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THE INTEGRATION OF TOPOLOGY AND ENTROPY-BASED 
RELIABILITY INTO THE OPTIMAL DESIGN OF WATER 

DISTRIBUTION SYSTEMS 
 
 

Salah H. A. Saleh 
 
 

ABSTRACT 

 
 
 
Establishing a new water distribution system (WDS) essentially involves proper 
planning of system components to minimize cost, sizing of such components to 
operate under normal operating conditions and assessing system performance under 
abnormal operating conditions to minimize effects of components failure. This thesis 
investigates combining these optimization aspects while specifically focusing on 
optimal planning of system components amongst all possible topologies, optimal 
design over all possible combinations of components sizes, and improving system 
performance over all possible levels of hydraulic reliability. In order to address these 
issues in full, a novel many-objective genetic algorithm approach to the simultaneous 
optimization of topology, design and reliability of the WDS has been developed in 
this research.  
 
The novelty and originality carried out in this research are presented next. 
 
A new multi-objective approach for coupled topology and pipe size optimization of 
WDS is developed. The approach is the first to exploit in full both feasible and 
infeasible parts of the entire solution space of topology and design within the search 
procedure. A new algorithm for topology confirmation is developed to identify and 
quantify infeasible topologies containing nodes and pipes isolated from supplying 
sources. The algorithm is coupled with the penalty-free strategy to enable both 
infeasible topologies and designs with insufficient pressures to contribute to 
achieving the least cost design of the WDS. Previously, solutions belonging to either 
infeasible topologies or having insufficient pressure were being discarded from the 
search process. The approach is computationally efficient and outperforms previous 
methods of coupled topology and design optimization of WDS. 
 
A new multi-objective approach for design and entropy-based reliability optimization 
of WDS is developed. The statistical entropy highly dependent on flow directions 
was used as a measure of the WDS reliability within the approach. The approach is 
the first to globally maximize entropy of the WDS. Previously, the search procedure 
was locally restricted to predefined sets of flow directions. To address this issue, a 
new algorithm that eliminates the need to specify limited sets of flow directions in 
advance of the search process is developed. The algorithm is integrated with the 



 

 ii 

penalty-free strategy in order to fully exploit the entire solution space of entropy and 
design. The approach simultaneously combines local and global maximization of 
entropy with cost minimization over the entire solution space of pipe sizing. To 
reduce difficulties encountered in searching into the solution space of this many-
objective problem, a new concept that computationally combines objectives of 
hydraulic infeasibility with global and local maximization of entropy into one 
objective is developed. The approach is applied to two benchmark networks yielding 
superior results in terms of global maximization of entropy and good balance 
between cost and entropy. 
 
The coupled topology and entropy-based design optimization of WDS are integrated 
into a penalty-free many-objective framework. It is the first to combine topology, 
pipe size and entropy-based reliability optimization of the WDS in a simultaneous 
way. The maximization of entropy in this combination is tackled in an entirely novel 
way by simultaneously exploring entropy belonging to multiple topologies and 
multiple entropies belonging to the same topology. To address exploring entropy of 
new topologies, a network complexity measure that accounts for number of pipes 
contained in a topology is introduced as an objective. The concept of handling this 
many-objective problem is extended to account for topologic infeasibility, hydraulic 
infeasibility and global and local maximization of entropy. Excellent results have 
been efficiently achieved regarding the provision of a variety of maximum entropy 
designs distributed to different topologies and having good compromise between 
entropy and cost. 
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CHAPTER ONE  
 

 

 

INTRODUCTION 

      

 

 

1.1 BACKGROUND 

 

Water Distribution Systems (WDS) form an important part of the world’s 

infrastructure. As such, a great amount of cost is annually spent to construct and 

operate newly established systems. Basically, the establishment of a new WDS 

undergoes three main design stages: planning of system components layout; sizing of 

system components to operate under normal operating conditions; and assessing 

system performance under abnormal operating conditions. In normal operating 

conditions, all system components are considered available, while not all of them are 

available in abnormal operating conditions due to the uncertain failure conditions 

that are likely to occur during the operation period of the WDS. Pipe breakage, burst 

and erosion are typical examples of failure conditions that could occur during the 

operation of the WDS. Besides the uncertain failure conditions, the abnormal 

operating conditions include uncertain spatial and temporal increases in water 

demands a WDS is likely to undergo throughout the operation period. 

 

The planning stage involves optimally determining number and locations of the 

various components forming the WDS. This includes determining the optimal 

number and configuration of pipe topology to be identified from a large set of 

different topologies each represent a possible planning to the WDS.  To reduce the 

complexity of the planning stage, the layout or topology of the WDS is assumed to 

be predefined in advance of the design stage. In reality, this is not always the case
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because there are many situations in which the topology of the WDS is not fixed to 

some configuration. In developing countries, for example, there are a large number 

of societies lacking infrastructure facilities and so having no access to drinking 

water. Establishing new large systems in such situations means it is extremely hard 

to determine the topology to which the optimal design belongs. Accordingly, system 

topology represents an essential element that should be incorporated into the 

determination of the optimal design of the WDS.  

 

Even though the planning stage involves identifying the optimal number and 

locations of other components such as storage tanks and pumping stations, the capital 

cost of the WDS mainly comes from pipes forming transmission mains and 

distribution networks (Swamee and Sharma, 2008). Accordingly, the determination 

of optimal pipe topology is a key factor towards saving a significant amount of the 

capital cost of the WDS. Since the planning stage alone is not sufficient to determine 

the optimal cost of the WDS unless system components are sized, the determination 

of the optimal topology of the WDS should be carried out in conjunction with the 

design stage in which all system components are sized. 

 

Besides the assumption that the system topology is dealt with as being known, the 

WDS is conventionally designed under the consideration that the system operates 

under normal conditions in which all system components are always considered in 

service. In reality, there are some circumstances that make some system components 

unavailable during the operation period. Deterioration of components with time, 

scheduled maintenance of the system, pipe breakage and pump failure conditions are 

some of the abnormal conditions a system could experience while being in operation. 

Accordingly, rehabilitation and upgrading become essential to restore the system to 

its original capacity. These two processes add a significant amount of capital to the 

construction and operation cost. To reduce effects of failure conditions on system 

performance, further assessment component that is potentially able to evaluate the 

hydraulic performance under abnormal operating conditions becomes a crucial 

element to be included in the determination of the optimal design of the WDS. 
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Hydraulic reliability is commonly used to assess the WDS performance under 

abnormal operating conditions. 

 

Since it is computationally impractical to assess hydraulic reliability based on 

simulating all failure conditions that could occur within a proposed design of the 

WDS, a number of surrogate measures of reliability able to assess reliability without 

the need of a full failure simulation was developed in literature. The disagreement on 

a universal definition of reliability of the WDS was another reason behind 

developing such measures. Statistical entropy (Tanyimboh and Templeman, 1993), 

resilience index (Todini, 2000), network resilience (Prasad and Park 2004) and 

surplus power factor (Vaabel et al. 2006) are common examples of such measures. 

Among the aforementioned measures, statistical entropy has been found to have a 

good relationship with hydraulic reliability. For this reason, network entropy has 

been employed as a measure of reliability within the current research. 

 

The fact that either considering topology alone is not sufficient to determine cost and 

reliability or considering pipe sizing alone is not sufficient to determine design and 

reliability indicates that the relationship between topology, design and reliability is 

very strong. This high dependency strongly suggests that the determination of the 

optimal design of a WDS should be based on carrying out the trade-off between 

topology, design and reliability in a simultaneous way. Such a simultaneous 

combination enables both design and reliability of the WDS to be determined once 

topology is defined, which is advantageous to striking the balance between cost 

saving and improving the long-term hydraulic performance of the WDS. The 

application of such a concept requires simultaneously searching into the entire 

solution space of topology, design and reliability of the WDS.  

 

In literature, this highly complex task has not been yet achieved. The only notable 

work attempted to address the joint effect between topology, design and reliability 

optimization dealt with this issue as a sequence of multiple optimization stages 

(Tanyimboh and Setiadi, 2008). Dealing with this problem as separated stages was 
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imposed by the concept that it would be extremely and computationally expensive if 

the three optimization aspects were handled together. Therefore, the development of 

a robust and efficient methodology able to simultaneously handle topology, design 

and reliability optimization of the WDS has become a pressing problem. This thesis 

smashes this idea by developing a very robust and efficient approach for the joint 

optimization of topology, design and reliability of the WDS. The concept of the 

approach is based on carrying out the decision-making process of the search 

procedure once three entities of the system are determined: pipe sizes; topology to 

which the system belongs; and reliability of the system. The idea is to maintain the 

joint effect between topology, pipe sizing and reliability inter-dependent throughout 

the search procedure.     

 

 

1.2 SCOPE OF CURRENT RESEARCH 

 

The objective of this research is to develop a rational and efficient optimization 

approach able to identify the optimal combinations of planning, design and hydraulic 

reliability for a WDS in one integrated process. The aim of the current study aims to 

demonstrate the possibility of simultaneously handling the optimization of topology, 

pipe sizing and reliability of the WDS in an efficient and robust way. The present 

research encompasses two active, highly complex and challenging research areas 

related to the WDS optimization: 1) addressing the inter-connecting strong effect of 

topology, design and reliability on identifying the optimal design of the WDS; and 2) 

the potential of efficiently searching into the entire solution space of topology, design 

and reliability of the WDS.  

 

During the achievement of the extremely complex objective of the present research, a 

number of difficult issues have been robustly addressed. To solve the issue of flow 

directions associated with calculating network entropy, an algorithm for automatic 

detection of flow directions has been developed and incorporated. This algorithm has 

been extensively tested and demonstrated high robustness and efficiency in handling 
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any set of flow directions that change from one design to another. The issue of 

searching into the infeasible part of topology solution space has been tackled with 

developing an algorithm for topology confirmation. The algorithm quantifies 

infeasible topologies and essentially replaces the misleading results, i.e. extremely 

large negative pressures, obtained by the DDA hydraulic simulator with realistic 

results suitably depicting the situation of isolated parts in a WDS.  

 

1.3 OBJECTIVES OF THE RESEARCH 

 

1) To develop an efficient and robust EA based model able to simultaneously 

optimize topology, design and reliability of the WDS by searching into 

feasible and infeasible parts of the entire solution space of topology, pipe 

sizing and reliability. 

 

2) To develop a highly reliable algorithm for handling infeasible topologies. The 

motivation for developing such an algorithm is to enhance the topology 

optimization with generating a large number of topologies within the 

optimization process. 

 

3) To develop a robust algorithm capable of handling any set of flow directions 

without the need of being specified in advance of the optimization process. 

The motivation for developing such an algorithm is to enable the EA to assess 

the hydraulic performance using informational entropy, which is highly 

dependent on flow directions, for any feasible set of flow directions 

belonging to the design space.  

 

4) To assess the robustness, efficiency and practicality of the developed 

optimization model by testing it on both benchmark hypothetical networks 

and real systems. 
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1.4 DESCRIPTION OF THE RESEARCH METHODOLOGY 

 

This thesis introduces a novel penalty-free multi-objective evolutionary approach for 

the simultaneous optimization of topology, design and reliability of the WDS. The 

approach completely eradicates the necessity of dividing the optimization of 

planning, design and long-term hydraulic performance assessment into a sequence of 

multiple separate processes. It also eliminates the need of constraining the search 

process to the feasible part of the solution space. The approach is mainly composed 

of four integrated interactive modules, which are a flow-direction handling model, 

topology handling model, hydraulic simulator and multi-objective genetic algorithm 

(MOGA). Both of the flow directions handling and topology handling models are 

developed as part of the present research, while the hydraulic simulator and the GA 

are employed from literature. The four models are fully integrated in such a way that 

the interaction of data is so smooth that it takes place automatically and without any 

manual involvement once the approach is launched. The integration of such models 

is sufficient to efficiently direct the approach search, through both infeasible and 

feasible regions, towards the unified feasibility region of topology and reliable 

designs in a penalty-free way.   

 

The MOGA is used to generate and sort solutions to obtain the set of optimal 

solutions based on the trade-off between topology, design and reliability. The 

MOGA has been significantly modified in such a way that it sorts solutions for non-

domination and diversity within a unified domain. Additionally, a new technique for 

handling the issue of redundant codes associated with binary coded genetic 

algorithms has been developed and incorporated. In terms of topologic optimization, 

a new model for handling infeasible topologies has been developed and incorporated. 

Most importantly, a new strategy for coping with such a many-objective problem has 

been developed based on involving all problem objectives and incorporated to reduce 

the computational complexity of the optimization problem.  
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1.5 THE THESIS OUTLINES 

 

This thesis has seven chapters in total. Apart from the introduction given here, the 

thesis is organized as follows: 

 

Chapter 2 covers the basics of hydraulic analysis and methods of assessing the long-

term hydraulic performance of the WDS. This includes a description of the 

governing equations involved in modelling the WDS, the two types of hydraulic 

analysis and reliability assessment of the WDS. 

 

Chapter 3 introduces the tools and methods applied in the optimization of the WDS. 

A special focus on EA, particularly GA, as an optimization tool was provided. The 

most important part of this chapter is the discussion of conventional and EA based 

optimization methods used in the literature. 

 

Chapter 4 introduces a novel method for coupled topology and design optimization 

of the WDS. The methodology is presented in detail and applied to benchmark 

hypothetical and real networks to demonstrate it robustness, efficiency and 

performance. Comparison of results with the previous best designs in the literature is 

provided. 

 

Chapter 5 presents a novel search strategy that simultaneously combines a global and 

local search towards maximum entropy solutions of the WDS. The formulation and 

description of the new method is explained in detail. The new approach is tested by 

designing a benchmark hypothetical network and a real system to demonstrate its 

robustness, efficiency and performance in comparison with previous and new 

developed methods. 

 

Chapter 6 introduces a novel approach that is the first in literature to address the joint 

effect problem of topology, design and reliability optimization of the WDS. The 

approach strikes this goal by simultaneously combining the optimization of topology, 
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design and reliability of the WDS into one integrated process. The methodology is 

presented and explained in detail. The robustness, performance and efficiency of the 

method are demonstrated by designing a benchmark hypothetical network and a real 

system in the literature. 

 

Chapter 7 brings the present research to an end through summarizing the present 

research in general and providing suggestions for future research.   
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CHAPTER TWO  
 

 

 

 

HYDRAULIC MODELING AND PERFORMANCE 
ASSESSMENT OF WATER DISTRIBUTION SYSTEMS 

      

 

 

 

2.1 INTRODUCTION 

 

Real water distribution systems involve a large number of different components such 

as pipes, valves, pumps, tanks and reservoirs. Each component of which a system is 

made up forms a vital part of the system without which water can not be provided 

from the supplying sources to the tapping points of the consumers. Basically, each 

real system is unique in terms of the supplying sources, layout of system 

components, topography of the service zone, distribution of consumer points, 

material of pipes and types of valves. For example, the layout of a WDS is dependent 

on the existing planning of streets and roads that is unique to the system, the property 

of right-of-way, potential locations for ground and elevated service reservoirs, and 

locations and types of land users. Additionally, in a service area with topography of 

hilly terrains, booster pumps may be required to deliver water to high areas while, to 

reduce pressure, pressure-reducing valves may be necessary for lower areas. In 

contrast, a service area with flat topology may require just an elevated reservoir to 

deliver water to the whole service area.    

 

Since it is extremely difficult to include all system components starting from the 

supplying sources to the tapping points of consumers, the WDS is primarily
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skeletonised to a network made up of nodes and links in which nodes represent 

sources and consumption points, while links represent pipes, valves and pumps. 

 
 
Within the skeletonised system, water demands occur along pipes but for an ease of 

analysis conservative assumptions are required. For example, large water 

consumptions are considered individually while small consumptions are lumped 

together and assumed to take place at demand nodes. One way of lumping demands 

is to allocate half of the total demand occurring along a pipe at each end of the pipe  

(Swamee and Sharma, 2008). To depict the behaviour of the real WDS within 

acceptable limits, the skeletonised model should include important elements of the 

detailed system. 

 

The assessment of hydraulic performance of the WDS is carried out by applying 

hydraulic simulation models to the corresponding skeletonised network. These 

models utilize the formulation of mathematical equations to replicate the process of 

operating a real WDS.  Hydraulic simulation models are able to predict how a system 

responses and behaves under different operating conditions such as peak demands, 

fire flows, pump failures and pipe bursts. As a result, the feasibility of the existing 

system or a proposed solution to it can be evaluated before putting such a solution 

into operation. The information provided by hydraulic models is extremely valuable 

to assist engineers in making important decisions about the investment of a WDS 

project. With the aid of the technological advancement in computational tools, 

hydraulic simulation models has become so sophisticated that they have the ability to 

deal with real WDS in more realistic way than ever before. 

 

The modelling of WDS can be of two types: either steady-state simulation (SSS) or 

extended period simulation (EPS). Basically, an SSS analysis simulates the WDS 

under fixed operating conditions of node demands and water levels of storage 

reservoirs. In practice, it is common to deal with the worst operating condition (i.e. 

hourly peak demands and fire conditions) to design the WDS using SSS modelling. 

However, this assumption is not realistic as the operation of WDS varies with time 
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(e.g. node demands vary over the day). EPS analysis is able to model the changes in 

operating conditions over a defined period of time (i.e. the filling and emptying of 

tanks, operation of regulating valves, operation of pumps with variable speeds, and 

variations in nodal pressures and pipe flow rates due to changes in demands). As a 

result, EPS analysis is more realistic in evaluating the performance of the WDS over 

a defined period of time.    

 

There are two methods for analysing the WDS depending on whether the analysis is 

based on nodal flows or nodal heads. The conventional method uses the assumption 

that all nodal demands are satisfied in full. This method of analysis is denoted by 

demand driven analysis (DDA). In reality, the nodal flow can not be fully satisfied 

unless the WDS has sufficient pressure. As a result, this method of analysis is not 

capable of analyzing the WDS under pressure deficiency due to failure condition 

scenarios such as pipe bursts and pump failure. To evaluate nodal flows under failure 

conditions, the second method of analysis uses a relationship between nodal heads 

and nodal demands. As such, this method referred to as pressure dependent analysis 

(PDA) is more accurate than DDA method in analysing the WDS under pressure 

deficiency conditions. 

 

To assess the performance of the WDS in fulfilling the design requirements for 

which it is aimed to meet, it is essential to evaluate the system ability to deal with 

unforeseen abnormal operating conditions. As a result, important performance 

assessment measures were developed to accurately assess the hydraulic performance 

of the WDS. These include hydraulic reliability and failure tolerance (Tanyimboh 

and Templeman, 1998). The hydraulic reliability and failure tolerance are classified 

as being accurate measures because they evaluate the hydraulic performance based 

on multiple simulations of failure conditions using pressure dependent analysis 

(PDA). Since it is impractical to simulate all failure conditions for the WDS, 

surrogate performance measures that use DDA analysis were proposed. These 

include informational entropy (Tanyimboh and Templeman 1993), resilience index 

(Todini 2000), network resilience (Prasad and Park, 2004), modified resilience index 
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(Jayaram and Srinivasan 2008) and surplus power factor (Vaabel et al. 2006).  

 

This chapter provides a detailed description of the basic equations incorporated in the 

hydraulic modelling of the WDS. Section 2.2 presents the main hydraulic equations 

controlling the hydraulic analysis of the WDS. In section 2.3, the accurate and 

surrogate performance measures widely used in the literature are presented. Due to 

using entropy as a measure of WDS performance in the present research, a special 

emphasis is placed on the description of statistical entropy and the corresponding 

framework developed to enable applying the principle of maximizing entropy for the 

WDS performance. This covers the methods developed for calculating maximum 

entropy values in both single and multiple source WDSs.   

            

 

2.2 MAIN EQUATIONS OF HYDRAULIC MODELLING 

 

The hydraulic modelling of the WDS is mainly governed by the equations of 

conservation of mass and energy. The principle of the conservation of mass gives 

rise to the continuity equation, while the principle of conservation of energy results 

in the head loss equation. Therefore, the hydraulic analysis of the WDS can be 

formulated to be controlled by the following system of nonlinear equations. 
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where N is number of nodes; l represents a loop of closed circuit of pipes; Qj is 

demand or supply at node j; in(Nj) and out(Nj) are all pipe flows to and from node j, 

respectively. In the analysis, the calculation of head loss (hij) in pipe ij arising from 

the friction between water and internal pipe walls is dependent on the formula used. 
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Eq. 2.1 represents the continuity equation, while Eq. 2.2 represents the head loss 

equation. In practice, there are three main empirical formulae widely used to 

calculate the head loss in Eq. 2.2 (Bhave and Gupta, 2006). These are Hazen-

Williams formula, Chezy-Manning formula and Darcy-Weisbach formula given by 

Eq. 2.3, Eq. 2.4 and Eq. 2.5 respectively as follows 
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where η is a dimensionless conversion factor (10.67 in SI units); Dij, hij, Lij and Qij 

are respectively diameter in metres, head loss in metres, length in metres and flow 

rate in cubic metres per second for pipe ij; Cij and nij are Hazen-Williams roughness 

coefficient and Manning roughness coefficient respectively; fij is the coefficient of 

friction in pipe ij. 

 

The relationship between head loss (hij) and flow (Qij) for pipe ij is often expressed 

in terms of the pipe resistance coefficient (Kij) as follows:  

 

fn

ijijij QKh =                                                          ij∀                                               (2.6) 

 

where fn  represents the flow exponent that is equal to 1.852 for Hazen-Williams 

formula, while it equals 2 for the formulae of Chezy-Manning and Darcy-Weisbach. 

The resistance coefficients of Hazen-Williams formula, Chezy-Manning formula and 

Darcy-Weisbach formula can be respectively expressed as: 
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To assess the capability of the WDS in satisfying nodal demands in full, minimum 

required heads are normally set at each demand node. This constraint can be 

expressed as 

 

NjHH
req

jj ,......,1                                                            =≥                               (2.10) 

 

where jH  and req

jH are available and the required head respectively at node j. jH  is 

obtained from the hydraulic simulation, while the required head is the head at a node 

above which demands are satisfied in full. The introduction of Eq. 2.10 as one of the 

governing equations in evaluating the hydraulic performance of the WDS was to 

ensure there is sufficient pressure at each demand node. In the UK, for example, 

req

jH is often taken as a minimum residual pressure of 15 m (OFWAT, 2004).  

 

 

2.2.1 Formulation of hydraulic modelling equations  

  

Based on the main hydraulic equations governing the WDS modelling, the analysis 

of WDS involves formulating a system of hydraulic equations that can be iteratively 

solved using numerical methods for two unknowns: nodal heads and pipe flows. 

There are several ways to formulate such a system of equations according to the type 
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of unknown variable used in the formulation. For example, the formulation of q-

equations (Bhave and Gupta, 2006) refers to a system of equations in which pipe 

flows are used as the unknown variables in Eqs. 2.1 and 2.2. Expressing pipe flows 

in terms of nodal heads in Eqs. 2.1 and 2.2 results in the formulation known as H-

equations (Bhave and Gupta, 2006). For example, rewriting the continuity equation 

(Eq. 2.1) in terms of nodal heads at node j gives 
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where Jj represents the set of nodes connected to node j. Eq. 2.11 produces a set of 

H-equations that contain a number of nodal head unknowns of N. To solve this 

system of equations, the number of unknown nodal heads must be equal to number of 

continuity equations (Eq. 2.11) and one nodal head needs to be known, which is 

normally taken as the fixed head at source node.  

 

The ∆Q-equations refers to the formulation in which loop-flow corrections are used 

as the unknown variables in Eqs. 2.1 and 2.2. The application of this formulation 

starts by assuming initial pipe flows that satisfy the continuity equation (Eq. 2.1). 

Then, pipe flows are iteratively adapted by correcting the loop-flow at each loop as 

follows: 
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where k

ijQ  is the corrected flow rate of pipe ij at iteration k;  1−k

ijQ  is the flow rate of 

pipe ij at iteration k-1; k

lQ∆ is the loop-flow correction to be applied for all pipes 

belonging to loop l; and ∑
∈

∆
ijll

k

lQ is the overall correction of all loops to which pipe ij 

belongs; and lij is the number of loops to which pipe ij belongs.  
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By applying the head loss equation (Eq. 2.2), the unknown loop-flow correction 

( k

lQ∆ ) can be formulated as: 
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where Nl is number of all loops in the WDS and IJl is the set of pipes in loop l;  Eq. 

2.13 produces a system of ∆Q-equations that can be simultaneously solved using an 

iterative method.  

 

 

2.3 TYPES OF HYDRAULIC SIMULATIONS 

 

2.3.1 Steady State Simulation 

 

In steady state analysis, the hydraulic simulation model is conducted at a particular 

point of time in which all node demands and reservoir water levels are dealt with as 

being constant. This assumption of constant node demands and reservoir water levels 

can be valid for a short period (Bhave and Gupta, 2006). Therefore, steady state 

analysis can be only used to analyse the WDS at a single or short period of time and 

can not be used to determine the continued behaviour of the system over a certain 

period of time where both nodal demands and water level in storage reservoirs vary 

over the considered time interval.  

 

In practice, it is common to design the WDS using steady state analysis under the 

worst operating condition such as peak hour demand and fire events. Nevertheless, 

there are some operation aspects that can not be simulated by steady state analysis. In 

reality, the operation of the WDS varies with time such as tank filling and emptying. 

For example, node demands fluctuate over the day depending on the demand type. 

Additionally, water levels in tanks would change depending whether water is 
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withdrawn from a tank or supplied to it from an external source. This makes using 

steady state simulation limited to a short period of time and the simulation of the 

WDS with time becomes essential.  

 

2.3.2 Extended Period Simulation 

 

Extended period simulation (EPS) is carried out over a longer period of time (i.e. 1 

day, 2 days) where the total period of analysis is divided into a number of small time 

intervals (e.g. 24 or 48 hours). Within these time intervals, it is assumed that nodal 

demands remain constant while water levels of the reservoir could change or remain 

constant. For each time interval, repetitive steady state analysis is carried out to 

update the dynamics of tank filling and emptying, pump scheduling and valve setup, 

for example. EPS is more realistic than SSS in the sense that the fluctuations in node 

demands and water levels in tanks can be modelled. This indicates that the 

performance of the WDS during peak and low hour demands can be evaluated. In 

addition, the WDS operated with pumps of varying speed can be modelled and valve 

setting at each time step can be tracked. EPS analysis is important to ensure 

providing an adequate level of service to the consumers that operates under a pattern 

of varying demands. Most importantly, EPS is essential to optimize pump 

scheduling, sizing and location of storage tanks.   

 

 

2.4 METHODS OF HYDRAULIC SIMULATIONS 

 

2.4.1 Demand Dependent Analysis 

 

Demand driven analysis (DDA) conventionally considers all nodal demands as being 

constant and satisfied in full and irrespective of nodal pressures. This assumption 

neglects the fact that nodal outflows are dependent on nodal pressures. Satisfying 

nodal demands at all times using DDA analysis has the effect of producing 

inaccurate and misleading results of nodal heads in case the system has no sufficient 
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pressure even under normal operating conditions. For example, satisfying nodal 

demands in full via pipes of small diameters could produce large negative nodal 

pressures in DDA analysis. Accordingly, it is practically more accurate to evaluate 

the system performance based on considering nodal demands to be dependent on 

nodal pressures. Due to the simplicity in using DDA models, they are still widely 

used in industry and research as a tool of assessing performance of the WDS. The 

DDA analysis is commonly carried out using four methods: 1) the Hardy-Cross 

method; 2) the Newton-Rasphon method; 3) the Linear Theory method; and 4) the 

Global Gradient method.    

 

2.4.1.1 Hardy-Cross Method  

 

This analysis method presented by Hardy Cross in 1936 uses the loop-flow 

correction equation (i.e. Eq. 2.13) to determine pipe flows that satisfy Eq. 2.1 and Eq. 

2.2. First, initial pipe flow rates satisfying the flow continuity within a loop are 

assumed as follows: 
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where Nl is number of all loops in the WDS and nf  is the flow exponent. Expanding 

Eq. 2.14 according to Taylor's series and neglecting second order of k

lQ∆  gives: 
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The value of the loop-flow correction ( k

lQ∆ ) can be obtained by rearranging Eq.2.15 

as follows: 
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Assuming that the loop-flow correction for loop l (i.e. k

lQ∆ ) is not affected by 

adjacent loops to loop l (i.e. each loop is corrected separately) shows that Eq. 2.16 

has one unknown, which is k

lQ∆ . Knowing k

lQ∆ for all loops, the corrections are 

then applied as follows 

 

k

l

k

ij

k

ij QQQ ∆+= −1                                      lIJij ∈∀ ; l∈Nl                                    (2.17) 

 

Eq. 2.17 represents the end of one iteration. The following iteration uses the 

corrected flows as the updated values for pipe flow rates in Eqs. 2.14 to 2.16. The 

process is continued until the values of loop-flow corrections are insignificant or 

relatively very small.   

 

 

2.4.1.2 Newton-Raphson Method  

 

The Newton-Raphson method analyzes the entire WDS altogether and not loop by 

loop as in the Hardy-Cross method,. The Newton-Raphson method first introduced 

by Martin and Peters (1963) is a powerful numerical method for solving systems of 

non-linear equations. To solve a non-linear equation of a single variable F(x) = 0, the 

method assumes an initial solution that is iteratively adapted as follows: 

 

( )
( )k

k
kk

xF

xF
xx

′
−=+1                                                                                          (2.18) 

 

in which ( ) dxxdF k /  is the value of the derivative of F(x) at k
x . Applying Eq. 2.18 
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to a system of non-linear equations yields 

 

( ) ( )kk

x

kk
xFJxx

11 −+
−=                                                                                         (2.19) 

 

where x  is the vector of the variables; F is the vector containing function values; 

and xJ is the Jacobian matrix of F. To apply the Newton-Raphson method to the 

WDS, the continuity equations are expressed in terms of the vector of nodal 

continuity equations (F) and the vector of nodal heads (H) as follows 

 

F(H) = 0                                                                                                                 (2.20) 

 

Assuming initial values for nodal heads, the vector of nodal heads (H) in Eq. 2.20 

can be iteratively adapted according to Eq. 2.19 as follows 

 

( ) ( )kk

H

kk
HFJHH

11 −+
−=                                                                                    (2.21) 

 

where HJ  represents the Jacobian matrix for the unknown nodal heads. Eq. 2.21 can 

be expressed in terms of the vector of the nodal head corrections 

(
kkk

HHH −=∆
+1

) as follows 

 

( )kkk

H HFHJ −=∆                                                                                                (2.22) 

 

The system of equations in Eq. 2.22 is solved simultaneously for 
k

H∆ to obtain 

1+k
H . The iterative process continues until reaching a pre-specified value for 

k
H∆ or 

( )k
HF .   
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2.4.1.3 Linear Theory Method  

 

The linear theory method presented by Wood and Charles (1972) is another analysis 

method in which the entire WDS is analyzed altogether. Obviously, the continuity 

equation is linear but the head loss equations are non-linear. In this method, the head 

loss equations are linearized by merging the non-linear term with the pipe resistance 

coefficient as follows 

 

( )[ ] k
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                    ,...5,4,3      ; =∀ kij                             (2.24) 

 

Eq. 2.23, Eq. 2.24 and the continuity equation form a system of linear equations that 

can be simultaneously solved for pipe flow rates using an iterative method. Eq. 2.23 

is applied to the first and second iterations where the initial pipe flow rate is set to 

unity, while Eq. 2.24 is applied to the next iterations in which pipe flow rates k

ijQ are 

determined by averaging flow rates obtained from previous iterations (i.e. 1−k

ijQ and 

2−k

ijQ ). The iterative process is repeated until the difference between pipe flow rates 

in two consecutive iterations (i.e. 1−k

ijQ and 2−k

ijQ ) are insignificant or negligible. 

 

 

2.4.1.4 Global Gradient Method  

 

Todini and Pilati (1988) proposed the application of the Newton-Raphson method to 

simultaneously obtain both values of pipe flow rates and nodal heads. The Newton-

Raphson method solves for the corrections of either pipe flow rates or nodal heads. 

This method known as the Global Gradient Method (GGM) applies the Newton-

Raphson method by replacing the corrections of pipe flow rates and nodal heads with 
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the corrected values of pipe flow rates and nodal heads in the head loss equation, i.e. 

k

i

k

i

k

i HHH ∆+=+1  and k

ij

k

ij

k

ij QQQ ∆+=+1 respectively. Accordingly, the GGM 

method directly obtains the corrected values of pipe flow rates and nodal heads in the 

head loss equation, instead of obtaining corrections to them (i.e. Newton Raphson 

method), in an iterative procedure that continues until no improvement occurs. 

Additionally, the GGM is similar to the linear theory method in that it does not 

require satisfying the continuity equations at all nodes to start the solution procedure. 

 

The GGM takes pipe flow rates and nodal heads as the basic unknowns to formulate 

the Q-H equations. The non-linear equations of head loss are linearized using the 

expansion of Taylor's series and neglecting all terms after the second term. 

Accordingly, the non-linear head loss equations for kth iteration can be written as 

 

( ) ( ) ( ) k
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n
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ijijf
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ijij

k

j

k

j

k

i

k

i QQKnQKHHHH
ff
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         ij∀                 (2.25) 

 

Rearranging and rewriting Eq. 2.25 in terms of corrected nodal heads 1+k

iH and 

1+k

jH yields 

 

( ) ff nk
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ijijf
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++
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where k

i

k

i

k

i HHH ∆+=+1  and k

j

k

j

k

j HHH ∆+=+1 . Now, replacing k

ij

k

ij QQ ∆+ with 

corrected pipe flow rate 1+k

ijQ in Eq. 2.26 gives 

 

( ) ( ) ff nk

ijijf

k

ij

n
k

ijijf

k

j

k

i QKnQQKnHH −=−− +
−

++ 11
1

11               ij∀                        (2.27) 

 

Eq. 2.27 provides a system of linear equations that combine the corrected values of 

pipe flow rates and nodal heads. The continuity equation is linear and can be 

expressed in terms of corrected pipe flow rates as 
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01 =+∑
∈

+
j

jij

k

ij QQ                                     1,.......,1 −= Nj                                     (2.28) 

 

Eqs. 2.27 and 2.28 can be simultaneously solved to provide the corrected values of 

pipe flow rates and nodal heads. For the first iteration, pipe flow rates k

ijQ can be set 

to unity or alternatively to some arbitrarily chosen value. As the iteration procedure 

continues, the changes in the values of pipe flow rates and nodal heads become 

insignificant.  

 

The widely used EPANET 2 (Rossman, 2000) is a DDA hydraulic simulator that 

employs the GGM as its network solver.  EPANET 2 provides a comprehensive tool 

that can carry out both types of the hydraulic analysis (i.e. SSA and ESP); handle any 

size of pipe networks; compute friction head loss using the three common formula 

(i.e. Hazen-Williams, the Chezy-Manning formula and the Darcy Weisbach); 

compute minor losses (e.g. for bends and fittings); compute pumping energy and 

cost; model different types of valves (e.g. pressure regulating valves and flow control 

valves); handle any shape of storage tanks; handle demand variation at nodes; model 

pressure-dependent flow at sprinkles and operate the system based on simple tank 

level, timer controls and complex rule-based controls.  

 

In addition, EPANET 2 is equipped with water quality simulator that can model, 

over a period of time, the movement of a non-reactive tracer material through the 

network; the movement and fate of a reactive material as it grows (e.g., a disinfection 

by-product) or decays (e.g., chlorine residual); the age of water throughout a 

network; reactions both in the bulk flow and at the pipe wall; and storage tanks as 

being complete mix, plug flow, or two-compartment reactors. The water quality 

analyzer can also track the percent of flow from a given node reaching all other 

nodes, allow growth or decay reactions to proceed up to a limiting concentration, 

employ global reaction rate coefficients that can be modified on a pipe-by-pipe basis 

and allow for time-varying concentration or mass inputs at any location in the 
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network. Recently, an extended version of EPANET 2 called EPANET-MSX (Multi-

Species eXtension) was developed to enable modelling complex reaction schemes 

between multiple chemical and biological species in both the bulk flow and at the 

pipe wall. 

 

In terms of practicality, EPANET 2 is equipped with a useful tool known as 

EPANET’ Programmers Toolkit to enable researchers to develop special 

applications that require running several hydraulic simulations such as optimization. 

The toolkit is a dynamic link library (DLL) composed of over 50 functions that can: 

open a network description file; read and modify various network design and 

operating parameters; run multiple extended-period simulations accessing results as 

they are generated or saving them to file; and write selected results to a file in a user-

specified format. 

    

2.4.2 Pressure Dependent Analysis 

 

Instead of assuming that all nodal demands are satisfied in full at all times, pressure 

dependent analysis (PDA) addresses this assumption by explicitly considering that 

nodal demands are dependent on nodal pressures. The formulation of PDA 

methodology expresses nodal demands as a relationship between nodal outflows and 

nodal heads. The main advantage of PDA models over DDA models is in the ability 

to model pressure deficient conditions in which nodal demands are not satisfied in 

full. Furthermore, they alleviate the issue of yielding misleading results of nodal 

heads associated with the application of DDA models. In practice, the development 

of PDA models could enable the decision makers in water companies to evaluate the 

performance of the WDS operating under pressure deficiency conditions. 

 

In literature, there are a number of relationships proposed to depict the behaviour of 

nodal outflows under variations in pressure. All these relationships are based on the 

concept of satisfying nodal demands when nodal heads are above or equal to required 

heads ( req

iH ), while producing zero flows when nodal heads are below minimum 
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heads ( min

iH ). In practice, min

iH is normally taken as the node elevation. In between, 

nodal outflows are dependent on how the proposed relationship depicts the behaviour 

of such outflows with nodal heads.  

 

Germanopoulos (1985) suggested an exponential relationship between nodal outflow 

and nodal pressure according to the following equation 
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where iQ and req

iQ are the available outflow and the required demand at node i 

respectively; ib and ic are coefficients that need calibration for node i; iPr is the 

available pressure at node i, while 'Pri is the pressure sufficiently supply a proportion 

of the required demand at node i. The suggested values for ib and ic are, if no field 

data are available, 10 and 5 respectively, while 'Pri takes a value satisfying 93.2% of 

the required nodal demand ( req

iQ ). Eq. 2.29 does not satisfy the condition that iQ = 0 

when iH = min

iH and iQ = req

iQ  when iH = req

iH . 

