose individuals through death and gain
individuals through birth.

If one or more of the coagulation or fragmentation coefficients are time de-
pendent, then we are dealing with a non-autonomous model and this case is also of
interest. Indeed, as already mentioned, the original derivation of Smoluchowski’s
coagulation equation contained time-dependent rate coefficients until simplifying
assumptions were made to obtain an autonomous system; see [18, §2.2.1] for a
summary of the derivation. Non-autonomous coagulation systems play an im-
portant role in applications relating to the powder production industry, where
industrial spray drying causes the coagulation of small particles and produces
powders that possess desired physical properties. A model is investigated in [73]
for coagulation and droplet transport in a spray dryer’s hollow conical spray. A
“slurry” of small droplets is created at the top of the tower and, as the droplets
fall to the bottom of the tower, they dry and merge together to form a powder;
see [73, §2.1.1] for a detailed account of the physical configuration of the dryer
tower examined. The volume of a droplet and its distance from the top of the
tower are denoted, respectively, by x and z and the state of a droplet is described
by (x, z). An equation that describes these coalescing clusters is derived and it is
shown that if we assume the existence of a steady-state solution, then the result-
ing equation can be interpreted as a continuous non-autonomous Smoluchowski
equation, with z being regarded as a “time-like” variable; see [73, (3.9)].

Moreover, in the pioneering work by Melzak into the continuous C–F equation,
[53], the possibility of time-dependent coefficients is included. The continuous
non-autonomous fragmentation equation has also been investigated by McLaugh-
lin, Lamb and McBride in 1997, [49], using the theory of evolution families. In
[49], mass is assumed to be conserved during each fragmentation event and the
authors prove that, under a certain Lipschitz assumption on the fragmentation
rates, there exists a non-negative, mass-conserving solution of the continuous
fragmentation equation for all compactly supported initial conditions. Moreover,
this is shown to be unique in the sense that it is the only solution that is also a
classical solution of the corresponding non-autonomous fragmentation ACP. Un-
der the additional assumption that the Lipschitz condition is uniform in time, the
authors are able to demonstrate that there exists at least one mass-conserving
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solution of the non-autonomous equation for an arbitrary initial condition.
The same equation was examined again in 2010 by Arlotti and Banasiak,

[4], but this time using the theory of evolution semigroups. The assumptions
required in [4] are weaker than those in [49] but a solution is only obtained for
an integrated version of the continuous non-autonomous fragmentation equation.
This solution is shown to be given by an evolution family and to be non-negative
and mass conserving for non-negative initial conditions. However, neither the
uniqueness of the solution nor the existence of a solution to the corresponding
non-autonomous ACP is mentioned.

As well as the semigroup approach, weak-compactness methods have also been
used to deal with (1.1.1). In this approach finite-dimensional truncations of the
full C–F system are considered and a sequence of solutions to these truncated
equations is obtained. Weak compactness arguments can then be used to show
that this sequence has a subsequence that converges to a solution of an integrated
version of the full C–F system. Additional assumptions are required to prove the
uniqueness of the solution. This method was first introduced by Ball, Carr and
Penrose in 1986 to deal with the Becker–Döring cluster equations, [6]. The weak
compactness approach has since been used to deal with the C–F system with
binary fragmentation, see [5, 27], and was first used to deal with the C–F system
with multiple fragmentation by Laurençot, [40]. In [40], the author works with
fragmentation coefficients satisfying (2.2.1) and coagulation coefficients satisfying

0 ≤ kn,j ≤ K(n+ j), n, j ≥ 1,

for some K > 0. Of particular relevance to the work in this thesis is [40, The-
orem 2.5]. In this result, the existence and uniqueness of solutions to (1.1.1) in
`1
w is obtained, where w = (wn)∞n=1 may not take the “usual” form of wn = np for

some p ≥ 1 and all n ∈ N. In fact the existence and uniqueness of solutions in `1
w

is obtained for any w = (wn)∞n=1 satisfying particular properties described in [40].
The majority of the work presented in this thesis also works with weights that
are more general than the usual choice of wn = np, for some p ≥ 1 and all n ∈ N.
However, we restrict our attention to methods involving the theory of operator
semigroups rather than using a weak-compactness approach.
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Banach Lattices and Linear
Operators

When we examine the discrete C–F system, (1.1.1), we begin by considering the
case when only fragmentation occurs (i.e. when kn,j = 0 for all n, j ∈ N). We
write the resulting fragmentation system as an abstract Cauchy problem (ACP)
in an appropriate Banach space. Since the pure fragmentation equation arising
from (1.1.1) is linear, so is the resulting fragmentation ACP. Linear operators
are therefore vital in our investigation into the pure fragmentation system and
we dedicate the bulk of this chapter to the examination of these operators. We
begin in Section 3.1 and 3.2 by providing some prerequisite results and concepts
on Banach lattices and linear operators. In Section 3.3 we examine operator semi-
groups, which are crucial in the methods that we use to examine the discrete C–F
system. Section 3.4 concentrates on linear abstract Cauchy problems and their
solutions and gives results that are closely linked to the semigroups introduced
in Section 3.3; these will help us to obtain solutions to the pure fragmentation
system. While many of the results in this chapter are known, there are some that
extend or generalise those that have previously been obtained. Moreover, we also
present several results that we believe to be new and we point these out at the
start of each section, and again before they are stated.
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3.1 Banach Lattices

In this section we provide some preliminary results on Banach lattices that we
require later when we examine the discrete C–F system. Much of this subsection
is based on material in [12, Section 2.2] and, unless otherwise stated, we assume
X to be a real vector space. We begin by introducing a partial order. We note
that, while a partial order can be defined on any set, we are only interested here
in a partial order on a vector space X.

Definition 3.1.1. Let X be a vector space. A partial order on X is a binary
relation, denoted by ≤, which satisfies the following conditions for all f, g, h ∈ X:

(i) f ≤ f ;

(ii) if f ≤ g and g ≤ f then f = g;

(iii) if f ≤ g and g ≤ h then f ≤ h.

Note that if f, g ∈ X, then, by definition, g ≥ f is equivalent to f ≤ g and
in this case we say that g is greater than or equal to f or, equivalently, that f is
less than or equal to g. We refer to an element f ∈ X as being positive if f ≥ 0,
where 0 is the zero element in X.

Example 3.1.2. Assume that X is a vector space of real-valued functions defined
on a set S. Then we define a partial order on X in a pointwise sense. Suppose
f, g ∈ X. Then we say that f ≤ g if f(x) ≤ g(x) for all x ∈ S.

Remark 3.1.3. We refer to ≤ as a partial order on X, rather than a (total) order,
as it is not always possible to compare two elements inX. For example, if f, g ∈ X
and X is as in Example 3.1.2 then we may have f(x) > g(x) for some x ∈ S,
while f(x) < g(x) for other x ∈ S.

Using a partial order we can define what it means for a vector space X to be
an ordered vector space.

Definition 3.1.4. An ordered vector space is a real vector space X equipped
with a partial ordering that is compatible with the vector structure of X, in the
sense that
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(i) if f ≤ g in X then f + h ≤ g + h for all h ∈ X;

(ii) if f ≤ g in X then αf ≤ αg for all α ≥ 0.

Note that the space X in Example 3.1.2 is an ordered vector space. We are
now able to state what is meant by the positive cone in the vector space X that
is associated with the partial order ≤.

Definition 3.1.5. Let X be an ordered vector space and let U be a subset of X.
The set X+ := {f ∈ X : f ≥ 0} is called the positive cone of X and we define
U+ := {f ∈ U : f ≥ 0}.

Note that for f , g ∈ X+ and α ≥ 0,

f + g ∈ X+ and αf ∈ X+.

In many cases, the positive cone X+ has the additional property of being a gen-
erating cone in the following sense.

Definition 3.1.6. We say that X+ is a generating cone for X if every f ∈ X has
a decomposition f = g − h where g, h ∈ X+.

It is not always the case that X+ is a generating cone, as the next example
shows.

Example 3.1.7. Let X be a vector space consisting of more than one element
and let f, g ∈ X. We define ≤ by

f ≤ g if and only if f = g.

Then ≤ defines a partial order on X. In this case the positive cone, X+, is given
by X+ = {f ∈ X : f = 0}. Take a non-zero f ∈ X. Then there do not exist
g, h ∈ X+ such that f = g − h. Thus X+ is not a generating cone.

The partial order on X can be used to define what is meant by the supremum
and infimum of a set S ⊆ X.

Definition 3.1.8. Let X be an arbitrary ordered vector space and let S ⊆ X.
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(i) An element f ∈ X is a supremum of S if

(a) f ≥ g for all g ∈ S;

(b) whenever h ∈ X is such that h ≥ g for all g ∈ S, then h ≥ f .

(ii) An element f ∈ X is an infimum of S if

(a) f ≤ g for all g ∈ S;

(b) whenever h ∈ X is such that h ≤ g for all g ∈ S, then h ≤ f .

A supremum of a set does not always exist. However, if a supremum does
exist then it is unique. Analogous statements hold for infima.

Example 3.1.9. Suppose that X and S are as in Example 3.1.2 and let f, g ∈ X.
If the functions f ∨ g and f ∧ g, given by

(f ∨ g)(x) = max{f(x), g(x)}, x ∈ S, (3.1.1)

and
(f ∧ g)(x) = min{f(x), g(x)}, x ∈ S, (3.1.2)

exist as elements in X then

(i) sup{f, g} = f ∨ g;

(ii) inf{f, g} = f ∧ g.

As mentioned above, and as we now show, the supremum or infimum of two
elements need not exist. Let X be the space of continuously differentiable func-
tions on R with the natural pointwise order. Set f(x) = x and g(x) = −x so that
f, g ∈ X. Then, if sup{f, g} exists, it must be of the form

sup{f, g}(x) = |x|.

Similarly, if inf{f, g} exists, then it is of the form

inf{f, g}(x) = −|x|.
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Both |x| and −|x| have a corner and so are not elements in X.
The concept of a vector lattice will be important in later chapters.

Definition 3.1.10. A vector lattice, or a Riesz space, is an ordered vector space
such that for any two elements f, g, there exist sup{f, g} and inf{f, g}.

Example 3.1.11. Define elements f ∨ g and f ∧ g as in (3.1.1) and (3.1.2). Let
X = C(R) and let f, g ∈ X. Then f ∨ g and f ∧ g ∈ X and it follows that
sup{f, g} = f ∨ g and inf{f, g} = f ∧ g exist. Hence C(R) is a vector lattice.

Lemma 3.1.12. Let w = (wn)∞n=1 be such that wn > 0 for all n ∈ N and let

`1
w =

f = (fn)∞n=1 : fn ∈ R for all n ∈ N and
∞∑
n=1

wn|fn| <∞

 . (3.1.3)

Then `1
w is a vector lattice.

Proof. Suppose f, g ∈ `1
w. Then the elements f ∨ g and f ∧ g are given by

(f ∨ g)n = max{fn, gn} and (f ∧ g)n = min{fn, gn}, n = 1, 2, . . . .

Clearly, (f ∨ g)n and (f ∧ g)n ∈ R for all n ∈ N. Also,

∞∑
n=1

wn|(f ∨ g)n| =
∞∑
n=1

wn|max{fn, gn}| ≤
∞∑
n=1

wn|fn|+
∞∑
n=1

wn|gn| <∞.

Similarly,

∞∑
n=1

wn|(f ∧ g)n| =
∞∑
n=1

wn|min{fn, gn}| ≤
∞∑
n=1

wn|fn|+
∞∑
n=1

wn|gn| <∞.

Hence, f ∨ g and f ∧ g ∈ `1
w and so sup{f, g} = f ∨ g and inf{f, g} = f ∧ g exist.

Therefore `1
w is a vector lattice.

Definition 3.1.13. Let X be a vector lattice. For an element f ∈ X we define
the positive part, negative part and modulus of f , respectively, by

f+ := sup{f, 0}; f− := sup{−f, 0}; |f | := sup{f,−f}.
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From Definition 3.1.13, we have that f+ ∈ X+ and f− ∈ X+ for all f ∈ X.
The following result can be found in [12, Proposition 2.46].

Proposition 3.1.14. If X is a vector lattice and f ∈ X, then

f = f+ − f− (3.1.4)

and
|f | = f+ + f−. (3.1.5)

Thus, in particular, if X is a vector lattice, then X+ is a generating cone for X.
By (3.1.5), we have that |f | ∈ X+ for all f ∈ X.

A vector lattice then leads on to the idea of a lattice norm.

Definition 3.1.15. Let X be a vector lattice and suppose that ‖ · ‖ is a norm
on X.

(a) We say that ‖ · ‖ is a lattice norm if

|f | ≤ |g| ⇒ ‖f‖ ≤ ‖g‖.

(b) If X is also complete under this lattice norm, then we say that X is a
Banach lattice.

Note that if X is a vector lattice with norm ‖ · ‖, then the positive cone, X+,
is closed.

For a normed lattice, X, it will be useful for us to know when a dense subspace,
U , of X is such that U+ is dense in X+. We provide the following lemma which
gives a sufficient condition for this to be true.

Lemma 3.1.16. Let X be a normed lattice and suppose that U is a dense subspace
of X, such that for all f ∈ U we have f+, f− ∈ U+. Then U+ is dense in X+.

Proof. Suppose that f ∈ X+. Since U is dense in X, there exists a sequence
(g(n))∞n=1, with g(n) ∈ U for all n ∈ N, such that g(n) → f as n → ∞. We
have, for each n ∈ N, g(n) = (g(n))+ − (g(n))−. Since X is a normed lattice, we
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can deduce from [12, Proposition 2.55], that the mappings g(n) 7→ (g(n))+ and
g(n) 7→ (g(n))− are continuous, and it follows that (g(n))− → f− = 0. Hence
(g(n))+ → f+ = f as n→∞. Since (g(n))+ ∈ U+ for all n ∈ N, it follows that U+

is dense in X+.

We can now state what it means for a space to be an AL-space.

Definition 3.1.17. Let X be a Banach lattice and let ‖ · ‖ be a norm on X.

(i) The norm ‖ · ‖ is additive on the positive cone, X+, if

‖f + g‖ = ‖f‖+ ‖g‖ for all f, g ∈ X+. (3.1.6)

(ii) If ‖ · ‖ is a lattice norm and (3.1.6) is satisfied, then X is an AL-space, see
[12, Definition 2.56].

Lemma 3.1.18. Let X be an AL-space with norm ‖ · ‖. Then there exists a
unique, bounded, linear functional, φ, on X, which coincides with ‖ · ‖ on X+.

Proof. For all f ∈ X, let
φ(f) = ‖f+‖ − ‖f−‖. (3.1.7)

For f ∈ X+, we have f− = 0. Hence

φ(f) = ‖f+‖ − ‖0‖ = ‖f+‖ = ‖f+ − 0‖ = ‖f‖ ≥ 0

for all f ∈ X+. Also, for f , g ∈ X,

φ(f + g) = ‖f+ + g+‖ − ‖f− + g−‖ = ‖f+‖+ ‖g+‖ − ‖f−‖ − ‖g−‖ = φ(f) + φ(g)

where the second equality follows since X is an AL-space. Now let α ≥ 0 and
f ∈ X. We have

φ(αf) = ‖αf+‖ − ‖αf−‖ = α(‖f+‖ − ‖f−‖) = αφ(f).

Moreover, for f ∈ X, −f = f− − f+ and so (−f)+ = f− and (−f)− = f+. It
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follows that

φ(−f) = ‖f−‖ − ‖f+‖ = −(‖f+‖ − ‖f‖−) = −φ(f).

It is therefore clear that the functional φ is a positive, linear functional that
coincides with ‖ · ‖ on X+. To show uniqueness, let γ be another positive, linear
operator that coincides with ‖ · ‖ on X+. Then, for f ∈ X,

γ(f) = γ(f+ − f−) = γ(f+)− γ(f−) = ‖f+‖ − ‖f−‖ = φ(f),

where the linearity of γ is used to obtain the first inequality. This proves unique-
ness.

Finally, the functional φ is bounded since

|φ(f)| = |φ(f+)− φ(f−)| = |‖f+‖ − ‖f−‖| ≤ ‖f+‖+ ‖f−‖ = ‖f+ + f−‖ = ‖|f |‖

for all f ∈ X. Note that the first equality follows from the linearity of φ and the
third equality follows from the fact that X is an AL-space.

Example 3.1.19. Consider the space `1
w in Example 3.1.11(ii) equipped with the

norm
‖f‖

`
1
w

=
∞∑
n=1

wn|fn|. (3.1.8)

For each f ∈ `1
w, (f+)n = max{fn, 0} and (f−)n = max{−fn, 0}. Then clearly

f+, f− ∈ (`1
w)+ and f = f+ − f−. Using (3.1.5), the modulus | · | on `1

w is
|f | = (|fn|)∞n=1.

Also, as we now show, the norm on `1
w is a lattice norm. Suppose f, g ∈ `1

w

are such that |f | ≤ |g|. By considering sequences f̃ , g̃ ∈ `1
w as functions of n then,

using the definition of ≤ given in Example 3.1.2, we have that f̃ ≤ g̃ if and only
if f̃n ≤ g̃n for all n ∈ N. Consequently, |f | ≤ |g| implies that |fn| ≤ |gn| for all
n ∈ N, and therefore

‖f‖
`

1
w

=
∞∑
n=1

wn|fn| ≤
∞∑
n=1

wn|gn| = ‖g‖`1w .
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So the norm on `1
w is a lattice norm and, since `1

w is complete with respect to this
norm, `1

w is a Banach lattice. Let f, g ∈ (`1
w)+. Then

‖f + g‖
`

1
w

=
∞∑
n=1

wn|(f + g)n| =
∞∑
n=1

wn|fn|+
∞∑
n=1

wn|gn| = ‖f‖`1w + ‖g‖
`

1
w
.

Thus, `1
w is an AL-space and the unique, bounded, linear extension, φ

`
1
w
, of ‖ · ‖

`
1
w

(see Lemma 3.1.18) is given, for all f ∈ `1
w, by

φ
`

1
w
(f) =

∞∑
n=1

wnfn. (3.1.9)

Remark 3.1.20. At the start of this chapter we assumed X be to a real vector
space. However, there are occasions when it is necessary to work in a complex
space. We can move from a real space to a complex space using a process called
complexification; see [12, Section 2.2.5]. As in [12, Definition 2.85], for a real
vector lattice, X, we define Xc by

Xc = {(x, y) : x, y ∈ X}.

We write (x, y) ∈ Xc as x+ iy. Let x0, y0, x1, y1 ∈ X. As in [12, Definition 2.85],
the vector operations are defined by

x0 + iy0 + x1 + iy1 = x0 + x1 + i(y0 + y1),

(α + iβ)(x0 + iy0) = αx0 − βy0 + i(βx0 + αy0).

Moreover, the partial order on Xc is given by

x0 + iy0 ≤ x1 + iy1 if and only if x0 ≤ x1 and y0 = y1.

As in [12, Section 2.2.5], the norm, ‖ · ‖c, on Xc is defined by

‖z‖c = ‖|x+ iy|‖,
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for all z = x+ iy ∈ Xc, where

|x+ iy| = sup
θ∈[0,2π]

(
x cos θ + y sin θ

)
.

The concepts introduced in this section for real vector spaces can be defined
analogously in complex vector spaces.

3.2 Linear Operators

Throughout this thesis, if U is a linear or nonlinear operator in a vector space, X,
then we denote the domain of U by D(U). In this section we devote our attention
to linear operators.

Definition 3.2.1. Let X be an ordered vector space and U : D(U) → X be a
linear operator, where D(U) ⊆ X. Then we say that U is a positive operator if
Uf ∈ X+ for all f ∈ D(U)+. In this case we write U ≥ 0.

Note that the above definition of positivity also holds for non-linear operators.
We now introduce a partial order on B(X), the space of bounded, linear operators
on an ordered vector space X, as follows.

Definition 3.2.2. Let X be an ordered vector space and let U, V ∈ B(X). Then
we write U ≤ V if and only if V − U ≥ 0.

Remark 3.2.3. The partial order above can be introduced on any space of oper-
ators that map an ordered vector space X into itself.

Lemma 3.2.4. Let U be a positive, linear operator in a vector lattice, X, with
lattice norm ‖ · ‖. Then ‖U |f |‖ ≥ ‖Uf‖ for all f ∈ X.

Proof. Let f ∈ X. It is clear that |f | ≥ f and so

U |f | − Uf = U(|f | − f) ≥ 0

since U is a positive operator. It follows that U |f | ≥ Uf . Similarly, |f | ≥ −f .
Hence, U |f | ≥ U(−f) = −Uf . Thus, |Uf | = sup{Uf,−Uf} ≤ U |f | =

∣∣∣U |f |∣∣∣.
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Since ‖ · ‖ is a lattice norm, it follows that

‖Uf‖ ≤ ‖U |f |‖.

We now define what we mean by an extension of an operator. Note that this
definition holds for both linear and nonlinear operators.

Definition 3.2.5. Let U , V be operators in a vector space X. Then V is said
to be an extension of U if D(U) ⊆ D(V ) and Uf = V f , for all f ∈ D(U). This
is equivalent to the graph of U being a subset of the graph of V , i.e.

{(f, Uf) : f ∈ D(U)} ⊆ {(g, V g) : g ∈ D(V )}.

If V is an extension of U , then we write U ⊆ V .

A concept that we also require is that of one space being continuously embed-
ded in another space.

Definition 3.2.6. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be normed vector spaces such that
Y ⊆ X. We say that (Y, ‖ · ‖Y ) is continuously embedded in (X, ‖ · ‖X) (written
as Y ↪→ X) if there exists C ≥ 0 such that

‖f‖X ≤ C‖f‖Y ,

for all f ∈ Y .

From the definition above it is clear that the embedding operator is bounded.
We note that if, in addition, the linear embedding operator

ι : Y → X, f 7→ f for all f ∈ Y,

is compact, then we say that (Y, ‖ · ‖Y ) is compactly embedded in (X, ‖ · ‖X).
We now state and prove a proposition that is used later when we examine the

discrete C–F system in weighted `1 spaces.

Proposition 3.2.7. Let (wn)∞n=1 and (vn)∞n=1 be sequences such that wn, vn > 0,
for all n ∈ N. Consider the spaces (`1

w, ‖·‖`1w) and (`1
v, ‖·‖`1v), where `1

w and ‖·‖
`

1
w
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are as defined in (3.1.3) and (3.1.8) respectively, and `1
v, ‖ · ‖`1v are defined in an

analogous manner. Let
(
wn
vn

)∞
n=1

be bounded. Then (`1
v, ‖ · ‖`1v) is continuously

embedded in (`1
w, ‖ · ‖`1w).

Also, under the stronger condition,

wn
vn
→ 0 as n→∞,

(`1
v, ‖ · ‖`1v) is compactly embedded in (`1

w, ‖ · ‖`1w).

Proof. Let
(
wn
vn

)∞
n=1

be bounded. Then there exists a constant C > 0 such that
wn
vn
≤ C for all n ∈ N and therefore, for all f ∈ `1

v,

‖f‖
`

1
w

=
∞∑
n=1

wn|fn| =
∞∑
n=1

wn
vn
vn|fn| ≤ C

∞∑
n=1

vn|fn| = C‖f‖
`

1
v
.

It follows that (`1
v, ‖ · ‖`1v) is continuously embedded in (`1

w, ‖ · ‖`1w).
Now suppose that we also have wn

vn
→ 0 as n→∞, and consider the embedding

operator
ι : `1

v → `1
w, f 7→ f, for all f ∈ `1

v.

For each k ∈ N, let ι(k) : `1
v → `1

w be the operator defined by ι(k)f = f (k), where,

f (k)
n =


fn when n ≤ k,

0 when n > k.
(3.2.1)

Since ι(k) is a finite rank operator, it is compact for each k ∈ N. Choose ε > 0.
There exists N ∈ N such that wn

vn
< ε if n ≥ N . Hence, for f ∈ `1

v and k ≥ N , we
obtain

‖(ι(k) − ι)f‖
`

1
w

=
k∑

n=1
wn|fn − fn|+

∞∑
n=k+1

wn|fn| =
∞∑

n=k+1
wn|fn|

=
∞∑

n=k+1

wn
vn
vn|fn| ≤ ε

∞∑
n=k+1

vn|fn| ≤ ε‖f‖
`

1
v
.

It follows that ‖ι(k) − ι‖ ≤ ε if k ≥ N . Thus ι(k) → ι as k → ∞ and so ι is
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compact. Thus (`1
v, ‖ · ‖`1v) is compactly embedded in (`1

w, ‖ · ‖`1w).

We now give an example where the above holds.

Example 3.2.8. Suppose wn = np for some p ≥ 0. Then we obtain the Banach
space `1

w := X[p] defined by

X[p] =
{

(fn)∞n=1 : fn ∈ R for all n ∈ N and
∞∑
n=1

np|fn| <∞
}

equipped with the norm
‖f‖[p] =

∞∑
n=1

np|fn|.

Let q > p ≥ 0. Then

np

nq
= 1
nq−p

→ 0 as n→∞.

Hence, by Proposition 3.2.7, X[q] is compactly embedded in X[p].

3.3 Operator Semigroups

In this section we introduce operator semigroups and results relating to these
families of linear operators which will be essential later. There is extensive the-
ory relating to operator semigroups and many books have been written on the
subject matter; see, for example, [21, 22, 30, 32, 34, 35, 43, 61]. Section 3.3.1
examines strongly continuous semigroups, often referred to as C0-semigroups. In
connection with the C–F problem that we study in later chapters, substochastic
and stochastic semigroups are of particular importance. We examine these semi-
groups in Section 3.3.2. The results in these sections are primarily known results,
which are mostly taken from [30]. However, Proposition 3.3.9 provides a different
proof and a more general formulation of a result given in [75, Theorem 2.3.4 (i)].
Moreover, it is believed that Proposition 3.3.16 is a new result. In Section 3.3.3
we discuss analytic semigroups, which will be crucial when we investigate the
C–F system in general weighted `1 spaces. In particular, the existence of certain
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analytic semigroups allows us to weaken the required assumptions on the time-
dependent coagulation rates. The definitions and results given here are again
based on material in [30] but Propositions 3.3.26 and 3.3.37 are new. Finally,
Section 3.3.4 consists of perturbation theorems, the majority of which are known.
In Corollary 3.3.30 and Theorem 3.3.35, however, we formulate corollaries of pub-
lished results that can be applied in an elegant way to the pure fragmentation
system, posed in a weighted `1 space.

3.3.1 Strongly Continuous Semigroups

We begin by defining a C0-semigroup. The following definition is taken from [30,
Definition I.5.1].

Definition 3.3.1. A family, (S(t))t≥0, of bounded linear operators on a Banach
space X is called a strongly continuous semigroup (or a C0-semigroup) if

(i) S(t+ s) = S(t)S(s) for all t, s ≥ 0;

(ii) S(0) = I;

(iii) the mappings t 7→ S(t)f are continuous from [0,∞) into X for every f ∈ X.

We make use of the following proposition in many of the results that follow.

Proposition 3.3.2. [30, Proposition I.5.5] For every C0-semigroup, (S(t))t≥0,
there exist constants M ≥ 1 and ω ∈ R such that, for all t ≥ 0,

‖S(t)‖ ≤Meωt. (3.3.1)

Definition 3.3.3. If (S(t))t≥0 is a C0-semigroup and (3.3.1) holds with M = 1
and ω = 0, then (S(t))t≥0 is called a contraction semigroup.

We can now define the growth bound of a C0-semigroup.

Definition 3.3.4. The growth bound of a C0-semigroup, ω0, is given by

ω0 := ω0(S) := inf {ω ∈ R : there exists Mω ≥ 1 such that

‖S(t)‖ ≤Mωe
ωt for all t ≥ 0

}
.
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With each semigroup we associate a unique operator which we refer to as the
generator (or infinitesimal generator) of the semigroup. The following definition
is taken from [30, Definition II.1.2].

Definition 3.3.5. Let X be a Banach space and (S(t))t≥0 be a C0-semigroup on
X. The generator of (S(t))t≥0 is the operator A defined by

Af := lim
h↓0

1
h

(
S(h)f − f

)
, (3.3.2)

for all f ∈ D(A), where

D(A) =
{
f ∈ X : lim

h↓0

1
h

(
S(h)f − f

)
exists

}
. (3.3.3)

Note that if A is the generator of a C0-semigroup, then we sometimes denote
by (etA)t≥0 the semigroup generated by A, where the definition of the operator
exponential, etA, is given below in (3.3.5). The following properties of a generator
are taken from [30, Lemma II.1.3 and Theorem II.1.4].

Lemma 3.3.6. Let A be the generator of a C0-semigroup, (S(t))t≥0. Then A

is a closed and densely defined linear operator. Moreover, (S(t))t≥0 leaves D(A)
invariant and

d

dt
S(t)f = S(t)Af = AS(t)f

for all t ≥ 0 and f ∈ D(A).

For a closed operator A in a Banach space X, the resolvent set of A, ρ(A), is
given by

ρ(A) = {λ ∈ C : λI − A is bijective from D(A) onto X}.

Let λ ∈ ρ(A). Then we define the resolvent operator, R(λ,A), of A by

R(λ,A) = (λI − A)−1. (3.3.4)

We note that, by the Closed Graph Theorem, R(λ,A) is a bounded operator for
all λ ∈ ρ(A).
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The following theorem is known as the Feller–Miyadera–Phillips theorem and
is taken from [30, Theorems II.1.10 and II.3.8 and Corollary III.5.5].

Theorem 3.3.7. Let ω ∈ R, M ≥ 1. An operator A is the generator of a
C0-semigroup, (S(t))t≥0, satisfying (3.3.1), on a Banach space X if and only if

(i) A is closed and densely defined,

(ii) (ω,∞) ⊆ ρ(A),

(iii) ‖
[
(λ− ω)R(λ,A)

]n ‖ ≤M for all λ > ω.

Moreover, if these conditions are satisfied, then

S(t)f = etAf = lim
k→∞

(
I − t

k
A
)−k

f for all f ∈ X, (3.3.5)

uniformly for t on compact intervals, and the resolvent operator of A can be
expressed as

R(λ,A)f =
∞∫
0

e−λsS(s)fds, (3.3.6)

for all f ∈ X and λ : Re(λ) > ω0(S), where ω0(S) is as in Definition 3.3.4.

We note that we interpret the integral in (3.3.6) as

∞∫
0

e−λsS(s)fds := lim
t→∞

t∫
0

e−λsS(s)fds, (3.3.7)

where the integral on the right-hand side of (3.3.7) is the Riemann integral.
The following theorem is the particular case of Theorem 3.3.7 whenM = 1 and

ω = 0. It is called the Hille–Yosida theorem and is taken from [30, Theorem II.3.5,
Corollary III.5.5 and Theorem II.1.10]. The Hille–Yosida theorem is used to prove
the more general Feller–Miyadera–Phillips theorem given above.

Theorem 3.3.8. An operator A is the generator of a contraction semigroup,
(S(t))t≥0, on a Banach space X if and only if

(i) A is closed and densely defined,
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(ii) (0,∞) ⊆ ρ(A),

(iii) ‖λR(λ,A)‖ ≤ 1 for all λ > 0.

Moreover, if these conditions hold, then (3.3.5) and (3.3.6) hold where ω0(S) ≤ 0.

Note that, in general, Theorem 3.3.8 is much easier to apply than The-
orem 3.3.7 because in the former one has to estimate only the norm of the re-
solvent of A whereas in the latter one has to estimate the norm of all powers of
the resolvent.

The following result is given for the case in which the closure of an oper-
ator A generates a substochastic C0-semigroup (see Definition 3.3.15 below for
the definition of a substochastic semigroup) in [18, Theorem 4.10.28] and [74,
Theorem 2.3.4 (i)]. We give a more general case here.

Proposition 3.3.9. Let A be an operator in a real Banach space X. If G = A

is the generator of a C0-semigroup, then no other extension of A is the generator
of a C0-semigroup.

Proof. Suppose G = A is the generator of a C0-semigroup. Then, from The-
orem 3.3.7, there exists ω1 ∈ R such that (ω1,∞) ⊆ ρ(G). Assume that H ⊇ A

(and so H ⊇ A = G since H is closed) is also the generator of a C0-semigroup.
Then there exists ω2 ∈ R such that (ω2,∞) ⊆ ρ(H).

Let λ > max{ω1, ω2}. Then since λ ∈ ρ(G), we have λI − G : D(G) → X

is a bijective mapping. We also have λ ∈ ρ(H) and so λI − H : D(H) → X is
bijective.

However, if λI−G : D(G)→ X is a bijection and D(H) ) D(G), then λI−H
cannot be injective. This is a contradiction. Hence we can conclude that G = A

is the only generator of a C0-semigroup which is an extension of A.

Another concept that is important to us is that of an operator, and in partic-
ular the generator of a C0-semigroup, being resolvent positive.

Definition 3.3.10. Let X be an ordered Banach space and let A : D(A) → X,
where D(A) ⊆ X. We say that A is resolvent positive if there exists ω ∈ R such
that (ω,∞) ⊆ ρ(A) and R(λ,A) ≥ 0 for all λ > ω.

36



Chapter 3. Banach Lattices and Linear Operators

We now define what it means for a semigroup to be positive.

Definition 3.3.11. A semigroup, (S(t))t≥0, on an ordered Banach space, X, is
a positive semigroup if S(t) ≥ 0 for all t ≥ 0.

We also have the following useful result, which is mentioned in [18, p. 128].

Lemma 3.3.12. Let (S(t))t≥0 be a C0-semigroup on an ordered Banach space,
X, with generator A. Then (S(t))t≥0 is positive if and only if A is resolvent
positive.

Proof. Let (S(t))t≥0 be positive. Then (ω0(S),∞) ⊆ ρ(A) and, from (3.3.6), it
is clear that R(λ,A) ≥ 0 for all λ > ω0(S). Conversely, suppose that R(λ,A) is
defined and R(λ,A) ≥ 0 for all λ > λ0, where λ0 ∈ R. From (3.3.5), for each
t > 0, f ∈ X+, we have

S(t)f = lim
k→∞

(
I − t

k
A
)−k

f = lim
k→∞

(
k

t

(
k

t
I − A

)−1)k
f ≥ 0

since, for each t > 0, (
k

t
I − A

)−1

= R

(
k

t
, A

)
≥ 0

for all k sufficiently large. The result follows.

We find it useful on numerous occasions to be able to split an element from a
subspace, U , of a vector lattice, X, into the difference of two elements in U+. In
particular, suppose that A is the generator of a positive C0-semigroup, (S(t))t≥0,
on a Banach lattice X and we want to write f ∈ D(A) as f = g − h, where
g, h ∈ D(A)+. The following lemma, taken from [12, Remark 6.6], allows us to
do this.

Lemma 3.3.13. [12, Remark 6.6] Let U ⊆ X be a subspace of a vector lattice,
X, such that U = RX, where R is a positive linear operator on X. Let f ∈ U .
Then f = g − h for some g, h ∈ U+.

Proof. For a fixed f ∈ U , we have f = Ru for some u ∈ X. Then, since
u = u+− u− and R is positive and linear, we have that Ru = Ru+−Ru−, where
Ru+, Ru− ∈ U+. Hence, f = g − h = Ru+ −Ru−, where g, h ∈ U+.
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Remark 3.3.14. Suppose that A is the generator of a positive C0-semigroup,
(S(t))t≥0, and U = D(A). Then, for any λ > ω0(S), the assumptions of Lemma 3.3.13
hold with R = R(λ,A).

3.3.2 Substochastic and Stochastic Semigroups

We now define particular semigroups that are of interest to us in connection with
the C–F system.

Definition 3.3.15. Suppose that (S(t))t≥0 is a C0-semigroup on an ordered
Banach space X. Then

(i) (S(t))t≥0 is said to be substochastic if S(t) ≥ 0 and ‖S(t)f‖ ≤ ‖f‖ for all
t ≥ 0, f ∈ X+;

(ii) (S(t))t≥0 is said to be stochastic if S(t) ≥ 0 and ‖S(t)f‖ = ‖f‖ for all t ≥ 0,
f ∈ X+.

Note that if (S(t))t≥0 is substochastic, then the relation ‖S(t)f‖ ≤ ‖f‖, t ≥ 0,
extends to all f ∈ X by [12, Remark 2.68].

In later chapters, stochastic semigroups play an important role in obtaining
mass-conserving solutions to the C–F system. The next proposition is applied to
the pure fragmentation system later. Part (i) of the proposition is, as far as we are
aware, a new result. Part (ii) and (iii) are discussed briefly in [68, Remark 2.1(a)].

Proposition 3.3.16. Let (S(t))t≥0 be a positive C0-semigroup on an AL-space,
X, with generator G, and let φ be the unique bounded linear extension of the
norm ‖ · ‖ from X+ to X.

(i) The semigroup (S(t))t≥0 is stochastic if and only if

φ
(
S(t)f

)
= φ(f) for all f ∈ X. (3.3.8)

(ii) If φ(Gf) = 0 for all f ∈ D(G)+, then (3.3.8) holds and hence the semigroup
(S(t))t≥0 is stochastic.
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(iii) Let G0 be an operator such that G = G0. If φ(G0f) = 0 for all f ∈ D(G0)+

and each f ∈ D(G0) can be written as f = g−h, where g, h ∈ D(G0)+, then
(3.3.8) holds and hence (S(t))t≥0 is stochastic.

Proof. (i) Assume that (S(t))t≥0 is stochastic and let f ∈ X and t ≥ 0. Then
f = f+ − f−, where f+, f− ∈ X+, and therefore

φ
(
S(t)f

)
= φ

(
S(t)f+

)
− φ

(
S(t)f−

)
= ‖S(t)f+‖ − ‖S(t)f−‖ = ‖f+‖ − ‖f−‖

= φ(f+)− φ(f−) = φ(f).

Conversely, when (3.3.8) holds, we have ‖S(t)f‖ = φ(S(t)f) = φ(f) = ‖f‖ for
f ∈ X+ and t ≥ 0.

(ii) Let f ∈ D(G). From Lemma 3.3.13 and Remark 3.3.14, we have that
there exist g, h ∈ D(G)+ such that f = g − h. Then, since φ is continuous,

d
dt
(
φ(S(t)f)

)
= φ

(
d
dt
(
S(t)f

))
= φ

(
GS(t)f

)
= φ

(
GS(t)g

)
− φ

(
GS(t)h

)
= 0

since S(t)g, S(t)h ∈ D(G)+. Thus φ(S(t)f) = φ(f) for all f ∈ D(G).
Now let f ∈ X. There exists a sequence (f (n))∞n=1 such that f (n) ∈ D(G) for

all n ∈ N and f (n) → f as n→∞. Moreover, for fixed t ≥ 0,

‖S(t)f (n) − S(t)f‖ → 0 as n→∞.

We have φ(S(t)f (n)) = φ(f (n)) and so, taking the limit as n→∞ and using the
fact that φ is continuous, (3.3.8) follows and (S(t))t≥0 is stochastic.

(iii) Let f ∈ D(G0). Then f = g − h for some g, h ∈ D(G0)+ by assumption,
and

φ(G0f) = φ
(
G0(g − h)

)
= φ(G0g)− φ(G0h) = 0.

Thus φ(G0f) = 0 for all f ∈ D(G0). Now let f ∈ D(G). Then there exist
f (n) ∈ D(G0), n ∈ N, such that f (n) → f and G0f

(n) → Gf as n→∞. Therefore

φ(Gf) = φ
(

lim
n→∞

G0f
(n)
)

= lim
n→∞

φ(G0f
(n)) = 0,
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and the result follows from part (ii).

In subsequent sections we will obtain results that tell us when an extension of
a given operator is the generator of a substochastic C0-semigroup, (S(t))t≥0. We
now define what it means for (S(t))t≥0 to be the smallest such semigroup.

Definition 3.3.17. Suppose that (S(t))t≥0 is a substochastic C0-semigroup on
an ordered Banach space X that is generated by an extension, V , of an operator
U . Then (S(t))t≥0 is referred to as the smallest such semigroup if, given any
other substochastic semigroup (T (t))t≥0 on X that is generated by an extension
of U , we have S(t) ≤ T (t), for all t ≥ 0.

3.3.3 Analytic Semigroups

In later chapters we also require the concept of an analytic semigroup. Before we
define analytic semigroups, however, we define a sectorial operator. The following
definitions are from [30, Definition II.4.1].

Definition 3.3.18. Let α ∈ (0, π]. We define the sector, Σα, to be

Σα :=
{
λ ∈ C\{0} : | arg λ| < α

}
. (3.3.9)

Definition 3.3.19. Let A : D(A) → X be a closed, linear, densely defined
operator in a complex Banach space, X. Then A is a sectorial operator (of angle
δ) if there exists δ ∈ (0, π2 ] such that the sector Σπ

2 +δ is contained in the resolvent
set ρ(A), and if, for each ε ∈ (0, δ), there exists Mε ≥ 1 such that

‖R(λ,A)‖ ≤ Mε

|λ|

for all λ ∈ Σπ
2 +δ−ε \ {0}.

We now define what it means for a family of operators to be an analytic
semigroup. This definition is taken from [30, Definition II.4.5].

Definition 3.3.20. Let δ ∈ (0, π2 ] and let (S(t))t∈Σδ∪{0} be a family of bounded,
linear operators on a complex Banach space X. Then (S(t))t∈Σδ∪{0} is an analytic
semigroup (of angle δ) if
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(i) S(0) = I and S(t1 + t2) = S(t1)S(t2) for all t1, t2 ∈ Σδ,

(ii) the map t 7→ S(t) is analytic in Σδ,

(iii) lim
t∈Σ

δ
′ :t→0

S(t)x = x for all x ∈ X and 0 < δ′ < δ.

If, in addition,

(iv) ‖S(t)‖ is bounded in Σδ
′ for every 0 < δ′ < δ,

then (S(t))t∈Σδ∪{0} is a bounded, analytic semigroup.

If (S(t))t∈Σδ∪{0} is an analytic semigroup, then the restriction (S(t))t≥0 is a C0-
semigroup. The generator of the latter is also referred to as the generator of the
analytic semigroup (S(t))t∈Σδ∪{0} . The connection between analytic semigroups
and sectorial operators is given in the next theorem.

Theorem 3.3.21. [30, Theorem II.4.6] Let X be a Banach space. For an operator
A : D(A)→ X, where D(A) ⊆ X, the following assertions are equivalent.

(i) The operator A generates a bounded, analytic semigroup on X.

(ii) The operator A generates a bounded C0-semigroup, (S(t))t≥0, on X, and
there exists a constant C > 0 such that

‖R(r + is, A)‖ ≤ C

|s|

for all r > 0 and 0 6= s ∈ R.

(iii) The operator A is sectorial of angle arctan
(

1
C

)
.

The next proposition describes some of the desirable properties that analytic
semigroups possess.

Proposition 3.3.22. [43, Proposition 2.1.1] Let X be a Banach space and let
A : D(A) → X be the generator of an analytic semigroup, (S(t))t∈Σδ∪{0}, on X,
where D(A) ⊆ X. Then for t > 0 and f ∈ X, S(t)f ∈ D(An) for all n ∈ N and
t 7→ S(t)f is in C∞((0,∞), X), with

dk

dtk
S(t)f = AkS(t)f for all k ∈ N.
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Interpolation Spaces

When we examine the C–F system we make certain assumptions on the coagu-
lation rates to obtain the properties that are required to apply existence and
uniqueness results. For a certain class of initial conditions, we can weaken the
assumptions required on the coagulation rates using the theory of interpolation
spaces. We now introduce interpolation spaces and some useful results relat-
ing to them. The theory presented in this subsection is based on [43, §2.2.1].
Throughout this subsection, X denotes a complex Banach space and A is the
generator of an analytic C0-semigroup, (S(t))t∈Σδ∪{0} , on X. For the definition of
fractional powers, see (3.3.13) below, we need A to be an invertible operator and
so, for simplicity, we assume throughout this discussion that 0 ∈ ρ(A) so that A
is invertible.

Definition 3.3.23. Let D(A) be equipped with the graph norm (or equivalently
with the norm ‖A · ‖). A Banach space, Y , such that

D(A) ↪→ Y ↪→ X,

where ↪→ denotes continuous embedding, is said to be an intermediate space
between X and D(A). If, in addition, for all T ∈ B(X) with T |D(A) ∈ B(D(A)),
we have that T |Y ∈ B(Y ), then Y in an interpolation space between X and D(A).

As in [43, §2.2.1], for α ∈ (0, 1) and p ∈ [1,∞], we define a class of intermediate
spaces, DA(α, p), between X and D(A) by

DA(α, p) = {f ∈ X : t 7→ v(t) = ‖t1−α−
1
pAS(t)f‖ ∈ Lp(0, 1)}, (3.3.10)

‖f‖DA(α,p) = ‖f‖+ ‖v‖Lp(0,1), (3.3.11)

and for all p ∈ [1,∞], we set

DA(0, p) = X; ‖ · ‖DA(0,p) = ‖ · ‖.

The spaces DA(α, p) are real interpolation spaces (see [43, Chapter 1]). We
note that, from [43, p. 253], the part of A in DA(α, p) is the generator of an
analytic C0-semigroup on DA(α, p).
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Proposition 3.3.24. [43, Propositions 1.2.3 and 2.2.2 and Corollary 2.2.3(ii)]
Let 1 ≤ p1 ≤ p2 ≤ ∞ and α ∈ (0, 1). Then

D(A) ↪→ DA(α, p1) ↪→ DA(α, p2) ↪→ D(A) = X.

Moreover, for 0 < α1 < α2 < 1 we have

DA(α2,∞) ↪→ DA(α1, 1).

The following result will also be useful.

Corollary 3.3.25. [43, Corollary 2.2.3(i)] Let α ∈ (0, 1) and p ∈ [1,∞]. Let
A : D(A)→ X be the generator of an analytic semigroup such that A is invertible,
where D(A) ⊆ X. In addition, let C : D(C) = D(A) → X also be the generator
of an analytic semigroup such that C is invertible and, for all f ∈ D(A) and
some c ≥ 1,

c−1‖Af‖ ≤ ‖Cf‖ ≤ c‖Af‖. (3.3.12)

Then DC(α, p) = DA(α, p), with equivalence of the respective norms.

We now formulate a condition under which (3.3.12) holds.

Proposition 3.3.26. Let A and B be linear operators in a Banach space, X,
with D(A) ⊆ D(B) ⊆ X. Moreover, assume that there exists κ ∈ (0, 1) satisfying

‖Bf‖ ≤ κ‖Af‖ for all f ∈ D(A).

Then (3.3.12) holds with C = A+B and c = max
{

1 + κ, 1
1−κ

}
.

Proof. For all f ∈ D(A), we have

‖Cf‖ ≤ ‖Af‖+ ‖Bf‖ ≤ ‖Af‖+ κ‖Af‖ = (1 + κ)‖Af‖.

Also, for f ∈ D(A),

‖Af‖ = ‖Af +Bf −Bf‖ ≤ ‖(A+B)f‖+ ‖Bf‖ ≤ ‖Cf‖+ κ‖Af‖
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and so
(1− κ)‖Af‖ ≤ ‖Cf‖.

Hence (3.3.12) holds with c = max
{

1 + κ, 1
1−κ

}
.

We also use the concept of a fractional power of −A in connection with inter-
mediate spaces. The following definition can be found in [43, §2.2.2].

