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Abstract

In order to design sensors and systems that can be sensitive to small signal levels

even when immersed by background noise, may require out-of-the-box thinking.

Biology can provide inspiration to achieve that, allowing the engineering land-

scape to borrow interesting ideas with the aim to solve current human problems.

Biological sensor, system and signal processing designs are a result of many mil-

lion years of evolutionary processes, which make them very-power efficient and

well-adapted to perform their functions in a living organism. This thesis is an ex-

ample of how acoustic engineering can look into biology in order to get inspiration

to design novel ways for detecting, encoding and processing sound information.

Sometimes the challenges behind innovation are on finding the proper tools to

conceptualize and prototype novel ideas. Bio-inspired engineering offers a possible

pathway for new technological advances using theoretical reasoning and appro-

priate physical modelling. Therefore, this body of work is a research study, which

borrows ideas from biology and employs engineering techniques to prototype some

new concepts of sensors, systems and signal processing. Moreover, it suggests an

unconventional methodology in acoustic engineering, aiming to demonstrate that

novel acoustic sensor system concepts can perform peripheral signal processing

at the transducer level such like some natural sensory systems do. Here, from

the engineering perspective, the aim is to delay as much as possible the dig-

italization task while exploiting analogue mechanical-electrical-feedback based

computations, therefore, a smart acoustic sensory system concept can be created
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targeting real-time signal processing applications.
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Chapter 1

Introduction

1.1 Motivation

Advances in recent decades in acoustic sensors, systems and signal processing

methodologies, have been mainly focused on digitally processing the acoustic in-

formation received by a microphone – therefore, known as digital audio systems.

Conventionally, microphones are designed with a broad and static frequency re-

sponse, aiming to cover the spectrum of frequencies related to the human auditory

system (e.g., 20 – 20 kHz). Their designs are meant to be simple to address gen-

eral purpose applications, which might not be as flexible or adaptable enough to

deal with some signal requirements.

Generally, the basic audio signal processing framework approach follows a

static feed-forward configuration, with the sound detected by the microphone

being fed to the digital signal processor and then to a receiver, which can be

a loudspeaker, headphones or any kind of output signal interface associated to

a particular system application. The microphone is meant to perform the first

stage of signal processing such as detecting and mechanically filtering the signal;

the digital processor digitises it, enhances it - to suit a particular application, for

instance by computing noise-reduction algorithms, including filtering, compress-
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ing and amplifying the signals; and then converting the signals into the receiver’s

dynamic range such as sounds that can be perceivable by the human hearing

system, at best.

In this current state, a fully-digital and static feed-forward signal processing

approach may encounter some challenges to further improve some fundamental

system requirements such as power consumption and processing latency in the

main signal pathway (e.g., microphone → processor → receiver). Moreover, dig-

ital audio signal processing is incurred by analogue-digital and digital-analogue

conversions, which consume energy, and the time latency that is spent on compu-

tation such as processing and streaming data between digital buffers. Therefore,

there might be some potential for the creation of new paradigms on signal process-

ing methodologies based on novel and bio-inspired sensory-system technologies.

1.2 Thesis Proposal and Novelty

The work described throughout this thesis aims to present a novel concept of

signal processing framework in acoustic sensors and systems, where the detector,

which can be considered any kind of sound detector or transducer at audio or

ultrasonic range, or both, can be adaptable and therefore capable of computing

input information. The novelty of this signal processing methodology relies on

a recursive approach that is inspired by nature. For instance, some auditory

systems can adapt the acoustic response of their front-end sensors through feed-

back mechanisms based on previous acoustic inputs, which help them to detect

or predict signals of interest. Therefore, improving their ability to hear sounds

masked by noise. In contrast with the feed-forward processing approach of man-

made systems – Figure 1.1 (A), in nature there is evidence of feedback loops used

for signal computation between the front-end acoustic detector and the back-end

signal processors - Figure 1.1 (B).
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Figure 1.1: Sound processing framework approaches. (A) Standard feed-forward
signal processing approach; (B) Bio-inspired based feedback signal processing ap-
proach. Where MIC represents the acoustic sensor such as a microphone, AFE
is the analogue front-end circuits and systems used for the signal conditioning
stage, SP represents any kind of signal processor either analogue, digital or both
combined, and R represents any kind of system’s output interface such as a loud-
speaker.

The bio-inspired feedback processing approach that is illustrated in Figure

1.1 (B) is a concept where the transducer becomes part of the signal processing

chain by exploiting feedback control processes (e.g., slow and fast mechanisms)

between mechanical (e.g., microphone’s diaphragm) and electrical systems (e.g.,

analogue, digital or both back-end processor types) that together can enhance pe-

ripheral signal processing, while changing the effective mechanical characteristics

of the front-end sensor such as the spring constant and quality factor. The goal

is to provide a new methodology for sound processing that may help to improve

the performance of a signal processing task while keeping low-power consump-

tion levels and reduced latencies on processing sensory signals as the following

describes:

1. Adaptive analogue computation at the sensor level, which can potentially

improve both, sound detection in noisy environments and output signals

much faster than digital based computation as employed by conventional

man-made feed-forward digital sound processing systems;
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2. Reducing the amount of digital signal processing operations within the main

signal path so that the overall power consumption spent on digital com-

putation might be less demanding – balancing digital usage with further

analogue computation when applied;

3. Decreasing the signal processing latency by reducing both the amount of

data processing and data streaming exchanged between digital buffers –

therefore, exploiting analogue computation in the main signal path, exclu-

sively;

4. Moving the digital processing operations to the feedback signal path may

allow the use of more sophisticated signal-detection and noise-reduction

algorithms such as the ones based on statistical methods – trade-off with

point (2).

Assuming a basic configuration, then the above-mentioned signal feedback

computation methodology is intended to include at least two main functions:

• Frequency agile tuning: adapting the spring factor, hence the resonance fre-

quency (ω0) of the front-end detector (e.g., microphone or ultrasonic trans-

ducer). This function is intended to be based on a slow-feedback adap-

tation process, which feedbacks compatible signals to a custom-designed

microphone (e.g., sound detector) based on previous n-cycles of the input

sound signal. This is a modality that can be used, for instance, to tune the

frequency response of the microphone(s) with a targeted sound(s), or to set

a desired resonant response of the sensor upon fabrication;

• Active nonlinear amplification: adapting the Q-factor of the front-end sen-

sor (e.g., microphone or ultrasonic transducer). This function is meant to

be a fast-feedback adaptation process, which feedback compatible signals

to a custom-designed microphone based on cycle-by-cycle computation of
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previous inputs. This modality might be used, for instance, to compress

and amplify acoustic signals at the transducer level.

Nevertheless, these two feedback computation modalities can either be sup-

ported by analogue systems, digital systems, or both without interfering with the

main signal path, therefore they are meant to be compatible with critical and

real-time signal processing applications.

1.3 Research Objectives

The aim of research was essentially to broadly understand how natural sensors

and systems detect and process acoustic information, which allow living organisms

to explore and being aware of the surrounded environment. Topics covered by

this Ph.D. research study include:

• Modelling acoustic sensors and systems inspired by nature: firstly,

it was fundamentally important to start the study from how natural sensors

and systems transform sound into bio-electrical signals. Thereafter, that

knowledge and understanding were translated into the engineering point of

view. Concurrently, it was essential to outline some mathematical meth-

ods, which allowed the creation of theoretical models to evaluate sensory

responses based on the bio-inspired acoustic sensors and systems studied;

• Transduction and design methods: conversion of acoustic/mechanical

energy into a form of electrical information. Transducer design techniques

were outlined and state-of-the-art models, materials, fabrication, and trans-

duction methods that could be integrated in the creation of new physical

prototypes based on biological acoustic sensors and systems designs were

considered;
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• Signal processing: nature has magnificent ways to process acoustic sig-

nals. For instance, frequency selectivity, and nonlinear amplification can

be considered interesting functions to enhance signal-to-noise conditions in

the ears of some animals. Certain elements were studied from the biological

reports and used as inspiration to develop a new kind of signal processing

framework based on slow and fast feedback computation processes;

• Computational methods: engineering tools can be used in multiple ways

to approach identical problems. However, it is necessary to evaluate whether

a system is efficient or not in order to optimize computational costs ver-

sus the amount of information processed, while executing a particular task.

Therefore, some computational methods were studied with particular em-

phasis on methods inspired by nature that are considered by the literature

as efficient to address some engineering problems as the work developed in

this research thesis aims to aspire.

1.4 Contributions

The main contributions of this Ph.D. research thesis include the development of

a novel theoretical model approach based on feedback control theory applied

to acoustic sensors and systems, which was derived from the study and un-

derstanding of the biological counterparts. Additionally, there was creation of

physical embedded system setups, including three new sensor designs and asso-

ciated purpose-built circuits and systems that faithfully replicate some acoustic

responses as similarly reported from biological studies. Overall, a smart acoustic

sensor system concept is prototyped, which potentially allow sensor, circuit and

system designers to address real-time sound processing applications in an uncon-

ventional way. During the realization of this thesis two IEEE journal articles

were published and another one is in preparation, and three other IEEE confer-
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ence papers were presented to three different international audiences and another

one is correctly in review process to be potentially presented in another IEEE

upcoming conference, among other abstract papers also presented, as follows:

1.4.1 Journal articles:

• J. Guerreiro, J. C. Jackson and J. F. C. Windmill, “Simple Ears Inspire

Frequency Agility in an Engineered Acoustic Sensor System”. IEEE Sensors

Journal, 17(22): 7298 – 7305, 2017;

• J. Guerreiro, A. Reid, J. C. Jackson and J. F. C. Windmill, “Active Hearing

Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System”.

IEEE Transactions on Biomedical Circuits and Systems Journal, 12(3): 655

- 664, June 2018;

• J. Guerreiro, A. Reid, J. C. Jackson and J. F. C. Windmill, “Frequency Agile

Tuning and Nonlinear Compressive Amplification Embedded in a Hybrid

Piezo-Capacitive MEMS Microphone”. (In preparation, November 2018).

1.4.2 Conference papers:

• J. Guerreiro, J. C. Jackson and J. F. C. Windmill, “Bio-inspired Frequency

Agile Acoustic System”. Proceedings on IEEE Sensors Conference 2016,

Orlando, Florida, USA;

• J. Guerreiro, A. Reid, J. C. Jackson and J. F. C. Windmill, “Bio-inspired

Active Amplification in a MEMS Microphone using Feedback Computa-

tion”, Proceedings on IEEE Biomedical Circuits and Systems Conference

2017, Turin, Italy;

• J. Guerreiro, A. Reid, J. C. Jackson and J. F. C. Windmill, “Towards

the Development of a Frequency Agile MEMS Acoustic Sensor System”.
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Proceedings on IEEE Sensors Conference 2017, Glasgow, UK;

• J. Guerreiro, J. C. Jackson and J. F. C. Windmill, “Enhancing Acous-

tic Sensor Responsiveness Exploiting Bio-inspired Feedback Computation”.

(Currently in review process, November 2018).

1.4.3 Conference abstracts:

• J. Guerreiro, A. Reid, J. C. Jackson and J. F. C. Windmill, “Bio-inspired

Frequency-Adaptive Acoustic System”, Proceedings on Speech is Noise Work-

shop 2018, Glasgow, UK;

• J. Guerreiro, A. Reid, J. C. Jackson and J. F. C. Windmill, “Fully-Adaptive

Embedded MEMS Acoustic Sensor System”, Proceedings on International

Hearing Aid Research Conference 2018, Tahoe City, California, USA.

1.4.4 Awards:

• Best student paper award for the paper entitled: "Bio-Inspired Frequency

Agile Acoustic System" at IEEE Sensors Conference 2016, Orlando, Florida,

USA;

• 1st position award at the IEEE International "Sensors and Measurements"

student contest, presenting a live demo of the project entitled: "Multimodal

Sensing System for Hearing Enhancement and Research", IEEE Sensors

Conference 2017, Glasgow, Scotland, UK;

• Student scholarship travel award to sponsor the work presented: "Fully-

Adaptive Embedded MEMS Acoustic Sensor System" at the International

Hearing Aid Research Conference 2018, Tahoe City, California, USA.
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1.5 Document Organization

The remainder of this document is organized as follows:

• Chapter 2 outlines the background knowledge relating to fundamentals of

acoustics, biological sensors, circuits and systems, as well as some state-of-

the-art in engineering trends based on MEMS microphones technology;

• Chapter 3 describes a novel bio-inspired frequency agile acoustic sensor

system concept exploiting feedback computation (e.g., slow adaptation pro-

cess);

• Chapter 4 presents a bio-inspired active nonlinear amplification concept in

acoustic sensors and systems based on cycle-by-cycle feedback computation

(e.g., fast adaptation process);

• Chapter 5 presents the experimental results of a novel embedded acoustic

sensor system and signal processing framework, combining the concepts

described in Chapter 3 and 4;

• Chapter 6 describes the design and architecture of a new embedded acous-

tic sensor system, including a MEMS microphone and the analogue con-

ditioning, driving and computational circuits and systems used to provide

real-time results based on a novel bio-inspired audio signal processing frame-

work;

• Chapter 7 summarizes the main conclusions of this research work.
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Chapter 2

Background Knowledge

Fundamentals of Acoustic Signals and Biological

Sensors and Systems

Sound is produced by nature as a form of mechanical energy (i.e., acoustic in-

formation) that typically propagates through a medium (e.g. air, water, etc.).

When available within the medium, acoustic information can be detected by

means of an appropriate sensory apparatus. Sound perception or audition (hear-

ing) is considered as one of the fundamental senses available in living organisms,

humans included. Biological sensors and systems are masters of finely resolve

specific sound signatures within a broad spectrum of acoustic information. The

aim of this chapter is to describe some fundamental and background knowledge

related to signals and sensory apparatus required to detect and process acoustic

signals, focusing on biological sensors and systems. Additionally, it highlights the

fact that acoustic engineering can take inspiration from nature in order to design

novel and unconventional ways to detect and process sounds.
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2.1 The Physics of Sound

Acoustic signals are produced by nature and they can be at different frequency

ranges. For instance, infrasound signals are the ones composed of low-frequencies

such as below 20 Hz (e.g., elephant’s communication, earthquake sounds, etc.);

audio signals are considered the ones compatible with the human hearing system,

which are located at frequencies between 20 Hz and 20 kHz; and ultrasound

signals are normally frequencies above 20 kHz up to hundreds of kHz (e.g., bat

echolocation calls, dolphins communicating signals, etc.). Nevertheless, within

engineered systems, ultrasonic frequencies can reach up to GHz range such as the

ones used in acoustic microscopy applications [22].

There is broad literature related to acoustics, showing that sounds can be

transmitted exploiting the physical properties of materials [23]. For instance,

some matters can propagate sounds faster than others, namely water (c0 = 1460

m/s @ 20o C) and air (c0 = 343 m/s @ 20o C), respectively. Many studies sup-

port the fact that sound is a form of mechanical energy that can be propagated

through some media such as gases, liquids or solids due to intrinsic particle inter-

actions [24]. It means that in the absence of matter, sound cannot be propagated

such as in outer space or vacuum. Fundamental principles of sound detection

and transduction have been reported in several works in biology and also within

engineering fields [25], [26]. Nevertheless, the physical principles used to retrieve

acoustic information from the environment are phenomena widely evolved and

resolved by biological acoustic sensors [27]. Many millions of years of biologi-

cal evolution enabled the creation of the most energy-efficient and size-adapted

acoustic detectors ever invented, which faithfully suit individual needs. Biological

sensors and systems have been shaped by genetic replications and modifications

throughout many generations in order to overcome the challenges imposed by the

laws of physical acoustics. Therefore, biological acoustic sensors are well-adapted
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to retrieve sounds from the environment such as very small mechanical vibrations,

which resonate within someone’s ears.

Part of the acoustic energy that is produced is lost through the process of sig-

nal transmission and reception. In other words, part of the signals generated by a

sound source are attenuated due to intrinsic absorption imposed by the communi-

cation channel - the medium (e.g. air); and also reflected and lost when reaching

the receptor. Sound intensity is decreased as a function of distance travelled

mainly due to the relative air humidity, and it is also frequency and temperature

dependent [28]. For instance, considering atmospheric air as the communication

channel, thus acoustic energy can propagate as a longitudinal travelling wave

containing two components such as sound pressure and sound particle velocity.

Acoustic pressure appears due to the compression and rarefaction (expansion)

of the air particle movements within the acoustic wave, whereas, sound parti-

cle velocity is related to the intrinsic fluctuation of particles back-and-forth that

favours the propagation of sound, as illustrated in Figure 2.1. Nevertheless, it

is important to note that at longer distances the pressure component of sound

should be easier to detect than the particle velocity component, since they fol-

low different attenuation tendencies in respect to distance (1
d
vs 1

d2 , respectively,

where d is the distance travelled by sound) [9], ignoring any obstacles that would

obstruct the signal path and/or scatter the energy, which might interfere with

the signal strength as well [29].

As mentioned before, some amount of acoustic energy is lost at the interface

between different materials due to the mismatch of acoustic impedances [23]. This

is a phenomenon well-known in acoustics while transferring energy between media

with different material properties. As a result, only part of that acoustic energy

generated by a transmitter can likely be retrieved by the receiver, since some of

the energy is lost during the process of signal generation, propagation (absorbed

by the medium, obstructed or scattered) and detection (reflected at the boundary
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Figure 2.1: Longitudinal acoustic traveling waves, showing compression and ex-
pansion/rarefaction of particles in the medium (e.g., air). The signal source is
located at the centre of the image. Image adapted from [1].

region of the receiver – acoustic impedance mismatching), consequently. Over-

all, these are some of the challenges imposed by the laws of physical acoustics

on sound detection (i.e. sound is an analogue signal in nature). Therefore, it

might be hypothesized that an acoustic receiver either biological or artificially-

engineered should be well-evolved or designed to overcome the challenges imposed

by the physics of sound, respectively. They should be able to translate very

“weak” and “noisy” analogue signals into faithful information (e.g., bioelectrical

or electrical signals, respectively), which can be interpreted by entities, either bio-

logical or artificial systems. Biological acoustic sensors and systems have evolved

to be capable of retrieving either of the sound components, showing interesting

sensing properties that maximize sound detection and consequent transduction.

Some examples of biological acoustic sensors and systems are discussed in the

following sections of this chapter, including sound pressure and sound particle

velocity methods. Moreover, it is important to note that any acoustic signals
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referred to further in the text are related to airborne sound signals within audio

range (e.g., 20 Hz and 20 kHz), unless otherwise specified. Some examples of bio-

logical sensors, circuits and systems designs and associated mechanical, chemical

and electrical responses are then presented, including details about sound detec-

tion, transduction and processing within human [30] and some insects’ hearing

systems [31].

2.2 Biological Acoustic Sensors, Circuits and Sys-

tems

This section outlines some of the background knowledge about biological acoustic

sensors, circuits and systems as the foundations that inspired the work presented

in this thesis. The main topic of discussion in this section is related to hearing sys-

tems in general, focusing on some interesting mechanisms exhibited by the human

as well as the insects’ auditory organs. Particular emphasis is made on the princi-

ples of sound transduction, signal conditioning and processing. Most interestingly,

biology exploits the natural wiring of circuits and systems with multiple levels of

feedback mechanisms in order to enhance several tasks of signal processing within

the auditory pathway. Moreover, the process of sound conditioning includes the

coupling of mechanical with electrical systems. That faithfully enables sensory

adaptation such as tuning and active amplification achieved at the peripheral sen-

sory level. These are fundamental topics exploited in this Ph.D. research study. A

bio-inspired electromechanical feedback mechanism as a method to enable adap-

tive signal processing capabilities performed at the transducer level, and that can

be implemented with engineered acoustic sensor and system techniques as fur-

ther presented later in this thesis. The sense of hearing is accomplished through

the use of highly evolved and complex mechanisms of sound detection, transduc-

tion and processing, which faithfully facilitate communication between animals,
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humans included [32]. The ability to perceive acoustic signals is an important

feature to survive and prosper [33]. There are several features composing acoustic

information such as, sound intensity (or signal amplitude – energy; may quan-

tify the distance between the receiver and transmitter), frequency (associated to

the period of sound traveling through the medium; also it might give indication

about specific features within the sound pattern, specie specific such as speech in

humans, including the pitch of a sound signal) and directivity (the direction of

sound propagation; may quantify the direction or location of the transmitter in

respect to the receiver). In order to retrieve important acoustic information from

the environment, biological acoustic sensors have evolved interesting properties

to face the challenges imposed by the laws of physics [34].

It has been shown that some auditory systems may differ in the components

of sound that they specialise to retrieve from the environment such as pressure

or particle velocity component. However, they might use similar strategies in

order to discriminate the intensity and frequency components of sound. In gen-

eral, mechanical structures that are able to effectively couple acoustic energy are

present at the front-end sensory apparatus. For instance, mechanosensory cells

(hair cells (in vertebrates) and scolopidia (in invertebrates)) with ciliary elements

- fluid-coupled systems that have robustness in the task of transducing mechanical

energy into bio-electrical signalling as a result of stereocilia displacements. Nev-

ertheless, sound perception is accomplished as a combination of passive, active,

adaptive, electromechanical and chemical processes throughout multiple stages of

signal transformation, including feedback and feed-forward computation across

the chain of auditory pathway, as summarized as follows and as Figure 2.2 illus-

trates:

• Signal detection an sound transduction: acousto-mechanical energy

is transformed into bio-electro-chemical signals;

• Signal conditioning: electromechanical amplification and filtering, en-
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hance signals at the sensor periphery, pre-processing stage;

• Signal encoding: electrochemical filtering, signal encoding and compres-

sion of sensory input information;

• High-level signal processing systems: feature extraction and pattern

recognition, regulate and adapt local parameters of the peripheral sensory

system to enhance hearing responsiveness based on past sensory information

processed.

Figure 2.2: Simplified scheme of feed-forward and feedback mechanisms within a
peripheral auditory signal processing chain.

2.2.1 The Human Hearing System

The human peripheral hearing system is composed of three different regions, as

following described and illustrated in Figure 2.3:

1. The outer ear: pinna and auditory canal are responsible for receiving and

conducting the acoustic energy to the middle ear, respectively;

2. The middle ear: tympanic membrane (also called as eardrum or tym-

panum) and the three ossicles (malleus, incus and stapes), which together

perform an important levering mechanism, as illustrated in Figure 2.4 that

effectively transfer energy from air-coupled sounds received by the eardrum
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to the fluid-filled organ – the cochlea, also thought to work as an impedance

matching mechanism;

3. The inner ear or cochlea: it is the end-point of the peripheral auditory

system, which works as a transducer, exploiting the movement of fluids as

mechanical energy (vibrations) that can be converted into equivalent elec-

trical pulses compatible with the nervous system communication protocol.

Figure 2.3: Anatomy of the human ear. c© 2018 Frequency Therapeutics.

It is important to note that the function of the middle ear is very significant

in order to maximize the energy transfer received by the tympanic membrane to

the cochlea. That is thought to rely on two main mechanisms:

1. A scaling factor (≈17×, thus +25 dB gain) between the area of the tympanic

membrane (≈50 mm2) and the input of the cochlea - the oval window (≈3

mm2);
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2. A lever action performed by the three ossicles that can force (≈1.3×, thus

+2 dB gain) the oval window to move. Together, both factors are thought

to have an effect of increasing the overall pressure (+27 dB gain, overall)

at the oval window compared to that on the tympanal membrane in order

to compensate the impedance mismatch between airborne sounds and the

fluids inside the cochlea (-30 dB loss) [35].

Therefore, received signals are then transferred into the cochlea structure

with possibly minimum losses performed by this biological middle ear design, as

illustrated in Figure 2.4.

Figure 2.4: A simplified schematic of the human middle ear. Input sound waves
(Fin) are received by the tympanic membrane, which exerts an input pressure
(Pin) over the membrane. That pressure is then transformed by the levering
action of the three ossicles into a force that pushes the oval window back-and-
forth. Consequently, the output pressure (Pout) at the oval window is then injected
into the cochlea as a travelling force (Fout) that is carried by the movement of
fluids.

The shape of the cochlea looks like a shell of a snail. It is a bony structure that

protects thousands of delicate hearing cells in its interior; in the centre (viewing

through a cross-section image – Figure 2.5 northwest) are the three fluid-filled

chambers – scalae separated by the Reissner’s and basilar membranes. Figure

2.5 shows the organ of Corti, where the auditory receptor cells (e.g., mechanore-

ceptors) are located in between the basilar and the tectorial membranes. Every
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turn-step of the cochlea sets out a different scale of frequency coding, as the

following describes.

Figure 2.5: Zoom into the Organ of Corti highlighting a cross-section of the
cochlea (northwest image showing the three scalae and the organ of Corti sepa-
rated by the Reissner’s membrane and the basilar membrane). Additional cells
and structures (e.g., Hensen’s, Deiter’s and Claudius cells) that compose the au-
ditory organ are also represented in this image, which are used by the hearing
system to give support to sound transduction tasks. c© 2018 Frequency Thera-
peutics.

The acoustic energy that is injected to the inner hear generates travelling

waves that propagate from the base to the apex of the cochlea [36]. The peak of

the induced travelling vibrations changes along with the basilar membrane size

and stiffness. Therefore, the acoustic properties of the organ of Corti change

according to the position in the cochlea. For instance, the basilar membrane is

narrower and stiffer at the base and wider and less stiff as it goes towards the

apex. Therefore, local resonant vibrations appear to represent a place code for
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each independent sound frequency, as illustrated in Figure 2.6 A. In order words,

there is a sort of frequency analysis represented at the basilar membrane level

– low frequencies apically and higher frequencies basilary. Additionally, there is

also a local time code inside the cochlea – higher frequencies make the membrane

vibrate more quickly and lower frequencies more slowly. Consequently, that is

reflected in the speed of charging of associated neuronal cells. Fundamentally,

the basilar membrane and associated sensory neurons become somehow locally

tuned at each specific frequency, and hence it might be seen as a system that

mechanically filters the input sound signals, as illustrated in Figure 2.6 B, showing

evidence of signal processing capabilities that are performed at the peripheral

sensory system level, as follows.

Figure 2.6: A simplified schematic of the uncoiled cochlea structure (e.g., its
natural dimensions are about 32 mm long and 2 mm in diameter) showing the
basilar membrane in the middle (e.g., light yellow colour) that exhibits a place
code for each sound frequency according to its size and stiffness [2]. That exhibits
a kind of bandpass response, accordingly (e.g., mechanical filtering) [3].

In the middle of the cochlea the auditory nerve (cochlear nerve) is found

coming in (see Figure 2.3 and Figure 2.5). Basically, its function is to receive and

send messages from the peripheral sensory system (cochlea) to the brain, and

vice-versa. The neuronal system is capable of keeping track of both codes (e.g.,
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local code and time code) induced by the sensory cells also known as hair cells.

Mechanoreceptor Cells

Hair cells are mechanosensory machines capable of sensing/actuating (with speci-

ficity, as explain later in the text) from/to the input vibrations coupled onto the

basilar membrane. They transduce and conduct the received signals into the

nerve fibers attached onto them. Nerve fibers are considered the highway of neu-

ronal information to/from high-level neuronal networks in the auditory pathway.

There are two types of hair cells in the cochlea, inner hair cells (IHC – around

3,500 cells/ear) and outer hair cells (OHC – around 14,000 cells/ear). Both have

different roles in the process of auditory signal transduction. Nevertheless, they

both have prominent stereocilia, also called microvilli, seated on top of their

cuticular plate that enable the mechanically-induced transduction action [37].

Furthermore, the stereocilia on a single hair cell (in both IHC and OHC), are

linked together at the top of each other (tip-links - proteins) forming a bundle

that is called as hair bundle. In humans, there are about 40 stereocilia elements,

in a bundle, for a given IHC, and about 140 for a single OHC [37]. Each bundle

tends to move together in a pivoting way in response to sound. That is thought

to be the triggering action, activating the mechanically-gated ion channels (e.g.

potassium K+) within the stereocilia. Every time a bundle moves in response

to sound, it opens up ion channels located at the top of each stereocilia, en-

abling K+ influx to the hair cell. These are called as the transduction channels,

which convert mechanical displacements of stereocilia into reciprocal electrical

charge signalling. That happens because the influx of K+ caused by stereocilia

movements tends to positively charge the cell, and therefore evokes receptor po-

tentials, which are voltage-dependent conductances (e.g. voltage-gated calcium

Ca2+ channels) in the basolateral membrane of the hair cells. Consequently,

more Ca2+ channels are open leading to the increase of neurotransmitter synthe-
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sis of the synaptic vesicles at the bottom-end of each hair cell [4]. Excitatory

neurotransmitter (e.g., L-Glutamate) is then released as the input information

received by afferent neurons (via postsynaptic neurite of spiral ganglion neurons)

[4], as illustrated in Figure 2.7. These dynamics are normally called the “passive”

responses exhibited by the interactions between the basilar membrane (from me-

chanical stimuli), mechanoreceptors (from mechanical to electrical to chemical)

and afferent neurons (from chemical to electrical).