 

Gupta and Bhave (1996) suggested an improved formulation for Eq. 2.29 that 

satisfies the aforementioned conditions as follows 
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Wagner et al. (1988) and Chandapillai (1991) suggested that nodal outflow and 

pressure follow a parabolic relationship using the following equation 
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( ) enreq

iii

des

i QRHH += min                                                                                         (2.31) 

 

where iR is the resistance coefficient and en is a constant that can take a value 

between 1.5 and 2 (Gupta and Bhave, 1996). Accordingly, 
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ii HH ≤                                             (2.34) 

 

Fujiwara and Ganesharajah (1993) proposed a differentiable function for the 

relationship between nodal outflow and pressure according to the following equation 
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Based on the logit function, which is a mathematical function with an S-shape that 

grows exponentially in the initial stage of growth then the growth becomes slow until 

reaching saturation where growth stops, Tanyimboh and Templeman (2004, 2010) 

proposed a nodal flow relationship that has the following form 
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where iα  and iβ  are parameters that need calibration from field data. These two 

parameters essentially determine the shape of the function curve. Rearranging Eq. 
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2.36 gives 
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The ratio of req

ii QQ /  in Eq. 2.37 is known as the nodal demand satisfaction ratio 

(DSR). The nodal DSR takes a value of 1.0 when iH  is larger than or equal to req

iH , 

while it takes a value of zero when iH  is less than or equal to min

iH . When iH  is 

between min

iH and req

iH , the nodal DSR takes values between 0 and 1. Accordingly, 

the nodal demand is considered fully satisfied when the nodal DSR = 1, partially 

satisfied when the nodal DSR is between 0 and 1, and no nodal outflow when the 

nodal DSR = 0.    

 

In case of no field data are available; Tanyimboh and Templeman (2010) suggested 

obtaining values for iα  and iβ  by substituting Eq. 2.37 with 0.001 and 0.999 for the 

values of DSR and then simultaneously solving the resulting equations.   

 

Unlike most of the proposed nodal outflow relationships, Eq. 2.36 is unique in that it 

has no discontinuities in its functions and/or derivative and produces restricted values 

of nodal outflow ranging between zero and fully satisfied demands. This function has 

the advantage of enabling a smooth transition between zero and partial outflow and 

between partial outflow and full outflow.  

 

PRAAWDS (Program for the realistic analysis of the availability of the water 

distribution systems) is a PDA hydraulic model developed by Tanyimboh and 

Templeman (2010). The prototype computer model of PRAAWDS written in 

FORTRAN provides two options to carry out a hydraulic analysis. The first one 

contains four choices of pressure flow relationships by which a PDA analysis can be 

carried out. These include functions of Wagner et al. (1988), Germanopoulos-Gupta-

Bhave (Gupta and Bhave, 1996), Fujiwara and Ganeshrajah (1993) and Tayimboh 
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and Templeman (2004). The second one uses DDA analysis to enable comparison of 

results with PDA analysis. In addition, it offers a built-in feasibility procedure to 

evaluate the accuracy of results obtained from PDA analysis. PRAAWDS has been 

used to evaluate performance measures that require PDA analysis (e.g. hydraulic 

reliability and failure tolerance) in several studies, e.g. Setiadi et al. (2005), and 

demonstrated high robustness and accuracy.     

 

 

2.5 PERFORMANCE ASSESSMENT OF WATER DISTRIBUTION 
SYSTEMS  

 

Water distribution system (WDS) design problems are conventionally dealt with as 

the determination of the cheapest design that is marginally able to supply consumers 

with sufficient amounts of water at the required pressures. The resulting designs are 

supposed to have the cheapest set of pipe sizes that are capable of satisfying both 

required nodal demands and pressures in normal operating conditions (i.e. all system 

components are considered available in service). This has the restriction that such a 

design is conditioned on the uninterrupted availability of all the components making 

up the whole system.  

 

In reality, the WDS is very likely to be subject to abnormal operating conditions such 

as component failures and components deterioration with time. For example, pipe 

breakage could happen due to suddenly increased pressures or pipe diameters could 

become smaller because of accumulated sediments on the internal walls of pipes. The 

occurrence of abnormal operating conditions give rise to pressure deficiency within 

the system and accordingly node demands could not be satisfied in full in these 

conditions. These circumstances significantly affect the WDS capacity especially 

those having the cheapest set of pipe diameters. As a result, the WDS should be well 

designed to have some spare capacity above the minimum prescribed that can be 

used to partially or fully compensate for any reduction in capacity during failure 

conditions. 
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In addition to cost saving, the performance assessment of the WDS under both 

normal and abnormal operating conditions has become an essential element in the 

design process of the WDS optimization. As a result, obtaining a design with a 

balance between cost and reliability is crucial in saving a significant amount of cost 

throughout the whole life of the WDS. In literature, network reliability is widely used 

as a performance measure of the WDS. This measure focuses on the hydraulic 

aspects rather than the network connectivity in terms of components layout. Based on 

the method of assessing reliability, the performance measures are classified into two 

types: accurate measures and surrogate measures.   

 

 

2.6 ACCURATE PERFORMANCE MEASURES 

 

The formulation of these measures is based on assessing reliability by considering 

the effect of each possible combination of components failure on the hydraulic 

performance of the WDS. Since DDA models are not able to simulate failure 

conditions, the calculation of accurate measures requires employing PDA models 

such as PRAAWDS (Tanyimboh and Templeman, 2010) and EPANET-PDX (Siew 

and Tanyimboh, 2011). In the following sections 2.6.1 and 2.6.2, the accurate 

measures of hydraulic reliability and failure tolerance widely used in literature are 

presented. 

 

 

2.6.1 Hydraulic Reliability 

 

In practice, there is no universally agreed definition of reliability. The definition of 

reliability herein is adopted from Tanyimboh and Templeman (2000). They define 

the reliability as the ability of the system on average to satisfy nodal demands and 

considered as the average value of the ratio of the flow delivered to the flow required 

whilst considering both normal and abnormal operating conditions (Tanyimboh and 

Templeman, 2000). Taking a peak demand as a constant value for more conservative 
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assessment of reliability, the hydraulic reliability can be computed as in Tanyimboh 

and Templeman (2000), i.e. 
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where R is hydraulic reliability; M is number of links; p(0) is a1a2a3......aM = 

probability that all links are in service; am is probability that link m is in service at 

any given moment; p(m) = p(0)(um/ am) is probability that only link m is not in 

service;   um = 1- am is probability that link m is unavailable, p(m,n) = p(0)(um/ 

am)(un/an) is probability that only links m and n are not in service; T(0), T(m) and 

T(m,n) are, respectively, the total flows supplied with all links in service, only link m 

out of service, and only links m and n out of service; and T is the sum of the nodal 

demands.  

 

Apparently, Eq. 2.38 is composed of two main parts, i.e. the two pairs of large 

parentheses. The first part accounts for the fraction of the total demand satisfied by 

the system on average. Since it is impractical to model all the combinations of 

components failure of the WDS, the first part of Eq. 2.38 generally results in 

underestimating the reliability in practice. The second part is introduced to estimate 

the quantity by which the first part underestimates the reliability.   

 

The pipe availability (am) values can be calculated using the factor of mechanical 

reliability, which is usually given by the probability that the component m encounters 

no failure within a defined period of time (Mays, 2002). In literature, there are 

several formulae for calculating pipe availability such as the formula developed by 

Cullinane et al. (1992) defined as 
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where Dm is diameter of pipe m in inches.  

  

 

2.6.2 Failure Tolerance 

 

Another equally important performance measure is the network redundancy. 

Network redundancy evaluates the network robustness Redundancy arises from the 

existence of alternative paths from the source to demand nodes or from the existence 

of spare capacity within the network during normal operating conditions that can be 

used to balance any energy loss during failure operating conditions. Like reliability, 

quantifying the redundancy is difficult. Tanyimboh and Templeman (1998) were 

likely the only researchers who developed a rigorous mathematical model for the 

redundancy measure. They showed that calculating how much demands are satisfied 

while some components are out of service provides a realistic measure of hydraulic 

redundancy. Tanyimboh et al (2011) pointed out that failure tolerance may provide a 

better measure of supply disruption for a network in case of failure than the hydraulic 

reliability gives for similar reliable systems, i.e. designs with similar reliabilities may 

have behave differently when considering failure alone.   

 

The hydraulic redundancy or failure tolerance (FT) is another performance indicator 

that incorporates only pipe-failure effects in order to measure the amount of satisfied 

demands while some components are unavailable. The equation for failure tolerance 

is given by  
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Clearly, Eq. 2.40 excludes periods in which all links are unavailable. The hydraulic 

redundancy provides a quantification of any spare capacity available in the system in 

terms of surplus nodal heads. In general, the value of FT is less than R where FT 

becomes closer to R as the redundancy or spare capacity increases. Given that R and 

p(0) were already calculated in Eq. 2.38, the calculation of FT is straightforward. 

 

 

2.7 SURROGATE PERFORMANCE MEASURES 

  

Due to the high computational effort required to accurately evaluate reliability of the 

WDS along with no universally agreed definition of reliability is available in 

literature, a number of surrogate measures of reliability were proposed. These 

measures have the advantages of being simple to calculate, do not require 

simulations of failure conditions and able to be incorporated in the optimization of 

the WDS. Additionally, these measures use the hydraulic results of pipe flows or/and 

nodal heads obtained from modelling the WDS under normal operating conditions to 

approximate the hydraulic performance under abnormal operating conditions. As 

such, DDA models are still suitable to evaluate such measures. 

   

 

2.7.1 Informational Entropy 

 

Shannon (1948) introduced the informational entropy as a measure of the amount of 

uncertainty associated with a probability distribution. For a random variable having a 

set of possible values {x1, x2, x3,…, xn} with corresponding probabilities such that 

p(x1) + p(x2) + p(x3) + …+ p(xn) =1, where n = number of outcomes, the Shannon 

entropy function can be written as 
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where S is the entropy and p(xi) is the probability of the ith outcome. 

 

Awumah et al. (1990, 1991) and Tanyimboh and Templeman (1993a,b) developed a 

framework for applying informational entropy to WDSs. Knowing the pipe flow 

rates, the entropy function can be expressed as in Tanyimboh and Templeman 

(1993a) as 
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in which S is WDS entropy; S0 is entropy of source supplies; Si is entropy of node i; 

Pi = Ti/T is fraction of the total flow through the WDS that reaches node i; Ti is total 

flow reaching node i; T is total demand; N is number of nodes in the network.  
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where Q0i is inflow rate at source node i and I is set of the source nodes. In a similar 

way, the entropy of the nodes can be written as 
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where Qi0 is demand at node i; Qij is flow rate in pipe ij; out(Ni) is the set of all pipe 

flows from node i. A comparison of the Awumah et al. (1990, 1991) and Tanyimboh 

and Templeman (1993a,b) models is available in Tanyimboh (1993). 

 

 

2.7.1.1 Maximum Entropy for Water Distribution Systems 

 

The relationship between informational entropy and reliability of the WDS owes to 

the principle of maximizing informational entropy, which corresponds to Laplace’s 
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principle of insufficient reason. This principle suggests that probability mass 

functions should be dealt with as uniform if there is no information on the 

appropriate random variables. In WDS, demand nodes are either supplied with only 

one path or more from the source(s). For those supplied with more than one path, 

there is no reason for preferring any path over any other path to supply the demand 

node. According to Laplace’s principle, all of the paths supplying a demand node 

should deliver the same amount of water, and so the same probability, to the demand 

node. This means that the flow supplied by a source to a demand node should be 

evenly distributed to all of the paths delivering that demand from that source. For 

such a distribution, the effect of cutting off a supplying path on satisfying the 

demand node could be less than if the demand is unequally distributed. For example, 

removing a path being allocated a large proportion of the demand will definitely have 

a significant effect on satisfying the supply to that node. 

  

In single-source networks, all flow paths supplying demand nodes originate from the 

source. Based on this fact, Tanyimboh and Templeman (1993a,b,c) developed a non-

iterative method to calculate maximum-entropy flows for single-source networks. 

Once maximum-entropy flows are determined using this method, these ME flows are 

substituted for Qij in Eq. 2.44. Ang and Jowitt (2005a) developed a simple method 

named the Path Entropy Method (PEM) that determines ME for single-source 

networks based on the number of flow paths supplying each demand node. In the 

same study, the PEM was further extended to SPEM (Simplified SPEM) that uses 

only demands and number of flow paths to determine ME for single-source 

networks. In this study, the SPEM method was used to eases calculating ME for 

single-source networks. 

 

However, the situation is different in multiple-source networks as most of demand 

nodes are supplied with more than one source and so the proportion received from 

each source is unknown. Yassin-Kassab et al (1999) developed a non-iterative 

algorithm for calculating maximum-entropy flow distribution for multiple-source 
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networks. The solution method of this algorithm is based on establishing the 

hypothesis of Principle A that states:  

 

 “The maximum entropy flows in multiple source networks are such that the ratio of 

the probabilities of the path flows from any pair of sources to a demand node 

reachable from those sources is the same for every demand node supplied by those 

sources in the network” 

 

At first, the above principle was numerically proved by Yassin-Kassab et al (1999). 

Then, a formal proof of this hypothesis was provided by Ang and Jowitt (2005b) 

based on extending the application of the PEM method to multiple source networks. 

Principle A can be expressed by the following general equation: 
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=                          JjIki j ∈∀∈∀ ;,                                                          (2.45) 

 

Where i and k denote any pair of sources supplying demand node j in the network; Ij 

is the set of all source nodes supplying node j; J is the set of all demand nodes in the 

network. The general formula for path flow probabilities expressed in terms of 

unknown αs can be written as follows: 
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where NPij is the number of paths from source node i to demand node j. Obviously, 

the number of αs in Eq. 2.45 is equal to number of sources (NS) in the network. 

Since number of unknown αs required in a network is equal to NS-1, one of the αs in 

Eq. 2.45 has to be set to unity. Accordingly, Eq. 2.45 contains (NS-1) unknown αs 

because αi = 1 for i = 1. However, there are NS normality condition equations that 

can be written from a network as follows: 
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1=∑
∈ iJj

ijij pNP                               Ii ∈∀                                                                (2.47) 

 

Substituting path flow probabilities of Eq. 2.46 into (NS-1) of the normality 

condition equations of Eq. 2.47 will give (NS-1) equations with (NS-1) unknown αs, 

which can be solved to determine all the values of the unknown αs. Back-

substituting the resulting values of αs into Eq. 2.46 yields all the path flow 

probabilities in the network. Finally, the maximum entropy can be appropriately 

calculated using the conditional entropy function of Khinchin (1953) as follows: 

 

i

Ii

ii

Ii

i S
T

Q

T

Q

T

Q
S ∑∑

∈∈









+







−= 000 ln                      Ii ∈∀                                        (2.48) 

 

Si in Eq. 2.48 is the entropy of all paths supplied by source node i and given by: 
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2.7.2 Resilience Index 

 

The concept of resilience index was introduced by Todini (2000) as a measure of the 

available surplus power that can be dissipated internally in the event of a failure in 

the WDS. Since the total power in the network is composed of the power dissipated 

in the pipes and the power delivered to the nodes, Todini (2000) defined the 

resilience index as 
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Where RI is resilience index; Hi is available head at node i as obtained from 

hydraulic simulation; req

iH is the required head of node i at which the demand is 

satisfied in full; req

iQ is demand at node i; γ is specific weight of water; Qk and Hk are 

respectively outflow and head at reservoir k; Pj is power introduced to the network 

by pump j; npu is number of pumps in the network; nn is number of demand nodes in 

the network; and nr is number of reservoirs in the network. 

 

 

2.7.3 Modified Resilience Index 

 

Jayaram and Srinivasan (2008) questioned the suitability of using the resilience index 

in multiple source networks. They showed that networks with high surplus power can 

have also high power input. Since the denominator in Eq. 2.50 represents the power 

input term, a low resilience index could be obtained even with networks having a 

large amount of surplus power. As a result, they suggested an alternative indicator 

referred to as modified resilience index (MRI) that measures the surplus power in 

terms of a percentage of the power required at the nodes as follows 
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in which MRI is modified resilience index.  
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2.7.4 Network Resilience  

 

Prasad and Park (2004) extended the concept of resilience index by combining the 

effects of both surplus power and reliable loops to form a reliability measure known 

as network resilience (NR). They stated that reliable loops can be ensured if the 

variation in pipe diameters connected to a node is not wide. They introduced the 

uniformity of pipe diameters at each node as the ratio of the average of the diameters 

of the pipes incident at a node to the maximum diameter at that node. Thus, the 

network resilience is defined as 
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in which Ci is the uniformity of pipe diameter for node i. 

 

 

2.7.5 Surplus Power Factor  

 

Vaabel et al. (2006) introduced the surplus power factor (s) to evaluate the capacity 

of hydraulic power of the WDS based on both flow within pipes and pressure head at 

the inlets of pipes. The surplus power factor can be also used as an indicator of the 

network resilience of the WDS, i.e. as the value of s increases, the resilience of the 

system to failure conditions increases. The surplus power factor is defined as  
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in which fn  is the flow exponent dependent on the head loss formula used in the 

analysis; Qin is the inflow of the pipe; and Qmax is the flow that provides the 
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maximum hydraulic power at the outlet of the pipe. The range of values s can take is 

from 0 to 1. A value of s = 1 indicates that the system works at its maximum 

hydraulic capacity.  

 

 

2.8 CONCLUSIONS 

  

The hydraulic modelling is a valuable tool for assisting engineers in understanding 

and evaluating the hydraulic performance during the design process of the WDS. The 

modelling of the WDS enables simulating the operation of the system under different 

operating conditions and thus allows evaluating any proposed design and anticipates 

unforeseen problems that could occur before investing a capital in a real WDS 

project.  

 

This chapter has presented the basics of modelling the WDS including the 

formulation of a system of non-linear hydraulic equations. In addition, a review of 

types of hydraulic simulations and approaches used to model the WDS was carried 

out. The limitation of steady-state simulation was highlighted in comparison with the 

extended period simulation. The conventional method of modelling the WDS using 

DDA analysis, which is restricted to simulations under normal operating conditions, 

was also outlined in reference with the method of PDA analysis, which is able to 

simulate systems under abnormal operating conditions.  

 

The WDS is most likely to be subjected to abnormal operating conditions in which 

some system components could be fully or partly unavailable. Pipe bursts, pump 

failures and scheduled maintenance of system components can result in a deficiency 

in pressure within the system. Further assessment of the system performance 

becomes essential to measure the ability of the WDS to meet design requirements 

under these situations. Two important performance measures that accurately assess 

performance have been explained in detail, namely hydraulic reliability and failure 

tolerance. The hydraulic reliability evaluates the performance of the system under 
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both normal and abnormal operating conditions, while the failure tolerance quantifies 

the amount of redundancy available in the system. The calculation of these accurate 

measures requires high computational effort that makes it impractical to incorporate 

them in the process of WDS design.  

 

Several surrogate performance measures that are easy to calculate and approximate 

hydraulic reliability and redundancy has been presented. Due to employing the 

statistical entropy as measure of reliability in the present research, it has been 

explained in detail.  

 

The following chapter presents the key concept of and along with the application of 

evolutionary algorithms in the optimization of the WDS design.  
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CHAPTER THREE  
 

 

 

DESIGN OPTIMIZATION OF WATER DISTRIBUTION 
SYSTEMS 

 

 

 

3.1 INTRODUCTION 

 

Water and air represent essential ingredients for human life. Water distribution 

systems (WDS) are constructed to deliver clean drinking water to the society and 

represent a vital part of the infra-structure in urban areas. In general, water 

distribution systems are composed of four main components: water supply sources, 

treatment plants and storage, transmission mains and distribution networks. The 

supplying sources of raw or untreated water are commonly surface water sources 

(e.g. rivers, lakes and reservoirs) and groundwater sources such as holes and wells. 

The extraction of water from these sources is carried out by constructing pumping 

stations. Transmission mains are used to transport the raw water over long distances 

for processing at treatment plants. After the treatment, the clean water is stored in 

storage reservoirs. The level of treatment is dependent on the quality of raw water 

and the required level of water quality. A distribution network supplies water to 

consumers through service connections. 

 

The construction, operation and maintenance of the WDS incorporate investing a 

huge amount of capital. Thus, water companies are faced with the challenge of 

achieving the best compromise between design, management and cost of the system 

that should be operated under the present standards regulating the supply of water to 

consumers in terms of quantity, quality and pressure. This reflects that the WDS
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optimization is a complex problem that incorporates conflicting objectives in which 

it is practically impossible to solely use engineering experience and practice to 

recognize the most economical design of the system that satisfies some level of 

hydraulic reliability. Thus, it is totally essential and significant to employ suitable 

optimization methods as a supporting tool to help the decision makers to handle this 

highly complex multi-criteria problem. 

 

Conventional optimization methods that use mathematical programming were first 

used to optimize the WDS. These methods have the advantage of being very efficient 

because they use deterministic rules in the search procedures. However, the fact that 

these classical methods depends on searching from a single point make them 

unsuitable for problems having objective functions with multiple peaks in which the 

search process could end up with a local optimal solution. Furthermore, the 

dependence of these methods on using derivatives, for example, in the search process 

makes them inappropriate for problems involving discontinuous or noisy objective 

functions. Therefore, the application of conventional optimization methods to the 

WDS optimization becomes highly complex because the formulation essentially 

involves handling non-linear constraints that can be of large number in case of 

dealing with real systems. 

 

Evolutionary Algorithms (EA) are one of the optimization techniques developed to 

deal with many real-world problems that are very complex and extremely hard to 

solve using conventional methods. These algorithms are stochastic optimization 

techniques that mimic natural selection and natural genetics in order to survive. Their 

search concepts are entirely different from the conventional methods in that they 

widely explore the search space based on stochastic evolution instead of gradient 

information. As such, they use objective functions instead of derivative, for example, 

and start the search from a set of points instead of a single point (Goldberg, 1989). 

Additionally, they deal with a coding of decision variables instead of the variables 

themselves and use probabilistic transition rules instead of deterministic rules in the 

search process (Goldberg, 1989). These features make EAs suitable to solve multi-
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objective optimization problems. These algorithms are efficient and powerful in the 

sense that their search procedures use a small fraction of the entire search space of 

the problem in order to converge at or near the optimal solution. The main classes of 

EAs are genetic algorithms (Holland, 1975), evolutionary programming (Fogel et al., 

1966), evolution strategy (Rechenberg, 1973), genetic programming (Koza, 1992), 

learning classifier systems (Holland, 1976), swarm intelligence (Dorigo, 1992) and 

particle swarm optimization (Kennedy and Eberhart, 1995). 

 

The aim of designing the WDS is to supply costumers with required amounts of 

water demands with both sufficient pressure and sufficient quality. As the system 

ages with time, the system capacity is prone to decrease due to the effects of 

environmental degradation on the capacity of system components such as reducing 

pipe diameters caused by pipe corrosion and encrustation. This has the impact of 

creating pipe leakages and lowering water supply pressures in addition to water 

quality problems within the system. As a result, such systems will not be able to 

deliver the required demands to users at sufficient levels of pressure and quality in 

such situations. In addition to system degradation, future water demands are hard to 

determine due to the existence of considerable amount of uncertainty about 

predicting population growth in some urban areas. The inclusion of some amount of 

spare capacity in terms of reliability is essential to make the WDS compensate any 

reduction in capacity and cope with any increase in future demands.  

 

This chapter presents a literature review of both the conventional and evolutionary 

optimization approaches used to solve WDS problems. The classical methods and 

both the limitations and drawbacks associated with their applications to WDS 

problems were first emphasized. As mentioned previously, there are different classes 

of evolutionary algorithms in literature. Among them, genetic algorithms (GAs) have 

received particular interest in solving real-world optimization problems. As these 

algorithms are used as an optimization tool in the present study, they will be 

discussed in depth herein. An overview of the general structure of the basic GA and 

the various processes involved in their implementation are outlined.  Several GA 
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techniques for handling constraints and their weaknesses are discussed. Lastly, the 

application of multi-objective GA to solve WDS problems is presented.   

 

 

 

3.2 REVIEW OF METHODS USED IN THE OPTIMIZATION OF WATER 

DISTRIBUTION SYSTEMS  

 

In general, an algorithm for solving optimization problems is composed of a 

sequence of procedures that aims to converge to optimal solution. Conventional 

optimization methods use the gradient or higher order derivatives of objective 

functions to implement a deterministic set of sequential computational processes that 

start the optimization from a single point in the search space. The single point is then 

iteratively improved by gradually following the steepest descending trajectory, which 

hopefully ends up at optimal solution. The single-point search concept would be 

applicable in single-peak objective functions. However, applying this concept to 

multiple peak objective functions, for example, would put conventional methods in 

the danger of falling into local optima rather than global optima. 

 

Evolutionary algorithms have been developed to avoid this danger by starting the 

optimization from a set of points called population. As such, the EA performs the 

search process in multiple directions that use the population as a starting point. The 

search directions are determined by the fitness of solutions and not by the gradient of 

the objective function, for example. Then, the starting population is iteratively 

improved by an evolutionary process to replace relatively bad solutions with 

relatively good solutions. The population-to-population concept aims to avoid falling 

into local optima by not seriously limiting the search to a single direction. The EA 

has attracted several researchers as a potential optimization technique because of 

their efficiency and robustness in solving complex optimization problems.       
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3.2.1 Conventional Optimization Methods 

 

The optimization problem of the WDS is conventionally formulated as the 

determination of the cheapest pipe diameters selected from a set of commercially 

available pipe sizes while satisfying some hydraulic constraints. The resulting 

formulation is known to be non-deterministic polynomial-time (NP) hard problem to 

be solved by considering different optimization aspects like planning of system 

components, reducing capital and operating costs and improving hydraulic 

performance in the long-term operation of the WDS. Nevertheless, much research 

has conventionally applied deterministic optimization techniques such as complete 

enumeration, linear programming (LP), non-linear programming (NLP) and dynamic 

programming (DP) to handle such a complex problem.   

 

Complete enumeration is one of the methods that can be used to optimize the WDS. 

The method is based on analysing each possible combination of discrete pipe sizes in 

order to determine the least-cost set of pipe sizes satisfying the hydraulic constraints. 

The main disadvantage of complete enumeration technique is in the amount of 

computational time required to simulate all possible combinations of pipe sizes. 

Gessler (1985) suggested using selective enumeration by severely pruning search 

space based on experience. However, the pruning process may create the danger of 

eliminating the global optimum from the search space.  

 

Loubser and Gessler (1990) applied heuristics to propose three guidelines for 

performing the process of pruning the search space. These include: 1) grouping pipe 

sizes into sets each is assumed to be used by a single size; 2) progressively retain the 

cheapest solution satisfying the constraints and eliminate all other solutions with 

higher cost; and 3) investigate combinations of pipe sizes violating the constraints. 

Nevertheless, the method still requires a significant amount of computational time to 

solve large networks in addition to that the pruning process does not guarantee 

retaining the optimum solution in the pruned search space.     
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Another method that can be applied to solve the WDS optimization problem is the 

use of nonlinear programming techniques. In these methods, problem constraints can 

be explicitly included in the formulation. Additionally, the cost of the WDS can take 

a form of nonlinear function of pipe diameters and lengths. Su et al. (1987) used a 

nonlinear programming approach that incorporates reliability constraints to optimize 

looped pipe networks. The optimization model was based on using a constrained 

generalized reduced gradient technique in which constraints can include continuity 

equation, head loss equation, minimum and maximum bounds of pressures, and 

minimum and maximum bounds of pipe diameters. The approach included using a 

steady state simulation model to evaluate nodal pressures and a separate model for 

calculating reliability. The reliability was defined as the probability of maintaining 

pressures at sufficient levels in the network. However, the approach was not able to 

simulate other components like pumps, valves and storage tanks. 

  

Lansey et al (1989) suggested determining the optimal design of pipe networks under 

uncertainty in nodal demands, Hazen-Williams coefficients and minimum nodal 

pressures. To convert the probabilistic constraints of the ability to satisfy the 

specified nodal heads and pressures into deterministic ones, a chance-constrained 

technique was used. However, the method was found to have a tendency to yield 

branched pipe networks. 

 

Lansey and Mays (1989) used nonlinear programming to determine the optimum 

design and layout of pipe networks. The method is capable of including pumps, tanks 

and multiple operating conditions. A hydraulic simulator model was incorporated to 

handle the constraints of continuity and head loss. The generalized reduced gradient 

technique was used to determine the optimum solution, while the augmented 

Lagrangian method was used to satisfy minimum head and other constraints. 

However, the resulting optimum design was often found to have a branched layout. 

 

Duan et al. (1990) extended the work of Lansey and Mays (1989) to develop a 

general optimization model able to handle pumps and tanks in addition to multiple 



Chapter 3: Design Optimization of Water Distribution Systems 

 3-7 

loading cases. The model divided the problem into three levels on a hierarchical 

basis: master problem level, sub-problem level and an inner level. In the master 

problem level, implicit enumeration is used to optimize location and numbers of 

pumps and tanks. In the sub-problem level, the generalized reduced gradient 

technique is used to size pipes for the layout of pumps and tanks determined in the 

master problem level. In the inner level of the problem, a hydraulic simulator is used 

to satisfy the constraints of continuity and head loss, while a separate model is used 

to calculate different measures of reliability.  

 

The linear programming technique was used by Alperovits and Shamir (1977) to 

develop a solution method for the highly complex optimization problem of the WDS. 

The approach called linear programming gradient method divides each pipe into 

segments of constant diameters. This allowed expressing the total head loss in each 

link as a linear equation in terms of the lengths of constant diameter segments. The 

solution procedure of the model decomposes the optimization problem into two 

stages. For a set of candidate diameters in each link, the model uses the lengths of 

constant diameter segments within each pipe as the decision variables in the first 

stage. Then, the network is optimized based on the assumption that the distribution of 

flow is known. In the second stage, the flow distribution is added to the actual 

decision variables obtained in the first stage to improve the cost of the design 

resulted from the first stage. The method was applied to optimize a real network 

containing multiple pumps and storage reservoirs operated under multiple operating 

conditions. The weakness of this optimization model is represented in yielding a 

design composed of links each has more than one diameter. In practice, such a type 

of solutions is not desired as the pipe diameters should be consistent over the total 

pipe length.  

 

In general, conventional optimization methods use a sequence of deterministic 

procedures to hopefully converge at the optimal solution. Such methods are 

advantageous to developing computationally efficient optimization models. 

However, the high dependence of these methods on initiating the optimization from a 
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single solution creates a serious limitation to the global optimality of the resulting 

solution. Accordingly, it is most likely that such point-to-point methods fall into 

local optimal solutions especially in multi-peak objective functions. Furthermore, the 

high dependence on the gradient of objective functions in the search makes 

conventional methods not efficient in solving problems with discontinuous or 

discrete search spaces. Most importantly, in highly constraint problems where the 

feasible part of the solution space is divided into a number of disjointed spaces, using 

gradient of objective functions in the search makes it extremely hard to converge at 

the optimal solution. The aforementioned frequently encountered difficulties put 

restrictions to the network size to be effectively solved using conventional methods. 

Real world systems represent large size highly constrained problems with discrete 

search spaces that are extremely difficult to be solved by conventional methods.                      

 

3.2.2 Evolutionary Algorithms 

 

Evolutionary algorithms (EAs) represent a wide range of heuristic optimization 

techniques that simulate evolution (Back et al., 2000). These algorithms have 

frequently demonstrated the ability to solve non-linear, non-convex, multi-criteria 

and discrete problems in which conventional methods encounter difficulty or even 

result in a complete failure to solve such complex problems. The increasing 

complexity in the scope of water resources planning and management has made 

researchers widely apply evolutionary algorithms to the design optimization of water 

distribution systems. The fact that these stochastic methods depend on objective 

functions instead of derivative and continuity, for example, in the search process 

makes them mathematically non-complex and easy to implement. Furthermore, the 

fact that they work on a sequence of populations of potential solutions that are 

exploited to explore a huge solution space considerably increases the potential of 

reaching the global optimum solution. 

 

The optimization of real-world WDSs incorporates solving a multi-criteria complex 

problem composed of multiple objectives that are naturally in conflict. For instance, 
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the determination of a reliable and economical design of the WDS requires 

simultaneously solving for the objectives of minimizing cost and maximizing 

reliability. The least-cost design of the WDS is made up of the least-cost set of pipe 

diameters, for example, normally belonging to a branched layout, which is not 

desired from the viewpoint of redundancy. In contrast, a highly reliable WDS design 

is mostly expensive due to the large pipe sizes required for a design with a large 

capacity and usually has a looped layout. As such, the idea of desiring the least-cost 

WDS design as the optimal solution is gradually disappearing due to the increased 

trend among engineers towards expanding the hydraulic capacity (e.g. in terms of 

reliability and redundancy) of the optimal solution beyond the minimum required 

under the constraint of the available budget of the WDS project. 

 

EAs have been identified to suitably solve multi-objective optimization problems. 

Due to the dependence on a population of solutions instead of a single solution, EAs 

are capable of simultaneously exploring a search space into different directions to 

search for a variety of solutions in complex problems being non-linear, non-convex, 

discontinuous and multi-modal. In multi-objective optimization, there is no absolute 

superiority of one solution to another because a solution may be best in one objective 

but worst in other objectives. Instead of yielding one absolutely superior solution, the 

multi-objective optimization is very different from single-objective optimization in 

that it produces a set of non-dominated solutions, known as pareto-optimal front, 

each solution is better than the others in at least one objective. Considering cost and 

reliability as the main objectives of the WDS optimization problem, such an 

important feature provides more flexibility for engineers in assessing non-dominated 

solutions with respect to the required level of performance and available budget of 

the WDS project.   

 

The literature is replete with different EAs applied to the optimization of water 

distribution systems. Genetic algorithms were one of the earliest EAs applied to the 

optimal design of WDSs by Murphy and Simpson (1992), Murphy et al. (1993), 

Simpson et al. (1994), Savic and Walters (1997) and Montesinos et al. (1999). 
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Murphy and Simpson (1992) applied a simple genetic algorithm technique (i.e. using 

single-point crossover, bit-wise mutation, binary coding and actual fitness function) 

to search for the least-cost pipe design of the WDS. Simpson et al. (1994) developed 

an improved genetic algorithm for the least-cost problem of the WDS. The improved 

GA uses fitness function with variable power scaling, creeping mutation operator and 

Gray coding. Savic and Walters (1997) developed a computer model that links a 

genetic algorithm with a hydraulic simulator to the least-cost design of the WDS. 

The model used uniform crossover and Gray coding to implement the GA. 

Montesinos et al. (1999) developed a modified simple genetic algorithm to the least-

cost design of the WDS. The modification included introducing several changes to 

selection and mutation operators in order to improve the convergence of the GA. In 

each generation, the selection operator eliminates a constant number of solutions, 

while only a maximum of one mutation is allowed for the remaining solutions.  

 

Vasan and Simonovic (2010) and Suribabu (2010) applied an improved technique 

known as differential evolution that is linked with a hydraulic model to the optimal 

design of the WDS. To increase design reliability, a measure of the resilience of 

looped networks was introduced in the determination of the optimal design. Cunha 

and Sousa (2001) employed simulated annealing, which is a heuristic method derived 

from physical annealing of crystals to low energy states, to develop a model for the 

least-cost design of a gravitational looped water distribution network. The design 

cost was used as the energy state and temperature as a parameter that is decreased as 

the model converges at the optimal solution. A hydraulic simulator was linked with 

the model to solve for hydraulic constraints. Geem et al. (2002) developed a heuristic 

algorithm known as harmony search that mimics the improvisation of music players 

to find the optimal design of pipe networks. Practicing sounds on several instruments 

to improve the sound for better aesthetic estimation was mimicked to improve the 

values of objective functions by iteration. Eusuff and Lansey (2003) proposed a 

shuffled frog leaping algorithm, which is a meta-heuristic method used to solve 

discrete optimization problems, to determine optimal design for new pipe networks 

and network expansions. The algorithm uses particle swarm optimization as a local 
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search tool, while the idea of mixing information from parallel local searches is used 

to proceed towards a global optimum.  

 

Maier et al. (2003) applied ant colony optimization approach, which is an 

evolutionary method based on the foraging behaviour of ant colonies, to find the 

optimal design of water distribution networks. The approach constructs a graph 

composed of links each represents a decision point that in turn contains a number of 

options equivalent to available pipe diameters. The approach iteratively generates a 

number of ants or trial solutions and selects a set of options to size each link. The 

cost associated with each solution is then calculated, while a hydraulic model is used 

to solve for hydraulic equations. Suribabu and Neelakantan (2006) applied particle 

swarm optimization to design water distribution networks. The application used the 

swarm intelligence based on the cognition of individuals and social behaviour as the 

optimization tool, while a hydraulic simulator to analyse hydraulic equations for each 

solution. Cunha and Ribeiro (2004) proposed a tabu search algorithm, which is a 

heuristic optimization method that uses the human memory process as a search basis, 

to find the least-cost design of looped water distribution networks. The algorithm 

implements the tabu method by exploring the entire neighbourhood solution or part 

of it using a mechanism for generating neighbourhood solutions.  

 

Genetic algorithms (GAs) have been the most widely used application of EAs in the 

literature of water resources planning and management. They show robustness and 

fast convergence in solving for the problem of optimal design of the WDS. The 

application of a basic GA to the optimal design of WDSs started in the early 1990s 

(Murphy and Simpson, 1992). In this study, the basic GA was applied to a small two-

source and fourteen-pipe looped WDS to find the least cost combination of pipe 

diameters and rehabilitation actions. The basic GA was found to outperform a 

complete enumeration and other optimization methods to solve this small problem 

(Simpson et al., 1994). Simpson and Goldberg (1994) carried out an investigation on 

factors affecting the performance of the basic GA in determining the optimal design 

of this small two-source looped network. They found that the basic GA was sensitive 
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to the operation of tournament selection and the use of a sufficient population size. 

Dandy et al. (1996) made an improvement to the basic GA by scaling fitness, 

creeping mutation and using Gray coding instead of binary coding. The main 

difficulty accompanied with this improved GA was in the amount of considerable 

effort required to adapt the GA parameters (e.g. population size, crossover 

probability and mutation rate) to obtain a set of low cost solutions. Savic and Walters 

(1997) linked a basic GA to the EPANET 2 hydraulic simulator (Rossman, 2000) 

and found that the identification of optimal solution is dependent on the conversion 

factor of Hazen-William formula used in the hydraulic analysis.        

