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Abstract

Nurse Rostering can be defined as assigning a series of shift sequences (schedules)

to several nurses over a planning horizon according to some limitations and

preferences. The inherent benefits of generating higher-quality rosters are a

reduction in outsourcing costs and an increase in job satisfaction of employees.

This problem is often very difficult to solve in practice, particularly by applying a

sole approach. This dissertation discusses two hybrid solution methods to solve

the Nurse Rostering Problem which are designed based on Integer Programming,

Constraint Programming, and Meta-heuristics. The current research contributes

to the scientific and practical aspects of the state of the art of nurse rostering.

The present dissertation tries to address two research questions. First, we

study the extension of the reach of exact method through hybridisation. That

said, we hybridise Integer and Constraint Programming to exploit their comple-

mentary strengths in finding optimal and feasible solutions, respectively. Second,

we introduce a new solution evaluation mechanism designed based on the problem

structure. That said, we hybridise Integer Programming and Variable Neighbour-

hood Search reinforced with the new solution evaluation method to efficiently deal

with the problem. To benchmark the hybrid algorithms, three different datasets

with different characteristics are used. Computational experiments illustrate the

effectiveness and versatility of the proposed approaches on a large variety of

benchmark instances.
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Chapter 1

Introduction

1.1 Nurse Rostering Problem

One of the most important success criteria for organisations to satisfy their

customers’ requirements and expectations is the ability to have the right staff on

the right duty at the right time. Personnel rostering is defined as the process of

constructing work timetables for staff, which has been extensively investigated by

operations researchers, industrial engineers, computer scientists, and practitioners

over the past 50 years [17, 30]. It basically involves specifying at what time (i.e.

days, shifts, periods and so on) each employee should work over a specific planning

period, which might vary from a day to several months, depending on the nature

of the work environment.

Having a high-quality nurse roster enhances both the performance and the

quality of a health care unit. Depending on organisational objectives, a roster has

higher quality if, for example, it has less gaps which can reduce the outsourcing

costs due to hiring fewer agency (bank) nurses to compensate gaps in rosters

[47, 56, 85], or if nurses have less overwork, and therefore, more leisure time

which can increase job satisfaction, and thus results in lowering staff turnover and

absenteeism [17, 63].
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Figure 1.1 – A complete roster for 8 nurses over 4 weeks

In this dissertation, we focus on the Nurse Rostering Problem (NRP). This

problem can be thought as building a schedule for each nurse. A schedule is a

sequence of different types of shifts (e.g. early, day, night, days-off) spanning over

the whole planning horizon. This pattern of shifts is generated according to a

set of requirements such as hospital regulations, and a series of preferences like

a fair distribution of shifts among nurses. These requirements and preferences

vary drastically among different countries, institutions, and even wards within a

hospital. The solution of this problem is a roster consisting of all schedules for all

the nurses during the planning period. Figure 1.1 shows a complete roster, which

consists of schedules of eight nurses, depicted in rows, over a 4-week scheduling

period (totally 28 days), depicted in columns, where day, night, and off shifts are

denoted as D, N , and −, respectively.

From theoretical perspectives, most variants of the NRP in real-world settings

are known to be NP -hard problems [10, 46, 62], although some simplified versions

can be solved in polynomial time [76]. Due to the inherent structure and complexity

of the problem which arises from the huge number of often conflicting constraints

that must be satisfied, fulfilment of all constraints is often impossible in real-world

instances. That said, a distinction is made between hard constraints (often enforced

by physical resource restrictions and legislation) and soft constraints (normally

are referred to as staff preferences). Hard constraints must be satisfied (to have

2



a feasible roster), but soft constraints may be violated. Each soft constraint is

associated with a weight that represents its importance. Constraints with higher

weights are more important to be satisfied, and thus cause a higher penalty if

violated. The objective function used to determine the quality of a roster is the

sum of all penalties incurred due to soft constraint violations. We will present a

model of the NRP using Integer Programming and Constraint Programming in

Chapter 2.

1.2 Research Questions

Due to the number of conflicting constraints which has to be satisfied in real-

world instances of the NRP, standard Integer Programming (IP) and Constraint

Programming (CP) solvers are not able to solve this problem on their own [69].

Therefore, researchers often prefer to hybridise these methods with other methods

including meta-heuristics such as Tabu Search [53] and Variable Neighbourhood

Search [82] algorithms to exploit their complementary strengths resulting in a

competitive solution method for solving practical NRP instances.

Furthermore, some researchers try to extend the reach, i.e. the extent to which

a method is able to generate an acceptable solution for real-world instances. The

methods such as customised IP cuts [74] and propagation algorithms [79] were

procedures that were capable of handling a wider range of problems that were

able to solve specific practical instances. However, little attention has been paid

to hybridise IP and CP together in order to extend the reach of exact methods,

and therefore, to design an acceptable hybrid solution method. Since IP and CP

solvers use different mechanisms to solve optimisation problems, i.e. IP solvers

employ branch-and-cut algorithms in which corresponding LP relaxations of the

problem are solved, and CP solvers employ a variety of propagation algorithms

and heuristics to reduce domains of variables, hybridising these solvers is intuitive.
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Nowadays, there has been an increasing progress in the performance of commercial

IP and CP solvers such as Cplex [44] and Gurobi [35], which further motivates

the study of hybridisation of such methods. Therefore, the present dissertation

addresses the following research question.

Can the reach of exact methods be extended by hybridising IP and CP methods?

Recent academic research tends to focus on increasing the performance of

existing methods or on introducing new hybrid algorithms [5, 21, 80, 66]. That

said, researchers often overlook the importance of problem-specific information

in evaluating solution quality and designing solution methods. Beyond doubt,

comparing obtained solutions only based on the objective function value or the

total number of soft constraints’ violations is not the best and accurate way for

evaluating solution quality. The other contribution made in this dissertation

considers incorporating problem-specific information into different aspects of

the solution method particularly through evaluation of solution quality, thereby

addressing the following research question.

How can the particular problem structure of the NRP contribute to different

aspects of designing a solution method?

In summary, the first research question tries to address whether hybridising

IP and CP is able to improve the reach of those methods in solving the NRP. By

extending the reach of such exact methods, one can benefit from the advantages of

using IP and CP such as provision of optimality information. The second question

tries to understand the impact of considering problem-specific information to the

performance of a solution method. In effect, this question tries to redefine the

evaluation of solution quality on the basis of problem-specific information.

As a final note, the main focus of this dissertation is on personnel rostering in

the context of health care, however the results are applicable in other settings as

well, such as services, logistics or manufacturing.
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1.3 Background

This dissertation applies some of the established techniques in Operations Re-

search and Artificial Intelligence for solving the NRP. Linear programming is a

mathematical programming technique in which values are assigned to a set of

decision variables so as to minimise or maximise an objective function, subject

to a set of linear constraints. In (Mixed) IP, (a subset of) the decision variables

are required to have integer values assigned. A complete theoretical treatment of

these topics can be found in [86] and [60].

CP is a technique to solve constraint satisfaction problem which is defined by

a finite sequence of variables with respective domains, together with a finite set

of constraints, each on a subsequence of variables. In CP, the aim is to find a

solution which satisfies all constraints or is optimal with respect to certain criteria

using propagation algorithms and variable and value ordering heuristics. For more

details, interested readers are referred to Apt [3] and Rossi et al. [72].

A meta-heuristic is a high-level heuristic designed to find, generate, or select a

heuristic (partial search algorithm) that may provide a sufficiently good solution

to an optimisation problem at a reasonable computational cost without being

able to guarantee either feasibility or optimality, or even in many cases to state

how close to optimality a particular feasible solution is [71]. Meta-heuristics often

complete or replace a solution with the current solution by seeking neighbours

of the current solution during the search process iteratively until some stopping

criteria are met. Meta-heuristics have been extensively investigated during recent

years where many instances of this method such as Tabu Search [52] and Variable

Neighbourhood Search [66] are proposed. For more details, interested readers are

referred to Burke and Kendall [14], Glover and Melian [33], Osman and Kelly [61].
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1.4 Outline of the Dissertation

This dissertation is structured in four chapters. Chapter 1 briefly introduces the

NRP along with research questions underlying this dissertation. Chapter 2 and 3

mainly focus on investigating the research questions established in the first chapter.

Chapter 4 concludes the dissertation by presenting the summary of contributions

and future research directions.

Chapter 2 presents a hybrid algorithm aiming to extend the reach of IP

and CP methods. In academic research, IP or CP is often reinforced by meta-

heuristics to solve the NRP (e.g. see Burke et al. [21] and M’Hallah and Alkhabbaz

[56]). This chapter investigates the effect of hybridising these two methods in

terms of computational performance and capability to solve a variety of problem

instances existing in the literature. First, to have a comprehensive computational

experimentation, two common models of the NRP are explained, and then several

experiments are done using three different sets of problem instances existing in

the literature.

Chapter 3 studies the impact of involving problem-specific information in

solution evaluation and design of hybrid algorithms. That said, a hybrid algorithm,

established upon VNS (as one of the most common solution methods applied to

the NRP) and reinforced by IP, is elaborated in which the search process and

solution evaluation are designed according to the problem structure and obtained

problem-specific information. The resulted study experiments on the same models

and instances introduced in chapter 2. Finally, the scope of computational tests

becomes broaden by evaluating the performance of the presented methodology

using a new rostering problem.

It should be noted that the level of integration/hybridisation of the algorithms

presented in chapter 2 and 3 is different. According to Talbi [81], the level

of hybridisation for the algorithm presented in chapter 3 is LRH (Low-level

6



Relay Hybrid) where an algorithm is embedded into another one. That said,

in this chapter, a hybrid algorithm is proposed in which IP is embedded into a

VNS algorithm. However, the level of hybridisation for the algorithm presented

in chapter 2 is approximately HRH (High-level Relay Hybrid) where several

algorithms are executed in sequence.

Chapter 4 concludes the dissertation by summarising the most important

conclusions and contributions, and presents areas for future research.
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Chapter 2

Integer and Constraint

Programming: A Hybrid

Algorithm

The academic literature tries design more efficient algorithms either by reinforcing

these methods with a variety of approaches such as developing problem-specific

cuts [74] or by employing heuristic methods [79]. However, little attention has

been paid to reinforce such methods by hybridising them together which results in

preserving the benefits of these methods such as provision of optimality information.

This chapter tries to shed light on the hybridisation of CP and IP to investigate

if their reach can be extended, and therefore, higher-quality solutions can be

generated.

In this chapter, we exploit the strength of IP in obtaining lower-bounds and

finding an optimal solution with the capability of CP in finding feasible solutions

in a co-operative manner. To improve the performance of the hybrid algorithm,

and therefore, to obtain high-quality solutions as well as strong lower-bounds for a

relatively short time, we apply some innovative ways to extract useful information

such as the computational difficulty of instances and constraints to adaptively
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set the search parameters. We test our algorithm using three different datasets

consisting of various problem instances, and report results benchmarked with the

state-of-the-art algorithms from the recent literature as well as standard IP and

CP solvers.

The results presented in this chapter are published by Rahimian et al. [69].

2.1 Introduction

In this chapter, we propose a new hybrid algorithm integrating IP and CP to

extend the reach of exact methods, utilising the strengths of IP in finding optimal

solutions and of CP in finding feasible solutions while exploiting problem-specific

information. Due to the exact nature of the proposed algorithm, it can also

generate lower-bounds in contrast to most heuristic methods designed to solve

the NRP in the literature (note that there are heuristics which are able to find

lower bounds). The hybrid algorithm exploits problem-specific information such

as the difficulty of constraints to reduce the search space (see CSP generation and

Softness Adjustment components in Section 2.5), to fine tune search parameters

(see Pre-solve component in Section 2.5), and to improve the efficiency of the whole

search process. For instance, during the search process, we identify the potential

constraints which are computationally expensive to predict the performance of

the IP solver, and thus, setting search parameters adaptively.

In the literature, many exact methods have been investigated such as Integer

Programming [32], Constraint Programming [79], and Goal Programming [4].

Furthermore, some academic research have focused on reinforcing the relevant IP

and CP formulations [74, 55] or applied IP and CP solvers [13, 73]. However, little

attention has been made to extend the reach of these methods in a hybrid setting,

thereby preserving their computational benefits such as obtaining optimality

information. He and Qu [40] employed CP in solving pricing sub-problems within

9



a column generation method. The largest body of related research concerns

hybridising IP and CP with heuristics. For example, Burke et al. [21] combined

IP to solve the NRP considering all hard constraints, and a set of soft constraints

based on their complexity and importance, and VNS to further improve the

obtained solution, considering the rest of the soft constraints. Stølevik et al. [80]

integrated CP and VNS to solve the NRP, in which a feasible initial solution is

generated via CP, considering all hard constraints, and then, a VNS approach

along with a CP destroy-and-repair strategy further improve attained solutions.

Bunton et al. [11] employed IP within Ant Colony Optimization algorithm to

generate feasible solutions since pure randomization often results in infeasible

solutions. They also used IP to sub-optimize the generated rosters by searching

neighbourhoods of past best solutions.

Our main purpose in this chapter is to extend the reach of exact methods

through hybridisation of exact methods. Indeed, using an IP approach as the core

solution method, we employ a CP approach and other algorithmic aids to improve

the efficiency of the overall algorithm. This is based on our preliminary experiments

where we observed that CP outperformed IP in finding feasible solutions for some

hard-to-solve instances. That said, we decided to improve the reach of IP using CP

through a hybrid setting. We do not intend to design a hybrid algorithm capable

of generating the best result for challenging problem instances, particularly in

comparison with advanced hybrid meta-heuristics [78]. Instead, we aim to develop

a hybridisation of IP and CP which preserves benefits of exact methods, and is

able to outperform each of which alone. Another motivation to hybridise IP and

CP is due to the significant improvement of commercial solvers [35] in terms of

performance and robustness which are able to solve instances to an extent that is

often satisfactory according to the underlying business requirements. Aiming to

ease the implementation process and to increase the applicability of the hybrid

algorithm, we try to not apply any low-level or convoluted hybridisation settings.
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The proposed algorithm is designed to obtain the best result in a pre-defined,

relatively short computational time. In addition, the proposed algorithm does not

depend on any specific settings regarding the importance of constraints, hence

each constraint can be defined as hard or soft during the search process (i.e. the

setting of constraints can be changed without altering the search strategy or its

parameters). We formulate the problem according to a general model reported in

the literature, and evaluate the proposed algorithm using three different datasets

existing in the literature.

The rest of this chapter is organised as follows: problem definition and assump-

tions are presented in Section 2.2. The IP and CP formulations are presented in

Sections 2.3 and 2.4, respectively. In Section 2.5, we elaborate on the proposed

hybrid algorithm and the associated components. Computational results are

reported in Section 2.6, and concluding remarks are briefly discussed in Section

2.7.

2.2 Problem Definition

In this section, we provide a brief description of the studied problem and the

relevant constraints similar to two common models existing in the literature

described by Burke et al. [19] and Curtois and Qu [26], which are called hereafter

Model-I and Model-II, respectively. The first model represents one of the most

common sets of benchmark instances in the literature, and the second one is

relevant to the latest instances introduced in the literature. For further information

regarding the problem, we refer interested readers to Burke et al. [19] and Curtois

and Qu [26], where the detailed description of the problem as well as some instances

are presented.

In these models, it is assumed that the current roster is modelled over a

specified planning horizon in an isolated way, i.e. no information (history) from
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the previous roster is used to construct the current one. In addition, a day off is

considered as a shift type for modelling purposes. We have observed in various

health settings that nurse rostering is performed in each hospital ward separately,

and therefore, a single-skill set applies well in practice compared with a multi-skill

set. In case multiple skills (grades) are required within a ward, they can be

accommodated into the current models by considering different personal contracts.

For example, if there is a need for head nurses for some particular shift types,

it can be modelled using coverage constraints (see Constraint 2 ) to consider at

least one place for those specific shift types within the planning period. Therefore,

it is assumed that all nurses belong to the same skill category. For the sake of

simplicity, it is also assumed that all rosters start from Monday and are made of

a whole week (i.e. seven days with a two-day weekend).

In the following, the constraints of the problem are explained:

1. Maximum one assignment per shift type per day for each nurse,

2. The number of shift types for each day must be fulfilled [the penalty associ-

ated with this constraint is equal to the total amount of violated coverage

multiplied by the specified relevant user-defined weight],

3. The minimum and maximum number of:

(a) shift assignments within the scheduling period [the penalty associated

with this constraint is equal to the total number of all violated shift

assignments multiplied by the relevant user-defined weight],

(b) consecutive working days over the planning horizon,

(c) working hours within the scheduling period (and/or during a week),

(d) shift assignments within a week,

(e) shift assignments at the weekend,

(f) consecutive shift types over the planning period,

4. Minimum number of days off after a night shift or a series of night shifts,

12



5. Over the weekends, there should be either an assignment to all days of

weekends or no assignments at all,

6. No night shift before free weekends,

7. Maximum number of consecutive worked weekends, when there is at least

one weekend assignment [the penalty associated with this constraint is equal

to the total number of all violated consecutive worked weekends multiplied

by the relevant user-defined weight],

8. Requested shifts (days) on or off, where some user-defined shifts (days) must

(not) be allocated for a particular nurse within the planning horizon [the

penalty associated with this constraint is equal to the total number of all

violated assignments multiplied by the relevant user-defined weight],

9. Forbidden shift type patterns (e.g. the ND pattern, where the shift type D

is not allowed to be assigned right after the shift type N).