Figure 2.7: Auditory nerve fibers and synapses in the organ of Corti, showing the
release of neurotransmitters - e.g., excitatory such as Glutamate or Acetylcholine
(ACh) and inhibitory such as gama-Aminobutyric acid (GABA) from/to hair cells
to/from the nerve fibers (via afferent and efferent, respectively) as a function of
regulation of the peripheral sensory transduction and encoding of signals. Image
adapted from [4]. c© 2013 Sinauer Associates, Inc.
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When the level of excitatory neurotransmitters present at the synaptic inter-

face between hair cells and afferent nerve fibers is raised, the process of neuronal

depolarization of the afferents starts until the point that action potentials are

fired, and then conducted to the cochlear nucleus (CN). This is the mechanism

used by the auditory system to encode sound in a form of electrical pulses. Typ-

ically, these are the signals used for communication between neurons that are

compatible with overall brain network communication protocol. This process

also works in the opposite direction, high-level neuronal networks in the auditory

pathway can often send regulatory and control signals out to the peripheral or-

gan, conducted by efferent nerve fibers that innervate both mechanoreceptor cells

(IHCs and OHCs). Additionally, some other efferent regulatory signals are sent

to the middle ear muscles in order to enable attenuation reflexes. These actions

are conducted by the small muscles attached to the ossicles, which then control

the acoustic conductivity (transmission of acoustic energy) of the middle ear (e.g.,

stiffening effect) [38]. Both mechanisms are thought to provide peripheral sen-

sory adaptation, and therefore to further enhance signal processing capabilities at

early stages (e.g., example of slow feedback adaptation processes). For instance,

in order to enable speech understanding in noisy environments [39], and also as

a mechanism of protection against very loud sounds/vibrations that otherwise

would saturate the inner hearing system or in the worst case damage it [40].

OHCs are motile, which means that they can move and alter their dimensions

such as, stretching or shortening. They have piezoelectric-like properties, which

allow them to change their size according to the ionic gradients across their cell

membrane or if stimulated electrically [37]. As emphasized before, every time that

acoustic energy is fed into the cochlea it is propagated throughout the movement

of fluids as a travelling wave. This travelling energy can make the hair bundles to

move and so, activating the transducer channels, which consequently alters the

cell’s voltage potential. The OHCs shorten when depolarised, however, when the
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sound phase reverses, the hair bundle moves in the opposite direction, and so the

ion channels deactivate, which make the cells return back to their normal length.

These back-and-forth movements (e.g., stretching and shortening of the cell) are

likely to provide additional mechanical energy to the system. Nevertheless, this

process relies on a motor protein, called Prestin, which is present in the lateral

membrane of OHCs. It may be hypothesized that if adding more energy to the

system it might result in an amplified output response. If that is true, additional

force is injected into the system, which then triggers more bending of the stere-

ocilia. More depolarization of the hair cells occurs and even more electro-motility

happens in a sort of a locally-tuned positive feedback loop mechanism inside the

cochlea [41] (e.g., example of a fast feedback adaptation process). That may be

a good reason to call the OHCs the cochlea amplifiers, which can provide gains

of 40 – 60 dB when preserved in a healthy condition [41]. Moreover, since OHCs

are motile due to the presence of the protein Prestin, it means that they would

move even when there is no sound coming into the auditory organ, as such they

can self-generate signals, also called otoacoustic emissions [42]. Normally, these

sounds are self-produced by the cochlea due to the electro-motility of the OHCs,

which radiate externally from a healthy hearing system enabling recordings that

can be interpreted by medical examinations to test some hearing conditions [42].

These dynamics are normally known as the “active” responses exhibited by the

interactions between the efferent neurons, OHCs and basilar membrane.

IHCs are not motile (e.g., no evidence of the motor protein Prestin in their cell

membrane), suggesting that they might not contribute to the amplifying capabil-

ities inside the cochlea. However, they have stretching sensitive cells (stereocilia)

used as the mechanical transducers that allow external mechanical stimulus to be

converted into reciprocal bioelectrical-biochemical signals. Similarly to OHCs, al-

ternating displacements inside the cochlea can cause consequent cycles of increase

and decrease forces of the stereocilia. On the one hand, positive cycles induce
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the ion channels to open (mainly K+), which depolarise the cells by increasing

their voltage potential. On the other hand, negative cycles induce the channels to

close. This process seems like an on-off mechanism with a consequent capacitive

charging effect. In general, the cellular membrane of the mechanoreceptor cells is

thought to behave like a small leaky capacitor with equivalent capacitance (C )

and resistance (R), which charges every time strain increases and discharges when

it decreases [5]. This might resemble the response of a RC circuit system (with

limited bandwidth such as low-pass response) imposed by the cell membrane

characteristics. It means that when the frequency of the input stimuli increases

more than the cut-off frequency of that RC filter, say a few kHz, the hair cells are

not able to cope entirely with the phase of the input signal. As said before, that

is the charging time (τ = R.C) associated to the transduction process imposed

by the cell membrane characteristics. It is thought that at low frequencies (e.g.,

below 1 kHz) the hair cells operate in AC mode, at high frequencies (e.g. above

3 kHz) they operate in DC mode, whereas at middle frequencies between 1 and 3

kHz they operate using both AC and DC modes at the same time, as illustrated

in Figure 2.8.

It should be further emphasized that electrical signalling is a fundamental

property that underlies many aspects of signal transduction, processing and com-

munication between mechanoreceptors and neuronal cells in general. Biological

cells consume energy in order to establish a potential gradient between intracel-

lular and extracellular fluids. In general, neuronal cells have evolved passive and

active mechanisms to exploit the electrochemical potential.

Auditory Neurons

There are two types of nerve fibers in the auditory nerve, innervating both IHCs

and OHCs [37]:

• Type I: 95% of the neurons, bipolar and myelinated), which are normally
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Figure 2.8: Receptor voltage potentials for different frequencies of stimuli. Image
redrawn and adapted from [5].
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attached to a single IHCs, but each IHC can have several of these fast

type I nerve fibers connected to them (e.g., up to 30). Type I neurons are

normally called afferent nerve fibers, which generally send information from

the cochlea to the auditory pathway (e.g., CN);

• Type II: 5% of the cochlear neurons, unipolar and unmyelinated) are gen-

erally attached to OHCs (e.g., up to 3). These are normally called efferent

nerve fibers (medial olivocochlear efferents), which mainly downstream in-

formation from the auditory pathway (e.g., superior olivary complex) to the

cochlea, sending control signals [43] – e.g., control of cochlear gain [44].

The number of nerve fibers of both types I and II, which can be found in-

nervating the cochlea, differs in quantity depending on their location inside the

auditory organ. However, there are on average 30,000 fibers within the human

cochlear nerve.

The postsynaptic afferent neurons can also be charged via ionic influx and

efflux of molecules (e.g., sodium Na+, potassium K+, chloride Cl− and calcium

Ca2+) across their cell membrane, according to the amount of excitatory neuro-

transmitter received from the hair cells or from synaptic contacts with efferents

as illustrated previously in Figure 2.7. When the neuroreceptors in the afferent

neurons detect the presence of higher levels of neurotransmitters in their synaptic

clefts, they initiate protein synthesis, which activates the ion channels at their

cell membrane. That follows a similar ionic exchange mechanism as previously

described at the depolarization process in the hair cells. Again, different con-

centrations of ions establish different potential gradients between the inside and

outside of the neuron. Generally, at the equilibrium state, also called resting po-

tential, the inner side of the cell is more negative compared to the outside, which

may vary between -40 mV and -90 mV [37]. As said before, auditory neurons are

then able to be stimulated chemically through their synaptic connections with

the hair cells. The presence of neurotransmitter stimulations may alter the ionic

Chapter 2. Background Knowledge 31



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

gradients across the cell membrane and therefore, a neuron can hyperpolarize or

depolarize. Hyperpolarization occurs when the cell potential becomes more nega-

tive than its resting potential. Depolarization is the opposite response, occurring

when the cell increases its voltage potential. These dynamics are normally called

the “passive” responses happening at the cellular level. However, when strongly

stimulated (e.g., depolarized), neurons can also become “active” generators of

electrical signals, so called action potentials, as illustrated in Figure 2.9.

Figure 2.9: Example of an action potential from a neuron that looks like a spike
type signal or an electrical pulse. Image adapted and redrawn from [6].

These are spike-type signals that occur every time the cell potential reaches a

certain voltage threshold. After crossing this threshold, a cascade of electrochem-

ical dynamics occurs, resulting in a sudden increase of the cell’s potential level,

followed by its cellular machinery counteracting that by imposing an automatic

control mechanism to discharge (i.e., repolarize) and reset the cell, towards its

equilibrium state (e.g., resting potential). A neuron can spontaneously gener-

ate electrical pulses, or action potentials, as often as input stimuli are presented

to it, such as a neurotransmitter released from other sensory cells (or also via
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electrical stimulation). However, a neuron normally requires a refractory period.

That is the time spent by the cell machinery to recover after firing an action

potential. Recalibration of the ionic equilibrium is required until the neuron is

able to fire again. The action potential is induced by depolarization of the cell,

and is sometimes a spontaneous event in which the duration can vary based upon

many factors differing between cell type and function. Typically, firing rates are

within the millisecond range in sensory neurons [37]. A typical neuron is thought

to be subdivided in five different sections or zones as the following outlines and

as illustrated in Figure 2.10:

1. Dendrites: that are generally protoplasmic extensions of the cell body,

which provide the majority of the electrochemical inputs to the neuron

from receptor cells or other neuronal cells;

2. Soma or cell body: it is where the majority of the electrochemical syn-

thesis occur - the cell nucleus is located here;

3. Trigger zone: cellular region where the electrical responses (e.g., action

potentials) are initiated/triggered;

4. Axons: which are thin and long neuronal branches that extend the cell

body. Axons are usually used as communication channels to carry electrical

signals between different nerve cells;

5. Axon terminals: provide the synaptic contacts with adjacent neuronal

cells to deliver information.

Nevertheless, synaptic connections between neuronal cells can either be exci-

tatory or inhibitory, depending on their type and function. Moreover, the type of

synaptic contacts can either be chemical (e.g., neurotransmitter based) or elec-

trical. However, in the inner hear the synaptic connections between mechanore-
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Figure 2.10: Examples of a neuronal cells. (A) Multipolar neuron; (B) Bipolar
neuron; (C) Unipolar neuron. Image adapted from [7]. c© 2013 John Wiley &
Sons, Inc.

ceptors (hair cells) and the afferents or efferent neurons are typically chemical

synapses [37].

Different types of neurons might show different spiking patterns or may change

their firing rates proportionally to the intensity of the stimuli provided to the

cell body. For instance, sensory neurons, such as the ones innervating the hair

cells in the cochlea, encode sounds into a specific neuronal firing pattern. It

should be clear that hair cells do not fire action potentials themselves, but instead

do synthetize glutamatergic agents, which are then released through synaptic

contacts with spiral ganglion nerve fibers (e.g., afferent nerve fibers that are

normally attached to the bottom-end of each hair cell) that form the auditory

nerve. This is called as the VIIIth cranial nerve, which transports synthetized

action potentials to the CN.

It is thought that peripheral auditory system has developed three interesting

strategies to encode sound [25]:

1. A place code that is associated to the fact that each frequency component

of the input sound has a specific place of enhanced vibration at the basilar

membrane level (e.g., tonotopy). Moreover, it is said that each incoming
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sound has a characteristic frequency (CF), which is related to the tonotopic

organization of mechanoreceptors and associated neuronal cells firings;

2. A frequency code, also known as temporal code, which relates the ability

of the primary auditory neurons to fire action potentials according to the

timing or phase of the input waveform (also known as the phase-locking

principle);

3. A volley code, which is described in the literature as the ability of the

hearing system to combine the firing responses of multiple neurons in order

to be able to perceive sounds with frequencies greater than the firing rates

of each individual neuronal cells (e.g., bandwidth limitation). The volley

principle get use of the frequency code as illustrated in Figure 2.11.

Figure 2.11: Example of the volley principle shown by a group of 4 auditory
neurons that fire in-phase with the input stimulus waveform, which then result in
a combined pulse train response of the sensory system with equivalent frequency
as presented by the input signal. Image adapted and redrawn from [8].

When the input sound frequency is much greater (e.g., above 5 kHz) than the

firing rates of afferent neurons, only intensity information is able to be encoded,
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because temporal acuity of signals can no longer be kept by the afferent audi-

tory neurons bandwidth. Therefore, auditory signals are only represented by the

tonotopic mapping [25].

Concurrently, some other studies agree with the fact that it might be ad-

vantageous, in terms of the total cost of computation, to distribute the task of

computing or communicating large amount of sensory information by using par-

allel processing systems and many sensors with reduced bandwidth, as from the

research of Carver Mead in neuromorphic electronic systems [45] and also by

Rahul Sarpeshkar [46] based on biological circuits and systems, and also relating

to Shannon’s information theory [47], respectively. This parallel processing ap-

proach is clearly exploited by natural sensory systems as it has been described

previously. Moreover, biology has evolved many other ways to optimise the cost

of computation versus communication and information to process. For instance,

signals in the brain that are exchanged between neuronal cells are noisy and

stochastic. However, natural wiring make each neuron capable of communicating

with several other neurons at low speed, therefore the cost of computation can be

cheap, such that might be more efficient to compute noisy signals while having

collective interactions (e.g., longer delays on averaging and feedback systems to

dynamically update local system’s variable states) between lots of computational

machines rather than to make every device very precise and fast, or simply fol-

lowing a feed-forward system architecture. Therefore, it would be more expensive

to maintain in terms of its power consumption, since that is greatly dependent

on system’s speed and precision [48].

In biological systems different levels of feedback can be found, as well as

parallel feed-forward neuronal circuits and systems in the brain [37], both part

of the so-called bottom-up and top-down auditory signal processing pathways.

For instance, considering bottom-up mechanisms the CN is considered the first

auditory relay station for the signals coming from the auditory organ [25]. As
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said before, each afferent nerve fiber is a dedicated channel (neuronal cable)

that carries information from each mechanoreceptor cell (e.g., IHC). All that

parallel information, from multiple nerve fibers, is then merged into the CN for

further signal processing. Interneurons in the CN have synaptic connections

with the primary nerve fibers in order to integrate (e.g., average) the incoming

information [4], which then forward the signals to other auditory operations such

as coincidence detection [49]. Averaging is a fundamental process performed by

neuronal cells in general, thought to be a filtering mechanism of background noises

between neuronal circuits and systems communications [50].

In contrast, top-down auditory processing relies on prior knowledge (e.g.,

memory) of previous sound events and their footprint and acoustic signatures,

and therefore, predictive neuronal signalling is sent downwards from higher-level

neuronal networks to the peripheral sensory system, which may help to further

enhance hearing capabilities such as sound perception in noisy environments or

tuning to a speaker within the presence of competitive signals (e.g., cocktail party

effect) [51]. Nevertheless, attention and efferent neural health are rich fields of

hearing research.

2.2.2 The Moth Auditory System

It has been mentioned previously that natural hearing is a result of intertwined

interactions between mechanical, bioelectrical and chemical processes inside the

auditory system [52]. Focusing on the feedback coupling between mechanical and

electrical mechanisms that have evolved to enhance signal transduction and sub-

sequent processing capabilities. Another good example of that has been reported

in research involving insect’s ears [53]. Due to their relatively reduced complexity,

insect’s ears have been used as a model for hearing research in the last decades

[54], [55], for instance, moths that have a tympanum-like ear [10]. Generally,

moths have two tympanic membranes, one on each side of the body to allow
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some directional hearing information. A tympanum acts like a pressure sensor

for sound detection [9]. Moths are thought to present one of the simplest, mor-

phologically speaking, ears found in nature [56]. Maybe because of the reduced

number of mechanoreceptors (e.g., 1–4 sensory neuron(s), depending on specie)

that are available for signal transduction, which directly attach to the back-side

of the tympanic membrane, as illustrated in schematic example of Figure 2.12

(Left).

Figure 2.12: The morphology of the moth Noctua pronuba auditory system in-
cludes a tympanal/tympanic membrane and a cavity that houses an ensemble of
1–4 sensory neuron(s). (Left) a simplified schematic of the moth’s ear morphol-
ogy [9]; (Right) a moth Noctua pronuba and a microscopic picture of one of its
ears (inset) [10].

In contrast with the human peripheral auditory system, which is subdivided

in three well-defined parts such as outer ear, middle ear and inner ear, rather

in this case: “moths have simply the outer ear directly connected to the inner

ear”. It means that the mechanosensory neuron(s) attach directly onto the back-

side of the tympanal membrane [9]. This ear layout can be seen as simple as an

air-coupled resonant membrane exposed to the outside environment and that is

typically located under the wing body parts (also specie dependent). However,

this sensory simplicity comes with a cost - generally moths cannot finely dis-

criminate between different frequencies as their auditory system is not designed
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as the human is (e.g., cochlea function) with a place code for each independent

frequency component of sound. Instead, their hearing system is able to cap-

ture signals within a higher bandwidth but has a limited frequency resolution,

showing greater sensitivity at certain ultrasonic frequencies that can range from

20-60 kHz. Moreover, a particular moth specie – the greater wax moth, Galleria

mellonella is capable of hearing sounds within a wider spectrum of frequencies,

from 10 kHz up to 300 kHz, but still show greater sensitivities around 60 kHz

[56]. Conceptually, these ears have evolved to be more tuned to the ultrasonic

signals from bats (echolocation calls) while in predatory actions. Moreover, in

some Noctuid moths (refer to Figure 2.12 (Right)), their ears may show active

tuning capabilities with hysteretic responses [10]. These moths are able to dy-

namically adapt their tympanal responses to track the spectral changes within the

signalling of bat echolocation calls. For instance, for quiet sounds, the Noctuid

moth ears show higher sensitivity at low frequencies, however, when exposed to

loud ultrasonic signals (e.g., imminent attack from a close-by bat), they appear

to have their natural mechanical tuning shifting towards higher frequencies, as

illustrated in Figure 2.13. This phenomenon might be seen as a strategic mecha-

nism of defence used to trigger behaviour (e.g., avoidance) to counteract against

a bat’s fatal catch.

These simple-passive tympanic membranes may become smart-active through

the presence of a feedback mechanism involving back-end neuronal processing

that dynamically actuates directly onto the front-end acoustic detector (tympanal

membrane), as the possible example illustrated in Figure 2.14. Therefore, the

natural resonance properties of that system can be altered. It is important to

note that it is not completely clear yet how the Noctuid moth hearing system

tunes up [10]. However, it might be hypothesized the following:

• Either during the charging process of mechanoreceptor cells may become

stiffer (e.g., shortening) pulling somehow on the tympanic membrane – thus,
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Figure 2.13: Tympanal membrane tuning response in the moth Noctua pronuba;
(Left) mechanical response measured using laser Doppler vibrometer techniques
(red trace) of the tympanic membrane to a bat-like incoming ultrasonic signal
(blue trace); (Right) frequency response of the tympanic membrane for low in-
tensity stimuli (green trace), showing tuning at f0 and for high-intensity stimuli
(orange trace), showing tuning at f0

′′ . Redrawn and adapted with kind permission
from [10].

once pulled the tympanic membrane might stretch and so its mechanical

structure and frequency response is altered;

• Or it might be due to feedback processing using efferent neurons controlling

muscles attached to the tympanic membrane that play the role of acting

on the supporting/edging structure instead (e.g., stretching), and therefore

affecting the signal transmission as the possibly basis for this peripheral

sensory reflex.

This particular example of sensory feedback adaptation seems to be considered

as a slow-adaptation process. Since there might be a constant time associated to

the feedback computation to settle and that would influence the transient time
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Figure 2.14: Example of a tympanic-like auditory system (e.g., moth) show-
ing transmission (mechanical front-end) and transduction of acoustic signals into
electrical pulses, which are then processed and fed back by high-level neuronal
networks (back-end signal processing) to enhance peripheral conditioning and
signal processing capabilities such as active tuning. Redrawn and adapted from
[11].

of the sensory system response overall. This adaptive tuning response seems to

be delayed (e.g., lagging) when compared with the period of the input signal

waveform, also showing hysteresis within a few seconds range [10]. It means that

signals are computed over time (e.g., integration of signals using previous n-cycles

of the input waveform), before feedback actuation onto the tympanal structure

(e.g., front-end acoustic detector). The possible dynamics of this electromechan-

ical sensory system are approximated to the ones of a mass-spring system (e.g.,

passive resonator) such as a driven damped harmonic oscillator while the active

processes, which vary the system’s resonance frequency can be modelled as adapt-

ing the equivalent stiffness (e.g., spring constant of the structure) according to

the input force applied to the system [10], [57], as illustrated in Figure 2.15.

Overall, a feedback mechanism acting over the tympanic membrane in the

Noctuid moth ears is possibly the method used by this adaptive acoustic sensor

system to achieve its frequency agile tuning response.
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Figure 2.15: Changes in the equivalent stiffness of a mechanical system can alter
its resonance frequency, also referred as frequency agile tuning. Image adapted
and redrawn from [9].

2.2.3 The Mosquito Hearing System

Another model example of interest in biological acoustic sensory studies is the

mosquito auditory system. Mosquitoes exhibit remarkable hearing mechanisms

for sound perception. Their ears evolved to be very sensitive sensors to detect

the particle velocity component of sound, achieving an acute sensitivity with

displacements of ≈1 nm at the front-end detectors – antennae [58]. These sound

receptors are composed of antenna-like structures exposed outside the body, called

plumose flagella, located on top of the head, as illustrated in Figure 2.16 (A).

This type of sensor can detect sound when the motion of particles viscously

drags the external mechanical structures (antennae) that protrude from a chor-

dotonal organ called the Johnston’s organ (JO). The sound-induced mechanical

motion on each antenna drives up to 16,000 force sensitive cells (mechanosen-

sory neurons (n)) inside the pedicel, as illustrated in Figure 2.16 (B) and Figure

2.16 (C). When stimulated, these mechanosensory neurons convert the mechan-

ical energy into electrical signalling in a form of spike-type neuronal responses

commonly called action potentials, as similarly described in the previous Section

2.2.1 for the human hearing system model. Importantly, mosquitoes rely on their

hearing system in order to increase their mating successes. Preferentially, males
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Figure 2.16: Auditory organ of a male mosquito Toxorhynchites brevipalpis, show-
ing the antennae and Johnston’s organ. (A) Male antennae, highlighting the
plumose flagella (fl) and the pedicel (pd) – scale bar 1 mm (adapted from [12]).
(B) Cross-section of the antennal pedicel – scale bar 200 µm (picture by H. Kohler
and D. Robert), the pedicel houses an ensemble of mechanosensory neurons (n)
which are surrounded by mitochondria (mt) as the supply source of metabolic
energy. (C) Simplified schematic of the mosquito’s auditory organ (adapted from
[13]).

can detect the sound particle displacements generated by a flying female of 3.5

nm from a distance of 10 cm away, within the frequency range of 350 - 450 Hz

[58]. Intuitively, for a male mosquito to detect and pursue a flying target, its

sound receptors may need to transit between two modes of operation:

• Fast transient time response, which allows the sensory system to quickly

detect a close-by target;

• Frequency-selective sensing mode, which enhances the system intelligibility

when sounds are generated by a selected/targeted source.

A dynamic transition between these two modes of operation might not be

achieved entirely by a conventional passive mechanical detector (e.g., front-end

acoustic sensor) alone such as a driven damped harmonic oscillator. Biological

studies based on the mosquito hearing system [12] along with complementary
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mathematical models [13], [59] report the fact that the presence of a positive-

feedback mechanism using a set of synchronized neurons pumping additional

energy to the front-end detector (e.g., antenna structure) may be the reason

for the dynamical adaptation exhibited by this hearing system, when exposed to

an input sound stimulus, as illustrated in Figure 2.17.

Figure 2.17: Antennal nonlinear response showing amplification and hysteretic
behaviour. ∆E is the rational energy of oscillation between the hysteretically
amplified and the initial (passive) non-amplified response. Inset image is the
envelop of a single-tone stimulus used to test this sensory system response while
increasing (red trace) and decreasing (black trace) sound intensity. Adapted from
[12].

It is thought that signals can be amplified in a nonlinear fashion due to the

presence of an unconventional feedback mechanism between the front-end acous-

tic detector (antenna structure) and a set of back-end computational machines
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(neuronal cells), resulting in hysteretic output responses. The assumption is

that the active hearing responsiveness to input acoustic signals (female’s wing

beat sounds) is greatly enhanced by synchronized neuronal cells (efferent neurons

within the JO [60]) pumping additional energy entrained with the front-end de-

tector through a cycle-by-cycle positive-feedback mechanism [12], therefore this is

meant to be a fast feedback mechanism. This seems to be an unconventional but

advantageous technique to adapt the sensory responsiveness to a desired input

stimulus. Therefore, frequency selectivity, nonlinear compressive responses, and

hysteresis of such a sensory system may result [12]. These active amplification

and frequency selective responses have also been reported from other studies in-

cluding insects with tympanal ears such as the ones of the tree cricket, which

are thought to exploit similar nonlinear-like mechanisms using neuronal feedback

computation in order to enhance signal detection and processing capabilities [61].

2.2.4 Compressive Nonlinear Gain

Generally, active amplification and sharp frequency selectivity are thought to be

the most important functions taking place at the initial stages of signal condi-

tioning performed by an auditory system. The ability to amplify and tune at

specific frequencies can benefit such a sensory system to separate desired but

sometimes weak signals from undesired background noises. Studies based on the

vertebrate inner ear report that a healthy hearing organ can provide gains up to

60 dB [41]. As described before, that is thought to be a consequence of energy

injection provided by synchronized electromotile cells, which putatively increase

the magnitude of their mechanical inputs in a sort of positive-feedback mecha-

nism. Moreover, the hearing system is more likely to amplify low level sounds

and can be less responsive proportionally, as they become louder. This function is

generally known as the compressive nonlinearity that can be achieved by a hear-

ing organ, and that is a fundamental mechanism that greatly enhances overall
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dynamic range. For instance, in humans the dynamic range can be up to 120 dB

when preserved in a healthy condition [52]. The assumption is that the process of

active hearing is thought to be related to a kind of critical oscillatory behaviour,

which enables signals to be quickly amplified and in a nonlinear fashion through a

positive feedback control technique between the front-end mechanical sensor and

a back-end electrical computational system, which in that case can also provide

hysteretic responses [12], as illustrated in Figure 2.18.

Figure 2.18: Examples of hearing responses; (dash line) represents a system with
a linear response, such as a driven damped harmonic oscillator; (dot line) is a
typical vertebrate hair bundle nonlinear response; and (solid line) is a hysteretic
nonlinear response such as reported from the mosquito hearing system. Image
adapted and redrawn from [9].

2.2.5 Passive Sensory Responses

Conventionally, the resonant mechanical response exhibited by the passive me-

chanical responses in biological acoustic sensors may resemble the ones given by

the driven damped harmonic oscillators also called passive resonators [3]. Nor-

mally, those are classified as 2nd order systems, which may simply be expressed in

Laplace form by the following transfer functions, where s represents the Laplace
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term (s = iω), as expressed in Table 2.1:

Table 2.1: A 2nd order system as the possible basic model to study passive acous-
tic sensory responsiveness [3]. (Hlp(s)) Low-pass response such as pressure like
acoustic detector - e.g., the moth hearing system [10]; (Hbp(s)) Band-pass re-
sponse such as sound velocity detector - e.g., the mosquito hearing system [21].

Low-pass response Band-pass response
Hlp(s) = ω0

s2+sω0
Q

+ω2
0

Hbp(s) = s
ω0
Q

s2+sω0
Q

+ω2
0

These kinds of mechanical detectors/resonators can be characterized either

by structural mechanical properties such as stiffness (k), mass (m) and dissipa-

tion/losses, or by physical properties such as resonance frequency (ω0 =
√

k
m
)

and quality factor (Q = ω0
γ
), where γ represents the damping coefficient and

ω0 = 2 × π × f0 is the resonant frequency term. The Q-factor expresses how

quickly the energy supplied to the passive detector/sensor/resonator can be dis-

sipated in it.

This means that an underdamped system (high-Q detector) exhibits a slower

temporal resolution compared to an overdamped one (low-Q detector) that may

achieve a faster temporal responsiveness when subject to an applied acoustic

stimulus. The resonance frequency (ω0) is defined as the preferred frequency

where the system exhibits greater responsiveness or sensitivity.

Additionally, a passive detector/sensor of this kind exhibits linear sensitivity

and its bandwidth can be expressed by the ratio between resonance frequency

and quality factor, ∆ω = ω0
Q
. Therefore, that sets a trade-off between time versus

frequency responsiveness of a given front-end acoustic detector/sensor of this

kind, as summarized in the following Table 2.2:

Overall, a sensor designed with low-Q can achieve fast temporal resolution

with the cost of a poor frequency selectivity, whereas, a high-Q sensor design has

a slower temporal transient responsiveness with the benefit of a higher frequency

selectivity, as illustrated in Figure 2.19.
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Table 2.2: Summary of time vs frequency resolution/response of a resonant acous-
tic sensor.