 

Basically, the design space in a simple GA uses tidy representation in which all 

solutions have identical string lengths. Goldberg et al. (1989) suggested a competent 

or messy GA in which solutions have variable string lengths.  They demonstrated 

that the messy GA is capable to identify optimal solutions that were difficult to find 

using a basic GA. It was also found that the optimization of the WDS using messy 

representation is more effective than tidy representation (Wu and Simpson, 1996 and 

1997; Simpson and Wu, 1997; Wu et al., 2000). Halhal et al. (1997) proposed a 

similar method known as the structured messy GA that retains some features of the 

messy GA developed by Goldberg et al. (1989). The structured messy GA was 

applied to maximize the benefit of WDS rehabilitation constrained with a fixed 

amount of available budget. The present research employs the concept of GA 

optimization technique and thus the thesis will explain in detail the basic processes 

involved in the implementation of a basic GA. Further details on other EA 

techniques can be found in the mentioned publications in this review.   

 

 

3.3 GENETIC ALGORITHMS 

 

Genetic algorithms (GA) are stochastic search algorithms that use the mechanism of 

natural selection and natural genetics in order to survive (Goldberg, 1989). The GA 

technique is different from conventional search methods in that they are population-
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based search algorithms. It has been shown that most conventional methods are 

based on determining a prior set of sequenced procedures that use the gradient and 

higher order derivatives of objective functions to converge at a solution. These 

methods are applied to searching from a single point in the search space. The 

improvement of such a point is dependent on gradually following the deepest 

descending direction using a sequence of alterations. This point-to-point method puts 

the search in the danger of falling into local optimal solution. GA avoid this potential 

danger by maintaining a set of solutions to search in multiple directions instead of 

one. The population-to-population method aims to make the search avoid falling into 

local optima. 

 

The implementation of GA starts with creating an initial set of random solutions 

known as population that should be located within the problem boundaries. Each 

solution in the population is called a chromosome or an individual that represents a 

possible solution to the problem under consideration. Each chromosome is 

represented with a string of symbols normally in the form of a string of binary bits. 

The chromosomes are evaluated with a measure of fitness called objective function. 

Selection schemes normally the roulette wheel selection or the tournament selection 

is used to select chromosomes on the basis of fitness. Chromosomes with high fitness 

have higher probabilities of being selected than low fitness chromosomes. The 

selected chromosomes called parents are used to create new chromosomes called 

offspring by either merging two parents using the operation of crossover or 

modifying a parent using the operation of mutation. The process of evolving 

chromosomes is called generation. In each generation, an offspring population is 

created using the operations of selection, crossover and mutation. Finally, the 

algorithm converges to a set of best chromosomes that should be optimal or 

suboptimal solutions to the problem.  

 

Basically, the implementation of a GA requires considering five essential 

components (Michalewicz, 1994): first, a process of genetic representation of 

possible solutions to the problem under consideration called encoding; second, a 
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method to create an initial population; third, a formulation of fitness function to 

evaluate solutions using a process of decoding; fourth, a design of genetic operators 

that adjust the genetic structure of solutions such as selection, crossover and 

mutation; and last, parameter values to be used by the GA such as population size 

and probabilities of carrying out genetic operators. In addition, another essential 

component for implementing GA to a constrained problem represented in a method 

for handling constraints is required. 

 

The GA uses a global search method to solve problems in which determining in 

advance a sequence of procedures guiding to a solution is not possible. The search 

strategies can be of two types: blind search or heuristic search (Bolc and Cytowski, 

1992). Blind search strategies explore the problem solution space without using any 

information about the problem domain. Random search represents an example of 

blind strategy in which the search process does not consider regions of search space 

showing promise. In contrast, heuristic search strategies exploit the available 

information about the problem domain as guidance to the best search directions. Hill-

climbing represents an example of a search strategy that exploits best solutions for 

making potential improvement and without exploring the search space. The GA 

combines the two strategies of exploration and exploitation in a remarkably balanced 

way. 

 

Basically, simple genetic operators are designed in such a way that they essentially 

perform a blind search. This general purpose search approach could make genetic 

operators not able to guarantee producing an improved offspring. In other words, the 

amount of exploration and exploitation performed by the crossover operator is 

dependent on how diverse solutions are and not on the operator itself. In the early 

generations of genetic search, the existence of a random and wide diversity of 

solutions makes crossover operator widely spread the search as an attempt to explore 

all solution space. Once solutions with high fitness start to evolve, the crossover 

operator tends to explore regions near these high fitness solutions. The operation of 

implementing a simple GA is described in Figure 3.1. 
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Figure  3-1: Flow chart of simple GA 
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3.3.1 Main advantages of GA  

 

GAs have attracted many researchers to pay considerable attention to apply such a 

novel optimization technique in solving real-world problems. The application of GA 

to problem optimization has provided three major advantages. First, they are simple 

to adapt to the optimization problem and without the need to a mathematical 

complexity in their formulation. This is because GA use the nature of evolution to 

search for solutions and irrespective of the inner structure of the problem. This 

indicates that the GA can deal with any type of objective functions and constraints 

whether they are linear or non-linear, have discrete or continuous or even mixed 

solution spaces. Second, the dependence of GA on evolutionary operators that are 

probabilistic operators effectively enabled performing a global search rather than a 

local search normally performed by most conventional heuristic methods. Many 

studies showed that the GA is very efficient and robust by reducing the 

computational effort required to converge at optimal solution in comparison with 

other conventional heuristics. Finally, GAs are very flexible in the sense that they 

can be implemented by hybridizing different heuristics to efficiently solve a specific 

problem. 

 

 

3.3.2 GA terminology 

  

Since GA is originated from both the genetics of nature and computer science, the 

terms used in the context of GA are a combination between the natural vocabulary 

and the artificial vocabulary. In biological science, the construction of an organism is 

defined by an encoded structure known as chromosome. To complete building a 

specific organism, more than one chromosome may be required. The full set of 

chromosomes making up the organism is called a genotype, while the produced 

organism is called a phenotype. Each chromosome is composed of set of sub-

structures called genes. Each gene holds a coding of specific feature of the 

chromosome. The specific characteristic represented by each gene is determined by 
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the location of the gene within the structure of the chromosome called locus. A 

particular gene representing a specific characteristic at one location may represent a 

different characteristic at another location. The different characteristics represented 

by one gene are called alleles.  

 

 

3.3.3 GA encoding  

 

The process of encoding a solution of a particular problem in the form of a 

chromosome structure is a key issue towards the implementation of GA. This issue 

has been under consideration from different aspects such as the mapping properties 

associated with converting a genotype into phenotype during the process of decoding 

a chromosome into a solution. Accordingly, a number of encoding methods have 

been developed to effectively apply the GA to a particular problem. In Gen et al. 

(2008), the encoding methods are categorized into four groups according to the type 

of symbols used to define the alleles of a particular gene. These are binary encoding, 

real number encoding, integer permutation encoding and a general data structure 

encoding.  

 

The binary encoding represents each gene by means of the binary alphabet: 0 and 1.  

Then, a chromosome is expressed in the form of a binary string. This type of 

encoding is appropriate for representing problems with discrete or discontinuous 

search spaces. The most important feature of binary encoding is the ability to exploit 

the similarities, which rely on schemata theory, in a discrete search space. However, 

two main issues are often experienced with binary encoding systems: 1) existence of 

redundant binary codes for problems with finite decision variables being not a power 

of two; 2) difficulties in dealing with continuous search spaces. As such, it is 

practically almost impossible to use the binary encoding to represent certain types of 

optimization problems. Since binary encoding is selected to code the GA used in the 

present research, further explanation of schemata theory follows.     
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Holland (1975) used binary strings to encode a solution. The main advantage of 

BCGA (Binary Coded GA) comes from the development of schema theory (Holland, 

1975) that provides results able to describe the good behaviour of the GA. A schema 

is defined as a similarity in patterns of a binary sub-string will have similar 

characteristics in some locations. Consider a population of five individuals and their 

associated fitness values is represented with 4-bit binary strings as shown in Table 

3.1. The schema **01 appears to be associated with a high fitness, while the schema 

10** appears to be associated with a low fitness. The most important result presented 

by the schema theory is the building block theory (Goldberg, 1989). This theory 

states that short, low-order, above-average schemata, known as building blocks 

receive exponentially increasing trials in subsequent generations. For instance, if the 

optimum arrangement of 3-bit binary string is 111, then high fitness solutions are 

composed of the building block of 111.  

 

Table  3-1: Similarities between 4-bit binary strings 
 

Binary string Fitness value 

0001 23 

1000 2 

0101 16 

1101 12 

1010 5 

 

The real number encoding represents the genes directly as real numbers each have a 

unique real value.  Accordingly, a real coded chromosome is a vector of floating 

point numbers. This type of encoding addresses the issue of redundancy associated 

with binary encoding. The main advantage of real number coding is that both 

genotype space and phenotype space have identical topological structures (Gen et al., 

2008). The real number encoding is suitable for problems with continuous search 

spaces. The most important feature of real number encoding is the capability to 

exploit the continuity in continuous search spaces. It has been widely proven that real 
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number encoding more powerful than binary encoding for function optimizations and 

constrained optimizations (McCormick et al. (1972); Eshelman and Schaffer (1993); 

and Michalewicz (1996)). Given that combinatorial optimization problems aim to 

search for a best permutation or combination of certain components to be obtained 

under some constraints, the integer or literal permutation encoding may suit such 

types of problems. The general data structure encoding represent a gene in the form 

of an array or other complex data structure. This type of encoding is appropriate for 

complex real-world problems in which the problem nature may require a data 

structure to represent the allele of a gene (Gen et al., 2008).  Explanation of 

representing the network shown in Figure 3.2 using binary and real encoding follows 

(Table 3.2).  

   

Table  3-2: Binary and real number encoding of eight pipe diameters 
 

Pipe diameter (mm) Binary coding Real number coding 

100 000 100 

200 001 200 

300 010 300 

400 011 400 

500 100 500 

600 101 600 

700 110 700 

800 111 800 

       

 

To illustrate how to encode a WDS using binary encoding and real number encoding, 

consider the 5-pipe network shown in Figure 3.2. Typically, the design of the WDS 

involves selecting a set of pipe sizes subject to hydraulic and cost constraints. Herein, 

the decision variables are eight discrete pipe sizes to be selected for the five pipes 

denoted by P1, P2, P3, P4 and P5. Accordingly, a 3-bit binary string that produces 23 

or 8 possible bit arrangements is suitable to fully represent all pipe sizes. Herein, no 



Chapter 3: Design Optimization of Water Distribution Systems 

 3-20 

redundancy issue has arisen because each pipe size has a unique binary string as 

shown in Table 3.1. It is worth highlighting that this case could not be met in practice 

as the decision variables are normally a set of commercially available pipe sizes. The 

real number encoding was accomplished by a real number equal to the pipe size itself 

(Table 3.2).  

 

 

    

 

Figure  3-2: Illustration of binary and real number representation of a WDS 

(P denotes pipes while numbers in brackets refer to pipe diameters) 

 

 

3.3.4 Infeasibility and illegality of solutions 

 

It has been shown that the GA deals with two different types of spaces: the genotype 

space and the phenotype space. All genetic operations are carried out on the 

genotype space, while the processes of evaluating and selecting solutions take place 

on the phenotype space. The mapping between solutions in the genotype space (i.e. 

encoded solutions or chromosomes) and solutions in the phenotype space (i.e. 

decoded solutions) is carried out by natural selection. The performance of the GA is 

highly dependent on this mapping process. Two main phenomena may arise when 

mapping a solution from the genotype space to the phenotype space.  

P1 (200 mm) 

P2 (800 mm) 

P3 (100 mm) 

P4 (500 mm) 

P5 (700 mm) 

Binary encoding 

001 111 000 100 110 

P1 P2 P3 P4 P5 

Real number encoding 

200 800 100 500 700 

P1 P2 P3 P4 P5 
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First, some chromosomes could correspond to infeasible solutions to the problem 

under consideration. The infeasibility of chromosomes naturally comes from the 

existence of constraints to a given problem. Such constraints divide the solution 

space of the given problem into two regions: feasible and infeasible. So, the 

infeasibility of a chromosome or an individual occurs when the decoded solution is 

situated outside the feasible region of a given problem. Typically, the optimum 

solution is located at the boundary between feasible and feasible regions. In 

constrained optimization problems and combinatorial optimization problems, the 

infeasibility of solutions may have severe effect on the performance of the GA. One 

way to handle infeasible solutions is the penalty method (Gen and Cheng, 1997). 

This approach works on discarding infeasible solutions to restrict the search to the 

feasibility region. 

 

The second phenomenon is illegality of individuals in which a chromosome does not 

represent a solution to a considered problem. The illegality of a chromosome 

naturally comes from the technique used in the encoding process. For instance, a 

simple one-cut-point crossover may result in producing an illegal offspring in some 

problem-specific encodings (Gen et al., 2008). The travelling salesman problem 

provides a typical example in which an illegal chromosome could be generated by 

genetic operators. Consider the problem has five points where the first point 

represents the starting point from which a salesman has to start the journey to reach 

the fifth point, which is the final destination. Throughout evolution, the crossover 

and mutation operations could produce the route {1, 1, 4, 4, 5} in which the first and 

fourth routes appear twice and therefore represents an illegal solution to such a 

problem. Repairing techniques are required in such a situation in order to either 

discard or convert an illegal chromosome to a legal one (Gen et al., 2008). The main 

techniques developed to deal with the issues of infeasibility and illegality will be 

presented after explaining the initialization and genetic operators.       
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3.3.5 Initialization of GA 

 

Typically, the GA is initialized by generating an initial population using a random 

number generator while satisfying the problem boundary. The random number 

generator creates pseudo-random numbers using a recurrence known as a linear 

congruential generator (Murphy and Simpson, 1992). Two entities are to be specified 

within this generator: the maximum positive integer the computational environment 

can take and the seeding number.  The maximum positive integer allows the 

recurrence to contain all the integers between 0 and this maximum value in some 

random sequence. The seeding number represents the starting point within the 

sequence of random numbers. The same seed results in the same sequence of random 

numbers and consequently the same seed will create the same initial population. This 

important feature allows the genetic algorithm to start the optimization from different 

initial populations using different seeding numbers. The random initialization from 

different starting points is a useful tool for evaluating convergence properties of the 

GA.      

 

 

3.3.6 Evaluation of solution fitness 

 

Typically, the objective function for a given problem represents the mechanism by 

which each individual is evaluated. Fitness evaluation of a solution is then the 

solution value obtained from the objective function for a given problem and subject 

to some constraints. In multi-objective optimization problems, the difference of 

range of values of objective functions may be significantly large. To maintain 

consistency in the solution space, all involved objective functions should be 

normalized to a range of 0 to 1. The selection process is then used to evaluate the 

individuals of the population based on the normalized value of the objective function. 

 

The objective function plays a crucial role in the GA search. This is because the 

evolution of chromosomes is dependent on the fitness, which is evaluated using the 
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objective function. As the GA progresses from one generation to another, relatively 

high fitness solutions are selected to produce new and relatively higher fitness 

solutions. At the same time, relatively low fitness solutions are not selected to yield a 

population of offspring composed of good solutions. To evaluate the fitness of each 

individual, a decoding procedure dependent on the chromosome structure is normally 

constructed. 

 

 

3.3.7 Crossover 

 

Crossover represents the main genetic operator that plays an important role in 

exploring the solution space. Thus, the performance of the GA is highly dependent 

on the performance of the crossover operator. The crossover operator works on two 

chromosomes called parents at a time to produce two offsprings that contain some 

features of both parent chromosomes. The crossover operation can be simply 

achieved by randomly choosing a single point to cut at each parent into two 

segments. The first offspring is generated by combining the segment left to the cut-

point in one parent with the segment right to the cut-point in the other parent (Figure 

3.3). Similarly, the second offspring is generated by combining the segment right to 

the cut-point in one parent with the segment left to the cut-point in the other parent 

(Figure 3.3). The single cut-point method is suitable for binary coded chromosomes.  

 

The number of chromosomes to undergo the crossover operation is controlled by 

crossover probability (pc). The crossover probability is defined as the ratio of the 

number of offspring produced in each generation to the population size. Clearly, the 

amount of exploration of the solution space is dependent on the crossover probability 

used. A higher crossover probability enables exploring more of the solution space 

and thus reducing the chances of falling into a local optimal solution. At the same 

time, too high crossover probability may result in consuming part of the 

computational effort in exploring unpromising areas of the solution space.  
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In Gen et al. (2008), four main types of crossover operators have been proposed for 

real number encoding: conventional crossover, arithmetical crossover, direction-

based crossover, and stochastic crossover. The conventional operators are based on 

extending the operators developed for binary representation to real number coding. 

The resulting operators are mainly classified into simple conventional crossover 

operators (e.g. one-cut point, two-cut point and multi-cut point) and random 

crossover operators (e.g. flat and blend). The arithmetical crossover operators are 

designed based on applying the concept of linear combination of vectors that belongs 

to the theory of convex set. They work on the genetic representation of floating 

numbers. The direction-based operators use the values of objective functions as an 

approximated gradient to determine the direction of genetic search. The stochastic 

operators generate offsprings by modifying parents using random numbers following 

some distribution.   

 

       

      

Figure  3-3: Operation of the single-point crossover 
 

 

3.3.8 Mutation 

 

Mutation is another genetic operator that plays a key role in the GA search process in 

two main aspects. First, it increases the chances of returning the genes lost by the 
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selection process and so trying them out in a further selection process. Second, it 

increases the chances of introducing the genes that were not included in the initial 

population. The mutation process can be simply achieved by randomly altering one 

or more genes in the offspring population. The number of genes to undergo mutation 

is dependent on the mutation probability (pm). The mutation probability is defined as 

the ratio of the number of mutated genes to the total number of genes comprising the 

population.  The mutation probability governs the number of new genes to be 

included in the population for trial. Using too low mutation probability would lead to 

not trying several useful genes at all. At the same time, high mutation probability 

will lead to losing the resemblance between the offspring and the parent and so 

losing the capability to obtain genetic information from the search history. The 

methods of implementing mutation operation can be of conventional or non-

conventional types.   

 

Random mutation operators belong to the conventional methods normally used to 

perform mutation operation. These include uniform mutation, boundary mutation and 

plain mutation. They simply generate a random real number within a specified range 

(e.g. between 0 and 1) for each gene in the offspring population. If this number is 

less than or equal to the specified mutation probability, the gene undergoes mutation. 

In binary encoding, the selected gene is converted to its binary complement from 0 to 

1 or 1 to 0. For real number encoding, the random mutation directly replaces the 

selected gene with a randomly selected real number belonging to a particular range.  

 

The non-conventional mutation operators proposed for real number encoding include 

dynamic mutation or non-uniform mutation classified under the arithmetical 

mutation operators. Directional mutation is another type of these methods that uses 

the gradient of objective functions to direct the search in either a random way or 

using some guiding criteria. Inversion mutation is an operator that works on inverting 

genes over a substring selected randomly between two points. Insertion mutation 

selects a gene in a random way and introduces it to the offspring population 

randomly. Displacement mutation also works on a substring of genes but in a 
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different way from inversion mutation. The randomly selected substring is displaced 

at a random position in the offspring population. Reciprocal exchange mutation 

randomly selects two genes at different positions and swaps them.  

 

 

 

Figure  3-4: Operation of the simple random mutation 
 

 

3.3.9 Selection 

 

Selection represents the driving engine of the GA that guides the genetic search to 

regions of the search space showing promise (i.e. region of good solutions). The 

selection operation is dependent on the selection pressure, which refers to the degree 

to which good individuals are favoured in the selection. In general, a lower selection 

pressure is preferred at the beginning of a genetic search in order to widely explore 

the search space, while a higher selection pressure is preferred at the end to make the 

search space narrower. A number of selection methods have been proposed to 

perform the selection process. These include roulette wheel selection (Holland, 

1975), tournament selection, truncation selection, elitist selection, ranking and 

scaling selection and sharing selection. 
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Roulette wheel selection was proposed by Holland (1975). The implementation of 

this selection operator starts by determining a selection probability for each 

individual that is proportional to the fitness value. These probabilities are used to 

construct a weighted roulette wheel composed of segments equal to number of 

individuals in the population. The size of segments on the weighted roulette wheel is 

proportional to the selection probabilities. This representation makes high fitness 

individuals have larger segments and thus larger selection probability. To select an 

individual to undergo a genetic operation (e.g. crossover), the wheel is spun a 

number of times equal to population size. The weighted roulette wheel in Figure 3.5 

is used to represent a population of 8 individuals. Individual 1 has a very high fitness 

and therefore allocated large segment, while individual 8 has a very low fitness and 

therefore assigned small segment. Accordingly, each time the weighted wheel is spun 

in the selection process; it is likely that the ball eventually tends to fall into large 

segments. This selection mechanism makes the selection pressure most likely in 

favour of high fitness individuals.  Goldberg and Deb (1991) pointed out that roulette 

wheel selection has the disadvantages of lacking diversity and directed search that 

make the GA converges prematurely. 

 

 

 
Figure  3-5: Illustration of the weighted roulette wheel 
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The tournament selection proposed by Goldberg and Deb (1991) runs a “tournament” 

among a set of individuals selected randomly from the population and selects the one 

with the best fitness. The tournament process continues until the number of offspring 

individuals specified by crossover probability is reached. Unlike the roulette wheel 

selection, the tournament selection has the advantage of being easy to adjust the 

selection pressure by changing the tournament size, which is the number of 

individuals to compete in each tournament process. A larger tournament size makes 

low fitness individuals have less chance to be selected, while a smaller tournament 

size increases the chance of selecting low fitness individuals. The common 

tournament size is 2.   

 

 

3.3.10 Methods of handling constraints in GA 

 

The application of the GA to constraint optimization problems has shown that the 

genetic operators do not guarantee that all generated solutions are feasible. As such, a 

component for handling violations with constraints becomes an essential requirement 

in constraint problems. In GA literature, Michalewicz (1995) summarized the 

existing techniques proposed to handle constraints in the GA. They are classified into 

four strategies: 1) rejecting strategy; 2) repairing strategy; 3) modifying strategy; and 

4) penalizing strategy. 

 

The rejecting strategy works on excluding all infeasible solutions generated during 

an evolutionary process. This method may fairly work in problems of which feasible 

solutions belong to a convex solution space and comprise a significant part of the 

whole solution space. However, the dependence of such a method on the existence of 

feasible solutions puts severe limitations on its application. For example, genetic 

operators can not guarantee that the initial populations contain even a feasible 

solution. This situation essentially requires introducing procedures to improve the 

initial population. 
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The repairing strategy works on converting an infeasible solution to a feasible one. 

The application of this strategy depends on designing a deterministic repair 

procedure, which is problem specific. Repairing a solution can be implemented using 

two different methods: the never replacing approach and the always replacing 

approach. The never replacing approach uses the repaired solution for evaluation 

only and never returns it to the population, while the always replacing approach 

replaces the illegal solution with the repaired one.  The weakness of the repairing 

strategy comes from being problem dependent. Such a strategy could be suitable for 

combinatorial optimization problems in which it is relatively simple to construct a 

repairing procedure. However, the process of repairing infeasible solutions might be 

so complex that it requires similar computational effort to that required for solving 

the problem itself.     

 

In order to maintain the feasibility of solutions, the modifying strategy works on 

inventing special genetic operators that are specific to the problem. The serious 

limitation of using problem-specific representation is in confining the genetic search 

in a feasible region. 

 

All the above techniques were developed to cope with the issue of feasibility 

associated with genetic operators. They have the disadvantage of never generating 

infeasible solutions by not considering any solution located outside the feasibility 

region. This concept has a serious limitation because, for highly constrained 

problems, infeasible solutions may represent a relatively large part of the population 

and so it may be difficult to find solutions if the genetic search is confined within the 

feasibility region.  

 

Glover and Greenberg (1989) pointed out that searching through infeasible regions 

improves the GA efficiency in finding better solutions than do strategies restricting 

search to feasible regions only. The penalizing strategy is a method proposed to 

search through infeasibility regions to some extent. Even though infeasible solutions 

may exist in the initial population, they can not survive further due to being 
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penalized for their infeasibility. Additionally, such a method requires designing 

problem-specific penalty functions. 

 

3.3.11 Non-dominated solutions and Pareto Optimality 

 
Basically, multi-objective optimization problems are very different from single 

objective optimization problems. In single objective problems, there is only one best 

solution that is completely superior to all other alternatives in the solution space of 

the problem considered. In multi-objective problems, such a solution superior with 

respect to all objectives is not essentially available because of the conflict among 

objectives. For example, a solution could be best in objective and at the same time 

worst in other objectives. Thus, there normally exists a set of solutions for the case of 

multi-objective problems that can not be directly compared with each other. Such 

types of solutions are known as non-dominated solutions or Pareto Optimal 

solutions. These solutions are characterized with the impossibility of making an 

improvement in one objective without sacrificing at least one of the other objective 

functions. The non-dominated solutions are also called Pareto Optimal Front (POF).   

 

 

3.4 REVIEW OF METHODS DEVELOPED TO IMPLEMENT MULTI- 

OBJECTIVE GENETIC ALGORITHMS  

 

The GA is characterized with multi-directional and global search strategy that 

employs a population-to-population search approach to explore the solution space. 

This inherent feature makes the GA potentially suitable for solving multi-objective 

optimization problems. Since constrained and combinatorial optimization problems 

can be naturally formulated as multi-objective optimization problems, several 

MOGA (Multi-Objective GA) methods have been developed in the last two decades 

(Gen et al., 2008). The major components essentially required to apply the GA for 

solving a given problem are methods for implementing encoding, genetic operators, 

fitness assignment and constraint handling. Among these components, a mechanism 
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for implementing the fitness assignment represents a particular issue associated with 

the application of the GA to multi-objective optimization problems. In Gen et al. 

(2008), the development of MOGA can be classified into three main stages according 

to the method proposed for fitness assignment as follows: 1) vector evaluated GA; 2) 

Pareto ranking and diversity GA; and 3) weighted sum and elitist preserve GA. 

However, it could be more convenient to classify the mechanisms of weighted sum 

and elitist preserve as separate approaches. 

 

 

3.4.1 Vector evaluated GA 

 

The vector evaluated GA (VEGA) represents the first remarkable GA based work for 

solving multi-objective optimization problems (Schaffer, 1985). Schaffer’s works are 

considered as the first attempt to apply the GA to multi-objective optimization 

problems. As the name suggests, the VEGA uses a vector fitness measure instead of 

a scalar fitness one to create the next generation. In each generation, the entire 

population is divided into subpopulations of appropriate size and each solution is 

selected based on the objective value. Then, the mating between subpopulations is 

carried out by applying operators of crossover and mutation. The non-dominated 

solutions in each generation are identified by maintaining the best solutions in one of 

the objectives while providing a set of solutions for multiple selections that are better 

than the average of more than one objective.  

 

However, the VEGA is found to split the population into different solutions each of 

them strong in one of the objectives in case of concave problems. This phenomenon 

of speciation, as called by Schaffer (1985), is not desirable in multi-objective 

optimization problems due to contradicting the aim of obtaining a compromise 

solution. Even though speciation makes the VEGA unable to provide a satisfactory 

solution to the multi-objective optimization problem, the VEGA suggested 

developing new concepts of implementing MOGA.  
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3.4.2 Pareto ranking and diversity GA 

 

Goldberg (1989) was the first to propose assigning fitness based on Pareto ranking. 

The process of ranking starts by assigning rank 1 to the non-dominated solutions 

within the entire population. Then, solutions of rank 1 are removed to identify the 

non-dominated solutions of rank 2. The procedure continues until the whole 

population is ranked. Fonseca and Fleming (1993) proposed a MOGA that represents 

the rank of each solution by the number of solutions dominating it in the current 

population. Accordingly, all the non-dominated solutions are assigned rank 1 and the 

next non-dominated solutions are assigned rank 2 and so on. Srinivas and Deb (1995) 

proposed a Pareto ranking-based mechanism for fitness assignment to develop 

NSGA (Non-dominated Sorting GA).  In this method, all solutions making up a non-

dominated front are assigned the same dummy fitness value. The specified value of 

dummy fitness of these solutions is used as a sharing parameter that is not accounted 

for in further classification. Then, the dummy fitness is reduced to a value less than 

the smallest shared fitness value in the current non-dominated front. The next front is 

identified after removing the first front from the current population. The procedure 

continues until all solutions are classified. However, the Pareto ranking and diversity 

GA are criticized mainly because of not incorporating elitism in the ranking process. 

 

 

3.4.3 Weighted sum GA 

 

Ishibuchi and Murata (1998) proposed a weighted-sum mechanism for fitness 

assignment to develop random-weight GA called RWGA characterized with a 

variable search direction. The weighted-sum approach works on assigning weights to 

each objective functions and combines these weighted objectives into a single 

objective function. There are two methods of search according to the method used 

for assigning weights: fixed direction search and multi-direction search. The fixed 
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direction search is achieved by fixing weights to direct the GA search towards a 

fixed point in the search space. The multi-direction search assigns weights in a 

random way to make the GA search into multiple and variable directions. To 

gradually direct the search towards a positive ideal point, Gen and Cheng (2000) 

proposed an adaptive weight mechanism that adjusts weights based on the minimum 

and maximum extreme points in the current population. As the extreme points are 

updated at each generation, the weights are also updated accordingly.  

 

    

3.4.4 Elitist preserve GA 

 

Deb et al. (2002) proposed a non-dominated sorting genetic algorithm called NSGA 

II that alleviates the difficulties experienced with NSGA, namely, computational 

complexity, non-elitism approach and the need for specifying a sharing parameter. 

The NSGA II represents an advancement of its original NSGA described previously. 

The computational complexity was handled with a fast non-dominated approach. The 

incorporation of elitism is achieved by developing a selection operator that combines 

parents and offspring populations into a mating pool and selects the best solutions. In 

NSGA II, a Pareto rank is assigned for each solution in the mating pool using a non-

dominated sorting approach, while a measure of density called crowding distance is 

estimated for each solution in the mating pool. For two solutions, NSGA II prefers 

the solution with lower rank value or the solution located in a region of low density if 

both points belong to the same front. Accordingly, NSGA II combines a fast non-

dominated sorting approach, an elitism scheme and a non-parameter sharing method 

applied in the original NSGA. Based on several difficult test problems, NSGA II 

demonstrated robustness and efficiency in finding better solutions and better 

distribution of solutions in comparison with other elitist MOEAs. Since NSGA II has 

been used as the optimization technique in this research, a detailed description is 

presented in chapter four.           
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3.5 REVIEW OF TOPOLOGY-BASED OPTIMIZATION APPROACHES OF 

WATER DISTRIBUTION SYSTEMS 

 

Typically, the establishment of the WDS has two main design phases: planning of 

system components and sizing of such components to meet the functional 

requirements according to the standard used. In reality, it is extremely hard to 

determine the optimal configuration or topology of system components that belong to 

the least-cost design of the WDS. This is attributed to the existence of large system 

configurations that can provide a planning solution to the system. Additionally, it is 

impossible to determine the system cost without sizing the WDS. In other words, it is 

essential to couple cost determination with planning of system components if the 

least-cost design is desired. Even though the capital cost is shared among different 

components making up the system (e.g. pipes, valves, tanks and pumps), the capital 

cost mainly comes from the pipeline provision and construction (Djebedjian et al., 

2008). In general, the cost of transmission mains and the distribution network 

account for approximately 80% to 85% of the total cost of the WDS (Swamee and 

Sharma, 2008). Accordingly, a good planning of the system components (i.e. 

topology optimization) will bring a great saving of the capital cost. 

 

Planning the WDS starts with: 1) identifying any possible locations of supplying 

sources that should be located at the highest points among the planned zone; and 2) a 

preliminary planning of pipe locations that should consider many factors such as the 

right-of-way property of streets and accessibility between supplying sources and all 

consumption points. At this point, demands occur along pipes in this preliminary 

detailed plan. Since it is extremely difficult to include all consumption points in this 

detailed plan, the preliminary detailed plan is skeletonized and demands are lumped 

at pipe ends as explained in section 1 of Chapter 2. Then, a feasibility analysis of the 

system is carried out where a choice between gravity and pumped systems can be 

made. A gravity system could be feasible if the source node is at a higher elevation 

than all demand nodes. Otherwise, a pumping system could be the alternative 

solution. Also, the pumping system could provide better solution than gravity one if 



Chapter 3: Design Optimization of Water Distribution Systems 

 3-35 

the difference in elevation between demand nodes is small where large pipes could 

be required in the case of gravity systems.     

 

The planning of the WDS components can be categorized into three main groups: 

branched or tree-like configuration, fully looped configuration, and partially looped 

configuration. Branched systems are suitable for small and low-density rural areas, 

while fully or partially looped systems are proper for urban areas (Swamee and 

Sharma, 2008). Branched configurations have a structure similar to a tree and branch 

structure (Figure 3.5a) in which the tree trunk represents the supply main while 

branches stand for pipes connecting consumption points or demand nodes to the 

supply main. In branched systems, each demand node has a unique supply path from 

the supplying source. This configuration is not desired because of cutting off the 

water supply to the consumers downstream of any section of pipe that is not in 

service, e.g. due to a mains break. The main advantages of branched systems are that 

the capital cost is relatively low; they are easy to operate; and are suitable for 

sparsely populated areas (Swamee and Sharma, 2008).  

 

To reduce the effect of such situations, looped systems characterized with the 

existence of multiple supply paths from the source to the demand points are 

preferred. The reliability and cost of looped systems is highly dependent on the 

number of loops (Tanyimboh and Sheahan, 2002; Tanyimboh and Setiadi, 2008). In 

fully looped systems, pipes are constructed in such a way that each demand node can 

be supplied from the source(s) through at least two independent paths as shown in 

Figure 3.5b. Two supply paths are said to be independent if they do not have a pipe 

in common. From the viewpoint of system reliability, this looping condition has the 

advantage of providing an alternative flow path in case the other paths are out of 

service.  

 

Partially looped systems lie between branched and fully looped configurations where 

each demand node has at least two flow paths but not all of them are independent. 

For example, nodes 1 to 6 in Figure 3.6c satisfy looping condition, while nodes 7 to 9 
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do not because they are supplied through pipe 5-8 only. Cutting off the water supply 

in pipe 5-8 has the effect of putting nodes 7 to 9 out of service. 

 

 

  a) Branched topology    (b) Fully looped topology    (c) Partially looped topology 

 

Figure  3-6: Illustration of branched, fully looped and partially looped topologies 
 

In addition to cost consideration, reliability becomes an important parameter 

involved in determining the optimal planning of the WDS. The difficulties associated 

with operating the WDS in a long-term basis is the main reason behind considering 

reliability in the planning and design of the WDS. The effects of aging of system 

components and the unpredictable increase in future demands on the long-term 

performance of the WDS are some of aspects hard to determine during the planning 

and design phase. However, adding reliability to the process of determining the 

optimal system planning has made the establishment of the WDS extremely hard to 

achieve. This is attributed to two main reasons. First, there is still some doubt about 

the definition of the term ‘reliability’ of the WDS. Second, the great increase in the 

complexity of WDS design resulted from considering reliability as an essential 

design factor. 

 

Given that planning of the WDS components under cost consideration plays a crucial 

role in saving a great amount of capital, several approaches were developed to 

address the coupling effect between topology and sizing of system components on 

determining the least-cost design of the WDS. Nevertheless, this joint effect has been 
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yet fully addressed. To improve the long-term performance of the WDS, several 

approaches were also developed to incorporate reliability in the design of the WDS. 

The vast majority of these methods did not include layout optimization. Even those 

attempted to include reliability did not fully address the effect of topology on both 

design and reliability of the WDS.  In general, the approaches developed to handle 

the coupling effect of components layout on design and reliability of the WDS can be 

categorized into two groups: 1) coupled layout and design approaches; and 2) 

coupled layout, design and reliability approaches.  

    

   

3.5.1 Approaches that do not consider reliability 

 

The coupled problem of topology and pipe size optimization aims to determine the 

cheapest set of pipe sizes that make up a feasible design of the WDS. Practically, it 

yields a single feasible design that is supposed to have the cheapest set of pipe sizes 

and belongs to the optimal topology. This indicates that the computational solution of 

this problem involves three main objectives: 1) minimizing cost; 2) minimizing 

violation of hydraulic constraints; and 3) minimizing violation of topologic 

constraints. Nevertheless, all previous studies attempted to address the problem of 

joint effect between topology and design computationally solved this problem as a 

single-objective optimization problem. The penalizing strategy was employed to 

handle the violations with both hydraulic constraints and topologic constraints.    

 

The coupling between topology and design of the WDS was first handled as two 

separate processes. The first process or stage optimizes topology followed by the 

second stage for pipe sizing (Rowel and Barnes 1982; Morgan and Goulter 1982; 

Kessler et al. 1990; Cembrowicz 1992). Rowel and Barnes (1982) developed a two-

stage model that determined a least-cost branched layout first. Then, pipes are 

introduced to interconnect the branches of the network in the second stage. Morgan 

and Goulter (1982) developed an approach that is composed of two linear programs. 
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The first one determines the optimum topology, while the other is used for sizing 

pipes. However, the method used to add pipes to branches does not guarantee that the 

designs generated would be fully looped. In other words, the criterion used simply 

requires connecting each node using two pipes without investigating whether these 

pipes provide independent paths or not. Kessler et al. (1990) and Cembrowicz (1992) 

tackled the problem by choosing links for either addition or removal from a 

predefined base graph. The base graph is the network consisting of the full set of 

feasible links.  

 

However, all the aforementioned approaches assume that the problem of coupled 

topology and design could be divided into two separate optimization problems in 

which layout optimization is followed by pipe size optimization. This assumption 

neglects the strong interdependence between topology and design where sequential 

procedures as described above can be expected to yield suboptimal results. For 

example, given that the cost is not involved in the first stage, these methods do not 

guarantee that the optimal topology has been passed on to the second stage. As a 

result, there is no doubt that such methods only addressed the strong coupling 

between topology and components design of the WDS to some varying degrees. The 

two-stage optimization approach could be attributed to the highly complex 

optimization problem resulting from combining the large solution spaces of both 

topology and pipe size design. 

 

The introduction of evolutionary algorithms as optimization techniques able to 

simultaneously handle multiple objectives was extensively exploited to develop 

approaches for handling this complex problem (Davidson and Goulter 1995; Walters 

and Smith 1995; Geem et al. 2000, Afshar 2007). Evolutionary algorithms often 

generate infeasible solutions when solving problems that involve constraints. The 

penalizing strategy that involves designing a penalty-based cost function was mostly 

used to handle constraints. In Kougias and Theodossiou (2013) and Dridi et al. 

