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Abstract 

 
The aerodynamics of a wind turbine (WT) exhibit a particular property which is important for 

the design of control systems for WTs. It is referred to here as Separability. In this thesis, the 

Separability property of the wind turbine’s aerodynamics is explored in much greater detail 

than before. Based on Separability, a novel effective wind-field model with potential for broad 

application in advanced wind turbine control is developed and validated against Bladed.  

The Separability property is thoroughly investigated for constant speed WTs and variable speed 

WTs. The procedure to obtain the best possible representation of the aerodynamics in terms of 

its separated form, is developed. This process entails two aspects, firstly to determine the 

functional nature of the most appropriate representation and secondly to optimise the 

parameters of the fits.  

It has been demonstrated that Separability exists in both constant and variable speed WTs and 

that it holds for a very large neighbourhood with a very good accuracy. In fact, on average, it 

comfortably covers more than double the rated torque of all the WTs explored. 

The Separability property is exploited to develop effective wind-field models in the form of 

lump parameter ordinary differential equation models that are used in the modelling of WTs. 

These have been thoroughly validated against Bladed. 
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Nomenclature 

 
SI units have been used throughout unless otherwise stated. 

𝐴 rotor area or blade area (specified in contextual use) 

𝐴𝑟 area of the rotor disc 

𝐴𝑛(𝑡) , 𝐴𝑚(𝑡) Fourier coefficients 

𝐶𝑝 power coefficient 

𝐶𝑝𝑚𝑎𝑥 maximum value of power coefficient 

𝐶𝑞 torque coefficient 

𝐶(𝜔, 𝐷) coherence function 

𝐸[∙] Expectation  

𝐺(𝜆) Separability equation related to wind speed for tip speed ratio based 

Separability 

𝐺0,…,3(𝜔) transfer functions 

𝐻(𝛽) Separability equation related to pitch angle for tip speed ratio based 

Separability 

𝐻𝑡(𝜔) frequency response function for von Karman spectrum 

𝐼𝑡 turbulence intensity 

𝐾𝐹 , 𝑇𝐹 shaping filter parameters dependent on low frequency wind speed 

𝑣𝑚(𝑡) 

𝐿 turbulence length scale or blade length (specified in contextual use) 

𝐿𝑘Ω𝑜
(𝑡) rotationally sampled wind speed at 𝑘Ω𝑜 

𝑀𝑒 edgewise RBM moment of a blade 

𝑀𝑓 flapwise RBM moment of a blade 

𝑃 power 

𝑅 rotor radius 

𝑅𝑇 wind turbine tower diameter 

𝑅Δ𝑇(𝑡) torque transient covariance 

𝑅𝑛𝑚(𝑡) cross-covariance 



viii 
 

𝑅𝑇(𝑡) torque covariance function 

𝑅𝑇𝑂𝑇𝐼
(𝑡) cross-covariance between the torque of the outer and inner area of 

a ring shaped area 

𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡) time domain cross-covariance wind speed 

𝑅(𝜏, 𝐷) covariance between two point wind speeds 

𝑅𝑟(𝜏, 𝐷) covariance of wind speed at rotating points 

�̃�𝑛,𝑚(𝜏, 𝑟1, 𝑟2) covariance between Fourier coefficients 

RBM Root Bending Moment 

𝑆(𝜔) spectral density function of the effective wind speed 

𝑆𝐷(𝜔) Dryden spectrum 

𝑆𝐼𝐼(𝜔) spectral density function of the inner part of a ring shaped area 

𝑆𝐾(𝜔) Kaimal spectrum 

𝑆𝑘Ω𝑜
(𝑡) spectral density function of 𝐿𝑘Ω𝑜

(𝑡) 

𝑆𝑛𝑚(𝜔) cross-spectral density function 

𝑆𝑣𝑣(𝜔𝑖) spectral density function at frequency 𝜔𝑖 

𝑆Δ𝑇(𝜔) spectral density function of the torque disturbances 

𝑆𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝜔) cross-spectral density function of the wind turbulent fluctuations 

𝑆v(𝜔) spectral density function of wind speed fluctuations at a fixed point 

𝑆𝑉𝐾(𝜔) Von Karman spectrum 

𝑆𝑒(𝜔) spectral density matrix 

𝑆𝑒(𝜔, Δ𝜓) spectral density function of the effective wind speed associated 

with the rotation 

𝑆𝑟(𝜏, 𝐷) spectral density function of rotating points 

�̃�𝑛𝑛
𝑒 (𝜔) harmonic spectrum of the blade effective wind speed 

𝑇 aerodynamic torque 

TI turbulence intensity 

TS tower shadow 

𝑇0 rated torque 

𝑇𝑠 sampling interval 

�̅� mean torque  

𝑇𝐴(𝑡) axial hub torque due to a blade 

𝑇𝜔0
(∙) torque at constant rotor speed equal to rated rotor speed 
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𝑇𝜔𝑜
(∙) torque at constant rotor speed on the locus of operating points 

𝑇 (𝛽, 𝑉) torque derived by the total contribution of blade elements 

𝑇𝑆 𝑎𝑛𝑷 , 𝑇𝑆 𝑏𝑛𝑷 Tower shadow Fourier coefficients contribution to each layer P of 

the wind-field 

𝑈∞ wind speed far upstream 

𝑉 wind speed 

𝑉𝑒(∙) effective wind speed 

𝑉𝑒𝑓𝑓 effective wind speed 

𝑉𝑚 mean wind speed 

𝑉𝑊𝐵 base wind velocity 

𝑉𝑊𝐺 gust wind component 

𝑉𝑊𝑅 ramp wind component 

𝑉𝑊𝑁 noise wind component 

�̅� mean wind speed 

�̅� mean hourly wind speed 

�̅�𝑎 annual mean wind speed value 

�̂� quasi-static mean, mean wind speed encountered over several 

revolutions of the rotor 

𝑉(𝒓, 𝑡) field of wind speed over the rotor disc 

𝑉𝑠𝑒𝑝(∙) Effective wind speed derived from Separability 

𝑉(𝜃, 𝑡) weighted average of wind speed 

WS wind shear 

WT wind turbine 

𝑊(𝑟) weighting function that depends solely on the geometry of the 

blades 

𝑊(𝒓, 𝑉(𝒓, 𝑡)) weighting function dependent on both position and wind speed 

𝑊𝑆 𝑎𝑛𝑷 , 𝑊𝑆 𝑏𝑛𝑷 Wind shear Fourier coefficients contribution to each layer P of the 

wind-field 

𝑋 overhang of the wind turbine 

𝑎 axial flow induction factor or site specific parameter of 𝑣𝑚(𝑡) 

(specified in contextual use) 

𝑎𝐷, 𝑏𝐷 Best fit parameters for Dryden spectrum 
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𝑎𝑘Ω𝑜
 , 𝑏𝑘Ω𝑜

 frequency response function parameters (page 25) 

𝑐 scale parameter of Weibull distribution function 

𝑒𝑥(𝜔) frequency representation of Gaussian white noise 

𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓31, 𝑓32 filters 

𝑔(∙) Separability equation related to wind speed  

𝑔𝜔0
(∙) Separability equation related to wind speed for constant rotor speed 

equal to rated rotor speed 

𝑔𝜔𝑜
(∙) Separability equation related to wind speed for constant rotor speed  

𝑔𝒓,𝑉(∙) blade element Separability equation related to wind speed 

𝑔𝑉(∙) blade Separability equation related to wind speed 

𝑔1, 𝑔2 white Gaussian noise 

ℎ hub height 

ℎ(∙) separability equation related to pitch angle 

ℎ𝒓,𝛽(∙) blade element Separability equation related to pitch angle 

ℎ𝜔0
(∙) separability equation related to pitch angle for constant rotor speed 

equal to rated rotor speed 

ℎ𝜔𝑜
(∙) separability equation related to pitch angle for constant rotor speed  

ℎ𝛽(∙) blade Separability equation related to pitch angle 

𝑗 ,  𝑖 imaginary number √−1 

𝑘 shape parameter of Weibull distribution function 

𝑘𝜎,𝑣𝑚
 slope on regression line 

𝑘𝑉 gradient of 𝑔𝑉(∙) 

𝑘𝒓,𝑉 gradient of 𝑔𝒓,𝑉(∙) 

ℓ locus of equilibrium points 

𝑙 distance between 2 points 

𝒓 position on the rotor disc 

𝑟 position on a blade 

𝑟𝑜 distance between hub centre and the base of the blade 

suffix 0 generally refers to rated 

suffix o generally refers to operating point 

suffix 𝑥𝑥 generally denotes uniform weighting 
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suffix 𝑦𝑦 generally denotes linear weighting 

suffix 𝑥𝑦 generally denotes weighting of the cross terms 

𝑡 time 

𝑣 perturbations in wind speed about �̅� 

𝑣𝑠 current value of the 10min mean 

𝑣𝑇 tower shadow wind speed 

𝑣𝐻 wind speed at hub height 

𝑣𝑠ℎ wind shear wind speed 

𝑣𝐷 wind speed at the rotor disc 

𝑣𝑒 wind speed on one rotor blade 

𝑣(𝑟) wind distribution assumed orthogonal to the plane of rotation 

𝑣𝑚(𝑡) low frequency wind speed component 

𝑣𝑡(𝑡) high frequency wind speed component 

�̅�𝑚(𝑡) averaged low frequency component wind speed 

𝑣(𝒓, 𝑡) perturbations relative to the wind-field about the quasi-static mean 

�̃�𝑛(𝑡, 𝑟) time varying Fourier coefficients 

𝑤𝑐 weighting coefficient 

𝑋(𝑟) weighting function that describes the influence of the wind along 

the blade 

𝑧 height from the ground 

𝑧𝑜 roughness length 

𝛽 pitch angle 

𝛽∗ equivalent pitch angle 

𝛾 turbulent wind speed decay factor 

𝛾𝑘 Fourier coefficients page 24 

𝛿 angular offset 

Δ𝑇(𝑡) torque transient 

Δ𝑇(𝛽𝑜 , 𝑉𝒓𝑜) contribution to the torque generated by the blade element at 

position 𝒓 keeping the value of the torque from the blade element 

constant 

Δ𝑇𝒓 (𝛽, 𝑉)  contribution to the torque by a blade element at station position 𝒓 

keeping the total torque from the blade constant 

휀(∙) Function ℎ(∙) − 𝑔(∙) 
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휀𝜔0
(∙) Function 휀(∙) at rated rotor speed 

휀𝜔𝑜
(∙) Function 휀(∙) at a particular point on the locus of operating points 

휀1(𝑡) , 휀2(𝑡) independent coloured noise outputs 

𝜃 azimuthal angle of rotation 

𝜆 tip speed ratio 

𝜇(∙) function that describes the weak non-linear dependence of T of the 

modified tip speed ratio separability 

𝜉 weighting function 

𝜌 air density 

𝜎𝑉 standard deviation 

�̂�𝑣 estimated value of the standard deviation 

𝜏(∙) function that describes the weak non-linear dependence of T on the  

휀(∙) function 

𝜏𝜔0
(∙) Function 𝜏(∙) at rated rotor speed 

𝜏𝜔𝑜
(∙) Function 𝜏(∙) at some point on the locus of operating points 

𝜑𝑖 random generated phase between [– 𝜋 , 𝜋] 

𝜙 angular displacement 

𝜒(∙) coherence function 

𝜓 azimuth angle 

�̇� angular velocity 

𝜔 rotor speed or frequency (specified in contextual use) 

𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5, 𝜔6 independent point wind speeds 

𝜔1(𝑡) , 𝜔2(𝑡) white Gaussian noise (page 25) 

𝜔𝑐(𝑡) coloured noise 

𝜔(𝑡) white noise 

𝜔𝑖 discrete angular frequency page 15 

Ω(𝜔) frequency representation of white noise 

Ω𝑜 , ω0 rated rotor speed 

𝜔 frequency 

𝒯(∙) complete gamma function 

ℱ[∙] Fourier transform 
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A conscious effort has been made in respecting the nomenclature proposed by other authors 

when quoting their work. This has led to some duplicated nomenclature. Every effort has been 

made in the associated text to explain the notation involved. 

Due to the complexity and length of this thesis, in some instances nomenclature has had to be 

recycled for specific purposes. When this is the case, it has been made clear in the text. For 

clarity, only the most common use of every nomenclature entry is reported on the table above. 
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Chapter 1 

 

Introduction 

 
Often thought as a right or granted commodity in the developed world, energy is the veiled source of 

freedom core to humankind - who controls the energy sources holds the power to control society. 

The 21st century has inherited both the benefits of the intense industrialisation over the 19th and 20th 

centuries and the man-made environmental emergency related to having developed our technologies 

around fossil fuels. Furthermore the finite nature of the former and its non-homogeneous geographical 

distribution, has led to a current state of energy crisis and countries being energy dependent on foreign 

states that do not necessarily share the same views, priorities or ethics. Energy is a matter of national 

security. 

Whereas the solution to the energy and environmental challenges that we are faced with is an 

interdisciplinary one, that has to include re-education of the global population about energy 

consumption, construction of more efficient buildings that require less energy and institutionalisation 

of recycling, there is no alternative but to migrate from the out-dated, limited and polluting fossil 

fuels to renewable energy sources, which are free, unlimited and green. 

This leads us to wind. Wind is one of the most ancient forms of renewable energy harvested by 

humankind, used traditionally for sailing, grinding grains and extracting water.  Its potential for 

electricity production went unnoticed during the second industrial revolution even if electric engines 

were already commonplace - perhaps due to a narrow approach taken around battery costs at the time. 

It was the invention of the incandescent light bulb and its subsequent commercialisation in the second 

half of the 19th century - which marked the arrival of electricity to the every day's life of the general 

population, with street and domestic lighting - that opened the door for wind energy to be utilised in 

what it is in present days its most familiar form. It all began in July 1887 when Scottish Professor 

James Blyth of Anderson's College, now University of Strathclyde, as culmination of his pioneering 

studies on wind power as a source of electricity, installed a vertical axis 'windmill' in his holiday home 

in Marykirk, Aberdeenshire. And it is so, that the first wind turbine for electricity production as we 

know it today was born 131 years ago, in Scotland. The following two centuries will see the 

technology flourish from its humble beginnings as a low rating kW machine on a backyard garden, 

to the modern horizontal axis wind turbines for off-shore use with ratings exceeding 10 MW that are 
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part of a thriving global multi-billion industry.   

 

Figure 1-1. Professor James Blyth’s wind turbine at his cottage in Marykirk 1891 circa [1] 

The global deployment and exponential growth of the wind turbine's size has not been without its 

technical challenges. Bigger machines pose structural and material complexities on their own right, 

if those machines are also to be rotating in challenging environments under the full force of the wind, 

keeping them safe and operable takes a different edge. To maximise the power production and 

maintain an economical life span for wind turbines of this calibre, further improvements must be 

made and major gains will come from improving control strategies. 

Wind turbine control has grown from being simple strategies applied to wind turbines subsequent to 

their design, to being an integrating part of the design of wind turbines. This is due to bigger machines 

having operational requirements that cannot otherwise be met; for example, managing the large and 

complex loads that can severely diminish wind turbines useful lifespan.        

The control design task becomes increasingly demanding as turbine size increases since structural 

frequencies reduce and the interactions between the different aspects of the dynamics becomes 

stronger. Accordingly, improving the controllers requires better models of the rotor/wind-field 

interaction. 

The aerodynamic torque, 𝑇, of a wind turbine is defined by complex non-linear equations that 

characterise the interaction between its three main variables: wind speed, 𝑉, blade pitch angle, 𝛽, and 

rotor speed, 𝜔; under the form, 
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𝑇 =
1

2
𝜌𝐴𝑅𝑉2𝐶𝑞(𝜆, 𝛽) (1.1) 

𝜆 =
𝑅𝜔

𝑉
 (1.2) 

where 𝜌 is the density of air, 𝐴 is the rotor area, 𝑅 the rotor radius, 𝐶𝑞 is the torque coefficient and 𝜆 

the tip speed ratio. The non-linear nature of (1.1) can be seen in Figure 1-2. When the dynamics of 

the system are strongly non-linear, as they are here, the control design methodologies in general place 

restrictions on the nature of the non-linearities and/or result in conservative designs, making it hard 

to meet performance requirements. 

 

Figure 1-2. Graphical representation of the non-linear nature of the aerodynamic torque with respect 

of tip speed ratio and blade pitch 

Greater insight into the non-linear nature of (1.1), that can be exploited in the control context, is 

provided by a reformulation which separates out the dependencies on variables: the Aerodynamics 

Separability - or as it will be more generally referred throughout this thesis, 'Separability'. Separability 

enables the aerodynamic torque to be reformulated in terms of independent additive functions, 

effectively separating wind speed, 𝑉, the only variable that cannot be actively controlled, from the 

rotor speed, 𝜔, and pitch angle of the blades, 𝛽 which can be. Specifically, 

𝑇 = 𝑇0 + ℎ(𝛽, 𝜔) − 𝑔(𝑉) (1.3) 

where the Separability holds for a very large set of values of the variables. The significance of (1.3) 

for wind turbine control, is that the rotor speed feedback control loop becomes independent from the 

wind speed, which can now be considered an additive disturbance. 

Constant pitch angle line 

𝛽 
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Typically, Separability holds for all turbines over a very large domain that encompasses all normal 

operating conditions, see literature review in Chapter 3 and Chapter 4. For illustrative purposes, 

Figure 1-3, shows the torque obtained through Separability against the torque derived from the 

characteristic 𝐶𝑞 table for a particular WT. In this case, rated torque, 𝑇0, is 1.586 × 106 Nm.  The 

equivalence of (1.3) to (1.1) is obvious, particularly, for values from 0 to 2 𝑇0, highlighted with a red 

box in Figure 1-3. 

 

Figure 1-3. Comparison between torque derived by Separability and torque dictated by the WT 𝐶𝑞 

table 

A typical constant speed wind turbine has no control below rated wind speed, whereas above rated 

wind speed the power or torque are controlled through pitch. 

A typical torque control strategy for a variable speed wind turbine can be divided into 4 regions as 

illustrated in Figure 1-4. Region 1 is known as the 1st constant speed region and starts at the cut-in 

wind speed of the WT and sees the torque increasing until the 𝐶𝑝 𝑚𝑎𝑥 curve is reached. When the 

torque reaches 𝐶𝑝 𝑚𝑎𝑥, it marks the beginning of region 2, called 𝐶𝑝 𝑚𝑎𝑥 tracking region. As the name 

suggests, in this region the WT operation tracks the 𝐶𝑝 𝑚𝑎𝑥 curve by letting the rotor speed and torque 

to vary until rated rotor speed, 𝜔0 is reached. After the WT has reached 𝜔0, the operating Region 3, 

named second constant speed region, starts. In this region, the rotor speed is kept at 𝜔0 and the WT 

torque increases with wind speed until 𝑇0 is reached, which also coincides with rated wind speed. In 

regions 1, 2 and 3, the rotor speed is controlled using the generator reaction torque. After 𝑇0 is 

achieved, if the wind speed is above rated wind speed, rotor speed and torque are maintained at rated 
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by varying pitch angle and the generator reaction torque respectively, this is Region 4. Separability 

specifically applies to Regions 4 and in part to 3.  

  
Figure 1-4. Typical torque control strategy for a variable speed WT 

Separability, which in its own right is exploited in control solutions, is also key for building effective 

wind-field models that are statistically accurate when representing the rotor/wind-field interaction, a 

very useful property in the context of advanced controller design. 

To date, there is no model of the rotor/wind-field interaction of a wind turbine, suitable for control 

purposes that reproduces, at least, the correct torque on each blade and the thrust on the tower with 

the correct correlations over the frequency range up to 6P. Therefore, the overall research question 

poised is “How do we model, suitably for control purposes, the rotor/wind-field interaction to 

reproduce, at least, the correct torque on each blade and the thrust on the tower with the correct 

correlations over the frequency range up to 6P?”. Central to answering that question is Separability. 

1.1. Overview of the Thesis 

In Chapter 1, a brief introduction for this thesis is provided. 

In Chapter 2, a thorough background on wind modelling for control purposes of wind turbines is 

provided. 

In Chapter 3, Separability is applied to constant speed wind turbines is discussed. A review of 

previous work regarding the Separability property is given. A formal mathematical analysis of the 

issue of separating a two variable function into two additive components is introduced, and the initial 

conditions and the range for which the property applies is identified. The best structure for the 

R
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representation for these functions has been explored and optimised. Discussion of results and 

conclusions are also provided. 

In Chapter 4, Separability is extended to variable speed wind turbines. Three possible ways of 

formulating Separability are investigated and the best way of approaching these is determined. The 

first formulation is based on the mathematical development of the theory in Chapter 3, the second is 

driven by applicability and the third is based on the physics of the aerodynamic torque. The range of 

validity and applicability is established. Discussion of results and conclusions for the Separability 

property as a whole are provided. 

In Chapter 5, a novel effective wind-field model based on the Separability property is developed. The 

proposed lump parameter model representation, which uses a finite number of ordinary differential 

equations, is tested and validated against Bladed. The chapter closes with a discussion of results. 

In Chapter 6, a summary of the results of the research presented in this thesis and final conclusions 

can be found together with future work. 

In Chapter 7, references list is provided and it is followed by appendixes. 

1.2. Contributions to Knowledge 

The contributions to knowledge of this thesis are: 

1) A mathematical analysis of the Separability property has been undertaken and an existence 

theorem for the separated form established. 

2) It has been demonstrated that Separability exists in both constant and variable speed wind 

turbines and that it holds for a very large neighbourhood with a very good accuracy. In fact, 

on average, it comfortably covers more than double the rated torque of all the wind turbines 

explored.  

3) The best functional structure for the separated form has been determined and using it, 

procedures to optimise its representation have also been determined. 

4) Two different version of Separability are investigated for variable speed wind turbines.  

5) A novel effective wind-field model that exploits the Separability property is developed. This 

effective wind-field model is developed with the capacity, within the region of validity of 

Separability, to induce the correct in-plane moments such as the rotor torque and the in-plane 

root bending moment (RBM) of a blade. By extension of the close relationship between the 

in-plane and out-of-plane moments and forces the wind-field model the thrust and out-of-

plane moments are also satisfactorily induced.  
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6) The novel effective wind-field model is sufficiently validated to establish its suitability for 

control analysis and design purposes. 

1.3. Publications 

Jamieson, P., Leithead, W.E., Gala Santos, M.L., ‘The Aerodynamic Basis of a Torque Separability 

Property’. Proceedings of EWEA 2011, Brussels, 2011. 

Gala Santos M.L., Leithead W.E., Jamieson P., ‘Aerodynamic Separability in Tip Speed Ratio and 

Separability in Wind - a Comparison’, Torque, Oldenburg, 2012. 
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Chapter 2 

 

Wind Resource and Wind Modelling 
 

This chapter describes the nature and dynamics of the wind resource. Most common techniques used 

to model wind for wind turbine control design and analysis purposes are also discussed. The first 

topic is covered in Section 2.1 which is intended as an introduction to the phenomena involved in the 

formation of wind and through Section 2.2 the mathematical modelling of the wind is reviewed. 

 

2.1. The Wind 

Wind is the result of changing atmospheric pressure, the engine of Earth's complex weather system. 

These differences in atmospheric pressure are caused by the uneven heating of the surface of the Earth 

by the Sun, due to the different angles of incidence and the differential heating of land and water 

bodies. [2][3][4] 

Thus, the main instigator of global wind circulation is the pressure gradient created by the difference 

in temperature between the equator and the poles. The air in the equator as it gets hotter expands, 

reducing its density and rising vertically to higher altitudes and cooling down to leave a low pressure 

area behind. At the poles the process is inverted. Colder air sinks onto the surface as its density is 

increased creating an area of high pressure. The result is that the air will flow from the high pressure 

areas of the planet to the low pressure ones, that is, from the polar regions toward the Equator. 

[2][3][4] 

This trajectory is not completed smoothly and in one phase. In fact, each hemisphere has three cells, 

namely, Hadley, Ferrel and Polar, in which the air flow circulates through the whole depth of the 

troposphere. The direction of the flow in each one of the cells alternates, making them work together 

as a gear.  In the process some of the air that was travelling to the poles will be deflected back to the 

equator, this returning flow is known as trade winds. [2][3][4] 

The global circulation is also importantly affected by the rotation of the Earth, by what it is known as 

the Coriolis effect. Essentially the Coriolis effect makes the flow of air from high to low pressure 

zones deviate from a straight line. In the northern hemisphere this deflection will be to the right (if 

standing on the North Pole as a point of reference) and winds will rotate anticlockwise around low 
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pressure areas and clockwise around high pressure zones. Again, this trend is inverted in the Southern 

hemisphere. [2][3][4] 

There are also important local patterns that affect the way wind behaves in a particular region. These 

local pressure changes are related to the topography of the site considered, the most common being 

mountain and valley winds and sea breeze. Mountain and valley winds are easily explained through 

the concepts already underlined. During the day the air around the slopes of the mountains becomes 

hotter than the air at the same latitude but farther away from the slope, where colder air applies 

pressure on the warmer valley air to force it up the slope of the mountain. At night through radiation 

from the soil, air on the slope of the mountain gets colder and denser and sinks into the valley. 

[2][3][4] 

The sea breeze is a little different since it is caused by the differential heating of water and land bodies, 

with the ground heating faster than water but also cooling faster than water. The result is that during 

the day warm air rises from the ground and is substituted by cold air flowing inland from the sea and 

by night the reverse occurs since water takes longer to cool down. [2][3][4] 

Both of these local phenomena have a daily pattern and the strength of their effect is subjected to 

seasonality (overall changes in temperature, thus pressure) and can be easily overcome by bigger 

weather systems. 

If the long and short term variations of the wind at a certain location were to be shown in a wind 

speed spectral density function together with the turbulent component of the wind such as the Van 

der Hoven spectrum (see Figure 2-1), there would be 3 distinct peaks, namely, the synoptic peak of 

passing weather systems with a period of 4 days, daily variations with 24h period with sometimes a 

peak at 12h indicating the reversal of the winds in locations where phenomena like sea breeze are 

important and a final peak around 1min which accounts for the higher frequency turbulence 

component of the wind.  

The flat region between the diurnal and turbulent peaks of the wind, indicate that there is not much 

energy available in the region between 10min and 2h (~0.5mHz). This is known as spectral gap and 

suggests that the turbulence component of the wind can be modelled as a zero mean random 

process.[5][6] 

Hence, as long as the spectral gap is present and well defined, it is possible to visualise the wind as a 

dual component system, with a baseline value correspondent to the mean wind speed that is 

determined by the seasonal, synoptic and diurnal effects (thus varying in a time scale starting at the 
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hour mark) and superimposed higher frequency turbulent fluctuations with mean value of zero when 

averaged over 10min. [5] 

 

Figure 2-1. Van der Hoven spectra of wind speed [6] 

The most common way to determine the 'quality' of the wind resource at a site is through the Weibull 

distribution at that site, that will indicate how much in a given year the mean hourly wind speed, �̅�, 

in that location tends to deviate from the annual mean wind speed value1, �̅�𝑎. [5] The probability 

density function of the Weibull distribution can be defined as a two-parameter function that takes the 

form: 

𝑓(�̅�) =
𝑘

𝑐
(
�̅�

𝑐
)

𝑘−1

𝑒𝑥𝑝(−(
�̅�

𝑐
)

𝑘

) (2.1) 

where 𝑐 and 𝑘 are the scale and shape parameters respectively and are related to the annual mean 

wind speed by the relationship: 

�̅�𝑎 = 𝑐𝛤(1 + 1 𝑘⁄ ) (2.2) 

where Γ(∙) is the complete gamma function.  

The influence of the 𝑘 parameter on the probability density function is presented in Figure 2-2, with 

the scale factor 𝑐, kept constant and equal to 6 [6]. Variations of �̅� from �̅�𝑎 get smaller as the value 

of parameter 𝑘 gets bigger2. When 𝑘 = 2, the Weibull distribution becomes the Rayleigh distribution.  

                                                 
1 If the site under study shows distinctly different wind climates in summer and winter the use of a double peaked 

Weibull distribution, with different scale and shape factors for the two seasons, should be implemented for accurate re-

sults [5] 

 
2 k values of 2.5 and above are considered to be very good. [6] 
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The scale factor c is an indicator of how high the annual mean wind speed is, and its influence on the 

probability density function is presented in Figure 2-3, with the shape factor 𝑘 kept constant and equal 

to 2. [6] 

 

 

Figure 2-2. Weibull distribution as a function of 𝑘 (constant 𝑐 = 6)  

 

Figure 2-3. Weibull distribution as a function of 𝑐 (constant 𝑘 = 2) 

2.1.1. Power in the Wind 

Given a defined area, the power available in the wind at a certain moment in time is 

𝑃 = 
1

2
𝜌𝐴𝑉3 (2.3) 

where 𝜌 is the density of the air equal to 1.225 𝑘𝑔/𝑚3, 𝐴 the area being considered and 𝑉 the wind 

speed. 

With 𝐴 the swept area for the rotor, (2.3) indicates the hypothetical maximum power that a wind 
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turbine with 100% efficiency could generate. In other words, if a wind turbine was able to stop the 

wind. However, to have a realistic output, a factor of extraction needs to be included in this formula, 

this factor is called the power coefficient, 𝐶𝑝, of the wind turbine. Actuator Disc theory demonstrates 

that the power coefficient’s maximum value is in fact 0.593, also known as the Betz's Limit. The 

maximum power coefficient, 𝐶𝑝𝑚𝑎𝑥, of a well designed wind turbine is typically of about 0.45. 

From (2.3) it can also be appreciated that the power that a wind turbine can extract from the wind is 

proportional to the swept area and the cube of the wind speed that that rotor sees. This relationship 

implies that doubling the area of the rotor would double the energy output, but placing the turbine in 

an area with double the wind speed will provide eight times more power, thus, making appropriate 

site identification vital.  

When upscaling a wind turbine, it is also important to keep in mind that the 'square-cube law' of wind 

turbines applies. The ‘square-cube law’ estimates that for every increase of the diameter of a wind 

turbine the power extracted will increase by the square of this value, but the cost of that turbine will 

increase with the cube of the diameter. [5][7] 

2.2.  Modelling the Wind for Wind Turbines 

Correctly modelling the wind that a wind turbine sees and the interaction between them is critical for 

maximisation of power output, reduction of loads and overall control of the wind turbine. For this 

reason any wind-field model that is meant to be interfaced with the wind turbine control system needs 

to at least accurately describe the core stochastic and deterministic components of that interaction, 

that is, atmospheric turbulence (stochastic), wind shear (deterministic) and tower shadow 

(deterministic), as well as rotational sampling effects.  

In order to assist the control design process, the wind models involved need to be not only reasonably 

accurate but also suitable for fast simulations sufficiently simple that can be included in control. Due 

to this, more complex models of the wind, such as those based on CFD wind-field, are avoided in 

favour of simple non-distributed models of the wind that can be used as input to BEM theory. In this 

context, the wind speed models are simple in that they ultimately reduce a 3D phenomenon to a one 

dimensional time varying filter and that their mathematical description consists of simple ordinary 

differential equations. Since the filters are derived from the spectral density functions, it is necessary 

that they spectrally factorise into frequency response functions with integers power of frequency. To 

date, this need has led to effective wind speed models combined with spectral peak models (rotational 

sampling) as the preferred approach. [8][9] 
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2.2.1. Atmospheric Turbulence Spectra 

As already mentioned in Section 2.1, the wind can be defined in terms of a mean wind speed and 

turbulence. The turbulence is essentially fluctuations of wind speed relative to its mean. Their 

frequency content is described by their spectral density function. Being a short term phenomena, 

turbulence corresponds to the frequency spectral peak of the Van der Hoven spectrum centred on 1 

min in Figure 2-1. [5] 

The most commonly used models to describe turbulence have Kaimal, Von Karman or Dryden spectra 

[6]. The three of them are given below in [rad/s] and double sided spectrum form, 

Kaimal spectrum:                                         𝑆𝐾(𝜔) = 2𝜎𝑉
2

(𝐿
�̂�
⁄ )

(1+(6𝜔𝐿
�̂�
⁄ ))

5
3⁄
 (2.4) 

Von Karman spectrum:                           𝑆𝑉𝐾(𝜔) = 2𝜎𝑉
2

(𝐿
�̂�
⁄ )

(1+(1.339𝜔𝐿
�̂�
⁄ )

2
)

5
6⁄
         (2.5) 

Dryden spectrum:                                              𝑆𝐷(𝜔) =
1

2𝜋

𝑏𝐷
2

(𝜔2+𝑎𝐷
2 )

 (2.6) 

with 𝜎𝑉 the standard deviation, 𝐿 the turbulence length scale3 dependent on surface roughness of the 

site, �̂� the mean wind speed over the 5-10min of wind speed turbulence in question and 𝜔 the 

frequency. Parameters 𝑏𝐷 and 𝑎𝐷 of the Dryden spectrum are chosen to be the best fit that 

approximates the Von Karman spectrum. They are as suggested in [6][8][9] to be 

𝑎𝐷 = 1.14 (
�̂�
𝐿⁄ ) ;      𝑏𝐷 = 𝜎𝑉√2𝑎 (2.7) 

𝜎𝑉 = 𝐼𝑡 × 𝑣𝑠          (2.8) 

where 𝑣𝑠 is the current value of the 10min mean and 𝐼𝑡 the turbulence intensity. [6] 

From (2.4) to (2.6) it can be easily seen that in fact all spectra have decidedly similar mathematical 

definitions. The Kaimal spectrum gives a better fit to empirical observations of atmospheric 

turbulence whereas Von Karman gives a good description for turbulence in wind tunnels. Thus, Von 

Karman spectrum tends to be more broadly used for consistency with analytical expressions. 

However Von Karman spectrum only describes satisfactorily atmospheric turbulence above 150m 

having deficiencies at lower altitudes. This has led to the development of modified versions found in 

                                                 
3 𝐿, represents the turbulence dynamic properties, in other words the function’s bandwidth 
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most of the more complex software packages as Bladed. [5] 

The Dryden spectrum on the other hand, matches quite reasonably the von Karman spectrum except 

at high frequencies (see Figure 2-4) but offers the advantage of being a rational expression in 

frequency squared. Since simulations for wind turbine control purposes rarely go over 10min, the 

Dryden spectrum is adequate for representing the turbulent component of the wind. Hence, it is 

possible to take advantage of this simplification in the calculations. For any given 10min time series, 

it is not possible to discern whether the time series is totally incompatible with either spectrum.  

 

Figure 2-4. Comparison between Von Karman and Dryden Spectrums [10] 

2.2.2. Wind Shear  

Due to the friction between the Earth’s surface and the air, the speed of the wind decreases as it 

approaches the ground with a logarithmic profile. This is known as wind shear and causes a periodic 

variation of the wind speed seen by a blade as it rotates with a period of rotation of the rotor 2𝜋/1𝑃 

[11]. The wind that the rotor sees at different heights due to wind shear, 𝑣𝑠ℎ, can be described as:  

𝑣𝑠ℎ = 𝑣𝐷

𝑙𝑛 (
𝑧
𝑧𝑜
)

𝑙𝑛 (
ℎ
𝑧𝑜
)
= 𝑣𝐷

𝑙𝑛 (
ℎ + 𝐿𝑐𝑜𝑠(𝜃)

𝑧𝑜
)

𝑙𝑛 (
ℎ
𝑧𝑜
)

 (2.9) 

𝑣𝐷 = 𝑈∞(1 − 𝑎) (2.10) 

where 𝑣𝐷 is the wind speed at the rotor disc, 𝑧 the height from the ground where the wind speed is 

computed, ℎ the hub height used as a reference height, 𝐿 the length of the blade, 𝜃 the azimuthal angle 

of rotation, 𝑧𝑜 the roughness length, 𝑈∞ the wind speed far upstream and 𝑎 the axial flow induction 

factor. [5][6] 
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The surface roughness, 𝑧𝑜, depends on the characteristics of the terrain and the higher its value the 

bigger the decrease in the wind that the turbine effectively sees. It varies from around unitary value 

in cities to 0.0001 over open water. A comprehensive set of values for 𝑧𝑜 can be found in [5][6][12] 

Wind shear is a deterministic phenomenon and as such, its spectral density function is in the form of 

a series of sharp peaks. The typical shape of a deterministic peak in a power spectral density function 

can be seen in Figure 2-5. 

 

Figure 2-5. Measured power spectral density function of a 3-bladed wind turbine with blade 

imbalance. [13] 

2.2.3. Tower Shadow  

The presence of the turbine’s tower creates a natural blockage to the wind flow, known as tower 

shadow. It results in a periodic decrease of the torque that the wind turbine produces every time a 

blade passes in front of the tower. The tower shadow effect can be described as, 

𝑣𝑇(𝑡) = 𝑣𝐻𝑅𝑇
2
𝑥2(𝑡) − 𝑦2(𝑡)

[𝑥2(𝑡) + 𝑦2(𝑡)]2
 (2.11) 

where 𝑣𝐻 is the wind speed at hub height before tower shadow effect is included, 𝑅𝑇 the radius of the 

tower, 𝑥 the lateral component of the point being assessed with regards to the centre of the tower and 

𝑦 the longitudinal component of the same. Usually 𝑦 is specified as the overhang, 𝑋, of the machine 

and the 𝑥 component as a combination of the radial position on the blade, 𝑟, and the azimuthal angle 

of rotation, 𝜃, becoming 

𝑣𝑇(𝑡) = 𝑣𝐻𝑅𝑇
2
𝑟2 sin2(𝜃) − 𝑋2

[𝑟2 sin2(𝜃) + 𝑋2]2
 (2.12) 

the tower shadow effect is only of importance between 90 and 270 degrees. [5][6] 
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Like wind shear, tower shadow is also a deterministic phenomenon and it too induces characteristic 

sharp peaks in the spectral density function, as seen in Figure 2-5. 

2.2.4. Evolution of Wind Modelling for Wind Turbine Technology 

After briefly having introduced the major phenomena and concepts, the main wind models used in 

wind turbine modelling are explored in the following.  

2.2.4.1. Point Wind Speed 

Early wind speed models used for wind turbines did not account for the wind field-rotor interaction. 

Under the assumption that the wind turbine would have a yaw system, it was also assumed that 

changes of wind direction would be sufficiently slow to allow the yaw system to maintain the wind 

turbine pointed into the wind. Therefore only the longitudinal component of the wind would be 

needed [6][14]. These models were commonly used in the early 80s and consisted of a simple wind 

speed acting uniformly over the rotor disc combining additively several wind speed components. The 

most basic ones, such as the Krause and Man model [15], would account only for some of the 

deterministic characteristics of the wind whereas the Anderson and Bose model [16] started also to 

incorporate the stochastic components [9]. In the case of the former, the wind speed, VW, had the 

form, 

𝑉𝑊 = 𝑉𝑊𝐵 + 𝑉𝑊𝐺 + 𝑉𝑊𝑅 + 𝑉𝑊𝑁 (2.13) 

where 

𝑉𝑊𝐵 = base wind velocity [min/h], represents the mean wind speed and is treated as a 

          constant 

𝑉𝑊𝐺 = gust wind component [min/h], accounts for fast wind gusts (l-cosine gust) 

𝑉𝑊𝑅 = ramp wind component [min/h], accounts for slow variations of wind (step ramp) 

𝑉𝑊𝑁 = noise wind component [min/h], represents the turbulent component of the with the  

          wind spectral density function defined by [17] 

Based on the van der Hoven spectrum, see Figure 2-1, the point wind speed is described as the sum 

of two components: a low frequency component, 𝑣𝑚(𝑡), which describes long term and slow 

variations, and a high frequency component, 𝑣𝑡(𝑡), which describes fast variations (turbulence). The 

wind speed, 𝑣(𝑡), is now defined as [6], 

𝑣(𝑡) = 𝑣𝑚(𝑡) + 𝑣𝑡(𝑡) (2.14) 
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with 𝑣𝑚(𝑡) considered constant (equal to the average wind speed) on the time-scale of the turbulence. 

The averaging for 𝑣𝑚(𝑡) is usually performed over a 10 minute time window [6]. The low frequency 

component can be used for site assessment and, as already mentioned in Section 2.1, can be described 

by a Weibull distribution, or alternatively by a Rayleigh’s distribution [6][18] which is nevertheless 

a special case of the Weibull distribution when 𝑘 = 2, thus, 

𝑣𝑚(𝑡) = 𝑎 ∙ 𝑣𝑠 ∙ 𝑒
−1
2
𝑎�̅�2

 (2.15) 

where parameter 𝑎, which is site specific, depends on the wind speed’s very long term average (varies 

over years) and �̅� is the mean hourly wind speed. Whereas the Weibull and Rayleigh distributions are 

commonly used,  other  general methods such as sampling the Van der Hoven spectrum itself can be 

used to generate the time series for the low frequency component. [6] If this method is chosen, then 

𝑣𝑚(𝑡) is defined as, 

𝑣𝑚(𝑡) = 𝑉0 +∑𝐴𝑖 𝑐𝑜𝑠(𝜔𝑖𝑡 + 𝜑𝑖)

𝑁

𝑖=1

 (2.16) 

𝐴𝑖 =
2

𝜋
√
1

2
(𝑆𝑣𝑣(𝜔𝑖) + 𝑆𝑣𝑣(𝜔𝑖+1))(𝜔𝑖+1 −𝜔𝑖) (2.17) 

with 𝑉0 the mean wind speed calculated over  a period considerably longer than the largest period of 

the van der Hoven spectrum, 𝐴𝑖 the amplitude, 𝜔𝑖 the discrete angular frequency that varies between 

𝑖 = 1…𝑁, 𝜑𝑖 the random generated phase between [−𝜋, 𝜋], and 𝑆𝑣𝑣(𝜔𝑖) the power spectral density 

at frequency 𝜔𝑖. [6][14]. The reason why the above procedure should not be extended to model the 

high frequency component of the wind is that it would implicitly imply that the magnitude of the 

turbulence is the same regardless of the mean wind speed variations at low frequency. That is, the 

turbulence properties are independent of the low frequency domain, which is not correct. [19] 

The turbulent component, 𝑣𝑡(𝑡), describes the fast wind speed variations located on the high frequen-

cies of the Van der Hoven spectrum (within 10 min) and it is typically modelled by one of the spectra 

introduced in Section 2.2.1 which all depend on  �̂�, the mean wind speed over the 5-10 min of wind 

speed turbulence in question. [20] 

In [20] the modelling of 𝑣𝑡(t) is approached as illustrated in the dashed rectangle of Figure 2-6. White 

noise, 𝜔(𝑡), is passed through a filter which is based on the von Karman’s spectrum and has a fre-

quency response function equal to,  
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𝐻𝑡(𝜔) =
𝐾𝐹

(1 + 𝑗𝜔𝑇𝐹)
5
6⁄
 (2.18) 

with, 

𝑇𝐹 =
𝐿𝑡
�̅�𝑚
⁄  (2.19) 

where 𝐾𝐹 and 𝑇𝐹 depend on the mean of the low-frequency wind speed, 𝑣𝑚(t) [6]. The parameter 𝐾𝐹 

can be defined in relation to 𝑇𝐹, as  

𝐾𝐹 ≈ √
2𝜋

𝛽(1 2⁄ , 1 3⁄ )
.
𝑇𝐹
𝑇𝑠

 (2.20) 

where β is the beta function and Ts the sampling time of the turbulent component (typically 1s).  

The output signal from the filter 𝐻𝑡(𝑗𝜔), referred to as coloured noise 𝜔𝑐(𝑡), is then multiplied by 

the estimated value on the standard deviation, �̂�𝑣, defined in [20] as 

�̂�𝑣 = 𝑘𝜎,�̅�𝑚�̅�𝑚(𝑡) (2.21) 

where 𝑘𝜎,𝑣𝑚 is the slope of the regression line that describes the dependency between the standard 

deviation and �̅�𝑚(𝑡), and �̅�𝑚(𝑡) is the mean value of the low frequency component of the wind speed.  

The wind speed model is then completed by simple addition of 𝑣𝑚(𝑡) to 𝑣𝑡(𝑡), see Figure 2-6. It is 

important to note that the sampling time, Ts, of the two components of the wind is different, usually 

10 min for 𝑣𝑚(t) and 1s for 𝑣𝑡(t) [6]. By having different time scales the system is effectively made 

non-stationary. [6][19] 

 

Figure 2-6. Non-stationary wind speed model [6] 

Whereas these methods are effective in representing the mean wind speed variations at a fixed point 

for time scales ranging from seconds to years [14], it fails to account for essential variations in the 
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wind-field introduced by the wind field-turbine interaction, which would be misleading. In addition 

it does not represent the 3D nature of the wind field. 

2.2.4.2. Effective Wind Speed 

The concept of an effective wind speed, 𝑉𝑒𝑓𝑓, was introduced in 1984, [21]. An effective wind speed 

is some averaging of the spatially and temporarily varying wind speed over the rotor disc to obtain a 

scalar time varying representative wind speed. It is required that this scalar effective wind speed has 

the same statistical properties as the wind speed over the rotor. It is the statistical properties that are 

preserved rather than the time series properties. The properties that are inherited by the effective wind 

speed from the wind speeds over the rotor disc are frequency domain ones rather than time domain 

ones. 

With regards to the averaging of the wind speed, two different philosophies have evolved while 

developing effective wind speed models. In the first philosophy, the averaging is done prior to the 

interaction with the rotor, focusing on the statistical properties of the input to the WT, that is, 

determining a single uniform wind speed that replicates the spectrum of the average wind speed over 

the rotor disc. Philosophy 1 is adopted in [21]. In the second philosophy, the focus is on the outputs 

of the WT (i.e. forces and moments), the averaging is applied after the wind has interacted with the 

non-linear aerodynamics of the WT, by determining a single uniform wind speed that induces the 

same spectral properties in the rotor torque or some other scalar force or moment as the wind speeds 

over the rotor disc. Philosophy 2 is adopted in [13]. 

When the second philosophy was introduced in 1992, [13], it was identified that in order to link the 

statistical properties of the torque (the scalar object of interest in [13]) to the statistical properties of 

the wind speed, their relationship needed to be simplified. The aerodynamics needed to be linearised. 

To this end, two conditions are requested:  

1) Quasi-static variation of the mean wind speed over the rotor: the rotation of the rotor is 

sufficiently fast that there is not much change in the wind-field over the period of one 

revolution of the blades. 

2) Small perturbations in wind speed relative to the average wind speed over the rotor: the 

average wind speed is that over the rotor disc at some time, as opposite to the more usual 

average wind speed over 10min.  

Unlike the first philosophy, it is clear from this development in the second philosophy that the 
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effective wind speed models have some restrictions on their validity: first, they are only valid for low 

frequencies below 1P and second, the turbulence intensity, TI, cannot be too high. 

In other words, an effective wind speed model on its own can only appropriately represent the low 

frequency components of the wind4 up to 1P. This is because it only holds if the time-scale of change 

in the wind-field is comparable to or longer than the period of 1 revolution (or a small number of 

revolutions) of the rotor. Also, the turbulent fluctuations in the wind-field are considered as 

perturbations over a uniform quasi-static mean wind speed over the rotor disc.  

The first effective wind speed model reported in 1984, [21], adopted the first philosophy with no 

discussion regarding the frequency range of validity, whereas the effective wind model reported in 

1992, [13], was the first one to adopt the second philosophy. Both approaches model the interaction 

between the WT rotor and the wind-field by simple ordinary differential equations as required for 

control system analysis and design. 

The wind speed models in [13], in which the emphasis is on the derivation of the axial hub torque 

from a single effective wind speed, have been used successfully in many control studies 

[9][22][24][25]. To provide more insight into effective wind speed models within the context of the 

second philosophy, the derivation from [13] is given below.  

The axial hub torque, 𝑇𝐴(𝑡), induced by the wind on a blade is defined as 

𝑇𝐴(𝑡) = ∫ 𝑊(𝒓, 𝑉(𝒓, 𝑡))
𝐴

𝑑𝐴 (2.22) 

where 𝑉(𝒓, 𝑡) is the field of wind speed over the rotor disc, 𝑊(𝒓, 𝑉(𝒓, 𝑡))5 is a weight function 

dependent on both position, r, and wind speed,  𝑉(𝒓, 𝑡), and 𝐴 is the area of a blade. 

In [13], it is observed that the aerodynamic torque does not vary much over the outer 2/3 of the blade 

which is responsible for most of the torque generated; see Figure 2-7. Furthermore, in [13] it is pointed 

out that since at low frequencies the change in the wind-field is slower than a period of revolution of 

the rotor, the low frequency components of the torque are related to the wind-field over the complete 

rotor disc (condition 1). These two observations are exploited to simplify the axial hub torque from 

(2.22) to 

                                                 
4 Effective wind speed models are not intended to represent the deterministic components of the wind-field as tower 

shadow and wind shear, nor the high frequency spectral peaks (both deterministic and stochastic) due to rotational 

sampling. [13] 

 
5 𝑊(𝒓, 𝑉(𝒓, 𝑡)) can be interpreted as the contribution to the total torque of an element of a blade. 
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𝑇𝐴(𝑡) ≃ ∫ 𝜉(𝑉(𝒓, 𝑡))
𝐴𝑟

𝑑𝐴 (2.23) 

where 𝜉 is some weighting function that depends only on the wind speed,  and 𝐴𝑟 the area swept by 

the rotor. 