Time (resolu-
tion/response)

Frequency (resolu-
tion/response)

Low-Q sensor high/fast low/wide
High-Q sensor low/slow high/narrow

Figure 2.19: A 2nd order system as the possible basic model for a passive acoustic
sensor front-end. Frequency selectivity and transient time response might be
adapted by manipulating the Q-factor of the system.

Additionally, when the stiffness parameter (k, also known as spring factor)

of this kind of system is altered, consequently it affects the natural resonance

frequency of the system, since ω2
0 = k

m
, as illustrated in Figure 2.20.

This acoustic sensory system modelling approach is exploited in the work

presented in Chapters 3 and 4 of this thesis.
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Figure 2.20: A 2nd order system as the basic model for a passive acoustic receiver
front-end. Resonance frequency (ω0) may be adaptable by altering the equivalent
stiffness (k) of the system.

2.2.6 Neuronal Models and Artificial Systems

Motivated by the biological mechanisms of signal transduction and processing

within mechanoreceptors and neuronal cells, neuroscientists have developed some

mathematical methods and computational models, which may help to study the

dynamics of the brain and its peripheral sensory systems. Therefore, it led to the

development of discrete computational models with different levels of granularity

that incorporate some of the dynamics behind neuronal encoding and firings, for

instance the Hodgkin-Huxley [62], Leaky Integrate-and-Fire (LIF) [63], Izhikevich

[64]; and others that focus more on the transduction processes in mechanorecep-

tors (e.g., hair cells) [65]; and also higher-level models that faithfully replicate

some of the output responses as similarly seen in the mammalian auditory sys-

tem [66]. Most interestingly, the use of some of these neuronal models, such as
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the LIF neuron, can be implemented in a very efficient way in terms of compu-

tational costs, and therefore it can be exploited as a computational mechanism

within engineered and real-time signal processing systems [57], [67], as the fol-

lowing describes.

The LIF neuron is a simplified model that resembles the behaviour of a single

neuron. It ignores the conductances of Na+ and K+ responsible for the action

potential generation, which are normally included in more complete neuronal

models such as the Hodgkin-Huxley [62]. Instead, the LIF model replaces that

by assuming an equivalent membrane’s capacitance (C ) and resistance (R), and

evolving the membrane’s voltage potential over time according to the differential

equation as following presented in Equation 2.1:

C
dVm
dt

= −Vm
R

+ I, t > 0 (2.1)

Solving Equation 2.1, by applying the Euler method which considers the ap-

proximation: Vm(tn+1)− Vm(tn) ≈ h(dVm

dt
), where h = dt (i.e., step size), thus:

Vm(tn+1) = Vm(tn).
(

1− dt

τ

)
+R.I(tn+1).

(
dt

τ

)
(2.2)

Where τ = R.C represents the membrane’s time constant; Vm represents the

membrane’s voltage potential, I is the input stimulus, which might be associated

to any input current reaching the cell body (i.e., soma). By computing Equation

2.2 over time (tn), an action potential can be fired when a voltage threshold is

reached. As said before, real neurons hold some time before they are capable

of firing again. This refractoriness is normally composed of two periods: a hard

(absolute) and a soft (relative) period. A hard refractory period is a time in

which a neuron cannot fire absolutely, whereas a soft refractory period is time

during which the threshold is generally more elevated than its steady-state voltage

value such that an action potential may not be likely to occur. Overall in a LIF
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model, an absolute refractory period can generally be set by a constant time

whereas a relative refractoriness can be set by a sudden increase (i.e., arbitrarily)

of the threshold voltage value, which may decay over time towards its basal level

(steady-state) after each firing. It is shown that the mathematical implementation

of the LIF neuron using the Euler method can be very efficient in terms of its

computational cost when compared with other methods while computing neuronal

models [68], therefore, it is applied to the work presented in Chapter 4 of this

thesis.

Artificial cochlear circuits and systems have been presented in the last decades

that integrate and/or replicate several of the auditory responses as similarly re-

ported within biological studies based on the mammalian auditory system [69].

And some of that knowledge has also been used within speech processing algo-

rithms for hearing aid technology [70], for instance digital and analogue filter-bank

systems [71] that mimic the mammalian basilar membrane frequency tuning re-

sponse and automatic gain control system that try to replicate the function of the

OHCs as the active amplification mechanism in the cochlea [72]; and among other

bio-inspired works including silicon cochlea systems [73], and silicon neurons [74],

and circuit and system interfaces for bio-inspired sensors [75], [76].

Moreover, many other studies based on feature extraction and pattern recog-

nition fields have shown promising results on speech enhancement while using

machine learning and statistical methods, the so-called Artificial Intelligence (AI)

[77], [78]; some other studies use deep learning algorithms (e.g., deep neuronal

networks) for environmentally robust speech recognition [79]; and among others

that can extract different sound features within competitive signals [80], [81];

and also showing robustness on speaker identification [82]. These are promising

results, however mostly relied on “big-computational-machines” with high-power

requirements, large memory (e.g. databases), and with time delays on the signal

processing tasks, which up-to-date may not be compatible with some real-time
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processing applications. For instance, within battery limited systems such as

wearable devices, hearing aids or cochlear implants that require very low power

system consumption (< 1 mW), small hardware packaging for sensors, circuits

and systems; and reduced latency (< 10 ms) on digital signal processing routines

and data buffering in order to avoid signal distortions within enhanced hearing

applications [83].

Figure 2.21: Schematic diagram of a possible basis for an engineered adaptive sen-
sory system showing the flow of signal information that is influenced by slow and
fast feedback control with neuronal based computation of signals using efficient
computational methods.

2.2.7 Active Feedback Computation

The sensitivity of a passive acoustic detector/sensor is greatest when operated at

its resonance frequency (ω0), and that is also proportionally dependent on the Q-

factor. Physical constraints are imposed by the sensor’s design on the Q-factor

and resonance frequency that can be achieved, such that one might not have

much flexibility and control over these parameters when and after designing an
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acoustic detector/sensor. However, some natural hearing systems overcome that

limitation through the use of feedback control mechanisms in order to dynamically

adapt those physical parameters such as Q-factor and resonance frequency (ω0).

In order to accomplish the above-mentioned adaptations, two types of feedback

processes have been identified that allow biological acoustic sensors to adapt their

physical parameters as the following describes and illustrated in Figure 2.21:

• Slow feedback adaptation, which is performed based on n-cycles com-

putation. The output responses are delayed from the input stimuli due

to integration of past n-cycles of the input signal. Potentially applied on

frequency agile tuning (adapting the spring factor of the sensor, therefore,

affecting ω0) - Figure 2.22 A;

• Fast feedback adaptation, is intended to be based on cycle-by-cycle com-

putation, which means that the output responses given by this method are

performed at every cycle of the input stimuli. Potentially applied on nonlin-

ear compressive amplification (adapting the Q-factor of the sensor) - Figure

2.22 B.

Figure 2.22: Adaptive sensory system responses based on slow and fast feedback
computation. (A) Frequency agile tuning and (B) nonlinear active amplification.

For instance, some studies using engineered resonant sensors, circuits and

systems, likely support the use of positive-feedback control techniques, which also
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enable adaptive nonlinearities in low-powered filtering applications [84], hysteretic

behaviour applied to speech in noise applications [85], and that the Q-factor

of sensors can be enhanced exploiting the feedback control technique so-called

parametric amplification, for instance, used in atomic force microscopy [86], [87].

Moreover, frequency agile tuning can be either described as a function of a sensor

system that cleverly adjusts its operating frequency to overcome the influence

of interfering sources such as noise, or rather its adaptation to be tuned with

desired signals of interest. This technique has already been exploited among radar

and general radio applications to account for jamming or adverse atmospheric

conditions [88].

Therefore, feedback computation can be seen as a potential method to be used

in order to maximize sensory responsiveness, converging the system’s operating

state the best possible detection rate output. It is important to note that this

might be possible if the front-end detector and transduction method used are

designed in such a way that allows signals to be fed back into the sensor. That

sets an important requirement for an adaptive acoustic sensory system front-end

design, i.e. the readout and actuation on the transducer using a combination of

standard or perhaps novel sensing and actuation techniques, which can be optic

(readout only), piezoelectric (readout and/or actuation) and capacitive (readout

and/or actuation), with their associated demands for electrical signal conditioning

with respect to each one of those transduction methods.

2.2.8 Discussion I

Several biological sensor system examples were highlighted in this section. Passive

and active mechanisms within hearing sensors and systems showing evidence of

analogue signal processing performed at the peripheral sensory system such as

mechanical filtering, active amplification, and transduction of signals that are

sampled and compressed by the nervous system as action potentials. Moreover,
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supporting previous studies on that line of thought - it might be advantageous to

pre-process signals at the periphery, considering that many signal processing tasks

can possibly be made more energy efficient when exploiting some analogue based

functions and delaying the digitalization process for later [89]. Nevertheless, there

might be a size/area cost trade-off on the front-end sensory systems associated to

it [48]. Increasing the number of elements (detectors/sensors) placed in an array

fashion for a distributed processing task, and the area used for feedback control

systems and back-end computation may increase the size of overall front-end

system architecture - nevertheless, that is dependent on technology and design

strategies used.

To conclude this section about natural hearing and related sensory systems, it

is important to note that any acoustic stimuli detected/sensed and pre-processed

by the peripheral auditory system may or may not be useful information. Mainly,

it is meant to sense and transduce signals faithfully at a specific time-frame, and

deliver output signals to be processed by higher-level reasoning systems. There-

fore, any decision making based upon any incoming sound information requires

sophisticated signal processing capabilities in order to trigger reliable output be-

haviour. Feature extraction and pattern recognition based on different neuronal

firings are encoded and processed by the nervous system. Behavioural outputs

typically rely on coordinated and synchronized high-level circuits and networks of

neurons that merge multiple sensory information (e.g., sensory integration) in the

brain. Moreover, feature extraction and pattern recognition of sounds are tasks

performed and subdivided by a set of specialized neuronal networks that learn

throughout time (getting learning experience) how to make sense of sound. How-

ever, the presence of optimized analogue computation at the front-end sensory

level and the use of feedback mechanisms with power-efficient neuronal circuits

and systems (inhibitory or excitatory responses) may likely enhance distinct fea-

tures within a specific sound pattern and its reasoning. Therefore, a simplified
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but important note to retain from this section is that - the first stage of sound

processing in biological acoustic sensors and systems is likely to be performed by

the front-end transducer - electromechanical computation. That is mainly relied

on analogue computation, which includes signal detection, impedance matching

of acoustic signals, and filtering and nonlinear amplification. Moreover, the front-

end sensory system should be well-designed with feedback system mechanisms to

enable adaptation such as frequency agile tuning and active nonlinear amplifica-

tion that best suit a particular signal processing task.

2.3 State-of-the-Art in Acoustic Sensors, Cir-

cuits and Systems - Engineering Trends and

Designs

This section presents some state-of-the-art in recent advances on microphones

technology with particular attention on Microelectromechanical Systems (MEMS),

including different transduction methods, electronic circuitry and systems.

2.3.1 Microelectromechanical Systems (MEMS)Microphones

Many developments in sensor technology are based on MEMS, and this is very

true of microphones, as illustrated in Figure 2.23. Nowadays, MEMS microphones

can be fabricated in a very small form factor on batch-processes at very low cost,

allowing the integration of these little microphones (e.g., mm3 scale) within al-

most all sorts of consumable electronics such as smartphones, tablets, laptops,

headsets, smart-speakers, automotive, wearables, smart-TVs, etc. Moreover, this

new trend in sensory technology is bringing forward the possibility for new kind

of audio-activated applications including speech recognition, authentication, and

voice controlled and activated systems, among several other ways to optimise
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communications; and the emergence of new business solutions and products [90].

Additionally, MEMS microphones have also the potential to be integrated within

biomedical applications such as Hearing Aids (HA) and Cochlear Implants (CIs),

allowing these prosthetic systems to be further optimised in terms of their inte-

gration in miniaturized solutions to better address individual needs [91].

Figure 2.23: Example of a silicon top sound port condenser MEMS microphone
(amplified 10×, approx.) fabricated by Infineon Technologies AG, showing the
top MEMS package with and without the metal case, and the connection pads
on the bottom side. Image adapted from [14].

The MEMS microphone market has grown every year since 2005, and with

predictions of growth until 2022 as shown in Figure 2.24, and perhaps beyond

that, it might be hypothesized that the number of units manufactured may fol-

low an exponential growing trend (e.g., the law of accelerating returns by Ray

Kurzweil), as similarly seen within other technological advances in the last few

years, and lead by technologies relied on microelectronics and integrated circuits

[92].

2.3.2 Capacitive MEMS Microphones

The widely used and perhaps most fabricated MEMS microphone so far, is based

on the capacitive transduction modality [93]. The condenser MEMS microphone

has been a topic of research for many years [94], [95], but it was only introduced

and faithfully accepted in the market of consumer electronics in the early 2000s,

replacing the electret type microphone - possibly due to the smaller form factor,
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Figure 2.24: Microphone’s market predictions from 2005 until 2022, showing a
decrease of the amount of Electret devices and an increase of MEMS microphones
that are manufactured per year, where Munits represents Million of devices man-
ufactured. Image adapted and redrawn from [15].

and reduced manufacturing and processing costs [96], [97]. The condenser micro-

phone working principles are based on the capacitive transduction method. In

its basic form, this transduction modality consists of two parallel plates (e.g. a

flexible membrane or diaphragm and a rigid/fixed back plate) separated by an

air gap acting as a dielectric material to form a variable capacitor. The capacitor

is permanently charged by means of an imposed constant supply voltage called

a DC bias. Alternating acoustic waves can force/press the flexible membrane to

move up and down, which consequently vary the effective capacitance between

the two parallel plates (e.g. causing the bending of the flexible diaphragm forced

by the acoustic energy coupled onto it), as illustrated in Figure 2.25 (Top). As a

consequence, a variable electrical charge signal output is generated, as an equiv-

alent AC electrical signal that can be acquired and further processed by means

of an appropriate electronic system. Moreover, another possible design of this
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transduction method is to place the flexible membrane in between two back-

plates, as illustrated in Figure 2.25 (Bottom). This symmetric design provides a

differential output signal (e.g., two complementary output signals with opposite

polarities), showing some advantages in comparison with the single-ended designs

(e.g., single back-plate design) such as, higher immunity to common noises (e.g.,

RF interference) and higher dynamic range [98].

Figure 2.25: Electrical output from two standard capacitive transduction design
methods used in commercial MEMS microphones. (Top) single-ended output;
(Bottom) differential-ended output. Where VBIAS represents the constant supply
voltage and Vo the electrical output signal resulted from the diaphragm displace-
ments. c© C. Lillelund, Infineon Technologies AG.

The standard parallel plate microphone design is based on the electrostatic

transduction method, which is per se nonlinear. The output signal (electrical

force, Fe) resulting from the diaphragm’s displacement is nonlinear, following an

inverse square relationship with the size of the variable dielectric gap that is in

between the two parallel plates, as expressed in Equation 2.3 [99]:

Fe = 1
2
ε.A.V 2

b

(x0 − x)2 (2.3)

Where ε is the dielectric permittivity; A is the area of the diaphragm (top
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capacitor’s plate); Vb is the constant supply voltage across the parallel plates

(e.g., DC bias); x0 is the thickness/size of the dielectric gap; and x represents the

diaphragm’s displacement.

Nevertheless, the magnitude of the restoring mechanical force (Fm) given by

this system has a linear relationship with the diaphragm’s displacement such

that Fm = −km.x (Hooke’s law), as illustrated in Figure 2.26. Therefore, it is

assumed that the parallel plate system behaves like a mass-spring system (2nd

order system). Where km represents the mechanical spring constant associated

to the restoring mechanical force (Fm) of the system.

Figure 2.26: Magnitude of the mechanical and electrical forces as a function of the
distance between the parallel plates [16], where ks represents the overall effective
stiffness of the diaphragm.

Moreover, when a constant voltage is applied across the parallel plate capac-

itor system, it develops an additional spring constant (electrical spring factor -

ke) due to the electrostatic attraction force applied (DC voltage) that modifies

the overall static stiffness of the structure, engaging the movable plate at its

equilibrium state, as expressed in Equation 2.4 [99]:
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ke = ε.A.V 2
b

(x0 − x)3 (2.4)

Therefore, the effect of the DC bias has an impact in this system’s resonance

frequency (ω0) – softening effect, as expressed in Equation 2.5 [99]:

ω0 =
√
ks
m

=
√

1
m

(km − ke) (2.5)

Where m represents the equivalent mass of the system. Additionally, if the

constant voltage (DC bias) applied to the system exceeds a certain value (e.g.,

pull-in voltage, VPI), the diaphragm and the back plate may snap in and collapse,

and so the equivalent capacitor is short-circuited, as expressed in Equation 2.6

[99]:

VPI =
√

8.ks.x3
0

27.ε.A (2.6)

Overall, the electrostatic transduction method exploited by the standard ca-

pacitive MEMS microphone designs has a nonlinear relationship with the di-

aphragm displacement. Moreover, a constant supply voltage (DC bias) is a re-

quirement for the electrostatic transduction method, however, caution should

be taken to ensure that the voltage applied across the structure is compatible

with the magnitude of the diaphragm’s expected displacements, while driving

the system acoustically. Otherwise, the pull-in limits are compromised and the

overall structure may collapse as the parallel plates stick together, short-circuiting

the equivalent capacitor [16]. Additionally, the bias voltage sets-up an electrical

spring constant that modifies the effective static stiffness of the overall system

(e.g., softening the system [16]), which therefore alters its resonance frequency.

These are some of the limitations imposed by the standard back-plate micro-

phone’s designs.
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2.3.3 Piezoelectric MEMS Microphones

Another sensing modality that has been topic of investigations within the MEMS

research community and acoustic sensors in general is the piezoelectric transduc-

tion method [17], [100], [101]. This principle is based on mechanical deformations

of structural parts (e.g. exploiting the stiffness mode or bending mode of mate-

rials) such as membranes or cantilevers that are shaped and coated with some

sort of piezoelectric layers to transduce displacements into equivalent electrical

signals. Devices are custom-designed to allow an effective coupling of acoustic

energy onto their surfaces. For instance, mechanical-bending of structures can

induce stress onto the piezoelectric layers, which consequently can generate elec-

trical signals due to the direct-piezoelectric effect. The opposite is also possible

such that an applied voltage (building up an electrical charge) on the piezoelectric

materials has the effect of changing their dimensions (e.g., reverse piezoelectric

effect) [102].

Piezoelectric materials such as aluminium nitride (AIN), zinc oxide (ZnO) or

lead zirconate titanate (PZT), among others [103], can be used as transduction

layers over the device’s structure, exploiting their piezoelectric capabilities. As

previously mentioned, one of the most relevant properties of these piezoelectric

materials is their ability to become electrically polarized when strain is applied

onto them, allowing the use of these smart materials in several sensory and ac-

tuation applications such as in energy harvesting, medical technology, pumping

and dosing machines, ultrasonic transducers, force measurement systems, etc.

Moreover, piezoelectric capabilities can also be integrated within micromachined

transducer designs for instance in ultrasonic applications [104]. Some advantages

of using piezoelectric materials for sensing acoustic signals include:

• No requirement for a DC bias voltage to be built-in the device to operate,

which may reduce the overall power consumption of the system;
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• Allow more robust transducer designs when performances are compared

against the standard parallel-plate electrostatic transduction designs under

some acoustical conditions [17].

It is important to note that a piezoelectric based transducer might be less

sensitive when compared with an equivalent capacitive one, however it may com-

pete against with more reliable electromechanical compliance under some specific

acoustic conditions such as acoustic overloading. And, they are also compatible

with commercial acoustic applications [17], [105].

Recently, a combination of novel fabrication processes with clever design prin-

ciples enabled the creation of a microphone with high immunity to environmental

contaminants, high shock-resistances and waterproofing. Now, it is possible to in-

tegrate and operate MEMS microphones within wet and dirty conditions. These

are some of the features claimed by the inventors (e.g., [17]) of the Vesper’s omni-

directional MEMS microphone, which is thought to be the first piezoelectric based

MEMS microphone available in the market [105], as illustrated in Figure 2.27.

Figure 2.27: Vesper’s omni-directional MEMS microphone (amplified 20×, ap-
prox.) based on piezoelectric transduction method [99]. This device is a bottom
port piezoelectric MEMS microphone with package size of 3.76 mm × 2.95 mm
× 1.1 mm. c© 2018 Vesper Technologies, Inc.

Some studies from the sensors community using piezoelectric materials re-

port the fact that the piezoelectric transduction method can behave linearly at
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reduced and moderate mechanical deformations, however when subject to very

high electrical fields some nonlinearities may appear. That is the case for the

ferroelectric hysteresis effect in PZT [106], [107], and among other nonlinear re-

sponses of dielectric polarizations to electric fields [108]. However, in the context

of piezoelectric sensing in MEMS microphones, nonlinearities are normally re-

lated to extreme stresses applied on the sensor’s mechanical structure (e.g., large

deflections or deformations). That can happen due to acoustical overloading, or

restricting movement of the mechanical parts (from which the electrostatic based

microphones are also affected). Therefore, that is not primarily related to any

nonlinear behaviour from the piezoelectric transduction method itself [17], mean-

ing that at small mechanical deflections a linear relationship between force and

displacement can be preserved, as illustrated in Figure 2.28.

Figure 2.28: Mass-spring system referred mechanical restoring force vs displace-
ment.

2.3.4 MEMS Microphone Specifications

Presently, several omni-directional MEMS microphones are available in the mar-

ket, including both analogue and digital system packages. MEMS microphone

manufacturers report a number of parameters that quantify the overall perfor-

mance of their devices such as sensitivity, signal-to-noise ratio (SNR), linearity,

bandwidth, and also other factors such as power consumption and package size.

Sensitivity is normally referred to as the minimum detectable signal given by
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a device. It relates the analogue output voltage or a digital value to a specified

input sound pressure. Typically, a microphone’s sensitivity is measured with a

pure tone at 1 kHz sine wave reference signal at 94 dB SPL, or 1 Pa [109]. It

is important to note that the sensitivity factor is measured at the output signal

after the electronic conditioning stage. This means that one is able to increase

the sensitivity of a given device by adding a little extra of amplification to the

output signal through proper electronic conditioning, with an increase cost on

the power consumption of the overall system.

Moreover, the sensitivity parameter is commonly used as a metric relating

the mechanical and electrical performance of a given device over its referred noise

floor (both mechanical and electrical noise contribute to it [110], [111]) for the

SNR calculation. Electrical noise is mainly associated to random thermal fluc-

tuation of electrical charge carriers and also referred as electrical thermal noise

or Johnson-Nyquist noise in an electrical system [112], [113]. Whereas, acous-

tic noise is associated to mechanical dissipation and also referred as structural

damping – acoustic thermal noise [111]; and radiation resistance due to air drag

or friction at the moving parts of the acoustic elements [17]. Nevertheless, it is

also good practice to perform acoustic measurements such as the ones related

to the microphone’s noise floor levels, within a quiet anechoic chamber at room

controlled temperature [114].

The SNR in a microphone is calculated by the ratio of the sensitivity to its

output referred noise floor. Generally described in microphone’s datasheets, the

SNR value is normalised on an A-weighted scale (dBA) as a standard procedure

applied on systems that are used for measuring acoustic signals in human appli-

cations. The A-weighted function is a mathematical operation, which faithfully

maps the microphone’s response to the sensitivity of the human hearing system

[115].

These quantitative measurements are important to quantify the device’s acousto-
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electrical performance. The sensitivity and the noise floor are inherent properties

of each specific device, imposed by its mechanical design, transduction method

used, fabrication processes, and electronic interfaces and packaging setup, even

though, the system’s sensitivity can also be refined in order to fit specific appli-

cation requirements through proper electronic adjustments upon manufacturing

stage. A high SNR device is essential at high fidelity acoustic applications. Cur-

rently, the industry-leading SNR values achieved by MEMS microphones are up

to 70 dBA (94 dBSPL @ 1 kHz) in consumer electronics.

Another key parameter referred to by microphone designers and manufactur-

ers is the device’s dynamic range. Ideally, a microphone is designed to behave as

linearly as possible within its dynamic range, at small and moderate diaphragm’s

deflections, as previously mentioned. However at high sound levels some nonlin-

earities may be evoked after a particular point – Acoustic-Overload-Point (AOP),

where the system’s acoustic performance can be fairly compromised and so non-

linearities may quickly arise after that specified point, for instance a form of

harmonic distortions [98].

Harmonic distortions are commonly nonlinear combination of tones at mul-

tiple frequencies and they are normally noted as undesired behaviour in high

quality audio systems. In MEMS microphones, the Total-Harmonic-Distortion

(THD) factor may rise for two main reasons [99]:

• The mechanical structures such as diaphragms or membranes when exposed

to high level mechanical forces from acoustic fields or environmental con-

ditions (e.g., wind) may deform in a nonlinear and uncontrolled fashion or

exhibit total collapse of the structure;

• The electronic circuits are normally designed to be operated within specified

signal limits, which otherwise result in saturated levels or distorted output

signals (e.g., clipping effect), therefore, degrading the THD factor of the

overall system.
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The THD value is given as a percentage of the distortion levels measured at

the system’s output for an applied input signal (e.g., a pure tone at 1 kHz). Nor-

mally, THD is expressed as the ratio of the sum of the powers of all the harmonic

components referred to the input signal power [98]. Therefore, the AOP value is

normally described in MEMS microphones datasheets to quantify the nonlinear-

ities of the system. This value is presented in decibel Sound Pressure Level (dB

SPL) units for a given THD percentage. Essentially, the AOP parameter informs

about the performance of a given device, when subject to a high mechanical stress

(e.g. high displacements or uncontrolled deformations) and the capacity of the

electronic circuits to be compatible with the signal levels supplied by the acoustic

elements.

An interesting note is that at near field applications, one may choose a micro-

phone that can offer a high AOP value since the device might be exposed to very

loud acoustic fields - since the device might be placed near the acoustic sources.

Currently, the AOP values offered by the industry-leading MEMS microphones

are up to 130 dB SPL (10% THD @ 1 kHz) in consumer electronics.

Another important parameter intrinsic to any acoustic system is the opera-

tional bandwidth. That is commonly specified for MEMS microphones in between

the -3 dB low frequency roll-off and the +3 dB frequency point towards its reso-

nance frequency peak. Sometimes, manufacturers can also report the bandwidth

as the region where the device have a flatter or constant frequency response, which

is at least in between 0.1 - 10 kHz for standard MEMS microphones applied to

consumer electronic applications. The device’s full bandwidth is commonly set

by the design and fabrication methods of the acoustic elements (e.g., mechanical

response) and generally it can be kept unaltered by the electronic conditioning

circuits to suit a desired application, at best. In standard microphone designs

the value of the resonance frequency is set to be well above the upper frequency

limit of the desired audio signals in order to avoid output signal distortions in
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general purpose consumer acoustic applications.

The power consumption of a MEMS microphone is generally related to the

electronic circuits and systems that are integrated within the MEMS package, and

less related to the acoustic element itself. However, as mentioned before, electro-

static devices have the need for a DC voltage bias to be applied as a requirement

of that transduction method to operate properly. Additionally, it can be noticed

when comparing different device systems that the power consumption of digital

MEMS microphones is normally higher than their analogue counterparts. Essen-

tially, that is due to the inclusion of additional integrated circuits into the overall

MEMS package such as Analog-Digital (A/D) converters and other circuits for

signal control and communication that substantially increase the overall power

consumption of the system.

2.3.5 MEMS Microphones Circuitry, Signal Conditioning

and Interfaces

Microphones are the first interface between the surrounding acoustic environment

and the audio signal processing chain. Recent audio applications rely mainly

on digital computational machines [116]. These digital computers can be pro-

grammed with some sort of digital artificial intelligence in order to process sound.

Essentially, exploiting the use of mathematical functions (e.g. digital signal pro-

cessing algorithms) implemented in the discrete domain with the aim to retrieve

or enhance desired acoustic information. Commonly, sound is an analogue signal

in its natural form, detected by means of an acoustic sensor, transmitted to a

homologous analogue electrical circuit for signal conditioning and then delivered

to a digital machine for further processing. In other words, signals are acquired

by digital units (e.g. A/D converted) at some point of the signal processing

chain. However, analogue interfacing is required by means of an analogue circuit

front-end (AFE) to prepare the signal before analog-to-digital conversion (ADC).
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An AFE can be described as an analogue electronic system that is used to

interface signals between the acoustic element and a digital machine. Whether

using capacitive or piezoelectric based transduction, both principles require out-

put signals to be prepared before digital sampling. The aim is to interface the

signals without compromising a system’s performance, including the parameters

previously described such as sensitivity, dynamic range, linearity, bandwidth, and

noise floor and power consumption [110]. Usually in MEMS devices, the acoustic

element has to be wire-bonded using some sort of conductive wires or electrodes

to an AFE that is placed and mounted nearly on a common PCB laminate, as

illustrated in Figure 2.29. Regardless the microphone’s output type, either ana-

logue or digital, the MEMS acoustic element and its associated electronic circuitry

are currently able to be integrated within the same manufacturing process using

recent MEMS-CMOS technologies [100], [117].