Definition 3.3.27. For every α > 0 we define

(−A)−α = 1
Γ(α)

∞∫
0

tα−1S(t) dt, (3.3.13)

where

Γ(α) =
∞∫
0

e−ttα−1 dt. (3.3.14)

We set D((−A)α) := range((−A)−α) and

(−A)α := ((−A)−α)−1. (3.3.15)

Moreover, we set A0 = I.

Another result from [43] that we require is the following.

Proposition 3.3.28. [43, Proposition 2.2.15] For α ∈ (0, 1) we have

DA(α, 1) ↪→ D((−A)α) ↪→ DA(α,∞). (3.3.16)

3.3.4 Semigroup Perturbation Theory

Of particular importance to the results in this thesis is perturbation theory for
strongly continuous semigroups. We, therefore, begin this subsection by providing
a brief history of the main results from this field that we utilise and build upon
later. We note that there are many perturbation theorems relating to operator
semigroups, but here we comment only on those that are significantly related to
the results in this thesis.
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There is much interest in identifying whether an operator is the generator of
a C0-semigroup. A seminal breakthrough in relation to this topic appeared in
1948, [34, 76], in the form of the Hille–Yosida Theorem; see Theorem 3.3.8. This
theorem was named after Einar Hille and Kōsaku Yosida, who simultaneously, but
independently, obtained the result. The theorem gives necessary and sufficient
conditions for an operator to be the generator of a contraction C0-semigroup.

Now suppose that an operator A is the generator of a C0-semigroup. A ques-
tion that has attracted a great deal of interest is: if we perturb A by some operator
B, is A+B also the generator of a C0-semigroup? An influential result, prompted
by this question, which proves to be very useful when investigating fragmentation
models, is the Kato–Voigt Perturbation Theorem. This theorem, first introduced
in 1954 by Kato, [37, Theorem 1], and further developed by Voigt in 1987, [71,
Proposition 1.4], provides sufficient conditions for A and B, under which there
exists an extension, G, of A+B that generates a substochastic C0-semigroup. In
[71, Remark 1.5] it is noted that if G is the closure of A+B and a certain condi-
tion holds, then the semigroup generated by G is stochastic. Following on from
this, in 2006 Thieme and Voigt proved a theorem, [68, Theorem 2.7], where they
re-examined the Kato–Voigt Perturbation Theorem and provided conditions un-
der which it can be deduced that the generator G in the Kato–Voigt Perturbation
Theorem is indeed the closure of A+B.

Analytic semigroups also have particularly desirable properties that we exploit
in this thesis. A perturbation theorem proved by Arendt and Rhandi, [3, The-
orem 1.1] in 1991, considers the unperturbed operator A to be the generator of
an analytic semigroup. Conditions are then provided under which we can deduce
that a perturbation, A+B, of A is the generator of an analytic semigroup.

Perturbation results are invaluable in our investigation into the C–F system
and this subsection collates those that we make use of. The following theorem is
important in our examination of the pure fragmentation system.

Theorem 3.3.29. [68, Theorem 2.7] Let (X, ‖ · ‖) be an ordered real Banach
lattice with generating cone X+ such that ‖ · ‖ is additive on X+. Let X(1) be a
subspace of X such that

(i) (X(1), ‖ · ‖(1)) is a Banach lattice for some norm ‖ · ‖(1);
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(ii) (X(1), ‖ · ‖(1)) is continuously embedded in (X, ‖ · ‖);

(iii) (X(1))+ is dense in X+;

(iv) (X(1))+ is a generating cone for X(1) and ‖ · ‖(1) is additive on (X(1))+.

Also, let φ and φ(1) be the linear extensions, see Lemma 3.1.18, of ‖ · ‖ from
X+ to X and of ‖ · ‖(1) from (X(1))+ to X(1) respectively. Let A : D(A) → X,
B : D(B) → X be operators in X such that D(A) ⊆ D(B) ⊆ X. Now consider
the following conditions:

(a) −A is positive;

(b) A generates a positive C0-semigroup, (T (t))t≥0, on X;

(c) the restriction of (T (t))t≥0 to X(1) is a C0-semigroup on X(1), denoted by
(T̃ (t))t≥0, with generator Ã, defined by

Ãf = Af for all f ∈ D(Ã) = {f ∈ D(A) ∩X(1) : Af ∈ X(1)};

(d) B|D(A) is a positive linear operator;

(e) φ((A+B)f) ≤ 0 for all f ∈ D(A)+;

(f) B(D(Ã)) ⊆ X(1);

(g) there exist c, ε > 0 such that

φ(1)((A+B)f) ≤ c‖f‖(1) − ε‖Af‖

for all f ∈ D(Ã)+.

If these conditions hold, then there exists a substochastic C0-semigroup on X

that is generated by the closure of A + B. Moreover, the semigroup, (S(t))t≥0,
generated by G leaves X(1) invariant.

We now formulate a corollary of Theorem 3.3.29 that we believe to be a new
result, and which can be applied in an elegant way to the pure fragmentation
problem.
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Corollary 3.3.30. Let (X, ‖ · ‖) and (X(1), ‖ · ‖(1)) be AL-spaces such that

(i’) X(1) is dense in X,

(ii’) (X(1), ‖ · ‖(1)) is continuously embedded in (X, ‖ · ‖).

Let A : D(A)→ X,B : D(B)→ X be operators in X where D(A) ⊆ D(B) ⊆ X.
Also, let φ and φ(1) be the linear extensions, see Lemma 3.1.18, of ‖ · ‖ from X+

to X and of ‖ · ‖(1) from (X(1))+ to X(1) respectively. Let conditions (a)–(e) of
Theorem 3.3.29 hold and assume that

(f’) (A+B)f ∈ X(1) and φ(1)((A+B)f) ≤ 0 for all f ∈ D(Ã)+;

(g’) ‖Af‖ ≤ ‖f‖(1) for all f ∈ D(Ã)+.

Then there exists a unique substochastic C0-semigroup on X that is generated by
an extension, G, of A+B. The operator G is the closure of A+B. Moreover, the
semigroup, (S(t))t≥0, generated by G leaves X(1) invariant. If φ((A + B)f) = 0
for all f ∈ D(A)+, then (S(t))t≥0 is stochastic.

Proof. We first show that conditions (i)–(iv) in Theorem 3.3.29 are satisfied.
Since (X(1), ‖ · ‖)(1) is an AL-space, it is clearly a Banach space. It is also clear
that (ii) is satisfied. Since X(1) is an AL-space then (3.1.4) holds for any f ∈ X(1).
Thus, from condition (i’) and Lemma 3.1.16, we have that (X(1))+ is dense in X+.
Moreover, (iv) in Theorem 3.3.29 holds since X(1) is an AL-space.

We require to prove that conditions (f) and (g) in Theorem 3.3.29 follow from
(f’) and (g’). Let f ∈ D(Ã)+. Then, from (f’), φ(1)((A + B)f) ≤ 0 and, from
(g’), ‖f‖(1)−‖Af‖ ≥ 0. Hence φ(1)((A+B)f) ≤ ‖f‖(1)−‖Af‖ and so, choosing
c = ε = 1, we confirm that (g) in Theorem 3.3.29 holds.

Finally, for (f) of Theorem 3.3.29, we have that (A+B)f ∈ X(1) and Af ∈ X(1)

for all f ∈ D(Ã)+. It follows that Bf ∈ X(1) for all f ∈ D(Ã)+. Now suppose
that f ∈ D(Ã). Then, from Lemma 3.3.13 and Remark 3.3.14, f = g − h for
some g, h ∈ D(Ã)+. Thus Bf = Bg−Bh ∈ X(1), since X(1) is a subspace. Hence
B(D(Ã)) ⊆ X(1) as required.

Finally, the uniqueness of the semigroup follows from Proposition 3.3.9. Since
A generates a substochastic C0-semigroup then, using Lemma 3.3.13 and Re-
mark 3.3.14, we can write any f ∈ D(A) as f = g − h, where g, h ∈ D(A)+. The
stochasticity result then follows from Proposition 3.3.16(iii).

47



Chapter 3. Banach Lattices and Linear Operators

We now introduce some concepts that we use in results that follow.

Definition 3.3.31. Let X be a Banach space and let A : D(A) → X and
B : D(B) → X be operators with D(A) ⊆ D(B) ⊆ X. Then B is A-bounded if
there exist a, b ≥ 0 such that

‖Bf‖ ≤ a‖Af‖+ b‖f‖ for all f ∈ D(A). (3.3.17)

If B is A-bounded, then the A-bound, or the relative bound, is

a0 := inf
{
a ≥ 0 : there exists b ≥ 0 such that (3.3.17) holds

}
. (3.3.18)

The following lemma will be useful, together with Corollary 3.3.30, when the
pure fragmentation system is examined in general weighted `1 spaces.

Lemma 3.3.32. [30, Lemma III.2.4] Let X be a Banach space. Moreover, let
A : D(A) → X, B : D(B) → X be operators with D(A) ⊆ D(B) ⊆ X.
If A is a closed operator and B is A-bounded with relative bound a0 < 1, then
(A+B,D(A)) is a closed operator.

We also require the definition of a Miyadera perturbation.

Definition 3.3.33. Let X be a Banach space and let A : D(A) → X and
B : D(B) → X, where D(A) ⊆ D(B) ⊆ X. Let A be the generator of a C0-
semigroup, (T (t))t≥0, on X. Then B is a Miyadera perturbation of A if B is
A-bounded and there exist numbers α and γ, with 0 < α < ∞, 0 ≤ γ < 1 such
that

α∫
0

‖BT (t)f‖ dt ≤ γ‖f‖ for all f ∈ D(A). (3.3.19)

The following theorem, which is the Miyadera–Voigt Perturbation Theorem,
originates from work in [57, 70].

Theorem 3.3.34. [12, Theorem 4.16] Let X be a Banach space and let A be the
generator of a C0-semigroup on X. Moreover, let B be a Miyadera Perturbation
of A. Then (A+B,D(A)) is the generator of a C0-semigroup.
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Proof. We give a brief outline of the proof used in [12, Theorem 4.16]. From [12,
Lemma 4.15], we have that B is a Miyadera perturbation of A if and only if B
is a Miyadera perturbation of A − λI, for any λ ∈ R. Moreover, A + B is the
generator of a semigroup, (S(t))t≥0, if and only if A − λI + B is the generator
of a semigroup, (e−λtS(t))t≥0. Hence, without loss of generality, we can assume
that the semigroup, (T (t))t≥0, generated by A has negative growth bound.

Now set

S1(t)f =
t∫

0

T (t− s)BT (s)f ds, f ∈ D(A), t ≥ 0.

As in [12, Theorem 4.16], for each t ≥ 0, S1(t) can be extended in a unique way
to a bounded linear operator on X. We now define Sj(t), j ∈ N such that j ≥ 2,
recursively by

Sj(t)f =
t∫

0

Sj−1(t− s)BT (s)f ds, f ∈ D(A), t ≥ 0,

where we can again extend Sj(t) in a unique way to a bounded linear operator on
X. For t ≥ 0, set S0(t) = T (t). It can then be shown that the family of operators
defined via

S(t) =
∞∑
j=0

Sj(t), t ≥ 0 (3.3.20)

satisfies the Duhamel formula

S(t)f = T (t)f +
t∫

0

S(t− s)BT (t)f ds, f ∈ D(A), t ≥ 0, (3.3.21)

and that (S(t))t≥0 is a C0-semigroup on X which is generated by A+B.

The next theorem, which we believe is an original result, deals with the special
case of an AL-space where the condition (3.3.19) can be replaced by the simpler
assumption that B is A-bounded, with A-bound less than one. It is convenient
to apply this result to the discrete fragmentation system examined in certain
weighted `1 spaces. The proof is based on ideas in [71].
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Theorem 3.3.35. Let the operator A be the generator of a positive C0-semigroup
on an AL-space, X, such that −A is positive. Moreover, let B be an A-bounded
linear operator, with A-bound less than 1. Then A+B, with D(A+B) = D(A),
is the generator of a C0-semigroup on X. If, in addition, B is a positive operator,
then the semigroup generated by A+B is positive.

Proof. We show that B is a Miyadera perturbation of A and then apply The-
orem 3.3.34. Since B is A-bounded, we need only show that there exist α and γ

such that 0 < α <∞, 0 ≤ γ < 1 and (3.3.19) holds. Let φ be the unique, linear
extension of ‖ · ‖ from X+ to X. Let (T (t))t≥0 be the semigroup generated by A.
For α > 0 and f ∈ D(A)+, we have

α∫
0

‖AT (t)f‖ dt =
α∫

0

φ(−AT (t)f) dt = φ
(
−

α∫
0

AT (t)f dt
)

= φ
(
−

α∫
0

d

dt

(
T (t)f

)
dt
)

= φ
(
f − T (α)f

)
= ‖f‖ − ‖T (α)f‖ ≤ ‖f‖.

Thus,
α∫

0

‖AT (t)f‖dt ≤ ‖f‖ for all f ∈ D(A)+. (3.3.22)

Now, for δ > 0, define Tδ := δ−1 δ∫
0
T (t) dt. Let f ∈ D(A). Then |f | ∈ X+ and

Tδ|f | ∈ D(A)+, from [30, Lemma II.1.3 (iii)]. Since, for all t ≥ 0, −A, T (t) and
Tδ are positive operators, it follows from Lemma 3.2.4 that

‖ − AT (t)Tδf‖ ≤ ‖ − AT (t)Tδ|f |‖.

Hence,

α∫
0

‖AT (t)Tδf‖ dt =
α∫

0

‖ − AT (t)Tδf‖ dt ≤
α∫

0

‖ − AT (t)Tδ|f |‖ dt

=
α∫

0

‖AT (t)Tδ|f |‖ dt ≤ ‖Tδ|f |‖,
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where (3.3.22) is used to obtain the final inequality. So we have

α∫
0

‖AT (t)Tδf‖ dt ≤ ‖Tδ|f |‖ for all f ∈ D(A). (3.3.23)

Also,

‖(Tδ − I)f‖ =

∥∥∥∥∥∥∥δ−1
δ∫

0

T (t)f dt− f

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥δ−1
δ∫

0

(T (t)f − f) dt

∥∥∥∥∥∥∥
≤ max

t∈[0,δ]
‖T (t)f − f‖ → 0 as δ → 0.

It follows that Tδf → f as δ → 0. Similarly, Tδ|f | → |f | as δ → 0 and so
‖Tδ|f |‖ → ‖f‖ as δ → 0. Furthermore, for f ∈ D(A), using [30, Lemma II.1.3 (iv)]
to obtain the last equality, we have

AT (t)Tδf = 1
δ
AT (t)

δ∫
0

T (s)f ds = 1
δ
A

δ∫
0

T (t)T (s)f ds

= 1
δ
A

δ∫
0

T (s)T (t)f ds = 1
δ

δ∫
0

T (s)AT (t)f ds.

Hence for f ∈ D(A), using [30, Lemma II.1.3 (ii)] to obtain the fourth equality,

AT (t)Tδf − AT (t)f = 1
δ

δ∫
0

T (s)AT (t)f ds− AT (t)f

= 1
δ

δ∫
0

(
T (s)AT (t)f − AT (t)f

)
ds

= 1
δ

δ∫
0

(T (s)− I)AT (t)f ds

= 1
δ

δ∫
0

(T (s)− I)T (t)Af ds

= 1
δ

δ∫
0

T (t)(T (s)− I)Af ds
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= T (t)1
δ

δ∫
0

(T (s)− I)Af ds.

It follows that, for f ∈ D(A),

‖AT (t)Tδf − AT (t)f‖ ≤ ‖T (t)‖1
δ

δ∫
0

‖(T (s)− I)Af‖ ds

≤ ‖T (t)‖ sup
s∈[0,δ]

‖(T (s)− I)Af‖ → 0 as δ → 0

uniformly in t on [0, α]. Hence, for f ∈ D(A), AT (t)Tδf → AT (t)f as δ → 0 and
so

α∫
0

‖AT (t)Tδf‖ dt→
α∫

0

‖AT (t)f‖ dt as δ → 0.

Taking the limit as δ → 0 in (3.3.23) we have

α∫
0

‖AT (t)f‖ dt ≤ ‖f‖ for all f ∈ D(A).

Now, (T (t))t≥0 is a C0-semigroup and so there exist M ≥ 1, ω ≥ 0 such that
‖T (t)‖ ≤ Meωt for all t ≥ 0. Moreover, B is A-bounded with A-bound a0 < 1.
Hence, there exist a, b ≥ 0 such that a < 1 and (3.3.17) holds, which implies that

α∫
0

‖BT (t)f‖ dt ≤ a

α∫
0

‖AT (t)f‖ dt+ b

α∫
0

‖T (t)f‖ dt

≤ a‖f‖+ bM

α∫
0

eωt‖f‖ dt

≤ a‖f‖+ bMαeωα‖f‖

= (a+ bMαeωα)‖f‖

for all f ∈ D(A). We know that a < 1 and so we choose α > 0 such that
αeωα < 1−a

Mb
. With this choice of α we have that a+ bMαeωα < 1 and so (3.3.19)

holds, with γ = a + bMαeαω. It follows from Theorem 3.3.34 that A + B is the
generator of a C0-semigroup, (S(t))t≥0.
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Finally, we prove the positivity. Let ω be the growth bound of (T (t))t≥0 and
choose λ > ω. Then A−λI generates the semigroup (e−λtT (t))t≥0 and, moreover,
(e−λtT (t))t≥0 has negative growth bound. We also have that A − λI + B is the
generator of the semigroup (e−λtS(t))t≥0. Now, from the discussion in the proof
of Theorem 3.3.34, we have that B is a Miyadera Perturbation of A − λI and,
from (3.3.20), the semigroup (e−λtS(t))t≥0, satisfies

e−λtS(t) =
∞∑
j=0

Sj(t), t ≥ 0, (3.3.24)

where

S0(t)f = e−λtT (t)f, f ∈ X;

S1(t)f =
∫ t

0
e−λ(t−s)T (t− s)Be−λsT (s)f ds, f ∈ D(A);

Sj(t)f =
t∫

0

Sj−1(t− s)Be−λsT (s)f ds, j = 2, 3, . . . , f ∈ D(A).

Since (T (t))t≥0 is a positive semigroup, it follows that if B is a positive operator,
then (e−λtS(t)) is positive on D(A). Hence the semigroup (S(t))t≥0 is positive on
D(A). We have that D(A) is dense in X and so, since the positive cone is closed,
(S(t))t≥0 is positive on X.

The following perturbation result, from [3, Theorem 1.1], provides sufficient
conditions under which a perturbation of the generator of an analytic semigroup
also generates an analytic semigroup. We use this result when we examine the
pure fragmentation system in certain weighted `1 spaces.

Theorem 3.3.36. Let X be a complex Banach lattice (see Remark 3.1.20) and
let A : D(A) → X be the generator of a positive, analytic semigroup, where
D(A) ⊆ X. Moreover, let B : D(A)→ X be a positive, linear operator. If A+B

is resolvent positive, then A+W generates an analytic C0-semigroup for all linear
mappings W : D(A)→ X satisfying

|Wu| ≤ Bu, u ∈ D(A)+.
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In particular, the result holds for W = B.

Proposition 3.3.37. Let A be the generator of an analytic, positive C0-semigroup
on an AL-space, X, such that A is invertible and −A is positive. Moreover, let
B be a positive, linear operator such that there exists κ ∈ (0, 1) satisfying

‖Bf‖ ≤ κ‖Af‖, for all f ∈ D(A).

Then C = A + B is the generator of a positive, analytic semigroup on X and
(3.3.12) holds for c = max

{
1 + κ, 1

1−κ

}
.

Proof. From Theorem 3.3.35 we have that A + B is the generator of a positive
C0-semigroup and so A+B is resolvent positive. It follows from Theorem 3.3.36
that A + B generates an analytic semigroup on X. The bounds (3.3.12) follow
from Proposition 3.3.26.

3.4 Linear Abstract Cauchy Problems (ACPs)

The C–F system, (1.1.1), is an infinite system of ODEs. Our strategy for dealing
with this infinite system is to write it as an abstract Cauchy problem (ACP) in
a weighted `1 space. We begin our investigation of (1.1.1) by examining the pure
fragmentation system, which we pose as a linear ACP. We therefore examine linear
ACPs in this section. We define what it means for a function to be a solution
of an ACP and then devote the remainder of the section to results regarding the
existence and uniqueness of solutions to ACPs. These results are applied later
to the pure fragmentation system. Basic concepts and results relating to linear
ACPs are provided in Section 3.4.1. In Section 3.4.2 we examine linear ACPs
using the theory of Sobolev towers. While the theory used to construct these
towers is taken from [30], more detail is provided in Section 3.4.2 than in [30].
Moreover, Corollary 3.4.7 has been generalised. The existence and uniqueness
results, Theorems 3.4.11, 3.4.13 and Proposition 3.4.12, are believed to be new.

3.4.1 Operator Semigroups and Linear ACPs

The following definition can be found in [22, Definition 2.38].
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Definition 3.4.1. Let X be a Banach space and let A : D(A) → X be a linear
operator, where D(A) ⊆ X. The homogeneous ACP associated with A is

u′(t) = Au(t), t > 0; u(0) = ů, (3.4.1)

where ů ∈ X is given.

We interpret the derivative in Definition 3.4.1 as

u′(0) = lim
h→0+

u(t+ h)− u(t)
h

and u′(t) = lim
h→0

u(t+ h)− u(t)
h

, t > 0.

As in [12, Definition 3.1] we define what it means for a function to be a classical
solution of (3.4.1) in the following way.

Definition 3.4.2. We call a function u : [0,∞) → X a classical solution of the
ACP (3.4.1) if

(i) u ∈ C([0,∞), X);

(ii) u ∈ C1((0,∞), X);

(iii) u(t) ∈ D(A) for all t > 0;

(iv) u satisfies (3.4.1).

The following existence and uniqueness result will be of extreme importance
when we look for solutions of the pure fragmentation system and can be found
in [22, Theorems 2.40 and 2.41].

Theorem 3.4.3. Let X be a Banach space and A be the generator of a C0-
semigroup, (S(t))t≥0, on X. Then, for ů ∈ D(A), the ACP (3.4.1) has a unique
classical solution, u(t) = S(t)̊u, for all t ≥ 0.

If the semigroup (S(t))t≥0 in Theorem 3.4.3 is analytic, then it provides a
solution for a larger class of initial conditions.

Proposition 3.4.4. If the semigroup (S(t))t≥0 in Theorem 3.4.3 is analytic, then
u(t) = S(t)̊u, t ∈ [0,∞), is the unique classical solution of (3.4.1) for all ů ∈ X.
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Remark 3.4.5. In physical problems we often also require solutions to be non-
negative. For example in the case of coagulation–fragmentation, u will be an
infinite sequence from a weighted `1 space such that each component in the se-
quence represents a density. In addition, at times we assume that the total mass
of clusters remains constant and this leads to the condition that the solution be
mass conserving.

3.4.2 Sobolev Towers

When we examine the pure fragmentation system on weighted `1 spaces we are
interested in obtaining a solution to the system for as large a class of initial
conditions as possible. Sobolev towers prove themselves to be useful with respect
to this. In this section, we follow the Sobolev tower construction found in [30,
§II.5]. The existence and uniqueness results that appear in this subsection are
believed to be new results.

CASE 1: Semigroups with Negative Growth Bound

Let H be the generator of a C0-semigroup, (T (t))t≥0, on a Banach space, X. We
are interested in solutions of the ACP

u′(t) = Hu(t), t > 0; u(0) = ů. (3.4.2)

From Theorem 3.4.3 we know that u(t) = T (t)̊u is the unique solution of
(3.4.2) for all t ≥ 0, ů ∈ D(H). We aim to use a Sobolev tower construction to
widen the class of initial conditions, ů, for which we can obtain a solution. The
following Sobolev tower construction can be found in [30, §II.5].

Assume that the growth bound of (T (t))t≥0 is negative. If the growth bound is
not negative then we can rescale to obtain a negative growth bound—we deal with
this case later. It follows that 0 ∈ ρ(H) and so the operator H−1 : X → D(H)
exists, i.e. H−1 ∈ B(X).

Let n ∈ N and consider Xn = (D(Hn), ‖ · ‖n), where

‖f‖n := ‖Hnf‖ for all f ∈ D(Hn).
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The operator H has a bounded inverse on X and so the norm on Xn is equivalent
to the graph norm on D(Hn). It follows that Xn is a Banach space for each
n ∈ N. Moreover, each Xn, n ∈ N, is continuously embedded in X since there
exists C > 0 such that

‖f‖ = ‖H−nHnf‖ ≤ Cn‖Hnf‖ = Cn‖f‖n for all f ∈ D(Hn).

The space Xn is known as the Sobolev space of order n associated with (T (t))t≥0.
Let n ∈ N. We denote by (Tn(t))t≥0, the restriction of (T (t))t≥0 to Xn. By

[30, Proposition II.5.2(ii), (iii)], (Tn(t))t≥0 is a strongly continuous semigroup on
Xn and its generator, Hn, is the part of H in Xn, i.e.

Hnf = Hf, D(Hn) = {f ∈ Xn : Hf ∈ Xn}.

The restriction Hn is a closed linear operator in Xn which maps D(Hn) onto Xn.
However, we can also view Hn as a bounded operator from Xn+1 onto Xn and in
this case it becomes an isometry in B(Xn+1, Xn). To distinguish between these
two different interpretations of Hn, we denote the isometry version by Hn.

For the construction of Sobolev spaces of negative order, it is convenient to
set X0 := X, T0(t) := T (t), ‖ · ‖0 := ‖ · ‖. We also let H0 = H denote the,
potentially unbounded, operator H0 : X0 ⊇ D(H)→ X0, and let H0 = H denote
the isometry H0 : X1 → X0.

As noted in [30, p. 125], for n = 0, 1, 2, . . ., we can equivalently define Xn as
the completion of Xn+1 with regard to the norm

‖f‖n := ‖H−1
n+1f‖n+1.

From this equivalent definition, we are led naturally to Sobolev spaces of negative
order that are associated with (T (t))t≥0, and which are defined recursively in the
following manner. First, we define X−1 = (X, ‖ · ‖−1)˜, where,

‖f‖−1 = ‖H−1
0 f‖0 for all f ∈ X0

and ˜ denotes the completion. This is the Sobolev space of order −1 associated
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with (T (t))t≥0. For f ∈ X1,

‖H0f‖−1 = ‖H−1
0 H0f‖0 = ‖H−1

0 H0f‖0 = ‖f‖0.

Moreover, X1 is dense in X0 from Theorem 3.3.8(i). It follows that we can define
H−1 : X0 → X−1 to be the unique, bounded, continuous, linear extension of
H0 : X1 → X0. We now define H−1 : X−1 ⊇ D(H−1)→ X−1 as

H−1 = H−1, D(H−1) = {f ∈ X−1 : H−1f ∈ X−1}.

Once again, H−1 is a bounded operator from X0 → X−1 while H−1 is potentially
unbounded.

The growth bound of (T0(t))t≥0 is negative and so there exists c̃ ≥ 1 such
that, for all f ∈ X0, we have that

‖T0(t)f‖0 ≤ c̃‖f‖0.

Let f ∈ X0. There exists g ∈ D(H0) such that f = H0g. From Lemma 3.3.6 we
have

T0(t)H0g = H0T0(t)g

and so
T0(t)f = H0T0(t)g.

Applying H−1
0 to both sides we obtain

H−1
0 T0(t)f = T0(t)g = T0(t)H−1

0 f.

Hence, for all f ∈ X0,

‖T0(t)f‖−1 = ‖H−1
0 T0(t)f‖0 = ‖T0(t)H−1

0 f‖0 ≤ c̃‖H−1
0 f‖0 = c̃‖f‖−1.

Since X0 is dense in X−1, it follows that, for t ≥ 0, T0(t) extends to a bounded
operator, T−1(t), on X−1.

We now use X−1 to construct the Sobolev space of order −2 associated with
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(T (t))t≥0. Let X−2 = (X−1, ‖ · ‖−2)˜, where

‖f‖−2 = ‖H−1
−1f‖−1 for all f ∈ X−1.

Iteratively, for all n ∈ N, we can argue as before to deduce that the bounded
operator H−n+1 : X−n+2 → X−n+1 can be extended to a unique, bounded, con-
tinuous, linear operator, H−n : X−n+1 → X−n. In a similar manner as before, we
denote by H−n : X−n ⊇ D(H−n) → X−n the, potentially unbounded, operator
given by

H−n = H−n, D(H−n) = {f ∈ X−n : H−nf ∈ X−n}, (3.4.3)

We can therefore recursively define

X−n = (X−n+1, ‖ · ‖−n)˜, (3.4.4)

for all n ∈ N, where,

‖f‖−n = ‖H−1
−n+1f‖−n+1 for all f ∈ X−n+1. (3.4.5)

We thus obtain a “tower” of spaces whereHn : Xn+1 → Xn andH−1
n : Xn → Xn+1

are bounded operators for all n ∈ Z.
Using a similar argument as before, for all n ∈ N, we can recursively show

that T−n+1(t) can be continuously extended to a bounded operator, T−n(t), on
the extrapolated space X−n. We now obtain the following theorem.

Theorem 3.4.6. [30, Theorem II.5.5] For all m ≥ n ∈ Z the following holds.

(i) Each Xn is a Banach space containing Xm as a dense subspace.

(ii) The operators Tn(t) form a C0-semigroup, (Tn(t))t≥0, on Xn.

(iii) The generator of (Tn(t))t≥0 is Hn : Xn ⊇ D(Hn)→ Xn given, as above, by

Hn = Hn, D(Hn) = {f ∈ Xn : Hnf ∈ Xn} = Xn+1. (3.4.6)

This generator is the unique continuous linear extension of the operator
Hm : Xm+1 → Xm to an isometry from Xn+1 to Xn, but considered as an
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unbounded operator in Xn.

Moreover, we have the following similarity result. This corollary is stated,
without proof, in [30, Corollary II.5.3] for n ∈ N. Here, we prove a more general
result for n ∈ Z.

Corollary 3.4.7. All of the semigroups, (Tn(t))t≥0, are similar. More precisely,

Tn+1(t) = H−1
n Tn(t)Hn = Tn(t)|Xn+1 for all n ∈ Z. (3.4.7)

Proof. We know that Hn : Xn+1 → Xn is an isomorphism. From [30, Sec-
tions I.5.10 and II.2.1], we have that (S(t))t≥0, defined by

S(t) = H−1
n Tn(t)Hn, t ≥ 0,

is a C0-semigroup on Xn+1, with generator, A, defined by

A = H−1
n HnHn = H−1

n HnHn = Hn|D(A) (since Hn and Hn coincide on D(Hn))

D(A) = {f ∈ Xn+1 : Hnf ∈ D(Hn)}

= {f ∈ Xn+1 : Hnf ∈ Xn+1}

= Xn+2.

We justify the last equality as follows. Since Hn|Xn+2 = Hn+1|Xn+2 = Hn+1 is
an isomorphism onto Xn+1, and Xn+2 ⊆ Xn+1, it follows that Xn+2 ⊆ D(A).
Now suppose g ∈ D(A)\Xn+2. Then Hng = h for some h ∈ Xn+1. Similarly,
Hn+1f = Hn+1f = Hnf = h for some f ∈ Xn+2. Since Hn is injective, f = g.
This contradicts g /∈ Xn+2 and so D(A) = Xn+2.

It follows that A = Hn|Xn+2 = Hn+1 and so (S(t))t≥0 = (Tn+1(t))t≥0. Thus,
(3.4.7) holds.

Remark 3.4.8. From [30, Section II.2.1], the spectra of (Tn(t))t≥0 must coincide,
and R(λ,Hn+1) = H−1

n R(λ,Hn)Hn for all n ∈ Z. Moreover, as mentioned im-
mediately after [30, Corollary II.5.3], the spectral bound and growth bound of
(Tn(t))t≥0, coincide for all n ∈ Z.
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From Corollary 3.4.7 we now have

Tn+1(t) = H−1
n Tn(t)Hn for all t ≥ 0, n ∈ Z

and so
Tn(t) = HnTn+1(t)H−1

n for all t ≥ 0, n ∈ Z.

We know that Hn, H−1
n are continuous, and it follows that, if (T0(t))t≥0 is

analytic, then (Tn(t))t≥0 is an analytic C0-semigroup on Xn, for all n ∈ Z. Hence,
in this case, Tn(t)̊u ∈ D(Hp

n) for all p ∈ N, ů ∈ Xn, t > 0, and so, in particular,
Tn(t)̊u ∈ D(Hn) for all ů ∈ Xn, t > 0. We use this to prove the following new
result.

Theorem 3.4.9. Let (T (t))t≥0 be analytic. Fix n ∈ Z and let ů ∈ Xn. Then
Tn(t)̊u ∈ Xm for all m ≥ n, t > 0.

Proof. We have, for all t > 0, that Tn(t)̊u ∈ Xn = Xn+0. Now fix k ∈ N ∪ {0}
and assume that, for all t > 0, Tn(t)̊u ∈ Xn+k. Then, for t0 ∈ (0, t),

Tn(t)̊u = Tn(t− t0)Tn(t0)̊u

= Tn+k(t− t0)Tn(t0)̊u ∈ D(Hn+k) = D(Hn+k) = Xn+k+1,

since Tn+k(t) and Tn(t) coincide on Xn+k and, for all f ∈ Xn+k, t > 0, we have
Tn+k(t)f ∈ D(Hn+k). Hence Tn(t)̊u ∈ Xm for all m ≥ n and t > 0 by induction.

The following example is [30, Example II.5.7] in the particular case when
(X0, ‖ · ‖0) = (`1

w, ‖ · ‖`1w), where `1
w and ‖ · ‖

`
1
w

are as defined in (3.1.3) and
(3.1.8) respectively. These weighted l1 spaces are of particular relevance later
since we choose to examine the coagulation–fragmentation system as an ACP in
such spaces.

Example 3.4.10. Suppose (X0, ‖ · ‖0) = (`1
w, ‖ · ‖`1w) and (hk)∞k=1 is such that

hk ∈ R and hk < 0 for all k ∈ N. The corresponding multiplication operator
H : D(H)→ X0, given by

[Hf ]k = hkfk, for all f ∈ D(H), k ∈ N,
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is the generator of the semigroup, (T0(t))t≥0, where

[T0(t)f ]k = ehktfk, for all f ∈ X0, t ≥ 0, k ∈ N.

For all n ∈ Z, the Sobolev spaces, Xn, are then

Xn = {g = (gk)∞k=1 : gk ∈ R for all k ∈ N and Hng ∈ X0},

where [Hnf ]k = hnkfk, for all k ∈ N, f ∈ X0.

The following new theorem allows us to obtain a solution of the ACP (3.4.2)
for any ů ∈ X−n, where n ∈ N.

Theorem 3.4.11. Let n ∈ N and let the semigroup (T (t))t≥0 be analytic. Then
(3.4.2) has a unique solution u ∈ C1((0,∞), X)∩C([0,∞), X−n) for all ů ∈ X−n.
This solution is given by u(t) = T−n(t)̊u, t ≥ 0.

Proof. Let n ∈ N and take ů ∈ X−n. From Theorem 3.4.9, T−n(t)̊u ∈ X1 = D(H)
for all t > 0. Hence, T−n(t)̊u ∈ D(H) for all t > 0. Since T−n(t)̊u ∈ D(H−n)
for all t > 0, we have u(t) = T−n(t)̊u ∈ C1((0,∞), X−n) ∩ C([0,∞), X−n) is the
unique classical solution of

u′(t) = H−nu(t), t > 0; u(0) = ů. (3.4.8)

For fixed t > 0, let t0 be such that 0 < t0 < t. Then

T−n(t)̊u = T−n(t− t0)T−n(t0)̊u = T (t− t0)T−n(t0)̊u

since T−n(t0)̊u ∈ D(H). It follows that, for all t > 0, T−n(t)̊u is differentiable
with respect to the norm, ‖ · ‖, on X, with

d

dt
(T−n(t)̊u) = HT (t− t0)T−n(t0)̊u = HT−n(t)̊u.

It follows that u(t) = T−n(t)̊u satisfies (3.4.2) for t > 0, ů ∈ X−n.
Now, if u(t) is differentiable with respect to the norm in X, then it is dif-

ferentiable with respect to the norm in X−n and the derivatives coincide. Also,
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H and H−n coincide on D(H). It follows that if v(t) satisfies (3.4.2), then v(t)
satisfies (3.4.8). Since T−n(t)̊u ∈ D(H) is the unique solution of (3.4.8), we have
that u(t) = T−n(t)̊u is the unique solution of (3.4.2).

CASE 2: Semigroups with General Growth Bound

When we examine the pure fragmentation system in general weighted `1 spaces we
obtain a semigroup with growth bound zero and so we cannot use this semigroup
directly to construct a Sobolev tower as in CASE 1. We deal with general growth
bounds here. Let X be a Banach space, equipped with the norm ‖ · ‖. We now
consider the case where G is the generator of a C0-semigroup, (S(t))t≥0, on X,
with growth bound ω0 ∈ R. As in CASE 1, we are interested in solutions of the
ACP

u′(t) = Gu(t), t > 0; u(0) = ů. (3.4.9)

The way we deal with this more general problem is to rescale the semigroup
(S(t))t≥0 to obtain a semigroup with a negative growth bound. We can then
apply the Sobolev tower construction described in CASE 1, which allows us to
obtain existence and uniqueness results to a rescaled ACP. Finally, we scale back
to obtain results relating to (3.4.9).

Choose µ > ω0 and define the rescaled semigroup, (T (t))t≥0, by

T (t) := e−µtS(t) for all t ≥ 0.

The generator of this rescaled semigroup is H = G−µI and we have, for some
M ≥ 1,

‖T (t)‖ = ‖e−µtS(t)‖ ≤ e−µteω0t ·M = e(ω0−µ)t ·M for all t ≥ 0.

Since ω0 − µ < 0, the growth bound of (T (t))t≥0 is negative and so 0 ∈ ρ(H).
Note that, if the semigroup (S(t))t≥0 is analytic, then the rescaled semigroup
(T (t))t≥0 is also analytic.

As in CASE 1, we can now use (T (t))t≥0 and H to construct a Sobolev tower
where, for n ∈ Z, Xn is the Sobolev space of order n associate with (T (t))t≥0. We
adopt the same notation as used in CASE 1.
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For n ∈ N, the unique, continuous extension of T (t) from X to X−n is given
by T−n(t) = e−µtS−n(t), where S−n(t) is the unique extension of S(t) from X to
X−n.

We have formulated the following proposition which gives the relationship
between a solution of a rescaled ACP and a solution of the ACP (3.4.9).

Proposition 3.4.12. Suppose that for some n ∈ N and ů ∈ X−n, u(t) = T−n(t)̊u
satisfies

u′(t) = Hu(t) = (G− µI)u(t), t > 0; u(0) = ů. (3.4.10)

Then u(t) = S−n(t)̊u satisfies (3.4.9). If, in addition, u(t) = T−n(t)̊u is the
unique function that satisfies (3.4.10), then u(t) = S−n(t)̊u is the unique function
that satisfies (3.4.9).

Proof. Let u(t) satisfy (3.4.10). It follows that

d

dt
(eµtu(t)) = µeµtu(t) + eµt

d

dt
(u(t)) = µeµtu(t) + eµt(G− µI)u(t) = Geµtu(t).

Also, e0tu(0) = e0ů = ů and so eµtu(t) satisfies (3.4.9). Thus, if u(t) = T−n(t)̊u
satisfies (3.4.10), then u(t) = eµtT−n(t)̊u = S−n(t)̊u satisfies (3.4.9).

We can similarly show that if u(t) satisfies (3.4.9), then e−µtu(t) satisfies
(3.4.10). Hence, if u(t) = T−n(t)̊u is the unique function that satisfies (3.4.10),
then u(t) = S−n(t)̊u is the unique function that satisfies (3.4.9).

We now give a new result that is analogous to Theorem 3.4.11. This result
is useful later, when we examine the pure fragmentation system in weighted `1

spaces.

Theorem 3.4.13. Let n ∈ N and let (S(t))t≥0 be an analytic C0-semigroup. For
all ů ∈ X−n, (3.4.9) has a unique solution u ∈ C1((0,∞), X) ∩ C([0,∞), X−n).
This solution is given by u(t) = S−n(t)̊u.

Proof. Since (S(t))t≥0 is an analytic semigroup, the rescaled semigroup (T (t))t≥0

is also analytic. From Theorem 3.4.11 we know that (3.4.10) has a unique solution
u ∈ C1((0,∞), X)∩C(([0,∞), X−n), given by u(t) = T−n(t)̊u = e−µtS−n(t)̊u, for
all ů ∈ X−n. The result then follows from Proposition 3.4.12.
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3.5 Evolution Families and Non-Autonomous Ab-
stract Cauchy Problems

In this section we briefly discuss evolution families and the role that they play in
solving non-autonomous ACPs. This is of importance later when non-autonomous
fragmentation is examined. We begin by providing a precise definition of an
evolution family that is based on [30, Definition VI.9.2].

Definition 3.5.1. Let X be a Banach space and let I be an interval such that
I ⊆ R. A family of bounded linear operators, (U(t, s))t,s∈I:t≥s, on X is called an
evolution family (or a strongly continuous evolution family) on X if

(i) U(t, r) = U(t, s)U(s, r) and U(r, r) = I for all t, s, r ∈ I such that r ≤ s ≤ t;

(ii) the mapping (t, s) 7→ U(t, s) is strongly continuous on {(t, s) ∈ I2 : t ≥ s}.

We now turn our attention to non-autonomous ACPs. Let X be a Banach
space and let s, T ∈ R be such that s < T ≤ ∞. Let I = [s, T ] if T < ∞ and
I = [s,∞) if T =∞. We examine equations of the form

u′(t) = G(t)u(t), t ∈ I, t > s; u(s) = ů, (3.5.1)

where (G(t))t≥0 is a family of linear operators with domains D(G(t)), t ≥ 0. In
the following definition, from [59, Definition 2.1], we define solutions of (3.5.1).

Definition 3.5.2. Consider a continuous function u : I → X. Then u is a

(i) classical solution of (3.5.1) if u ∈ C1(I\{s}, X), u(t) ∈ D(G(t)) for all
t ∈ I, t > s and (3.5.1) is satisfied;

(ii) strict solution of (3.5.1) if u ∈ C1(I,X), u(t) ∈ D(G(t)) for all t ≥ s and
(3.5.1) is satisfied,

where

C1(I,X) =
{
f ∈ C1

(
I\{s}, X

)
: f ′(s) := lim

x→s+
f ′(x) exists

}
.
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The following result from [61, Theorem 5.6.8] regarding the existence and
uniqueness of solutions is crucial in Chapter 7, where we examine non-autonomous
pure fragmentation. The condition (P2) given here differs slightly from that in
[61]. This is due to the fact that [61] considers the case where−G(t) is a generator,
while here we take G(t) to be the generator.

Theorem 3.5.3. Let X be a Banach space and T > 0. For each t ∈ [0, T ], let
G(t) be the generator of an analytic C0-semigroup, (St(s))s≥0, on X. Assume
that the following conditions are satisfied.

(P1) The domain D(G(t)) := D of G(t) is dense in X and independent of
t ∈ [0, T ].

(P2) For t ∈ [0, T ], the resolvent R(λ,G(t)) exists for all λ ∈ C with Reλ ≥ 0
and there is a constant M such that

‖R(λ,G(t))‖ ≤ M

|λ|+ 1 for all t ∈ [0, T ], λ ∈ C : Reλ ≥ 0.

(P3) There exist constants L and σ ∈ (0, 1] such that
∥∥∥∥(G(t)−G(s)

)
G(τ)−1

∥∥∥∥ ≤ L|t− s|σ for s, t, τ ∈ [0, T ].

Then, for every 0 ≤ s < T and ů ∈ X the initial value problem

u′(t) = G(t)u(t), s < t ≤ T ; u(s) = ů (3.5.2)

has a unique classical solution. This solution is given by u(t) = W (t, s)̊u, where
(W (t, s))(t,s)∈[0,T ]:t≥s is an evolution family.
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Nonlinear Operators

Our approach for dealing with the full system (1.1.1) is to pose it as a semi-linear
ACP in an appropriate Banach space. The non-linearity in this ACP arises from
the introduction of a non-linear coagulation operator to represent the coagula-
tion terms in (1.1.1). In this chapter we provide some abstract results relating
to non-linear operators that we require when we examine the C–F system. In
Section 4.1, we provide definitions and results regarding the Lipschitz continuity
and Fréchet differentiability of an operator. These properties are very important
in Section 4.2, where abstract existence and uniqueness results for semi-linear
ACPs are provided. We again highlight new results at the start of each section
and when they are stated.

4.1 Lipschitz Conditions and Fréchet Differen-
tiability

To apply existence and uniqueness results to the C–F system, we require the
non-linear coagulation operator to be Lipschitz continuous. To obtain classical
solutions, the coagulation operator must also be Fréchet differentiable. Results
are provided in [46, Theorems 4.3 and 4.4] regarding the Lipschitz continuity
and Fréchet differentiability of the coagulation operator, when the coagulation
rates are time-independent and uniformly bounded. We provide abstract results
in Lemma 4.1.6, Proposition 4.1.8 and Corollary 4.1.9 to prove the Lipschitz
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continuity and Fréchet differentiability of general operators that satisfy certain
conditions. When applied to the coagulation operator, these results are stronger
than those in [46] since they allow the possibility that the coagulation operator
is time-dependent and not uniformly bounded.

We require the following definitions and results.

Definition 4.1.1. Let X be a normed vector space with norm ‖ · ‖. We define
the open ball, centred at h ∈ X with radius r > 0, to be the set

BX(h, r) := {g ∈ X : ‖h− g‖ < r}. (4.1.1)

Similarly, the closed ball, centred at h ∈ X with radius r > 0, is the set

BX(h, r) := {g ∈ X : ‖h− g‖ ≤ r}. (4.1.2)

The following definition is based on [22, Definition 3.6 (ii)].

Definition 4.1.2. Let t0, T ∈ R such that 0 ≤ t0 < T < ∞ and let I be an
interval of the form [t0, T ), [t0, T ] or [t0,∞). Let (Y, ‖ · ‖Y ), (X, ‖ · ‖X) be normed
vector spaces. Then an operator F : I×Y → X satisfies a local Lipschitz condition
in the second argument, uniformly in the first argument on compact intervals if,
for every t′ ∈ I and h ∈ Y , there exist constants, r > 0, L = L(t′, h, r) > 0, such
that for all f, g ∈ BY (h, r) and t ∈ [t0, t′],

‖F (t, f)− F (t, g)‖X ≤ L‖f − g‖Y . (4.1.3)

Note that when I = [t0, T ], we can take t′ = T so that (4.1.3) holds with the
same L for all t ∈ [t0, T ].

The following definition is taken from [61, p. 185].

Definition 4.1.3. Let t0, T ∈ R such that 0 ≤ t0 < T < ∞ and let I be
an interval of the form [t0, T ), [t0, T ] or [t0,∞). Let (Y, ‖ · ‖Y ), (X, ‖ · ‖X) be
normed vector spaces. Then an operator F : I × Y → X satisfies a Lipschitz
condition in the second argument on bounded sets, uniformly in the first argument
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on compact intervals if, for every t′ ∈ I and constant r > 0, there exists a constant
l = l(t′, r) > 0 such that

‖F (t, f)− F (t, g)‖X ≤ l‖f − g‖Y , (4.1.4)

for all f, g ∈ Y , with ‖f‖Y ≤ r, ‖g‖Y ≤ r and t ∈ [t0, t′].
Note that when I = [t0, T ], we can take t′ = T so that (4.1.4) holds with the

same l for all t ∈ [t0, T ].