For constraints 3.f and 9, it is assumed that the last day of the previous planning

period and the first day of the next planning horizon are days off. Furthermore,

for Constraint 3.f, it is assumed that there are an infinite number of consecutive

shifts assigned at the end of the previous planning period and at the start of the

next planning period. For Constraint 3.b, a similar arrangement applies with days

off. Indeed, this constraint limits the number of consecutive working days over

the planning horizon for each nurse. According to this constraint, the number of

consecutive working days assigned to each nurse should be within a particular

range. The minimum limit could be provided to avoid unnecessary fragmentation

in a schedule. The maximum restriction is often provided to avoid abnormal

assignment of consecutive working days to a particular nurse, which may cause

extreme fatigue, thereby lowering the quality of caring service.

Table 2.1 shows the availability of each constraint and whether they are soft

for Model-I and Model-II. In this table, Y and N designate the presence of a
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Table 2.1 – The setting of constraints for Model-I and Model-II

Constraint Model I [19] Model II [26]

1 Y Y
2 Y Y [S]

3.a Y Y(only max)
3.b Y Y(only max)
3.c Y Y
3.d Y [S] N
3.e Y Y(only max)
3.f Y Y
4 Y N
5 Y N
6 Y N
7 Y [S] N
8 Y [S] Y(no day on) [S]
9 Y Y

constraint within each model. All constraints are considered hard except for those

which are tagged by [S]. It should be noted that as hardness and softness of

constraints could be varied per instance, the configuration of models presented

in Table 2.1 only represents the majority of instances. As it can be seen, both

models are varied in terms of the availability of constraints and whether they are

applied as hard or soft, which gives us a broader benchmark basis to evaluate the

studied research questions.

In the next two sections, i.e. Section 2.3 and 2.4, we formulate this problem

using IP and CP, respectively.

2.3 IP Formulation

Here, we present the mathematical formulation using IP based on the definitions

and assumptions provided in Section 2.2 for all the constraints. For the sake of

consistency, we also use the same numbering of constraints as in Section 2.2. For

demonstration purposes, we provide here a combined formulation (of Model-I

and Model-II) in which constraints 2.2, 2.3d, 2.7, and 2.8 are soft. In case one

needs to consider any of these constraints as hard, they need to set the weight
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associated with those constraints in the objective function to a significantly big

value or remove the associated auxiliary variables in those constraints and objective

function.

Sets and parameters:

E set of nurses.

D set of days in the planning horizon.

A set of shift types.

A′ set of all shift types except day off.

W set of weeks in the planning horizon.

Ha set of shift types that cannot be assigned immediately after shift

type a ∈ A.

Qad set of pre-assigned nurses to shift type a ∈ A on day d ∈ D.

Mmin
e ,Mmax

e minimum and maximum number of shifts that can be assigned to

nurse e ∈ E within the planning period.

Wmin
w ,Wmax

w minimum and maximum number of shifts that can be assigned to a

nurse within week w ∈ W .

V min
d , V max

d minimum and maximum number of shifts that can be assigned to

nurses on day d ∈ D.

Amin, Amax minimum and maximum number of hours that can be assigned to

each nurse during the planning period.

Emin
w , Emax

w minimum and maximum number of hours that can be assigned to

each nurse during week w ∈ W .

Nmin, Nmax minimum and maximum number of consecutive working days over

the planning period. b is the index of possible number of consecutive

working days.

Hmin
a , Hmax

a minimum and maximum number of consecutive shift type a ∈ A over

the planning period. c is the index of possible number of consecutive
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shifts.

Kmin, Kmax minimum and maximum number of worked weekends over the plan-

ning horizon.

Cmax maximum number of consecutive worked weekends over the planning

period.

Ua total workloads (hours) of shift type a ∈ A within the planning

period.

Uaw total workloads (hours) of shift type a ∈ A during week w ∈ W .

Bwa
ew the weight associated with the minimum and maximum number of

shift assignments to nurse e ∈ E within week w ∈ W .

Bcwx
ew the weight associated with the maximum number of consecutive

weekends if nurse e ∈ E works at weekend of week w ∈ W .

Brso
ead the weight associated with requested shift a ∈ A on day d ∈ D for

nurse e ∈ E.

Bcv
d the weight associated with the minimum and maximum number of

shifts that can be assigned to nurses on day d ∈ D.

Decision variables:

xead = 1 if shift type a ∈ A on day d ∈ D is assigned to nurse e ∈ E,

= 0 otherwise.

ped = 1 if nurse e ∈ E works on day d ∈ D, = 0 otherwise.

kew = 1 if nurse e ∈ E works at weekend of week w ∈ W , = 0 otherwise.

yea total number of times that shift type a ∈ A is assigned to nurse

e ∈ E over the planning period.

zewa total number of shift type a ∈ A assigned to nurse e ∈ E within

week w ∈ W .

vwam
ew , vwax

ew total incurred penalty relevant to the minimum and maximum

number of shift assignments to nurse e ∈ E within week w ∈ W .
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vcwx
ew the incurred penalty relevant to maximum number of consecutive

weekends if nurse e ∈ E works at weekend of week w ∈ W .

vrsoead total incurred penalty relevant to requested shift a ∈ A on day

d ∈ D assigned to nurse e ∈ E.

vcvmd , vcvxd total incurred penalty relevant to the minimum and maximum

number of shifts that can be assigned to nurses on day d ∈ D.

Constraints: ∑
a∈A

xead = 1, ∀e ∈ E, d ∈ D (2.1)


ped =

∑
a∈A′

xead, ∀e ∈ E, d ∈ D

V min
d − vcvmd ≤

∑
e∈E

ped ≤ V max
d + vcvxd , ∀d ∈ D

(2.2)


yea =

∑
d∈D

xead, ∀e ∈ E, a ∈ A

Mmin
e ≤

∑
a∈A

yea ≤Mmax
e , ∀e ∈ E

(2.3a)



ped +

(
b− 1−

d+b∑
g=d+1

peg

)
+ pe(d+b+1) ≥ 0,

∀e ∈ E, d ∈ {1 . . . |D| − (b + 1)},

b ∈ {1 . . . Nmin − 1}

Nmax+d∑
g=d

peg ≤ Nmax, ∀e ∈ E, d ∈ {1 . . . |D| −Nmax}

(2.3b)



Amin ≤
∑
a∈A

yeaUa ≤ Amax, ∀e ∈ E

zewa =
7w∑

d=7(w−1)+1

xead, ∀e ∈ E, a ∈ A,w ∈ W

Emin
w ≤

∑
a∈A

zewaUaw ≤ Emax
w , ∀e ∈ E,w ∈ W

(2.3c)

Wmin
w − vwam

ew ≤
∑
a∈A

zewa ≤ Wmax
w + vwax

ew , ∀e ∈ E,w ∈ W (2.3d)
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
kew ≤ pe(7w−1) + pe(7w) ≤ 2kew, ∀e ∈ E,w ∈ W

Kmin ≤
∑
w∈W

kew ≤ Kmax, ∀e ∈ E
(2.3e)



xead +

(
c− 1−

d+c∑
g=d+1

xeag

)
+ xea(d+c+1) ≥ 0,

∀e ∈ E, a ∈ A, d ∈ {1 . . . |D| − (c + 1)},

c ∈ {1 . . . Hmin
a − 1}

Hmax
a +d∑
g=d

xeag ≤ Hmax
a , ∀e ∈ E, a ∈ A, d ∈ {1 . . . |D| −Hmax

a }

(2.3f)

xend ≤ xen(d+1) + 1− pe(d+1), ∀e ∈ E, d ∈ {1 . . . |D| − 1}

xend − pe(d+1) ≤ 1− pe(d+2), ∀e ∈ E, d ∈ {1 . . . |D| − 2}
(2.4)

xer(7w−1) = xer(7w), ∀e ∈ E,w ∈ W (2.5)

xen(7w−2) ≤ pe(7w−1) + pe(7w), ∀e ∈ E,w ∈ W (2.6)

Cmax∑
i=0

ke(w+i) ≤ Cmax + vcwx
ew , ∀e ∈ E,w ∈ {1 . . . |W | − Cmax} (2.7)

xead = 1− vrsoead, ∀e ∈ Qad, a ∈ A, d ∈ D (2.8)

xead + xeh(d+1) ≤ 1, ∀e ∈ E, a ∈ A, h ∈ Ha, d ∈ {1 . . . |D| − 1} (2.9)

xead, ped, kew ∈ {0, 1}, yea, zewa ∈ Z, ∀e ∈ E, a ∈ A, d ∈ D,w ∈ W

18



Objective function:

min
∑
e∈E

∑
w∈W

(Bwa
ew (vwam

ew + vwax
ew ) + Bcv

d (vcvmd + vcvxd ) + Bcwx
ew vcwx

ew )

+
∑
e∈Qad

∑
a∈A

∑
d∈D

(Brso
eadv

rso
ead)

Constraint 2.1 makes sure that only one shift type is assigned to a nurse during

a day. Constraint 2.2 defines auxiliary variable ped which is restricted to the

minimum and maximum values V min
d and V max

d , respectively. These constraints

assure that the required demand for each day within the planning period would be

satisfied. Variables vcvmd and vcvxd capture the incurred penalty of possible violations

which is later weighted by the value Bcv
d in the objective function. Constraint 2.3a

defines variable yea which counts the total number of shifts assigned to a nurse

for a specific shift type. Mmin
e and Mmax

e , defined for each nurse, confine variable

yea. In Constraint 2.3b, to take into account the number of consecutive working

days below the minimum value Nmin, we count all sequences individually up to

the minimum exclusively. However, for the maximum part, we only need to count

all the sequences which have a length of one day more than the maximum value

Nmax. Thus, all the sequences having a length of more than the maximum are

counted accordingly. Constraint 2.3c ensures that the total number of working

hours for each nurse is limited to the minimum and maximum value Amin and

Amax, respectively. To restrict working hours within a week, variable zewa is

defined which is restricted to take values between Emin
w and Emax

w . Working hours

for each shift type is already given in parameters Ua and Uaw. Constraint 2.3d

restricts the total number of shift assignments within a week to the minimum and

maximum values Wmin
w and Wmax

w . The incurred penalty due to possible violations

is measured by variables vwam
ew and vwax

ew which are weighted by the value Bwa
ew in the

objective function. Constraint 2.3e limits the total number of shift assignments at
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weekends for each nurse by defining the auxiliary variable kew. This variable only

takes value if at least one day within a two-day weekend is assigned to a nurse.

Constraint 2.3f is similar to Constraint 2.3b, but only sequences of a particular

shift type are counted and restricted to values Hmin
a and Hmax

a . In Constraint 2.4,

we assume that there should be two days off after a night shift or a series of night

shift types. Constraint 2.5 and 2.6 utilise weekends by restricting them to be

assigned by either no assignment or a full two-day assignment, and also no night

shift assignment on Fridays. In constraints 2.2, 2.4, 2.5, and 2.6, n and r indicate

night and rest shift types, respectively. Constraint 2.7 adds more limitations

to Constraint 2.3e by restricting the maximum consecutive sequences of worked

weekends to the value Cmax. Possible violations are captured in the variable

vcwx
ew and weighted by the parameter Bcwx

ew in the objective function. Requested

shifts (days) on or off are taken into account in Constraint 2.8 where the incurred

penalty is captured by the variable vrsoead and weighted by the parameter Brso
ead in

the objective function. Constraint 2.9 is dedicated to forbidden shift type patterns

within the planning period. The objective function is the weighted sum of all the

auxiliary variables associated with soft constraints 2.2, 2.3d, 2.7, and 2.8, and

their relevant weights.

The proposed IP formulation is similar to most IP formulations reported in

the literature [74, 13]. However, there are often some differences in the softness

of constraints, and therefore, the associated objective function. The softness

of constraint is defined as the proportional relationship between the number of

soft and hard constraint which is directly relevant to defining which constraints

are considered hard or soft by the user in a model. For example, Santos et al.

[74] proposed an IP formulation for the problem instances introduced in the first

International Nurse Rostering Competition (INRC-I) [39]. In their formulation,

all constraints are considered soft, except Constraint 2.2. That said, the objective

function is also different, which is the weighted sum of all penalties associated
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with the remaining soft constraints. In this dissertation, it is tried to not rely

on a particular problem setting (e.g. softness of constraints) in the design of the

proposed hybrid algorithms to better investigate the defined research questions.

The main reason is to increase the capability and compatibility of the formulation

and solution method to accommodate more computational instances that exist

in the literature which often have different settings of constraints. Another

reason is to broaden the practicality aspect of the research. In practice, settings of

constraints could be changed based on various reasons such as adding new business

requirements. Furthermore, IP and CP formulations are rather flexible (often

using variants of mathematical programming language [35]) when it comes to

softness and hardness of constraints. For some discussions regarding the presented

formulation, we refer interested readers to Rahimian et al. [67].

2.4 CP Formulation

In this section, we present our CP formulation based on the Constraint Satisfaction

Problem (CSP) model using the definitions and assumptions provided in Section

2.2. It is worth noting that we only utilise CP for generating feasible solutions in

the configuration of the proposed hybrid algorithm, and thus, there is no need

to model any soft constraints nor to define a Constraint Optimisation Problem.

Nevertheless, all the soft constraints in Model-I and Model-II are defined as hard

constraints in the following CP model. That said, first, we concisely explain

two types of global constraints, which are required in the CP model: Cardinality

and Stretch global constraints. For more information about global constraints in

CP, we refer the interested readers to Laburthe and Jussien [48], Van Hoeve and

Katriel [84], and Beldiceanu et al. [7].

Cardinality constraint (aka. GCC or Generalised Cardinality) bounds the

number of times that variables take a certain set of domain values. It is written
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as:

cardinality (x, v, l, u)

where x is a set of variables (x1, . . . , xn); v is an m-tuple of domain values of the

variables x; l and u are m-tuples of non-negative integers defining the lower and

upper bounds of the times value v may be taken by variable x, respectively. The

constraint defines that, for j = 1, . . . ,m, at least lj and at most uj of the variables

x take value vj.

Stretch constraint bounds the sequence of consecutive variables that take the

same value (stretch), i.e. xj−1 6= 1, xj, . . . , xk = v, xk+1 6= v. It is expressed as:

stretch (x, v, l, u, P )

where x is a set of variables (x1, . . . , xn); v is an m-tuple of possible domain values

of x; l and u are m-tuples of lower and upper bounds for x, respectively. P is a

set of patterns, i.e. pairs of values (vj, vk), requiring that when a stretch of value

vj immediately precedes a stretch of value vk, the pair (vj, vk) must be in P .

As we use the same parameters as defined in Section 2.3, we define any

additional parameters as well as the variables and constraints of the CP model

next.

Sets and Parameters:

U the vector of total workloads (hours) of all shift types within the planning

period.

Uw the vector of total workloads (hours) of all shift types during week w ∈ W .

Decision variable:

sed integer variable indicating the shift type assigned to nurse e ∈ E on day

d ∈ D.
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Constraints:

cardinality

(⋃
e∈E

sed, A, V
min
d , V max

d

)
, ∀d ∈ D (2.2)

cardinality

(⋃
d∈D

sed, A,M
min
e ,Mmax

e

)
, ∀e ∈ E (2.3a)

stretch

(⋃
d∈D

sed, A
′, Nmin, Nmax, P

)
, ∀e ∈ E,P = {} (2.3b)


Amin ≤ prod(

⋃
d∈D

sed, U) ≤ Amax, ∀e ∈ E

Emin
w ≤ prod(

7w⋃
d=7(w−1)+1

sed, Uw) ≤ Emax
w , ∀e ∈ E,w ∈ W

(2.3c)

cardinality

 7w⋃
d=7(w−1)+1

sed, A,W
min
w ,Wmax

w

 , ∀e ∈ E,w ∈ W (2.3d)

cardinality

( ⋃
w∈W

se(7w) + se(7w−1), r, |W | −Kmax, |W | −Kmin

)
, (2.3e)

∀e ∈ E

stretch

(⋃
d∈D

sed, a,H
min
a , Hmax

a , P

)
, ∀e ∈ E, a ∈ A,P = {} (2.3f)

if sed = n, thense(d+1) = r ∧ se(d+2) = r, ∀e ∈ E, d ∈ {1, . . . |D| − 2} (2.4)

se(7w−1) = se(7w), ∀e ∈ E,w ∈ W (2.5)

if se(7w−2) = n, thense(7w−1) 6= r ∨ se(7w) 6= r, ∀e ∈ E,w ∈ W (2.6)
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stretch

( ⋃
w∈W

se(7w) + se(7w−1), r, |W | − Cmax, |W | , P

)
, ∀e ∈ N,P = {} (2.7)

sed = a, ∀e ∈ Qad, a ∈ A, d ∈ D (2.8)

if sed = a, thense(d+1) /∈ Ha, ∀e ∈ E, d ∈ {1, . . . |D| − 1} (2.9)

sed ∈ A, ∀e ∈ E, d ∈ D

Constraint 2.2 and 2.3a restrict the number of assigned shifts using cardinality

constraint for all days and nurses, respectively. In Constraint 2.3b, sequences of

working shifts (a ∈ A′) using stretch constraint are limited to Nmin and Nmax,

where there is no need to any specific pattern. Constraint 2.3c is very similar to its

relevant IP form, where function prod(x, v) is defined as the product of all values

of set x, and the relevant possible domain values in vector v. Constraints 2.3d and

2.3e resemble Constraint 2.2. Constraint 2.3f is the same as Constraint 2.3b, where

sequences of a particular shift type are taken into account. In Constraint 2.4, we

assume that there should be two days off after a night shift or a series of night

shift types. Using stretch global constraint, Constraint 2.7 restricts the length of

sequences of rest shifts (instead of working shifts) to |W | −Cmax and |W |, since it

is easier to be counted in terms of modelling. Constraints 2.5, 2.6, 2.8, and 2.9 are

similar to their IP forms, where we use some simple reified (if-then) relations. It

should be noted that the first constraint is implicitly satisfied due to the inherent

structure of the CP model, where only a single shift type can be assigned to each

nurse at a day. In addition, there may exist some symmetries between nurses for a

particular problem. For example, if there is a set of contractual constraints in which

nurses are assigned based on different contracts (e.g. part-time and full-time),

those nurses on a particular contract could have a number of permutations leading
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to the same solution. This sort of symmetry is common in the NRP. To resolve

these symmetry issues and increase the performance of CP solvers over the CSP

model, we apply the symmetry breaker switch (by setting parameter Symmetry in

Gurobi) with default value in the IP solver and add some lexicographic ordering

constraints [75, 31] to the main variable sed by taking into account the Constraint

2.8 for each group of nurses working on the same working contract in a similar

way described by Smith [77].