Figure 2.29: Simplified schematic examples of MEMS microphone packaging,
showing a bottom-port (A) and a top-port (B) setups. A typical MEMS micro-
phone package size is around 12 mm3. Image redrawn and adapted from [17].

The casing (e.g., metal enclosure) also plays an important role in the device’s

acoustic performance. It is meant to protect the diaphragms or membranes and

the electronic circuits against adverse atmospheric factors that otherwise would

compromise the overall performance of the system (e.g. dust particles, water,

shock, handling, etc.). Moreover, the metal casing can be grounded with the

external embedded system, which then works as a faraday-cage shielding against
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radio-frequency (RF) and electromagnetic interference (EMI) - undesired signals

coupled from surrounding electrical appliances.

Generally, a custom-designed AFE is used to effectively convert the signal

impedance from the acoustic element to best suit the impedance of the acquisition

system (A/D converter input circuitry). Regardless of the transduction method

used, either capacitive or piezoelectric, the equivalent output impedance of these

types of transducers are typically high, in the range of thousands of Ω up to MΩ

[9], [118]. Therefore, a good candidate to provide that high impedance interface

role is the Junction Field-Effect Transistor (JFET) device. JFETs can normally

be interfaced to the acoustic element following different circuit configurations

such as buffer circuits (unity-gain configurations as source followers) or as voltage

amplifiers (common-drain configurations). For instance, if the signal conditioning

stage requires some sort of amplification and filtering before digital sampling,

other circuit examples can be used as presented in [117], [118]. Circuits using

discrete electronic devices can also be combined with integrated level systems

(e.g. Op-Amps) [119], and other methods of analogue signal conditioning can

also be exploited such as charge amplifier circuits [120].

JFET devices offer interesting characteristics that make them very suitable to

interface with high equivalent impedance MEMS microphones [17]. For instance,

two of the JFETs main characteristics include:

• High equivalent input impedance;

• Very low input referred noise at high impedance signal sources (kΩ - MΩ

range).

As previously mentioned, the main goal of using a proper circuit interface

attached to the transducer element is to maximize the transfer of signals between

a high equivalent impedance signal output (transmitter – e.g., microphone’s sig-

nals) and the equivalent impedance of the input receiver such as an A/D con-
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verter, which is typically a low impedance port, when compared to the equivalent

electrical impedance of the acoustic element transduction method used.

Figure 2.30: Thévenin equivalent circuit when loading an acoustic element fol-
lowing a voltage-mode analysis.

Considering the following exercise: a transmitter (acoustic element) is a non-

ideal signal voltage source with an internal electrical impedance (ZS), which

generates signals to be sensed by a system with equivalent internal electrical

impedance (ZL), as presented in Figure 2.30. It might be clear through simple

circuit analysis that in order to maximize the transfer/sensing of voltage signals by

the load element under these conditions means that its electrical impedance (ZL)

should be much greater than the electrical impedance of the source (ZL >> ZS).

Important to note that this analysis is valid only if aiming to maximize the

sensing of voltage signals and not the power transfer between elements. It is well-

known that in AC circuit analysis, in order to ensure maximum power transfer

between electrical elements, the equivalent electrical impedance of the load and

the source should be matched namely, complex conjugated, ZL = ZS
∗ (e.g.,

RL = RS and XL = −XS). This approach is usually applied to high-power

ultrasonic transducers by the use of “matching networks” as the interface between

the transducer element and its driving circuits [121].

From this simple exercise, it might be concluded that in order to minimize

the effect of circuit loading (receptor’s impedance), considering a voltage-sensing

analysis and at low frequencies (e.g., audio frequencies), the electrical impedance

of the load (ZL) needs to be much greater than the electrical impedance of the
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signal source (ZS). Ignoring any parasitic elements (e.g., wiring) and reactive

terms such as intrinsic input capacitances of a typical JFET device, which es-

sentially would limit the bandwidth of that interface [118]. Therefore, a buffer

circuit configuration using a discrete JFET device might suit most of the above

requirements, as illustrated in Figure 2.31.

Figure 2.31: Common-drain circuit using a n-channel JFET device in a buffer
amplifier configuration.

Moreover, as mentioned before, MEMS microphones are available in hard-

ware packages that sometimes integrate the A/D converters in it – hence digital

microphones. In those case, it is said that these provide a digital audio signal out-

put, which can be expressed in a form of pulse-density modulation (PDM) data

formats, or pulse-code modulation (PCM) data formats transmitted through I2S

protocol. ∆Σ modulators are often used as a method for A/D conversion inte-

grated within MEMS microphones [122].

2.3.6 Actuation Method for a MEMS Microphone

Novel differential MEMS microphones have been designed in the past few years,

exploiting methods of signal transduction including piezoelectric [101], electro-

static [19] and optic [123], showing some innovation on sensing capabilities in the

creation of a new kind of directional MEMS microphones [124]. More interesting

for the work presented in Chapter 6 of this thesis is the capacitive interdigitated

comb fingers system that has been exploited for a while in MEMS for actuation
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purposes [125], [126] and [18]. The basic design principle of this actuation method

includes a set of comb fingers attached on a movable membrane. Moreover, an

equivalent capacitance can be created by the overlap area with a complementary

set of interdigitated fingers attached to a fixed substrate, when an electrostatic

force is applied, as illustrated in Figure 2.32. When supplying AC signals to

the comb fingers structure that can make a MEMS membrane to move. And,

if applying a DC voltage bias across that same system, then it might affect its

equivalent stiffness seen as a stiffening effect [19].

Figure 2.32: Simplified design schematic of a vertical comb-drive actuator, where
#1 represents a movable membrane and #2 the fixed substrate. Image adapted
and redrawn from [18].

In this comb-drive actuator design the DC bias applied provides a stiffening

effect to the spring constant of the system. In contrast with the parallel plate

capacitor system, where an applied DC bias has the opposite effect - softening

the spring constant of the microphone’s diaphragm.

The equivalent capacitance of a vertical comb-drive actuator system can be

derived from [16], and simplified as described in Equation 2.7:

Cs = 2× n× ε× y0 − z
Gs

(2.7)

Where n is the number of moving comb fingers; (y0 is the initial lateral overlap

area (y0 = (Lf − Lfo) × Tf ); Tf is the thickness of the substrate; Gs represents

the gap spacing between the movable and fixed set of comb fingers; and z repre-
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sents the reduced area of overlap due to the vertical displacement of the movable

membrane (e.g., microphone diaphragm), which at resting position thus z = 0.

In this system case design, the electrostatic attraction force is not likely to affect

the distance between adjacent comb fingers (e.g., there is a balanced forcing be-

tween them), therefore, the equivalent electrical spring of the system is thought to

change proportionally with the amount of DC voltage applied and the equivalent

capacitance set by the comb fingers structure [16], as expressed in Equation 2.8:

Ks ∝ Cs × V 2
b (2.8)

Reports suggest that this design approach is robust in terms of the amount

of constant bias voltage that can be applied to it [19]. This is in contrast with

the conventional parallel plate capacitive system where DC bias voltages might

become more prone to instability or total collapse [99]. Therefore, the capacitive

comb fingers design approach might be an attractive driving method, for instance,

in DC bias mode for dynamically adapting the resonance frequency of a purpose-

built MEMS microphone, as illustrated in Figure 2.33, without compromising the

system’s integrity as suggested in [19], and in AC bias mode it can be used to

enable Q-factor control, as exploited by this thesis work presented in Chapters 4

and 6 of this thesis.

2.3.7 DC Driving Circuit

An essential requirement when using capacitive type microphones is a circuit that

can provide the DC bias voltage. Recent capacitive based MEMS microphone

designs incorporate the Dickson voltage converter (DC-DC voltage converter) in

the package. This system is also known as charge-pump circuit [20], as in the

example illustrated in Figure 2.34.

Optimised designs of this type of circuit can ensure efficient voltage conver-
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Figure 2.33: Microphone’s frequency response can be changed proportionally to
the constant bias voltage applied to the comb fingers system – stiffening effect.
Image adapted from [19].

Figure 2.34: Standard Dickson charge-pump voltage multiplier circuit with 4
stages – 5× multiplier, where Vin is the input DC voltage; Vout is the output DC
voltage given by the circuit (e.g., Vout = 5×Vin); Φ1 and Φ2 are the auxiliary high-
frequency clock signals used to carry-out (build-up) the charge between capacitors
[20].
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sions while exploiting integrated circuit design techniques compatible with CMOS

processes [117], [127].

2.3.8 Discussion II

When comparing MEMS microphone specifications, it is important to consider

that manufacturers report referred parameters from test controlled measurements

that combine both acoustic and electrical element’s performances. However, the

choice for the right device should be based on the specific application. For in-

stance, in near field applications the AOP value might be the most important

parameter to take into consideration for a MEMS microphone, whereas in far

field applications a highly sensitivity device might be the one to choose. It is

important to note that the overall sensitivity of a microphone system can be in-

creased by providing appropriate electronic conditioning upon fabrication, while

care is taken to not compromise the overall system’s noise floor, linearity, band-

width, package size and power consumption. A desire to have a device with very

low noise floor is always very likely to suit any kind of application.

Regarding design considerations, conventional MEMS microphones for con-

sumer electronic applications are designed and aimed to be operated below the

resonance frequency (e.g. stiffness-controlled region), aiming to cover audio signal

frequencies. Regardless of the sensory transduction method used, the sensitivity

of the device is meant to be controlled by the elastic properties of the mechanical

elements. Therefore, care is taken to provide enough spacing for the mechanical

parts (e.g. membranes, diaphragms or cantilevers) to move freely and evenly,

which otherwise would compromise the device’s linear acoustic performance; and

perhaps exposing the total collapse of the system if operated under high stress

conditions – piezoelectric based MEMS microphones appear to be more robust to

than standard parallel plate capacitive counterparts [17] - e.g., cantilever based

designs.
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The parallel plate condenser type microphone design relies on the electro-

static transduction method, which has a nonlinear relationship between the acous-

tic force and the distance between the parallel plates, whereas the piezoelectric

MEMS design appears to ensure better linearity response as for under controlled

stress conditions. Additionally, this transduction method has already been inte-

grated in commercial MEMS microphone designs [105], therefore, it is seen as a

potential feature to be exploited in a purpose-built MEMS microphone design,

as presented in Chapter 6 of this thesis.

Furthermore, the parallel plate condenser type microphone relies on a constant

supply voltage applied to enable transduction. This design requires some special

considerations to ensure enough back cavity spacing when elevated electrostatic

forces are supplied (e.g., high DC voltages) that otherwise would stick the paral-

lel plates together. In contrast, the capacitive comb-drive actuator design seems

to ensure higher robustness due to the balance of the electrostatic force between

adjacent fingers. Moreover, this method has already been integrated in MEMS

microphone designs [19], therefore it is seen as a potential feature to be used to

dynamically adapt the output response of a MEMS microphone such as its res-

onance frequency, without compromising its acoustic performance, as presented

in Chapter 6 of this thesis.

In general, MEMS microphone technology benefits and follows the growing

trend of CMOS technological advances. Devices are getting smaller and relatively

cheaper to manufacture, following similar exponential technological trends such

as predicted by Moore’s law - allowing easier integration of sensors, circuits and

systems almost everywhere. Nevertheless, trade-offs should always be considered,

and probably the biggest challenges in acoustic sensors and system applications

at the moment is finding new methods and techniques to further improve their

performances under some complex conditions. Therefore, the next generation of

acoustic sensors and systems, including further innovation in MEMSmicrophone’s
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technology may rely on fundamental research in the subject areas summarized as

follows:

• Exploiting multiple methods of signal transduction such as piezoelectric and

capacitive in the same device system;

• Combination of novel design ideas while integrating conventional sensing

and actuation capabilities in the same device;

• New prototyping techniques;

• Unconventional methods of signal processing, for instance bio-inspired com-

putation, applied on sensors, circuits and systems;

• Adaptive acoustic front-ends exploiting the use of feedback computation

at the sensor level, aiming to achieve best-possible acoustic-electrical per-

formances, while also using standard micro-fabrication and manufacturing

processes.

There is potential for technological innovation in acoustic sensors, circuits and

systems in order to address problems related to real-time audio signal processing

in complex environments, while keeping devices small and operating at low power

demands. Therefore, these are some of the topics of current research interests and

developments involving different engineering disciplines, which in part, the bio-

inspired work presented in this thesis aims to consider.
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Chapter 3

Bio-Inspired Frequency Agile

Acoustic Sensor System

Standard microphones and ultrasonic devices are generally designed with a broad

and static frequency response in order to address multiple acoustic applications.

Therefore, they may not be flexible or adaptable enough to deal with some require-

ments. For instance, when operated in noisy environments such devices might

be vulnerable to wideband background noise or interfering signals, which might

require further signal processing techniques to remove them, generally relying on

digital signal processors (DSP).

In this chapter, it is considered if microphones or acoustic sensors in general

could be designed to be sensitive only at selected frequencies of interest, whilst

also providing flexibility in order to adapt their electromechanical responses to

track signals of interest or to deal with environmental demands, noise or inter-

fering signals. This line of thought is developed under the assumption that a

“transducer can be part of the signal processing chain” by exploiting feedback

processes between mechanical and electrical mechanisms that together can en-

hance peripheral sound processing. This capability is present within a biological

acoustic system, namely in the ears of certain moths as noted in Chapter 2. That
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is to be used as a model of inspiration for a smart acoustic sensor system con-

cept, which enables dynamic adaptation of the front-end transducer’s frequency

response.

Figure 3.1: Diagram overview of the feedback control system that can be used to
implement the concept of a frequency agile transducer. Where s represents the
reference signal used to provide a processing response from the feedback system
computation and Vdriving represents the control signal used to alter the frequency
response of the front-end transducer.

From the engineering point-of-view, the Noctuid moth hearing system that was

introduced in Chapter 2 might be represented as a system composed of an acoustic

sensor with feedback computation capabilities as presented in Figure 3.1, where

the “Frequency Agile Sensor” system represents the tympanic membrane (i.e.,

passive acoustic front-end detector); and the “Adaptive Control System” block

represents a back-end neuronal processing (i.e., feedback computation), which

enables the dynamic adaptations of the front-end sensory structure in order to

alter its frequency response.
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3.1 Theoretical Model

Recalling Chapter 2, hearing responsiveness is greatly dependent on interactions

between mechanical and electrical processes inside the auditory system. Natural

passive responses of front-end mechanical detectors (e.g., ear tympanic mem-

branes) may show active responses due to incorporated feedback mechanisms,

which then affect their mechanical structures for sound detection. For instance,

moths have a tympanum-like ear that acts as a pressure sensor for sound sens-

ing, which in some species shows adaptive capabilities such as frequency agile

tuning. In some Noctuid moths, their ears show high sensitivity for quiet sounds

at low frequencies, and when stimulated with loud sounds, sensitivity is shifted

towards higher frequencies instead. This auditory system automatically adapts

its sensitivity towards higher frequencies in order to become frequency tuned with

the hunting signals of bats. This adaptable mechanism is seen as an active tun-

ing system with interesting features, and possibly with great benefits to acoustic

engineering.

Motivated by the dynamics and active processes reported from the auditory

system of moths, a feedback control system framework was developed in order

to prototype this concept of a frequency agile acoustic sensor system. First of

all, it might be hypothesised that the moth’s tympanic membrane is represented

as a mass-spring system (e.g., a 2nd order system, as noted in Chapter 2), which

the natural resonance frequency is directly proportional to its spring’s stiffness

and mass. Modelling one of these elements (e.g., reactive terms) would allow the

frequency response of the system to be altered since, ω0
2 = k

m
. Furthermore, the

Q-factor might also change along with the natural resonance frequency of the

system, because Q = ω0
γ
. It is reported in the literature [10] that the tympanic

membrane of Noctuid moths might be somehow mechanically stretched to allow

that dynamic tuning adaptation. Stretching might be provided to the system
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by increasing tension over it (i.e., adding an external pulling force), which then

expands the membrane and consequently changes its natural frequency response.

From the engineering point of view, this assumption can be simply generalised

as a thin membrane fixed on both sides while stretching is provided by adding

a transverse tension at those points (e.g., pulling apart), as illustrated in Figure

3.2, which ideally expands the membrane uniformly and consequently alters the

frequency response of this system, as illustrated in Figure 3.3.

Figure 3.2: A fixed-fixed membrane structure as a simple system (2nd order sys-
tem) to model the tuning response of the tympanic membrane of moths.

Therefore, the structural acoustics (e.g., vibrational behaviour) of this system

used as a front-end acoustic detector is approximated to a linear single degree

of freedom oscillatory response (i.e. z-axis), which for the purposes of this study

can be expressed mathematically as a 2nd order system as presented in Laplace

form in Equation 3.1:

H(s) = ω0

s2 + sω0
Q

+ ω2
0

(3.1)

Refer to Chapter 2 and [128] for further fundamental discussions about the

behavioural responses given by a 2nd order system of this type.
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Figure 3.3: (A) Frequency response of a 2nd order system, while ω0 term is altered
as a hypothetical consequence of providing additional tension over the mechanical
structure, which consequently affects its stiffness – shifting resonance frequency.
(B) Graphical representation of ω0

2 = k
m

– highlighting the region between two
resonance frequencies, which shows a quasi-linear profile within that frequency-
frame.

3.2 Frequency Agile Sensor (Front-end Acoustic

Transducer – physical model)

For the prototyping purposes of this concept, and with the aim to investigate and

better understand the behaviour given by a real acoustic system (e.g., physical

model), an electromechanical setup was designed. A front-end acoustic transducer

was fabricated using off-the-shelf materials, including a thin Kapton membrane

(polyimide film: width = 22 mm; height = 3 mm; thickness = 50 µm) that is

placed and glued on top of a piezoelectric (PZT) stack device. The PZT stack

is used to provide the pulling force to expand and consequently to stretch the

Kapton membrane, as illustrated in Figure 3.4. The PZT stack used in this

prototype device is the PICMA R© stack multilayer piezo actuator (ref: P-885.51)

from PI Ceramic.

Theoretically, when providing additional tension (upon the pre-set equilibrium

conditions after the device’s fabrication stage) over the membrane by pulling the
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Figure 3.4: (A) 3D view of the purpose-built acoustic transducer that is manu-
factured using a Kapton membrane (50 µm thick) and a PZT stack (length = 18
mm; height = 3 mm; width = 3 mm). (B) Top-view of the transducer outlining
a central point over the Kapton membrane (#50). Side-view of the transducer
illustrating the polarity of displacement when the membrane is driven by sound
and also the stretching direction, which the PZT stack can provide to alter the
behaviour of the sensor system.

structure apart (at the side points), it should change the effective stiffness and

consequently alter its natural resonance frequency response. Therefore, evalua-

tion tests were conducted to investigate and analyse the acoustic-structural in-

teractions in the purpose-built transducer using laser Doppler vibrometer (LDV)

measurements as well as performing finite-element modelling in COMSOL. In

order to predict the acousto-strutural interactions in the device before its fab-

rication, finite element modelling using COMSOL Multiphysics was performed

using the acoustics and structural mechanics modules, as illustrated in Figure

3.5.

The frequency response resulting from COMSOL simulations is presented in

Figure 3.6 (A). It shows a prediction of the frequency response given by the

purpose-built transducer before its fabrication. It is important to have an ap-

proximation of its resonant eigenvalues since the dimensions of the structure can

play a significant role in that. The membrane is also scanned using LDV tech-

niques during acoustic stimuli and multiple resonance modes are identified, as
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Figure 3.5: COMSOL model of the purpose-built device, showing the dynamical
movement of the front-end membrane with three resonant behaviours.

illustrated in Figure 3.6 (B).

Figure 3.6: COMSOL and LDV measurement results. (A) COMSOL simulation
showing the frequency response of the modelled transducer, presenting 3 resonant
modes between 2 – 12 kHz. (B) Frequency response of the transducer measured
with LDV, showing 2 resonant modes between 2 – 5 kHz related to outlined
central point (#50) over the Kapton membrane (refer to Figure 3.4).

As previously described, the frequency response of the Kapton membrane can

be altered by increasing tension over it and that was tested experimentally as

presented in Figure 3.7. The tension effect over the purpose-built transducer is

tested by driving the PZT stack with DC voltages between 0 – 100 V with 5

V step increments. A proportional shift of the natural resonance frequency and

enhanced sensitivity of the sensor responsiveness was recorded. Experimental

tests concentrated around the 1st resonance frequency mode revealed that it can

be shifted from 2.467 kHz to 3.227 kHz (∆ω = 760 Hz, where ∆ω represents
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the frequency shifting window in which the transducer can be operated). This

evaluation test validates the transducer’s design and fabrication processes through

LDV techniques (refer to Figure 3.8 for the LDV setup used). The transducer’s

responsiveness faithfully matches the behaviour of a mass-spring system model

- 2nd order system response (refer to Figure 3.3), which is considered acceptable

for the purposes of this study.

Figure 3.7: LDV measurement results while DC voltages are applied to the PZT
stack terminals: (A) Plot representation of the 1st resonant frequency mode of
the Kapton membrane while providing different tensions (e.g., driving forces from
0 – 100 V with 5 V step increments); (B) Approximation to a quasi-linear shift-
ing of the natural resonance frequency - ∆f ≈ 38 Hz @ ∆V = 5 V. These plots
show a favourable matching between the physical front-end transducer with its
theoretical model as a 2nd order system response (recall to Figure 3.3 for com-
parison). These evaluation tests required sound to be driven, using a sound
transmitter/speaker (ESS HEIL Air-Motion Transformer) that was placed per-
pendicularly to the device, at a distance of 50 cm, which was excited by the
internal signal generator of the LDV machine.
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Figure 3.8: Images of the device under the LDV measurement machine (Polytec
sensor head MSA-100-3D) ready for a scan.

3.3 Adapting Control System (Back-end Neu-

ronal Computation)

In the moth hearing system, as reported in [10], the effective stiffness of the tym-

panic membrane might be physically dependent on the amplitude of the input

acoustic stimuli reaching it (i.e., stiffness as a function of the input sound inten-

sity). Following a similar approach, it is proposed that a back-end signal process-

ing algorithm can be computed within a processing unit to progressively adapt

the resonance frequency of the purpose-built acoustic transducer presented in Sec-

tion 3.2. The algorithm is time and amplitude dependent to be similarly matched

with the moth’s hearing response and designed to be easily executed while pro-

viding real-time results. The workflow of signal processing is presented in Figure

3.9, which mimics some of the mechanisms of signal transduction within auditory

sensory receptors, as the first two block systems represent the “Mechanoreceptor

cells role” and the following two blocks the “Neuronal cells role” - refer to Chapter

2 (e.g., [5]) for biological background details.

The algorithm evolves as follows: the output signal s (readout from the sen-

sor) is averaged over time and once the pre-defined threshold is reached, the
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Figure 3.9: Schematic diagram of the “Adapting Control System” algorithm.
Where s represents the output signal of the sensory system (refer to Figure 3.1),
which is fed through the feedback pathway of signal processing; r represents the
half-wave rectifier output signal; k shows the lowpass response outcome from the
mechanoreceptor cells charging effect; c represents the on-off neuronal response
(e.g., threshold based computation), which is then smoothed (Vdriving) in order to
provide a progressive control of the transducer’s resonance frequency adaptation.
τr and τc represent the time factors associated to 〈r(t)〉 and 〈c(t)〉 averaging block
systems, respectively.

computational algorithm drives output signals (Vdriving) to control the front-end

transducer’s frequency response (e.g., stretching the membrane – changing its

stiffness). In this engineered version of “hearing” – the time averaging blocks

〈r(t)〉 and 〈c(t)〉 are implemented using a first order IIR (Infinite Impulse Re-

sponse) system with transfer function given in Z-domain by Equation 3.2:

H(z) = α

1− Z−1(1− α) (3.2)

Where α = dt
τ

represents the moving-average window coefficient and τ is

the average time constant associated to this function, and dt is the time step

resolution.
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3.4 Numerical Simulation of the Purpose-Built

Sensor System

The concept illustrated in Figure 3.1, and introduced previously as a theoretical

model was then implemented through a numerical simulation in MatLab R2014b,

and tested using synthetic signals with sampling time resolution of dt = 20µs.

First, the “Adapting Control System” algorithm was tested in an open-loop

configuration with synthetic input signals as follows. As explained before, the

algorithm is divided in two parts: “Mechanoreceptor cells role” and “Neuronal

cells role”. It has been reported in the literature [5] that when increasing frequency

of the input stimuli, mechanoreceptor cells gradually alter their response from

alternating mode (AC) to direct mode (DC) – that behaviour is included in this

model, and is achieved by the coupling between the initial two blocks (half-wave

rectifier + lowpass filtering) of this computational algorithm. In Figure 3.10 the

top graphs illustrate four examples of s(t) signals (i.e., reference/readout signals

from the sensor, which are used to feed the workflow of signal processing). The

processing shows a gradual change from AC to DC mode of operation while

increasing signal frequency. This behaviour is illustrated in Figure 3.10 bottom

graphs with k(t) signal plot. This charging effect is dependent on 〈r(t)〉 time

constant - τr.

The “Neuronal cells role” is then the next step performed by the algorithm. It

is set by a comparison between a threshold previously defined with the resultant

signal k(t) followed by an additional lowpass filtering - 〈c(t)〉. Figure 3.11 (A)

presents three examples of signal processing outputs using different threshold

values (i.e., 0.01, 0.025 and 0.04 – from Bottom to Top). The output of the

comparator is defined by c(t), which is essentially an on-off output signal. If

k(t) presents an oscillatory signature at the input of the comparator around its

threshold value (Vthreshold), as illustrated in Figure 3.11 (A): Top and Middle
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Figure 3.10: Mechanoreceptor cells role” signal processing response showing grad-
ual changing from AC to DC mode of operation when frequency of the input
stimuli is increased – with τr = 0.351 ms.

graphs, that will trigger an oscillatory on-off response of c(t), as illustrated in

Figure 3.11 (B): Top and Middle graphs. So, the role that 〈c(t)〉 plays to ensure

a more stable and smoothed output signal (Vdriving) of the algorithm is essential

for the sake of overall system stability. On the one hand, low averaging times

within 〈c(t)〉 → τc will set faster overall responses (e.g., onset of the algorithm),

however it will make the system less robust to fast switching at the comparator

stage – Figure 3.11 (B): Top and Middle plots on the left shows c(t) signal with

some ripple when τc = 1 ms. On the other hand, higher averaging time constants

will improve the system’s robustness against fast switching, however it might

cause the system to react slower – spending more time to achieve its steady-state,

Figure 3.11 (B): Top and Middle plots on the right show c(t) signal more immune

to fast switching but with slow convergence time when τc = 50 ms. When the

threshold is fully achieved with a DC component at k(t) that will set a smoothed

and progressive output response of the algorithm, as illustrated in Figure 3.11

– Bottom plots for V th = 0.01. The overall time response of the algorithm is

then mainly dependent on τc, since τr is kept significantly smaller in comparison,

ensuring DC modes of operation at low frequencies.

In order to analyse the system’s overall dynamics, a model using a front-

end acoustic receiver expressed by Equation 3.1 is placed within a feedback loop
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Figure 3.11: “Neuronal cells role” signal processing response showing threshold
and time dependency settled mainly by the comparator and 〈c(t)〉 blocks, re-
spectively. (A) Shows three examples of k(t) signal using different thresholds;
(B) illustrates the correspondent signals c(t) showing the influence of τc in the
algorithm’s performance and stability.

fashion controlled by the computational chain of signal processing blocks as the

“Adapting Control System” algorithm introduced in Figure 3.9. Three different

synthetized sound signals are presented to the system’s input to trigger frequency

tuning that travels from f0 towards f ′′
0 , as illustrated in Figure 3.12.

First of all in (a), tuning is seen at the beginning of the input signal with

frequency f0, however once the algorithm starts to be iterated that will initi-
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Figure 3.12: Modelling the feedback control system that is illustrated in Figure
3.1, showing three different resonance tuning responses (a), (b) and (c) at f0 =
2.467 kHz, f ′

0 = 2.847 kHz and f ′′
0 = 3.227 kHz, respectively with Q = 10. Using

τr = 0.351 ms, Vthreshold = 0.01 and τc = 25 ms.

ate its influence over the front-end sensor frequency response (i.e., showing the

mechanical properties of the front-end transducer being changed) and so after

approximately 25 ms the system’s tuning becomes off-resonance. Secondly, in

(b) the input signal with frequency f
′
0 is not initially matched with the initial

resonant frequency of the system f0, however after approximately 25 ms of the

input stimulus being presented, the system shows resonant tuning matched with

the input signal at frequency f ′
0, due to feedback adaptation. Thirdly, in (c) the

resonance tuning response of the system is matched with the input signal at fre-

quency f ′′
0 . This happens when the algorithm reaches its steady-state adaptation.