 

Figure 2-7. Force per unit Blade element [9] 

The 𝑉(𝒓, 𝑡) can be described as the sum of a quasi-static mean wind speed, �̂�, which is the mean wind 

speed encountered over several revolutions of the rotor (of the order of 20 seconds)6, and the 

perturbations relative to the wind-field about the quasi-static mean, 𝜐(𝒓, 𝑡), which are relatively small 

compared to �̂� (condition 2). As a result (2.23) becomes, 

𝑇𝐴(𝑡) = ∫ 𝜉(�̂� + 𝑣(𝒓, 𝑡))
𝐴𝑟

𝑑𝐴 (2.24) 

The 𝜉(�̂� + 𝑣(𝒓, 𝑡)) can be linearised through Taylor’s expansion  

𝜉(�̂� + 𝑣(𝒓, 𝑡)) ≈ 𝜉(�̂�) +
𝜕𝜉

𝜕�̂�
(𝑣(𝒓, 𝑡)) + ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 (2.25) 

where the higher order terms can be neglected. In this way, only the perturbations, 𝑣(𝒓, 𝑡), about the 

quasi-static mean, �̂�, and hence their resulting torque fluctuations, need to be considered. It follows 

that (2.24) can be simplified to the torque transients, ∆𝑇(𝑡), as 

∆𝑇(𝑡) ≃ 𝑘∫ 𝑣
𝐴𝑟

(𝒓, 𝑡)𝑑𝐴 (2.26) 

where 𝑣(𝒓, 𝑡) continues to be a field of turbulent perturbations in the wind speed about the quasi-

static mean perpendicular to the rotor disc and 𝑘 is some normalising constant.[12] 

                                                 
6 To be stressed that this is not the 10min mean. 
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Therefore the covariance for the torque transient can be defined as 

𝑅∆𝑇(𝑡) = E[T(𝑡 + 𝑠)𝑇(𝑠)] 

≈ 𝑘2∫ ∫ 𝐸[𝑣(𝒓𝟏, 𝑡 + 𝑠)𝑣(𝒓𝟐, 𝑠)]𝑑𝐴1𝑑𝐴2
𝐴𝑟𝐴𝑟

 

            ≈ 𝑘2∫ ∫ 𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡)
𝐴𝑟𝐴𝑟

𝑑𝐴1𝑑𝐴2 

(2.27) 

where 𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡) is the time domain cross-covariance between the wind at position 𝒓𝟏 and position 

𝒓𝟐.  

By taking the Fourier transform on both sides of (2.27) the relation between the spectral density 

function of the torque disturbances, S∆T(ω), and the cross-spectral density function of the wind 

turbulent fluctuations, Sv(𝐫𝟏)v(𝐫𝟐)(ω), is established 

𝑆∆𝑇(𝜔) = 𝑘
2∫ ∫ 𝑆𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝜔)

𝐴𝑟𝐴𝑟

𝑑𝐴1𝑑𝐴2 (2.28) 

By then assuming that the power of wind speed fluctuations at a fixed point is independent from the 

position of the rotor disc, (2.28) becomes 

𝑆∆𝑇(𝜔) = 𝑘
2𝑆𝑣(𝜔)∫ ∫ 𝜒

𝐴𝑟

(𝒓𝟏, 𝒓𝟐, 𝜔)
𝐴𝑟

𝑑𝐴1𝑑𝐴2 (2.29) 

where 𝑆𝑣(𝜔) is the spectral density function of wind speed fluctuations at a fixed point and 𝜒 the 

coherence function of the wind speed at the two points, 𝒓𝟏 and 𝒓𝟐. The coherence function depends 

mainly on the separation, 𝑙, between the points 𝒓𝟏 and 𝒓𝟐, and is specified in  [13] to be chosen to be 

that from Davenport [23],  

𝜒(𝒓𝟏, 𝒓𝟐, 𝜔) ≃ 𝑒𝑥𝑝 (
−𝛾𝑙𝜔

�̅�
) (2.30) 

𝑙 = √𝒓𝟏
2 + 𝒓𝟐

2 − 2𝒓𝟏. 𝒓𝟐 (2.31) 

where 𝛾 is the turbulent wind speed decay factor and �̅� is the mean wind speed7. An explicit form for 

the spectral density function of the aerodynamic torque transients for a blade is determined in [13] to 

be of the form, 

                                                 
7 �̅� is assumed here to be the same as �̂�. Any difference between them can be accounted for by adjusting 𝛾  
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𝑆∆𝑇(𝜔) ≃ 𝑘
2𝑆𝑣(𝜔)∫ ∫ 𝑒𝑥𝑝 (

−𝛾𝑙𝜔

�̅�
)

𝐴𝑟𝐴𝑟

𝑑𝐴1𝑑𝐴2 

≃ 𝑘2𝑆𝑣(𝜔)𝜙(𝑥) 

(2.32) 

where 

𝑥 = (
𝛾𝑅

�̅�
)𝜔 = 𝜎𝜔 

   
(2.33) 

𝑎 = 0.55 
   

(2.34) 

and 𝜙(𝑥) is approximately [13], 

𝜙(𝑥) ≈ 𝜋2𝑅4
(2 + 𝑥2)

(2 + 𝑎𝑥2)(1 + 𝑥2 𝑎⁄ )
 (2.35) 

that is 

𝑆∆𝑇(𝜔) ≈ 𝑘
2𝜋2𝑅4𝑆𝑣(𝜔)

(2 + 𝑥2)

(2 + 𝑎𝑥2)(1 + 𝑥2 𝑎⁄ )
 (2.36) 

The relationship of 𝑥 to frequency is clarified by the following re-arrangement, 

𝑥 = (
𝛾𝑅

�̅�
)𝜔 = 𝛾 (

𝜔𝑅𝑅

𝑉𝑜
)
𝑉𝑜

�̅�

𝜔

𝜔𝑅
 (2.37) 

where 𝑉𝑜 = 𝑅𝜔𝑅/𝜆𝑚𝑎𝑥 

At 1P, 𝜔 𝜔𝑅⁄ = 1 and it follows that, 

𝑥 = 𝛾(𝜆𝑚𝑎𝑥)
𝑉𝑜

�̅�
≅ 10

𝑉𝑜

�̅�
 

(2.38) 

With 𝑉𝑜 having a typical value of 9-10 m/s and �̅� from 4-25 m/s, a representative range of values of 

𝑥 is 4-25. 

As established in (2.26) the perturbations in the torque can be interpreted as being due to the 

perturbations on 𝜉(𝑉(𝒓, 𝑡)), which is in other words an effective wind speed, 𝑉𝑒𝑓𝑓(𝑡), uniform over 

the rotor disc. It follows that the spectral density function of the effective wind speed, 𝑆(𝜔), is  
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𝑆(𝜔) =
(2 + 𝑥2)

(2 + 𝑎𝑥2)(1 + 𝑥2 𝑎⁄ )
𝑆𝑣(𝜔) (2.39) 

The linear model relating perturbations in torque to perturbations in point wind speed, as depicted in 

Figure 2-8a, is derived directly from the spectral factorisation of (2.39). With the spatial averaging of 

the wind speed modelled by the filter, 𝑓(𝑠),  [13] 

𝑓(𝑠) =
(√2 + 𝜎𝑠)

(√2 + √𝑎𝜎𝑠)(1 + 𝜎𝑠 √𝑎⁄ )
 (2.40) 

If instead the input to the spatial filter is the total point wind speed including the quasi-static mean, 

the output of the filter can be used in conjunction with the non-linear torque coefficient, 𝐶𝑞(𝜆), to 

estimate the axial hub torque generated by the blade, see Figure 2-8b. [9] 

 

 

 

 

a. Linear model of torque perturbations 

 

b. Non-linear model of torque 

Figure 2-8. Models of axial hub torque [9] 

The quasi-static mean wind speed, �̂�, is estimated by subjecting the point wind speed to the filter 

1 (𝜏𝑠 + 1)⁄ , which is equivalent to averaging the wind speed over 𝜏 seconds. An appropriate choice 

for 𝜏 is equivalent to a small number of rotations by the rotor. The same procedure can be used to 

estimate the axial hub torque due to the complete rotor. [9] 
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2.2.4.2.1. Rotational Sampling – Corrections to Effective Wind Speed 

Models 

Wind turbines are non-static structures, their blades continuously cut through the wind-field as they 

rotate, altering the time varying wind speed that the blade experiences. Any wind model that is in-

tended to represent the interaction between the wind and the wind turbine needs to take this rotational 

sampling of wind-field into consideration as it introduces significant components to the spectral den-

sity function of the moments and forces of interest [6][18][26]. The rotational sampling or spectral 

peak model, as it is also known, has both stochastic and deterministic (tower shadow, wind shear) due 

to turbulence. 

Since the effective wind speed models on their own only apply for frequencies up to 1P and do not 

cater for the deterministic components, rotational sampling corrections for both the stochastic and 

deterministic components are needed for higher frequencies and WS and TS. These corrections are 

applied a posteriori to the moments and forces of interest. 

 

Figure 2-9. Wind power spectral density: fixed-point (solid line) vs. rotationally-sampled (dashed 

line) [6] 

2.2.4.2.1.1. Rotational Sampling: Deterministic 

Deterministic peaks in the spectrum due to rotational sampling are perceived by each blade as a 

periodic disturbance in the wind speed. This is because effects like gravity, wind shear and tower 

shadow change little over 5-10min (if not at all) which is a time scale significantly bigger than the 

time required for one revolution of the rotor. 

Because these deterministic disturbances are periodic, their covariance, 𝑅(𝑡 + 𝜙), is also periodic 

and the contribution to spectra is a series of delta functions at 𝑘Ω𝑜 weighted by the Fourier 
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coefficients8, that is,  

R(t + ϕ) =∑γk
k

cos(kΩot + ϕ) (2.39) 

where γk, are the Fourier coefficients. Note that there are no sin terms due to the symmetry of WS 

and TS about the vertical axis. 

Furthermore, because the covariance is continuous the magnitude of the weights, γk, tends to decrease 

as 1 𝑘2⁄ . In reality, the peaks are not delta functions but very sharp peaks. [27] 

Extending the covariance from 1 blade to the whole rotor of a typical three-bladed wind turbine, blade 

2 and blade 3 are delayed behind blade 1 by 𝑇 𝑛⁄  and 2𝑇 𝑛⁄  respectively, where 𝑇 is the period of 

rotation and 𝑛 the number of blades. The total contribution to the hub torque is proportional to 

cos(kΩot + ϕ) + cos(kΩo(t − T 𝑛⁄ ) + ϕ) + cos(kΩo(t − 2T 𝑛⁄ ) + ϕ) 

= cos(𝑘Ω𝑜𝑡 + 𝜙) + cos(𝑘Ω𝑜(𝑡 − 2𝜋 𝑛⁄ ) + 𝜙) + cos(𝑘Ω𝑜(𝑡 − 4𝜋 𝑛⁄ ) + 𝜙) 

(2.42) 

In other words, at the hub, there should only be deterministic peaks at integer multiples of the peaks 

at nΩo. This is because, when 𝑘 is not equal to a multiple of 𝑛, the loads at the hub cancel due to the 

symmetry of the rotor. The loads will still be present at single blade level and contribute to fatigue 

damage. However, should there be blade imbalance due to differences in the inertias or aerodynamic 

characteristics of the blades, peaks will be present at each integer multiple of Ωo. Figure 2-5 shows 

this scenario with deterministic peaks in the power spectrum of a 3-bladed wind turbine at 1,2,4 and 

5P with a further deterministic peak at 3P which is not visible due to the stochastic component at that 

frequency. As expected, the stochastic component carries more energy than the deterministic 

component and thus it is not unusual for the deterministic peak to ‘disappear’ under the stochastic 

one. [27] 

2.2.4.2.1.2. Rotational Sampling: Stochastic 

As seen in Figure 2-5, there are other peaks present in the spectral density function that are higher in 

energy content than the deterministic ones and have a distinctive triangular shape with a broad base. 

These are stochastic components caused by the wind speed turbulence varying over the rotor disc. As 

in the deterministic case, the stochastic variation over the rotor disc is rotationally sampled by the 

rotating blade and concentrated at integer multiples of Ωo, thereby inducing spectral peaks at kΩo =

                                                 
8 Because the wind shear and tower shadow are both symmetric about the vertical axis, there are no sine terms in the 

Fourier coefficients, only cosine terms. 
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1,2, …, in the spectra of forces and moments related to the single blade (like blade torque spectra) and 

on nP frequencies on the drive train variables. Figure 2-10 shows a clear example of the spectral 

density function for a rotationally sampled peak of stochastic nature. [27] 

A representation of the wind speed variations, underlying these stochastic rotationally sampled peaks 

in the blade spectra is 

LkΩo(t) = ε1(t) cos(kΩot) + ε2(t) sin(kΩot) (2.43) 

with, 𝐿𝑘Ω𝑜(𝑡) being a sinusoid with randomly varying amplitude and phase, and 휀1(𝑡) and 휀2(𝑡) 

independent coloured noise outputs of 

ε1̇ = −akΩoε1 + bkΩog1 (2.44) 

ε2̇ = −akΩoε2 + bkΩog2 (2.45) 

where 𝑔1 and 𝑔2 are white Gaussian noise. The stochastic terms, 휀1(𝑡) and 휀2(𝑡), can be interpreted 

to be the outputs of LTI systems with inputs 𝜔1(𝑡) and 𝜔2(𝑡), respectively, and frequency response 

function, 𝐾(𝜔), defined as 

K(ω) =
bkΩo

(jω + akΩo)
 (2.46) 

where 𝜔1(𝑡) and 𝜔2(𝑡) are independent white Gaussian noise. The spectral density function, 

𝑆𝑘Ω𝑜(𝜔), corresponding to 𝐿𝑘Ω𝑜(𝑡), is 

SkΩo(ω) =
1

2π

bkΩo
2 [ω2 + (akΩo

2 + (kΩo)
2)]

[ω2 − (akΩo
2 + (kΩo)

2)]
2
+ 4akΩo

2 ω2
 (2.47) 

which has the required peak centred at 𝑘Ω𝑜. Therefore, the frequency response function is of the form  

K(ω) =

bkΩo [jω + √(akΩo
2 + (kΩo)

2)]

−ω2 + (akΩo
2 + (kΩo)

2) + 2akΩojω
 

(2.48) 

where the equivalent representation for the stochastic rotationally sampled wind speed as the output 

from the LTI system can be found by imputing white noise to (2.46) after it has been transformed to 

time domain. The height and width of the resulting peak can be adjusted by varying bkΩo and akΩo, 

respectively. [27] 
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Figure 2-10. Example of stochastic 3P peak in the torque spectral density function of a 3-bladed 

wind turbine [27] 

2.2.4.2.2. Two Correlated Effective Wind Speeds Model 

The concept of effective wind speed was extended to 2 correlated wind speeds in [13] in the context 

of using fledge and sledge devices on the blades and with broader scope in [9] where the correlation 

of the inner and outer parts of the rotor was explored in detail. This development is subject to the 

same kind of conditions that restrict the validity of the second philosophy 2.  

The correlated wind speed model, as its name suggests, provides simultaneous models to enable two 

forces or moments to be generated with the correct correlation. In essence, if the auto-covariance and 

cross-covariance and, thus, the spectral density functions and cross-spectral density functions, of the 

two forces or moments under consideration remain unchanged, then it does not matter if they were 

obtained by two different effective wind speeds uniform over their respective swept areas or by 

interaction with a full wind-field. 

To recreate the correlated axial hub torque, with areas 𝐴𝐼 and 𝐴𝑂 defined as per Figure 2-11, following 

Section 2.2.4.2, the spectral density function for the inner part of the rotor would take the form: 

𝑆𝐼𝐼(𝜔) = 𝑆𝑣(𝜔)𝜙𝐼𝐼(𝑥) ; 𝜙𝐼𝐼(𝑥) = �̅�𝐼𝐼(𝑥) �̅�𝐼𝐼(0)⁄  (2.49) 

where 

�̅�𝐼𝐼(𝑥) =
2𝜋2𝑅1

4

𝑥2
{1 +

4

𝜋
∫ (1 − 3 𝑠𝑖𝑛2 𝜃)𝑒−2𝑥 𝑐𝑜𝑠 𝜃 𝑑𝜃

𝜋
2

0

} (2.50) 



 

 

29 

 

 

Figure 2-11. Inner and outer sections of rotor disc 

The cross-covariance, 𝑅𝑇𝑂𝑇𝐼(𝑡),  between the torque of the outer-area, 𝑇𝑂, and the torque of the 

internal area, 𝑇𝐼, is 

𝑅𝑇𝑂𝑇𝐼(𝑡) = 𝑘
2∫ ∫ 𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡)𝑑𝐴1𝑑𝐴2

𝐴𝐼𝐴𝑂

 (2.51) 

with 𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡) the cross-covariance between the wind at 𝒓𝟏 and the wind at 𝒓𝟐. It follows that the 

cross-spectral density function for (2.51) becomes 

𝑆𝑇𝑂𝑇𝐼(𝜔) = 𝑘
2𝑆𝑣(𝜔)∫ ∫ 𝜒(𝒓𝟏, 𝒓𝟐, 𝜔)𝑑𝐴1𝑑𝐴2

𝐴𝐼𝐴𝑂

= 𝑘2𝑆𝑣(𝜔)ϕ̅𝐼𝑂(𝑥) (2.52) 

where, 

�̅�𝐼𝑂(𝑥) = 4𝜋𝑅1
4∫ 𝑑𝑧(1 + 𝑧)∫ 𝑑𝜃

𝑠𝑖𝑛−1(
1
1+𝑧

)

0

∫ 𝑑𝑙̅
(𝑧+1) 𝑐𝑜𝑠 𝜃+√1−(𝑧+1)2 𝑠𝑖𝑛2 𝜃

(𝑧+1) 𝑐𝑜𝑠 𝜃−√1−(𝑧+1)2 𝑠𝑖𝑛2 𝜃

𝛿

0

𝑙�̅�−𝑥𝑙
̅
 (2.53) 

𝛿 =
𝑅2 − 𝑅1
𝑅1

 ; 𝑥 = (
𝛾𝑅1

�̅�
)𝜔 = 𝜎1𝜔 (2.54) 

Hence the cross-spectral density function between the effective wind speeds of the inner and outer 

area is  

𝑆𝐼𝑂(𝜔) = 𝑆𝑣(𝜔)𝜙𝐼𝑂(𝑥) ; 𝜙𝐼𝑂(𝑥) = �̅�𝐼𝑂(𝑥) �̅�𝐼𝑂(0)⁄  (2.55) 

with the spectral density function for the effective wind speed of the outer area 

𝑆𝑂𝑂(𝜔) = 𝑆𝑣(𝜔)𝜙𝑂𝑂(𝑥) ; 𝜙𝑂𝑂(𝑥) = �̅�𝑂𝑂(𝑥) �̅�𝑂𝑂(0)⁄  (2.56) 
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where 

�̅�𝑂𝑂(𝑥) = �̅�(𝐼+𝑂)(𝐼+𝑂)(𝑥) − �̅�𝐼𝐼(𝑥) − 2�̅�𝐼𝑂(𝑥) (2.57) 

and 

�̅�(𝐼+𝑂)(𝐼+𝑂)(𝑥) =
2𝜋2𝑅2

4

𝑥2
{1 +

4

𝜋
∫ (1 − 3 𝑠𝑖𝑛2 𝜃)𝑒−2𝑥 𝑐𝑜𝑠𝜃 𝑑𝜃

𝜋
2

0

} (2.58) 

From (2.55) and (2.56), 

[
𝑆𝐼𝐼(𝜔) 𝑆𝐼𝑂(𝜔)

𝑆𝐼𝑂(𝜔) 𝑆𝑂𝑂(𝜔)
] = [

𝜙𝐼𝐼(𝑥)𝑆𝑣(𝜔) 𝜙𝐼𝑂(𝑥)𝑆𝑣(𝜔)

𝜙𝐼𝑂(𝑥)𝑆𝑣(𝜔) 𝜙𝑂𝑂(𝑥)𝑆𝑣(𝜔)
] (2.59) 

After spectral factorisation of 𝜙𝐼𝐼, 𝜙𝐼𝑂 and 𝜙𝐼𝑂, such  

|𝑓1(𝑗𝜔)|
2 = 𝜙𝐼𝐼(𝑥) −

𝜙𝐼𝑂(𝑥)

𝜓(𝑥)
 (2.60) 

|𝑓2(𝑗𝜔)|
2 = 𝜙𝑂𝑂(𝑥) − 𝜙𝐼𝑂(𝑥) 𝜓(𝑥) (2.61) 

|𝑓3(𝑗𝜔)|
2 = 𝜙𝐼𝑂(𝑥) (2.62) 

|𝑓4(𝑗𝜔)|
2 = 𝜓(𝑥) (2.63) 

where the spectrum 𝜓(𝑥) is chosen so 𝜓(0) = 1 and 𝑓1, 𝑓2, 𝑓3 and 𝑓4 can be chosen to be causal and 

stable. 

Finally the models for inner and outer effective wind speeds, 𝑉𝐼 and 𝑉𝑂, as derived in [9], are of the 

form  

𝑉𝐼 = 𝑓1(𝑠)𝜔1 +
𝑓3(𝑠)

𝑓4(𝑠)
𝜔3 (2.64) 

VO = f2(s)ω2 + f3(s)f4(s)ω3 (2.65) 

where 𝜔1, 𝜔2 and 𝜔3 are independent point wind speeds and 𝑓1(𝑠), 𝑓2(𝑠), 𝑓3(𝑠) and 𝑓4(𝑠) suitable 

filters.  

The model described in this section is only capable of accurately representing the loads at 

intermediate frequencies. 
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2.2.4.2.3. Three Correlated Effective Wind Speeds Model 

An attempt to develop 3 correlated effective wind speeds for the rotor, one for each blade was 

presented in 2009, [28]. In this work the first philosophy is adopted.  

The particular focus of [28] is on the correlation between 3 effective wind speeds placed on each one 

of the rotor blades, 𝑣𝑒, defined as, 

𝑣𝑒 =
∫ 𝑋(𝑟)𝑣(𝑟)𝑑𝑟
𝑅

𝑟𝑜

∫ 𝑋(𝑟)𝑑𝑟
𝑅

𝑟𝑜

 (2.66) 

with 𝑟 the position along the blade span, 𝑟𝑜 the distance between the hub centre and the base of the 

blade, 𝑅 the radius of the rotor, 𝑣(𝑟) the wind distribution assumed orthogonal to the plane of rotation 

and 𝑋(𝑟) a weighting function that describes the influence of the wind along the blade. The latter has 

been chosen to be linear for all the blade forces considered, 𝑋(𝑟) = 𝑟 

For the derivation of the wind model, [28], 2 point wind speeds are considered at azimuth angles 𝜓1, 

𝜓2 and radii 𝑟1, 𝑟2, denoted as 𝑣(𝑡, 𝑟1, 𝜓1) and 𝑣(𝑡, 𝑟2, 𝜓2). These wind speeds are periodic in azimuth 

angle at any given time, 𝑡. Therefore, the Fourier expansion in azimuth angle, 𝜓, for a fixed time, 𝑡, 

at a radial position, 𝑟, is defined as 

𝑣(𝑡, 𝑟, 𝜓) ∑ �̃�𝑛(𝑡, 𝑟)𝑒
𝑖𝑛𝜓

∞

𝑛=−∞

 (2.67) 

with �̃�𝑛(𝑡, 𝑟) the time-varying Fourier coefficients. 

Assuming that the covariance between the two point wind speeds only depends on the Euclidean 

distance between them,  

𝐷 = √𝑟1
2 + 𝑟1

2 − 2𝑟1𝑟2cos (Δ𝜓) (2.68) 

where Δ𝜓 = 𝜓2 − 𝜓1, the covariance, 𝑅(𝜏, 𝐷), becomes, 

              𝑅(𝜏, 𝐷) = Ε[𝑣(𝑡, 𝑟1, 𝜓1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑣(𝑡 + 𝜏, 𝑟2, 𝜓2)]              

= ∑ Ε[�̃�𝑛(𝑡, 𝑟1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅�̃�𝑚(𝑡 + 𝜏, 𝑟2)]𝑒
𝑖(𝑚𝜓2−𝑛𝜓1)

∞

𝑛,𝑚=−∞

         

= ∑ �̃�𝑛,𝑚(𝜏, 𝑟1, 𝑟2)

∞

𝑛,𝑚=−∞

𝑒𝑖(𝑚𝜓2−𝑛𝜓1)                            = ∑ �̃�𝑛,𝑛(𝜏, 𝑟1, 𝑟2)

∞

𝑛=−∞

𝑒𝑖𝑛Δ𝜓 

(2.69) 

where �̃�𝑛,𝑚(𝜏, 𝑟1, 𝑟2), is the covariance between the Fourier coefficients  
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�̃�𝑛,𝑚(𝜏, 𝑟1, 𝑟2) =
1

(2𝜋)2
∫ ∫ 𝐸[𝑣(𝑡, 𝑟1, 𝜓1)𝑣(𝑡, 𝑟2, 𝜓2)]𝑒

−𝑖(𝑚𝜓2−𝑛𝜓1)
2𝜋

0

2𝜋

0

𝑑𝜓
1
𝑑𝜓

2

=

{
 

 
1

2𝜋
∫ 𝑅(𝜏, 𝐷)𝑒−𝑖𝑚Δ𝜓𝑑Δ𝜓       , 𝑚 = 𝑛
2𝜋

0

            0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(2.70) 

In [28] it is assumed that the blades rotate at a constant angular velocity �̇� = 𝜔𝑟 , leading to a constant 

time evolution of the azimuth angles 

𝜓
1
(𝑡) = 𝜔𝑟𝑡 + 𝜓1        ;       𝜓2(𝑡) = 𝜔𝑟𝑡 + 𝜓2 (2.71) 

The covariance of the wind speeds at the rotating points becomes, 

              𝑅𝑟(𝜏, 𝐷) = Ε[𝑣(𝑡, 𝑟1, 𝜓1(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑣(𝑡 + 𝜏, 𝑟2, 𝜓2(𝑡))]               

= ∑ Ε[�̃�𝑛(𝑡, 𝑟1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅�̃�𝑚(𝑡 + 𝜏, 𝑟2)]𝑒
𝑖𝑚𝜔𝑟𝜏𝑒𝑖(𝑚𝜓2−𝑛𝜓1)𝑒𝑖𝜔𝑟(𝑚−𝑛)𝑡

∞

𝑛,𝑚=−∞

         

= ∑ �̃�𝑛,𝑛(𝜏, 𝑟1, 𝑟2)

∞

𝑛=−∞

𝑒𝑖𝑛𝜔𝑟𝜏𝑒𝑖𝑛Δ𝜓 

(2.72) 

and the spectral density function of the rotating points, 

𝑆𝑟(𝜔, 𝐷) = ℱ{𝑅𝑟(𝜏, 𝐷)} = ∑ �̃�𝑛𝑛(𝜔 − 𝑛𝜔𝑟, 𝑟1, 𝑟2)𝑒
𝑖𝑛∆𝜓

∞

𝑛=−∞

 (2.73) 

To remove the dependency on the radial coordinates, (2.66) is used, leading to the harmonic spectrum 

of the blade effective wind speed being defined as, 

�̃�𝑛𝑛
𝑒
(𝜔) =

∫ 𝑋(𝑟2)
𝑅

𝑟0
∫ 𝑋(𝑟1)𝐹𝑛(𝜔, 𝑟1, 𝑟2)𝑑𝑟1𝑑𝑟2
𝑅

𝑟0

∫ ∫ 𝑋(𝑟2)𝑋(𝑟1)
𝑅

𝑟0

𝑅

𝑟0
𝑑𝑟1𝑑𝑟2

𝑆(𝜔) = 𝐹𝑛
𝑒(𝜔)𝑆(𝜔) (2.74) 

where 

𝐹𝑛(𝜔, 𝑟1, 𝑟2) =
1

2𝜋
∫ 𝐶(𝜔,𝐷)𝑒−𝑖𝑛∆𝜓𝑑Δ𝜓
2𝜋

0

 (2.75) 

with 𝐶(𝜔,𝐷) the coherence function.  

It follows that the cross spectral density function of the effective wind speeds associated with the 

rotation (2.71) becomes 
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𝑆𝑒(𝜔, Δ𝜓) = ∑ �̃�𝑛𝑛
𝑒
(𝜔 − 𝑛𝜔𝑟)𝑒

𝑖𝑛∆𝜓

∞

𝑛=−∞

 (2.76) 

Assuming that the spacing between the three blades is ∆𝜓 =
2𝜋

3
, the effective wind speed vector for 

all three blades is, 

𝑣𝑒 = [𝑣1
𝑒(𝑡)    𝑣2

𝑒(𝑡)     𝑣3
𝑒(𝑡)]𝑇 = [𝑣1

𝑒(𝑡, 0)    𝑣2
𝑒 (𝑡,

2𝜋

3
)      𝑣3

𝑒 (𝑡,
4𝜋

3
)]
𝑇

 (2.77) 

The corresponding spectral density matrix becomes 

𝑆𝑒(𝜔) = ∑ �̃�𝑛𝑛
𝑒
𝚬

∞

𝑛=−∞

 (2.78) 

where 

𝚬 =

[
 
 
 1 𝑒𝑖𝑛

2𝜋
3 𝑒𝑖𝑛

4𝜋
3

𝑒𝑖𝑛
−2𝜋
3 1 𝑒𝑖𝑛

2𝜋
3

𝑒𝑖𝑛
−4𝜋
3 𝑒𝑖𝑛

−2𝜋
3 1 ]

 
 
 

 (2.79) 

To progress the spectral factorisation, [28], the wind model is simplified with only the diagonal 

elements of (2.78) being retained. The proposed wind model for a blade, 𝑗, then has the following 

structure in the frequency domain:  

𝑣𝑗
𝑒(𝜔) = 𝐺0(𝜔)𝑒0(𝜔) + 𝐺1(𝜔)𝑒𝑗,1(𝜔) + 𝐺2(𝜔)𝑒𝑗,2(𝜔) + 𝐺3(𝜔)𝑒𝑗,3(𝜔)   ,    𝑗 = 1,2,3 (2.80) 

where the 𝑒𝑥(𝜔) are the frequency representation of Gaussian white noise and 𝐺0,…,3(𝜔) the transfer 

functions, corresponding to the frequency response functions. The transfer functions are obtained in 

[28] by minimising a frequency domain cost functions and are listed below, in Table 2-1, with their 

Bode plots in Figure 2-12. 
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n 𝑮𝒏 

0 0.017004(𝑠 + 68.99)

(𝑠 + 2.873)(𝑠 + 0.03357)
 

1 −0.2807(𝑠 + 2.617)(𝑠 + 0.2683)

(𝑠 + 0.4707)(𝑠2 + 0.1992𝑠 + 4.399)
 

2 −1.4387(𝑠2 + 0.006123𝑠 + 0.1993)

(𝑠 + 1.148)(𝑠 + 0.5589)(𝑠2 + 0.3449𝑠 + 17.61)
 

3 −1.6613(𝑠2 + 1.059𝑠 + 1.241)

(𝑠2 + 3.143𝑠 + 2.939)(𝑠2 + 0.4393𝑠 + 39.58)
 

Table 2-1. Transfer functions for wind model by [28] 

 

  

  

Figure 2-12. Transfer functions bode plots for [28]. Top left 𝑛 = 0, top right 𝑛 = 1, bottom left 𝑛 =
2, bottom right 𝑛 = 3 
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2.3. Conclusions 

This chapter provides a short literature review of the nature and dynamics of the wind resource and 

most common techniques used to model wind for wind turbine control design and analysis purposes. 

The general characteristics of wind speed, in particular, the stochastic (atmospheric turbulence) and 

deterministic (wind shear and tower shadow) components, together with previously developed wind 

models suitable for control purposes are discussed.  

Initially, simple models were used, which represented the wind as a uniform point wind speed over 

the whole rotor disc through simple addition of several deterministic wind components [15], then 

more sophisticated point wind speed models, which accounted for the stochastic and turbulent 

components of the wind [16][20]. In none of these models was the wind-field/rotor interaction 

considered. Subsequently, the notion of effective wind speed modelling was introduced to aggregate 

the wind speeds acting over the whole rotor. A stochastic effective wind speed model of the turbulence 

component, which merely averages the wind over the rotor, was proposed in [21]. In [13], it was 

refined so that the statistical properties of rotor torque would be reproduced. It was indicated that over 

the frequency range up to 1P, torque is reproduced with reasonable accuracy. This aspect of the model 

was not addressed in [21]. In [9], the approach adopted in [13] was extended to obtain 2 correlated 

effective wind speed models to reproduce 2 different rotor moments including the correlation between 

them. In [9], an attempt was made to extend the approach in [21] to obtain 3 correlated wind speed 

models, one for each blade. However, although models for 3 wind speeds were constructed, they were 

uncorrelated.  

From this literature review it is clear that an effective wind-field model suitable for control purposes 

that reproduces the torque on each blade and the thrust on the tower with the correct correlations over 

a frequency range up to 6P has not been previously developed. 
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Chapter 3 

 

Separability for Constant Speed Wind 

Turbines 

 
The rotor/wind-field interaction model is dependent on the relationship between the statistical 

characteristics of the wind speeds acting on the rotor and the statistical characteristics of the 

subsequent torques and forces induced  on the rotor, this relationship is highly non-linear. 

However, that relationship would essentially be linear provided Separability is a sufficiently 

accurate representation of the aerodynamics over a sufficiently large domain. Separability is, 

thus, a key facilitator in developing an effective wind-field model for the rotor/wind-field 

interaction. In Chapter 3, the accuracy of Separability and the extent of its domain are explored 

for constant speed wind turbines. 

Consider an aerodynamic force or moment dependent on 2 or more variables that can be 

expressed over some neighbourhood of a locus of points as the combination of two additive 

components dependent on independent variables, e.g. 𝑓(𝛽, 𝑉) = ℎ(𝛽) − 𝑔(𝑉), where 𝛽 is the 

pitch angle of the blades and 𝑉  the wind speed for constant speed wind turbines or 

𝑓(𝛽, 𝑉, 𝜔) = ℎ(𝛽,𝜔) − 𝑔(𝑉), for variable speed wind turbines, where 𝜔 is the rotor speed. 

When such behaviour is exhibited by a wind turbine aerodynamic relationship and the 

neighbourhood is large, this property is referred to as Separability.  

Separability has been exploited for over 20 years in the context of feedback control for wind 

turbines. It was first observed in the aerodynamic pitching moment of the blades of a 330kW 

constant speed wind turbine [29]. However, only Separability local to the locus, was required 

in [29] and no attempt was made to determine the extent of the neighbourhood. Nevertheless, 

it was the first demonstration and exploitation of Separability for control design purposes to 

simplify complex non-linear aerodynamics of wind turbines. In [30], the Separability of 

aerodynamic torque of a 300kW constant speed wind turbine was explored. A comparison 

between torque, 𝑇, values derived from the standard BEM based non-linear relationship and 

the values for torque derived from the Separability based representation is depicted in Figure 
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3-1. The scope of the work in [30] was to establish the extent of the neighbourhood for which 

this Separability property holds, it can be appreciated that, although the domain range of data 

is big, the density of data is low and furthermore the data set includes values in the stall region 

for which Separability does not seem to apply. The values in the stall region are highlighted in 

Figure 3-1. The results confirm that the property holds for torque values ranging from 0 to 2.5 

times rated torque, 𝑇0. The increasingly dispersed values above 1.6 × 105 Nm are well outside 

the normal operational range of pitch regulated wind turbines. The accuracy of approximation 

and the range over which it holds is sufficient for feedback control purposes. In [31], 

Separability of classic BEM models for a 300kW variable speed WT with 𝑇0 equal to 71.75 

kNm was investigated. Figure 3-2 highlights that for this variable speed WT, when looking 

into values restricted to the normal operating envelop, Separability does occur for a range of 

±23% around rated torque (area boxed between 55 and 90 kNm). The approximation can be 

considered sufficiently good for the representation of the aerodynamic torque for the purposes 

of feedback control design. No attempt to derive the best possible Separability functions or 

maximise their domain was made, some of the spread in the results may be due to this. In 

contrast to the previous example, the data density is high in this instance but the neighbourhood 

is limited to the vicinity of the normal operating range of the WT.  

It is clear from this early work that Separability existed when derived from aerodynamic 

torques related to BEM modelling, and that it had a range and domain suitable for control. But 

an essential question remained, was Separability the outcome of the simplification of the rotor 

aerodynamics that BEM introduces or was it a real property of the aerodynamics of wind 

turbines? In [32] the aerodynamic model of a 1MW commercial wind turbine was identified 

from field data and Separability established. The normalisedi result of the comparison between 

the aerodynamic torque derived from experimental field data and Separability relationship 

derived from the same data set can be seen on Figure 3-3. The data in Figure 3-3 has been 

normalised to the interval, (0,1), with the rated torque 0.5. Regardless of the restricted nature 

of the range of aerodynamic torques that were used, close to 𝑇0, due to the data being obtained 

during normal operation of the WT (big excursions from optimal operation would not occur) 

the results are remarkable. The correlation between Separability results for a real operating 

strategy of a variable speed WT and field data demonstrates that Separability is exhibited by 

                                                 

i The data has been normalised to protect commercial interests. 
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experimental data (WT aerodynamics derived directly from field measurements) and thus it 

cannot be an artifice related to BEM simplifications. [29][30][31][32] 

 

Figure 3-1. Separability in a constant speed 300kW wind turbine [30] 

 

Figure 3-2. Separability for a 300kW 

variable-speed wind turbine [31]  

 
Figure 3-3.  Separability (normalised) for a 

1MW variable speed wind turbine [32] 

The significance of the above, particularly in the context of wind turbine control, is that the 

speed feedback control loop is independent from the wind speed. The wind turbine can be 

modelled as a non-linear dynamic system dependent on the nonlinearity ℎ𝜔0
(𝛽)  and an 

additive external disturbance, 𝑔𝜔0
(𝑉), dependent only on wind speedii [31]. Figure 3-4 shows 

a control block diagram incorporating the aerodynamic Separability relationship and the speed 

                                                 
ii Functions ℎ𝜔𝑜

(𝛽) and 𝑔
𝜔𝑜

(𝑉) are unique for each 𝜔𝑜 and rotor 

ℎ (𝛽, 𝜔) − 𝑔 (𝑉)  (𝑘𝑁𝑚) 

𝑇
(𝛽

,𝜔
,𝑉

) 
 (
𝑘
𝑁
𝑚

) 

ℎ (𝛽, 𝜔) − 𝑔 (𝑉)  (𝑢𝑛𝑖𝑡𝑠) 

𝑇
(𝛽

,𝜔
,𝑉

) 
 (
𝑢
𝑛
𝑖𝑡
𝑠)

 

ℎ(𝛽) − 𝑔(𝑉) 

𝑇
𝑜
𝑟𝑞

𝑢
𝑒
  (

𝑁
𝑚

) 
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feedback control loop. The speed feedback loop is independent of wind speed and its dynamics 

are only non-linear in pitch angle. 

 

Figure 3-4. Block diagram decomposition of aerodynamic non-linearity and speed feedback 

control loop 

During these early studies the main objective was to ascertain that Separability held sufficiently 

well for feedback control purposes. There was no concerted effort to determine how good an 

approximation it could provide. However, this initial research did not only provide answers to 

the initial questions posed, but it also brought new ones. Since Separability had been proven to 

apply to both BEM aerodynamics and field derived aerodynamics (derived from direct 

measurements on a real WT), there was a strong suggestion that Separability was indeed a 

property of the aerodynamics of WTs. The strength of the property mainly depends on how 

good a representation of the aerodynamic torque it could provide. If Separability is proven to 

be highly accurate over large neighbourhoods, then more questions arise: such as, what exactly 

does Separability tell about the aerodynamics of a WT? What are the implications? Is it related 

to optimum design of the rotor? What is the best functional representation of Separability?  

Furthermore, the control of WTs has evolved and become more complex with controllers 

including feed forward terms and sophisticated effective wind speed models, e.g. PAC for wind 

turbine control [33]. The higher complexity of modern WT control is one of the main reason 

for looking into the Separability property in detail, here. The second is that Separability enables 

an effective wind-field model to be developed in Chapter 5. To this end the study of 

Separability is divided between Chapter 3, which focuses on constant speed WTs, and Chapter 

4, which covers variable speed WTs.  

In this Chapter, Separability of the aerodynamic toque for a constant speed wind turbine, i.e. 

the additive property, 𝑇(𝛽, 𝑉) = ℎ(𝛽) − 𝑔(𝑉), is investigated in detail. In Section 3.1, basic 

additive approximation methods are discussed. In Section 3.2, an Additivity Property theorem 



40 

 

core to the Separability property is introduced. In Section 3.3, global Separability behaviour is 

discussed. In Section 3.4, the application of Separability to the aerodynamic torque of a wind 

turbine is considered. Section 3.5, derivation of the functions involved in the separated 

representation is investigated. In Section 3.6, the results for Separability for constant speed 

WTs are discussed and, in Section 3.7, the conclusions for the Separability property for 

constant speed WT are summarised.  

3.1. Simple Additive Approximations 

Consider a function 𝐹(𝑥, 𝑦) for which  𝐹(𝑥𝑠, 𝑦𝑠) = 𝐹0 for all points, (𝑥𝑠, 𝑦𝑠), on some locus, 

ℓ . There are several approaches to obtaining an approximation of 𝐹(𝑥, 𝑦)  as an additive 

combination of a function of  𝑥 and a function of 𝑦 such that 𝐹(𝑥, 𝑦) = ℎ(𝑥) − 𝑔(𝑦).  Some 

standard approaches are discussed in this chapter. To support the Separability property, the 

minimal requirement is that the approximation has the correct values and derivatives for  

𝐹(𝑥, 𝑦) on ℓ.  

3.1.1. Taylor’s Expansion  

At a point, (𝑥𝑠, 𝑦𝑠) on the locus, ℓ, by Taylor’s series linearisation 

𝐹(𝑥, 𝑦) ≈ 𝐹0 + (𝑥 − 𝑥𝑠)
𝜕𝐹(𝑥, 𝑦)

𝜕𝑥
|
(𝑥𝑠,𝑦𝑠)

+ (𝑦 − 𝑦𝑠)
𝜕𝐹(𝑥, 𝑦)

𝜕𝑦
|
(𝑥𝑠,𝑦𝑠)

 
      

(3.1) 

Clearly, this approximation is additive with 

ℎ(𝑥) = 𝐹0 + (𝑥 − 𝑥𝑠)
𝜕𝐹(𝑥,𝑦)

𝜕𝑥
|
(𝑥𝑠,𝑦𝑠)

 and  𝑔(𝑦) = −(𝑦 − 𝑦𝑠)
𝜕𝐹(𝑥,𝑦)

𝜕𝑦
|
(𝑥𝑠,𝑦𝑠)

                  (3.2) 

Provided (𝑥, 𝑦) remain within a sufficiently small neighbourhood of (𝑥𝑠, 𝑦𝑠), then 𝐹(𝑥, 𝑦) =

ℎ(𝑥) − 𝑔(𝑦) to arbitrary accuracy with both the value and derivatives correct at (𝑥𝑠, 𝑦𝑠).  

When this additive property is applied to a given function, the main characteristics exhibited 

are: 

 At a specific point, (𝑥𝑠, 𝑦𝑠), the value of the function is correct, i.e.  𝐹(𝑥𝑠, 𝑦𝑠) = 𝐹0. 

 The derivatives at (𝑥𝑠, 𝑦𝑠) are correct. 

 A measure of nearness to (𝑥𝑠, 𝑦𝑠) is simply the Euclidean distance. 

 The approximation is specific to the point, (𝑥𝑠, 𝑦𝑠) only and does not extend over all 

points for which 𝐹(𝑥𝑠, 𝑦𝑠) = 𝐹0. 
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3.1.2. Direct Approach 

Since the Taylor’s expansion linearization only applies to a specific point, it is unsatisfactory 

and a better approach, that applies over the whole locus, ℓ, is required. For any function, 𝑔(𝑦), 

define the function  ℎ(𝑥) by 

ℎ(𝑥)|𝑥=𝑥𝑜
= 𝑔(𝑦)|𝑦=𝑦𝑜

+ 𝐹(𝑥𝑜 , 𝑦𝑜) (3.3) 

for all points, (𝑥𝑜 , 𝑦𝑜), on ℓ then 

𝐹(𝑥, 𝑦) = ℎ(𝑥) − 𝑔(𝑦) (3.4) 

that is, the dependence of 𝐹 on 𝑥 and 𝑦 can always be expressed additively on the locus. At the 

points on the locus, (3.4) gives the correct value of 𝐹(𝑥, 𝑦) but, depending on the choice of 

𝑔(𝑦), the difference between 𝐹(𝑥, 𝑦) and ℎ(𝑥) − 𝑔(𝑦) can increase rapidly as the distance 

from the locus increases. Furthermore, the gradients of the derivatives on the locus need not be 

correct. 

When this additive property is applied to a given function, the main characteristics exhibited 

are: 

 At the points on the locus, the correct value of the function is obtained. 

 Information about the correctness of the derivatives on the points on the locus cannot 

be inferred. 

 In general ℎ(𝑥) − 𝑔(𝑦) need not be a good approximation to 𝐹(𝑥, 𝑦) outside the locus. 

3.2.  Additivity Property Theorem 

The approaches to obtaining an additive approximation to 𝐹(𝑥, 𝑦) discussed in Section 3.1 

are clearly insufficient to provide insight into the Separability property. The following 

Theorem, [34], provides that insight. 

Theorem 3.2: Consider a function 𝐹(𝑥, 𝑦)  with domain 𝐷𝐹 ⊂ ℝ2 . Suppose 𝐹(𝑥, 𝑦)  is 

continuously differentiable on ℓ ⊂ ℝ2, a continuous locus closed in ℝ2, on which 

𝐹(𝑥𝑜 , 𝑦𝑜) = 𝐹0  (3.5) 

with 𝐹0 constant. Provided that, for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, 
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(3.6) 

and, for almost all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ,  

0
),(






x

yxF oo  or 0
),(






x

yxF oo  
(3.7) 

then there exist continuously differentiable functions, ℎ(𝑥) and 𝑔(𝑦), such that 

i) for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, )()( oo xhyg   

ii) for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, )(
),(

o
oo xh

x

yxF





 and  )(

),(
o

oo yg
y

yxF





 

iii) for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, 𝐹0 + ℎ(𝑥) − 𝑔(𝑦) is tangentional to 𝐹(𝑥, 𝑦)  

iv) for any 𝜇 > 0, there exists a 𝛿 > 0 such that |𝐹(𝑥, 𝑦) − (𝐹0 + 휀(𝑥, 𝑦))| < 𝜇  for all 

(𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∶ |휀(𝑥, 𝑦)| < 𝛿} , where 휀(𝑥, 𝑦) = ℎ(𝑥) − 𝑔(𝑦)  

v) for any 𝜇 > 0, there exists a 𝛿1, 𝛿2 > 0 such that |
𝜕𝐹(𝑥,𝑦)

𝜕𝑥
− ℎ′(𝑥)| < 𝜇, for all (𝑥, 𝑦) ∈

{(𝑥, 𝑦) ∶ |휀(𝑥, 𝑦)| < 𝛿1} , and |
𝜕𝐹(𝑥,𝑦)

𝜕𝑦
− 𝑔′(𝑥)| < 𝜇 , for all (𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∶

|휀(𝑥, 𝑦)| < 𝛿2} 

Proof: By the implicit function theorem, for any (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, there exists an open set 𝑈 ⊂ ℝ  

containing 𝑥𝑜 and a unique continuously differentiable function 𝑓(∙) such that, for all 𝑥 ∈ 𝑈, 

(𝑥, 𝑓(𝑥)) ∈ ℓ and  

y

xfxF

dx

xdf

x

xfxF








 ))(,()())(,(
 

   (3.8) 

Hence, since ℓ is continuous, there exists a unique continuously differentiable function, 𝐹(∙), 

such that, for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, 𝑦𝑜 = 𝑓(𝑥𝑜) and  

y

yxF

dx

xdf

x

yxF ooooo








 ),()(),(
 

   (3.9) 

Clearly, for almost all 𝑥 ∈ {𝑥𝑜 ∶ (𝑥𝑜 , 𝑓(𝑥𝑜)) ∈ ℓ},  𝑓′(𝑥) > 0  or 𝑓′(𝑥) < 0. Let ℎ(∙) and 𝑔(∙) 

be continuously differentiable functions with domains, } somefor  ),(|{ yyxxDh   and 

} somefor  ),(|{ xyxyDg  , respectively, and ranges 𝑅ℎ and 𝑅𝑔, respectively. Furthermore, 

let ℎ−1(∙)  exist with domain 𝑅ℎ  and 𝑔′(𝑦𝑜) ≠ 0, for all 𝑦𝑜 ∈ 𝐷𝑔 . The derivative of ℎ−1(∙) 

exists and is continuous almost everywhere in 𝑅ℎ and 𝑔−1(∙) exists with domain 𝑅𝑔 and its 

derivative exists with domain 𝑅𝑔 . Consider the transformation,  (𝑥, 𝑦) ⟶ (𝑢, 𝑣)   for all 
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(𝑥𝑜 , 𝑦𝑜) ∈ ℓ,  such that 

𝑢 = ℎ(𝑥) + 𝑔(𝑦)       (3.10) 

𝑣 = ℎ(𝑥) − 𝑔(𝑦)         (3.11) 

then, for all (𝑢𝑜 , 𝑣𝑜) ∈ ℓ = {(𝑢, 𝑣)|𝑢 = ℎ(𝑥) + 𝑔(𝑦), 𝑣 = ℎ(𝑥) − 𝑔(𝑦) , for all (𝑥, 𝑦) ∈ ℓ}, 

the inverse transformation, (𝑢, 𝑣) ⟶ (𝑥, 𝑦), also exists such that  

))((
2
11 vuhx        (3.12) 

))((
2
11 vugy           (3.13) 

Hence, there exists a function, 𝐺(𝑢, 𝑣), such that 

),(),( oooo vuGyxF    (3.14) 

for all (𝑢𝑜 , 𝑣𝑜) ∈ ℓ . Furthermore, other than at those points (𝑥𝑜 , 𝑦𝑜) ∈ ℓ  for which the 

derivative of ℎ−1(∙)  does not exist, 𝐺(𝑢, 𝑣) is continuously differentiable with 
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 (3.15) 

Without loss of generality, it is possible to choose ℎ(∙) such that, for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ,  

)())(()( ooo ygxfgxh      (3.16) 

thereby meeting (i). It follows that 

)()())(()()( ooooo ygxfxfgxfxh    (3.17) 

and, for almost all 𝑥 ∈ {𝑥𝑜 ∶ (𝑥𝑜 , 𝑓(𝑥𝑜)) ∈ ℓ},  ℎ′(𝑥) > 0 or ℎ′(𝑥) < 0  as required by 

existence of ℎ−1(∙). Hence, for almost all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, 
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(3.18)    

And, for almost all (𝑢𝑜 , 𝑣𝑜) ∈ ℓ , 

0
),( 0 
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(3.19) 
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Furthermore, since, for all ),( oo yx , 0
),(






y

yxF oo  and 0)( 
oyg , it is possible without 

loss of generality to choose 𝑔(∙) such that 
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)(  (3.20) 

for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ . Consequently, since 
v

vuG
yg
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yxF oo
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 for almost all 

(𝑢𝑜 , 𝑣𝑜) ∈ ℓ , 
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(3.21) 

for almost all (𝑢𝑜 , 𝑣𝑜) ∈ ℓ . In addition, since ℎ(∙) and 𝐹(𝑥, 𝑦) are continuously differentiable 

for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ  and 
v

vuG
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 for almost all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, 
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),(
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(3.22) 

for all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, thereby meeting (ii). 