2.5 Integration of IP and CP

For relatively small- to medium-size problems (see Section 2.6 for more details),

IP solvers are often efficient enough to find the optimal solution or near-optimal

solutions, and to generate strong lower-bounds (e.g. see instances solved to

optimality via IP in Section 2.6 or Santos et al. [74]). Similarly, CP solvers are

capable of finding feasible solutions efficiently. However, using these approaches

on their own for solving large-scale problems, or even small-scale problems with

a highly-constrained structure often leads to poor performance. For example,

solving most of the benchmark instances using the model presented in Section 2.3

with a standard IP solver, we were not able to obtain an optimal solution (and in

some cases even a good-quality solution) in a reasonable amount of time, where

some instances took more than 24 hours to solve (e.g. see Table 2.5). Similarly, a

standard CP solver results in poor performance, since it often takes a long time to

achieve an optimal solution. Therefore, it is intuitive to hybridise them in order

to utilise their complimentary strengths for efficiently solving the NRP. That said,

we investigate how we can extend the reach of IP and CP through a hybridisation

setting. In fact, we combine the strength of IP in obtaining lower-bounds and

finding an optimal solution with the capability of CP in finding feasible solutions.

Applying the IP approach as our core solution component, we use a CP approach
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and other algorithmic modules to increase its efficiency. Moreover, IP and CP on

their own are quite efficient in solving some specific problem structures such as

network flow and bin packing problems [35, 45], which further motivates us to

combine such strengths together in order to achieve better overall performance.

To improve the efficiency of the hybrid algorithm, we also exploit the problem

structure to provide valuable information such as difficulty of constraints, thereby

setting the parameters of the proposed algorithm adaptively. Applying a high-level

hybridisation scheme of IP and CP, our purpose is to extend the reach of IP and

CP through a hybrid algorithm that is able to efficiently generate good-quality

solutions for a wide range of problem instances, particularly within a relatively

short computational time.

In the following, we provide a brief description of the performance of the

hybrid algorithm, and then elaborate on each associated component individually.

After a quick pre-processing in order to create appropriate data structures for

the algorithm, at the first step, we employ an IP solver to pre-solve the problem

in order to identify any valuable information, which can be used to adjust the

parameters of other components accordingly. In the next step, we employ a CP

solver to iteratively solve various CSP models in order to generate a good-quality

solution, and to identify difficult constraints. Then, using the best-obtained

solution provided within the CSP generation step, we further improve the attained

solution by an IP solver in the remaining time and report the final solution to

the user. We also add two more components to reinforce the search process using

the exploited problem-specific information: softness adjustment and lower-bound

enhancement. The former attempts to modify the softness of each constraint based

on a pre-defined threshold in order to tighten the problem formulation, thereby

aiming to help the IP solver to generate better bounds; and the latter aims to

provide a stronger lower-bound for the IP solver by decomposing the problem.

It should be noted that the proposed hybrid algorithm runs in a pre-defined
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Figure 2.1 – Schematic diagram of the proposed hybrid algorithm

time limit to solve the problem. Thus, the user is able to determine the running

time of each component by setting the relevant computational time parameter.

It is noteworthy to mention that all components of the hybrid algorithm work

with the IP model except the CSP generation step, for which the CSP model is

employed. The schematic diagram of the proposed algorithm is depicted in Figure

2.1. Next, we explain each component individually in more details. It is also noted

that the quality of solutions is evaluated by turning all hard constraints except

Constraint 1 into soft constraints (by assigning a significantly large weight (e.g.

10,000)). That said, the quality of the obtained solutions is measured based on

the total number of violations of soft constraints.

Pre-solve: In a nutshell, the duty of this step is to extract some information

from the problem, and to regulate the parameters of the main IP solver adaptively.

In fact, this component is the first step in most commercial solvers to analyse and

simplify the problem structure, and also to identify any specific structures such

as network flow or assignment problems [35]. If the IP solver can identify any

particular structures, experimentally speaking, it is often led to better performance

during the branch-and-bound algorithm. Here, we only call the pre-solve step of

an IP solver from the hybrid algorithm as a black-box. We use the information

obtained from this step including the obtained lower-bound and relaxed objective

27



function to predict if there are any specific structures, thereby setting the para-

meters of the IP solver. According to our experiments, within the pre-solve step,

if the IP solver provides a stronger (bigger in our problem setting) lower-bound

than the relaxed objective function value (which is obtained by relaxing all integer

constraints), the employed IP solver might be able to solve the problem in better

performance due to the identification of a specific data structure. We switch

on the relevant parameter for the pre-solve step of the main IP solver to the

highest degree (aggressive mode) automatically (e.g. setting parameter presolve

in Gurobi). Moreover, using the reported number of constraints and variables in

this step, if they are more than user-defined threshold psThr, we call the problem

difficult, thus, we set the search strategy of the main IP solver to spend more effort

on obtaining a feasible solution rather than on proving optimality. We do not

change the default search strategy in case a problem is not difficult to solve. In

most modern solvers, the user can modify the search strategy by setting a specific

parameter defined therein. For example, in Gurobi IP solver, the user can tailor

the search strategy by setting the parameter mipfocus.

CSP generation: After we set some parameters of the main IP solver, a CP

solver is employed to generate a good-quality initial solution and to identify difficult

constraints. This solver solves the problem according to the CSP model presented

in Section 2.4. However, in our preliminary experiments on the benchmark

instances, the CP approach does not provide very good-quality or even feasible

solutions within a limited computational time (e.g. see Table 2.5). To address

this issue, we implement the following procedure: at each iteration i, we modify

and then solve the CSP model p considering all those constraints that have a

weight higher than the user-defined threshold cspThr. If modified problem p′i

is feasible, we generate a number of different solutions based on p′i according

to the user-defined parameter numSols. Otherwise, we decrease the threshold

value by one unit, and go to the next iteration. Therefore, on each threshold
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Algorithm 1: The pseudo code of CSP generation in the hybrid algorithm

1 Solutions, p
′
i−1 = empty;

2 i = 1;
3 while true do

4 p
′
i = generateCSP(p, cspThr);

5 if p
′
i is feasible then

6 for j = 1 to numSols do

7 Solutions[p
′
i].add(solve(p

′
i));

8 end

9 if

∣∣∣∣1− best(Solutions[p
′
i−1])

best(Solutions[p
′
i])

∣∣∣∣ ≤ q then

10 break
11 end

12 else
13 cspThr = cspThr - 1;

14 if p
′
i == p then

15 break
16 end

17 end
18 i++;

19 end
20 return [best(Solutions)]

level or iteration, there might be several feasible solutions, which are stored in

data structure Solutions. This process continues until the quality gap between

the best-obtained solutions in two consecutive levels is less than q percent, or p′i

is equal to p. Finally, all stored solutions are evaluated according to p and the

best-quality solution is reported. Then, the reported solution is imported to the IP

solver for further improvement. The pseudo code of this procedure is presented in

Algorithm 1, where p, p′i, cspThr, q, and numSols indicate the original problem,

the new generated problem in each iteration i, the user-defined threshold level to

cut off the constraints, the maximum gap between the quality of the best-obtained

solutions in two consecutive threshold levels, and the user-defined number of

solutions required to be generated for each threshold level, respectively. In this

algorithm, Solutions is a data structure which stores a CSP and all the associated

solutions, and function best evaluates the quality of the input solution according
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to the original problem setting.

Indeed, the aim of this step is to construct a weak CSP and iteratively

strengthen it until some stopping criteria are met. Note that solving a CSP and

generating a number of solutions accordingly is done quite fast, often within a

few seconds. Nevertheless, experimentally speaking, the time limit of the CP

solver is set to 10 seconds. Furthermore, it should be noted that although a

stronger CSP (i.e. a CSP with more constraints) is generated while progressing

through lower threshold levels, and therefore, it is always expected to obtain

better solutions afterwards, the quality of generated solutions is varied within

each level. This is because the CP solver is indeed a satisfiability solver [3] rather

than an optimisation solver which tries to find a solution that satisfies all included

constraints in the CSP model. Therefore, the quality of generated solutions in

each level can be different according to the defined objective function in the

optimisation problem.

Using the information obtained from the threshold levels within the CSP

generation step, we can also find out an estimate for the computational difficulty

of each constraint: if the difference in solution times attained by removing a

constraint from a problem in order to solve a new modified problem is significant,

we count it as a difficult constraint. Indeed, we measure the time which takes to

solve the problem before and after adding a constraint. Experimentally speaking,

difficult constraints are hard to handle for IP and CP solvers and often adding

them to a problem instance needs more time and effort. In our preliminary

experiments, we realised that 10 seconds is sufficient for most benchmark instances.

Identifying difficult constraints helps us in the softness adjustment step to tighten

the formulation of the problem.

IP Solver: In this component, we use an IP solver to solve the problem within

the remaining time, to which an initial solution generated from the CSP generation

step is imported. Indeed, we use the solution obtained from the CP solver as a
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warm start for the IP solver. To improve the performance of the IP solver, we

also apply two more techniques performed within the softness adjustment and

lower-bound enhancement steps as described next.

Softness adjustment: In order to improve the efficiency of the IP solver

during the search process, we modify the weights (e.g. see Bwa
ew and Brso

ead in

Section 2.3) in the objective function due to the difficulty degree of constraints

obtained within the CSP generation step. According to this degree, if a constraint

is not difficult, we impose it to the IP solver as a hard constraint. In fact, only

difficult constraints are kept in the objective function, and the remaining ones are

moved to the set of hard constraints. This is similar to modifying the associated

weights with hard constraints in the objective function to a significantly large

value. Theoretically, this process may lead to an infeasible problem due to possible

conflicts between hard constraints. In this case, we undo the relevant change

(i.e. declare the constraint as soft again) and continue the process for the rest

of the constraints. Finally, we solve the new modified problem using the IP

solver. This component helps to reduce the search space by tightening the problem

formulation, which often results in better efficiency during the search process, and

higher-quality feasible solutions.

Lower-bound enhancement: In this step, we try to find out a better lower-

bound by decomposing the problem to different sub-problems, and then, to solve

each by using an IP solver. For this purpose, we decompose the problem in

three ways: first, we break down the problem to weekly rosters. For each weekly

roster, all constraints are taken into account except those associated with the

whole planning horizon. These constraints are not examined unless their imposed

restriction is valid for a week. For example, if the total number of assignments for

each nurse within the planning period is 5, it is added to the involved constraints.

Second, we decompose the problem to personal schedules for each nurse. In

this case, all constraints are considered excluding Constraint 2.2. Finally, we
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decompose the problem to groups of similar nurses. To identify similar nurses,

we iterate through the set of nurses and constraints except Constraint 2.2 to find

out nurses who are included in a similar set of constraints. In order to facilitate

this process, we define data structure LBE = {(e, ce)|e ∈ E, ce = {c⇐\ e|c ∈ C}},

where E and C show the set of nurses and constraints, ce denotes the set of

constraints which affects nurse e, and ⇐ \ indicates involvement. Then, we group

all nurses who have the same set of ce. Thus, each group shows a sub-problem.

It should be noted that the identified groups do not necessarily partition the set

of nurses or complement each other. Experimentally speaking, these groups are

often associated with different working contracts in the problem data. Indeed,

we try to find out whether there is an inevitable conflict in the model, which

may be discovered before solving the problem by decomposing it into smaller

sub-problems. Finally, the best lower-bound calculated in this step by solving

different sub-problems is imposed to the IP solver by setting the relevant parameter

(e.g. setting parameter start in Gurobi).

It should be noted that what is being done in this step is a semantic and

heuristic decomposition rather than a mathematical decomposition. It is designed

to obtain a better lower-bound by focusing on approximately independent ele-

ments of the problem such as weeks and contracts. In effect, it tries to find

out elements/constraints of the problem which are not able to be satisfied even

in a subset and rather independent part of the problem. For each part, those

constraints affecting more than a single part of the problem become loose (apart

from those that are valid for that single subset of the problem) to make sure that

the obtained lower-bound is valid for the whole problem. The motivation behind

this heuristic decomposition comes from the analysis conducted by Glass and

Knight [32].
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2.6 Computational Results

The algorithm presented in this chapter is tested on three different datasets:

Dataset-I consists of 9 instances published by Burke et al. [19], which are made

based on real-world cases. Dataset-II comprises 11 randomly generated instances

introduced in this dissertation [65], which are made to extend our benchmarks

according to the most difficult instance in Dataset-I, i.e, ORTEC01. Another

reason to create this dataset is the unavailability of a commonly-used benchmark

dataset in the literature on which about eight solution methods were evaluated

(this dataset was the first dataset on which the solution methods presented in this

thesis were tested). This dataset consists of 11 instances which are captured from

a hospital within a year. That said, these instances are similar in many aspects

except for caring coverages and pre-assignments which makes them computationally

different. The process of generating this dataset is elaborated in Appendix A.

Dataset-III consists of 24 instances that have been recently introduced by Curtois

and Qu [26] to challenge state-of-the-art algorithms. Most instances in the

benchmark datasets are known to be computationally intractable for exact and

heuristic methods, thereby allowing us to study the extent of the hybrid algorithm

comprehensively. The characteristic of benchmark instances (e.g. size and softness

of constraints, number of variables and constraints) in these datasets are varied per

instance, which makes them an appropriate benchmark for the proposed algorithm.

Tables 2.2 and 2.3 show some characteristics of the benchmark instances in the

three datasets including number of nurses, shift types, days, and number of

pre-assignments as well as number of IP variables and constraints (before any

reductions). In Table 2.2, instances belonging to dataset-II are prefixed by NRP.

It should be noted that the number of variables and constraints are different for

the same input size (number of fundamental elements such as nurses and days)

because of different settings of constraints. Indeed, although the applied sets of
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Table 2.2 – The characteristics of benchmark dataset-I and dataset-II

Instance Nurses Shift
types

Days Pre. Var. Const. Instance Nurses Shift
types

Days Pre. Var. Const.

GPOST 8 3 28 8 5680 5504 NRP02 16 5 33 6 21,923 20,580
GPOSTB 8 3 28 0 5680 5496 NRP03 16 5 33 15 21,929 20,586
ORTEC01 16 5 33 32 19,096 19,170 NRP04 16 5 33 5 21,925 20,582
ORTEC02 16 5 33 42 19,101 19,175 NRP05 16 5 33 5 21,925 20,582
Valouxis-1 16 4 28 0 9776 9968 NRP06 16 5 33 4 21,924 20,581
SINTEF 24 6 21 96 8118 6927 NRP07 16 5 33 12 21,926 20,583
WHPP 30 4 14 0 6000 5842 NRP08 16 5 33 35 21,924 20,581
MILLAR-1 8 3 14 0 1956 1820 NRP09 16 5 33 1 21,920 20,577
LLR 27 4 7 107 1139 979 NRP10 16 5 33 9 21,926 20,583
NRP01 16 5 33 4 21,924 20,581 NRP11 16 5 33 3 21,923 20,580

Table 2.3 – The characteristics of benchmark dataset-III

Instance Nurses Shift
types

Days Pre. Var. Const. Instance Nurses Shift
types

Days Pre. Var. Const.