(2008), case-specific constraint violation penalties that require special calibration 

procedures were frequently introduced to address this issue. 
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More recently evolutionary optimization approaches have been attempted (Walters 

and Lohbeck, 1993). For example, Davidson and Goulter (1995) proposed a method 

to optimize the layout of rectilinear branched networks. As no guarantee could be 

given for the feasibility of the designs obtained using genetic algorithm (GA) 

operators, two additional steps called recombination and perturbation were applied. 

Walters and Smith (1995) employed graph theory in an evolutionary algorithm for 

designing branched networks. Graph theory was combined with the conventional 

crossover and mutation operators to avoid the creation of infeasible designs in the 

reproduction process. Geem et al. (2000) employed a heuristic method called 

harmony search to optimise the design of branched networks. To avoid infeasible 

designs in the search process, a tree-growing algorithm starting from the base graph 

was used.  

 

Also, Afshar et al. (2005a) developed iterative two-stage approach such that, in the 

first stage, the optimal diameters for a predefined layout are determined using non-

linear programming method. In the second stage, an iterative pipe removal search 

process is carried out to reduce the cost without undermining the node connectivity 

constraint. Any infeasible solutions generated in the early stages due to the 

randomness in creating the initial population of solutions by the GA are gradually 

discarded using constraint violation penalties. To ensure the feasibility of branched 

solutions, at least one independent path from the source nodes to each of the demand 

nodes is required. Afshar (2007a,b; 2005b) also proposed several approaches that 

basically restricted the evolutionary algorithms used to feasible solutions. These 

included a genetic algorithm using three modified roulette wheel selection schemes 

(Afshar, 2007a), the conventional roulette wheel (Afshar, 2007b) and a max-min ant 

algorithm (Afshar, 2005b).  

 

The above review shows that all approaches proposed in literature did not fully 

address the problem of coupled topology and design in four main optimization 

aspects. First, dividing the entire solution space of topology and design into two 



Chapter 3: Design Optimization of Water Distribution Systems 

 3-40 

separate and independent solution spaces in two-stage models undermines the 

concept of the strong coupling between topology and design. Screening out 

topologies in the first stage does not guarantee that the optimal topology has been 

passed on to the second stage. Second, severely restricting the coupling between 

topology and design to the feasible part of the entire solution space in one-stage 

models does not guarantee that the optimal topology would always belong to the part 

of feasible solutions particularly in problems of which infeasible solutions comprise 

a reasonable part of the entire solution space.  

 

From the viewpoint of practicality, searching into the feasible part of the solution 

space requires designing problem specific procedures for discarding infeasible 

solutions on an ad hoc basis. Finally, limiting the coupling between topology and 

design to the violation of hydraulic constraints during normal operating conditions 

puts serious limitations on the performance of the obtained solutions during failure or 

abnormal operating conditions. Associating reliability assessment in simultaneous 

process with relaxing the search procedure into the entire solution space (i.e. feasible 

and infeasible) of topology and design is the key towards addressing the 

aforementioned optimization issues of the WDS.            

   

 

3.5.2 Approaches that consider reliability 

 

The incorporation of reliability as a trade-off factor in the coupled topology and 

design problem resulted in a dramatic change in the definition of optimal design of 

the WDS. Instead of determining the optimal topology, a set of optimal topologies 

are determined in the coupled topology, design and reliability problem. As such, the 

computational solution yields a set of optimal solutions rather than a single optimal 

solution. Besides violating hydraulic constraints and topologic constraints, the 

complexity of the problem has been greatly increased by the objective of maximizing 

reliability, which is in a conflict with minimizing cost. The necessity of adding 
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reliability to the problem of coupled topology and design has greatly increased 

complexity of the WDS optimization problem. In effect, very few approaches have 

been proposed to address this extremely complex problem.  

 

In general, the vast majority optimization studies that included reliability did not 

optimize the topology. Awumah et al. (1989) developed a two-stage model for 

optimizing the pipe sizes and topology of a WDS. In the first stage, a topology model 

determines whether a link is to be included in the topology or not using a zero-one 

integer program. The topology is then passed on to the second stage to adjust pipe 

diameters in the final design.  

 

Awumah and Goulter (1992) also proposed an alternative approach using 

informational entropy theory. The design optimization model was run repeatedly 

with a different maximum limit for the initial construction cost imposed each time as 

a means to generate different topologies. Tanyimboh and Sheahan (2002) also used 

informational entropy to investigate the combined effects of topology, pipe size 

design and reliability in an approach in which the topology, pipe sizing, reliability 

and redundancy were considered in successive stages. Even though the study did not 

fully address the joint effects between topology, pipe sizing and reliability because of 

dividing the design process into multiple stages, it was the only remarkable study 

attempted to address the coupling effect between topology, pipe sizing and reliability 

of the WDS.    

 

Evidently, the aforementioned studies did not fully address the joint problem of 

topology, design and reliability optimization in an integrated fashion. Simply 

because dividing the whole strongly coupled optimization process into a sequence of 

stages contradicts with the concept of the strong coupling between topology, design 

and reliability. The topology optimization stage does not guarantee that the optimal 

topologies have been retained for the design stage. Consequently, the design 

optimization stage does not guarantee that optimal designs have been retained for the 

reliability screening stage. 
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3.6 CONCLUSIONS 

   

The design and operation of the WDS are highly complex multi-objective problems 

that essentially require employing effective optimization techniques to be solved. 

This chapter has conducted a comprehensive review of the main optimization 

methods used to solve the optimization problem of the WDS. The two optimization 

techniques, namely conventional and evolutionary algorithms, applied to handle 

these multi-criteria problems have been reviewed. A special focus on genetic 

algorithms has been provided. Apart from being efficient, the application of 

conventional methods was recognized to place serious limitations to solving the 

highly constrained non-linear problems having discrete solution spaces. Due to being 

point-to-point approaches, conventional methods are not able to effectively solve 

multi-objective optimization problems. The point-to-point approaches face by the 

danger of potentially falling into the trap of local optima.  

 

In contrast, the GA technique is a population-to-population approach capable to 

simultaneously search in multiple directions into the entire solution space. This 

important feature makes the GA techniques suitable for handling highly complex 

combinatorial problems having discrete solution spaces. A description of the main 

procedures required to implement the simple GA have been provided in sufficient 

detail. The different strategies proposed for improving the GA performance in 

handling constraints along with pointing up their limitations have been also 

reviewed. A special focus on the advancements in methods developed to implement 

the multi-objective GA has been presented.                   

 

The last section of this chapter has been devoted to the two groups of approaches 

proposed to address the joint effect between topology, design and reliability 

optimization of the WDS. The first group is categorized under the concept of 

coupling topology to the design optimization of the WDS. Two types of models 
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classified under this group, namely two-stage and single-stage models, has been 

reviewed. The limitations of these models have been highlighted and discussed. The 

two-stage models dealt with topology and design optimization as a sequence of two 

separated stages, which ignore the concept that topology and design are strongly 

coupled.  Single-stage models had the limitation of severely restricting the search to 

the feasible region of the solution space.  

 

The second group is classified under the concept of joining topology and reliability 

to the design optimization of the WDS. All models falling into this group did not 

fully address this joint issue by dividing the optimization into a sequence of 

separated stages. An integrated approach for handling the joint problem of topology, 

design and reliability optimization of the WDS has been recognized to be in high 

demand.    
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CHAPTER FOUR  

 

 

NEW PENALTY-FREE MULTI-OBJECTIVE EVOLUTIONARY 

APPROACH TO COUPLED TOPOLOGY AND PIPE SIZE 

OPTIMIZATION OF WATER DISTRIBUTION SYSTEMS 

 

 

 

4.1 INTRODUCTION 

 

Water distribution systems (WDSs) represent a vital part of the infrastructure in 

developed societies. The establishment of WDSs mainly includes topology design, 

which is planning of the system components, and sizing of such components to 

evaluate the hydraulic performance of the system. However, WDSs deteriorate with 

time and require periodic maintenance to maintain the system capacity at the 

required levels. This increases considerably the overall cost of the system. Even 

though the capital cost is made up of the costs of system components such as pipes, 

valves, tanks and pumps, the capital cost is mainly due to pipeline provision and 

construction (Djebedjian et al., 2008). The operation cost is mainly due to energy 

and water treatment costs. Constructing and putting WDSs into operation is very 

expensive and it follows that good planning of the layout of the network of pipes can 

lead to a substantial reduction in the capital cost in addition to the long-term 

maintenance and operation costs. 

 

The topology of WDSs can be categorized as: branched or tree-like, fully looped, 

and partially looped. Branched systems are suitable for small and low-density rural 

areas, while fully or partially looped systems are proper for urban areas (Swamee and 

Sharma, 2008). Branched configurations are similar to a tree and branch structure
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(Figure 4.1a) in which the tree trunk represents the supply main while branches stand 

for pipes connecting consumption points or demand nodes to the supply main. 

Branched systems have only one supply path from the source to any demand point. 

This has the disadvantage of cutting off the water supply to the consumers 

downstream of any section of pipe that is not in service, e.g. due to a mains break. 

The main advantages of branched systems are that the capital cost is relatively low; 

they are easy to operate; and are suitable for sparsely populated areas (Swamee and 

Sharma, 2008). To reduce the effect of such situations, looped systems that have 

multiple supply paths from the source to the demand points are preferred. The 

reliability and cost of looped systems is highly dependent on the number of loops 

(Tanyimboh and Sheahan, 2002; Tanyimboh and Setiadi, 2008).  

 

 

  a) Branched topology    (b) Fully looped topology    (c) Partially looped topology 

Figure  4-1: Illustration of branched, fully looped and partially looped topologies 
 

 

In fully looped systems, pipes are structured in such a way that each demand node 

can be supplied from the source(s) through at least two independent paths as shown 

in Figure 4.1b. Two supply paths are said to be independent if they do not have a 

pipe in common. From the viewpoint of system reliability, this looping condition has 

the advantage of providing an alternative flow path in case the other paths are out of 

service. Partially looped systems lie between branched and fully looped 

configurations where each demand node has at least two flow paths but not all of 

them are independent. For example, nodes 1 to 6 in Figure 4.1c satisfy looping 
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condition, while nodes 7 to 9 do not because they are supplied through pipe 5-8 only. 

Cutting off the water supply in pipe 5-8 has the effect of putting nodes 7 to 9 out of 

service. 

 

Most previous studies on WDS optimization have assumed that the topology is 

known a priori. In reality, this is not always the case due to the high complexity of 

determining the optimal layout from the large set of 2np feasible and infeasible 

layouts where np is the number of candidate pipes.  The complexity arises from the 

fact that the layout alone is not sufficient to evaluate the system cost or hydraulic 

performance, for example, without sizing system components. This makes the 

coupling between layout and design so strong that they should be determined 

simultaneously if the optimal solution is desired. A detailed review of the previous 

studies attempted to address this joint effect has been presented in section 5 of 

chapter 3.   

 

In this chapter, a new penalty-free multi-objective evolutionary approach to the 

simultaneous topology and pipe size optimization of WDSs is presented. The 

penalty-free strategy enabled the approach to fully exploit the entire solution space 

that consists of both feasible and infeasible solutions. This means that pressure-

deficient and topologically infeasible solutions were fully incorporated in the genetic 

algorithm without recourse to constraint violation penalties or tournaments. In other 

words, infeasible solutions are not targeted and removed arbitrarily purely by virtue 

of their infeasibility or by the use of extraneous penalties. A new procedure for 

handling topologically infeasible solutions has been proposed. The effectiveness of 

the approach is demonstrated by solving three benchmark problems. Better solutions 

than the best solutions in the literature were found for all the above-mentioned 

benchmark problems. By optimizing the topology and pipe sizes simultaneously and 

assessing infeasible solutions rationally, new least cost designs and/or new optimal 

topologies were found. In addition, a hitherto branched design optimization problem 

in the literature was solved as a looped design. 
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4.2 PROBLEM FORMULATION  

 

A discrete combinatorial optimization problem with two objectives namely the 

capital cost and infeasibility both of which are minimized was developed. A novel 

unified feasibility measure that accounts for both nodal pressures and network 

topology is developed. The optimization is considered under the following 

assumptions. (1) The network configuration including all of the feasible links is 

known. This network is termed the fully connected or full topology network herein. 

(2) The pipe diameters and the links to be included or excluded are the decision 

variables of the problem. The aim is to find and size the optimal subset of links. (3) 

Node demands are known with certainty. Although nodal demands may be uncertain 

in practice, demands and other WDS aspects that can lead to uncertainty are not 

addressed herein. (4) The required pressure head at each demand node is given.  

 

The optimization approach is basically composed of two main minimization 

objectives. The overall formulation of the developed approach can be summarized as 

follows: 

 

Minimize initial construction cost:   f1 = ( )∑
∈ pNij

ijij DLf ,                                           (4.1) 

 

Eq. 4.1 represents the objective of minimizing the initial construction cost, which is 

typically a function of pipe length Lij and diameter Dij. The WDS should satisfy both 

the conservation of mass and energy represented by Eq. 2.1 and Eq. 2.2. These 

constraints are met externally herein by employing the hydraulic solver EPANET 2 

(Rossman, 2000) in the optimization process.  

 

Any designs proposed should be both hydraulically and topologically satisfactory. 

This was addressed by ensuring there is a sufficient number of supply paths and 

sufficient pressure at all demand nodes. These two requirements were combined to 

formulate the second objective as follows: 
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Minimize infeasibility:  f2 = LIM + HIM                                                                 (4.2) 

 

where 

 

LIM = ∑
∈

−
Ni

i

req

i RR ),0max(                                                                                        (4.3) 

 

HIM = ∑
∈

−
Ni

i

req

i HH ),0max(                                                                                      (4.4) 

 

The first term (LIM) in Eq. 4.2 represents the objective of minimizing total 

topological infeasibility measure. The topological infeasibility at node i is quantified 

in terms of the shortfall in the available number of independent supply paths Ri with 

respect to the required number req

iR ; req

iR  = 1 for branched configurations and req

iR = 

2 for fully looped configurations. If Ri ≥ req

iR at all nodes, then the topology is 

feasible and consequently LIM = 0. Otherwise, the topology is infeasible and LIM 

takes a positive value. For a branched topology, a node not satisfying the required 

level of node reachability of Ri
req = 1 is isolated and takes a value of 1. For a fully 

looped topology, the topological infeasibility at a node can be either 1 or 2. It is 1 if 

the node is reachable by only one independent flow path and 2 if the node is isolated.  

  

The second term HIM in Eq. 4.2 represents the residual-head infeasibility measure 

that addresses any shortfall in the nodal available head Hi with respect to the required 

head Hi
req. If Hi ≥ req

iH  for all nodes, then the design is hydraulically feasible and 

therefore HIM = 0. Otherwise, the solution is infeasible and HIM takes a positive 

value.  

 

Two key features can be highlighted from the introduced definition of infeasibility. 

First, the formulated problem practically represents a single-objective problem. This 

is because each feasible solution will have zero infeasibility according to Eq. 4.2. 
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This solution has the properties that it is topologically and hydraulically feasible (i.e. 

LIM = 0; HIM = 0). In other words, all topologically and hydraulically feasible 

solutions are mutually equal in terms of infeasibility. Even though there could be 

more than one feasible solution in each generation of the GA, the survival of such 

solutions will be dependent only on cost in the feasibility region. Accordingly, only 

the cheapest feasible solution will be retained in each optimization process.    

 

Secondly, it is anticipated that Eq. 4.2 will reduce the large range of infeasibility 

values associated with using DDA hydraulic models. During the hydraulic 

simulation, such models always consider nodal demands are satisfied in full and 

irrespective of the available heads. This has the effect of producing large negative 

values of nodal heads in order to satisfy this requirement for extremely infeasible 

solutions. However, the most infeasible solution that can not be dominated by any 

other infeasible solution in the coupled topology and pipe size optimization is the one 

having zero cost. Since all nodes making up this solution are isolated, it will be 

assigned a total amount of infeasibility equal to N × req

iR  + (N-NS) × Hi
req (i.e. LIM = 

N × req

iR  ; HIM = (N-NS) × Hi
req) in which N and NS respectively denote the number 

of demand nodes and source nodes in the network. Bearing in mind that req

iR  ≤ 2 and 

Hi
req is normally small, i.e. 15 m (OFWAT, 2004), the maximum value of 

infeasibility in each generation of the GA will be relatively small.   

 

To optimize the layout and pipe sizes simultaneously, a pipe diameter of zero was 

introduced to enable different layouts to be generated by removing any link from the 

fully connected network or the network with full topology (Afshar, 2007a). A 

diameter of zero in Eq. 4.1 yields zero cost, which reflects the real situation for a 

non-existent link. However, this results in an undefined value of the headloss in Eq. 

2.3. Therefore, to resolve this problem, the link removal case was modelled as a 

closed pipe when simulating the WDS.  
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Most importantly, a penalty-free strategy that enables infeasible solutions to 

participate fully in the optimization process has been adopted herein. In other words, 

no penalty terms designed to artificially increase cost of infeasible solutions was 

incorporated in Eq. 4.1. The reason for incorporating infeasible solutions is that in 

the latter stages some essential genes in the optimal solution may no longer be 

present in the current population of feasible solutions if, arbitrarily, some solutions 

are discarded purely because they are infeasible. This strategy also has the advantage 

of approaching the optimal design from both the feasible and infeasible regions of 

the solution space. In this way, the optimum design can be found by either lowering 

the cost of a near-optimal feasible design or converting a near-optimal infeasible 

design to a feasible design. The motivation is that optimal solutions for WDSs often 

occur at the boundary of the feasible region of the solution space.  

 

 

4.2.1 Topology Confirmation 

 

There is no guarantee that the operations of crossover and mutation will always 

create feasible topologies. A topology confirmation module coded in C to address 

this issue was developed. The module uses the EPANET 2 hydraulic analysis results 

to identify any isolated nodes; such nodes cannot be reached from any source. The 

module also establishes whether all demand nodes have at least two independent 

paths or not, in the case of fully looped designs. Using the results from EPANET 2, 

the total number of paths supplying each demand node, from all sources collectively, 

was determined based on the flow directions. The path enumeration algorithm for 

multi-source multi-demand networks that Yassin-Kassab et al. (1999) developed was 

used. 

 

The topology confirmation starts once the total number of paths NP for each node is 

available. If NP = 0, the node cannot be supplied. If NP = 1, the node can be 

supplied. If NP ≥ 2 at all nodes, a path inter-dependency investigation is carried out 
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to confirm the status of the network as partially or fully looped. A simple and 

practical procedure that does not involve an exhaustive enumeration of all the paths 

supplying each node was adopted. For a pair of independent supply paths, removing 

a pipe from one path does not affect the other path. The procedure simply entails 

removing all the pipes one at a time and observing the reachability of all nodes in 

each case. If all nodes are reachable from one or more sources after the removal of 

all pipes one by one with replacement, then the system is fully looped and partially 

looped otherwise.  

  

It is worth observing that EPANET 2 sets default values of node pressures and pipe 

flows within parts of a network that are not connected to a source. For example, 

isolated nodes are assigned large negative pressures. This was resolved by assigning 

zero flows to pipes and zero pressures to nodes that are not connected to a source, as 

illustrated in Appendix A. Addressing the topology, pipe flow rates and nodal 

pressures in this way enabled a consistent and bias-free fitness assessment of both 

feasible and infeasible solutions that obviates constraint violation penalties or 

tournaments.  

 

 

4.2.2 Constraint Handling 

 

Dridi et al. (2008) stressed the inherent difficulties associated with constraint 

violation penalties that are commonly used to incorporate constraints in EAs. These 

include time-consuming pre-optimization trial runs and parameter calibration. The 

proposed joint topology design, pipe sizing, initial construction cost optimization 

employs a penalty-free evolutionary search method in which infeasible solutions do 

not incur additional constraint-violation penalties. In terms of practicality, Siew and 

Tanyimboh (2012) highlighted the advantages of penalty-free methods. Penalty-free 

methods eliminate the necessity of designing penalty functions. They are relatively 

straightforward to implement without sacrificing the efficiency of the GA (Siew and 
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Tanyimboh, 2012). Penalty-free methods can maintain infeasible solutions that may 

have useful genetic material that may not be common in feasible solutions. For 

example, cheaper solutions made up of small pipe sizes can be maintained 

throughout the whole optimization. If selected for crossover, this would increase the 

chances of trying small pipe diameters in more solutions. 

 

Other constraint handling methods have been proposed e.g. the constraint violation-

based ranking tournament (Deb et al. 2002). Ray et al. (2001) proposed three stages 

of nondomination ranking using the objective and constraint functions in the 

following priority order: (a) objective functions only; (b) constraint functions only; 

and (c) all objective and constraint functions collectively. The results in Deb et al. 

(2002) suggest that the constraint violation-based nondomination ranking tournament 

outperforms the Ray et al. (2001) three-stage nondomination ranking approach. The 

advantages of the constraint violation-based nondomination ranking tournament over 

the method proposed by Fonseca and Fleming (1998a-b) can be found in Deb et al. 

(2002). Constraint handling in NSGA II (Deb et al. 2002) uses a binary tournament 

in which feasible solutions automatically dominate infeasible solutions. The 

approach here is different in that it seeks a measure of the utility value of all feasible 

and infeasible solutions and ranks the solutions accordingly. The aim is to approach 

the active constraint boundaries quickly from both the feasible and infeasible regions 

by avoiding any arbitrary removal of infeasible solutions. In other words, the search 

strategy seeks to retain and exploit the beneficial properties of all efficient solutions 

as it is thought that efficient solutions that are just feasible or just infeasible will be 

found on both their respective sides of the active constraint boundaries. 

 

 

4.3 COMPUTATIONAL SOLUTION 

 

The fast robust elitist genetic algorithm NSGA II (Deb et al. 2002) was used to solve 

the optimization problem. NSGA II has been used extensively and its merits have 
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been reported elsewhere (see e.g. Deb et al. 2002, Dridi et al. 2008). The 

optimization problem was posed as in Eq. 4.5. 

 

Minimize f = (f1, f2)
T                                                                            (4.5)  

 

The decision variables are the pipe diameters Dij to be selected within the domain of 

the available discrete pipe sizes and the zero-diameter that identifies pipes subject to 

removal. To make the two objectives in Eq. 4.5 roughly similar in magnitude, each 

m

if  the value of objective m for solution i, was normalized as in Eq. 4.6  

 

( ) ( ) mifffffn
mmmm

i

m

i ∀∀−−= ,;/ minmaxmin                                                          (4.6)  

 

in which, in the generation in question, mfmin  = minimum value of objective m; 
m

fmax = 

maximum value of objective m; and m

ifn = normalized value of objective m for 

solution i. Accordingly, the application of elitism herein will be modified to become 

based on normalized objectives as per Eq. 4.6. Originally, NSGA II uses normalized 

objectives to evaluate diversity of solutions only.  

 
 
NSGA II can be briefly described as follows (Figure 4.2). First, an initial population 

is randomly created. Using this population, the operators of tournament selection, 

crossover and mutation are used to produce an offspring population. To apply 

elitism, the parent and offspring populations are combined into a single population 

that is then sorted into various levels of non-domination. Each non-domination level 

or front has solutions of equal merit with respect to the objectives or criteria 

involved. To determine the best solutions among the current merged population of 

parents and offspring in order to create the next generation, solutions with the best 

rank are selected first followed by solutions with the next best rank and so on. The 

process continues until a front is reached that has more solutions than required to 

achieve the population size. If this situation arises, then, to obtain the required 

population size, the solutions having the largest crowding distances are chosen. The 
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crowding distance is a parameter that represents the spatial density of the solutions 

nearest to a particular solution; crowding distance increases as sparseness increases.  

 

The calculation of the crowding distance starts by sorting the merged populations of 

parents and offspring in ascending order according to each objective function value. 

To maintain the boundary solutions for each objective function, i.e. solutions with 

smallest and largest objective values, they are assigned an infinite distance value. 

Now, each objective function is normalized before calculating the crowding distance 

of non-boundary solutions. The non-boundary solutions are allocated a distance 

value equal to the absolute normalized difference in the function values according to 

each objective. The overall crowding distance value is calculated by adding up all 

individual distance values that correspond to each objective.  The crowding distance 

is very important in guiding the selection process at the various stages of NSGA II 

towards a uniformly distributed POF. This is because, for two solutions belonging to 

the same front, the crowding distance operator prefers the solution that is located in a 

lesser crowded region (i.e. the solution with the larger crowding distance).   

  

NSGA II uses a fast non-dominated sorting approach that requires O(mn
2) 

computations. First, two entities are calculated for each solution: 1) domination count 

ns, which is the number of solutions that dominate the solution s; and 2) Ss, a set of 

solutions that the solution s dominates.  Accordingly, all solutions of the first non-

dominated front will have a domination count of zero. Now, for each solution with ns 

= 0, the domination count of all its members is reduced by one. After doing this, for 

any member of which the domination count becomes zero, it will belong to the 

second non-dominated front. Now, the above procedure is continued with each 

member of the second non-dominated front. This procedure continues until 

identifying all fronts. Now, for each solution not belonging to the first non-

dominated front, the non-domination count it can take is at most (n-1). Therefore, 

each of these solutions will be visited at most (n-1) times before its domination count 

becomes zero. At this point, the solution is allocated a non-domination level and will 

never be visited again. Given that are at most (n-1) of such solutions, the total 
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complexity is O(n2) and the overall complexity of the conducted procedure is 

O(mn
2). 

 
 

 

Figure  4-2: Flow chart of the proposed approach 
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4.4 APPLICATION OF THE PENALTY-FREE MULTI-OBJECTIVE 

EVOLUTIONARY APPROACH TO COUPLED TOPOLOGY AND PIPE 

SIZE OPTIMIZATION OF WATER DISTRIBUTION SYSTEMS 

 

The proposed approach was applied to two benchmark optimization problems: a 

hypothetical single-source network and a multiple source real system. Both branched 

and fully-looped designs were considered for each of the two networks. Even though 

these networks do not describe in full the actual situation of real-world WDSs, they 

have been extensively analyzed by previous studies and so providing good grounds 

to compare the performance of the proposed approach. An Intel Core 2 Duo CPU 

2.99 GHz, 3.21 GB RAM personal computer was used in this study. Since different 

computer specifications would have been used previously, assessing the efficiency of 

the present approach with design evaluations along with CPU time would provide a 

fair comparison of results.  

 

With respect to the GA parameters required to optimize the two networks, a typical 

population size of 100 was used. The single-point crossover operator was used to 

generate two offsprings from two parents using crossover probability pc of 1.0. By 

default, this is the optimal crossover probability value for NSGA II and arises from 

the fact that global elitism is enforced by merging the offspring and parent 

populations in each generation. The crossover probability determines the number of 

offspring to be produced from parents, i.e. in each generation, 50 crossover 

operations are conducted on the parent population to produce an offspring population 

with size of n = 100. The operator of tournament selection was used to select two 

parents to be subject for crossover. To potentially make weak solutions, i.e. 

extremely infeasible solutions, survive when selected through the tournament, a 

tournament size of 2 was used.  

 

Once the offspring population is created, the operator of random mutation goes over 

the whole bits making the offspring population. To identify whether the selected bit 

is to be changed to its binary complement from 0 to 1 or 1 to 0, the mutation operator 
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uses a random number between 0 and 1. If the generated random number is less than 

or equal to the mutation probability, pm, then the selected bit is mutated. To identify 

the best mutation rate, bit-mutation probabilities in the range [0.001, 0.3] for the two 

network examples were investigated. A bit-mutation (absolute) probability of pm ≈ 

1/ng where pm = mutation rate and ng = chromosome length as determined by the 

number of genes was adopted. 

 

 

4.4.1 Example 1 

 

The network of Example 1 is a single source network made up of 9 nodes and 12 

pipes as shown in Figure 4.3. The source located at node 9 has an elevation of 50 m. 

All of the other nodes are demand nodes with an elevation of zero. The minimum 

desired head at all of the demand nodes is 30 m. All of the pipes have a length of 100 

m and Hazen-Williams coefficient of 130. The decision variables are a set of 13 

discrete pipe sizes plus the link removal option of diameter zero (Afshar, 2007a). As 

such, the solution space for this network comprises 1412 = 5.67×1013 feasible and 

infeasible solutions. A 4-bit binary substring was used to code the fourteen pipe 

diameters (Appendix B). This gave 24 or 16 substrings of which two were redundant. 

The redundant substrings were mapped to the link removal option to increase the 

chances of creating new layouts. Full details of the binary representation of pipe 

diameters and the corresponding cost per metre are shown in Appendix B. Since the 

network is composed of 12 pipes, each design is represented by a chromosome that 

has a 48-bit binary string. Within each optimization process, 100 offsprings were 

produced from 100 parents. Each selected bit from the offspring population is subject 

to mutation using a mutation probability of 1/ng = 1/48, i.e. a 2.1% chance that any 

single bit would mutate.  

 

To evaluate the convergence properties of GA, the optimization process were 

initiated a number of times from different starting points. In each run, the GA was 
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allowed to proceed until reaching a maximum number of Function Evaluations (FE) 

of 200,000 using a maximum number of generations of 2,000 (Appendix C). FE is a 

product of population size by maximum number of generations. As a result, the 

search space investigated herein represents a fraction of 1 / (2.8×108) of the design 

space of this network. Due to the uniqueness of flow directions in branched networks 

along with the small size of this network, 10 random runs each started with a random 

seed different from other runs were carried out.  

 

 

Figure  4-3: Full topology of Example 1 
 

 

Table 4.1 and Figure 4.4 show results of the achieved least cost branched design of 

Example 1. In all of the previous approaches, the critical node was identified to be 

Node 1. It is Node 2 in the present optimal design (Figure 4.4). The small surplus 

head of 0.06 m at the critical node would appear to suggest that the achieved solution 

is at least a near-global optimum. Figure 4.5 shows the best achieved Pareto Optimal 
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which the cheapest least-cost design is achieved among all conducted runs. With 

reference to Eq. 4.2, the maximum infeasibility value of f2 = 249 (Figure 4.5) is the 
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minimum required nodal connectivity of req

iR  = 1, for all the eight demand nodes, i.e. 

30 × 8 = 240, and the minimum required nodal connectivity of req

iR  = 1 at all nodes, 

i.e. 9 × 1 = 9. With a cost of zero, this solution is always non-dominated. This zero 

cost solution has no pipes. Consequently, selecting the zero cost solution for 

crossover results in link removal in the offspring. This zero cost solution is very 

important as it safeguards the potential for creating new layouts in every generation.  

 

Table  4-1: Present and previous cheapest branched designs for Example 1 

Diameter (mm) Pressure head (m) 
Surplus pressure  

head(m) 
Pipe 

Afshar 

(2007) 
Present 

Node 
Afshar 

(2007) 
Present 

Afshar 

(2007) 
Present 

2 100 100 1 30.21 30.21 0.21 0.21 

4 120 100 2 30.94 30.06 0.94 0.06 

6 120 120 3 32.12 32.12 0.12 0.12 

7 100 100 4 32.89 32.90 0.89 0.90 

8 120 140 5 33.78 36.94 0.78 0.94 

10 140 140 6 34.95 34.95 0.95 0.95 

11 140 140 7 39.78 39.77 0.78 0.77 

12 140 140 8 39.78 39.77 0.78 0.77 

The critical nodes are shown in bold 

 

Additionally, the zero-cost solution has added another important feature to the 

optimization. It dramatically reduced the large negative pressures produced by DDA 

hydraulic models. For example, the maximum infeasibility herein was early reduced 

to a fixed value of 249 m (Appendix C). In the initial stages of the GA, solutions 

with small diameters were randomly generated. These solutions will have some cost 

accompanied with large pressure deficits when modelled by EPANET 2 (Appendix 

C). For example, the maximum infeasibility before generating the zero-cost solution 

was found to be about 4,477 (Appendix C). On average, each demand node within 

this solution would have an infeasibility of about 560. When such small diameters 

were replaced with zero diameter, smaller nodal pressure deficits of 30 were 
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allocated herein while reducing cost to zero. Reducing the maximum infeasibility has 

the advantage of making infeasible solutions closer to the feasibility boundary and 

thus converting an infeasible solution to a feasible one could be faster.    

 

 

Figure  4-4: Optimal branched layout for Example 1 (CN denotes critical node) 
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Figure  4-5: Best achieved POF for the branched design of Example 1 
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feasible solution that costs $39,800. The average, median and maximum optimum 

cost for the 10 GA runs were $38,840, $38,600 and $39,800 respectively. The 

standard deviation (SD), coefficient of variation (CV) and SD/f1
* were $505.96, 

0.0130 and 0.0131, respectively. f1
* = $38,600 is the cost of the optimal solution. It 

can be seen that the values of CV and SD/f1
* are small and similar. CV is indicative of 

the consistency of the results whereas SD/f1
* is indicative of the quality of the results; 

self-evidently the smaller the values and the more the similarity, the better. Several 

near-optimal solutions were also found by the 10 GA runs as shown in Table 4.3. 

 

Table  4-2: Summary of the cheapest branched design for example 1 

Author Approach description Cost ($) 
No of 

evaluations 

Geem et al 

(2000) 

Layout optimization followed by pipe size 

using harmony search 
39,800 N/Aa 

Afshar (2005b) 
Simultaneous layout and pipe size using 

max-min ant system 
39,800 7,900 

Afshar (2007a) 
Simultaneous layout and pipe size using 

GA with four crossover selection  schemes 
39,400 7,500 

Afshar (2007b) 
Simultaneous layout and pipe size using 

GA with three crossover selection schemes 
39,400 7,500 

39,800 9,500 

39,700 9,900 

39,600 21,100 

39,400 28,200 

Proposed  

approach 

Multi-objective penalty-free GA with 

unified measure for hydraulic and 

topological infeasibility 

38,600b 10,400 

       aA direct comparison is not possible as a hybrid approach involving a tree growing  

     algorithm and harmony  search was used. b New best least cost feasible solution 

 

The robustness of the proposed approach is evident from providing very similar 

POFs (Figure 4.6) and demonstrating a stable convergence within the 10 GA runs 

(Appendix C). Within all the conducted runs, the zero-cost solution was maintained 

until the end of the optimization. Furthermore, the optimum solution was detected at 

different locations of the optimizations due to starting each optimization process 

from different locations.  
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Figure  4-6: Individual POFs for the 10 GA runs of branched Example 1 
 

Example 1 was also optimized as a looped network. Two different optimal layouts 

each with an associated optimal design (Designs 1 and 2) were created (Figure 4.7, 

Table 4.3 and 4.4). Figure 4.8 shows the best POF achieved. As all hydraulically and 

topologically feasible designs have an infeasibility value of zero the non-domination 

sorting procedure ensures that only the cheapest feasible design can survive at the 

feasibility boundary as the least cost looped design. There are a few hydraulically 

feasible branched designs next to the least cost looped design (Figure 4.8).  

 

The zero-cost solution was generated in the early stages of the optimization 

(Appendix C). Herein, the maximum infeasibility value of 258 is the sum of the 

nodal head deficit for all nodes with insufficient pressure and supply paths shortfall 

for all nodes with less than two independent supply paths. Since all of the 8 demand 

nodes in this design are not connected to the source node, the second term of Eq. 4.2 

results in a residual head deficit HIM of 8 × 30 = 240 m. In addition, all 9 network 

nodes contribute a further layout infeasibility LIM value of 9 × 2 = 18 through the 

first term in Eq. 4.2. Inherently, infeasible solutions dominate the POF (Figure 4.8); 
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all feasible solutions except for the cheapest are dominated as explained above. In 

comparison with the branched design case herein, the maximum deficit was slightly 

increased by just 3.6%.  

 

 

 
Figure  4-7: Optimal looped layouts for Example 1 (CN denotes critical node) 
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result is significant in that it suggests it may be possible to combine and solve the 

branched and looped least cost network design problems together.  

 

Table  4-3: Node pressures of the optimal looped designs for Example 1 
 

Node pressures of the achieved designs (m) 

 

Node  

 

Design 1 Design 2 Design 3 Design 4 Design 5 

1 30.04 30.13 30.07 30.07 30.03 

2 31.26 30.66 30.06 30.67 31.00 

3 30.37 31.18 32.02 31.41 32.33 

4 33.72 35.00 30.76 35.08 33.69 

5 32.25 33.70 34.99 33.67 36.17 

6 30.72 36.40 34.88 32.82 36.96 

7 40.44 38.88 39.81 41.18 38.52 

8 39.08 40.63 39.73 38.27 40.95 

 

 

Table  4-4: Pipe diameters of the optimal looped designs for Example 1 

Diameters of the achieved designs (mm) Pipe 
 

Design 1 Design 2 Design 3 Design 4 Design 5 

1 100 80 80 100 80 

2 80 100 100 80 80 

3 140 100 80 120 80 

4 - 80 100 - 100 

5 100 - - 80 - 

6 80 100 120 100 100 

7 140 140 100 140 120 

8 - 100 120 - 140 

9 100 - - 100 - 

10 100 140 140 120 140 

11 140 140 140 140 140 

12 140 140 140 140 140 

Cost($) 41,400 41,400 42,200 42,200 42,300 
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Figure  4-8: Best achieved POF for the looped design of example 1 
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Figure  4-9: Individual POFs for the 20 GA runs of looped Example 1 
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4.4.2 Example 2 

 

To demonstrate the performance and efficiency of the proposed approach in solving 

the complex optimization problem of coupled topology and pipe size of WDS, a 

larger example network (Figure 4.10) was solved using the approach. Example 2 

represents part of a real system, the Winnipeg system (Morgan and Goulter, 1985). 

This network has 2 sources, 20 nodes and 37 pipes. The Hazen-Williams roughness 

coefficient for all pipes is 130. The full details of node demands, nodal required 

heads and pipe lengths are shown in Appendix B.  

 

  

Figure  4-10: Full topology of Example 2 
 

Using a 4-bit binary substring, since this network has 37 pipes, each solution was 

represented with a chromosome whose length is 148 genes. The resulting redundant 

codes from this representation were mapped to the link removal option. The binary 

representation of pipe diameters and the corresponding costs per metre used to 
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evaluate the construction cost for each proposed solution of this network as per Eq. 

4.1 are shown in Appendix B. Within each reproduction process, 100 offsprings were 

produced from 100 parents using crossover probability of one. Each bit in the 

offspring population is subject to mutation using bit-wise mutation probability of 

1/ng = 1/148. 

 

Allowing for pipe removal, the solution space of this network comprises a combined 

total of 1437 = 2.55×1042 hydraulically and/or topologically feasible and infeasible 

solutions. Due to the large size of this network in comparison with example 1, the 

maximum allowed number of function evaluations (FE) was increased to 500,000 

using a maximum number of generations of 5,000 (Appendix C). As a result, the size 

of the search space investigated herein comprises just a fraction of 1 / (5.1×1036) of 

the design space of this network.  