Part (iii) follows directly from (i) and (ii) and near any ),( oo yx , 

𝐹(𝑥, 𝑦) ≈ 𝐹0 + (ℎ(𝑥) − 𝑔(𝑦))  (3.23) 

To be more precise, since 𝐹(𝑥, 𝑦), ℎ(𝑥) and 𝑔(𝑦) are continuous, for any (𝑥𝑜 , 𝑦𝑜) ∈ ℓ  and 

𝜇 > 0, there exists a 𝛿 > 0 such that | 𝐹(𝑥, 𝑦) − (𝐹0 + ℎ(𝑥) − 𝑔(𝑦))| < 𝜇 and, since ℎ(𝑥) 

and 𝑔(𝑦) are continuously differentiable on 𝐷ℎ and 𝐷𝑔, respectively, ),(),( maxmin  yx  for 

all }||),(),(:||),{(),( 2  oo yxyxyxyx . Moreover, since   is closed in ℝ2, it is compact in 

ℝ2, and, therefore, for any 𝜇 > 0, there exists 𝛿 > 0  and associated 0min   and 0max   

such that )},(),(:),{(),( maxmin   yxyxyx  implies 

}),( somefor  ,||),(),(:||),{( 2  oooo yxyxyxyx   and so  | 𝐹(𝑥, 𝑦) − (𝐹0 + 휀(𝑥, 𝑦))| < 𝜇. 

Hence, for any 𝜇 > 0, there exists a 𝛿 > 0  such that | 𝐹(𝑥, 𝑦) − (𝐹0 + 휀(𝑥, 𝑦))| < 𝜇 for all 

(𝑥, 𝑦) ∈ {(𝑥, 𝑦) ∶ |휀(𝑥, 𝑦)| < 𝛿} as required by (iv). 

Part (v) is established in a similar manner to (iv). 

In short, what Theorem 3.2 implies is that provided (𝑥, 𝑦) remain within a sufficiently small 

neighbourhood of the locus, ℓ, as measured by 휀, then, the function 𝐹(𝑥, 𝑦) is to arbitrary 
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accuracy uniformly equal to the additive combination of functions of 𝑥 and 𝑦, i.e.  

𝐹(𝑥, 𝑦) = 𝐹0 + 휀    ;     휀 = ℎ(𝑥) − 𝑔(𝑦) (3.24) 

Similarly, the derivatives are uniformly equal to arbitrary accuracy as measured by 휀. 

From Theorem 3.2 and its proof, several useful properties of the functions involved in the 

Separability property are observed: 

1) Functions ℎ(∙)and 𝑔(∙) are continuously differentiable functions with domains, 𝐷ℎ =

{𝑥|(𝑥, 𝑦) ∈ ℓ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦} and 𝐷𝑔 = {𝑦|(𝑥, 𝑦) ∈ ℓ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥}, respectively. 

2) The gradients, 
𝜕𝐹(𝑥𝑜,𝑦𝑜)

𝜕𝑥
 and  

𝜕𝐹(𝑥𝑜,𝑦𝑜)

𝜕𝑦
, must not change sign on the locus, ℓ.   

3) For all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, 
𝜕𝐹(𝑥𝑜,𝑦𝑜)

𝜕𝑥
= ℎ′(𝑥𝑜) and 

𝜕𝐹(𝑥𝑜,𝑦𝑜)

𝜕𝑦
= −𝑔′(𝑦𝑜)   

4) For all (𝑥𝑜 , 𝑦𝑜) ∈ ℓ, ℎ(𝑥𝑜) = 𝑔(𝑦𝑜), where 𝑦𝑜 = 𝑓(𝑥𝑜). 

5) Hence, with respect to accuracy, 휀 acts as the measure of displacement from the locus, 

ℓ. 

The maximum possible domain for 𝐹(𝑥, 𝑦), over which the Separability property is valid, is 

restricted by the above observations. By 1), the region of validity is 𝐷ℎ × 𝐷𝑔 ⊂ 𝐷𝐹 . In other 

words, it is the points, (𝑥, 𝑦) ∈ 𝐷𝐹, for which there exists a 𝑦𝑜 such that (𝑥, 𝑦𝑜) ∈ ℓ and a 𝑥𝑜 

such that (𝑥𝑜 , 𝑦) ∈ ℓ. By 2), if either 
𝜕𝐹(𝑥𝑜,𝑦𝑜)

𝜕𝑥
 or  

𝜕𝐹(𝑥𝑜,𝑦𝑜)

𝜕𝑦
 changes sign within 𝐷ℎ × 𝐷𝑔, then 

additional boundaries arise from the loci of points on which either derivative is zero. For 

example, since the derivative of aerodynamic torque with respect to rotor speed changes sign 

on entering stall, the data points in the stall region in Figure 3-1 should be discounted. 

3.3. From Local Additivity to Global Separability Behaviour 

When the neighbourhood of applicability of the additivity property defined in Section 3.2 is 

big, that is, when the property becomes global rather than local, then Separability as defined at 

the beginning of this chapter applies. When considering this global relationship, a 

generalisation of the non-linear dependence on 휀 is possible. The additivity property in Section 

3.2, is modified such that, 

                          𝐹(𝑥, 𝑦) = 𝜏(𝐹0 + 휀) = 𝜏(𝐹0 + ℎ(𝑥) − 𝑔(𝑦)) (3.25) 

where function 𝜏 is a non-linear function. By choosing 𝜏(𝐹0) = 𝐹0 , where 𝐹0 is a constant, 

(3.25) is consistent with (3.5) of Theorem 3.2. Also, by choosing  𝜏′(𝐹0 + 
0
) = 𝜏′(𝐹0) = 1, 
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where 0 = ℎ(𝑥𝑜) − 𝑔(𝑦𝑜) = 0, it is ensured that the gradients of the derivatives are correct 

by construction. In a sufficiently small neighbourhood of the locus, (3.25) can be simplified to: 

                          𝐹(𝑥, 𝑦) = 𝐹0 + ℎ(𝑥) − 𝑔(𝑦)             (3.26) 

which is, in fact, (3.23). 

3.4. Separability in the Context of Wind Turbines 

In Section 3.2 a local Additivity property is introduced and, in Section 3.3 its extension to 

Separability is considered. In the current section the Separability property is investigated in the 

context of the aerodynamic torque, 𝑇, for constant speed WTs, which is non-linearly dependent 

on the pitch angle, β, and wind speed, 𝑉. 

In applying the theory from Section 3.3 to WTs, (𝛽, 𝑉) supplant the generic variables (𝑥, 𝑦). 

Similarly, ℎ𝜔0
(∙) and 𝑔𝜔0

(∙) supplant the generic functions ℎ(∙) and 𝑔(∙), 휀𝜔0
(∙) supplants 

휀(∙)  and 𝜏𝜔0
(∙) supplants 𝜏(∙). 

3.4.1. Constant Speed Wind Turbines 

For a constant speed wind turbine, with a constant rotor speed, 𝜔0 and rated torque, 𝑇0, in 

above rated conditions, there is a pitch angle at which 𝑇0 is attained for each wind speed; that 

is, there is a locus of equilibrium operating points on which the torque is 𝑇0. Provided that as 

per (3.9), 𝑓𝜔0
(𝑉) is monotonic, where 𝑓𝜔0

(𝑉) is the relationship of 𝛽 to 𝑉 along this locus of 

equilibrium points, and ℎ𝜔0
(𝛽) and 𝑔𝜔0

(𝑉) are chosen following (3.16), then, by part ii), the 

Additivity Theorem in Section 3.2, it follows that, 

ℎ′𝜔0
(𝛽) =

𝜕𝑇(𝛽, 𝑓𝜔0
−1(𝛽))

𝜕𝛽
 (3.28) 

𝑔′𝜔0
(𝑉) = −

𝜕𝑇(𝑓𝜔0
(𝑉), 𝑉)

𝜕𝑉
 (3.29) 

(3.23) becomes,   

𝑇(𝛽, 𝑉) = 𝑇(𝛽, 𝑉, 𝜔)|𝜔0
= 𝑇0 + 𝜔0

(𝛽, 𝑉) = 𝑇0 + (ℎ𝜔0
(𝛽) − 𝑔𝜔0

(𝑉))          (3.30) 

with (ℎ𝜔0
(𝛽) − 𝑔𝜔0

(𝑉)) = 0 on the locus. The partial derivatives by construction are, also, 

correct on the locus as required.  
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Locally to the locus of equilibrium operating points, 𝑇0 + 𝜔0
(𝛽, 𝑉) is a good representation 

of 𝑇(𝛽, 𝑉); that is, within a sufficiently small neighbourhood of the locus the difference can be 

made arbitrarily small. More generally, bringing in the discussion in Section 3.3, near the locus,    

𝑇𝜔0
(𝛽, 𝑉) ≈ 𝜔0

(𝑇0 + 
𝜔0

) = 𝜔0
(𝑇0 + (ℎ𝜔0

(𝛽) − 𝑔𝜔0
(𝑉)))         (3.31) 

for some function 𝜔0
 such that, 

𝜔0
(𝑇0 + 

𝜔0
)|

𝜔0=0
= 𝑇0 (3.32) 

𝜔0
′ (𝑇0 + 

𝜔0
)|

𝜔0=0
= 1 (3.33) 

By judicious choice of 𝜔0
(∙), the size of the neighbourhood can be maximised. In effect, in a 

region that includes the whole set of equilibrium operating points, the dependence of 

aerodynamic torque on pitch angle is through  ℎ𝜔0
(𝛽) and on wind speed through 𝑔𝜔0

(𝑉) 

whilst the dependence on displacement of the operating point from the locus is through 𝜔0
, 

see observation 5) in Section 3.2. 

As is known from previous work [29][30][31][32], somewhat surprisingly, 𝑇𝜔0
(𝛽, 𝑉) =

𝜔0
(𝑇0 + (ℎ𝜔0

(𝛽) − 𝑔𝜔0
(𝑉))) applies for a very large neighbourhood for a very wide range 

of rotors, in fact, for all investigated to date. Furthermore, 𝜔0
(∙), is generally a weak nonlinear 

function. Typically, the neighbourhood includes values of aerodynamic torque between 0 and 

02T .  

The Additivity Property Theorem, Section 3.2, provides insight into the domain of 𝛽 and 𝑉 for 

which Separability may apply, since a necessary condition for Separability is that the Additivity 

Property must hold locally to the locus of equilibrium operating points. The valid domain for 

𝛽 and 𝑉 is restricted to those points such that there exists a pitch angle of the blade for that 

wind speed for which the torque is 𝑇0 and that there exists a wind speed for that pitch angle for 

which the torque is 𝑇0. Other restrictions are that values of 𝛽 and 𝑉 for which the torque is 

negative and those for which there is a change of sign in the derivatives compared to the locus 

should not be considered. Nevertheless for illustrative purposes, some of them have been 

included in the analysis. [29][30][31][32]  
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3.5. Determination of the Separated form of Torque 

There are two main approaches when it comes to determining the separated equations for 

torque, direct integration of the partial derivatives, for example as used in [31], see Figure 3-2. 

The second approach avoids the need for derivatives and can achieve higher accuracy when 

the derivatives would be noisy [29]. The second approach is adopted here. The data used are 

𝐶𝑞 tables from aerodynamic simulations in Bladed, which can be coarse, see Figure 3-5, where 

the constant pitch angle lines are not especially smooth. These tables would need to be 

numerically differentiated to get the derivatives, which would be noisy leading to the separated 

form having inaccuracy near 𝑇0, which is unfortunate. 

3.5.1. Procedure for Determining 𝒈𝝎𝟎
(𝑽) and 𝒉𝝎𝟎

(𝜷) 

An empirical/graphical explanation of the method used to determine the equations in 

Separability to high accuracy. This method was initially introduced in [29] but its full potential 

is only explored here. The method is explained step by step in the following and the Matlab 

code used can be found in Appendix L. A 3MW WT with a well-designed rotor, PJ9, is used 

to illustrate the procedure. 

The starting point of the process is the 𝐶𝑞 table of the WT of interest. The 𝐶𝑞 table used is 

obtained from Bladed for a pitch range of -3 to 50 degrees in 1 degree increments and a tip 

speed ratio range of 0.1 to 21.9 with 0.1 increments. The values of 𝐶𝑞 are plotted in Figure 3-

5, where each line represents a constant pitch angle and the arrow indicates increasingly 

positive values of pitch angle. Since the rotor speed is constant, this table is re-tabulated in 

terms of pitch and wind speed instead of pitch angle and tip speed ratio. 
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Figure 3-5. 𝑪𝒒 table for rotor PJ9  

Having re-tabulated the 𝐶𝑞 table, the following steps ensue: 

1) Calculate the equilibrium wind speed at each pitch angle, for which 𝐶𝑞 is tabulated, to 

obtain 𝑓𝜔0
(𝑉), that is, the pitch scheduling, see Figure 3-6. This function is monotonic 

as required by Theorem 3.2.  

2) Transform the wind speed values of the 𝐶𝑞  table into pitch angles using the pitch 

scheduling, these pitch angles are referred to as equivalent pitch angle, 𝛽∗ = 𝑓𝜔0
(𝑉). 

This process is illustrated with red arrows in Figure 3-6, where a wind speed of 15m/s 

is transformed into an equivalent pitch angle of 10 degrees.  

 

Figure 3-6. Pitch scheduling for rotor PJ9 

3) Calculate the aerodynamic torque at each combination of pitch angle and wind speed, for 

which 𝐶𝑞  is tabulated. In Figure 3-7. , these values are plotted for constant pitch angle 

against the equivalent pitch angle, 𝛽∗. Unsuitable data are neglected, specifically negative 
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torque values, stall region torque values and generally any value that cannot physically 

allow the WT to regain equilibrium.  

  

Figure 3-7. Torque table with modified axes for rotor PJ9 

4) From the set of torque values calculated in 2), those closest to rated torque are indicated on 

each plot of constant pitch angle in Figure 3-8.  

 

 Figure 3-8. Torque table with modified axes and 𝑇𝑟𝑎𝑡𝑒𝑑 surrounding values for rotor PJ9 

From observation 4) in Section 3.2, when the local sections in Figure 3-8 are displaced 

vertically to form a continuous plot, see Figure 3-9. , the relationship obtained between 

torque and  𝛽∗ is the function,  −ℎ𝜔0
(∙).   

Constant pitch angle line 

Constant pitch angle line 

𝛽 
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Figure 3-9. Torque table with modified axes, rated torque surrounding values and 𝑔(𝛽∗) 
function for rotor PJ9 

5) With each pitch angle, for which 𝐶𝑞 is tabulated, represented by a single data point, the 

mirror image of the relationship shown in Figure 3-9.  is constructed, see Figure 3-10, and 

then  the least squares quadratic  fit 

                       ℎ𝜔0
(𝛽) = (−1.46 × 104)𝛽2 + (−1.21 × 104)𝛽 + 1.75 × 106 

for  ℎ𝜔0
(∙)  is determined. It represents this relationship well, see Figure 3-11. 

 

 

 Figure 3-10.  Torque table with modified axes, rated torque surrounding values, 𝑔𝜔0
(𝛽∗) and 

ℎ𝜔0
(𝛽) functions for rotor PJ9 

Constant pitch angle line 
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Figure 3-11. Function ℎ(𝛽)for rotor PJ9 

6) The function 𝑔𝜔0
(𝑉) is constructed by combining the relationships between torque and 𝛽∗  

and between pitch angle and wind speed, Figure 3-11 and Figure 3-6, respectively, and then 

the quadratic fit  

𝑔𝜔0
(𝑉) = −(7.40 × 102)𝑉2 − (1.95 × 105)𝑉 + 1.65 × 106 

is determined, see Figure 3-12.  

 

 Figure 3-12.  Function 𝑔𝜔0
(𝑉)  for rotor PJ9 

The above procedure ensures that 𝑇0 + (ℎ𝜔0
(𝛽) − 𝑔𝜔0

(𝑉)) = 𝑇0 with the correct derivative 

values along the locus of equilibrium points; that is, the local behaviour from the Theorem 3.2 

is preserved. It, also, avoids the need to invert functions. For each combination of wind speed 

and pitch angle, for which 𝐶𝑞 is tabulated, the torque values calculated using the functions, 

𝑔𝜔0
(𝑉) and ℎ𝜔0

(𝛽), obtained from following the above procedure are compared in Figure 3-
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13 to those using the 𝐶𝑞 table directly. Inevitably, some of the data in Figure 3-13 is close to 

the boundary of admissible points, e.g. those points close to the stall boundary, when deviation 

from Separability can be expected. 

 

Figure 3-13. Comparison between the torque values predicted by Bladed and the torque 

values calculated through the Separability theory equations for rotor PJ9 

3.5.2. Procedure for determining 𝝎𝟎
(∙) 

The 𝜔0
(∙) function describes the weak non-linear dependence of 𝑇 on the 휀𝜔0

(∙) function. The 

application of general purpose fitting methods to all the data points in Figure 3-13 would be 

influenced by those points which are close to the boundary of admissible point and so not really 

valid. Instead, a few key values far from the boundary are selected, see Figure 3-14.  

When determining the appropriate fit to those representative points, it has been taken into 

account that the region for which there should be most accuracy, lies around the value of 𝑇0. 

Roughly between 0 Nm and 2 × 𝑇0  Nm. Specifically, to comply with Theorem 3.2 at 𝑇0 , 

𝜔0
(𝑇0) = 𝑇0 and 𝜔0

′(𝑇0) = 1. When analysing cubic and quartic fittings in this region, it 

was found that a quartic fitting would provide a better fit with the gradient value closer to 1, 

whilst still avoiding overfitting, see Figure 3-15. 

Therefore a quartic polynomial fit is then applied, see Figure 3-16, which for rotor PJ9 is 

𝜔0
(𝑇0 + 휀𝜔0

) = −(2.24 × 10−21)(𝑇0 + 휀𝜔0
)
4
+ (1.86 × 10−14)(𝑇0 + 휀𝜔0

)
3

+ (7.6710−9)(𝑇0 + 휀𝜔0
)
2
+ 0.849(𝑇0 + 휀𝜔0

) + (1.57 × 105) 

which when normalised by 𝑇0 becomes, 

Stall 
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𝜔0
(𝑇0 + 휀𝜔0

) = −(1.4173 × 104) (
𝑇0 + 휀𝜔0

1.586 × 106)
4

+ (7.4203 × 104) (
𝑇0 + 휀𝜔0

1.586 × 106)
3

+ (1.9296 × 104) (
𝑇0 + 휀𝜔0

1.586 × 106)
2

+ (1.3465 × 106) (
𝑇0 + 휀𝜔0

1.586 × 106)              

+ 1.57 × 105 

The comparison of the fit with and without 𝜔0
(∙) is depicted in Figure 3-17. 

 

Figure 3-14. Manually selected points for characterisation of 𝜔0
(∙), rotor PJ9 

 

 
Figure 3-15. Comparison of cubic and quartic fit for 𝜔0

(∙), rotor PJ9 
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Figure 3-16. Polynomial fit for 𝜔0
(∙), rotor PJ9 

 

Figure 3-17. Comparison of 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and 𝜔0

(∙), with 𝜔0
(∙) characterisation points, 

rotor PJ9 

 

3.6. Results 

Over many years, the Separability property has been observed for many different rotors and 

has been exploited in many control applications. What remained to be investigated is how good 

an approximation the Separability property provides and whether it is related to a specific 

aerodynamic property of the blades of the WT. In the following this is investigated in detail by 

exploring the results for 3 different rotors. Two of these rotors are aerodynamically efficient, 

the already introduced 3MW rotor PJ9 and the 2MW Demo rotor which is available on Bladed 

itself. The third is an aerodynamically inefficient 2MW rotor denoted as Demo-modified. This 
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rotor, as the name suggests, is based on the Demo rotor but its blade profile is modified to be 

a simple rectangle with no twist.  

For the aerodynamically efficient rotors, PJ9 and Demo, it can be appreciated from Figure 3-

13.  and Figure 3-18, that, over data points ranging from 0T0 to 2.5T0, except for a weak non-

linearity there is a close match between the directly calculated torque values using the 𝐶𝑞 table 

and those using 휀𝜔0
(𝛽, 𝑉). As expected, the accuracy is especially good near T0. In other 

words, there is full coverage over the common operating points range and beyond. Values that 

lie close to stall region together with negative torque values, are included in order to provide 

insight into the behaviour of the theory at the extremes of its range of applicability; this should 

not to be interpreted as the property breaking down. 

For the non-aerodynamically efficient rotor Demo-modified, Figure 3-19, there is still a 

reasonable match between for 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and the correct values. The results are more 

scattered than for the aerodynamically efficient rotors. 

 

Figure 3-18. Function 𝑇0 + 휀𝜔0
(𝛽, 𝑉), rotor Demo 
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Figure 3-19. Function 𝑇0 + 휀𝜔0
(𝛽, 𝑉), rotor Demo-modified 

In Figure 3-20, Figure 3-21 and Figure 3-22, a direct comparison between 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and 

𝜔0
(𝑇0 + 휀𝜔0

(𝛽,𝑉)) for the rotors PJ9, Demo and Demo-modified, respectively, are provided. 

For all three cases, the 𝜔0
(∙) function is reasonably effective. 

 

Figure 3-20. Comparison of 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and 𝜔0

(∙), rotor PJ9 
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Figure 3-21. Comparison of 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and 𝜔0

(∙), rotor Demo 

 

Figure 3-22. Comparison of 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and 𝜔0

(∙), rotor Demo-modified 

For rotor PJ9, the contours of constant error for 𝑇0 + 휀𝜔0
(𝛽, 𝑉) and 𝜔0

(𝑇0 + 휀𝜔0
(𝛽, 𝑉)) are 

presented in Figure 3-23 and Figure 3-24, respectively. The improvement in the error achieved 

by the introduction of 𝜔0
(∙) is evident. In a similar manner, Figure 3-25 and Figure 3-26 show 

the error contours for rotor Demo. Note that the errors for rotor Demo are considerably smaller 

than for rotor PJ9. 

Clearly from comparison of the results for the three rotors, the extent to which Separability 

holds is dependent of the design of the rotors. In particular, it is stronger for aerodynamically 

efficient rotors than for less aerodynamically efficient rotors. 
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Figure 3-23. Error contour plot for 𝑇0 + 휀𝜔0
(𝛽, 𝑉), rotor PJ9 

 

Figure 3-24. Error contour plot for 𝜔0
(𝑇0 + 휀𝜔0

(𝛽,𝑉)), rotor PJ9 

 

Negative values 

Stall region 
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Figure 3-25. Error contour plot for 𝑇0 + 휀𝜔0

(𝛽, 𝑉), rotor Demo 

 

Figure 3-26. Error contour plot for 𝜔0
(𝑇0 + 휀𝜔0

(𝛽,𝑉)), rotor Demo 

 

 

 

 

 

 

Negative values 

Stall region 
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3.7. Conclusions 

The main conclusions regarding Separability property in the context of constant speed WTs 

are,  

 Separability has been observed over the past 25 year for a substantial range of 

different WTs. In fact, to date, there has been not a single example of lack of 

Separability in the WTs that have been studied. The detailed examination of rotors 

PJ9, Demo and Demo-modified, provides a clear demonstration of the strength of 

the Separability property and a better understanding of the degree of accuracy of 

Separability.   

 The range of data points, for which Separability is valid has been clarified. It 

provides a good approximation to aerodynamic torque within the region for which 

data points are valid according to Theorem 3.2, including all the normal operating 

points of the wind turbine. 

 The strength to which Separability holds is related to the efficiency of the rotor 

design. 

 Both functions 𝑔𝜔0
(∙) and 𝜔0

(∙) are weakly non-linear. 

 The general fit for the Separability property equations for constant speed WT is 

quadratic for functions, ℎ𝜔0
(𝛽)  and 𝑔𝜔0

(𝑉) , and polynomial for the function, 

𝜔0
(∙). 

Therefore, it is demonstrated in Chapter 3 that representing the aerodynamics in separated form 

is highly accurate over a very large domain, certainly sufficiently so to support the development 

of the rotor/wind-field interaction model for constant speed wind turbines. 
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Chapter 4 

 

Separability for Variable Speed Wind 

Turbines 

 
Modern WTs are, in their majority, variable pitch and variable speed machines. Therefore, for 

the purpose of designing the rotor/wind-field interaction model, it is important, as per the 

constant speed case, to explore the accuracy and domain of Separability, and to determine the 

best structure of the separated form for control purposes for this particular case. 

Consequently, in the current Chapter, the Separability property is explored for an aerodynamic 

moment or force in the context of variable speed WTs. As discussed in the introduction to 

Chapter 3, Separability of the form of 𝑓(𝛽, 𝑉, 𝜔) = 𝑇0 + ℎ(𝛽,𝜔) − 𝑔(𝑉), where 𝑓 is non-

linearly dependent on rotor velocity, ω, pitch angle, β, and wind speed, 𝑉, has been observed 

to apply to variable speed WTs. The (𝛽, 𝜔) pair are controllable variables, whereas 𝑉 is non-

controllable. 

The magnitude of the wind speed over the blades in the outer third of the rotor is typically 

dominated by the component induced by the rotation of the rotor. Thus, aerodynamic 

characteristics of the rotor are, indeed, sensitive to the rotor speed. The first indication that 

Separability may apply and be of a range broad enough to be useful, is that contour lines 

relating torque to rotor speed with constant wind speed at constant pitch angle of 0 degrees, are 

relatively parallel within the normal operating envelope when away from stall, see Figure 4-1.  
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Figure 4-1. Aerodynamic torque versus rotor speed for 300 kW variable speed wind turbine 

with operating envelope [35] 

For variable speed wind turbines, the Additivity property functions, see Section 3.1, ℎ𝜔𝑜(𝛽), 

𝑔𝜔𝑜(𝑉), and the Separability equation 𝜔𝑜(∙), see Section 3.3, can be determined for different 

values of rotor speeds, 𝜔𝑜. Hence, for all operating points, (𝛽, 𝑉, 𝜔), for which 𝑇(𝛽, 𝑉, 𝜔) is 

𝑇0, 

𝑇(𝛽, 𝑉, 𝜔) = 𝑇0 + (ℎ(𝛽,𝜔) − 𝑔(𝑉,𝜔)) (4.1) 

where ℎ(𝛽,𝜔) and 𝑔(𝑉,𝜔) are defined by 

ℎ(𝛽,𝜔)|𝜔=𝜔𝑜 = ℎ𝜔𝑜(𝛽) (4.2) 

𝑔(𝑉,𝜔)|𝜔=𝜔𝑜 = 𝑔𝜔𝑜(𝑉) (4.3) 

Note, 𝜔𝑜 has a range of possible values, that includes rated rotor speed, 𝜔0, and that the locus 

of operating points for which 𝑇(𝛽,𝜔, 𝑉) = 𝑇0 , is now a 2-dimensional surface in a 4-

dimensional space. In the neighbourhood of the locus of equilibrium operating points, 

𝑇(𝛽, 𝑉, 𝜔) ≃ 𝜏(𝜔, 𝑇0 + 𝜀(𝛽, 𝑉, 𝜔)) = 𝜏 (𝜔, 𝑇0 + (ℎ(𝛽, 𝜔) − 𝑔(𝑉,𝜔))) (4.4) 

where 𝜏(𝜔,∙)|𝜔=𝜔𝑜 = 𝜔𝑜(∙). Consider the set of points, (𝛽, 𝜔, 𝑉) , on the locus, for which the 

aerodynamic torque has constant value, 𝑇0. These points can be continuously parameterised by 

 such that 
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𝑇() = 𝑇(𝛽(),𝜔(), 𝑉()) = 𝑇0 (4.5) 

and since 

𝜕𝑇

𝜕𝛽

𝑑𝛽()

𝑑
+
𝜕𝑇

𝜕𝜔

𝑑𝜔()

𝑑
+
𝜕𝑇

𝜕𝑉

𝑑𝑉()

𝑑
=
𝑑𝑇()

𝑑
= 0 (4.6) 

the partial derivative with respect to 𝜔 is simply related to the other two partial derivatives. 

Since the partial derivatives with respect to 𝛽 and V of the separated form, (𝑇0 + ℎ(𝛽,𝜔) −

𝑔(𝑉,𝜔)), on the locus of equilibrium points are correct by construction, the partial derivative 

with respect to 𝜔 is also correct. [36]  

There is more than one way of formulating Separability for a 3-dimensional function, it can be 

purely mathematically motivated, (4.4), driven by applicability i.e. suitable for control 

engineering purposes, or related to the physics of the aerodynamic torque. In Chapter 4, the 

choice of that formulation, together with the characteristics and nature of the functions 

themselves, is explored. The extent of the Separability functions’ domains are also explored. 

Separability in wind speed, in its most generic form with functions ℎ(𝛽,𝜔) and 𝑔(𝑉,𝜔), it is 

explored in Section 4.1. Subsequently, a simplified form of the Separability functions of the 

form ℎ(𝛽,𝜔)  and 𝑔(𝑉) , is investigated in Section 4.2. Separability in tip speed ratio, is 

discussed in Section 4.3 and Section 4.4. Section 4.5, provides a direct comparison of the 

Separability results for the simplified wind speed version and tip speed version. Section 4.6 

summarises findings and conclusions. 

4.1. Direct Extension of Separability to Variable Speed Wind Turbines 

The natural extension of Separability to the variable speed case, (4.4), as discussed in the 

introduction, is investigated here for the same rotors as in Chapter 3. 

For rotor PJ9, an extended range of variations covering ±20% variations from rated rotor 

speed, 𝜔0, with increments of 10%, have been applied. Results for function 𝑔(𝑉,𝜔) can be 

seen in Figure 4-2 and for function ℎ(𝛽, 𝜔)  in Figure 4-3. The comparison of 𝑇0 +

(ℎ(𝛽,𝜔) − 𝑔(𝑉,𝜔)) for the different values of 𝜔 can be found in Figure 4-4 and Figure 4-5. 

As per Chapter 3 some points outside the range of applicability of the Separability property 

have been kept for illustration i.e. negative values, stall regions values, non-physical values; 

this is also true for rotor Demo and Demo-modified. The main exploration of the nature of the 
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Separability fits is done using rotor PJ9, and therefore, more extensive tests than for the other 

rotors, which are used for further illustration, have been performed. 

For rotor Demo, only ±10%  𝜔0  are determined. Results for function 𝑔(𝑉, 𝜔) can be seen in 

Figure 4-6 and for function ℎ(𝛽,𝜔) in Figure 4-7. These equations are derived using the same 

methodology described in Section 3.5. The comparison of 𝑇0 + (ℎ(𝛽,𝜔) − 𝑔(𝑉, 𝜔)) for the 

different values of 𝜔 can be found in Figure 4-8.  

For rotor Demo-modified, as for rotor Demo, only ±10%  𝜔0  are determined. Results for 

function 𝑔(𝑉, 𝜔)  can be seen in Figure 4-9 and for function ℎ(𝛽, 𝜔) in Figure 4-10. The 

comparison of 𝑇0 + (ℎ(𝛽,𝜔) − 𝑔(𝑉,𝜔)) for the different values of 𝜔 can be found in Figure 

4-11.   

A remarkable result is that for the aerodynamically efficient rotors PJ9 and Demo, when 

looking at function 𝑔(𝑉,𝜔) in Figure 4-2 (rotor PJ9) and Figure 4-6 (rotor Demo), there is a 

strong suggestion that function 𝑔(𝑉,𝜔) can be considered independent from 𝜔. However, for 

the non-aerodynamically efficient rotor Demo-modified, see Figure 4-9, this observation does 

not hold. On the other hand, results for function  ℎ(𝛽, 𝜔) for all three rotors, in Figure 4-3, 

Figure 4-7 and Figure 4-10, confirm that the pitch dependent function is strongly dependent 

on 𝜔, as expected. Furthermore, results in Figure 4-4, Figure 4-5 and Figure 4-8 would suggest 

that the 𝜏(𝜔,∙) of each aerodynamically efficient rotor does not change with variations of 𝜔. 

Overall, for both aerodynamically efficient rotors, results in Figure 4-4, Figure 4-5 and Figure 

4-8 show a strong presence of Separability. This is true not just for the envelope of operating 

points related to rated conditions but Separability also holds reasonably well when variations 

occur between 10-20% of 𝜔0. For the rotor Demo-modified in Figure 4-11, the Separability 

property as an approximation becomes poorer than the one exhibited by the aerodynamically 

efficient rotor counterparts. Nevertheless, results would suggest that Separability would still 

find application for control purposes on an ill-designed rotor, still, particular caution should be 

taken in that case. 
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Figure 4-2. Function 𝑔(𝑉,𝜔) for rotor PJ9 with different rated rotor velocities 

 

Figure 4-3. Function ℎ(𝛽,𝜔) for rotor PJ9 with different rated rotor velocities 
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Figure 4-4. Comparison between the torque values predicted by BLADED and the torque 

values calculated through the Separability theory equations for rotor PJ9 for 𝜔 100%, 110% 

and 120%  

 

Figure 4-5. Comparison between the torque values predicted by BLADED and the torque 

values calculated through the Separability theory equations for rotor PJ9 for 𝜔 100%, 90% 

and 80% 
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Figure 4-6. Function 𝑔(𝑉,𝜔) for Demo rotor for different rated rotor velocities 

 

Figure 4-7. Function ℎ(𝛽,𝜔) for Demo rotor for different rated rotor velocities 
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Figure 4-8. Comparison between the torque values predicted by BLADED and the torque 

values calculated through the Separability theory equations for Demo rotor for different rated 

rotor velocities 

 

Figure 4-9. Function 𝑔(𝑉,𝜔) for Demo-modified rotor for different rated rotor velocities 
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Figure 4-10. Function ℎ(𝛽,𝜔) for Demo-modified rotor for different rated rotor velocities 

 

Figure 4-11. Comparison between the torque values predicted by BLADED and the torque 

values calculated through the Separability theory equations for Demo-modified rotor for 

different rated rotor velocities 
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In contrast to results seen in Figure 4-2, Figure 4-6 and to an extent Figure 4-9, the 𝑔(𝑉,𝜔) 

functions cannot be superimposed as they maintain their dependence on 𝜔; as it would be 

initially expected from the theory. The variation of 𝑔(𝑉,𝜔) with 𝜔  is due to rated torque 

changing and thus, the Separability functions also changing. 

The individual fits in Figure 4-14 are successful regarding Separability but they do not work 

together in the same measure that it was seen in Figure 4-4, Figure 4-5 and Figure 4-8. This 

strongly suggests that also, function 𝜏(𝜔,∙) maintains its dependency on 𝜔. When looking at 

the individual behaviour of the Separability fits, 𝑇0 + (ℎ(𝛽,𝜔) − 𝑔(𝑉,𝜔)) starts to deteriorate 

when encountering points outside the region of applicability of Separability, as expected. This 

is especially evident when approaching the stall region which is more prominent on the +20% 

and +10% case studies, highlighted with a circle in Figure 4-14.  

 

Figure 4-12. Function 𝑔(𝑉,𝜔) for rotor PJ9 for different rated torque and rated rotor 

velocities 
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Figure 4-13. Function ℎ(𝛽,𝜔) for rotor PJ9 for different rated torque and rated rotor 

velocities 

 

Figure 4-14. Comparison between torque values predicted by BLADED and torque values 

calculated through Separability theory equations for rotor PJ9 for different rated torque and 

rated rotor velocities 
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4.2. Wind Speed Based Separability 

The observation made in Section 4.1, that the plots of function 𝑔(𝑉,𝜔) in Figure 4-2 and 

Figure 4-6 are very similar, strongly suggests that the Separability property could have a 

simplified form with 𝑔(𝑉, 𝜔) only dependent on V and 𝜏(𝜔, 𝑇0 + 𝜀(∙)) only dependent on 

(𝑇0 + 𝜀(∙)) , that is, on the locus of equilibrium operating points, 

𝑇(𝛽, 𝑉, 𝜔) = 𝜏(𝑇0 + 𝜀(𝛽,𝜔, 𝑉)) = 𝜏(𝑇0 + (ℎ(𝛽,𝜔) − 𝑔(𝑉))) (4.7) 

For any choice of constant rotor speed,  𝜔𝑜, on the locus of equilibrium operating points, 

𝜀𝜔𝑜(𝛽, 𝑉) = ℎ𝜔𝑜(𝛽) − 𝑔𝜔𝑜(𝑉)

= ℎ𝜔𝑜(𝛽) + 𝑔𝜔0(𝑉) − 𝑔𝜔𝑜(𝑉) − 𝑔𝜔0(𝑉)

= ℎ𝜔𝑜(𝛽) + 𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽)) − 𝑔𝜔𝑜 (𝑓𝜔𝑜

−1(𝛽)) − 𝑔𝜔0(𝑉)

= 𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽)) − 𝑔𝜔0(𝑉) = 𝜀�̅�𝑜(𝛽, 𝑉) 

(4.8) 

where 𝜔0 is rated rotor speed.  Along the locus of equilibrium operating points, there is a 

relationship between the V and the 𝛽 and between the ℎ(∙) and the 𝑔(∙) through 𝑓(∙). This 

relationship is encapsulated by Observation 4) in Section 3.2, whereby on the locus, 

𝑔𝜔𝑜(𝑉) = 𝑔𝜔𝑜 (𝑓𝜔𝑜
−1(𝛽)) and also ℎ𝜔𝑜(𝛽) = 𝑔𝜔𝑜 (𝑓𝜔𝑜

−1(𝛽)), from which (4.8) results. 

Let 𝜀�̅�𝑜 = (𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽)) − 𝑔𝜔0(𝑉)). On the locus 𝜀�̅�𝑜 = 0 as required, but the partial 

derivatives are no longer correct since 

𝜕𝜀�̅�𝑜
𝜕𝑉

= −𝑔′
𝜔0
(𝑉) ≠ −𝑔′

𝜔𝑜
(𝑉) =

𝜕𝜀𝜔𝑜
𝜕𝑉

 (4.9) 

𝜕𝜀�̅�𝑜
𝜕𝛽

= 𝑔′𝜔0
(𝑓𝜔𝑜

−1(𝛽))𝑓′𝜔𝑜
−1(𝛽) ≠ 𝑔′𝜔0

(𝑓𝜔0
−1(𝛽))𝑓′𝜔0

−1(𝛽) =
𝜕𝜀𝜔𝑜
𝜕𝛽

 (4.10) 

It follows that 𝑇0 + (𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽)) − 𝑔𝜔0(𝑉)) = 𝑇0 + 𝜀�̅�𝑜  is not related to 𝑇(𝛽, 𝑉, 𝜔) 

by the Additivity property as per Section 3.2 but by the Additivity property as per Section 
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3.1.2 Nevertheless, when 𝑔𝜔𝑜(𝑉) ≈ 𝑔𝜔0(𝑉), as observed in Figure 4-16, and, therefore, 

𝜔0(𝑇0 + 𝜀�̅�𝑜) ≈ 𝜔𝑜(𝑇0 + 𝜀𝜔𝑜) = 𝑇0  at  𝜀�̅�𝑜 = 𝜀𝜔𝑜 = 0,          

𝜀�̅�𝑜 = (𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽)) − 𝑔𝜔0(𝑉)) ≈ (𝑔𝜔𝑜 (𝑓𝜔𝑜

−1(𝛽)) − 𝑔𝜔𝑜(𝑉)) = 𝜀𝜔𝑜 

𝜕 𝜔0(𝑇0 + 𝜀�̅�𝑜)

𝜕𝑉
≈
𝜕𝜔𝑜(𝑇0 + 𝜀𝜔𝑜)

𝜕𝑉
 

𝜕 𝜔0(𝑇0 + 𝜀�̅�𝑜)

𝜕𝛽
≈
𝜕𝜔𝑜(𝑇0 + 𝜀𝜔𝑜)

𝜕𝛽
 

(4.11) 

 

Hence, choosing 𝑔(𝑉) to be 𝑔𝜔0(𝑉), an appropriate choice for ℎ(𝛽,𝜔) is 

ℎ(𝛽,𝜔)|𝜔=𝜔𝑜 = 𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽)) (4.12) 

In Figure 4-15, ℎ𝜔𝑜(𝛽) and 𝑔𝜔0 (𝑓𝜔𝑜
−1(𝛽))  are compared with 𝜔𝑜 values of 80%, 100% and 

120% of rated rotor speed, 𝜔0, for rotor PJ9. The pairs of functions match closely. 

 

Figure 4-15. Validation of simplified wind speed Separability for rotor PJ9 
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optimised fit is quadratic with coefficients shown in Table 4-1. The coefficients for function 

𝜏(∙) for rotor PJ9, which is independent from the rotor speed can be found in Table 4-2 with a 

4th order polynomial fit. 

Separation in wind speed is based on an empiric observation that 𝑔(𝑉) does not depend on 𝜔. 

However, it might be that basing the derivation of the separated functions, h and g, on the 

Additivity property in Section 3.1.2 rather than the Additivity property in Section 3.2, 

compromises the degree of accuracy of the separated form. To test whether this is the case, a 

more principled version of Separability for variable speed WTs is better. Separability based on 

tip speed ratio is such an approach, and is discussed in detail in Section 4.3 and Section 4.4. 

Results and discussion for the simplified Separability in wind speed can be found in Section 

4.5 alongside the comparison with Separability in tip speed ratio. 

 

Figure 4-16. Wind speed based Separability for rotor PJ9 
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2 + 1.3714 × 105𝑉 − 1.1375 × 106 
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  Function Coefficients: 𝑎𝑉2 + 𝑏𝑉 + 𝑐 

 Rotor Speed 𝑎 𝑏 𝑐 

𝑔(𝑉) Any 9177.51 137136.99 -1137466.98 

ℎ𝜔𝑜(𝛽) 

40% 𝜔0 -28920.16 43995.09 -392548.12 

30% 𝜔0 -25304.80 37291.54 -305735.25 

20% 𝜔0 -21315.35 17972.22 -156346.38 

10% 𝜔0 -18022.19 5270.26 -31787.00 

𝜔0 -16124.76 20225.35 -23332.39 

-10% 𝜔0 -12993.33 2752.10 131741.14 

-20% 𝜔0 -10357.91 -6598.68 235101.73 

Table 4-1 Coefficients for function 𝑔(𝑉) optimised and associated ℎ𝜔𝑜(𝛽) for rotor PJ9 

  Function Coefficients:  𝑎(∙)4 +  𝑏(∙)3 + 𝑐(∙)2 + 𝑑(∙) + 𝑒 

 
Rotor 

Speed 
𝑎 𝑏 𝑐 𝑑 𝑒 

𝜏(∙) Any −2.2372 × 10−21 1.8647 × 10−14 7.6695 × 10−9 0.84856 1.5665 × 105 

Table 4-2 Coefficients for function 𝜏(∙) for rotor PJ9 

 

4.3. Tip Speed Ratio Based Separability 

The Additivity property can also be derived from the physics of the torque, with aerodynamic 

torque defined as: 

𝑇(𝜔, 𝛽, 𝑉) =
1

2
𝜌𝐴𝑅𝑉2𝐶𝑞(𝛽, 𝜆) = 𝑘𝑉

2𝐶𝑞(𝛽, 𝜆) (4.13) 

𝑘 =
1

2
𝜌𝐴𝑅 (4.14) 
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where 𝜌 is air density, 𝐴 area swept by the rotor, 𝑅 radius of the rotor and  𝑘 is a constant. The 

torque coefficient, 𝐶𝑞, is dependent on the variables β and λ, thus it would be convenient to 

have all related dependencies on V replaced by λ: 

𝜆 =
𝜔𝑅

𝑉
   
                 
→        𝑉2 =

𝜔2𝑅2

𝜆2
 (4.15) 

𝑇(𝜔, 𝛽, 𝑉) = 𝑘𝑉2𝐶𝑞(𝛽, 𝜆) = 𝑘
𝜔2𝑅2

𝜆2
𝐶𝑞(𝛽, 𝜆) = 𝐾𝜔

2
𝐶𝑞(𝛽, 𝜆)

𝜆2
 (4.16) 

where 𝐾 is a constant.  

Applying the additivity property to  𝐶(𝛽, 𝜆) =
𝐶𝑞(𝛽,𝜆)

𝜆2
  along the locus of operating points on 

which 𝐶(𝛽, 𝜆) = 𝐶(𝛽0, 𝜆0) = 𝐶0 with  𝜆0 = 𝑅𝜔0/𝑉0, 

𝐶(𝛽, 𝜆) = 𝐶0 + (𝐻(𝛽) − 𝐺(𝜆)) (4.17) 

on the locus. In Figure 4-17 and Figure 4-18, for this form of Additivity, function 𝐺(𝜆) with a 

quadratic fit, and function 𝐻(𝛽) with a cubic fit, are shown for rotor PJ9. The functions have 

been found using the same method as in Section 3.5, with 𝐶0 = 6.6694 × 10
−4  for rated 

torque, see Table 4-3 for function 𝐺(𝜆) and Table 4-4 for function 𝐻(𝛽).  

Once the Additivity equations are established, the existence and range of Separability is 

investigated. The data used includes wind speeds from 11m/s to 25m/s (catering for rated wind 

speed up to cut-off wind speed), rotor speed varying from 80% to 120% of 𝜔0 and pitch angle 

values from 0 to 23 degrees. It can be seen from Figure 4-19 that the separated form, 𝐶0 +

(𝐻(𝛽) − 𝐺(𝜆)), is a good representation for 𝐶(𝛽, 𝜆) for a very large neighbourhood enclosing 

the locus of equilibrium points with values of  𝐶(𝛽, 𝜆) that vary from 0 to 2𝐶0. As per previous 

Separability results, the data present in Figure 4-19 does include values outside the range of 

applicability of Separability i.e. negative values and stall region values. 