Remark 4.1.4. Let F satisfy a Lipschitz condition in the second argument on
bounded sets, uniformly in the first argument on compact intervals as in Definition
4.1.3. Then F also satisfies a local Lipschitz condition in the second argument,
uniformly in the first argument on compact intervals, as in Definition 4.1.2. We
can show this as follows. Let h ∈ Y , t′ ∈ I. Choose an arbitrary r̃ > 0 and set
r = r̃ + ‖h‖Y . For all f, g ∈ BY (h, r̃), we have

‖f‖Y ≤ ‖f − h‖Y + ‖h‖Y ≤ r̃ + ‖h‖Y = r,

‖g‖Y ≤ ‖g − h‖Y + ‖h‖Y ≤ r̃ + ‖h‖Y = r,

and so

‖F (t, f)− F (t, g)‖X ≤ L(t′, h, r̃)‖f − g‖Y for all t ∈ [t0, t′],

where L(t′, h, r̃) = l(t′, r) = l(t′, r̃+‖h‖Y ). Thus there exists a constant L(t′, h, r)
such that (4.1.3) holds.

We also need the concept of Fréchet differentiability. The following definition
is taken from [22, Definition 3.27].

Definition 4.1.5. Let (Y, ‖ · ‖Y ) and (X, ‖ · ‖X) be Banach spaces and let
F : D(F ) → X where D(F ) ⊆ Y . Let f ∈ D(F ). The operator F is said
to be Fréchet differentiable at f if BY (f, r) ⊆ D(F ) for some r > 0 and there
exists a linear operator DF (f) ∈ B(Y,X) and a mapping R(f, ·) : BY (0, r)→ X

such that, for all δ ∈ BY (0, r)\{0},

F (f + δ) = F (f) +DF (f)δ +R(f, δ), (4.1.5)
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where R satisfies
lim
‖δ‖Y→0

‖R(f, δ)‖X
‖δ‖Y

= 0.

The operator DF (f) is the Fréchet derivative of F at f . The operator F is
Fréchet differentiable on an open subset D0 ⊆ D(F ) if it is Fréchet differentiable
at every f ∈ D0.

In the following results we provide sufficient conditions under which an op-
erator is locally Lipschitz and Fréchet differentiable. These properties will be
of importance later when we apply existence and uniqueness results to the full
coagulation–fragmentation system. The next lemma has been formulated by
McBride, Lamb and Smith in [46, Theorems 4.3 and 4.4] for the specific case
where the operator F describes time-independent coagulation. We prove the res-
ult for a more general operator, F : I × Y → X, where I ⊆ [0,∞) and Y , X are
Banach spaces. We note that the operator F in this lemma is basically quadratic
in the space variable, in the sense that

F (t, αf) = α2F (t, f) for all (t, f) ∈ I × Y and α ∈ R.

Lemma 4.1.6. Let t0, T ∈ R be such that 0 ≤ t0 < T < ∞ and let I be an
interval of the form [t0, T ), [t0, T ] or [t0,∞). Let (Y, ‖ ·‖Y ), (X, ‖ ·‖X) be Banach
spaces and let F̃ : I × Y × Y → X be such that

(a) F̃ is linear in the second and third arguments;

(b) for each t′ ∈ I there exists a c(t′) > 0 such that

‖F̃ [t, f, g]‖X ≤ c(t′)‖f‖Y ‖g‖Y , (4.1.6)

for all f, g ∈ Y and t ∈ [t0, t′].

Define F : I × Y → X by F (t, f) := F̃ [t, f, f ] for (t, f) ∈ I × Y .

(i) Then F is Lipschitz in the second argument on bounded sets, uniformly in
the first argument on compact intervals.

(ii) If, in addition, t 7→ F̃ [t, f, g] is continuous on I for every fixed f , g ∈ Y ,
then F̃ : I × Y × Y → X is continuous and hence F : I × Y → X is
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continuous.

Proof. Let t′ ∈ I, r > 0 and let f , g ∈ Y be such that ‖f‖Y ≤ r and ‖g‖Y ≤ r.
Then, for all t ∈ [t0, t′], we have

‖F (t, f)− F (t, g)‖X = ‖F̃ [t, f, f ]− F̃ [t, g, g]‖X
= ‖F̃ [t, f, f ]− F̃ [t, g, f ] + F̃ [t, g, f ]− F̃ [t, g, g]‖X
≤ ‖F̃ [t, f − g, f ]‖X + ‖F̃ [t, g, f − g]‖X
≤ c(t′)‖f − g‖Y ‖f‖Y + c(t′)‖g‖Y ‖f − g‖Y
≤ 2rc(t′)‖f − g‖Y
= L‖f − g‖Y

where L = L(t′, r) = 2rc(t′). Thus, F is Lipschitz in Y on bounded sets, uniformly
in t on compact intervals and (i) holds.

Now suppose that, in addition, t 7→ F̃ [t, f, g] is continuous on I for every fixed
f , g ∈ Y . Fix (s0, f0, g0) ∈ I ×Y ×Y , and choose r > 0 such that ‖f0‖Y < r and
‖g0‖Y < r. Moreover, choose t′ ∈ I such that t′ > s0 (if I = [t0, T ] and s0 = T ,
we take t′ = s0 = T ). Then, for (t, f, g) ∈ I × Y × Y , such that s ∈ [t0, t′] and
‖f‖Y ≤ r, ‖g‖Y ≤ r,

‖F̃ (s, f, g)− F̃ (s0, f0, g0)‖X
= ‖F̃ (s, f, g)− F̃ (s, f0, g) + F̃ (s, f0, g)− F̃ (s, f0, g0)

+ F̃ (s, f0, g0)− F̃ (s0, f0, g0)‖X
= ‖F̃ (s, f − f0, g) + F̃ (s, f0, g − g0) + F̃ (s, f0, g0)− F̃ (s0, f0, g0)‖X
≤ ‖F̃ (s, f − f0, g)‖X + ‖F̃ (s, f0, g − g0)‖X + ‖F̃ (s, f0, g0)− F̃ (s0, f0, g0)‖X
≤ c(t′)‖f − f0‖Y ‖g‖Y + c(t′)‖f0‖Y ‖g − g0‖Y + ‖F̃ (s, f0, g0)− F̃ (s0, f0, g0)‖X
≤ c(t′)r‖f − f0‖Y + c(t′)r‖g − g0‖Y + ‖F̃ (s, f0, g0)− F̃ (s0, f0, g0)‖X
→ 0 as (s, f, g)→ (s0, f0, g0).

It follows that F̃ : I × Y × Y is continuous, and hence so is F : I × Y , i.e. (ii)
holds.
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Remark 4.1.7. Note that, from Remark 4.1.4, if the conditions of Lemma 4.1.6
hold, then it follows that, for h ∈ Y , F is Lipschitz on BY (h, r) for any r > 0.

To obtain the existence and uniqueness of classical solutions of the C–F sys-
tem, we require the operator that we use to describe coagulation to be Fréchet
differentiable. Since we allow the coagulation rates to be time-dependent, this op-
erator is also time-dependent and so the following, specific case of Definition 4.1.5
is of particular interest to us. Consider the case where (Y, ‖ · ‖Y ), (X, ‖ · ‖X) are
Banach spaces. Let the norm, ‖ · ‖R×Y , on the space R× Y be given by

‖(t, f)‖R×Y = |t|+ ‖f‖Y for all (t, f) ∈ R× Y. (4.1.7)

Let t0, T ∈ R be such that 0 ≤ t0 < T < ∞ and let I be an interval of
the form [t0, T ) or [t0,∞). Let F : I × Y → X. From Definition 4.1.5, F
is Fréchet differentiable at (t, f) ∈ I\{t0} × Y if there exists a linear operator
DF (t, f) ∈ B(R × Y,X) and a mapping R((t, f), ·) : BR×Y (0, r) → X, for some
r > 0, such that, for all (δt, δf ) ∈ (R× Y )\{(0, 0)} satisfying t+ δt ∈ I\{t0},

F
(
(t, f) + (δt, δf )

)
= F (t, f) +DF (t, f)(δt, δf ) +R

(
(t, f), (δt, δf )

)
where

lim
‖(δt,δf )‖R×Y→0

‖R((t, f), (δt, δf ))‖X
‖(δt, δf )‖R×Y

= 0.

The next proposition is probably new in this form and provides conditions
that are sufficient to obtain Fréchet differentiability of F . Moreover, we show
that under these conditions the Fréchet derivative can be expressed as the sum of
the derivative of F with respect to the first argument and the Fréchet derivative
of F with respect to the second argument.

Proposition 4.1.8. Let (Y, ‖·‖Y ), (X, ‖·‖X) be Banach spaces and let t0, T ∈ R
such that 0 ≤ t0 < T < ∞. Let I be an interval of the form [t0, T ) or [t0,∞)
and consider the space (R× Y, ‖ · ‖R×Y ), where ‖ · ‖R×Y is defined by (4.1.7). Let
F : I × Y → X and assume that

(a) (t, f) 7→ F (t, f) is Fréchet differentiable with respect to f , with a uniform
remainder term on bounded time intervals in the sense that, for all t ∈ I
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and f, δf ∈ Y with δf 6= 0, we have

F (t, f + δf ) = F (t, f) +DY F (t, f)δf +RY (t, f, δf ), (4.1.8)

where for fixed f ,

‖RY (t, f, δf )‖X
‖δf‖Y

→ 0 as ‖δf‖Y → 0, (4.1.9)

uniformly in t on compact subintervals of I, and for fixed (t, f) ∈ I × Y ,
DY F (t, f) ∈ B(Y,X);

(b) t 7→ F (t, f) is strongly differentiable for fixed f ∈ Y ;

(c) (t, f) 7→ DY F (t, f) and (t, f) 7→ ∂
∂t
F (t, f) are continuous;

(d) t 7→ DY F (t, f) is continuously differentiable for fixed f ∈ Y .

Then F is Fréchet differentiable on I\{t0} × Y and the Fréchet derivative of F
at (t, f) ∈ I\{t0} × Y , DF (t, f), is given by

DF (t, f)(s, g) = ∂

∂t
F (t, f)s+DY F (t, f)g, (4.1.10)

for all (s, g) ∈ R× Y . Moreover, DF (t, f) is continuous with respect to (t, f).

Proof. Assumption (b) implies that for all t ∈ I\{t0}, δt ∈ R\{0} such that
t+ δt ∈ I\{t0} and f ∈ Y ,

F (t+ δt, f) = F (t, f) + ∂

∂t
F (t, f)δt +Rt(t, f, δt) (4.1.11)

where
‖Rt(t, f, δt)‖X

|δt|
→ 0 as |δt| → 0. (4.1.12)

Let t ∈ I\{t0}, δt ∈ R\{0} such that t+ δt ∈ I\{t0}, f ∈ Y and δf ∈ Y \{0}.
Then from (4.1.8), (4.1.11) and assumption (d) we obtain that

F (t+ δt, f + δf )− F (t, f)

= F (t+ δt, f + δf )− F (t+ δt, f) + F (t+ δt, f)− F (t, f)
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= DY F (t+ δt, f)δf +RY (t+ δt, f, δf ) + ∂

∂t
F (t, f)δt +Rt(t, f, δt)

= DY F (t, f)δf +
t+δt∫
t

∂

∂τ

(
DY F (τ, f)

)
dτδf +RY (t+ δt, f, δf )

+ ∂

∂t
F (t, f)δt +Rt(t, f, δt).

Note that ∂
∂t

(DY F (t, f)) is continuous and therefore integrable. We now fix
(t, f) ∈ I\{t0} × Y . Then DY F (t, f)δf + ∂

∂t
F (t, f)δt is linear in (δt, δf ), since

DY F (t, f) is linear, and
∥∥∥∥∥DY F (t, f)δf + ∂

∂t
F (t, f)δt

∥∥∥∥∥
X

≤ ‖DY F (t, f)‖‖δf‖Y +
∥∥∥∥∥ ∂∂tF (t, f)

∥∥∥∥∥ |δt|
≤ C(t, f)‖(δf , δt)‖R×Y ,

where C(t, f) = max
{
‖DY F (t, f)‖,

∥∥∥ ∂
∂t
F (t, f)

∥∥∥} ≥ 0. Also,

1
‖(δt, δf )‖R×Y

∥∥∥∥∥∥∥
t+δt∫
t

∂

∂τ

(
DY F (τ, f)

)
dτδf

∥∥∥∥∥∥∥
X

≤ ‖δf‖Y
‖δf‖Y

∥∥∥∥∥∥∥
t+δt∫
t

∂

∂τ

(
DY F (τ, f)

)
dτ

∥∥∥∥∥∥∥
≤

t+δt∫
t

∥∥∥∥∥ ∂∂t
(
DY F (τ, f)

)∥∥∥∥∥ dτ → 0

as ‖(δt, δf )‖R×Y → 0.
As ‖(δt, δf )‖R×Y → 0 we have ‖δf‖Y → 0 and t + δt → t. Thus, since (4.1.9)

holds uniformly in t on compact subintervals of I, we have

‖RY (t+ δt, f, δf )‖X
‖(δt, δf )‖R×Y

≤ ‖RY (t+ δt, f, δf )‖X
‖δf‖Y

→ 0 as ‖(δt, δf )‖R×Y → 0

and similarly, by (4.1.12),

‖Rt(t, f, δt)‖X
‖(δt, δf )‖(R×Y )

≤ ‖Rt(t, f, δt)‖X
|δt|

→ 0 as ‖(δt, δf )‖R×Y → 0.
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It follows that F is Fréchet differentiable on I\{t0}×Y and the Fréchet derivative
of F at (t, f) ∈ I\{t0} × Y is given by (4.1.10).

Since DY F (t, f) and ∂
∂t
F (t, f) are continuous with respect to (t, f), it follows

from (4.1.10) that DF (t, f) is also continuous with respect to (t, f).

We now return to the situation as in Lemma 4.1.6. The conditions that are
used to show Fréchet differentiability in the next result are more convenient to
check for the coagulation operator used later than those in Proposition 4.1.8.

Corollary 4.1.9. Let the conditions of Lemma 4.1.6(ii) be satisfied with I =
[t0, T ) or I = [t0,∞). Moreover, assume that

(a) for fixed f, g ∈ Y , t 7→ F̃ [t, f, g] is continuously differentiable;

(b) for each t′ ∈ I, there exists c̃(t′) > 0 such that

∥∥∥ ∂
∂t
F̃ [t, f, g]

∥∥∥
X
≤ c̃(t′)‖f‖Y ‖g‖Y

for all f , g ∈ Y and t ∈ (t0, t′].

Then F is Fréchet differentiable with respect to (t, f) on I\{t0} × Y and the
Fréchet derivative at (t, f) ∈ I\{t0} × Y is given by

DF (t, f)(s, g) = ∂

∂t
F̃ [t, f, f ]s+ F̃ [t, f, g] + F̃ [t, g, f ], (4.1.13)

for all (s, g) ∈ R× Y . Moreover, DF (t, f) is continuous with respect to (t, f).

Proof. Let t ∈ I, f , δf ∈ Y such that δf 6= 0. Then

F (t, f + δf ) = F̃ [t, f + δf , f + δf ]

= F̃ [t, f, f ] + F̃ [t, f, δf ] + F̃ [t, δf , f ] + F̃ [t, δf , δf ]

= F (t, f) + F̃ [t, f, δf ] + F̃ [t, δf , f ] + F (t, δf ).

So equation (4.1.8) is satisfied where

DY F (t, f)δf = F̃ [t, f, δf ] + F̃ [t, δf , f ] (4.1.14)
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and
RY (t, f, δf ) = F (t, δf ).

Since ‖F̃ [t, f, g]‖X ≤ c(t)‖f‖Y ‖g‖Y , it follows that

‖F̃ [t, f, δf ] + F̃ [t, δf , f ]‖X ≤ 2c(t)‖f‖Y ‖δf‖Y .

Thus, for each fixed (t, f) ∈ I × Y , we have that DY F (t, f) is a bounded linear
operator on Y .

Take t′ ∈ I and fix f ∈ Y . Then, for δf ∈ Y \ {0} and t ∈ [t0, t′], we have

‖RY (t, f, δf )‖X
‖δf‖Y

= ‖F (t, δf )‖X
‖δf‖Y

= ‖F̃ [t, δf , δf ]‖X
‖δf‖Y

≤ c(t′)‖δf‖Y → 0

as ‖δf‖Y → 0, and the convergence is uniform in t ∈ [t0, t′]. Thus F is Fréchet
differentiable with respect to the second argument and the Fréchet derivative at
f ∈ Y is given by (4.1.14) for all δf ∈ Y . Hence assumption (a) of Proposi-
tion 4.1.8 holds.

Fix (t, f) ∈ I\{t0} × Y . From assumption (a) we have, for δt ∈ R\{0} such
that t+ δt ∈ I\{t0},

F (t+ δt, f) = F̃ [t+ δt, f, f ] = F̃ [t, f, f ] + ∂

∂t
F̃ [t, f, f ]δt +Rt(t, f, f, δt)

= F (t, f) + ∂

∂t
F̃ [t, f, f ]δt +Rt(t, f, f, δt),

where
‖Rt(t, f, f, δt)‖X

|δt|
→ 0 as |δt| → 0.

Thus F is strongly differentiable with respect to the first argument and so as-
sumption (b) in Proposition 4.1.8 holds.

From part (ii) of Lemma 4.1.6 we have that F̃ is continuous. It follows from
(4.1.14) thatDY F (t, f) is also continuous with respect to (t, f). Using assumption
(b) and the continuity of the derivative from (a) we can prove in the same way
as in the second half of the proof of Lemma 4.1.6 that (t, f, g) 7→ ∂

∂t
F̃ [t, f, g] is

continuous, and hence (t, f) 7→ ∂
∂t
F (t, f) is continuous. It follows from (4.1.14)
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and the continuity of F̃ that DY F (t, f) is continuously differentiable with respect
to t. Thus assumptions (c) and (d) in Proposition 4.1.8 hold and the statements
of the corollary follow.

4.2 Semi-Linear ACPs

The concepts and results that we introduce in this section are useful when we ex-
amine the full coagulation–fragmentation system, posed as a semi-linear ACP in
a weighted `1 space. Of particular importance is Theorem 4.2.5, which provides
conditions under which a semi-linear ACP has a unique “mild” solution; see
Definition 4.2.2 below. The proof of Theorem 4.2.5 is based on those of [61,
Theorem 6.1.4] and [43, Theorem 7.1.2], and uses Lemma 4.2.8(i), where a con-
traction mapping argument shows that a certain integral equation has a unique
fixed point. Unlike in [61, Theorem 6.1.4] and [43, Theorem 7.1.2], however, we
allow the non-linear operator in the semi-linear ACP to map from one arbitrary
Banach space, Y , into another Banach space, X, with Y continuously embedded
inX. From this theorem we are then able to obtain Propositions 4.2.12 and 4.2.15,
which correspond, respectively, to the cases considered in [61, Theorem 6.1.4] and
[43, Theorem 7.1.2].

Moreover, conditions that guarantee the positivity of the unique mild solution
are given in Theorem 4.2.6, the proof of which uses Lemma 4.2.8(ii). Positivity
of the unique mild solution was not included in [61, Theorem 6.1.4] and [43,
Theorem 7.1.2], and we believe Theorem 4.2.6 and Lemma 4.2.8(ii) to be new
results.

Let X, Y be Banach spaces such that Y is continuously embedded in X. We
first state what we mean by a solution of an ACP of the form

u′(t) = Gu(t) + F (t, u(t)), t ∈ (t0, T ), (4.2.1)

u(t0) = ů, (4.2.2)

where 0 ≤ t0 < T ≤ ∞, G is the generator of a C0-semigroup, (S(t))t≥0, on X,
F : [t0, T )× Y → X and ů ∈ Y . We define a classical solution of (4.2.1), (4.2.2)
in an analogous way as for linear ACPs.
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Definition 4.2.1. We say that u is a classical solution of (4.2.1), (4.2.2) on [t0, T )
if u : [t0, T )→ Y is continuous in Y , u : (t0, T )→ Y is continuously differentiable
in X, u(t) ∈ D(G) for t ∈ (t0, T ) and (4.2.1) and (4.2.2) are satisfied.

Note that in some books, see for example [21, Definition 2.38], a classical solution,
as defined here, is referred to as a strong solution. We also require the concept
of a mild solution.

Definition 4.2.2. A continuous solution u : [t0, T )→ Y of the integral equation

u(t) = S(t− t0)̊u+
t∫

t0

S(t− s)F (s, u(s))ds, t ∈ [t0, T ), (4.2.3)

is said to be a mild solution of (4.2.1), (4.2.2).

Note that the continuity in Definition (4.2.2) is with respect to the norm in
Y and we take the equality (4.2.3) to hold in the space X.

The following argument from [61, p. 105] proves that any classical solution
of (4.2.1), (4.2.2) is also a mild solution. Let u be a classical solution of (4.2.1),
(4.2.2). Then, for t0 < s < t < T , we have u(s) ∈ D(G) and the function
g(s) = S(t− s)u(s) is differentiable, with

dg

ds
(s) = −GS(t− s)u(s) + S(t− s)u′(s)

= −GS(t− s)u(s) + S(t− s)
(
Gu(s) + F (s, u(s))

)
= −GS(t− s)u(s) +GS(t− s)u(s) + S(t− s)F (s, u(s))

= S(t− s)F (s, u(s)).

Integrating between t0 and t we obtain

u(t)− S(t− t0)u(t0) =
t∫

t0

S(t− s)F (s, u(s))ds

and so

u(t) = S(t− t0)̊u+
t∫

t0

S(t− s)F (s, u(s)) ds.
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Definition 4.2.3. A mild solution (resp. classical solution), u, of (4.2.1), (4.2.2)
on [t0, tmax) is called maximal if there does not exist a t̃ > tmax and an extension,
ũ, of u such that ũ is a mild solution (resp. classical solution) on [t0, t̃).

The following lemma will be useful in the proofs of later results.

Lemma 4.2.4. Let X and Y be Banach spaces, with Y continuously embedded
in X, and let 0 < T ≤ ∞. Let (S(t))t≥0 be a C0-semigroup on X and let
F : [0, T )× Y → X. Let 0 ≤ t0 < T and ů ∈ Y . Let u : [t0, T )→ Y satisfy

u(t) = S(t− t0)̊u+
t∫

t0

S(t− s)F (s, u(s)) ds, (4.2.4)

for t ∈ [τ0, τ ], where t0 ≤ τ0 ≤ τ < T . Then u(t) also satisfies

u(t) = S(t− τ0)u(τ0) +
t∫

τ0

S(t− s)F (s, u(s)) ds, (4.2.5)

for t ∈ [τ0, τ ].

Proof. Let t0 ≤ τ0 ≤ τ < T and suppose that u(t) satisfies (4.2.4) for t ∈ [τ0, τ ].
Further, let t ∈ [τ0, τ ] and set t̂ := t− τ0 ≥ 0. We have

u(t) = u(τ0 + t̂)

= S(τ0 + t̂− t0)̊u+
τ0+t̂∫
t0

S(τ0 + t̂− s)F (s, u(s)) ds

= S(τ0 + t̂− t0)̊u+
τ0∫
t0

S(τ0 + t̂− s)F (s, u(s)) ds

+
τ0+t̂∫
τ0

S(τ0 + t̂− s)F (s, u(s)) ds

= S(t̂)

S(τ0 − t0)̊u+
τ0∫
t0

S(τ0 − s)F (s, u(s)) ds


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+
τ0+t̂∫
τ0

S(τ0 + t̂− s)F (s, u(s)) ds

= S(t̂)u(τ0) +
τ0+t̂∫
τ0

S(τ0 + t̂− s)F (s, u(s)) ds

= S(t− τ0)u(τ0) +
t∫

τ0

S(t− s)F (s, u(s)) ds.

This proves the result.

We now provide some existence and uniqueness results that we apply to the
coagulation–fragmentation system later.

Theorem 4.2.5. Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be Banach spaces such that Y is
continuously embedded in X and let 0 < T ≤ ∞. Assume that

(a) F : [0, T )× Y → X is such that t 7→ F (t, v) is continuous for v ∈ Y and F
is Lipschitz in the second argument on bounded sets, uniformly in the first
argument on compact intervals;

(b) G is the generator of a C0-semigroup, (S(t))t≥0, on X such that S(t) leaves
Y invariant, for t ∈ [0, T ), and t 7→ S(t)y is continuous from [0, T ) into Y

for every y ∈ Y ;

(c) for s0, s1 ∈ [0, T ), such that s0 ≤ s1,

s1∫
s0

S(s1 − s)ϕ(s) ds ∈ Y for every ϕ ∈ C([s0, s1], X);

(d) there exists an increasing function η : [0,∞) → [0,∞) such that η(δ) → 0
as δ → 0+ and

∥∥∥∥
s1∫
s0

S(s1 − s)ϕ(s) ds
∥∥∥∥
Y
≤ η(s1 − s0)‖ϕ‖C([s0,s1],X)

for every ϕ ∈ C([s0, s1], X).
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Then the following statements hold.

(i) For every ů ∈ Y , there exists a tmax satisfying 0 < tmax ≤ T , such
that (4.2.1), (4.2.2) (with t0 = 0) has a unique maximal mild solution,
u ∈ C

(
[0, tmax), Y

)
, i.e. there exists a unique solution, u, of (4.2.3) (with

t0 = 0) on [0, tmax).

(ii) If tmax < T , then ‖u(t)‖Y →∞ as t→ t−max.

(iii) Let (̊u(m))∞m=1 be such that ů(m) ∈ Y for each m ∈ N and ů(m) → ů in Y as
m → ∞. Let u(m) and u be the unique, maximal mild solutions of (4.2.1),
(4.2.2) (with t0 = 0), corresponding to the initial conditions ů(m) and ů

respectively. Then there exists 0 < t′max ≤ T such that, for all m ∈ N, u(m)

and u exist in Y for t ∈ [0, t′max). Moreover, u(m) → u, in Y , as m → ∞
uniformly on [0, T0], for some 0 < T0 < t′max.

(iv) Let the assumptions in (iii) hold and for every τ ∈ [0, t′max) let there exists a
Cτ > 0 such that, for all m ∈ N, ‖u(t)‖Y , ‖u(m)(t)‖Y ≤ Cτ for all t ∈ [0, τ ].
Then u(m) → u, in Y, as m → ∞ uniformly in t on compact subintervals
of [0, t′max).

We also provide the following result regarding the positivity of the mild solu-
tion in Theorem 4.2.5(i).

Theorem 4.2.6. Let assumptions (a)–(d) of Theorem 4.2.5 hold and let u be the
maximal mild solution on [0, tmax), for some 0 < tmax ≤ T . In addition, let X be
an ordered Banach space, D(G) ⊆ Y be dense in Y , and ů ∈ Y+. Assume that

(a) there exists a bounded, linear operator H : Y → X such that, for all γ ≥ 0,
G − γH generates the semigroup (Sγ(t))t≥0 on X, satisfying assumptions
(b)–(d) of Theorem 4.2.5;

(b) for each γ ≥ 0 the semigroup (Sγ(t))t≥0 is positive and satisfies

‖Sγ(t)|Y ‖B(Y ) ≤ ‖S(t)
∣∣∣
Y
‖B(Y ) for all t ∈ [0, T ).

Moreover, let τ ∈ (0, tmax) and assume that
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(c) for every r > 0, there exists γ ≥ 0 such that

F (t, v) + γHv ≥ 0 for all v ∈ BY (0, r)+, t ∈ [0, τ ]. (4.2.6)

Then u(t) ≥ 0 for all t ∈ [0, τ ].

The following lemmas will be useful in the proofs of Theorems 4.2.5 and 4.2.6.

Lemma 4.2.7. Let assumptions (b)–(d) of Theorem 4.2.5 hold. Then

(i) S(t)
∣∣∣
Y

is a bounded operator on Y for every t ∈ [0, T ), and

{∥∥∥S(t)
∣∣∣
Y

∥∥∥
B(Y )

: t ∈ [0, t1]
}

(4.2.7)

is bounded for every t1 ∈ [0, T ).

(ii) For 0 ≤ s0 ≤ s1 < T , the function

t 7→
t∫

s0

S(t− s)ϕ(s) ds

is continuous from [s0, s1] to Y for every ϕ ∈ C([s0, s1], X).

Proof. Let t ∈ [0, T ). Since S(t) is closed in X and Y is continuously embedded
in X, S(t)

∣∣∣
Y

is closed in Y . It follows from the Closed Graph Theorem that S(t)
∣∣∣
Y

is bounded. Also, by assumption, for y ∈ Y and every t1 ∈ [0, T ), t 7→ S(t)y is
continuous from [0, t1] into Y . It follows that {‖S(t)y‖ : t ∈ [0, t1]} is bounded
and, by the Uniform Boundedness Principle, the set in (4.2.7) is bounded. This
proves part (i).

To prove part (ii), let 0 < s0 ≤ s1 < T and let ϕ ∈ C([s0, s1], X). Moreover,
let s2, s3 ∈ [s0, s1] such that s2 < s3 and set h := s3 − s2. Then
∥∥∥∥∥∥∥
s3∫
s0

S(s3 − s)ϕ(s) ds−
s2∫
s0

S(s2 − s)ϕ(s) ds

∥∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥∥
s3∫
s0

S(s3 − s)ϕ(s) ds−
s3−h∫
s0

S(s3 − h− s)ϕ(s) ds

∥∥∥∥∥∥∥
Y
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=

∥∥∥∥∥∥∥∥
s3∫
s0

S(s3 − s)ϕ(s) ds−
s3∫

s0+h

S(s3 − s)ϕ(s− h) ds

∥∥∥∥∥∥∥∥
Y

≤

∥∥∥∥∥∥∥
s0+h∫
s0

S(s3 − s)ϕ(s) ds

∥∥∥∥∥∥∥
Y

+

∥∥∥∥∥∥∥∥
s3∫

s0+h

S(s3 − s)
[
ϕ(s)− ϕ(s− h)

]
ds

∥∥∥∥∥∥∥∥
Y

=

∥∥∥∥∥∥∥S(s3 − s0 − h)
s0+h∫
s0

S(s0 + h− s)ϕ(s) ds

∥∥∥∥∥∥∥
Y

+

∥∥∥∥∥∥∥∥
s3∫

s0+h

S(s3 − s)
[
ϕ(s)− ϕ(s− h)

]
ds

∥∥∥∥∥∥∥∥
Y

≤
∥∥∥S(s3 − s0 − h)

∥∥∥
B(Y )

∥∥∥∥∥∥∥
s0+h∫
s0

S(s0 + h− s)ϕ(s) ds

∥∥∥∥∥∥∥
Y

+ η(s3 − s0 − h)
∥∥∥ϕ(·)− ϕ(· − h)

∥∥∥
C([s0+h,s1],X)

≤ sup
t∈[0,s1]

‖S(t)|Y ‖B(Y )η(h)‖ϕ‖C([s0,s1],X) + η(s1 − s0)
∥∥∥ϕ(·)− ϕ(· − h)

∥∥∥
C([s0+h,s1],X)

The first term clearly converges to 0 as h → 0. For the second term note that
ϕ is uniformly continuous on [s0, s1] as it is continuous on a compact interval.
Hence ‖ϕ(·)− ϕ(· − h)

∥∥∥
C([s0+h,s1],X)

→ 0 as h→ 0.

Before proving Theorem 4.2.5 and Theorem 4.2.6, we provide some notation
and a useful lemma. Let the assumptions (a)–(d) of Theorem 4.2.5 hold. For all
t ∈ (0, T ) let

M̂(t) = sup
{
‖S(s)

∣∣∣
Y
‖B(Y ) : s ∈ [0, t]

}
and let M̂0 = lim sup

t→0+
M̂(t). From Lemma 4.2.7(i), M̂(t) is well defined for each

t ∈ (0, T ) and, since S(0)
∣∣∣
Y

= I
∣∣∣
Y

, we have M̂(t) ≥ 1 for all t ∈ (0, T ) and
M̂0 ≥ 1. Moreover, for t ∈ (0, T ), let

N(t) := max
{
‖F (s, 0)‖X : s ∈ [0, t]

}
.
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Then N and M̂ are both monotone increasing functions. Let C > 0 be given and
let τ ∈ (0, T ). We now fix r > 2CM̂0, and define

δ(C, r, τ) := 1
2 sup

{
d ∈ (0, τ) : l(τ, r)η(d) ≤ 1

2 , CM̂(d) +N(τ)η(d) ≤ r

2

}
.

(4.2.8)
Note that l is the Lipschitz constant associated with F on [0, τ ]×BY (r), which is
chosen such that it is increasing in the first argument. The set on the right-hand
side is non-empty because

lim
d→0+

l(τ, r)η(d) = 0 and lim sup
d→0+

(
CM̂(d) +N(τ)η(d)

)
= CM̂0 <

r

2 ,

and hence δ = δ(C, r, τ) > 0. Moreover, the factor of 1
2 before the supremum and

the monotonicity of η and M̂ imply that δ is contained in the set on the right
hand side of (4.2.8). Hence, we have

l(τ, r)η(δ) ≤ 1
2 and CM̂(δ) +N(τ)η(δ) ≤ r

2 . (4.2.9)

Let t0, t1 ∈ (0, T ) be such that t0 < t1. We now consider the Banach space
Z := C

(
[t0, t1], Y

)
equipped with the norm ‖v‖Z = max

t∈[t0,t1]
‖v(t)‖Y , for v ∈ Z.

Let
Σ := BZ(0, r) = {v ∈ Z : ‖v‖Z ≤ r} (4.2.10)

and

(Qv)(t) := S(t− t0)̊u+
t∫

t0

S(t− s)F (s, v(s)) ds, v ∈ Σ, t0 ≤ t ≤ t1. (4.2.11)

We adopt this notation in the following lemma. The proof of part (i) of this lemma
is based on the proof of [61, Theorem 6.1.4]. However, [61, Theorem 6.1.4] deals
with the particular case where Y = X and so the result presented here is more
general. Moreover, we provide a positivity result that is absent in [61, Theorem
6.1.4].

Lemma 4.2.8. Let assumptions (a)–(d) of Theorem 4.2.5 hold and let ů ∈ Y .
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Choose C > 0 such that ‖ů‖Y ≤ C and choose r > 2CM̂0. Let Σ and Q be defined
by (4.2.10) and (4.2.11) respectively. Let t0, τ ∈ [0, T ) be such that t0 < τ and
choose

t1 = min
{
τ, t0 + δ(C, r, τ)

}
, (4.2.12)

where δ(C, r, τ) is as in (4.2.8).

(i) Then the operator Q is a contraction, with contraction constant 1
2 , that

maps Σ into itself, and hence has a unique fixed point, u, in Σ.

(ii) Now suppose that, in addition, X is an ordered Banach space, (S(t))t≥0 is
a positive semigroup and ů ∈ Y+. Assume that

F (t, v) ≥ 0 for all v ∈ BY (0, r)+, t ∈ [t0, t1].

Let u be the unique fixed point of Q from (i). Then u ∈ Σ+.

Proof. Since C < r, we have that ů ∈ Σ, where ů is considered as a constant
function in t. Also, we have Qv ∈ C([t0, t1], Y ) = Z since t 7→ S(t)̊u is continuous
from [t0, t1] into Y , by assumption (b) of Theorem 4.2.5, and, taking φ(s) =
F (s, v(s)) for v ∈ Σ in Lemma 4.2.7(ii), we have that

t 7→
t∫

t0

S(t− s)F (s, v(s)) ds

is continuous from [t0, t1] into Y . Let v, w ∈ Σ. Then, for t ∈ [t0, t1],

(Qv)(t)− (Qw)(t) =
t∫

t0

S(t− s)
(
F (s, v(s))− F (s, w(s))

)
ds.

Now,

‖F (·, v(·))− F (·, w(·))‖C([t0,t1],X) = max
s∈[t0,t1]

‖F (s, v(s))− F (s, w(s))‖X

≤ l (τ, r) max
s∈[t0,t1]

‖v(s)− w(s)‖Y

= l (τ, r) ‖v − w‖Z .
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Hence

‖Qv −Qw‖Z =
∥∥∥∥
·∫

t0

S(· − s)
(
F (s, v(s))− F (s, w(s))

)
ds
∥∥∥∥
Z

≤ η(t1 − t0)l (τ, r) ‖v − w‖Z
≤ η(δ)l (τ, r) ‖v − w‖Z

≤ 1
2‖v − w‖Z ,

where (4.2.9) is used to obtain the last inequality. We therefore have

‖Qv −Qw‖Z ≤
1
2‖v − w‖Z . (4.2.13)

Using (4.2.13), we can show that Q maps Σ into itself since, for v ∈ Σ,

‖Qv‖Z ≤ ‖Qv −Q0‖Z + ‖Q0‖Z

≤ 1
2‖v − 0‖Z + ‖S(· − t0)̊u‖Z +

∥∥∥∥∥∥∥
·∫

t0

S(· − s)F (s, 0) ds

∥∥∥∥∥∥∥
Z

≤ r

2 +M̂(t1 − t0)‖ů‖Y + η(t1 − t0)N(t1)

≤ r

2 + CM̂(δ) + η(δ)N(τ) ≤ r,

where the last inequality is obtained using (4.2.9). Thus, from (4.2.13), Q is a
contraction with contraction constant 1

2 . It follows from the Contraction Mapping
Theorem that Q has a unique fixed point, u, in Σ. Note that this means that
u(t) ∈ BY (0, r) for t ∈ [t0, t1]. This proves part (i).

We now turn our attention to the proof of part (ii). We have shown that Q is
a contraction that maps Σ into Σ. Moreover, F (t, f) ≥ 0 for t ∈ [t0, t1], f ∈ Σ+.
Since ů ∈ Y+ and (S(t))t≥0 is a positive semigroup, it follows that Q maps Σ+

into Σ+. Also, ů ∈ Σ+ and, by the Contraction Mapping Theorem, we have that
u = lim

n→∞
Qnů. Since Q maps Σ+ into Σ+, we can deduce that Qnů ∈ Σ+ for all

n ∈ N and so, since the positive cone is closed, u ∈ Σ+.

We can now use Lemma 4.2.8 to prove Theorem 4.2.5. We adopt the notation
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introduced in the discussion preceding Lemma 4.2.8.

Proof of Theorem 4.2.5. In Lemma 4.2.8(i) we have shown the existence of a
unique u ∈ Σ satisfying

u(t) = S(t− t0)̊u+
t∫

t0

S(t− s)F (s, v(s)) ds. (4.2.14)

We now prove that this is the only solution of (4.2.14) in Y .
Suppose that u1 and u2 are two solutions of (4.2.14) on [t0, t1]. Since ů ∈ Σ,

with ‖ů‖Y < r, and there is a unique, continuous solution in Σ, we have that u1

and u2 must coincide on some interval [t0, t′]. Define

τ0 = sup
{
t ∈ [t0, t1] : u1(s) = u2(s) for all s ∈ [t0, t]

}
.

We set y := u1(τ0) = u2(τ0). Note that u1(τ0) = u2(τ0) since u1 and u2 are
continuous.

Let τ0 < t1. Then u1, u2 are distinct solutions of (4.2.14) on (τ0, t1]. Moreover,
by Lemma 4.2.4, u1 and u2 both satisfy

u(t) = S(t− τ0)y +
t∫

τ0

S(t− s)F (s, u(s)) ds on [τ0, t1]. (4.2.15)

Using Lemma 4.2.8, with t0 replaced by τ0 and ů replaced by y, we can show
that there exists a unique, solution of (4.2.15) on [τ0, τ0 + ε] for some ε > 0. This
is a contradiction and so τ0 = t1, i.e. the solution is unique on [t0, t1]. Hence,
for each t0 ∈ [0, T ), there exists a t1 ∈ (t0, T ) such that (4.2.1), (4.2.2) has a
unique, maximal mild solution on [t0, t1]. Taking t0 = 0 we obtain the existence
of a unique mild solution on [0, t1] and so there must exist a unique maximal mild
solution. Hence (i) holds.

We now prove (ii). Assume that tmax < T and that ‖u(t)‖Y 9∞ as t→ t−max.
Then there exist sn ∈ [0, tmax) such that (sn)∞n=1 is strictly increasing, sn → tmax

as n → ∞ and ‖u(sn)‖Y ≤ C for some C > 0. Choose τ ∈ (tmax, T ), r > 2CM̂0

and set δ := δ(C, r, τ). For some n ∈ N, we have sn > tmax − δ. Choose t1 as in
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(4.2.12) with t0 = sn. Then t1 > tmax. From Lemma 4.2.8(i), it follows that the
solution can be extended beyond tmax. This contradicts the definition of tmax.

We now prove (iii). Since ů(m) → ů as m → ∞, we can choose C > 0 large
enough such that ‖ů(m)‖Y , ‖ů‖Y ≤ C for all m ∈ N. Let τ ∈ (0, T ), r > 2CM̂0

and let t̂1 = min{τ, δ(C, r, τ)}. From Lemma 4.2.8(i), u and u(m), m ∈ N, all
exist on [0, t̂1] and so there exists a t′max > 0 such that, for all m ∈ N, u and u(m)

exist for t ∈ [0, t′max).
We now consider an arbitrary, fixed, t0 ∈ [0, t′max), satisfying, for all m ∈ N,

‖u(m)(t0)‖Y , ‖u(t0)‖Y ≤ C. From Lemma 4.2.4 we have that u satisfies

u(t) = S(t− t0)u(t0) +
t∫

t0

S(t− s)F (s, u(s)) ds, (4.2.16)

for t ∈ [t0, t′max). Let t0 < τ < T and let t1 be as in (4.2.12). From Lemma 4.2.8(i)
we can deduce that (4.2.16) has a unique solution, u ∈ Σ. Similarly, u(m) satisfies

u(m)(t) = S(t− t0)u(m)(t0) +
t∫

t0

S(t− s)F (s, u(m)(s)) ds,

for t ∈ [t0, t′max) and u(m) ∈ Σ for each m ∈ N. From Lemma 4.2.8(i), Q is a
contraction on Σ, with contraction constant 1

2 . Suppose that u(m)(t0)→ u(t0) as
m→∞. Then, for t ∈ [t0, t1],

‖u− u(m)‖Z ≤ ‖S(· − t0)(u(t0)− u(m)(t0))‖Z

+

∥∥∥∥∥∥∥
·∫

t0

S(· − s)(F (s, u(s))− F (s, u(m)(s)) ds

∥∥∥∥∥∥∥
Z

≤ M̂(δ)‖u(t0)− u(m)(t0)‖Y + ‖Qu−Qu(m)‖Z

≤ M̂(δ)‖u(t0)− u(m)(t0)‖Y + 1
2‖u− u

(m)‖Z .

Thus,
‖u− u(m)‖Z ≤ 2M̂(δ)‖u(t0)− u(m)(t0)‖Y .

It follows that u(m)(t)→ u(t) as m→∞ for t ∈ [t0, t1]. This holds, in particular,
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with t0 = 0, u(0) = ů and u(m)(0) = ů(m). Hence u(m) → u as m→∞ on [0, t̂1],
i.e. (iii) holds.

Finally, we prove (iv). Let τ ∈ (0, t′max) and choose r > 2CτM̂0. From
part (iii), we know that u(m) → u as m → ∞ uniformly in t on [0, t̂1], where
t̂1 = min{τ, δ(Cτ , r, τ)}. If t̂1 < τ , i.e. t̂1 = δ(Cτ , r, τ), then, since u(m)(t̂1)→ u(t̂1)
as m→∞ and ‖u(m)(t̂1)‖Y , ‖u(m)(t̂1)‖Y ≤ Cτ for all m ∈ N, we can use the argu-
ment from the proof of part (iii) to extend the result to [0,min{τ, 2δ(Cτ , r, τ)}].
Repeating this argument a finite number of times we can deduce that u(m) → u

as m→∞, uniformly in t on [0, τ ].
To prove Theorem 4.2.6, we require the following two lemmas, the first of

which is based on [30, Corollary III.1.7].

Lemma 4.2.9. Let assumptions (a) and (b) of Theorem 4.2.6 hold. Then

S(t)g = Sγ(t)g +
t∫

0

Sγ(t− s)(γH)S(s)g ds (4.2.17)

for every t ≥ 0 and g ∈ Y .

Proof. Let γ ≥ 0 and take g ∈ D(G), t ∈ [0, T ). Consider the functions

s 7→ ξ(s) := Sγ(t− s)S(s)g ∈ X, s ∈ [0, t].

Since D(G) = D(G− γH) is invariant under (S(t))t≥0 and (Sγ(t))t≥0, we can use
[30, Lemma B.16] to deduce that ξ(·) is differentiable and

d

ds
Sγ(t− s)S(s)g = −Sγ(t− s)(G− γH)S(s)g + Sγ(t− s)GS(s)g

= Sγ(t− s)(γH)S(s)g.

Hence

S(t)g − Sγ(t)g =
t∫

0

Sγ(t− s)(γH)S(s)g ds.

If g ∈ Y , then there exists (g(n))∞n=1 such that g(n) ∈ D(G) for all n ∈ N and
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g(n) → g as n→∞ in Y . Also

S(t)g(n) − Sγ(t)g(n) =
t∫

0

Sγ(t− s)(γH)S(s)g(n) ds. (4.2.18)

Now, S(·)g(n) → S(·)g as n → ∞ in C([0, t], Y ) because, from Lemma 4.2.7(i),
the set {‖S(t)|Y ‖B(Y ) : s ∈ [0, t]} is bounded. Moreover, H ∈ B(Y,X) implies
that HS(·)g(n) → HS(·)g in C([0, t], X) as n→∞. Hence, from assumption (d)
in Theorem 4.2.5 (applied to (Sγ(t))t≥0) we have

∥∥∥∥
t∫

0

Sγ(t− s)(γH)S(s)g(n) ds−
t∫

0

Sγ(t− s)(γH)S(s)g ds
∥∥∥∥
Y

=
∥∥∥∥

t∫
0

Sγ(t− s)
(
(γH)S(s)g(n) − (γH)S(s)g

)
ds
∥∥∥∥
Y

≤ γη(t)‖HS(·)g(n) −HS(·)g‖C([0,t],X) → 0 as n→∞.

Taking limits in (4.2.18), we therefore obtain (4.2.17).

We now use Lemma 4.2.9 to prove the following result.

Lemma 4.2.10. Let assumptions (a) and (b) of Theorem 4.2.6 hold. Moreover,
let f ∈ C([t0, τ ], X), for some 0 ≤ t0 < τ < T , and suppose that for ů ∈ Y ,
u ∈ C([t0, τ ], Y ) satisfies

u(t) = S(t− t0)̊u+
t∫

t0

S(t− s)f(s) ds, t ∈ [t0, τ ]. (4.2.19)

Then u also satisfies

u(t) = Sγ(t− t0)̊u+
t∫

t0

Sγ(t− s)
(
f(s) + γHu(s)

)
ds, [t0, τ ]. (4.2.20)

Proof. We first consider the case where f ∈ C([t0, τ ], Y ). From Lemma 4.2.9 we
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have, for t ∈ [t0, τ ],

u(t) = S(t− t0)̊u+
t∫

t0

S(t− s)f(s) ds

= Sγ(t− t0)̊u+
t−t0∫
0

Sγ(t− t0 − s)(γH)S(s)̊u ds

+
t∫

t0

(
Sγ(t− s)f(s) +

t−s∫
0

Sγ(t− s− r)(γH)S(r)f(s) dr
)
ds

= Sγ(t− t0)̊u+
t∫

t0

Sγ(t− s)f(s) ds

+
t−t0∫
0

Sγ(t− t0 − s)(γH)S(s)̊u ds+
t∫

t0

t−s∫
0

Sγ(t− s− r)(γH)S(r)f(s) drds.