Instance01 8 1 14 34 301 517 Instance13 120 18 28 1081 68,027 65,257
Instance02 14 2 14 76 748 1030 Instance14 32 4 42 487 7543 9081
Instance03 20 3 14 84 1366 1896 Instance15 45 6 42 670 14,521 18,736
Instance04 10 2 28 91 1052 1622 Instance16 20 3 56 400 5158 7498
Instance05 16 2 28 138 1620 2676 Instance17 32 4 56 640 9996 13,742
Instance06 18 3 28 171 2390 3458 Instance18 22 3 84 590 8391 12,289
Instance07 20 3 28 208 2639 3769 Instance19 40 5 84 1154 21,983 29,391
Instance08 30 4 28 285 4799 6443 Instance20 50 6 182 3218 68,144 78,434
Instance09 36 4 28 304 5704 7132 Instance21 100 8 182 6502 171,542 210,222
Instance10 40 5 28 364 7526 9806 Instance22 50 10 364 6438 211,720 214,270
Instance11 50 6 28 436 10,842 12,582 Instance23 100 16 364 13010 639,836 644,926
Instance12 60 10 28 542 20,154 20,574 Instance24 150 32 364 19209 1,842,080 1,733,557

constraints are the same, they could be configured differently for each problem

instance. For example, for the constraint “minimum and maximum number of

working days”, the value of minimum and maximum are often different across the

benchmark problem instances, thereby leading to different number of variables

and constraints. For more details regarding the definition of constraints of each

instance in datasets I, II, and III, we refer interested readers to Burke et al. [19],

Rahimian [65], and Curtois and Qu [26], respectively.

According to our computational experiments in this chapter and chapter 3,

Instance20 to Instance 24 are large-size and the most difficult instances in our

benchmark datasets. Instance9, Instance11, and Instance19 in dataset-III and

ORTEC01 and all the instances in dataset-II are medium-size and fairly difficult

to solve. It should be also noted that to study the behaviour of the proposed

hybrid algorithms in this dissertation, we run them for more than 60 minutes up
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to a few hours. However, only results for 10 and 60 minutes are reported and

taken into consideration according to the literature and relevant practicalities.

In general, for hard instances, for dataset-I, there is no improvement beyond 60

minutes. For dataset-II and dataset-III, there are some improvements but the

proportional growth is low during the time.

To evaluate the proposed hybrid algorithm, we implemented it in Java 1.7,

and used IBM CP solver 1.7 [45] and Gurobi IP solver 5.6 [35] for solving all

CSP and IP models, respectively. The reason to use the aforementioned solvers is

that they are easier to implement in terms of modelling, and also they suit our

hybrid framework better than other software packages. In addition, we note that

benchmarks reported by Mittelmann [57] show that Gurobi produces very similar

results for most instances compared with other state-of-the-art IP solvers such

as Cplex [44]. We ran our experiments on a PC with an Intel 3.4 GHz processor

and 4 GB of RAM, and only on one CPU core, in order to have more accurate

comparison. Running benchmarks on one CPU core ensures that the applied solver

does not use concurrency techniques to boost its performance, which often makes

the comparison more inaccurate [35]. Another reason for this is to minimise the

interference of other processes while the applied solver is running. In addition, the

CPU might use other techniques to boost the performance while more than one

CPU unit is intensively involved which often is varied between different hardware

brands and models. Note that running the algorithm multiple times increases the

robustness of results not its accuracy.

For evaluation purposes, we ran our hybrid algorithm for 10 minutes. The

reason is two-fold: first, the hybrid algorithm is primarily designed to perform

well in short times, and second, the selected time is in line with the testing times

used by most algorithms reported in the literature, including the time used in the

INRC-I competition [39], so that a platform for a fair comparison is established.

To have better insight into performance of the hybrid algorithm, it was also run
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for 60 minutes.

After extensive preliminary experimental testing of the algorithm using different

settings, the following parameters are chosen: We dedicate 5%, 25%, and 50%

of the computational time to the pre-solve, CSP generation, and IP solver steps,

respectively. The remaining time is distributed equally to softness adjustment

and lower-bound enhancement steps as they require significantly shorter times

in comparison. Furthermore, we set threshold parameters psThr and cspThr of

the pre-solve and CSP generation steps to 10,000 and 1000, and parameters q

and numSols of the CSP generation step to 5 and 1000, respectively. To set the

value of psThr, we ran the algorithm on dataset-I using values 5000, 8000, 10000,

and 15000. It was observed that the algorithm obtains better solutions with less

variance when the threshold is set to 10000. Smaller and bigger values for this

parameter could lower the efficiency of the hybrid algorithm. To set the value of q

which is the maximum gap between the quality of best-obtained solutions in two

consecutive threshold levels, two gaps, 5% and 10%, were tested along with other

combinations of parameters. For each experiment in our computational tests, the

algorithm is run 10 times per instance and average values are reported accordingly.

It is worth mentioning for each instance the variance of obtained values within

our tests is very small and almost negligible due to the inherent nature of the

algorithm.

We conducted three experiments to test the proposed algorithm: first, we

analysed the performance of different components of the hybrid algorithm, and

how they affect the efficiency of the algorithm. Second, we compared the hybrid

algorithm with standard IP and CP solvers and finally, we compared the perform-

ance of the hybrid algorithm with other state-of-the-art methods in the relevant

literature for all the benchmark datasets.

The first experiment was designed to investigate the effectiveness of softness

adjustment and lower-bound enhancement steps on the overall performance of the
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hybrid algorithm, where we ran the hybrid algorithm for 10 minutes and recorded

the detailed results in Table 2.4. We do not report the results of instances SINTEF,

MILLAR-1, and LLR, since they have very short solution time, hence giving us no

insight into the impact of each component. In this table, the results of running the

hybrid algorithm with default settings (i.e. keeping both softness adjustment (WA)

and lower-bound enhancement (LE) steps), and without WA or LE are reported.

We also add the result of the algorithm without WA and CSP generation (CG) step.

For each setting, the obtained objective function value (Obj.), lower-bound (LB),

and optimality gap (G(%)) were recorded. The optimality gap is defined as the

discrepancy between the value of the best feasible solution (for the primal problem)

and the value of the best lower-bound (feasible for the dual problem). When

the optimality gap is zero, the best feasible solution is optimal. Furthermore, we

report the initial solution generated from CG step, and the lower-bound generated

from LE step in comparison with the Root Relaxation (RR) value.

As it can be seen, removing WA and LE from the main algorithm setting results

in poorer performance for the majority of instances, while for some instances such

as GPOST there is no change between the performance of different settings. This

is because the expected impact of WA and LE steps is mostly realised when the

problem instance contains a high number of conflicting constraints, and therefore,

it is computationally difficult to solve. Thus, the impact of removing these two

steps is only visible for some difficult instances such as ORTEC02 and NRP09.

Indeed, when a problem instance is computationally easy to solve, even tightening

the problem formulation or providing a better lower bound does not affect the

whole performance of the search process significantly and the core components of

the solution method are still able to achieve almost the same result.

Removing WA and CG from the main algorithm setting generates similar

results to the results reported in Table 2.5 which confirms the importance of these

components particularly CG in the performance of the algorithm (running this
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setting even for 60 minutes leads to similar results as running IP on its own). In

general, according to the obtained results, including these components within the

search process is preferable. It is worth mentioning that running the algorithm

using default settings also generates better lower-bounds for 5 instances in total.

In order to compare the performance of the hybrid algorithm against standard

IP and CP solvers, i.e. running the solvers in default settings without any tuning

or extra reinforcing techniques, we ran the algorithm for 10 and 60 minutes (short

and long runtimes), and reported the results in Table 2.5 and 2.6. On a side

note, it should be noted that even if we tune the IP solver, it would not have

any significant impact on the benchmarking results in comparison because the

hybrid algorithm is made upon on the same IP solver. In Tables 2.5 and 2.6,

Obj., LB, and G(%) show the obtained solution, lower-bound, and optimality

gap, respectively. The best results in each runtime are shown in bold style. It

should be noted that for running the CP solver for benchmark instances, therefore

incorporating the soft constraints into the CP model explained in Section 2.4, we

apply a COP model in a similar way to Qu and He [64], who applied CP by using

two different sub-models.

Running the IP solver for 10 minutes, one can see that the hybrid algorithm

found better solutions for most instances particularly for difficult ones and improved

lower-bounds for some such as ORTEC01. Overall, from 9, 11, and 19 benchmark

instances included in all the datasets, the hybrid algorithm obtains better solutions

for 56%, 82%, and 47% of the instances within 10 minutes.

We also run the IP solver for the longer time 60 minutes. It can be seen that

the hybrid algorithm is able to find a similar result to the 10-minute experiment

using dataset-I and dataset-II. Using dataset-III, the algorithm finds the same

result as the standard IP solver. That said, a question might arise is that if it

is worth using the algorithm on this benchmark dataset. To answer that, two

aspects should be noted. First, the difficulty of the benchmark dataset should be
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Table 2.7 – Benchmark results of the hybrid algorithm against VNS-1 [18], MA [12],
VDS [24], HSA [36], SS [20], VNS-2 [55], BAP [13], and SVN [78] using dataset-I

Instance BKS HA VNS-1 MA VDS HSA SS VNS-2 BAP SVN

GPOST 5 5 - 915 - - 9 8 5 -
GPOSTB 3 5 - 789 - - 5 - 3 -
ORTEC01 270 380 541 535 360 310 365 - 270 -
ORTEC02 270 370 - - - 330 - - 270 -
Valouxis-1 20 20 - 560 - - 100 160 80 73
SINTEF 0 0 - 8 - - 4 - 0 -
MILLAR-1 0 0 - 100 - - 0 0 0 -
WHPP 5 5 - - - - - 5 5
LLR 301 301 - 305 - - 301 314 301 301

taken into consideration. As we have seen the result using dataset-I and dataset-II

in Table 2.5, the proposed algorithm generates better results rather than the

standard IP solver. Second, the pertinent business requirements (e.g. required

solution quality and time frame) should be evaluated to justify what solution

method is required. It could be cases that only a standard IP solver is sufficient

for satisfying underlying business expectations.

Running the CP solver within the long runtime using all the benchmark

instances, it is not able to find even feasible solutions for most instances. In effect,

the performance of the CP solver is inferior likely due to the complexity (e.g.

number of conflicting constraints) and size (e.g. number of nurses and days) of

the benchmark instances. Therefore, it can be seen that hybridising IP and CP

leads to better performance for most instances in comparison with standard IP

and CP solvers and indeed it is able to extend the reach of IP and CP methods.

To compare the performance of the hybrid algorithm (HA) with state-of-the-

art algorithms reported in the literature by using dataset-I, we present in Table

2.7 the best-published results by a hybrid Variable Neighbourhood Search [18]

(VNS-1), a Memetic Algorithm [12] (MA), a Variable Depth Search [24] (VDS), a

Harmony Search Algorithm [36] (HSA), a Scatter Search [20] (SS), another variant

of hybrid Variable Neighbourhood Search [55] (VNS-2), a hybrid Branch-and-Price

algorithm [13] (BAP), and a stochastic VNS [78] (SVN). In this table, BKS shows
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the best-known solutions from the literature for the benchmark instances, which

are obtained using column generation and relaxation techniques with an IP solver

or other heuristic methods within a long runtime. “-” shows that there is no

published result for the relevant instance using the benchmarking algorithm. All

the algorithms were run for 10 minutes except VNS-1, which was executed for one

hour.

Table 2.8 – Benchmark results of the hybrid algorithm in comparison with the
branch-and-price and ejection chain heuristic [13] running for 10 and 60 minutes
using dataset-III

Instance
Hybrid
al-
gorithm

Ejection
chain

Hybrid
al-
gorithm

Ejection
chain

B&P

10 min 60 min

Instance01 607 607 607 607 607
Instance02 828 923 828 837 828
Instance03 1001 1003 1001 1003 1001
Instance04 1716 1719 1716 1718 1716
Instance05 1143 1439 1143 1358 1160
Instance06 1950 2344 1950 2258 1952
Instance07 1056 1284 1056 1269 1058
Instance08 1364 2529 1344 2260 1308
Instance09 439 474 439 463 439
Instance10 4631 4999 4631 4797 4631
Instance11 3443 3967 3443 3661 3443
Instance12 4042 5611 4040 5211 4046
Instance13 3109 8707 1905 3037 -
Instance14 1281 2542 1279 1847 -
Instance15 4144 6049 3928 5935 -
Instance16 3306 4343 3225 4048 3323
Instance17 5760 7835 5750 7835 -
Instance18 5049 6404 4662 6404 -
Instance19 3974 6522 3224 5531 -
Instance20 5242 23,531 4913 9750 -
Instance21 26,977 38,294 23,191 36,688 -
Instance22 130,107 - 32,126 516,686 -
Instance23 40,543 - 3794 54,384 -
Instance24 2,829,680 - 2,281,440 156,858 -

As it can be observed, the proposed algorithm is able to generate competitive

solutions using dataset-I. Looking at the results for instances ORTEC01 and

ORTEC02, the limitations of using IP-based approaches versus (meta-)heuristic
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algorithms become clear.

Table 2.8 shows the results obtained by an ejection chain method [13] running

for 10 and 60 minutes using dataset-III. The results of a branch-and-price (B&P)

algorithm [13] without any time limits are also presented.

It can be seen that the results are promising for the short runtime except

for large instances where limitations of IP become involved. For Instance20 to

Instance24 the algorithm was not able to generate any results due to huge sizes of

these instances for short and long runtimes.

Overall, hybridising IP and CP is able to extend the reach of IP and CP

methods individually, though the limitations of such approaches are persistent.

That said, using IP/CP-based approaches such as the hybrid algorithm presented

in this chapter is beneficial when an IP/CP solver is available (e.g. a commercial IP

solver has been already bought and in use) and an increase of the computational

power/reach is sought, or when having optimality information is essential for

business purposes (indeed in such cases, the company is seeking to increase the

value of the money that has been spent for purchasing an IP/CP solver). Since

the hybrid algorithm uses IP and CP models for modeling the NRP, applying it

to other problem instances with the similar structure as we have seen for different

datasets here in this chapter is expected to generate similar results. Nevertheless,

limitations of IP and CP methods on which the hybrid algorithm is based are

still in place. That said, we expect a high consumption of computer memory and

a considerable decline in the performance of the hybrid algorithm when large-

size instances (e.g. more than 50 nurses and/or more than 6 months scheduling

duration) are dealt with.
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2.7 Concluding Remarks

In this chapter, we proposed a hybrid algorithm to extend the computational

reach of IP and CP. The algorithm utilised strengths of CP to aid the IP solver

in achieving higher-quality solutions. We also developed some components to

provide valuable problem-specific information such as the computational difficulty

of instances and constraints to both IP and CP solvers so that better performance

can be achieved in solving problem instances. We also attempted to design a hybrid

method for generating a high-quality solution as well as a strong lower-bound in

order to guarantee the solution quality. Due to the high-level hybridisation of IP

and CP, an important aspect of the proposed hybrid algorithm is its straightforward

adaptability to practical circumstances in terms of implementation, particularly

where an IP/CP solver is already being used.

We benchmarked the hybrid algorithm with three different datasets consisting

of a variety of instances. In comparison with standard IP and CP solvers, the

obtained results showed better performance, indicating the effectiveness of the

proposed hybridisation. Considering the limitations of IP and CP, we also obtained

acceptable results compared with state-of-the-art algorithms for a diverse range of

instances. In summary, depending on the underlying business requirements and

the difficulty of the problem in hand, the proposed algorithm could be used to

extend the reach of IP and CP to a promising level.

2.8 Contributions

This chapter extends the computational reach of IP and CP through hybridisation,

where the strength of CP in generating feasible solutions, and the capability of

IP in obtaining the optimal solution and providing optimality information are

exploited. To aid the search process, some algorithmic components exploiting
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problem-specific information are incorporated into the hybrid algorithm to reduce

the search space and fine tune search parameters. The algorithm is benchmarked

against state-of-the-art algorithms, and standard IP and CP solvers. The tests

show competitive results despite combining two exact methods together, which

are often not capable of solving practical complicated instances solely.

Modelling the problem as integer program and constraint satisfaction problem

makes the hybrid algorithm flexible enough for applying to a variety of problem

instances having different levels of softness of constraints. It means the hybrid

algorithm is less dependent on a particular setting (e.g. softness) of constraints

in comparison with heuristics mostly relying on instance-specific information.

Moreover, the hybrid algorithm is capable of obtaining optimality information

in comparison with heuristics, which mostly focuses on obtaining higher-quality

solutions.

Due to the special design of the hybrid algorithm which can be seen as a

reinforced IP solver, it is capable of generating good-quality solutions in relatively

short computational times. This characteristic is beneficial particularly in practical

settings, where often a good-quality roster (which is defined based on the underlying

business requirements) is needed in rather short times (it varies in different business

areas. For example, according to our experience, it is about 1 to 3 hours in some

hospitals and wards in Scotland, Glasgow).
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Chapter 3

A Hybrid Variable

Neighbourhood Search And

Integer Programming Algorithm

One of the important aspects of designing solution methods for optimisation

problems is how to evaluate the quality of obtained solutions. In the literature,

the quality of attained rosters is often assessed based on the sum of all penalties

occurred due to the violations of soft constraints [74, 87, 28, 13]. Although this

approach is fast and straightforward and also fits the way many heuristics work

(i.e. a roster is evaluated and if it has less penalty it is chosen as the best current

roster, otherwise it is ignored), it has some disadvantages: first, there might be

cases that few rosters are assigned the same penalty, though they are indeed

different. That said, the performance of the search algorithm gets weaker in

finding the best-quality roster. Second, considering a specific constraint, there

might be cases that few nurses are assigned the same penalty, though they violate

the constraint in different ways. In other words, there is no clear and transparent

picture of how violations are accumulated which defines the perception of quality in

evaluation of rosters. Since most solution methods operate based on the quality of
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obtained solutions and decide how to move through the solution space accordingly,

a poor-quality solution evaluation mechanism leads to unwanted inefficiencies and

redundancies. To reduce the resulting flaws, this chapter introduces a new solution

evaluation mechanism, on which a new hybrid algorithm is designed.