The main drawn back from applying the Additivity property to the tip speed ratio is that the 

locus of points for which the Additivity properties, like correctness of partial derivatives, are 

warrantied, does not correspond with the operating points of the WT.  
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Figure 4-17. Function G(λ) for rotor PJ9 

 

Figure 4-18. Function 𝐻(𝛽) for rotor PJ9 

 

Figure 4-19. Separability for constant 𝐶0 for variations of 80%, 90%, 100%, 110%, and 

120%, of ω 
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 Function Coefficients: 𝑎𝜆2 + 𝑏𝜆 + 𝑐 

 𝑎 𝑏 𝑐 

𝐺(𝜆) 0.035117 0.0066006 -0.00053145 

Table 4-3. Function 𝐺(𝜆) coefficients 

 

 

 Function Coefficients: 𝑎𝛽3 + 𝑏𝛽2 + 𝑐𝛽 + 𝑑 

 𝑎 𝑏 𝑐 𝑑 

𝐻(𝛽) −6.1224 × 10−8 −4.1873 × 10−6 −2.206 × 10−5 7.5734 × 10−5 

Table 4-4. Function 𝐻(𝛽) coefficients 

4.3.1. Comparison of Aerodynamic Relationships 

One main requirement of the Separability property is that the gradients of the derivatives of 

points on the locus of operating points are correct by construction and as required, see 

Observation 3) in Section 3.2.  

Separability in tip speed ratio is applied to rotor PJ9, rotor Demo and rotor Demo-modified at 

their rated rotor speed and ±10% variations of it, no 𝜏(𝜔,∙) function has been applied. By 

looking at 𝐶𝑞 𝜆
2  vs 𝜆, a visual representation of how good the surfaces, including the fact that 

they are tangentional to each other at the locus of equilibrium points and the existence of a 

substantial range, can be achieved. For the separated form, the domain of 𝜆 is restricted to that 

for which Additivity applies. The results can be seen in  Figure 4-20 to Figure 4-22 for rotor 

PJ9, Figure 4-23 to Figure 4-25 for rotor Demo and Figure 4-26 to Figure 4-28 for rotor Demo-

modified. 

It is, of course, also useful to be able to visualise the same on 𝐶𝑞 vs 𝜆 plots. Results can be seen 

in  Figure 4-29 to Figure 4-31 for rotor PJ9, Figure 4-32 to Figure 4-34 for rotor Demo and 

Figure 4-35 to Figure 4-37 for rotor Demo-modified. 

From Figure 4-20 to Figure 4-37, the continuous lines indicate Bladed results for both 𝐶𝑞 𝜆
2  

vs 𝜆 and 𝐶𝑞 vs 𝜆, the dashed lines are for the separated representation and the plus signs (+) 
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represent the locus of operating points. Each line of data corresponds to a constant pitch value. 

More data points than the strictly applicable ones for Separability theory have been included 

to study the behaviour beyond ideal conditions, this is particularly obvious where there is a 

change of sign of the gradient in the Separability results (dashed lines) in the plots.  

The results from all three rotors display that Separability is a good approximation. It clearly 

breaks down in the stall region which limits the domain.  

The results are clear in confirming that the derivatives of the functions involved in Separability 

are correct along the locus of equilibrium points as posited in Section 3.2 and that there exists 

a substantial range of reasonable accuracy. To be noted that the results are good even in absence 

of the 𝝉(𝝎,∙) function, the inclusion of which would had provided better results over a bigger 

domain. 

 

Figure 4-20. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for rotor PJ9, predicted values from equations 

(dashed lines) and equilibrium points (plus signs) 
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Figure 4-21. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for rotor PJ9 with rotor speed diminished by -

10%, predicted values from equations (dashed lines) and equilibrium points (plus signs). 

 

Figure 4-22. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for rotor PJ9 with rotor speed increased by +10%, 

predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-23. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for Demo rotor, predicted values from equations 

(dashed lines) and equilibrium points (plus signs) 
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Figure 4-24. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for Demo rotor with rotor speed diminished by -

10%, predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-25. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for Demo rotor with rotor speed increased by 

+10%, predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-26. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for Demo-modified rotor, predicted values from 

equations (dashed lines) and equilibrium points (plus signs) 
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Figure 4-27. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for Demo-modified rotor with rotor speed 

diminished by -10%, predicted values from equations (dashed lines) and equilibrium points 

(plus signs) 

 

Figure 4-28. 𝐶𝑞 𝜆
2  vs 𝜆 (continuous lines) for Demo-modified rotor with rotor speed 

increased by +10%, predicted values from equations (dashed lines) and equilibrium points 

(plus signs) 

 

Figure 4-29. 𝐶𝑞 vs 𝜆 (continuous lines) for rotor PJ9, predicted values from equations (dashed 

lines) and equilibrium points (plus signs) 
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Figure 4-30. 𝐶𝑞 vs 𝜆 (continuous lines) for rotor PJ9 with rotor speed diminished by -10%, 

predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-31. 𝐶𝑞 vs 𝜆 (continuous lines) for rotor PJ9 with rotor speed increased by +10%, 

predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-32. 𝐶𝑞 vs 𝜆 (continuous lines) for Demo rotor, predicted values from equations 

(dashed lines) and equilibrium points (plus signs) 
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Figure 4-33. 𝐶𝑞 vs 𝜆 (continuous lines) for Demo rotor with rotor speed diminished by -10%, 

predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-34. 𝐶𝑞 vs 𝜆 (continuous lines) for Demo rotor with rotor speed increased by +10%, 

predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-35. 𝐶𝑞 vs 𝜆 (continuous lines) for Demo-modified rotor, predicted values from 

equations (dashed lines) and equilibrium points (plus signs) 
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Figure 4-36. 𝐶𝑞 vs 𝜆 (continuous lines) for Demo-modified rotor with rotor speed diminished 

by -10%, predicted values from equations (dashed lines) and equilibrium points (plus signs) 

 

Figure 4-37. 𝐶𝑞 vs 𝜆 (continuous lines) for Demo-modified rotor with rotor speed increased 

by +10%, predicted values from equations (dashed lines) and equilibrium points (plus signs) 
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Section 3.1.2 applies. More generally, preserving the correct values at the equilibrium points, 

Separability is formulated as, 

𝑇(𝛽, 𝜆, 𝜔) ≈ 𝜔2(𝑇0/𝜔0
2 + (ℎ(𝛽) − 𝑔(𝜆))) (4.19) 

for some (∙) such that (𝑇0/𝜔0
2) = 𝑇0/𝜔0

2. Where the (∙) function could be thought to be to 

the tip speed ratio Separability as the τ(∙) function is for the wind speed Separability.  

4.4.1. Characterisation of the Additivity Equations 𝒉(𝜷) and 𝒈(𝝀)  

The initial observation on the basis of results in Section 4.3 that (4.19) may apply, although 

with Basic Separability, suggests that a fitting procedure similar to Section 3.5, could be 

appropriate.  Unfortunately, when applied, results are not satisfactory. Better results are 

obtained by fitting the gradients as functions of 1 𝜆 , then integrating the resulting polynomials. 

The reason for using functions of 1 𝜆  can be seen from Figure 4-38. The asymptotic behaviour 

implies that a fit as a polynomial in λ is likely to be inappropriate. However, Figure 4-39 

strongly suggests that a fit in 1 𝜆  would be better. The functions, ℎ′(𝛽)  and 𝑔′(𝜆) , are 

determined for the separated form of  𝑇(𝛽, 𝜆, 𝜔)/𝜔2 using data sets for which 𝑇(𝛽, 𝜆, 𝜔) is 

close to 𝑇0, with rotor speeds of 80%, 90%, 100%, 110%, 120% and 140% 𝜔0. To find 𝑔′(𝜆) 

the fits to 
𝜕(𝑇 𝜔2 )

𝜕𝜆
 are determined as functions of 1 𝜆 . A satisfactory fit is cubic, as can be seen 

from Figure 4-40. Hence: 

𝑔′(𝜆) = 𝑎 (
1

𝜆
)
3

+ 𝑏 (
1

𝜆
)
2

+ 𝑐 (
1

𝜆
) + 𝑑 (4.20) 

𝑔(𝜆) = ∫𝑔′(𝜆) 𝑑𝜆 =𝐴 (
1

𝜆
)
2

+ 𝐵 (
1

𝜆
) + 𝐶 ln(𝜆) + 𝐷𝜆 + 𝐸 (4.21) 

with 𝐴 =
1

3
𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐 and 𝐷 = 𝑑. Note, the presence of the ln(𝜆) term in (4.21). It is the 

reason why fitting the 𝑔′(𝜆) as a polynomial in 1/𝜆 rather than 𝑔(𝜆) is a better approach. 

Following the same methodology for ℎ′(𝛽), the initial 
𝜕(𝑇 𝜔2 )

𝜕𝛽
 vs 𝛽 data can be seen in Figure 

4-41. The best fitting for ℎ′(𝛽) is also cubic, as can be seen in Figure 4-42. Hence: 

ℎ′(𝛽) = 𝑘𝛽3 + 𝑙𝛽2 +𝑚𝛽 + 𝑛 (4.22) 
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ℎ(𝛽) = ∫ℎ′(𝛽) 𝑑𝛽 =𝐾𝛽4 + 𝐿𝛽3 +𝑀𝛽2 + 𝑁𝛽 + 𝑃 (4.23) 

with 𝐾 =
1

3
𝑘, 𝐿 = 𝑙, 𝑀 = 𝑚 and 𝑁 = 𝑛. 

Having determined the form of the fits (4.21) and (4.23), the coefficients for 𝑔(𝜆) and ℎ(𝛽) 

are optimised directly, using the least squares method. The 𝑔(𝜆) and ℎ(𝛽) equations are shown 

on Figure 4-43 and the coefficients are as in Table 4-5. 

 

Optimised coefficients for 

functions 𝑔(𝜆) and ℎ(𝛽) 

K -4.36 

L 188.47 

M -6543.44 

N 14058.73 

P -20181.90 

A -54699405.81 

B 28264102.03 

C 4940730.35 

D -240218.21 

E -11552999.06 
 

Table 4-5. Optimised coefficients for functions 𝑔(𝜆) and ℎ(𝛽) 
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Figure 4-38. 
𝜕(𝑇 𝜔2 )

𝜕𝜆
 vs 𝜆 

 

Figure 4-39. 
𝜕(𝑇 𝜔2 )

𝜕𝜆
 vs 1 𝜆  

 

Figure 4-40. Equation fitting for 𝑔′(𝜆)  

 

 

Figure 4-41. 
𝜕(𝑇 𝜔2 )

𝜕𝛽
 vs pitch angle 
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Figure 4-42 Equation fitting for ℎ′(𝛽) 

 

Figure 4-43. Equations 𝑔(𝜆)and ℎ(𝛽) with 

optimised coefficients 

The values of 𝑇(𝛽, 𝜆, 𝜔)/𝜔2  at the operating points along the locus of constant 𝑇0  are 

compared to the above fit in Figure 4-44. It can be seen that basing the fit on Observation 3) 

Section 3.2, is successful even though only the Basic Additivity as described in Section 3.1.2 

really applies. 

 

Figure 4-44. Equilibrium points after separation 
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4.4.2. Modified Tip Speed Ratio Separability, from Local to Global 

Behaviour 

The (∙) function is determined separately for the different rotor speeds between 80% and 

140% 𝜔0 as depicted in Figure 4-45, with the (∙) functions scaled by 𝜔2, as per (4.19).    

 

Figure 4-45. Function (∙) scaled by 𝜔2 for Rotor PJ9 

It can be appreciated from Figure 4-45, that there is a noticeable difference between the (∙) 

functions for the different rotor speeds, in particular ′(
𝑇0
𝜔0⁄ ) ≠ 1, but all fits are clearly 

weakly non-linear. This is a clear consequence from the Additivity property in Section 3.2 not 

applying anymore. Instead, the Basic Additivity in Section 3.1.2 applies, but the fitting of the 

equations has continued to be based on Observation 3). The function 𝜇(∙) coefficients for rotor 

speeds varying from 80% to 140% 𝜔0 can be seen in Table 4-6. 
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  Function Coefficients: a(∙)3 + 𝑏(∙)2 + 𝑐(∙) + 𝑑 

 Rotor 

Speed 
𝑎 𝑏 𝑐 d 

𝜇(∙) 

80% 𝜔0 −1.49 × 10−14 1.2101 × 10−7 0.84237 41478 

90% 𝜔0 −1.54 × 10−14 1.4431 × 10−7 0.75763 96090 

𝜔0 −1.2306 × 10−14 1.3031 × 10−7 0.75355 1.0591 × 10−5 

110% 𝜔0 −7.2452 × 10−15 9.6426 × 10−8 0.76346 1.5002 × 10−5 

120% 𝜔0 −2.5267 × 10−15 6.2676 × 10−8 0.76755 2.2174 × 10−5 

130% 𝜔0 −2.414 × 10−15 6.6202 × 10−8 0.71419 3.2405 × 10−5 

140% 𝜔0 −1.9659 × 10−15 2.2092 × 10−8 0.78475 3.4826 × 10−5 

Table 4-6. Function 𝜇(∙) coefficients for rotor PJ9 

To ascertain the extent of the deviation of ′ from 1 at the equilibrium points, the equilibrium 

points have been analysed for 80%-140% 𝜔0. The results can be seen from Figure 4-46 to 

Figure 4-52. The gradients vary for the different 𝜔 but remain reasonably close to 1 for a broad 

range of  𝜔.  

Because the (∙)  functions differ for each choice of 𝜔 , comparisons in Section 4.4.3 of 

𝑇(𝛽, 𝜆, 𝜔) to the separated fit, do not include the (∙) functions nor 𝜏(∙). 
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Figure 4-46. Equilibrium points ω 80% 

 

Figure 4-47. Equilibrium points ω 90% 

 

Figure 4-48. Equilibrium points ω 100% 

 

Figure 4-49. Equilibrium points ω 110% 

 

Figure 4-50. Equilibrium points ω 120% 

 

Figure 4-51. Equilibrium points ω 130% 
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Figure 4-52. Equilibrium points ω 140% 

 

4.4.3. Results for Modified Tip speed Ratio Based Separability 

The results for 𝑇 = 𝜔2 (𝑇0 + (ℎ(𝛽) − 𝑔(𝜆))) can be seen from Figure 4-53 to Figure 4-59 and 

for 
𝑇

𝜔2
= 𝑇0 + (ℎ(𝛽) − 𝑔(𝜆)) from Figure 4-56 to Figure 4-62. All results account for the 

whole set of data for each 𝜔 that is represented. The results are discussed in Section 4.5 along 

with the comparison with the wind speed based Separability. 
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Figure 4-53. Separability in tip speed ratio 

for T, ω 80% 

 

Figure 4-54. Separability in tip speed ratio 

for T, ω 90% 

 

Figure 4-55. Separability in tip speed ratio 

for T, ω 100% 

 

Figure 4-56. Separability in tip speed ratio 

for T, ω 110% 

 

Figure 4-57. Separability in tip speed ratio 

for T, ω 120% 

 

Figure 4-58. Separability in tip speed ratio 

for T, ω 130% 

-1 0 1.586 8

x 10
6

-1

0

1.586

7
x 10

6

[T
o
+[h()+g()] ]x 

2

T
o

rq
u

e
 [

N
m

]

 

 

 80%

-1 0 1.586 8

x 10
6

-1

0

1.586

8
x 10

6

[T
o
+[h()+g()] ]x 

2

T
o

rq
u

e
 [

N
m

]
 

 

 90%

-1 0 1.586 8

x 10
6

-1

0

1.586

8
x 10

6

[T
o
+[h()+g()] ]x 

2

T
o

rq
u

e
 [

N
m

]

 

 

 100%

-1 0 1.586 8

x 10
6

-1

0

1.586

9
x 10

6

[T
o
+[h()+g()] ]x 

2

T
o

rq
u

e
 [

N
m

]

 

 

 110%

-1 0 1.586 8

x 10
6

-1

0

1.586

9
x 10

6

[T
o
+[h()+g()] ]x 

2

T
o

rq
u

e
 [

N
m

]

 

 

 120%

-1 0 1.586 8

x 10
6

-1

0

1.586

9
x 10

6

[T
o
+[h()+g()] ]x 

2

T
o

rq
u

e
 [

N
m

]

 

 

 130%



96 

 

 

Figure 4-59. Separability in tip speed ratio 

for T, ω 140% 

 

Figure 4-60. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 80% 

 

Figure 4-61. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 90% 

 

Figure 4-62. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 100% 

 

Figure 4-63. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 110% 

 

Figure 4-64. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 120% 
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Figure 4-65. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 130% 

 

Figure 4-66. Separability in tip speed ratio 

for 𝑇/𝜔2, ω 140% 

 

4.5. Comparison of Wind Speed Based Separability and Tip Speed Ratio Based 

Separability  

In Section 1 and Section 4.4, two different versions of Separability are discussed, specifically, 

Separation using function 𝑔(∙) only dependent on wind speed, (4.7), and Separability using tip 

speed ratio, (4.18), namely,   

𝑇 ≈  (𝑇0 + (ℎ(𝜔, 𝛽) − 𝑔(𝑉)))  and  𝑇 ≈ 𝜔2(𝑇0/𝜔0
2 + (ℎ(𝛽) − 𝑔(𝜆))) (4.24) 

For Separability in wind speed, ℎ(𝜔, 𝛽) and  𝑔(𝑉) together with optimised polynomial fits, 

ℎ(𝜔, 𝛽) = 𝑎𝜔𝛽
2 + 𝑏𝜔𝛽 + 𝑐𝜔  and 𝑔(𝑉) = 𝑎𝑉2 + 𝑏𝑉 + 𝑐 , are shown in Figure 4-16.  For 

Separability in tip speed ratio, ℎ(𝛽) and 𝑔(𝜆), together with optimised fits ℎ(𝛽) = 𝐾𝛽4 +

𝐿𝛽3 +𝑀𝛽2 + 𝑁𝛽 + 𝑃  and  𝑔(𝜆) = 𝐴𝜆−2 + 𝐵𝜆−1 + 𝐶 ln(𝜆) + 𝐷𝜆 + 𝐸, are shown in Figure 

4-43. 

From Figure 4-67 to Figure 4-73 the two versions of Separability are compared directly for 

rotor speeds of 80%, 90%, 100%, 110%, 120%, 130% and 140% 𝜔0, respectively. Neither 

function (∙) nor function 𝜇(∙) have been used. Results show that both types of Separability are 

good approximations to the aerodynamic torque for large neighbourhoods enclosing the locus 

of equilibrium points. As would be expected, the 100% 𝜔0 case exhibits the closest match. The 

least good is the 80% 𝜔0 case, but that is not unexpected since its operating points are the 

closest to stall.  
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Each Figure is further accompanied by a blow up of the data close to 𝑇0, i.e. the data local to 

the  equilibrium operating points. It can be seen from these blow up graphs, that there is a small 

inaccuracy in the tip speed ratio based Separability version. The inaccuracy is particularly clear 

for the lambda case 140% 𝜔0 shown in Figure 4-73, where the deviation is at its most severe 

having a displacement in the order of 5% from the assumed value. The underlying reason for 

this inaccuracy is the implicit assumption in Section 4.3, that for the data sets for 80%, 90%, 

100%, 110%, 120%, 130% and 140% 𝜔0 the 𝜆 fit being based on the Basic Additivity property 

as in Section 3.1.2, would be as good as the Additivity property in Section 3.2.  

For Separability in tip speed ratio, the neighbourhood for which the separated representation 

of the aerodynamic torque is a close approximation, extends in every case at least from 0 to 

2𝑇0. This area increases as the set of operating points for the different rotor speeds move away 

from the stall region, being a particularly good approximation even when 𝑇 >> 𝑇0.   

For Separability in wind speed, the neighbourhood for which the separated representation of 

the aerodynamic torque is a close approximation, also extends in every case at least from 0 to 

2𝑇0, and it is particularly good when 𝑇 << 𝑇0 . Although there is no first principle justification 

for the simplified wind speed version of Separability, i.e. for a  𝑔(𝑉) being independent of 𝜔, 

the latter even locally to 
0T , is at least as good as Separability in tip speed ratio. In addition, it 

has a consistent (∙) function over the different rotor speeds. 

It can be concluded that both versions of Separability provide very good approximations to the 

aerodynamic torque over extensive neighbourhoods of 𝑇0, at least from 0 to 2𝑇0. If anything, 

the Separability in wind speed is better but it has the least analytic support being more empirical 

in nature.  
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Figure 4-67. Separability comparison ω 

80% 

 

  Figure 4-68. Separability comparison ω 

90% 

 

Figure 4-69. Separability comparison ω 

100% 

 

Figure 4-70. Separability comparison ω 

110% 

 

Figure 4-71. Separability comparison 𝜔 

120% 

 

   Figure 4-72. Separability comparison 

130% 
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Figure 4-73. Separability comparison ω 140% 

 

4.6. Conclusions  

The Separability property is investigated for constant speed WTs and variable speed WTs. The 

general structure of the Additivity functions ℎ(∙) and 𝑔(∙) for both the wind speed and tip speed 

ratio based Separability, and their relationship is determined. In particular, the optimised fit for 

the wind speed based Separability, is found after the best parametric form for the individual 

equations ℎ(∙) and 𝑔(∙) are identified. 

Both the 𝑔(∙) and 𝜏(∙) functions are proven to be weakly non-linear and can be considered 

independent from 𝜔. Whereas the 𝜇(∙) function has been confirmed to have both, dependency 
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𝑇0
𝜔02
⁄ ) ≠ 1. 

It is demonstrated that Separability exists for both constant and variable speed WTs and that it 

holds for very large neighbourhoods with very good accuracy. In fact, on average, it 

comfortably covers more than double the rated torque of all WTs explored. 

It is established that both, principled Separability based on tip speed ratio and empirical 

Separability based on a simplified version of wind speed, provide good approximations for the 

aerodynamic torque with the latter as good as the former. Therefore, when exploiting 

Separability to develop advanced controllers and other purposes, such as wind speed models, 

which require good accuracy, the use of the empiric Separability relationship of the form,  

𝑇 ≈  (𝑇0 + (ℎ(𝜔, 𝛽) − 𝑔(𝑉))) 
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is fully justified.  

This form of Separability provides with the correct values and derivatives at the equilibrium 

operating points and the 𝜏(∙) function is invariant with 𝜔.  

It is demonstrated in Chapter 4 that representing the aerodynamics in separated form is highly 

accurate over a very large domain, certainly sufficiently so to support the development of the 

rotor/wind-field interaction model for variable speed wind turbines. 
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Chapter 5 

 

Effective Wind-Field Model  
 
Previously in Chapter 3 and Chapter 4, the feasibility of representing the relationship between 

the statistical characteristics of the wind speeds action on the rotor and the statistical 

characteristics of the moments and forces induced on the rotor as a linear one, has been 

explored and validated. Chapter 6 uses this insight to build an effective wind-field model that 

is suitable for control purposes and that is capable of inducing in the rotor, at least, the correct 

torque on each blade and the thrust on the tower with the correct correlations over the frequency 

range up to 6P. 

Since the stochastic and deterministic components of the wind are statistically independent 

from one another, it is natural to discuss them separately. Accordingly, Chapter 5 is structured 

as follows: in Section 5.1 the overall structure of the wind-field and aerodynamic model is 

discussed; in Section 5.2, the stochastic component of the wind is developed; in Section 5.3, 

the deterministic component (tower shadow, wind shear) is developed. The complete wind-

field model is presented in Section 5.4. In Section 5.5 the complete effective wind-field model 

is validated against Bladed when the WT model used for testing is represented as a stiff 

structure. In Section 5.6 a Simulink model including the effective wind-field model is 

compared to Bladed with full structural dynamics and in Section 5.7 a discussion on the 

outcomes can be found. 

5.1.  Structure of Wind-Field and Wind Turbine Models 

In Chapter 3 and Chapter 4, the Separability property establishes, within its region of validity, 

a weakly non-linear relationship between the in-plane torque and the wind speed.    

On the basis of this relationship, an effective wind-field model is developed with the capacity, 

in the region of validity of Separability, to induce the correct in-plane moments such as the 

rotor torque and the in-plane root bending moment (RBM) of a blade. Because of the close 

relationship between the in-plane and out-of-plane moments and forces, the wind-field model 
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might also be expected to induce out-of-plane moments but to a lesser degree of accuracy. The 

validity of this effective wind-field model beyond the in-plane case and beyond the region of 

validity of Separability, is also explored. The second philosophy introduced in Section 2.2.4.2, 

which focuses on the outputs of the WT by determining appropriately weighted scalar wind-

field components that induce the same spectral properties in the rotor torque or some other 

scalar force or moment as the wind-field over the rotor disc, is applied to derive the proposed 

effective wind-field model.  

The structure of the proposed wind-field model once sampled, as opposed to prior to sampling, 

could be thought in a simplistic way to be a number of sinusoids of different frequency and 

amplitude which when superimposed generate a more complex signal, similarly to a Fourier 

series, see Figure 5-1. Of course, for the wind-field model, the frequency, amplitude and phase 

are continuously varying in random manner for all the individual components. 

 
Figure 5-1. Fourier series 

In Figure 5-2, a simplified block diagram of the proposed wind-field model is presented; 

specifically, the structures of 𝑙𝑎𝑦𝑒𝑟 𝑷 = 0 and 𝑙𝑎𝑦𝑒𝑟 𝑷 = 1 components of the model are 

explicitly shown. The 𝑙𝑎𝑦𝑒𝑟 𝑷 =  2, 3, 4, 5 & 6 components have the same structure as 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 1. The final wind speed over the wind-field is the addition of all the 𝑙𝑎𝑦𝑒𝑟 𝑷 terms 

and the mean wind speed, 𝑉𝑚. It should be noted that the 𝑷 appearing in the block diagram 

inside the different elements is simply an integer. The 𝑙𝑎𝑦𝑒𝑟 𝑷 component, with 𝑷 = 𝑛, is the 
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wind-field component that gives rise to the 𝑛𝑃 peak when the effective wind-field is 

rotationally sampled. 

The wind-field model in Figure 5-2, which varies with the azimuthal angle over the rotor disc, 

has the capability of inducing 0, 1, 2, 3, 4, 5 & 6𝑃 stochastic loads using time varying elements 

named rrf1f31nP, rrf2f32nP, rrf1f31nPd and rrf2f32nPd1, and deterministic loads through 

constant elements, wind shear (WS) and tower shadow (TS). The time series for the stochastic 

elements and the deterministic elements, which are dependent on 𝑉𝑚, are pre-calculated, stored 

in a file and then read by the simulation when run (see Appendix L for the scripts). It should 

be noted that the wind-field model in Figure 5-2 generates two different wind signals as the 

weightings necessary for the correct representation of forces and moments are different. A 

detailed description of the derivation of the wind-field model is given in Section 5.2 and 

Section 5.3. 

If the effective wind-field model is not valid outside the Separability region, the non-linear 

nature of the system would manifest itself by distortion of the spectra including leakage, that 

is, lower frequency components in the wind affecting the higher frequency components. In 

Section 5.2 and 5.3, leakage affecting the 𝑛𝑃 peaks is explored. In Section 5.4, the spectra 

generated by the wind-field model are compared to those generated by Bladed.  

In Section 5.2 and 5.3, the presence and impact of leakage is assessed by comparing results 

from a ‘single’ to a ‘triple’ structure model of interaction between the wind-field and the 

aerodynamics. What is referred to as ‘single structure’ or model, is the common setup of a 

wind-field feeding an aerodynamic model as in Figure 5-3. What is referred to as ‘triple 

structure’ or model, is a less common setup and can be seen in Figure 5-4. There is no 

difference between the two models as far as the turbulent element of the wind is concerned, 

only between the 𝑛𝑃 components; any difference between them would be due to leakage 

thereby indicating reduced validity of the wind-field model. It is known that, due to the 

symmetry of the rotor, the rotor loads only exhibit peaks at 0, 3 & 6𝑃, with the disturbances 

contributing to 1, 2, 4 & 5𝑃 peaks cancelling. Nevertheless, due to leakage, frequencies will 

                                                      

 

1 Where the bold 𝑷 stands to denote that these time varying elements are going to be different for each 𝑙𝑎𝑦𝑒𝑟 𝑷 

structure 
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propagate beyond the initial 𝑙𝑎𝑦𝑒𝑟 𝑷 that generated them. Consequently, whereas 1, 2, 4, & 5𝑃 

peaks, always disappear due to symmetry23, the 3 and 6𝑃 peaks frequencies might be enhanced. 

As previously stated, by comparing the simple model in Figure 5-3 to the triple structure4 in 

Figure 5-4, it can be determined weather this issue is present. 

The results from Section 5.2, Section 5.3 and Section 5.4 give an insight into the validity of the 

models beyond their natural boundaries and determine which structure, simple or triple, is 

adequate for inducing the correct load, as far as the 𝑛𝑃 peaks and high frequency components 

are concerned.  The comparison with results from Bladed in Section 5.5 and Section 5.6, 

provides a further layer of validation to the model, this time by giving an insight to the validity 

of the model with particular regard to the turbulent components of the wind.  

  

                                                      

 

2 When there are no imbalances present. 
3 Imbalances are not contemplated in this work. 
4 Each branch of the triple structure is interpreted as representing one of the blades of the rotor. The model as a 

matter of fact represents 3 rotors and it is the reason why the final signals have to be divided by 3 to obtain the 

correct magnitude of the moments and forces.  
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Figure 5-2. Wind-field model architecture 
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Figure 5-3. Single wind-field and wind turbine interaction
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Figure 5-4. Triple wind-field and wind turbine interaction 
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5.2.  Stochastic Component of the Effective Wind-Field Model 

In this section, the stochastic components of the effective wind-field model are discussed. 

Specifically, in Section 5.2 and Section 5.2.1 the theory behind it is explained and in Section 

5.2.2, the results relating to the discussion in Section 5.1 about simple and triple structure are 

discussed. 

In Chapter 2, effective wind speed models are introduced and particular attention is given to 

the model developed in [9] and [13], based on a constant speed WT. The stochastic component 

of these models is derived by connecting the spectral density function of the torque to the 

spectral density function of the wind speed. The argument is based on the following 

assumptions:  

1) The in-plane force on the blade of a WT is roughly independent of the radius and 

consequently the aerodynamic torque is approximately linearly dependent on the 

radial distance from the hub (see Chapter 2, Figure 2-7). 

2) At low frequencies the timescale of change in the wind-field is comparable or longer 

than the period of rotation of the rotor.  

These assumptions are required so the low frequency components of the torque can then be 

related to the wind-field over the complete rotor disc. 

The relationship between the covariance function for torque, 𝑇, and wind speed, 𝑉, is5,  

𝑅𝑇(𝑡) = 𝐸[(𝑇(𝑡 + 𝑠) − �̅�)(𝑇(𝑠) − �̅�)] ≃

≃ 𝑘2 ∫ ∫ 𝐸[𝑣(𝒓𝟏, 𝑡 + 𝑠)𝑣(𝒓𝟐, 𝑠)]
𝐴𝑟

𝑑𝐴1𝑑𝐴2
𝐴𝑟

=

= 𝑘2 ∫ ∫ 𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡)𝑑𝐴1𝑑𝐴2
𝐴𝑟𝐴𝑟

 

(5.1) 

with, �̅�, the mean torque value, 𝐴𝑟, the area of the rotor disc, 𝑅𝑇(𝑡), the torque covariance 

function, 𝑅𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝑡), the cross-covariance function between the wind speed at a point 𝒓𝟏 

and the wind speed at a point 𝒓𝟐 and ,𝑣, the perturbations about �̅�, the mean wind speed of the 

                                                      

 

5 For a detailed discussion of this model refer back to Chapter 2 
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wind-field impacting on the rotor of the WT for a turbulence intensity that is sufficiently small 

for Taylor’s expansion linearisation to apply. As such the perturbations are defined as, 

𝑣 = 𝑉 − �̅� (5.2) 

with, 𝑉, the wind speed at time 𝑡 and position 𝒓. 

It follows that the power spectral density function of the torque, 𝑆𝑇(𝜔), is related to the cross-

spectral density function for turbulent wind speed fluctuations at the two points 𝒓𝟏 and  𝒓𝟐, 

𝑆𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝜔), by 

𝑆𝑇(𝜔) = 𝑘2 ∫ ∫ 𝑆𝑣(𝒓𝟏)𝑣(𝒓𝟐)(𝜔)𝑑𝐴1𝑑𝐴2 = 𝑘2𝑆𝑣(𝜔) ∫ ∫ 𝜒(𝒓𝟏, 𝒓𝟐, 𝜔)𝑑𝐴1𝑑𝐴2
𝐴𝑟𝐴𝑟𝐴𝑟𝐴𝑟

 (5.3) 

where 𝑆𝑣(𝜔) is the power spectral density function of a point wind speed in space and 

𝜒(𝒓𝟏, 𝒓𝟐, 𝜔) the coherence function of the wind speed at the two points 𝒓𝟏 and  𝒓𝟐. [9] 

A model defined in this way has several limitations. The first limitation is related to the capacity 

to model higher order frequency components of the wind, caused by assumption 2 which 

inherently pre-empts the capacity to model frequency components above and including 1P. 

Assumption 2, thus, restricts the frequency range of the model, because, in reality, the spectral 

density function induced by the wind-field contains peaks due to rotational sampling of that 

wind-field at integer multiples of the rotor speed. The effective wind speed model based on 

assumption 2 cannot reproduce these peaks. This is a significant shortcoming of the model 

since the peaks at 𝑛𝑃 = 0, 3 and 6 for the rotor and 𝑛𝑃 = 0, 1, 2,..., 6 for the blades, are 

significant and need to be modelled in order to calculate the forces, moments and loads. 

The second limitation on the model based on assumptions 1 and 2, comes from using Taylor’

s expansion linearisation which, by depending on small perturbations of the wind, restricts the 

magnitude of those perturbations. That is, the need for the Taylor’s expansion linearisation 

to be reasonably accurate restricts the turbulence intensity that can be handled. Moreover, the 

use of Taylor’s expansion linearisation distorts the spectral density functions at higher 

frequency due to the neglect of leakage. Hence, even without assumption 2, to extend the 

frequency range of the model to include the nP peaks would require the Taylor’s expansion 

linearisation to be sufficiently accurate, further restricting the turbulence intensity. 
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To extend the use of effective wind speeds to model out to higher frequencies, requires an 

approach for which the inherent accuracy is higher than the one that can be assumed for Taylor

’s series linearisation. Therefore a fitting alternative to the above argument for connecting the 

spectral density function of the torque to the spectral density function of the wind speed can be 

based on Separability as follows.  

For a rotor, let ),( V  be a single operating point for which the contribution to the torque by 

the blade element at r is  

∆𝑇𝒓 (𝛽, 𝑉) = ∆𝑇𝒓𝑜 (5.4) 

Integrating over the blades, 

𝑇 (𝛽, 𝑉) = ∫ ∆𝑇𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

(𝛽, 𝑉) 𝑑𝒓 = ∫ ∆𝑇𝒓𝑜𝑑𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

= 𝑇𝑜 (5.5) 

The Additivity property Theorem in Section 3.2, implies that  

𝑇(𝛽, 𝑉) ≈ ℎ𝑉(𝛽) − 𝑔𝑉(𝑉) (5.6) 

to arbitrary accuracy in some neighbourhood of the locus of operating points, (𝛽𝑜 , 𝑉𝑜), for 

which 

𝑇(𝛽𝑜, 𝑉𝑜) = 𝑇𝑜 (5.7) 

Furthermore, the Additivity property Theorem also implies that  

∆𝑇𝒓(𝛽, 𝑉𝒓) ≈ ℎ𝒓,𝑉(𝛽) − 𝑔𝒓,𝑉(𝑉𝒓) (5.8) 

to arbitrary accuracy in some neighbourhood of the locus of operating points, (𝛽𝑜 , 𝑉𝒓𝑜), for 

which 

∆𝑇(𝛽𝑜, 𝑉𝒓𝑜) = ∆𝑇𝒓𝑜 (5.9) 

Note, that, whilst the pitch angles in (𝛽𝑜, 𝑉𝑜) and (𝛽𝑜, 𝑉𝒓𝑜), are the same, the wind speeds are 

not necessarily so. Furthermore, the 𝑉𝒓𝑜 may change with r. 

Provided the neighbourhoods of the loci of operating points, (𝛽𝑜, 𝑉𝒓𝑜), are sufficiently small, 

then it follows that 
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𝑇 (𝛽(𝑡), 𝑉𝑠𝑒𝑝(𝑡)) = ∫ ∆𝑇𝒓(𝛽(𝑡), 𝑉(𝒓, 𝑡))𝑑𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

≈

≈ ∫ (ℎ𝒓,𝑉(𝛽(𝑡)) − 𝑔𝒓,𝑉(𝑉(𝒓, 𝑡))) 𝑑𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

≈

≈ ∫ ℎ𝒓,𝑉(𝛽(𝑡)) − 𝑘𝑉 ∫ 𝑘𝒓,𝑉𝑉(𝒓, 𝑡)
𝑏𝑙𝑎𝑑𝑒𝑠𝑏𝑙𝑎𝑑𝑒𝑠

𝑑𝒓 ≈

≈ ℎ𝑉(𝛽(𝑡)) − 𝑔𝑉 (∫ 𝑘𝒓,𝑉𝑉(𝒓, 𝑡)𝑑𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

) 

(5.10) 

with 𝑘𝑉 the gradient of 𝑔𝑉(∙) and 𝑘𝒓,𝑉 the gradient of 𝑔𝒓,𝑉(∙). To arbitrary accuracy (5.10) is 

valid for some neighbourhood of the locus of operating points, which includes (𝛽, 𝑉), where 

𝑉𝑠𝑒𝑝(𝑡) = ∫ 𝑘𝒓,𝑉𝑉(𝒓, 𝑡)𝑑𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

 (5.11) 

However, the neighbourhoods, for which Separability of rotor torque and blade element torque 

applies, are large, see Chapter 3 and Appendix J, with 𝑔𝒓,𝑉(∙) and 𝑔𝑉(∙) weakly non-linear. 

Hence, in (5.10), with 𝑉(𝒓, 𝑡) the wind speed at (𝒓, 𝑡) due to a turbulent wind-field, 𝑉𝑠𝑒𝑝(𝑡) is 

an effective wind speed; that is, 𝑉𝑠𝑒𝑝(𝑡) can be interpreted as the wind speed uniform over the 

rotor which induces the same torque as the turbulent wind-field at a time 𝑡. Clearly 𝑉𝑠𝑒𝑝(𝑡)  is 

a weighted linear average of the wind speeds experienced by the blades. Through r, (5.11) is 

implicitly dependent on the azimuth angle of the rotor, , as explicitly indicated by,  

𝑉𝑠𝑒𝑝(𝜃, 𝑡) = ∫ 𝑘𝒓,𝑉𝑉(𝒓(𝜃, 𝑟), 𝑡)𝑑𝒓
𝑏𝑙𝑎𝑑𝑒𝑠

= ∫ 𝑊(𝑟)(𝑉(𝒓(𝜃, 𝑟), 𝑡))𝑑𝒓 
𝑏𝑙𝑎𝑑𝑒𝑠

 (5.12) 

where 𝑊(𝑟) is a weighting function depending solely on the geometry of the blades, and so it 

is only dependent on 𝑟 and not 𝜃. Because of the size of the neighbourhoods of validity for 

Separability and the near linearity of 𝑔(𝑉), the spectral density function for torque can be 

expected to apply for a far larger frequency range including over the spectral peaks than would 

be expected from the earlier argument, since the effective wind speed, 𝑉𝑠𝑒𝑝(𝜃, 𝑡), defined by 

(5.12) remains dependent on azimuth angle. Moreover, Separability and so the effective wind 

speed extend to the 3 dimensional case, see Chapter 4, with the inclusion of the rotor speed, 𝜔. 

To enable direct comparison with the wind speed model in [9] and [13], it is necessary to 

remove from (5.12) the component in the wind-field giving rise to the higher frequency 

components by integrating over the azimuth angle,  
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𝑉𝑒(𝑡) = 𝑛 ∫ 𝑊(𝑟) ∫ 𝑉(𝒓(𝜃, 𝑟), 𝑡)
2𝜋

0

𝑑𝜃𝑑𝑟 
𝑅

0

 (5.13) 

because the contribution of each of the n blades is the same as each blade is rotated over one 

revolution. The weighting function, 𝑊(𝑟), is chosen to be linear in 𝑟. This derivation of the 

effective wind speed is much preferred.  

How good a wind speed model Separability can justify, is very much dependent on the accuracy 

of the Separability property itself. The greater the accuracy of Separability the higher the 

frequencies that the wind-field model can potentially represent correctly. In this chapter, that 

potential is explored. The accuracy of the Separability results from Chapters 3 and 4 is such as 

to indicate that a reasonable representation of the interaction of the rotor and the wind-field up 

to higher frequencies should be expected. Likewise if the results from the wind speed model 

are good inside the region of applicability of Separability, they would further validate the 

Separability property. 

5.2.1. Stochastic Model 

Previously, when discussing effective wind speed models, whether in Chapter 2 or earlier in 

this chapter, the philosophy has been to determine a scalar effective wind speed that is uniform 

over the rotor but that induces the same torque as the turbulent wind-field. However, the insight 

provided by Separability into the very direct relationship of wind speed to torque, see (5.10), 

(5.11) and (5.12) enables the adoption of a different philosophy wherein the scalar effective 

wind speed model is replaced by an effective wind-field model; that is, over the rotor, the wind 

speed varies only with azimuth angle. At time, 𝑡, the torque for a blade at azimuth angle, 𝜃, 

would then be determined using the wind speed at 𝜃. This wind-field model represents the 

actual flow-field that comes to the turbine such that, when the resulting torques on the blades 

are calculated, being dependent on the azimuth angle, the loads have the correct correlation 

between the different blades and the complete rotor. 

From (5.12), the perturbations in the effective wind-field at azimuth angle, , and time, 𝑡, are  

𝑉(𝜃, 𝑡) = ∫ 𝑊(𝑟)𝜈(𝒓(𝑟, 𝜃), 𝑡)𝑑𝑟    ;     𝜈(𝒓(𝑟, 𝜃), 𝑡) = 𝑉(𝒓(𝑟, 𝜃), 𝑡) − �̅�
𝑅

0

 (5.14) 

where �̅� is the mean wind speed over the wind-field. To be precise, wind-field here refers to 

the wind speeds for each point in the rotor disc for each time in some interval. �̅� is the mean 
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over the ensemble of all possible realisations of this wind-field. The average for any single 

realisation may of course differ from �̅�. At any time, 𝑡, 𝑉(𝜃, 𝑡) may be considered periodic in 

𝜃 with Fourier series 

𝑉(𝜃, 𝑡) = ∑ 𝐴𝑛(𝑡)𝑒𝑗𝑛𝜃

+∞

𝑛=−∞

= 𝐴0 + ∑(𝐴𝑛(𝑡)𝑒𝑗𝑛𝜃 + 𝐴−𝑛(𝑡)𝑒−𝑗𝑛𝜃)

+∞

𝑛=1

= 

= 𝐴0 + ∑{𝐴𝑛(𝑡)[cos(𝑛𝜃) + 𝑗𝑠𝑖𝑛(𝑛𝜃)] + 𝐴−𝑛(𝑡)[cos(−𝑛𝜃) + 𝑗𝑠𝑖𝑛(−𝑛𝜃)]}

+∞

𝑛=1

 

(5.15) 

𝐴𝑛(𝑡) =
1

2𝜋
∫ 𝑉(𝜃, 𝑡)𝑒−𝑗𝑛𝜃𝑑𝜃

𝜋

−𝜋

 (5.16) 

Assume the wind-field is homogeneous so that at any point, 𝒓, and time, 𝑡, the mean wind 

speed is the same and thus equal to �̅�; that is, 𝐸[𝑉(𝒓(𝑟, 𝜃), 𝑡)] = �̅�. Consequently 

𝐸[𝑉(𝜃, 𝑡)] = 𝐸 [∫ 𝑊(𝑟)𝜈(𝒓(𝑟, 𝜃), 𝑡)𝑑𝑟
𝑅

0

] = ∫ 𝑊(𝑟)𝐸[𝑉(𝒓(𝑟, 𝜃), 𝑡) − �̅�]𝑑𝑟
𝑅

0

=

= ∫ 𝑊(𝑟){𝐸[𝑉(𝒓(𝑟, 𝜃), 𝑡)] − �̅�}𝑑𝑟 = 0
𝑅

0

 

(5.17) 

Hence  𝐴𝑛
̅̅̅̅ (𝑡), the mean of 𝐴𝑛(𝑡) at time, 𝑡, is 

𝐴𝑛
̅̅̅̅ (𝑡) = 𝐸[𝐴𝑛(𝑡)] = 𝐸 [

1

2𝜋
∫ 𝑉(𝜃, 𝑡)𝑒−𝑗𝑛𝜃𝑑𝜃

𝜋

−𝜋

] =
1

2𝜋
∫ 𝐸[𝑉(𝜃, 𝑡)]𝑒−𝑗𝑛𝜃𝑑𝜃

𝜋

−𝜋

= 0 (5.18) 

The cross-covariance between An(t) and Am(t) is 
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𝑅𝑛𝑚(𝑡) = 𝐸[𝐴𝑛
∗ (𝜏)𝐴𝑚(𝜏 + 𝑡)] = 𝐸 [

1

2𝜋
∫ 𝑉(𝜃1, 𝜏)𝑒𝑗𝑛𝜃1𝑑𝜃1

𝜋

−𝜋

1

2𝜋
∫ 𝑉(𝜃2, 𝜏 + 𝑡)𝑒−𝑗𝑚𝜃2𝑑𝜃2

𝜋

−𝜋

] =

=
1

4𝜋2
∫ 𝑑𝜃1 ∫ 𝑑𝜃2𝑒𝑗(𝑛𝜃1−𝑚𝜃2)𝐸[𝑉(𝜃1, 𝜏)𝑉(𝜃2, 𝜏 + 𝑡)] =

𝜋

−𝜋

𝜋

−𝜋

=
1

4𝜋2
∫ 𝑑𝜃1 ∫ 𝑑𝜃2𝑒𝑗(𝑛𝜃1−𝑚𝜃2)𝐸 [∫ 𝑊(𝑟1)𝜈(𝒓(𝑟1, 𝜃1), 𝜏)𝑑𝑟1 ∫ 𝑊(𝑟2)𝜈(𝒓(𝑟2, 𝜃2), 𝜏 + 𝑡)𝑑𝑟2 

𝑅

0

 
𝑅

0

]
𝜋

−𝜋

𝜋

−𝜋

 

=
1

4𝜋2
∫ 𝑑𝜃1

𝜋

−𝜋

∫ 𝑑𝜃2

𝜋

−𝜋

∫ 𝑑𝑟1 
𝑅

0

∫ 𝑑𝑟2 
𝑅

0

𝑊(𝑟1)𝑊(𝑟2)𝑒𝑗(𝑛𝜃1−𝑚𝜃2)𝐸[𝜈(𝒓(𝑟1, 𝜃1), 𝜏)𝜈(𝒓(𝑟2, 𝜃2), 𝜏 + 𝑡)] 

(5.19) 

It follows that the cross-spectral density function, which is the Fourier transform of the cross-

covariance of the associated functions (in this case the Fourier coefficients, 𝐴𝑛(𝑡) and 𝐴𝑚(𝑡)), 

is 

𝑆𝑛𝑚(𝜔) =
1

4𝜋2
∫ 𝑑𝜃1

𝜋

−𝜋

∫ 𝑑𝜃2

𝜋

−𝜋

∫ 𝑑𝑟1 ∫ 𝑑𝑟2 
𝑅

0

𝑊1(𝑟1)𝑊2(𝑟2)𝑒𝑗(𝑛𝜃1−𝑚𝜃2)𝑆𝑣1𝑣2
(𝜔) 

𝑅

0

 (5.20) 

The cross-spectral density function for wind speeds at 𝒓𝟏 and 𝒓𝟐, 𝑆𝑣1𝑣2
(𝜔), depends only on 

the distance between the two points, 𝑙, as the wind-field is homogeneous. Hence, 

𝑒𝑗(𝑛𝜃1−𝑚𝜃2)𝑆𝑣1𝑣2
(𝜔) is periodic in 𝜃1 and 𝜃2. The following change of variables can be 

introduced in 𝑆𝑛𝑚(𝜔), 

𝜓1 =
𝜃1 − 𝜃2

2
     ;      𝜓2 =

𝜃1 + 𝜃2

2
 (5.21) 

𝜃1 = 2𝜓1 + 𝜃2 = 2𝜓1 + 2𝜓2 − 𝜃1    ⇒     2𝜃1 = 2(𝜓1 + 𝜓2) (5.22) 

𝜃2 = 2𝜓2 − 𝜃1      ⇒     𝜃2 = 2𝜓2 − 𝜓1 − 𝜓2 = −𝜓1 + 𝜓2 (5.23) 

𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)
=

𝜕(𝜃1, 𝜃2)

𝜕(𝜓1, 𝜓2)
= |

1 1
−1 1

| = 1 − (−1) = 2 (5.24) 

𝑑𝜃1𝑑𝜃2 = 2𝑑𝜓1𝑑𝜓2 (5.25) 

with the limits of the integrals changing from [−𝜋, 𝜋] for 𝜃1 to [0, 𝜋] for 𝜓1 and [−𝜋, 𝜋] for 𝜃2 

being maintained as [−𝜋, 𝜋] for 𝜓2. This has the following explanation 
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(𝜃1, 𝜃2) (𝜓1, 𝜓2) 

(0,0) (0,0) 

(𝜋, 0) (
𝜋

2
,
𝜋

2
) 

(0, 𝜋) (−
𝜋

2
,
𝜋

2
) 

(𝜋, 𝜋) (0, 𝜋) 

(−𝜋, 𝜋) (−𝜋, 0) 

(𝜋, −𝜋) (𝜋, 0) 

(−𝜋, 0) (−
𝜋

2
, −

𝜋

2
) 

(0, −𝜋) (
𝜋

2
, −

𝜋

2
) 

(−𝜋, −𝜋) (0, −𝜋) 

Table 5-1. Change of variable values 

When changing variables it is important to update the area of interpolation. The original area 

of integration for (𝜃1, 𝜃2) is represented by the black square with limits [−𝜋, 𝜋] for 𝜃1 and 

[−𝜋, 𝜋] for 𝜃2 on Figure 5-5. The lines for constant 𝜓1 and 𝜓2 (grey lines on Figure 5-5) are 

determined from (5.21), that is, 

𝜓1 =
𝜃1 − 𝜃2

2
    ⇒     𝜃1 = 2𝜓1 + 𝜃2 

    

(5.26) 

𝜓2 =
𝜃1 + 𝜃2

2
      ⇒      𝜃2 = −2𝜓1 + 𝜃1 (5.27) 

From Figure 5-5 it is clear that, when integrating with respect to 𝜓1 and 𝜓2, the limits of 

integration are not fixed. But because the original integrals are periodic on 𝜃1 and 𝜃2, it is 

possible to displace by 2𝜋 the area (or parts of the area) that define the initial area of integration 

(black square) in both axial directions. This allows for rearrangement of the original area of 

integration to a more convenient shape with respect to the (𝜓1, 𝜓2) axis; that is, one that is 

rectangular. This process is illustrated in Figure 2 by the red triangles with solid lines indicating 

the sense of displacement and red triangles with dashed lines representing the final destination. 