Now,

I :=
t−t0∫
0

Sγ(t− t0 − s)(γH)S(s)̊u ds+
t∫

t0

t−s∫
0

Sγ(t− s− r)(γH)S(r)f(s) drds

=
t∫

t0

Sγ(t− v)(γH)S(v − t0)̊u dv +
t∫

t0

t∫
s

Sγ(t− v)(γH)S(v − s)f(s) dvds

=
t∫

t0

Sγ(t− v)(γH)S(v − t0)̊u dv +
t∫

t0

v∫
t0

Sγ(t− v)(γH)S(v − s)f(s) dsdv

=
t∫

t0

Sγ(t− v)(γH)S(v − t0)̊u dv +
t∫

t0

Sγ(t− v)(γH)
( v∫
t0

S(v − s)f(s) ds
)

dv

=
t∫

t0

Sγ(t− v)(γH)
(
S(v − t0)̊u+

v∫
t0

S(v − s)f(s) ds
)

dv

=
t∫

t0

Sγ(t− v)(γH)u(v) dv.
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It follows that

u(t) = Sγ(t− t0)̊u+
t∫

t0

Sγ(t− s)f(s) ds+ I

= Sγ(t− t0)̊u+
t∫

t0

Sγ(t− s)(f(s) + γHu(s)) ds.

Hence (4.2.20) holds if f ∈ C([t0, τ ], Y ).
We now show that C([t0, τ ], Y ) is dense in C([t0, τ ], X). Take f ∈ C([t0, τ ], X).

Since f is continuous on the compact interval [t0, τ ], it is uniformly continuous.
Let ε > 0. Then there exists δ > 0 such that, for t, s ∈ [t0, τ ], ‖f(t)− f(s)‖X ≤ ε

whenever |t−s| < δ. Choose m ∈ N such that τ−t0
m

< δ and set tk = t0+ k
m

(τ−t0),
k = 0, . . . ,m. Since D(G) ⊆ Y is dense in X, there exist yk ∈ Y such that
‖yk − f(tk)‖ < ε. We now construct g ∈ C([t0, τ ], Y ) as

g(t) = m

τ − t0
[(t− tk−1)yk − (t− tk)yk−1] when t ∈ [tk−1, tk].

Then for t ∈ [tk−1, tk],

‖yk − g(t)‖X = ‖g(tk)− g(t)‖X
= m

τ − t0
‖(tk − tk−1)yk − (t− tk−1)yk + (t− tk)yk−1‖X

= m

τ − t0
‖(tk − t)yk − (tk − t)yk−1‖X

= m

τ − t0
‖(tk − t)(yk − yk−1)‖X

≤ m

τ − t0
(tk − tk−1)‖yk − yk−1‖X

= ‖yk − yk−1‖X
≤ ‖yk − f(tk)‖X + ‖f(tk)− f(tk−1)‖X + ‖f(tk−1)− yk−1‖X
< 3ε.

Hence, for t ∈ [tk−1, tk],

‖f(t)− g(t)‖X ≤ ‖f(t)− f(tk)‖X + ‖f(tk)− yk‖X + ‖yk − g(t)‖X < 5ε.
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It follows that C([t0, τ ], Y ) is dense in C([t0, τ ], X).
Let f ∈ C([t0, τ)], X). Then there exists (fn)∞n=1 such that fn ∈ C([t0, τ ], Y )

for each n ∈ N and fn → f as n→∞ in C([t0, τ ], X). For t ∈ [t0, τ ], define

un(t) := S(t− t0)̊u+
t∫

t0

S(t− s)fn(s) ds. (4.2.21)

Then, by the first part of the proof, for t ∈ [t0, τ ] we have

un(t) = Sγ(t− t0)̊u+
t∫

t0

Sγ(t− s)(fn(s) + γHun(s)) ds. (4.2.22)

Now, from assumption (d) in Theorem 4.2.5,

t∫
t0

S(t− s)fn(s) ds→
t∫

t0

S(t− s)f(s) ds as n→∞

in Y for all t ∈ [t0, τ ], and so, taking limits in (4.2.21), we have from (4.2.19) that
un → u in C([t0, τ ], Y ).

Moreover, since H ∈ B(Y,X), we know that fn+γHun → f+γHu as n→∞
in C([t0, τ ], X). Taking the limit in (4.2.22), and again using assumption (d) in
Theorem 4.2.5 to obtain convergence of the integral on the right-hand side in
C([t0, τ ], Y ), we have

u(t) = Sγ(t− t0)̊u+
t∫

t0

Sγ(t− s)(f(s) + γHu(s)) ds.

Hence (4.2.20) holds.

Theorem 4.2.6 can now be obtained from Lemma 4.2.8(ii).

Proof of Theorem 4.2.6. Let γ ≥ 0. From Theorem 4.2.5(i), we have that
u ∈ C([0, tmax), Y ) is the unique mild solution of (4.2.1) and (4.2.2). Hence, by
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Lemma 4.2.10, u is also the unique mild solution of

u′(t) = (G− γH)u(t) + F (t, u(t)) + γHu(t), t ∈ (0, tmax), (4.2.23)

with u(0) = ů.
We know that G − γH satisfies assumptions (b)–(d) of Theorem 4.2.5 and

that the semigroup (Sγ(t))t≥0 is positive on X. Also, ‖H‖B(Y,X) ≤ ĥ for some
ĥ ≥ 0. We now show that the operator Fγ : [0, T )× Y → X, given by

Fγ(t, v) = γHv + F (t, v),

satisfies assumption (a) of Theorem 4.2.5.
Take t′ ∈ [0, T ), r′ > 0. For all t ∈ [0, t′], u, v ∈ Y such that ‖u‖Y , ‖v‖Y ≤ r′,

we have

‖Fγ(t, u)− Fγ(t, v)‖X ≤ ‖F (t, u)− F (t, v)‖X + γ‖Hu−Hv‖X
≤ l(t′, r′)‖u− v‖Y + γĥ‖u− v‖Y
= (l(t′, r′) + γĥ)‖u− v‖Y
= lγ(t′, r′)‖u− v‖Y ,

where lγ(t′, r′) = l(t′, r′) + γĥ is increasing in the first argument (since l(t′, r′) is
increasing in the first argument). It follows that Fγ is Lipschitz in the second
argument on bounded sets, uniformly in the first argument on compact intervals.
Moreover, since, for v ∈ Y , t 7→ F (t, v) is continuous in X, it is clear that t 7→
Fγ(t, v) is also continuous. Hence Fγ satisfies assumption (a) in Theorem 4.2.5.

Let C > 0 be such that ‖u(t)‖Y ≤ C for all t ∈ [0, τ ] and choose r > 2CM̂0.
Choose γ ≥ 0 such that (4.2.6) holds. Then Fγ(t, f) ≥ 0 for t ∈ [0, τ ] and
f ∈ Σ. Taking t0 = 0 in Lemma 4.2.8, the positivity of u on [0, t1] follows from
Lemma 4.2.8(ii). If τ > t1, i.e. t1 = δ(C, r, τ), then since ‖u(t1)‖Y ≤ C

and δ(C, r, τ) is a constant that is independent of t0 ∈ [0, τ ], we can apply
Lemma 4.2.8(i) and (ii) again and obtain the existence of a unique, positive
mild solution for t ∈ [0, 2δ(C, r, τ)] (or on [0, τ ] if τ < 2δ(C, r, τ)). We can repeat
this argument a finite number of times to obtain u(t) ≥ 0 for all t ∈ [0, τ ].
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The following lemma gives conditions under which we can conclude that a
non-negative solution is norm conserving. This is important when we pose the
coagulation–fragmentation system as an ACP in the most physically relevant
weighted `1 space, where the weight w = (wn)∞n=1 satisfies wn = n for all n ∈ N.
In this space the norm of a non–negative solution is equal to the total mass of
clusters in the system and so a non-negative, norm-conserving solution is also a
mass-conserving solution.

Lemma 4.2.11. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be AL-spaces such that Y is
continuously embedded in X. Moreover, let φX be the unique bounded linear
extension of ‖ · ‖X from X+ to X, as in Lemma 3.1.18. Let ů ∈ Y+ and let
u ∈ C

(
[0, s), Y+

)
⊆ C

(
[0, s), X+

)
be a mild solution of (4.2.1), (4.2.2) (with

t0 = 0), for some 0 < s ≤ T . In addition, let (S(t))t≥0 be stochastic and assume
that

φX(F (t, f)) = 0 for all f ∈ Y+, t ∈ [0, s).

Then
‖u(t)‖X = ‖ů‖X for all t ∈ [0, s).

Proof. The function u satisfies

u(t) = S(t)̊u+
t∫

0

S(t− s)F (s, u(s)) ds,

for t ∈ [0, s). Let t ∈ [0, s). Then u(t) ∈ X+ and so

‖u(t)‖X = φX
(
u(t)

)
= φX

(
S(t)̊u+

t∫
0

S(t− s)F (s, u(s)) ds
)

= φX
(
S(t)̊u

)
+ φX

 t∫
0

S(t− s)F (s, u(s)) ds


=
∥∥S(t)̊u

∥∥
X +

t∫
0

φX
(
S(t− s)F (s, u(s))

)
ds

= ‖ů‖X +
t∫

0

φX
(
S(t− s)F (s, u(s))

)
ds.
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From Proposition 3.3.16(i), we have, since (S(t))t≥0 is stochastic, that φX(S(t)f) =
φX(f) for all t ≥ 0, f ∈ X. Thus, for t ∈ [0, s),

‖u(t)‖X = ‖ů‖X +
t∫

0

φX
(
F (s, u(s)

)
ds = ‖ů‖X ,

since u(t) ∈ Y+ for all t ∈ [0, s) and so φ(F (t, u(t)) = 0 for all t ∈ [0, s). It follows
that ‖u(t)‖X is independent of t for t ∈ [0, s).

We devote the remainder of this section to examining two particular cases
where the assumptions of Theorem 4.2.5 hold. We first examine the case where
Y = X.

Proposition 4.2.12. Let X be a Banach space with norm ‖·‖ and let 0 < T ≤ ∞.
Let F : [0, T ) × X → X be such that t 7→ F (t, v) is continuous for v ∈ X, and
Lipschitz in the second argument on bounded sets, uniformly in the first argument
on compact intervals. Moreover, let G be the generator of a C0-semigroup on X.
Then assumptions (a)–(d) of Theorem 4.2.5 are satisfied with Y = X.

Proof. Clearly (a) and (b) in Theorem 4.2.5 are satisfied. Also, there exists
M ≥ 1, ω ≥ 0 such that

‖S(t)v‖ ≤Meωt‖v‖ for all v ∈ X, t ≥ 0.

Let s0, s1 be such that 0 ≤ s0 < s1 < T . Then, for all ϕ ∈ C([s0, s1], X),

s1∫
s0

S(s1 − s)ϕ(s) ds ∈ X

and ∥∥∥∥∥∥∥
s1∫
s0

S(s1 − s)ϕ(s) ds

∥∥∥∥∥∥∥ ≤
s1∫
s0

‖S(s1 − s)ϕ(s)‖ ds ≤M

s1∫
s0

eω(s1−s)‖ϕ(s)‖ ds

≤Meω(s1−s0)(s1 − s0)‖ϕ‖C([s0,s1],X),

where η(δ) = Meωδδ : [0,∞) → [0,∞) is an increasing function satisfying

96



Chapter 4. Nonlinear Operators

Meωδδ → 0 as δ → 0+. It follows that assumptions (c) and (d) of Theorem 4.2.5
are satisfied.

From Proposition 4.2.12 and Theorem 4.2.5, we have that if the assumptions
of Lemma 4.1.6(ii) hold, with Y = X, then there exists a unique, mild solution
of (4.2.1), (4.2.2) on [0, tmax), for some tmax > 0. The following theorem gives an
additional assumption under which the mild solution is also a classical solution.

Theorem 4.2.13. Let the assumptions of Proposition 4.2.12 hold. If the operator
F : [0, T ) × X → X is continuously Fréchet differentiable from (0, T ) × X into
X, then the mild solution of (4.2.1), (4.2.2), with u(0) = ů ∈ D(G), is a classical
solution of the initial value problem.

Proof. See [61, Theorem 6.1.5].

We note that, since every classical solution is also a mild solution, and the
mild solution mentioned before Theorem 4.2.13 is unique, it follows that this
classical solution must also be unique.

We now consider the case where the space Y in Theorem 4.2.5 is an interpol-
ation space. Let X be a Banach space. For each γ ∈ (0, 1), I ⊆ R, let Cb(I,X)
be the set of bounded, continuous functions from I into X and define the spaces
of Hölder continuous functions,

Cγ(I,X) =

f ∈ Cb(I,X) : [f ]Cγ(I,X) = sup
t,s∈I: s<t

‖f(t)− f(s)‖
(t− s)γ <∞

 .
We equip Cγ(I,X) with the norm ‖ · ‖Cγ(I,X), given by

‖f‖Cγ(I,X) = ‖f‖C(I,X) + [f ]Cγ(I,X).

The following lemma, which is based on [43, Lemma 7.1.1], is useful to us.

Lemma 4.2.14. Let G be the generator of an analytic semigroup, (S(t))t≥0, on
a Banach space X, such that G is invertible. Let α ∈ (0, 1), 1 ≤ p ≤ ∞ and let
Y = DG(α, p), ‖ · ‖DG(α,p) be as in Section 3.3.3. Moreover, let s0, s1 ∈ R be such
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that 0 ≤ s0 < s1 and let ϕ ∈ C([s0, s1], X). Then

·∫
s0

S(· − s)ϕ(s) ds ∈ C([s0, s1], DG(α, p))

and ∥∥∥∥∥∥∥
·∫

s0

S(· − s)ϕ(s) ds

∥∥∥∥∥∥∥
C([s0,s1],DG(α,p))

≤ η(s1 − s0)‖ϕ‖C([s0,s1],X),

where η(δ) = Cδ1−α for some C > 0.

Proof. Let γ = 1− α and let f ∈ Cγ([s0, s1], Y ) with f(s0) = 0. Then

[f ]Cγ([s0,s1],Y ) = sup
t,τ∈[s0,s1]:τ<t

‖f(t)− f(τ)‖DG(α,p)

(t− τ)γ ≥ sup
t∈(s0,s1]

‖f(t)− f(s0)‖DG(α,p)

(t− s0)γ

= sup
t∈(s0,s1]

‖f(t)‖DG(α,p)

(t− s0)γ ,

which implies that

‖f(t)‖DG(α,p) ≤ [f ]Cγ([s0,s1],Y )(t− s0)γ, t ∈ [s0, s1]. (4.2.24)

We now set ϕ(s) = 0 for s ∈ [0, s0) so that ϕ ∈ L∞([0, s1], X). From [43,
Lemma 7.1.1], we can deduce that for α ∈ (0, 1),

·∫
s0

S(· − s)ϕ(s) ds =
·∫

0

S(· − s)ϕ(s) ds ∈ Cγ([s0, s1], DG(α, p))

and

∥∥∥∥
·∫

s0

S(· − s)ϕ(s) ds
∥∥∥∥
C
γ([s0,s1],DG(α,p))

=
∥∥∥∥
·∫

0

S(· − s)ϕ(s) ds
∥∥∥∥
C
γ([s0,s1],DG(α,p))

≤ C‖ϕ‖L∞([0,s1],X)

= C‖ϕ‖C([s0,s1],X).
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Moreover, ∫ s0

s0

S(s0 − s0)ϕ(s) ds = 0,

and so, using (4.2.24), we have
∥∥∥∥∥∥∥
·∫

s0

S(· − s)ϕ(s) ds

∥∥∥∥∥∥∥
C([s0,s1],DG(α,p))

≤
[ ·∫
s0

S(· − s)ϕ(s) ds
]
C
γ([s0,s1],Y )

(s1 − s0)γ

≤ C(s1 − s0)γ‖ϕ‖C([s0,s1],X).

Using this lemma, we obtain the following proposition.

Proposition 4.2.15. Let (X, ‖·‖) be a Banach space and let (S(t))t≥0 be an ana-
lytic C0-semigroup on X, generated by an invertible operator, G. Let α ∈ [0, 1),
1 ≤ p ≤ ∞ and 0 < T ≤ ∞. Moreover, let F : [0, T ) × DG(α, p) → X be
such that t 7→ F (t, v) is continuous for v ∈ DG(α, p), and Lipschitz in the second
argument on bounded sets, uniformly in the first argument on compact intervals.
Then assumptions (a)–(d) of Theorem 4.2.5 are satisfied, with Y = DG(α, p).

Proof. From Proposition 3.3.24, DG(α, p) is continuously embedded in X. If
α = 0, then DG(α, p) = X and the result follows from Proposition 4.2.12. Now
suppose that α ∈ (0, 1). As discussed in [43, p. 253], we have that [43, (7.0.2)]
is satisfied if we take Xα = DG(α, p). In particular, the part of G in DG(α, p)
is sectorial in DG(α, p) and so generates the C0-semigroup, (S(t)|DG(α,p))t≥0, on
DG(α, p). It follows that S(t) leaves DG(α, p) invariant for t ∈ [0, T ). Moreover,
t 7→ S(t)f is continuous from [0, T ) into DG(α, p) for every f ∈ DG(α, p) . Finally,
we have from Lemma 4.2.14 that

·∫
s0

S(· − s)ϕ(s) ds ∈ C([s0, s1], DG(α, p))
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for each ϕ ∈ C([s0, s1], X) and
∥∥∥∥∥∥∥
·∫

s0

S(· − s)ϕ(s) ds

∥∥∥∥∥∥∥
C([s0,s1],DG(α,p))

≤ η(s1 − s0)‖ϕ‖C([s0,s1],X),

where η : [0,∞)→ [0,∞) is a continuous, increasing function, satisfying η(δ)→ 0
as δ → 0+. The result then follows.
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Chapter 5

Pure Autonomous Fragmentation

We begin our examination of the coagulation–fragmentation system by consid-
ering the case where each fragmentation event is irreversible, i.e. no coagulation
occurs. This results in a pure fragmentation system, which we write as a linear
ACP in a weighted `1 space with weight w = (wn)∞n=1. We then use the theory
of operator semigroups to obtain results regarding solutions of the system. Pre-
vious work on this system, see for example [9, 46], have examined the system
as an ACP in a weighted `1 space, where the weight is of the form wn = np for
p ≥ 1. However, we find it beneficial to examine the system as an ACP in more
general weighted spaces. The main benefit of working in other weighted spaces is
the ability to prove results regarding analytic semigroups that do not necessarily
hold when the weight is of the form wn = np.

5.1 Setting up the Problem

For the convenience of the reader, we begin by recalling, from Chapter 1, that
we are considering a system consisting of clusters of particles where we assume
that each cluster of size n ∈ N, an n-mer, is made up of n identical units. We
refer to these individual units as monomers and we scale the mass such that a
monomer has unit mass. The mass of any cluster is then a positive integer, i.e.
an n-mer has mass n for any n ∈ N, and the size variable n also represents the
mass of a cluster. In this chapter, we assume that no coagulation is occurring,
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and therefore clusters of sizes n ≥ 2 can only fragment to form smaller clusters.
We shall refer to this case as a pure fragmentation process, which is modelled by
the pure fragmentation linear system of ordinary differential equations

u′n(t) = −anun(t) +
∞∑

j=n+1
ajbn,juj(t), t > 0, n = 1, 2, 3, . . . ; (5.1.1)

un(0) = ůn, n = 1, 2, 3, . . . . (5.1.2)

The coefficients in (5.1.1) are defined in the same way as in (1.1.1). Con-
sequently, the first term in (5.1.1) describes the loss of n-mers as they fragment
and the second term describes the gain in n-mers due to larger clusters fragment-
ing. The solution of the system (5.1.1), (5.1.2) can be represented by a sequence,
u(t) = (un(t))∞n=1.

Throughout this thesis we make the following assumption on the fragmenta-
tion rates.

Assumption 5.1.1. For all n, j ∈ N, assume that an ≥ 0 and bn,j ≥ 0. Moreover,
let bn,j = 0 for all j ≤ n.

If u(t) is a solution of (5.1.1), (5.1.2), then the total mass, per unit volume,
of the system at time t is given by

M1(u(t)) =
∞∑
n=1

nun(t). (5.1.3)

As explained in Chapter 1 (see (1.1.3)), to compare the mass before and after
a fragmentation event we set

j−1∑
n=1

nbn,j = (1− λj)j, λj ∈ R, j = 2, 3, . . . . (5.1.4)

The left-hand side of (5.1.4) gives the total mass of daughter clusters that are
produced when a cluster of mass j fragments. Clearly, for each j = 2, 3, . . ., we
must have λj ≤ 1. Note that previous investigations into (5.1.1), (5.1.2) have
concentrated on the case where λj ∈ [0, 1] for each j = 2, 3, . . .. For most of the
results in this thesis, we do not require this assumption and so allow mass even to
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be gained during a fragmentation event. The case when λj = 0 for all j = 2, 3, . . .,
corresponds to the case where mass is conserved during each fragmentation event.
If λj > 0, then mass is lost during the break up of a j-mer. Moreover, since it
is assumed that cluster mass (or size) is a discrete variable, the smallest possible
mass of a cluster is one. It follows that clusters of mass one cannot fragment into
smaller clusters. If a1 > 0, we therefore assume that monomers are removed from
the system through some external mechanism and the rate of removal is given
by a1. This removal of monomers will again result in mass being lost from the
system.

If (5.1.4) holds and u is a solution of the pure fragmentation system, then, as
shown in Chapter 1, a formal calculation leads to

d

dt
M1(u(t)) = −a1u1(t)−

∞∑
j=2

λjjajuj(t).

Note that d
dt
M1(u(t)) ≤ 0 if λj ≥ 0 for all j ∈ N. This shows that in this case, at

least formally, mass will be either conserved or lost in the system. Of particular
importance is the case where

a1 = 0 and
j−1∑
n=1

nbn,j = j for j = 2, 3, . . . . (5.1.5)

If we assume that (5.1.5) holds, then d
dt
M1(u(t)) = 0. Hence, as we intuitively

expect since, from (5.1.5), mass is conserved during each fragmentation event and
no monomers are being removed from the system, the total mass in the system
is conserved. Since we are dealing with real sequences u = (un)∞n=1, we work
in a real sequence space, although in Section 5.4 we shall also consider complex
spaces. As in (3.1.3) and (3.1.8), for a non-negative sequence (wn)∞n=1 we define
the weighted `1 space, `1

w, and its norm by

`1
w =

f = (fn)∞n=1 : fn ∈ R for all n ∈ N and
∞∑
n=1

wn|fn| <∞

 ,
‖f‖

`
1
w

=
∞∑
n=1

wn|fn| for all f ∈ `1
w.
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As in Example 3.1.19, for any f, g ∈ `1
w, we have that f ≤ g if and only if

fn ≤ gn for all n ∈ N. Moreover, since the density of clusters of size n ∈ N will
be non-negative, we are mostly interested in sequences f ∈ `1

w such that fn ≥ 0
for all n ∈ N. Such elements form the positive cone, (`1

w)+, as in Definition 3.1.5.
Moreover, from Example 3.1.19, `1

w is an AL-space and, for all f ∈ `1
w, the unique

bounded, linear functional, φ
`

1
w
, which extends the norm on (`1

w)+ to `1
w is given

by φ
`

1
w
(f) =

∞∑
n=1

wnfn.

We now pose the discrete fragmentation system as an ACP in `1
w. Motivated

by the terms in (5.1.1), we introduce the formal expressions

A : (fn)∞n=1 7→ (−anfn)∞n=1 and B : (fn)∞n=1 7→

 ∞∑
j=n+1

ajbn,jfj

∞
n=1

.

Operator realisations, A(w) and B(w), of A and B respectively, are defined in `1
w

by

A(w)f = Af, D(A(w)) = {f ∈ `1
w : Af ∈ `1

w}; (5.1.6)

B(w)f = Bf, D(B(w)) =
{
f ∈ `1

w : Bf ∈ `1
w

}
. (5.1.7)

An abstract Cauchy problem (ACP) corresponding to (5.1.1) in `1
w then takes the

form
u′(t) = A(w)u(t) +B(w)u(t), t > 0; u(0) = ů. (5.1.8)

Here, u(t) = (un(t))∞n=1, where un(t) is the density of clusters of size n at time t,
and A(w) and B(w) are as defined above. For u to be a classical solution of (5.1.8)
we require u(t) ∈ D(A(w)) ∩ D(B(w)) for all t > 0, u to be continuous on [0,∞)
and strongly differentiable on (0,∞), i.e. u ∈ C([0,∞), `1

w) ∩ C1((0,∞), `1
w), and

we require u to satisfy (5.1.8). Since the solution that we seek, u(t) = (un(t))∞n=1,
is a sequence of densities, we also desire u(t) ∈ (`1

w)+.
The most physically relevant choice of weight is wn = n, n = 1, 2, . . .. In this
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case we denote X[1] := `1
w and ‖ · ‖[1] := ‖ · ‖

`
1
w
, i.e.

X[1] =

(fn)∞n=1 : fn ∈ R for alln ∈ N and
∞∑
n=1

n|fn| <∞

 (5.1.9)

and
‖f‖[1] =

∞∑
n=1

n|fn| for f = (fn)∞n=1 ∈ X[1]. (5.1.10)

To distinguish the physical space X[1] from other weighted spaces, we drop the w
in the notation and set A := A(w) and B := B(w) when we work in X[1]. We are
then interested in solutions of the ACP

u′(t) = Au(t) +Bu(t), t > 0; u(0) = ů. (5.1.11)

If u(t) is a non-negative solution of (5.1.11), then ‖u(t)‖[1] gives the total mass
in the system (5.1.3).

When we assume that (5.1.5) holds, i.e. that mass is conserved during each
fragmentation event, we want to obtain a non-negative, mass-conserving solution.
For this to be the case we require a solution u(t), such that u(t) ∈ (X[1])+ and
‖u(t)‖[1] = ‖ů‖[1] for all t ≥ 0, i.e. we require a non-negative solution that is
norm-conserving in X[1].

5.2 The Fragmentation ACP

In this section we aim to establish the existence and uniqueness of physically
relevant classical solutions of (5.1.8).

5.2.1 The Fragmentation Semigroup

We begin by concentrating on the multiplication operator A(w) defined by (5.1.6).
We use the same strategy here as used previously when wn = np for some p ≥ 1;
see for example [9, 15, 46, 63]. We first show that the operator A(w) is the
generator of a substochastic C0-semigroup and we then treat the operator B(w)

as a perturbation of the operator A(w).
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In the following lemma we use the Hille–Yosida Theorem to show that the
operator A(w) is the generator of a substochastic C0-semigroup.

Lemma 5.2.1. The operator A(w) generates (T (w)(t))t≥0, a substochastic C0-
semigroup on `1

w. Moreover, this semigroup is given by the infinite diagonal matrix
diag(v1(t), v2(t), . . .), where vn = e−ant for all n ∈ N, t ≥ 0.

Proof. Consider the multiplication operator A(w). This operator can be written
as an infinite-dimensional diagonal matrix with −an as its nth diagonal element.

We show that A(w) satisfies the conditions of the Hille-Yosida theorem (The-
orem 3.3.8). We can deduce that A(w) is closed as follows. Let (f (k))∞k=1 be such
that f (k) ∈ D(A(w)) for all k ∈ N and f (k) → f , A(w)f (k) → g in `1

w as k → ∞.
Then

‖g − A(w)f (k)‖
`

1
w

=
∞∑
n=1

wn|gn + anf
(k)
n | → 0 as k →∞

and so, for each n ∈ N,

−anf (k)
n → gn as k →∞.

Since f (k) → f , we similarly have that f (k)
n → fn as k → ∞ and so, for each

n ∈ N,
−anf (k)

n → −anfn as k →∞.

It follows that gn = −anfn for n ∈ N. Hence

‖A(w)f‖
`

1
w

=
∞∑
n=1

wn|anfn| =
∞∑
n=1

wn|gn| <∞,

and so f ∈ D(A(w)) and g = A(w)f , establishing that A(w) is closed.
Clearly A(w) is also densely defined. For example, given any f ∈ `1

w, if we
define (f (k))∞k=1 by

(f (k))n =


fn if n ≤ k

0 if n > k,

then f (k) → f as k → ∞ and f (k) ∈ D(A(w)) for all k ∈ N. Since an ≥ 0 for all
n ∈ N, it is straightforward to show that the resolvent operator R(λ,A(w)) can
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be written as an infinite diagonal matrix, with nth diagonal element (λ + an)−1

for each λ > 0. Also, for λ > 0,

‖λR(λ,A(w))f‖
`

1
w

=
∞∑
n=1

wn
λ

λ+ an
|fn| ≤

∞∑
n=1

wn|fn| = ‖f‖`1w .

Thus ‖λR(λ,A(w))‖ ≤ 1 for all λ > 0.
It follows from Theorem 3.3.8 that A(w) generates a C0-semigroup of contrac-

tions, (T (w)(t))t≥0. Since T (w)(t) = lim
k→∞

(
I − t

k
A(w)

)−k
and, for k ∈ N, t ≥ 0,(

I − t
k
A(w)

)−1
is an infinite diagonal matrix, T (w)(t) is also an infinite diagonal

matrix. In addition, for g ∈ `1
w, t > 0, setting µ = k

t
, we have

(
I − t

k
A(w)

)−k
g =

(
I − 1

µ
A(w)

)−k
g =

( 1
µ

(
µI − A(w)

))−1
k g

=
[
µ
(
µI − A(w)

)−1
]k
g.

Hence, for n ∈ N,(I − t

k
A(w)

)−k
g


n

=
(

µ

µ+ an

)k
gn = 1

(1 + an
µ

)k
gn.

It follows that for each t ≥ 0, g ∈ `1
w and n ∈ N,

(T (w)(t)g)n = lim
k→∞

1
(1 + ant

k
)k
gn = e−antgn.

We now show that the semigroup generated by A(w) is substochastic. We
already know that ‖T (w)(t)‖

`
1
w
≤ 1 for all t ≥ 0 and so we need only show that

T (w)(t) ≥ 0. Take f ∈ (`1
w)+. Then [T (w)(t)f ]n = e−antfn ≥ 0 for all n ∈ N,

t ≥ 0, and so T (w)(t)f ≥ 0, i.e. T (w)(t) ≥ 0 for all t ≥ 0. This shows that A(w)

does indeed generate a substochastic C0-semigroup, given for all t ≥ 0, n ∈ N
and f ∈ `1

w by (T (w)(t)f)n = e−antfn.

We now treat B(w) as a perturbation of the operator A(w). To make progress
we need to make some assumptions on the weight w = (wn)∞n=1.

107



Chapter 5. Pure Autonomous Fragmentation

Assumption 5.2.2.

(i) Assume that there exists δ ∈ (0, 1] such that

j−1∑
n=1

wnbn,j ≤ δwj for all j = 2, 3, . . . . (5.2.1)

(ii) Assume that wn ≥ n for all n ∈ N.

Remark 5.2.3. We require Assumption 5.2.2(i) to obtain the existence and unique-
ness of solutions. Assumption 5.2.2(ii) is mostly required when we want to show
that a solution conserves mass.

We note that if Assumption 5.2.2(ii) holds, then n
wn
≤ 1 for all n ∈ N and

so, by Proposition 3.2.7, `1
w is continuously embedded in X[1]. We also note that

if (5.2.1) holds for wn = n, then (5.1.4) automatically holds with λj ∈ [0, 1) for
j = 2, 3, . . ..

As we show in the following proposition, if (5.1.5) holds and w1 ≥ 1, then
Assumption 5.2.2(i) immediately implies Assumption 5.2.2(ii).

Proposition 5.2.4. Let (5.1.5) and Assumption 5.2.2(i) hold. Moreover, let
w1 ≥ 1. Then wn ≥ n for all n ∈ N, i.e. Assumption 5.2.2(ii) holds. Moreover,
`1
w is continuously embedded in X[1].

Proof. We know w1 ≥ 1. Suppose that wk ≥ k for all k < j, where j ∈ N such
that j ≥ 2. Then

j =
j−1∑
n=1

nbn,j ≤
j−1∑
n=1

wnbn,j ≤ δwj ≤ wj.

Hence, by induction, wn ≥ n for all n ∈ N. The continuous embedding follows
from Proposition 3.2.7.

The following lemma allows us to deduce simple examples where Assump-
tion 5.2.2 holds.

Lemma 5.2.5. Let (5.1.4) hold with λj ∈ [0, 1] for all j = 2, 3, . . .. If (wn)∞n=1 is
such that wn ≥ n for all n ∈ N and

(
wn
n

)∞
n=1

is increasing, then (5.2.1) holds with
δ = 1. In particular, if wn = np for some p ≥ 1, then (5.2.1) holds with δ = 1.
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Proof. In this case, for j ∈ N such that j ≥ 2, we have

j−1∑
n=1

wnbn,j =
j−1∑
n=1

wn
n
nbn,j ≤

wj
j

j−1∑
n=1

nbn,j ≤
wj
j
j = wj.

Hence (5.2.1) holds with δ = 1.

It follows from Lemma 5.2.5 that, if (5.1.4) holds with λj ∈ [0, 1] for j =
2, 3, . . ., then Assumption 5.2.2 is satisfied when we take wn = n for all n ∈ N,
i.e. when we work in the space X[1]. We now drop Assumption 5.2.2(ii) and show
that, under Assumption 5.2.2(i), D(A(w)) ⊆ D(B(w)).

Lemma 5.2.6. Let Assumption 5.2.2(i) hold. Then D(A(w)) ⊆ D(B(w)) and

‖B(w)f‖
`

1
w
≤ δ‖A(w)f‖

`
1
w

for all f ∈ D(A(w)). (5.2.2)

Proof. Let f ∈ D(A(w)). Then we have that
∞∑
n=1

wnan|fn| <∞. Also

‖B(w)f‖
`

1
w

=
∞∑
n=1

wn

∣∣∣∣∣∣
∞∑

j=n+1
ajbn,jfj

∣∣∣∣∣∣ ≤
∞∑
n=1

wn

∞∑
j=n+1

ajbn,j|fj|

=
∞∑
j=2

j−1∑
n=1

wnajbn,j|fj| =
∞∑
j=2

j−1∑
n=1

wnbn,j

 aj|fj|
≤ δ

∞∑
j=2

wjaj|fj| ≤ δ‖A(w)f‖
`

1
w
<∞ since f ∈ D(A(w)).

The change in the order of summation in the calculation above is justified since
each term is positive. From this calculation, for all f ∈ D(A(w)), we can conclude
that f ∈ D(B(w)) and (5.2.2) holds.

The proof of the next proposition requires the existence of a monotone increas-
ing sequence, (cn)∞n=1, that dominates (an)∞n=1, i.e. we need a sequence (cn)∞n=1 such
that

cn+1 ≥ cn and cn ≥ an for all n ∈ N. (5.2.3)

It is always possible to find such a sequence, e.g. we could take c1 = a1 and
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cn = max{an, cn−1} for all n ∈ N. This is equivalent to choosing

cn = max{a1, . . . , an}. (5.2.4)

Then (cn)∞n=1 is a monotone increasing sequence that dominates (an)∞n=1.
Now take (cn)∞n=1 to be any sequence satisfying (5.2.3) and, for all n ∈ N,

define the operator C(w) by

[C(w)f ]n = −cnfn, D(C(w)) =

f ∈ `1
w :

∞∑
n=1

wncn|fn| <∞

 . (5.2.5)

Note that, since (cn)∞n=1 dominates (an)∞n=1 and an ≥ 0 for all n ∈ N, we have
that cn ≥ 0 for all n ∈ N.

We also take ‖ · ‖
C

(w) to be the graph norm of C(w), i.e.

‖f‖
C

(w) = ‖f‖
`

1
w

+ ‖C(w)f‖
`

1
w

(5.2.6)

for all f ∈ D(C(w)), and let (X(1), ‖ · ‖(1)) = (D(C(w)), ‖ · ‖
C

(w)). Note that
(D(C(w)), ‖·‖

C
(w)) is a weighted `1 space and the unique linear extension of ‖·‖

C
(w)

from (D(C(w)))+ to D(C(w)), as in Example 3.1.19, is φ
C

(w)(f) =
∞∑
n=1

(wn+wncn)fn
for all f ∈ D(C(w)).

We now apply Corollary 3.3.30 to the operators A(w) and B(w).

Theorem 5.2.7. Let Assumption 5.2.2(i) hold. Then G(w) = A(w) +B(w) is
the generator of a substochastic C0-semigroup, (S(w)(t))t≥0, on `1

w. Moreover,
D(C(w)) is invariant under the semigroup (S(w)(t))t≥0.

Proof. We show that the operators A(w) and B(w) satisfy the conditions of Corol-
lary 3.3.30 with (X(1), ‖ · ‖(1)) = (D(C(w)), ‖ · ‖

C
(w)), where C(w) and ‖ · ‖

C
(w) are

defined by (5.2.5) and (5.2.6) respectively. The result then follows immediately.
From Lemma 5.2.6 we know that D(A(w)) ⊆ D(B(w)) and

‖B(w)f‖
`

1
w
≤ δ‖A(w)f‖

`
1
w
≤ ‖A(w)f‖

`
1
w

(5.2.7)

for all f ∈ D(A(w)).
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Since C(w) is a multiplication operator we can argue as in Lemma 5.2.1 to
deduce that C(w) generates a positive (in fact, substochastic) C0-semigroup of
contractions on `1

w. Thus D(C(w)) is dense in `1
w and so assumption (i’) in Corol-

lary 3.3.30 holds.
From Example 3.1.19, we have that (`1

w, ‖·‖`1w) and (D(C(w)), ‖·‖
C

(w)) are AL-
spaces. Moreover, ‖f‖

`
1
w
≤ ‖f‖

`
1
w

+ ‖C(w)f‖
`

1
w

= ‖f‖
C

(w) for all f ∈ D(C(w)) and
so (D(C(w)), ‖ ·‖

C
(w)) is continuously embedded in (`1

w, ‖ ·‖`1w). Hence assumption
(ii’) in Corollary 3.3.30 holds. Consequently, (D(C(w)), ‖ · ‖

C
(w)) satisfies the

conditions of (X(1), ‖ · ‖(1)) in Corollary 3.3.30.
We now need to check that conditions (a)–(e) of Theorem 3.3.29, and (f’)–

(g’) of Corollary 3.3.30 also hold. Firstly, it is clear that −A(w) is positive.
From Lemma 5.2.1, we have that A(w) generates a substochastic C0-semigroup,
(T (w)(t))t≥0, on `1

w, given by (T (w)(t)f)n = e−antfn for all t ≥ 0, n ∈ N and
f ∈ `1

w.
Let

Ã(w)f = A(w)f,

where
D(Ã(w)) = {f ∈ D(C(w)) : A(w)f ∈ D(C(w))}

and
B̃(w)f = B(w)f,

where
D(B̃(w)) = {f ∈ D(C(w)) : B(w)f ∈ D(C(w))}.

Since D(C(w)) is a weighted `1
w space, we can apply Lemma 5.2.1 and obtain

that Ã(w) generates a C0-semigroup of contractions on D(C(w)). Moreover, this
semigroup is the restriction of (T (w)(t))t≥0 to D(C(w)).

It is clear that B(w) is positive on D(B(w)), and hence on D(A(w)) ⊆ D(B(w)).
Let f ∈ D(A(w))+. Then, from (5.2.7),

φ
`

1
w
((A(w) +B(w))f) =

∞∑
n=1
−wnanfn +

∞∑
n=1

wn

∞∑
j=n+1

ajbn,jfj

= −‖A(w)f‖
`

1
w

+ ‖B(w)f‖
`

1
w
≤ 0.
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Since (cn)∞n=1 is monotone increasing, we deduce that

j−1∑
n=1

(wn + wncn)bn,j ≤ (1 + cj)
j−1∑
n=1

wnbn,j ≤ δ(1 + cj)wj = δ(wj + wjcj),

for j ≥ 2. Hence, from Lemma 5.2.6, we can conclude that D(Ã(w)) ⊆ D(B̃(w))
and ‖B(w)f‖

C
(w) = ‖B̃(w)f‖

C
(w) ≤ δ‖Ã(w)f‖

C
(w) = δ‖A(w)f‖

C
(w) ≤ ‖A(w)f‖

C
(w)

for all f ∈ D(Ã(w)). Take f ∈ D(Ã(w))+ ⊆ D(B̃(w))+. Then f ∈ D(C(w)),
A(w)f ∈ D(C(w)) and B(w)f ∈ D(C(w)). So we have (A(w) +B(w))f ∈ D(C(w)) for
all f ∈ D(Ã(w))+. Moreover, for f ∈ D(Ã(w))+, since −A(w)f ≥ 0 and B(w)f ≥ 0,
we have

φ
C

(w)((A(w) +B(w))f) = φ
C

(w)(A(w)f) + φ
C

(w)(B(w)f)

= −‖A(w)f‖
C

(w) + ‖B(w)f‖
C

(w)

≤ 0.

Finally,

‖A(w)f‖
`

1
w

=
∞∑
n=1

wnanfn ≤
∞∑
n=1

wncnfn ≤
∞∑
n=1

(wn + wncn)fn = ‖f‖
C

(w)

for all f ∈ D(Ã(w))+. Hence all the conditions of Corollary 3.3.30 hold.

5.2.2 Classical Solutions of the Fragmentation ACP

If Assumption 5.2.2(i) holds, then, from Theorem 5.2.7, u(t) = S(w)(t)̊u is the
unique classical solution of

u′(t) = G(w)u(t) (5.2.8)

u(0) = ů (5.2.9)

in `1
w, for all ů ∈ D(G(w)) and t ≥ 0. Moreover, if ů ∈ D(G(w))+, then, since

(S(w)(t))t≥0 is substochastic, u(t) is non-negative.
We now want to show that if (5.1.5) holds, then the solution of (5.2.8), (5.2.9)

is mass conserving. We first consider the case where `1
w = X[1], i.e. when wn = n
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for all n ∈ N. As previously mentioned, to distinguish the space X[1] we drop the
w in the notation, i.e. we denote A := A(w), B := B(w), G := G(w), C := C(w),
(S(t))t≥0 := (S(w)(t))t≥0, etc, when we work in X[1]. We also recall that, from
(5.1.3), φ

`
1
w

= M1 when we work in the space X[1].

Proposition 5.2.8. Let (5.1.5) hold. Then G = A+B generates a stochastic
C0-semigroup, (S(t))t≥0, on X[1]. Moreover, for all ů ∈ D(G)+, u(t) = S(t)̊u is
the unique, non-negative, mass-conserving classical solution of

u′(t) = Gu(t), t > 0, (5.2.10)

u(0) = ů. (5.2.11)

Proof. We have that Assumption 5.2.2(i) holds with wn = n for n ∈ N and
δ = 1. It follows from Theorem 5.2.7 that G = A+B generates a substochastic
C0-semigroup, (S(t))t≥0, on X[1]. To show that (S(t))t≥0 is stochastic we show
that M1((A + B)f) = 0 for all f ∈ D(A)+ and apply the last statement in
Corollary 3.3.30. For f ∈ D(A)+,

M1(Af +Bf) =
∞∑
n=1

n(Af +Bf)n =
∞∑
n=1
−nanfn +

∞∑
n=1

n
∞∑

j=n+1
ajbn,jfj

= −
∞∑
n=1

nanfn +
∞∑
j=2

j−1∑
n=1

najbn,jfj = −
∞∑
n=1

nanfn +
∞∑
j=1

jajfj

= 0.
(5.2.12)

It follows from the last statement in Corollary 3.3.30 that (S(t))t≥0 is stochastic.
We know that u(t) = S(t)̊u is the unique, non-negative classical solution of

(5.2.10), (5.2.11) for all ů ∈ D(G)+. Moreover,

‖u(t)‖[1] = ‖S(t)̊u‖[1] = ‖ů‖[1],

for all ů ∈ D(G)+, i.e. for ů ∈ D(G)+ the solution is norm conserving in X[1].
Since the norm of a non-negative solution coincides with the mass in the system,
it follows that for ů ∈ D(G)+, u(t) = S(t)̊u is the unique, non-negative, mass-
conserving classical solution of (5.2.10), (5.2.11).
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We now use Proposition 5.2.8 to obtain the following result regarding the mass
conservation of the solution to (5.2.8), (5.2.9) for a general weight w = (wn)∞n=1

satisfying Assumption 5.2.2(i) and (ii).

Lemma 5.2.9. Let (5.1.5) hold and let Assumptions 5.2.2(i) and (ii) hold. Then
u(t) = S(w)(t)̊u is the unique, non-negative, mass-conserving classical solution of
(5.2.8), (5.2.9) for all ů ∈ D(G(w))+.

Proof. From Remark 5.2.3 we have that `1
w is continuously embedded in X[1]. It

follows that `1
w ⊆ X[1] and ‖f‖[1] ≤ c‖f‖

`
1
w

for all f ∈ `1
w and some c > 0.

HenceA+B is an extension ofA(w)+B(w). Let f ∈ D(G(w)) = D(A(w) +B(w)).
There exists f (k), k ∈ N such that f (k) ∈ D(A(w) + B(w)) for all k ∈ N,
‖f (k) − f‖

`
1
w
→ 0 and ‖(A(w) + B(w))f (k) − G(w)f‖

`
1
w
→ 0 as k → ∞. Since

A + B is an extension of A(w) + B(w), f (k) ∈ D(A + B) for all k ∈ N. Moreover,
since `1

w is continuously embedded in X[1], we have ‖f (k) − f‖[1] → 0 and

‖(A(w) +B(w))f (k) −G(w)f‖[1] = ‖(A+B)f (k) −G(w)f‖[1] → 0 as k →∞.

We have that G = A+B and so, by the definition of the closure, f ∈ D(G) and
Gf = G(w)f . Thus G and G(w) coincide on D(G(w)) and so G is an extension of
G(w).

Take ů ∈ D(G(w))+. Then ů ∈ D(G)+. We know that u(t) = S(w)(t)̊u is the
unique, non-negative classical solution of the ACP (5.2.8), (5.2.9) and it follows
that u(t) ∈ D(G(w))+ ⊆ D(G)+ for all t ≥ 0. Moreover u is strongly differentiable
in `1

w and it follows that u is strongly differentiable in X[1] and the derivatives
coincide. Since G is an extension of G(w), u(t) = S(w)(t)̊u is also a classical
solution of the ACP (5.2.10), (5.2.11). However, we know from Proposition 5.2.8
that ũ(t) = S(t)̊u is the unique, non-negative, mass-conserving classical solution
of (5.2.10), (5.2.11). Hence u(t) and ũ(t) must coincide for ů ∈ D(G(w))+ and so
u(t) is mass conserving.