In this chapter, we combine the strengths of IP and VNS algorithm to design

a hybrid method for solving the NRP. Both IP and VNS are common within

the NRP literature and many works [78, 28, 74] have been published as per

these methods. After generating the initial solution using a greedy heuristic, the

solution is further improved by employing a Variable Neighbourhood Descent

(VND) algorithm (a particular type of VNS). Then IP, deeply embedded in the

VNS algorithm, is employed within a ruin-and-recreate framework to assist the

search process. Finally, IP is called again to further refine the solution during

the remaining time. We utilise the strength of IP not only to diversify the search

process, but also to intensify the search efforts. To identify the quality of the

current solution, we use a new generic scoring scheme to mark the low-penalty

parts of the solution. Based on the computational tests with some benchmark

instances, promising results are obtained.

The results presented in this chapter are published by Rahimian et al. [66].

3.1 Introduction

In this chapter, we propose a hybrid IP and VNS algorithm to solve the NRP,

where a new solution evaluation mechanism is employed within a ruin-and-recreate

framework to focus the search process on most promising areas, i.e. areas that

might have a higher-quality solution if get searched. First, a greedy heuristic is

used to generate an initial solution, and then the generated solution is further

improved using a VNS algorithm until a stopping criterion is met. To further

enhance the efficiency of the VNS algorithm, IP is employed iteratively during the
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running of the algorithm as a neighbourhood structure to improve the quality of

the incumbent solution using a ruin-and-recreate framework. In this framework,

high-penalty components of the solution are destroyed according to a generic

scoring scheme, and then they are created again by an IP solver. Finally, IP is

applied once more to the best-found solution to improve it globally as much as

possible until the overall time limit is reached. The proposed algorithm is designed

to perform efficiently when only short computational times are available, so that

many practical problems can be tackled.

Most academic research have considered the evaluation of obtained solutions

according to soft constraints. In this approach, the penalty associated with a

solution is calculated via multiplying violations of soft constraints (or even hard

constraints) by relevant user-defined weights. For example, Valouxis et al. [83]

utilised a two-phase constructive approach in which an IP solver solves series

of problems by considering different soft constraints in each step. In particular,

they assign nurses to working days in the first step (one problem per week) and

then nurses are assigned to shift types in the second step (one problem per shift

type per day). Lü and Hao [53] also presented an adaptive neighbourhood search

algorithm in which obtained solutions are evaluated according to violations of all

soft constraints with each iteration. Burke et al. [16] and Cowling et al. [25] applied

a tabu search hyper-heuristic in which infeasibility (regarding hard constraints) is

considered in evaluation of solution quality to balance under-covered and over-

covered shifts in a set of days. One of the potential weaknesses of this approach

is that there could be many solutions whose calculated penalties are the same

but have different allocations of nurses and days (different structure). This could

lead to a completely different search path in most heuristic methods. Because, in

such methods, often the best solution which has the lowest penalty is kept and

all other solutions which have the same or higher penalty are discarded while

a neighbourhood is being searched. Therefore, a solution which could lead to
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a better solution in following neighbourhood searches is already discarded. In

general, most heuristics (or even exact methods such as IP or CP) operate based

on the solution quality which is measured by a function given by the user. If

the measured penalty is not generated accurately and genuinely and is the same

for a bigger population of solutions, the search method is not able to track the

best solution easily. Another downside is that the contribution of violated soft

constraints into the calculated penalty is not clear. For example, considering the

total penalty 1000, there can be a solution in which the contribution of constraint

A and B is 200 and 800, respectively, while there can be another solution having

the same penalty to which constraints A and B contribute 600 and 400. This

could lead to difficulties when the user needs to decide which solution is the best

solution (among a population of solutions which have the same penalty) according

to the underlying business requirements at the end of the search process. That

said, knowing the contribution of each constraint to the total penalty helps the

user to identify most important constraints and choose the most proper solution

according to his needs. These weaknesses mean provision of a poor picture of

search space, which then lessen the performance and effectiveness of the search

algorithm.

In the literature, depending on what solution method is employed, other

approaches are also used to evaluate attained solutions. Burke et al. [23] applied

a similar approach to Li et al. [50], in which authors proposed a pareto-based

search technique by modelling the NRP as a multi-objective optimisation problem.

For evaluating solution quality, they considered the contribution of each nurse

assignment towards the solution feasibility. Brucker et al. [9] applied a constructive

and decomposition-based solution method in which constraints of the problem were

categorised as schedule- and roster-related. Obtained solutions were evaluated by

ranking schedules of nurses. In this chapter, we introduce a scoring scheme which

evaluates the quality of obtained solutions according to the associated underlying
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elements such as nurses or days, thereby empowering the algorithm to genuinely

focus on most promising parts of the solution. The strength of the proposed

scoring scheme is that the contribution of violated soft constraints is captured

which is then used to destroy high-penalty parts of the solution.

Another feature of our approach is to embed IP as a neighbourhood structure

through a ruin-and-recreate framework in the VNS algorithm to improve the

quality of the obtained solution and diversify the search process at the same time.

Our method of hybridisation is different from similar algorithms (sometimes called

Matheuristics [28, 2]) reported in the literature [64, 21, 80]. In fact, there are

various hybridisation schemes in order to combine different approaches together

[70]. For example, Qu and He [64] applied CP to generate an initial solution

by decomposing the problem into various sub-problems, and then applied VNS

to improve the generated solution. Stølevik et al. [80] applied an Iterated Local

Search framework for generating an initial solution and employed VNS and CP

in order to improve the solution and diversify the search process, respectively.

Burke et al. [21] employed IP to generate a solution satisfying all hard constraints,

and then improve it using VNS to satisfy the remaining soft constraints. Gomes

et al. [34] applied a VNS to generate rosters using the column generation method

and then implemented a relax-and-fix heuristic to improve the feasibility and

optimality of the generated rosters. In these approaches, IP or CP is used to

generate a solution satisfying some constraints of the problem (or parts of the

problem), and then a meta-heuristic algorithm is applied to further improve the

generated solution. However, in our approach, we employ VNS as the main local

search framework and then embed IP as a neighbourhood structure to intensify

and diversify the search process in an iterative manner considering all constraints.

That said, incorporating IP into our hybrid algorithm, we also allow the search

process to traverse the infeasible space by allowing all the constraints to be violated

in order to find out latent feasible solutions.
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The rest of this chapter is organised as follows. We first elaborate on the

solution method and different components of the proposed hybrid algorithm in

Section 3.2. In Section 3.3 and 3.5, we present our computational results and

concluding remarks, respectively. It should be noted that throughout this chapter

we use the same models and benchmark datasets presented in Chapter 2.

3.2 Hybrid Approach

In this section, we describe a hybrid method combining VNS and IP techniques

(aka. matheuristic [28, 2]) to solve the NRP. The schematic overview of the

proposed hybrid algorithm is demonstrated in Algorithm 2.

Algorithm 2: The complete pseudo code of the hybrid algorithm

1 x∗ ← x← GreedyHeuristic();
2 repeat
3 x← V NDSearch(x);
4 x← IPRuinAndRecreate(x);
5 if x < x∗ then
6 x∗ ← x;
7 end

8 until some stopping criteria are met ;
9 x∗ ← IPImprove(x∗);

10 return [x∗]

After generating an initial solution using a greedy heuristic (GreedyHeuristic()),

a VND algorithm (VNDSearch()) using a set of distinct neighbourhoods tries to

improve the generated initial solution until no more improvements can be obtained

by cycling through all the neighbourhoods. Then the best solution obtained

from the VND algorithm is employed by an IP solver by fixing low-penalty

parts of the solution, where it tries to generate a better-quality (exploitation)

and a different-structured (exploration) solution. In fact, in this step, the best

solution obtained so far is partially destroyed and again recreated aiming to

have a higher-quality, and at the same time, a different solution in terms of
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the underpinning structure (a ruin-and-recreate strategy). In other words, the

IP solver is applied as a neighbourhood within the VNS, aiming to change the

structure and at the same time to improve the quality of the obtained solution.

All this process is accomplished in the IPRuinAndRecreate() block. To ensure a

sufficient diversification within the search process, and therefore, not getting stuck

in local optima, some low-penalty parts of the solution might also be destroyed

and recreated randomly. The final obtained solution is again imported to the

VND search algorithm and this process continues until some stopping criteria are

met. Ultimately, the attained solution is further improved by applying IP to the

whole problem instance to ensure a holistic search until the overall time limit is

reached (IPImprove()).

Next, we elaborate on each of the main components of the hybrid algorithm, i.e.

initial solution construction in GreedyHeuristic() block, VND search algorithm in

VNDSearch() block, and IP ruin-and-recreate framework in IPRuinAndRecreate()

block.

3.2.1 Initial Solution Construction

In this block, a greedy heuristic search is employed to generate an initial solution

for the VND algorithm. Empirically, by trying different initial solutions, we have

observed that having a high-quality initial solution reduces the efficiency of the

VNS algorithm subsequently. For the same reason, a random initialisation often

results in poor performance due to the very low-quality of the generated solution.

This sensitivity is mostly because of the IP solver employed within the algorithm.

In effect, if the quality of the initial solution is too high, it disrupts the performance

of the IP solver as it needs historical information during the search process which

gets cut if a high-quality initial solution is provided. Therefore, we decide to apply

a simple greedy heuristic algorithm which is able to generate a different solution
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per experiment. The pseudo-code of this algorithm is depicted in Algorithm 3.

After creating an empty solution (roster), at the first step, we randomly select a

nurse whose all pre-defined days off are set in SetDaysOff() block. In the next

step, we randomly mark all the working days to which a specific shift needs to be

assigned later (AssignWorkDays()), and then we assign a randomly selected shift

to those days accordingly (AssignShifts()). Assigning shifts to the nurses within

two different levels, i.e. first assigning working and non-working days, and then

assigning shifts to the working days, helps us to only check the constraints related

to each level independently, and hence, reducing the complexity of the constraint

conflict resolution process. That said, in the first level, only the maximum number

of working days, and the minimum and maximum number of consecutive shift

types including day off shifts are checked. Therefore, in the next level, we only

need to check the maximum number of shift types and avoid assigning shifts where

a forbidden pattern is matched.

Algorithm 3: The pseudo code of the greedy heuristic algorithm to generate initial
solutions

1 Create an empty solution x = {xi, i ∈ I};
2 foreach i ∈ I do
3 while xi is not feasible do
4 xi ← SetDaysOff(xi);
5 xi ← AssignWorkDays(xi);
6 xi ← AssignShifts(xi);
7 p1 = EvaluateWorkload(xi);
8 p2 = EvaluateWeekend(xi);
9 if p1 + p2 > 0 then

10 xi ← Destroy(xi);
11 end

12 end

13 end
14 return [x]

Finally, to ensure satisfying the remaining constraints, i.e. the maximum

number of worked weekends, and the minimum and maximum total times of

assigned shifts, we calculate the associated incurred penalties (indicated as p1
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and p2, computed within the EvaluateWeekend() and EvaluateWorkload() blocks,

respectively). If there is any associated penalty, we destroy the current schedule

for the current nurse by unassigning all the allocated shifts using the Destroy()

block, and repeat the process until a feasible solution is obtained. This process

is iterated for all the nurses until all the required shifts are assigned to all the

days within a schedule, while satisfying all the hard constraints. According to our

experiments, the greedy heuristic is able to produce a feasible solution for all the

problem instances in up to 100 cycles per nurse. Finally, the generated feasible

solution is returned to the VND algorithm for further improvement.

3.2.2 Variable Neighbourhood Descent

When there is an initial solution, either generated using the greedy heuristic

algorithm in the GreedyHeuristic() block or passed from the previous cycle of

the hybrid algorithm to the current one (see Algorithm 2), the VND algorithm is

applied to refine the solution locally according to a set of distinct neighbourhoods

[38]. In the VND search algorithm, a best-improvement descent local search

algorithm is applied through cycling over a set of neighbourhoods (full search

per neighbourhood) until no improvement can be found in all the neighbourhood

structures, or when the total number of iterations is reached a certain maximum

value.

VNS as a generalized VND approach is a meta-heuristic approach based on the

simple idea of systematically changing neighbourhoods both to escape from the

areas which contain local optima and within a local search to identify better local

optima [37, 38]. It has been applied to many NP-hard problems including the

NRP [21, 80]. In a simple VNS scheme, a local search is applied to the incumbent

solution using a neighbourhood structure until certain criteria such as the total

number of iterations are met. Then the local search is restarted using a different
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neighbourhood structure, trying to improve the best solution obtained from the

previous iterations. This process continues until there is no more improvement

gained from any of the neighbourhood structures. The neighbourhood structures

in a VNS are often selected to drive the search process towards different desired

objectives, or to investigate different structures of the obtained solution in order

to diversify the search process, and therefore, to avoid getting stuck in local

optima. This capability of exploring a variety of neighbourhoods aiming different

structures suits very well with the applied ruin-and-recreate framework designed

upon our specially-designed scoring scheme. Furthermore, VNS (and its varieties)

is one of the common solution methods to solve the NRP in the relevant literature

[21, 80, 88].

The following neighbourhoods are applied to the VND block of the hybrid

algorithm (VNDSearch()):

1. 2-Exchange: this neighbourhood consists of all moves, where two shifts

are swapped between two different nurses on the same day.

2. 3-Exchange: it includes all moves, where three (or more) shifts are ex-

changed between three (or more) different nurses on the same day.

3. Double-Exchange: it includes all moves that swap two shifts between two

different nurses on two different days. In fact, this neighbourhood is made

from two different 2-Exchange neighbourhoods applying on two consecutive

days.

4. Multi-Exchange: this neighbourhood is very similar to Double-Exchange

but three (or more) shifts are swapped between two different nurses on three

(or more) different days. Indeed, this neighbourhood is made from three

(or more) different 2-Exchange neighbourhoods, which are not necessarily

applied on consecutive days.

5. Block-Exchange: this neighbourhood includes all moves where a specific
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Table 3.1 – Improvement percentages of the VNS algorithm by applying 2-Exchange,
Double-Exchange, and Multi-Exchange neighbourhoods using Dataset-I

Instance Two Double Multi3 Multi4 Multi5

GPOST 51% 97% 98% 98% 97%
GPOSTB 56% 94% 94% 93% 95%
Valouxis-1 99% 99% 99% 99% 99%
WHPP 45% 54% 85% 84% 85%
ORTEC01 91% 91% 96% 97% 96%
ORTEC02 93% 93% 94% 95% 92%

Ave. 73% 87% 94%

number of consecutive shifts is swapped between two different nurses within

the planning period.

Apart from Multi-Exchange neighbourhood, which is our new neighbourhood

structure, the rest of the defined neighbourhoods are used in many local search

algorithms in the literature (for example see [21, 80]). The Multi-Exchange

neighbourhood is defined to overcome the complex structure of the problem,

and therefore, to overcome the potential complicated local optima by applying

some simple 2-Exchange moves simultaneously. In fact, on the one hand, this

neighbourhood helps to break complicated structures for a number of constraints

such as 3.f and 3.b. On the other hand, it is helpful to move good shift patterns

from one nurse to another. Experimentally speaking, this neighbourhood structure

gives better performance rather than a simple 2-Exchange or Double-Exchange

as we can see in Table 3.1. In this table, the improvement percentages of the

VNS algorithm by using three neighbourhoods 2-Exchange, Double-Exchange,

and Multi-Exchange with lengths 3, 4, and 5 within 2 minutes runtime are shown.

The defined neighbourhoods are illustrated on a weekly roster for five nurses

in Figure 3.1, where E, L, and N indicate early, late, and night shifts, respectively,

and all blank shifts are days off. In this figure, the swaps of shifts between

nurses 1 and 3 are examples of 2-Exchange (Tue), Multi-Exchange (Tue, Sat,

and Sun), and Double-Exchange (Sat and Sun) neighbourhoods. As an example
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Figure 3.1 – Examples of 3-Exchange (Nurses 1, 4, & 5 on Wed), Block-Exchange
(Nurses 4 & 5 from Fri to Sun), Multi-Exchange (Nurses 1 & 3 on Tue, Sat, and
Sun), 2-Exchange (Nurses 1 & 3 on Tue), and Double-Exchange (Nurses 1 & 3 on
Sat and Sun) neighbourhoods applied in the VND algorithm

of 3-Exchange neighbourhood, the three shifts between nurses 1, 4, and 5 on

Wednesday can be sequentially swapped. Moreover, swapping the blocks of

shifts from Friday to Sunday between nurses 4 and 5 can be an instance of a

Block-Exchange neighbourhood.