 

Tables 4.5 and 4.6 along with Figure 4.11 show the results for the branched design of 

Example 2. The solution of $1,684,228 (Design 1) is the cheapest design to date 

while the near-optimal solution of $1,692,058 (Design 2) is also cheaper than the 

best solution in the literature. The layout of Design 1 has not been identified 

previously. Its creation here is, therefore, a remarkable achievement. Two single-

source branched networks were created by removing 19 pipes (51%) out of 37 in 

each of Designs 1 and 2 (Appendix C). 20 GA runs were performed using different 

randomly created initial populations. The least cost of f1
* = $1,684,228 (Design 1) 

was identified two times out of 20 (Appendix C).  

 

This achievement required a number of function evaluations of 154,500 FEs and a 

CPU time of about 2.12 minutes according to the best POF. Design 2 was identified 

once among the 20 runs (Appendix C). The average, median and maximum values of 

the least cost solutions were $1,753,359, $1,733,044 and $1,889,386 respectively. 

The SD, CV and SD/f1
* values were $60,731.81, 0.0346 and 0.0361, respectively. 

Figure 4.12 shows the best achieved POF. A good distribution of solutions is evident. 
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This may be attributable to the larger solution space made up of a large number of 

branched layouts and pipe size combinations. 

 

Table  4-5: Present and previous optimum branched designs for Example 2 
 

Diameter (mm) 

Present approach 
  

Pipe Afshar 
(2005a) 

Design 1 Design 2 

1 400 400 400 

2 300 350 300 

5 550 500 500 

6 250 300 250 

7 250 250 250 

11 350 350 400 

12 350 450 350 

16 350 350 300 

17 350 350 350 

20 400 400 400 

21 - 300 - 

22 300 400 300 

24 300 - 300 

27 - 350 - 

29 250 300 300 

30 550 500 500 

33 400 350 400 

34 300 300 300 

35 300 - 300 

36 300 300 300 

Cost ($) 1,693,393 1,684,228a 1,692,058a 

                            aTwo new best least cost feasible solutions 

 

In comparison with Example 1, the detection of zero-cost of this larger network 

required larger number of function evaluations (Appendix C). The zero-cost solution 

herein has an infeasibility of 1,290, i.e. LIM = 20 × 1 = 20, while HIM is summation 



Chapter 4: New Penalty-free Multi-objective Evolutionary Approach to Coupled 

Topology and Pipe Size Optimization of Water Distribution Systems 

 4-26 

of minimum required pressures at all demand nodes, which is 1,270 m. Initially, the 

maximum infeasibility reached a very large negative value of about 279,374 

(Appendix C). This large value would, on average, reflect creating a large 

infeasibility of about 15,520 at each demand node. Overall, the reduction in 

infeasibility was about 200 times.  

 

Table  4-6: Present and previous optimum branched designs for Example 2 
 

Head (m) Surplus head (m) 

Present approach Present approach Node Afshar 
(2005a) 

Design 1 Design 2 

Afshar 
(2005a) 

Design 1 Design 2 

1 83.68 79.37 83.69 8.68 4.37 8.69 

2 94.67 90.34 94.67 20.67 16.34 20.67 

3 80.85 80.85 80.86 7.85 7.85 7.86 

4 75.23 75.38 75.25 3.23 3.38 3.25 

5 102.00 102.00 102.00 - -  

6 74.85 82.20 74.86 1.85 9.20 1.86 

7 72.28 72.31 86.50 5.28 5.31 19.5 

8 76.04 73.03 73.03 4.04 1.03 1.03 

9 80.36 77.35 77.35 10.36 7.35 7.35 

10 82.37 80.27 82.38 13.37 11.27 13.38 

11 82.42 74.26 82.43 11.42 3.26 11.43 

12 72.85 71.56 72.87 2.85 1.56 2.87 

13 65.51 65.53 72.15 1.51 1.53 8.15 

14 90.88 87.85 87.85 17.88 14.85 14.85 

15 74.32 81.05 81.05 1.32 8.05 8.05 

16 96.00 96.00 96.00 - -  

17 67.15 67.34 67.17 0.15 0.34 0.17 

18 80.97 83.07 80.98 10.97 13.07 10.98 

19 81.93 81.93 81.93 11.93 11.93 11.93 

20 68.78 70.89 68.79 1.78 3.89 1.79 
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Figure  4-11: Optimal branched layouts for Example 2 
 
 

Table  4-7: Summary of the present and previous branched designs for Example 2 
 

                    aTwo new best least cost feasible solutions 

 

     

Author Approach description Cost ($) 
No of 

evaluations 

Afshar (2007b) 

Simultaneous layout and pipe size 

using GA with four crossover 

selection  schemes  

1,783,086 100,000 

Afshar (2007a) 

Simultaneous layout and pipe size 

using GA with three crossover 

selection schemes  

1,783,086 100,000 

Afshar (2005b) 
Simultaneous layout and pipe size 

using max-min ant system  
1,710,121 22,800 

Afshar (2005a) 

Application of iterative two-stage 

procedure to   layout and pipe size 

optimization  

1,693,393 NA 

1,692,058a 170,300 

 Proposed approach 

  Multi-objective penalty-free GA  

with unified measure for hydraulic 

and topological infeasibility 1,684,228a 154,500 

Design 1 Design 2 
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Figure  4-12: Best achieved POF for the branched design of example 2 
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Figure  4-13: Individual POFs for the 20 GA runs of branched Example 2 
 

Table 4.8 to 4.9 and Figure 4.14 show the results for the looped design of Example 2.  

Remarkably, three new feasible solutions that are cheaper than the previous best 

solution in the literature were created. A new layout was created also, as shown in 

Figure 4.14. The new layout is that of the new cheapest solution of f1
* = $1,972,559 
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(Design 3) that has only 25 pipes. The previous best solution has 26 pipes (Figure 

4.14). Out of 20 random runs of the GA, the cheapest design of $1,972,559 was 

identified two times (Appendix C). This required 901,300 function evaluations and 

consumed a CPU time of about 12.41 minutes. Two of the 20 runs resulted in Near-

optimal Designs 1 and 2 respectively. The termination criterion was 1,000,000 

function evaluations (Appendix C).  

 

The average, median and maximum values of the least cost solutions were 

$2,019,891, $1,998,076 and $2,095,167 respectively. The SD, CV and SD/f1
* values 

were $43,683.82, 0.0216 and 0.0222. The robustness of the proposed approach is 

evident from consistency and stable convergence of the POFs achieved from the 20 

conducted runs (Appendix C). All runs appear to be very similar in following a stable 

convergence at the optimal least cost solution in each run.  

  

Table  4-8: Diameters of the present and previous optimum looped designs for 
Example 2 

Diameter (mm) 

Present approach Pipe Afshar 

(2005a) 
Design 1a Design 2a Design 3a 

1 400 400 400 400 

2 350 300 300 300 

5 500 500 500 500 

6 250 250 250 250 

7 250 250 250 250 

8 125 200 125 125 

9 125 125 125 125 

11 350 350 350 400 

12 350 400 350 350 

13 125 125 125 - 

14 - - - 150 

16 300 300 300 300 

17 350 400 350 350 
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18 - - - - 

20 400 400 400 400 

21 150 250 150 - 

22 300 300 300 250 

23 - - - 200 

24 250 150 250 300 

27 125 150 125 - 

28 125 150 150 125 

29 350 250 250 250 

30 500 500 150 500 

32 150 125 125 125 

33 450 400 450 400 

34 250 300 300 300 

35 300 300 300 300 

36 300 300 250 300 

37 125 150 200 125 

Cost ($) 1,983,935 1,979,767 1,974,644 1,972,559 

aThree new best least cost feasible solutions 

 

Table  4-9: Nodal heads of the present and previous optimum looped designs of 
Example 2 

Head (m) Surplus head (m) 

Present approach 
 

Present approach Node Afshar 

(2005) 
Design 1 Design 2 Design 3 

 

Afshar 

(2005) 

 
Design 1 Design 2 Design 3 

1 79.07 80.14 80.27 80.30 4.07 5.14 5.27 5.30 

2 90.44 90.79 90.88 91.08 16.44 16.79 16.88 17.08 

3 78.56 77.25 78.95 82.69 5.56 4.25 5.95 9.69 

4 74.80 72.20 72.38 72.16 2.80 0.20 0.38 0.16 

5 102.00 102.00 102.00 102.00 - - - - 

6 73.02 73.23 73.97 76.34 0.02 0.23 0.97 3.34 

7 74.65 76.34 76.12 85.51 7.65 9.34 9.12 18.51 

8 72.52 73.99 74.50 72.85 0.52 1.99 2.50 0.85 

9 76.58 76.37 79.10 77.32 6.58 6.37 9.10 7.32 

10 79.46 81.44 79.33 84.42 10.46 12.44 10.33 15.42 



Chapter 4: New Penalty-free Multi-objective Evolutionary Approach to Coupled 

Topology and Pipe Size Optimization of Water Distribution Systems 

 4-31 

11 72.72 72.19 72.68 76.10 1.72 1.19 1.68 5.10 

12 70.40 70.38 70.15 70.65 0.40 0.38 0.15 0.65 

13 68.37 64.00 64.34 70.40 4.37 0.00 0.34 6.40 

14 87.29 87.76 90.69 88.02 14.29 14.76 17.69 15.02 

15 78.57 73.23 74.96 73.57 5.57 0.23 1.96 0.57 

16 96.00 96.00 96.00 96.00 - - - - 

17 71.15 67.83 70.53 68.96 4.15 0.83 3.53 1.96 

18 86.90 81.84 87.98 81.94 16.90 11.84 17.98 11.94 

19 70.79 78.01 75.83 78.73 0.79 8.01 5.83 8.73 

20 73.77 71.78 69.14 71.22 6.77 4.78 2.14 4.22 

  Highlighted numbers are critical surplus 

 

 

 
Figure  4-14: Optimal looped layouts for Example 2 

Present approach design 3 

Present approach design 1 Present approach design 2 

Afshar (2005a) 
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Figure 4.15 shows the best POF achieved. For the topologically infeasible solutions 

the increase in cost is relatively gentle as the overall hydraulic performance improves 

while the infeasibility measure is decreasing. For the feasible branched solutions, the 

cost increases sharply as more pipes are added to create loops. A number of 

hydraulically feasible branched solutions lie near the cost axis, between the 

infeasible solutions and the least cost looped solution that has zero infeasibility. The 

cheapest feasible branched solution among the 20 conducted GA runs has a cost of 

$1,694,966, which is slightly more expensive than the cheapest branched design of 

$1,684,228 (Tables 4.5 and 4.7).  

 

Due to the increase in node connectivity of looped designs, the infeasibility of zero-

cost solution was increased to 1,310, i.e. i.e. LIM = 20 × 2 = 40, while HIM is 

summation of minimum required pressures at all demand nodes, which is 1,270 m. In 

the initial stages of the GA, the maximum infeasibility reached a very large negative 

value of about 495,837 (Appendix C). This indicates that, on average, each demand 

node would have a very large infeasibility of about 27,546 at each demand node. 

Overall, the reduction in infeasibility was about 380 times.  
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Figure  4-15: Best achieved POF for the looped design of Example 2 
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Figure 4-16 shows the POF of the 20 runs conducted for the looped design of 

example 2. Clearly, all fronts are very similar and consistently develop from the zero 

cost design until the corresponding least-cost design. Some of designs that appear to 

be dominated is because of the nature of this multi-objective problem. In other 

words, the problem is three-objective optimization problem though presented herein 

in two dimensions.  

  

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400

Infeasibility

C
o

s
t 

($
1

0
6
)

Run 1 Run 2 Run 3 Run 4

Run 5 Run 6 Run 7 Run 8

Run 9 Run 10 Run 11 Run 12

Run 13 Run 14 Run 15 Run 16

Run 17 Run 18 Run 19 Run 20

 

Figure  4-16: Individual POFs of the 20 GA runs for looped Example 2 
 

 

 

4.5 CONCLUSIONS 

 

A new penalty-free multi-objective evolutionary approach to coupled topology and 

pipes size optimization of water distribution systems has been presented. The 

proposed approach provides strong evidence to support the incorporation of 

infeasible solutions in the design optimization of water distribution networks. 

Arbitrarily penalizing or removing hydraulically or topologically infeasible solutions 

can lead to the loss of some essential features of the optimal solution from the gene 
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pool. By contrast, the penalty-free fully inclusive approach developed does not avoid 

infeasible solutions and retains the advantage of progressing towards the optimum 

solution from both the feasible and infeasible sections of the solution space. It is 

believed the performance of the algorithm is enhanced in this way by virtue of the 

presence of both feasible and infeasible non-dominated near-optimal solutions in 

successive generations. For problems involving layout optimization, a procedure for 

handling topologically infeasible solutions in a rational manner is a precondition if 

the entire solution space is to be exploited in full. This issue was successfully 

addressed in this chapter. 

 

 A new procedure for topology confirmation to tackle the handling of isolated parts 

from the network supplying source(s) has been developed. This development enabled 

the potential of quantifying infeasible topologies in an unbiased way. Each infeasible 

layout is assigned an amount of layout infeasibility proportional to the number of 

isolated nodes contained in the layout and the type of the topology to be optimized, 

branched or looped. A new definition of design infeasibility composed of two terms, 

which are layout infeasibility and hydraulic infeasibility, has been introduced. This 

definition is able to recognize whether a design is both topologically and 

hydraulically feasible or only hydraulically infeasible or hydraulically feasible but 

topologically infeasible or both topologically and hydraulically infeasible.       

 

The benefits of solving the layout and pipe size optimization problems 

simultaneously rather than sequentially have been demonstrated. The results show 

that the present approach is efficient and yields good results consistently. Three 

benchmark problems in the literature were considered and in each case a new best 

solution was found. In all, six new feasible solutions that are cheaper than the best in 

the literature were found. The results also suggest further improvements may be 

achieved by combining and solving the branched and looped design optimization 

problems together. A weakness of the proposed formulation is that it yields only the 

least cost feasible solution. A possible remedy might include the introduction of 

criteria to differentiate between different feasible solutions in addition to the 
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construction cost. It is recognised also that the infeasibility measure adopted is 

dimensionally inconsistent. Further improvements are thus indicated. 
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CHAPTER FIVE  
 

 

 

A NOVEL PENALTY-FREE MULTI-OBJECTIVE 

EVOLUTIONARY OPTIMIZATION APPROACH TO GLOBAL 

AND LOCAL MAXIMUM ENTROPY MINIMUM COST 

DESIGNS OF WATER DISTRIBUTION SYSTEMS  

 

 

            

5.1 INTRODUCTION 

 

The new methodology of coupled topology and pipe size optimization of WDS has 

been presented in the previous chapter. A penalty-free multi-objective evolutionary 

approach has been developed to handle this complex optimization problem. The 

penalty-free strategy enabled entirely exploiting the solution space composed of 

feasible and infeasible solutions. This exploitation has the advantage of proceeding 

towards the optimal solution from both the feasibility and infeasibility regions of the 

solution space. To account for both topologic and hydraulic infeasibility for each 

solution, a new definition of solution infeasibility has been introduced. The proposed 

methodology was applied to solve three benchmark problems in literature. In each 

case, the proposed approach outperformed all previous methods by efficiently and 

consistently yielding better results.  

 

The only weakness of the proposed approach is that it yields a single least cost 

feasible solution. This is due to no incorporation of any criteria able to distinguish 

between feasible solution has been considered in the proposed formulation. Another 

important justification of adding such a criterion is that the least cost feasible solution
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 is marginally able to satisfy hydraulic requirements. This indicates that any failure in 

a system component can significantly affect the hydraulic performance of such 

solutions. It is anticipated that the incorporation of any criterion to distinguish 

between feasible solutions will retain a minimum amount of spare capacity at an 

extra amount of construction cost. 

 

From the reliability viewpoint, conventional optimum designs of WDS, i.e. obtained 

from minimizing cost only, are able to supply consumers with sufficient amounts of 

water at the required pressures based on the assumption that all system components 

are in service. This has the restriction that such a design is conditioned on the 

uninterrupted availability of all the components making up the whole system. 

However, real systems are very likely to be subject to component failures and 

deterioration with time. For example, pipe breakage could happen due to suddenly 

increased pressures or pipe diameters could become smaller because of accumulated 

sediments on the internal walls of pipes. These circumstances significantly affect 

WDS capacity especially those having the cheapest set of pipe diameters. As a result, 

WDSs should be designed to have some spare capacity above the minimum that can 

be used to partially or fully compensate for any reduction in capacity during failure 

conditions. 

  

The absence of an agreed definition of reliability for WDSs along with the 

computational complexity associated with its accurate evaluation (Wagner et al. 

1988) led researchers to suggest various alternative reliability measures that are easy 

to evaluate within an optimization framework. These measures include statistical 

entropy (Tanyimboh and Templeman 1993), resilience index (Todini 2000), network 

resilience (Prasad and Park 2004), modified resilience index (Jayaram and Srinivasan 

2008) and surplus power factor (Vaabel et al. 2006).  

 

Among these measures, entropy has been shown to provide more accurate 

assessment of reliability than other measures (Reca et al. 2008, Raad et al. 2010,  

Banos et al. 2011, Tanyimboh et al. 2011, Wu et al. 2011, Saleh et al. 2012, 
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Czajkowska and Tanyimboh 2013). The evidence showed that, on average, as 

entropy increases reliability increases. Setiadi et al (2005) found that the overall 

correlation between hydraulic reliability and entropy is positive. Furthermore, 

Tanyimboh and Sheahan (2002) demonstrated that two different layouts having the 

same ME value tend to have similar hydraulic and mechanical properties such as 

hydraulic reliability. It may be noted also that, in comparison to the other alternative 

reliability measures, entropy is very easy and quick to calculate (Tanyimboh and 

Templeman 2000). 

 

The introduction of statistical entropy as a surrogate measure of reliability of WDSs 

has shown that Maximum Entropy (ME) designs have built-in spare capacities above 

the minimum prescribed. The fact that entropy is highly dependent on the pipe flow 

directions makes it possible to achieve alternative designs delivering ME flows and 

having different levels of compromise between cost and reliability. Tanyimboh and 

Templeman (1993a,b) suggested three reasons for designing WDSs to deliver ME 

flows: they are more reliable; they are relatively inexpensive in comparison to 

traditional minimum-cost designs; and they are not computationally hard to achieve. 

The provision of feasible designs at local levels of ME is highly desirable objective 

for WDS to be optimized on a budget while maintaining a minimum level of 

reliability. If high levels of reliability are desired, feasible designs near global 

optimum can provide highly reliable solutions with different levels of ME at or near 

the GME. However, the very large number of feasible sets of flow directions made 

the early studies focus on maximizing entropy only locally by limiting the search 

space to predefined sets of flow directions. 

 

The aim of the proposed approach is to combine the two objectives of achieving 

local and global levels of ME into one optimization process. This goal was achieved 

by combining both local and global components of maximizing entropy with 

hydraulic feasibility component into a unified minimization objective. Additionally, 

the purpose of combining objectives is to reduce objectives in this many-objective 

problem. This way, providing a set of solutions with small amounts of infeasibility 
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reflects the provision of hydraulically feasible high entropy solutions belonging to 

different ME groups.  

 

The GMEMC optimization (global maximum entropy minimum cost) is a many-

objective problem that associates a number of optimization issues with the 

application of Multi-Objective Evolutionary Algorithms (MOEAs). As stated in 

Saxena et al. (2013), three difficulties can be experienced: 1) High computational 

cost; 2) Poor scalability of most available MOEAs (e.g. most designs will have the 

same rank as number of objectives increases); and 3) Difficulty in visualizing a POF 

for problems with more than 4 objectives (e.g. difficulty in identifying the non-

dominated solutions when visualizing a POF with objectives more than 4). The 

available approaches for handling many-objective problems can be classified into 

two categories: preference-ordering and objective reduction approaches. In the first 

group, all objectives are considered essential while a preference ordering is induced 

over the non-dominated solutions. This strategy makes such approaches lack 

diversity in POF along with increasing computational cost exponentially with 

number of objectives. The second group classifies objectives into redundant and 

essential. A redundant objective is the one whose elimination does not affect the 

identification of POF. Evidently, such an objective can not be guaranteed to be 

available in a many-objective problem.  

   

In this chapter, motivated by the computational simplicity of the informational 

entropy function, a new penalty-free multi-directional search formulation that strikes 

a balance between the twin goals of maximizing the entropy both locally within any 

feasible set of flow directions and globally across all feasible sets of flow directions 

is presented. Unlike previous entropy-based approaches such as Tanyimboh and 

Sheahan (2002), the method does not specify the flow directions or candidate 

topologies in advance of the optimization. The penalty-free formulation proposed 

aims to exploit fully the entire solution space that consists of both feasible and 

infeasible solutions based on topology and/or nodal pressures.  
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Furthermore, a concept of objective reduction has been suggested to handle this 

many-objective problem. The solution method of the proposed approach is based on 

computationally converting this Many-Objective (MO) optimization problem into 

two-objective problem such that it always yields a set of alternative feasible solutions 

instead of a single feasible one. The four-objective problem was computationally 

reduced to two-objective problem by combining three objectives into a single one. 

This reduction was based on aggregating the objectives of minimizing hydraulic 

infeasibility and both local and global maximizations of entropy into a single 

objective named total infeasibility. To demonstrate the advantages of aggregating 

objectives over separating objectives in such an MO optimization problem, two 

formulations were thoroughly investigated. The performance and efficiency of the 

proposed approach are demonstrated by designing a benchmark network and a real 

network from literature. For both networks, the results obtained achieve an 

appropriate balance between feasible and infeasible solutions.  

  

  

5.2 OPTIMIZATION MODEL 

 

In this chapter, a multi-directional search strategy that aims at maximizing the 

entropy for all the different sets of flow directions was formulated. The approach is a 

multi-objective optimization that simultaneously minimizes both the cost and the 

design constraint violations while maximizing the entropy both locally within the 

feasible sets of flow directions and globally across all feasible sets of flow directions. 

As such, the proposed approach is a many-objective optimization problem that is 

composed of four objectives. Due to the encountered difficulties in solving MO 

problems as described in Section 1 of this chapter, two solution methods to deal with 

this MO optimization problem were formulated herein. The first one is based on 

reducing the complexity of the problem by aggregating the objective of minimizing 

hydraulic infeasibility with the objectives of local and global maximization of 
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entropy. The second formulation conventionally handled the problem by maintaining 

the four separate objectives. 

 

5.2.1 Formulation 1: Aggregation of Objects 

  

The purpose of this formulation is to develop a multi-directional search strategy 

efficiently able to achieve a Pareto optimal front (POF) with a better compromise 

between the cost and entropy while maintaining the objective of globally maximizing 

entropy. The fact that, due to the high dependence of entropy on pipe flow directions, 

there is a large number of ME designs for any WDS was the motivation behind the 

development of the new strategy. Thus, the concept of the multi-directional search 

strategy maximizes the entropy for all the different sets of pipe flow directions in the 

design space of the pipe size optimization problem. For each candidate solution or 

design in the GA’s population, the actual entropy S value (based on the actual pipe 

flow rates) and corresponding maximum entropy ME value (i.e. the largest possible 

value with the same flow directions) are determined. The path starting from each S 

value towards the corresponding ME represents the local search direction for each 

generated design. Minimizing the distances of the local search between the pairs of 

(S, ME) is the key element that contributes to widening the range of ME designs 

achieved. To maintain a global search during the whole optimization process, the 

local search directions are linked to the global maximum entropy (GME) value. The 

GME is updated iteratively during the search, ultimately to reach the global 

maximum entropy minimum cost (GMEMC) design. 

        

The overall problem formulation can be described by defining the four objectives 

driving the multi-directional search strategy proposed in the present approach. The 

first objective is the minimization of the construction cost, i.e. 

 

minimize f1 = cost = ( )∑
∈ pNij

ijij DLf ,                                                                          (5.1) 
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The WDS should satisfy both the conservation of mass and energy requirements. 

These constraints are met externally herein by employing the hydraulic solver 

EPANET 2 (Rossman, 2000) used in the optimization process. The rest of the 

objectives were combined in one minimization objective named infeasibility as 

follows: 

 

minimize f2 = infeasibility = TD + (ME-S) + (GME-ME)                                       (5.2) 

 

where 

 

TD = ∑
∈

−
Ni

i

req

i HH ),0max(                                                                                        (5.3) 

 

where TD is the total deficit in the required head at the demand nodes. Hi and req

iH  

are the available pressure and the required pressure at node i respectively while S is 

the actual network entropy calculated using Eq. 2.42. The required pressure is the 

pressure above which the nodal demand is satisfied in full. If the available pressure 

Hi is larger than or equal to the corresponding desired pressure req

iH at all of the 

demand nodes, the design is considered hydraulically feasible and TD takes a value 

of zero. The second term represents the local entropy search component that has a 

value of zero when both the actual entropy S and the corresponding maximum 

entropy ME values are equal. The third term represents the global entropy search 

component that links each local ME to the current global maximum entropy GME 

value. 

 

Clearly, Eq. 5.2 takes a value of zero if and only if all of the three search components 

are equal to zero. In other words, the current formulation has converted the MO 

problem into a two-objective problem in which there is only one single feasible 

solution having zero infeasibility.  This dramatic conversion to the number of 

objectives involved in the search process has provided four main advantages to solve 

this MO problem. 
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First, the objective space has been reduced to two dimensions: cost and infeasibility. 

Therefore, the difficulty in visualizing the four dimension objective space has been 

overcome and so it will be easier to recognize designs belonging to the non-

dominated solutions. Secondly, the problem complexity has been reduced to be 

solved in two dimensions instead of four and so improving the search efficiency of 

the proposed approach. Thirdly, the existence of one single feasible solution ensures 

maintaining a global search towards maximizing entropy. This is due to that the 

GMEMC design is the only solution that is hydraulically feasible and has local and 

global entropy search components of zero. Fourthly, the formulated two-objective 

problem still maintains the goal of multi-objective optimization problems by which a 

set of hydraulically feasible solutions are achieved. Clear inspection of the 

contribution of the second and third terms in Eq. 5.2 can explain this important 

feature. 

 

For a typical node with, say, two incident pipes downstream, 1.1)3ln( ≈≤iS , where 

Si = nodal entropy value (Eq. 2.44). With reference to Eq. 2.42, given that 

0.1/ ≤= TTP ii , where Pi is the fraction of the total flow through the network that 

reaches node i, it can be expected that the network entropy value S in Eq. 2.42 will 

be relatively small for the typical WDS with one or several supply nodes (Eq. 2.43). 

Thus, it can be expected that the relative entropy measures of ME – S and GME – 

ME will be small. A well-known property of the Shannon (1948) entropy measure is 

that its maximum value of )ln(n  corresponds to the uniform probability distribution 

,,/1)( inxp i ∀=  where n = total number of possible outcomes. Accordingly, two 

(assumed) downstream incident pipes and the nodal demand lead to )3ln(≤iS  in Eq. 

2.44. In other words, the contributions of the second and third terms in Eq. 5.2 can be 

relatively insignificant if the amount of hydraulic infeasibility is large. This indicates 

that any solution having insignificant amount of infeasibility is most likely to be 

hydraulically feasible. For a well distributed POF, there will be a set of infeasible 

solutions located near the feasibility boundary. Herein, these solutions represent 



Chapter 5:  A Novel Penalty-free Multi-objective Evolutionary Optimization 

Approach to Global and Local Maximum Entropy Minimum Cost Designs of Water 

Distribution Systems 

 5-9 

hydraulically feasible solutions having an amount of infeasibility resulting from the 

local and global components of entropy maximization. 

 

For hydraulically infeasible solutions, the infeasibility objective focuses on satisfying 

the hydraulic requirements because the contribution of the second and third terms in 

Eq. 5.2 is insignificant in this region. By contrast, this contribution becomes 

significant if a design is hydraulically feasible. Therefore, once a hydraulically 

infeasible design becomes hydraulically feasible by evolution through crossover 

and/or mutation, the optimization process focuses on reducing the local and global 

entropy search components of the design. This is the mechanism by which the multi-

directional search strategy carries out both the local and global optimization 

simultaneously.  

 

Finally, Eq. 5.2 shows that the present formulation of entropy maximization problem 

of WDS enables simultaneous search for local and global maximization of entropy 

through the introduced definition of infeasibility. Minimizing the infeasibility to zero 

or near zero reflects reaching global or near global ME, while minimizing the 

infeasibility to some amount reflects reaching a local or near local ME. Previously, 

network entropy was explicitly handled as a separated maximization objective that 

had the consequence of making the search process focus on global maximization of 

entropy while paying less attention to local maximization of entropy (Saleh and 

Tanyimboh, 2011). Further, the global search of maximizing entropy was enriched 

with another separated objective of maximizing the global component of entropy 

maximization (Saleh and Tanyimboh, 2012). 

 

5.2.2 Formulation 2: Separation of Objectives 

   

To demonstrate the advantages of aggregating objectives over separating objectives 

in this MO optimization problem, the MO problem is conventionally formulated to 

search explicitly into four dimensions as follows: 
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minimize f1 = cost = ( )∑
∈ pNij

ijij DLf ,                                                                          (5.4) 

minimize f2 = hydraulic infeasibility = TD = ∑
∈

−
Ni

i

req

i HH ),0max(                           (5.5) 

minimize f3 = local entropy component  = (ME-S)                                                 (5.6) 

 

minimize f4 = global entropy component  = (GME-ME)                                         (5.7) 

 

Eq. 5.6 is the objective of maximizing entropy (S) locally with respect to ME to 

which S belongs. Minimizing the term (ME-S) to or near zero indicates that the 

design entropy has reached its maximum or near maximum entropy value. Eq. 5.7 

accounts for global maximization of ME with respect to the GME among generated 

designs. Accordingly, minimizing the term (GME-ME) to or near zero reflects that 

the ME value has reached the global or near global value with respect to the 

generated search space of ME values.  

 

 

5.3 COMPUTATIONAL SOLUTION 

 

The fast robust elitist GA NSGA II (Deb, 2002) was used to solve the MO 

optimization problem for the two formulations as follows: 

 

Formulation 1: Minimize f = (f1, f2)
T                                                                                                          (5.8) 

 

Formulation 2: Minimize f = (f1, f2,  f3, f4)
T                                                             (5.9) 

 

in which the decision variables are the pipe diameters Dij to be selected within the 

domain of the available discrete pipe sizes.  In comparison with objective separation, 

it is anticipated that coupling the concept of objectives aggregation with NSGA II 

herein could add two underlying values to the overall efficiency and performance of 

objective aggregation formulation. First, the problem computational complexity has 

been significantly reduced. For example, sorting solutions for non-domination and 
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diversity preservation by NSGA II is carried out by comparing solutions with respect 

to two objectives (cost and infeasibility) instead of four (cost, TD, S, ME). Secondly, 

the operator of crowding distance is expected to enhance the performance of the 

multi-directional search process by maintaining good distribution of the search 

components of local and global entropy. For example, maintaining a good 

distribution of solutions near the hydraulic feasibility boundary could reflect well 

distributed hydraulically feasible solutions to local entropy components. Preserving a 

good distribution of local entropy components means distributing solutions to 

different set of ME values, which is the objective of multi-directional search strategy.  

 

In each generation of the GA, each solution in the population is analysed using the 

hydraulic analysis model EPANET 2. The resulting pipe flow rates are used to 

calculate the entropy (Eq. 2.42). For this purpose, a prototype model coded in C for 

automatic detection of flow directions has been developed. The calculation of the 

maximum value of the WDS entropy (ME) in Eq. 2.42 generally requires numerical 

nonlinear optimization. However, much simpler path entropy methods that are quick, 

non-iterative and do not involve numerical optimization directly have been 

developed (Yassin-Kassab et al. 1999, Ang and Jowitt 2005, etc.). Two models were 

coded in C and integrated with NSGA II. The first one uses the simplified path 

entropy method (SPEM) that Ang and Jowitt (2005) developed to calculate ME for 

single-source networks. The second model employs the α-method developed by 

Yassin-Kassab et al (1999) to calculate ME for multiple source networks. The non-

linear equations of αs were solved numerically by coding Bisection Method in C.  

The overall description of the approach is shown in Figure 6.1. 

 

It is worth mentioning that calculating the number of paths from source node i to 

demand node j (NPij) for all sets of sources was carried out by first dividing the 

network into a number of sub-networks equal to NS. Then, applying the algorithms 

of Global Node Numbering, Source Reachability, Demand Node Reachability, Local 

node Numbering and Node Weighting, all of which developed by Yassin-Kassab et al 

(1999), to each sub-network one at a time to determine the number of paths supplied 
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from each source to each demand node. 

             

 

Figure  5-1: Schematic of the proposed Global and Local MEMC designs of WDS 
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The formulated multi-directional search strategy approach employs the penalty-free 

search method in which the cost of infeasible designs is not artificially increased by 

incorporating penalty terms into the cost objective function. In terms of practicality, 

Siew and Tanyimboh (2012) highlighted three advantages of penalty-free methods 

against penalty-based ones. The employment of penalty-free methods eliminates the 

necessity of designing penalty functions, adding parameters of search boundary, and 

special procedure to deal with problem constraints. Thus, the implementation of 

penalty-free methods is straightforward and not on an ad hoc basis.  

    

From the viewpoint of efficiency, it was found that the application of penalty-free 

methods does not come at the expense of requiring large number of design 

evaluations to reach optimal or near optimal solution (Siew and Tanyimboh, 2012). 

The concept behind the development of penalty-free methods is to maintain 

infeasible solutions having useful values of decision variables that could not be 

available within feasible solutions. For example, the most infeasible solution made 

up of the cheapest decision variable can be maintained throughout the whole 

optimization. The incorporation of such a solution into each reproduction process 

increases the chances of trying the cheapest decision variable in different locations 

within each reproduction process.  

 

5.4 APPLICATION OF THE PENALTY-FREE MULTI-OBJECTIVE 

EVOLUTIONARY OPTIMIZATION APPROACH TO GLOBAL AND 

LOCAL MAXIMUM ENTROPY DESIGNS OF WATER 

DISTRIBUTION SYSTEMS  

 

The proposed approach was applied to two benchmark optimization problems: a 

hypothetical single-source network and a multiple source real system. The first 

network has been extensively analysed by previous maximum entropy approaches 

and so it provides good grounds to compare the performance of the proposed 

approach. As a result, the first network was optimized using the two formulations of 

the approach, while the second network was optimized using the objectives 
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aggregation formulation. An Intel Core 2 Duo CPU 2.99 GHz, 3.21 GB RAM 

personal computer was used in this study. Since different computer specifications 

would have been used previously, assessing the efficiency of the present approach 

with design evaluations along with CPU time would provide a fair comparison of 

results.  

 

With respect to the GA parameters required to optimize the two networks, a typical 

population size of 100 was used. The single-point crossover operator was used to 

generate two offsprings from two parents. To increase the chances of trying out new 

solutions in each generation, the crossover probability pc was set at pc = 1.0, i.e. in 

each generation, 50 crossover operations are conducted on the parent population to 

produce an offspring population with size of n = 100. The operator of tournament 

selection of size of 2 was used to select two parents to be subject for crossover. The 

operator of random mutation was used to identify the selected bits among the 

offspring population to be subject to a mutation. A fixed bit-mutation (absolute) 

probability of pm ≈ 1/ng where pm = mutation rate and ng = chromosome length as 

determined by the number of genes used. 

 

To evaluate the consistency of GA convergence, 20 random GA runs were carried 

out for each network example. To ensure reaching a stable convergence for each run, 

the GA was allowed to proceed until reaching a maximum number of function 

evaluations of 1,000,000 using a maximum number of generations of 10,000. The 

convergence point was identified at the point beyond which no improvement to the 

cost of the highest entropy feasible solution takes place. It is worth mentioning that, 

for each of the two formulations of the proposed approach, 20 random runs of the 

GA were conducted to design network example 1.  

  

5.4.1 Example 1 

 

Example 1 is a benchmark hypothetical grid network in the literature ( Figure 5.2). 

This network was used previously in various studies concerned with entropy 
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(Awumah and Bhatt 1990, Tanyimboh and Sheahan 2002, Setiadi et al. 2005, 

Tanyimboh and Setiadi 2008, Saleh and Tanyimboh 2011). The network has a single 

source and is made up of 12 nodes and 17 pipes. The source has an inflow and total 

head of 445 l/s and 100 m respectively. All the demand nodes are located at an 

elevation of zero and all of the demands must be supplied at a minimum total head of 

30 m. All of the pipes have a length of 1000 m and a Hazen-Williams roughness 

coefficient of 130. There are 12 commercially available alternative pipe diameters 

for each of the 17 pipes making up the whole network as shown in Figure 5.2. The 

set of diameters, in mm, are 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550 

and 600. The cost of pipe diameters in GBP per metre for this specific network is 

equal to 800D
1.5.  

 

 

Figure  5-2: Network configuration of example 1 (with node demands in l/s) 
 

A binary string having a length of 4 bits was used to represent all of the decision 

variables. This means that each decision variable was represented with 4 genes in the 
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genotype space. The size of the solution space is therefore 1217 = 2.22×1018. To 

decode a binary string into the allocated pipe diameter, an index is assigned to each 

binary string. Since a 4-bit string produces 16 binary configurations, with 12 possible 

options for each pipe, there are four codes (out of 16) that are redundant. To make 

genetic operators avoid generating illegal solutions, the redundant codes were 

arbitrarily allocated to the largest pipe diameter (Appendix D). Each solution to the 

problem was to be created by selecting a value for each decision variable of which 

there are 17, each solution in the genotype space was represented with a chromosome 

of 68 genes in length. Accordingly, a mutation rate of 1.5% was used. The binary 

representation and cost of pipe diameters in GBP per metre length were taken as 

£800D
1.5 where D is the pipe diameter in metres (Appendix D).  

 

Tables 5.1 and 5.2 show the convergence and consistency statistics of the two 

formulations based on 20 GA runs each. For all optimization aspects considered, it is 

evident that the concept of aggregating objectives outperformed the idea of handling 

objectives as being separated. First, for local and global maximization of entropy, 

formulation 1 achieved far cheaper solutions than those obtained in formulation 2. 

This can be noticed from the results of minimizing the cost of GMEMC and 

MMEMC designs in each optimization process. This achievement is attributed to the 

simplicity of recognizing minimizing cost solutions by considering two objectives of 

cost and infeasibility minimization only. Furthermore, aggregating objectives appear 

not to affect the global maximization of entropy. For example, both formulations 

achieved identical entropy values of the GMEMC design. 