If there is no acoustic input presented to the sensory system, the threshold will

not be reached and so the front-end sensor frequency response will return back

to its initial resonance at f0.

The impulse response of the overall system was also tested, as presented in

Figure 3.13, and that shows higher immunity to fast transients of the input signal

when using higher values of τc. So, the overall stability given by the feedback

control algorithm is dependent on those three parameters: τr, Vthreshold and τc.

However, it can be mainly controlled by τc when kept higher than the settling

time of the front-end sensor itself (e.g., approximately 5 ms for a Q = 10), in

detriment to the algorithm’s time of convergence. For instance, in Figure 3.13
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Figure 3.13: Impulse response of the overall feedback control system has a settling
time ≈ 5ms – see “Output Response” plots; with Q = 10; τr = 0.351 ms and
Vthreshold = 0.01. (A) τc = 1 ms; and (B) τc = 25 ms.

(B) – when τc = 25 ms, the algorithm accounts for the transducer’s settling time

to occur, which then improves the system’s stability when fast input transient

appears, compared to when τc = 1 ms, as illustrated in Figure 3.13 (A).

It is important to note that the criterion used to define the value of τr is

based on the input signal frequency to set the transition between AC and DC

mode, for instance τr = 0.351 ms sets this transition when fin = f
′
0 = 2.847 kHz.

Furthermore, the criterion used to define τc is based on the assumption that this

concept is meant to be a slow adaptation process. Therefore, τc is defined to

be 5x greater than the settling time of the front-end receiver impulse response,

which is τc = 25 ms for a Q = 10 with setting time ≈ 5ms, as shown in Figure

3.13.

3.5 Experimental Embedded System Setup

In order to implement the concept experimentally (e.g., physical model), a feed-

back control system that ensures results in real-time was prototyped through an

embedded system setup, as illustrated in Figure 3.14. As previously described,
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the acoustic transducer, which is built with Kapton and PZT materials, and the

feedback control algorithm proposed were both integrated in this experimental

setup.

Figure 3.14: Experimental setup and schematic overview (inset) of the embedded
system and circuit blocks used to implement the frequency agile concept in a
real-time processing scenario.

A laser vibrometer (head + controller: Polytec OFV 2700) providing an ana-

logue output was used as a reference measurement signal of the displacements in-

duced on the Kapton membrane from acoustic stimuli. A 32-bit Micro-controller

Unit (MCU) from STMicroelectronics (STM32F4) running with a clock frequency

of 168 MHz is used to acquire signals and to compute the feedback control al-

gorithm. Pre-amplification and filtering are provided that are integrated on an

analogue conditioning circuit for the output signals coming from the laser con-

troller. Signal acquisition is done using an on-board A/D converter (e.g., 12-bit
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resolution, unipolar input [0 – 3 V]) with a sampling frequency of 50 kHz. Data

is acquired and managed using interrupt-based routines. The threshold based

algorithm is executed inside the Central Processing Unit (CPU), which is set

according to the intensity of the input sound signals measured, such that the

feedback control system can dynamically adapt the structural mechanics of the

front-end transducer in real-time. The PZT stack is actuated using a D/A con-

verter (e.g., 12-bit resolution, single-ended output [0 – 3 V]) with an additional

analogue driving circuit to amplify compatible output signals.

3.5.1 Acquisition Workflow

As previously mentioned, the aim of this purpose-built embedded system setup

is to implement the concept of a frequency agile acoustic sensor system, which

can provide results in a real-time scenario, so the setup should ensure real-time

signal processing capabilities with accurate data sampling. The approach is based

on hard and soft interrupt routines, which allow prioritization of the acquisition

task. The sampling rate of the A/D required three hardware interrupt routines

(e.g., computational operations without CPU intervention) configured as follows

and presented in Figure 3.15:

Figure 3.15: Diagram overview of the acquisition and real-time signal processing
workflow that is relied on a sample-by-sample computation.

1. Timer interrupt (configured in counter mode – e.g., TIMERcnt) is used to
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trigger the A/D to start acquisition/sampling;

2. A/D end-of-conversion flag (e.g., ADCeoc) is used to signal the DMA con-

troller to collect and transfer data samples from the A/D register to memory

(RAM);

3. DMA data-transfer-complete flag (e.g., DMAdtc) is used to signal the CPU

through a software interrupt routine (e.g., ISQHandler()) when data is ready

to be processed.

4. The CPU computes the algorithm (e.g., Adapting − algorithm()), which

outputs the results through the D/A controller that drives compatible sig-

nals (e.g., DAC − write()) to the transducer.

3.5.2 Analogue Conditioning Circuits

Signals relating to the Kapton membrane’s displacements are measured using an

optical readout. Due to the inherent setup (e.g., manual alignment of the laser

head + laser light, etc.), the output signals given by the laser controller can

exhibit low signal-to-noise ratio levels. In order to ensure suitable discrimination

of signals acquired by the A/D stage, amplification and filtering were required.

Figure 3.16 shows the schematic of the circuit used to perform the conditioning

of signals from the laser controller. Amplification is performed using an instru-

mentation amplifier (INA) front-end with a variable gain, up to 54 dB, including

an additional filter stage for low frequency suppression, with cut-off frequency

approximately 2 kHz. Lowpass filtering is also provided using a Butterworth 4th

order filter, with cut-off frequency approximately 12 kHz, in a Sallen-Key config-

uration – this is for anti-aliasing filtering as well as high frequency suppression.

Its frequency response is presetned in Figure 3.17. The final stage of this con-

ditioning circuit is a variable DC level-shift circuit, which provides single-ended

output from this circuit to the MCU’s on-board A/D unipolar input (0 – 3 V) as
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Figure 3.16: Schematic overview of the circuit used for readout from the laser
controller – LNA, BPF, and DC level shift.

well as to correct any DC-offset errors added from the previous stages of signal

conditioning.

Figure 3.17: Frequency response of the analogue conditioning circuit to provide
a bandpass filtering with a quasi-linear phase response between 2 and 12 kHz.

In order to operate the PZT stack within a voltage range of 0 V up to 100

V, it was necessary to design a circuit to amplify, with up to 30 dB of gain, the
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output signals from the D/A (unipolar 0 – 3 V). A non-inverter amplifier circuit

configuration using the PA78 device from Apex Microtechnology was used, as

illustrated in Figure 3.18.

Figure 3.18: Schematic overview of the driver circuit used to amplify the output
signals from the D/A converter (0 – 3 V) to operate the PZT stack (0 – 100 V).

3.6 Experimental Results of the Closed-Loop Sen-

sory System

The embedded system setup was also tested integrating all its parts, including

the acoustic transducer placed within the embedded closed-loop system, as il-

lustrated in Figure 3.14. The MCU was loaded with the code of the feedback

control algorithm following the processing workflow as presented in Figure 3.9.

Figure 3.19 shows three different tuning responses given by the presented em-

bedded system setup. Frequency tuning travels from f0 towards f ′′
0 , similarly

to that presented through numerical simulation from the theoretical model as

illustrated in Figure 3.12. Firstly in (a), tuning is seen at the beginning of the

input signal with frequency f0, however once the membrane starts being stretched

with a transverse positive tension, the mechanical properties of the membrane are

changed and so is its frequency response – after approximately 25 ms the system
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tuning becomes off-resonance. Secondly in (b), the input signal with frequency

f
′
0 is not matched with the initial resonant frequency of the transducer f0, how-

ever, after approximately 25 ms of the input stimulus being presented, and due

to mechanical adaptations of the membrane, the system shows resonant tuning

matched with the input signal at frequency f
′
0. Thirdly in (c), the resonance

tuning response of the system is matched with the input signal at frequency f ′′
0

when the membrane is fully stretched (e.g., max. tension provided). If there is no

acoustic input presented to the system setup, the algorithm will set no stretching

output (e.g., min. tension provided) to the front-end sensor, which will return

back to its initial resonance frequency at f0.

The processing time spent while computing the feedback control algorithm

was measured at approximately 5 µs running the CPU at 168 MHz, which is

far smaller than the sampling time of the computational system - 20 µs (e.g.,

time window between consecutive data samples), which ensures reliable real-time

signal processing conditions. Quantitative tests were also performed in order to

characterize the temporal uncertainty of the data acquired by the purpose-built

computational embedded acquisition setup (refer to Fig. 13), during the experi-

mental stage, while following the technique proposed in [129], and the results are

summarized in Table 3.1, for an applied triangular signal from 0 – 3V at 1 kHz

as a reference signal driven by a digital Agilent Waveform Generator (33250A)

with output resolution of 14-bit.

Table 3.1: Temporal uncertainty of the purpose-built acquisition system at Fs =
1 kHz as a reference test signal.

Fs (real) [Hz] Aperture Delay
(skew) [%]

Aperture Jitter [%]

1000.1611 ± 0.054 -0.01611 0.0054

The power consumption of the overall embedded system was estimated at

around 500 mW – based on the expected operating conditions of the CPU and
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Figure 3.19: Experimental results showing dynamic frequency adaptation given
by the embedded system setup in a closed-loop configuration, presenting time
(τ = τr + τc ≈ 25 ms) and amplitude (Vth = 0.5 V) dependencies (recall to Figure
3.12 for comparison with the numerical simulation of the purpose-built system).

digital hardware cores configured for processing tasks as well as the analogue

circuitry used for signal conditioning and driving.

3.7 Discussion

Inspired by the feedback mechanisms used to achieve frequency agile tuning in

the Noctuid moth ears [10], a novel engineered acoustic transducer concept is
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introduced combining mechanical signal processing with a complementary elec-

trical feedback computation - the transducer therefore computes, as the natural

sensory system does, to enhance peripheral signal conditioning and processing

capabilities. This is the first prototype version for a frequency agile tuning con-

cept that describes, models and validates the design of an acoustic sensor system,

a combination of Kapton and piezoelectric ceramic materials. The use of mate-

rials such as PZT was fundamental to achieve the adaptations of the front-end

transducer due to its electromechanical properties. Other smart materials such as

polymers (e.g., EFOAM, PVDF or EAP) are also promising materials to exploit

and use within new sensor-actuator designs in active control applications since

they are light weight, flexible, low-cost, give easy integration into any size or ma-

terial shape, among other characteristics [103]. The use of novel manufacturing

processes may also be considered based on 3D printing techniques [130]. Further-

more, feedback computation was also applied in order to process acoustic signals

based on “simple” mechanisms of auditory signal processing [5]. Moreover, an

embedded system setup was prototyped in a feedback control loop to compute

the algorithm that dynamically adapts the frequency response of the front-end

transducer. Experimental results given by the purpose-built sensor system are

faithfully matched with their simulated model equivalents, which are used to bet-

ter describe and characterize the concept and its overall frequency agile tuning

behaviour.

The purpose-built acoustic transducer follows a quasi-linear resonant-shifting

response over a dynamic frequency range of 760 Hz. It has 38 Hz of frequency

resolution for each 5 V step, and the embedded system response time was set

to be approximately 25 ms, which is the time defined for the sensor to operate

from f0 to f ′′
0 using 0 to 100 V, respectively. The system stability was evaluated

by simulation and it is mainly controlled by the algorithm’s time constant τc.

It is concluded that the τc time constant can ensure higher immunity to fast
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transients of the input signal if kept higher than the settling time of the front-

end transducer itself (e.g., dependent on the Q-factor of the sensor) – here a slow

adaptation process is considered.

The work described in this chapter introduces the fundamentals of a novel

concept of signal processing at the sensor level that can potentially be exploited

by sensor and system designers in the future developments of acoustic devices. An

acoustic signal processing framework integrating a functional prototype system

was engineered to support the concept of a frequency agile sensor, however further

improvements may be included in the next generation (e.g., advanced prototyping

stages such as miniaturization) of this concept in order to address real world

applications, outlined as follows:

• Front-end transducer: in this initial prototype version for a frequency

agile acoustic sensor system, a transducer is made with a Kapton mem-

brane (50 µm thick) glued on top of a PZT stack (length = 18 mm; height

= 3 mm; width = 3 mm) is used to sense acoustic signals, using an optical

readout signal, and actuating through the piezoelectric functionality em-

bedded in the sensor itself. Further developments at the transducer level

should be to make the device (e.g., acoustic detector/sensor) smaller and

easier to integrate with integrated circuits and systems, for instance by

exploiting micro fabrication techniques towards the design of miniaturised

microphones or ultrasonic devices based on MEMS technology. Some ideas

should be highlighted in this regard:

This concept of frequency agile tuning might be more advantageous

when using a high-Q transducer/detector/sensor, so the design and fabri-

cation requirements should accomplish that;

Readout and actuation on the transducer can be done by using a com-

bination of standard sensing and actuation techniques, which can be op-

tic (readout only), piezoelectric (readout and/or actuation) and capacitive
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(readout and/or actuation), with all the advantages and disadvantages as-

sociated to them as well as the demands of custom design for the analogue

front-end signal conditioning circuits with respect to each one of those trans-

duction/actuation modalities.

• Feedback computation: with proper revision, the feedback control al-

gorithm or any computational approach, either analogue, digital or both

modalities combined, can be designed to scan and hold at desired frequen-

cies of interest instead of just moving up and down in the spectrum based

on the intensity level of the input signal detected. Additional ideas can also

be exploited in this regard are:

Other variables for decision making and adaptation can be used rather

than only based on a static threshold. The threshold might be adaptable

over time and this algorithm or any kind of computation technique chosen

(e.g., digital, analogue, or both) can evolve according to selected features of

the input signal. For instance its amplitude and frequency signatures that

if combined with the transducer’s response may allow the system to track

more complex signals instead of only single tone frequencies. Moreover, a

combination of multiple agile sensors of this kind that can be placed in an

array fashion can be exploited to address the processing of more complex

signals such as human speech, tuning with the specific peaks of their sound

spectrum - formants. In that case, tracking speech-formants would require

multiple bands with differing widths and shifting capabilities;

An acoustic sensor might be also adaptable to deal with environmental

changes such as atmospheric pressure and temperature gradients, which can

affect the transducer’s natural response and its overall performances over

time. So, making a sensor adaptable over time might be of great importance

to increase sensing fidelity in an audio measurement device system [131],
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[132];

The algorithm presented in this study includes computational opera-

tions such as rectification, averaging and comparisons, which can be per-

formed without the need for a digital computational unit executing DSP

operations. Thus, the overall power consumption of such an adaptable au-

dio system might be reduced if exploiting feedback computation between

the front-end acoustic transducer/detector and its back-end systems using

low power electronics based on integrated circuits and analogue signal pro-

cessing techniques such like some of the examples presented in [89].

Chapter 3. Bio-Inspired Frequency Agile Acoustic Sensor System 106



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

Chapter 3. Bio-Inspired Frequency Agile Acoustic Sensor System 107



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

Chapter 3. Bio-Inspired Frequency Agile Acoustic Sensor System 108



Chapter 4

Bio-inspired Active Amplification

in an Acoustic Sensor System

Over many millions of years of evolution, nature has developed some of the most

adaptable sensors and sensory systems possible, capable of sensing, conditioning

and processing signals in a very power- and size-effective manner. By looking into

biological sensors and systems as a source of inspirations, this chapter presents a

study of a bio-inspired concept of signal processing performed at the transducer

level. By exploiting a feedback control mechanism between the front-end acoustic

sensor and back-end neuronal based computation, a nonlinear active amplifica-

tion with hysteretic behaviour is created. Moreover, the transient response of

the front-end acoustic sensor can also be controlled and enhanced. A theoretical

model is proposed and the concept is prototyped experimentally through an em-

bedded system setup that can provide dynamic adaptations of a sensory system

comprising a MEMS microphone placed in a closed-loop positive feedback config-

uration. It faithfully mimics the mosquito’s active hearing response as a function

of the input sound intensity (refer to Chapter 2 for details about mosquito’s hear-

ing and active processes). Inspired by that unconventional mechanism of signal

detection and conditioning, an engineered system using a cycle-by-cycle feedback
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based computation can be developed to manipulate the response of the front-end

acoustic detector, as illustrated in Figure 4.1.

Figure 4.1: Diagram overview of the feedback control system that can be used
to implement the concept of active nonlinear amplification such as for Q-factor
control. That is inspired by the mosquito’s hearing system. “Acoustic sensor”
represents the front-end acoustic detector/sensor/transducer such as a MEMS
microphone; “Feedback Computation” represents the back-end feedback control
based on a cycle-by-cycle signal processing used to pump additional energy (K)
to the front-end detector/sensor/transducer dependent on past signals detected
(I).

The assumption is that the active amplification responsiveness to acoustic

signals can be greatly enhanced by synchronized pulsatile signals supplying addi-

tional energy per cycle entrained (e.g., phase-locking) with the front-end acoustic

detector through a positive feedback mechanism.

4.1 Theoretical Model

A bio-inspired concept for sensory signal detection and conditioning such as active

nonlinear amplification that exploits feedback computation at the sensor level

is proposed and described as follows. It faithfully describes an active process

that is inspired by the possible physical basis for the mosquito hearing. From

the engineering point of view, this concept can be illustrated by the closed-loop
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diagram presented in Figure 4.2 and its transfer function is expressed by Equation

4.1:

Figure 4.2: Diagram overview of the closed-loop feedback system used to model
the concept of active nonlinear amplification. H(s) represents the transfer func-
tion of a front-end acoustic sensor (e.g., MEMS microphone) and LIF (s) is the
transfer function of a smart pulse generator (e.g., back-end neuronal system
response outputted by a computational machine) that is placed in a positive-
feedback fashion. Input(s) represents mechanical vibrations due to acoustic en-
ergy coupled with the sound detector structure (e.g., microphone’s diaphragm)
and Output(s) is the signal readout from the acoustic sensor (e.g., signal resulted
from the transduction method used, for instance optical readout using laser light
can be used to measure the diaphragm displacements. Other transduction meth-
ods are also valid such as piezoelectric or capacitive, as exploited in Chapter
6).

Output(s)
Input(s) = H(s)

1− LIF (s).H(s) (4.1)

This concept is based on the assumption of a feedback system architecture

considering two fundamental elements:

1. A front-end acoustic sensor, which has the role to detect sound, per-

forming the first stage of signal detection and conditioning (e.g., mechanical

filtering and transduction of energy from mechanical to an electrical form);

And, this sensor’s design should include actuation capabilities;

2. A back-end computational system (e.g., either analogue or digi-

tal, or both), which assists in the process to further enhance the sensor

responsiveness to a targeted stimulus.
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Therefore, the overall response of this sensory system concept is greatly de-

pendent on the coupling between these two elements (e.g., front-end acoustic

sensor + back-end computational system), which once combined can result in a

nonlinear active amplification with hysteretic behaviour.

Theoretically, if the damping of a front-end acoustic sensor can be changed

dynamically, that might have a consequent effect on its sensitivity to sound (e.g.,

Q-factor is altered, as noted in Chapter 2). This principle can be achieved through

the entrainment of pulsatile energy, a form of square-shaped pulses that are in-

jected to the front-end acoustic detector in a synchronized and cycle-by-cycle

manner (e.g. phase-locking), for instance, exploiting 1:1 resonance mode, as il-

lustrated in Figure 4.3.

Figure 4.3: Example of 1:1 resonance mode entrainment of the input signal (blue
trace) with square pulses (black trace). Pulses are generated after the integration
of signals (green trace) reaching a defined threshold level. Overall, the coupling of
both signals may result in an amplified and mechanically filtered output response
(red trace) performed at the sensor level.

Generally speaking, it means that feedback signals (e.g., pulses) are entrained

with the input signal at the same frequency and polarity. Therefore, an ampli-

fied and filtered response can likely result from an in-phase summation of signals
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that are mechanically coupled by the front-end acoustic sensor. For instance in

a real system (e.g., a physical model), it means that the mechanical vibrations

induced by the input sound waves into, say a microphone’s diaphragm are likely

to be added to the vibrations generated by the pulsatile actuation imposed by the

feedback system mechanism (e.g., back-end neuronal system response outputted

by a computational machine). Therefore, the summation of signals is done at the

mechanical level of the microphone’s diaphragm itself (refer to the experimental

setup in Section 4.3 for a practical implementation of this active nonlinear am-

plification concept). Additionally, under certain conditions it may behave like a

critical acoustic sensor – an active system that operates near the oscillatory in-

stability [133]. This behaviour has been described from within several studies on

biological acoustic sensors and hearing systems [134], and has also been included

within state-of-the-art auditory models [66].

4.1.1 Front-end Acoustic Sensor

Conventionally, the resonant response exhibited by a front-end acoustic detector

(e.g. when approximated to a linear single degree of freedom oscillator) resembles

the one given by a driven damped harmonic oscillator [41], which for the purposes

of this study can simply be expressed by the transfer function in Equation 4.2,

where s represents the Laplace term (s = iω):

H(s) =
sω0
Q

s2 + sω0
Q

+ ω2
0

(4.2)

Refer to Chapter 2 for further discussion about passive acoustic sensor/resonator

modelled as 2nd order system.
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4.1.2 Back-end Feedback Computation

How can we visualize and perhaps implement the back-end feedback computa-

tional function using control-systems theory? The simplest and most well-known

control mechanism is the On-Off controller. This method of control is based on

a continuous comparison between a defined threshold with the input that is pre-

sented to the system, which may result in a switching output response. At some

degree this might reflect the “all-or-none” behaviour of a LIF neuron, as presented

in Chapter 2. However, the response exhibited by a neuron is more sophisticated

than purely a switching mechanism. Its dynamics can be self-controlled showing

a sort of oscillatory behaviour as a consequence of: (i) a growth of some quan-

tity; (ii) until reaching a threshold: (iii) followed by a self-reset. The process can

repeat itself in the form of a continuous sequence of cycles being produced by the

system. These kind of responses are commonly exhibited by relaxation oscillators

that describe many phenomena across different disciplines [133].

Figure 4.4: Simplified diagram overview of a LIF system, where τ represents the
integrator constant, T0 is the refractory time (e.g., delay) that is used to reset
the leaky integrator. Vm is the system’s voltage potential. Vth is the comparator
threshold, which for the purposes of this study it only assumes a positive value.
The output signal of the comparator is composed of square pulses with amplitude
K and positive polarity, which can also be referred as the feedback signal to be
injected to the front-end acoustic sensor.

A diagram overview of a LIF system is faithfully represented by Figure 4.4.

The system is composed of a leaky integrator (e.g., linear or not), a comparator
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(e.g., with static or variable threshold) and a reset time delay (e.g., constant

or variable) in the feedback pathway. For instance, by tuning the system for

a defined function, pulses can be generated according to the phase of the input

signal that is presented to it. Therefore, the LIF system can then be considered as

a smart generator of pulses and perhaps be exploited as a control mechanism for

an adaptable sensory system. The output response (LIF1:1) of this LIF system

(e.g., smart generator of positive pulses in an 1:1 resonance mode) can then be

expressed in Laplace form as described in Equation 4.3:

LIF1:1(s) = K.e−(τ.dt).s

τr.s+ 1 − K.e−(W+τ.dt).s

τr.s+ 1 (4.3)

Where K represents the amplitude of the pulse, τ.dt is the time delay before a

pulse is generated (e.g., time spent by the integrator function), τr is the constant

time associated to the rising of the output signal (i.e., pulses generated by a non-

ideal driver circuitry), which should be much smaller than W (τr � W ) in order

to provide a faithful square-shaped pulse, and W is the pulse with (e.g., duration

in seconds).

4.2 Numerical Simulation Approach

This section summarizes the theoretical model of the proposed sensory system

concept that is simulated using a numerical approach through MatLab R2014b.

In order to better understand the system’s dynamics, a model using a front-end

acoustic sensor described by Equation 4.2 is placed within a positive-feedback loop

system controlled by a computational function exploiting the On-Off mechanisms

presented in Figure 4.2 that is implemented mathematically using the “Leaky

Integrate-and-Fire” neuronal model introduced in Chapter 2, as expressed by

Equation 4.4:
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Vm(tn+1) = Vm(tn).
(

1− dt

τ

)
+R.I(tn+1).

(
dt

τ

)
(4.4)

Recalling the LIF neuronal model that is described in Chapter 2, τ = R.C

represents the system’s time constant; Vm represents the system’s voltage po-

tential, I is the input stimulus, which might be associated to any input signal

reaching the system. By computing Equation 4.4 over time (tn), a pulse can be

fired when the voltage threshold is reached, followed by the system’s reset state.

This modelling approach is directly derived from the mathematical imple-

mentation of Equation 4.2 and 4.4 computed in a recursive way as a closed-loop

system. It is important to note that, Equation 4.2 is mapped from the analog-

to-digital domain using bilinear transformation and implemented as an IIR filter

using a biquadratic topology. First of all, the concept is tested using noise-free

synthetic signals with dt = 1 µs that is the time-step resolution (i.e., sampling

time constant - unless otherwise specified). The resonant frequency of the system

is f0 = 3.3 kHz and the LIF model features include: T0 = 0.303 ms, τ = 10 ms

and W = 20 µs.

4.2.1 Checking for Stability

An evident consequence of using a control mechanism imposing pulses in a positive-

feedback configuration with a resonant sensor front-end is how the stability of the

overall system can vary under certain conditions. A system is found stable if its

output tends to converge to an equilibrium state (LIF (s).H(s) < 1). It becomes

unstable if the output appears to diverge without bound (LIF (s).H(s) = 1). A

system can also be classified as critically stable when the output converges to

a continuous and endless oscillatory state (LIF (s).H(s) > 1). Testing the sys-

tem’s stability is then a preliminary task in order to understand the nature of its

behaviour under certain conditions.

Figure 4.5 shows the stability diagram calculated from a numerical implemen-
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Figure 4.5: Stability diagram of the sensor system obtain by numerical simulation
(e.g., based on the impulse response analysis of the overall system). Q represents
the quality factor of the front-end acoustic sensor and K is the feedback signal
gain, and Vth is the threshold that sets the feedback operation.

tation of the closed-loop system presented in Figure 4.2, while varying Q, K and

Vth. As referred to in Chapter 2, the Q-factor of a system expresses how quickly

the energy captured is dissipated by it, meaning that a sensor with a high-Q may

oscillate by itself when a high feedback signal gain (K) configuration is applied to

it, whereas a low-Q sensor may show a higher/faster level of convergence under

the same K conditions. Additionally, Vth represents the threshold that sets the

feedback operation, which can also play a role in the system’s stability, since it

can determine the position where the stability curve is located, as illustrated in

Figure 4.5.

In order to have a better characterization of a given system’s operating point,

Figure 4.6 shows the bifurcation diagram obtained from a test while varying K,

which sets the amplitude of pulses, assuming a front-end acoustic sensor with Q

= 30 (i.e., for the custom-built sensor that is integrated within the experimen-
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tal setup presented in Section 4.3) and feedback threshold, Vth = 0.25 V. The

simulated system presents a Hopf bifurcation around the β = 19 point. Briefly,

the Hopf bifurcation is defined as the critical region or point (β) where the sys-

tem transits from a stable to an oscillating unstable or critically stable operating

regime (refer to [41] for further details about the Hopf bifurcation related to hear-

ing research). To ensure a stable system operation (e.g., convergent dynamics), it

should function on the left side of the β point, and therefore the K chosen should

obey that condition for a defined Vth.

Figure 4.6: Bifurcation diagram of the sensor system obtained by numerical sim-
ulation using an impulse response analysis within the following conditions: Q =
30, Vth = 0.25 V and varying K.

Another interesting characteristic of this system’s dynamics is that the time

of entrainment between the pulses and the input signal may also affect the sta-

bility of the system, as illustrated in Figure 4.7. It means that the entrainment

at the beginning of the input cycle may ensure a higher level of stability than

entrainment at the middle or at the end of the input cycle.
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Figure 4.7: Stability of the system based on the phase-locking time under the
following test conditions: fin = f0 = 3.3 kHz, Q = 30, Vth = 0.25 V, T0 = 0.303
ms, τ = dt = 20 µs, W = 20 µs.

4.2.2 Nonlinear Compressive Gain

One of the advantages of the feedback technique exploited in this study is the

fact that it can provide a nonlinear compressive gain to the overall sensor respon-

siveness. For instance, when the K value is higher than the input signal itself,

the contribution of the energy added to the system dynamics, from the pulsatile

feedback signal, is higher than the reverse situation – when the input amplitude

is higher than the feedback energy injected, therefore the system can exhibit a

nonlinear compressive gain, as illustrated in Figure 4.8.

The system is operated within its stable regime using a 1:1 resonance mode

(refer to Figure 4.3), hence the feedback signal gain should obey the condition

K < 19, for Q = 30 and Vth = 0.25 V. Assuming K = 15, then a stable operation

of the system is ensured that results in a peak-gain given by this system of about

6.2 dB at 1.76 V of the input amplitude (as shown in Figure 4.8). Therefore, the

feedback contribution to the overall gain (V out
V in

) is seen as nonlinear and it is also
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Figure 4.8: Example of the nonlinear compressive gain that can be provided by the
sensor system using the following conditions: input signal frequency fin = f0 =
3.3 kHz, Q = 30, T0 = 0.303 ms, τ = dt = 20 µs, W = 20 µs, and Vth = 0.25 V
for K = 1, 5, 10 and 15.

dependent on the input signal amplitude following an experimentally determined

exponential relationship expressed by Equation 4.5, where x represents the input

signal amplitude (V), δ is the peak-gain (dB), θ is defined as the input amplitude

for an achieved peak-gain (δ), and α = 1 -
(
maxGain
minGain

)
gives the gain compression

rate factor.