3.2.3 IP Ruin-and-Recreate Framework

If the VND search algorithm could not find any better solutions by cycling

through the set of neighbourhoods or reaches a maximum number of iterations,

the incumbent solution is passed to an IP solver as a perturbation neighbourhood

structure within the VNS. The IP solver searches for a better alternative solution

based on the IP model of the problem introduced in Section 2.3, by fixing the

low-penalty parts of the solution and exploring all the remaining possibilities to

find a higher-quality solution in an iterative manner (ruin-and-recreate framework).
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Throughout this process, two possible outcomes may happen: 1) the IP solver can

find a better solution, which can be a different solution in terms of the underlying

structure in comparison with the last one. In this case, the IP solver helps the

VND algorithm both in terms of intensification and diversification. 2) the IP solver

cannot produce a better-quality solution due to the timeout criterion or due to

the non-existence of a better alternative. In this case, the IP solver may produce

a solution with a different structure, and hence, helps the search process only in

terms of diversification. In either case, the role of the embedded IP component in

the hybrid algorithm is essential. It is noteworthy to mention that by destroying

parts of the solution and repairing them again, there is no guarantee of the quality

and structure of the new solution.

In terms of diversification, generating a solution with a different structure is

crucial. The structure of the solution is different, if it cannot be obtained by

searching through the defined neighbourhoods of the current solution and some

nearby solutions. Indeed, a solution is different from the other solutions in terms

of the underlying structure, if we cannot generate it by iteratively applying the

defined neighbourhoods for a sufficient number of iterations which is varied per

instance. In our experiments on Dataset-I, IP generates different solutions which

cannot be obtained after at least 50 iterations. In the literature, a ruin-and-

recreate strategy either by IP or CP is mostly employed in order to diversify the

search process and to perturb the obtained solution. For example, Stølevik et al.

[80] have applied this strategy by destroying parts of the solution and then using

CP to rebuild it. Li et al. [50] have also used this strategy by the evolutionary

elimination of parts of the solution and subsequently repairing it by using a greedy

heuristic. A more advanced ruin-and-recreate based algorithm is also reported

by Li et al. [51], who applied a stochastic modelling and Markov chain analysis.

Nonetheless, in the proposed hybrid algorithm, we apply this strategy not only

for the diversification purpose but also for improving the quality of the obtained
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solution, i.e. intensification. This is the main reason that we select IP for the

ruin-and-recreate framework compared with CP and other heuristics (which are

often powerful for either intensification or diversification), which is able to improve

the current solution, and at the same time, to investigate many areas within the

search space.

Another novel aspect of our ruin-and-recreate framework is to apply a flexible

generic scoring scheme for evaluating different parts of the solution, which allows

us to adaptively focus on most promising areas of the solution. In order to fix

some parts of the solution, we apply a scoring scheme by assigning a value to

each cell within the roster, where each cell is an intersection of one particular

day and one particular nurse. In fact, using the scoring scheme, the total penalty

associated with the current solution can be broken down to fundamental elements

of the problem. It means a shift can be assigned to each cell and if so, there is an

associated penalty according to the objective function and the constraints that

are involved. In other words, each cell can be designated by a value, which is

the proportion of (an assignment to) that cell of the total number of violations

respecting to the current solution. We call this estimated value cell penalty. Cell

penalties can be easily aggregated to different dimensions, therefore providing

an insightful tool to analyse and discriminate different parts of the solution. For

example, in Random configuration which we explain later in this section, this

value is used as a weight in a simple linear weighted random function, where a

random cell is selected in order to be destroyed later.

Next, we demonstrate how to calculate a cell penalty, which is calculated based

on the total incurred violations of the involved constraints. Here, we consider all

the constraints either hard or soft, which might be violated throughout the search

process, and hence, we also define the violations associated with hard constraints.

To determine the relevant weights of hard constraints, a significant value (e.g.,

10000) is selected to ensure that the final solution is feasible by directing the
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algorithm to feasible regions. Table 3.2 shows for each constraint the assigned

weight (wc), the relevant violation of the constraint, cell share, i.e. the relevant

proportion of the constraint violation for all the affected cells (sc), and the affected

cells associated with the violation, respectively. The assigned weights are given

by the user as input values per instance and often are different for each family

of soft constraints and are set to 10000 for hard constraints. In this table, |D|,

|V |, |W | and |E| denote the total number of days within the planning period, the

total number of violations relevant to a particular constraint, the total number of

weeks, and the total number of nurses, respectively. All the other parameters are

already defined in Section 2.3.

To calculate the cell penalty (pcell) for a particular cell, we need to multiply

the amount of cell share (sc) with the relevant weight (wc) for each constraint

(c ∈ C) for a particular day and nurse. Hence, the total penalty allocated to each

cell can be calculated using the following equation:

pcell =
∑
c∈C

scwc

For example, for Constraint 9, assuming that we have only one violated rotation

for a specific nurse occurred on Tuesday and Wednesday in the first week of a

roster, the calculated penalty for each of the two cells involved in the violated

rotation is equal to 5000. It should be noted that for Constraint 2, because the

minimum and maximum number of shifts per day are given, we should sum up the

total number of violations for all shifts (a ∈ A) over a day in order to calculate

cell penalties over days.

As it can be seen, cell penalties are distributed evenly over affected cells.

Although this calculation is not accurate in general, it is sufficient for our purpose.

It is noteworthy to mention that the penalty evaluation is quite fast since it is

done using a delta function (i.e., we only calculate the difference of total penalties
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between two solutions according to the violated constraints) and highly optimised

data structures (e.g. in Java, LinkedHashMap is very efficient for accessing and

iterating over elements of a collection in comparison. This hashmap is further

improved by reimplementing custom hash algorithms which are available in Boost

C++ libraries [8])

Calculating cell penalties in a schedule, we are also able to accumulate them

over different dimensions such as nurses and days in the schedule. In fact, by

accumulating the cell penalties, we can elicit more information, which gives us

more insight into how to destroy and recreate rosters as we see later. That said,

we use the following aggregation settings to configure the IP solver in order to

fix different parts of the solution during the search process. In Section 3.3, we

will test the hybrid algorithm by combining the following settings together within

different configurations in order to identify the most efficient one.

1. Nurses: by accumulating cell penalties within the planning horizon for each

nurse, we are able to identify the contribution of each nurse to the total

penalty respecting to the current solution. Therefore, we can identify nurses

who have the most contributed penalties among the others.

2. Days: in this setting, cell penalties are accumulated for all the nurses within

each day. Therefore, similar to Nurses setting, we can identify the days

having the most contributed penalties.

3. Weeks: analogous to the other settings, here cell penalties are accumulated

for all nurses and all days within each week.

4. Random: in this setting, there is no accumulation indeed. Instead, cells are

selected randomly according to their relevant cell penalty. For this purpose,

a simple linear weighted random function is used, where cells with a higher

penalty have more chance to be selected.

For illustration purposes, Figure 3.2 shows the first week of a roster, in which cell
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Figure 3.2 – The associated cell penalties calculated for the first week of a roster

penalties are calculated for all the involved constraints. It can be seen that for

some cells, there are no associated penalties (blank cells), which means they do not

contribute to the total incurred penalty of the current solution. For the cell at the

intersection of Monday and Nurse5, the calculated cell penalty is 150, which is the

highest value among all the cells. Therefore, in the Random aggregation setting,

this cell is very likely to be selected and unassigned afterwards. If we aggregate

cell penalties for all the nurses and days as calculated in the last column and row

of the weekly roster, it is realised that Monday and Nurse2 (shown in underlined

style) have the greatest contributions to the total penalty associated with the

roster. Therefore, using the Nurses and Days aggregation settings, Monday and

Nurse2 are selected to be destroyed. Consequently, it can be seen that much

useful information can be extracted from a solution after calculating the relevant

cell penalties.

When the candidate cells required to be fixed (or to be destroyed) are identified,

the IP solver solves the problem using the incumbent solution, where the integer

variables associated with the fixed cells (xead) are set before starting the search

process. Next, considering all constraints as soft except Constraint 1, the IP

solver produces another solution which can be different from the current solution

in terms of quality and the underlying structure. In either case, the generated
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solution is passed to the next iteration of the VND algorithm as an initial solution.

It is noteworthy to mention that because a significant number of variables in the

IP model is fixed, particularly those which are involved in more constraints, the

IP solver can easily solve the problem even when the scale of the problem instance

is relatively large. Therefore, according to our experiments, in most cases, the IP

solver can produce a solution even in a very short timeout condition.

Ultimately, after running the VND search algorithm and the IP ruin-and-

recreate blocks in order to find a better solution, there is still a chance of getting

stuck in a local optimum. In fact, due to not having any global picture throughout

the search space, there can be another solution close to the current local optimum,

but not detectable due to the complex structure of the problem. To resolve this

issue, another IP solver improves the best-found solution at the end of the hybrid

algorithm to solve the problem in the remaining time, and then the final solution

is reported to the user. This IP solver employs the same IP model introduced in

Section 2.3 including all the constraints, but it starts from the best-found solution

thus far. To configure the IP solver to start from the current best solution rather

than a randomly generated roster, the appropriate parameter (e.g. MIPFocus

parameter in Gurobi) is set before starting the search process. It should be noted

that the final IP solver is also useful to provide some insight to the optimality and

quality of the current solution.

3.3 Computational Results

We tested the proposed hybrid algorithm on the same benchmark datasets and

within the same computational environment as introduced in Chapter 2. We made

a concerted effort to optimise the implemented code using the latest software

technologies and code optimisation practices. For example, we used efficient

hash algorithms and appropriate data structures which were available in Boost
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C++ libraries [8], and generic programming to minimise performance overheads.

Moreover, we run all our experiments on one CPU core to have more accurate

comparison. After extensive testing of the algorithm using different settings, the

following parameters were set. We dedicate 70% of the total allowed runtime to

the VNS algorithm (VND and IP ruin-and-recreate components), and the rest

to the final IP block. For VND stopping criteria, we set the maximum number

of iterations to 50,000 and the maximum number of non-improvement iterations

to 5. In our preliminary experiments, the algorithm mostly stopped due to the

maximum number of non-improvement iterations. Setting a small value for this

parameter allows the algorithm to try a higher number of neighbourhoods and

configurations and to avoid getting stuck in local optima. We also employed the

neighbourhoods 2-exchange, double-exchange, multi-exchange with the length of

3, block-exchange with the length of 4, and 3-exchange with the length of 3 in

order. In our preliminary experiments, keeping the length of neighbourhoods on 3

or 4 was the best option which is also in line with the experiments reported in the

literature [24].

Two experiments were carried out to test the proposed algorithm: first, we

evaluated different aggregation settings through the ruin-and-recreate framework

to understand how they impact the performance of the algorithm, and then we

analysed the performance of different components of the hybrid algorithm. Second,

we compared the hybrid algorithm with other state-of-the-art algorithms, and

the Gurobi IP solver. For each experiment, the algorithm was run 10 times per

instance and average values are reported accordingly.

In the first experiment, in order to examine the best combination of aggregation

settings defined in Section 3.2 for the IP ruin-and-recreate component, we ran the

algorithm with a variety of combinations. For each combination, we defined a

selection range, i.e. the total percentage of available candidates in each aggregation

setting which was selected in decreasing order to be destroyed and recreated. Ac-
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Table 3.3 – Results of the hybrid algorithm by applying different configurations of
aggregation settings

Instance
Config1 Config2 Config3

Obj. Gap (%) Obj. Gap (%) Obj. Gap (%)

Instance08 1958 33.76 1695 23.48 1364 4.91
Instance09 439 7.52 439 7.52 439 7.52
Instance10 4631 0.00 4631 0.00 4631 0.00
Instance11 3443 0.00 3443 0.00 3443 0.00
Instance12 4045 0.12 4045 0.12 4042 0.05
Instance13 3109 56.71 3109 56.71 3109 56.71
Instance14 1361 6.17 1342 4.84 1281 0.31
Instance15 4463 14.72 4588 17.04 4144 8.16
Instance16 3384 4.73 3306 2.48 3306 2.48
Instance17 5956 3.86 6043 5.25 5760 0.59
Instance18 5158 15.65 5158 15.65 5049 13.82
Instance19 4365 32.53 4145 28.95 3974 25.89
Instance20 5451 12.99 5603 15.35 5242 9.52
Instance21 27,281 23.51 28,356 26.41 24,977 16.45
Instance22 176,652 86.38 173,371 86.12 130,107 81.50
Instance23 57,210 95.17 97,893 97.18 40,543 93.18
Instance24 3,173,810 97.74 3,160,760 97.73 2,829,680 97.46

Average 28.91 28.51 24.62

cording to our non-exhaustive preliminary tests on a variety of combinations using

dataset-III, in the following, we present the best three identified configurations

and the relevant selection ranges:

• [Config1] : Use only Nurses aggregation setting with the selection range at

least 20%.

• [Config2] : Apply Nurses, Days, and Weeks aggregation settings in order,

with the selection ranges at least 20%, 50%, and 60%, respectively.

• [Config3] : Apply Nurses, Days, Weeks, and Random aggregation settings

in order, with the selection ranges [10%, 30%], [10%, 40%], [10%, 50%],

and [30%, 50%], respectively. For each setting, the minimum value in the

relevant range is increased by 10% (the increment rate) after each VNS

iteration (e.g. [10%, 30%] is changed to [20%, 30%]).

Table 3.3 shows the results of the benchmarked configurations for instances 8
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to 24 of dataset-III, where the algorithm was run for 10 minutes. We do not

report the results of the first seven instances since the algorithm returns the

same results for all the mentioned configurations. In this table, the objective

function value and its difference to the best-known lower bound in percentage

(denoted as Gap (%)) according to Curtois and Qu [26] are shown for each

configuration and instance. One can see that running the algorithm with the third

configuration generally results in better solutions in average. The reason for the

superiority of the third configuration is due to the comprehensive investigation

of the solution space by using different ruin-and-recreate strategies, and as a

result, facilitating the hybrid algorithm to escape from a variety of local optima.

In fact, in this configuration, we re-evaluate the current solution through four

different dimensions (i.e. Nurses, Days, Weeks, and Random) if it gets stuck in a

local optimum. Moreover, changing the selection ranges incrementally, equips the

hybrid algorithm to behave adaptively during the search progress. It means, the

more the hybrid algorithm advances within the search process, more parts of the

solution are selected to be changed, i.e. the diversification rate is being increased.

Nonetheless, by looking at the average results of the three configurations, it can

be seen that the performance of the algorithm using Config1 and Config2 is only

4% lower than the best configuration. This means that the hybrid algorithm is not

too sensitive to the particular setting of parameters which is beneficial in practical

circumstances.

Applying the third configuration (i.e. Config3), we ran the algorithm using

dataset-II and dataset-III for 10 minutes computational time. The detailed results

of these tests are shown in Table 3.4 and 3.5, where the initial solution generated

by the greedy heuristic algorithm, the improved solution by the VNS, and the

final solution further improved by the IP solver are reported, respectively. In these

tables, ∆iv%, and ∆vo% denote the percentage of improvement achieved using the

VNS component and the final IP block, respectively. Furthermore, the number of
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Table 3.4 – Detailed results of the hybrid algorithm using dataset-III for 10 minutes

Instance Initial ∆iv% VNS ∆vo% Obj. Cycle ∆
C

%

Instance01 11,525 94.73 607 0.00 607 18 5.26
Instance02 14,827 94.42 828 0.00 828 30 3.15
Instance03 22,480 95.55 1001 0.00 1001 16 5.97
Instance04 20,775 91.74 1716 0.00 1716 56 1.64
Instance05 31,947 96.41 1147 0.35 1143 48 2.01
Instance06 30,944 93.40 2041 4.46 1950 52 1.80
Instance07 42,625 97.49 1070 1.31 1056 52 1.88
Instance08 63,153 95.98 2538 46.26 1364 81 1.21
Instance09 55,320 99.21 439 0.00 439 42 2.36
Instance10 102,073 94.97 5133 9.78 4631 19 5.02
Instance11 120,287 97.13 3450 0.20 3443 25 3.89
Instance12 146,970 96.05 5801 30.32 4042 77 1.26
Instance13 289,121 98.88 3231 3.78 3109 49 2.02
Instance14 117,166 98.19 2116 39.46 1281 79 1.25
Instance15 144,631 96.37 5245 20.99 4144 60 1.62
Instance16 105,714 95.40 4861 31.99 3306 81 1.20
Instance17 174,308 95.99 6986 17.55 5760 67 1.44
Instance18 181,068 96.79 5815 13.17 5049 50 1.94
Instance19 322,730 98.59 4564 12.93 3974 47 2.10
Instance20 910,083 99.42 5242 0.00 5242 36 2.76
Instance21 197,130,000 99.99 26,989 0.04 26,977 44 2.27
Instance22 168,433,000 99.92 130,107 0.00 130,107 42 2.38
Instance23 15,542,000 99.74 40,543 0.00 40,543 45 2.22
Instance24 201,119,000 98.55 2,925,411 3.27 2,829,680 17 5.80

Average 96.87 9.83 2.60

Table 3.5 – Detailed results of the hybrid algorithm using dataset-II for 10 minutes

Instance Initial ∆iv% VNS ∆vo% LB Obj. Cycle ∆
C

%

NRP01 70,863 89.12 7711 0.27 570 7690 50 1.78
NRP02 76,169 87.02 9886 0.86 200 9801 50 1.74
NRP03 127,870 95.01 6380 0.63 122 6340 41 2.32
NRP04 87,018 95.35 4050 0.74 1300 4020 53 1.80
NRP05 89,815 89.35 9561 1.16 211 9450 53 1.69
NRP06 67,417 96.44 2401 0.87 130 2380 54 1.79
NRP07 91,082 96.23 3431 1.49 140 3380 58 1.66
NRP08 70,700 98.07 1368 81.29 133 256 33 3.02
NRP09 82,975 95.63 3625 1.79 1130 3560 63 1.52
NRP10 111,571 92.08 8840 0.23 310 8820 51 1.81
NRP11 88,373 96.04 3501 1.46 110 3450 57 1.69

Average 94.05 14.16 1.89
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cycles and the average improvement obtained throughout each cycle (denoted as

∆
C

%) are reported in the last two columns of Table 3.4 and 3.5.