 2𝜋 

  𝜃2 

 

 𝜃1 

 𝜋 

 𝜋 

 −𝜋 

 −𝜋 

 −2𝜋 

 2𝜋 

 −2𝜋 

Figure 5-5. Integration support 
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The new integration area is highlighted by the green rectangle in Figure 5-5 and has limits 

equal to [0, 𝜋] for 𝜓1 and [−𝜋, 𝜋] for 𝜓2. 

Therefore, after the change of variable, 𝑆𝑛𝑚(𝜔) takes the form 

𝑆𝑛𝑚(𝜔) =

=
2

4𝜋2
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜓1 ∫ 𝑑𝜓2 
𝜋

−𝜋

𝑒𝑗(𝑛+𝑚)𝜓1𝑒𝑗(𝑛−𝑚)𝜓2𝑆𝑣1𝑣2
(𝜔) 

𝜋

0

 
(5.28) 

With 𝑆𝑣1𝑣2
(𝜔) dependent only on 𝜓1. 

 If 𝑛 ≠ 𝑚,  

∫ 𝑒𝑗(𝑛−𝑚)𝜓2𝑑𝜓2 
𝜋

−𝜋

= ∫ 𝑑𝜓2[𝑐𝑜𝑠((𝑛 − 𝑚)𝜓2) + 𝑗𝑠𝑖𝑛((𝑛 − 𝑚)𝜓2)] 
𝜋

−𝜋

= 0 (5.29) 

because the integration is over a complete period of the cosine and sine terms, i.e. 𝑆𝑛𝑚(𝜔) = 0 

 If 𝑛 = 𝑚, 𝑒𝑗(𝑛−𝑚)𝜓2 = 1 and ∫ 𝑑𝜓2 
𝜋

−𝜋
= 2𝜋,  

𝑆𝑛𝑚(𝜔) = 2𝜋
2

4𝜋2
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜓1 
𝜋

0

𝑒𝑗(𝑛+𝑚)𝜓1𝑆𝑣1𝑣2
(𝜔) =

=
1

𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜓1[𝑐𝑜𝑠(2𝑛𝜓1) +
𝜋

0

+ 𝑗𝑠𝑖𝑛(2𝑛𝜓1)]𝑆𝑣1𝑣2
(𝜔)  

(5.30) 

By introducing the change of variable 

𝜃 = 2𝜓1 = 𝜃1 − 𝜃2 (5.31) 

𝑑𝜃 = 2𝑑𝜓1 →
1

2
𝑑𝜃 = 𝑑𝜓1 (5.32) 

The cross-spectral density function becomes 
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𝑆𝑛𝑚(𝜔) =
1

2𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) [∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑆𝑣1𝑣2
(𝜔) 

2𝜋

0

+

+ 𝑗 ∫ 𝑑𝜃𝑠𝑖𝑛(𝑛𝜃)𝑆𝑣1𝑣2
(𝜔) 

2𝜋

0

] 

(5.33) 

with 𝜃 the angle between the radii to 𝒓𝟏 and 𝒓𝟐
6. Since 𝑠𝑖𝑛(𝑛𝜃) is odd and 𝑆𝑣1𝑣2

(𝜔) even, the 

integral related to 𝑗 is zero and the cross-spectral density function for the Fourier coefficients 

is reduced to 

𝑆𝑛𝑚(𝜔) =
1

2𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) [∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑆𝑣1𝑣2
(𝜔) 

2𝜋

0

] (5.34) 

Note that the cross-spectral density function for the wind speeds at 𝒓𝟏 and 𝒓𝟐, 𝑆𝑣1𝑣2
(𝜔) 

depends only on |𝜃|, and is defined as 

𝑆𝑣1𝑣2
(𝜔) = 𝑆𝑣(𝜔)

𝑆𝑣1𝑣2
(𝜔)

√𝑆𝑣1𝑣1
(𝜔)𝑆𝑣2𝑣2

(𝜔)

= 𝑆𝑣(𝜔)𝜒(𝒓1, 𝒓2, 𝜔) 
(5.35) 

with 𝑆𝑣(𝜔) the spectrum of a wind speed, 𝜒(𝒓1, 𝒓𝟐, 𝜔) the coherence function between the 

vectors 𝒓1 and 𝒓2 and 𝑆𝑣1𝑣1
 and 𝑆𝑣2𝑣2

(𝜔) the auto-spectrum for 𝑣1 and 𝑣2 respectively. 

Assuming Davenport’s coherence function 

𝑆𝑣1𝑣2
(𝜔) ≈ 𝑆𝑣(𝜔)𝑒

−𝛾𝑙𝜔
�̅�

⁄
= 𝑆𝑣(𝜔)𝑒−𝑥𝑙 (5.36) 

with 

𝑥 =
𝑅𝛾𝜔

�̅�
= 𝜎𝜔 (5.37) 

𝑙 = √𝑟1
2 + 𝑟2

2 − 2𝑟1𝑟2𝑐𝑜𝑠(𝜃) (5.38) 

Where 𝛾 is the turbulent wind speed decay factor, �̅� the mean wind speed, 𝑙 the separation 

between 𝒓1 and 𝒓2 and 𝜃 the angle between 𝒓1 and 𝒓2. Thus, 

                                                      

 

6 It is important to note that 𝜃 is not the azimuth angle anymore 
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𝑆𝑛𝑚(𝜔) =
1

2𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 𝑆𝑣(𝜔)
2𝜋

0

 (5.39) 

The integral enclosed by the red rectangle can be solved numerically for the different weighting 

functions of interest, linear, uniform or mixed. After normalisation, the vectors 𝒓1 and 𝒓2 can 

occupy any position of the unit circle as shown on Figure 5-6,  

 

 

 

 

 

 

 

 

 

Since the wind is a real variable, 

𝑉(𝜃, 𝑡) = ∑ 𝐴𝑛(𝑡)𝑒𝑗𝑛𝜃

+∞

𝑛=−∞

= 𝐴0 + ∑(𝐴𝑛𝑒𝑗𝑛𝜃 + 𝐴−𝑛𝑒−𝑗𝑛𝜃)

+∞

𝑛=1

 (5.40) 

and (𝐴𝑛𝑒𝑗𝑛𝜃 + 𝐴−𝑛𝑒−𝑗𝑛𝜃) has to be real, making it necessary for 𝐴−𝑛(𝑡) = 𝐴𝑛
∗(𝑡). 

Furthermore considering the preceding discussion of 𝑆𝑛𝑚(𝜔) in the 𝑛 = 𝑚 and 𝑛 ≠ 𝑚 cases, 

it also follows that 𝑆(−𝑛)(−𝑛)(𝜔) = 𝑆𝑛𝑛(𝜔) and 𝑆(−𝑛)𝑛(𝜔) = 𝑆𝑛(−𝑛)(𝜔) = 0. 

Thus an appropriate choice for 𝐴𝑛(𝑡) and 𝐴−𝑛(𝑡) is 

𝐴𝑛(𝑡) = 𝑅𝑛(𝑡) + 𝑗𝐼𝑛(𝑡)     ;      𝐴−𝑛(𝑡) = 𝐴𝑛
∗(𝑡) = 𝑅𝑛(𝑡) − 𝑗𝐼𝑛(𝑡) (5.41) 

where 𝑅𝑛(𝑡) and 𝐼𝑛(𝑡) are real, such that 

𝑆𝑅𝑛𝑅𝑛
(𝜔) = 𝑆𝐼𝑛𝐼𝑛

(𝜔) =
1

2
𝑆𝑛𝑛(𝜔) (5.42) 

𝑆𝑅𝑛𝐼𝑛
(𝜔) = 𝑆𝐼𝑛𝑅𝑛

(𝜔) = 0 (5.43) 

All the required spectral properties are met, specifically,  

Figure 5-6. Normalised integral space 

𝑙 

𝑟1 𝑟2 

1 

0 

𝑃1 
𝑃2 

1 
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𝑆(𝑅𝑛+𝑗𝐼𝑛)(𝑅𝑛+𝑗𝐼𝑛)(𝜔) = 𝑆𝑅𝑛𝑅𝑛
(𝜔) + 𝑗𝑆𝑅𝑛𝐼𝑛

(𝜔) − 𝑗𝑆𝐼𝑛𝑅𝑛
(𝜔) + 𝑆𝐼𝑛𝐼𝑛

(𝜔) = 𝑆𝑛𝑛(𝜔) (5.44) 

𝑆(𝑅𝑛−𝑗𝐼𝑛)(𝑅𝑛−𝑗𝐼𝑛)(𝜔) = 𝑆𝑅𝑛𝑅𝑛
(𝜔) − 𝑗𝑆𝑅𝑛𝐼𝑛

(𝜔) + 𝑗𝑆𝐼𝑛𝑅𝑛
(𝜔) + 𝑆𝐼𝑛𝐼𝑛

(𝜔) = 𝑆𝑛𝑛(𝜔) 

= 𝑆(−𝑛)(−𝑛)(𝜔) 

(5.45) 

𝑆(𝑅𝑛+𝑗𝐼𝑛)(𝑅𝑛−𝑗𝐼𝑛)(𝜔) = 𝑆𝑅𝑛𝑅𝑛
(𝜔) − 𝑗𝑆𝑅𝑛𝐼𝑛

(𝜔) − 𝑗𝑆𝐼𝑛𝑅𝑛
(𝜔) − 𝑆𝐼𝑛𝐼𝑛

(𝜔) =

= 𝑆𝑛(−𝑛)(𝜔) = 0 

(5.46) 

𝑆(𝑅𝑛−𝑗𝐼𝑛)(𝑅𝑛+𝑗𝐼𝑛)(𝜔) = 𝑆𝑅𝑛𝑅𝑛
(𝜔) + 𝑗𝑆𝑅𝑛𝐼𝑛

(𝜔) + 𝑗𝑆𝐼𝑛𝑅𝑛
(𝜔) − 𝑆𝐼𝑛𝐼𝑛

(𝜔) =

= 𝑆(−𝑛)𝑛(𝜔) = 0 

(5.47) 

Thus the contribution of the 𝑛𝑡ℎ and (−𝑛)𝑡ℎ terms in the Fourier series for 𝑉(𝜃, 𝑡) is 

(𝐴𝑛𝑒𝑗𝑛𝜃 + 𝐴𝑛
∗(𝑡)𝑒−𝑗𝑛𝜃) =

= 𝐴𝑛(𝑡)[𝑐𝑜𝑠(𝑛𝜃) + 𝑗𝑠𝑖𝑛(𝑛𝜃)] + 𝐴𝑛
∗(𝑡)[𝑐𝑜𝑠(𝑛𝜃) − 𝑗𝑠𝑖𝑛(𝑛𝜃)] =

= [𝑅𝑛(𝑡) + 𝑗𝐼𝑛(𝑡)][𝑐𝑜𝑠(𝑛𝜃) + 𝑗𝑠𝑖𝑛(𝑛𝜃)]   +

+ [𝑅𝑛(𝑡) − 𝑗𝐼𝑛(𝑡)][𝑐𝑜𝑠(𝑛𝜃) − 𝑗𝑠𝑖𝑛(𝑛𝜃)] =

= 𝑅𝑛(𝑡)𝑐𝑜𝑠(𝑛𝜃) + 𝑅𝑛(𝑡)𝑗𝑠𝑖𝑛(𝑛𝜃) + 𝐼𝑛(𝑡)𝑗𝑐𝑜𝑠(𝑛𝜃) −

− 𝐼𝑛(𝑡)𝑗𝑠𝑖𝑛(𝑛𝜃) + 𝑅𝑛(𝑡)𝑐𝑜𝑠(𝑛𝜃) − 𝑅𝑛(𝑡)𝑗𝑠𝑖𝑛(𝑛𝜃) −

− 𝐼𝑛(𝑡)𝑗𝑐𝑜𝑠(𝑛𝜃) − 𝐼𝑛(𝑡)𝑠𝑖𝑛(𝑛𝜃) =

= 2𝑅𝑛(𝑡)𝑐𝑜𝑠(𝑛𝜃) − 2𝐼𝑛(𝑡)𝑠𝑖𝑛(𝑛𝜃) 

(5.48) 

which is real. Hence 

𝑉(𝜃, 𝑡) = ∑ 𝐴𝑛(𝑡)𝑒𝑗𝑛𝜃

+∞

𝑛=−∞

= 𝐴0 + ∑ 2

+∞

𝑛=1

(𝑅𝑛(𝑡)𝑐𝑜𝑠(𝑛𝜃) − 𝐼𝑛(𝑡)𝑠𝑖𝑛(𝑛𝜃)) (5.49) 

Let 

𝑎𝑛(𝑡) = 2𝑅𝑛(𝑡)      ;      𝑏𝑛(𝑡) = −2𝐼𝑛(𝑡)      ;    𝑎0(𝑡) = 𝐴0 =
1

2𝜋
∫ 𝑉(𝜃, 𝑡)

𝜋

−𝜋

𝑑𝑡 (5.50) 

then 
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𝑆𝑎𝑛𝑎𝑛
(𝜔) = 𝑆𝑏𝑛𝑏𝑛

(𝜔) = 2𝑆𝑛𝑛(𝜔) (5.51) 

𝑆𝑎𝑛𝑏𝑛
(𝜔) = 𝑆𝑏𝑛𝑎𝑛

(𝜔) = 0 (5.52) 

Thus for the frequency range of interest, equivalent to 0 ≤ 𝑛 ≤ 6, when all the 𝑛𝑡ℎ and (– 𝑛)𝑡ℎ 

terms are combined, the wind speed including the mean �̅� is, 

𝑉(𝜃, 𝑡) = �̅� + 𝑎0(𝑡) + [𝑎1(𝑡) cos(𝜃) + 𝑏1(𝑡) sin(𝜃)] +

+ [𝑎2(𝑡) cos(2𝜃) + 𝑏2(𝑡) sin(2𝜃)] +

+ [𝑎3(𝑡) cos(3𝜃) + 𝑏3(𝑡) sin(3𝜃)] +

+ [𝑎4(𝑡) cos(4𝜃) + 𝑏4(𝑡) sin(4𝜃)] +

+ [𝑎5(𝑡) cos(5𝜃) + 𝑏5(𝑡) sin(5𝜃)] +

+ [𝑎6(𝑡) cos(6𝜃) + 𝑏6(𝑡) sin(6𝜃)] 

    

(5.53) 

For the special case when blades rotate at a constant speed, it is possible to extract, from the 

wind-field, the effective wind speed for the blades. For a generic component in (5.53), 

𝑎𝑛 cos(𝑛𝜃) + 𝑏𝑛 sin(𝑛𝜃) with 𝜃 = 𝜔𝑜𝑡 + 𝛿, where the 𝜔𝑜 is a constant rotor speed and 𝛿 an 

angular offset, the cross-covariance between two points rotating at 𝜔𝑜 is 

𝐸[(𝑎𝑛(𝑡) cos(𝑛𝜔𝑜𝑡 + 𝑛𝛿1) + 𝑏𝑛(𝑡) sin(𝑛𝜔𝑜𝑡 + 𝑛𝛿1)) 

(𝑎𝑛(𝑡 + 𝜏) cos(𝑛𝜔𝑜(𝑡 + 𝜏) + 𝑛𝛿2) + 𝑏𝑛(𝑡 + 𝜏) sin(𝑛𝜔𝑜(𝑡 + 𝜏) + 𝑛𝛿2))] =

= 𝐸[𝑎𝑛(𝑡) cos(𝑛𝜔𝑜𝑡 + 𝑛𝛿1)𝑎𝑛(𝑡 + 𝜏) cos(𝑛𝜔𝑜(𝑡 + 𝜏) + 𝑛𝛿2)] +

+ 𝐸[𝑏𝑛(𝑡) sin(𝑛𝜔𝑜𝑡 + 𝑛𝛿1)𝑏𝑛(𝑡 + 𝜏) sin(𝑛𝜔𝑜(𝑡 + 𝜏) + 𝑛𝛿2)] =

= 𝑐𝑜𝑠(𝑛𝜔𝑜𝑡 + 𝑛𝛿1) cos(𝑛𝜔𝑜(𝑡 + 𝜏) + 𝛿2) 𝑅𝑎𝑛𝑎𝑛
(𝜏) +

+ 𝑠𝑖𝑛(𝑛𝜔𝑜𝑡 + 𝑛𝛿1) sin(𝑛𝜔𝑜(𝑡 + 𝜏) + 𝑛𝛿2) 𝑅𝑏𝑛𝑏𝑛
(𝜏) =

= 𝑐𝑜𝑠(𝑛𝜔𝑜𝜏 + 𝑛(𝛿2 − 𝛿1))𝑅𝑎𝑛𝑎𝑛
(𝜏) 

(5.54) 

Since (5.54) is stationary the cross-spectral density function (Fourier transform of the cross-

covariance), can be obtained such 
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1

2𝜋
ℱ[𝑐𝑜𝑠(𝑛𝜔𝑜𝜏 + 𝑛(𝛿2 − 𝛿1))] ⋇ 2𝑆𝑛𝑛(𝜔) =

=
1

𝜋
𝑐𝑜𝑠(𝑛𝛿2 − 𝑛𝛿1)ℱ[𝑐𝑜𝑠(𝑛𝜔𝑜𝜏)] ⋇ 𝑆𝑛𝑛(𝜔) −

−
1

𝜋
𝑠𝑖𝑛(𝑛𝛿2 − 𝑛𝛿1)ℱ[𝑠𝑖𝑛(𝑛𝜔𝑜𝜏)] ⋇ 𝑆𝑛𝑛(𝜔) =

= 𝑐𝑜𝑠(𝑛𝛿2 − 𝑛𝛿1)[𝑆𝑛𝑛(𝜔 + 𝑛𝜔𝑜) + 𝑆𝑛𝑛(𝜔 − 𝑛𝜔𝑜)] +

+ 𝑗𝑠𝑖𝑛(𝑛𝛿2 − 𝑛𝛿1)[−𝑆𝑛𝑛(𝜔 + 𝑛𝜔𝑜) + 𝑆𝑛𝑛(𝜔 − 𝑛𝜔𝑜)] =

= 𝑒−𝑗𝑛(𝛿2−𝛿1)𝑆𝑛𝑛(𝜔 + 𝑛𝜔𝑜) + 𝑒𝑗𝑛(𝛿2−𝛿1)𝑆𝑛𝑛(𝜔 − 𝑛𝜔𝑜) =

= 𝑒𝑗(−𝑛)(𝛿2−𝛿1)𝑆(−𝑛)(−𝑛)(𝜔 + 𝑛𝜔𝑜) + 𝑒𝑗𝑛(𝛿2−𝛿1)𝑆𝑛𝑛(𝜔 − 𝑛𝜔𝑜) 

(5.55) 

Hence, the summation over the terms, with 𝑛 = 0, … ,6, with Δ𝛿 = 𝛿2 − 𝛿1, becomes 

𝑆𝑉1𝑉2
(𝜔,Δ𝛿) = ∑ 𝑆𝑛𝑛(𝜔 − 𝑛𝜔𝑜)𝑒𝑗𝑛(Δ𝛿)

6

𝑛=0

 

(5.56) 

which, with 𝑛 = −∞, … , ∞, is the same as the spectra proposed in [28] namely,  

𝑆𝑉1𝑉2
(𝜔,Δ𝛿) = ∑ 𝑆𝑛𝑛(𝜔 − 𝑛𝜔𝑜)𝑒𝑗𝑛(Δ𝛿)

∞

𝑛=−∞

= ∑ �̃�𝑛𝑛
𝑒 (𝜔 − 𝑛𝜔𝑟)𝑒𝑖𝑛∆𝜓

∞

𝑛=−∞

= 𝑆𝑒(𝜔, ∆𝜓) 
(5.57) 

Whereas [28] then proceeded with the spectral factorisation of the blade effective wind speeds, 

here the spectra for the wind-field components themselves are spectrally factorised. Having 

obtained this wind-field spectral factorisation, it can be applied to blades at any position 

whether stationary or varying rotor speed. 

5.2.1.1. Spectral Factorisation 

The 𝑆𝑛𝑛(𝜔) from (5.39) is determined for two different weighting functions. This is because 

the effective wind speeds that induce forces on the WT are better described by a uniform 

weighting, denoted in here with the suffix 𝑥𝑥, whereas for torques and bending moments a 

linear weighting is more appropriate, denoted in here by suffix 𝑦𝑦. The forces and moments 

clearly cross-correlate, with the cross terms being denoted by suffix 𝑥𝑦. Hence, it is appropriate 

to consider a 2 × 2 matrix which requires spectral factorisation. 

When accounting for the appropriate weighting functions, 𝑆𝑛𝑛(𝜔) takes the following forms 
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 Both weighting functions are uniform 

𝑆𝑥𝑥(𝜔) = [
1

2𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 
2𝜋

0

] 𝑆𝑣(𝜔) =

= [
2

2𝜋
∫ 𝑑𝑟1

𝑅

0

1

𝑅
∫ 𝑑𝑟2

𝑅

0

1

𝑅
∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 

𝜋

0

] 𝑆𝑣(𝜔) =

= [
1

𝜋𝑅2
∫ 𝑑𝑟1

𝑅

0

∫ 𝑑𝑟2

𝑅

0

∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 
𝜋

0

] 𝑆𝑣(𝜔) =

= [
𝑅2

𝜋𝑅2
∫ 𝑑𝑟1̅

1

0

∫ 𝑑𝑟2̅

1

0

∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙̅ 
𝜋

0

] 𝑆𝑣(𝜔) 

(5.58) 

 Both weighting function are linear 

𝑆𝑦𝑦(𝜔) = [
1

2𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 
2𝜋

0

] 𝑆𝑣(𝜔) =

= [
2

2𝜋
∫ 𝑑𝑟1

𝑅

0

2𝑟1

𝑅2
∫ 𝑑𝑟2

𝑅

0

2𝑟2

𝑅2
∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 

𝜋

0

] 𝑆𝑣(𝜔) =

= [
4

𝜋𝑅4
∫ 𝑟1𝑑𝑟1

𝑅

0

∫ 𝑟2𝑑𝑟2

𝑅

0

∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 
𝜋

0

] 𝑆𝑣(𝜔) =

= [
4𝑅2𝑅2

𝜋𝑅4
∫ 𝑟1̅𝑑𝑟1̅

1

0

∫ 𝑟2̅𝑑𝑟2̅

1

0

∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙̅ 
𝜋

0

] 𝑆𝑣(𝜔) 

(5.59) 

 One weighting function is uniform and one is linear 

𝑆𝑥𝑦(𝜔) = [
1

2𝜋
∫ 𝑑𝑟1

𝑅

0

𝑊1(𝑟1) ∫ 𝑑𝑟2

𝑅

0

𝑊2(𝑟2) ∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 
2𝜋

0

] 𝑆𝑣(𝜔) =

= [
2

2𝜋
∫ 𝑑𝑟1

𝑅

0

2𝑟1

𝑅2
∫ 𝑑𝑟2

𝑅

0

1

𝑅
∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 

𝜋

0

] 𝑆𝑣(𝜔) =

= [
2

𝜋𝑅3
∫ 𝑟1𝑑𝑟1

𝑅

0

∫ 𝑑𝑟2

𝑅

0

∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙 
𝜋

0

] 𝑆𝑣(𝜔) =

= [
2𝑅2𝑅

𝜋𝑅3
∫ 𝑟1̅𝑑𝑟1̅

1

0

∫ 𝑑𝑟2̅

1

0

∫ 𝑑𝜃𝑐𝑜𝑠(𝑛𝜃)𝑒−𝑥𝑙̅ 
𝜋

0

] 𝑆𝑣(𝜔) 

(5.60) 
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The standard method of generating correlated wind speeds for simulating a wind-field model 

follows the Veers algorithm [37] which is based on the Shinozuka cross-spectral density 

function algorithm [38]. This method is frequently found in literature and exploited by 

commercial codes such as TurbSim by NREL [39][40]. 

It essentially follows the principle that for a given spectral density function matrix, 𝑆(𝜔), a 

matrix 𝐻(𝜔),  can be determined by spectrally factorising 𝑆(𝜔), such that  

[𝑆(𝜔)] =  𝐻(𝜔) 𝐻𝑇(𝜔) (5.61)7 

Consistently with 𝑆(𝜔) being real, 𝐻(𝜔) has been chosen to be real and therefore 𝐻(𝜔) =

𝐻∗(𝜔). Here, the elements of the matrix 𝐻 of size 2 × 2 are: 

 

𝐻11 =  𝑆11
1/2

 

𝐻12 = 0       

𝐻21 =  
𝑆21

𝐻11
  

  𝐻22 =  (𝑆22 − 𝐻21
2 )1/2 

 

(5.62) 

Using the 𝐻 matrix as a frequency response function matrix, with an input consisting of a vector 

of 2 independent frequency representations of white noise, Ω1(𝜔) and Ω2(𝜔), it yields 2 

correlated turbulent wind speeds 𝑉1(𝜔) and 𝑉2(𝜔).   

Therefore when discretising time, 𝑡, in the frequency domain, indexed by 𝑖 = 1, … , 𝑁, the 

turbulent wind speeds 𝑉1(𝜔), 𝑉2(𝜔) and the frequency response elements 𝐻11(𝜔) , 𝐻21(𝜔) 

and 𝐻22(𝜔) all become vectors, with the values of the elements corresponding to the 

discretisation,  

𝑉1(𝜔𝑖) =  𝐻11(𝜔𝑖)Ω1 (𝜔𝑖) + 𝐻12(𝜔𝑖)Ω2 (𝜔𝑖) 

𝑉2(𝜔𝑖) =  𝐻21(𝜔𝑖)Ω1 (𝜔𝑖) + 𝐻22(𝜔𝑖)Ω2 (𝜔𝑖) 

(5.63) 

                                                      

 

7 the T in (5.61) stands for Hermitian, not transpose. complex conjugated and transposed 
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Ω𝑘 (𝜔𝑖) = [

𝑒−𝑗𝜃𝑖=1

𝑒−𝑗𝜃2

⋮
𝑒−𝑗𝜃𝑁

] 

where, 𝑘 = 1, 2. For each 𝑘, 𝜃𝑖, is a uniformly distributed random variable with domain [0, 2𝜋]. 

By taking the inverse fast Fourier transform (iFFT) of 𝑉1(𝜔) and 𝑉2(𝜔), the turbulent wind 

speeds time series are computed. [40][41] 

Whilst the above standard form of spectral factorisation suffices for generating wind speed 

time series with the correct characteristics, the 𝐻(𝜔𝑖) are by necessity non-causal in nature 

since they have been chosen to be real. Hence, the 𝐻(𝜔𝑖) defined in this way are not suitable 

for incorporation into dynamic models used when designing controllers or observers. 

Consequently transfer function based models of the wind speeds/wind-field are required since 

these can be chosen causal8 and stable9. This approach [9][13], is described below. 

Following (5.39), the auto-spectrum and cross-spectrum can be reformulated as 

𝑆𝑥𝑥(𝜔) = 𝜙𝑥𝑥
𝑅 (𝑥)𝑆𝑣(𝜔) (5.64) 

𝑆𝑦𝑦(𝜔) = 𝜙𝑦𝑦
𝑅 (𝑥)𝑆𝑣(𝜔) (5.65) 

𝑆𝑥𝑦(𝜔) = 𝜙𝑥𝑦
𝑅 (𝑥)𝑆𝑣(𝜔) (5.66) 

where the 𝜙𝑅 are the terms in the square brackets in (5.58), (5.59) and (5.60). By definition the 

spectrums 𝑆𝑥𝑥(𝜔), 𝑆𝑥𝑦(𝜔) and 𝑆𝑦𝑦(𝜔) are real. 

The uniform and linear wind can be represented by the spectral matrix 

[
𝑆𝑥𝑥(𝜔) 𝑆𝑥𝑦(𝜔)

𝑆𝑥𝑦(𝜔) 𝑆𝑦𝑦(𝜔)
] = [

𝜙𝑥𝑥
𝑅 (𝑥)𝑆𝑣(𝜔) 𝜙𝑥𝑦

𝑅 (𝑥)𝑆𝑣(𝜔)

𝜙𝑥𝑦
𝑅 (𝑥)𝑆𝑣(𝜔) 𝜙𝑦𝑦

𝑅 (𝑥)𝑆𝑣(𝜔)
] (5.67) 

with the most general spectral factorisation of (5.67) having the form 

𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑠) = 𝑓1(𝑠)𝜔1 + (𝑓3(𝑠)𝑓4(𝑠))𝜔3 = 𝑓1(𝑠)𝜔1 + 𝑓31(𝑠)𝜔3 (5.68) 

                                                      

 

8 A system is causal if its outputs only depends on the past and present inputs 
9 A system is stable if its output is absolutely integrable 
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𝑉𝑙𝑖𝑛𝑒𝑎𝑟(𝑠) = 𝑓2(𝑠)𝜔2 +
𝑓3(𝑠)

𝑓4(−𝑠)
𝜔3 = 𝑓2(𝑠)𝜔2 + 𝑓32(𝑠)𝜔3 (5.69) 

where 𝜔1, 𝜔2 and 𝜔3 are independent frequency domain representations of point wind speeds 

all with spectra 𝑆𝑣(𝜔). The spectral factorisation is done such that the filters 𝑓1, 𝑓2 and 𝑓3 are 

stable and causal 10 and such that 𝑓4(𝑠) and  𝑓4
−1(𝑠) are stable and proper. Note the negative 

sign on the denominator of (5.69), this is a correction applied to (2.65). It follows that, 

|𝑓1(𝑗𝜔)|2 = 𝜙𝑥𝑥
𝑅 (𝑥) − 𝜙𝑥𝑦

𝑅 (𝑥) 𝜓(𝑥) (5.70) 

|𝑓2(𝑗𝜔)|2 = 𝜙𝑦𝑦
𝑅 (𝑥) −

𝜙𝑥𝑦
𝑅 (𝑥)

𝜓(𝑥)
 

(5.71) 

|𝑓3(𝑗𝜔)|2 = 𝜙𝑥𝑦
𝑅 (𝑥) (5.72) 

|𝑓4(𝑗𝜔)|2 = 𝜓(𝑥) (5.73) 

where the spectrum 𝜓(𝑥) is chosen so 𝜓(0) = 1 and (3.70) and (3.71) are greater than zero for 

all 𝑥. 

The discretised independent point wind speeds are calculated making sure that they will be real 

and symmetric about the midpoint of [1, 𝑁]. This is done by making the double-sided Kaimal 

spectrum periodic between the negative of the Nyquist rate and the Nyquist rate. Its spectral 

factorisation, discretised over [1, 𝑁], is then multiplied by the FFT of a randomly generated set 

of values of white noise. Finally by applying the iFFT, the point wind speeds are brought back 

to the time domain.  

For an 𝑛𝑡ℎ term in (5.53), the wind speed in the frequency domain corresponding to uniform 

weighting is derived from (5.68), that is, 

𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑡) = 𝑎𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(t)cos(𝑛𝜃) + 𝑏𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(t) sin(𝑛𝜃) (5.74) 

where 𝑎𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(t) and 𝑏𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(t) in the frequency domain are 

                                                      

 

10 It is obvious that 𝑓1 and 𝑓2 will have to account in their definitions for the presence of the cross-term 𝑓3 and thus 

by introducing 𝑓4 directly in the cross-term, it is effectively also being introduced into 𝑓1 and 𝑓2 



 

 

127 

 

𝑎𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓1(𝑠)𝜔1 + 𝑓31(𝑠)𝜔3 (5.75) 

𝑏𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓1(𝑠)𝜔4 + 𝑓31(𝑠)𝜔6 (5.76) 

with 𝜔1, 𝜔3, 𝜔4 and 𝜔6 independent point wind speeds. 

Similarly, the wind speed corresponding to the linear weighting is derived from (5.69) such, 

𝑉𝑙𝑖𝑛𝑒𝑎𝑟(𝑡) = 𝑎𝑛 𝑙𝑖𝑛𝑒𝑎𝑟(t)cos(𝑛𝜃) + 𝑏𝑛 𝑙𝑖𝑛𝑒𝑎𝑟(t) sin(𝑛𝜃) (5.77) 

where 𝑎𝑛 𝑙𝑖𝑛𝑒𝑎𝑟(t) and 𝑏𝑛 𝑙𝑖𝑛𝑒𝑎𝑟(t) in the frequency domain are 

𝑎𝑛 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦  = 𝑓2(𝑠)𝜔2 + 𝑓32(𝑠)𝜔3 (5.78) 

𝑏𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑓2(𝑠)𝜔5 + 𝑓32(𝑠)𝜔6 (5.79) 

with 𝜔2, 𝜔3, 𝜔5 and 𝜔6 independent point wind speeds. 

Note that the cross terms 𝑓31 and 𝑓32 share the same point wind speed, that is 𝜔3 for the 𝑎(∙) 

coefficients and 𝜔6 for the 𝑏(∙) coefficients. 

The derivation of the filters 𝑓1, 𝑓2, 𝑓3 and 𝑓4 is achieved by following the procedure reported in 

[9] and can be found in Appendix B.  

The full set of transfer functions corresponding to the wind-field model are given below in 

generic form, Table 5-2 to Table 5-8, together with the spectrum and illustrative time series for 

a wind with mean speed of 15m/s and 10% of turbulence intensity, after being rotationally 

sampled by a rotor with radius of 63m. For 𝑙𝑎𝑦𝑒𝑟 𝑷 = 0 the spectrum and time series for linear 

weighting is shown in Figure 5-8 and Figure  5-9, and for uniform weighting in Figure 5-10 

and Figure 5-11. The corresponding figures for 𝑙𝑎𝑦𝑒𝑟 𝑷 = 1 are shown in Figure 5-12, Figure 

5-13, Figure 5-14 and Figure 5-15. For 𝑙𝑎𝑦𝑒𝑟 𝑷 = 2 in Figure 5-16, Figure 5-17, Figure 5-18 

and Figure 5-19. For 𝑙𝑎𝑦𝑒𝑟 𝑷 = 3 in Figure 5-20, Figure 5-21, Figure 5-22 and Figure 5-23. 

For 𝑙𝑎𝑦𝑒𝑟 𝑷 = 4 in Figure 5-24, Figure 5-25, Figure 5-26 and Figure 5-27. For 𝑙𝑎𝑦𝑒𝑟 𝑷 = 5 

in Figure 5-28, Figure 5-29, Figure 5-30 and Figure 5-31. Finally, for 𝑙𝑎𝑦𝑒𝑟 𝑷 = 6 in Figure 

5-32, Figure 5-33, Figure 5-34 and to Figure 5-35. 
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These spectra and time series effectively represent the stochastic component of the wind only11, 

as WS and TS are treated as a further addition to it as seen in Figure 5-2. For the illustrative 

examples 𝜎 = 5.46 and the azimuth angle that drives the effective wind-field model is 

generated by a 5MW WT simulation. The data used in the spectrum of the wind have not been 

detrended. 

Following the discussion at the end of Section 5.2.1, it is interesting at this point to compare 

the gains for the frequency response functions proposed by [28] (as reported in Section 

2.2.4.2.3) with their counterparts in the proposed effective wind-field model, see Figure 5-7. 

The frequency response functions from [28] generate effective wind speeds for a rotating blade 

with corresponding spectral density functions proportional to their magnitude squared. The 

frequency response functions developed here, generate an effective wind-field with 

corresponding double-sided spectral density functions. When this wind-field is sampled by a 

blade rotating at constant rotational velocity, the centre of the double-sided spectrum for the 

nth-layer component is shifted to nP; that is, the spectral peaks induced by rotational sampling 

are now double peaks, symmetric about their centre, rather than the single peaks in [28]. Figure 

5-7 shows the single-sided spectra.  

From Figure 5-7, it can be seen that the roll-off rates for the frequency response functions from 

[28] are in the range 40 to 50dB per decade whereas in the proposed effective wind-field model 

he roll-off rates are 20dB per decade. 

                                                      

 

11 Remember that the linear weighting is used in the stochastic component of the wind to induce moments and 

the uniform weighting to induce forces, most specifically the thrust. 
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c) 

  

d) 

Figure 5-7. Comparison between the transfer functions proposed by [28] in the left hand-side column and their counterpart transfer functions in 

the proposed effective wind-field model in the right hand-side column for: a) n = 0, b) n = 1, c) n = 2, d) n = 3  
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𝒏 = 𝟎 

𝒇𝟏 
2.1132 (σs + 137.8) (σs + 31.62) (σs + 8.867) (σs + 3) (σs + 0.2285) (σs + 0.01795) (σs + 0.001795) 

(σs + 167.3) (σs + 36.06) (σs + 12.33) (σs + 4.123) (σs + 3.162) (σs + 0.5476) (σs + 0.06327) (σs + 0.003077)
 

𝒇𝟑𝟏 
 1.2063 (σs + 173.2) (σs + 1.414)

(σs + 132.3) (σs + 3.162) (σs + 0.7069)
 

𝒇𝟑𝟐 
 1.2063 (σs + 173.2) (σs + 1.414)

(σs + 132.3) (σs + 3.162) (σs + 0.7069)
 

𝒇𝟐 
14.009 (σs + 6.11) (σs + 4.472) (σs + 0.3504) (σs + 0.02414) (σs + 0.002414)

(σs + 47.96) (σs + 3.873) (σs + 3.162) (σs + 3) (σs + 0.7069) (σs + 0.08369) (σs + 0.005119)
 

Table 5-2. Transfer function terms for layer P corresponding to 𝑛 = 0 
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Figure 5-8. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 0 with linear 

weighting 

 
Figure  5-9. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 0 with linear 

weighting 

 
Figure 5-10. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 0 with uniform 

weighting 

 
Figure 5-11. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 0 with uniform 

weighting 
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𝒏 = 𝟏 

𝒇𝟏 1.6432 (σs + 31.62) (σs + 1.949)4 (σs + 0.04958) (σs + 0.0006246)

(σs + 67.06) (σs + 7.556) (σs + 5) (σs + 4.399) (σs + 1.437) (σs + 0.942) (σs + 0.38) (σs + 0.0038)
 

𝒇𝟑𝟏 1.2894 (σs − 7.112) (σs − 1.414) (σs + 0.1588) (σs + 0.0143) (σs + 0.00143)

(σs + 7.681) (σs + 3.873) (σs + 1.517) (σs + 0.3956) (σs + 0.05101) (σs + 0.003476)
 

𝒇𝟑𝟐 1.2069 (σs − 7.681) (σs − 1.517) (σs + 0.1588) (σs + 0.0143) (σs + 0.00143)

(σs + 7.112) (σs + 3.873) (σs + 1.414) (σs + 0.3956) (σs + 0.05101) (σs + 0.002934)
 

𝒇𝟐 0.39122 (σs + 0.6478) (σs + 0.2832) (σs + 0.2646) (σs + 0.01564) (σs + 0.001564)

(σs + 4) (σs + 1.622) (σs + 1.614) (σs + 0.1093) (σs + 0.06327) (σs + 0.003618)
 

Table 5-3. Transfer function terms for layer P corresponding to 𝑛 = 1 
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Figure 5-12. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 1 with linear 

weighting 

 
Figure 5-13. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 1 with linear 

weighting 

 
Figure 5-14. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 1 with uniform 

weighting 

 
Figure 5-15. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 1 with uniform 

weighting 
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𝒏 = 𝟐 

𝒇𝟏 2.3069 (σs + 352.1) (σs + 0.9793) (σs + 0.01085)

 (σs + 650) (σs + 35.5) (σs + 2.198) (σs + 0.1671)
 

𝒇𝟑𝟏 1.3419 (σs − 11.62) (σs − 5.568) (σs + 11.62) (σs + 5.569) (σs + 0.3811) (σs + 0.02888) (σs + 0.001263)

(σs + 12.25) (σs + 11.62) (σs + 6.44) (σs + 5.655) (σs + 5.568) (σs + 1.074) (σs + 0.1139) (σs + 0.003808)
 

𝒇𝟑𝟐  1.1923 (σs − 12.25) (σs − 6.442) (σs + 12.25) (σs + 6.44) (σs + 0.3811) (σs + 0.02888) (σs + 0.001263)

(σs + 12.25) (σs + 11.62) (σs + 6.442) (σs + 5.655) (σs + 5.569) (σs + 1.074) (σs + 0.1139) (σs + 0.003808)
 

𝒇𝟐 0.56648 (σs + 0.8087) (σs + 0.02453) (σs + 0.002453)

(σs + 6.327) (σs + 5.292) (σs + 0.1094) (σs + 0.00552)
 

Table 5-4. Transfer function terms for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 2 
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Figure 5-16. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 2 with linear 

weighting 

 
Figure 5-17. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 2 with 

linear weighting 

 
Figure 5-18. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 2 with uniform 

weighting 

 
Figure 5-19. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 2 with uniform 

weighting 
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𝒏 = 𝟑 

𝒇𝟏 1.241 s (σs + 0.3873) ((σs)2  +  25.21σs +  192.6)

(σs + 61.64) (σs + 20) (σs + 7.071) (σs + 1.619) (σs + 0.08944)
 

𝒇𝟑𝟏 1.4318 (σs − 15.3) (σs − 6.403) (σs + 6.403) (σs + 15.3) (σs + 0.5897) (σs + 0.02828)

(σs + 18.71) (σs + 15.3) (σs + 7.746) (σs + 7.106) (σs + 6.403) (σs + 1.619) (σs + 0.1732)
 

𝒇𝟑𝟐 1.2649 (σs − 17.32) (σs − 7.106) (σs + 7.106) (σs + 15.81) (σs + 0.5897) (σs + 0.02828)

(σs + 17.32) (σs + 15.3) (σs + 7.746) (σs + 7.106) (σs + 6.403) (σs + 1.619) (σs + 0.1732)
 

𝒇𝟐 0.57446 s (σs + 3) (σs + 0.5725) ((σs)2  +  163σs +  8746)

(σs + 128.5) (σs + 52.92) (σs + 15.3) (σs + 5.675) (σs + 1.619) (σs + 0.1448)
 

Table 5-5. Transfer function terms for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 3 
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Figure 5-20. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 3 with linear 

weighting 

 
Figure 5-21. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 3 with linear 

weighting 

 
Figure 5-22. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 3 with uniform 

weighting 

 
Figure 5-23. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 3 with uniform 

weighting 
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𝒏 = 𝟒 

𝒇𝟏 
1.3237 (σs + 59.15) (σs + 9.902) (σs + 9.43) (σs + 6.858) (σs + 0.6841) (σs + 0.05877) (σs + 0.005877)

(σs + 134.2) (σs + 24.14) (σs + 12.65) (σs + 11.18) (σs + 4.142) (σs + 2.97) (σs + 0.2098) (σs + 0.01556)
 

𝒇𝟑𝟏 
1.4408 (σs − 38.73) (σs − 8.829) (σs + 0.6061) (σs + 0.04064) (σs + 0.00244)

(σs + 44.72) (σs + 10.72) (σs + 9.999) (σs + 1.766) (σs + 0.1762) (σs + 0.006787)
 

𝒇𝟑𝟐 
1.179 (σs − 44.72) (σs − 9.999) (σs + 0.6061) (σs + 0.04064) (σs + 0.004064)

(σs + 38.73) (σs + 10.72) (σs + 8.829) (σs + 1.766) (σs + 0.1762) (σs + 0.0122)
 

𝒇𝟐 
0.61479 σs (σs + 42.43) (σs + 2.09) (σs + 0.1433)

(σs + 52.92) (σs + 13.42) (σs + 5.817) (σs + 0.5412) (σs + 0.03742)
 

Table 5-6. Transfer function terms for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 4 
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Figure 5-24. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 4 with linear 

weighting 

 
Figure 5-25. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 4 with linear 

weighting 

 
Figure 5-26. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 4 with uniform 

weighting 

 
Figure 5-27. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 4 with uniform 

weighting 
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𝒏 = 𝟓 

𝒇𝟏 1.2209 σs (σs + 42.43) (σs + 7.584) (σs + 0.7925) (σs + 0.07226)

(σs + 110.9) (σs + 17.6) (σs + 12.84) (σs + 2.371) (σs + 0.2469) (σs + 0.01871)
 

𝒇𝟑𝟏 1.3884 σs (σs − 34.64) (σs − 8.829) (σs + 0.7925) (σs + 0.07226)

(σs + 41.23) (σs + 12.65) (σs + 9.539) (σs + 2.371) (σs + 0.2469) (σs + 0.01871)
 

𝒇𝟑𝟐 1.1909 σs (σs − 41.23) (σs − 9.539) (σs + 0.7925) (σs + 0.07226)

 (σs + 34.64) (σs + 12.65) (σs + 8.829) (σs + 2.371) (σs + 0.2469) (σs + 0.01871)
 

𝒇𝟐  0.58333 σs (σs + 41.23) (σs + 11) (σs + 0.9631) (σs + 0.07226)

(σs + 56.55) (σs + 15.66) (σs + 13.04) (σs + 2.97) (σs + 0.2664) (σs + 0.01871)
 

Table 5-7. Transfer function terms for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 5 
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Figure 5-28. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 5 with linear 

weighting 

 
Figure 5-29. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 5 with linear 

weighting 

 
Figure 5-30. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 5 with uniform 

weighting 

 
Figure 5-31. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 5 with uniform 

weighting 
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𝒏 = 𝟔 

𝒇𝟏 
1.3229 (σs + 63.27) (σs + 1.098) (σs + 0.07031)

(σs + 144.9) (σs + 33.17) (σs + 4.463) (σs + 0.2738)
 

𝒇𝟑𝟏 
1.4268 (σs − 41.83) (σs − 11.66) (σs + 0.9506) (σs + 0.09702)

(σs + 48.99) (σs + 15.49) (σs + 12.67) (σs + 2.731) (σs + 0.3037)
 

𝒇𝟑𝟐 
1.2627 (σs − 48.99) (σs − 12.67) (σs + 0.9506) (σs + 0.09702)

(σs + 41.83) (σs + 15.49) (σs + 11.66) (σs + 2.731) (σs + 0.3037)
 

𝒇𝟐 
5.4772 × 105 (σs + 22.22) (σs + 7.507) (σs + 0.9447) (σs + 0.06105)

(σs + 999.9) (σs + 894.3) (σs + 51.91) (σs + 11.66) (σs + 9.593) (σs + 2.976) (σs + 0.2289)
 

Table 5-8. Transfer function terms for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 6 



 

 

144 

 

 

Figure 5-32. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 6 with linear 

weighting 

 

Figure 5-33. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 6 with linear 

weighting 

 

Figure 5-34. Spectrum for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 6 with uniform 

weighting 

 

Figure 5-35. Time series for 𝑙𝑎𝑦𝑒𝑟 𝑃 corresponding to 𝑛 = 6 with uniform 

weighting 
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5.2.2. Results for the Stochastic Component of the Effective Wind-Field Model 

Before analysing the results for the induced moments and forces by the stochastic component 

of the wind-field, the spectra and time series of the stochastic component of the wind-field 

itself, for both the rotor and single blade, are presented for a wind-field with 15m/s mean and 

10% TI. 