 

Most importantly, the principle of aggregating objectives has improved the number 

of feasible solutions in the POF in comparison with those obtained based on 

separating objectives. On average, this improvement accounted for about 250%. 

Bearing in mind that the formulated approach is penalty-free, i.e. infeasible solutions 

can effectively compete with feasible ones because of being cheaper, the inclusion of 

such large number of feasible solutions is remarkably a big achievement. Finally, the 

effect of reducing number of objectives using objectives aggregation is evident 
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(Tables 5.1 and 5.2). The formulation of aggregating objectives has significantly 

improved the convergence efficiency in terms of both function evaluations and CPU 

time. In contrast, the concept of separating objectives even showed no convergence 

at all in some of the conducted GA runs.  

 
Table  5-1:  Convergence and consistency statistics of aggregated objectives approach 

based on 20 GA runs 

Measure Minimum Mean Median Maximum SD 

entropy 3.546994 3.572314 3.561168 3.5925 0.017663 
GMEMC  

cost (£106) 2.071852 2.777158 2.80947 4.009645 0.442991 

entropy 2.562376 2.718013 2.731925 2.905255 0.112548 
MMEMC  

cost (£106) 1.174796 1.243972 1.24908 1.372123 0.042435 

Number of feasible solutions 36 43.85 44 49 3.198046 

FEs for convergence 174,700 508,140 435,600 999,500 283,826 

CPU time for convergence 
(min) 

12.951 37.669 32.291 74.094 21.040 

 

Table  5-2:  Convergence and consistency statistics of separated objectives approach 
based on 20 GA runs 

Measure Minimum Mean Median Maximum SD 

entropy 3.54393 3.581819 3.590623 3.5925 0.016495 
GMEMC  

cost (£106) 2.929917 3.60671 3.470388 4.607337 0.475678 

entropy 2.514125 2.595017 2.602118 2.677528 0.043589 
MMEMC  

cost (£106) 1.427802 1.882145 1.879564 2.640965 0.334522 

Number of feasible solutions 10 17.85 17 26 3.785168 

FEs for convergence 317,500 755,020 791,100 1,000,000 219,306 

CPU time for convergence 
(min) 

23.537 55.970 58.645 74.131 16.257 

 

To make a good approximation to the true POF of this example, the resulting POFs 

obtained from the 20 GA runs in each formulation were combined in a global pool of 

size 2,000. Then, the NSGA II criteria for non-domination and diversity preservation 

sorting were used to produce a merged POF of size of 100. Figures 5.3 and 5.4 show 

the merged POF for both formulations respectively.  

 

The improvement in the number of feasible solutions achieved by aggregating 

objectives is evident from the continuity and good distribution of the feasible part of 
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the merged POF (Figure 5.3). In particular, 55% of the merged POF solutions 

obtained from the objectives aggregation runs were feasible, while only 17% of the 

merged POF solutions obtained from merging the runs of separating objectives were 

feasible. Furthermore, the merged POF obtained from aggregating objectives is so 

consistent that all solutions are non-dominated in total deficit and cost (Figure 5.3). 

This is attributed to the fact that the contribution of total deficit of significantly 

infeasible solutions is so large that they can not be compared to that of (ME-S) and 

(GME-ME). In other words, the effect of entropy components in sorting solutions 

based on cost and infeasibility is insignificant in the infeasibile region. When this 

contribution is significant, solutions are most likely hydraulically feasible and so will 

be located at or near the feasibility boundary. 
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Figure  5-3: Total Deficit versus cost of merged POF of formulation 1 
 

In contrast, most solutions obtained from separating objectives were dominated in 

total deficit and cost (Figure 5.4). When sorting solutions based on more than two 

objectives, any solution non-dominated in at least one objective other than the rest of 

objectives is overall considered non-dominated. So, the inclusion of such total deficit 

and cost dominated solutions was due to being non-dominated in the local and global 

components of maximizing entropy. The small number and the unequal distribution 



Chapter 5:  A Novel Penalty-free Multi-objective Evolutionary Optimization 

Approach to Global and Local Maximum Entropy Minimum Cost Designs of Water 

Distribution Systems 

 5-19 

of feasible solutions included in the merged POF are evident from Figure 5.4. The 

high costs of feasible solutions obtained herein are clear from shifting up the 

feasibility part of the merged POF in comparison with that of Figure 5.3.   
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Figure  5-4: Total Deficit versus cost of merged POF of formulation 2 
 

The consistency of the merged POF achieved from aggregating objectives is obvious 

from relating entropy to cost (Figure 5.5). Evidently, almost all feasible solutions are 

non-dominated herein. The near globality of maximizing entropy is apparent from 

the nearly vertical trend of the feasible part of the merged POF. The improvement in 

and the well distribution of the number of feasible solutions are also evident in 

Figure 5.5. In contrast, the merged POF obtained from separating objectives is not 

consistent. This can be noticed from that the vast majority of solutions obtained from 

separating objectives are dominated in cost and entropy (Figure 5.6). Moreover, the 

contribution of feasible solutions along with being not well distributed in the merged 

POF reflects the advantages of aggregating objectives over handling them as being 

separated (Figure 5.6). Additionally, it appears that the GMEMC solution has not 

been part of the merged POF. This is because that GMEMC solutions belonging to 

the GME were so expensive that they become dominated when sorted in the global 

pool of the 20 GA runs. 
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Figure  5-5: Entropy versus cost of merged POF of formulation 1 
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Figure  5-6: Entropy versus cost of merged POF of formulation 2 
 

The performance of achieving a wide range of well distributed ME feasible solutions 

using the concept of aggregating objectives is evident from Figure 5.7. All feasible 

solutions were distributed across a span of entropy values ranged between 2.6415 

and 3.5925. Herein, the trend of maximizing entropy appears to exploit all high 

entropy solutions. For example, all infeasible solutions were distributed nearly over 
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the first half of this span. This situation is totally different in case of separating 

objectives where a number of high entropy solutions were infeasible (Figure 5.8).  
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Figure  5-7: Total Deficit versus cost of merged POF of formulation 1 
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Figure  5-8: Total Deficit versus cost of merged POF of formulation 2 
 

Obtaining high entropy but significantly infeasible solutions is not beneficial to the 

optimization.  Since the aim of incorporating entropy maximization herein is to 
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obtain a wide range of high entropy feasible solutions, the concept of separating 

objectives appears not able to achieve this goal. The inconsistency of the merged 

POF and the unequal distribution of feasible solutions across almost the same range 

of entropy values are very clear herein. This inconsistency makes it difficult to 

interpret the trend of maximizing entropy in relation with minimizing total deficit.    

 

In terms of searching into the solution space of ME groups, the concept of 

aggregating objectives shows the ability to reduce the search space of ME values that 

can be produced from a WDS (Figure 5.9). For example, all solutions making up the 

merged POF obtained using aggregated objectives formulation were found to belong 

to only 13 groups of ME. Out of 13 groups, the feasible solutions were distributed to 

8 groups of ME. For each ME group, a number of solutions with different entropy 

values were obtained (Figure 5.9). In contrast, the merged POF obtained from 

separating objectives were found to contain 54 groups of ME (Figure 5.10). Out of 

54 groups of ME, the feasible solutions were distributed to only 7 groups of ME. The 

relationship between entropy and ME obtained from separating objectives shows that 

this concept is not suitable for designing large networks whose ME design space is 

huge.       

 

Overall, and based on the previous extensive investigation on the suitability of 

handling the objectives of optimizing cost, pipe size and both local and global 

maximization of entropy, it appears that the concept of aggregating objectives is 

more suitable for dealing with this complex problem than the idea of separating 

objectives. Therefore, from this point ahead, further analysis of the merged POF 

obtained from aggregating objectives is carried out.   

 

Table 5.3 shows the feasible designs of the merged POF based on Formulation 1: 

aggregation of objectives. A new GMEMC design that has not been obtained 

previously using discrete pipe diameters was achieved, with the beneficial 

consequence that this helped to extend the range of feasible solutions found. An 
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average of 508,140 EPANET 2 hydraulic analyses was required for each GA run. 

This number of analyses consumed an average CPU time of 37.67 minutes. 
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Figure  5-9: ME versus entropy of merged POF of formulation 1 
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Figure  5-10: ME versus entropy of merged POF of formulation 2 
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Table  5-3: Achieved MEMC feasible designs for Example 1 

Design 
Cost 

(£106) 

Critical 

Surplus (m) 
Entropy Design 

Cost 

(£106) 

Critical 

Surplus (m) 
Entropy 

1 1.687 0.384 3.4528 28 1.283 2.414 2.8648 

2 1.522 0.564 3.2890 29 1.477 5.604 3.2556 

3 1.553 0.114 3.3003 30 2.020 5.359 3.5806 

4 1.350 0.618 3.0684 31 2.203 9.154 3.5875 

5 1.413 1.414 3.0471 32 2.042 6.699 3.5823 

6 1.594 1.397 3.3224 33 1.767 1.747 3.5303 

7 1.558 0.859 3.3167 34 1.494 0.734 3.1729 

8 2.373 14.404 3.5914 35 1.724 0.327 3.5122 

9 2.187 7.818 3.5868 36 1.756 2.194 3.5151 

10 1.887 1.667 3.5233 37 1.706 1.591 3.4721 

11 2.291 12.354 3.5891 38 1.798 0.378 3.5410 

12 2.419 15.446 3.5917 39 1.638 0.108 3.4276 

13 2.330 12.648 3.5906 40 1.910 0.958 3.5410 

14 2.137 3.377 3.5867 41 1.984 0.138 3.5800 

15 2.095 0.282 3.5847 42 2.806 29.066 3.5925 

16 2.226 6.178 3.5878 43 2.520 27.608 3.5923 

17 2.458 15.879 3.5919 44 2.797 29.148 3.5924 

18 1.252 3.481 2.9053 45 2.847 29.096 3.5925 

19 1.924 0.926 3.5465 46 2.636 28.925 3.5924 

20 2.119 0.335 3.5856 47 2.534 28.179 3.5924 

21 2.378 14.544 3.5914 48 2.753 29.130 3.5924 

22 2.335 12.775 3.5908 49 2.636 28.925 3.5924 

23 2.076 7.531 3.5828 50 2.476 25.829 3.5920 

24 1.866 1.267 3.5524 51 2.565 28.663 3.5924 

25 1.829 0.241 3.5523 52 2.890 29.113 3.5925 

26 1.195 2.009 2.6415 53 2.753 29.130 3.5924 

27 1.443 1.191 3.2404 54 2.847 29.096 3.5925 

 

Previously, the highest ME value obtained for this network was first found at 3.183 

(Tanyimboh and Setiadi, 2008) using continuous pipe sizes. The first attempt to 

design this network for global maximization of entropy using discrete pipe sizes was 

by Saleh and Tanyimboh (2011) where the ME was increased to 3.5583 with a cost 
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of £3.010 millions. Recently, Saleh and Tanyimboh (2012) found that the GME 

belongs to a different set of flow directions having ME value of 3.5928 with a cost of 

£2.126 millions. However, the achieved GMEMC design was based on continuous 

pipe sizes. 

 

The strong performance of the proposed approach for handling the twin goals of 

local and global maximization of entropy is evident from the achieved improvements 

in two aspects. First, the improvement in the global search capability of the approach 

is evidenced by a new GMEMC design using discrete pipe sizes. This design has not 

been achieved in previous studies to date aimed at globally maximizing the entropy 

of WDS using discrete pipe sizes. The present discrete diameter GMEMC design has 

an entropy value of 3.5925 while the previous discrete diameter GMEMC design had 

an entropy value of 3.5583. Also, the amount of surplus pressure at the critical node 

of the GMEMC design has been reduced here to 29.11 m from 38.78 m in Saleh and 

Tanyimboh (2011). The present GMEMC design is more expensive than the previous 

Saleh and Tanyimboh (2011) design by just 2.15%. The cheapest ME design was 

also improved here in terms of both cost and entropy. The cheapest ME design here 

has a cost and entropy value of £1.195 million and 2.6415 respectively. In contrast, 

the previous cheapest ME design has values of cost and entropy of £1.288 and 

2.5605 respectively in Saleh and Tanyimboh (2011). 

 

Secondly, the new formulation herein has the advantage that the majority of designs 

in the POF are feasible as shown in Figure 5.3. Clearly, there are a large number of 

feasible solutions where the POF extends along the feasibility boundary (where the 

total deficit is zero). The number of feasible designs was found to account for 54% of 

the achieved POF. This is significant when compared to previous studies in which 

the vast majority of designs in the POF were infeasible (Saleh and Tanyimboh, 

2011). Also, it can be seen that the feasible solutions are well distributed in terms of 

cost (Figure 5.3) and entropy (Figures 5.5 and 5.7). The achieved feasible designs 

were found to range from £1,194,911 to £2,890,476 in cost and from 2.6415 to 

3.5925 in entropy. It is worth highlighting that the inclusion of the GME as one of 
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the achieved ME groups shows that the concept of aggregating objectives did not 

achieve the multiple local MEs at the expense of the GME. This is due to the explicit 

recognition of both the local and global entropy maximization components in the 

formulation.  

 

It should be additionally noted that, due to the combination of the discrete pipe sizes 

and the multi-objective formulation, each objective can have a range of small and 

large values in the solutions achieved. For example, the surplus heads at the critical 

nodes were found to range from 0.108 m to more than 29.113 m. Figure 5.7 shows 

the plot of the total deficit vs. entropy. Finally, the multi-directional search capability 

is evident from the different maximum entropy solution classes (or clusters) seen 

clearly in Figure 5.9. The feasible designs were found to belong to 8 ME groups. 

Five ME groups of infeasible designs can be seen also; all the infeasible ME groups 

except for one have only one design (Figure 5.9).  

   

 

5.4.2 Example 2 

 

The present approach was applied to a real network that represents the main WDS 

supplying the zone within the boundaries of the city of Ferrara-I as shown in Figure 

5.11. The system is a multiple-source network that has 49 nodes, 76 pipes and 29 

loops. It is supplied by two reservoirs at nodes 1 and 49. The two reservoirs supply a 

total demand of 367 l/s and have a total head of 30 m each. All demand nodes are 

located at an elevation of zero. The total length of the pipes is about 25.2 km. All 

pipes have a Manning roughness coefficient of 0.015. The data of pipe lengths and 

node demands are shown in Appendix D. The design requirements as indicated by 

the utility operator of this system (Creaco et al, 2010; Creaco et al, 2012) are that the 

minimum head at which nodal outflow occurs is 5 m, while the desired head at which 

nodal demands are satisfied in full is set at 28 m. All pipe diameters are part of the 

existing system of Ferrara-I. However, the cost of pipe diameter 450 mm was not 

available in the provided set and determined from the best fit of available pipe sizes.  
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Figure  5-11: Layout of Example 2 (Pipe numbers are shown in square brackets) 
 

A binary string of 3 bits in length was used to represent all of the decision variables. 

Since a 3-bit binary string produces 8 binary configurations, which is equal to the 

number of decision variables herein, there will be no redundant codes in the 

representation process. In other words, each pipe diameter has a unique binary string.   

The size of the solution space is therefore 876 = 4.31×1068, which is larger than the 

solution space of Example 1 by 1.94×1050 times. To complete the mapping between 

the binary codes and the corresponding allocated pipe diameter, an index was 
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assigned for each binary string (Appendix D). Each solution to the problem was to be 

created by selecting a value for each decision variable of which there are 76, each 

solution in the genotype space was represented with a chromosome of 228 genes in 

length. Accordingly, a mutation rate of 0.4% or 1/228 was used. The full binary 

representation and pipe diameters along with the corresponding cost for pipe 

purchase and laying as provided by the utility operator are shown in Appendix D. 

 

Table 5.4 shows the feasible designs of the merged POF of Example 2. It is worth 

mentioning that the aim of applying the present approach to a real network is to 

demonstrate its practicality in providing a good trade-off between cost and reliability 

for a range of feasible designs in one integrated optimization process. Thus, the 

achieved GMEMC design herein is only optimal with respect to the generated search 

space that amounted to 20,000,000 design evaluations. 

 

To assess the robustness of the present approach, a record of the global search 

towards maximizing entropy of the conducted runs is presented in Figure 5.12. The 

results show that the approach is robust where the overall progress of maximizing 

entropy appears to be consistently increasing throughout the whole optimization. It is 

worth highlighting that the trend of maximizing entropy could be changed to correct 

the search path of global maximization of entropy as shown in Figure 5.12. This 

situation occurs when a new higher ME than the one to which the highest entropy of 

previous reproduction process belongs is found. For example, if the highest entropy 

in the previous optimization process is found not to belong to the current GME, it is 

replaced with highest entropy belonging to the GME. This is the function performed 

by the global component of maximizing entropy. 

  

The improvement in the amount of feasible designs contributing to the POF is 

evident from extending the front along the feasibility boundary as shown in Figure 

5.13. The feasible designs were found to account for 27% of the achieved POF. This 

percentage appears to be relatively reduced with respect to the one achieved in the 

Example 1. The reduction could be specifically attributed to two main reasons: the 
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high desired pressure required at each demand node with respect to the total heads at 

the supplying sources; the existence of a number of infeasible designs located very 

close to the feasibility boundary as shown in Figure 5.14. For example, there are 5 

marginally infeasible designs with a total pressure deficit less than 0.05 m.  

 

 

Figure  5-12: Record of GA progress for the conducted runs of Example 2 
 

The achievement of high entropy feasible solutions is evident from locating most 

infeasible solutions in the region of low entropy values (Figure 5.15). Any high 

entropy solution with high entropy value is either feasible or marginally infeasible 

(Figure 5.16). This complies with the aim of the proposed approach to provide 

feasible solutions with high entropy values. In addition to these designs, other 

MEMC designs have been achieved. The good trade-off between cost and entropy is 

reflected by providing a range of feasible designs distributed to a span of €2.741 

million in cost and 2.5021 in entropy as shown in Figure 5.17. The cheapest feasible 

design has cost and entropy values of €8.011 million and 4.7968 respectively, while 

the most expensive one has cost and entropy values of €10.285 and 7.2989 

respectively.  
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Table  5-4: Achieved MEMC feasible designs for Example 2 

Design 
Cost 

(€106) 

Critical 

Surplus 

(m) 

Entropy Design 
Cost 

(€106) 

Critical 

Surplus (m) 
Entropy 

1 10.285 0.050 7.2989 15 9.091 0.033 6.7056 

2 10.263 0.047 7.2979 16 9.041 0.013 6.5965 

3 10.194 0.010 7.2953 17 8.925 0.091 6.4448 

4 10.123 0.075 7.2654 18 8.810 0.046 6.3697 

5 9.986 0.046 7.2475 19 8.778 0.015 6.3347 

6 9.919 0.009 7.2435 20 8.571 0.010 5.9393 

7 9.831 0.040 7.1973 21 8.506 0.010 5.8109 

8 9.654 0.019 7.1574 22 8.350 0.027 5.6531 

9 9.499 0.021 7.0861 23 8.262 0.159 5.3858 

10 9.418 0.037 6.9375 24 8.149 0.020 4.8264 

11 9.381 0.008 6.9226 25 8.091 0.030 4.8262 

12 9.284 0.004 6.8437 26 8.044 0.049 4.8046 

13 9.251 0.007 6.8388 27 8.011 0.049 4.7968 

14 9.196 0.024 6.7794     

 

    Furthermore, marginally infeasible designs still offer practical solutions while 

saving a significant amount of cost as shown in Figure 5.16. For example, the 

marginally infeasible design located at a distance less than 0.01 m from feasibility 

boundary has a cost of €9.737 and entropy of 7.163. This design is marginally lower 

than the most expensive feasible design in terms of entropy but with the advantage of 

saving a considerable amount of cost of €547,847. Moreover, the good distribution of 

feasible designs to a wide range of ME values can be noticed in Figure 5.18. For 

example, the feasible designs were found to belong to 26 different ME groups and 

only two designs belonged to the same group. This is also applicable to infeasible 

designs belonging to another set of ME groups. The distribution of achieved designs 

to a variety of ME groups reflects the advantageous performance of the multi-

directional search strategy. 
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Figure  5-13: Total Deficit versus cost of merged POF of Example 2 
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Figure  5-14: Close focus on deficit-cost of merged POF of Example 2 
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Figure  5-15: Total Deficit versus cost of merged POF of Example 2 
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Figure  5-16: Close focus on deficit-entropy of merged POF of Example 2 
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Figure  5-17: Entropy versus cost of merged POF of Example 2 
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Figure  5-18: Maximum Entropy versus entropy of merged POF of Example 2 
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5.5 CONCLUSIONS 

 

The results of the proposed penalty-free multi-objective evolutionary optimization 

approach to local and global maximum entropy minimum cost designs of WDS has 

been presented. Due to the nature of this many-objective optimization problem 

composed of four objectives, two formulations to handle this many-objective 

problem were proposed. The first one is based on aggregating the objectives of local 

and global components of maximizing entropy with minimizing total deficit to form 

one objective defined as infeasibility.  The other one is to deal with the four 

objectives as they are separated. The two formulations were equally applied to design 

a benchmark problem in literature. The extensive investigation of the results showed 

that the concept of aggregating objectives is more suitable than to separate them to 

handle this many-objective problem in many optimization aspects: 1) Cheaper high 

entropy feasible designs were achieved using the aggregated objectives formulation 

approach; 2) Dramatic improvement in the number of feasible solutions; 3)  the 

aggregated objectives formulation approach was computationally more efficient than 

the separated objectives approach; and 4) the obtained POFs were very consistent.        

 

The proposed approach of aggregating objectives illustrates the effectiveness of 

maximizing the entropy values associated with different sets of flow directions while 

maintaining the objective of globally maximizing the entropy of the WDS and 

minimizing the cost. A good balance between feasible and infeasible solutions was 

achieved in the Pareto optimal front. A good distribution of entropy values was 

achieved for the feasible designs. Feasible designs belonging to different maximum 

entropy classes were produced. Furthermore, the proposed methodology has the 

advantage that it yields a range of alternative optimal solutions within the various 

maximum entropy classes. In other words, multiple alternative optimal solutions are 

generated for each competitive set of flow directions that the procedure provides. 

Further, the application of the proposed concept of handling many-objective 
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problems of WDS was successful. The approach was able to solve a real problem for 

global and local maximization of entropy while considering all involved objectives 

as essential. For further saving of cost, the achieved results encourage extending the 

proposed approach to include topology optimization of WDS.  

 



 

 6-1 

CHAPTER SIX  

 

 

 

A NOVEL APPROACH TO TOPOLOGY, PIPE SIZE AND 

ENTROPY-BASED OPTIMAL DESIGNS OF WATER 

DISTRIBUTION SYSTEMS 

 

 

 

 

6.1   INTRODUCTION 

 

The new methodology of penalty-free multi-objective evolutionary optimization of 

local and global MEMC designs has been presented in the previous chapter. The 

novelty of this approach stemmed from being the first in literature to address the 

complex issue of flow directions associated with calculating network entropy. To 

handle this MO optimization problem, two methods were extensively compared on a 

benchmark network: objectives aggregation and separation. The method of 

aggregating all involved objectives other than cost outperformed the method of 

dealing with all objectives as being separated. The developed methodology 

demonstrated performance by providing a good balance between cost and entropy for 

a benchmark network and a real system in literature. This work along with the study 

of coupled topology and pipe size optimization showed that the relationship between 

topology, pipe size and reliability is very strong, i.e. optimal design cost and 

reliability should be evaluated based on simultaneous determination of topology and 

pipe sizes. The success of this work along with the study of coupled topology and 

pipe size optimization have set a solid ground for the research to proceed towards the 

final phase, i.e. combining topology, pipe size and entropy-based optimization into
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 one integrated optimization process. 

 

Previous optimization studies that included reliability did not optimize the topology. 

Awumah et al. (1989) developed a two-stage model for optimizing the pipe sizes and 

topology of a WDS. In the first stage, a topology model determines whether a link is 

to be included in the topology or not using a zero-one integer program. The topology 

is then passed on to the second stage to adjust pipe diameters in the final design. 

Awumah and Goulter (1992) also proposed an alternative approach using 

informational entropy theory. The design optimization model was run repeatedly 

with a different maximum limit for the initial construction cost imposed each time as 

a means to generate different topologies. Tanyimboh and Sheahan (2002) also used 

informational entropy to address the combined effects of topology, pipe size design 

and reliability in an approach in which the topology, pipe sizing, reliability and 

redundancy were considered in successive stages. The aforementioned studies did 

not fully address the joint problem of topology, pipe sizing and reliability 

optimization in an integrated fashion. 

  

This chapter describes a novel penalty-free multi-objective evolutionary optimization 

approach to the simultaneous topology, pipe size and both local and global ME 

designs of WDS. The developed approach has been achieved by integrating the local 

and global ME optimization approach developed in the previous chapter with the 

coupled topology and pipe sizes optimization developed in chapter four. The 

maximization of entropy is tackled in an entirely novel way by considering both the 

local and global maximum entropy aspects. The local maximum entropy values arise 

from: (a) multiple topologically distinct design families and (b) the multiple feasible 

sets of flow directions for a fixed topology. For each feasible topology, there is a 

local maximum entropy value for each feasible set of flow directions. The global 

maximum entropy value is the largest among the local maxima. 

 

The success of the concept of aggregating objectives has been exploited to extend the 

definition of infeasibility developed in previous chapter. This extension has 
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incorporated the measures of topological infeasibility, nodal residual head 

infeasibility and entropy-based performance into one definition. As a result, the 

number of objectives has been significantly reduced in this MO problem. 

Furthermore, a binary coded genetic algorithm (BCGA) was used to suggest a 

method for handling the issue of redundant codes in the BCGA in an efficient way 

that exploits natural selection. Using commercial discrete pipe sizes, the topology, 

pipe size and reliability design optimization herein is applied to two examples: 1) a 

well-known hypothetical benchmark problem; and 2) a benchmark real system; to 

obtain a set of optimal cost-effective and reliable designs in each case. 

 

6.2 FORMULATION OF THE OPTIMIZATION APPROACH 

  

A novel penalty-free multi-objective evolutionary approach to the simultaneous 

optimization of topology, pipe size design and entropy-based reliability for WDSs 

has been developed. The infeasibility of nodal connectivity (LIM), nodal residual-

head infeasibility (HIM) and the levels of local reliability (ME-S) and global 

reliability (GME-ME) were combined together to form an augmented measure of 

design infeasibility. The overall multi-objective optimization problem was 

formulated as a three-objective problem. The decision variables are (a) the individual 

pipe diameters that are selected from commercially available discrete pipe sizes and 

(b) the zero-one integer variables for selecting the pipes that define the topology.  

 

The optimization approach is basically composed of six objectives. As a procedure of 

reducing objectives of this MO problem, four objectives were aggregated to form one 

single objective. The overall formulation of the developed approach can be 

summarized as follows: 

 

Minimize initial construction cost:   f1 = ( )∑
∈ pNij

ijij DLf ,                                           (6.1) 

 

Minimize augmented infeasibility measure (AIM):   
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f2 = LIM + HIM + (ME-S) + (GME-ME) =  LIM + HIM + (GME-S)                     (6.2) 

 

 

Minimize network complexity measure (NCM): f3 = ∑
∈ pNij

ijNCM                           (6.3) 

where 

LIM = ∑
∈

−
Ni

i

req

i RR ),0max(                                                                                       (6.4) 

 

HIM = ∑
∈

−
Ni

i

req

i HH ),0max(                                                                                      (6.5) 

 

Apart from terms in Eq. 6.3, all other terms were previously explained in full. Eq. 6.1 

represents the objective of minimizing the initial construction cost, which is typically 

a function of pipe length Lij and diameter Dij. This equation is subject to satisfying 

both the conservation of mass and energy represented by Eqs. 2.1 and 2.2, which are 

met externally herein by employing the hydraulic solver EPANET 2 (Rossman, 

2000) in the optimization process.  

 

Eq. 6.2 is the objective of minimizing the augmented infeasibility measure (AIM), 

which is an extension of infeasibility formulated previously, that consists of four 

terms. All these terms were previously explained in detail. Clearly, the new 

infeasibility formulation here involves multiple objective functions. First, 

minimizing the local level of reliability reflects generating a range of near maximum-

entropy solutions with 0≈− SME . Secondly, minimizing the distance between the 

GME (i.e. the greatest entropy value among the current solutions) and each ME 

ensures maintaining a global search towards maximizing entropy. This has the 

advantage of maintaining the topology and flow directions of the GMEMC (global 

maximum-entropy minimum-cost) solution throughout the optimization. In addition, 

given that 0=− SME for any maximum entropy solution, the MEGME −  term 

encourages the generation and retention of a range of non-dominated maximum 
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entropy solutions. Research elsewhere including the examples cited in Section 1 of 

Chapter 5 has demonstrated that on average the hydraulic capacity reliability and/or 

redundancy of a WDS improve as the statistical entropy increases. For any feasible 

WDS topology, there are multiple feasible sets of flow directions; each feasible set of 

flow directions has a maximum entropy value. 

 

Close inspection of Eq. 6.2 shows that it has a unique solution having zero 

augmented infeasibility measure in each generation of the GA. This solution has the 

properties that it is topologically and hydraulically feasible (i.e. LIM = 0; HIM = 0) 

with GMEMES ==  (i.e. 0=− SME  and 0=− MEGME ). This uniqueness 

ensures a global search of maximizing entropy throughout the duration of the 

optimization. The other solutions will have some positive value of the augmented 

infeasibility measure AIM. An infeasible solution having a significant AIM value is 

likely hydraulically infeasible because the contribution of the residual head 

infeasibility HIM in Eq. 6.2 is so large that it dominates any contributions from the 

topology and entropy measures. The results in Section 5 of this Chapter clarify this 

issue further. Solutions having a relatively small augmented infeasibility measure 

AIM are likely hydraulically feasible or marginally infeasible because of the 

relatively small contributions of the topology and entropy measures. This can be 

explained by inspecting the range of values each term Eq. 6.2 can take.  

 

For each demand node, the required residual head is typically not less than a 

minimum of about Hi
req = 7m (OFWAT, 2008), while the looping and/or node 

reachability criterion will rarely exceed Ri
req = 2 for each demand or supply node. In 

the previous chapter, it has been shown that, for a typical node with, say, two 

incident pipes downstream, 1.1)3ln( ≈≤iS . As a result, it can be expected that the 

relative entropy measures of ME – S and GME – ME will be small.  

 

The location of the residual-head feasibility boundary )0( =HIM  with respect to the 

augmented feasibility boundary )0( =AIM  depends on the ranges between the 
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lowest and the highest values of both S and ME. The larger these ranges are, the 

larger the distance between the residual-head feasibility boundary and the augmented 

feasibility boundary. A small value of augmented infeasibility may also reflect how 

far a hydraulically feasible solution is from the local and/or global maximum entropy 

solution. The processes of converting hydraulically infeasible solutions into feasible 

solutions plus the local and global maximization of entropy are the key mechanisms 

by which the proposed approach performs this multi-objective optimization.  

 

Finally, to incorporate explicitly the topology into the optimization model, a measure 

of topological complexity was introduced. As a first attempt, this measure simply 

counts the number of links or pipes (Eq. 6.3); NCMij = 1 if pipe ij is included in the 

topology and NCMij = 0 otherwise. The rationale for this measure is that, other things 

being equal, a network with more pipes is more complex than one with fewer pipes. 

This objective aims to generate and retain a range of topologically distinct solutions. 

More sophisticated measures of complexity (see e.g. Yazdani et al. 2011) could be 

investigated in future. Different levels of network complexity may have varying 

degrees of advantages and/or disadvantages that may include, for example, ongoing 

maintenance costs and practical operational issues such as network segmentation. 

Higher-level decisions involving these and other issues not discussed here such as 

water quality etc. may be easier if the Pareto-optimal front contains a range of 

solutions that are qualitatively diverse. 

 

 

6.3 NATURAL SELECTION PROCEDURE FOR REDUNDANT BCGA 

CODES 

 

The binary coding system in which each discrete decision variable value is 

represented with n-bit string of fixed length of n was used. To represent all the 

decision variable values in the genotype space, the number of discrete values should 

be less than or equal to 2n, which is the number of n-bit arrangements that can be 
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produced from an n-bit binary string. Each code or n-bit binary string should 

represent a value in the genotype space. However, if the number of discrete decision 

variable values represented is not a power of 2, some codes may be redundant. 

Options for dealing with redundant codes include: (a) discarding redundant codes; 

(b) assigning a low fitness value to solutions with redundant codes; and (c) allocating 

the redundant codes in a fixed, random or probabilistic way  to the values in the 

domain of the parameter in question (Herrera et al. 1998). Options (a) and (b) may 

result in the loss of useful genes. Option (c) has the disadvantages that it may 

introduce bias if the redundant codes are not allocated uniformly to the discrete 

parameter values while a random allocation may degrade the genetic information that 

is transferred from parents to offspring. Also, any scheme that associates redundant 

codes to valid codes as in Option (c) has a potential to mislead the GA search. 

 

Herein, redundant codes were assumed to represent closed pipes; consequently these 

pipes have a flow-carrying capacity of zero. The closed pipes are assigned fictitious 

pipe diameters that do not belong to the set of diameters that may be used to solve 

the problem under consideration. However, a solution that contains a fictitious 

diameter does not represent a real solution. Fictitious diameters are different from 

real diameters in that they have no utility value. Thus it is anticipated that they will 

be recognized as useless and eliminated quickly by natural selection.   

 

 

6.4 COMPUTATIONAL SOLUTION 

 

The optimization problem addressed here is a many-objective problem having 6 

essential objectives. The concept of aggregating objectives was employed to reduce 

number of objectives by half. This has the advantage of significantly reducing the 

computational complexity from O(mn
4
) to O(mn

2
) comparisons (Deb et al. 2002), 

where m = number of objectives and n = population size. The aim of reducing 

objectives is to overcome the difficulties associated with such optimization problems 
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listed by Saxena et al. (2013), i.e. high computational cost, poor scalability of most 

available multi-objective evolutionary algorithms as the number of objectives 

increases, and difficulty in visualizing the Pareto-optimal fronts (POFs) of problems 

with more than four objectives. The fast robust elitist genetic algorithm NSGA II 

(Deb et al. 2002) was used to solve the optimization problem. The overall approach 

is described in Figure 6.1. The optimization problem was posed as in Eq. 6.6.  

 
 
Minimize f = (f1, f2, f3)

T                                                                                           (6.6) 

 

Most importantly, the present method of reducing objectives considers all objectives 

as essentials, i.e. the estimation of POF is dependent on all objectives. Herein, no 

objective has been classified as being essential or redundant, i.e. an objective has no 

effect on reaching POF (Saxena et al., 2013). Additionally, no preference of an 

objective has been made over another objective, i.e. preference-ordering approach 

(Saxena et al., 2013).  

 

The decision variables are the pipe diameters Dij to be selected within the domain of 

the available discrete pipe sizes and the zero-one pipe link-selection or topology-

definition variables NCMij for all pipes ij under consideration. To make all three 

objectives in Eq. 6.1 roughly similar in magnitude, each m

if  the value of objective m 

for solution i, was normalized as in Eq. 6.7.  

 

( ) ( ) mifffffn
mmmm

i

m

i ∀∀−−= ,;/ minmaxmin                                                          (6.7)  

 

in which, in the generation in question, mfmin  = minimum value of objective m; 
m

fmax = 

maximum value of objective m; and m

ifn = normalized value of objective m for 

solution i. 
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Figure  6-1: Flow chart of the proposed approach 
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6.5 APPLICATION OF THE TOPOLOGY, PIPE SIZE AND ENTROPY-

BASED OPTIMIZATION APPROACH  

 

The developed approach is applied to two benchmark optimization problems: a 

hypothetical single-source network and a multiple source real system. Even though 

these networks do not describe in full the actual situation of real-world WDSs, they 

have been extensively analyzed by previous studies and so providing good grounds 

to compare the performance of the proposed approach. An Intel Core 2 Duo CPU 

2.99 GHz, 3.21 GB RAM personal computer was used in this study. Since different 

computer specifications would have been used previously, assessing the efficiency of 

the present approach with design evaluations along with CPU time would provide a 

fair comparison of results. 

  

 

6.5.1 Example 1 

 

The proposed approach was applied to a well known benchmark network in the 

literature. The general topology of this 6-loop hypothetical grid network is shown in 

Section 6 of the previous Chapter. This network was considered in previous studies 

on entropy and topology optimization based on continuous pipe sizes (Awumah et al. 

1990, 1991; Tanyimboh and Sheahan 2002). The same input data of minimum and 

required heads of Hj
min = 0 and Hj

req = 30 m respectively has been used. The 

minimum head Hj
min is the (assumed) head below which the outflow at a demand 

node ceases. Hj
req = 30m here may be somewhat high. However, its adoption aims to 

maintain consistency with previous results in the literature. The decision variables 

are the 17 zero-one pipe link-selection or topology-definition variables NCMij and the 

17 pipe diameters Dij to be selected from the available discrete pipe sizes. Ri
req = 2 in 

this problem specifies a fully looped topology. This network is relatively small. 

However, it was chosen for several reasons including (a) previous related research; 

(b) the problem complexity; and (c) the novelty of the proposed solution approach. It 
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is possible that new insights can be obtained from this example that would be much 

harder using a large network. 

 

The decision variables are 12 commercially available discrete pipe diameters of 100, 

125, 150, 200, 250, 300, 350, 400, 450, 500, 550 and 600 mm, i.e. the same range as 

in the above-mentioned previous studies. Each pipe can have one of the 12 available 

pipe diameters, or it may not be included in the topology. There are therefore 13 

options for each pipe. The size of the solution space is therefore 1317 = 8.65×1018. A 

4-bit binary coding system was used. There are 17 pipes in the network and each 

solution was represented by a 68-bit chromosome. A 4-bit string produces 16 binary 

configurations. With 13 possible options for each pipe, there are three codes (out of 

16) that are redundant. Three fictitious pipe diameters of 650, 700 and 750 mm were 

respectively allocated to the three redundant codes (Appendix E). The pipe costs in 

GBP per metre length were taken as £800D
1.5 where D is the pipe diameter in metres 

(Appendix E). 

  

An initial random population of size 100 and a stopping criterion of a maximum of 

10,000 generations were used. This corresponds to a maximum limit of 106 function 

evolutions (FEs) or a sampling rate of (106 FEs)/(8.65×1018 solutions) = 1 FE per 

8.65×1012 solutions. Selection for crossover was carried out using a binary 

tournament. Single-point crossover was used to produce two offspring from two 

parents. The crossover probability pc was set at pc = 1.0, i.e. in each generation, 50 

crossover operations are conducted on the parent population to produce an offspring 

population with size of n = 100. Once the offspring population is created, the 

mutation operator changes selected bits from 0 to 1 or 1 to 0. The adopted best 

mutation rate of 1 / ng was used, i.e. pm = 1/68 ≈ 0.015. For the population as a 

whole, this corresponds to a mutation rate of one bit per chromosome on average. 