As it can be seen in Table 3.4, the VNS algorithm is able to improve the

generated initial solution via the greedy heuristic by 97%, which is then further

optimised by the final IP block by 10%. Moreover, it is observed that the final IP

solver is not able to improve the generated solution for a number of instances. For

example, for Instance02, the IP solver is only employed to prove the optimality of

the obtained solution by the VNS algorithm. However, for some instances such as

Instance23, the IP solver does not manage to produce any better solutions due

to the limited computational time. Similarly, the results in Table 3.5 show that

the VNS algorithm is able to improve the initial solution by 94%, which is further

enhanced by the final IP block by 14%. It should be noted that for generating

the initial solution for dataset-II, a similar IP solver was run for 20 seconds, since

employing a greedy heuristic similar to the one explained in Section 3.2.1 often

resulted in infeasible solutions. Nevertheless, the role of the final IP solver as the

last component of the hybrid algorithm in order to improve the output of the

VNS algorithm is crucial, where the attained improvement can even reach more

than 30% for some instances.

The number of cycles performed on each instance shows an estimation of the

structure of each instance where instances with more complex structure often

require more cycles. Observing the average improvement obtained through cycles,

it is realised that how changing aggregations of settings along with neighbourhoods

allows the hybrid algorithm to escape from local optima and to further improve

obtained solutions.

In the second experiment, we benchmarked the efficiency of the proposed

algorithm against current state-of-the-art algorithms for all the benchmark datasets.

For dataset-III, we compared it with the results published by Curtois and Qu [26],

who reported the results of two algorithms from Burke and Curtois [13], i.e. a

70



branch-and-price and an ejection chain heuristic. For dataset-I, we compared it

with the results of a hybrid VNS [18], denoted as VNS-1, a Memetic Algorithm

[12], denoted as MA, a Variable Depth Search [24], denoted as VDS, a Harmony

Search Algorithm [36], denoted as HSA, a Scatter Search [20], denoted as SS,

another variant of hybrid VNS [55], denoted as VNS-2, a hybrid branch-and-price

algorithm [13], denoted as BAP, and a stochastic VNS [78], denoted as SVN.

All our experiments are given 10 minutes computational time, since the hybrid

algorithm is particularly designed to perform well in short computational times,

and also it is common to use short times, as seen in the relevant literature and

the nurse rostering competition [39]. Experimentally speaking, we have also seen

that in practice a significant number of rosters should be generated to achieve the

desired result, and therefore, the generation of rosters should be done in relatively

short runtimes. However, to have a comprehensive comparison with the available

results and the benchmark algorithms, we also run the proposed algorithm for a

longer time, i.e. 60 minutes.

Table 3.6 presents the best results of the ejection chain method, Gurobi IP

solver with default settings, and our hybrid algorithm using the third configuration

running for the limited computational times 10 and 60 minutes. The results of the

branch-and-price (B&P) algorithm without any time limits are also presented. In

this table, “-” indicates that the algorithm does not generate any feasible solutions

within the allocated time limit.

As we can see in Table 3.6, within the 10 minutes computational time, from the

total of 24 instances, the hybrid algorithm outperforms the ejection chain method

for 23 instances, and produces the same results for Instance01. In comparison

with the Gurobi IP solver, the algorithm performs better for 14 instances and

generates the same results for the remaining 10 instances, where 9 of which are

optimal solutions.

Overall, the proposed algorithm outperforms the ejection chain method and
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Table 3.6 – Benchmark results of the hybrid algorithm in comparison with a
branch-and-price and ejection chain heuristic [13], and Gurobi IP solver [35] running
for 10 and 60 minutes

Instance
Hybrid
Al-
gorithm

Ejection
Chain

Gurobi Hybrid
Al-
gorithm

Ejection
Chain

Gurobi
B&P

10 min 60 min

Instance01 607 607 607 607 607 607 607
Instance02 828 923 828 828 837 828 828
Instance03 1001 1003 1001 1001 1003 1001 1001
Instance04 1716 1719 1716 1716 1718 1716 1716
Instance05 1143 1439 1143 1143 1358 1143 1160
Instance06 1950 2344 1950 1950 2258 1950 1952
Instance07 1056 1284 1056 1056 1269 1056 1058
Instance08 1364 2529 8995 1344 2260 1323 1308
Instance09 439 474 439 439 463 439 439
Instance10 4631 4999 4631 4631 4797 4631 4631
Instance11 3443 3967 3443 3443 3661 3443 3443
Instance12 4042 5611 4045 4040 5211 4040 4046
Instance13 3109 8707 500,410 1905 3037 3109 -
Instance14 1281 2542 1482 1279 1847 1280 -
Instance15 4144 6049 78,144 3928 5935 4964 -
Instance16 3306 4343 3521 3225 4048 3233 3323
Instance17 5760 7835 6149 5750 7835 5851 -
Instance18 5049 6404 7950 4662 6404 4760 -
Instance19 3974 6522 29,968 3224 5531 5420 -
Instance20 5242 23,531 - 4913 9750 - -
Instance21 26,977 38,294 - 23,191 36,688 - -
Instance22 130,107 - - 32,126 516,686 - -
Instance23 40,543 - - 3794 54,384 - -
Instance24 2,829,680 - - 2,281,440 156,858 - -

Gurobi IP solver within 10 minutes computational time for 14 instances, and

produces the same or better results for the rest of the instances. It should be noted

that the ejection chain method and Gurobi IP solver could not solve the last 3

and 5 instances, respectively. That said, obtaining the reported solutions for these

instances, which are hard to solve and huge in size, makes the hybrid algorithm

an appropriate candidate to tackle such instances even in a short runtime.

Running our benchmarks for 60 minutes, the hybrid algorithm outperforms the

ejection chain method for 22 instances and does not generate a better result only

for Instance24. The reason for obtaining a poor-quality solution for Instance24

(and in general the last four instances) could be the inherent nature of the hybrid
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algorithm as a matheuristic (based on IP and CP) which is not efficient in solving

rather large-size instances. Since this instance is huge in size, it is a challenge for

the algorithm to solve it in comparison with a meta-heuristic approach like the

ejection chain method. Another reason is the limitation of computer memory and

hardware. The IP component of the hybrid algorithm needs a massive amount of

memory to solve the relevant LP problems during the search process. Moreover,

it could have a particular structure which cannot be exploited using the current

setting of the proposed algorithm, but easy to be identified by the ejection chain

method.

Similarly, in comparison with Gurobi IP solver, the hybrid algorithm is able

to generate better results for 13 instances and obtains the same results for the

remaining 10 instances. For Instance08, the IP solver outperforms the hybrid

algorithm for only a slight difference. Overall, the hybrid algorithm attains better

solutions for half of the instances, which makes it an acceptable candidate even

for longer computational times.

Comparing with B&P, the hybrid algorithm is outperformed only for Instance08,

where B&P takes more than 197 minutes to generate the solution. Apart from the

11 instances, for which B&P cannot produce any results, the hybrid algorithm

generates better solutions for 5 instances and achieves the same results for the

remaining instances.

Table 3.7 shows similar results using dataset-I for 10 minutes computational

time, where the hybrid algorithm generates the best-known solutions [13] for all

instances except ORTEC01.

We also tried to compare the hybrid algorithm with a similar approach reported

by Burke et al. [21], in which IP and VNS are hybridised in a pipeline fashion,

i.e. running sequentially. Burke et al. [21] also developed a decomposition

technique for handling constraints, and evaluated their hybrid VNS using the

studied decomposition. Unfortunately, after making inquiries from the relevant

73



Table 3.7 – Benchmark results of the hybrid algorithm against VNS-1 [18], MA
[12], VDS [24], HSA [36], SS [20], VNS-2 [55], BAP [13], and SVN [78] for dataset-I

Instance BKS HA VNS-1 MA VDS HSA SS VNS-2 BAP SVN

GPOST 5 5 - 915 - - 9 8 5 -
GPOSTB 3 3 - 789 - - 5 - 3 -
ORTEC01 270 290 541 535 360 310 365 - 270 -
ORTEC02 270 270 - - - 330 - - 270 -
Valouxis-1 20 20 - 560 - - 100 160 80 73
SINTEF 0 0 - 8 - - 4 - 0 -
MILLAR-1 0 0 - 100 - - 0 0 0 -
WHPP 5 5 - - - - - 5 5
LLR 301 301 - 305 - - 301 314 301 301

authors, it is found out that the benchmarked dataset including 12 instances is lost

except one of them, i.e. ORTEC01 (see dataset-I). In effect, being unsuccessful in

obtaining the benchmarked instances and willing to further evaluate the efficiency

of the hybrid algorithm are the reasons for creating dataset-II, where we attempted

to make it similar to the sole existing instance ORTEC01. This instance is also

the hardest instance in dataset-I. In Appendix A, we describe how this dataset is

generated.

Table 3.8 shows results of the hybrid algorithm and IP solver running for 10

and 60 minutes, and the hybrid VNS (shown as IPVNS) running for 60 minutes

computational time. Better solutions for each computational runtime are marked

bold.

To have more accurate comparison, we simulate the computational environment

of the IPVNS algorithm (Pentium 2.0 GHz PC) by running the hybrid algorithm

on a different PC with an Intel Core-i7 1.6 GHz CPU but only using one core

of the CPU. That said, the first reported value for instance ORTEC01 is the

one similar to the other instances by running on our regular benchmark PC, and

the second one is relevant to the less-powerful PC used only for comparing with

IPVNS algorithm. As we can see in Table 3.8, compared with the results obtained

by the IP solver, the hybrid algorithm finds better solutions for all the instances.
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Table 3.8 – Benchmark results of the hybrid algorithm in comparison with Gurobi
IP solver [35] and the hybrid VNS algorithm (IPVNS) reported by Burke et al. [21]
for dataset-II

Instance
Hybrid Algorithm Gurobi IPVNS

10 min 60 min 10 min 60 min 60 min

ORTEC01 270, 315 270 1410 405 460
NRP01 7690 7620 15,500 11,162 -
NRP02 9801 9638 31,741 12,850 -
NRP03 6340 5230 15,510 8553 -
NRP04 4020 3700 25,495 13,385 -
NRP05 9450 9400 14,855 14,855 -
NRP06 2380 2320 2911 2521 -
NRP07 3380 3220 5660 5301 -
NRP08 256 230 385 241 -
NRP09 3560 3360 14,940 5880 -
NRP10 8820 8530 22,863 22,551 -
NRP11 3450 3290 37,698 5828 -

In particular, for instance ORTEC01, when we compare the results with IPVNS,

the algorithm reaches the objective value of 315, which is 31% better than the one

obtained by IPVNS, i.e. 460 on a similar computational environment. Running the

algorithm on our regular benchmark PC, the objective value is slightly improved

and reaches the value of 270 known as the optimal solution, which could be due

to using a more powerful PC.

Considering instance ORTEC01, we also benchmark the algorithm against

the winner of personnel scheduling track of CHeSC hyper-heuristic competition

[43, 41], who developed a VNS-based hyper-heuristic (VNS-TW) consisting of two

steps, i.e. shaking and local search, which is able to dynamically adjust to various

problems using different techniques. Running the hybrid algorithm within the

standardised time limit using the benchmark tool provided by the competition

organisers, it obtains the objective value 270 in comparison with the result 320

obtained by VNS-TW.

Comparing our hybrid algorithm and Gurobi IP solver for 60 minutes, the

hybrid algorithm obtains better results. It is worth noting that the results
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generated by the hybrid algorithm for 10 minutes are superior to the solutions

produced by the Gurobi IP solver for 60 minutes except for instance NRP08,

where there is only a slight difference.

In summary, it is observed that the algorithm performs well for short compu-

tational time and is able to produce acceptable solutions in long computational

runtimes. In benchmarks, it is also seen that the hybrid algorithm is able to

compete with state-of-the-art algorithms. However, since the core component

of the algorithm is IP, it has still the limitations of IP solvers and is not able

to handle relatively large-size instances. For example, we expect to see a high

consumption of computer memory and a considerable decline in the performance

of the algorithm when large-size instances (e.g. more than 50 nurses and/or

more than 6 months scheduling duration) are dealt with. That said, the hybrid

algorithm is suitable when an IP solver is available and better performance is

expected to achieve without spending significant efforts and investments. Due

to the nature of the algorithm in using mathematical models and rather general

neighbourhood structures, it is also expected to perform well on other sets of

instances with similar sizes perhaps with some parameter tunings.

3.4 Extended Computational Results

In this section, we go beyond the scope of the NRP to investigate the extendability

and scalability of the proposed solution evaluation mechanism, on which the hybrid

algorithm is designed. That said, we benchmark the hybrid algorithm based on a

similar rostering problem called University Timetabling Problem (UTP) [22]. The

UTP is defined as the process of scheduling some courses within a given number of

periods and rooms, considering some requirements such as university regulations,

and some preferences such as maximum utilisation of rooms. For our benchmarks,

we use the problem description and IP formulation explained in Appendix B.
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Table 3.9 – The characteristics of the benchmark instances for the UTP

Instance Periods Days Courses Curricula Rooms

Comp1 30 5 30 14 6
Comp2 25 5 82 70 16
Comp3 25 5 72 68 16
Comp4 25 5 79 57 18
Comp5 36 6 54 139 9
Comp6 25 5 108 70 18
Comp7 25 5 131 77 20
Comp8 25 5 86 61 18
Comp9 25 5 76 75 18
Comp10 25 5 115 67 18
Comp11 45 5 30 13 5
Comp12 36 6 88 150 11
Comp13 25 5 82 66 19
Comp14 25 5 85 60 17

We tested the algorithm on 14 instances introduced in the third track of

ITC-2007 competition [29], whose characteristics are reported in Table 3.9. For

benchmarking purposes, we use the same environment as well as parameter settings

for the NRP mentioned in Section 3.3, unless otherwise stated. Setting up the

algorithm based on the UTP, courses, period, and rooms resemble nurses, days,

and shifts, respectively. That said, same neighbourhood structures and aggregation

settings (Courses, Periods, Days, and Random) are applied. We also use Config3

as the best-identified configuration and employ a simple greedy heuristic similar

to the algorithm reported by Lü and Hao [52] for generating initial solutions.

Table 3.10 shows the required information for calculating cell penalties ac-

cording to the IP formulation presented in Appendix B, which are calculated

in a similar way to the NRP. In this table, |AC| denotes the total number of

affected cells relevant to a violation. For example, for Constraint 1, the number

of unassigned lectures for a course, the total number of violations (unassigned

lectures) |V | are divided to all periods |P |. That said, each cell contributes equally

to the total number of violations as much as the value of cell share, |V |/|P |.
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Table 3.11 – Benchmark results of the algorithm (HA) in comparison with the
results of Lach and Lübbecke [49] (BF), Burke et al. [22] (MA), and Müller [59]
(WN)

Instance
1U 10U WN

HA MA BF HA MA BF Avg. (IU) Best (10U)

Comp1 5 168 12 5 10 12 5 5
Comp2 105 114 239 68 101 93 61 51
Comp3 126 158 194 74 144 86 95 84
Comp4 53 153 44 37 36 41 43 37
Comp5 764 1447 965 308 649 468 344 330
Comp6 161 277 395 132 317 79 57 48
Comp7 161 - 525 62 857 28 34 20
Comp8 80 173 78 44 53 48 47 41
Comp9 137 112 115 110 115 106 113 109
Comp10 60 70 235 58 49 44 21 16
Comp11 0 288 7 0 12 7 0 0
Comp12 649 - 1122 626 889 657 352 333
Comp13 98 556 98 78 92 67 74 66
Comp14 100 123 113 65 72 54 62 59

To benchmark the efficiency of the proposed algorithm against current state-

of-the-art algorithms, we compared it with the results of a strong IP formulation

composed of two stages (BF) [49], a matheuristic using a decomposed formulation

(MA) [22], and the winner of the third track of ITC-2007 competition (WN )

[59]. We ran the algorithm for 1 and 10 CPU unit(s). Using the benchmark tool

provided by the competition organisers to normalise time measurement, one CPU

unit corresponds to 210 seconds on our benchmark PC. The results are reported in

Table 3.11, where “-” indicates that the algorithm does not generate any feasible

solutions within the allocated time limit. The results shown in bold indicate best

obtained solutions.

As we can see in Table 3.11, from the total of 14 instances, HA is able to

generate better results for 11 and 7 instances within 1 and 10 CPU unit(s),

respectively. Comparing with the results of MA, HA produces better solutions

for all the benchmark instances except instances Comp4, Comp9, and Comp10

within 1 and 10 CPU unit(s). Moreover, although a strengthened formulation is

employed in BF, it outperforms HA only for 3 and 6 instances within 1 and 10

CPU unit(s), respectively. It is also worth mentioning that for those instances
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that the proposed algorithm does not generate better solutions, the difference in

the quality of the obtained solutions is not significant. In comparison with WN,

whether according to the average or best results within 10 and 1 CPU unit(s), the

obtained solutions of HA are inferior, though it is capable of generating optimality

information.