The spectrum of the stochastic component of the wind-field with linear weighting and its time 

series (used for inducing moments) can be found in Figure 5-36 and Figure 5-37. Similarly, the 

spectrum and time series for uniform weighting (used for inducing thrust) can be found in 

Figure 5-38 and Figure 5-39. Both cases contain all the necessary 𝑙𝑎𝑦𝑒𝑟 𝑷 structures for the 

rotor in the simple model (which induces 0, 3 and 6P) and their time series12. The data used in 

the spectrum of the wind have not been detrended. 

                                                      

 

12 The rotor in the triple structure uses 3 wind-field models like the one that drives the single blade, each one of 

which has a 120 degree of azimuthal offset with respect to each other, in order to represent the three blades. 
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Figure 5-36. Spectrum of the stochastic component of wind-field for 

inducing moments at the rotor by the simple model 

 
Figure 5-37. Time series of the stochastic component of wind-field for 

inducing moments at the rotor by the simple model 

 
Figure 5-38. Spectrum of the stochastic component of wind-field for 

inducing thrust at the rotor by the simple model 

 
Figure 5-39. Time series of the stochastic component of wind-field for 

inducing thrust at the rotor by the simple model 
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From Figure 5-40 to Figure 6-39, the spectrum of the wind with linear and uniform weighting, 

containing all the necessary 𝑙𝑎𝑦𝑒𝑟 𝑷 structures for the single blade (inducing 0, 1, 2, 3, 4, 5 

and 6P) and their time series can be seen. 

 

Figure 5-40. Spectrum of the stochastic component of wind-field for inducing moments at a 

single blade 

 

Figure 5-41. Time series of the stochastic component of wind-field for inducing moments at a 

single blade  

As expected, the shape of the induced nP peaks are consistent with the characteristic shape of 

a stochastic signal as described in Chapter 2. 

In the following, the results for a representative moment for which Separability applies, that is 

in-plane hub torque and for a representative moment for which Separability does not apply, 

that is out-of-plane RBM of a blade, are analysed for the stochastic component of the wind-

field. In Appendix C the results for the thrust force, the in-plane RBM of the blade, the 

edgewise moment of the blade, 𝑀𝑒, the flapwise moment of the blade, 𝑀𝑓, the rotor speed and 

the pitch angle of the blades, can be found. Unless otherwise stated, the dynamics of the WT 

have been supressed to better understand the impact of the effective wind-field model. 

10
-2

10
-1

10
0

10
1

10
2

10
-6

10
-4

10
-2

10
0

10
2

10
4

Frequency (rad/s)

P
S

D
 (

-2 /r
ad

)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

1.8826

1.8828

1.883

1.8832

1.8834

1.8836

1.8838

1.884

1.8842
x 10

4

C
um

ul
at

iv
e 

P
S

D
 (

-2 )

wind_linear_blade_stochastic

0 100 200 300 400 500 600
13.5

14

14.5

15

15.5

16

16.5

17

time (s)

 

 

wind_linear_blade_stochastic



 

 

148 

 

The in-plane hub torque and out-of-plane RBM are both considered within the domain 

Separability applies, that is the above rated wind speed 15m/s, and outside the domain, that is 

the below rated wind speed 8m/s. The scenario of  15m/s with 18 degrees of pitch offset, which 

is on the boundaries of Separability and is subject to the non-linearity effects of  𝜏(∙), is also 

explored as part of the region of applicability of Separability as the WT should be able to return 

to the point of equilibrium when such a disturbance is applied. At this stage, the gravity 

component is switched off in the models to allow for a clearer visualisation of the results from 

the simulations. 

When looking at the results for the in-plane hub torque, which is the moment for which 

Separability applies, it is clear that in the two cases, for which the wind speed lies within the 

region of applicability of Separability, that is Figure 5-42 to Figure 5-44 for the 15m/s case and 

Figure 5-45 to Figure 5-47 for the 15m/s with 18 degrees of pitch offset, the match between 

the simple and triple model is remarkable, especially for the 15m/s with no pitch offset case. 

Overall, no leakage is observed as expected as a consequence of Separability. When 

interrogating the region outside the region of applicability of Separability, that is 8m/s, the 

results, Figure 5-48 to Figure 5-49, indicate that for the in-plane hub torque in the stochastic 

case, there is no presence of leakage. An explanation for good results while tracking the 𝐶𝑝 𝑚𝑎𝑥 

tracking curve is that in this region there is only one variable left in the definition of torque, 

that is, the wind speed. In addition, the perturbations about the 𝜆 are small with 𝑉 = �̅� + ∆𝑉 

and everything else is constant. Therefore, using Taylor’s series expansion 

𝑇 =
1

2
𝜌𝐴𝑉2𝑅

𝐶𝑝(𝜆, 𝛽)

𝜆
= 𝑘𝑉2 = 𝑘�̅�2 (1 +

2∆𝑉

�̅�
+ (

∆𝑉

�̅�
)

2

) (5.80) 

There is still a form of separation, albeit not that of the Separability property being exploited 

here. Furthermore, the squared term in the expansion is small and can be discounted, giving an 

approximately linear relationship between the torque and the wind speed, 

𝑇 ≅ 𝑘�̅�2 (1 +
2∆𝑉

�̅�
) (5.81) 

The out-of-plane RBM of the blade has been selected as the representative moment, for which 

Separability does not apply, because it clearly displays all the nP peaks. Since this moment by 

its nature is a priori not covered by Separability, there is no initial expectation for it to be 
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correctly induced by the wind-field model. Nevertheless, since effective wind speeds obtained 

independently for the in-plane RBM and the out-of-plane RBM for a blade must be strongly 

correlated, good results for the in-plane RBM would imply good results for the out-of-plane 

RBM even if Separability does not directly cover the later. The results for the out-of-plane 

RBM of the blade can be seen from Figure 5-51 to Figure 5-53 for the 15m/s case, from Figure 

5-54 to Figure 5-56 for the 15m/s with 18 degrees of pitch offset and from Figure 5-57 to Figure 

5-59 for the 8m/s case. It is striking how closely the simple and triple model follow for all of 

them, providing no signs of leakage for the 15m/s and 15m/s with 18deg of pitch offset and 

only a minor discrepancy in the cumulative value for the 8m/s case, whist the spectrum looks 

virtually identical. The data used in the spectrum of the moments and forces have been 

detrended. 

After analysis of all the results for the stochastic component of the wind-field, including the 

ones present in Appendix C, it can be concluded that overall, no leakage is observed for the 

stochastic component of the wind-field and that the simple model should suffice to induce 

moments and forces as far as the stochastic component of the wind-field is concerned. 
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Figure 5-42. Hub torque spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure 5-43. Hub torque time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure 5-44. Hub torque extract time series comparison between simple and 

triple structure for the stochastic component of the wind-field with mean 

15m/s 

 
Figure 5-45. Hub torque spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 
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Figure 5-46. Hub torque time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure 5-47. Hub torque extract time series comparison between simple and 

triple structure for the stochastic component of the wind-field with mean 

15m/s and 18 degrees of pitch offset 

 
Figure 5-48. Hub torque spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 
Figure 5-49. Hub torque time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 
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Figure 5-50. Hub torque extract time series comparison between simple and 

triple structure for the stochastic component of the wind-field with mean 

8m/s 

  
Figure 5-51. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for the stochastic component of the wind-field with 

mean 15m/s 

 
Figure 5-52. Out-of-plane blade RBM time series comparison between 

simple and triple structure for the stochastic component of the wind-field 

with mean 15m/s 

 
Figure 5-53. Out-of-plane blade RBM extract time series comparison 

between simple and triple structure for the stochastic component of the 

wind-field with mean 15m/s 
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Figure 5-54. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for stochastic component of wind-field with mean 15m/s 

and 18 degrees pitch offset 

 
Figure 5-55. Out-of-plane blade RBM time series comparison between 

simple and triple structure for stochastic component of wind-field with mean 

15m/s and 18 degrees pitch offset 

 
Figure 5-56. Out-of-plane blade RBM time series comparison between 

simple and triple structure for stochastic component of wind-field with mean 

15m/s and 18 degrees pitch offset 

 
Figure 5-57. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for the stochastic component of the wind-field with 

mean 8m/s 
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Figure 5-58. Out-of-plane blade RBM time series comparison between simple 

and triple structure for the stochastic component of wind-field with mean 8m/s 

Figure 5-59. Out-of-plane blade RBM time series comparison between simple 

and triple structure for the stochastic component of wind-field with mean 8m/s 

 

  Cumulative Value 

  
Simple 

Model 
Triple Model 

Stochastic Component 

of the Wind-field 

Torque 

15m/s 7.0008e+009 7.0959e+009 

15m/s + 18 deg offset 3.3215e+010 3.3269e+010 

8m/s 5.9506e+010 5.9545e+010 

Out-of-plane 

RBM 

15m/s 3.9119e+011 3.9215e+011 

15m/s + 18 deg offset 1.704e+011 1.6758e+011 

8m/s 6.2477e+011 6.4349e+011 

Table 5-9. Cumulative PSD value for hub torque and blade out-of-plane RBM for case study of 15m/s, 15m/s with 18 degree pitch offset and 8m/s for the 

simple and triple structure for the stochastic component of the wind. The force of gravity is not taken into account. 
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5.3. Deterministic Component of the Effective Wind-Field Model 

In Section 2.2 of Chapter 2 the deterministic components of the wind are introduced, 

specifically the WS and TS effects are explicitly described in Section 2.2.3 and Section 2.2.3 

respectively. In the current section, the theory for the deterministic components of the wind-

field are presented, that is the WS in isolation and TS in isolation, together with the hub torque 

and out-of-plane RBM they induce. For the full set of the different layer P structures of the 

wind-field, including the results for the combined WS and TS, refer to Appendix D and for the 

full set of results for the induced forces and masses for the three cases (WS, TS and WS & TS), 

refer to Appendix E. 

5.3.1. Wind Shear Results 

The wind shear contribution to each layer P of the wind-field is defined as a series of 𝑊𝑆𝑎𝑛𝑷 

and 𝑊𝑆𝑏𝑛𝑷 Fourier coefficents with the appropriate weigthing coefficient, 𝑤𝑐, for the 

induction of moments (𝑀) and thrust (𝐹), as seen in  Figure 5-2, are expresed from 

manipulating (3.39) as: 

𝑊𝑆 𝑎𝑛𝑷 =  
1

𝜋
(

𝑤𝑐 + 1

𝑅𝑤𝑐+1
) 𝑉𝑚 ∫ 𝑓𝑊𝑆(𝜃)

2𝜋

0

 𝑐𝑜𝑠(𝑛𝜃)𝑑𝜃 (5.82) 

𝑊𝑆 𝑏𝑛𝑷 =  
1

𝜋
(

𝑤𝑐 + 1

𝑅𝑤𝑐+1
) 𝑉𝑚 ∫ 𝑓𝑊𝑆(𝜃)

2𝜋

0

 𝑠𝑖𝑛(𝑛𝜃)𝑑𝜃 = 0 
(5.83) 

𝑓𝑊𝑆(𝜃) = ∫
𝑙𝑛 (

ℎ + 𝑟 𝑐𝑜𝑠𝜃
𝑧𝑜

)

𝑙𝑛 (
ℎ
𝑧𝑜

)

𝑅

0

𝑟𝑤𝑐𝑑𝑟 (5.84) 

where 𝑅 is the radius of the WT, 𝑟, the position on the length of the blade, ℎ, the hub height, 

𝑧𝑜, the surface roughness length, 𝑛, an integer corresponding to the layer P being considered, 

𝜃, the azimuth angle and 𝑉𝑚, the mean wind speed. 

There is room for further simplification by rendering integral (5.84) dimensionless, 
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𝑓𝑊𝑆(𝜃) =
𝑅𝑤𝑐+1

𝑤𝑐 + 1
+

𝑅𝑤𝑐+1

𝑙𝑛 (
ℎ
𝑧𝑜

)
∫ ln (1 + �̅� (

𝑅

ℎ
𝑐𝑜𝑠𝜃))

1

0

�̅�𝑤𝑐𝑑�̅� (5.85) 

with �̅� =
𝑟

𝑅
  

The weighting coefficient for the WS contribution to the wind-field responsible for the 

induction of moments is 0.65 and the coefficient used for the induction of thrust is 0. These 

values have been determined by deriving the wind traces from the in-plane RBM moment and 

thrust force from Bladed, when a constant wind with only wind shear is applied, and 

determining the Fourier series description of the same. The Fourier series of the theoretical 

equation for the wind shear phenomena is then generated. The theoretical equation has a 

weighting factor applied to it, the value of which is modified until the Bladed results and the 

theoretical description of the wind shear coincide.  

In Table 5-10, the value of the 𝑊𝑆 𝑎𝑛𝑷 and 𝑊𝑆 𝑏𝑛𝑷 contributions to the wind-field for each 

layer P, for both the moments and the thrust for a wind-field with mean wind speed 15m/s, can 

be found13. These coefficients will change with the wind speed. In Table 5-11, the 𝑊𝑆 𝑎𝑛𝑷 

coefficients for moments are given in generic form for layer P, level 0 to 6, and a selection of 

𝑅/ℎ ratios. Similarly, in Table 5-12, the 𝑊𝑆 𝑎𝑛𝑷 coefficients in generic form for forces can be 

found. 

 

 

 

 

 

 

                                                      

 

13 For this example 𝑅 = 63m, ℎ = 90m and 𝑧𝑜 = 0.001  
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 Moments Forces (Thrust) 

 𝑾𝑺 𝒂𝒏𝑷 𝑾𝑺 𝒃𝒏𝑷 𝑾𝑺 𝒂𝒏𝑷 𝑾𝑺 𝒃𝒏𝑷 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟎 0 0 0 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟏 0.6222 0 0.4945 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟐 -0.0880 0 -0.0640 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟑 0.0182 0 0.0126 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟒 -0.0045 0 -0.0030 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟓 0.0012 0 0.0008 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟔 -0.0004 0 -0.0002 0 

Table 5-10. Fourier coefficients for the characterisation of wind shear for a 15m/s wind 

speed. 

From Table 5-10 it can be seen that for the wind shear, the magnitude of the Fourier coefficients 

decreases with the increase of the 𝑙𝑎𝑦𝑒𝑟 𝑷 level. 

From Figure 5-60 to Figure 5-63 it can be seen that the spectrum of the wind-field containing 

only WS with all the necessary 𝑙𝑎𝑦𝑒𝑟 𝑷 structures for the rotor in the simple model (inducing 

0, 3 and 6P) and their time series, for the induction of the moments and thrust. Likewise for the 

triple structure rotor, from Figure 5-64 to Figure 5-67 it can be seen the spectrum of the wind 

with only WS present, for the induction of the moments and thrust, containing all the necessary 

𝑙𝑎𝑦𝑒𝑟 𝑷 structures (inducing 0, 1, 2, 3, 4, 5 and 6P) and their time series. The spectrum in 

Figure 5-66, with its correspondent time series in Figure 5-67, is also used to induce the 

associated moments is the single blade in both models. 

As expected the peaks in the spectra have the sharp and narrow profile characteristic of 

deterministic signals. The figures suggest that the wind for inducing moments has a slightly 

bigger magnitude than the one for inducing thrust. The data used in the spectrum of the wind 

have not been detrended. 
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layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑅

ℎ
= 0.60 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.7534] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0884] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0151] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0031] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0007] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0002] 

𝑅

ℎ
= 0.65 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.8257] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1065 ] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0200] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0045] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0011] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0003] 

𝑅

ℎ
= 0.70 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.9010] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1274] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0264] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0065] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0018] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0005] 

𝑅

ℎ
= 0.75 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.9801] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1515] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0344] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0093] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0028] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0009] 

𝑅

ℎ
= 0.80 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.0639] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1797] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0447] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0133] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0044] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0016] 

𝑅

ℎ
= 0.85 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.1540] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.2131] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0582] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0191] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0070] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0027] 

𝑅

ℎ
= 0.90 0 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.2525] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.2538] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0766] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0279] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0113] 

1.65

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0049] 

Table 5-11. 𝑊𝑆 𝑎𝑛𝑃 coefficients for moments, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 
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layer P 

= 0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑅

ℎ
= 0.60 0 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.9911] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1065] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0174] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0034] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0007] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0002] 

𝑅

ℎ
= 0.65 0 

𝑤𝑐 + 1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.0845] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1281] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0230] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0050] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0012] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0003] 

𝑅

ℎ
= 0.70 0 

𝑤𝑐 + 1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.1814] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1529] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0302] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0072] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0019] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0006] 

𝑅

ℎ
= 0.75 0 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.2826] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.1813] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0392] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0103] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0030] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0010] 

𝑅

ℎ
= 0.80 0 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.3890] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.2144] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0509] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0147] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0048] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0017] 

𝑅

ℎ
= 0.85 0 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.5023] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.2532] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0660] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0210] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0075] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0029] 

𝑅

ℎ
= 0.90 0 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[1.6249] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.3001] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0864] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0305] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[0.0122] 

1

𝜋𝑙𝑛 (
ℎ
𝑧𝑜

)
𝑉𝑚[−0.0053] 

Table 5-12. 𝑊𝑆 𝑎𝑛𝑃 coefficients for forces, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios
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Figure 5-60. Spectrum of the deterministic component of wind-field WS for 

inducing moments at the rotor by the simple model 

 
Figure 5-61. Time series of the deterministic component of wind-field WS 

for inducing moments at the rotor by the simple model 

 
Figure 5-62. Spectrum of the deterministic component of wind-field WS for 

inducing thrust at the rotor by the simple model  

 
Figure 5-63. Time series of the deterministic component of wind-field WS 

for inducing thrust at the rotor by the simple model 
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Figure 5-64. Spectrum for the deterministic component of wind-field WS 

used for inducing thrust at the rotor by triple model 

 
Figure 5-65. Time series for the deterministic component of wind-field WS 

used for inducing thrust at the rotor by triple model 

 
Figure 5-66. Spectrum for deterministic component of wind-field WS used 

for inducing moments at a single blade by simple and triple model. Also 

used for inducing moments at the rotor by triple model 

 
Figure 5-67. Time series for deterministic component of wind-field WS used 

for inducing moments at a single blade by simple and triple model. Also 

used for inducing moments at the rotor by triple model 
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Similarly to the stochastic component in Section 5.2.2, the results for the in-plane hub torque 

and out-of-plane RBM of a blade are analysed with only the presence of the deterministic 

component WS for a 15m/s wind, 15m/s wind with 18 deg offset and a 8m/s wind, all of them 

with a 10% TI. The results for the in-plane RBM of the blade, the edgewise moment of the 

blade, 𝑀𝑒, the flapwise moment of the blade, 𝑀𝑓, and the thrust force can be found in Appendix 

E. 

When looking at the results for the in-plane hub torque, which is the moment for which 

Separability applies, see Figure 5-68 to Figure 5-69 for the 15m/s case, Figure 5-70 to Figure 

5-71 for the 15m/s with 18 degrees of pitch offset case and Figure 5-72 to Figure 5-73 for the 

8mm/s case, leakage can clearly be seen in the spectrum of the three cases, especially for the 

15m/s with 18 degree offset and 8m/s cases, in the form of the presence of extra spectral peaks. 

The presence of leakage is also clearly seen in Table 5-13. For the time series of the 15m/s and 

18 degree offset cases, a difference in the hub torque mean can be observed. 

The presence of leakage in the hub torque even at wind speeds in the above rated region is 

significant, perhaps, not in magnitude but in its existence per se. It would seem to raise a 

question over the region of validity of Separability. The hub torque is effectively the summation 

of the in-plane RBM of each one of the three blades of the WT (results for which can be found 

in Appendix E), which leads to the cancellation by symmetry of all the nP peaks but the 3P and 

6P.  

When looking in detail into the spectra of the in-plane RBM of the blade in Appendix E, some 

leakage is seen at the 3P peak, with an indisputable dominant 1P. The result of adding the in-

plane RBM of the blades together is that all of the sudden, the 3P and 6P peaks are the only 

surviving peaks, the 1P peak disappears, and that only the small contribution from 1P to 3P 

and even smaller contribution to 6P, remain. These differences are now important. As such, 

due to the relative size of the 3P to the 1P, the hub torque is quite sensitive to even weak leakage 

from 1P into the 3P peak in the in-plane RBM.  

The presence of some weak non-linearity induces some leakage, but because of the shape and 

magnitude of the peaks (of 1010 in the in-plane RBM and 107 in the hub torque), the leakage 

present in the in-plane RBM is clearly visible but is small and does not have implications for 

the validity of Separability. In other words, the leakage seen in the hub torque in Figure 5-68, 

Figure 5-70 and Figure 5-72, stems from 3P and 6P, mainly 3P, in the in-plane RBM 
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components contributing to hub torque, see Appendix E. In addition, the numbers in Table 5-

13 are the square of the amplitude, by square rooting them the impact of the differences 

decrease significantly. 

On the other hand, for the out-of-plane RBM of the blade, the 1P is not so dominant. Looking 

at Figure 5-74 to Figure 5-75 for the 15m/s case, Figure 5-76 to Figure 5-77 for the 15m/s with 

18 degrees of pitch offset and Figure 5-78 to Figure 5-79 for the 8m/s case, the match between 

the triple and simple model is remarkably close and no significant differences can be 

appreciated. 

Furthermore, it should be observed that for both hub torque and out-of-plane RBM, there is a 

steeply decreasing trend, for the energy involved in the spectrum, representing the effect of the 

WS in higher frequencies. The data used in the spectrum of the moments and forces have been 

detrended. 

After analysis of the results regarding the deterministic component WS of the wind-field, 

including the results present in Appendix E, it can be stated that overall leakage is observed, 

especially at the rotor. However, this leakage is not due to shortcoming in the Separability 

property. As a conclusion, the simple model would not suffice to induce moments and forces 

as far as the WS component of the wind-field above is concerned. 
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Figure 5-68. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of wind-field WS, with mean 15m/s 

 
Figure 5-69. Hub torque time series comparison between simple and triple 

structure for the deterministic component of wind-field WS, with mean 

15m/s 

 
Figure 5-70. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of wind-field WS, with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure 5-71. Hub torque time series comparison between simple and triple 

structure for the deterministic component of wind-field WS, with mean 

15m/s and 18 degrees of pitch offset 
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Figure 5-72. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of wind-field WS, with mean 8m/s 

 
Figure 5-73. Hub torque time series comparison between simple and triple 

structure for the deterministic component of wind-field WS, mean 8m/s 

 
Figure 5-74. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for the deterministic component of wind-field WS, with 

mean 15m/s 

 
Figure 5-75. Out-of-plane blade RBM time series comparison between 

simple and triple structure for the deterministic component of wind-field 

WS, with mean 15m/s 

10
-2

10
-1

10
0

10
1

10
2

10
0

10
2

10
4

10
6

Frequency (rad/s)

P
S

D
 (

-2 /r
ad

)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

0

2

4

6

8

10

12
x 10

6

10
-2

10
-1

10
0

10
1

10
2

0

2

4

6

8

10

12
x 10

6

C
um

ul
at

iv
e 

P
S

D
 (

-2 )

Hub torque S, deterministic 8ms, WS

Hub torque T, deterministic 8ms, WS

145 150 155 160

1.902

1.904

1.906

1.908

1.91

1.912

1.914

1.916

1.918

x 10
6

time (s)

H
ub

 T
or

qu
e 

(N
m

)

 

 

Hub torque S, deterministic 8ms, WS

Hub torque T, deterministic 8ms, WS

10
-2

10
-1

10
0

10
1

10
2

10
4

10
6

10
8

10
10

10
12

Frequency (rad/s)

P
S

D
 (-

2 /ra
d)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

0

1

2

3

4

5

6
x 10

11

10
-2

10
-1

10
0

10
1

10
2

0

1

2

3

4

5

6
x 10

11

C
um

ul
at

iv
e 

P
S

D
 (-

2 )

Out-of-plane RBM S, deterministic 15ms, WS

Out-of-plane RBM T, deterministic 15ms, WS

145 150 155 160
3.5

4

4.5

5

5.5

6

6.5
x 10

6

time (s)

O
ut

-o
f-p

la
ne

 R
B

M
 o

f a
 b

la
de

 (N
m

)

 

 

Out-of-plane RBM S, deterministic 15ms, WS

Out-of-plane RBM T, deterministic 15ms, WS



 

 

166 

 

 
Figure 5-76. Out-of-plane blade RBM spectrum comparison 

between simple and triple structure for the deterministic component 

of wind-field WS, with mean 15m/s and 18 degrees of pitch offset 

 
Figure 5-77. Out-of-plane blade RBM time series comparison 

between simple and triple structure for the deterministic component 

of wind-field WS, with mean 15m/s and 18 degrees of pitch offset 

 
Figure 5-78. Out-of-plane blade RBM spectrum comparison 

between simple and triple structure for the deterministic component 

of wind-field WS, with mean 8m/s 

 
Figure 5-79. Out-of-plane blade RBM time series comparison 

between simple and triple structure for the deterministic component 

of wind-field WS, with mean 8m/s 
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  Cumulative Value 

  
Simple 

Model 

Triple 

Model 

WS 

Torque 

15m/s 1.155e+008 7.3829e+007 

15m/s + 18 deg offset 8.1113e+007 3.7387e+007 

8m/s 1.0508e+007 6.4392e+006 

Out-of-plane 

RBM 

15m/s 5.3589e+011 5.3473e+011 

15m/s + 18 deg offset 3.2097e+011 3.2211e+011 

8m/s 1.0306e+011 1.0375e+011 

Table 5-13. Cumulative PSD value for hub torque and blade out-of-plane RBM for case study 

of 15m/s, 15m/s with 18 degree pitch offset and 8m/s for the simple and triple structure for 

the deterministic component of the wind WS. 

       5.3.2. Tower Shadow Results 

The tower shadow contribution to each layer P of the wind-field has been defined as a series 

of 𝑇𝑆 𝑎𝑛𝑷 and 𝑇𝑆 𝑏𝑛𝑷 Fourier coefficents as seen in Figure 5-2. The Fourier series has the 

appropriate weighting coefficient, 𝑤𝑐, for the induction of moments (𝑀) and thrust (𝐹), as 

necessary. It is identified that the tower shadow is significantly impacted on by the shape of 

the tower when its diameter, 𝑅𝑇, narrows towards the hub. To characterise this variation with 

respect to the position on the length of the blade, 𝑟, a linear representation is found to suffice14 

in this case. The tower shadow equation, (3.12), is accordingly modified as follows,  

𝑇𝑆 𝑎𝑛𝑷 =
1

𝜋
(

𝑤𝑐 + 1

𝑅𝑤𝑐+1
) 𝑉𝑚 ∫ 𝑓𝑇𝑆(𝜃)

3𝜋
2⁄

𝜋
2⁄

𝑐𝑜𝑠(𝑛𝜃)  (5.86) 

𝑇𝑆 𝑏𝑛𝑷 =  
1

𝜋
(

𝑤𝑐 + 1

𝑅𝑤𝑐+1
) 𝑉𝑚 ∫ 𝑓𝑇𝑆(𝜃)

3𝜋
2⁄

𝜋
2⁄

𝑠𝑖𝑛(𝑛𝜃)  (5.87) 

𝑓𝑇𝑆(𝜃) = ∫
(𝑎𝑟 + 𝑏)2(𝑟2𝑠𝑖𝑛2𝜃 − 𝑋2)

(𝑟2𝑠𝑖𝑛2𝜃 + 𝑋2)2

𝑅

0

𝑟𝑤𝑐𝑑𝑟 (5.88) 

                                                      

 

14 For the specific turbine used, this variation has the values: 𝑅𝑇 = 𝑎𝑟 + 𝑏 = 0.013197𝑟 + 1.8295 
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where 𝑅 is the radius of the WT, 𝑟, the position on the length of the blade, 𝑛, an integer 

corresponding to the layer P level, 𝑤𝑐, the appropriate weighting coefficient for the induction 

of moments and thrust, 𝑋, the overhang, 𝑎, the slope of the linear description of the variation 

of 𝑅𝑇, b, the constant of the linear description of the variation of 𝑅𝑇 and 𝜃, the azimuth angle. 

Simplifying to make the integral (5.88) dimensionless, 

𝑓𝑇𝑆(𝜃) = 𝑅𝑤𝑐+1 ∫
(𝑎�̅� +

𝑏
𝑅)

2

(�̅�2𝑠𝑖𝑛2𝜃 −
𝑋2

𝑅2)

(�̅�2𝑠𝑖𝑛2𝜃 +
𝑋2

𝑅2)
2

1

0

�̅�𝑤𝑐𝑑�̅� =

= 𝑅𝑤𝑐+1𝑎2 ∫ �̅�2
(�̅�2𝑠𝑖𝑛2𝜃 −

𝑋2

𝑅2)

(�̅�2𝑠𝑖𝑛2𝜃 +
𝑋2

𝑅2)
2

1

0

�̅�𝑤𝑐𝑑�̅� +

+ 𝑅𝑤𝑐2𝑎𝑏 ∫ �̅�
(�̅�2𝑠𝑖𝑛2𝜃 −

𝑋2

𝑅2)

(�̅�2𝑠𝑖𝑛2𝜃 +
𝑋2

𝑅2)
2

1

0

�̅�𝑤𝑐𝑑�̅� +

+
1

𝑅
𝑏2 ∫

(�̅�2𝑠𝑖𝑛2𝜃 −
𝑋2

𝑅2)

(�̅�2𝑠𝑖𝑛2𝜃 +
𝑋2

𝑅2)
2

1

0

�̅�𝑤𝑐𝑑�̅� 

 

(5.89) 

 

(5.90) 

with �̅� =
𝑟

𝑅
.  

The weighting coefficient for the TS contribution to the wind-field is 3 for moments and 2 for 

thrust. These values have been determined by deriving the wind traces from the in-plane RBM 

moment and thrust force from Bladed when a constant wind with only tower shadow is applied 

and determining the Fourier series description of the same.  The Fourier series of the theoretical 

equation for the  tower shadow phenomena is then generated.  

The theoretical equation has a weighting factor, 𝑤𝑐, applied to it, as seen in (5.86), (5.87) and 

(5.88), the value of which is modified until the Bladed results and the theoretical description 

of the tower shadow coincide.  
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In Table 5-14, the value of the 𝑇𝑆 𝑎𝑛𝑷 and 𝑇𝑆 𝑏𝑛𝑷 contributions to the wind-field for each layer 

P, for both the moments and the thrust for a wind-field with mean wind speed 15m/s can be 

found. 

 Moments Forces (Thrust) 

 𝑻𝑺 𝒂𝒏𝑷 𝑻𝑺 𝒃𝒏𝑷 𝑻𝑺 𝒂𝒏𝑷 𝑻𝑺 𝒃𝒏𝑷 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟎 0 0 0 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟏 0.0268 0 0.0336 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟐 -0.0695 0 -0.0812 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟑 0.0981 0 0.1112 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟒 -0.1065 0 -0.1173 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟓 0.1132 0 0.1217 0 

𝒍𝒂𝒚𝒆𝒓 𝑷 = 𝟔 -0.1260 0 -0.1337 0 

Table 5-14. Fourier coefficients for the characterisation of tower shadow. 

From Figure 5-80 to Figure 5-83, the spectrum and time series of the wind-field for the simple 

model with only TS present can be found. It contains all the necessary 𝑙𝑎𝑦𝑒𝑟 𝑷 structures for 

the rotor in the simple model to induce the correct moments and thrust (inducing 0, 3 and 6P 

peaks only). Likewise for the triple structure rotor, from Figure 5-84 to Figure 5-87, the 

spectrum and time series of the wind-field for the induction of the moments and thrust, 

containing all the necessary 𝑙𝑎𝑦𝑒𝑟 𝑷 structures (inducing 0, 1, 2, 3, 4, 5 and 6P peaks) can be 

seen. The spectrum in Figure 5-86 with its corresponding time series in Figure 5-87 is also used 

to induce the associated moments on the single blade in both models. 

As expected, the peaks in the spectra have the sharp and narrow profile characteristic of 

deterministic signals. It would seem that the signal for the induction of moments has a slightly 

bigger magnitude than the one for the induction of thrust. The data used in the spectrum of the 

wind have not been detrended. 
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layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑋

𝑅
= 0.13 0 

4

𝜋
𝑉𝑚𝑎2[0.4999] 

4

𝜋
𝑉𝑚𝑎2[−1.53940] 

4

𝜋
𝑉𝑚𝑎2[2.4173] 

4

𝜋
𝑉𝑚𝑎2[−2.9882] 

4

𝜋
𝑉𝑚𝑎2[3.5901] 

4

𝜋
𝑉𝑚𝑎2[−4.3605] 

𝑋

𝑅
= 0.11 0 

4

𝜋
𝑉𝑚𝑎2[0.4991] 

4

𝜋
𝑉𝑚𝑎2[−1.4767] 

4

𝜋
𝑉𝑚𝑎2[2.2585] 

4

𝜋
𝑉𝑚𝑎2[−2.7028] 

4

𝜋
𝑉𝑚𝑎2[3.1491] 

4

𝜋
𝑉𝑚𝑎2[−3.73670] 

𝑋

𝑅
= 0.09 0 

4

𝜋
𝑉𝑚𝑎2[0.4975] 

4

𝜋
𝑉𝑚𝑎2[−1.4146] 

4

𝜋
𝑉𝑚𝑎2[2.1084] 

4

𝜋
𝑉𝑚𝑎2[−2.4439] 

4

𝜋
𝑉𝑚𝑎2[2.7621] 

4

𝜋
𝑉𝑚𝑎2[−3.2052] 

𝑋

𝑅
= 0.07 0 

4

𝜋
𝑉𝑚𝑎2[0.4952] 

4

𝜋
𝑉𝑚𝑎2[−1.3533] 

4

𝜋
𝑉𝑚𝑎2[1.9667] 

4

𝜋
𝑉𝑚𝑎2[−2.2091] 

4

𝜋
𝑉𝑚𝑎2[2.4225] 

4

𝜋
𝑉𝑚𝑎2[−2.7515] 

𝑋

𝑅
= 0.05 0 

4

𝜋
𝑉𝑚𝑎2[0.4922] 

4

𝜋
𝑉𝑚𝑎2[−1.2930] 

4

𝜋
𝑉𝑚𝑎2[1.8332] 

4

𝜋
𝑉𝑚𝑎2[−1.9963] 

4

𝜋
𝑉𝑚𝑎2[2.1244] 

4

𝜋
𝑉𝑚𝑎2[−2.3637] 

𝑋

𝑅
= 0.03 0 

4

𝜋
𝑉𝑚𝑎2[0.4885] 

4

𝜋
𝑉𝑚𝑎2[−1.2340] 

4

𝜋
𝑉𝑚𝑎2[1.7076] 

4

𝜋
𝑉𝑚𝑎2[−1.8037] 

4

𝜋
𝑉𝑚𝑎2[1.8628] 

4

𝜋
𝑉𝑚𝑎2[−2.0318] 

𝑋

𝑅
= 0.01 0 

4

𝜋
𝑉𝑚𝑎2[0.4843] 

4

𝜋
𝑉𝑚𝑎2[−1.1764] 

4

𝜋
𝑉𝑚𝑎2[1.5897] 

4

𝜋
𝑉𝑚𝑎2[−1.6293] 

4

𝜋
𝑉𝑚𝑎2[1.6333] 

4

𝜋
𝑉𝑚𝑎2[−1.7477] 

Table 5-15. First integral term of 𝑇𝑆 𝑎𝑛𝑃 coefficient for moments, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 



 

 

171 

 

 
layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑋

𝑅
= 0.13 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6665] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.0473] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.2099] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.9604] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[4.7498] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−5.7614] 

𝑋

𝑅
= 0.11 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6650] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−1.9538] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.9755] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.5433] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[4.1098] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−4.8615] 

𝑋

𝑅
= 0.09 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6620] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−1.8617] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.7573] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.1728] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.5624] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−4.1160] 

𝑋

𝑅
= 0.07 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6579] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−1.7717] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.5542] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.8427] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.0917] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.4936] 

𝑋

𝑅
= 0.05 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6526] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−1.6841] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.3653] 

1.65

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.5483] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.6858] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.9714] 

𝑋

𝑅
= 0.03 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6464] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−1.5991] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.1897] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.2854] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.3350] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.5316] 

𝑋

𝑅
= 0.01 0 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.6392] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−1.5170] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.0264] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.0504] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.0313] 

4

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.1601] 

Table 5-16. Second integral term of 𝑇𝑆 𝑎𝑛𝑃 coefficient for moments, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 
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layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑋

𝑅
= 0.13 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9991] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−3.0486] 

4

𝜋𝑅2
𝑉𝑚𝑏2[4.7604] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−5.8459] 

4

𝜋𝑅2
𝑉𝑚𝑏2[6.9813] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−8.4424] 

𝑋

𝑅
= 0.11 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9937] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.8699] 

4

𝜋𝑅2
𝑉𝑚𝑏2[4.3299] 

1.65

𝜋𝑅2
𝑉𝑚𝑏2[−5.1014] 

1.65

𝜋𝑅2
𝑉𝑚𝑏2[5.8620] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−6.8916] 

𝑋

𝑅
= 0.09 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9850] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.7008] 

4

𝜋𝑅2
𝑉𝑚𝑏2[3.9482] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−4.4778] 

4

𝜋𝑅2
𝑉𝑚𝑏2[4.9647] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−5.6920] 

𝑋

𝑅
= 0.07 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9739] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.5407] 

4

𝜋𝑅2
𝑉𝑚𝑏2[3.6059] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−3.9453] 

4

𝜋𝑅2
𝑉𝑚𝑏2[4.2273] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−4.7357] 

𝑋

𝑅
= 0.05 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9609] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.3894] 

4

𝜋𝑅2
𝑉𝑚𝑏2[3.2971] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−3.4856] 

4

𝜋𝑅2
𝑉𝑚𝑏2[3.6131] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−3.9608] 

𝑋

𝑅
= 0.03 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9464] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.2465] 

4

𝜋𝑅2
𝑉𝑚𝑏2[3.0174] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−3.0862] 

4

𝜋𝑅2
𝑉𝑚𝑏2[3.0971] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−3.3263] 

𝑋

𝑅
= 0.01 0 

4

𝜋𝑅2
𝑉𝑚𝑏2[0.9308] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.1116] 

4

𝜋𝑅2
𝑉𝑚𝑏2[2.7633] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.7373] 

4

𝜋𝑅2
𝑉𝑚𝑏2[2.6609] 

4

𝜋𝑅2
𝑉𝑚𝑏2[−2.8029] 

Table 5-17. Third integral term of 𝑇𝑆 𝑎𝑛𝑃 coefficient for moments, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 
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layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑋

𝑅
= 0.13 0 

3

𝜋
𝑉𝑚𝑎2[0.6665] 

3

𝜋
𝑉𝑚𝑎2[−2.0473] 

3

𝜋
𝑉𝑚𝑎2[3.2099] 

3

𝜋
𝑉𝑚𝑎2[−3.9604] 

3

𝜋
𝑉𝑚𝑎2[4.7498] 

3

𝜋
𝑉𝑚𝑎2[−5.7614] 

𝑋

𝑅
= 0.11 0 

3

𝜋
𝑉𝑚𝑎2[0.6650] 

3

𝜋
𝑉𝑚𝑎2[−1.9538] 

3

𝜋
𝑉𝑚𝑎2[2.9755] 

3

𝜋
𝑉𝑚𝑎2[−3.5433] 

3

𝜋
𝑉𝑚𝑎2[4.1098] 

3

𝜋
𝑉𝑚𝑎2[−4.8615] 

𝑋

𝑅
= 0.09 0 

3

𝜋
𝑉𝑚𝑎2[0.6620] 

3

𝜋
𝑉𝑚𝑎2[−1.8617] 

3

𝜋
𝑉𝑚𝑎2[2.7573] 

3

𝜋
𝑉𝑚𝑎2[−3.1728] 

3

𝜋
𝑉𝑚𝑎2[3.5624] 

3

𝜋
𝑉𝑚𝑎2[−4.1160] 

𝑋

𝑅
= 0.07 0 

3

𝜋
𝑉𝑚𝑎2[0.6579] 

3

𝜋
𝑉𝑚𝑎2[−1.7717] 

3

𝜋
𝑉𝑚𝑎2[2.5542] 

3

𝜋
𝑉𝑚𝑎2[−2.8427] 

3

𝜋
𝑉𝑚𝑎2[3.0917] 

3

𝜋
𝑉𝑚𝑎2[−3.4936] 

𝑋

𝑅
= 0.05 0 

3

𝜋
𝑉𝑚𝑎2[0.6526] 

3

𝜋
𝑉𝑚𝑎2[−1.6841] 

3

𝜋
𝑉𝑚𝑎2[2.3653] 

3

𝜋
𝑉𝑚𝑎2[−2.5483] 

3

𝜋
𝑉𝑚𝑎2[2.6858] 

3

𝜋
𝑉𝑚𝑎2[−2.9714] 

𝑋

𝑅
= 0.03 0 

3

𝜋
𝑉𝑚𝑎2[0.6464] 

3

𝜋
𝑉𝑚𝑎2[−1.5991] 

3

𝜋
𝑉𝑚𝑎2[2.1897] 

3

𝜋
𝑉𝑚𝑎2[−2.2854] 

3

𝜋
𝑉𝑚𝑎2[2.3350] 

3

𝜋
𝑉𝑚𝑎2[−2.5316] 

𝑋

𝑅
= 0.01 0 

3

𝜋
𝑉𝑚𝑎2[0.6392] 

3

𝜋
𝑉𝑚𝑎2[−1.5170] 

3

𝜋
𝑉𝑚𝑎2[2.0264] 

3

𝜋
𝑉𝑚𝑎2[−2.0504] 

3

𝜋
𝑉𝑚𝑎2[2.0313] 

3

𝜋
𝑉𝑚𝑎2[−2.1601] 

Table 5-18. First integral term of 𝑇𝑆 𝑎𝑛𝑃 coefficient for forces, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 
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layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑋

𝑅
= 0.13 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9991] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.0486] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[4.7604] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−5.8459] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[6.9813] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−8.4424] 

𝑋

𝑅
= 0.11 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9937] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.8699] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[4.3299] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−5.1014] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[5.8620] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−6.8916] 

𝑋

𝑅
= 0.09 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9850] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.7008] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.9482] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−4.4778] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[4.9647] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−5.6920] 

𝑋

𝑅
= 0.07 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9739] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.5407] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.6059] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.9453] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[4.2273] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−4.7357] 

𝑋

𝑅
= 0.05 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9609] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.3894] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.2971] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.4856] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.6131] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.9608] 

𝑋

𝑅
= 0.03 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9464] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.2465] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.0174] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.0862] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[3.0971] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−3.3263] 

𝑋

𝑅
= 0.01 0 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[0.9308] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.1116] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.7633] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.7373] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[2.6609] 

3

𝜋𝑅
𝑉𝑚2𝑎𝑏[−2.8029] 

Table 5-19. Second integral term of 𝑇𝑆 𝑎𝑛𝑃 coefficient for forces, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 
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layer P = 

0 
layer P = 1 layer P = 2 layer P = 3 layer P = 4 layer P = 5 layer P = 6 

𝑋

𝑅
= 0.13 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.9688] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−5.8152] 

3

𝜋𝑅2
𝑉𝑚𝑏2[8.9346] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−10.7846] 

3

𝜋𝑅2
𝑉𝑚𝑏2[12.6928] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−15.2034] 

𝑋

𝑅
= 0.11 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.9076] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−5.1899] 

3

𝜋𝑅2
𝑉𝑚𝑏2[7.6191] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−8.7298] 

3

𝜋𝑅2
𝑉𝑚𝑏2[9.7997] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−11.3600] 

𝑋

𝑅
= 0.09 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.8479] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−4.7014] 

3

𝜋𝑅2
𝑉𝑚𝑏2[6.6517] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−7.3024] 

3

𝜋𝑅2
𝑉𝑚𝑏2[7.8781] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−8.8927] 

𝑋

𝑅
= 0.07 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.7899] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−4.2901] 

3

𝜋𝑅2
𝑉𝑚𝑏2[5.8736] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−6.2058] 

3

𝜋𝑅2
𝑉𝑚𝑏2[6.4558] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−7.1168] 

𝑋

𝑅
= 0.05 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.7334] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−3.9326] 

3

𝜋𝑅2
𝑉𝑚𝑏2[5.2236] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−5.3267] 

3

𝜋𝑅2
𝑉𝑚𝑏2[5.3535] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−5.7742] 

𝑋

𝑅
= 0.03 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.6785] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−3.6166] 

3

𝜋𝑅2
𝑉𝑚𝑏2[4.6688] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−4.6041] 

3

𝜋𝑅2
𝑉𝑚𝑏2[4.4764] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−4.7306] 

𝑋

𝑅
= 0.01 0 

3

𝜋𝑅2
𝑉𝑚𝑏2[1.6252] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−3.3341] 

3

𝜋𝑅2
𝑉𝑚𝑏2[4.1886] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−4.0008] 

3

𝜋𝑅2
𝑉𝑚𝑏2[3.7664] 

3

𝜋𝑅2
𝑉𝑚𝑏2[−3.9040] 

Table 5-20. Third integral term of 𝑇𝑆 𝑎𝑛𝑃 coefficient for forces, resolved in generic form for layer P from 0 to 6 and a selection of R/h ratios 
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Figure 5-80. Spectrum of the deterministic component of wind-field TS for 

inducing moments at the rotor by the simple model 

 
Figure 5-81. Time series of the deterministic component of wind-field TS 

for inducing moments at the rotor by the simple model 

 
Figure 5-82. Spectrum of the deterministic component of wind-field TS for 

inducing thrust at the rotor by the simple model 

 
Figure 5-83. Time series of the deterministic component of wind-field TS 

for inducing thrust at the rotor by the simple model 
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Figure 5-84. Spectrum for the deterministic component of wind-field TS 

used for inducing thrust at the rotor by triple model 

 
Figure 5-85. Time series for the deterministic component of wind-field TS 

used for inducing thrust at the rotor by triple model 

 
Figure 5-86. Spectrum of deterministic component of wind-field TS, for 

inducing moments at a single blade by simple and triple model. Also used 

for inducing moments at the rotor by triple model 

 
Figure 5-87. Time series of deterministic component of wind-field TS, for 

inducing moments at a single blade by simple and triple model. Also used 

for inducing moments at the rotor by triple model 
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Similarly to the stochastic component in Section 5.2.2 and WS in Section 5.3.1, the results for 

the in-plane hub torque and out-of-plane RBM of a blade are analysed with only the 

deterministic component TS present, for a 15m/s wind, 15m/s wind with 18 degrees offset and 

a 8m/s wind, all of them with a 10% TI. The results for the in-plane RBM of the blade, the 

edgewise moment of the blade, 𝑀𝑒, the flapwise moment of the blade, 𝑀𝑓, and the thrust force 

can be found in Appendix E. 

When looking at the results of the in-plane hub torque, see Figure 5-88 to Figure 5-89 for the 

15m/s case, Figure 5-90 to Figure 5-91 for the 15m/s with 18 degree of pitch offset case and 

Figure 5-92 to Figure 5-93 for the 8m/s case, leakage can be seen in all three cases, albeit small 

in overall magnitude. By examining the values for the cumulative spectra in Table 5-21 for the 

same results, it is confirmed that the impact of this leakage is negligible. 

In similar fashion, in the out-of-plane RBM of the blade found, see Figure 5-94 to Figure 5-95 

for the 15m/s case, Figure 5-96 to Figure 5-97 for the 15m/s with 18 degrees of pitch offset and 

Figure 5-98 to Figure 5-99 for the 8m/s case, leakage is clearly present but of an even smaller 

impact than on the hub torque.  

The match between the triple and simple model for both the hub torque and the out-of-plane 

RBM is notably close and no significant differences can be observed in the nP peaks and in the 

general trend of the spectrum. The trend of the spectrum further shows that the impact of the 

TS increases with frequency, which is especially noticeable in the out-of-plane RBM. This 

trend is also observed in the other results related to the TS, see Appendix E. The data used in 

the spectrum of the moments and forces have been detrended. 