  

To evaluate the GA, 30 randomly initiated runs were carried out. Table 6.1 

summarizes the general characteristics of the GA from this example. The feasible 

solution having the highest entropy within each generation was used to gauge the 
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progress of each GA run. Within the maximum number of function evaluations (FEs) 

allowed here of 106, the convergence point was taken as the point after which there 

was no improvement in both the entropy and cost of the feasible solution with the 

highest entropy value. A feasible solution in this context is a solution that satisfies 

the nodal demands and residual heads in full and has no fictitious pipe sizes. Among 

the conducted GA runs, the minimum, mean, median and maximum costs of 

GMEMC (global maximum entropy minimum cost) solution were £2,177,413; 

£2,787,246; £2,730,261 and £3,552,885 respectively. The standard deviation was 

£349,057. The minimum, mean, median and maximum values of entropy for the 

GMEMC solution were 3.380570, 3.560733, 3.561684 and 3.592495. The standard 

deviation was 0.041524.  

 

Table  6-1:  Convergence and consistency statistics of 30 GA runs for example 1 
 

Measure Minimum Mean Median Maximum 
Standard 

deviation 

GMEMC entropy 3.380570 3.560733 3.561684 3.592495 0.041524 

MMEMC entropy 2.401622 2.489328 2.476941 2.660135 0.059723 

GMEMC cost (£106) 2.177413 2.787246 2.730261 3.552885 0.349057 

MMEMC cost (£106) 1.181715 1.293399 1.292801 1.496615 0.074389 

Number of fully looped feasible 

solutions  (out of 100) 
36 48.533 50 57 5.778 

Number of partially looped and 

branched feasible solutions  per 

100 

0 6.2 5 13 3.219 

Smallest surplus residual head 

for feasible solutions (m) 
0.007 0.629 0.464 2.691 0.654 

Function evaluations (FEs)  for 

convergence 
314700 733413 806050 979200 208529 

Extinction of all fictitious pipes 

(FEs) 
1500 4600 3850 17300 3725 

Extinction of 750mm pipes 

(FEs) 
500 2050 1650 8500 1594 

Extinction of 700mm pipes 900 2583 1950 5700 1406 
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(FEs) 

Extinction of 650mm pipes 

(FEs) 
900 4003 2600 17300 3885 

Hypervolumea 0.653 0.661 0.660 0.682 0.004 

CPU time for convergence 

(minutes) 
27.35 63.75 70.06 85.11 18.13 

a The hypervolume for the merged POF of 100 nondominated solutions is 0.676.  

 

Among the conducted 30 GA runs herein, the GME was found to have a value of 

3.5928 belonging to the base graph or the full topology of the network. This value 

corresponds to the GME achieved in a previous study aimed to globally maximize 

entropy of water distribution systems with fixed topologies (Saleh and Tanyimboh, 

2012). This achievement indicates that the incorporation of topology optimization 

with pipe size and entropy maximization has not affected the global search of the 

proposed approach.   Out of 30 runs, the GME was found in 10 GA runs at various 

stages of the optimization. The minimum and maximum numbers of function 

evaluations required to identify the GME were 237,700 and 748,700 respectively. 

The GMEMC solution reported here was achieved in 4 GA runs out of 30. 

Generating the GME at an early stage in the optimization is a key element towards 

reaching the GMEMC solution. The earlier the GME is found the faster a near-

GMEMC solution is achieved.  

 

It is worth mentioning that very similar ME values to the GME have been found 

within the GA runs in which GME has not been reached. For example, a ME value of 

3.581115 has been detected in 12 GA runs out of 30 runs. This value classified as 

ME group of 4 (Table 6.2a) was found to belong to a new layout generated by 

removing one pipe from the base graph of the original network as shown in Figure 

6.3a. The recognition of such an important layout reflects the benefits of 

incorporating layout optimization as an essential optimization aspect towards 

achieving high entropy WDS designs.   
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Since the aim of this study is to include a wide range of other maximum entropy 

minimum cost (MEMC) solutions in addition to the GMEMC, the Minimum 

Maximum Entropy Minimum Cost (MMEMC) solution is indicative of the range of 

maximum entropy groups found by the GA in each run. The minimum, mean, 

median and maximum costs of the MMEMC solution were £1,181,715; £1,293,399; 

£1,292,801 and £1,496,615. The standard deviation was £74,389. The corresponding 

minimum, mean, median and maximum values of entropy were 2.401622, 2.489328, 

2.476941 and 2.660135. The standard deviation was 0.059723. Also, the design with 

the smallest surplus head at the critical node was recorded in each GA run to 

investigate the GA’s ability to locate (near-) maximum entropy solutions close to the 

residual-head feasibility boundary, as a possible indicative measure of the optimality 

of the solutions. The minimum, mean, median and maximum smallest-surplus-heads 

at the critical nodes were 0.007, 0.629, 0.464 and 2.691 m, respectively. The standard 

deviation was 0.654 m.  

 

Figure 6.2 shows 3-dimensional plots of cost, combined residual-head and 

topological infeasibility, and entropy, of the individual Pareto-optimal fronts (POFs) 

from the 30 GA runs. The solutions in the POFs increase steadily in entropy and cost 

as they become more feasible as the residual-head feasibility boundary is approached 

from right to left in Figure 6.2. The solutions at the feasibility boundary meet the 

topological and residual-head requirements in full. They include the cheapest feasible 

maximum entropy solution which was obtained by removing the maximum number 

of pipes (i.e. five) from the base graph that does not undermine the looping condition 

(Ri ≥ Ri
req

 = 2). Other feasible solutions with higher maximum entropy values that 

correspond to different layouts (as shown in Figure 6.3) are also present at the 

feasibility boundary.  

 

The most infeasible solution in Figure 6.4 is the design that results from the removal 

of all the 17 candidate pipes from the base graph or fully connected network. This 

solution has zero cost, zero entropy, maximum topological infeasibility of 24 (i.e. 2 

independent paths per node × 12 nodes) and maximum residual-head infeasibility of 
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330 m (i.e. 11 demand nodes × 30 m residual head per demand node). Any crossover 

between this solution and another solution is guaranteed to create two layouts. 

Retention of this infeasible and self-evidently non-dominated solution throughout the 

entire evolution of the optimization is possible because of the penalty-free strategy 

applied here. 

 

The POFs from the 30 GA runs in Figure 6.2 appear to show great similarity. The 

hypervolume indicator was calculated for each POF after normalizing the objectives 

according to Eq. 6.7. The hypervolume is a measure of the fraction of the objective 

space that the achieved POF dominates. The hypervolume increases as the achieved 

POF approaches the true POF. It increases also as the range and/or evenness of 

solutions in the POF increase. Larger hypervolume values are thus preferred (see e.g. 

Knowles 2005). The minimum, mean, median and maximum hypervolume values of 

the POFs were 0.653, 0.661, 0.660 and 0.682 respectively, with a standard deviation 

of 0.004.  

 

Figure  6-2: Individual Pareto-optimal fronts for the 30 randomly initiated GA runs 
 

The 100 solutions in each of the 30 POFs were then merged and sorted considering 

non-domination and diversity based on the crowding distance as in NSGA II. The 

Entropy 
Layout and head 
 Infeasibility (102) 

Cost 
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hypervolume value of the final merged POF of 100 non-dominated solutions was 

0.676. Overall, with reference to Figure 6.2 and considering the nature of the 

normalization of the objective function values in Eq. 6.7 that is not absolute, the 

hypervolume results for the individual and merged POFs seem reasonably consistent 

and encouraging.  

 

The merged POF has 23 hydraulically feasible nondominated fully looped solutions 

based on cost, augmented infeasibility measure (AIM) and number of pipes (as 

summarised in Table 6.2a) of which there are 14 different maximum entropy groups 

and 11 different fully looped topologies (as shown in Figure 6.3a). All topologically 

and/or hydraulically infeasible solutions of the merged POF were found to be 

topologically infeasible ( 2=< req

ii RR ), of which only three were hydraulically 

feasible (Hi ≥ Hi
req = 30 m; Eq. 4) as shown in Table 6.2b and Figure 6.3b. 

 

A topologically infeasible solution that is hydraulically feasible does not have the 

stipulated number of supply paths but all its nodes are reachable and have sufficient 

flow and pressure. This relatively small number of topologically infeasible solutions 

that has sufficient flow and pressure at all demand nodes would appear to suggest the 

residual head criterion (HIM) has priority over the topology criterion (LIM) in Eq. 

6.2 (AIM). This may be due to the dominance of the residual head in Eq. 6.2. These 

results seem to suggest that, concomitant with partial topological feasibility or node 

reachability, i.e. req

ii RR <<0 , the GA prioritises residual-head feasibility over full 

topological feasibility, i.e. req

ii RR ≥ . Also, the critical nodes highlighted in Figure 

6.3 and Table 6.2 show that it is hard to predict the location of the critical node 

without solving the design optimization problem. 

 

It is worth highlighting that the achievement of ME group 14 (Figure 6.3a) reflects 

the ability of the introduced measure of layout infeasibility LIM (Ri ≥ Ri
req

 = 2) to 

recognize the minimum number of pipes required to satisfy the looping condition 

herein. For example, this layout was generated by removing 5 pipes, which account 
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for about 30% of the total pipes of the full topology, from the base graph without 

undermining the looping condition. Additionally, the cheapest fully looped feasible 

design (solution 14 in Table 6.2a) was achieved by removing 4 pipes from the base 

graph.  

 

 

Figure  6-3a: Topologies and flow directions of the fully looped hydraulically feasible 

maximum entropy groups. The solid circles represent the nodes with the smallest 

residual heads. 

 

Figure 6.3b: Topologies and flow directions of the branched and partially looped 

hydraulically feasible maximum entropy groups. The solid circles represent the 

nodes with the smallest residual heads. 



Chapter 6: A Novel Approach to Topology, Pipe Size and Entropy-Based Optimal 

Designs of Water Distribution Systems 

 6-18 

Accordingly, it is anticipated that increasing the size of base graphs could bring 

further saving of cost due to the effect of pipe removal on cost minimization. Real 

world systems represent a good example of such situation in which the full topology 

of the network is made up of large number of pipes. 

 

Table  6-2a: Fully looped hydraulically feasible solutions in the merged POF 

Solution 

number 

Cost 

(£106) 

Surplus 

head a 

(m) 

Critical 

node 

Actual 

entropy 

(S) 

Maximum 

entropy 

(ME) 

ME-S 
GME-

ME 

ME 

group 

1 2.52235 19.734 9 3.592494 3.592800b 0.000306 0.000000 1 

2 1.592572 9.817 10 3.257305 3.330590 0.073285 0.262210 2 

3 1.823409 2.083 11 3.439667 3.489588 0.049921 0.103213 3 

4 2.756591 21.594 8 3.581014 3.581115 0.000101 0.011685 4 

5 1.977641 11.642 6 3.545526 3.546760 0.001234 0.046041 5 

6 3.138684 38.903 9 3.449581 3.449665 0.000084 0.143135 6 

7 3.067751 38.729 9 3.449580 3.449665 0.000085 0.143135 6 

8 2.930185 36.096 9 3.449268 3.449665 0.000397 0.143135 6 

9 2.235305 8.626 9 3.448149 3.449665 0.001517 0.143135 6 

10 1.871266 5.864 10 3.395190 3.398060 0.002870 0.194740 7 

11 1.292923 1.350 2 2.850790 2.891747 0.040958 0.701053 8 

12 1.271386 3.443 10 2.647933 2.723657 0.075724 0.869144 9 

13 2.969728 33.350 2 3.265855 3.269803 0.003947 0.322998 10 

14 1.173127 1.910 10 2.367236 2.469176 0.101940 1.123624 11 

15 2.849506 35.237 3 2.940251 2.940255 0.000004 0.652545 12 

16 2.839981 34.462 3 2.940250 2.940255 0.000005 0.652545 12 

17 2.769049 34.041 3 2.940247 2.940255 0.000008 0.652545 12 

18 2.729939 32.628 3 2.940223 2.940255 0.000033 0.652545 12 

19 2.683465 32.394 3 2.940159 2.940255 0.000097 0.652545 12 

20 2.605798 30.773 3 2.940102 2.940255 0.000154 0.652545 12 

21 2.535235 23.781 3 2.939597 2.940255 0.000659 0.652545 12 

22 1.529674 9.394 9 2.614232 2.624432 0.010200 0.968369 13 

23 1.721305 6.330 10 2.419348 2.425825 0.006477 1.166975 14 

a This refers to the surplus residual head at the critical node. The critical 

node is the node with the smallest surplus head in each solution. b The 

largest entropy value found. 
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Table  6-2b: Hydraulically feasible branched and partially looped solutions of the 
merged POF 

Solution 

number 

Cost 

(£106) 

Surplus 

head (m) 

Critical 

node 

Actual 

entropy (S) 

Maximum 

entropy (ME) 
ME-S GME-ME 

ME 

group 

24 1.508359 18.840 8 2.447343 2.447345 0.000002 1.145456 15 

25 1.075510 0.842 11 2.387568 2.404150 0.016582 1.188651 16 

26 1.050212 0.503 11 2.360799 2.360799 0.000000 1.232002 17 

 

Another important feature achieved by the proposed approach is in the provision of 

three branched and partially looped feasible solutions in the merged POF.  This result 

indicates that the approach is capable of achieving the three types of network 

configurations in one go. Even though branched and partially looped solutions are 

not desirable due to lack of providing independent flow paths at demand nodes, they 

provide further saving of cost in comparison with fully looped solutions. It is worth 

mentioning that fully looped configurations could not provide a practical solution to 

some real world systems. For example, the right-of-way in some streets can make the 

accessibility between two consumption points unachievable.        

 

Figure 6.4 shows the merged POF in terms of the infeasibility and cost of each 

solution. Surprisingly, the merged POF is so consistent that approximately all 

solutions appear to be non-dominated in both cost and infeasibility and irrespective 

of the other objectives (S and ME). This consistency is attributed to the introduction 

of AIM objective in which the objectives of LIM and HIM measures dominate ME-S 

and GME-ME objectives in the infeasibility region. Additionally, the cost of 

infeasible solutions starts to increase from zero (solution generated by removing all 

pipes from base graph) to the cheapest feasible solution and in proportion with 

decrease in infeasibility. The contribution of feasible solutions in the merged POF is 

evident from extending the range of feasible solutions along the feasibility boundary 

(LIM = 0; HIM = 0). All solutions making up the merged POF belong to a variety of 

14 topologies (Figure 6.5). The effect of including layout optimization on pipe size 

and entropy optimization is evident from extending the POF in such a way that it 
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intersects infeasibility axis. 

 

Figure 6.5 demonstrates the merged POF in terms of infeasibility and entropy. The 

reduction in the feasible part of the merged POF herein is attributed to the small 

range of values resulted from the entropy function of WDS. The effect of including 

layout optimization on pipe size and entropy optimization is evident from extending 

the POF in such a way that it intersects infeasibility axis. It can be noted that the 

range of entropy among infeasible solutions is larger than that of feasible solutions. 

This is due to that the vast majority of infeasible solutions are topologically 

infeasible. Topologically infeasible solutions are characterized with having a number 

of zero-entropy nodes. For example, the absolute infeasible solution has zero entropy 

due to being made up of zero-entropy nodes. Reducing topological infeasibility by 

adding pipes will result in reducing number of zero-entropy nodes and so increasing 

S. This changes increase until no node with zero entropy is achieved.  
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Figure  6-4: Infeasibility versus cost of merged POF 
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Figure  6-5: Infeasibility versus entropy of merged POF 
 

The relationship between cost and entropy of the merged POF is shown in Figure 

6.6. Clearly, some feasible solutions appear to be dominated in cost and entropy. The 

inclusion of such designs is attributed to being non-dominated in the other objective, 

which is number of pipes. The effect of number of pipes on cost, infeasibility and 

entropy is shown in Figures 6.7 to 6.9. For each set of pipes, there are number of 

designs with different costs. This is due to the fact that such designs have different 

topologies and entropy values.  

 

Figure 6.8 shows that the minimum number of pipes required to achieve a 

topologically feasible solution is 12, which is about 70% of the total pipes making up 

the base graph. The effect of topology on infeasibility can be noticed in providing a 

number of designs with different infeasibilities for each set of pipes. The difference 

between the range of entropy for infeasible solutions and feasible ones is obvious in 

Figure 6.9. Herein, the existence of a number of solutions with different entropy 

values for each set of pipes is attributed to the effect of topology and flow directions 

on entropy.   

  



Chapter 6: A Novel Approach to Topology, Pipe Size and Entropy-Based Optimal 

Designs of Water Distribution Systems 

 6-22 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

Entropy

C
o

s
t 

(£
1

0
6
)

Infeasible designs

Feasible designs

 

Figure  6-6: Entropy versus cost of merged POF 
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Figure  6-7: Number of pipes versus cost of merged POF 
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Figure  6-8: Number of pipes versus infeasibility of merged POF 
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Figure  6-9: Number of pipes versus entropy of merged POF 
 

The variety in the topologies, maximum entropy groups and flow directions along 

with the differences in the individual hydraulically feasible solutions achieved can be 

seen in Table 6.2 and Appendix F, while Figures 6.4 to 6.9 provide evidence of the 

multifaceted nature of the optimization. Within the individual maximum entropy 

groups in Table 6.2, there is a range of SME −  values. Also, the effectiveness of the 

local maximization of entropy is evident in that all the 26 feasible solutions in Table 
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6.2 have small deviations (i.e. SME − ) of entropy S from the corresponding 

maximum entropy ME values. This shows that in general the solutions are (near-) 

maximum entropy solutions. The graph showing the entropy values achieved vs. the 

respective maximum entropy values for all solutions in the merged POF in Figure 

6.10 has a strong positive correlation of R
2 = 0.976 and provides further 

confirmation. In the many-objective problem addressed here this high level of 

similarity is noteworthy.  
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Figure  6-10:  Similarity between the actual and potential entropy values of the 

solutions in the merged Pareto-optimal front  

 

The fully looped feasible solutions achieved range in cost from £1,173,127 to 

£3,138,684. The branched and partially looped feasible solutions range in cost from 

£1,050,212 to £1,508,359. The MEGME −  values in Tables 6.2a and 6.2b 

respectively reveal that, as a group, the branched and partially looped solutions 

collectively appear to be the furthest away from the GME solutions. It is worth 

mentioning that the existence of significant surpluses in the heads at the critical 

nodes (Table 6.2) in most of the achieved solutions is likely due to the three-

objective formulation and entropy maximization in particular in a discrete solution 

space. Furthermore, the SME −  term in Eq. 6.2 that is for local maximization of 



Chapter 6: A Novel Approach to Topology, Pipe Size and Entropy-Based Optimal 

Designs of Water Distribution Systems 

 6-25 

entropy favours least-cost maximum-entropy solutions over other least-cost solutions 

that may have smaller surpluses in the residual heads at the critical nodes. 

 

The achieved solutions are distributed among 11 different fully looped topologies as 

shown in Figure 6.3a. The optimization of topology played an important role in 

achieving a good compromise between maximizing entropy and minimizing cost. For 

example, the cheapest achieved ME solution having an entropy value of 2.367236 

and cost of £1,173,127 belongs to a topology generated by removing 4 pipes from 

the base graph. At the same time, the GMEMC solution having an entropy value of 

3.592494 and cost of £2,522,350 was achieved without removing any pipe from the 

base graph. To appreciate further the benefits of topology optimization, consider ME 

Groups 4 and 5 belonging to two different topologies made up of the same number of 

pipes of 16, for example.  However, ME Group 5 has produced a solution with cost 

of £1,977,641 and entropy of 3.545526, which is further cheaper than a very similar 

solution belonging to ME Group 4 having cost of £2,756,591 and entropy of 

3.581014. This shows that topology optimization can increase the range and cost 

effectiveness of the optimal solutions.  

 

Another important result obtained from topology optimization was the identification 

of the pipes that are relatively unimportant. For example, removing pipe 5-8 from the 

base graph resulted in a very high ME group with a maximum entropy value of 

3.581115 (ME Group 4), which is the second highest achieved here and only 

marginally lower than the GME of 3.5928 (Table 6.2a). Also, it can be seen that ME 

Groups 4, 6, 8, 11, 12 and 14 do not include pipe 5-8 (Figure 6.3a). It may be noted 

also that ME Groups 5, 7 and 10 do not include pipe 7-10. It is worth observing that 

the various topologies in Tanyimboh and Sheahan (2002) do not include any 

topologies such as those in Figure 6.3a that do not have pipes 5-8 and 7-10 (see Saleh 

et al. 2012 for more such examples).  

 

Even for a small network such as the present example, this illustrates clearly the 

benefits of integrating topology in the optimization of WDSs. The beneficial effects 



Chapter 6: A Novel Approach to Topology, Pipe Size and Entropy-Based Optimal 

Designs of Water Distribution Systems 

 6-26 

of topology optimization are also evident in Figures 6.4 to 6.9. Overall, there is 

strong positive correlation between the number of pipes and (i) cost; (ii) entropy; and 

(iii) overall feasibility. For any given number of pipes the cost of the cheapest 

solution appears to increase with the number of pipes (Figure 6.7). It can be seen that 

the proposed GA provides feasible solutions with significant differences in cost 

and/or entropy for the same numbers of pipes. Figure 6.7 also reveals remarkable 

differences in cost from 12 to 17 pipes. 

 

The convergence characteristics of the GA for the conducted runs in detail are 

demonstrated in terms of tracking the GMEMC design that is characterized with 

having minimum AIM (Figure 6.11) and highest entropy (Figure 6.12) among all 

solutions in each generation. The minimum, mean, median and maximum number of 

function evaluations (FEs) within which convergence took place was 314,700; 

733,413; 806,050 and 979,200 respectively. The standard deviation was 208,529. 

The minimum, mean, median and maximum CPU times in minutes were 27.35, 

63.75, 70.06 and 85.11. The standard deviation was 18.13 minutes. In all 30 GA runs 

the fictitious pipe sizes were eliminated in the early stages. Figure 6.13 shows that 

fictitious pipe sizes are eliminated at different stages of the optimization. The 

minimum, median, mean and maximum numbers of function evaluations (FEs) 

within which fictitious pipe diameters ceased to exist in total were 1500, 4600, 3850 

and 17300 respectively. The standard deviation was 3725 FEs. It was found that the 

rates of elimination were different for the three different sizes. The elimination rate 

seems faster for the larger and more expensive fictitious pipes (Table 6.1 and Figure 

6.14). These results suggest the procedure for handling redundant binary strings is 

stable and efficient.  

 

It is worth mentioning that, prior to their complete elimination, fictitious pipe 

diameters were included in both feasible and infeasible solutions. Combining the 

objectives of minimizing topological infeasibility, minimizing residual-head 

infeasibility and maximization of entropy into one objective appears to be a key 

factor in the efficient solution of this extremely complex discrete nonlinear multi-
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objective combinatorial optimization problem. Tracking the various components in 

Figures 6.11 to 6.19 suggest progress towards near-optimum solutions is very quick. 

Figures 6.11 to 6.19 also show that the active search space expands quickly from the 

random initial population, and infeasible solutions participate in the optimization 

from an early stage until the end.  

 

Figures 6.11 to 6.19 would appear to reveal a very slight gentle rise in the mean cost 

and mean number of pipes after the initial rapid reduction that could be due to the 

effect of maximizing the entropy. Figure 6.15 and Figure 6.16 show that the cost and 

number of pipes increase as the entropy increases. Table 6.1 also summarises the 

GA’s characteristics. As mentioned earlier, less than 1 in every 8.65 × 1012 solutions 

were sampled in each GA run. Therefore, it may be concluded that the similarities 

between the respective means and medians together with the relatively small 

standard deviation values in Table 6.1 would appear to suggest the GA’s 

performance is satisfactory. 
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Figure  6-11: Evolution and convergence characteristics for minimum augmented 

infeasibility in the population of 100 solutions in each GA run 
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Figure  6-12: Evolution and convergence characteristics for highest entropy among 

feasible solutions in the population of 100 solutions in each GA run 
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Figure  6-13: Evolution and convergence characteristics for total number of fictions 

pipes in each GA run 

 
 
 



Chapter 6: A Novel Approach to Topology, Pipe Size and Entropy-Based Optimal 

Designs of Water Distribution Systems 

 6-29 

 

0

15

30

45

60

75

90

0 2 4 6 8 10 12 14 16 18 20

Function evaluations (10
3
)

M
e

a
n

 n
u

m
b

e
r 

o
f 

fi
c

ti
ti

o
u

s
 p

ip
e

s 650 mm

700 mm

750 mm

 

Figure  6-14: Evolution and convergence characteristics for mean number of fictitious 

pipes based on 30 GA runs 

 
 
 
 

12

13

14

15

16

17

18

0 200 400 600 800 1000

Function evaluations (10
3
)

A
v

e
ra

g
e

 n
u

m
b

e
r 

o
f 

p
ip

e
s

Min

Mean

Max

 

Figure  6-15: Evolution and convergence characteristics for mean number of pipes in 

fully looped feasible solutions based on 30 GA runs   
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Figure  6-16: Evolution and convergence characteristics for mean number of pipes in 

all feasible and infeasible solutions based on 30 GA runs    
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Figure  6-17: Evolution and convergence characteristics for mean cost of fully looped 

feasible solutions based on 30 GA runs 
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Figure  6-18: Evolution and convergence characteristics for mean cost of all feasible 

and infeasible solutions based on 30 GA runs 
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Figure  6-19: Evolution and convergence characteristics for mean number of solutions 

that are topologically and hydraulically feasible, hydraulically feasible, and 

topologically feasible based on 30 GA runs 
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The details of selected solutions from the merged POF that may be of interest 

including the hydraulically infeasible solution with the smallest residual-head 

constraint violation from the 30 GA runs were provided (Appendix F). In general, a 

solution on the right is preferable to and more expensive than a solution on the left. It 

can be seen that, with the exception of two designs only, the AIM, HIM and LIM 

measures reflect this in full as all three measures decrease monotonically from left to 

right. The entropy values increase from left to right except for a small decrease from 

Solution 26 that is partly looped to Solution 25 that is fully looped and from solution 

9 to 2 that are both fully looped. The SME −  values are small and indicate the 

solutions are (near-) maximum entropy solutions as desired. The MEGME −  values 

decrease monotonically from left to right as desired. The numbers of pipes (and 

numbers of loops) increase monotonically from left to right. Except for a small 

reduction in cost from Solution 9 that has four loops (15 pipes) to Solution 2 that has 

six loops (16 pipes), the costs increase from left to right. Solution 9 has a higher 

entropy value than Solution 12. Thus it seems the properties of Solutions 9 and 12 

further exemplify the benefits of integrating the topology in the design optimization. 

It is interesting to note, however, that the surplus heads at the critical nodes seem not 

to follow any trend. This seems to illustrate the complex properties of the water 

distribution system and the many-objective optimization problem formulated and 

solved here. Overall, the results in Appendix F seem very satisfactory. 

 

6.5.2 Example 2 

 

The proposed approach is applied to a larger benchmark network in literature. This 

network is part of the Winnipeg system (Morgan and Goulter, 1985). This network 

has been designed for coupled topology and pipe size optimization in chapter 4. 

Allowing for pipe removal, the solution space of this network comprises a combined 

total of 1437 = 2.55×1042 hydraulically and/or topologically feasible and infeasible 

solutions. Using a 4-bit binary substring, since this network has 37 pipes, each 

solution was represented with a chromosome whose length is 148 genes. Since a 4-

bit string produces 16 binary configurations, there are two codes (out of 16) that are 
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redundant. Two fictitious pipe diameters of 750 and 800 mm, respectively, were 

allocated to the two redundant codes as explained in Section 3 of this Chapter. The 

pipe costs in units per metre length for the fictitious pipe diameters were taken from 

the cost graph shown in Figure 6.20. 

 

An initial random population of size 100 and a stopping criterion of a maximum of 

10,000 generations were used. This corresponds to a maximum limit of 106 function 

evolutions (FEs) or a sampling rate of (106 FEs)/( 2.55×1042 solutions) = 1 FE per 

2.55×1036 solutions. Selection for crossover was carried out using a binary 

tournament with size of 2. Single-point crossover was used to produce two offspring 

from two parents. The crossover probability pc was set at pc = 1.0, i.e. in each 

generation, 50 crossover operations are conducted on the parent population to 

produce an offspring population with size of n = 100. Once the offspring population 

is created, the mutation operator changes selected bits from 0 to 1 or 1 to 0 using a 

mutation rate of pm = 1/148 ≈ 0.00675. This very low mutation rate reflects, on 

average, mutating one bit per chromosome for the whole population. 
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Figure  6-20: Relationship between pipe diameter and cost for network example 2 
 

To evaluate the robustness of the GA on this larger network, 30 randomly initiated 
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runs were conducted using a population size of 100. It is worth mentioning that the 

aim of designing such a relatively large network is to demonstrate the applicability of 

the proposed approach to solve real world systems. To identify the optimal 

population size for this network, a sensitivity analysis using different population 

sizes is required. Within each random run, the maximum number of function 

evaluations (FEs) allowed here of 106. Among the conducted GA runs, the minimum, 

mean, median and maximum costs of GMEMC solution were £5,626,414; 

£6,814,409; £6,843,641 and £7,738,914 respectively. The standard deviation was 

£561,343. The minimum, mean, median and maximum values of entropy for the 

GMEMC solution were 4.476402; 4.872415; 4.895875 and 5.190007 respectively. 

The standard deviation was 0.185378. 

 

Among the conducted 30 GA runs herein, the GME was found to have a value of 

5.541571 belonging to the base graph or the full topology of the network. The 

inclusion of the full topology as one of the optimal layouts indicates that the 

incorporation of topology optimization with pipe size and entropy maximization has 

not affected the global search of the proposed approach.   Out of 30 runs, the GME 

and the GMEMC design were found in one GA run. This result could be attributed to 

the relatively small population size and/or the complexity of the problem used to 

optimize this network. Increasing population size and maximum number of FEs may 

improve the results.   

 

To evaluate the search performance towards including a wide range of other 

maximum entropy minimum cost (MEMC) solutions than the GMEMC, the 

Minimum Maximum Entropy Minimum Cost (MMEMC) solution is indicative of the 

range of maximum entropy groups found by the GA in each run. The minimum, 

mean, median and maximum costs of the MMEMC solution were £2,253,554; 

£2,549,198; £2,502,468and £2,925,169. The standard deviation was £179,179. The 

corresponding minimum, mean, median and maximum values of entropy were 

2.981072, 3.140691, 3.136344 and 3.306349. The standard deviation was 0.089291. 

Also, the design with the smallest surplus head at the critical node was recorded in 
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each GA run to investigate the GA’s ability to locate (near-) maximum entropy 

solutions close to the residual-head feasibility boundary, as a possible indicative 

measure of the optimality of the solutions. The minimum, mean, median and 

maximum smallest-surplus-heads at the critical nodes were 0.002, 0.082, 0.058 and 

0.335 m, respectively. The standard deviation was 0.083 m. Table 6.3 summarizes 

the general characteristics of the GA from this example.  

 

The overall consistency of the POFs achieved from the conducted runs was assessed 

with the hypervolume indicator after normalizing the objectives according to Eq. 6.7. 

The minimum, mean, median and maximum hypervolume values of the POFs were 

0.642, 0.645, 0.645 and 0.648 respectively, with a standard deviation of 0.002. After 

merging the 100 solutions in each of the 30 POFs under the criteria of non-

domination and diversity based on the crowding distance as in NSGA II, the 

hypervolume value of the final merged POF of 100 non-dominated solutions was 

0.661. The very similar values of hypervolume indicator among the conducted runs 

are indicative of the robustness of the search performance of the proposed approach.  

 

The performance of the procedure suggested for handling redundant codes appears to 

be encouraging. All fictitious pipe sizes are eliminated at different stages of the 

optimization. The minimum, median, mean and maximum numbers of function 

evaluations (FEs) within which fictitious pipe diameters ceased to exist in total were 

13400, 39314, 41100 and 80600 respectively. The standard deviation was 14452 

FEs. As anticipated, the rates of elimination were different for the two different sizes. 

The elimination rate seems faster for the larger and more expensive fictitious pipes 

(Table 6.3). These results suggest the procedure for handling redundant binary 

strings is stable and efficient. It is worth mentioning that, prior to their complete 

elimination, fictitious pipe diameters were included in both feasible and infeasible 

solutions.  

 

The merged POF produced 31 fully looped maximum entropy feasible solutions and 

found to belong to 26 fully looped layouts (Figure 6.21a) each belongs to a unique 



Chapter 6: A Novel Approach to Topology, Pipe Size and Entropy-Based Optimal 

Designs of Water Distribution Systems 

 6-36 

ME group. The achieved fully looped layouts were generated by removing a number 

of pipes ranged from 1 (Layout 2) to a maximum of 14 pipes (layout 26). Herein, the 

maximum number of removed pipes accounted for about 38% of the total number of 

pipes making up the base graph. The benefit of layout optimization on cost saving 

can be seen in the range of design costs achieved herein. For example, the cheapest 

fully looped feasible solution belonging to layout 24 and having a cost of 2,374,070 

units was achieved by removing 12 pipes from the base graph, while the most 

expensive fully looped feasible solution belonging to layout 2 and with cost of 

7,738,914 was generated by removing one pipe.  

 

Table  6-3:  Convergence and consistency statistics for network 2 based on 30 GA 

Measure Minimum Mean Median Maximum 
Standard 

deviation 

GMEMC entropy 4.476402 4.872415 4.895875 5.190007 0.185378 

MMEMC entropy 2.981072 3.140691 3.136344 3.306349 0.089291 

GMEMC cost (£106) 5.626414 6.814409 6.843641 7.738914 0.561343 

MMEMC cost (£106) 2.253554 2.549198 2.502468 2.925169 0.179179 

Number of fully looped feasible 

solutions  (out of 100) 
37 46.207 46 52 2.631 

Number of partially looped and 

branched feasible solutions  per 100 
2 8.586 9 14 3.275 

Smallest surplus residual head for 

feasible solutions (m) 
0.002 0.082 0.058 0.335 0.083 

Function evaluations (FEs)  for 

convergence 
552000 905224 949800 997500 106861 

Extinction of all fictitious pipes 

(FEs) 
13400 39314 41100 80600 14452 

Extinction of 800mm pipes (FEs) 5400 25914 24600 78200 16222 

Extinction of 750mm pipes (FEs) 11800 39028 41100 80600 14800 

Hypervolumea 0.642 0.645 0.645 0.648 0.002 

CPU time for convergence 

(minutes) 
69.10 113.32 118.90 124.87 13.38 

 a The hypervolume for the merged POF of 100 nondominated solutions is 0.661.  
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The achieved layouts demonstrate also the ability of the proposed approach to 

recognize important pipes to be subject for removal. For example, the vast majority 

of layouts were obtained by removing pipe number 35. Another important result is 

that some of the achieved fully looped layouts generated by dividing the base graph 

into two fully looped sub-networks (layouts 19-21). The number of loops in each 

layout ranged from 6 to 18 loops. The effect of number of loops on maximizing 

entropy can be seen in Table 6.4a.  

 

In addition to the fully looped feasible solutions, seven branched and partially looped 

maximum entropy feasible solutions were achieved (Table 6.4b). Herein, one 

branched maximum entropy feasible solution with cost of 1,808,731 units and ME-S 

of zero was achieved by removing a maximum number of pipes 18 (Layout 33). This 

solution can be compared to the cheapest least cost solution (not maximum entropy 

solution) in literature having cost of 1,693,393 units (Afshar, 2005). The difference 

in cost of these two branched solutions is attributed to the constraint of maximizing 

entropy, which has not been included at all in any previous study. 

 

Figure 6.22 shows the relationship between infeasibility and cost of the merged POF. 

The feasible part of the POF has been extended due to the large design space of 

network 2 in comparison with that of network 1. Herein, the most infeasible solution 

was generated by removing all the 37 candidate pipes from the base graph or fully 

connected network. This solution has zero cost, zero entropy, maximum topological 

infeasibility of 40 (i.e. 2 independent paths per node × 20 nodes) and maximum 

residual-head infeasibility of 1,270 m (i.e. sum of product of demand node by 

corresponding residual head). As stated previously, the inclusion of such design is 

very important from the view point of layout optimization. This is because any 

operation of crossover between this solution and another solution is guaranteed to 

create two layouts. Retention of this infeasible and self-evidently non-dominated 

solution throughout the entire evolution of the optimization is possible because of the 

penalty-free strategy applied here. 
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Even though this network is large, the produced range of entropy values is still 

narrow due to the properties of Eq. 2.42 (Figure 6.23). All feasible solutions are 

characterized by having high entropy values, which reflects the aim of the proposed 

approach to achieve high entropy feasible solutions. The effect of maximizing 

entropy on cost is evident from Figure 6.24. The POF herein appears to be consistent 

in terms of continuation between the infeasible and feasible parts.  