We now return to the fragmentation ACP (5.1.8). Under the assumptions
of Theorem 5.2.7, we have that G(w) = A(w) +B(w) generates a substochastic
semigroup, (S(w)(t))t≥0. We know that G(w) and A(w) +B(w) coincide on D(A(w)).
However, if ů ∈ D(A(w)), then we cannot guarantee that S(w)(t)̊u ∈ D(A(w)) and
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so we cannot say in general that the classical solution of (5.2.8), (5.2.9) is also
a classical solution of (5.1.8). However, as we show in the next theorem, the
invariance result in Theorem 5.2.7 allows us to obtain a solution of (5.1.8) for a
certain class of initial conditions. We again define C(w) and D(C(w)) by (5.2.5),
where (cn)∞n=1 is a monotone increasing sequence that dominates the sequence
(an)∞n=1.

Theorem 5.2.10. Let Assumption 5.2.2(i) hold. Then u(t) = S(w)(t)̊u is the
unique classical solution of (5.1.8) for all ů ∈ D(C(w)). If ů ∈ D(C(w))+, then
this solution is non-negative.

Moreover, if (5.1.5) and Assumption 5.2.2(ii) holds, then u(t) is a mass-
conserving solution.

Proof. Let ů ∈ D(C(w)). Since the sequence (cn)∞n=1 dominates the sequence
(an)∞n=1 we have D(C(w)) ⊆ D(A(w)). Also, from Theorem 5.2.7, D(C(w)) is
invariant under (S(w)(t))t≥0. Hence S(w)(t)̊u ∈ D(C(w)) ⊆ D(A(w)). Moreover,
G(w) and A(w) + B(w) coincide on D(A(w)), and we know that u(t) = S(w)(t)̊u is
the unique classical solution of (5.2.8), (5.2.9). It follows that if ů ∈ D(C(w)),
then u(t) = S(w)(t)̊u ∈ D(A(w)) is the unique classical solution of (5.1.8). The
non-negativity result follows from the positivity of the semigroup (S(w)(t))t≥0.
The mass conservation result follows from Lemma 5.2.9.

In Theorem 5.2.10, under Assumption 5.2.2(i), we have obtained a unique
solution of (5.1.8) for any ů ∈ D(C(w)) and, moreover, this solution is non-
negative whenever ů ∈ D(C(w))+. As we now remark, we can “optimise” D(C(w))
through our choice of (cn)∞n=1.

Remark 5.2.11. Let the assumptions of Theorem 5.2.7 hold and let (cn)∞n=1 be as
in (5.2.4). We note that this choice is the “minimal” choice of (cn)∞n=1 such that
(5.2.3) holds. By this we mean that if (c̃n)∞n=1 is any other sequence satisfying
(5.2.3), then cn ≤ c̃n for all n ∈ N. It follows that D(C̃(w)) ⊆ D(C(w)), where

[C̃(w)f ]n = −c̃nfn, D(C̃(w)) =

f ∈ `1
w :

∞∑
n=1

wnc̃n|fn| <∞

 .
Hence, for a given sequence (an)∞n=1, choosing (cn)∞n=1 as in (5.2.4) gives rise to the
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existence of a unique solution for the largest possible class of initial conditions,
which can be obtained using Theorem 5.2.10.

On the other hand, let the assumptions of Theorem 5.2.7 hold and suppose
that ů ∈ D(C(w)), where (cn)∞n=1 is given by (5.2.4). Since the choice of monotone
increasing sequence that dominates (an)∞n=1 is arbitrary, we can choose the se-
quence (c̃n)∞n=1, defined as above, to be as large as possible such that ů ∈ D(C̃(w)).
From Theorem 5.2.7 we know that u(t) = S(w)ů ∈ D(C̃(w)). Hence, by choosing
(c̃n)∞n=1 to be as large as possible, we restrict D(C̃(w)) and so obtain a clearer idea
of where the unique classical solution lies.

For a given (an)∞n=1, choose (cn)∞n=1 as in (5.2.4). If ů ∈ D(A(w))\D(C(w)),
for this choice of (cn)∞n=1, then we are unable to use Theorem 5.2.10 to obtain a
solution of (5.1.8). In the next example we examine the set D(A(w))\D(C(w)) in
more detail and show that there are situations where it is non-empty. First we
note that, due to our choice of (cn)∞n=1, we have

D(A(w))\D(C(w)) =

f ∈ `1
w : A(w)f ∈ `1

w and
∞∑
n=1

wnAn|fn| diverges

 ,
where An = max{a1, a2, . . . , an}.

Example 5.2.12. For a given (an)∞n=1, let (cn)∞n=1 be as in (5.2.4). Then we have
that D(C(w)) is a strict subset of D(A(w)) if there exists at least one f = (fn)∞n=1

satisfying
∞∑
n=1

wn|fn| <∞ and
∞∑
n=1

wnan|fn| <∞

but ∞∑
n=1

wnAn|fn| =∞.

By setting gn = wn|fn|, we see that this is equivalent to establishing the
existence of a sequence (gn)∞n=1 ∈ `1

+ such that

∞∑
n=1

angn <∞ but
∞∑
n=1

Angn =∞.
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Let (an)∞n=1 be defined by

an =


0 when n = 1

1 if n is odd and n ≥ 3

np if n is even,

where p ≥ 2. Now take h ∈ `1
+ and define (gn)∞n=1 by

gn =


1
n

2 if n is odd
1
n
phn if n is even.

Then (gn)∞n=1 ∈ `1
+ and

∞∑
n=1

angn =
∞∑
n=1

a2n−1g2n−1 +
∞∑
n=1

a2ng2n =
∞∑
n=2

1
(2n− 1)2 +

∞∑
n=1

h2n

≤
∞∑
n=2

1
n2 +

∞∑
n=1

hn <∞.

However,

∞∑
n=1

Angn =
∞∑
n=1

A2n−1g2n−1 +
∞∑
n=1

A2ng2n =
∞∑
n=2

(2n− 2)p

(2n− 1)2 +
∞∑
n=1

h2n

and
(2n− 2)p

(2n− 1)2 ≥
(

2n− 2
2n− 1

)2

=
(

1− 1
2n− 1

)2

→ 1 as n→∞.

Hence (2n−2)p

(2n−1)2 does not tend to zero as n→∞ and so
∞∑
n=1

Angn diverges.

Let Assumption 5.2.2(i) hold. From Theorem 5.2.10, u(t) = S(w)(t)̊u is the
unique classical solution of (5.1.8) for ů ∈ D(C(w)). Hence, if we choose (cn)∞n=1

such that (5.2.3) holds and D(C(w)) = D(A(w)), then we obtain a unique classical
solution to the fragmentation ACP, (5.1.8), for all ů ∈ D(A(w)). Unfortunately it
will not always be possible to choose (cn)∞n=1 such that D(A(w)) = D(C(w)); see
Example 5.2.12. However, if we impose some further restrictions on the sequence
(an)∞n=1, we find that there are situations in which it is possible to choose (cn)∞n=1
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such that D(C(w)) = D(A(w)).

Proposition 5.2.13. Let Assumption 5.2.2(i) hold and let (an)∞n=1 be an unboun-
ded sequence. Define the sequence (cn)∞n=1 by (5.2.4). Then D(C(w)) = D(A(w))
if and only if

lim inf
n→∞

an
cn

> 0. (5.2.13)

Proof. We first note that, since (an)∞n=1 is unbounded, then (cn)∞n=1 is a monotone
increasing sequence such that cn → ∞ as n → ∞. Hence the quotient on the
left-hand side of (5.2.13) is well defined for all n large enough. Since cn ≥ an

for all n ∈ N, we have D(C(w)) ⊆ D(A(w)). If (5.2.13) holds, then there exist
γ ∈ (0, 1], N ∈ N such that an ≥ γcn for all n ≥ N . Let f ∈ D(A(w)). Then

‖C(w)f‖
`

1
w
≤

N−1∑
n=1

wncn|fn|+
1
γ

∞∑
n=N

wnan|fn| ≤
N−1∑
n=1

wncn|fn|+
1
γ
‖A(w)f‖

`
1
w
<∞.

Hence D(A(w)) = D(C(w)) .
Now suppose that lim inf

n→∞
an
cn

= 0. Then there exists a subsequence,
(
ank
cnk

)∞
k=1

,
such that

ank
cnk
≤ 1
k

and 1
cnk
≤ 1
k

for all k ∈ N.

Consider f such that

fj =


1

cnk
wnk

k
when j = nk,

0 otherwise.
(5.2.14)

Then ∞∑
n=1

wn|fn| =
∞∑
k=1

1
cnkk

≤
∞∑
k=1

1
k2 <∞

and ∞∑
n=1

anwn|fn| =
∞∑
k=1

ankwnk
1

cnkwnkk
≤
∞∑
k=1

1
k2 <∞

but ∞∑
n=1

cnwn|fn| =
∞∑
k=1

cnkwnk
1

cnkwnkk
=
∞∑
k=1

1
k

=∞.

Hence f ∈ D(A(w))\D(C(w)), i.e. D(A(w)) 6= D(C(w)), and the result follows.
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We can apply this result to eventually monotone increasing (an)∞n=1, as we
show in the following remark.

Remark 5.2.14. Let Assumption 5.2.2(i) hold and let (an)∞n=1 be an unbounded,
eventually monotone increasing sequence. Then there exists an M ∈ N such that
(an)∞n=M is monotone increasing and an ≤ aM for all n < M . Hence we can take
(cn)∞n=1 such that cn = max{a1, . . . , aM−1} for n = 1, . . . ,M−1 and an = cn for all
n ≥M . Then (cn)∞n=1 is monotone increasing, an ≤ cn for all n ∈ N and γcn ≤ an,
with γ = 1, for all n ≥ M . Hence (5.2.13) is satisfied and we can conclude that
D(C(w)) = D(A(w)). It follows from Theorem 5.2.10 that u(t) = S(w)(t)̊u is the
unique classical solution of (5.1.8) for ů ∈ D(A(w)). This solution is non-negative
if ů ∈ D(A(w))+.

We will now give a result regarding the existence of moments of solutions.
These results are slightly more general than the moment result in [16, The-
orem 4.1], where the authors use an approach involving Fréchet spaces, and follow
almost immediately from the invariance of D(C(w)). In particular, we avoid the
need to work in Fréchet spaces.

Corollary 5.2.15. Let Assumption 5.2.2(i) and (ii) hold. Consider the following
conditions:

(a) ů ∈ `1
w is such that

∞∑
n=1

wpn|̊un| < ∞ and there exists M > 0 such that

an ≤Mnp−1 for some p ≥ 1;

(b) ů ∈ D(C(w)), where (cn)∞n=1 is given by (5.2.4), is such that
∞∑
n=1

wpn |̊un| <∞
for some p ≥ 1, and (wn)∞n=1 is monotone increasing.

If either (a) or (b) hold, then u(t) = S(w)(t)̊u is the unique classical solution
of (5.1.8). Moreover,

∞∑
n=1

nq|un(t)| <∞ for all q ∈ [0, p], t ≥ 0. (5.2.15)

Proof. We first prove the result under the conditions in (a). We choose the
sequence (cn)∞n=1, from Theorem 5.2.7, to be cn = Mnp−1 for all n ∈ N. Then
(cn)∞n=1 is a monotone increasing sequence that dominates the sequence (an)∞n=1
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and

[C(w)f ]n = −cnfn = −Mnp−1fn; D(C(w)) =

f ∈ `1
w :

∞∑
n=1

wnn
p−1|fn| <∞

 .
We have ∞∑

n=1
wnn

p−1|̊un| ≤
∞∑
n=1

wpn|̊un| <∞,

since wn ≥ n for all n ∈ N. Consequently, ů ∈ D(C(w)). From Theorem 5.2.10,
we know that u(t) = S(w)(t)̊u is the unique classical solution of (5.1.8). Also,
(S(w)(t))t≥0 leaves D(C(w)) invariant and so u(t) ∈ D(C(w)) for all t ≥ 0. Thus,
we have ∞∑

n=1
np|un(t)| ≤

∞∑
n=1

wnn
p−1|un(t)| <∞,

since wn ≥ n for all n ∈ N. If follows that

∞∑
n=1

nq|un(t)| ≤
∞∑
n=1

np|un(t)| <∞ for all q ∈ [0, p] and t ≥ 0.

We now prove the result under the conditions in (b). That u(t) = S(w)(t)̊u is
the unique classical solution of (5.1.8) follows immediately from Theorem 5.2.10.
Consider (c̃n)∞n=1, where c̃n = max{cn, wp−1

n }. Then (c̃n)∞n=1 is a monotone in-
creasing sequence that dominates the sequence (an)∞n=1. From Theorem 5.2.7,
D(C̃) is invariant under (S(w)(t))t≥0, where

[C̃f ]n = −c̃nfn, D(C̃) =

f ∈ `1
w :

∞∑
n=1

wnc̃n|fn| <∞

 .
We have ∞∑

n=1
wnc̃n |̊un| ≤

∞∑
n=1

wncn|̊un|+
∞∑
n=1

wpn|̊un| <∞

and so ů ∈ D(C̃). Hence u(t) ∈ D(C̃) and so

∞∑
n=1

np|un(t)| ≤
∞∑
n=1

wpn|un(t)| =
∞∑
n=1

wnw
p−1
n |un(t)| ≤

∞∑
n=1

wnc̃n|un(t)| <∞.
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The result then follows immediately.

5.3 The Pointwise Fragmentation System

In this section we examine the pointwise fragmentation system (5.1.1), (5.1.2).
Throughout this subsection we let Assumption 5.2.2(i) hold so that, from The-
orem 5.2.7, G(w) = A(w) +B(w) is the generator of a substochastic C0-semigroup,
(S(w)(t))t≥0. We note that if (5.1.4) holds with λj ∈ [0, 1), j ≥ 2, then Assump-
tion 5.2.2(i) is satisfied for wn = n, n ∈ N, i.e. if (5.1.4) holds with λj ∈ [0, 1),
j ≥ 2, then Assumption 5.2.2(i) holds when `1

w = X[1]. It follows that the results
in this section hold if (5.1.4) holds with λj ∈ [0, 1),j ≥ 2 and we work in X[1].

As mentioned at the start of Section 5.2.2, if Assumption 5.2.2(i) holds, then
u(t) = S(w)(t)̊u is the unique classical solution of (5.2.8), (5.2.9).

As we now show, this provides us with a solution to the pointwise problem

u′n(t) = [G(w)u(t)]n, t > 0, n = 1, 2, 3, . . . (5.3.1)

un(0) = ůn, n = 1, 2, 3, . . . (5.3.2)

for all ů ∈ D(G(w)).
Let Assumption 5.2.2(i) hold and let ů ∈ D(G(w)). We have that S(w)(t)̊u is

strongly differentiable with respect to t on `1
w, with

d

dt
S(w)(t)̊u = G(w)S(w)(t)̊u.

This means that∥∥∥∥∥∥S
(w)(t+ h)̊u− S(w)(t)̊u

h
−G(w)S(w)(t)̊u

∥∥∥∥∥∥
`

1
w

→ 0 as h→ 0.

From this we can deduce that, for each n ∈ N,

wn

∣∣∣∣∣∣(S
(w)(t+ h)̊u)n − (S(w)(t)̊u)n

h
− (G(w)S(w)(t)̊u)n

∣∣∣∣∣∣
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≤
∞∑
k=1

wk

∣∣∣∣∣∣(S
(w)(t+ h)̊u)k − (S(w)(t)̊u)k

h
− (G(w)S(w)(t)̊u)k

∣∣∣∣∣∣
=

∥∥∥∥∥∥S
(w)(t+ h)̊u− S(w)(t)̊u

h
−G(w)S(w)(t)̊u

∥∥∥∥∥∥
`

1
w

→ 0 as h→ 0.

Thus, if S(w)(t)̊u is strongly differentiable with respect to t > 0 in `1
w, then for all

n ∈ N, (S(w)(t)̊u)n is differentiable with respect to t > 0 and

d

dt
(S(w)(t)̊u)n = (G(w)S(w)(t)̊u)n.

Hence un(t) = (S(w)(t)̊u)n is a solution of the pointwise problem (5.3.1), (5.3.2),
for all n ∈ N, t ≥ 0, ů ∈ D(G(w)). Moreover, u(t) = S(w)(t)̊u ≥ 0 for all
ů ∈ D(G(w))+, n ∈ N, t ≥ 0 and so un(t) = (S(w)(t)̊u)n ≥ 0 for all ů ∈ D(G(w))+.

However, since we do not have an explicit expression for G(w), we do not know
in what sense, if any, the function u(t) = S(w)(t)̊u satisfies the original problem
(5.1.1) for ů ∈ D(G(w)) (or more generally for ů ∈ `1

w). We deal with this in
the next theorem. The proof of this theorem requires the concept of absolute
continuity.

Definition 5.3.1. Let f be a real-valued function on a compact interval [a, b].
Then f is absolutely continuous on [a, b] if there exists a Lebesgue integrable
function g on [a, b] such that

f(x) = f(a) +
∫ x

a
g(t)dt, (5.3.3)

for all x in [a, b].

The following lemma, based on [21, p. 25], gives an equivalent definition of
absolute continuity which we use in this section.

Lemma 5.3.2. Let f be a real-valued function on a compact interval [a, b]. Then
the following statements are equivalent:

(i) f is absolutely continuous;
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(ii) f has a derivative f ′ almost everywhere on [a, b] and the derivative is Le-
besgue integrable on [a, b].

If f is absolutely continuous and (5.3.3) holds, then g = f ′ almost everywhere on
[a, b].

We now obtain the following theorem, regarding a solution of the pointwise
fragmentation system (5.1.1). (5.1.2).

Theorem 5.3.3. Let ů ∈ `1
w. Then un(t) = [S(w)(t)̊u]n satisfies the pointwise

fragmentation system, (5.1.1) and (5.1.2), for almost all t ≥ 0.

Proof. As previously, we define a sequence (cn)∞n=1 by

c1 = a1

cn = max{cn−1, an} = max{a1, . . . , an} for n ≥ 2

and let
(C(w)f)∞n=1 = (−cnfn)∞n=1

with

D(C(w)) =

f ∈ `1
w :

∞∑
n=1

wncn|fn| <∞

 .
Then an ≤ cn for all n ∈ N and it follows that D(C(w)) ⊆ D(A(w)).

Taking ů ∈ D(C(w)) we have, from Theorem 5.2.10, that u(t) = S(w)(t)̊u is
the unique classical solution of (5.1.8) for each t ≥ 0. By a similar argument as
used at the start of this section, it follows that for t ≥ 0, un(t) is a solution of
the pointwise problem

u′n(t) = −anun(t) +
∞∑

j=n+1
ajbn,juj(t), n = 1, 2, . . .

and so is also a solution of

un(t)− ůn = −an
t∫

0

un(s) ds+
t∫

0

∞∑
j=n+1

ajbn,juj(s) ds. (5.3.4)
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Fix t ≥ 0. Take ů ∈ (`1
w)+ and let u(t) = S(w)(t)̊u. Then there exists a

sequence (̊u(k))∞k=1, with ů(k) ∈ D(C(w))+ for all k ∈ N, such that ů(k) → ů as
k →∞. For example, take ů(k) such that

(̊u(k))n =


ůn if n ≤ k,

0 if n > k.
(5.3.5)

Then ů(k) ∈ D(C(w))+ for each k ∈ N and (̊u(k))∞k=1 is monotone increasing.
Let k1 ≤ k2. Then ů(k1) ≤ ů(k2). Thus we have

S(w)(t)̊u(k2) − S(w)(t)̊u(k1) = S(w)(t)(̊u(k2) − ů(k1)) ≥ 0

since (S(w)(t))t≥0 is substochastic and ů(k2) − ů(k1) ≥ 0. Similarly, for all k ∈ N,

S(w)(t)̊u− S(w)(t)̊u(k) = S(w)(t)(̊u− ů(k)) ≥ 0.

It is therefore clear that (S(w)(t)̊u(k))∞k=1 is monotone increasing and bounded
above by S(w)(t)̊u. Hence, for fixed n ∈ N, we also have that ((S(w)(t)̊u(k))n)∞k=1

is monotone increasing and bounded above by (S(w)(t)̊u)n. We can also deduce
that S(w)(t)̊u(k) → S(w)(t)̊u as k →∞ since we have

‖S(w)(t)̊u− S(w)(t)̊u(k)‖
`

1
w

= ‖S(w)(t)(̊u− ů(k))‖
`

1
w
≤ ‖ů− ů(k)‖

`
1
w

=
∞∑
n=1

wn(̊un − ů(k)
n ) =

∞∑
n=k+1

wnůn → 0 as k →∞.

It follows that (S(w)(t)̊u(k))n → (S(w)(t)̊u)n as k →∞.
Since ů(k) ∈ D(C(w))+ for all k ∈ N, we know that S(w)(t)̊u(k) satisfies

(S(w)(t)̊u(k))n = (̊u(k))n −
t∫

0

an(S(w)(s)̊u(k))n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u(k))j ds.
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Taking limits on both sides we have

(S(w)(t)̊u)n = ůn+ lim
k→∞

 t∫
0

−an(S(w)(s)̊u(k))n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u(k))j ds

 .
(5.3.6)

By the monotone convergence theorem we have

lim
k→∞

t∫
0

(S(w)(s)̊u(k))n ds =
t∫

0

lim
k→∞

(S(w)(s)̊u(k))n ds =
t∫

0

(S(w)(s)̊u)n ds.

Since all the other limits in (5.3.6) exist we must have that

lim
k→∞

t∫
0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u(k))j ds

exists. Thus
∞∑

j=n+1
ajbn,j(S(w)(s)̊u(k))j, and so also ajbn,j(S(w)(s)̊u(k))j, must be

finite except on sets of measure zero.
Again the sequence

(
ajbn,j(S(w)(s)̊u(k))j

)∞
k=1

is increasing for fixed n, j and so(
∞∑

j=n+1
ajbn,j(S(w)(s)̊u(k))j

)∞
k=1

is increasing. It follows, by the monotone conver-

gence theorem, that

lim
k→∞

t∫
0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u(k))j ds =
t∫

0

lim
k→∞

∞∑
j=n+1

ajbn,j(S(w)(s)̊u(k))j ds

=
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u)j ds.

Thus,

(S(w)(t)̊u)n = ůn −
t∫

0

an(S(w)(s)̊u)n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u)j ds

= ůn +
t∫

0

−an(S(w)(s)̊u)n +
∞∑

j=n+1
ajbn,j(S(w)(s)̊u)j

 ds.
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It follows that (S(w)(t)̊u)n is absolutely continuous with respect to t for each
n = 1, 2, . . .. From Lemma 5.3.2 we can then deduce that

d

dt
(S(w)(t)̊u)n = −an(S(w)(t)̊u)n +

∞∑
j=n+1

ajbn,j(S(w)(t)̊u)j (5.3.7)

for all ů ∈ (`1
w)+ and almost every t ≥ 0, i.e. for all ů ∈ (`1

w)+ and almost every
t ≥ 0, un(t) = (S(w)(t)̊u)n satisfies the original pointwise discrete fragmentation
equation (5.1.1), (5.1.2). Moreover, for ů ∈ (`1

w)+ we have

(S(w)(t)̊u)n = ůn −
t∫

0

an(S(w)(s)̊u)n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u)j ds. (5.3.8)

Take ů ∈ `1
w. Then ů = ů+ − ů− where ů+, ů− ∈ (`1

w)+. We have

(S(w)(t)̊u)n = (S(w)(t)(̊u+ − ů−))n
= (S(w)(t)̊u+)n − (S(w)(t)̊u−)n

= (̊u+)n −
t∫

0

an(S(w)(s)̊u+)n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u+)j ds

− (̊u−)n +
t∫

0

an(S(w)(s)̊u−)n ds−
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u−)j ds

= ((̊u+)n − (̊u−)n)−
t∫

0

an[(S(w)(s)̊u+)n − (S(w)(s)̊u−)n] ds

+
t∫

0

∞∑
j=n+1

ajbn,j[(S(w)(s)̊u+)j − (S(w)(s)̊u−)j] ds

= ůn −
t∫

0

an(S(w)(s)̊u)n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)̊u)j ds.

Hence, for any initial condition ů ∈ `1
w, we can use an identical absolute continuity

argument as above to deduce that (S(w)(t)̊u)n satisfies the original pointwise
fragmentation system, (5.1.1), (5.1.2), for almost all t ≥ 0.

Theorem 5.3.3 now enables us to obtain an explicit expression for the operator
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G(w) = A(w) +B(w).

Theorem 5.3.4. For all g ∈ D(G(w)), we have

[G(w)g]n = −angn +
∞∑

j=n+1
ajbn,jgj. (5.3.9)

Proof. Let g ∈ D(G(w)). Then there exists f ∈ `1
w such that g = R(1, G(w))f .

Moreover, f = f+ − f−, where f+, f− ∈ (`1
w)+. Using (5.3.8) from the proof of

Theorem 5.3.3 to obtain the second equality, we have

[R(1, G(w))f+]n

=
∞∫
0

e−t[S(w)(t)f+]n dt

=
∞∫
0

e−t

(f+)n −
t∫

0

an(S(w)(s)f+)n ds+
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)f+)j ds

 dt.

Clearly,
∞∫
0

e−t(f+)n dt = (f+)n

exists. Moreover, we have ‖S(w)(s)f+‖`1w ≤ ‖f+‖`1w , for all s ≥ 0. Hence, for fixed
n ∈ N,

∞∫
0

t∫
0

|e−tan(S(w)(s)f+)n| ds dt =
∞∫
0

t∫
0

e−tan(S(w)(s)f+)n ds dt

≤ an

∞∫
0

t∫
0

e−t‖S(w)(s)f+‖`1w ds dt

≤ an

∞∫
0

te−t‖f+‖`1w dt

= an

[−te−t]∞0 +
∞∫
0

e−t dt

 ‖f+‖`1w

= an[−e−t]∞0 ‖f+‖`1w = an‖f+‖`1w <∞.
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It follows that

∞∫
0

e−t
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)f+)j ds dt

also exists and so we have

[R(1, G(w))f+]n = (f+)n −
∞∫
0

t∫
0

e−tan(S(w)(s)(f+))n ds dt

+
∞∫
0

t∫
0

∞∑
j=n+1

e−tajbn,j(S(w)(s)(f+))j ds dt.

Now,
∞∫
0

t∫
0
|e−tan(S(w)(s)f+)n| ds dt < ∞ and so, by the Fubini–Tonelli Theorem,

we have

∞∫
0

t∫
0

e−tan(S(w)(s)f+)n ds dt =
∞∫
0

∞∫
s

e−tan(S(w)(s)f+)n dt ds

= an

∞∫
0

e−s(S(w)(s)f+)n ds

= an[R(1, G(w))f+]n.

Similarly, since
∞∫
0
e−t

t∫
0

∞∑
j=n+1

ajbn,j(S(w)(s)f+)j ds dt exists, we can use the Fubini–
Tonelli Theorem three times to obtain

∞∫
0

e−t
t∫

0

∞∑
j=n+1

ajbn,j(S(w)(s)f+)j ds dt =
∞∫
0

∞∫
s

∞∑
j=n+1

e−tajbn,j(S(w)(s)f+)j dt ds

=
∞∫
0

∞∑
j=n+1

∞∫
s

e−tajbn,j(S(w)(s)f+)j dt ds

=
∞∑

j=n+1

∞∫
0

∞∫
s

e−tajbn,j(S(w)(s)f+)j dt ds

=
∞∑

j=n+1
ajbn,j

∞∫
0

e−s(S(w)(s)f+)j ds
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=
∞∑

j=n+1
ajbn,j[R(1, G(w))f+]j.

So we have

[R(1, G(w))f+]n = (f+)n − an[R(1, G(w))f+]n +
∞∑

j=n+1
ajbn,j[R(1, G(w))f+]j.

Similarly, we have

[R(1, G(w))f−]n = (f−)n − an[R(1, G(w))f−]n +
∞∑

j=n+1
ajbn,j[R(1, G(w))f−]j.

Thus

gn = [R(1, G(w))f ]n
= [R(1, G(w))f+]n − [R(1, G(w))f−]n
= (f+)n − (f−)n −

(
an[R(1, G(w))f+]n − an[R(1, G(w))f−]n

)
+
 ∞∑
j=n+1

ajbn,j[R(1, G(w))f+]j −
∞∑

j=n+1
ajbn,j[R(1, G(w))f−]j


= fn − an[R(1, G(w))f ]n +

∞∑
j=n+1

ajbn,j[R(1, G(w))f ]j

= [(I −G(w))g]n − an[R(1, G(w))f ]n +
∞∑

j=n+1
ajbn,j[R(1, G(w))f ]j.

Hence (5.3.9) holds.

We note that while in Theorem 5.3.3 we found that (S(w)(t))t≥0 provides a
solution to the pointwise system (5.1.1), (5.1.2) for almost all t ≥ 0, we know
that for ů ∈ D(G(w)) and n ∈ N, un(t) = (S(w)(t)̊u)n solves (5.3.1), (5.3.2) for
all t ≥ 0. Hence, Theorem 5.3.4 enables us to deduce that when ů ∈ D(G(w)),
un(t) = (S(w)(t)̊u)n provides a solution to (5.1.1), (5.1.2) for all t ≥ 0.
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5.4 Analytic Fragmentation Semigroups

The results obtained in this section provide the main motivation for studying
(5.1.1), (5.1.2) in general weighted `1 spaces. In particular, when working in
these general weighted spaces we can obtain results relating to the analyticity
of the fragmentation semigroup, (S(w)(t))t≥0, that do not necessarily hold when
wn = n for all n ∈ N.

We once again recall, from Theorem 5.2.7, that if Assumption 5.2.2(i) holds,
then G(w) = A(w) +B(w) is the generator of a substochastic C0-semigroup on
`1
w. We now use Theorem 3.3.35 to show that G(w) = A(w) + B(w) under cer-

tain conditions. Moreover, we show that under these conditions the semigroup
(S(w)(t))t≥0 is analytic. We note that, unlike in (5.2.1), we exclude the case δ = 1
in assumption (5.4.1) below.

Theorem 5.4.1. Suppose that there exists δ ∈ (0, 1) such that

j−1∑
n=1

wnbn,j ≤ δwj for all j = 2, 3, . . . . (5.4.1)

Then G(w) = A(w) + B(w) is the generator of an analytic, substochastic C0-
semigroup, (S(w)(t))t≥0, on `1

w.

Proof. First note that, under the conditions of this theorem, Assumption 5.2.2(i)
holds. To show that A(w) +B(w) is a generator we check that, under the assump-
tions of this theorem, the conditions of Theorem 3.3.35 hold. It is clear that
−A(w) is a positive operator and, from Lemma 5.2.1, A(w) is the generator of a
substochastic C0-semigroup on `1

w.
From Lemma 5.2.6, D(A(w)) ⊆ D(B(w)) and ‖B(w)f‖

`
1
w
≤ δ‖A(w)f‖

`
1
w

for all
f ∈ D(A(w)). Hence, by Theorem 3.3.35, G(w) = A(w) +B(w) is the generator of a
C0-semigroup on `1

w. Moreover, since B(w) is a positive operator, it follows from
Theorem 3.3.35 that the semigroup generated by A(w) + B(w) is positive. From
Theorem 5.2.7, we have that A(w) +B(w) is also the generator of a substochastic
C0-semigroup, (S(w)(t))t≥0. However, since A(w) + B(w) is a generator, it is a
closed operator. It follows that A(w) + B(w) = A(w) +B(w) and so A(w) + B(w)

generates the substochastic semigroup (S(w)(t))t≥0.

130



Chapter 5. Pure Autonomous Fragmentation

We now use Theorem 3.3.36 to prove that the semigroup, (S(w)(t))t≥0, is
analytic. We know from Lemma 5.2.1 that A(w) is the generator of a substochastic
C0-semigroup, (T (w)(t))t≥0, on `1

w. Also, for λ = r + is with r > 0, s ∈ R\{0},

‖R(λ,A(w))f‖
`

1
w

=
∞∑
n=1

wn
1

|λ+ an|
|fn| =

∞∑
n=1

wn
1

|(r + an) + is|
|fn|

≤ 1
|s|

∞∑
n=1

wn|fn| =
1
|s|
‖f‖

`
1
w
.

It follows that
‖R(λ,A(w))‖ ≤ 1

|s|
.

Hence, by Theorem 3.3.21, (T (w)(t))t≥0 is an analytic semigroup.
Also, since the semigroup (S(w)(t))t≥0 is positive, it follows from Lemma 3.3.12

that A(w) +B(w) is resolvent positive. The analyticity of (S(w)(t))t≥0 then follows
immediately from Theorem 3.3.36.

Remark 5.4.2. Now consider the case where wn = n for all n ∈ N. Suppose that
(5.1.4) holds and that there exists λ0 ∈ (0, 1) such that λj > λ0, j = 2, 3, . . ..
Then (5.4.1) holds with wn = n for all n ∈ N and δ = (1− λ0) ∈ (0, 1).

On the other hand, suppose that for some j = 2, 3, . . ., (5.1.4) holds with
λj ≤ 0. Then

j−1∑
n=1

nbn,j = (1− λj)j ≥ j

and so in this case (5.4.1) does not hold for wn = n and δ ∈ (0, 1). Thus,
we cannot use Theorem 5.4.1 when we work in the space X[1] and we consider a
mass-conserving system (i.e. a system where (5.1.5) holds) or a mass-gain system.

Under the assumptions of Theorem 5.4.1, we also have the following, altern-
ative, proof that G(w) = A(w) + B(w) is the generator of a substochastic, C0-
semigroup on `1

w.

Remark 5.4.3. Let the assumptions of Theorem 5.4.1 hold. The first step in
the proof of Theorem 5.4.1 uses the Miyadera–Voigt Perturbation Theorem to
show that A(w) + B(w) is a generator. Using Theorem 5.2.7 we can shorten this
part of the proof. Under the conditions of Theorem 5.4.1, we have that As-
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sumption 5.2.2(i) holds. Hence, by Theorem 5.2.7, G(w) = A(w) +B(w) is the
generator of a substochastic C0-semigroup. Also, A(w) is a closed operator and,
from Lemma 5.2.6, we know that B(w) is A(w)-bounded, with A(w)-bound δ < 1.
It follows from Lemma 3.3.32 that A(w)+B(w) is closed, and so G(w) = A(w)+B(w)

is the generator of a substochastic, C0-semigroup on `1
w.

We now give an important remark regarding Theorem 5.4.1. This remark
explains that we can always find a space, `1

w, such that Theorem 5.4.1 can be
applied.

Remark 5.4.4. It is always possible to choose a weight (wn)∞n=1 such that the con-
ditions of Theorem 5.4.1 hold. For given fragmentation coefficients (bn,j)n,j∈N:n<j,
we can take, for example, w1 = 1 and then choose each wn, n ≥ 2, iteratively so
that (5.4.1) is satisfied. Thus, for any fragmentation coefficients, we can always
find a weighted `1 space such that A(w) + B(w) is the generator of an analytic,
substochastic C0-semigroup.

Theorem 5.4.5. For any fragmentation coefficients, (bn,j)n,j∈N:n<j, we can al-
ways find a weight, (wn)∞n=1, such that the conditions of Theorem 5.4.1 hold.

Proof. As explained in Remark 5.4.4, we can choose wn iteratively such that
(5.4.1) is satisfied.

We now give a sufficient condition for the assumptions of Theorem 5.4.1 to
hold.

Lemma 5.4.6. Let (5.1.4) hold with λj ∈ [0, 1] for j = 2, 3, . . .. Moreover, let
(wn)∞n=1 be such that there exists δ ∈ (0, 1) such that

δ
wn+1

n+ 1 ≥
wn
n

for all n ∈ N.

Then the assumptions of Theorem 5.4.1 hold.

Proof. We have
w1

1 ≤ δ
w2

2 ≤ δ2w3

3 ≤ . . . .
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Hence wn
n
≤ δj−n

wj
j
≤ δ

wj
j

for all j ≥ 2, n = 1, . . . , j − 1, since δ ∈ (0, 1). It
follows that

j−1∑
n=1

wnbn,j =
j−1∑
n=1

wn
n
nbn,j ≤ δ

wj
j

j−1∑
n=1

nbn,j ≤ δwj

for j = 2, 3, . . ., where we use (5.1.4) to obtain the last inequality. Since δ ∈ (0, 1),
the result then follows.

Using Lemma 5.4.6 we can show that, in the case where mass is either lost or
conserved, we can always choose the weight (wn)∞n=1, as in Theorem 5.4.5, to be
at most exponentially growing.

Proposition 5.4.7. Let (5.1.4) hold with λj ∈ [0, 1] for all j = 2, 3, . . . and let
wn = rn for some r > 2. Then the assumptions of Theorem 5.4.1 hold.

Proof. Taking δ > 0 we have, for all n ∈ N,

δ
rn+1

n+ 1 −
rn

n
= δnrn+1 − (n+ 1)rn

n(n+ 1) = rn((δr − 1)n− 1)
n(n+ 1) ≥ 0

if δ ≥ 1
r

(
1
n

+ 1
)
. Since r > 2 and n ≥ 1, 1

r

(
1
n

+ 1
)
≤ 2

r
< 1. Choosing δ = 2

r
, the

result then follows from Lemma 5.4.6.

In [9], the case is considered where (5.1.5) holds. A particular weight of the
form wn = np, for p ≥ 1 and all n ∈ N, is examined and, under an equivalent
assumption as (5.4.1), it is shown in [9, Theorem 2.1.3] that A(w) + B(w) is a
generator. However, the analyticity of the semigroup (S(w)(t))t≥0 under this con-
dition is not mentioned. Moreover, simple examples of fragmentation coefficients
are given in [9] for which this condition does not hold when wn = np for any
p ≥ 1. For example, in the appendix of [9] a fragmentation process is considered
in which a cluster of mass n splits into two clusters with masses 1 and n− 1. In
this case we have

b1,2 = 2; b1,j = bj−1,j = 1, j ≥ 3;

bn,j = 0, 2 ≤ n ≤ j − 2,
(5.4.2)

It is mentioned in [9] that, in this case, the condition equivalent to (5.4.1) is not
satisfied when wn = np, for any p ≥ 1. Moreover, in [9, Proposition A3] it is
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shown that if wn = np for p ≥ 1 and an = n for n ≥ 2, then A(w) +B(w) is not the
generator of a C0-semigroup and the semigroup that is generated by A(w) +B(w)

is not analytic.
We now show that it is possible to construct a weight (wn)∞n=1 satisfying (5.4.1)

when the fragmentation coefficients are given by (5.4.2).

Example 5.4.8. Consider the case where the fragmentation coefficients bn,j sat-
isfy (5.4.2). We want to choose (wn)∞n=1 such that (5.4.1) is satisfied for some
δ ∈ (0, 1). For n = 2,

n−1∑
k=1

wkbk,n = 2w1,

and, for n = 3, 4, . . ., we have

n−1∑
k=1

wkbk,n = w1 + wn−1.

Thus we require

2w1 ≤ δw2 and w1 + wn−1 ≤ δwn for n = 3, 4, . . . ,

for some δ ∈ (0, 1).
Take w1 = 1 and δ = 5

8 . Then we can choose w2 = 4 = 22. We also want

8
5(1 + wn−1) ≤ wn for n = 3, 4, . . . . (5.4.3)

If we take w3 = 8 = 23 then (5.4.3) is satisfied for n = 3. Now assume that (5.4.3)
holds, with wk = 2k, k = 2, . . . , n, for some n ≥ 3. Then

8
5(1 + 2n) = 8

5(1 + 2 · 2n−1) ≤ 2
(

8
5(1 + 2n−1)

)
≤ 2 · 2n = 2n+1.

Hence, by induction, (5.4.3) holds if we take wn = 2n for n ≥ 2. Thus if we
consider `1

w where wn is given by

w1 = 1, wn = 2n for n = 2, 3, . . . ,
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then (5.4.1) is satisfied. It follows, from Theorem 5.4.1, that A(w) + B(w) is the
generator of an analytic, substochastic C0-semigroup on `1

w.

We can now obtain the following existence and uniqueness result.

Theorem 5.4.9. Let the assumptions of Theorem 5.4.1 hold.

(i) Then for all ů ∈ `1
w, u(t) = S(w)(t)̊u is the unique classical solution of

(5.1.8). If ů ∈ (`1
w)+, then this solution is non-negative.

(ii) Moreover, if (5.1.5) and Assumption 5.2.2(ii) hold, then the solution is
mass conserving for ů ∈ (`1

w)+.

Proof. (i) This follows from the analyticity of (S(w)(t))t≥0, Proposition 3.4.4 and
the fact that (S(w)(t))t≥0 is substochastic.

(ii) In this case `1
w is continuously embedded in X[1] and, from Proposi-

tion 5.2.8, G = A+B is the generator of the stochastic C0-semigroup, (S(t))t≥0,
on X[1]. Moreover, A(w) + B(w) ⊆ A + B ⊆ G. Hence, (S(t))t≥0 and (S(w)(t))t≥0

must coincide on `1
w. The mass conservation then follows from the stochasticity

of (S(t))t≥0

We now use the Sobolev Tower construction as introduced in Section 3.4.2.
Let (S(w)(t))t≥0 be an analytic semigroup, generated by G(w), on a fixed space
Y = `1

w and let ω0 ∈ R be the growth bound of (S(w)(t))t≥0. Choose µ > ω0

and consider the rescaled semigroup (T (t))t≥0 = (e−µtS(w)(t))t≥0, with generator
H = G(w) − µI. As explained in Section 3.4.2, (T (t))t≥0 has a negative growth
bound. We use Yn to denote the Sobolev space of order n ∈ Z, associated
with (T (t))t≥0 and, as in Section 3.4.2, we denote by (Tn(t))t≥0 and Hn, the
corresponding analytic semigroup and its generator, respectively, on Yn. Recall
that, for n ∈ N, T−n(t) = e−µtS

(w)
−n (t), where S(w)

−n (t) is the unique, continuous
extension of S(w)(t) from Y to Y−n.

Theorem 5.4.10. Let the conditions of Theorem 5.4.1 hold, and let (S(w)(t))t≥0

be the analytic, substochastic semigroup, generated by G(w) = A(w) + B(w), on
Y0 = `1

w. Fix n ∈ N. Then, for all ů ∈ Y−n, (5.1.8) has a unique solution
u ∈ C1((0,∞), `1

w) ∩ C([0,∞), Y−n), given by u(t) = S
(w)
−n (t)̊u, t ≥ 0. Moreover,

if ů ∈ (Y−n)+, then this solution is non-negative.
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Proof. The function u(t) = S
(w)
−n (t)̊u ∈ C1((0,∞), `1

w) ∩ C([0,∞), Y−n) is the
unique solution of (5.1.8) for all ů ∈ Y−n, from Theorem 3.4.13. The positiv-
ity result follows since (S(w)(t))t≥0, and so also (S(w)

−n (t))t≥0, is a substochastic
semigroup.

Remark 5.4.11. We make the following observations regarding Theorem 5.4.10.

(i) For any given fragmentation coefficients we can recursively choose a weight
w = (wn)∞n=1 that satisfies the conditions of Theorem 5.4.1. Hence, we can
always choose a weight such that Theorem 5.4.10 can be applied.

(ii) Suppose that, in addition to the assumptions of Theorem 5.4.10, we also
have X[1] ⊆ Y−n for some n ∈ N. Then, in particular, we obtain a unique,
non-negative solution of (5.1.8) for all ů ∈

(
X[1]

)
+

. Moreover, as we now
show, this solution is mass-conserving if (5.1.5) and Assumption 5.2.2(ii)
both hold.

From Proposition 5.2.8 we have, in this case, that G = A+B is the gener-
ator of a stochastic C0-semigroup, (S(t))t≥0, on X[1]. In addition, since
wn ≥ n for all n ∈ N, we have that `1

w is continuously embedded in
X[1]. Also, H−n−1 is the unique extension of H = G(w) − µI to Y−n and
G(w) = A(w) + B(w) ⊆ A + B ⊆ A+B = G. This then implies that
H = G(w) − µI ⊆ G− µI, i.e. G− µI is also an extension of H.

Since D(G − µI) ⊆ X[1] ⊆ Y−n = D(H−n−1), we have G − µI ⊆ H−n−1.
Hence, for all t ≥ 0, e−µtS(t) and T−n−1(t) = e−µtS

(w)
−n−1(t) coincide on X[1],

i.e. S(t) and S
(w)
−n−1(t) coincide on X[1].

Thus, by the stochasticity of (S(t))t≥0, we obtain that, for all ů ∈
(
X[1]

)
+

,

u(t) = S
(w)
−n (t)̊u = S

(w)
−n−1(t)̊u = S(t)̊u

is the unique, non-negative, mass-conserving solution of (5.1.8).

Let the Assumptions of Theorem 5.4.10 hold. We know that, for all n ∈ N,
Yn = (D

(
(A(w) +B(w) − µI)n

)
, ‖ · ‖n), where

‖f‖n = ‖(A(w) +B(w) − µI)nf‖
`

1
w
.
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It follows that

Y1 =
{
f ∈ D(A(w) +B(w) − µI) : ‖(A(w) +B(w) − µI)f‖

`
1
w
<∞

}
= D(A(w) +B(w) − µI) = D(A(w)).

Similarly, for Y2, we have

Y2 = D
(
(A(w) +B(w) − µI)2

)
=
{
f ∈ D

(
A(w)

)
: (A(w) +B(w) − µI)f ∈ D

(
A(w)

)}
=
{
f ∈ D

(
A(w)

)
:
(
A(w) +B(w)

)
f ∈ D

(
A(w)

)}
= D

((
A(w) +B(w)

)2)
.

Suppose Yn−1 = D
((
A(w) +B(w)

)n−1)
for some n ≥ 3. Then

Yn = D
(
(A(w) +B(w) − µI)n

)
=
{
f ∈ D

(
(A(w) +B(w) − µI)n−1

)
:

(A(w) +B(w) − µI)f ∈ D
(
(A(w) +B(w) − µI)n−1

)}
=
{
f ∈ Yn−1 :

(
A(w) +B(w)

)
f ∈ Yn−1

}
=
{
f ∈ D

((
A(w) +B(w)

)n−1)
:
(
A(w) +B(w)

)
f ∈ D

((
A(w) +B(w)

)n−1)}
= D

((
A(w) +B(w)

)n)
.

It follows, by induction, that Yn = D
(
(A(w) +B(w))n

)
for all n ∈ N.

Fix t > 0, n ∈ N and take ů ∈ Y−n. From Theorem 3.4.9, we have that
T−n(t)̊u ∈ Ym for all m ≥ −n. It follows that S−n(t)̊u ∈ Ym for all m ≥ −n.
Hence, from the characterisation of Ym, for m ∈ N, we have that the solution in
Theorem 5.4.10 must be in Ym = D

(
(A(w) +B(w))m

)
for all m ∈ N.

We have shown that for any given fragmentation coefficients we can find a se-
quence (wn)∞n=1 such that A(w)+B(w) is the generator of an analytic, substochastic
C0-semigroup on `1

w. Now suppose we are in the situation where we have a fixed
space, `1

w, for which we know that G(w) = A(w) +B(w) is the generator of a C0-
semigroup. Can we deduce whether the semigroup that is generated on this space
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is analytic? This is what we now examine.
We now consider the case where (5.1.5) holds, i.e. we consider the case where

we have a mass-conserving system. Let Assumption 5.2.2(i) hold. Then, from
Theorem 5.2.7, G(w) = A(w) +B(w) generates a substochastic C0-semigroup,
(S(w)(t))t≥0, on `1

w. As in [9] we can write R(λ,G(w)), where λ > 0, as an in-
finite dimensional matrix (rk,n(λ))1≤k,n<∞, where rn,n(λ) = 1

λ+an
for n ≥ 1 and

rk,n(λ) = 0 for k > n. For any k ∈ N and n ≥ k + 1 we have, from [9, Lemma
2.2],

rk,n(λ) = an
λ+ an

n−1∑
j=k

bj,nrk,j(λ). (5.4.4)

We note that, as remarked in [9], rk,n(λ) can be extended to an analytic func-
tion on {λ ∈ C : Re(λ) > 0}. The following lemma is a generalisation of [9,
Lemma 3.1]. It will be useful in determining conditions under which the semi-
group (S(w)(t))t≥0 is analytic.