After analysing the results regarding the deterministic component TS of the wind-field, 

including the results present in Appendix E, it can be stated that overall leakage is observed in 

the spectrum, but when looking at the magnitude of the amplitude, its impact is negligible, and 

that the simple model should suffice to induce moments and forces as far as the TS component 

of the wind-field is concerned.  
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Figure 5-88. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of wind-field TS, with mean 15m/s 

 
Figure 5-89. Hub torque time series comparison between simple and triple 

structure for the deterministic component of wind-field TS, with mean 15m/s 

 
Figure 5-90. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of wind-field TS, with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure 5-91. Hub torque time series comparison between simple and triple 

structure for the deterministic component of wind-field TS, with mean 15m/s 

and 18 degrees of pitch offset 
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Figure 5-92. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of wind-field TS, with mean 8m/s 

 
Figure 5-93. Hub torque time series comparison between simple and triple 

structure for the deterministic component of wind-field TS, with mean 8m/s 

 
Figure 5-94. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for the deterministic component of wind-field TS, with 

mean 15m/s 

 
Figure 5-95. Out-of-plane blade RBM time series comparison between 

simple and triple structure for the deterministic component of wind-field TS, 

with mean 15m/s 
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Figure 5-96. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for the deterministic component of wind-field TS, with mean 

15m/s and 18 degrees of pitch offset 

 
Figure 5-97. Out-of-plane blade RBM time series comparison between simple 

and triple structure for the deterministic component of wind-field TS, with mean 

15m/s and 18 degrees of pitch offset 

 
Figure 5-98. Out-of-plane blade RBM spectrum comparison between simple 

and triple structure for the deterministic component of wind-field TS, with mean 

8m/s 

 
Figure 5-99. Out-of-plane blade RBM time series comparison between simple 

and triple structure for the deterministic component of wind-field TS, with mean 

8m/s 
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  Cumulative Value 

  Simple Model Triple Model 

TS 

Torque 

15m/s 2.7599e+009 2.7564e+009 

15m/s + 18 deg 

offset 
2.1466e+009 2.1147e+009 

8m/s 2.8117e+008  2.7973e+008  

Out-of-plane 

RBM 

15m/s 2.8017e+010 2.8013e+010 

15m/s + 18 deg 

offset 
1.5699e+010 1.5702e+010 

8m/s 5.0147e+009 5.0156e+009 

Table 5-21 Cumulative PSD value for hub torque and blade out-of-plane RBM for case study 

of 15m/s, 15m/s with 18 degree pitch offset and 8m/s for the simple and triple structure for 

the deterministic component of the wind TS. 

    5.3.3. Combined Wind Shear and Tower Shadow Results 

Before merging the stochastic and deterministic components of the wind, it is interesting, and 

important, to examine the synergies present, or not, when the two deterministic components of 

the wind-field are integrated together.  

As per previous sections before looking into the impact on the forces and moments of interest 

the spectrum related to the wind generated only by the components under study is presented. 

Accordingly, from Figure 5-100 to Figure 5-103, the spectrum of the combined TS & WS 

containing all the necessary layer P structures for the rotor in the simple model (inducing 0, 3 

and 6P) and their time series, for the induction of the moments and thrust, can be found. 

Likewise for the triple structure rotor, from Figure 5-104 to Figure 5-107 the spectrum of the 

wind for the induction of the moments and thrust, containing all the necessary layer P structures 

(inducing 0, 1, 2, 3, 4, 5 and 6P) and their time series can be seen. The spectrum in Figure 5-

106, with its corresponding time series in Figure 5-107, corresponds to the wind-field 

component used to induce the blade moments in both models. 

As expected, the peaks in the spectra have the sharp and narrow profile characteristic of 

deterministic signals. It would seem that the wind-field components for inducing moments and 

those for inducing thrust in the combined WS & TS case have magnitudes closer in value than 

when considering the WS and TS separately. The data used in the spectrum of the wind have 

not been detrended.
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Figure 5-100. Spectrum for the complete deterministic component of wind-

field used for inducing moments at the rotor by the simple model 

 
Figure 5-101. Time series extract for the complete deterministic component 

of wind-field used for inducing moments at the rotor by the simple model 

 
Figure 5-102. Spectrum for the complete deterministic component of wind-

field used for inducing thrust at the rotor by the simple model 

 
Figure 5-103. Time series extract for the complete deterministic component 

of wind-field used for inducing thrust at the rotor by the simple model 
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Figure 5-104. Spectrum for the complete deterministic component of wind-

field used for inducing thrust at the rotor by triple model 

 
Figure 5-105. Time series extract for the complete deterministic component 

of wind-field used for inducing thrust at the rotor by triple model 

 
Figure 5-106. Spectrum for the complete deterministic component of wind-

field used for inducing moments at the single blade by simple and triple 

model. Also used for inducing moments at the rotor by triple model 

 
Figure 5-107. Time series extract for the complete deterministic component 

of wind-field used for inducing moments at the single blade by simple and 

triple model. Also used for inducing moments at the rotor by triple model 
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When considering the hub torque results, see Figure 5-108 to Figure 5-109 for 15m/s case, 

Figure 5-110 to Figure 5-111 for 15m/s and 18 degrees of pitch offset, Figure 5-112 to Figure 

5-113 for the 8m/s case and Table 5-22, it is clearly noticeable that there are some discrepancies 

present between the triple and simple models and that there is leakage present in the higher 

frequencies; albeit small and with no significant contribution to the cumulative values. If these 

differences were to be taken in isolation it would be tempting, if not natural, to question the 

validity of the Separability property. In reality, to fully understand the results for the combined 

WS & TS components of the hub torque, which is nothing else than the addition of the in-plane 

RBM of each one of the three blades, it is necessary to spend some time analysing the latter, 

looking at the individual contributions of the WS and TS to be able to correctly interpret the 

hub torque when both, the WS and TS, are present.  

When considering the in-plane RBM results in Appendix E, for the WS and TS individually, 

Figure E-1 to Figure E-12, there does not seem to be much discrepancy between the simple and 

triple model apart from some leakage on the 3P peak, this is true for both components. The 1P 

peak is clearly the dominant contribution for the WS but, as the frequency goes higher, the 

impact of the WS diminishes and the impact of the TS increases. Due to the magnitude, trend 

and shape of the peaks present on both components, when combined, the resultant spectrum, 

Figure E-13 to Figure E-18, is much more homogenous in shape than the WS and TS 

contributions taken individually. However, it would seem that ultimately the WS has the 

biggest impact on the appearance of the combined spectrum, with the 1P still dominant. The 

contribution from 3P, 4P, 5P and 6P peaks have a considerably bigger magnitude than for the 

WS component alone and are mainly due to the contribution from the TS component. 

When combining 3 in-plane RBMs to obtain the hub torque, by symmetry only the 3P and 6P 

peaks remain, see Figure 5-108, Figure 5-110 and Figure 5-112. However, for one of the in-

plane RBM, the 3P and 6P are not the dominant nP peaks and have significantly smaller 

magnitudes than the dominant 1P peak, see Figure E-13, Figure E-15 and E-17. Consequently, 

when considering the hub torque, even weak leakage from 1P into 3P and 6P, is still significant 

in some cases, see Figure 5-108, Figure 5-110 and Figure 5-112. 

In other words, there are indeed small non-linear effects present, otherwise there would be no 

leakage. However, this leakage is not strong, thereby supporting the validity of the Separability 
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property. They rather are the outcome of the peculiar combination of the magnitude and trends 

in the individual deterministic components of the wind, WS and TS. 

Furthermore, it needs to be remembered that the numbers present in Table 5-22 are not the 

amplitude but their square. As such, if the square root of those numbers were tabulated instead, 

the difference in the numbers would be less. 

The results for the out-of-plane RBM of the blade are presented in Figure 5-114 to Figure 5-

115 for the 15m/s case, Figure 5-116 to Figure 5-117 for the 15m/s and 18 degrees of pitch 

offset, Figure 5-118 to Figure 5-119 for the 8m/s case and in Table 5-22. A priori, the 

Separability property is not valid for the out-of-plane RBM of the blade. Yet, the results still 

exhibit a close match between the simple and triple structure, most likely due to the correlation 

between in-plane and out-of-plane moments as previously explained. The data used in the 

spectrum of the moments and forces have been detrended. 

After analysing the results for the combined effect of the deterministic components of the wind 

WS and TS, including the results in Appendix E, it can be concluded that the simple model 

should suffice for inducing the moments and forces when modelling the wind with only WS 

and TS components present.
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Figure 5-108. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s, 

WS TS active 

 
Figure 5-109. Hub torque time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s, 

WS TS active 

 
Figure 5-110. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS TS active 

 
Figure 5-111. Hub torque time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS TS active 
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Figure 5-112. Hub torque spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, WS 

TS active 

 
Figure 5-113. Hub torque time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, WS 

TS active 

 
Figure 5-114. Out-of-plane RBM spectrum comparison between simple and 

triple structure for the deterministic component of the wind-field with mean 

15m/s, WS TS active 

 
Figure 5-115. Out-of-plane RBM time series comparison between simple and 

triple structure for the deterministic component of the wind-field with mean 

15m/s, WS TS active 
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Figure 5-116. Out-of-plane RBM spectrum comparison between simple and 

triple structure for the deterministic component of the wind-field with mean 

15m/s and 18 degrees of pitch offset, WS TS active 

 
Figure 5-117. Out-of-plane RBM time series comparison between simple and 

triple structure for the deterministic component of the wind-field with mean 

15m/s and 18 degrees of pitch offset, WS TS active 

 
Figure 5-118. Out-of-plane RBM spectrum comparison between simple and 

triple structure for the deterministic component of the wind-field with mean 

8m/s, WS TS active 

 
Figure 5-119. Out-of-plane RBM time series comparison between simple and 

triple structure for the deterministic component of the wind-field with mean 

8m/s, WS TS active 
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  Cumulative Value 

  
Simple 

Model 

Triple 

Model 

WS & TS 

Torque 

15m/s 3.6048e+009 2.989e+009 

15m/s + 18 deg 

offset 
2.7241e+009 2.1258e+009 

8m/s 3.5773e+008 3.032e+008 

Out-of-plane 

RBM 

15m/s 6.0165e+011 6e+011 

15m/s + 18 deg 

offset 
3.613e+011 3.6316e+011 

8m/s 1.1727e+011 1.1806e+011 

Table 5-22. Cumulative PSD value for hub torque and blade out-of-plane RBM for case study of 15m/s, 15m/s with 18 degree pitch offset and 

8m/s for the simple and triple structure of the complete deterministic component of the wind. The force of gravity is not taken into account. 
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5.4. Complete Effective Wind-Field Model 

The impact of leakage needs to be further assessed by looking at the results when both the 

stochastic and deterministic components of the wind are incorporated into the wind-field 

model. It should be noted that the effect of gravity force is not included in order to not affect 

considerations on leakage. In the current section, as per the previous sections, the results for 

the in-plane hub torque and out of plane RBM of the blade will be analysed and the full set of 

results for the complete effective wind-field model can be found in and Appendix G. 

Before analysing the signals that are induced by the complete effective wind-field model, as 

per previous sections, the spectrum related to the wind generated only by the components under 

study is presented. Since it is the complete wind-field model that is evaluated in this section, 

an extra graph showing the complete 600s time series has been included in addition to the usual 

15s extracted plot. For the rotor in the simple model, from Figure 5-120 to Figure 5-122 for the 

induction of the moments and from Figure 5-123 to Figure 5-125 for the induction of the thrust, 

the spectrum of the complete effective wind-field model, containing all the necessary layer P 

structures (inducing 0, 3 and 6P) and their time series, can be found. Likewise for the triple 

structure rotor, from Figure 5-126 to Figure 5-128 for the induction of the moments and from 

Figure 5-129 to Figure 5-131 for the induction of the thrust, the spectrum of the wind containing 

all the necessary layer P structures (inducing 0, 1, 2, 3, 4, 5 and 6P) and their time series, can 

be seen. The spectrum in Figure 5-129, with its corresponding time series in Figure 5-130 and 

Figure 5-131, is further used to induce the associated moments to the single blade for both 

models. 

The signals clearly show simultaneously the characteristics of both their stochastic and 

deterministic components by the nP peaks having a broad base endowed by the former and 

with a narrow top as a result of the latter. As in previous sections it would look like the thrust 

inducing wind signals are of slightly bigger magnitude than the moment inducing ones. The 

data used in the spectrum of the wind have not been detrended. 
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Figure 5-120. Spectrum of the complete wind-field with 15m/s mean, used 

for inducing moments at the rotor by the simple model 

 
Figure 5-121. Time series of the complete wind-field with 15m/s mean, used 

for inducing moments at the rotor by the simple model 

 
Figure 5-122. Time series extract of the complete wind-field with 15m/s 

mean, used for inducing moments at the rotor by the simple model 

 
Figure 5-123. Spectrum of the complete wind-field with 15m/s mean, used 

for inducing thrust at the rotor by the simple model 
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Figure 5-124. Time series of the complete wind-field with 15m/s mean, used 

for inducing thrust at the rotor by the simple model 

 
Figure 5-125. Time series extract of the complete wind-field with 15m/s 

mean, used for inducing thrust at the rotor by the simple model 

 
Figure 5-126. Spectrum of the complete wind-field with 15m/s mean, used 

for inducing thrust at the rotor by triple model 

 
Figure 5-127. Time series of the complete wind-field with 15m/s mean, used 

for inducing thrust at the rotor by triple model 
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Figure 5-128. Time series extract of the complete wind-field with 15m/s mean, 

used for inducing thrust at the rotor by triple model 

 
Figure 5-129. Spectrum of complete wind-field with 15m/s mean, used for 

inducing moments at the single blade by simple and triple model. Also used for 

inducing moments at the rotor by triple model 

 
Figure 5-130. Time series of complete wind-field with 15m/s mean, used for 

inducing moments at the single blade by simple and triple model. Also used for 

inducing moments at the rotor by triple model 

 
Figure 5-131. Time series extract of complete wind-field with 15m/s mean, used 

by simple and triple model for inducing moments at single blade and for 

inducing moments at the rotor by triple model 
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When considering the hub torque results, see Figure 5-132 to Figure 5-134 for the 15m/s case, 

Figure 5-135 to Figure 5-137 for the 15m/s and 18 degrees pitch offset and Figure 5-138 to 

Figure 5-140 for the 8m/s case, it is immediately obvious that the triple and single structure 

have a very close match. There is a small deviation in the cumulative spectrum in Figure 5-132 

and Figure 5-135, for the 15m/s and 15m/s with 18deg offset which arises from the 3P peak. 

For the 8m/s case, the deviation in the cumulative spectra in Figure 5-138 arises from the lower 

frequencies. This would indicate the presence of some leakage which is worse in the 8m/s case, 

as would be expected as it is farthest away from the region of applicability of Separability. 

However, the impact of this leakage, as can be seen from the spectrum itself and the values in 

Table 6-23, is negligible. By looking at the cumulative spectrum from Figure 5-132, Figure 5-

135, Figure 5-138, Table 5-22, the behaviour of the spectrum and time series for the isolated 

stochastic component of the wind-field and the isolated deterministic component of the wind-

field, it is clear that the dynamics are going to be dominated by the stochastic component of 

the wind-field. Effectively, this is what is observed on the results of the complete effective 

wind-field model. 

Similar observations can be made while looking at the out-of-plane RBM of the blade, see 

Figure 5-141 to Figure 5-143 for the 15m/s case, Figure 5-144 to Figure 5-146 for the 15m/s 

with 18 degrees of pitch offset and Figure 5-147 to Figure 5-149 for the 8m/s case, and their 

correspondent cumulative spectra. There is a very close match of the spectrum of the out-of-

plane RBM between the single and triple model especially for the 15 m/s and 15m/s with 18deg 

pitch offset. It is in fact a closer match than for the hub torque for these two cases with the 8m/s 

case study having a small degree of deviation. As with previous tests, this behaviour is rather 

unexpected as the out-of-plane RBM is not supported by Separability. As expected the worse 

results come from the 8m/s case, but they are not bad. The data used in the spectrum of the 

moments and forces have been detrended. 

The main conclusion that can be drawn from looking at the results for the torque (in-plane 

moment supported by Separability) and out-of-plane RBM of the blade (out-of-plane moment 

not supported by Separability) is that when the wind model is used in its complete form, the 

difference between the simple and triple structures and the leakage is such that it can be 

considered negligible and thus ignored. The cumulative values in Table 5-23 provide further 

support for this conclusion and the simple model should suffice to induce acceptable moments 

and forces. 
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Figure 5-132. Hub torque spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 

 
Figure 5-133. Hub torque time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s. Duration 600s 

 
Figure 5-134. Hub torque 15s extract time series comparison between 

simple and triple structure for the complete wind-field with mean 

 
Figure 5-135. Hub torque spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 
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Figure 5-136. Hub torque time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset. Duration 600s 

 
Figure 5-137. Hub torque 15s extract time series comparison between simple 

and triple structure for the complete wind-field with mean 15m/s and 18 

degrees of pitch offset 

 
Figure 5-138. Hub torque spectrum comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 
Figure 5-139. Hub torque time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s. Duration 600s 
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Figure 5-140. Hub torque 15s extract time series comparison between simple 

and triple structure for the complete wind-field with mean 8m/s 

 
Figure 5-141. Out-of-plane RBM spectrum comparison between simple and 

triple structure for the complete wind-field with mean 15m/s 

 
Figure 5-142. Out-of-plane RBM time series comparison between simple 

and triple structure for the complete wind-field with mean 15m/s. Duration 

600s 

 
Figure 5-143. Out-of-plane RBM 15s extract time series comparison 

between simple and triple structure for the complete wind-field with mean 

15m/s 
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Figure 5-144. Out-of-plane RBM spectrum comparison between simple and 

triple structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure 5-145. Out-of-plane RBM time series comparison between simple and 

triple structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset. Duration 600s 

 
Figure 5-146. Out-of-plane RBM 15s extract time series comparison between 

simple and triple structure for the complete wind-field with mean 15m/s and 18 

degrees of pitch offset 

 
Figure 5-147. Out-of-plane RBM spectrum comparison between simple and 

triple structure for the complete wind-field with mean 8m/s 
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Figure 5-148. Out-of-plane RBM time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s. Duration 600s 

 
Figure 5-149. Out-of-plane RBM 15s extract time series comparison 

between simple and triple structure for the complete wind-field with mean 

8m/s 
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  Cumulative Value 

  
Simple 

Model 
Triple Model 

Complete wind-field 

Torque 

15m/s 1.0664e+010 1.0108e+010 

15m/s + 18 deg offset 3.5939e+010 3.4952e+010 

8m/s 5.979e+010 5.9166e+010 

Out-of-plane 

RBM 

15m/s 9.304e+011 9.2874e+011 

15m/s + 18 deg offset 4.828e+011 4.8148e+011 

8m/s 7.068e+011 7.2246e+011 

 

Table 5-23. Cumulative PSD value for hub torque and blade out-of-plane RBM for case study of 15m/s, 15m/s with 18 degree pitch offset and 8m/s for the 

simple and triple structure for the complete wind-field. The force of gravity is not taken into account. 
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      5.5. Comparison to Bladed with Stiff Structural Dynamics 

In order to verify the ability of the proposed effective wind-field model to induce the correct 

moments and forces on a WT, a direct comparison of performance against the industry 

standard program Bladed is made.    

The structure of the verification compares the results from the effective wind-field model 

integrated into a Simulink model of a 5MW turbine to a Bladed model for a WT with the same 

characteristics and with a comparable wind input generated by Bladed itself. Both WT have 

the same controller. Nevertheless, the Bladed and Simulink WT models have differences that 

are not related to the input coming from the wind-field model per se. Rather these differences 

arise from the differences in the WT model dynamics and representation of the wind. Such 

differences can be magnified by the controller. 

To minimise the impact of these and have a clearer and fairer comparison, the following actions 

have been taken, 

1) To use the Bladed capacity to generate a wind series on the basis of empiric data to 

generate a Bladed turbulent wind file based on the common component in the uniform 

and linear layer nP = 0 level of the proposed effective wind-field model. The common 

component in layer nP = 0 is chosen because it has the biggest impact on the wind 

characteristics. The 2 representations cannot be the same but should have similar 

statistical properties. 

2) To make the WT structure much stiffer to reduce the impact from the differences in 

representation of the WT dynamics between Bladed and the Simulink model. 

In this section the results for the hub torque and the out-of-plane RBM of the blade are analysed 

whereas the full set of results can be found on Appendix H. The effective wind-field in these 

examples has a TI of 10% and 3 different mean wind speeds have been tested: 15m/s (above 

rated region), 15m/s with 18 degrees offset (below rated) and 8m/s (below rated 𝐶𝑝tracking 

region). The data used in the spectrum of the moments and forces have been detrended. In 

Figure 5-150 the operating strategy of the WT can be seen. The nominal generator torque of 

this 5MW WT is around 4.3 × 106 Nm. 
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Figure 5-150. Operational strategy of the 5MW WT used for testing 

In Figure 5-151 to Figure 5-152 for the 15m/s case, Figure 5-153 to Figure 5-154 for the 15m/s 

with 18 degrees offset case and Figure 5-155 to Figure 5-156 for the 8m/s case, the hub torque 

spectrum and its time series can be seen. From Figure 5-157 to Figure 5-158 for the 15m/s case, 

from Figure 5-159 to Figure 5-160 for the 15m/s with 18 degrees of pitch offset and from 

Figure 5-161 to Figure 5-162 for the 8m/s case, the out-of-plane RBM of the blade spectrum 

and its time series can be seen. The Bladed results are presented with the thin black line whereas 

the Simulink results are presented with a bold grey line. The proposed effective wind-field 

model is designed to only induce moments and forces up to 6P and components above 6P are 

not included the Simulink model.  

In the case of hub torque, which is supported by the Separability property, all three cases have 

closely matching spectrum for Simulink and Bladed, even for the 8m/s case.  The 15m/s with 

18deg of pitch offset presents a small deviation in the 3P peak with the Simulink model 

inducing a slightly smaller peak, still this difference is not considered significant.  

As expected, the results of the out-of-plane RBM are of a lesser quality when compared to the 

hub torque, since the out-of-plane RBM is not supported by the Separability property. The 

differences being more acute perhaps at the 1P peak. Regardless of this, the overall match is 

still very good especially for the 8m/s and 15m/s cases. From a more detailed comparison, the 

discrepancies seen at the 15m/s with 18deg offset and the improvement of the match when 
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moving to 8m/s would suggest that these discrepancies might be caused by the pitch offset 

being too aggressive and leading to the WT entering the 1st constant speed region and the 

controller being unable to cater appropriately with all the resulting switching of modes. In 

addition, the results in the above rated wind speed region are not as good as those below rated. 

Similar behaviour is also observed on other signals, see Appendix H, Section 5.6 and Appendix 

I. These discrepancies are in part due to differences in behaviour of the controllers in the Bladed 

and Simulink simulations, since it is in below rated conditions that the impact of the controller 

is at its minimum. Although these control related issues have no impact on the validity of the 

effective wind-field model, they should be taken into consideration during comparison of 

Simulink and Bladed model results, especially when the WT is not stiffened. 

When considering the time traces for hub torque and out-of-plane RBM, it is quite clear that 

the wind traces in the time domain are similar but not the same. Still, both time series induce 

satisfactorily similar spectra which is the purpose of the proposed effective wind-field model. 
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Figure 5-151. Hub torque spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s 

 
Figure 5-152. Hub torque time series comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s. Duration 600s 

 
Figure 5-153. Hub torque spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure 5-154. Hub torque time series comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset. Duration 600s 
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Figure 5-155. Hub torque spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 8m/s 

 
Figure 5-156. Hub torque time series comparison between Simulink and 

Bladed for the complete wind-field with mean 8m/s. Duration 600s 

 
Figure 5-157. Out-of-plane RBM spectrum comparison between Simulink 

and Bladed for the complete wind-field with mean 15m/s 

 
Figure 5-158. Out-of-plane RBM time series comparison between Simulink 

and Bladed for the complete wind-field with mean 15m/s. Duration 600s 
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Figure 5-159. Out-of-plane RBM spectrum comparison between Simulink 

and Bladed for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure 5-160. Out-of-plane RBM time series comparison between Simulink 

and Bladed for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset. Duration 600s 

 
Figure 5-161. Out-of-plane RBM spectrum comparison between Simulink 

and Bladed for the complete wind-field with mean 8m/s 

 
Figure 5-162. Out-of-plane RBM time series comparison between Simulink 

and Bladed for the complete wind-field with mean 8m/s. Duration 600s 
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      5.6. Comparison to Bladed with Structural Dynamics 

The effective wind-field model is compared to Bladed, with the dynamic modes of the WT 

active to provide a more realistic context. 

The same 10% TI wind-field as in Section 5.5 has been used. Besides hub torque and out-of-

plane RBM, thrust and in-plane RBM are also present in this set of results for the 15m/s and 

8m/s cases. Results for the hub torque are shown from Figure 5-163 to Figure 5-164 for the 

15m/s case and from Figure 5-165 to Figure 5-166 for the 8m/s case. Results for the thrust are 

shown from Figure 5-167 to Figure 5-168 for the 15m/s case and from Figure 5-169 to Figure 

5-170 for the 8m/s case. Results for the in-plane RBM are shown from Figure 5-171 to Figure 

5-172 for the 15m/s case and from Figure 5-173 to Figure 5-174 for the 8m/s case. Finally, 

results for the out-of-plane RBM are shown from Figure 5-175 to Figure 5-176 for the 15m/s 

case and from Figure 5-177 to Figure 5-178 for the 8m/s case. In Appendix I an equivalent set, 

including generator speed, can be found for a wind-field with turbulence intensity of 15% and 

20%. 

The comparison between Bladed and Simulink in this more realistic scenario shows that the 

proposed effective wind-field model is capable of successfully inducing forces and moments 

in a way that is meaningful for control purposes and that this capability applies to forces, e.g. 

thrust, and moments, e.g. out-of-plane RBM of the blade, which are not directly supported by 

the Separability theory. 



 

 

209 

 

 
Figure 5-163. Hub torque spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-164. Hub torque time series comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s and a flexible WT.  

 
Figure 5-165. Hub torque spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 8m/s and a flexible WT 

 
Figure 5-166. Hub torque time series comparison between Simulink and 

Bladed for the complete wind-field with mean 8m/s and a flexible WT 
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Figure 5-167. Thrust spectrum comparison between Simulink and Bladed 

for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-168. Thrust time series comparison between Simulink and Bladed 

for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-169. Thrust spectrum comparison between Simulink and Bladed 

for the complete wind-field with mean 8m/s and a flexible WT 

 
Figure 5-170. Thrust time series comparison between Simulink and Bladed 

for the complete wind-field with mean 8m/s and a flexible WT 
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Figure 5-171. In-plane RBM spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-172. In-plane RBM time series comparison between Simulink and 

Bladed for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-173. In-plane RBM spectrum comparison between Simulink and 

Bladed for the complete wind-field with mean 8m/ and a flexible WT 

 
Figure 5-174. In-plane RBM time series comparison between Simulink and 

Bladed for the complete wind-field with mean 8m/s and a flexible WT 
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Figure 5-175. Out-of-plane RBM spectrum comparison between Simulink 

and Bladed for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-176. Out-of-plane RBM time series comparison between Simulink 

and Bladed for the complete wind-field with mean 15m/s and a flexible WT 

 
Figure 5-177. Out-of-plane RBM spectrum comparison between Simulink 

and Bladed for the complete wind-field with mean 8m/s and a flexible WT 

 
Figure 5-178. Out-of-plane RBM time series comparison between Simulink 

and Bladed for the complete wind-field with mean 8m/s and a flexible WT 
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      5.7. Discussion on Wind-Field Modelling and Separability  

The proposed effective wind-field model is tested systematically for two configurations of the 

model, triple and simple structure, see Section 5.1. The wind-field model consists of a number 

of components which are studied individually to assess the impact of leakage, were the 

Separability property invalid, see Section 5.2 and Section 5.3. The proposed effective wind-

field model relies on the Separability property to be accurate. After the single components of 

the wind-field model are studied, the complete model is constructed in a step by step manner, 

see Section 5.4. To generate forces and moments the effective wind-field model is incorporated 

into a Simulink 5MW WT representation. 

From the analysis, the outcomes regarding the presence of non-linear effects seen in leakage 

and the suitability of the triple and simple structure models for inducing forces and moments 

are the following:  

 For the stochastic component of the wind-field the simple structure model should 

suffice. 

 For the WS component of the wind-field modelled alone, the simple structure model 

may not suffice. 

 For the TS component of the wind-field modelled alone, the simple structure model 

should suffice. 

 For the deterministic component of the wind-field, as WS and TS components together, 

the simple structure model should suffice. 

 For the complete effective wind-field model, composed of the complete stochastic 

component and a deterministic component containing WS and TS, the simple structure 

model should suffice. 

The complete effective wind-field model, with the simple structure incorporated into a 

Simulink 5MW WT representation, is used for direct comparison with Bladed simulation for 

validation purposes. The WT Bladed model is defined with the same characteristics and with a 

comparable wind input generated by Bladed itself, as specified in Section 5.5. Both WT 

models, defined in Simulink and Bladed, have the same controller. Nevertheless, the Bladed 

and Simulink WT models have differences that are not related to the input coming from the 

wind-field model per se. Rather these differences arise from the differences in the WT model 

dynamics and representation of the wind. Such differences can be magnified by the controller. 
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Therefore, the comparison is firstly done with stiff WT structural dynamics to minimise the 

impact of these differences and focus on the effectiveness of the proposed effective wind-field 

model. Results in Section 5.5 provide a good match between the proposed effective wind-field 

model and Bladed. 

Further comparison is pursued by activating the WT structural dynamics. Results in Section 

5.6 suggest that in this more realistic scenario, the proposed effective wind-field model is 

capable of successfully inducing forces and moments in a way that is meaningful for control 

analysis and design purposes and that this capability applies to forces, e.g. thrust, and moments, 

e.g. out-of-plane RB of the blade, which are not directly supported by the Separability theory. 

Consequently, it can be concluded that the wind-field model developed as per Figure 5-2 is a 

reasonable representation of the wind-field and is sufficiently validated to establish its 

suitability for control analysis and design purposes. If the assumption that Separability applied 

over the operating region of the WT were not valid, then that would have been clear from the 

results.  

Furthermore, the detailed investigation in this chapter supports and provides strong additional 

evidence that Separability is valid over the operational envelope of the WT. 
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Chapter 6 

 

Conclusions 
 

The Separability property is investigated for constant speed WTs and variable speed WTs. The 

general structure of the Additivity functions ℎ(∙) and 𝑔(∙) for both the wind speed and tip speed 

ratio based Separability, and their relationship is determined. In particular, the optimised fit for 

the wind speed based Separability, is found after the best parametric form for the individual 

equations ℎ(∙) and 𝑔(∙) are identified. 

Both the 𝑔(∙) and 𝜏(∙) functions are proven to be weakly non-linear and can be considered 

independent from 𝜔. Whereas the 𝜇(∙) function has been confirmed to have both dependency 

on 𝜔 and more non-linearity, albeit still relatively weakly so. This is largely due to the Basic 

Additivity property in Section 3.1.2 applying to Separability in tip speed ratio rather than the 

Additivity property from Section 3.2, an important consequence being that ′(
𝑇0

𝜔0
2⁄ ) ≠ 1. 

It is demonstrated that Separability exists for both constant and variable speed WTs and that it 

holds for very large neighbourhoods with very good accuracy. In fact, on average, it 

comfortably covers more than double the rated torque of all WTs explored. 

It is established that both, principled Separability based on tip speed ratio and empirical 

Separability based on a simplified version of wind speed, provide good approximations for the 

aerodynamic torque with the latter as good as the former. Therefore, when exploiting 

Separability to develop advanced controllers and other purposes, such as wind speed models, 

which require good accuracy, the use of the empiric Separability relationship of the form,  

𝑇 ≈  (𝑇0 + (ℎ(𝜔, 𝛽) − 𝑔(𝑉))) 

is fully justified.  

This form of Separability provides with the correct values and derivatives at the equilibrium 

operating points and the 𝜏(∙) function is invariant with 𝜔.  

Exploiting Separability, an effective wind-field model is proposed. It is tested systematically 

for two configurations of the model, triple and simple structure, see Section 5.1. The wind-field 
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model consists of a number of components which are studied individually to assess the impact 

of leakage, were the Separability property invalid, see Section 5.2 and Section 5.3. The 

proposed effective wind-field model relies on the Separability property to be accurate. After 

the single components of the wind-field model are studied, the complete model is constructed 

in a step by step manner, see Section 5.4. To generate forces and moments the effective wind-

field model is incorporated into a Simulink 5MW WT representation. 

From the analysis, the outcomes regarding the presence of non-linear effects seen in leakage 

and the suitability of the triple and simple structure models for inducing forces and moments 

are the following:  

 For the stochastic component of the wind-field the simple structure model should 

suffice. 

 For the WS component of the wind-field modelled alone, the simple structure model 

may not suffice. 

 For the TS component of the wind-field modelled alone, the simple structure model 

should suffice. 

 For the deterministic component of the wind-field, as WS and TS components together, 

the simple structure model should suffice. 

 For the complete effective wind-field model, composed of the complete stochastic 

component and a deterministic component containing WS and TS, the simple structure 

model should suffice. 

The complete effective wind-field model, with the simple structure incorporated into a 

Simulink 5MW WT representation, is used for direct comparison with Bladed simulation for 

validation purposes. The WT Bladed model is defined with the same characteristics and with a 

comparable wind input generated by Bladed itself, as specified in Section 5.5. Both WT 

models, defined in Simulink and Bladed, have the same controller. Nevertheless, the Bladed 

and Simulink WT models have differences that are not related to the input coming from the 

wind-field model per se. Rather these differences arise from the differences in the WT model 

dynamics and representation of the wind. Such differences can be magnified by the controller. 

Therefore, the comparison is firstly done with stiff WT structural dynamics to minimise the 

impact of these differences and focus on the effectiveness of the proposed effective wind-field 

model. Results in Section 5.5 provide a good match between the proposed effective wind-field 

model and Bladed. 
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Further comparison is pursued by activating the WT structural dynamics. Results in Section 

5.6 suggest that in this more realistic scenario, the proposed effective wind-field model is 

capable of successfully inducing forces and moments in a way that is meaningful for control 

analysis and design purposes and that this capability applies to forces, e.g. thrust, and moments, 

e.g. out-of-plane RB of the blade, which are not directly supported by the Separability theory. 

Consequently, it can be concluded that the wind-field model developed as per Figure 5-1 is a 

reasonable representation of the wind-field and is sufficiently validated to establish its 

suitability for control analysis and design purposes. If the assumption that Separability applied 

over the operating region of the WT were not valid, then that would have been clear from the 

results.  

Furthermore, the detailed investigation in Chapter 5 supports and provides strong additional 

evidence that Separability is valid over the operational envelope of the WT. 

6.1. Future Work 

The following actions have been identified as the natural next steps for further work. 

Whereas the accuracy and domain of validity of the Separability property has been extensively 

explored in this thesis and successfully applied to the above rated region, advanced controllers 

would benefit from further refinement of the Separability property such that the below rated 

region of the operating strategy is fully explored. This should be done in such a way that the 

validity regions are meticulously defined as they would improve the confidence in and accuracy 

of the fits for operating points further away from the locus of operating points. 

The research presented in this thesis, shows that there is a relationship between the accuracy 

of Separability of the aerodynamics and the rotor design, as the accuracy of Separability 

changes with the different rotor design explored. Further exploration on this aerodynamics-

Separability-rotor design relationship would further the understanding of the property as well 

as possibly shedding light on the aerodynamics themselves and the rotor design.  

The proposed effective wind-field model could be further refined through an exploration of the 

effective wind-field model’s weightings, which in this thesis have been chosen on general 

principles to be uniform for forces and linear for moments. The benefit would be to advance 

control designs that use the wind-field models. Furthermore, to account for certain control 
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complexities at high frequencies, that arise under particular circumstance for big WTs, the 

wind-field model could be expanded from 𝑛 = 1,… ,6 to 𝑛 = 1,… ,12. 

Finally, whereas the capacity of designing an effective wind-field model provides an 

advancements in knowledge per se, it is the exploitation of the proposed effective wind-field 

model which will bring the biggest benefits. 
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Appendix A  

 

Wind Turbine Models 

 

In the following, the Bladed report description of the three wind turbines used in the study of 

the Separability property, namely Demo, Demo-modified and PJ9, can be found. The 𝐶𝑞 tables 

for the same can be found in the USB stick accompanying this thesis. 

 A.1 Rotor PJ9 

Project Name Base 100m 

Date 12 Oct 2006 

Engineer FM 

Notes  

 20 Feb 06 - DVW:  

 Adjusted optimal mode gain 

- TSR of 9.0 

 

 Re-tuned controller 

3MW 

 

   

Version 3.82 

    

Project file  

  

 

GENERAL CHARACTERISTICS OF ROTOR AND TURBINE 

Rotor diameter 100 m 

Number of blades 3  

Teeter hinge No   

Hub height 81.11 m 

Offset of hub to side of tower centre 0 m 

Tower height 79 m 

Tilt angle of rotor to horizontal 6 deg 

Cone angle of rotor 0 deg 

Blade set angle 0 deg 

Rotor overhang 4.33 m 

Rotational sense of rotor, viewed from upwind Clockwise  

Position of rotor relative to tower Upwind  

Transmission Gearbox   

Aerodynamic control surfaces Pitch  

Fixed / Variable speed Variable  

Diameter of spinner 4.444 m 

Radial position of root station 1.33 m 

Extension piece diameter 2.684 m 

Extension piece drag coefficient 1  

Cut in windspeed 4 m/s 

Cut out windspeed 25 m/s 
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BLADE GEOMETRY 

Blade name LM43.8P  

Blade length 48.67 m 

Pre-bend at tip 1.667 m 

Pitch control Full span  

 

 

  

Distance 

from 

root (m) 

Chord 

(m) 

Twist 

(deg) 

Twist 

Axis (% 

chord) 

Thickness 

(% 

chord) 

Pitch 

Axis (% 

chord) 

Pre-

bend 

(m) 

Aero-

dynamic 

control 

Aerofoil 

section 

reference 

0 2.68 5 25 100 50 0 Pitchable 1 

2.22 2.76 5.38 25 96.412 49 0 Pitchable 2 

4.44 2.94 6.695 25 80.537 48 1.E-03 Pitchable 2 

6.67 3.13 8.093 25 65.08 47 0.007 Pitchable 2 

8.89 3.31 9.37 25 51.689 46 0.02 Pitchable 3 

11.11 3.48 10.215 25 40.327 45 0.052 Pitchable 3 

13.33 3.52 9.39 25 32.55 44 0.062 Pitchable 3 

15.56 3.33 7.17 25 28.4 42 0.042 Pitchable 3 

17.78 3.1 5.42 25 25.62 41 0.043 Pitchable 3 

20 2.86 4.326 25 23.769 41 0.072 Pitchable 3 

22.22 2.65 3.499 25 22.248 40 0.117 Pitchable 3 

24.44 2.46 2.859 25 20.99 40 0.172 Pitchable 4 

26.67 2.29 2.31 25 20.034 40 0.229 Pitchable 4 

28.89 2.13 1.762 25 19.405 40 0.32 Pitchable 5 

31.11 2 1.281 25 19.027 40 0.413 Pitchable 5 

33.33 1.86 0.893 25 18.785 40 0.521 Pitchable 5 

35.56 1.73 0.559 25 18.642 40 0.642 Pitchable 5 

37.78 1.62 0.3 25 18.61 40 0.779 Pitchable 5 

40 1.52 0.12 25 18.52 40 0.929 Pitchable 5 

42.22 1.41 -0.04 25 18.36 40 1.096 Pitchable 5 

44.44 1.25 -0.22 25 18.17 40 1.277 Pitchable 5 

46.67 0.96 -0.334 25 17.39 40 1.476 Pitchable 6 

47.78 0.63 0.591 25 16.309 40 1.579 Pitchable 6 

48.22 0.44 2.043 25 15.605 40 1.623 Pitchable 6 

48.67 0.01 5.8 25 14.84 40 1.667 Pitchable 7 

 

 

Blade Mass Integrals (No ice) 

Blade Mass 8218.03 kg 

First Mass Moment 121311 kgm 

Second Mass Moment 3.206E+06 kgm² 

Blade inertia about shaft 3.544E+06 kgm² 
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BLADE STIFFNESS DISTRIBUTION 

Radial Position (m) Flapwise stiffness (Nm²) Edgewise stiffness (Nm²) 

0 9.66E+09 9.66E+09 

2.22 4.83E+09 7.51E+09 

4.44 2.7E+09 4.83E+09 

6.67 1.9E+09 4.51E+09 

8.89 1.45E+09 3.69E+09 

11.11 1.1E+09 3.25E+09 

13.33 8.5E+08 2.85E+09 

15.56 6.6E+08 2.39E+09 

17.78 4.93E+08 1.8E+09 

20 3.83E+08 1.4E+09 

22.22 3.01E+08 1.44E+09 

24.44 2.3E+08 1.27E+09 

26.67 1.72E+08 1.05E+09 

28.89 1.24E+08 1.02E+09 

31.11 8.69E+07 7.94E+08 

33.33 5.89E+07 6.1E+08 

35.56 3.79E+07 3.9E+08 

37.78 2.29E+07 2.36E+08 

40 1.27E+07 1.46E+08 

42.22 6.23E+06 1.14E+08 

44.44 2.47E+06 6.19E+07 

46.67 664000 2.5E+07 

47.78 73600 3.37E+06 

48.22 2840 1.83E+06 

48.67 1.23 152 

 

 

  

HUB MASS AND INERTIA 

Mass of hub 45267.5 kg 

Mass centre of hub -0.1 m 

Hub inertia: about shaft 60966.3 kgm² 

  perpendicular to shaft 60966.3 kgm² 

Total Rotor Mass 69921.6 kg 

Total Rotor Inertia 1.069E+07 kgm² 

 

A.2 Rotor Demo 

Project Name Demo_a 

Date 5 Sept 2001 

Engineer EAB 

Notes Generic 2MW Offshore turbine 

   

Version 3.82 

    

Project file  
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GENERAL CHARACTERISTICS OF ROTOR AND TURBINE 

Rotor diameter 80 m 

Number of blades 3  

Teeter hinge No   

Hub height 61.5 m 

Offset of hub to side of tower centre 0 m 

Tower height 60 m 

Tilt angle of rotor to horizontal 4 deg 

Cone angle of rotor 0 deg 

Blade set angle 0 deg 

Rotor overhang 3.7 m 

Rotational sense of rotor, viewed from upwind Clockwise  

Position of rotor relative to tower Upwind  

Transmission Gearbox   

Aerodynamic control surfaces Pitch  

Fixed / Variable speed Variable  

Diameter of spinner 2.5 m 

Radial position of root station 1.25 m 

Extension piece diameter 1.9 m 

Extension piece drag coefficient 0.8  

Cut in windspeed 4 m/s 

Cut out windspeed 25 m/s 

 

 

  

BLADE GEOMETRY 

Blade length 38.75 m 

Pre-bend at tip 0 m 

Pitch control Full span  

 

 

  

Distance 

from 

root (m) 

Chord 

(m) 

Twist 

(deg) 

Twist 

Axis (% 

chord) 

Thickness 

(% 

chord) 

Pitch 

Axis (% 

chord) 

Pre-

bend 

(m) 

Aero-

dynamic 

control 

Aerofoil 

section 

reference 

0 2.06667 0 50 100 50 0 Pitchable 1 

1.14815 2.06667 0 50 100 50 0 Pitchable 1 

3.44444 2.75556 9 35 64 38 0 Pitchable 1 

5.74074 3.44444 13 25 40 29 0 Pitchable 2 

9.18519 3.44444 11 25 30 29 0 Pitchable 2 

16.0741 2.75556 7.8 25 22 29 0 Pitchable 2 

26.4074 1.83704 3.3 25 15 29 0 Pitchable 3 

35.5926 1.14815 0.3 25 13 29 0 Pitchable 4 

38.2333 0.688889 2.75 25 13 29 0 Pitchable 4 

38.75 0.028704 4 25 13 29 0 Pitchable 4 

 

 

  

BLADE MASS DISTRIBUTION 

Distance from root (m) Centre of Mass (% chord) Mass/unit length (kg/m) 

0 50 1084.77 

1.14815 50 369.809 

3.44444 38 277.356 

5.74074 29 234.212 

9.18519 29 209.558 

16.0741 29 172.577 

26.4074 29 103.546 

35.5926 29 55.4713 

38.2333 29 40.6789 

38.75 29 24.6539 
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Blade Mass Integrals (No ice) 

Blade Mass 6546.72 kg 

First Mass Moment 84218.6 kgm 

Second Mass Moment 1.785E+06 kgm² 

Blade inertia about shaft 2.006E+06 kgm² 

 

 

  

BLADE STIFFNESS DISTRIBUTION 

Radial Position (m) Flapwise stiffness (Nm²) Edgewise stiffness (Nm²) 

0 7.472E+09 7.472E+09 

1.14815 2.433E+09 2.607E+09 

3.44444 1.408E+09 2.085E+09 

5.74074 8.341E+08 1.425E+09 

9.18519 5.561E+08 1.286E+09 

16.0741 2.085E+08 5.648E+08 

26.4074 2.954E+07 1.216E+08 

35.5926 2.259E+06 2.433E+07 

38.2333 113824 4.518E+06 

38.75 3127.98 8167.51 

 

 

  

HUB MASS AND INERTIA 

Mass of hub 14000 kg 

Mass centre of hub 0 m 

Hub inertia: about shaft 12000 kgm² 

  perpendicular to shaft 0 kgm² 

Total Rotor Mass 33640.2 kg 

Total Rotor Inertia 6.029E+06 kgm² 

 

A.3 Rotor Demo-Modified 

Project Name Demo-modified 

Date 5 Sept 2001 

Engineer EAB 

Notes Generic 2MW Offshore turbine 

   

Version 3.80 

    

Project file  
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GENERAL CHARACTERISTICS OF ROTOR AND TURBINE 

Rotor diameter 80 m 

Number of blades 3  

Teeter hinge No   

Hub height 61.5 m 

Offset of hub to side of tower centre 0 m 

Tower height 60 m 

Tilt angle of rotor to horizontal 4 deg 

Cone angle of rotor 0 deg 

Blade set angle 0 deg 

Rotor overhang 3.7 m 

Rotational sense of rotor, viewed from upwind Clockwise  

Position of rotor relative to tower Upwind  

Transmission Gearbox   

Aerodynamic control surfaces Pitch  

Fixed / Variable speed Variable  

Diameter of spinner 2.5 m 

Radial position of root station 1.25 m 

Extension piece diameter 1.9 m 

Extension piece drag coefficient 0.8  

Cut in windspeed 4 m/s 

Cut out windspeed 25 m/s 

 

 

  

BLADE GEOMETRY 

Blade length 38.75 m 

Pre-bend at tip 0 m 

Pitch control Full span  

 

 

  

Distance 

from 

root (m) 

Chord 

(m) 

Twist 

(deg) 

Twist 

Axis (% 

chord) 

Thickness 

(% 

chord) 

Pitch 

Axis (% 

chord) 

Pre-

bend 

(m) 

Aero-

dynamic 

control 

Aerofoil 

section 

reference 

0 2.02361 0 50 100 29 0 Pitchable 1 

1.14815 2.02361 0 50 100 29 0 Pitchable 1 

3.44444 2.02361 0 35 64 29 0 Pitchable 1 

5.74074 2.02361 0 25 40 29 0 Pitchable 2 

9.18519 2.02361 0 25 30 29 0 Pitchable 2 

16.0741 2.02361 0 25 22 29 0 Pitchable 2 

26.4074 2.02361 0 25 15 29 0 Pitchable 3 

35.5926 2.02361 0 25 13 29 0 Pitchable 4 

38.2333 2.02361 0 25 13 29 0 Pitchable 4 

38.75 2.02361 0 25 13 29 0 Pitchable 4 

 

 

  

BLADE MASS DISTRIBUTION 

Distance from root (m) Centre of Mass (% chord) Mass/unit length (kg/m) 

0 50 1084.77 

1.14815 50 369.809 

3.44444 38 277.356 

5.74074 29 234.212 

9.18519 29 209.558 

16.0741 29 172.577 

26.4074 29 103.546 

35.5926 29 55.4713 

38.2333 29 40.6789 

38.75 29 24.6539 
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Blade Mass Integrals (No ice) 

Blade Mass 6546.72 kg 

First Mass Moment 84218.6 kgm 

Second Mass Moment 1.785E+06 kgm² 

Blade inertia about shaft 2.006E+06 kgm² 

 

 

  

BLADE STIFFNESS DISTRIBUTION 

Radial Position (m) Flapwise stiffness (Nm²) Edgewise stiffness (Nm²) 

0 7.472E+09 7.472E+09 

1.14815 2.433E+09 2.607E+09 

3.44444 1.408E+09 2.085E+09 

5.74074 8.341E+08 1.425E+09 

9.18519 5.561E+08 1.286E+09 

16.0741 2.085E+08 5.648E+08 

26.4074 2.954E+07 1.216E+08 

35.5926 2.259E+06 2.433E+07 

38.2333 113824 4.518E+06 

38.75 3127.98 8167.51 

 

 

  

HUB MASS AND INERTIA 

Mass of hub 14000 kg 

Mass centre of hub 0 m 

Hub inertia: about shaft 12000 kgm² 

  perpendicular to shaft 0 kgm² 

Total Rotor Mass 33640.2 kg 

Total Rotor Inertia 6.029E+06 kgm² 

 

 

 

  

 

 



226 
 

Appendix B  

 

Wind-Field Model Transfer Functions 

Design 

 

The transfer functions used in the effective wind-field model developed in Chapter 5, have 

been obtained following a procedure introduced in [9], to which minor but important, 

modifications to equations and nomenclature have been applied, as per Chapter 5. This 

procedure, including the abovementioned adaptations, is recalled below directly from [9]: 

The functions 𝜙𝑥𝑥
𝑅 , 𝜙𝑦𝑦

𝑅  and 𝜙𝑥𝑦
𝑅  from (5.64), (5.65) and (5.66) are reformulated as functions 

of 𝑥2, rather than 𝑥, and suitable fits 𝜙𝑥𝑥, 𝜙𝑦𝑦and 𝜙𝑥𝑦 respectively, determined. The fits must 

have the following properties. 

a) 𝜙𝑥𝑥, 𝜙𝑦𝑦and 𝜙𝑥𝑦 must be proper rational expressions in 𝑥2 

b) None of the roots of the numerator and denominators of 𝜙𝑥𝑥 , 𝜙𝑦𝑦and 𝜙𝑥𝑦 must lie in 

the right-half of the complex 𝑥2 plane. 