Overall, in terms of performance, it can be observed that using the same

parameters as we set for the NRP, the hybrid algorithm is able to obtain competitive

results for the UTP using the new solution evaluation mechanism when it is

compared against similar IP-based approaches. However, in comparison with

meta-heuristic methods such as WN, the performance of the hybrid algorithm was

not promising which again confirms the limitations of exact methods such as IP.

In terms of implementation, we applied identical values for all parameters except

the ones associated with penalty calculation which have to be set according to

individual constraints of a problem. That said, no significant tuning is required

to apply the algorithm to a new problem. Therefore, there is potential to extend

the applicability of the proposed solution evaluation mechanism on which the

hybrid algorithm is designed to similar optimisation problems which have similar

characteristics as the NRP.

3.5 Concluding Remarks

We have presented a hybrid algorithm employing VNS and IP which is designed

based on a new solution evaluation mechanism. At the first step, after generating

an initial solution using a greedy heuristic, the solution is improved using a VND

algorithm. To increase the exploitation and exploration in the VNS, IP within

a ruin-and-recreate framework is employed, where parts of the solution are kept

fixed by applying a new scoring scheme. In order to ensure the investigation of

the whole search space, IP is applied again to improve the obtained solution in
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the remaining time.

The proposed scoring scheme is able to break down the total penalty associated

with a solution into fundamental elements of the problem, and to guide the search

process adaptively towards high-potential parts of the solution. Moreover, incor-

porating an IP approach into a meta-heuristic algorithm confirms the applicability

of exact methods for practical instances in a hybrid setting. We evaluated the

proposed algorithm with three different datasets consisting of a variety of instances.

The benchmark results showed competitive performance in comparison with state-

of-the-art algorithms and a standard IP solver. The algorithmic concepts of the

proposed algorithm particularly the embedded solution evaluation mechanism

are general enough to be applied to other similar rostering problems such as

the UTP as it has been observed in the extended computational results. For

further information regarding generalisation of the proposed algorithm, we refer

the interested readers to our technical report [68]. In summary, it is observed that

using the new solution evaluation mechanism, thereby exploiting problem-specific

information during the search process directs the algorithm to the most promising

areas of the search space and results in generating solutions which are competitive

with those obtained by state-of-the-art algorithms.

3.6 Contributions

This chapter proposes a hybrid algorithm in which a new solution evaluation

mechanism is applied. The algorithm is a hybridisation of IP and VNS, where IP

is employed to intensify and diversify the search process. IP is integrated within

a ruin-and-recreate framework and is employed as a neighbourhood structure

throughout VNS cycles. In the ruin-and-recreate framework, elements of the

solution having a high penalty are destroyed and recreated using IP aiming to

obtain a better-quality and different-structured solution. Identifying high-penalty
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parts of the solution is done using a novel scoring scheme, in which the total penalty

is broken down into fundamental elements of the solution. The proposed algorithm

is benchmarked against state-of-the-art algorithms and a standard IP solver using

three different datasets. The tests show promising results for most instances

in short and long computational times. Furthermore, computational results are

extended by using a different optimisation problem to show the applicability and

extendability of the algorithm.

The proposed algorithm is able to traverse the infeasible space through the

ruin-and-recreate framework by allowing all constraints to be violated. This

characteristic allows the search process to find latent feasible solutions and escape

from complicated local optima.

The new scoring scheme is applied to bring violations of soft constraints into

play, and to empower the hybrid algorithm to assess the quality of solutions

through different perspectives and dimensions. That said, a solution which is not

good-quality according to a dimension, could have better-quality based on other

dimensions.
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Chapter 4

Conclusions and Future Research

In this chapter, we mainly address the contributions of this dissertation, and

discuss some future research directions.

4.1 Conclusion

Over the last few decades, a wide variety of approaches and solution methods

have been developed to solve the NRP. This dissertation aimed for contributing

to the theory and practice of the NRP in two ways. First, to extend the reach

of exact methods such as IP and CP, a hybridisation of IP and CP is proposed

whose computational strengths are exploited to solve practical problem instances.

That said, one can apply such methods to a wider set of problem instances while

preserving their computational benefits such as accessing optimality information.

Second, a new solution evaluation mechanism is introduced to assess the quality

of obtained rosters within the search process which is able to provide useful

information by breaking down the solution penalty. That said, a hybrid algorithm

was designed to accommodate the proposed evaluation method enclosed within a

ruin-and-recreate framework.

In Chapter 2, we proposed a hybrid algorithm to extend the computational
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reach of IP and CP, where the strength of CP in generating feasible solutions is

utilised to aid the IP solver to attain better results. To achieve better performance,

some algorithmic components were provided to extract valuable problem-specific

information such as the computational difficulty of instances and constraints. The

hybrid algorithm was able to provide optimality information by decomposing

the problem into various sub-problems. Competitive results were obtained for

a diverse range of instances classified in three different datasets, indicating the

effectiveness of the algorithm for practical use.

In summary, it was observed that the reach of IP and CP approaches can be

extended through a hybridisation scheme which makes them competitive enough

in comparison with other state-of-the-art algorithms. However, computational

limitations of such exact methods, and therefore, the proposed hybrid algorithm

are still in place.

In Chapter 3, two common and successful solution approaches existing in

the relevant literature, i.e. IP and VNS algorithms were combined based on a

new solution evaluation mechanism. A ruin-and-recreate framework using IP

was employed in the VNS algorithm to increase the exploitation and exploration

throughout the search process, where parts of the solution are kept fixed by

applying a new scoring scheme. The scoring scheme allowed us to identify the high-

penalty parts of the solution from a variety of perspectives and dimensions within

VNS cycles, thereby directing the search process adaptively towards most promising

parts of the solution. The hybrid algorithm was evaluated using three different

datasets and the benchmark results showed promising performance in comparison

with state-of-the-art algorithms and a standard IP solver. The computational

results were also extended to study the applicability of the proposed evaluation

mechanism to a similar optimisation problem, where the hybrid algorithm showed

acceptable performance.

In summary, it was observed that using a new solution evaluation mechanism
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embedded within a hybrid algorithm, thereby exploiting problem-specific informa-

tion during the search process empowers the proposed hybrid algorithm to obtain

solutions which are competitive with those obtained by state-of-the-art algorithms.

Overall, the results of extensive computational tests confirmed the validity of

research contributions explained in this dissertation. In particular, it was shown

that applying exact methods such as IP and CP in a hybrid setting is still beneficial

to deal with practical problem instances, though it has still its computational

limitations. The significant improvement in computational power of off-the-shelf

IP and CP solvers during recent years (e.g. see the change history in [35]) and

their increasing applications in bespoke business solutions (e.g. SAP [54]) further

highlights the importance of this class of methods to solve real-world problem

instances. It was also shown that extracting problem-specific information during

the search process using an efficient solution evaluation method is beneficial to

the overall performance of the hybrid algorithm.

4.2 Future Research

The present dissertation has made several new contributions to personnel ros-

tering. Nevertheless, a large variety of topics remains open for future research.

Furthermore, based on the contributions, several new research questions have

become relevant. In what follows, possible further extensions are given.

In Chapters 2 and 3, we formulated the NRP in IP and CP considering that

nurses have only one skill. Although our practical experience indicates that this

assumption is not too restrictive (as we explained in Section 2.2), there could

be circumstances that the problem is required to be modelled as a multi-skill

problem. To deal with this new assumption, the algorithms presented in this

dissertation need to be manipulated. This manipulation is mostly done to the

problem formulation by defining new variables, but some further tweaks might be
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required to increase the performance of hybrid algorithms such as defining new

neighbourhood structures considering skills.

The IP formulations presented in Chapter 2 is one of the common formulations

of the NRP. This formulation suited the proposed algorithm very well due to its

inherent transparency in modelling of constraints and better capturing of problem

information during the search process. However, by using this formulation, the

size of the resulted integer program exponentially increases when the scale of the

problem becomes larger. Another alternative is to use pattern-based formulation

[6, 40], in which modelling of complex constraints and incorporating changes into

the model are easier, though it is very difficult to capture the interaction between

constraints. To exploit such benefits, using pattern-based formulation within the

proposed hybrid algorithm, which is often solved by applying column generation

technique is open for future studies. To tackle the opaque interaction between

constraints in a column generation formulation, using two models in parallel during

the search process would be helpful. That said, the information throughout the

search process can be shared and exchanged between two models.

Due to the rather general definition of the hybrid algorithm presented in

Chapter 2 and using IP and CP models therein, there are possibilities to investigate

the extension of this algorithm to other similar problems in terms of the underlying

structure such as the course timetabling problem (as we have seen similarly in

Section 3.4), thereby exploiting practical benefits in more general settings.

For the hybrid algorithm presented in Chapter 3, the VNS algorithm is chosen

due to the flexible, simple, and rather general nature of this meta-heuristic and

its suitability for incorporating complex neighbourhoods. Nonetheless, other

heuristic algorithms such as population-based meta-heuristics which are popular

according to the relevant literature [58, 20, 1] can be accommodated. Using

population-based meta-heuristics, applying parallel computing becomes relevant

to distribute the computational burdens over several computational units, or

86



to perform different stages of the search process simultaneously. For example,

different configuration settings could be used in parallel. Another interesting

research direction is to investigate more sophisticated neighbourhood structures

in order to improve the efficiency of the VNS algorithm and exploitation of the

problem-specific information.

For easier configuration of the hybrid algorithm presented in Chapter 3, it

would be interesting to employ a parameter tuning tool (e.g. see Hutter et al. [42])

to precisely select best configurations for the proposed ruin-and-recreate strategy,

though it makes the implementation of the algorithm more difficult.

Although there were attempts to implement the algorithms presented in this

dissertation in a real hospital environment, there has been no real case study

based on the theories studied in this dissertation. Therefore, future case studies

might provide more insights into the applicability, usability, and performance of

the presented models and algorithms in this dissertation.
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Appendix A

Dataset-II

This dataset is generated to resemble the only available instance ORTEC01 (in

dataset-I) as closely as possible, according to the following assumptions:

1. Since the lost instances belong to a yearly dataset extracted from a hospital

over 12 months, we assumed that all staff contracts are not changed and

fixed during the planning year.

2. Considering the yearly nature of the dataset, we assumed that there is no

change in the hospital regulations, number of shifts, and number of nurses

(i.e. no hiring or firing occurs).

3. Considering the yearly nature of the dataset, we assumed that there should

not be any major changes in the coverage and shift on/off requests.

4. We assumed that the coverage data for the weekend days follows a similar

pattern to the coverage data of the available instance.

According to these assumptions, we only generate random instances by changing

the coverage and shift on/off requests constraints. For generating coverage data,

for all weekdays and for all shifts except the night shift, we use a weighted uniform

random function within the range [2, 4], by considering the associated weights

0.25, 0.5, 0.25 for the included numbers within the range. For night shifts, we
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Table A.1 – Results of standard Gurobi IP solver using dataset-II for 10 minutes

Instance Obj. LB Gap (%) Instance Obj. LB Gap (%)

ORTEC01 1410 145 89.72 NRP06 2911 138 95.26
NRP01 15,500 570 96.32 NRP07 5660 141 97.51
NRP02 31,741 200 99.37 NRP08 385 201 47.79
NRP03 15,510 122 99.21 NRP09 14,940 1130 92.44
NRP04 25,495 1300 94.90 NRP10 22,863 310 98.64
NRP05 14,855 211 98.58 NRP11 37,698 110 99.71

use a uniform random function to generate the coverage data within the range [1,

2]. Thus, we ensure that the generated coverage data are similar to the available

instance with only very slight perturbation, and at the same time, ensure that a

reasonable level of randomness is reserved.

For generating shift on/off requests, first, we use a uniform random function

to generate some request data including involved employees, requested shifts

consisting of days off, requested days, and associated weights, while considering

the ranges [0, total number of employees], [0, total number of shifts + 1], [0, total

number of days], and the set {100, 1000, 10,000}, respectively. Then we use a

uniform random function again to generate the required number of shift on/off

requests within the range [0, 5] independently. Finally, knowing the total number

of shift on/off requests, first we pick the number of shift on requests and then the

number of shift off requests from the relevant data, if any.

We use an identical random seed for the whole generation of instances, and we

repeat the process until we obtain a feasible problem instance. Table A.1 shows

the obtained results of the standard Gurobi IP solver for 10 minutes runtime using

the generated random instances with prefix NRP (to differentiate with original

instances which are prefixed with ORTEC ). As one can see in this table, all the

generated instances are solved to a gap greater than 90% except instance NRP08

with the gap of 48%. Therefore, it can be speculated that the generated new

instances are at least as challenging as ORTEC01.
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Appendix B

University Timetabling Problem

There are a few versions of the UTP in the literature [15], however, here we focus

on the Curriculum-based Course Timetabling Problem, which is presented in the

third track of Second International Timetabling Competition (ITC-2007) [29].

For further information regarding the problem, we refer the interested reader

to Di Gaspero et al. [29], where the detailed description of the problem and

the benchmark instances are presented. Next, constraints of the problem are

explained.

1. All lectures of a course must be allocated.

2. Two lectures of a course cannot take place in the same room at the same

period.

3. Lectures of courses which are in the same curriculum or taught by the same

teacher must be all timetabled in different periods.

4. No lecture of a course can be timetabled at a period which the teacher of

that course is not available to teach.

5. The number of students who attend to each course must be less or equal

than the number of seats of all the rooms that host its lectures. Each student

above the capacity is counted as one violation.

6. All lectures of a course must be spread into a given minimum number of
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days. Each day below the minimum is counted as one violation.

7. All lectures belonging to a curriculum should be adjacent to each other

within the same day. Each isolated lecture is counted as one violation.

8. All lectures of a course should be held in the same room. Each distinct room

except the first is counted as one violation.

The objective is to reduce the number of violations associated with the soft

constraints 5 to 8 (to increase the quality of the timetable) as much as possible.

The IP formulation of the problem is presented in the following.

Sets and parameters:

C set of courses.

U set of curricula.

T set of teachers.

R set of rooms.

D,P set of days and periods.

Cu set of courses in curriculum u ∈ U .

Ct set of courses taught by teacher t ∈ T .

Pc set of forbidden periods for course c ∈ C, when the teacher of that course

is not available to teach.

lc number of lectures that course c ∈ C has.

sc number of students enrolled in course c ∈ C.

ar capacity (number of seats) of room r ∈ R.

dmin
c minimum number of days in which the lectures of course c ∈ C must

spread.

wcap
cr weight relevant to room capacities for course c ∈ C in room r ∈ R.

wspr
c weight relevant to minimum working days of course c ∈ C.

wcom
udp weight relevant to curriculum compactness of curriculum u ∈ U within

day d ∈ D at period p ∈ P .

wstb
c weight relevant to room stability of course c ∈ C.
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Decision variables:

xcpr = 1 if course c ∈ C is taught at period p ∈ P in room r ∈ R, = 0

otherwise.

kcd = 1 if course c ∈ C is held on day d ∈ D, = 0 otherwise.

qcr = 1 if course c ∈ C is held in room r ∈ R, = 0 otherwise.

hup = 1 if any course belongs to curriculum u ∈ U is taught at period p ∈ P ,

= 0 otherwise.

ecr the incurred penalty if course c ∈ C is taught in room r ∈ R whose

capacity is less than the number of enrolled students in that course.

bc the incurred penalty if course c ∈ C spreads in less than the given

minimum number of days for that course.

yudp the incurred penalty if some lectures belonging to curriculum u ∈ U are

not adjacent to each other for a sequence of lectures starting from period

p ∈ P within day d ∈ D.

zc the incurred penalty if lectures of course c ∈ C are not held in the same

room.

Constraints: ∑
p∈P

∑
r∈R

xcpr = lc, ∀c ∈ C (B.1)

∑
c∈C

xcpr ≤ 1, ∀p ∈ P, r ∈ R (B.2)



∑
r∈R

xcpr ≤ 1, ∀c ∈ C, p ∈ P∑
c∈Cu

∑
r∈R

xcpr ≤ 1, ∀p ∈ P, u ∈ U∑
c∈Ct

∑
r∈R

xcpr ≤ 1, ∀p ∈ P, t ∈ T

(B.3)

∑
r∈R

xcpr = 0, ∀c ∈ C, p ∈ Pc (B.4)

∑
p∈P,ar<sc

xcpr(sc − ar)− ecr = 0, ∀c ∈ C, r ∈ R (B.5)
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∑
d∈D

kcd + bc ≥ dmin
c , ∀c ∈ C (B.6)

hup+1 − hup − hup+2 − yudp ≤ 0, ∀u ∈ U, d ∈ D, p ∈
{

1 . . . d
|P |
|D|
− 2

}
(B.7)

∑
r∈R

qcr = 1 + zc, ∀c ∈ C (B.8)

xcpr, kcd, qcr, hup ∈ {0, 1}, ecr, bc, yudp, zc ∈ Z, ∀c ∈ C, p ∈ P, r ∈ R, d ∈ D, u ∈ U

Objective function:

min
∑
c∈C

∑
r∈R

ecrw
cap
cr +

∑
c∈C

bcw
spr
c +

∑
u∈U

∑
d∈D

∑
p∈P

yudpw
com
udp +

∑
c∈C

zcw
stb
c
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