Gain[dB] =

 δ × e−α(x−θ) x ≥ θ

0 x < θ
(4.5)

This is a simplified equation used as a fitting curve to express the gain after

a threshold, which follows an exponential decay when the input amplitude is in-

creased, and vice-versa. It is important to note that Vout is equal to Vin when

the system is without feedback operation as such Gain = 0 dB under that con-

dition. Table 4.1 summarizes some of the gain features using different feedback

thresholds. It can be seen that the system while operated under the stable region

can achieve a peak-gain of 7.03 dB when K = 35 and Vth = 0.5. However, the

maximum compression rate factor is α = 0.31 obtained when the feedback signal

gain and threshold are reduced to K = 5 and Vth = 0.1, respectively.
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Table 4.1: Summary of the gain factors obtain under different feedback opera-
tions.

Vth (V) K θ (V) α δ (dB)
0.1 5 0.69 0.31 5.28
0.25 15 1.76 0.20 6.20
0.5 35 3.41 0.13 7.03

It highlights that the feedback contribution to the overall gain has a bigger

impact at low levels of the input stimuli, as the compression of the gain response

arises. Vth can also influence the overall gain given by the system, since it affects

the timing of the pulses entrained within a given input signal amplitude (Vin).

For instance, for a given Vin = 1.0 V while varying Vth, thus 0.2 < Gain (dB)

< 2.5 @ K = 15, as illustrated in Figure 4.9. At high Vth values, the system

is more likely to fire pulses closer to the end of the input cycle, since it takes

more time for integration to reach the threshold level, than for low Vth, which

is more likely to set the firing at the beginning of the input cycle, for the same

given input signal amplitude. However, a more effective locking appears when

the pulses are entrained at the middle of the input cycle, thus the contribution to

the overall gain can be maximized. It means that for each configuration Vth and

K, the system has a defined input amplitude for which it maximizes the overall

gain. Nevertheless, a trade-off with the stability diagram should be considered as

referred in Figure 4.7.

It is interesting to note that Vth value should be chosen to be smaller than

the input signal amplitude (Vin) in order to trigger feedback computation to the

system. Moreover, when Vth = Vin/2, is when the overall feedback gain can

provide its maximum output contribution.

4.2.3 Rise-time Analysis

Another important property of the positive-feedback technique exploited in this

study is related to the fact that it can alter the effective time response of the
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Figure 4.9: Impact on the overall gain response based on the time of entrainment,
between input and feedback signals, which vary depending on Vth and K values;
for the same given input signal amplitude.

overall system when subject to a step input stimulus. The rise time without

feedback operation is 18.2 ms. Measured at 98% of the peak amplitude for an

acoustic receiver with Q = 30. Table 4.2 presents a summary of the rise times of

the system when operated under the influence of feedback computation, where

∆ represents the minimum rise time that can be achieved by the system (mil-

liseconds) and σ is the input amplitude (V) that is maximized in terms of the

rise time under the defined system configuration set by Vth and K. Therefore,

if a threshold detection method is required by a given application, the use of

the positive-feedback process can provide a faster responsiveness (≈ 4.0×) under

these operating conditions.

Table 4.2: Summary of the rise time for different feedback operations.
Vth (V) K σ (V) ∆ (ms)

0.1 5 1.6 4.2
0.25 15 3.9 3.9
0.5 35 8.2 3.6
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4.2.4 Hysteretic Response

The input-output relationship of the studied sensory system follows a distinct

nonlinear response, dependent on whether the input amplitude is increasing or

decreasing. A system showing this kind of behaviour is said to have a hysteretic

output response. Hysteresis commonly originates due to the on-off feedback con-

trol mechanism applied to the system. It might be expected that the feedback

operation imposes a switching behaviour to the overall system response. There-

fore, a hysteretic behaviour is likely to appear as a direct consequence of the

control mechanism exploited in this work. The control process is a threshold

based computation that can lead to a bistable behaviour of the overall sensory

system. Sensors that show hysteresis are nonlinear systems. For the purposes of

this study it is assumed that hysteresis is a consequent feature of the proposed

concept, which may be exploited by a given application. Biological sensors and

systems also show evidence of hysteretic responses, which is exploited as a useful

feature, such that it can be seen as a synonym of intrinsic residual memory of the

sensory system to a previous targeted signal and perhaps can provide immunity

to noise (e.g., random jitter) [10].

4.3 Results

This section presents the system’s output response obtained from the implemen-

tation of the theoretical model, as used to characterize and test the behaviour

of the sensory system while applying standard signals. It can be used to fur-

ther validate the response of this concept obtained from the physical prototyped

implementation that is also presented here.

Chapter 4. Bio-inspired Active Amplification in an Acoustic Sensor System 123



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

4.3.1 Overall Response of the Sensor System from Nu-

merical Simulation

Figure 4.10 shows the dynamic adaptation of the overall sensor system response

under the following test conditions: fin = f0 = 3.3 kHz, Q = 30, Vth = 0.25 V,

T0 = 0.303 ms, τ = dt = 20 µs, K = 10 and W = 20 µs. That provides a gain of

about 1.52 (Gain[dB] = 3.63 dB) under active feedback computation (A2 & B2).

Figure 4.11 shows the hysteretic response of the overall sensory system –

when the input stimulus follows an amplitude modulation (e.g., increased and

decreased level). It can be concluded that the feedback operation imposes a

switching behaviour to the overall system response, which is mainly dependent

on the threshold value Vth and feedback gainK value used, as illustrated in Figure

4.12.

4.3.2 Response of the Sensor System Obtain from an Ex-

perimental Setup

For validation purposes, the concept is then prototyped using a custom-built ex-

perimental setup as presented in Figure 4.13, which can perform real-time com-

putation and provide a proof-of-concept for this parametric amplification applied

to a MEMS microphone. The approach is similar to the previous embedded sys-

tem setup design presented in Chapter 3. However, here the front-end acoustic

receiver is a custom-built MEMS microphone (e.g., frequency-limited sensor), as

illustrated in Figure 4.14.

This experimental setup is meant to be a direct implementation of the the-

oretical model presented previously, but in a practical manner. The system is

prototyped using an electromechanical setup as following described. Firstly, the

function (H(s)) of a front-end acoustic receiver is performed by a MEMS micro-

phone. The design and characterization of this device are addressed in Chapter
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Figure 4.10: Example of an amplified response of the sensory system obtained
by simulation. Time and frequency response of a single-tone input signal (blue
trace); output response of the sensory system (red trace) without – (A1 & B1) and
with – (A2 & B2) phase-locked pulses (black trace) using 1:1 resonance mode. It
is shown that ∆p < ∆a, when comparing the rise time to reach a defined voltage
level for passive and active operation of the system, respectively. The black
signal trace in (A2) is rescaled for the sake of clarity and labelled - "Spiking" as
short-pulses with square-shape that are entrained once per cycle with the "Input"
signal.

6, where results of finite element modelling and practical experimentation are

reported. Some of the device’s main features include: the resonance frequency

around 3.3 kHz and a Q-factor of 30 (refer to Chapter 6 for further details about

the MEMS microphone, including its design and characterization). Secondly, the

element of feedback computation and control (LIF ()) is implemented through an
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Figure 4.11: Example of the hysteretic response of the sensory system obtained
by simulation using an amplitude modulated input signal, (A) without and (B)
with feedback control operation; (C) linear vs nonlinear response of the sensor
system. The black signal trace in (B) is rescaled for the sake of clarity and labelled
- "Spiking" as short-pulses with square-shape that are entrained once per cycle
with the "Input" signal.

embedded system setup. By computing a software routine based on the method

described previously in Equation 4.4, the embedded system (e.g., a microcon-

troller) is able to generate pulses to be in-phase with a targeted input stimuli

reaching the microphone’s diaphragm. Feedback signals (e.g., pulses) are driven

to the capacitive port (e.g., capacitive comb fingers) of the MEMS microphone.

Highlights of the embedded system setup features include: an optical read-

out from the microphone’s diaphragm displacements using a single-point laser
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Figure 4.12: Hysteretic response of the sensory system to an amplitude modulated
input signal while varying Vth and K values setup. (A) low K and low Vth; (B)
high K and low Vth; (C) low K and high Vth; (D) high K and high Vth.

vibrometer device providing correspondent analogue output signals. Signal con-

ditioning is performed on the laser output signals before A/D conversion (12-bit

@ Fs = 50 kHz). Signals are acquired using a STM32F4 microcontroller board

running at 168 MHz clock-speed. The purpose-built algorithm is then executed

inside the processing unit (CPU) that can generate spike-type phase-locked sig-

nals using an on-board D/A converter (12-bit @ Fs = 50 kHz). The pulses can

be entrained with the input signal at the microphone level (e.g., microphone’s

diaphragm), once an average and a voltage threshold are met, followed by a con-

sequent auto-reset routine after each firing. Moreover, a refractory period is also

defined to set the maximum firing rate of the pulse generator system. For in-
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Figure 4.13: Schematic of the custom-built embedded system used to enable the
experimental setup. A more complete description of circuits and systems can be
accessed in the previous Chapter 3.

stance, the feedback system can be adjusted to lock and fire at a specific timing

of the input signal, which allows that to be amplified as the Q-factor of the overall

system can be increased, as follows.

The purpose-built sensor system is then tested by experimentation using the

following parameters: input acoustic signals with frequency fin = f0 = 3.3 kHz

are played by a standard audio speaker; and Vth = 0.25 V, T0 = 0.303 ms, τ =

10 ms, dt = 20 µs, K < 7 and W = 20 µs.

Figure 4.15 presents the response of the sensory system setup showing an

output amplification (A2 & B2) of about 2.2 greater (GaindB = 6.85 dB), and

the system’s responsiveness to a step input stimuli is also enhanced (with rise time

measured: ∆ = 5.5 ms), when compared with its passive response (A1 & B1 – with

rise time measured: ∆ = 16.7 ms). Figure 4.16 shows the response of the system

to an amplitude modulated input signal with sound level being increased and

decreased consequently; with- (B) and without- (A) feedback control operation,

respectively. When pulses are in-phase with the input signal, the output response

shows amplification as predicted by the theoretical model and simulation results,
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Figure 4.14: Custom-built MEMS microphone. (A) Microscopic picture and
dimensions of the device; (B) its frequency response measured using LDV tech-
niques.

and also exhibits similar behaviour to that reported for the mosquito’s hearing

system studies, as discussed in Chapter 2.

During the experimental tests, the system’s operating regime is located within

the stable zone. However, it is important to note that the stable region of the

overall setup is found after experimentation by tuning the feedback signal gain

value. Experimentally, the critical region/point of this purpose-built system is
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Figure 4.15: Adaptive response of the purpose-built sensor system setup. Time
and frequency response of the system for a single-tone acoustic input at 3.3 kHz
(blue trace); output response of the sensor system (red trace) without- (A1 &
B1) and with- (A2 & B2) feedback contribution (black trace) with K = 5 V @
Vth = 0.25 V. The black signal trace is rescaled for the sake of clarity and labelled
- "Spiking" as short-pulses with square-shape that are entrained once per cycle
with the "Input" signal.

reached when K is approximately 7 V at Vth = 0.25 V. Therefore, in practical

terms the critical region/point is reached at smallerK amplitudes when compared

to what is predicted by simulation (for a Q = 30, hence K = 19 and Vth = 0.25

V, as presented in Figure 4.6). In practice, the critical point is expected to be

shifted since in general a positive-feedback system configuration can be greatly

affected by the background noise (e.g., acoustic and electrical) surrounding the

experimental setup and within the computational system itself (e.g., digital noise:

round-off errors). It means that noise can affect the system dynamics in several

ways. For instance, noise within the system may impose some jittering response

to the feedback control operation likely seen at the transitory states, as seen

in Figure 4.15 (A2) – the pulse train (black trace) is kept active for a longer

time at the downward slope of the system’s response signal, which is not seen

in a noise-free simulation at Figure 4.10 (A2). Additionally, when the system is

operating near its threshold voltage, noise can make the system transit between

the on-off states momentarily (Figure 4.16 (B) – black trace). This may result
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Figure 4.16: Hysteretic response of the purpose-built sensor system setup. The
sound level at 3.3 kHz (blue trace) is increased and decreased consequently: (A)
showing linear response – without feedback; and (B) showing hysteretic nonlinear
response with feedback K = 3 V @ Vth = 0.25 V; (C) linear vs nonlinear response
of the sensory showing the amplification and the hysteretic behaviour of the
system. The black signal trace in B is rescaled for the sake of clarity and labelled
- "Spiking" as short-pulses with square-shape that are entrained once per cycle
with the "Input" signal.

in intermediate output fluctuations as the system jumps between the two states

(Figure 4.16 (C), black trace onset). There is evidence that this is a separate

state, which appears to be at the junction of stability between the two states.
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4.4 Discussion I

This study presents a method to provide adaptive nonlinear amplification ca-

pabilities at the sensor/transducer level. The concept is theoretically described

through a mathematical model that is implemented and validated using Mat-

Lab simulations and then physically prototyped using a custom-built setup as a

proof-of-concept. It is clear that the positive-feedback mechanism exploited in

this study can enhance signal conditioning at the sensor level, namely amplifica-

tion and fast sensory responsiveness to sound when the sensor is subject to a step

input stimulus. However, in a real scenario this type of system dynamics might

be highly influenced by the noise surrounding the setup. Future investigations

might address that topic, for instance by adding noise at the simulation level

in order to have a better prediction of the system’s dynamics in the presence

of different types of noise (e.g., random noise or any kind of competitive signals

that can be generated by electrical or acoustic sources). Moreover, the biological

reports (noted in Chapter 2) that inspired this work describe the mosquito hear-

ing response as greatly enhanced due to the “synchrony through twice-frequency

forcing” – 2:1 resonance mode. It should be noted that this study, only explored

the use of 1:1 resonance mode (e.g., one pulse per input cycle with positive polar-

ity), however, one might hypothesize about the response of the proposed sensory

system if configured at 2:1 resonance mode (e.g., entrainment at twice per cycle –

one pulse phase-locked in the positive cycle of the input signal and another pulse

phase-locked in its negative cycle with compatible polarity, respectively):

(a) It would drag the β point towards a lower value of K, for the same given

threshold value as used with 1:1 resonance mode, meaning that the system

might enter in a self-oscillatory condition quicker and at lower feedback signal

gain values used;

(b) The overall performance of the system would benefit from the 2:1 resonance
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more in terms of the nonlinear compressive gain and time response/resolution

that can be achieved, since the feedback signal path can then supply twice

the energy, per period of the input signal, when compared with 1:1 resonance

mode.

Future investigations might address that modality further (2:1 resonance mode),

which may add another level of versatility to the purpose-built system concept

and to its outcomes. Additionally, it may be hypothesized that the feedback pa-

rameters such as Vth and K, which are kept as constant values in this study, can

assume variable conditions (e.g., be adaptable). For instance, evolving dynami-

cally to place the system operating point at its best SNR conditions as natural

sensors and systems possibly do.

This work aims to support the positive cross-disciplinary synergy between bi-

ology and engineering based on previous and ongoing bio-inspired research stud-

ies. It provides a proof-of-concept of a bio-inspired acoustic sensor system that

can potentially be exploited by both the sensors and the circuits and systems

fields. The instrumentation and electronic circuits and systems that were em-

bedded in this prototyped sensor-system are generic and they are mostly based

on off-the-shelf and discrete-level components. Therefore, the next step for this

research work would include a more advanced and matured prototyping stage

such as, a higher level of integration of circuits and systems towards the develop-

ment of a more compact experimental embedded system setup by exploiting the

sensing and actuation capabilities (e.g., piezoelectric and capacitive) built-in the

purpose-built MEMS microphone as presented in Chapter 6. The aim is towards

the goal of creating a combined bio-inspired embedded acoustic sensor system,

featuring active nonlinear amplification and frequency agile tuning to enhance

sensory responsiveness while targeting signals of interest.
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4.5 LIF Computational Model – Theoretical Re-

vision

The biological reports that inspired the work previously described are based on

the mosquito hearing response as greatly enhanced due to the “synchrony through

twice-frequency forcing” – 2:1 resonance mode – refer to Figure 4.17 for a com-

parison between 1:1 and 2:1 resonance modes.

Figure 4.17: Entrainment of signals based on 1:1 and 2:1 resonance modes for
comparison, (A) and (B) respectively.

Here, the LIF computational model presented previously in Figure 4.4 is re-

vised in order to address the points (a) and (b) highlighted at the end of Section

4.4. Additional simulated results are presented in order to further characterize

the dynamics of the system when configured in 2:1 resonance mode, mainly in

the presence of competitive input signals and Additive Gaussian White Noise

(AGWN) within the system.

The diagram overview of the new/revised LIF system is represented in Figure

4.18. The new system’s architecture is composed by two identical leaky integra-

tors, two identical comparators with similar auto-reset mechanism dependent on

a time delay (T0) as a feedback control. The aim is to configure this new system

to generate positive and negative pulses according to the phase of the input signal
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Figure 4.18: Diagram overview of the new/revised LIF system, where the top
signal pathway enables the generation of square pulses with positive polarity; and
the bottom signal pathway enables the generation of square pulses with negative
polarity. It should be assumed that K = Kp +Kn, where |Kp| = |Kn| in order to
keep the pulses with symmetric polarity, identical width and same amplitudes.

that is presented to it. Therefore, this new LIF system can also be considered

as a smart generator of pulses (e.g., biphasic), which can also be exploited as a

control mechanism for an adaptable sensory system, as similarly done with the

previous 1:1 resonance mode version. The output response (LIF2:1) of the new

LIF system (e.g., generator of biphasic pulses) can be expressed in Laplace form

as described in Equation 4.6:

LIF2:1(s) =
(
Kp.e

−(τ.dt).s

τr.s+ 1 − Kp.e
−(W+τ.dt).s

τr.s+ 1

)
−
(
Kn.e

−(T0+τ.dt).s

τr.s+ 1 − Kn.e
−(T0+W+τ.dt).s

τr.s+ 1

)
(4.6)

Where Kp represents the amplitude of pulses with positive polarity, Kn repre-

sents the amplitude of pulses with negative polarity; T0 is the time between two

consecutive pulses (e.g., positive and negative, respectively), which normally is

set as half of the value of the input signal period (e.g., T0 = T/2, where T is the

period of the input signal). Refer to Section 4.1 for further details about other
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variables of this equation.

4.5.1 Simulation Results

A new study is then conducted to compare the performance of the proposed

concept configured at 1:1 and 2:1 resonance modes, as following presented through

simulated results. First of all, the response of the system when configured at 2:1

mode (e.g., entrainment at twice-per-cycle) places the critical point (β point)

at the left-side of the 1:1 bifurcation region, for the same threshold value, as

illustrated in Figure 4.19.

Figure 4.19: Hopf bifurcation of the system based on the feedback gain value (K).
Comparison between 1:1 and 2:1 modes obtained by numerical simulation using
an impulse response analysis within the following test conditions: fin = f0 =
3.3 kHz, Q = 30, Vth = 0.25 V, T0 = 0.303 ms (1:1) and T0 = 0.166 ms (2:1),
τ = dt = 20 µs, W = 20 µs.

Table 4.3 provides a summary of the bifurcation points for different feedback

configurations, where β1:1 and β2:1 represent the β point for each resonant mode,

and Out1:1 and Out2:1 are the oscillatory output amplitudes when the sensory

system is operated at that particular critical point β1:1 or β2:1, respectively.
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Table 4.3: Summary of the bifurcation point (β) for different feedback thresholds
at 1:1 and 2:1 synchronization modes for comparison.

Vth (V) β1:1 | β2:1 Out1:1 | Out2:1
0.1 8 | 4 0.981 | 0.971
0.25 19 | 10 2.160 | 2.427
0.5 38 | 19 4.319 | 4.382

Another important point to this system’s dynamics is that under the same

feedback conditions (Vth and K) - the 2:1 resonance mode can maximize the per-

formance of the sensory system in terms of the nonlinear compressive gain that

can be obtained, as illustrated in Figure 4.20; and also the time response/resolution

that can be achieved, as further summarized in Table 4.4.

Figure 4.20: Nonlinear compressive gain response under the following test condi-
tions: fin = f0 = 3.3 kHz, Q = 30, Vth = 0.25 V, T0 = 0.303 ms (1:1) and T0 =
0.166 ms (2:1), τ = dt = 20 µs and W = 20 µs; for K = 1, 2, 4 and 8. (A) 1:1
resonance mode; (B) 2:1 resonance mode.

Figure 4.21 shows three different feedback gain configurations such as passive,

1:1 and 2:1 modes, respectively, as a comparison. It illustrates that 2:1 mode

can provide greater feedback gain contribution and faster rise time response than

1:1 configuration under the same feedback variable conditions (Vth and K), as

summarized in Table 4.4.

The hysteretic response is also affected by different feedback configurations
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Table 4.4: Summary of the gain and rise times for different feedback thresholds
at 1:1 and 2:1 synchronization modes for comparison.

Vth (V) 0.1 0.25 0.5
K1:1 = K2:1 1 5 15
θ1:1 | θ2:1 (V) 0.80 | 0.75 1.89 | 1.75 3.33 | 3.4
α1:1 | α2:1 0.41 | 0.34 0.21 | 0.20 0.13 | 0.13

δ1:1 | δ2:1 (dB) 1.10 | 2.18 2.23 | 4.30 3.59 | 6.20
σ1:1 | σ2:1 (V) 1.1 | 1.2 3.0 | 3.3 6.0 | 7.8

∆1:1 | ∆2:1 (ms) 7.1 | 5.8 5.8 | 4.5 5.0 | 3.9

Figure 4.21: Gain response of the system is greater at 2:1 resonance mode. Test
under the following conditions: fin = f0 = 3.3 kHz, Q = 30, Vth = 0.25 V, T0 =
0.303 ms (1:1) and T0 = 0.166 ms (2:1), τ = dt = 20 µs, and W = 20 µs; (A)
K = Kp = Kn = 0; (B) K = Kp = +5 and Kn = 0; (C) K = Kp −Kn = ±5;
The black signal trace in (B) and (C) is rescaled for the sake of clarity.

namely Vth and K values, as previously mentioned in Section 4.2. However, the

2:1 resonance mode has the property of approximately doubling the amount of

energy that is injected per cycle, which consequently appears to further impact

the on-off behaviour set by the feedback control mechanism. And, therefore

alters the hysteretic response, as illustrated in Figure 4.22 (C). Additionally,

changing the polarity of the feedback signal (K = Kn), while keeping phase-
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locking compatibility with the input signal, while operating the system at 1:1

mode, does not appear to affect the gain and hysteretic response of the overall

system, as illustrated in Figure 4.22 (A) and (B), respectively, as a comparison.

Figure 4.22: Hysteresis of the overall sensor system response under the following
test conditions: fin = f0 = 3.3 kHz, Q = 30, Vth = 0.5 V, T0 = 0.303 ms (1:1)
and T0 = 0.166 ms (2:1), τ = dt = 20 µs, and W = 20 µs; (A) K = Kp = 10 and
Kn = 0; (B) K = −Kn = -10 and Kp = 0; (C) K = Kp −Kn = ±10; The black
signal trace in (A), (B) and (C) is rescaled for the sake of clarity.

Importantly, inverting the polarity of the pulses (e.g., firing pulses without

compatible polarity as the input signals phase), in both 1:1 or 2:1 mode, appears

to greatly impact the overall gain of the system, as illustrated in Figure 4.23.

It seems to have an attenuation effect when compared with Figure 4.21 (C) and

Figure 4.22 (C), respectively. Therefore, it might be noted that perhaps signal

attenuation or suppression may also be another functionality that can be exploited

by this proposed system concept.

Competitive signals that are presented to the system and within its band-

width can result in intermodulation output responses as a consequence of the

nonlinearities imposed by the feedback system operation, as illustrated in Figure

Chapter 4. Bio-inspired Active Amplification in an Acoustic Sensor System 139



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

Figure 4.23: The gain response of the system is greatly affected by the pulse’s
polarity. In this case the pulses were set to fire with their phase reversed. (A) To
compare with Figure 4.21 (C); (B) To compare with Figure 4.22 (C). According
with the following test conditions: fin = f0 = 3.3 kHz, Q = 30, Vth = 0.25 V,
T0 = 0.166 ms, τ = dt = 20 µs, W = 20 µs; (A) K = −Kp + Kn = ±5; (B)
K = −Kp +Kn = ±10; The black signal trace in (A) and (B) is rescaled for the
sake of clarity.

4.24. Intermodulation products are typical phenomena that result from this kind

of nonlinear system, as similarly reported in biological studies related to active

processes in hearing systems [41], [134].

Table 4.5 summarizes the intermodulation distortion products for a ∆f =

|f1 – f2| = 50 Hz, as illustrated in Figure 4.25 (zoom in of Figure 4.24 (B),

highlighting the distortion products frequency region).

In conventional (e.g. man-made) high quality audio systems, harmonic dis-
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Figure 4.24: Intermodulation response given by the system under the following
test conditions: fin = f1 +f2, f1 = f0 = 3.3 kHz and Q = 30, f2 = 3.35 kHz, Vth =
0.25 V, T0 = 0.166 ms, τ = dt = 20 µs, andW = 20 µs and K = ±10 (2:1 mode).
(A) Without feedback computation; (B) With feedback computation, therefore,
highlighting the distortion products as a consequence of the nonlinearities im-
posed by the feedback system operation.

Table 4.5: Intermodulation distortion products at ∆f = |f1 – f2| = 50 Hz.
f1 f2 2f1 − f2 3f1 − 2f2 2f2 − f1 3f2 − 2f1

3302 Hz 3352 Hz 3252 Hz 3202 Hz 3402 Hz 3452 Hz

tortions are not desired, however, there is some evidence that the natural hearing

system of mosquitoes use this intermodulation distortion products to hear desired

signals. That seems to be another unconventional signal processing technique to

identify the presence of signals of interest [135]. Distortion products are thought

to be a consequence of nonlinear dynamics in the peripheral sensory system,
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Figure 4.25: Intermodulation response given by the system under the same test
conditions as in Figure 4.24, highlighting the intermodulation output response
such as distortion products for ∆f = |f1 – f2| = 50 Hz.

which can be interpreted by higher level signal processing stages, and used as

useful information to trigger behavioural responses.

Moreover, AWGN within the system may impose some timing errors caused

by random jittering behaviour at the feedback control operation likely seen at the

transitory states (e.g., between the on-off states) as previously noted in Section

4.4. The feedback control operation is dependent on a threshold based mecha-

nism, which can be affected by different AWGN amplitude levels. This means

that the uncertainty in the threshold crossing setting at each input wave cycle

is increased proportionally with the AWGN level – hence SNR is decreased, as

illustrated in Figure 4.26.

4.6 Discussion II

A theoretical revision of the LIF model study including the 2:1 resonance mode

is implemented and validated through MatLab simulations, and compared with

the 1:1 configuration introduced in Section 4.1. It can be concluded that the 2:1

positive-feedback mechanism studied can maximize the nonlinear amplification
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Figure 4.26: (Top) AWGN is injected to the system, which can affect the switching
of the feedback mechanism (e.g., increasing uncertainty in the threshold crossing),
therefore setting a random entrainment of the feedback control process at the
transitory states. (Bottom) (A) SNR = 25 dB; (B) SNR = 10 dB; (C) SNR = 1
dB.

and the sensory responsiveness when compared with 1:1 mode. However, the

system’s critical region (β point) at 2:1 is shifted to the left of the 1:1 stability

graph under the same feedback configuration (Vth and K).

Additionally, when inverting the polarity of the feedback signals (e.g., antiphase-

locking) the system dynamics are the opposite. This means that, attenuation or

suppression of signals can also be achieved by this proposed sensory system con-

cept. Moreover, the presence of competitive signals at the input of the system give

results with intermodulation output responses as a consequence of the nonlineari-

ties imposed by the feedback control system mechanisms. The feedback dynamics

were also tested with additive white Gaussian noise, which has an impact on the

system’s SNR, and therefore, imposes timing errors and more uncertainty in the
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setting of feedback operation.