Lemma 5.4.12. Let (5.1.4) hold with λj ∈ [0, 1) for j = 2, 3, . . ., let Assump-
tion 5.2.2(i) hold and let (S(w)(t))t≥0 be the substochastic C0-semigroup on `1

w,
generated by G(w) = A(w) +B(w). Moreover, assume that there is a positive in-
teger n0 ≥ 2, a constant c > 0 and a sequence, (ψk)∞k=1, with ψk > 0 for all k ∈ N,
such that

ψkbk,n ≤ c
k∑
j=1

jbj,n, for all n, k ∈ N such that n ≥ n0 and n > k. (5.4.5)

Then, for all n, k ∈ N such that n > k,

|rk,n(λ)| ≤ cn

|λ+ ak|ψk
. (5.4.6)

Proof. We first use an inductive argument with respect to n to show that (5.4.6)
holds when n0 = 2. Fix k ∈ N and let λ ∈ C be such that Re(λ) > 0. Then
λ ∈ ρ(G(w)). We have |rk,k(λ)| = 1

|λ+ak|
and an ≤ |λ+ an|. Thus we have

|rk,k+1(λ)| =

∣∣∣∣∣∣ ak+1

λ+ ak+1

k∑
j=k

bj,k+1rk,j(λ)

∣∣∣∣∣∣ = ak+1

|λ+ ak+1|
bk,k+1|rk,k(λ)|
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≤ bk,k+1|rk,k(λ)| = 1
|λ+ ak|

bk,k+1

≤ 1
|λ+ ak|

c

ψk

k∑
j=1

jbj,k+1 (from (5.4.5) since k + 1 ≥ 2)

≤ c(k + 1)
|λ+ ak|ψk

.

Hence (5.4.6) is satisfied for n = k + 1.
Now fix n ∈ N such that n > k and assume

|rk,j(λ)| ≤ cj

|λ+ ak|ψk
for all j ∈ {k + 1, . . . , n− 1}.

We want to show that this inequality also holds when j = n. We have

|rk,n(λ)| =

∣∣∣∣∣∣ an
λ+ an

n−1∑
j=k

bj,nrk,j(λ)

∣∣∣∣∣∣
≤ an
|λ+ an|

bk,n|rk,k(λ)|+ an
|λ+ an|

n−1∑
j=k+1

bj,n|rk,j(λ)|

≤ bk,n|rk,k(λ)|+
n−1∑
j=k+1

bj,n|rk,j(λ)|

≤ bk,n
1

|λ+ ak|
+

n−1∑
j=k+1

bj,n
cj

|λ+ ak|ψk

= 1
|λ+ ak|ψk

bk,nψk + c
n−1∑
j=k+1

jbj,n


≤ 1
|λ+ ak|ψk

c k∑
j=1

jbj,n + c
n−1∑
j=k+1

jbj,n


= 1
|λ+ ak|ψk

c n−1∑
j=1

jbn,j


≤ cn

|λ+ ak|ψk
,

where the second last inequality holds from (5.4.5) since n ≥ k + 1 ≥ 2 = n0.
Hence, by induction, we have that (5.4.6) holds in the case n0 = 2.

Now suppose (5.4.5) holds for some n0 > 2. We show that, in this case, there
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exists c̃ > 0 such that, for all n ≥ 2,

ψkbk,n ≤ c̃
k∑
j=1

jbj,n, 1 ≤ k ≤ n− 1.

Since bj,n ≥ 0 for all j, n ∈ N, the right-hand side of (5.4.5) is equal to zero for
some n ∈ N if and only if bj,n = 0 for all 1 ≤ j ≤ k. In this case (5.4.5) is
satisfied for all c > 0 and n, k ∈ N such that n ≥ n0 and k < n. Otherwise, for
2 ≤ n ≤ n0 − 1 and k < n we have

ψkbk,n = ψkbk,n
k∑
j=1

jbj,n

k∑
j=1

jbj,n ≤ max
(k,n)∈Ω


ψkbk,n
k∑
j=1

jbj,n


k∑
j=1

jbj,n = d
k∑
j=1

jbj,n,

where
Ω = {(k, n) : 1 ≤ k ≤ n− 1, 2 ≤ n ≤ n0 − 1,

k∑
j=1

jbj,n 6= 0}

and

d = max
(k,n)∈Ω


ψkbk,n
k∑
j=1

jbj,n

 .
Choose c̃ = max{c, d}. Then, for all n ≥ 2,

ψkbk,n ≤ c̃
k∑
j=1

jbj,n, 1 ≤ k ≤ n− 1.

The result then follows from the case n0 = 2.

The following theorem is a routine extension of [9, Theorem 3.1] and gives
conditions under which it can be concluded that the semigroup, (S(w)(t))t≥0, is
analytic.

Theorem 5.4.13. Let (5.1.4) hold with λj ∈ [0, 1) for j = 2, 3, . . ., let Assump-
tion 5.2.2(i) hold, and let (S(w)(t))t≥0 be the substochastic C0-semigroup on `1

w,
generated by G(w) = A(w) +B(w). Moreover, assume that there is a positive in-
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teger n0 ≥ 2, a constant c > 0 and a sequence, (ψk)∞k=1, with ψk > 0 for all k ∈ N,
such that (5.4.5) holds for all n, k ∈ N such that n ≥ n0 and k < n. In addition,
let (ψk)∞k=1 be such that, for all n ∈ N,

n−1∑
k=1

wk
ψk
≤ C̃

wn
n

(5.4.7)

for some constant C̃ > 0. Then the semigroup (S(w)(t))t≥0 is analytic.

Proof. Let Re(λ) > 0. Then, for f ∈ `1
w,

‖R(λ, S(w))f‖
`

1
w

=
∞∑
k=1

wk
∣∣∣R(λ, S(w))f

∣∣∣
k
≤
∞∑
k=1

wk

∞∑
n=k
|rk,n(λ)||fn|

=
∞∑
k=1

wk|rk,k(λ)||fk|+
∞∑
k=1

wk

∞∑
n=k+1

|rk,n(λ)||fn|

≤ 1
|λ|
‖f‖

`
1
w

+
∞∑
n=2

n−1∑
k=1

wk|rk,n(λ)||fn|

= 1
|λ|
‖f‖

`
1
w

+
∞∑
n=2

wn|fn|

 1
wn

n−1∑
k=1

wk|rk,n(λ)|


≤ 1
|λ|
‖f‖

`
1
w

+
∞∑
n=2

wn|fn|

 1
wn

n−1∑
k=1

wk
cn

|λ+ ak|ψk


≤ 1
|λ|
‖f‖

`
1
w

+
√

2c
∞∑
n=2

wn|fn|

n 1
wn

n−1∑
k=1

wk
1

(|λ|+ ak)ψk


≤ 1
|λ|
‖f‖

`
1
w

+
√

2c
|λ|

∞∑
n=2

wn|fn|

n 1
wn

n−1∑
k=1

wk
ψk

 ,
since |λ+ ak| ≥ |λ|+ak√

2 for all λ with Re(λ) > 0. If (5.4.7) holds, then

‖R(λ, S(w))f‖
`

1
w
≤ 1
|λ|
‖f‖

`
1
w

+
√

2cC̃
|λ|

∞∑
n=2

wn|fn| ≤
M

|λ|
‖f‖

`
1
w
,

where M = 1 +
√

2cC̃. Thus from Theorem 3.3.21 we can conclude that the
semigroup (S(w)(t))t≥0 is analytic.
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5.5 Asymptotic Behaviour of Solutions

In this section we examine the asymptotic behaviour of the solutions obtained
in Section 5.2.2 and Section 5.4. In the case where mass is conserved, i.e. when
(5.1.5) holds, the asymptotic behaviour of solutions of (5.1.8) is examined in [8,
15] when the weight is of the form wn = np for p ≥ 1, n ∈ N. In particular,
the solution in this case is shown to converge to a system that consists entirely
of monomers if and only if an > 0 for all n ≥ 2. Moreover, in [15], for wn = np

for p > 1, a result is given in which it is shown that this decay occurs at an
exponential rate. However, the rate of this decay is not quantified in [15].

In this section we work with a more general weight and obtain results regarding
the asymptotic behaviour of solutions both in the mass-loss case and in the mass-
conserving case. Moreover, we use the results regarding analytic semigroups,
given in Section 5.4, to obtain results regarding the exponential decay of solutions.
In addition, we quantify the rate of decay.

Let Assumption 5.2.2(i) hold so that, from Theorem 5.2.7, G(w) = A(w) +B(w)

is the generator of a substochastic C0-semigroup, (S(w)(t))t≥0 on `1
w. We begin

by obtaining a matrix representation of (S(w)(t))t≥0. For n ∈ N, let en ∈ `1
w be

given by

(en)k =


1 if n = k,

0 otherwise.
(5.5.1)

Note that (en)∞n=1 is a Schauder basis for `1
w. We now define an infinite matrix,

S(t) = (sm,n(t))m,n∈N, by
sm,n(t) = (S(w)(t)en)m

for all m,n ∈ N. Note that, since (S(w)(t))t≥0 is positive, sm,n(t) ≥ 0 for all
m,n ∈ N.

Now, for f ∈ `1
w, we have f =

∞∑
n=1

fnen. Hence, for each t ≥ 0 and m ∈ N,

using the linearity and continuity of S(w)(t), we have,

(S(w)(t)f)m =
 ∞∑
n=1

fnS
(w)(t)en


m

=
∞∑
n=1

fnsm,n(t) = (S(t)f)m,
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i.e. (S(w)(t))t≥0 can be represented by the matrix S(t) = (sm,n(t))m,n∈N.
From Theorem 5.2.10, for fixed n ∈ N, u(t) = S(w)(t)en is the unique, classical

solution of (5.1.8) with ů = en. Now, for fixed n ∈ N, let (s̃1,n(t), . . . , s̃n,n(t)) be
the unique solution of the n-dimensional system

s̃′m,n(t) = −ams̃m,n(t) +
n∑

j=m+1
ajbm,j s̃j,n(t), t > 0, m = 1, 2, . . . , n, (5.5.2)

with
s̃n,n(0) = 1 and s̃m,n(0) = 0 for m < n,

where
n∑

j=m+1
ajbm,j s̃j,n(t) = 0 for m = n. Note that the nth equation is given by

s̃′n,n(t) = −ans̃n,n(t), t > 0, s̃n,n(0) = 1, (5.5.3)

and so s̃n,n(t) = e−ant. It is clear that (s̃1,n(t), . . . , e−ant, 0, . . .) is a solution of

s̃′m,n(t) = −ams̃m,n(t) +
∞∑

j=m+1
ajbm,j s̃j,n(t), t > 0, m = 1, 2, . . . , (5.5.4)

with
s̃n,n(0) = 1 and s̃m,n(0) = 0 for m 6= n.

Moreover, (s̃1,1(t), . . . , e−ant, 0, . . .) ∈ D(A(w)) ⊆ D(G(w)) and it follows that
(s̃1,n(t), . . . , e−ant, 0, . . .) is a solution of (5.1.8), with ů = en. Hence, by the
uniqueness of solutions to (5.1.8),

u(t) = S(w)en = (s1,n(t), . . . , sn,n(t), sn+1,n(t), . . .) = (s̃1,n(t), . . . , e−ant, 0, . . .).

Since n was arbitrary, we have for all t ≥ 0,

S(w)(t) =



e−a1t s1,2(t) s1,3(t) · · ·

0 e−a2t s2,3(t) · · ·

0 0 e−a3t · · ·
... ... ... . . .


=

e
−a1t S

(w)
(12)(t)

0 S
(w)
(22)(t)

 , (5.5.5)
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where 0 is an infinite column vector consisting entirely of zeros, S(w)
(12)(t) is a non-

negative infinite row vector and S
(w)
(22)(t) is an infinite-dimensional, non-negative,

upper triangular matrix.
In particular, we note that the entries (sm,n(t))m,n∈N are independent of the

weight w = (wn)∞n=1 and so, for two weights w and v satisfying Assumption 5.2.2(i),
the semigroups (S(w)(t))t≥0 and (S(v)(t))t≥0 coincide on the intersection of their
domains. Moreover, Banasiak obtains the infinite matrix representation for the
semigroup (S(t))t≥0 in [8, Equation (10) and Lemma 1], where the mass conser-
vation case is considered in the space X[1]. In [8], a recursive formula is found
for sm,n(t), m < n. We omit this here since it is not required in the results that
follow.

We now consider the case where an > 0 for all n ∈ N. Note that, since a1 > 0,
this indicates that we have a fragmentation system where mass is being lost. We
obtain the following theorem which tells us that if an > 0 for all n ∈ N, then the
solution of the fragmentation system converges to zero as t → ∞. Moreover, if
(an)∞n=1 is bounded below by a positive constant and δ < 1 in (5.2.1), then we can
obtain an exponential rate of decay for the solutions. For all N ∈ N, we define
PN : `1

w → `1
w, to be

PNf = (f1, f2, . . . , fN , 0, . . .).

Theorem 5.5.1. Let Assumption 5.2.2(i) hold.

(i) We have
lim
t→∞
‖S(w)(t)̊u‖

`
1
w

= 0 (5.5.6)

for all ů ∈ `1
w if and only if an > 0 for all n ∈ N.

(ii) Choose the weight w such that Assumption 5.2.2(i) holds for δ ∈ (0, 1) and
let a0 = infn∈N an. We have

‖S(w)(t)‖ ≤ e−(1−δ)a0t, (5.5.7)

and hence, if a0 > 0 and α ∈ [0, (1− δ)a0),

lim
t→∞

eαt‖S(w)(t)̊u‖
`

1
w

= 0 for every ů ∈ `1
w. (5.5.8)
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If α > a0, then (5.5.8) does not hold. In particular, if a0 = 0, then (5.5.8)
does not hold for any α > 0.

Proof. (i) First assume that an > 0 for all n ∈ N. Let ů ∈ `1
w. From the discussion

leading to (5.5.5), we have that for each n ∈ N, (S(w)(t)en)m = sm,n(t) = 0 for
m > n. Moreover, we have that (S(w)(t)en)m = sm,n(t) ≥ 0 solves (5.5.2) for
m = 1, . . . , n. Since ak > 0 for all k ∈ N, the matrix associated with the
finite-dimensional system, (5.5.2), has purely negative eigenvalues. It follows
that (S(w)(t)en)m = sm,n(t)→ 0 as t→∞ for m = 1, . . . , n.

For all N ∈ N, we have PN ů =
N∑
n=1

ůnen and so

‖S(w)(t)PN ů‖`1w =

∥∥∥∥∥∥
N∑
n=1

ůnS
(w)(t)en

∥∥∥∥∥∥
`

1
w

≤
N∑
n=1
|̊un|‖S(w)(t)en‖`1w

=
N∑
n=1
|̊un|

n∑
m=1

wmsm,n(t) ≤
N∑
n=1
|̊un|

N∑
m=1

wmsm,n(t)

→ 0 as t→∞.

Let ε > 0 and choose N ∈ N such that

‖ů− PN ů‖`1w <
ε

2 .

We also take t0 > 0 such that

‖S(w)(t)PN ů‖`1w <
ε

2 for all t ≥ t0.

Then

‖S(w)(t)̊u‖
`

1
w

= ‖S(w)(t)(̊u− PN ů) + S(w)(t)PN ů‖`1w
≤ ‖S(w)(t)(̊u− PN ů)‖

`
1
w

+ ‖S(w)(t)PN ů‖`1w
≤ ‖ů− PN ů‖`1w + ‖S(w)(t)PN ů‖`1w
<
ε

2 + ε

2 = ε for all t ≥ t0.

Since we can choose any ε > 0, it follows that (5.5.6) holds.
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On the other hand, let aN = 0 for some N ∈ N. Then for ů = eN , we have
that the unique solution of (5.1.8) is given by u(t) = S(w)(t)eN = (sm,N(t))∞m=1.
Since sN,N(t) = e−aN t = 1, it is clear that u(t) 9 0 as t→∞.

(ii) Now let ů ∈ (`1
w)+. Since δ ∈ (0, 1) in (5.2.1), we know, from The-

orem 5.4.1, that G(w) = A(w) + B(w) generates the substochastic semigroup
(S(w)(t))t≥0 and, moreover, (S(w)(t))t≥0 is analytic. Hence u(t) = S(w)(t)̊u is
the unique, non-negative solution of (5.1.8). Let t > 0. From Lemma 5.2.6,
‖B(w)f‖

`
1
w
≤ δ‖A(w)f‖

`
1
w

for all f ∈ D(A(w)). Consequently, since the operators
−A(w) and B(w) are positive, we have

φ
`

1
w
(B(w)u(t)) ≤ −δφ

`
1
w
(A(w)u(t)).

Now

d

dt
φ
`

1
w
(u(t)) = φ

`
1
w
(u′(t)) = φ

`
1
w

(
A(w)u(t) +B(w)u(t)

)
= φ

`
1
w

(
A(w)u(t)

)
+ φ

`
1
w

(
B(w)u(t)

)
≤ φ

`
1
w

(
A(w)u(t)

)
− δφ

`
1
w

(
A(w)u(t)

)
= −(1− δ)

∞∑
n=1

wnanun(t)

≤ −(1− δ)a0

∞∑
n=1

wnun(t)

= −(1− δ)a0φ`1w
(u(t)).

Therefore,

d
dt
φ
`

1
w
(u(t))

φ
`

1
w
(u(t)) ≤ −(1− δ)a0

=⇒ lnφ
`

1
w
(u(t))− lnφ

`
1
w
(u(0)) ≤ −(1− δ)a0t

=⇒ φ
`

1
w
(u(t)) ≤ φ

`
1
w
(u(0))e−(1−δ)a0t

=⇒ ‖S(w)(t)̊u‖
`

1
w
≤ e−(1−δ)a0t‖ů‖

`
1
w
.

Hence (5.5.7) follows from the positivity of (S(w)(t))t≥0 and [12, Proposi-
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tion 2.67].
On the other hand, if we choose α > a0, then there exists N ∈ N such that

aN < α. Take ů = eN so that (S(w)(t)eN)N = e−aN t > e−αt. It follows that

eαt‖S(w)(t)eN‖`1w ≥ eαtwN |(S(w)(t)eN)N | > eαtwNe
−αt = wN .

Hence (5.5.8) cannot hold for any α > a0.

Remark 5.5.2. Let the assumptions of Theorem 5.5.1 hold. It is clear that u(t) = 0
is an equilibrium solution of (5.1.8). Moreover, if an > 0 for all n ∈ N, then from
(5.5.6) we can deduce that this is the only equilibrium solution of the system and,
moreover, 0 is a global attractor.

On the other hand, if an = 0 for at least one n ∈ N, then we have, from
Theorem 5.5.1, that the equilibrium point u(t) = 0 is not a global attractor.

We now consider the case where (5.1.5) holds, i.e. we consider the case where
we have a mass-conserving fragmentation system. We aim to show that in this
case, as t→∞, the fragmentation system in `1

w converges to a system consisting
entirely of monomers. We note here that in this mass-conserving case, from
Proposition 5.2.8, the semigroup (S(t))t≥0 on the space X[1] is stochastic. As in
previous sections, the norm on the space X[1] is denoted by ‖ · ‖[1] and the linear
extension of this norm from

(
X[1]

)
+

to X[1] is denoted by M1. We also define the
space Y (w) and its norm ‖ · ‖

Y
(w) by

Y (w) =
{
f̃ = (fn)∞n=2 : f = (fn)∞n=1 ∈ `1

w

}
and ‖f‖

Y
(w) =

∞∑
n=2

wn|fn|,

respectively. Note that

Y (w) = `1
w̃, with w̃n = wn+1 for n ∈ N.

Moreover, we define the operator J : Y (w) → `1
w by

Jf = (0, f2, f3, . . .) for all f ∈ `1
w.
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Lemma 5.5.3. Let α ≥ 0 and f ∈ `1
w be fixed. Let (5.1.5) hold. Moreover, let

Assumption 5.2.2(i) hold with w1 ≥ 1. Define f̃ := (fn)∞n=2. Then

‖S(w)
(22)(t)f̃‖Y (w) ≤ ‖S(w)(t)f −M1(f)e1‖`1w ≤ (w1 + 1)‖S(w)

(22)(t)f̃‖Y (w) , (5.5.9)

where (S(w)
(22)(t))t≥0 is as in (5.5.5).

Proof. From (5.5.5) we have that

S(w)(t)f =
(
f1 + S

(w)
(12)(t)f̃

)
e1 + JS

(w)
(22)(t)f̃ .

From this we deduce that

‖S(w)(t)f −M1(f)e1‖`1w = w1

∣∣∣∣f1 + S
(w)
(12)(t)f̃ −M1(f)

∣∣∣∣+ ∥∥∥∥S(w)
(22)(t)f̃

∥∥∥∥
Y

(w)

(5.5.10)

and so
‖S(w)(t)f −M1(f)e1‖`1w ≥ ‖S

(w)
(22)(t)f̃‖Y (w) .

On the other hand, from Proposition 5.2.8 we have that the semigroup (S(t))t≥0

is stochastic. Note also that, from Proposition 5.2.4, wn ≥ n for all n ∈ N and so
`1
w is continuously embedded in X[1]. Hence, using Proposition 3.3.16(i) and the

fact that S(w)(t)f and S(t)f coincide for t ≥ 0, f ∈ `1
w ∩X[1] = `1

w, we have that
M1(S(w)(t)f) = M1(S(t)f) = M1(f) and so

∣∣∣∣f1 + S
(w)
(12)(t)f̃ −M1(f)

∣∣∣∣ =
∣∣∣∣∣M1(f)−M1

((
f1 + S

(w)
(12)(t)f̃

)
e1

)∣∣∣∣∣
=
∣∣∣∣∣M1

(
S(w)(t)f

)
−M1

((
f1 + S

(w)
(12)(t)f̃

)
e1

)∣∣∣∣∣
=
∣∣∣∣∣M1

(
S(w)(t)f −

(
f1 + S

(w)
(12)(t)f̃

)
e1

)∣∣∣∣∣
≤M1

(∣∣∣∣S(w)(t)f −
(
f1 + S

(w)
(12)(t)f̃

)
e1

∣∣∣∣
)

≤ φ
`

1
w

(∣∣∣∣S(w)(t)f −
(
f1 + S

(w)
(12)(t)f̃

)
e1

∣∣∣∣
)
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= φ
`

1
w

(∣∣∣∣JS(w)
(22)(t)f̃

∣∣∣∣
)

= ‖S(w)
(22)(t)f̃‖Y (w) .

The relation (5.5.9) then follows from (5.5.10).

We can now prove the following theorem. The first part of this theorem tells us
that if (5.1.5) holds and the fragmentation rates an are positive for all n ≥ 2, then
the solution of the fragmentation system converges to a state in which we have
only monomers. Moreover, as we intuitively expect, since the mass of a monomer
is one and we now assume that mass is conserved during fragmentation, we show
that the number of monomers as t→∞ converges to the value of the total mass
in the system.

In the second part of this theorem we choose w such that (5.4.1) holds. This
allows us to obtain a result which tells us that the solution converges exponentially
to the monomer state. In [15, Section 4], the case where wn = np for p > 1 is
examined and a result is obtained in which the fragmentation semigroup is shown
to have the “asynchronous exponential growth property” (AEG), i.e. there exists
α > 0 such that for any ů ∈ `1

w,

‖S(w)(t)̊u−M1(̊u)e1‖`1w ≤ Ke−αt

for some K > 0. However, to obtain this result, assumptions are required in
[15] that ensure that the resolvent operator, R(λ,G(w)), is compact for λ > 0.
These assumptions are difficult to check and, moreover, no specific value for
α is given. Here, under the assumption that (an)∞n=2 is bounded below by a
positive constant, we obtain an AEG result and we quantify α. We note that
“asynchronous exponential growth” is also sometimes referred to as “balanced
exponential growth”; see, for example, [67, 72].

Theorem 5.5.4. Let (5.1.5) and Assumption 5.2.2(i) hold with w1 ≥ 1.

(i) We have
lim
t→∞
‖S(w)(t)̊u−M1(̊u)e1‖`1w = 0 (5.5.11)

for all ů ∈ `1
w if and only if an > 0 for all n ≥ 2.
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(ii) Choose the weight w such that Assumption 5.2.2(i) holds with δ ∈ (0, 1).
Let â0 = infn∈N:n≥2 an. Then

‖S(w)(t)̊u−M1(̊u)e1‖`1w ≤ (w1 + 1)e−(1−δ)â0t‖ů‖
`

1
w

for every ů ∈ `1
w,

(5.5.12)
and so, if â0 > 0 and α ∈ [0, (1− δ)â0), then

lim
t→∞

eαt‖S(w)(t)̊u−M1(̊u)e1‖`1w = 0 for any ů ∈ `1
w. (5.5.13)

Equation (5.5.13) does not hold for any α > â0. In particular, if â0 = 0,
then (5.5.13) does not hold for any α > 0.

Proof. Consider the fragmentation system with the equation for n = 1 removed.
Then we obtain a new fragmentation system that we can write as an ACP in
Y (w) = `1

w̃, where w̃n = wn+1 for all n ∈ N. The new fragmentation coefficients,
(ãn)∞n=1 and (b̃n,j)n,j∈N:n<j, that are associated with this system in Y (w) are given
by ãn = an+1 and b̃n,j = bn+1,j+1. We first check that w̃, (ãn)∞n=1, (b̃n,j)n,j∈N:n<j

satisfy Assumption 5.1.1 and Assumption 5.2.2(i). Clearly ãn = an+1 ≥ 0 and
b̃n,j = bn+1,j+1 ≥ 0 for all n, j ∈ N. Moreover, b̃n,j = bn+1,j+1 = 0 for j < n. Also,
for j = 2, 3, . . .,

j−1∑
n=1

w̃nb̃n,j =
j−1∑
n=1

wn+1bn+1,j+1 =
j∑

k=2
wkbk,j+1 ≤

j∑
k=1

wkbk,j+1 ≤ δwj+1 = δw̃j.

Hence Assumption 5.2.2(i) is satisfied and so, from Theorem 5.2.7, there is a
semigroup that is generated by A(w) + B(w), where A(w), B(w) are the fragment-
ation operators in Y (w) associated to the new system. Moreover, this semigroup
takes the form

e−ã1t ŝ1,2(t) ŝ1,3(t) . . .

0 e−ã2t ŝ2,3(t) . . .

0 0 e−ã3t . . .
... ... ... . . .

 =


e−a2t ŝ1,2(t) ŝ1,3(t) . . .

0 e−a3t ŝ2,3(t) . . .

0 0 e−a4t . . .
... ... ... . . .

 , (5.5.14)
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where, for all n ∈ N, m = 1, . . . , n− 1, t ≥ 0, ŝm,n(t) is the unique solution of

ŝ′m,n(t) = −ãmŝm,n(t) +
n∑

j=m+1
ãj b̃m,j ŝj,n(t)

= −am+1ŝm,n(t) +
n∑

j=m+1
aj+1bm+1,j+1ŝj,n(t)

= −am+1ŝm,n(t) +
n+1∑

k=m+2
akbm+1,kŝk−1,n(t).

It follows from (5.5.2) that ŝm,n(t) = s̃m+1,n+1(t) for all n ∈ N, m = 1, . . . , n− 1,
t ≥ 0, i.e. the semigroup on Y (w) is given by (S(w)

(22)(t))t≥0, where (S(w)
(22)(t))t≥0 is as

in (5.5.5).
(i) Let ů ∈ `1

w and denote ˜̊u = (̊u2, ů3, . . .). We can use Theorem 5.5.1 to
deduce that

lim
t→∞

∥∥∥∥S(w)
(22)(t)˜̊u

∥∥∥∥
Y

(w)
= lim

t→∞

∥∥∥∥S(w)
(22)(t)˜̊u

∥∥∥∥
`

1
w̃

= 0,

if and only if an > 0 for all n ≥ 2. Thus, from Lemma 5.5.3, (5.5.11) holds if and
only if an > 0 for all n ≥ 2.

(ii) If Assumption 5.2.2(i) is satisfied with δ < 1, then, from Theorem 5.5.1,

‖S(w)
(22)(t)‖ ≤ e−(1−δ)â0t.

Thus, (5.5.12) follows from Lemma 5.5.3 and, if â0 > 0, α ∈ [0, (1−δ)â0), (5.5.13)
follows immediately.

If α > â0, then, from Theorem 5.5.1, it is untrue that for all ů ∈ `1
w,

lim
t→∞

eαt
∥∥∥∥S(w)

(22)(t)˜̊u
∥∥∥∥
Y

(w)
= lim

t→∞
eαt

∥∥∥∥S(w)
(22)(t)˜̊u

∥∥∥∥
`

1
w̃

= 0.

Hence, from Lemma 5.5.3, (5.5.13) does not hold if α > â0.

Remark 5.5.5. Let the assumptions of Theorem 5.5.4 hold and let ů = Me1 for
some M ∈ R. Then, from (5.5.5) with a1 = 0, u(t) = S(w)(t)̊u = Me1 for all
t ≥ 0. Hence u(t) = Me1 is an equilibrium solution for all M ∈ R. Assume that
an > 0 for all n ≥ 2. Then, from Theorem 5.5.4, we can deduce that Me1 is
an attractor for any solution whose initial condition ů satisfies M1(̊u) = M . If,
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on the other hand, aN = 0 for some N ≥ 2, then from (5.5.5) MeN is also an
equilibrium point for every M ∈ R.
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Chapter 6

Full C–F System with
Time-Dependent Coagulation

In this chapter we examine the full discrete coagulation–fragmentation system.
Although investigations such as [50, 53] have been carried out on continuous
C–F equations in which the coagulation and fragmentation kernels depend on
time, this does not appear to be the case for the discrete C–F system with time
dependent coagulation and fragmentation rate coefficients. In this chapter, our
aim is to address this deficiency, at least partially, by considering discrete C–F
systems in which time-dependent coagulation coefficients are permitted. Clearly,
the results we obtain will also hold for the purely autonomous case, when all the
coefficients are independent of time. Since we work in general weighted `1 spaces,
these “autonomous” results extend those established in [15, 46] where the weight
is restricted to wn = np for some p ≥ 1.
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6.1 Setting up the C–F Problem

We now consider the full coagulation–fragmentation system

u′n(t) = −anun(t) +
∞∑

j=n+1
ajbn,juj(t)

+ 1
2

n−1∑
j=1

kn−j,j(t)un−j(t)uj(t)−
∞∑
j=1

kn,j(t)un(t)uj(t), t > 0;

un(0) = ůn, n = 1, 2, . . .

(6.1.1)

on weighted `1 spaces, with the coefficients and terms in (6.1.1) being interpreted
in the same way as in (1.1.1). We require the following assumption to hold
throughout this chapter.

Assumption 6.1.1. Let an ≥ 0, bn,j ≥ 0 and kn,j(t) ≥ 0 for all n, j ∈ N and
t ≥ 0. Moreover, we assume that bn,j = 0 for all j ≤ n and that kn,j(t) = kj,n(t)
for all n, j ∈ N, t ≥ 0. In addition, let (wn)∞n=1 be monotone increasing and let
Assumption 5.2.2(i) hold.

Note that, in contrast to previous semigroup-based investigations, we allow
the possibility that the coagulation rates are time-dependent. Recall from Propos-
ition 5.2.4 that if w1 ≥ 1 and (5.1.5) holds, then under Assumption 6.1.1, wn ≥ n

for all n ∈ N and so `1
w is continuously embedded in X[1]. Moreover, we note that

if (5.1.4) holds with λj ∈ [0, 1] for j = 2, 3, . . ., then, from Lemma 5.2.5, it is
clear that any weight of the form wn = np, for p ≥ 1, satisfies Assumption 6.1.1.

Let (vn)∞n=1 be such that vn > 0 for all n ∈ N and `1
v ⊆ `1

w. We note that
(vn)∞n=1 will be chosen later as the weight of a weighted `1 space that plays the
role of Y in Chapter 4. We now list various assumptions on the coagulation rates,
kn,j(t), that will be needed to obtain results later. Let 0 < T ≤ ∞.

Assumption 6.1.2. space

(A1) For every t′ ∈ [0, T ), there exists a constant C(t′) > 0 such that

wn+j

vnvj
kn,j(t) ≤ C(t′) (6.1.2)
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for all n, j ∈ N and t ∈ [0, t′].

(A2) The family of functions
(
wn+j
vnvj

kn,j(·)
)
n,j∈N

is equicontinuous on [0, T ).

(A3) The coagulation coefficients, kn,j, are differentiable with respect to t for
all n, j ∈ N in the sense that for fixed t ∈ (0, T ) and δt ∈ R such that
t+ δt ∈ (0, T ) we have

kn,j(t+ δt) = kn,j(t) + d

dt
kn,j(t)δt +Rn,j(t, δt) (6.1.3)

where, for fixed t′ ∈ (0, T ), there exists a C̃(t′) > 0 satisfying, for all
n, j ∈ N, ∣∣∣∣∣wn+j

vnvj

d

dt
kn,j(t)

∣∣∣∣∣ ≤ C̃(t′) for all t ∈ (0, t′]

and, for fixed t ∈ (0, T ),

wn+j|Rn,j(t, δt)|
vnvj|δt|

→ 0 as |δt| → 0

uniformly in n, j ∈ N. Moreover,

t 7→
(wn+j

vnvj

d

dt
kn,j(t)

)
n,j∈N

is equicontinuous on (0, T ).

Remark 6.1.3. Suppose that the first and second derivatives of t 7→ kn,j(t) exist
and are continuous. For all t′ ∈ (0, T ) assume that there exists c̃(t′) > 0 such
that, for all n, j ∈ N, t ∈ (0, t′],

∣∣∣wn+j

vnvj

d

dt
kn,j(t)

∣∣∣ ≤ c̃(t′) and
∣∣∣wn+j

vnvj

d2

dt2
kn,j(t)

∣∣∣ ≤ c̃(t′). (6.1.4)

Let t′ ∈ (0, T ). By the Mean Value Theorem, for t ∈ (0, t′], h ∈ R satisfying
t+ h ∈ (0, t′], there exists ξ between t and t+ h such that

∣∣∣wn+j

vnvj

d

dt
kn,j(t+ h)− wn+j

vnvj

d

dt
kn,j(t)

∣∣∣ = wn+j

vnvj

∣∣∣ d2

dt2
kn,j(ξ)

∣∣∣|h|
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≤ c̃(t′)|h| → 0 as h→ 0.

It follows that t 7→
(
wn+j
vnvj

d
dt
kn,j(t)

)
n,j∈N

is equicontinuous on (0, T ).
Now let t ∈ (0, T ) and let δt ∈ R be such that t + δt ∈ (0, T ). Then, from

Taylor’s Theorem,

kn,j(t+ δt) = kn,j(t) + d

dt
kn,j(t)δt +Rn,j(t, δt),

where
Rn,j(t, δt) = 1

2
d2

dt2
kn,j(ε)δ2

t

for some ε between t and t + δt. Let t′ ∈ (0, T ) such that t, t + δt ∈ (0, t′]. We
have

wn+j|Rn,j(t, δt)|
vnvj|δt|

= wn+j

vnvj

1
2

∣∣∣∣∣∣ d
2

dt2
kn,j(ε)

∣∣∣∣∣∣ |δt| ≤ c̃(t′)
2 |δt| → 0 as |δt| → 0,

uniformly in n, j ∈ N. It follows that (A3) holds.

The following corollary deals with the case where kn,j(t) := kn,j for all t ≥ 0,
i.e. the coagulation rates are time-independent.

Remark 6.1.4. Let kn,j be time-independent and let C > 0 be such that

wn+j

vnvj
kn,j ≤ C

for all n, j ∈ N. Since kn,j is time independent for all n, j ∈ N, we can take
C(t′) := C in (6.1.2). Also, it is clear that (A2) holds and that kn,j is differentiable
with respect to t, with d

dt
kn,j = 0. Hence (A1)–(A3) hold with C(t) := C.

The following proposition is the general mean inequality and is useful in cal-
culations that follow. For x 6= y, this proposition is a specific example of [33,
Theorem 16.b]. When we take x = y, the proposition follows easily with equality
in (6.1.5).
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Proposition 6.1.5. Let x, y ≥ 0 and let 0 < p ≤ q. Then

(
xp + yp

2

) 1
p

≤
(
xq + yq

2

) 1
q

. (6.1.5)

We use this proposition in the following remark, which gives sufficient condi-
tions for the weights, (wn)∞n=1, (vn)∞n=1, and coagulation rates, kn,j(t), under which
(A1) holds. This is of particular interest when the weights satisfy wn = vn = np

for p ≥ 1.

Remark 6.1.6. Suppose that there exists an α > 0 such that, for all n, j ∈ N,

wn+j ≤ α(vn + vj) (6.1.6)

and, for all t′ ∈ [0, T ), there exists a C̃(t′) > 0 such that

kn,j(t) ≤ C̃(t′) min{vn, vj} (6.1.7)

for all t ∈ [0, t′]. We now show that (A1) holds under these assumptions. We
have, for all t ∈ [0, t′],

wn+jkn,j(t) ≤ α(vn + vj)C̃(t′) min{vn, vj}

= αC̃(t′)
(
vn min{vn, vj}+ vj min{vn, vj}

)
≤ 2αC̃(t′)vnvj
= C(t′)vnvj,

where C(t′) = 2αC̃(t′).
For example, if we take vn = wn = np for all n ∈ N and some p ≥ 1 then,

from Proposition 6.1.5, we have

wn+j = (n+ j)p ≤ 2p−1(np + jp) = 2p−1(wn + wj).

Hence (A1) holds if vn = wn = np, where p ≥ 1, and kn,j satisfies (6.1.7).

We now give specific examples where the coagulation rates, kn,j, do indeed
satisfy (A1).
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Example 6.1.7.

(i) Fix N ∈ N and consider the case where a cluster of size n can only merge
with another cluster if n ≤ N . Then we have

kn,j(t) =


cn,j(t) if 1 ≤ n, j ≤ N,

0 otherwise,
(6.1.8)

where we assume cn,j(t) = cj,n(t). Suppose that for each t′ ∈ [0, T ) we also
have 0 ≤ cn,j(t) <

C(t′)vnvj
wn+j

for all t ∈ [0, t′]. Then it follows that

wn+j

vnvj
kn,j(t) ≤ C(t′)

for all t ∈ [0, t′].

(ii) Suppose that the coagulation kernel kn,j(t) satisfies

kn,j(t) ≤ c(t) vnvj
vn + vj

, n, j ∈ N,

where for every t′ > 0 there exists a C(t′) > 0 such that c(t) ≤ C(t′)
for all t ∈ [0, t′]. Then, since vj

vn+vj
< 1 and vn

vn+vj
< 1, it follows that

kn,j(t) ≤ C(t′) min{vn, vj} for all t ∈ [0, t′]. It follows that if, in addition,
(6.1.6) holds, then (A1) holds.

(iii) Suppose that for all n ∈ N, vn = βnwn for some βn ≥ 1 and that for every
t′ ∈ [0, T ) there exists a constant C(t′) > 0 such that

kn,j(t) ≤ C(t′)wnwj
wn+j

for all t ∈ [0, t′], n, j ∈ N. (6.1.9)

Then
wn+j

vnvj
kn,j(t) = wn+j

βnwnβjwj
kn,j(t) ≤

wn+j

wnwj
kn,j(t) ≤ C(t′),

for all t ∈ [0, t′], i.e. (A1) holds. Note that the case where vn = βnwn will
be of interest later, specifically for βn = (1 + an)α for some α ∈ [0, 1).
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If Assumption 6.1.1 holds, then from Theorem 5.2.7, G(w) = A(w) +B(w) is the
generator of a substochastic C0-semgroup, (S(w)(t))t≥0, on `1

w. Moreover, from
Theorem 5.3.4, G(w) takes the form

[G(w)f ]n = −anfn +
∞∑

j=n+1
ajbn,jfj, f ∈ D(G(w)). (6.1.10)

Assume that (A1) and (A2) holds. The ACP corresponding to (6.1.1) on `1
w

takes the form

u′(t) = G(w)u(t) +K(v,w)(t, u(t)), t ∈ [0, T ), (6.1.11)

u(0) = ů, (6.1.12)

where, for some 0 < T ≤ ∞, we define K(v,w) : [0, T )× `1
v 7→ `1

w by

[K(v,w)(t, f)]n = 1
2

n−1∑
j=1

kn−j,j(t)fn−jfj −
∞∑
j=1

kn,j(t)fnfj,

for all t ∈ [0, T ), f ∈ `1
v, n = 1, 2, . . .. The fact that K(v,w) maps [0, T )× `1

v into
`1
w will be shown in Lemma 6.2.1. Note that u is a function with values in `1

v

and so (6.1.11), (6.1.12) is an ACP of the form (4.2.1), (4.2.2), with X = `1
w and

Y = `1
v.

The following lemma is required in various results that follow.

Lemma 6.1.8. Let (vn)∞n=1, (wn)∞n=1 be such that vn, wn > 0 for all n ∈ N
and (wn)∞n=1 is monotone increasing. Consider the Banach spaces (`1

v, ‖ · ‖`1v),
(`1
w, ‖ · ‖`1w). Let ϕn,j ∈ R for all n, j ∈ N.

(i) Then
∥∥∥∥∥∥
(1

2

n−1∑
j=1

ϕn−j,jfn−jgj −
∞∑
j=1

ϕn,jfngj
)
n∈N

∥∥∥∥∥∥
`

1
w

≤ 3
2

∞∑
n=1

∞∑
j=1

wn+j|ϕn,j||fn||gj|

for f , g ∈ `1
v.
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(ii) Moreover, suppose that there exists C > 0 such that

wn+j

vnvj
|ϕn,j| ≤ C for all n, j ∈ N. (6.1.13)

Then ∥∥∥∥∥∥
(1

2

n−1∑
j=1

ϕn−j,jfn−jgj −
∞∑
j=1

ϕn,jfngj

)
n∈N

∥∥∥∥∥∥
`

1
w

≤ 3C
2 ‖f‖`

1
v
‖g‖

`
1
v

for f , g ∈ `1
v.

Proof. Let f , g ∈ `1
v. Then we have∥∥∥∥∥∥

(1
2

n−1∑
j=1

ϕn−j,jfn−jgj −
∞∑
j=1

ϕn,jfngj

)
n∈N

∥∥∥∥∥∥
`

1
w

≤

∥∥∥∥∥∥
(1

2

n−1∑
j=1

ϕn−j,jfn−jgj

)
n∈N

∥∥∥∥∥∥
`

1
w

+

∥∥∥∥∥∥
( ∞∑
j=1

ϕn,jfngj

)
n∈N

∥∥∥∥∥∥
`

1
w

.

Now, ∥∥∥∥∥∥
(1

2

n−1∑
j=1

ϕn−j,jfn−jgj

)
n∈N

∥∥∥∥∥∥
`

1
w

=
∞∑
n=1

wn

∣∣∣∣∣∣12
n−1∑
j=1

ϕn−j,jfn−jgj

∣∣∣∣∣∣
≤ 1

2

∞∑
n=1

n−1∑
j=1

wn|ϕn−j,j||fn−j||gj|

= 1
2

∞∑
j=1

∞∑
n=j+1

wn|ϕn−j,j||fn−j||gj|

= 1
2

∞∑
j=1

∞∑
l=1

wl+j|ϕl,j||fl||gj|,

and using the monotonicity of (wn)∞n=1 we obtain
∥∥∥∥∥∥
( ∞∑
j=1

ϕn,jfngj

)
n∈N

∥∥∥∥∥∥
`

1
w

≤
∞∑
n=1

wn

∣∣∣∣∣∣
∞∑
j=1

ϕn,jfngj

∣∣∣∣∣∣ ≤
∞∑
n=1

∞∑
j=1

wn|ϕn,j||fn||gj|

≤
∞∑
n=1

∞∑
j=1

wn+j|ϕn,j||fn||gj|.

160



Chapter 6. Full C–F System with Time-Dependent Coagulation

Hence∥∥∥∥∥∥
(1

2

n−1∑
j=1

ϕn−j,jfn−jgj −
∞∑
j=1

ϕn,jfngj

)
n∈N

∥∥∥∥∥∥
`

1
w

≤ 3
2

∞∑
n=1

∞∑
j=1

wn+j|ϕn,j||fn||gj|.

If, in addition, (6.1.13) holds, then
∥∥∥∥∥∥
(1

2

n−1∑
j=1

ϕn−j,jfn−jgj −
∞∑
j=1

ϕn,jfngj

)
n∈N

∥∥∥∥∥∥
`

1
w

≤ 3C
2

∞∑
n=1

∞∑
j=1

vnvj|fn||fj|

= 3C
2 ‖f‖`

1
v
‖g‖

`
1
v
.

6.2 Lipschitz Continuity and Fréchet Differen-
tiability of the Coagulation Operator

In this section we show that under (A1) and (A2), the coagulation operator K(v,w)

is locally Lipschitz. Moreover, we show that if, in addition, (A3) holds, then
K(v,w) is Fréchet differentiable with respect to (t, f) and the Fréchet derivative
is continuous. These properties are important when we apply the existence and
uniqueness results from Section 4.2 to the coagulation–fragmentation system.

We now introduce the mapping K̃(v,w) : [0, T )× `1
v × `1

v 7→ `1
w defined by

(K̃(v,w)[t, f, g])n := 1
2

n−1∑
j=1

kn−j,j(t)fn−jgj −
∞∑
j=1

kn,j(t)fngj,

for f, g ∈ `1
v, t ∈ [0, T ) and n ∈ N. Set

(K̃1
(v,w)[t, f, g])n = 1

2

n−1∑
j=1

kn−j,j(t)fn−jgj

and
(K̃2

(v,w)[t, f, g])n =
∞∑
j=1

kn,j(t)fngj.

Then
(K̃(v,w)[t, f, g])n = (K̃1

(v,w)[t, f, g])n − (K̃2
(v,w)[t, f, g])n
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for all f, g ∈ `1
v, t ∈ [0, T ) and n ∈ N. We also set K(v,w)

1 (t, f) = K̃
(v,w)
1 [t, f, f ]

and K
(v,w)
2 (t, f) = K̃

(v,w)
2 [t, f, f ] so that

K(v,w)(t, f) = K̃(v,w)[t, f, f ] = K
(v,w)
1 (t, f)−K(v,w)

2 (t, f).

We now show that under assumptions (A1) and (A2), K(v,w) is indeed a con-
tinuous mapping defined on [0, T )× `1

v and K(v,w) satisfies a Lipschitz condition.

Lemma 6.2.1. Let Assumption 6.1.1, (A1) and (A2) hold. Then the operator
K(v,w) is a continuous mapping from [0, T ) × `1

v into `1
w. Moreover, K(v,w) is

Lipschitz on bounded sets in the second argument, uniformly in the first argument
on compact intervals.