 

Table  6-4a: Fully looped feasible solutions in merged POF of example 2 

Solution 

number 

Cost 

( units) 

a 

Surplus 

head 

(m) 

Critical 

node 

Actual 

entropy 

(S) 

Maximum 

entropy 

(ME) 

ME-S 
GME-

ME 

 

Layout 

1 7,209,000 0.306 15 5.171049 5.557610b 0.386561 0.000000 1 

2 6,563,651 0.267 19 5.109483 5.277704 0.168221 0.279906 1 

3 6,392,398 0.643 19 5.051366 5.281130 0.229764 0.276480 1 

4 7,738,914 0.470 15 5.190007 5.541571 0.351563 0.016039 2 

5 6,756,341 0.175 19 5.137941 5.280588 0.142647 0.277022 2 

6 6,672,388 0.669 19 5.075552 5.284013 0.208461 0.273597 2 

7 7,601,494 0.148 15 5.181323 5.536762 0.355439 0.020848 3 

8 7,399,096 0.082 15 5.130746 5.422957 0.292211 0.134653 4 

9 6,376,680 0.411 15 5.022152 5.232052 0.209900 0.325558 5 

10 6,894,839 0.024 15 5.061369 5.437145 0.375776 0.120465 6 

11 4,916,521 0.293 15 4.594931 4.709163 0.114232 0.848447 7 

12 5,307,348 0.628 8 4.672370 5.062133 0.389763 0.495477 8 

13 4,957,599 0.853 15 4.641112 4.786899 0.145787 0.770711 9 

14 4,774,924 1.594 15 4.498214 4.604216 0.106002 0.953394 10 

15 4,698,694 0.701 15 4.498006 4.604195 0.106189 0.953415 10 

16 5,552,754 1.241 15 4.655285 5.039450 0.384165 0.518160 11 

17 5,025,859 3.256 13 4.556314 4.818961 0.262647 0.738649 12 

18 4,394,286 0.515 17 4.320600 4.434738 0.114138 1.122872 13 

19 4,235,979 3.219 20 4.177757 4.350449 0.172692 1.207161 14 

20 3,372,806 2.753 7 3.836534 3.997189 0.160655 1.560421 15 

21 3,230,154 1.063 1 3.802677 3.851815 0.049138 1.705795 16 

22 3,960,139 0.866 7 3.956164 4.051982 0.095818 1.505628 17 

23 3,538,884 0.162 7 3.800675 3.955395 0.154720 1.602215 18 
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24 4,433,439 6.644 7 3.976741 4.238134 0.261393 1.319476 19 

25 3,426,289 3.712 7 3.693540 3.974741 0.281202 1.582869 20 

26 4,039,451 1.481 17 3.795224 3.891766 0.096542 1.665844 21 

27 3,107,144 1.568 13 3.503619 3.723526 0.219906 1.834085 22 

28 2,454,604 0.435 20 3.287140 3.317104 0.029964 2.240506 23 

29 2,374,070 0.066 19 3.203094 3.359538 0.156445 2.198072 24 

30 2,561,895 1.473 19 3.179116 3.291627 0.112511 2.265983 25 

31 2,460,335 1.141 8 3.130207 3.137692 0.007485 2.419918 26 

a This refers to the surplus residual head at the critical node. The critical node is the 

node with the smallest surplus head in each solution. b The largest entropy value 

found. 

 

Table  6-4b: Hydraulically feasible branched and partially looped solutions of the 
merged POF of example 2 

Solution 

number 

Cost  

(units) 

Surplus 

head 

 (m) 

Critical 

node 

Actual 

entropy 

 (S) 

Maximum 

Entropy 

 (ME) 

ME-S GME-ME 

 

Layout 

32 2,197,697 1.550 4 3.079714 3.120364 0.040650 2.437246 27 

33 1,922,166 1.045 20 2.980528 2.992726 0.012198 2.564884 28 

34 2,027,732 0.040 17 2.968468 2.990397 0.021929 2.567213 29 

35 1,991,802 0.045 17 2.957860 2.983705 0.025845 2.573905 30 

36 3,052,542 1.358 1 2.954783 2.963028 0.008244 2.594582 31 

37 3,042,543 0.371 4 2.942952 2.963028 0.020076 2.594582 32 

38 1,808,731 0.371 4 2.915428 2.915428 0.000000 2.642182 33 

 

The effect of number of pipes required to satisfy node connectivity requirement on 

solution cost can be noticed in Figure 6.25. Overall, as number of pipes increases 

cost increases. Similarly, entropy increases in line with number of pipes (Figure 

6.26). This is attributed to the increase of number of loops along with number of 

pipes. Figure 6.27 depicts the minimum number of pipes required to construct a fully 

looped topology from the base graph, which are 23 pipes herein. Overall, the strong 

positive correlation between the number of pipes and (i) cost; (ii) entropy; and (iii) 

overall feasibility are evident from Figures 6.25 to 6.27. It can be seen that the 

proposed GA provides feasible solutions with significant differences in cost and/or 
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entropy for the same numbers of pipes. Figure 6.25 also reveals remarkable 

differences in cost from 23 to 37 pipes.  

 

Figure  6-21a: Topologies of the fully looped hydraulically feasible maximum 

entropy groups for network example 2 
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 Figure 6.21a: Continued 
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 Figure 6.21a: Continued 

 

Figure 6-21b: Topologies of the branched and partially looped hydraulically feasible 

maximum entropy groups for network example 2. 
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Even though the proposed approach demonstrated giving priority to reducing 

topologic and hydraulic infeasibility over maximizing entropy within the topology 

and hydraulic infeasible region, it still associates this process with maximizing 

entropy. This is evident from the overall strong correlation between entropy and ME, 

which reflects that all solutions are near optimal with respect to ME (Figure 6.28). 

The result that even infeasible solutions have entropy values close to the 

corresponding ME shows that the proposed approach does accompany maximizing 

entropy with reducing topologic and hydraulic infeasibility. This could be attributed 

to the small amount of contribution both ME–S and GME–ME make in Eq. 6.2 in 

comparison with LIM and HIM. Achieving infeasible ME solutions is very beneficial 

to the optimization in terms of reducing the effort needed to convert an infeasible 

solution to a feasible one while maximizing entropy. In other words, creating a 

feasible solution from an infeasible one herein implies achieving a ME feasible 

solution. Additionally, marginally infeasible cheap solutions that are comparable to 

feasible solutions in terms of entropy could provide practical solutions.       
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Figure  6-22: Infeasibility versus cost of merged POF for network 2 
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Figure  6-23: Infeasibility versus entropy of merged POF for network 2 
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Figure  6-24: Entropy versus cost of merged POF for network 2 
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Figure  6-25: Number of pipes versus cost of merged POF for network 2 
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Figure  6-26: Number of pipes versus infeasibility of merged POF for network 2 
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Figure  6-27: Number of pipes versus entropy of merged POF for network 2 
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Figure  6-28:  Similarity between the actual and potential entropy values of the 
solutions in the merged Pareto-optimal front for network 2 
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6.6 CONCLUSIONS  

 

An innovative approach to the simultaneous topology, pipe size and entropy-based 

reliability optimization of water distribution systems has been proposed and 

demonstrated. The provision of many cost effective candidate solutions distributed 

among a diverse range of optimal topologies was the main goal. Information-

theoretic entropy was used as a computationally efficient surrogate measure of the 

hydraulic reliability and redundancy. Reducing the computational complexity of the 

many-objective constrained nonlinear combinatorial optimization problem addressed 

here by introducing an augmented infeasibility measure that combines the residual-

head infeasibility, topological infeasibility and entropy maximization without 

employing extraneous weighting coefficients that require additional case-specific 

calibration. To achieve this goal, a topological status detection procedure that 

enhanced the EPANET 2 hydraulic simulations was developed. A compelling feature 

of the formulation is that constraint-violation tournaments or penalties are not 

required. Accordingly, the penalty-free GA proposed allows full exploitation of all 

feasible and infeasible solutions generated during the evolution to guide the search. 

Furthermore, any redundant codes in the binary-coded GA are optimized out in a 

bias-free way through natural selection. 

 

The approach produced very similar Pareto-optimal fronts from 30 different 

randomly generated initial GA populations for two test cases in the literature. The 

first one is a hypothetical network, while the other is part of a real system. The 

optimization model seems promising also in terms of the computational effort 

required to approach the Pareto-optimal front and the quality of the solutions 

generated. The achieved results suggest carrying out further investigations into the 

potential of extending the method to more complex problems with more scope for 

savings in cost.  
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CHAPTER SEVEN  
 

 

 

CONCLUSION 

 

 

 

7.1 INTRODUCTION 

 

Establishing a new water distribution system capable to satisfy water demands on a 

long-term basis involves optimally designing the system under considerations of 

components topology, design cost and reliability of the system. These three 

optimization aspects are recognized to be highly interdependent that considering one 

aspect alone is not sufficient to obtain the optimal design of the WDS.  As a result, 

the determination of the optimal topology and optimal sizing of system components 

along with optimally assessing reliability should be carried out in a simultaneous 

process if achieving the optimal design is desired. However, the simultaneous 

incorporation of these multiple conflicting objectives into the decision making 

process makes the determination of an optimal design that is superior in all 

objectives unachievable. Furthermore, it is highly complex to identify the best 

designs within a huge solution space composed of the full solution spaces of 

topology, design and reliability. With the massive increase in the solution space 

associated with real-world problems, the requirement of employing effective 

optimization techniques capable to handle this highly complex multiple criteria 

combinatorial problem is inevitable. 

 

Given the complexity of combining topology, pipe sizing and reliability optimization 

of the WDS into one integrated simultaneous process, several researchers solely 

focused on coupling topology to pipe size optimization. The coupling of topology 
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with pipe size optimization is commonly carried out as a sequence of two stages 

where a set of optimal topologies are identified in the first stage with the aid of 

geometric methods such as graph theory. In the second stage, the obtained set of 

optimal topologies is sized to identify the optimal design under the constraint of cost 

while satisfying some functional requirements. In such approaches, the optimal 

design obtained in the second stage highly depends on the optimality of topologies 

obtained from the first stage. Since cost constraint is often not involved in the first 

stage, two-stage approaches of this type do not guarantee that the optimal topology to 

which the optimal design belongs is not screened out in the first stage. 

 

Evolutionary algorithms (EA) have been widely recognized to be able to 

simultaneously handle multiple objectives optimization problems. Genetic 

algorithms (GA) classified under the high class of EA have attracted many 

researchers as an efficient and robust optimization technique suitable for 

simultaneously solving mutli-objective problems. As a result, GA based methods 

able to combine topology and design optimization in a simultaneous way were 

developed. These approaches are based on generating topology and sizing 

components in one optimization process. To force the search process into the feasible 

region, the penalizing strategy was commonly used to add extra cost to solutions 

violating hydraulic constraints. Even such approaches were capable to 

simultaneously handle the optimization processes of topology and design in one 

process, the optimality of solutions was severely affected by the application of 

penalizing strategy in two different ways. First, there is no guarantee that the penalty 

parameters obtained by a trial and error procedure are optimal for the system under 

consideration. Second, severely restricting the search procedure to the region of 

feasible solutions does not guarantee that the optimal topology is always located into 

the feasibility region.       

 

Only few researchers have attempted to incorporate reliability into the problem of 

coupled topology and design optimization of the WDS.  These studies were based on 

coupling topology and design optimization as either a two-stage or a single-stage 
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process, while assessing reliability of solutions obtained from the coupled topology 

and design optimization process(s) in a further separated stage. Since accurately 

assessing reliability is computationally prohibitive in practice, alternative measures 

of hydraulic reliability of the WDS were used. However, the relationship between 

topology, design and reliability is so strong that they should all be integrated in the 

optimization in a simultaneous way. Up to date, no approach simultaneously 

addressing the joint effect of topology, design and reliability has been developed in 

literature. 

 

The goal of this research was to develop a robust and efficient approach able to 

integrate the optimization of topology, design and hydraulic reliability for a WDS in 

a seamless way. This development mainly coped with the issue of simultaneously 

searching into the huge solution space of topology, design and reliability. The 

research carefully solved this issue and developed a robust and practical approach 

able to exploit the solution space in full. As such, the search procedure takes place in 

both the feasible and infeasible regions of the solution space. The development was 

formulated in such a way that no time consuming calibrations are required to apply 

the approach to a WDS.   

 

The developed approach for simultaneous optimization of topology, design and 

reliability of the WDS has been achieved by developing and incorporating a variety 

of new models coupled with employing two models available in literature. First, a 

new model for topology confirmation able to handle any topologic configuration of 

the WDS has been developed and incorporated. This model features in rectifying the 

unrealistic results of isolated nodes and pipes provided by the hydraulic simulator. 

Second, a new model for automatic detection of pipe flow directions capable to deal 

with any set of flow directions has been developed and incorporated. The model 

features in interpreting individual pipe flow directions obtained from the hydraulic 

simulation as a full set of flow directions. Third, a new concept for handling the 

many-objective WDS optimization problem has been developed and implemented. 

The main feature of this concept is the ability to reduce number of objectives 
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involved in the computational process while considering all problem objectives as 

being essential. Finally, a new concept for handling redundant codes associated with 

implementing binary coded genetic algorithms has been developed and implemented. 

To enhance the optimality of search procedure, the approach employs the penalty-

free strategy that enables searching through the regions of feasible and infeasible 

solutions. Accordingly, any proposed solution whether it is hydraulically or 

topologically infeasible could potentially survive throughout the whole optimization 

process.  

 

Two models borrowed from literature have been modified and incorporated. The 

EPANET 2 hydraulic model is used to determine nodal heads and pipe flows. 

EPANET 2 has been modified to provide realistic results when some parts of the 

WDS are isolated from the source. The fast non-dominated sorting and elitist NSGA 

II optimization model is employed to handle the multi-objective optimization 

problem. NSGA II has been modified in such a way that both ranking and diversity 

preservation are carried out within a unified search space. The approach has been 

successfully applied to optimize problems involving topology and design as detailed 

in Chapter four, design and reliability as detailed in Chapter five, and topology, 

design and reliability as detailed in Chapter six. This chapter provides an overall 

summary and general conclusions of the conducted research along with a number of 

recommendations suggested for future work. 

 

 

7.2 SUMMARY AND CONCLUSIONS 

 

7.2.1 Coupled topology and design optimization of WDS 

 

The coupled topology and design optimization approach has been developed to 

obtain the least-cost design of the WDS as detailed in Chapter four. The approach 

mainly combines three models: a new algorithm developed for topology 

confirmation, the EPANET 2 hydraulic simulator and the fast non-dominated sorting 
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elitist multi-objective NSGA II optimization algorithm. The approach incorporates 

three main objectives that were computationally reduced to two objectives. The first 

objective is to minimize design cost typically taken as being function of pipe length 

and diameter. The second objective is to minimize topologic infeasibility to ensure 

that the inter-connectivity of all demand nodes is fully satisfied. This is carried out 

by developing and incorporating a new model for topology confirmation capable to 

detect and quantify the infeasibility of any generated topology. The third objective is 

to minimize hydraulic infeasibility to ensure that all nodal demands are satisfied in 

full. This is done by minimizing the deficit in nodal pressures among all demand 

nodes making up the proposed design.  

 

The new model for topology confirmation has been developed to deal with any 

generated topology that could contain parts isolated from the supplying source(s). 

Both the second and third objectives were aggregated into a single objective known 

as infeasibility. As such, the infeasibility implements two objectives at a time. The 

infeasibility objective is able to recognize whether a design is both topologically and 

hydraulically feasible or only hydraulically infeasible or hydraulically feasible but 

topologically infeasible or both topologically and hydraulically infeasible. 

Furthermore, the infeasibility objective has provided great advantage to reducing 

computational complexity of the coupled topology and design problem. The penalty-

free strategy proposed for handling constraints in genetic algorithms is used to 

enhance the convergence procedure of the approach by the potential of approaching 

the optimal solution through the regions of feasible and infeasible solutions. Most 

importantly, the penalty-free strategy has the advantage of alleviating the ad-hoc 

procedure encountered in applying the penalizing strategy.  

 

The approach has been applied to three benchmark networks taken as case studies: a 

branched single-source hypothetical network; a branched multi-source real network; 

and an 18-loop multi-source real network. For the three cases, the approach has 

achieved new designs that are cheaper than those in literature while just exploring an 

extremely small part of the whole solution space. The application of the penalty-free 
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strategy has enabled the approach to maintain the zero-cost design generated by 

removing all pipes from the topology composed of the full set of pipes. This 

important design is advantageous to topology optimization by ensuring the action of 

pipe removal when selecting such a design in the reproduction process.  The 

approach has demonstrated robustness and consistency in converging at the optimal 

solution when initiated from different starting points. In all case studies, the optimal 

solution has been identified more than once. Even in runs where the optimal solution 

has not been reached, the approach identified good solutions that are cheaper or 

marginally more expensive than those previously obtained in literature.       

 

 

7.2.2 Maximum entropy design optimization of WDS 

 

The global and local maximum entropy design optimization approach has been 

formulated to couple reliability with the design optimization of the WDS as detailed 

in Chapter 5. The reliability is measured in terms of statistical entropy previously 

proven to increase in line with hydraulic reliability. The approach maximizes entropy 

of actual pipe flows in two different ways. First, it is locally maximized with respect 

to the maximum entropy group to which the design belongs. Second, it is globally 

maximized in reference with the global maximum entropy group (GME) being the 

highest among all proposed designs. The approach has effectively addressed the 

issue of flow directions associated with calculating entropy of the WDS. A new 

model for automatic detection of flow directions able to handle any set of flow 

directions has been developed and incorporated. To calculate actual entropy and 

maximum entropy for each proposed design, the model assembles individual pipe 

flow directions obtained from the hydraulic simulation into a full set of flow 

directions. The formulation has also included a proposed method for handling many-

objective problems. The approach mainly combines three models: a new algorithm 

developed for automatic detection of flow directions, the EPANET 2 hydraulic 

simulator and the fast non-dominated sorting elitist multi-objective NSGA II 

optimization algorithm.  
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The approach is a penalty-free many-objective problem that involves four main 

objectives. The first objective is to minimize design cost typically dependent on pipe 

length and diameter. The second objective is to minimize the total deficit in pressure 

among all demand nodes in order to ensure full satisfaction of nodal demands. The 

third objective is to locally maximize actual entropy with respect to the maximum 

entropy group to which the design belongs. The fourth objective is to globally 

maximize entropy with respect to the maximum entropy group that is the highest 

among all proposed designs. As such, four entities are evaluated for each proposed 

design: cost, hydraulic infeasibility, actual entropy and maximum entropy. The goal 

of maximizing entropy both locally and globally while minimizing cost and 

hydraulic infeasibility is to achieve a set of feasible designs well distributed between 

the minimum maximum entropy minimum cost design (MMEMC) and global 

maximum entropy minimum cost design (GMEMC).  

 

 

The approach has been applied to two benchmark networks taken as case studies 

from literature: 6-loop single-source hypothetical network and 29-loop multi-source 

real system. In the first case, a new GME that is the highest in literature has been 

achieved. Given the approach is a many-objective problem of which the solution 

method experiences severe difficulties, a new method that aggregates three 

objectives and deals with them as being essential in the solution procedure has been 

proposed.  An extensive analysis of the effect of aggregating objectives as opposed 

to separating objectives on the overall performance of the approach has been carried 

out. The concept of aggregating objectives outperformed that of separating objectives 

in terms of efficiency, robustness, performance and consistency of achieved results. 

Even though the approach uses penalty-free strategy, aggregating objectives was 

very advantageous to increasing number of feasible solutions consistently distributed 

between the MMEMC design and the GMEMC design. The formulation of 

aggregating objectives was applied to design the second case. The results showed 

that the approach is consistently robust and efficient in providing a significant 

number of optimal maximum entropy designs.      
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7.2.3 Joint topology, design and reliability optimization of WDS 

 

The joint topology, design and reliability optimization approach has been developed 

to tackle the extremely complex design problems associated with establishing a new 

water distribution system while taking into consideration improving the long-term 

hydraulic performance of the system. The approach is the first in literature capable to 

identify the optimal designs based on determining topology, design and reliability of 

the WDS simultaneously. The approach alleviates the necessity of dividing the 

topology, design and reliability optimization into a sequence of separated stages as 

detailed in Chapter 6. The formulation couples the developed approach of coupled 

topology and design detailed in chapter 4 with the developed approach of design and 

reliability along with incorporating all involved models. As such, the merged 

approaches yield an extremely complex many-objective problem that involves six 

main objectives that form a huge objective space.  

 

The main objectives involved include: minimizing design cost; minimizing topologic 

infeasibility; minimizing hydraulic infeasibility; local maximization of entropy; 

global maximization of entropy; and minimizing topologic complexity in the form of 

number of pipes making up the topology. The latter objective has been principally 

introduced to quantify topologic structures. Accordingly, the approach evaluates each 

proposed design based on determining six entities: it generates topology and 

accordingly quantifies topology infeasibility, sizes components making up the 

topology and evaluates cost, evaluates hydraulic infeasibility of the resulting design, 

calculates both actual and maximum entropy values and evaluates local and global 

maximum entropy components, and counts number of pipes. All these entities are 

involved in a simultaneous way and equally dealt with in the search procedure. 

 

Due to the success of aggregating objectives concept proposed in the present 

research to handle the many-objective problem of the WDS, it has been applied in 

the present approach to tackle the increased number of involved objectives. The 

objectives of minimizing topologic infeasibility and minimizing hydraulic 
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infeasibility have been aggregated with the objectives of local and global 

maximization of entropy to form a single minimization objective. Accordingly, the 

number of objectives involved in the computational solution of the approach has 

been dramatically reduced by half whilst considering all aggregated objectives as 

being essential. In other words, no objective is considered redundant and all 

objectives contribute in determining the optimal solutions of the optimization 

process.    

 

Motivated by the concept of generating topologies, a new rational method for 

handling redundant codes associated with implementing binary coded genetic 

algorithms has been proposed and incorporated. The concept adds a set of fictitious 

pipe sizes to the actual pipe sizes in order to overcome the problem of redundancy in 

binary coding representation.  

 

The approach has been applied to two benchmark networks taken as case studies: 6-

loop single-source hypothetical network and 18-loop multi-source real system. In 

both cases, the approach demonstrated the ability to identify the effect of topology 

optimization on saving cost and increasing reliability. The topology composed of the 

minimum number of pipes satisfying topologic constraint has been indentified to 

produce the MMEMC design, which is the cheapest feasible maximum entropy 

design. The topology composed of the full set of pipes has been maintained to yield 

the GMEMC design, which is the most reliable design in terms of maximum entropy. 

In between these two designs, a variety of maximum entropy minimum cost designs 

with different compromise between cost and entropy have been obtained.  

 

The approach even has demonstrated ability to maintain hydraulically feasible 

designs not satisfying topologic constraints. Further cheaper hydraulically feasible 

maximum entropy designs belonging to branched and partially looped topologies 

have been obtained. Thanks to the penalty-free strategy that enabled maintaining the 

zero-cost design that enhances generating new topologies in each optimization 

process. The results obtained from the concept of fictitious pipe sizes have been 
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encouraging. All fictitious pipe sizes have been selected naturally in the early 

generations of the search process. Then, they were gradually removed one by one 

starting with the largest fictitious pipe size.   

 

 

7.3 SUGGESTIONS FOR FUTURE WORK 

 

The present research has addressed a great scope of the WDS design optimization 

problem. However, there are still some gaps need to be filled by carrying out further 

investigation in order to improve and complete the present study to cover a wider 

scope of the WDS optimization problem. The main issues suggested herein are 

presented and discussed below.        

 

The difficulty associated with searching into the huge search space of topology, 

design and reliability of the WDS has been demonstrated to be extremely large for 

real-world systems. The developed approach for joint topology, design and reliability 

optimization of the WDS has been shown to be efficient and robust when applied to 

small networks. This completely clears the way for extending the scope of the 

present research to cover aspects that can enhance the search procedure of the GA. 

One suggestion towards that is to apply the concept of search space reduction in 

order to improve the convergence properties of the GA. This can be done in line with 

conducting further sensitivity analyses on optimality of GA parameters that suit a 

particular problem such as the effect of population size on convergence properties of 

the GA. 

 

The success of the developed topology, design and reliability optimization approach 

in obtaining optimal designs for networks analysed under steady-state condition 

strongly suggests extending the present study to cover longer periods of time using 

extended period simulation analysis. This will widen the scope of the optimal 

maximum entropy minimum cost designs to include the operation of pumps, storage 

tanks and valves. As such, further operating conditions other than focusing on the 
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peak periods considered in steady-state analysis need to be incorporated in the 

suggested the extended scope.  

 

The suggestion of coupling the present research with rehabilitation of the WDS is 

also worth investigating. The action of removing a pipe taken in the topology 

optimization could provide better decision than the action of lining or adding a 

parallel pipe taken in the rehabilitation process.      

 

One important aspect suggested for widening the scope of the present research is to 

investigate the effect of the developed approach on water quality. The developed 

approach integrates the EPANET hydraulic model and the multi-objective NSGA II. 

EPANET 2 is able to evaluate different parameters for measuring water quality such 

as water age that can be handled as a minimization objective by NSGA II. The 

incorporation of water quality into the present research appears to be highly feasible 

and can be easily implemented. 

 

The development of a new method proposed for handling redundant codes in binary 

coded genetic algorithms suggests that the time is ripe to assess and carry out further 

investigations on the performance of the proposed method in comparison with other 

methods proposed in GA literature. One aspect need to be investigated is the effect of 

the method of handling redundant codes on the convergence properties of the GA.  

 

Another important aspect suggested for extending the present research scope is to 

employ more realistic hydraulic analysis model. The present research employs the 

demand-dependent analysis model (DDA) to evaluate nodal heads and pipe flows 

that satisfy hydraulic constraints. The DDA model experiences serious limitations 

when there is no sufficient pressure within a network. It yields misleading and 

unrealistic nodal pressures because of the assumption that all nodal demands are 

always fully satisfied irrespective of available nodal heads. The pressure dependent 

analysis models (PDA) are more realistic in depicting the behaviour of the WDS. 

They consider nodal demands as being dependent on nodal heads. Replacing the 
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DDA model with a PDA model such as EPANET-PDX (Seiw and Tanyimboh, 2011) 

is therefore worth doing. Accurately evaluating the hydraulic performance in the 

region of infeasible solutions could effectively enhance guiding the search 

procedures towards optimal solutions especially when large proportions of infeasible 

solutions are generated. 

 

The present research implements the fast non-dominated sorting elitist NSGA II 

optimization model using the basic operators of single-point crossover and single bit-

wise random mutation operator. Using more advanced operators to implement the 

operations of crossover and mutation could enhance the search process by further 

exploration and exploitation of the search space. Some suggested operators could 

include multi-point or uniform crossover, direction-based crossover, arithmetic 

crossover, directional mutation, inversion mutation and insertion mutation.   
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APPENDIX A 
 

TOPOLOGICAL STATUS DETECTION PROCEDURE 

 
This brief appendix provides an outline description of the topological status detection 

procedure in Steps 1-4 below (i.e. Figs. A1a-d) using the network of Example 1 from 

EPANET 2. Pipes 111, 112 and 113 are closed. Table A1 shows the nodal heads and 

pipe flow rates from EPANET 2 before and after correction following detection of 

the status of the topology.  

                  

(a) Step 1: Illustration of pipe flows from          (b) Step 2: Detection of zero-flow 

status of EPANET 2 with pipes 111-113 closed.          pipe 22. 

                 

 (c) Step 3: Detection of zero-flow status  (d) Step 4: Detection of zero-flow of 

pipes 21 and 122.            status of pipes 31 and 121. 

Figure A1: Illustration of the topology status-detection procedure 
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 Table A1: EPANET 2 results before and after topology status detection 

 

 

 
 
 
 
 
 
 

Flow rates (l/s) Heads (m) 

Pipes Before 

detection 

After 

detection 

Nodes Before 

detection 

After 

detection 

10 115.61 115.61 10 296.20 296.20 

11 91.43 91.43 11 85.44 85.44 

12 21.03 21.03 12 82.27 82.27 

21 -2.92 0.00 13 81.69 81.69 

22 -5.26 0.00 21 -1.58×107 0.00 

31 1.87 0.00 22 -1.58×107 0.00 

110 -46.22 -46.22 23 -1.58×107 0.00 

111 0.00 0.00 31 -1.58×107 0.00 

112 0.00 0.00 32 -1.58×107 0.00 

113 0.00 0.00    

121 8.18 0.00    

122 4.44 0.00    
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APPENDIX B 

 

INPUT DATA FOR EXAMPLES IN CHAPTER FOUR  

 

Table B-1: Binary representation and unit costs for pipes of Example 1 

Index Pipe diameter (mm) Cost ($/m) Pipe status Coding 

0a Not applicable 0 Closed 0000 

1 Not applicable 0 Closed 1000 

2 Not applicable 0 Closed 0100 

3 80 23 Open 1100 

4 100 32 Open 0010 

5 120 50 Open 1010 

6 140 60 Open 0110 

7 160 90 Open 1110 

8 180 130 Open 0001 

9 200 170 Open 1001 

10 220 300 Open 0101 

11 240 340 Open 1101 

12 260 390 Open 0011 

13 280 430 Open 1011 

14 300 470 Open 0111 

15 320 500 Open 1111 

a Represents any candidate pipe that is not included in a topology 

 

Table B-2: Pipe and node details of example 2 

Pipe 
Start 

node 

End 

node 

Length 

(m) 
Node 

Demand 

(L/s) 

Required Head 

(m) 

1 1 2 760 1 165 75 

2 1 4 520 2 220 74 

3 1 6 890 3 145 73 
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4 2 3 1120 4 165 72 

5 2 5 610 5a - - 

6 2 6 680 6 140 73 

7 3 5 680 7 175 67 

8 3 7 870 8 180 72 

9 4 8 860 9 140 70 

10 4 9 980 10 160 69 

11 5 7 890 11 170 71 

12 5 10 750 12 160 70 

13 6 9 620 13 190 64 

14 6 10 800 14 200 73 

15 7 12 730 15 150 73 

16 7 13 680 16a - - 

17 8 9 480 17 165 67 

18 8 15 860 18 140 70 

19 9 11 800 19 185 70 

20 9 14 770 20 165 67 

21 10 11 350 

 22 10 12 620 

23 11 12 670 

24 11 16 790 

25 11 18 1150 

26 12 13 750 

27 12 17 550 

28 13 17 700 

29 14 15 500 

30 14 16 450 

31 14 19 750 

32 15 19 720 

33 16 18 540 

34 16 19 700 
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35 17 18 850 

36 18 20 750 

37 19 20 970 

          aSource node 

 

Table B-3: Binary representation and unit costs for pipes of Example 2 

Index Pipe diameter (mm) 
Cost 

(units/m) 
Pipe status Coding 

0a Not applicable 0 Closed 0000 

1 Not applicable 0 Closed 1000 

2 Not applicable 0 Closed 0100 

3 125 58 Open 1100 

4 150 62 Open 0010 

5 200 71.7 Open 1010 

6 250 88.9 Open 0110 

7 300 112.3 Open 1110 

8 350 138.7 Open 0001 

9 400 169 Open 1001 

10 450 207 Open 0101 

11 500 248 Open 1101 

12 550 297 Open 0011 

13 600 347 Open 1011 

14 650 405 Open 0111 

15 700 470 Open 1111 
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APPENDIX C 
 

RECORDS OF GA PROGRESS FOR EXAMPLES IN CHAPTER FOUR  
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Figure C-1: Progress of 10 GA runs for branched design of Example 1 
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Figure C-2: Detection of zero-cost solution within one GA run of branched design of 

Example 1 
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Figure C-3: Progress of 20 GA runs for looped design of Example 1 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8 10

Function Evaluations (10
3
)

M
a

x
im

u
m

 I
n

fe
a

s
ib

il
it

y
 (

1
0

3
)

 

 

Figure C-4: Detection of zero-cost solution within one GA run of looped design of 

Example 1 
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Figure C-5: Progress of 20 GA runs for branched design of Example 2 
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Figure C-6: Detection of zero-cost solution within one GA run of branched design of 

Example 2 
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Figure C-7: Progress of 20 GA runs for looped design of Example 2 
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Figure C-8: Detection of zero-cost solution within one GA run of looped design of 

Example 2
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INPUT DATA FOR EXAMPLES IN CHAPTER FIVE 

 

Table D-1: Binary representation and unit costs for pipes of Example 1 

 

Index Pipe diameter (mm) Cost (£/m) Coding 

0 100 25.3 0000 

1 125 35.4 1000 

2 150 46.5 0100 

3 200 71.6 1100 

4 250 100.0 0010 

5 300 131.5 1010 

6 350 165.7 0110 

7 400 202.4 1110 

8 450 241.5 0001 

9 500 282.8 1001 

10 550 326.3 0101 

11 600 371.8 1101 

12 600 371.8 0011 

13 600 371.8 1011 

14 600 371.8 0111 

15 600 371.8 1111 

 

 

Table D-2: Details of node demands and pipe lengths of Example 2 

 

Node Demand (l/s) Pipe Length (m) Pipe Length (m) 

2 5 1 1 48 257.55 

3 3 2 1 49 277.95 
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4 6.5 3 260 50 48.1 

5 10.5 4 600 51 309.11 

6 9.5 5 1200 52 150.25 

7 6.5 6 600 53 174.42 

8 8.5 7 800 54 396.55 

9 9.5 8 200 55 169.47 

10 10 9 500 56 178.62 

11 4.5 10 2100 57 339.77 

12 5.5 11 500 58 98.51 

13 3.5 12 1000 59 458.41 

14 4 13 304.16 60 386.4 

15 5 14 341.16 61 135.01 

16 4 15 210.5 62 559.91 

17 8 16 422.28 63 319.1 

18 6.5 17 529.66 64 193.48 

19 7.5 18 254 65 393.04 

20 6 19 252.9 66 60 

21 8 20 230.65 67 243.45 

22 8.5 21 159.46 68 646.8 

23 2.5 22 456.91 69 236.22 

24 4.5 23 313.99 70 422.08 

25 4.5 24 73.8 71 244.93 

26 7.5 25 192.73 72 5 

27 6 26 176.53 73 31.84 

28 6 27 124.94 74 258.71 

29 8 28 478.71 75 154.7 

30 7.125 29 282.03 76 229.87 

31 9 30 262.9   

32 8.625 31 202.43   

33 5 32 52.91   

34 11.5 33 154.54   
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35 16 34 352.16   

36 16 35 165.08   

37 13 36 325.05   

38 10 37 377.94   

39 6.625 38 275.39   

40 8.5 39 239.08   

41 6 40 404.28   

42 6.5 41 367.51   

43 10 42 391.18   

44 16.5 43 229.78   

45 18.5 44 404.76   

46 9 45 215.2   

47 5.5 46 575.37   

48 4.625 47 210.89   

 

 

 

Table D-3: Binary representation and unit costs for pipes of Example 2 

Index Pipe diameter (mm) Cost (€/m) Coding 

0 150 271.94 000 

1 200 299.43 001 

2 250 328.01 010 

3 300 359.54 011 

4 350 399.03 100 

5 400 438.63 101 

6 450 461.34 110 

7 500 502.78 111 
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APPENDIX E 

 

INPUT DATA FOR EXAMPLES IN CHAPTER SIX 

 

 

Table E-1: Pipe size representation and unit costs for network 1 

Pipe size Pipe diameter (mm) Cost (£/m) Pipe status Coding 

0a Not applicable 0 Closed 0000 

1 100 25.3 Open 1000 

2 125 35.4 Open 0100 

3 150 46.5 Open 1100 

4 200 71.6 Open 0010 

5 250 100.0 Open 1010 

6 300 131.5 Open 0110 

7 350 165.7 Open 1110 

8 400 202.4 Open 0001 

9 450 241.5 Open 1001 

10 500 282.8 Open 0101 

11 550 326.3 Open 1101 

12 600 371.8 Open 0011 

13 650 419.2 Closed 1011 

14 700 468.5 Closed 0111 

15 750 519.6 Closed 1111 

a Represents any candidate pipe that is not included in a topology; i.e. NCMij = 0. 
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Table E-2: Pipe size representation and unit costs for network 2 

 

Pipe size Pipe diameter (mm) 
Cost 

(units/m) 
Pipe status Coding 

0a Not applicable 0 Closed 0000 

1 125 58 Open 1000 

2 150 62 Open 0100 

3 200 71.7 Open 1100 

4 250 88.9 Open 0010 

5 300 112.3 Open 1010 

6 350 138.7 Open 0110 

7 400 169 Open 1110 

8 450 207 Open 0001 

9 500 248 Open 1001 

10 550 297 Open 0101 

11 600 347 Open 1101 

12 650 405 Open 0011 

13 700 470 Open 1011 

14 750 520.9 Closed 0111 

15 800 591.7 Closed 1111 

a Represents any candidate pipe that is not included in a topology; i.e. NCMij = 0. 
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DETAILS OF SELECTED SOLUTIONS IN CHAPTER SIX 

 

Table F-1: Selected low ME solutions from the merged POF of Example 1 

Pipe diameters (mm) 

Least cost solution indicated Pipes Best infeasible 

solution Branched Partly looped Fully looped 

1-12 250 200 200 200 

1-2 150 150 200 150 

1-4 200 - - - 

2-5 - - 200 150 

3-12 350 400 400 400 

3-4 - 350 150 300 

3-6 350 200 350 250 

4-5 150 150 100 150 

4-7 - 300 - 300 

6-7 300 - 300 - 

6-9 200 200 150 200 

7-8 250 250 250 250 

7-10 200 200 200 - 

8-11 200 200 200 250 

9-10 - - - 250 

10-11 - - - 100 

Cost (£106) 1.042 1.050 1.076 1.173 

Critical node 11 11 11 10 

Surplus head at 

critical node (m) 
-6.92 +0.50 +0.84 +1.91 

Number of pipes 11 11 12 13 

Number of loops 0 0 1 2 

Entropy 2.361 2.361 2.389 2.367 

ME-S 0.000 0.000 0.017 0.102 

GME-ME 1.232 1.232 1.189 1.124 

ME group 17 17 16 11 

AIM 22.376 12.232 7.205 1.226 
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LIM 11 11 6 0 

HIM (m) 10.144 0 0 0 

Solution number 

in Table 6.2 
Not applicable 26 25 14 

 

Table F-2: Selected high ME solutions from the merged POF of Example 1 

Pipe diameters (mm)a 

Least cost solution indicated Pipes 

3-loop 4-loop 5-loop 6-loop GME 

1-12 350 450 350 350 450 

1-2 300 550 250 125 400 

1-4 300 300 300 300 300 

2-5 200 350 300 125 450 

3-12 300 200 300 350 200 

3-4 - 300 300 350 350 

3-6 300 400 - 200 300 

4-5 200 400 300 300 550 

4-7 100 200 200 350 200 

5-8 250 - 350 150 125 

6-7 200 300 400 200 400 

6-9 200 100 250 200 100 

7-8 - 350 350 200 450 

7-10 - - - 100 200 

8-11 200 300 200 200 300 

9-10 200 200 200 125 250 

10-11 100 350 250 300 300 

Cost (£106) 1.272 2.235 1.871 1.593 2.522 

Critical node 10 9 10 10 9 

cSurplus head at 

critical node (m) 
+3.44 +8.63 +5.86 +9.82 +19.73 

Number of pipes 14 15 16 17 17 

Number of loops 3 4 5 6 6 

Entropy 2.648 3.448 3.395 3.257 3.593 

ME-S 0.076 0.002 0.003 0.073 0.000 

GME-ME 0.869 0.143 0.195 0.262 0.000 

ME group 9 6 7 2 1 
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AIM 0.945 0.145 0.198 0.335 0.000 

LIM 0 0 0 0 0 

HIM (m) 0 0 0 0 0 

Solution number 

in Table 6.2 
12 9 10 2 1 
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