This new LIF modelling allows a better understanding of the system dynamics

towards an upgrade of the purpose-built experimental embedded sensor system

setup presented before, while exploiting the sensing and actuation capabilities

built-in the purpose-built MEMS microphone.
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Chapter 5

Combining Frequency Agile

Tuning & Active Nonlinear

Amplification

This chapter presents experimental results conducted to evaluate the performance

of a new embedded acoustic sensor system setup that combines both, frequency

agile tuning and active nonlinear amplification concept. The aim is to pursue the

concept of creating a MEMS microphone framework that is able to be frequency

selective, whilst also providing frequency agility and adaptive nonlinear ampli-

fication performed at the detector/sensor/transducer level, therefore, enhancing

sensory responsiveness to target signals of interest. This is a bio-inspired con-

cept and a novel methodology for audio signal processing, where “the transducer

becomes part of the signal processing chain” by exploiting slow- and fast- adapta-

tion control mechanisms (e.g., feeding back DC and AC signals) to a mechanical

detector/sensor (e.g., MEMS microphone) supported by electrical systems (e.g.,

back-end computational systems), as illustrated in Figure 5.1.

The following sections of this chapter present a prototype study (e.g., phys-

ical model), which combines the work described in Chapters 3 and 4 by using
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Figure 5.1: Overview of the new bio-inspired embedded acoustic sensor system,
combining frequency agile tuning (e.g., exploiting “slow-feedback computation”,
driving DC signals to adapt the resonance frequency of the front-end transducer)
and active nonlinear amplification (e.g., exploiting “fast-feedback computation”,
driving AC signals to adapt the Q-factor of the front-end transducer).

the hardware framework presented in Chapter 6. That is an embedded acoustic

signal processing framework that integrates a new frequency selective MEMS mi-

crophone within a closed-loop system. The goal is to provide real-time peripheral

signal processing capabilities, while dynamically changing the effective electrome-

chanical characteristics of the MEMS microphone such as its spring constant and

quality factor.

5.1 New Embedded Acoustic Sensor System Setup

The schematic overview of the new fully-embedded acoustic sensor system setup

is shown in Figure 5.2.

This new hardware setup framework is fully described in Chapter 6, which

includes details about the sensors, circuits and systems integrated in this bio-
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Figure 5.2: Diagram overview of a novel bio-inspired embedded acoustic sensor
system setup, including a MEMS microphone within a closed-loop configuration
that can be adaptable, while driving DC and AC feedback control signals.

inspired embedded acoustic sensor system as following summarizes:

• A MEMS microphone is designed (MIC: f0 ≈ 3.3 kHz and Q ≈ 30) with

a piezoelectric readout and a capacitive driving port, which includes both

sensing and actuation capabilities in the same device;

• An analogue front-end (AFE: Gain[dB] = 65 dB; Bandwidth = [0.25 – 25]

kHz) is custom-designed in order to provide signal conditioning for the

MEMS piezoelectric readout signals, providing an analogue output as a

reference measurement signal of the displacements induced on the MEMS

diaphragm from acoustic stimuli;

• A custom-designed DC driving circuit, which enables different levels of DC

bias voltage (VOUT = [1 – 27] VDC). This circuit is based on a charge-

pump circuit topology in order to drive the capacitive comb-fingers port

of the MEMS device, for the slow-feedback signal pathway – to adapt the

resonance frequency of the microphone;

• An AC driving circuit (Gain[dB] = 6 dB, rise time = 1 µs) is designed in
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order to provide the driving of the fast-feedback signals – to control the Q-

factor of the microphone. This circuit is based on a standard non-inverter

amplifier configuration;

• A purpose-built feedback control computational system based on a digital

embedded system architecture (STM32F4 microcontroller unit) is also inte-

grated in the experimental setup, which interfaces all the hardware blocks

within a closed-loop fashion providing a platform for real-time audio signal

processing and operational control;

• The revised LIF computational model, which is presented at end of Chapter

4, is executed by the computational system described in the previous point.

That is a bio-inspired processing routine (e.g., neuronal based model), which

is intended to be an efficient and smart generator of pulses to be entrained

with the input sound signals, therefore enabling a nonlinear compressive

response that is achieved by this purpose-built sensor system framework.

Experimental results are presented in order to validate the overall acoustic and

electrical responses of the overall embedded sensor system. These were obtained

using the following approach: the MEMS microphone is positioned and properly

clamped on top of its analogue pre-amplifier PCB (presented in Chapter 6). That

allowed for stable measurements of the device’s response under acoustic stimuli

from a standard sound transmitter (ESS HEIL Air-Motion Transformer) that is

placed perpendicularly to the MEMS microphone, at a distance of 50 cm, and

excited by a waveform signal generator Agilent 33250A. The output electrical sig-

nals from the MEMS piezoelectric port are conditioned by the AFE before being

recorded with an oscilloscope (Tektronix DPO 2014) with a sampling frequency

of 1.25 MHz. And laser Doppler vibrometer techniques were used for inspect-

ing the displacements of the microphone diaphragm under acoustic stimuli when

required. Signals are plotted using MatLab 2014b.
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5.2 Experimental Results

In Chapter 4, simulated results are presented and discussed while varying several

of the system parameters such as K and Vth, which are related to the LIF theo-

retical model. Some of those discussions were not fully implemented through the

initial purpose-built experimental setup (e.g., using a laser controller with an op-

tical readout from the MEMS microphone diaphragm displacements), which was

used to support that study. Here, several new experimental results are presented

and discussed, while varying the K and Vth values of the LIF system. More-

over, the output response of the system, when intentionally making it unstable

or critically stable by setting a high K with a low Vth condition, is reported.

Additionally, the active amplification response of the system that is obtained ex-

perimentally as well as its nonlinear behaviour, while applying competitive input

sound signals, is also explored. These are all new experimental results that make

a substantive addition to the theoretical study that was previously presented in

Chapter 4.

5.2.1 Adapting the Resonance Frequency

One of the main objectives of the research reported in this thesis is the creation

of a MEMS acoustic sensor system framework, which could achieve frequency

agile tuning. Figure 5.3 shows an example of the frequency agile tuning response

that can be achieved by this new purpose-built embedded sensor system frame-

work. For instance four different DC bias voltages were supplied to the capacitive

driving-port of the MEMS microphone, therefore, setting four different resonance

frequencies to the device namely, VDC = [1, 13, 23, 27], thus f0 = [3.38, 3.42,

3.75, 3.92] kHz, respectively. Refer to Chapter 6 for further details about the

MEMS microphone design, circuits and systems, and associated characterization

tests.
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Figure 5.3: Example of the frequency agile tuning response achieved by the
MEMS microphone, showing four different resonant peaks while applying four
different DC bias voltages at 1, 13, 23 and 27 VDC , respectively, supplied by
the charge-pump circuit to the capacitive comb-driver port of the MEMS micro-
phone. Acoustic responses resulted from a frequency sweep test applied to the
closed-loop sensor system from 2.5 to 5.0 kHz.

This frequency agile tuning functionality (e.g., slow-feedback adaptation) is

intentionally designed to be combined with the active nonlinear amplification

capabilities of the system (e.g., fast-feedback adaptation) as described in the

following.

5.2.2 Active Amplification in a MEMS Microphone

In Chapter 4, a bio-inspired active nonlinear amplification concept is presented,

however some functionalities of that purpose-built system were not completely

presented or tested experimentally, namely the entrainment of pulses (e.g., feed-

back control signals) with the input sound signals using the so-called 2:1 resonance

mode (e.g., firing at twice-per-cycle) to enable active nonlinear amplification capa-

bilities. Here, that modality is implemented and evaluation tests are presented as
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illustrated in Figure 5.4, showing the active amplification and signal attenuation

capabilities of this new purpose-built system, while the pulses are phase-locked

with the input sound signals to enable amplification, and in anti-phase-locked to

enable attenuation of signals, at different selected frequencies such as fin = [3.3,

3.4, 3.7, 3.9] kHz. It is important to note that different resonance frequencies of

the MEMS microphone can be selected using the technique presented previously.

Figure 5.4: Frequency agile response and active amplification and attenuation
achieved by the MEMS microphone due to feedback computation. (Black trace)
without feedback operation, therefore the microphone shows its passive response
at K = 0 mVpp; (Blue trace) with feedback operation supplying pulses in-phase
with the input waveform - hence amplification at K = ±250 mVpp; and (Red
trace) pulses in anti-phase with the input waveform - hence attenuation at K =
±150 mVpp.

Experimental tests show that the purpose-built system is able to attenuate

signals as well. This capability can be seen while driving the system acoustically

with an amplitude-modulated signal, as illustrated in Figure 5.5.

It is important to note that when the input sound signal reaches a defined

threshold level that triggers feedback operation, the pulses are fired in anti-phase
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Figure 5.5: The acoustic system response is greatly affected by the polarity of
the pulses that are entrained with the input signal. Test conducted under the
following conditions: fin = f0 = 3.4 kHz, Vth = 0.2 V, T0 = 0.166 ms, τ = dt =
20 µs, W = 60 µs and K = ±150 mVpp. (Left graph) OutputLNApassive is the
system’s output response without feedback (Red trace) and OutputLNAactive is
the system’s output response with feedback (Blue trace); (Right graph) Linear
vs nonlinear response of the system showing the attenuation behaviour of the
system.

in respect to the input waveform, therefore a limiting effect to the output system

response is created (Blue trace in Figure 5.5 - left graph). That effect is not seen

when the system is configured without feedback operation, therefore the output

signal shows the passive response of the system (Red trace in Figure 5.5 - left

graph) for comparison. The linear versus nonlinear response of the system is then

shown in Figure 5.5 - right graph.

5.2.3 Compressive Nonlinear Gain

Additionally, the nonlinear compressive gain response of the system was also

evaluated as illustrated in Figure 5.6, for a selected resonance frequency such

as f0 = 3.55 kHz. This nonlinear compressive gain functionality was predicted

by the theoretical model in the MatLab simulation presented in Chapter 4. It

was shown that when the K value is set higher than the input sound signal
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that is presented to the front-end acoustic sensor (e.g., microphone diaphragm),

the contribution of the pulsatile energy added to the system, from the feedback

signal path (e.g., biphasic pulses), is higher than the reverse situation – when the

input sound amplitude is higher than the feedback energy injected. Therefore,

a nonlinear compressive gain response is also exhibited by this new prototyped

system, following a similar experimentally determined exponential relationship

as previously reported by the simulation of the theoretical model in Chapter 4.

Figure 5.6: Compressive gain response (blue dots) achieved by the purpose-built
experimental setup, under the following test conditions: fin = f0 = 3.55 kHz, T0
= 0.166 ms, τ = dt = 20 µs, W = 60 µs; Vth = 0.25 V and K = ±100 mV. (Red
trace) estimated curve as an exponential fit with goodness: sse = 0.6308, r2 =
0.8932, dfe = 16, adjr2 = 0.8865 and rmse = 0.1986.

It is important to note that the x-axis in Figure 5.6 (Output) represents the

electrical output signal amplitude of the MEMS microphone after conditioning

(e.g., AFE output signal), which is proportional to the input sound level applied

to it.
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5.2.4 Hysteretic Response

The hysteretic response of the overall system is affected by different feedback

configurations namely Vth and K values, as previously mentioned in Chapter

4. That was also tested experimentally for this new embedded system setup

as presented as follows, while driving the system acoustically with amplitude-

modulated signals as typically used to evaluate this kind of system dynamics. The

system was set with three different feedback thresholds such as Figure 5.7 Vth =

0.5 V; Figure 5.8 Vth = 0.75 V; Figure 5.9 Vth = 1.0 V and Figure 5.10 Vth = 1.25

V, while supplying three different values of feedback signal gain (K = ±[250, 200,

100] mV – [Left, Middle, Right] columns in each figure, respectively), respectively.

It is important to note that under active feedback operation (Black trace)

the output response of the system is amplified (Blue trace) when compared with

its passive response (Red trace) - without feedback operation, for comparison.

Moreover, different K values, define different gain contributions as previously

predicted by the theoretical model in Chapter 4.

Again, these results support the assumption that both the hysteretic response

and the gain contribution given by the purpose-built system are greatly dependent

on K and Vth values. It is important to note that Vth mainly defines the ampli-

tude signal level in which the feedback control mechanism is triggered, whereas K

mainly defines the amount of energy that is injected back to the front-end receiver

(e.g., microphone’s diaphragm). Therefore, the system when configured with high

K values might show greater hysteretic responses, however, higher compressive

gain contributions might also be achieved under those conditions. Interestingly,

the system seems to set a particular output response for each input sound am-

plitude that is presented to it, depending on Vth and K values configured, as

predicted by the theoretical model presented in Chapter 4.
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Figure 5.7: Hysteretic responses of the system when Vth = 0.5 V, while supplying
three different values of feedback signal gain (K = ±[250, 200, 100] mV – [Left,
Middle, Right], respectively.

Figure 5.8: Hysteretic responses of the system when Vth = 0.75 V, while supplying
three different values of feedback signal gain (K = ±[250, 200, 100] mV – [Left,
Middle, Right], respectively.

5.2.5 Checking for Stability

One of the consequences of using positive feedback control techniques is that

the system dynamics may become unstable (e.g., the system’s output appears
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Figure 5.9: Hysteretic responses of the system when Vth = 1.0 V, while supplying
three different values of feedback signal gain (K = ±[250, 200, 100] mV – [Left,
Middle, Right], respectively.

Figure 5.10: Hysteretic responses of the system when Vth = 1.25 V, while sup-
plying three different values of feedback signal gain (K = ±[250, 200, 100] mV –
[Left, Middle, Right], respectively.

to diverge without bound) or critically stable (the system’s output converges to

a continuous and endless oscillatory state) under certain feedback conditions.
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Figure 5.11 shows some stability tests performed to the purpose-built closed-loop

system, while varying K and Vth values. The system was intentionally placed

in an uncontrolled oscillatory state (middle and right columns in Figure 5.11).

That is clearly seen by the system’s output response (Blue trace) that sometimes

shows an uncontrolled oscillatory behaviour when compared with its under stable-

control states (left column in Figure 5.11) or passive response (Red trace), and

this system can present different output dynamics depending on different feedback

configurations based on K and Vth values used. Important to note that the

background noise also plays a role on the system’s output dynamics. It means

that if the system is operating at the edge of stability, it may transit between

a stable to an unstable state, and vice-versa, depending on the statistics of the

background noise within the experimental setup at a particular time moment.

Some biological acoustic sensors and systems are meant to evolve (e.g., up-

date) their dynamical states over time. Their output responses can be self-

sustained through the presence of feedback loops in the system that can result

in oscillatory behaviour and nonlinear output responses. Some active systems

are thought to operate near the oscillatory instability (e.g., at the critical re-

gion, Hopf bifurcation as noted in Chapter 4). Transitions beyond the critical

state (e.g., β point) can occur momentarily due to the presence of noise or high

feedback gain configurations set in closed-loop positive feedback systems. There-

fore, their output responses may become uncontrolled with endless oscillatory

responses, occasionally. However, some dynamical systems are thought to have

active processes to control their internal feedback parameters in order to restore

their stable or critically stable operations [133]. The fact that some biological

sensors and systems may operate “at the edge of chaos” [136], is quite interest-

ing, as it might be advantageous in terms of transmission, storage and processing

of sensory information [134].

Chapter 5. Combining Frequency Agile Tuning & Active Nonlinear
Amplification

159



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

Figure 5.11: Stability of the overall sensor system under the following test con-
ditions: fin = f0 = 3.55 kHz, T0 = 0.166 ms, τ = dt = 20 µs, W = 60 µs; (A)
Vth = 0.5 V and K = ±[200, 260, 340] mV – [Left, Middle, Right]; (B) Vth = 1.0
V and K = ±[200, 340, 510] mV – [Left, Middle, Right]; (C) Vth = 1.5 V and
K = ±[340, 510, 1000] mV – [Left, Middle, Right], respectively.

5.2.6 Intermodulation Products

Another interesting consequence of the nonlinearities imposed by the purpose-

built feedback system operation is the generation of output responses as a result of

intermodulation in the system when exposed to competitive input sound signals,

as illustrated in Figure 5.12 and summarized in Table 5.1.

It is important to note that the presence of intermodulation of signals in this

closed-loop system is a result of the nonlinear dynamics imposed by the feedback
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Table 5.1: Summary of the Intermodulation as distortion products generated by
the system as shown in Figure 5.12 for ∆f = |f1˘f2| = 50 Hz, 100 Hz and 150
Hz.

f1 f2 2f1 − f2 3f1−2f2 2f2 − f1 3f2−2f1
(A) 3550 Hz 3600 Hz 3500 Hz 3450 Hz 3650 Hz 3700 Hz
(B) 3550 Hz 3650 Hz 3450 Hz 3350 Hz 3750 Hz 3850 Hz
(C) 3550 Hz 3700 Hz 3400 Hz 3250 Hz 3850 Hz 4000 Hz

mechanisms exploited in this study. The presence of distortion products at the

system’s output were investigated over the mechanical (e.g., MEMS microphone

diaphragm) and electrical (e.g., AFE output signal) block parts of the experimen-

tal setup in order to verify their occurrence. It is clear that the signals outputted

by the mechanical and electrical stages are faithful matched.

5.3 Discussion

The work presented in this chapter provides a substantive addition to the theo-

retical study, simulations and to the initial experimental setup results that were

presented in Chapter 4. Therefore, a novel bio-inspired acoustic sensor system

concept was prototyped, that allow the sensor’s resonance frequency to be selected

through the use of slow-feedback mechanisms (e.g., DC bias signals), and whilst

also manipulating the sensor’s responsiveness in a nonlinear fashion to amplify or

attenuate selected signals through the use of fast-feedback mechanisms (e.g., AC

bias signals). Moreover, the processing time to compute the new LIF routine is

11.73 µs that was measured experimentally, and it is below 20 µs sampling time

set by the acquisition task, therefore real-time signal processing is ensured.

Future investigations based on this purpose-built signal processing framework

might be towards the creation of new adaptive processes, for instance dynamically

changing the feedback variables - Vth and K values (e.g., in real-time). Further-

more, exploiting a critical sensory system architecture that potentially can be
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operated at the edge of chaos, perhaps, it can provide effective computation at

the sensor level, which in terms of transmission, storage and processing of acoustic

information may offer some advantages.
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Figure 5.12: Example of distortion products recorded using LDV techniques over
the microphone’s diaphragm (Left-side graphs), which are also present at the
electrical output signal stage (Right-side graphs). (A) ∆f = 50 Hz; (B) ∆f =
100 Hz; (C) ∆f = 150 Hz; (Left-side graphs) LDV measurements with (Blue
trace) and without (Red trace) feedback operation; (Right-side graphs) Output
electrical signal recorded after the conditioning stage (e.g., AFE circuit); with
(Blue trace) and without (Red trace) feedback operation.
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Chapter 6

A New MEMS Microphone &

Embedded System Framework

Standard MEMS microphones are generally designed with a broad frequency re-

sponse in order to address multiple audio applications. When operated in typical

noisy environments such microphones might be vulnerable to wideband back-

ground noise or interfering signals, which might require further signal processing

techniques to remove them, generally relying on power-hungry digital signal pro-

cessors (DSP). In this Chapter a new MEMS microphone framework is presented

that allows a selective microphone to be placed within a closed-loop system and

be dynamically adaptable to deal with some signal requirements and compatible

with real-time signal processing applications.

Towards the Development of a Frequency Agile

MEMS Microphone

This work aims to present an acoustic device system that can be used as a sensor

while also actuated within a feedback loop system. Therefore, this sensor is ca-

pable of being dynamically adaptable. As mentioned before, biological acoustic
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sensors have evolved to be adaptable through the presence of feedback mecha-

nisms. That helps in the process of manipulating acoustic information at the

sensor periphery before sending it to higher level computational systems in the

auditory pathway. Clearly, this gives advantages in terms of power efficiency when

there is a need to process a large amount of sensory information in a limited time

frame [89]. Designing acoustic sensors such as MEMS microphones, which are in-

spired by nature is not new [137], [138], [139]. Moreover, two bio-inspired acoustic

sensory concepts (Chapters 3 and 4) were combined and presented in Chapters

5 of this thesis – supporting the assumption of the “transducer becomes part

of the signal processing chain”. That can be achieved by exploiting feedback

mechanisms at the sensor level in order to alter its acoustic response namely

its resonance frequency and Q-factor. Therefore, this chapter aims to extend the

study further by presenting a MEMS microphone signal processing framework de-

signed to pursue both concepts combined within the same hardware platform. It

includes a new MEMS microphone design with piezoelectric and capacitive sens-

ing and actuation modalities, respectively. These two transduction modalities

are required within the same device to allow its integration within a closed-loop

system. Therefore, a new signal processing methodology performed at the mi-

crophone’s structural level can be presented, while also using standard MEMS

manufacturing techniques within an embedded system architecture.

6.1 Microphone Design and Fabrication

A MEMS microphone was designed in which comprises an 800 µm radius di-

aphragm, 10 µm thick membrane mounted on 6 serpentine spring arms, as illus-

trated in Figure 6.1.

Each of the arms is coated with a 500 nm Aluminium Nitride layer for piezo-

electric transduction (e.g., sensing port), while the membrane itself is fringed
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Figure 6.1: MEMS microphone (prototype I) fabricated on single crystal Silicon-
On-Insulator using MEMSCAP services. (Top-view) Scanning electron mi-
croscopy picture taken tilted 50o – ×30. (Side-view) design schematic overview
that shows the dimensions of the device. Courtesy to Andrew Reid for the design
of this device and Yansheng Zhang for the microscopic picture.

by 176 (6 µm wide) capacitive comb-fingers (e.g., actuation port), interdigitated

with a stator bank of comb-fingers on the surrounding die at 6 µm intervals, as

shown in Figure 6.2. The device is backside etched (400 µm thick) at the moving

parts to allow free release of movement.

The device was fabricated on single crystal Silicon-On-Insulator (SOI) using

MEMSCAP’s services (PiezoMUMPs R©). In contrast to existing capacitive comb

actuators and sensors the rotor combs of this device are intended to have a neutral

position in plane with the stator combs, making the electromotive force from the

biasing of the combs symmetrical about the z-axis. The relative thickness of

the serpentine springs at multiple anchor points reduced the effect of through

thickness stress gradients during fabrication to a negligible displacement around
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Figure 6.2: Dimensions of the serpentine spring arms (Left-side) and the capac-
itive comb-fingers (Right-side) used for the MEMS microphone design, respec-
tively.

the centre of the membrane, such that the stator and rotor combs fully engaged.

The device is then wire-bonded (e.g., electrical connections) to a standard PCB

(see Figure 6.3) for easy access to the capacitive and piezoelectric ports before

any experimental and evaluation tests as typically required.

Figure 6.3: MEMS microphone is mounted on a standard PCB, before it is ready
for experimentation and evaluation tests. Courtesy to Yansheng Zhang for the
mounting and wire-bonding of this device.

6.1.1 Finite Element Modelling

In order to predict the acousto-strutural interactions in the MEMS microphone

before its fabrication, finite element modelling using COMSOL Multiphysics is

performed using the acoustics and structural mechanics modules. The rotational
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symmetry of the device allowed the model to be constructed as a 60o segment of

the membrane containing one spring arm and associated stator and rotor combs

surrounded by a cylindrical air domain, greatly reducing computation time. Sim-

ulating the effect of the constant voltage, applied at the capacitive combs, on

the resonance frequency of the membrane required a moving mesh to be applied

to the air domain. The minimum mesh element quality was determined to be

greater than 0.1 with a minimum element size of 1 µm. A harmonic boundary

load equivalent to 1 Pa was applied to the membrane surface and swept at 50 Hz

intervals with varying the bias voltage from 0 to 50 V applied to the rotor combs.

The membrane damping was estimated as an applied loss factor of 0.015, giving

a Q-factor of 30 in this device.

The estimated resonance frequency in air for the membrane without bias was

3.15 kHz increasing to 3.25 kHz with a bias voltage of 50 V, as illustrated in

Figure 6.4. Displacement at resonance was estimated at 2.6 µm for a 1 Pa load,

however the net pressure from an acoustic wave is anticipated to be much lower

due to the large diffraction around the membrane from a sound field at 3.0 kHz.

Figure 6.4: COMSOL modelling of the MEMS microphone acoustic response.
(Left) simulation of membrane’s displacement at predicted resonance frequency
of around 3.2 kHz in response to 1 Pa boundary load. (Right) Predicted resonance
frequency shift with increasing bias voltage applied to rotor combs. Courtesy to
Andrew Reid for the COMSOL modelling of this device.
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6.1.2 Experimental Evaluation

First of all, the device is positioned under a laser Doppler vibrometer stage (Poly-

tec sensor head MSA-100-3D) to allow measurements of the motion on the micro-

phone’s diaphragm in response to acoustic stimulation, as illustrated in Figure

6.5. From this test, it was possible to determine the Q-factor of the device of

approximately 30 at 3.3 kHz, which is its 1st resonant mode. The movement of

the membrane observed at the 1st resonant mode is a piston like behaviour with

symmetry about the z-axis, as expected from its design and COMSOL simula-

tions. A 2nd more responsive frequency of the structure around 9.6 kHz is also

visible in Figure 6.5 (Left), which is resulted from a twisting behaviour of the

springs (not exactly a typical resonant mode exhibit by circular diaphragm like

structure, therefore it is not relevant for the present study).

Figure 6.5: Frequency response of the microphone’s diaphragm during acoustic
stimuli with an AC signal sweeping across the device’s bandwidth, showing higher
acoustic response at 3.3 kHz and 9.6 kHz. (Left) LDV scan from 1 – 12 kHz;
(Right) LDV scan from 1 – 5 kHz.

Secondly, the device is kept positioned under the laser Doppler vibrometer

machine to allow measurements of the motion on the microphone’s diaphragm in

response to electrical stimulation (e.g., transmission mode: driving the piezoelec-

tric layer with AC signals), while applying different DC bias voltages across the
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capacitive comb-fingers, as illustrated in Figure 6.6.

Figure 6.6: Frequency response of the microphone’s diaphragm while applying
different DC voltage potentials at the capacitive comb-fingers of the device and
driving the piezoelectric layer with AC signals sweeping (e.g., from 3 – 4 kHz)
around the device’s 1st resonant mode.

When the evaluation tests required sound to be driven, a sound transmit-

ter/speaker (ESS HEIL Air-Motion Transformer) is placed perpendicularly to

the microphone, at a distance of 1 m, which is excited by the internal signal gen-

erator of the laser vibrometer controller. Electrical signals from the microphone’s

piezoelectric layer are recorded with the acquisition laser vibrometer controller

system (Polytec front-end MSA-100-3D) with a sampling frequency of 50 kHz.

Therefore, laser signals resulting from the diaphragm movements and the electri-

cal signals from the piezoelectric layer can be compared, as illustrated in Figure

6.7.

As reported in the previous study [19], the simulated and measured acoustic

frequency response of such a device could be altered by changing the diaphragm’s

equivalent stiffness. In this new microphone’s design, the stiffening effect over the

microphone’s diaphragm was also tested (e.g., through COMSOL simulation, and

experimentally – mechanical and electrical responses) by driving the capacitive

comb-fingers of the device with DC voltage potentials between 0 to 50 V with 5 V
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Figure 6.7: Frequency response of the microphone’s diaphragm while applying
different DC voltage potentials at the capacitive comb-fingers of the device. (A)
Measured with LDV; (B) measured from the piezoelectric sensing port of the de-
vice. Inset graphs illustrate the zoom in between 3.2 – 3.6 kHz that closely shows
the change of the resonance frequency for different applied DC bias voltages.

step increments. This resulted in an increment of the resonance frequency tested

around its 1st resonant mode, from around 3.34 kHz up to 3.47 kHz, respectively,

as illustrated in Figure 6.8.

This initial work presents the design of a MEMS microphone with piezoelectric

and capacitive sensing and actuation capabilities, which possibly allow this device

to be integrated within a closed-loop system towards the creation of a frequency

agile acoustic sensor system. Simulations and experimental results have shown

that this 1st device is able to alter its acoustic frequency response in correlation

to varied DC voltage potentials applied at the capacitive port, and the piezoelec-

tric transduction method used for sensing acoustic signals was validated through

laser inspections of the diaphragm displacements. The resonance frequency (1st

resonant mode) was identified, which can be shifted approximately within a 130

Hz bandwidth. However, the aim is to create an adaptive tuning system across a

wider frequency agile bandwidth, therefore further research work is required and

addressed as follows:

• A custom-made pre-amplifier circuit is required in order to provide the
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Figure 6.8: Resonance frequency shifting of the microphone’s diaphragm when
applying DC voltages from 0 - 50 V range. (Blue) measured with LDV; (Red)
measured from the piezoelectric port of the device.

conditioning of the piezoelectric signals;

• A custom-made driving circuit is required with the possibility to vary its

DC bias voltage output for the device’s agile tuning modality;

• A custom-designed AC driving circuit for the device’s Q-factor control

modality;

• A new design of a MEMS microphone is also considered in order to increase

its frequency shifting bandwidth;

• A new purpose-built embedded system setup is required in order to integrate

the MEMS microphone in a closed-loop fashion and to enable real-time

signal processing and experimental results.
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6.1.3 Revision of the MEMS Microphone design

A new MEMS microphone was designed following the same design principles as

presented in Section I. Mainly, the goal was to slightly change the design in

order to increase the effect of spring stiffening, while supplying DC voltages at

the capacitive comb-fingers of the device. Essentially, that can be achieved by

changing the spacing/gap in between adjacent interdigital comb-fingers from 6

µm down to 3 µm, therefore increasing the equivalent capacitance of the comb-

fingers structure. The remained design lines of the device were kept unaltered as

presented before, as illustrated in Figure 6.9.