Proof. We show that the operator K̃(v,w) satisfies the assumptions of Lemma 4.1.6.
By definition, it is clear that K̃(v,w) is linear in the second and third arguments.
Take t′ ∈ (0, T ). From (A1) and Lemma 6.1.8(ii), we have that K̃(v,w) maps
[0, T )× `1

v × `1
v into `1

w and

‖K̃(v,w)[t, f, g]‖
`

1
w
≤ 3

2C(t′)‖f‖
`

1
v
‖g‖

`
1
v

(6.2.1)

for all f, g ∈ `1
v, t ∈ [0, t′]. Hence K̃(v,w) is bounded, and so continuous, in

the second and third arguments separately. It follows from Lemma 4.1.6 that
K(v,w) is Lipschitz on bounded sets in the second argument, uniformly in the first
argument on compact intervals.

We now show that the mapping t 7→ K̃(t, f, g) is continuous on [0, T ) for fixed
f , g ∈ `1

v. Let t, t0 ∈ [0, T ) and f , g ∈ `1
v. Then, from Lemma 6.1.8(i),

‖K̃(v,w)[t, f, g]− K̃(v,w)[t0, f, g]‖
`

1
w

=

∥∥∥∥∥∥1
2

n−1∑
j=1

(
kn−j,j(t)− kn−j,j(t0)

)
fn−jgj −

∞∑
j=1

(
kn,j(t)− kn,j(t0)

)
fngj

∥∥∥∥∥∥
`

1
w

≤ 3
2

∞∑
n=1

∞∑
j=1

wn+j

∣∣∣kn,j(t)− kn,j(t0)
∣∣∣|fn||gj|

= 3
2

∞∑
n=1

∞∑
j=1

∣∣∣∣∣wn+jkn,j(t)
vnvj

− wn+jkn,j(t0)
vnvj

∣∣∣∣∣ vn|fn|vj|gj|
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→ 0 as t→ t0 by (A2).

Hence t 7→ K̃(v,w)[t, f, g] is continuous on [0, T ) for fixed f , g ∈ `1
v. From

Lemma 4.1.6(ii) we then deduce that K(v,w) : [0, T )× `1
v 7→ `1

w is continuous.

Remark 6.2.2. Combining the previous result with Remark 4.1.7, we have that
for f ∈ `1

v, K(v,w) is Lipschitz on B
`

1
v
(f, r) for any r > 0.

The following theorem is proved using Corollary 4.1.9. This result tells us that
if assumptions (A1)–(A3) hold, then K(v,w) is Fréchet differentiable with respect
to (t, f) and the Fréchet derivative is continuous.

Theorem 6.2.3. Let Assumption 6.1.1, (A1), (A2) and (A3) hold. Then the
operator K(v,w) is Fréchet differentiable with respect to (t, f), with the Fréchet
derivative at fixed (t, f) ∈ (0, T )× `1

v given, for all (s, g) ∈ R× `1
v, by

DK(v,w)(t, f)(s, g) = ∂

∂t
K̃(v,w)(t, f, f)s+ K̃(v,w)[t, f, g] + K̃(v,w)[t, g, f ].

Moreover, this derivative is continuous with respect to (t, f).

Proof. We show that K̃(v,w) satisfies the conditions of Corollary 4.1.9. From
Lemma 6.2.1 we know that K̃(v,w) satisfies the conditions of Lemma 4.1.6. Then,
from (6.1.3), we have for f, g ∈ `1

v, t ∈ (0, T ) and δt ∈ R such that t+ δt ∈ (0, T ),

(K̃(v,w)[t+ δt, f, g])n

= 1
2

n−1∑
j=1

kn−j,j(t+ δt)fn−jgj −
∞∑
j=1

kn,j(t+ δt)fngj

= 1
2

n−1∑
j=1

(
kn−j,j(t) + d

dt
kn−j,j(t)δt +Rn−j,j(t, δt)

)
fn−jgj

−
∞∑
j=1

(
kn,j(t) + d

dt
kn,j(t)δt +Rn,j(t, δt)

)
fngj

=
1

2

n−1∑
j=1

kn−j,j(t)fn−jgj −
∞∑
j=1

kn,j(t)fngj


+
1

2

n−1∑
j=1

d

dt
kn−j,j(t)δtfn−jgj −

∞∑
j=1

d

dt
kn,j(t)δtfngj


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+
1

2

n−1∑
j=1

Rn−j,j(t, δt)fn−jgj −
∞∑
j=1

Rn,j(t, δt)fngj


= (K̃(v,w)[t, f, g])n +

(
∂

∂t
K̃(v,w)[t, f, g]

)
n

δt + (R(t, f, g, δt))n

where (
∂

∂t
K̃(v,w)[t, f, g]

)
n

= 1
2

n−1∑
j=1

d

dt
kn−j,j(t)fn−jgj −

∞∑
j=1

d

dt
kn,j(t)fngj

and
(R(t, f, g, δt))n = 1

2

n−1∑
j=1

Rn−j,j(t, δt)fn−jgj −
∞∑
j=1

Rn,j(t, δt)fngj.

Let t′ ∈ (0, T ). Then using (A3) and Lemma 6.1.8(ii) we have, for fixed
(t, f, g) ∈ (0, T )× `1

v × `1
v such that t ∈ [0, t′],

∥∥∥∥∥ ∂∂tK̃(v,w)[t, f, g]
∥∥∥∥∥
`

1
w

=

∥∥∥∥∥∥1
2

n−1∑
j=1

d

dt
kn−j,j(t)fn−jgj −

∞∑
j=1

d

dt
kn,j(t)fngj

∥∥∥∥∥∥
`

1
w

≤ 3C̃(t′)
2 ‖f‖

`
1
v
‖g‖

`
1
v
<∞.

Also, for fixed (t, f, g) ∈ (0, T )× `1
v × `1

v, we have, from Lemma 6.1.8(i),

‖R(t, f, g, δt)‖`1w
|δt|

= 1
|δt|

∥∥∥∥∥∥1
2

n−1∑
j=1

Rn−j,j(t, δt)fn−jgj +
∞∑
j=1

Rn,j(t, δt)fngj

∥∥∥∥∥∥
`

1
w

≤ 3
2

∞∑
j=1

∞∑
l=1

wl+j
|(Rl,j(t, δt))|
|δt|

|fl||gj|

= 3
2

∞∑
j=1

∞∑
l=1

wl+j
vlvj

|(Rl,j(t, δt))|
|δt|

vl|fl|vj|gj|

→ 0 as |δt| → 0 by (A3).

The continuity of the derivative with respect to t follows from the equicontinuity
of t 7→

(
wn+j
vnvj

d
dt
kn,j(t)

)
n,j∈N

and Lemma 6.1.8. Thus assumption (a) in Corol-
lary 4.1.9 holds. Let t′ ∈ (0, T ) and f , g ∈ `1

v. Then, for all t ∈ (0, t′], we can
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deduce from Lemma 6.1.8 that

∥∥∥ ∂
∂t
K̃(v,w)[t, f, g]

∥∥∥
`

1
w

=
∥∥∥1

2

n−1∑
j=1

d

dt
kn−j,j(t)fn−jgj −

∞∑
j=1

d

dt
kn,j(t)fngj

∥∥∥
`

1
w

≤ 3
2C̃(t′)‖f‖

`
1
v
‖g‖

`
1
v
,

which shows that assumption (b) in Corollary 4.1.9 holds. The result then follows
from Corollary 4.1.9.

6.3 Solutions of the C–F System

In this section we consider the specific case where `1
v = `1

w. For convenience, we
explicitly state the assumptions (A1)–(A3) in this case. For notational conveni-
ence, we set

Wn,j = wn+j

wnwj
.

Assumption 6.3.1. When `1
v = `1

w assumptions (A1)–(A3) become, respectively,

(A*1) for every t′ ∈ [0, T ), there exists a constant C(t′) > 0 such that

Wn,jkn,j(t) ≤ C(t′) (6.3.1)

for all n, j ∈ N and t ∈ [0, t′];

(A*2) the family of functions
(
Wn,jkn,j(·)

)
n,j∈N

is equicontinuous on [0, T );

(A*3) the coagulation coefficients, kn,j, are differentiable with respect to t for
all n, j ∈ N in the sense that for fixed t ∈ (0, T ) and δt ∈ R such that
t+ δt ∈ (0, T ) we have

kn,j(t+ δt) = kn,j(t) + d

dt
kn,j(t)δt +Rn,j(t, δt)

where, for fixed t′ ∈ (0, T ), there exists a C̃(t′) > 0 satisfying, for all
n, j ∈ N, ∣∣∣∣∣Wn,j

d

dt
kn,j(t)

∣∣∣∣∣ ≤ C̃(t′) for all t ∈ (0, t′]
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and, for fixed t ∈ (0, T ),

Wn,j|Rn,j(t, δt)|
|δt|

→ 0 as |δt| → 0

uniformly in n, j ∈ N. Moreover,

t 7→
(
Wn,j

d

dt
kn,j(t)

)
n,j∈N

is equicontinuous on (0, T ).

Theorem 6.3.2. Let Assumption 6.1.1 hold and let ů ∈ `1
w.

(i) Under assumptions (A*1) and (A*2) there exists a unique maximal mild
solution u ∈ C

(
[0, tmax), `1

w

)
, of (6.1.11), (6.1.12), where tmax > 0.

(ii) If, in addition, (A*3) holds and ů ∈ D(G(w)), then the mild solution in (i)
is also the unique classical solution.

Proof. Under assumptions (A*1) and (A*2) we have, from Lemma 6.2.1, that
K(w,w) is continuous from [0, T ) × `1

w into `1
w and is Lipschitz on bounded sets

in the second argument, uniformly in the first argument on compact intervals.
Moreover, we know that G(w) is the generator of a C0-semigroup on `1

w. Part (i)
then follows from Proposition 4.2.12 and Theorem 4.2.5.

If we also have that (A*3) holds then, from Theorem 6.2.3, K(w,w) is Fréchet
differentiable on [0, T ) and the Fréchet derivative of K(w,w) is continuous. Part
(ii) then follows from Theorem 4.2.13,

We now aim to show that the unique solution will be non-negative if the initial
condition is non-negative. Let t′ ∈ (0, T ), r > 0. The following lemma shows
that if we choose γ > 0 to be suitably large, then K(w,w,γ)(t, f) ∈ (`1

w)+ for all
t ∈ [0, t′], f ∈ B

`
1
w
(0, r)+, where the operator K(w,w,γ) is defined by

K(w,w,γ)(t, f) = K(w,w)(t, f) + γf.

This result and proof is based on [46, Lemma 4.5].
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Lemma 6.3.3. Let `1
v = `1

w and let Assumptions 6.1.1, (A*1) and (A*2) hold.
Let r > 0, t′ ∈ [0, T ) and choose γ > C(t′)r. Then K(w,w,γ)(t, f) ∈ (`1

w)+ for all
f ∈ B

`
1
w
(0, r)+, t ∈ [0, t′].

Proof. We have for f ∈ (`1
w)+, t ∈ [0, T ) and n ∈ N,

(K(w,w,γ)(t, f))n = γfn + (K̃(w,w)[t, f, f ])n
= γfn + (K̃1

(w,w)[t, f, f ])n − (K̃2
(w,w)[t, f, f ])n

= γfn + (K(w,w)
1 (t, f))n − (K(w,w)

2 (t, f))n,

where

(K(w,w)
1 (t, f))n = 1

2

n−1∑
j=1

kn−j,j(t)fn−jfj ≥ 0 for all f ∈ B
`

1
w
(0, r)+.

Letting t′ ∈ [0, T ), we have

(K(w,w)
2 (t, f))n =

∞∑
j=1

kn,j(t)fnfj ≤
∞∑
j=1

C(t′)
Wn,j

fnfj

= C(t′)
∞∑
j=1

wnwj
wn+j

fjfn ≤ C(t′)
∞∑
j=1

wjfjfn, (since wn ≤ wn+j)

= C(t′)‖f‖
`

1
w
fn

for all t ∈ [0, t′].
If f ∈ B

`
1
w
(0, r)+, then for t ∈ [0, t′],

(K(w,w)
2 (t, f))n ≤ C(t′)rfn.

Hence for t ∈ [0, t′], γfn − (K(w,w)
2 (t, f))n ≥ γfn − C(t′)rfn ≥ 0 if γ ≥ C(t′)r.

Consequently, if γ ≥ C(t′)r, we have

(K(w,w,γ)(t, f))n = γfn + (K(w,w)
1 (t, f))n − (K(w,w)

2 (t, f))n ≥ 0,

i.e. K(w,w,γ)(t, f) ∈ (`1
w)+, for all f ∈ B

`
1
w
(0, r)+ and t ∈ [0, t′].

This leads immediately to the following result.
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Proposition 6.3.4. Let `1
v = `1

w and let Assumption 6.1.1, (A*1) and (A*2)
hold. Moreover, let ů ∈ (`1

w)+.

(i) Then, for some tmax satisfying 0 < tmax ≤ T , there exists a unique, non-
negative mild solution u ∈ C

(
[0, tmax), (`1

w)+

)
of (6.1.11), (6.1.12).

(ii) If, in addition, (A*3) holds and ů ∈ D(G(w))+, then this solution is also
the unique, non-negative classical solution.

Proof. The existence and uniqueness of a mild solution, u, on [0, tmax), for some
0 < tmax ≤ T , follow from Theorem 6.3.2(i), where we showed that the assump-
tions of Proposition 4.2.12 are satisfied.

Clearly, D(G(w)) is dense in `1
w. For each γ ≥ 0, we have that γI : `1

w 7→ `1
w is

a bounded operator and G(w)− γI is the generator of the positive C0-semigroup,
(S(w)

γ (t))t≥0 = (e−γtS(w)(t))t≥0 on `1
w. From Proposition 4.2.12 we can deduce

that (S(w)
γ (t))t≥0 satisfies assumptions (b)–(d) of Theorem 4.2.5. It follows that

(a) of Theorem 4.2.6 holds.
Moreover, it is clear that, for t ∈ [0, T ), S(w)

γ (t) = e−γtS(w)(t) is positive and
satisfies ‖S(w)

γ (t)‖B(`1w) ≤ ‖S
(w)(t)‖B(`1w) and so assumption (b) in Theorem 4.2.6

is satisfied for any γ ≥ 0.
Moreover, from Lemma 6.3.3, for every r > 0 and t′ ∈ [0, tmax) there exists

γ > 0 such that K(w,w,γ)(t, f) ∈ (`1
w)+ for all B

`
1
w
(0, r)+, t ∈ [0, t′]. It follows

from Theorem 4.2.6 that u ≥ 0 on [0, t′]. Since t′ ∈ [0, tmax) was arbitrary, it
follows that u is positive on [0, tmax), which proves part (i). Part (ii) follows from
Theorem 6.3.2 (ii).

We recall that we use X[1] to denote `1
w in the case where wn = n for all n ∈ N

and we use ‖ · ‖[1] and M1 to denote the norm and the corresponding bounded
linear functional on X[1]. As before, to distinguish between this physical space
and other weighted `1 spaces, we drop the w in the notation when we work in X[1]

and so A := A(w), B := B(w), G := G(w), S := S(w), K := K(v,w), K1 := K
(v,w)
1 ,

K2 := K
(v,w)
2 , etc, when wn = n. We also recall that a non-negative solution that

is norm conserving in X[1] is also a mass-conserving solution. We now aim to
obtain results regarding mass conservation.
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Proposition 6.3.5. Let Assumptions 6.1.1 and 5.2.2(ii) hold and let (5.1.5)
hold. Let 0 < T ≤ ∞, ů ∈ (`1

w)+ and let u ∈ C
(
[0, tmax), (`1

w)+

)
be a mild

solution of (6.1.11), (6.1.12) for t ∈ [0, tmax), where 0 < tmax ≤ T . Then u is a
mass-conserving solution, i.e. ‖u(t)‖[1] = ‖ů‖[1] for all t ∈ [0, tmax).

Proof. For t ∈ [0, tmax), we have that u satisfies

u(t) = S(w)(t)̊u+
t∫

0

S(w)(t− s)K(w,w)(s, u(s)) ds.

Since `1
w ⊆ X[1], it follows from (5.5.5), that S(w)(t)f and S(t)f coincide for

f ∈ `1
w, t ≥ 0. It is also clear that K(w,w)(t, f) and K(t, f) coincide for t ≥ 0,

f ∈ `1
w. Hence u must also satisfy

u(t) = S(t)̊u+
t∫

0

S(t− s)K(s, u(s)) ds,

for t ∈ [0, tmax), i.e. u is a mild solution of (6.1.11), (6.1.12) posed in X[1], for
t ∈ [0, tmax). Moreover, from Proposition 5.2.8, (S(t))t≥0 is a stochastic C0-
semigroup. We now show that M1(K(t, f)) = 0 for all f ∈

(
X[1]

)
+

and then
apply Lemma 4.2.11. Let f ∈ (X[1])+, t ∈ [0, tmax). Then we have

M1(K(t, f)) =
∞∑
n=1

n[K(t, f)]n =
∞∑
n=1

n
(

[K1(t, f)]n − [K2(t, f)]n
)

=
∞∑
n=1

n[K1(t, f)]n −
∞∑
n=1

n[K2(t, f)]n.

Now,

∞∑
n=1

n[K1(t, f)]n = 1
2

∞∑
n=1

n
n−1∑
j=1

kn−j,j(t)fn−jfj = 1
2

∞∑
j=1

∞∑
n=j+1

nkn−j,j(t)fn−jfj

= 1
2

∞∑
j=1

∞∑
l=1

(l + j)kl,j(t)flfj

= 1
2

∞∑
j=1

∞∑
l=1

lkl,j(t)fjfl + 1
2

∞∑
j=1

∞∑
l=1

jkl,j(t)flfj
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= 1
2

∞∑
j=1

∞∑
l=1

lkl,j(t)fjfl + 1
2

∞∑
l=1

∞∑
j=1

jkj,l(t)flfj

=
∞∑
j=1

∞∑
l=1

jkl,j(t)fjfl

=
∞∑
j=1

j[K2(t, f)]j,

where the changes in the order of summation are justified since each term is
positive. It follows that M1(K(t, f)) = 0 for all f ∈ (X[1])+, t ∈ [0, tmax) and so,
from Lemma 4.2.11, we have that

‖u(t)‖[1] = ‖ů‖[1], (6.3.2)

for all t ∈ [0, tmax). Hence u(t) is a mass-conserving solution.

Remark 6.3.6. Let the assumptions of Proposition 6.3.5 hold. Then wn ≥ n for
all n ∈ N and so ‖f‖[1] ≤ ‖f‖`1w for all f ∈ `1

w. Hence, while the solution in
Proposition 6.3.5 is bounded in X[1], this does not imply that the solution is also
bounded in `1

w. It follows that we may have lim
t→T̂−

‖u(t)‖
`

1
w

=∞ for some T̂ < T .

In this case tmax = T̂ 6= T .

Using the previous result we can now draw some conclusions regarding the
existence of a mass-conserving solution of (6.1.11) and (6.1.12).

Proposition 6.3.7. Let (5.1.5), the assumptions of Proposition 6.3.4(i) and As-
sumption 5.2.2(ii) hold. Then

(i) for some tmax ∈ (0, T ), there exists a unique, non-negative, mass-conserving
mild solution u ∈ C

(
[0, tmax), (`1

w)+

)
of (6.1.11), (6.1.12);

(ii) if wn = n, then there exists a unique, non-negative, mass-conserving mild
solution u ∈ C

(
[0, T ), (X[1])+

)
of (6.1.11), (6.1.12);

(iii) if, in addition, Assumption (A*3) holds and ů ∈ D(G(w))+, then the solu-
tions in (i) and (ii) are unique, non-negative, mass-conserving classical
solutions.
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Proof. We obtain part (i) immediately from Proposition 6.3.4(i) and Proposi-
tion 6.3.5. If wn = n, then the system (6.1.11), (6.1.12) is posed in the space X[1].
The existence of a unique, non-negative, mass-conserving mild solution follows as
in part (i). Moreover, since the solution is bounded in X[1] by Proposition 6.3.5,
it follows from Theorem 4.2.5(ii) that tmax = T . Hence part (ii) of this result
holds. Finally, part (iii) follows from Proposition 6.3.4(ii).

The last proposition allows us to obtain the following result, which tells us
that, when wn = n for all n ∈ N, the solution in Proposition 6.3.5 depends
continuously on the initial condition.

Corollary 6.3.8. Let ů ∈ (X[1])+. Suppose that the assumptions of Proposi-
tion 6.3.7(ii) hold and let u be the unique, non-negative, global mild solution of
(6.1.11), (6.1.12). Now suppose that (̊u(m))∞m=1 is such that ů(m) ∈ (X[1])+ for all
m ∈ N and ‖ů(m) − ů‖[1] → 0 as m→∞. Then

‖u(m)(t)− u(t)‖[1] → 0 as m→∞

uniformly in t on compact subintervals of [0, T ), where u(m) is the unique, non-
negative, global mild solution of (6.1.11), (6.1.12) corresponding to initial condi-
tion ů(m).

Proof. Since ů(m) → ů as m→∞ in X[1], we have that there exists C0 > 0, such
that ‖ů‖[1] ≤ C0 and ‖ů(m)‖[1] ≤ C0 for all m ∈ N. Hence, by Proposition 6.3.5,
‖u(t)‖[1], ‖u(m)(t)‖[1] ≤ C0 for all t ∈ [0, T ) and m ∈ N. The result then follows
from Theorem 4.2.5(iv).

In Proposition 6.3.7(ii), we obtain a global solution in the space X[1]. We now
provide an additional assumption on the weight and coagulation rates, under
which the local mild solution in Proposition 6.3.7(i) is a global mild solution in
`1
w. In general, when wn = np for p ≥ 1, we denote X[p] := `1

w, ‖ · ‖[p] := ‖ · ‖
`

1
w
,

φ[p] := φ
`

1
w
G[p] := G(w), A[p] := A(w), B[p] := B(w) and K[p] := K(w,w). We recall

that a mass-conserving solution is a solution that satisfies ‖u(t)‖[1] = ‖ů‖[1]. The
following lemma, proved in [25, Lemma 2.3], is useful in the next proposition.
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Lemma 6.3.9. Let p > 1. Then

(x+ y)[(x+ y)p − xp − yp] ≤ cp(xpy + xyp), x, y ∈ (0,∞), (6.3.3)

where cp = p if p ∈ (1, 2] and cp = 2p − 2 if p > 2.

Proposition 6.3.10. For some p > 1, let Assumptions 6.1.1, 5.2.2(ii), (A*1)
and (A*2) hold for wn = np, n ∈ N, and let (5.1.5) hold. Moreover, assume that
for each t′ ∈ (0, T ), there exists h(t′) > 0 such that

kn,j(t) ≤ h(t′)(n+ j) for all n, j ∈ N and t ∈ [0, t′]. (6.3.4)

Fix ů ∈ (X[p])+ and let u be the unique, non-negative, mass-conserving, maximal
mild solution of (6.1.11), (6.1.12), as in Proposition 6.3.7(i). Then u is a global
mild solution. In particular, for each t′ ∈ (0, T ), there exists γ > 0 such that,

‖u(t)‖[p] ≤ ‖ů‖[p]e
t
′(cph(t′)‖ů‖[1]+γ) for all t ∈ [0, t′], (6.3.5)

where cp = p if p ∈ (1, 2] and cp = 2p − 2 if p > 2.

Proof. We first note that ů ∈ (X[p])+ ⊆ (X[1])+. Let [0, tmax) be the max-
imal interval of existence of u. Since G[p] = A[p] +B[p] is the generator of the
substochastic C0-semigroup, (S[p](t))t≥0, on X[p], for each γ > 0, G[p] − γI is
the generator of the substochastic C0-semigroup, (S[p],γ(t))t≥0 := (e−γtS[p](t))t≥0.
Moreover, from Proposition 4.2.12, we have that (S[p,γ](t))t≥0 satisfies (b)–(d) of
Theorem 4.2.5. Hence assumptions (a) and (b) of Theorem 4.2.6 hold and, by
Lemma 4.2.10, u satisfies

u(t) = S[p],γ(t)̊u+
t∫

0

S[p],γ(t− s)K[p],γ(s, u(s)) ds, t ∈ [0, tmax),

where we define K[p],γ(t, f) := K[p](t, f) + γf for all (t, f) ∈ [0, T )×X[p].
Let t′ ∈ [0, tmax) and choose r > 0 such that u(t) ∈ BX[p](0, r)+ for t ∈ [0, t′].

Let γ > C(t′)r. From Lemma 6.3.3, K[p],γ(t, u(t)) ∈ (X[p])+ for t ∈ [0, t′].
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Hence, using Lemma 6.3.9 to obtain the first inequality, for t ∈ [0, t′], we have

‖K[p],γ(t, u(t))‖[p]

= φ[p]

(
K[p],γ(t, u(t))

)
=
∞∑
n=1

np

1
2

n−1∑
j=1

kn−j,j(t)un−j(t)uj(t)−
∞∑
j=1

kn,j(t)un(t)uj(t)
+ γ‖u(t)‖[p]

= 1
2

∞∑
j=1

∞∑
n=j+1

npkn−j,j(t)un−j(t)uj(t)−
∞∑
n=1

∞∑
j=1

npkn,j(t)un(t)uj(t) + γ‖u(t)‖[p]

= 1
2

∞∑
j=1

∞∑
l=1

(l + j)pkl,j(t)ul(t)uj(t)−
1
2

∞∑
j=1

∞∑
l=1

jpkl,j(t)ul(t)uj(t)

− 1
2

∞∑
j=1

∞∑
l=1

lpkl,j(t)ul(t)uj(t) + γ‖u(t)‖[p]

= 1
2

∞∑
j=1

∞∑
l=1

[(l + j)p − jp − lp]kl,j(t)ul(t)uj(t) + γ‖u(t)‖[p]

≤ cp
2

∞∑
j=1

∞∑
l=1

lpj + ljp

l + j
kl,j(t)ul(t)uj(t) + γ‖u(t)‖[p]

≤ cp
2 h(t′)

∞∑
j=1

∞∑
l=1

(lpj + ljp)ul(t)uj(t) + γ‖u(t)‖[p]

= cp
2 h(t′)

(
‖u(t)‖[1]‖u(t)‖[p] + ‖u(t)‖[1]‖u(t)‖[p]

)
+ γ‖u(t)‖[p]

= cph(t′)‖ů‖[1]‖u(t)‖[p] + γ‖u(t)‖[p]

= (cph(t′)‖ů‖[1] + γ)‖u(t)‖[p],

where cp = p if p ∈ (1, 2] and cp = 2p − 2 if p > 2.
Now, for t ∈ [0, t′],

‖u(t)‖[p] =

∥∥∥∥∥∥∥S[p],γ(t)̊u+
t∫

0

S[p],γ(t− s)K[p],γ(s, u(s)) ds

∥∥∥∥∥∥∥
[p]

≤
∥∥∥S[p],γ(t)̊u

∥∥∥
[p]

+
t∫

0

∥∥∥S[p],γ(t− s)K[p],γ(s, u(s))
∥∥∥

[p]
ds

=
∥∥∥e−γtS[p](t)̊u

∥∥∥
[p]

+
t∫

0

∥∥∥e−γtS[p](t− s)K[p],γ(s, u(s))
∥∥∥

[p]
ds
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≤ ‖ů‖[p] +
t∫

0

∥∥∥K[p],γ(s, u(s))
∥∥∥

[p]
ds

≤ ‖ů‖[p] +
t∫

0

(
cph(t′)‖ů‖[1] + γ

)
‖u(s)‖[p] ds.

It follows from Grönwall’s inequality that

‖u(t)‖[p] ≤ ‖ů‖[p]e

t∫
0
cph(t′)‖ů‖[1]+γ ds

≤ ‖ů‖[p]e
t
′(cph(t′)‖ů‖[1]+γ)

for all t ∈ [0, t′]. Since t′ ∈ [0, tmax) was chosen arbitrarily, it follows that ‖u(t)‖[p]

does not blow up in finite time and so u is a global solution, i.e. tmax = T .

Remark 6.3.11. We make the following observations.

(i) We note that in Proposition 6.3.7(ii), we obtain a global solution of (6.1.11),
(6.1.12), in X[1], without imposing (6.3.4).

(ii) We obtain a global mild solution for all ů ∈ (X[p])+, for some p ∈ N, in
Proposition 6.3.10. However, for the case where wn = n for all n ∈ N, we
obtain a global solution for a larger class of initial conditions. In particular,
in Proposition 6.3.7(ii) and (iii), we obtain a global mild solution for all
ů ∈ (X[1])+ and a global classical solution for all ů ∈ D(G)+.

(iii) In a similar way as in Corollary 6.3.8, we can show that the global solution
obtained in Proposition 6.3.10 depends continuously on the initial condition
ů ∈ (X[1])+.

6.4 The Pointwise C–F system

In this section we consider the case where wn = n. We assume that Assump-
tion 6.1.1, (A*1), (A*2) and (A*3) hold for wn = n. In addition, we let Assump-
tion 5.2.2(ii) and (5.1.5) hold. We now also assume that as j →∞,

ajbn,j = O(j) for every fixed n ∈ N.
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In a similar way as for the pure fragmentation system, we can show that, for
ů ∈ D(G)+, the solution u of (6.1.11), (6.1.12) is such that un(t) = (u(t))n
satisfies (6.1.1). In this section we try to deduce in what way un(t) satisfies
(6.1.1) if ů ∈ (X[1])+.

From Proposition 6.3.7 we have that, for each ů ∈ (X[1])+, the ACP (6.1.11),
(6.1.12) has a unique, non-negative, mass-conserving mild solution, which exists
globally in time. Moreover, if ů ∈ D(G)+, then this is the unique classical
solution. Let ů ∈ (X[1])+ and, for m ∈ N, define ů(m) by

ů(m)
n =


ůn if n ≤ m,

0 if n > m.

Since ů ∈ (X[1])+ then (̊u(m))∞m=1 is such that ů(m) ∈ D(A)+ ⊆ D(G)+ for all
m ∈ N.

Let u(m) be the classical (and so also the mild) solution of (6.1.11) with
u(0) = ů(m) and let u be the mild solution for u(0) = ů. Since u and u(m)

are mass conserving solutions and ‖ů(m)‖[1] ≤ ‖ů‖[1] for all m ∈ N, we have
that, ‖u(t)‖[1], ‖u(m)(t)‖[1] ≤ ‖ů‖[1] for all m ∈ N, t ∈ [0, T ) and so, from The-
orem 4.2.5(iv), u(m) → u uniformly as m→∞ on compact intervals [0, τ ].

We now examine in what way u satisfies (6.1.1). Since ů(m) ∈ D(G)+, we have
that u(m)

n satisfies (6.1.1) and hence also satisfies the integral equation

u(m)
n (t) = ů(m)

n +
t∫

0

(−anu(m)
n (s))ds+

t∫
0

∞∑
j=n+1

ajbn,ju
(m)
j (s)ds

+ 1
2

t∫
0

n−1∑
j=1

kn−j,j(s)u(m)
n−j(s)u

(m)
j (s)ds

−
t∫

0

∞∑
j=1

kn,j(s)u(m)
n (s)u(m)

j (s) ds (6.4.1)

for all t ∈ [0, T ). Let τ ∈ [0, T ). Then u(m)(t) → u(t) as m → ∞ uniformly for
all t ∈ [0, τ ]. Taking limits in (6.4.1) we obtain, for t ∈ [0, τ ],
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un(t) = ůn + lim
m→∞


t∫

0

(−anu(m)
n (s))ds+

t∫
0

∞∑
j=n+1

ajbn,ju
(m)
j (s)ds

+ 1
2

t∫
0

n−1∑
j=1

kn−j,j(s)u(m)
n−j(s)u

(m)
j (s)ds

−
t∫

0

∞∑
j=1

kn,j(s)u(m)
n (s)u(m)

j (s)dt

 . (6.4.2)

It follows that

lim
m→∞

t∫
0

(−anu(m)
n (s)) ds =

t∫
0

(−anun(s)) ds.

Choose r > 0 such that u(m)(t), u(t) ∈ BX[1](0, r) for t ∈ [0, τ ]. Similarly
to Lemma 6.2.1, we can show that there exists an L1(τ, 0, r) > 0 such that for
t ∈ [0, τ ],

‖K1(t, u(m)(t))−K1(t, u(t))‖[1] ≤ L1(τ, 0, r)‖u(m)(t)− u(t)‖[1].

It follows that K1(t, u(m)(t)) → K1(t, u(t)) as m → ∞, uniformly in t on [0, τ ].
Similarly, K2(t, u(m)(t))→ K2(t, u(t)) as m→∞, uniformly in t on [0, τ ]. Thus,
we also have that

lim
m→∞

1
2

n−1∑
j=1

kn−j,j(t)u(m)
n−j(t)u

(m)
j (t) = lim

m→∞

(
K1(t, u(m)(t))

)
n

=
(
K1(t, u(t))

)
n

= 1
2

n−1∑
j=1

kn−j,j(t)un−j(t)uj(t)

uniformly in t, for all t ∈ [0, τ ]. Hence for t ∈ [0, τ ],

lim
m→∞

t∫
0

n−1∑
j=1

kn−j,j(s)u(m)
n−j(s)u

(m)
j (s) ds =

t∫
0

n−1∑
j=1

kn−j,j(s)un−j(s)uj(s) ds.
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Next, we have

lim
m→∞

∞∑
j=1

kn,j(t)u(m)
n (t)u(m)

j (t) = lim
m→∞

(
K2(t, u(m)(t))

)
n

=
(
K2(t, u(t))

)
n

=
∞∑
j=1

kn,j(t)un(t)uj(t)

uniformly in t, for all t ∈ [0, τ ], and so

lim
m→∞

t∫
0

∞∑
j=1

kn,j(s)u(m)
n (s)u(m)

j (s) ds =
t∫

0

∞∑
j=1

kn,j(s)un(s)uj(s) ds.

Consider∣∣∣∣∣∣
∞∑

j=n+1
ajbn,ju

(m)
j (t)−

∞∑
j=n+1

ajbn,juj(t)

∣∣∣∣∣∣
≤

∞∑
j=n+1

ajbn,j|u
(m)
j (t)− uj(t)| =

∞∑
j=n+1

ajbn,j
j

j|u(m)
j (t)− uj(t)|

≤
∞∑

j=n+1
Lj|u(m)

j (t)− uj(t)| (for some L > 0)

→ 0 as m→∞ uniformly in t on [0, τ ].

Thus,
lim
m→∞

∞∑
j=n+1

ajbn,ju
(m)
j (t) =

∞∑
j=n+1

ajbn,juj(t),

uniformly in t on [0, τ ]. It follows that, for t ∈ [0, τ ],

lim
m→∞

t∫
0

∞∑
j=n+1

ajbn,ju
(m)
j (s) ds =

t∫
0

∞∑
j=n+1

ajbn,juj(s) ds.

Hence, from (6.4.2), for t ∈ [0, τ ] and ů ∈ X+ we have that u satisfies

177



Chapter 6. Full C–F System with Time-Dependent Coagulation

un(t) = ůn +
t∫

0

(−anun(s))ds+
t∫

0

∞∑
j=n+1

ajbn,juj(s)ds

+ 1
2

t∫
0

n−1∑
j=1

kn−j,j(s)un−j(s)uj(s)ds

−
t∫

0

∞∑
j=1

kn,j(s)un(s)uj(s)ds. (6.4.3)

Since τ ∈ (0, T ) was arbitrary, (6.4.3) holds for all t ∈ [0, T ) and we have that
un(t) is absolutely continuous for each n ∈ N. So, from the definition of absolute
continuity, we have that un(t) satisfies the original system (6.1.1) for almost every
t ∈ [0, T ).

Remark 6.4.1. It is worth noting again that, from Remark 6.1.4, the arguments
presented in this section all hold for the special case of a system where both
the fragmentation coefficients and the coagulation coefficients are independent of
time for all n, j ∈ N.

6.5 Interpolation Spaces and the C–F System

In this section we use the theory in Section 3.3.3 to relax the assumptions required
on the coagulation rates and obtain the existence and uniqueness of a non-negative
solution to (6.1.11), (6.1.12) for a certain class of initial conditions. We note that
the theory of interpolation spaces has been used in [10], to examine discrete
time-independent coagulation–fragmentation, and in [11, 14, 17] to deal with
continuous time-independent coagulation–fragmentation. We make the following
assumption throughout this subsection.

Assumption 6.5.1. Let an ≥ 0, bn,j ≥ 0, kn,j(t) ≥ 0 for all n, j ∈ N and
t ≥ 0. In addition, let bn,j = 0 for j ≤ n and let kn,j(t) = kj,n(t) for all n, j ∈ N
and t ≥ 0. Moreover, let (wn)∞n=1 be a monotone increasing sequence such that
Assumption 5.2.2(i) holds for some δ ∈ (0, 1).
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From Theorem 5.4.1 we have that G(w) = A(w) + B(w) is the generator of an
analytic, substochastic C0-semigroup, (S(w)(t))t≥0, on `1

w. Since (S(w)(t))t≥0 is
substochastic, to obtain a semigroup with a negative growth bound we write the
coagulation–fragmentation system as

u′n(t) = −anun(t)− un(t) +
∞∑

j=n+1
ajbn,juj(t)

+ un(t) + 1
2

n−1∑
j=1

kn−j,j(t)un−j(t)uj(t)−
∞∑
j=1

kn,j(t)un(t)uj(t), t > 0

un(0) = ů.

(6.5.1)

Fix 0 < T ≤ ∞. For (wn)∞n=1, (vn)∞n=1 as in Section 6.1 we can write (6.5.1) as
an ACP in `1

w and obtain

u′(t) = Gw,1u(t) + u(t) +K(v,w)(t, u(t)), t ∈ [0, T );

u(0) = ů,
(6.5.2)

where Gw,1 := Aw,1+B(w), with Aw,1 = A(w)−I, and K(v,w) : [0, T )×`1
v → `1

w. The
operator Gw,1 is invertible and generates the analytic, substochastic semigroup
given by (Sw,1(t))t≥0 = (e−tS(w)(t))t≥0.

Lemma 6.5.2. Let Assumption 6.5.1 hold and let Gw,1 and Aw,1 be as defined
above. Then, for all f ∈ D(Aw,1),

c−1‖Aw,1f‖`1w ≤ ‖Gw,1f‖`1w ≤ c‖Aw,1f‖`1w . (6.5.3)

where c = max{1 + δ, 1
1−δ}.

Proof. From Lemma 5.2.6 we have, for all f ∈ D(Aw,1) = D(A(w)), that

‖B(w)f‖
`

1
w
≤ δ‖A(w)f‖

`
1
w
≤ δ‖Aw,1f‖`1w .

Since δ ∈ (0, 1) the result follows from Proposition 3.3.26.

Let DA(α, p) and ‖ · ‖DA(α,p) be as in (3.3.10) and (3.3.11) respectively. Our
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aim is to apply Proposition 4.2.15, with p = 1, to (6.5.2). We therefore first want
to characterise DGw,1(α, 1). As the next proposition shows, this is equivalent to
characterising DAw,1(α, 1).

Proposition 6.5.3. Let Assumption 6.5.1 hold. For α ∈ (0, 1) and p ∈ [1,∞],
we have

DGw,1(α, p) = DAw,1(α, p), (6.5.4)

with equivalence of their respective norms.

Proof. We have shown in the proof of Theorem 5.4.1 that the substochastic semi-
group, (T (w)(t))t≥0, generated by A(w) is analytic. Hence, (e−tT (w)(t))t≥0, the
C0-semigroup generated by Aw,1, is also analytic. The growth bound of the semi-
group (e−tT (w)(t))t≥0 is negative and so Aw,1 is invertible. The result then follows
immediately from Lemma 6.5.2 and Corollary 3.3.25.

For α > 0, we define the fractional power (−Aw,1)α as in (3.3.15). To charac-
terise DGw,1(α, 1), the following lemma will be useful.

Lemma 6.5.4. Let Assumption 6.5.1 hold. For α > 0,

D((−Aw,1)α) = Xw,α :=

g ∈ `1
w :

∞∑
n=1

wn(an + 1)α|gn| <∞

 . (6.5.5)

Proof. Let f ∈ `1
w. Then, from (3.3.13),

[(−Aw,1)−αf ]n

= 1
Γ(α)

∞∫
0

tα−1e−(an+1)t dt fn

= 1
Γ(α)

∞∫
0

(
u

an + 1

)α−1

e−u
du

an + 1 fn (taking u = (an + 1)t)

= 1
Γ(α)(an + 1)−α

∞∫
0

uα−1e−u du fn

= (an + 1)−αfn.
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It follows that

range((−Aw,1)−α) = {g ∈ `1
w : gn = (an + 1)−αfn for some f ∈ `1

w}

=

g ∈ `1
w :

∞∑
n=1

wn(an + 1)α|gn| <∞

 .
We have that D((−Aw,1)α) = range((−Aw,1)−α) and so (6.5.5) holds.

The following result gives a characterisation of DGw,1(α, 1).

Proposition 6.5.5. Let Assumption 6.5.1 hold and let α ∈ (0, 1). Then

DGw,1(α, 1) = Xw,α =

f ∈ `1
w :

∞∑
n=1

wn(an + 1)α|fn| <∞

 . (6.5.6)

Proof. We have

DGw,1(α, 1) = DAw,1(α, 1)

= {f ∈ `1
w : t 7→ v(t) := ‖t−αAw,1eAw,1tf‖`1w ∈ L

1(0, 1)}.

Let f ∈ Xw,α. Then, using the Fubini–Tonelli Theorem, we have

‖v(t)‖
L

1(0,1)

=
1∫

0

∞∑
n=1

wnt
−α(an + 1)e−(an+1)t|fn| dt

=
∞∑
n=1

wn(an + 1)|fn|
an+1∫
0

(
u

an + 1

)−α
e−u

du
an + 1 (taking u = (an + 1)t)

=
∞∑
n=1

wn(an + 1)α|fn|
an+1∫
0

u−αe−u du

≤
∞∑
n=1

wn(an + 1)α|fn|
∞∫
0

u−αe−u du

=
∞∑
n=1

wn(an + 1)α|fn|
∞∫
0

u(1−α)−1e−u du
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= Γ(1− α)
∞∑
n=1

wn(an + 1)α|fn| <∞.

Hence Xw,α ⊆ DGw,1(α, 1).
Also, from (3.3.16), we have that

DGw,1(α, 1) = DAw,1(α, 1) ⊆ D((−Aw,1)α)

and, from (6.5.5), D((−Aw,1)α) = Xw,α. Thus DGw,1(α, 1) ⊆ Xw,α and so (6.5.6)
holds.

Let α ∈ (0, 1) and let 0 < T ≤ ∞. We now consider the case where
K(v,w) : [0, T )×DGw,1(α, 1) 7→ `1

w. We recall that, for all n, j ∈ N,

Wn,j = wn+j

wnwj
.

Assumption 6.5.6. In this case, i.e. when `1
v = DGw,1(α, 1), 0 < α < 1, we can

write assumptions (A1) and (A2), respectively, as

(A1) for each t′ ∈ [0, T ), there exists a constant C(t′) > 0 such that for all
n, j ∈ N, t ∈ [0, t′]

Wn,j

(an + 1)α(aj + 1)αkn,j(t) ≤ C(t′); (6.5.7)

(A2) the family of functions
(

Wn,j

(an+1)α(aj+1)αkn,j(·)
)
n,j∈N

is equicontinuous on the

interval [0, T ).

We have that (A1) and (A2) are (A1) and (A2) with vn = wn(an + 1)α for all
n ∈ N, respectively. Note that (A1) is weaker than Assumption (A*1) used to
obtain the existence and uniqueness results in Section 6.3.

Proposition 6.5.7.

(i) Let wn = rn for some r > 0 and all n ∈ N. Then (A1) is satisfied if for each
t′ ∈ [0, T ), there exists a constant C̃(t′) > 0 such that for all t ∈ [0, t′]

kn,j(t) ≤ C̃(t′)(an + 1)α(aj + 1)α (6.5.8)
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for all n, j ∈ N.

(ii) Let wn = np for all n ∈ N and some p ≥ 1. Then (A1) is satisfied if for each
t′ ∈ [0, T ), there exists a constant Ĉ(t′) > 0 such that for all t ∈ [0, t′]

kn,j(t) ≤ Ĉ(t′)(min{n, j})p(an + 1)α(aj + 1)α (6.5.9)

for all n, j ∈ N.

Proof. Suppose that the weight w is of the form wn = rn for some r > 0 and all
n ∈ N. Then

wnwj
wn+j

= 1

and so, for t′ ∈ [0, T ) and t ∈ [0, t′],

Wn,j

(an + 1)α(aj + 1)αkn,j(t) = 1
(an + 1)α(aj + 1)αkn,j(t) ≤ C̃(t′)

if (6.5.8) is satisfied. Hence (i) holds.
To prove (ii) we now consider the case when wn = np for some p ≥ 1 and all

n ∈ N. In this case

wnwj
wn+j

= npjp

(n+ j)p =
(

nj

n+ j

)p
≥
[

min{n, j}max{n, j}
2 max{n, j}

]p
=
(

min{n, j}
2

)p
.

Hence, for t′ ∈ [0, T ) and all t ∈ [0, t′],

Wn,j

(an + 1)α(aj + 1)αkn,j(t) ≤
2p

(min{n, j})p(an + 1)α(aj + 1)αkn,j(t)

≤ 2pĈ(t′)

if (6.5.9) is satisfied. It follows that (ii) holds.

Remark 6.5.8. The theory of interpolation spaces is used by Banasiak in [10] to
examine (6.1.1), where the fragmentation coefficients (bn,j)n,j∈N:n≤j are such that
Assumption 6.1.1 holds for wn = np for some p ≥ 1 and all n ∈ N. Moreover, [10]
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considers the case when kn,j(t) := kn,j is independent of time and satisfies

kn,j ≤ C
(
(an + 1)α + (aj + 1)α

)
, (6.5.10)

for some C > 0. We now compare our assumption (A1) with (6.5.10).
We first note that

(an + 1)α(aj + 1)α = 1
2
[
(an + 1)α(aj + 1)α + (an + 1)α(aj + 1)α

]
≥ 1

2
[
(an + 1)α + (aj + 1)α

]
.

It follows that

(an + 1)α + (aj + 1)α ≤ 2(min{n, j})p(an + 1)α(aj + 1)α (6.5.11)

for all p ≥ 1. Hence (6.5.9), considered in Proposition 6.5.7(ii) in the case when
wn = np for some p ≥ 1 and all n ∈ N, is less severe than (6.5.10) and, moreover,
allows for time-dependent coagulation coefficients. When the fragmentation coef-
ficients are such that we can choose wn = np for all n ∈ N and some p ≥ 1, we
have shown in Proposition 6.5.7(ii) that (6.5.9) implies that (A1) holds. It follows
from (6.5.11) that kn,j(t), for n, j ≥ 1, can be larger under (A1) than under the
condition (6.5.10).

Also, we have shown in Proposition 5.4.7 and Theorem 5.4.1 that, when there
is no mass gain in the C–F system, i.e. (5.1.4) holds with λj ∈ [0, 1] for j = 2, 3, . . .,
we are always able to choose the weight w such that Assumption 6.1.1 holds and
wn = rn for some r > 0 and all n ∈ N. It follows that for any fragmentation
coefficients (bn,j)n,j∈N:n≤j, we are always able to find a space `1

w such that the
results in this section hold for coagulation coefficients satisfying (6.5.8).

Let assumptions (A1) and (A2) hold. We have that the operator Gw,1 generates
a positive, analytic C0-semigroup. From Lemma 6.2.1 and Remark 6.2.2, we
have that K(v,w) is a continuous mapping from [0, T ) ×DGw,1(α, 1) into `1

w and,
for r > 0, t′ ∈ [0, T ), there exists a constant L(t′, r) > 0 such that for all
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f, g ∈ BDGw,1
(α,1)(0, r) and t ∈ [0, t′],

‖K(v,w)(t, f)−K(v,w)(t, g)‖
`

1
w
≤ L(t′, r)‖f − g‖DGw,1 (α,1).

It follows that, for all t ∈ [0, t′], r > 0, f, g ∈ BDGw,1
(α,1)(0, r),

‖f +K(v,w)(t, f)− (g +K(v,w)(t, g))‖
`

1
w

≤ ‖f − g‖
`

1
w

+ L(t′, r)‖f − g‖DGw,1 (α,1)

≤ ‖f − g‖DGw,1 (α,1) + L(t′, r)‖f − g‖DGw,1 (α,1)

= (1 + L(t′, r))‖f − g‖DGw,1 (α,1),

i.e.

‖f +K(v,w)(t, f)− (g+K(v,w)(t, g))‖w ≤ (1 +L(t′, r))‖f − g‖DGw,1 (α,1), (6.5.12)

for all t ∈ [0, t′].
We can now state the following existence and uniqueness result. We set

DGw,1(0, 1) = `1
w; ‖ · ‖DGw,1 (0,1) = ‖ · ‖

`
1
w
.

Theorem 6.5.9. Let α ∈ [0, 1). Let Assumption 6.5.1, (A1) and (A2) hold and
let 0 < T ≤ ∞. Take ů ∈ DGw,1(α, 1) = Xw,α.

(i) Then for some tmax such that 0 < tmax ≤ T , the ACP (6.5.2) has a unique
mild solution, u ∈ C

(
[0, tmax), DGw,1(α, 1)

)
.

(ii) Let (̊u(m))∞m=1 be such that ů(m) → ů as m→∞ and let u(m) be the unique,
maximal, mild solution corresponding to ů(m) for m ∈ N. Then there exists
some t′max > 0 such that, for all m ∈ N, the solutions u, u(m) exist on
[0, t′max). Moreover, there exists a constant δ0 > 0 such that u(m)(t) → u(t)
as m→∞ uniformly for t ∈ [0, δ0].

Proof. The assertions follow from Proposition 4.2.15 and Theorem 4.2.5, since
(6.5.12) holds, t 7→ f + K(v,w)(t, f) is continuous on [0, T ) for f ∈ DGw,1(α, 1),
and Gw,1 is an invertible operator that generates an analytic, substochastic, C0-
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semigroup.

The next result shows that the mild solution from Theorem 6.5.9 is non-
negative if the initial condition is non-negative. The technique used to prove this
theorem is based on the proof of [14, Theorem 2.2].

Theorem 6.5.10. Let Assumption 6.5.1, (A1) and (A2) hold. Let α ∈ [0, 1),
0 < T ≤ ∞ and ů ∈ DGw,1(α, 1)+. Then the mild solution, u, from Theorem 6.5.9
is non-negative.

Proof. We first note that, from [43, Corollary 2.2.3(iv)], D(A(w)) = D(Gw,1) is
dense in DGw,1(α, 1). Let γ ≥ 0. We have that Gw,1 = Aw,1 + B(w) is the
generator of an analytic, substochastic C0-semigroup, (e−tS(w)(t))t≥0, on `1

w. Also,
D((−Aw,1)α) = Xw,α = DGw,1(α, 1) and it follows from [43, Proposition 2.4.1 (i)]
that the operator Gw,1−γ(−Aw,1)α is the generator of an analytic C0-semigroup,
(S(w)

γ (t))t≥0, on `1
w. Moreover the operator γ(−Aw,1)α satisfies

‖γ(−Aw,1)αf‖
`

1
w

= γ‖f‖DGw,1 (α,1) for all f ∈ DGw,1(α, 1)

and so is a bounded operator from DGw,1(α, 1) into `1
w.

Now, −γ(−Aw,1)α generates the substochastic C0-semigroup, (S̃(t))t≥0, given
by [S̃(t)f ]n = e−γ(an+1)αtfn, for all n ∈ N, t ≥ 0 and f ∈ `1

w. Hence
∥∥∥∥∥∥∥
e− t

nS(w)
(
t

n

)
S̃

(
t

n

)n
∥∥∥∥∥∥∥
B(`1w)

≤ e−t ≤ 1 for all t ≥ 0 and n ∈ N, (6.5.13)

and so, from [30, Corollary III.5.8], the semigroup (S(w)
γ (t))t≥0, is given by

lim
n→∞

e− t
nS(w)

(
t

n

)
S̃

(
t

n

)n

and so is substochastic (in particular, positive). In addition, from (6.5.13), we
have that Gw,1 − γ(−Aw,1)α is invertible.

From Proposition 4.2.15, we can conclude that Gw,1 − γ(−Aw,1)α satisfies
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assumptions (b)–(d) of Theorem 4.2.5. Moreover,
∥∥∥∥∥∥∥

e− t

nS(w)
(
t

n

)
S̃

(
t

n

)n
 ∣∣∣∣

DGw,1
(α,1)

∥∥∥∥∥∥∥
B(DGw,1 (α,1))

≤

∥∥∥∥∥∥∥

S(w)

(
t

n

)n
 ∣∣∣∣

DGw,1
(α,1)

∥∥∥∥∥∥∥
B(DGw,1 (α,1))

=
∥∥∥∥S(w)(t)|DGw,1 (α,1)

∥∥∥∥
B(DGw,1 (α,1))

and so

‖S(w)
γ (t)

∣∣∣
DGw,1

(α,1)
‖B(DGw,1 (α,1)) ≤

∥∥∥∥S(w)(t)|DGw,1 (α,1)

∥∥∥∥
B(DGw,1 (α,1))

.

It follows that (a) and (b) of Theorem 4.2.6 hold for any γ ≥ 0.
Fix τ ∈ [0, tmax), let r > 0 and choose γ ≥ C(τ)r. For f ∈ BDGw,1

(α,1)(0, r)+,
t ∈ [0, τ ] and n ∈ N,

(K(v,w)
1 (t, f))n = 1

2

n−1∑
j=1

kn−j,j(t)fn−jfj ≥ 0

and, since (wn)∞n=1 is monotone increasing,

(K(v,w)
2 (t, f))n =

∞∑
j=1

kn,j(t)fnfj ≤
∞∑
j=1

C(τ)(an + 1)α(aj + 1)α

Wn,j

fnfj

= C(τ)
∞∑
j=1

wnwj
wn+j

(an + 1)α(aj + 1)αfnfj

≤ C(τ)(an + 1)α
∞∑
j=1

wj(aj + 1)αfjfn

= C(τ)(an + 1)α‖f‖DGw,1 (α,1)fn

≤ C(τ)(an + 1)αrfn.
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Hence, for t ∈ [0, τ ] and f ∈ BDGw,1
(α,1)(0, r)+,

(
γ(−Aw,1)αf −K(v,w)

2 (t, f)
)
n
≥ γ(an + 1)αfn − C(τ)(an + 1)αrfn
= (γ − C(τ)r)(an + 1)αfn
≥ 0 since γ ≥ C(τ)r.

It follows from Theorem 4.2.6 that u(t) ≥ 0 on [0, τ ]. Since τ ∈ [0, tmax) was
arbitrary, we can conclude that u(t) ≥ 0 for t ∈ [0, tmax).

We can now give a result regarding mass conservation.

Theorem 6.5.11. Let the assumptions of Theorem 6.5.10, (5.1.5) and Assump-
tion 5.2.2(ii) hold. Then, for all ů ∈ DGw,1(α, 1)+, there exists a unique, non-
negative, mass-conserving mild solution of (6.1.11), (6.1.12) on [0, tmax), for some
tmax > 0.

Proof. Since (6.5.2) is equivalent to (6.1.11), (6.1.12), the existence of a unique
mild solution, u(t), follows from Theorem 6.5.9. In addition, from Theorem 6.5.10
and Assumption 5.2.2(ii), we have u(t) ∈ (`1

w)+ ⊆ (X[1])+ for all t ∈ [0, tmax). It
follows from Proposition 6.3.5 that this solution is mass conserving.

The following proposition provides an additional assumption, under which we
can conclude that the mild solution in Theorem 6.5.9 is a classical solution.

Proposition 6.5.12. Let the assumptions of Theorem 6.5.9 hold. Moreover,
assume that ů ∈ DGw,1(α, 1) and that there exist Ω > 0, θ ∈ (0, 1) such that, for
all n, j ∈ N, 0 ≤ s ≤ t < T ,

Wn,j

(an + 1)α(aj + 1)α
∣∣∣kn,j(t)− kn,j(s)∣∣∣ ≤ Ω(t− s)θ. (6.5.14)

Then the mild solution in Theorem 6.5.9 is the unique classical solution.

Proof. Let f ∈ DGw,1(α, 1). For 0 ≤ s ≤ t < T , from Lemma 6.1.8(ii), we have

‖K(v,w)(t, f)−K(v,w)(s, f)‖
`

1
w
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=

∥∥∥∥∥∥
(1

2

n−1∑
j=1

(
kn−j,j(t)− kn−j,j(s)

)
fn−jfj −

∞∑
j=1

(
kn,j(t)− kn,j(s)

)
fnfj

)
n∈N

∥∥∥∥∥∥
`

1
w

≤ 3
2Ω(t− s)θ‖f‖2

DGw,1
(α,1).

Now fix g ∈ DGw,1(α, 1) and choose r > 0. Moreover, let f be such that
‖g − f‖DGw,1 (α,1) ≤ r. Then ‖f‖DGw,1 (α,1) ≤ ‖g‖DGw,1 (α,1) + r. Hence

‖K(v,w)(t, f)−K(v,w)(s, f)‖
`

1
w
≤ 3Ω

2

(
‖g‖DGw,1 (α,1) + r

)2
(t− s)θ = σ(t− s)θ,

where σ = 3Ω
2

(
‖g‖DGw,1 (α,1) + r

)2
> 0. The result then follows from part (i) of

[43, Proposition 7.1.10].

The existence of a classical solution for t ∈ [0, tmax), tmax ≤ T , has been
established under the assumptions of Proposition 6.5.12. The fact that we now
have a classical solution enables us to obtain the following result regarding when
tmax = T , i.e. when the classical solution is a global solution in DGw,1(α, 1),
0 < α < 1. In this theorem, for each t′ ∈ [0, T ), we require the existence of a
sequence (ql(t′))∞l=1 satisfying certain properties. An example of the construction
of such a sequence will be given in Example 6.5.15.

Theorem 6.5.13. Fix α ∈ [0, 1) and choose ů ∈ DGw,1(α, 1)+. Moreover, let the
assumptions of Proposition 6.5.12 hold and let u ∈ C

(
[0, tmax), DGw,1(α, 1)+

)
be

a maximal, non-negative, mass-conserving classical solution of (6.1.11), (6.1.12).
Assume that there exists δ0 ∈ (0, 1) such that

j−1∑
n=1

wn(an + 1)αbn,j ≤ δ0wj(aj + 1)α for all j = 2, 3, . . . . (6.5.15)

Moreover, assume that for each t′ ∈ [0, T ), there exists a sequence (ql(t′))∞l=1 such
that ql(t′) > 0 for all l ∈ N and either

(a) ql(t′)→ 0 as l→∞

or
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(b) (ql(t′))∞l=1 is bounded, lim sup
l→∞

ql(t′) > 0 and ‖ů‖[1] <
1−δ0

lim sup
l→∞

ql(t
′) .

Suppose that, in addition, for t ∈ [0, t′],

kl,j(t) ≤
ql(t′)(al + 1)α+1wlj + qj(t′)(aj + 1)α+1wjl

(al+j + 1)αwl+j
. (6.5.16)

Then u is a global solution, i.e. tmax = T .

Proof. We aim to show that ‖u(t)‖DGw,1 (α,1) 9 ∞ as t → T̂− for any T̂ < T . In
particular, we will show that for t ∈ [0, tmax),

‖u(t)‖DGw,1 (α,1) ≤ ‖ů‖DGw,1 (α,1)e
Ct. (6.5.17)

It then follows that tmax = T .
Let vn = wn(an + 1)α for all n ∈ N. For t ∈ [0, tmax), we have

d

dt
‖u(t)‖DGw,1 (α,1) = d

dt
‖u(t)‖

`
1
v

= d

dt

(
φ
`

1
v

(
u(t)

))
= φ

`
1
v

(
u′(t)

)
= φ

`
1
v

(
G(w)u(t)

)
+ φ

`
1
v

(
K(v,w)(t, u(t))

)
.

Now, using (6.5.15),

φ
`

1
v

(
G(w)u(t)

)
=
∞∑
n=1

vn

−anun(t) +
∞∑

j=n+1
ajbn,juj(t)


= −

∞∑
n=1

vnanun(t) +
∞∑
j=2

j−1∑
n=1

vnbn,j

 ajuj(t)
≤ −

∞∑
n=1

vnanun(t) +
∞∑
j=1

δ0vjajuj(t)

= −(1− δ0)
∞∑
n=1

anvnun(t).

Also, for t ∈ [0, tmax),

φ
`

1
v

(
K(v,w)(t, u(t))

)
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= 1
2

∞∑
n=1

n−1∑
j=1

vnkn−j,j(t)un−j(t)uj(t)−
∞∑
n=1

∞∑
j=1

vnkn,j(t)un(t)uj(t)

= 1
2

∞∑
j=1

∞∑
n=j+1

vnkn−j,j(t)un−j(t)uj(t)−
∞∑
n=1

∞∑
j=1

vnkn,j(t)un(t)uj(t)

= 1
2

∞∑
j=1

∞∑
l=1

vl+jkl,j(t)ul(t)uj(t)−
∞∑
n=1

∞∑
j=1

vnkn,j(t)un(t)uj(t)

≤ 1
2

∞∑
j=1

∞∑
l=1

vl+jkl,j(t)ul(t)uj(t).

Suppose that tmax < T and take t′ > tmax. Then, for t ∈ [0, tmax),

d

dt
‖u(t)‖DGw,1 (α,1)

≤ −(1− δ0)
∞∑
n=1

anvnun(t) + 1
2

∞∑
j=1

∞∑
l=1

vl+jkl,j(t)ul(t)uj(t)

≤ −(1− δ0)
∞∑
n=1

anvnun(t)

+ 1
2

∞∑
j=1

∞∑
l=1

(
ql(t′)(al + 1)α+1wlj + qj(t′)(aj + 1)α+1wjl

)
ul(t)uj(t)

= −(1− δ0)
∞∑
n=1

anvnun(t) + 1
2

∞∑
j=1

∞∑
l=1

(
ql(t′)(al + 1)α+1wlj

)
ul(t)uj(t)

+ 1
2

∞∑
j=1

∞∑
l=1

(
qj(t′)(aj + 1)α+1wjl

)
ul(t)uj(t)

= −(1− δ0)
∞∑
n=1

anvnun(t) +
∞∑
j=1

∞∑
l=1

(
ql(t′)(al + 1)α+1wlj

)
ul(t)uj(t)

= −(1− δ0)
∞∑
n=1

anvnun(t) +
∞∑
j=1

juj(u)
∞∑
l=1

(
ql(t′)(al + 1)vl

)
ul(t)

= −(1− δ0)
∞∑
n=1

anvnun(t) + ‖u(t)‖[1]

∞∑
l=1

ql(t′)(al + 1)vlul(t)

=
∞∑
n=1

[
an
(
− (1− δ0) + ‖ů‖[1]qn(t′)

)
+ ‖ů‖[1]qn(t′)

]
vnun(t).

If (a) holds, then there exists N ∈ N such that

−(1− δ0) + ‖ů‖[1]qn(t′) < 0 and qn(t′) ≤ qN(t′) for all n ≥ N.
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In this case,

d

dt
φDGw,1 (α,1)(u(t))

≤
N−1∑
n=1

[
an
(
− (1− δ0) + ‖ů‖[1]qn(t′)

)
+ ‖ů‖[1]qn(t′)

]
vnun(t)

+
∞∑
n=N
‖ů‖[1]qN(t′)vnun(t)

≤ C
∞∑
n=1

vnun(t) = Cφ
`

1
v
(u(t)) = CφDGw,1 (α,1)(u(t)),

where

C = max
{
‖ů‖[1]qN(t′), max

1≤n≤N−1

[
an
(
− (1− δ0) + ‖ů‖[1]qn(t′)

)
+ ‖ů‖[1]qn(t′)

]}
> 0.

If (b) holds, then there exists ε > 0 such that

‖ů‖[1] <
1− δ0

lim sup
l→∞

ql(t′) + ε
.

Moreover, there exists N0 ∈ N such that qn(t′) ≤ lim sup
l→∞

ql(t′) + ε for all n ≥ N0.
Then

d

dt
φDGw,1 (α,1)(u(t))

≤
∞∑
n=1

an
−(1− δ0) + (1− δ0)

lim sup
l→∞

ql(t′) + ε
qn(t′)

+ (1− δ0)
lim sup
l→∞

ql(t′) + ε
qn(t′)

 vnun(t)

≤
N0−1∑
n=1

an
−(1− δ0) + (1− δ0)

lim sup
l→∞

ql(t′) + ε
qn(t′)

+ (1− δ0)
lim sup
l→∞

ql(t′) + ε
qn(t′)

 vnun(t)

+
∞∑

n=N0

[
an
(
− (1− δ0) + (1− δ0)

)
+ (1− δ0)

]
vnun(t)
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≤
N0−1∑
n=1

an
−(1− δ0) + (1− δ0)

lim sup
l→∞

ql(t′) + ε
qn(t′)

+ (1− δ0)
lim sup
l→∞

ql(t′) + ε
qn(t′)

 vnun(t)

+
∞∑

n=N0

(1− δ0)vnun(t)

≤ C
∞∑
n=1

vnun(t) = Cφ
`

1
v
(u(t)) = CφDGw,1 (α,1)(u(t)),

where

C = max
{
(1− δ0),

max
1≤n≤N0−1

an
−(1− δ0) + (1− δ0)

lim sup
l→∞

ql(t′) + ε
qn(t′)

+ (1− δ0)
lim sup
l→∞

ql(t′) + ε
qn(t′)


 .

In either case, (a) or (b), we have for t ∈ [0, tmax),

d

dt
φDGw,1 (α,1)(u(t)) ≤ CφDGw,1 (α,1)(u(t)),

i.e.
‖u(t)‖DGw,1 (α,1) ≤ ‖ů‖DGw,1 (α,1)e

Ct 9∞ as t→ tmax. (6.5.18)

Hence, we must have that tmax = T .

Remark 6.5.14. We give the following remarks.

(i) We can use Theorem 4.2.5(iv) and (6.5.18) to show that this classical solution
in Theorem 6.5.13 depends continuously on the initial condition ů.

(ii) For given fragmentation coefficients, we can always choose (wn)∞n=1 iterat-
ively such that both Assumption 6.5.1 and (6.5.15) holds.

(iii) A sufficient condition for (6.5.15) to hold is that (an)∞n=1 is monotone in-
creasing since, from Assumption 6.5.1, we then have

j−1∑
n=1

wn(an + 1)αbn,j ≤ (aj + 1)α
j−1∑
n=1

wnbn,j ≤ δwj(aj + 1)α.
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We now provide an example of a situation in which we can apply The-
orem 6.5.13.

Example 6.5.15. Let (an)∞n=1 be monotone increasing. Let there exist N ∈ N,
c > 1, s > 1, p ≥ 1 satisfying

1
c
ns ≤ an ≤ cns and 1

c
np ≤ wn ≤ cnp

for all n ≥ N . Assume that for each t′ ∈ [0, T ), there exists Ĉ(t′) > 0 such that

kl,j(t) ≤ Ĉ(t′)lj for all l, j ∈ N, t ∈ [0, t′].

From the previous remark, we know that (6.5.15) holds.
Now, for l, j ∈ N, we have

ql(al + 1)α+1wlj + qj(aj + 1)α+1wjl

(al+j + 1)αwl+j
≥
ql(1

c
ls + 1)α+1 1

c
lpj + qj(1

c
js + 1)α+1 1

c
jpl

(c(l + j)s + 1)αc(l + j)p

≥
ql(1

c
ls)α+1 1

c
lpj + qj(1

c
js)α+1 1

c
jpl

((c+ 1)(l + j)s)αc(l + j)p

=
1

c
α+2

[
qll

s+sα+pj + qjj
s+sα+pl

]
c(c+ 1)α(l + j)sα+p

= 1
cα+3(c+ 1)α

(
qll

s+sα+pj + qjj
s+sα+pl

(l + j)sα+p

)
.

From Proposition 6.1.5 with p = 1, q = sα + p, we have

lsα+p + jsα+p

(l + j)sα+p ≥ 21−sα−p.

This motivates to choose the sequence (ql)∞l=1 such that

qll
s+sα+pj + qjj

s+sα+pl = lj(lsα+p + jsα+p). (6.5.19)

Let ql = l1−s for all l ∈ N. Then (6.5.19) holds and, since s > 1, ql → 0 as l→∞.
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Hence, using 6.5.19, we have

ql(al + 1)α+1wlj + qj(aj + 1)α+1wjl

(al+j + 1)αwl+j

≥ 1
cα+3(c+ 1)α

(
lj(lsα+p + jsα+p)

(l + j)sα+p

)

≥ 21−sα−p

cα+3(c+ 1)α
lj

≥ 21−sα−p

cα+3(c+ 1)αĈ(t′)
kl,j(t) for all t ∈ [0, t′].

It follows that (6.5.16) is satisfied.

We conclude this chapter with a remark relating to Example 6.5.15.

Remark 6.5.16. In the absence of fragmentation, i.e. when we have a pure co-
agulation system, it has been shown that a phenomena known as gelation occurs
when the coagulation rates are of the form kl,j = lj for all l, j ∈ N. Gelation
occurs when the rate of coagulation increases rapidly as particle size increases,
resulting in the creation of clusters of “infinite” size. Since the C–F equations
only describe the behaviour of clusters of finite size, this results in solutions that
can be observed to lose mass. An explicit global solution was obtained for the
case of pure coagulation, when kl,j = lj for all l, j ∈ N, in [42], where the solu-
tion was shown to conserve mass for t ∈ [0, 1] until gelation occurs at t = 1, after
which the solution loses mass. A discussion of this case is provided in [18, Ex-
ample 2.3.8(iii)]. However, Example 6.5.15, Theorem 6.5.13 and Proposition 6.3.5
show that, when (5.1.5) holds, we can add fragmentation to coagulation of the
form kl,j = lj for all l, j ∈ N and obtain a global mass-conserving solution in X[1].
Since gelation manifests itself as a loss in mass, this confirms that no gelation
occurs in the space X[1] in this case.
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Chapter 7

Non-autonomous Fragmentation
System

In this chapter we return to the pure fragmentation system (5.1.1), (5.1.2), with
the important difference that the fragmentation coefficients may now be time-
dependent. As mentioned in § 2.2, the case of continuous non-autonomous frag-
mentation has been examined in [4, 49] but there appears to be no corresponding
treatment of non-autonomous discrete fragmentation. Here we use the theory of
evolution families to investigate these time-dependent equations. In particular,
the results obtained in § 5.4 regarding analytic semigroups are used to obtain a
unique, non-negative, mass-conserving classical solution to the non-autonomous
fragmentation ACP.

7.1 Setting up the Problem

As in Chapter 5 we consider a discrete pure fragmentation system. We now,
however, allow the fragmentation coefficients to be time-dependent. As before,
un(t) denotes the density of clusters of size n at time t ≥ 0. Then, for fixed
s ≥ 0, the discrete non-autonomous fragmentation system that we now examine
is of the form
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u′n(t) = −an(t)un(t) +
∞∑

j=n+1
aj(t)bn,j(t)uj(t), t > s;

un(s) = ůn, n = 1, 2, . . . .
(7.1.1)

The coefficient an(t) denotes the rate, at time t, at which clusters of size n are
lost due to fragmentation. The coefficient bn,j(t) denotes the average number,
at time t, of clusters of size n that are produced when a larger cluster of size j
fragments. For a positive sequence, w = (wn)∞n=1, we again define the weighted
`1 space, `1

w, and its norm, ‖ · ‖
`

1
w
, as in the previous chapters. Fix Θ > 0 and

consider I = [0,Θ]. Let

DI = {(t, s) : t, s ∈ I and s ≤ t}.

Throughout this chapter, we make the following assumption on the fragment-
ation coefficients.

Assumption 7.1.1. For all n, j ∈ N and t ∈ I , let an(t) ≥ 0 and bn,j(t) ≥ 0,
with bn,j(t) = 0 if j ≤ n. Moreover, for all n ∈ N, let t 7→ an(t) ∈ L1(0,Θ).

Note that, in an analogous way as in § 5.1, if mass is conserved during each
fragmentation event, then we have

a1(t) = 0 and
j−1∑
n=1

nbn,j(t) = j for all t ∈ I . (7.1.2)

We also make the following assumption on the weight w throughout this
chapter.

Assumption 7.1.2. For all j ∈ N, let wj ≥ j and assume that there exists some
δ ∈ (0, 1) such that for all t ∈ [0,Θ],

j−1∑
n=1

wnbn,j(t) ≤ δwj.

Motivated by the terms in (7.1.1), for t ∈ I , we introduce the formal expres-
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sions
A(t) : (fn)∞n=1 7→ (−an(t)fn)∞n=1

and

B(t) : (fn)∞n=1 7→

 ∞∑
j=n+1

aj(t)bn,j(t)fj

∞
n=1

.

For each t ∈ I , operator realisations, A(w)(t) and B(w)(t), of A(t) and B(t)
respectively, are defined in `1

w by

A(w)(t)f = A(t)f, D(A(w)(t)) =
{
f ∈ `1

w : A(t)f ∈ `1
w

}
(7.1.3)

and

B(w)(t)f = B(t)f, D(B(w)(t)) =
{
f ∈ `1

w : B(t)f ∈ `1
w

}
. (7.1.4)

Note that, from Lemma 5.2.6, for each t ∈ I , D(A(w)(t)) ⊆ D(B(w)(t)) and

‖B(w)(t)f‖
`

1
w
≤ δ‖A(w)(t)f‖

`
1
w

for all f ∈ D(A(w)(t)). (7.1.5)

For fixed s ∈ I , we now write (7.1.1) as the non-autonomous ACP

u′(t) = A(w)(t)u(t) +B(w)(t)u(t), t ∈ (s,Θ];

u(s) = ů.
(7.1.6)

7.2 Solutions of the Non-Autonomous Fragment-
ation System

Fix t ∈ I . Then (an(t))∞n=1, (bn,j(t))n,j∈N and (wn)∞n=1 satisfy the conditions of
Theorem 5.4.1 and so G(w)(t) = A(w)(t) +B(w)(t) is the generator of an analytic,
substochastic C0-semigroup, (S(w)

t (τ))τ≥0, on `1
w. We now rescale this semigroup.

For each t ≥ 0, H(w)(t) := A(w)(t) + B(w)(t) − I is the generator of the analytic
C0-semigroup, (e−τS(w)

t (τ))τ≥0, which has a growth bound less than or equal to
−1. The following proposition shall prove to be useful.
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Proposition 7.2.1. For all t ∈ I and λ ∈ C such that Reλ > −1, we have

‖R(λ,H(w)(t))‖ =
∥∥∥∥(A(w)(t) +B(w)(t)− (1 + λ)I

)−1
∥∥∥∥ ≤ C̃

|1 + λ|
, (7.2.1)

where C̃ = 1
1−δ > 1.

Proof. Let t ∈ I and let λ ∈ C be such that Reλ > −1. For f ∈ `1
w, we have

from (7.1.5), that
∥∥∥∥B(w)(t)

(
(1 + λ)I − A(w)(t)

)−1
f

∥∥∥∥
`

1
w

≤ δ

∥∥∥∥A(w)(t)
(
(1 + λ)I − A(w)(t)

)−1
f

∥∥∥∥
`

1
w

= δ
∞∑
n=1

wn

∣∣∣∣ an(t)
1 + λ+ an(t)fn

∣∣∣∣
≤ δ‖f‖

`
1
w
,

since Reλ > −1. Now,

‖R(λ,H(w)(t))‖

= ‖(A(w)(t) +B(w)(t)− (1 + λ)I)−1‖

=
∥∥∥∥∥
[(
B(w)(t)

(
A(w)(t)− (1 + λ)I

)−1
+ I

)
(A(w)(t)− (1 + λ)I)

]−1
∥∥∥∥∥

=
∥∥∥∥∥(A(w)(t)− (1 + λ)I

)−1
(
B(w)(t)

(
A(w)(t)− (1 + λ)I

)−1
+ I

)−1
∥∥∥∥∥

≤
∥∥∥∥(A(w)(t)− (1 + λ)I

)−1
∥∥∥∥
∥∥∥∥∥
(
B(w)(t)

(
A(w)(t)− (1 + λ)I

)−1
+ I

)−1
∥∥∥∥∥

=
∥∥∥∥(A(w)(t)− (1 + λ)I

)−1
∥∥∥∥
∥∥∥∥∥
(
I −B(w)(t)

(
(1 + λ)I − A(w)(t)

)−1
)−1

∥∥∥∥∥
≤
∥∥∥∥(A(w)(t)− (1 + λ)I

)−1
∥∥∥∥ ∞∑
n=0

∥∥∥∥B(w)(t)
(
(1 + λ)I − A(w)(t)

)−1
∥∥∥∥n

≤
∥∥∥∥(A(w)(t)− (1 + λ)I

)−1
∥∥∥∥ ∞∑
n=0

δn

= 1
1− δ

∥∥∥∥(A(w)(t)− (1 + λ)I
)−1

∥∥∥∥
≤ 1

1− δ ·
1

|1 + λ|
,
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where the last inequality follows from the fact that 1 + λ > 0 and −an(t) ≤ 0 for
all n ∈ N, t ∈ I . The result then follows immediately.

For the remainder of this section we impose the following assumption on the
fragmentation rates.

Assumption 7.2.2. Let

(i) D := D(A(w)(t)) be independent of t ∈ [0,Θ];

(ii) there exist C1 ≥ 0 and σ ∈ (0, 1] such that

|an(t)− an(s)| ≤ C1|t− s|σ for all n ∈ N, s, t ∈ I ;

(iii) there exist some C2 ≥ 0 such that

j−1∑
n=1

wn
∣∣∣aj(t)bn,j(t)− aj(s)bn,j(s)∣∣∣ ≤ C2wj

∣∣∣aj(t)− aj(s)∣∣∣
for all j = 2, 3, . . . and t, s ∈ I .

Lemma 7.2.3. Let Assumption 7.2.2 hold. Then there exists an evolution family,
(V (w)(t, s))(t,s)∈DI

, such that u(t) = V (w)(t, s)̊u is the unique classical solution
of the non-autonomous ACP

u′(t) = H(w)(t)u(t) = (A(w)(t) +B(w)(t)− I)u(t), t > s;

u(s) = ů ∈ `1
w.

(7.2.2)

Moreover, if ů ∈ (`1
w)+, then the solution is non-negative.

Proof. Fix t ∈ I . We begin by showing that H(w)(t) satisfies the assumptions of
Theorem 3.5.3. Since D = D(A(w)(t)) = D(H(w)(t)) for all t ∈ [0,Θ], it is clear
that (P1) in Theorem 3.5.3 is satisfied. Also, (e−τS(w)

t (τ))τ≥0 has growth bound
less than or equal to −1. Thus, R(λ,H(w)(t)) exists for all t ∈ I and λ ∈ C
such that Reλ ≥ 0. Let λ = α̂ + iβ̂ for some α̂, β̂ ∈ R such that α̂ ≥ 0. From
Proposition 6.1.5, with p = 1, q = 2, x = α̂ + 1, y = |β̂|, we have

√
(α̂ + 1)2 + β̂2 ≥ α̂ + 1 + |β̂|√

2
.
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Now,

|λ+ 1| =
√

(α̂ + 1)2 + β̂2 ≥ α̂ + 1 + |β̂|√
2

=

√
(α̂ + |β̂|)2 + 1√

2
≥

√
α̂2 + β̂2 + 1√

2

= |λ|+ 1√
2

,

where α̂ ≥ 0 is used to obtain the second inequality. It follows that
√

2
|λ|+ 1 ≥

1
|λ+ 1| .

Using (7.2.1), for t ∈ I and λ ∈ C such that Reλ ≥ 0,

‖R(λ,H(w)(t))‖ ≤ C̃

|1 + λ|
≤
√

2C̃
|λ|+ 1 .

We now need only show that (P3) in Theorem 3.5.3 holds. Let f ∈ D. Then, for
τ, t ∈ I ,

‖(H(w)(t)−H(w)(τ))f‖
`

1
w

≤
∞∑
n=1

wn|an(t)− an(τ)||fn|+
∞∑
n=1

wn

∞∑
j=n+1

|aj(t)bn,j(t)− aj(τ)bn,j(τ)||fj|

=
∞∑
n=1

wn|an(t)− an(τ)||fn|

+
∞∑
j=2
|aj(t)− aj(τ)|

j−1∑
n=1

wn

∣∣∣∣∣aj(t)bn,j(t)− aj(τ)bn,j(τ)
aj(t)− aj(τ)

∣∣∣∣∣ |fj|
≤ C1|t− τ |σ

∞∑
n=1

wn|fn|+ C1|t− τ |σC2

∞∑
j=2

wj|fj|

≤ (1 + C2)C1|t− τ |σ‖f‖`1w
= C0|t− τ |σ‖f‖`1w where C0 = (1 + C2)C1 ≥ 0.

Take f ∈ `1
w. Then, using (7.2.1) with λ = 0, we have

‖(H(w)(t)−H(w)(τ))(H(w)(u))−1f‖
`

1
w
≤ C0|t− τ |σ‖(H(w)(u))−1f‖

`
1
w
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≤ C̃C0|t− τ |σ‖f‖`1w

for all t, τ, u ∈ I . It follows from Theorem 3.5.3 that there exists an evolution
family, (V (w)(t, τ))(t,τ)∈DI

, such that u(t) = V (w)(t, s)̊u is the unique classical
solution of (7.2.2).

We now show that this solution is non-negative for non-negative initial condi-
tions. To this end, following the procedure in § 5.5, we find a matrix representa-
tion of (V (w)(t, τ))(t,τ)DI

. Let en ∈ `1
w be defined as in (5.5.1) and, for (t, s) ∈ DI ,

define a matrix V(t, s) = (vm,n(t, s))m,n∈N by vm,n(t, s) = (V (w)(t, s)en)m. We
have f =

∞∑
n=1

fnen for all f ∈ `1
w. Hence, for all m ∈ N,

(V (w)(t, s)f)m =
 ∞∑
n=1

fnV
(w)(t, s)en


m

=
∞∑
n=1

fnvm,n(t, s) = (V(t, s)f)m.

Thus, for (t, s) ∈ DI , we can represent V (w)(t, s) by the matrix V(t, s). Let
n ∈ N. We know that u(t) = V (w)(t, s)en is the unique classical solution of
(7.2.2) with ů = en. Now, for fixed n ∈ N, let (v1,n(t, s), . . . , vn,n(t, s)) be the
unique solution of the n-dimensional system

∂

∂t
vm,n(t, s) = −(1 + am(t))vm,n(t, s) +

n∑
j=m+1

aj(t)bm,j(t)vj,n(t, s), (t, s) ∈ DI ,

(7.2.3)
for m = 1, 2, . . . , n, with vn,n(s, s) = 1 and vm,n(s, s) = 0 for m < n, where
n∑

j=n+1
aj(t)bm,j(t)vj,n(t, s) = 0. We note that, since this is a linear, finite dimen-

sional system, a unique solution is given in the form of an exponential defined
via a power series. The nth equation in this finite system is given by

∂

∂t
vn,n(t, s) = −(1 + an(t))vn,n(t, s)), vn,n(s, s) = 1, (t, s) ∈ DI ;

and so vn,n(t, s) = exp
(
−

t∫
s
(1 + an(τ)) dτ

)
.
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It is clear that (v1,n(t, s), . . . , vn,n(t, s), 0, 0, . . .) is a solution of

∂

∂t
vm,n(t, s) = −(1 + am(t))vm,n(t, s) +

∞∑
j=m+1

aj(t)bm,j(t)vj,n(t, s), (t, s) ∈ DI ,

for m = 1, 2, . . ., with vn,n(s, s) = 1 and vm,n(s, s) = 0 for n ∈ N, m 6= n.
Moreover,

(v1,n(t, s), . . . , vn,n(t, s), 0, 0, . . .) ∈ D = D(A(w)(t)) for all (t, s) ∈ DI .

It follows that (v1,n(t, s), . . . , vn,n(t, s), 0, 0, . . .) is a classical solution of (7.2.2)
with ů = en. Hence, by the uniqueness of solutions of (7.2.2),

u(t) = V (w)(t, s)en = (v1,n(t, s), . . . , vn,n(t, s), 0, 0, . . .).

Since n ∈ N was arbitrary, we have for all (t, s) ∈ DI ,

V (w)(t, s) =


v1,1(t, s) v1,2(t, s) v1,3(t, s) . . .

0 v2,2(t, s) v2,3(t, s) . . .

0 0 v3,3(t, s) . . .
... ... ... . . .

 (7.2.4)

where vn,n(t, s) = exp
(
−

t∫
s

(
1 + an(τ)

)
dτ
)

for all n ∈ N.

Let ů ∈ (`1
w)+. If we can show that vm,n(t, s) ≥ 0 for all m, n ∈ N, (t, s) ∈

DI , then it is immediate from (7.2.4) that u(t) = V (w)(t, s)̊u is a non-negative
solution.

Choose n ∈ N and fix s ∈ I . It is clear that

vn,n(t, s) = exp

− t∫
s

(1 + an(τ)) dτ

 ≥ 0, for all t ∈ [s,Θ].
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If n > 1, then the (n− 1)th equation in (7.2.3) is given by

∂

∂t
vn−1,n(t, s) = −(1 + an−1(t))vn−1,n(t, s) + an(t)bn−1,n(t)vn,n(t, s), t ∈ [s,Θ].

(7.2.5)
Now suppose that vn−1,n(t, s) < 0 for t in some maximal interval (εn−1, ε̂n−1),
where s < εn−1 ≤ ε̂n−1 ≤ Θ. Then, using the fact that vn,n(t, s) ≥ 0 for t ∈ [s,Θ],
we have that the right-hand side of (7.2.5) is positive on (εn−1, ε̂n−1). On the other
hand, since vn−1,n(s, s) = 0, it follows from the Mean Value Theorem that there
exists some ε ∈ (εn−1, ε̂n−1) such that ∂

∂t
vn−1,n(ε, s) < 0. This is a contradiction

and so vn−1,n(t, s) ≥ 0 for all t ∈ [s,Θ].
If n > 2, we can then use a similar argument to deduce that vn−2,n(t, s) ≥ 0

for t ∈ [s,Θ] and continuing in this way leads to vm,n(t, s) ≥ 0 for all t ∈ [s,Θ]
and m ≤ n. Moreover, from (7.2.4), vm,n(t, s) = 0 for all m > n.

Since n ∈ N and s ∈ I were chosen arbitrarily, it follows that vm,n(t, s) ≥ 0
for all m, n ∈ N and (t, s) ∈ DI . Hence, if ů ∈ (`1

w)+, then u(t) = V (w)(t, s)̊u is
the unique, non-negative classical solution of (7.2.2).

Lemma 7.2.3 then leads us to a unique, non-negative solution of (7.1.6).

Theorem 7.2.4. Let Assumption 7.2.2 hold and let ů ∈ `1
w. Then there exists

an evolution family, (V (w)(t, s))(t,s)∈DI
, such that u(t) = V (w)(t, s)̊u is the unique

classical solution of (7.1.6). If ů ∈ (`1
w)+, then the solution is non-negative.

Proof. From Lemma 7.2.3 we can deduce that there exists an evolution family,
(V (w)(t, s))(t,s)∈DI

, such that u(t) = V (w)(t, s)̊u is the unique solution of (7.2.2).
For (t, s) ∈ DI , we have

∂

∂t

(
et−sV (w)(t, s)̊u

)
= et−s

(
V (w)(t, s)̊u

)
+ et−s

∂

∂t

(
V (w)(t, s)̊u

)
= et−sV (w)(t, s)̊u+ et−s(A(w) +B(w) − I)V (w)(t, s)̊u

= (A(w) +B(w))et−sV (w)(t, s)̊u

and es−sV (w)(s, s)̊u = ů.
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Hence, we can conclude that u(t) = V (w)(t, s)̊u := et−sV (w)(t, s)̊u is a classical
solution of (7.1.6). We now note that (V (w)(t, s))(t,s)∈DI

is an evolution family
since,

• for 0 ≤ r ≤ s ≤ t < Θ,

V (w)(t, s)V (w)(s, r) = et−sV (w)(t, s)es−rV (w)(s, r)

= et−rV (w)(t, r)

= V (w)(t, r);

• V (w)(s, s) = es−sV (w)(s, s) = I;

• the mapping (t, s) 7→ V (w)(t, s) is strongly continuous and so the mapping
(t, s) 7→ et−sV (w)(t, s) = V (w)(t, s) is strongly continuous.

It then follows that (V (w)(t, s))(t,s)∈DI
is an evolution family that solves (7.1.6).

Fix s ∈ I and let v(t) be any solution of (7.1.6) for t ∈ [s,Θ]. Then, by
differentiating ũ(t) = e−(t−s)v(t), we can show that ũ(t) solves (7.2.2). By the
uniqueness of solutions to (7.2.2), it follows that V (w)(t, s)̊u = ũ(t) = e−(t−s)v(t)
for all t ∈ [s,Θ]. Hence, for t ∈ [s,Θ],

v(t) = et−sV (w)(t, s)̊u = V (w)(t, s)̊u,

i.e. the classical solution of (7.1.6) is unique.
Finally, from Lemma 7.2.3, if ů ∈ (`1

w)+, then V (w)(t, s)̊u ∈ (`1
w)+ and so

V (w)(t, s)̊u = et−sV (w)(t, s)̊u ∈ (`1
w)+.

We are now able to obtain the following result regarding mass conservation.
We once again set X[1] := `1

w, ‖ · ‖[1] := ‖ · ‖
`

1
w

and M1(·) := φ
`

1
w

when wn = n for
all n ∈ N.

Corollary 7.2.5. Let ů ∈ (`1
w)+ and let (7.1.2) and Assumption 7.2.2 hold. Then

there exists an evolution family, (V (w)(t, s))(t,s)∈DI
, such that u(t) = V (w)(t, s)̊u

is the unique, non-negative, mass-conserving classical solution of (7.1.6), in the
sense that

‖u(t)‖[1] = ‖ů‖[1] for all (t, s) ∈ DI .
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Proof. Since wn ≥ n for all n ∈ N, `1
w is continuously embedded in X[1]. Let

s ∈ I . From Theorem 7.2.4 we know that u(t) = V (w)(t, s)̊u ∈ (`1
w)+ ⊆ (X[1])+

is the unique, non-negative solution of (7.1.6). Hence, for t ∈ [s,Θ],

d

dt
‖u(t)‖[1] = d

dt
M1

(
u(t)

)
= M1

(
u′(t)

)
= M1

(
A(w)(t)u(t) +B(w)(t)u(t)

)
.

Now, for t ∈ [s,Θ],

M1

(
A(w)(t)u(t) +B(w)(t)u(t)

)
=
∞∑
n=1

n

−an(t)un(t) +
∞∑

j=n+1
aj(t)bn,j(t)uj(t)


= −

∞∑
n=1

nan(t)un(t) +
∞∑
j=2

j−1∑
n=1

nbn,j(t)
 aj(t)uj(t)

= −
∞∑
n=1

nan(t)un(t) +
∞∑
j=1

jaj(t)uj(t) = 0.

Hence,
d

dt
‖u(t)‖[1] = 0 and so ‖u(t)‖[1] = ‖ů‖[1].
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Chapter 8

Conclusion and Future Work

To summarise, in this thesis we have examined the autonomous fragmentation
system, (5.1.1), the C–F system with time-dependent coagulation, (6.1.1), and
the non-autonomous fragmentation system, (7.1.1), using the theory of operator
semigroups and evolution families. By writing (5.1.1) as an ACP in a general
weighted `1 space, we were able to obtain various results regarding the existence
and uniqueness of solutions. Properties of these solutions such as positivity, mass
conservation and asymptotic behaviour were also established. In particular, when
examining (5.1.1), we obtained results regarding analytic semigroups that do not
necessarily hold when the “usual” weights, wn = np, for p ≥ 1 and n ∈ N, are
considered.

We then examined (6.1.1), where the coagulation was allowed to be time-
dependent. This system was written as a semi-linear ACP in a general weighted `1

space and the existence and uniqueness of positive solutions were established un-
der certain conditions on the coagulation coefficients. Under additional assump-
tions on the fragmentation rates, mass-conservation results were also provided.
The analytic semigroups obtained when examining (5.1.1) were then used with
the theory of interpolation spaces to relax the conditions required on the coagu-
lation rates to obtain the existence and uniqueness of solutions.

Finally, we further exploited the results regarding analytic semigroups to ex-
amine non-autonomous fragmentation. Here we established that under certain
assumptions on the time-dependent fragmentation rates, a unique, non-negative
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solution of (7.1.1) is given by an evolution family. Mass-conservation can again
be shown to hold under additional assumptions on the fragmentation rates.

A natural extension of the work in this thesis is to examine the full C–F
system where both the coagulation and the fragmentation are time-dependent.
While results have previously been obtained for continuous C–F equations in
which the coagulation and fragmentation coefficients are both permitted to be
time-dependent, we are unaware of similar investigations into the discrete case.
To use the semigroup perturbation approach adopted in this thesis with regard
to a fully time-dependent system will require existence and uniqueness results
for semi-linear ACPs, where both the associated linear and the associated non-
linear operator are time-dependent. We are unaware of any such results but
believe that it may be possible to extend Theorem 4.2.5 to find “mild” solutions
of fully non-autonomous semi-linear equations; see [61, (7.2)]. However, there
are also open questions regarding the full system where only the coagulation is
time-dependent, (6.1.1). For example, we examined the asymptotic behaviour
of solutions of the pure autonomous fragmentation system, (5.1.1), and similar
topics could be investigated for the solutions of (6.1.1). Moreover, the non-
autonomous fragmentation system was only briefly discussed in Chapter 7, and it
may be possible to obtain the existence of solutions under more relaxed conditions
than those provided in this thesis.

Furthermore, future investigations into non-autonomous C–F systems may
consider using the theory of evolution semigroups, which was used to examine
continuous non-autonomous fragmentation in [4]. Recent work in [13] has also
considered discrete fragmentation models which incorporate additional birth and
death terms. The analysis in [13] is carried out in an `1

w space with a weight of
the form wn = np, for some p ≥ 1 and all n ∈ N, and future investigations could
be carried out regarding whether the results obtained in [13] can be improved
upon by working with more general weights, as in this thesis. A final extension of
the work in this thesis would be to examine whether similar weighted L1 theory
as used in this thesis could be applied to continuous C–F.
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