Figure 6.9: SEM picture of the new MEMS microphone (prototype II). The
MEMS microphone was fabricated on single crystal Silicon-On-Insulator using
MEMSCAP services. Refer to Figure 6.1 for details about dimensions. Courtesy
to Andrew Reid for the design and Yansheng Zhang for the microscopic picture
of the device.

Experimental tests revealed that this new design allows a wider resonance

frequency shifting (e.g., greater stiffening effect can be achieved from the DC

bias voltage applied) than the previous design, while keeping identical acoustical

responses, as observed through LDV scanning (illustrated in Figure 6.10) and
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described as follows.

Figure 6.10: LDV scanning shows the displacements of the diaphragm symmetri-
cal at the z-axis (e.g., piston like movements), as expected by its design. Courtesy
to Yansheng Zhang for this picture.

In order to evaluate experimentally the stiffening effect while applying differ-

ent DC voltages, the MEMS device is wire-bonded to a custom-designed AFE

circuit (e.g., AFE is described in Section 6.2) and firstly tested in an open-loop

configuration by applying acoustic stimuli using chirp signals ranging from 2.5 –

5 kHz, as presented in Figure 6.11.

Additionally, the equivalent impedances from the capacitive and piezoelectric

ports of a MEMS device can be measured using an impedance/gain-phase analyser

(4194A – Hewlett Packard), as illustrated in Figure 6.12.

Therefore, combining the real and the imaginary parts of the equivalent

impedance measurements, of each sensing/actuation port, then it can be de-

termined that the equivalent impedance of the capacitive port is about ≈300 kΩ

@ 3.3 kHz, whereas the equivalent impedance of the piezoelectric port is ≈70 kΩ

@ 3.3 kHz, approximately. This information is important for consideration in the

design of the analogue electronic circuits (e.g., piezoelectric signal conditioning,

and the capacitive driving circuits).
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Figure 6.11: (A) Frequency response of the MEMS microphone while varying
the DC bias voltage applied to the capacitive comb-fingers, showing a resonance
shifting of about 1100 Hz from 3.3 kHz (at 0 VDC) up to 4.4 kHz (at 40 VDC),
approximately. (B) Resonance frequency shifting of the microphone’s diaphragm
when applying DC voltages from 0 - 40 V range illustrates the stiffening effect
of the diaphragm’s response as suggested by the expression Ks ∝ C.V 2

b noted
at the end of Chapter 2; (C) Illustrates the frequency shifting bandwidth of this
system; (D) System’s normalised magnitude response (dB scale), showing the
operational-shifting bandwidth of the system at different points, for instance at
-3 dB is 428 Hz, at -6 dB is 760 Hz and at -9 dB is 928 Hz.

6.2 Analogue Front-End (AFE)

A custom-designed AFE is presented in order to provide the conditioning of the

output signals from the piezoelectric transduction readout of the MEMS micro-

phone, and to ensure compatibility with the input port of the unipolar A/D

converter (unipolar: 0 – 3 V, 12-bit resolution) on-board of the microcontroller
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Figure 6.12: Impedance measurements of the capacitive and piezoelectric ports
of a MEMS microphone. (A) Capacitive port; (B) Piezoelectric port.

STM32F4. Therefore, a pre-amplifier circuit with Gain[dB] = 65 dB and Band-

width = [0.25 – 25] kHz overall, and output offset voltage of 1.5 VDC is designed,

as illustrated in Figure 6.13.

Figure 6.13: Schematic overview of the AFE circuit for the conditioning of the
piezoelectric readout signals of the MEMS microphone. Gain[dB] = 65 dB and
Bandwidth = [0.25 – 25] kHz with output offset voltage of 1.5 VDC .

This circuit follows the design principles of a hybrid JFET operational ampli-
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fier configuration [140], [141]. It presents a differential input stage with a buffer

configuration using a low-noise (en = 1.8nV√
Hz

@ 1 kHz and Id = 2 mA) and low-

capacitance (Ciss = 4 pF @ 1 MHz) monolithic dual N-Channel JFET device

(LSK489). The differential input stage is set with a drain current of 2 mA de-

rived from the current sink circuit using a NPN BJT (BC850) and the resistor

R9, which sets the source current of 4 mA that is split evenly to the two buffers

(2 mA each). R5 is used as the bias resistor to set the DC voltage conditions at

the gate of the JFET input circuit connected with the MEMS microphone piezo-

electric output. Moreover, the gain of this hybrid input circuit stage is mainly

set by the non-inverter amplifier configuration using a high-performance audio

operational amplifier device (LM4562). The ratio between the resistors R4 and

R3 set the gain of the circuit namely Gain = 1 + R4
R3 for this amplifier configu-

ration and its bandwidth is limited by the resistor R3 and the capacitor C1 for

the lower cut-off frequency – 0.25 kHz, approximately; and R4 and C5 limits the

upper cut-off frequency – 25 kHz, approximately, as illustrated in Figure 6.14

(Bottom). The capacitor C3 blocks any DC offset from the hybrid input stage,

and the potentiometer R8 provides a voltage offset shift of about 1.5 V that is

required for the A/D unipolar input. The last stage of this AFE circuit is an-

other non-inverter amplifier configuration in case extra amplification is required

during the setup experimentation, maximizing as much as possible the output

signal range for maximum A/D signal amplitude discrimination, as illustrated

in Figure 6.14 (Top) (e.g., Transient Analysis showing the full signal excursion

from 0 to 3 V @ 3.6 kHz). The gain of this last non-inverter amplifier stage is

given by Gain = 1 + R7
R6 , with R7 being a variable resistor (e.g., potentiometer).

The capacitor C2 is used to block the gain of the circuit at low-frequencies and

C6 is used to filter-out high frequency components. It is important to note that

the overall bandwidth of the AFE circuit is mainly set by the first circuit stage

bandwidth – the hybrid JFET - OPAMP.
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Figure 6.14: (Top graph)Transient and (Bottom graph)frequency response of the
AFE circuit, showing a fast time response; flat frequency response with a quasi-
linear and almost zero phase-delay between 1 – 10 kHz.

During the AFE design stage some important requirements were considered

in order to maximize the performance of this circuit:

• Differential input stage is used to minimize common noise interference pick-

up at the microphone level such as 50 Hz from the power line signal and the
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potential electromagnetic coupling from the loudspeaker used for the testing

of the experimental setup. The loudspeaker’s electromagnetic interference

is seen as a potential problem, which would impact substantially on the

performance of the experimental setup, thus affecting the performance of

the real-time signal processing algorithms and the feedback mechanisms

(e.g., LIF neuronal model) presented in Chapter 5. Note that no metal

shielding was used to isolate the system;

• JFET input is used to achieve as much as possible a low-noise amplifier

design analogue front-end from an expected high input impedance signal

source (≈70 kΩ) given by the piezoelectric transduction layers of the MEMS

microphone providing signal amplitudes within µV range;

• Flat frequency response given by the front-end analogue circuit covering

the whole agile frequency range of the MEMS microphone such as from 2.5

kHz up to 5 kHz frequencies, and that is ensured by the AFE circuit design,

as illustrated in Figure 6.14 (Bottom);

• Resistor R5 is much bigger than the equivalent impedance of the piezoelec-

tric port of the MEMS microphone in order to minimize the effect of circuit

loading - trade-off with noise (e.g., thermal noise contribution);

• Phase-delay within the agile frequency window of the MEMS microphone

has to be zero or close to zero, in order to minimize any signal lag (time

difference) between signals at different frequencies within that frequency

window. The timing of signals in the main signal path (from microphone

to AFE to computational unit) is of critical importance for reliable signal

processing. That was taken in special consideration since the output of the

feedback algorithms is based on the time of arrival of the input signal, for

instance the LIF model is an algorithm for phase-locking. Therefore, zero
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phase-delay is a requirement and that is ensured by this AFE circuit design,

as illustrated in Figure 6.14 (Bottom);

• Overall, in order to reduce the contribution of the thermal-noise in the

circuit, the values of all resistors were kept as low as possible, and the

OPAMP device (LM4562) is low-noise.

The performance of the MEMS microphone and its AFE circuit response (e.g.,

sound detection and piezoelectric transduction) is satisfactory for the purposes of

this study as found during evaluation tests against a gold-standard B&K reference

microphone, as illustrated in Figure 6.15.

It is important to note that the AFE circuit PCB is powered by two +9 V

batteries. These are set in a way to provide a bipolar DC voltage supply such

as +9 V and -9 V, which is down-regulated to ± 5, respectively, using two linear

voltage regulators (MIC5225: +5 V, 150 mA and MIC5270: -5 V, 100 mA) placed

on the common PCB.

6.3 DC Bias Driving Circuit (Charge-Pump Cir-

cuit)

An important requirement to achieve a versatile update of the stiffening effect on

the MEMS microphone acoustic response is through a circuit that can provide

an adaptable DC bias voltage output. A way to achieve that is through a circuit

based on a DC-DC voltage converter using a standard charge pump configuration,

as illustrated in Figure 6.16.

The aim is to step-up DC voltage levels from a 3 VDC supplied at the input

of the circuit up to 30 VDC output, which can then be the DC bias mechanism

for the frequency agile MEMS microphone to operate. The working principles

of the charge-pump circuit are well known in the literature, as referred to at
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Figure 6.15: Evaluation test of the MEMS microphone and its AFE circuit re-
sponse compared with the B&K reference microphone. All signals are smoothed
with an average filter of N = 32 for clarity of the graphs plotted.

the end of Chapter 2. In this circuit design the voltage output signal is built

up based on eleven charge pump stages (e.g., diode-capacitor) supplied by two

clock sources at 1 MHz in anti-phase (e.g., with their phase reversed) provided

by two on-board digital outputs of the microcontroller STM32F4. A precise 1

Chapter 6. A New MEMS Microphone & Embedded System Framework 183



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

MHz clock mechanism is set through hardware interrupt routines using a 16-bit

Timer counter.

The output voltage (Chargeout) is controlled by an On-Off mechanism (MOS-

FET - Q1) through a comparator device (MCP6561) set with a reference voltage

level provided by the DACcontrol signal from an on-board D/A converter (e.g., on-

board to STM32F4). Essentially, this circuit operation builds-up and controls its

output voltage dynamically, relying on a switching mechanism by the MOSFET –

Q1. Therefore, an additional filtering stage is considered in order to suppress any

ripple originated from the charge-pump circuit dynamics (e.g., switching noise).

Considering that, the charge-pump output voltage is then filtered by a circuit

based on a capacitance multiplier using R7, C13 and Q2 at the final stage of

signal regulation (refer to [142] for details about the capacitance multiplier work-

ing principles). The capacitor C9 represents the equivalent capacitance of the

comb-fingers of the MEMS microphone that is interfaced with the circuit via a

shunt diode and resistor R1 (e.g., for output protection).

The device U1 is a buffer circuit using an operational amplifier (OPA836) that

connects to the A/D converter input on-board to the STM32F4, which is used for

calibration purposes of the voltage output upon start-up stage (e.g., if required

by a given application or experimental setup).

Figure 6.17 shows different output voltages (5, 10, 20 and 30 V) generated by

the charge pump circuit according with the DACcontrol reference voltage signal

that is applied to the comparator. Some ripple exists (green traces – V (8)) at the

DACcontrol signal mainly due to the switching mechanism (Blue traces – V (sw))

at the swi signal – refer to Figure 6.16, which is the compactor output signal.

The smoothed output voltage signals (Red traces – V (15)) are at the Sensorin
signal after the capacitance multiplier stage.

Experimental tests were conducted to evaluate the response of the charge

pump driving circuit with and without load (e.g., MEMS microphone), as illus-
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Figure 6.16: Schematic of the charge-pump (CP) circuit designed with 11 stages
is used to provide an adaptive DC bias voltage to enable the MEMS microphone
frequency agile tuning capabilities.

trated in Figure 6.18, and as summarized in the Table 6.1:

Table 6.1: Summary of the output response of the charge-pump circuit.
Without Load
(open-circuit)

With Load
(MEMS mic)

Max. Output Voltage 30.2 V 27.3 V
Min. Output Voltage 1.6 V 1.9 V

Rise time 2 ms 1 s
Decay time 0 ms 7 s

Assuming all the above conditions, then the time of convergence and output

voltage of this circuit is greatly dependent on the load that is connected at the

output of the circuit. Essentially, there is a time spent to charge and discharge

the equivalent capacitance of the MEMS comb-fingers, and there is also a drop

of about 3 VDC of the maximum output voltage provided by this circuit due to

the loading effect from the MEMS microphone equivalent impedance.

Additionally, during the experimental tests the presence of high frequency

signals (e.g., switching) at the circuit output was also investigated. Figure 6.19

shows an example of the spectrum (e.g., frequency response from 1 – 500 kHz)

of the charge-pump output signal. No significant spurious potential noise was
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Figure 6.17: Different output voltages (5, 10, 20, 30 V – Top to Bottom, re-
spectively) generated by the charge-pump circuit according with the DACcontrol
reference voltage signal presented to the comparator’s input. (Blue trace) switch-
ing mechanism to control the output voltage signal; (Green trace) output voltage
of the charge-pump circuit showing some ripple due to the on-off switching mech-
anisms; (Red trace) smoothed output voltage of the charge-pump circuit after
the ripple rejection stage (e.g., capacitance multiplier circuit).

found being generated by the internal switching signals of the circuit that could

be injected to the MEMS microphone, and picked-up by the piezoelectric sensing

port.

Chapter 6. A New MEMS Microphone & Embedded System Framework 186



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

Figure 6.18: Step response of the charge pump circuit, (A) Without load (open-
circuit); (B) With load (MEMS mic).

Figure 6.19: Spectrum of the charge-pump output signal, showing no significant
spurious potential noise found being generated by the internal switching signals
of the circuit.

6.4 AC Bias Driving Circuit (Non-inverter Am-

plifier Circuit)

Another important requirement for the prototype concept is to dynamically con-

trol the Q-factor of the MEMS microphone, by driving AC bias signals (e.g.,
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pulses) to it. Figure 6.20 shows the AC driving circuit that was designed, which

is derived from a standard non-inverter amplifier circuit configuration. The gain

of this circuit can be altered by changing resistor R3 (e.g., potentiometer) while

keeping R2 constant, where for R3 = R2 the gain is 2 (e.g., 6 dB). The shunt

resistor R4 and the shunt capacitor C1 are for output protection, while C2 rep-

resents the equivalent capacitance of the MEMS capacitive comb-fingers port, as

used for circuit simulation purposes only.

Figure 6.20: Schematic of the AC driver circuit used for the conditioning of
the signal (e.g., square pulses) driven by the D/A converter on-board to the
STM32F4.

It is important to highlight that the constant time of this circuit has to be fast

in order to drive faithful output square-shaped pulses as required by the study

present in Chapter 5. Figure 6.21 shows the response of the circuit while applying

biphasic square pulses at 3.6 kHz with 30% duty-cycle, as the typical signals to

be driven to the MEMS microphone enabling Q-factor control. Assuming that

U1A (LM4562) is a wide-band operational amplifier device, the time response of

this circuit is mainly dependent on the RC time constant imposed by the shunt

components (R4 and C1 – hence rise time is 1 µs) at the circuit output, which
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can be changed to well suit any particular application or experimental setup (if

required).

Figure 6.21: Transient time response of the AC driving circuit simulation, while
applying potential spike-type signals to the MEMS microphone to enable Q-factor
control. (Red trace) signal from a unipolar D/A converter; (Green trace) output
signal of the AC driving circuit, showing a fast transient response, amplification
(GaindB = 6dB; rise time = 1 µs) and zero offset voltage output.

Experimental tests were conducted in order to evaluate the AC driving circuit

with the MEMSmicrophone, as presented in Figure 6.22. Note that a symmetrical

generation of positive and negative pulses can be provided by this AC driving

circuit.

6.5 Overall Feedback System Framework

For validation purposes of the overall purpose-built sensory system, all the hard-

ware blocks are integrated within a closed-loop configuration in order to enable

the evaluation of the overall embedded feedback setup, as illustrated in the block

diagram of Figure 6.23, which can provide real-time results as reported in Chapter

5.

Highlights of the embedded system setup features include: an electrical read-

out from the MEMS microphone’s diaphragm displacements through piezoelectric

transduction providing correspondent analogue output signals. Signal condition-

ing is performed on the piezoelectric output signals before A/D conversion (e.g.,
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Figure 6.22: Experimental test of the AC driving circuit, showing a symmetrical
generation of pulses that are being injected to the MEMS microphone. (A) Pulses
in-phase with the input signal – hence output response of the MEMS microphone
is amplified; (B) pulse anti-phase with the input signal – hence output response
of the MEMS microphone is attenuated.

ADC2, 12-bit @ Fs = 50 kHz, unipolar: 0 – 3V). Signals are acquired and pro-

cessed using a STM32F4 microcontroller (32-bit Advance Risc Machine – ARM

Cortex-M4 architecture) running at 168 MHz clock-speed. Any purpose-built

algorithm (e.g., LIF neuronal model) that potentially be executed inside the

processing unit (CPU) can generate output signals through the on-board D/A

converter (12-bit @ Fs = 50 kHz; unipolar: 0 – 3V) namely, DAC2 is used to set

the spike-type signals for the AC driving circuit (e.g., fast-feedback signals path);

DAC1 sets the charge-pump reference control voltage (e.g., slow-feedback signals

path) and ADC1 can be used for calibration purposes of the charge-pump output

signal. Overall, this feedback sensor system setup configuration allow the spring

factor of the MEMS microphone to be manipulated (using DC signals) as well as

enabling Q-factor control capabilities (using AC signals).

The engineered embedded sensor system is then presented in Figure 6.24. On

the left-side is a PCB with the AFE circuit, AC driving circuit, on-off switch,

voltage regulators for the +9 V batteries, the capacitance multiplier circuit, and

the MEMS microphone (e.g., green PCB with the device at the middle) clamped
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Figure 6.23: Diagram overview of the embedded acoustic sensor system to pro-
vide an experimental setup environment for real-time signal processing, where A
represents the AC driving circuit and CP is the DC driving circuit connected to
the CAP (capacitive port of the MEMS microphone). The piezoelectric signals
from the MEMS microphone are conditioned with the AFE circuit and, therefore
acquired by the STM32F4 microcontroller on-board A/D converter.

on top facing upwards; on the right-side a PCB with the microcontroller in the

centre, the charge-pump circuit, a linear voltage regulator (MCP1802, +3 V, 300

mA) supplied by a + 9 V battery to power this computational unit; a 8 MHz

crystal as the main clock source for the microcontroller; an on-off switch; among

other peripherals for user-interface such as LEDs and a push-button.

It is important to note that the layout of these two PCBs was designed con-

sidering standard PCB design rules and following good practices on layout and

routing (shown in Figure 6.25). For instance, one of the main considerations was

to keep all the analogue modules and acoustic front-ends isolated (e.g., different

ground planes and power supply) from the “noisy” digital modules and switching

mechanisms (e.g., charge-pump voltage regulator) and main power line.

Chapter 6. A New MEMS Microphone & Embedded System Framework 191



Bio-inspired Acoustic Sensors & Systems - From Biology to Engineering
Exploiting Feedback Computation by José Guerreiro

Figure 6.24: Engineered and bio-inspired electromechanical sensory system using
a MEMS microphone for sound detection and transduction assisted by an em-
bedded system process and with feedback signal computation to the microphone
in order to enhance peripheral signal processing such as frequency agile tuning
and active amplification.

Figure 6.25: (Left-side) PCB layout of the AFE circuit and (Right-side) compu-
tational unit system.
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6.6 Discussion

This chapter presents the design of a new MEMS microphone that includes sens-

ing and actuation capabilities in order to be integrated within a closed-loop sen-

sory system. A device that can have a selective and agile frequency response.

Simulations and experimental results have shown that the resonance frequency

of the MEMS microphone can be altered by applying DC voltage signals to the

capacitive comb-driver port of the device and the piezoelectric transduction lay-

ers can pick-up the diaphragm displacements induced by acoustic stimulation.

Piezoelectric output signals can be recorded and the response of the device was

validated through laser Doppler Vibrometer techniques as well. The resonance

frequency (1st resonant mode) of this new device can be shifted approximately

within 1100 Hz bandwidth, from 3.3 kHz up to 4.4 kHz – 0 up to 40 VDC , re-

spectively. Future research should address the impact of manufacturing process

variability to the microphone’s overall acoustic response associated to the reso-

nance frequency shifting capabilities and sensitivity. Additionally, some analogue

circuits were designed and presented in order to create a proper closed-loop feed-

back system setup for the research presented in this thesis (e.g., Chapter 5). The

analogue circuit designs include:

• An AFE circuit, which provides the conditioning stage for the microphone’s

piezoelectric signals. The circuit design was validated through simulation as

well as experimentally, while driving the MEMS microphone with acoustic

signals. Note that the interface between the MEMS microphone PCB and

the analogue amplifier front-end (e.g., JFET input stage) is a critical point

in the setup in order to ensure reliable output signals overall. All wires

should be as short as possible and the MEMS PCB has to be well-clamped

to the main PCB (e.g., AFE board) in order to avoid undesired vibrations

(e.g., mechanical noise) that can potentially be picked-up by the piezo layers
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embedded in the microphone structure, otherwise compromising the SNR

of the overall sensory system. By following the above considerations, there

was no need for additional techniques to reduce electrical and mechanical

noises within the experimental setup such as metal casing/box (e.g., fara-

day shielding) or testing the system inside anechoic chambers. Therefore,

the MEMS microphone embedded system could be exposed to standard

laboratory environments during all evaluation tests and data recordings.

The AFE circuit designed shows robustness for the task of conditioning the

piezoelectric signals from the MEMS microphone;

• A DC voltage regulator was designed based on a charge-pump circuit con-

figuration that is capable of providing output voltage levels from 2 up to

27 VDC from a 3 VDC power supply. Note that this circuit is able to drive

the capacitive comb-fingers of the MEMS microphone with consequent ef-

fects to the resonance frequency of the device. However, the design of this

circuit can possibly be optimized in terms of output voltage level and tran-

sient time response, if required. The output voltage level can possibly be

increased proportionally with the number of stages (e.g., diode-capacitor)

in the circuit. And, the transient time response might possibly be improved

by revising the output stage of the circuit, namely by decreasing the value

of C2 as well as removing the capacitance multiplier circuit, in order to

update the output response of the circuit more quickly upon requirement.

Further research to revise this circuit should be considered in future work.

Note that this circuit was intended to regulate a slow-feedback adaptation

process, therefore, it suits the requirements of the present research;

• An AC driving circuit was designed and tested experimentally and also

validated through circuit simulation. This circuit is capable of driving the

MEMS microphone capacitive comb-fingers port with fast-signals such as
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square-pulses. The rise time of the circuit was set to be 1 µs, which is much

smaller than the width (e.g., min. 20 µs) of the pulses that are generated

by the D/A converter on-board to the STM32F4;

• A new purpose-built embedded acoustic sensor system hardware framework

was created integrating the new MEMS microphone and all the analogue

and digital circuits and systems in a closed-loop fashion in order enable real-

time signal processing for the experimental results presented in Chapter 5.
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Chapter 7

Conclusions

Engineering has a lot to learn from biology. Over many millions years of evolu-

tionary processes, nature has been developing the most efficient sensors, circuits

and systems, allowing the detection, storage and manipulation of surrounding

environmental information, hence enhancing the chances to survive and prosper.

First of all, this thesis starts by describing some essential background knowl-

edge within biological sensors, circuits and systems, focusing on acoustic signals

and sensory apparatus. It is clear that biological acoustic sensors and systems

make use of several levels of feedback loop mechanisms in order to process pe-

ripheral sensory information. That is considered as a useful technique for signal

detection and processing and therefore it is used as the backbone for the bio-

inspired concepts presented in the remain chapters of this thesis. State-of-the-art

engineering related to recent microphone technology was also outlined in the

background knowledge chapter (e.g., Chapter 2), including some of the latest ad-

vances in designs, specifications and techniques used by the industry and sensor

research community for MEMS microphones.

Secondly, the work presented in this thesis develops under the line of thought

inspired by nature where a front-end acoustic detector/sensor/transducer (e.g.,

any acoustic sensor at audio or ultrasonic frequencies) can be placed within a
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closed-loop feedback system and be part of the signal processing chain. That

exploiting slow and fast adaptation processes between mechanical and electrical

mechanisms to enhance peripheral sound processing. Therefore, two smart acous-

tic sensor system concepts were created, prototyped and validated theoretically

and experimentally as the main outcomes of this Ph.D. research work.

One of the concepts presented is referred as Frequency Agile Tuning. This

concept is based on the assumption that a front-end acoustic receiver such as a

microphone is designed with a selective frequency response, and that is able to be

dynamically adaptable showing different resonant tuning responses. A theoretical

model for the sensor’s resonance tuning response was developed following the

fundamental basis as reported for the moth’s hearing system. The concept was

also prototyped using engineering techniques, which allowed the creation of an

electromechanical sensor system framework applied to real-time signal processing

environments as follows:

• A front-end acoustic receiver was fabricated using off-the-shelf materials

namely, a thin Kapton membrane glued on top of a PZT stack device. This

purpose-built acoustic receiver was capable of detecting and transducing

sound into electrical signals through an optical readout method, whilst ac-

tuating on its piezoelectric functionalities to enable the creation of frequency

agile tuning responses as similarly seen in the ears of certain moths;

• A back-end computational system setup was designed exploiting bio-inspired

mechanisms based on the Mechanoreceptor cells role and Neuronal cells

role to process sensory signals. Therefore, an Adapting Control System al-

gorithm was presented and designed to be executed within an embedded

system experimental setup, while providing results from real-time signal

processing tasks.

Additionally, another smart acoustic sensor system concept was presented and
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that is referred asActive Nonlinear Amplification. This is a bio-inspired con-

cept based on the active processes within the mosquito’s hearing system thought

to be based on parametric amplification. The assumption is that the acoustic

responsiveness of a front-end acoustic receiver can be adapted by exploiting the

presence of fast-feedback processes injecting synchronized energy into it. A theo-

retical model was developed exploiting feedback computational mechanisms based

on an efficient neuronal model known as a LIF neuron. The LIF model was used as

a smart generator of pulses to be entrained with the front-end acoustic receiver’s

response within a positive feedback closed-loop system. A back-end computa-

tional system setup was prototyped using embedded system techniques, which

was capable of providing a selective, nonlinear compressive gain, and hysteretic

responses of a custom-made front-end acoustic sensor (e.g., MEMS microphone)

from input sound signals applied to it.

Thirdly, both concepts are thought to be unconventional but advantageous

techniques of signal processing achieved at the sensor level, which can be used

to adapt the response of an acoustic receiver, for instance to track signals of

interest. Therefore, an acoustic signal processing framework integrating a func-

tional prototype system was proposed and prototyped to support the concepts of

frequency agile tuning and active nonlinear amplification, including several sen-

sor and system requirements that are thought to be compatible with real world

system applications as the following outlines:

• Exploiting the use of recent micro fabrication techniques such as MEMS in

the design of a new miniaturised microphone;

• A MEMS microphone was designed that includes sensing and actuation

techniques compatible with standard sensing and actuation methodologies

such as piezoelectric and capacitive, respectively;

• The MEMS microphone was designed and fabricated to ensure a high Q-
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factor response and selectable resonance frequency within the audio range

such as Q = 30 and f0 = [3.3 – 4.4] kHz, respectively, as a key innovation

provided by this study;

• A new embedded system framework was created and designed using recent

engineering techniques and electronic devices (e.g., ARM Cortex-M4 based

computational unit) to enable efficient real-time sensor signal processing op-

erations such as exploiting bio-inspired algorithms based on simple neuronal

model computations (e.g., LIF neuronal model);

• The circuits and systems designed to support the study are meant to be

in-line with state-of-the-art on circuit design techniques.

Additionally, the frequency agile tuning and active nonlinear amplification

capabilities were embedded in an acoustic sensor system platform with the aim to

create a MEMS microphone framework to bring forward a novel methodology for

acoustics signal processing for real-time applications. Nevertheless, it is suggested

for the future work that a combination of multiple adaptive smart acoustic sensors

of this type can be placed in an array fashion in order to address the detection

and processing of complex acoustic signals.

The technological assumption is the following: if microphones can be de-

signed to be sensitive only at selected frequencies of interest, whilst also allowing

frequency agility and adaptable sensitivities in order to track and filter specific

features of interest - they have the potential to benefit a signal processing task

with sophisticated signal-detection methods, low-power system consumption and

reduced latency on real-time operations. Therefore, improving computational

efficiency and/or accuracy in some acoustic applications such as required by

wearable devices, hearing aids and cochlear implant systems, or in ultrasonic

non-destructive evaluation/testing system applications.
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