Requirements a) and b) can be met in a relatively simple manner provided that the fitted 

functions roll off in 𝑥2 as an integer multiple of -20dB/decade. Since the correlation factor, 𝜇, 

defined by 

𝜇 =
𝜙𝑥𝑦

𝑅

√𝜙𝑥𝑥
𝑅 𝜙𝑦𝑦

𝑅
  (B. 1) 

is the most important measure of cross-correlation it must be fitted with the greatest accuracy. 

Unfortunately, both √𝜙𝑥𝑥
𝑅  and √𝜙𝑦𝑦

𝑅  roll off at -10dB/decade. However, A and B, where 

𝐴 = √𝜙𝑥𝑥
𝑅 𝜙𝑦𝑦

𝑅      ;      𝐵 = √
𝜙𝑦𝑦

𝑅

𝜙𝑥𝑥
𝑅⁄  (B. 2) 

Roll off at -20dB/decade and 0dB/decade, respectively. Consequently, the most appropriate 

way to represent the numerical calculated data is by the fits 𝜇𝑓𝑖𝑡, 𝐴𝑓𝑖𝑡 and 𝐵𝑓𝑖𝑡, to 𝜇, 𝐴 and 𝐵, 

respectively. Subsequently 𝜙𝑥𝑥, 𝜙𝑦𝑦and 𝜙𝑥𝑦 are determined from 
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𝜙𝑥𝑥 =
𝐴𝑓𝑖𝑡

𝐵𝑓𝑖𝑡
⁄      ;      𝜙𝑦𝑦 = 𝐴𝑓𝑖𝑡𝐵𝑓𝑖𝑡     ;      𝜙𝑥𝑦 = 𝜇𝑓𝑖𝑡𝐴𝑓𝑖𝑡 (B. 3) 

 

Clearly from  

𝑉𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑓1(𝑠)𝜔1 + (𝑓3(𝑠)𝑓4(𝑠))𝜔3 = 𝑓1(𝑠)𝜔1 + 𝑓31(𝑠)𝜔3    (B. 4) 

𝑉𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑓2(𝑠)𝜔2 +
𝑓3(𝑠)

𝑓4(−𝑠)
𝜔3 = 𝑓2(𝑠)𝜔2 + 𝑓32(𝑠)𝜔3 (B. 5) 

it follows, 

|𝑓3(𝑗𝜔)|2 =  𝜙𝑥𝑦 = 𝜇𝐴 (B. 6) 

|𝑓4(𝑗𝜔)|2 =  𝜓 (B. 7) 

|𝑓1(𝑗𝜔)|2 =  𝜙𝑥𝑥 − 𝜙𝑥𝑦𝜓 = 𝜙𝑥𝑥 (1 −
𝜙𝑥𝑦𝜓

𝜙𝑥𝑥
) =

𝐴

𝐵
(1 − 𝜇𝐵𝜓) (B. 8) 

|𝑓2(𝑗𝜔)|2 =  𝜙𝑦𝑦 −
𝜙𝑥𝑦

𝜓
= 𝜙𝑦𝑦 (1 −

𝜙𝑥𝑦

𝜙𝑦𝑦𝜓
) = 𝐴𝐵 (1 −

𝜇

𝐵𝜓
) (B. 9) 

|𝑓31(𝑗𝜔)|2 = |𝑓3(𝑗𝜔)|2|𝑓4(𝑗𝜔)|2 = 𝜙𝑥𝑦𝜓 = 𝜇𝐴𝜓 (B. 10) 

|𝑓32(𝑗𝜔)|2 =
|𝑓3(𝑗𝜔)|2

|𝑓4(𝑗𝜔)|2
=

𝜙𝑥𝑦

𝜓
=

𝜇𝐴

𝜓
 (B. 11) 

Where 𝜓 has the properties a) and b) such the magnitude of 𝜓(0) = 1 and the degree of the 

numerator and denominator are the same. The spectrum of 𝜓(𝑥) is chosen to ensure that both 

|𝑓1(𝑗𝜔)|2 and |𝑓2(𝑗𝜔)|2 have no roots in the right-half complex 𝑥2 plane. By the Nyquist 

stability criterion (see any control text), this requirement is met provided the magnitude of both 

𝜙𝑥𝑦𝜓 𝜙𝑥𝑥⁄  and 𝜙𝑥𝑦 𝜙𝑦𝑦𝜓⁄  are less than one for all 𝑥, since 

|
𝜙𝑥𝑦

2

𝜙𝑥𝑥𝜙𝑦𝑦
| ≈ |

(𝜙𝑥𝑦
𝑅 )

2

𝜙𝑥𝑥
𝑅 𝜙𝑦𝑦

𝑅
| ≤ 1 (B. 12) 

It is straightforward to find a suitable 𝜓(𝑥) using standard control methods. 

The transfer functions for 𝑓1(𝑠),…, 𝑓4(𝑠) are determined by factorising the right-hand side of 

the expressions of |𝑓1(𝑗𝜔)|2, … , |𝑓4(𝑗𝜔)|2, respectively; that is, the overall gain, 𝐾2, 

corresponds to gain, 𝐾, in the transfer function, each factor of (𝑥2 + 𝑎2) corresponds to a factor 

(𝜎𝑠 + 𝑎) in the transfer function and each factor ((𝑥2)2 + 𝑢𝑥2 + 𝑣2) corresponds to a factor 
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(𝜎2𝑠2 + √𝑢 + 2𝑣𝜎𝑠 + 𝑣) in the transfer function. Because of the number of steps involved, 

the filters 𝑓1(𝑠) to 𝑓4(𝑠) can be high order, but low order approximations for each can be readily 

determined using standard control methods. However, rather than 𝑓3(𝑠) and 𝑓4(𝑠), themselves, 

low order approximations 𝑓31(𝑠) and 𝑓32(𝑠) are directly determined for 𝑓3(𝑠)𝑓4(𝑠) and 

𝑓3(𝑠) 𝑓4(−𝑠)⁄  respectively. Of course the filters 𝑓31(𝑠) and 𝑓32(𝑠) tend to one and 𝑓1(𝑠) and 

𝑓2(𝑠) tend to zero on the limit as s tends to zero. 

B.1 Design Procedure for Lump Parameter Subsystem Models. An 

Illustrated Example 

The previous process is now illustrated for the case 𝑛 =  4. To be noted, that for simplicity 

this method does not deal with phase since it would unnecessarily complicate the process of 

retrieving the expressions for the filters. Instead the phase is adjusted a posteriori and only 

before final modelling. This is the easiest way to assure the right gain and phase in the final 

model.  

In order, from Figure B-1 to Figure B-3, the approximations 𝐴𝑓𝑖𝑡, 𝐵𝑓𝑖𝑡 and 𝜇𝑓𝑖𝑡 can be found 

plotted against their associated original values (from numerically solving the respective 

integrals), and are of the form, 

𝐴𝑓𝑖𝑡 =
2.5741 x2 (x2 + 1960)(x2 + 0.4677)(x2 + 0.00352)

(x2 + 2800)(x2 + 115)(x2 + 3.821)(x2 + 0.04296)(x2 + 0.00024)
 (B. 13) 

𝐵𝑓𝑖𝑡 =
0.65236 (x2 + 9.9e04) (x2 + 1.8e04) (x2 + 2000) (x2 + 100)

(x2 + 8.9e04) (x2 + 1.6e04) (x2 + 1500) (x2 + 78)
 (B. 14) 

𝜇𝑓𝑖𝑡 =
0.62107 (x2 + 9.2e04) (x2 + 6300) (x2 + 260)

(x2 + 7.6e04) (x2 + 5500) (x2 + 230)
 (B. 15) 
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Figure B-1. Comparison between fit for 𝐴 and 𝐴 from integral data, n = 4 

 
Figure B-2. Comparison between fit for 𝐵 and 𝐵 from integral data, n = 4

 
Figure B-3. Comparison between fit for 𝜇 and 𝜇 from integral data, n = 4 
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It follows that 𝜙𝑥𝑥𝑓𝑖𝑡, 𝜙𝑦𝑦𝑓𝑖𝑡 and 𝜙𝑥𝑦𝑓𝑖𝑡, which can be found in Figure B-4, Figure B-5 and 

Figure B-6 respectively, are of the form 

𝜙𝑥𝑥𝑓𝑖𝑡 =
3.9458x2 (x2 + 1960)(x2 + 1500)(x2 + 1.6e04)(x2 + 8.9e04) 

(x2 + 2800)(x2 + 2000)(x2 + 1.8e04)(x2 + 9.9e04)(x2 + 115)
 

                   
(x2 + 78) (x2 + 0.4677) (x2 + 0.00352) 

(x2 + 100) (x2 + 3.821) (x2 + 0.04296) (x2 + 0.00024)
 

(B. 16) 

𝜙𝑦𝑦𝑓𝑖𝑡 =
 1.6792 x2 (x2 + 1960) (x2 + 2000) (x2 + 1.8e04) (x2 + 9.9e04)  

(x2 + 2800) (x2 + 1500) (x2 + 1.6e04) (x2 + 8.9e04) (x2 + 115) 
 

                       
 (x2 + 100)(x2 + 0.4677) (x2 + 0.00352) 

(x2 + 78)(x2 + 3.821) (x2 + 0.04296) (x2 + 0.00024)
 

(B. 17) 

𝜙𝑥𝑦𝑓𝑖𝑡 =
1.5987 s (s + 9.2e04) (s + 6300) (s + 1960) (s + 260) (s + 0.4677)  

(s + 7.6e04) (s + 5500) (s + 2800) (s + 230) (s + 115) (s + 3.821) 
 

                   
 (s + 0.00352) 

(s + 0.04296) (s + 0.00024)
 

(B. 18) 

 
Figure B-4. Comparison between fit for function 𝜙𝑥𝑥 and 𝜙𝑥𝑥 from  integral data, n = 4 
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Figure B-5. Comparison between fit for function 𝜙𝑦𝑦 and 𝜙𝑦𝑦 from  integral data, n = 4 

 
Figure B-6. Comparison between fit for function 𝜙𝑥𝑦 and 𝜙𝑥𝑦 from  integral data, n = 4 
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Figure B-7. Confirmation that , |
𝜙𝑥𝑦

2

𝜙𝑥𝑥𝜙𝑦𝑦
| ≤ 1, n = 4 

From the definition of 𝑓1 and 𝑓2, it is clear that 𝜓(𝑥) needs to exists between the following 

limits (see Figure B-8), 

𝑅𝑎𝑡𝑖𝑜 1 =
𝜙𝑥𝑥

𝜙𝑥𝑦
 (B. 19) 

𝑅𝑎𝑡𝑖𝑜 2 =
𝜙𝑥𝑦

𝜙𝑦𝑦
 (B. 20) 

And for 𝑛 = 4, 𝜓(𝑥) takes the form of, 

𝜓(𝑥) =
1.222 (x2 + 1500) (x2 + 78)

(x2 + 2000) (x2 + 100)
 (B. 21) 

 
Figure B-8. Ratio 1, Ratio 2 and 𝜓 function, n = 4 
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The corresponding un-factorised and un-modified filters that follow can be found from Figure 

B-9 to Figure B-12. It can be clearly appreciated from 𝑓1 and 𝑓2 in Figure B-9 and Figure B-10 

respectively, that in certain cases the transfer functions need to be tweaked to better match the 

integral values. The transfer functions before any manipulation are, 

𝑓1 𝑢𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
1.9922 x2 (x2 + 8.973e04)(x2 + 5.311e04)(x2 + 1.271e04)(x2 + 2864)

(x2 + 9.9e04) (x2 + 7.6e04) (x2 + 1.8e04) (x2 + 5500)(x2 + 2800)(x2 + 2000) 
 

(x2 + 1960)(x2 + 1500)(x2 + 78) (x2 + 45.04) (x2 + 0.4677)(x2 + 0.00352)

 (x2 + 230) (x2 + 115)(x2 + 100) (x2 + 3.821)(x2 + 0.04296)(x2 + 0.00024)  
 

(B. 22) 

𝑓2 𝑢𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
0.37099 x2 (x2 + 1.042e05) (x2 + 4.191e04)(x2 + 3.219e04)(x2 + 3360)

(x2 + 8.9e04) (x2 + 7.6e04) (x2 + 1.6e04)(x2 + 5500)(x2 + 2800)(x2 + 1500)   
 

 (x2 + 2000) (x2 + 1960) (x2 + 100) (x2 + 39.68)(x2 + 0.4677)(x2 + 0.00352)  

(x2 + 230) (x2 + 115) (x2 + 78)(x2 + 3.821) (x2 + 0.04296) (x2 + 0.00024)
 

(B. 23) 

𝑓31 𝑢𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
1.9537x2 (x2 + 9.2e04) (x2 + 6300) (x2 + 1960)(x2 + 1500)(x2 + 260)   

(x2 + 7.6e04) (x2 + 5500)(x2 + 2800) (x2 + 2000)(x2 + 230)(x2 + 115)  
 

(x2 + 78) (x2 + 0.4677)(x2 + 0.00352) 

 (x2 + 100) (x2 + 3.821) (x2 + 0.04296) (x2 + 0.00024)
 

(B. 24) 

𝑓32 𝑢𝑛𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
1.3082 x2 (x2 + 9.2e04) (x2 + 6300) (x2 + 2000)

(x2 + 7.6e04) (x2 + 5500) (x2 + 2800) (x2 + 1500) 
 

 (x2 + 1960)(x2 + 260) (x2 + 100) (x2 + 0.4677) (x2 + 0.00352)

(x2 + 230)(x2 + 115) (x2 + 78) (x2 + 3.821) (x2 + 0.04296) (x2 + 0.00024)
 

(B. 25) 
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Figure B-9. Filter 𝑓1 prior to factorisation for n = 4

Figure B-10. Filter 𝑓2 prior to factorisation for n = 4

Figure B-11. Filter 𝑓31 prior to factorisation for n = 4
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Figure B-12. Filter 𝑓32 prior to factorisation for n = 4 

When approaching the creation of the transfer functions and any modifications to them, it is of 

special importance that for the middle frequencies the match with the numerical values is the 

best possible. Whereas both, the very high and low frequency ranges can be sacrificed for the 

sake of a leaner transfer function, as can be seen from Figure B-13 to Figure B-16. Following 

that line, the resulting transfer functions for 𝑛 = 4 are acceptable lower order approximations 

of the form (still un-factorised), 

𝑓1 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 = 

=
1.7522 (x2 + 3500) (x2 + 98) (x2 + 88.98) (x2 + 47.04)(x2 + 0.4677)  

(x2 + 1.8e04)(x2 + 582.8)(x2 + 160)(x2 + 125)(x2 + 17.16) (x2 + 8.821)
 

(x2 + 0.003452)

 (x2 + 0.044)
 

(B. 26) 

𝑓2 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑

=
0.378 x2 (x2 + 1800) (x2 + 4.368) (x2 + 0.02052)

(x2 + 2800) (x2 + 180) (x2 + 33.82) (x2 + 0.293) (x2 + 0.0014) 
 

(B. 27) 

𝑓31 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 

=
2.0759 (x2 + 1500) (x2 + 78) (x2 + 0.3677) (x2 + 0.001652)

(x2 + 2000) (x2 + 115) (x2 + 100) (x2 + 3.121) (x2 + 0.03104) 
 

(B. 28) 
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𝑓32 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 

=
1.3901 (x2 + 2000) (x2 + 100) (x2 + 0.3677) (x2 + 0.001652)

(x2 + 1500) (x2 + 115) (x2 + 78) (x2 + 3.121) (x2 + 0.03104)
 

(B. 29) 

 

 
Figure B-13. Filter 𝑓1 simplified prior to factorisation for n = 4 

Figure B-14. Filter 𝑓2 simplified  prior to factorisation for n = 4 
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f1 integral data with 
f1 modified
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Figure B-15. Filter 𝑓31 simplified prior to factorisation for n = 4 

 
Figure B-16. Filter 𝑓32 simplified prior to factorisation for n = 4 

After factorisation, as can be seen from  to Figure B-20, the filters may need a final adjustment 

to ensure that the transfer function has at least a decade of margin between the middle 

frequencies and the rolling off (not necessary for 𝑓2 in this case).  It follows that the final, 

factorised transfer functions for 𝑓1, 𝑓2, 𝑓31 and 𝑓32, are of the form 
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𝑓1 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
0.24438 (s + 10.92)(s + 1.828)(s + 1.741)(s + 1.266)(s + 0.1263) 

(s + 24.77)(s + 4.457)(s + 2.335)(s + 2.064)(s + 0.7648)(s + 0.5483)
 

(s + 0.01085) (s + 0.001085) 

(s + 0.03873)(s + 0.002873)
 

  (B. 30) 

𝑓2 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
0.1135 s (s + 7.833) (s + 0.3858) (s + 0.02645)

(s + 9.769) (s + 2.477) (s + 1.074) (s + 0.09992) (s + 0.006908)
 

(B. 31) 

𝑓31 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
0.26599(s + 7.15)(s + 1.63)(s + 0.1119)(s + 0.007504)(s + 0.0004504) 

(s + 8.256)(s + 1.98) (s + 1.846)(s + 0.3261)(s + 0.03253)(s + 0.001253) 
 

(B. 32) 

𝑓32 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑠𝑒𝑑 = 

=
0.21766 (s + 8.256)(s + 1.846)(s + 0.1119)(s + 0.007504)(s + 0.0007504)

(s + 7.15)(s + 1.98)(s + 1.63)(s + 0.3261) (s + 0.03253)(s + 0.002253)
 

(B. 33) 

 
Figure B-17. Filter 𝑓1 for n = 4 
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Figure B-18. Filter 𝑓2 for n = 4 

Figure B-19. Filter 𝑓31 for n = 4

Figure B-20. Filter 𝑓32 for n = 4 
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Due to the intensive modifications, a final sanity check on the appropriateness of the resulting 

transfer functions is of order. The verification consists on the de-factorisation of the final filters 

in order to retrieve the associated 𝜙𝑥𝑥, 𝜙𝑦𝑦 and 𝜙𝑥𝑦 and directly compare them with the 

numerical results of the integrals. As appreciated from results shown from Figure B-21, Figure 

B-22 and Figure B-23, the transfer functions do provide a good fit to the original data. 

 
Figure B-21. Sanity check against initial data for 𝜙𝑥𝑥, n = 4 

 
Figure B-22. Sanity check against initial data for 𝜙𝑦𝑦, n = 4 
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Figure B-23. Sanity check against initial data for 𝜙𝑥𝑦, n = 4 
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Appendix C  

 

Wind-Field Stochastic Component 

Results 

 

In the following can be found the results1 for thrust force, the in-plane RBM of the blade, the 

edgewise moment of the blade, 𝑀𝑒, the flapwise moment of the blade, 𝑀𝑓, the rotor speed and 

the pitch angle of the blade for the stochastic component of the wind-field. To be noted that the 

induced forces and moments in these results do not account for the force of gravity in order to 

better appreciate the outcomes induced by the wind-field. The results are for both the simple 

and triple structure and for three different case studies: 15m/s, 15m/s with 18deg of pitch offset 

and 8m/s. 

Likewise for the hub torque and out-of-plane RBM results seen in section 6.2, the full set of 

results in this appendix points, as far as the stochastic component of the wind is concerned, to 

the simple wind-field model as an acceptable compromise to induce the loads and moment of 

the rotor and blades as there is no sign of significant leakage.  

 

 

                                                           
1 Results have not been detrended before spectrum is taken 
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 Thrust Force 

 
Figure C-1. Thrust force spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-2. Thrust force time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-3. Thrust force spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-4. Thrust force time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 
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Figure C-5. Thrust force spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 
Figure C-6. Thrust force time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 In-plane RBM of the blade 

 
Figure C-7. In-plane RBM spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-8. In-plane RBM time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 
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Figure C-9. In-plane RBM spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-10. In-plane RBM time series comparison between simple and 

triple structure for the stochastic component of the wind-field with mean 

15m/s and 18 degrees of pitch offset 

 
Figure C-11. In-plane RBM spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 
Figure C-12. In-plane RBM time series comparison between simple and 

triple structure for the stochastic component of the wind-field with mean 

8m/s 
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 Edgewise moment of the blade, 𝑀𝑒 

 
Figure C-13. 𝑴𝒆  spectrum comparison between simple and triple 

structure for stochastic component of the wind-field with mean 15m/s 

 
Figure C-14. 𝑴𝒆 time series comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-15. 𝑴𝒆  spectrum comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset 

 
Figure C-16. 𝑴𝒆 time series comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset 
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Figure C-17. 𝑴𝒆 spectrum comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 8m/s 

 
Figure C-18. 𝑴𝒆 time series comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 8m/s 

 Flapwise moment of the blade, 𝑀𝑓 

 
Figure C-19. 𝑴𝒇 spectrum comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-20. 𝑴𝒇 time series comparison between simple and triple structure 

for the stochastic component of the wind-field with mean 15m/s 
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Figure C-21. 𝑴𝒇  spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-22. 𝑴𝒇 time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-23 . 𝑴𝒇 spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 
Figure C-24. 𝑴𝒇 time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 
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 Rotor speed 

 
Figure C-25. Rotor speed spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-26. Rotor speed time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-27. Rotor speed spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-28. Rotor speed time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 
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Figure C-29. Rotor speed spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 
Figure C-30. Rotor speed time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 Pitch angle of the blade 

 
Figure C-31. Pitch angle spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

 
Figure C-32. Pitch angle time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 
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Figure C-33. Pitch angle spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-34. Pitch angle time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset 

 
Figure C-35. Pitch angle spectrum comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 

 
Figure C-36. Pitch angle time series comparison between simple and triple 

structure for the stochastic component of the wind-field with mean 8m/s 
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Appendix D  

 

Wind Traces of Wind-Field 

Deterministic Component  

 

In this appendix the results completing the sets of wind traces of section 6.3.1 and 6.3.2 can be 

found. The results cover the spectrum and time series generated by each layer P for the wind 

shear (WS) only case, tower shadow (TS) only case and complete deterministic component of 

the wind-field model (WS and TS together) for a wind-field with mean speed of 15m/s after 

being rotationally sampled by a 5MW wind turbine. For the complete deterministic case (WS 

and TS) the spectrum and time series of the wind-field as applied to the rotor and blade are also 

presented1. 

                                                           
1 Results have not been detrended before spectrum is taken 
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 Wind traces for WS 

 
Figure D-1. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-2. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

deterministic component of wind-field WS used for inducing thrust 

 
Figure D-3. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-4. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

deterministic component of wind-field WS used for inducing thrust 
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Figure D-5. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-6. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

deterministic component of wind-field WS used for inducing thrust 

 
Figure D-7. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-8. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

deterministic component of wind-field WS used for inducing thrust 
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Figure D-9. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-10. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

deterministic component of wind-field WS used for inducing thrust 

 
Figure D-11. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-12. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

deterministic component of wind-field WS used for inducing thrust 
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Figure D-13. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

deterministic component of wind-field WS used for inducing moments 

 
Figure D-14. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

deterministic component of wind-field WS used for inducing thrust 

WS 
Moments Forces (Thrust) 

min max Amplitude min max Amplitude 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 0 15 15 0 15 15 0 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 1 13.9417 16.0583 1.0583 14.1590 15.8410 0.8410 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 2 14.8504 15.1496 0.1496 14.8912 15.1088 0.1088 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 3 14.9691 15.0309 0.0309 14.9785 15.0215 0.0215 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 4 14.9914 15.0076 0.0076 14.9949 15.0051 0.0051 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 5 14.9979 15.0021 0.0021 14.9986 15.0014 0.0014 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 6 14.9994 15.0006 0.0006 14.9996 15.0004 0.0004 

Table D-1. Range of wind speed in the time series for every 𝒍𝒂𝒚𝒆𝒓 𝑷 when the WS phenomena is the only addition to a 15m/s wind 
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 Wind traces for TS 

 
Figure D-15. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-16. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

deterministic component of wind-field TS used for inducing thrust 

 
Figure D-17. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-18. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

deterministic component of wind-field TS used for inducing thrust 
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Figure D-19. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-20. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

deterministic component of wind-field TS used for inducing thrust 

 
Figure D-21. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-22. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

deterministic component of wind-field TS used for inducing thrust 
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Figure D-23. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-24. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

deterministic component of wind-field TS used for inducing thrust 

 
Figure D-25. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-26. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

deterministic component of wind-field TS used for inducing thrust 
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Figure D-27. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

deterministic component of wind-field TS used for inducing moments 

 
Figure D-28. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

deterministic component of wind-field TS used for inducing thrust 

TS 
Moments Forces (Thrust) 

min max Amplitude min max Amplitude 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 0 14.9946 15.0054 0.0054 14.9906 15.0094 0.0094 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 1 14.9732 15.0268 0.0268 14.9664 15.0336 0.0336 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 2 14.9305 15.0695 0.0695 14.9188 15.0812 0.0812 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 3 14.9019 15.0981 0.0981 14.8888 15.1112 0.1112 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 4 14.8935 15.1065 0.1065 14.8827 15.1173 0.1173 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 5 14.8868 15.1132 0.1132 14.8783 15.1217 0.1217 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 6 14.8740 15.1260 0.1260 14.8663 15.1337 0.1337 

Table D-2. Range of wind speed in the time series for every 𝒍𝒂𝒚𝒆𝒓 𝑷 when the TS phenomena is the only addition to a 15m/s wind 
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 Wind traces for WS and TS together 

 
Figure D-29. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

complete deterministic component of wind-field used for inducing moments 

 
Figure D-30. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

complete deterministic component of wind-field used for inducing thrust 

 
Figure D-31. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

complete deterministic component of wind-field used for inducing moments 

 
Figure D-32. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

complete deterministic component of wind-field used for inducing thrust 
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Figure D-33. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

complete deterministic component of wind-field used for inducing moments 

 
Figure D-34. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

complete deterministic component of wind-field used for inducing thrust 

 
Figure D-35. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

complete deterministic component of wind-field used for inducing moments 

 
Figure D-36. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

complete deterministic component of wind-field used for inducing thrust 
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Figure D-37. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

complete deterministic component of wind-field used for inducing moments 

 
Figure D-38. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

complete deterministic component of wind-field used for inducing thrust 

 
Figure D-39. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

complete deterministic component of wind-field used for inducing moments 

 
Figure D-40. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

complete deterministic component of wind-field used for inducing thrust 
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Figure D-41. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

complete deterministic component of wind-field used for inducing moments 

 

 
Figure D-42. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

complete deterministic component of wind-field used for inducing thrust 

 

WS & TS 
Moments Forces (Thrust) 

min max range min max range 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 0 14.9946 15.0054 0.0054 14.9906 15.0094 0.0094 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 1 13.9149 16.0851 1.0851 14.1254 15.8746 0.8746 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 2 14.7809 15.2191 0.2191 14.8100 15.1900 0.1900 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 3 14.8710 15.1290 0.1290 14.8673 15.1327 0.1327 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 4 14.8859 15.1141 0.1141 14.8776 15.1224 0.1224 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 5 14.8847 15.1153 0.1153 14.8770 15.1231 0.1231 

𝑙𝑎𝑦𝑒𝑟 𝑷 = 6 14.8734 15.1266 0.1266 14.8659 15.1341 0.1341 

Table D-3. Range of wind speed in the time series for every 𝒍𝒂𝒚𝒆𝒓 𝑷 when the WS and TS phenomena are the only addition to a 15m/s wind 
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Appendix E 

 

Wind-Field Deterministic Component 

Results 

 

In the following can be found the results1 for the in-plane RBM of the blade, edgewise moment 

of the blade, 𝑀𝑒, flapwise moment of the blade, 𝑀𝑓, and thrust force for the deterministic 

component of the wind-field. To be noted that the induced forces and moments in these results 

do not account for the force of gravity in order to better appreciate the outcomes induced by 

the wind-field. The results are for both the simple and triple structure, showing the WS and TS 

phenomena individually and in combination, for three different case studies. 15m/s, 15m/s with 

18deg of pitch offset and 8m/s.  

Likewise for the hub torque and out-of-plane RBM results seen in Section 6.3, the full set of 

results in this appendix for the deterministic component of the wind shows the presence of 

leakage. The impact of this leakage needs to be further assessed by looking at the results when 

both the stochastic and deterministic components of the wind are incorporated into the wind-

field model. These results can be found in Section 6.4 and Appendix G. 

While looking into the results for the in-plane RBM of the blade from Figure E-1 to Figure 

E-18 and Table E-1, it can be seen that the numbers and graphs for the single and triple models 

match closely, as expected since separability is justified for this moment. The only difference 

is a small discrepancy at the 3P peak for the WS case. It is interesting to note that when looking 

at spectral peaks for the wind shear case, Figure E-1, Figure E-3 and Figure E-5, the shape and 

magnitude of the same decrease as the frequency increases and that the 1P peak is dominant 

having the biggest amount of energy associated to it. On the other hand when looking at the 

TS case, Figure E-7, Figure E-9 and Figure E-11, the opposite can be appreciated with the steps 

in the cumulative related to each peak becoming increasingly bigger as the spectrum moves to 

higher frequencies. This opposite trend together with the order of magnitude associated to the 

                                                      
1 The time series are presented as a 15s extract. 
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WS case and the TS case, means that when combined together on Figure E-13, Figure E-15 

and Figure E-17, the low frequency spectral peaks are dominated by the WS component and 

the high frequency components of the spectrum by the TS component. The same observations 

are true for 𝑀𝑒 (Figure E-19 to Figure E-36) and can be extended to 𝑀𝑓 (Figure E-37 to Figure 

E-54) with exception to the point justifying the good match between the triple and single 

structure being due to separability. This is because whereas it was expected that 𝑀𝑒 would have 

a good match due to separability also applying to it, 𝑀𝑓 is not justified by the Separability 

property as is an out-of-plane moment. That said, there is a small discrepancy between the 

triple and single model for the 𝑀𝑒 results of the WS & TS combined case at 15m/s + 18 deg of 

offset, (see Table E-1 and Figure E-33) for which there is no current explanation. 

When looking into the thrust component of the wind, Figure E-55 to Figure E-72, which 

likewise the 𝑀𝑓 and the out-of-plane RBM of the blade, is not covered by the Separability 

property, there is no expectation for a close match between the results from the simple and 

triple structure. Nevertheless a close match is what it is observed and the same opposite trend 

for the WS and TS is also present. Perhaps the biggest difference is that for the WS instead of 

the 3P peak, is the 6P peak that shows a discrepancy, significant in its context of WS only 

context, and with its biggest deviation at 8m/s which is a zone that separability would unlikely 

cover even if it was an appropriate in-plane moment/force that was being examined. When 

looking at the combined WS & TS results, Figure E-67 to Figure E-72, the only significant 

deviation is present in Figure E-70 on the frequencies leading up to the 6P peak. 

Overall some small degree of leakage can be appreciated, especially on the thrust force, but it 

is of not great significance as the cumulative values shown are the square of the amplitude, no 

the amplitude per se. If the amplitude was to be calculated by square rooting of the values 

present in Table E-1, these deviations would be even smaller.  
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 In-plane RBM of the blade, WS 

 
Figure E-1. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s, WS 

active 

 
Figure E-2. In-plane RBM time series comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s, WS 

active 

 
Figure E-3. In-plane RBM spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS active 

 
Figure E-4. In-plane RBM time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS active 
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Figure E-5. In-plane RBM spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS active 

 
Figure E-6. In-plane RBM time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS active 

 In-plane RBM of the blade, TS 

 
Figure E-7. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s, TS 

active 

 
Figure E-8. In-plane RBM time series comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s, TS 

active 
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Figure E-9. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s and 

18 degrees of pitch offset, TS active 

 
Figure E-10. In-plane RBM time series comparison between simple and 

triple structure for deterministic component of wind-field with mean 15m/s 

and 18 degrees of pitch offset, TS active 

 
Figure E-11. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 8m/s, TS 

active 

 
Figure E-12. In-plane RBM time series comparison between simple and 

triple structure for deterministic component of wind-field with mean 8m/s, 

TS active 
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 In-plane RBM of the blade, WS & TS 

 
Figure E-13. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s, WS 

TS active 

 
Figure E-14. In-plane RBM time series comparison between simple and 

triple structure for deterministic component of wind-field with mean 15m/s, 

WS TS active 

 
Figure E-15. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 15m/s and 18 

degrees of pitch offset, WS TS active 

 
Figure E-16. In-plane RBM time series comparison between simple and 

triple structure for deterministic component of wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS TS active 
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Figure E-17. In-plane RBM spectrum comparison between simple and triple 

structure for deterministic component of wind-field with mean 8m/s, WS TS 

active 

 
Figure E-18. In-plane RBM time series comparison between simple and 

triple structure for deterministic component of wind-field with mean 8m/s, 

WS TS active 

 Edgewise moment of the blade, Me, WS 

 
Figure E-19. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, WS 

active 

 
Figure E-20. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, WS 

active 
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Figure E-21. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, WS active 

 
Figure E-22. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, WS active 

 
Figure E-23. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, WS 

active 

 
Figure E-24. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, WS 

active 
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 Edgewise moment of the blade, Me, TS 

 
Figure E-25. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, TS 

active 

 
Figure E-26. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, TS 

active 

 
Figure E-27. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, TS active 

 
Figure E-28. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, TS active 
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Figure E-29. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, TS 

active 

 
Figure E-30. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, TS active 

 Edgewise moment of the blade, Me, WS & TS 

 
Figure E-31. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, WS TS 

active 

 
Figure E-32. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, WS TS 

active 

10
-2

10
-1

10
0

10
1

10
2

10
2

10
4

10
6

10
8

Frequency (rad/s)

P
S

D
 (

-2
/r

a
d
)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

C
u
m

u
la

ti
v
e
 P

S
D

 (
-2

)

Me S, deterministic 8ms, TS

Me T, deterministic 8ms, TS

145 150 155 160
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9
x 10

5

time (s)

E
d
g
e
w

is
e
 m

o
m

e
n
t 

o
f 

a
 b

la
d
e
, 

M
e
 (

N
m

)

 

 
Me S, deterministic 8ms, TS

Me T, deterministic 8ms, TS

10
-2

10
-1

10
0

10
1

10
2

10
2

10
4

10
6

10
8

10
10

Frequency (rad/s)

P
S

D
 (

-2
/r

a
d
)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

10

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

1.5

2

2.5
x 10

10

C
u
m

u
la

ti
v
e
 P

S
D

 (
-2

)

Me S, deterministic 15ms, WS TS

Me T, deterministic 15ms, WS TS

145 150 155 160

2

3

4

5

6

7

8
x 10

5

time (s)

E
d
g
e
w

is
e
 m

o
m

e
n
t 

o
f 

a
 b

la
d
e
, 

M
e
 (

N
m

)

 

 

Me S, deterministic 15ms, WS TS

Me T, deterministic 15ms, WS TS



275 

 

 
Figure E-33. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, WS TS active 

 
Figure E-34. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, WS TS active 

 
Figure E-35. Me spectrum comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, WS TS 

active 

 
Figure E-36. Me time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, WS TS 

active 
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 Flapwise moment of the blade, Mf, WS 

 
Figure E-37. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, WS active 

 
Figure E-38. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, WS 

active 

 
Figure E-39. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS active 

 
Figure E-40. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, WS active 
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Figure E-41. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS active 

 
Figure E-42. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, WS 

active 

 Flapwise moment of the blade, Mf, TS 

 
Figure E-43. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, TS active 

 
Figure E-44. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, TS 

active 
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Figure E-45. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, TS active 

 
Figure E-46. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, TS active 

 
Figure E-47. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

TS active 

 
Figure E-48. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, TS 

active 
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 Flapwise moment of the blade, Mf, WS & TS 

 
Figure E-49. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, WS TS active 

 
Figure E-50. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s, WS TS 

active 

 
Figure E-51. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS TS active 

 
Figure E-52. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 15m/s and 18 

degrees of pitch offset, WS TS active 
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Figure E-53. Mf force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS TS active 

 
Figure E-54. Mf time series comparison between simple and triple structure 

for the deterministic component of the wind-field with mean 8m/s, WS TS 

active 

 Thrust Force, WS 

 
Figure E-55. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, WS active 

 
Figure E-56. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, WS active 
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Figure E-57. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS active 

 
Figure E-58. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS active 

 
Figure E-59. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS active 

 
Figure E-60. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS active 
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 Thrust Force, TS 

 
Figure E-61. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, TS active 

 
Figure E-62. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, TS active 

 
Figure E-63. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, TS active 

 
Figure E-64. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, TS active 
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Figure E-65. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

TS active 

 
Figure E-66. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

TS active 

 Thrust Force, WS & TS 

 
Figure E-67. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, WS TS active 

 
Figure E-68. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 

15m/s, WS TS active 
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Figure E-69. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS TS active 

 
Figure E-70. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 15m/s 

and 18 degrees of pitch offset, WS TS active 

 
Figure E-71. Thrust force spectrum comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS TS active 

 
Figure E-72. Thrust force time series comparison between simple and triple 

structure for the deterministic component of the wind-field with mean 8m/s, 

WS TS active 
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  Cumulative Value 

  Simple Model Triple Model 

In-plane RBM 

WS 

15m/s 7.5483e+010 7.5152e+010 

15m/s + 18 deg 

offset 
6.3848e+010 6.3703e+010 

8m/s 8.4728e+009 8.4647e+009 

TS 

15m/s 3.0377e+009 3.0347e+009 

15m/s + 18 deg 

offset 
2.5897e+009 2.5583e+009 

8m/s 3.401e+008 3.387e+008 

WS & TS 

15m/s 8.2446e+010 8.1547e+010 

15m/s + 18 deg 

offset 
6.9887e+010 6.9149e+010 

8m/s 9.3037e+009 9.2442e+009 

Me 

WS 

15m/s 1.8818e+010 1.8456e+010 

15m/s + 18 deg 

offset 
4.4359e+009 4.2845e+009 

8m/s 8.4728e+009 8.4647e+009 

TS 

15m/s 3.3091e+009 3.3044e+009 

15m/s + 18 deg 

offset 
3.1584e+009 3.1045e+009 

8m/s 3.401e+008 3.387e+008 

WS & TS 

15m/s 2.3756e+010 2.2535e+010 

15m/s + 18 deg 

offset 
8.7593e+009 7.5912e+009 

8m/s 9.3037e+009 9.2442e+009 

Mf 

WS 

15m/s 5.9255e+011 5.9142e+011 

15m/s + 18 deg 

offset 
3.8038e+011 3.8153e+011 

8m/s 1.0306e+011 1.0375e+011 

TS 

15m/s 2.7626e+010 2.7624e+010 

15m/s + 18 deg 

offset 
1.513e+010 1.5156e+010 

8m/s 5.0147e+009 5.0156e+009 

WS & TS 

15m/s 6.6013e+011 6.5886e+011 

15m/s + 18 deg 

offset 
4.2243e+011 4.2471e+011 

8m/s 1.1727e+011 1.1806e+011 
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Thrust 

WS 

15m/s 1.9334e+006 1.7194e+006 

15m/s + 18 deg 

offset 
7.5946e+005 7.3326e+005 

8m/s 2.6564e+005 2.8721e+005 

TS 

15m/s 9.813e+007 9.8131e+007 

15m/s + 18 deg 

offset 
4.9066e+007 4.8933e+007 

8m/s 1.7516e+007 1.7633e+007 

WS & TS 

15m/s 1.1906e+008 1.1456e+008 

15m/s + 18 deg 

offset 
5.7587e+007 5.8177e+007 

8m/s 2.0626e+007 2.126e+007 

Table E-1. Cumulative PSD value for the forces and loads explored in the case study of 

15m/s, 15m/s plus 18 degree pitch offset and 8m/s for the simple and triple structure for the 

deterministic component of the wind, presented as WS alone, TS alone and combined WS & 

TS 
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Appendix F  

 

Wind Traces of Complete Wind-Field 

 

In this appendix the results completing the sets of wind traces of section 5.4 for the complete 

wind-field (stochastic and deterministic components) can be found. The results cover the 

spectrum and time series generated by each layer P for a complete wind-field with mean speed 

of 15m/s and 10% of turbulence intensity after being rotationally sampled by a 5MW wind 

turbine. 
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 n0 

 
Figure F-1. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

complete wind-field used for inducing moments 

 
Figure F-2. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

complete wind-field used for inducing moments 

 
Figure F-3. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

complete wind-field used for inducing thrust 

 
Figure F-4. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟎 of the 

complete wind-field used for inducing thrust 
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 n1 

 
Figure F-5. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

complete wind-field used for inducing moments 

 
Figure F-6. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

complete wind-field used for inducing moments 

 
Figure F-7. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

complete wind-field used for inducing thrust 

 
Figure F-8. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟏 of the 

complete wind-field used for inducing thrust 
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 n2 

 
Figure F-9. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

complete wind-field used for inducing moments 

 
Figure F-10. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

complete wind-field used for inducing moments 

 
Figure F-11. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

complete wind-field used for inducing thrust 

 
Figure F-12. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟐 of the 

complete wind-field used for inducing thrust 
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 n3 

 
Figure F-13. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the complete 

wind-field used for inducing moments 

 
Figure F-14. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

complete wind-field used for inducing moments 

 
Figure F-15. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the complete 

wind-field used for inducing thrust 

 
Figure F-16. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟑 of the 

complete wind-field used for inducing thrust 
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 n4 

 
Figure F-17. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the complete 

wind-field used for inducing moments 

 
Figure F-18. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

complete wind-field used for inducing moments 

 
Figure F-19. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the complete 

wind-field used for inducing thrust 

 
Figure F-20. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟒 of the 

complete wind-field used for inducing thrust 

 

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
0

Frequency (rad/s)

P
S

D
 (

-2
/r

a
d
)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

1.8431

1.8431

1.8431

1.8431

1.8431

1.8432

1.8432

1.8432

1.8432

1.8432

1.8432
x 10

4

C
u
m

u
la

ti
v
e
 P

S
D

 (
-2

)

wind_moments_n4_completeWindField

0 100 200 300 400 500 600
14.6

14.7

14.8

14.9

15

15.1

15.2

15.3

time (s)

w
in

d
 s

p
e
e
d
 m

o
m

e
n
ts

 n
4
 (

m
/s

)

 

 

wind_moments_n4_completeWindField

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
0

Frequency (rad/s)

P
S

D
 (

-2
/r

a
d
)

 

 
1P 3P 6P 9P

10
-2

10
-1

10
0

10
1

10
2

1.8431

1.8432

1.8432

1.8432

1.8432

1.8432

1.8432

1.8432

1.8432
x 10

4

C
u
m

u
la

ti
v
e
 P

S
D

 (
-2

)

wind_thrust_n4_completeWindField

0 100 200 300 400 500 600
14.7

14.8

14.9

15

15.1

15.2

15.3

time (s)

w
in

d
 s

p
e
e
d
 t

h
ru

s
t 

n
4
 (

m
/s

)

 

 

wind_thrust_n4_completeWindField



 
 

293 
 

 n5 

 
Figure F-21. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the complete 

wind-field used for inducing moments 

 
Figure F-22. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

complete wind-field used for inducing moments 

 
Figure F-23. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the complete 

wind-field used for inducing thrust 

 
Figure F-24. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟓 of the 

complete wind-field used for inducing thrust 
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 n6 

 
Figure F-25. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the complete 

wind-field used for inducing moments 

 
Figure F-26. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

complete wind-field used for inducing moments 

 
Figure F-27. Spectrum for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the complete 

wind-field used for inducing thrust 

 
Figure F-28. Time series for 𝒍𝒂𝒚𝒆𝒓 𝑷 corresponding to 𝒏 = 𝟔 of the 

complete wind-field used for inducing thrust 
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 All layer P for rotor and blade, complete wind-field 

 
Figure F-29. Spectrum for the complete wind-field used for inducing 

moments at the rotor by the simple model 

 
Figure F-30. Time series for the complete wind-field used for inducing 

moments at the rotor by the simple model 

 
Figure F-31. Spectrum for the complete wind-field used for inducing thrust 

at the rotor by the simple model 

 
Figure F-32. Time series for the complete wind-field used for inducing 

thrust at the rotor by the simple model 
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Figure F-33. Spectrum for the complete wind-field used for inducing thrust 

at the rotor by triple model 

 
Figure F-34. Time series for the complete wind-field used for inducing 

thrust at the rotor by triple model 

 
Figure F-35. Spectrum for the complete wind-field used for inducing 

moments at the single blade by simple and triple model. Also used for 

inducing moments at the rotor by the triple model 

 
Figure F-36. Time series for the complete wind-field used for inducing 

moments at the single blade by simple and triple model. Also used for 

inducing moments at the rotor by the triple model 
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Appendix G  

 

Complete Wind-Field Results  

 

In the following can be found the results for the thrust force, the in-plane RBM of the blade, 

the edgewise moment of the blade, 𝑀𝑒, the flapwise moment of the blade, 𝑀𝑓, the rotor speed 

and the pitch angle of the blade for the complete wind-field, both stochastic and deterministic 

components are present. To be noted that the induced forces and moments in these results do 

not account for the force of gravity in order to better appreciate the outcomes induced by the 

wind-field. The results are for both the simple and triple structure and for three different case 

studies: 15m/s, 15m/s with 18deg of pitch offset and 8m/s. 

Likewise for the hub torque and out-of-plane RBM results seen in section 5.4, the full set of 

results in this appendix points to the simple wind-field model as an acceptable compromise to 

induce the loads and moment of the rotor and blades. On the grounds that when the full-wind 

field model is used, the leakage previously observed arising from the deterministic component 

of the wind-field becomes not significant overall.  
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 Thrust Force 

 
Figure G-1. Thrust force spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 

 
Figure G-2. Thrust force time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 

    
Figure G-3. Thrust force spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure G-4. Thrust force time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 
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Figure G-5. Thrust force spectrum comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

  
Figure G-6. Thrust force time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 In-plane RBM of the blade 

 
Figure G-7. In-plane RBM spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 

  
Figure G-8. In-plane RBM time series comparison between simple and 

triple structure for the complete wind-field with mean 15m/s 
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Figure G-9. In-plane RBM spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure G-10. In-plane RBM time series comparison between simple and 

triple structure for the complete wind-field with mean 15m/s and 18 degrees 

of pitch offset 

   
Figure G-11. In-plane RBM spectrum comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 
Figure G-12. In-plane RBM time series comparison between simple and 

triple structure for the complete wind-field with mean 8m/s 
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 Edgewise moment of the blade, 𝑀𝑒 

 
Figure G-13. 𝑴𝒆  spectrum comparison between simple and triple structure 

for the complete wind-field with mean 15m/s 

 
Figure G-14. 𝑴𝒆 time series comparison between simple and triple structure 

for the complete wind-field with mean 15m/s 

  
Figure G-15. 𝑴𝒆  spectrum comparison between simple and triple structure 

for the complete wind-field with mean 15m/s and 18 degrees of pitch offset 

 
Figure G-16. 𝑴𝒆 time series comparison between simple and triple structure 

for the complete wind-field with mean 15m/s and 18 degrees of pitch offset 
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Figure G-17. 𝑴𝒆 spectrum comparison between simple and triple structure 

for the complete wind-field with mean 8m/s 

 
Figure G-18. 𝑴𝒆 time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 Flapwise moment of the blade, 𝑀𝑓 

 
Figure G-19. 𝑴𝒇 spectrum comparison between simple and triple structure 

for the complete wind-field with mean 15m/s 

 
Figure G-20. 𝑴𝒇 time series comparison between simple and triple structure 

for the complete wind-field with mean 15m/s 
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Figure G-21. 𝑴𝒇  spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure G-22. 𝑴𝒇 time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

    
Figure G-23 . 𝑴𝒇 spectrum comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 
Figure G-24. 𝑴𝒇 time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 
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 Rotor speed 

 
Figure G-25. Rotor speed spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s  

 
Figure G-26. Rotor speed time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 

    
Figure G-27. Rotor speed spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure G-28. Rotor speed time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 
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Figure G-29. Rotor speed spectrum comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 
Figure G-30. Rotor speed time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 Pitch angle of the blade 

 
Figure G-31. Pitch angle spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 

 
Figure G-32. Pitch angle time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s 
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Figure G-33. Pitch angle spectrum comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

 
Figure G-34. Pitch angle time series comparison between simple and triple 

structure for the complete wind-field with mean 15m/s and 18 degrees of 

pitch offset 

  
Figure G-35. Pitch angle spectrum comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 

 
Figure G-36. Pitch angle time series comparison between simple and triple 

structure for the complete wind-field with mean 8m/s 
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Appendix H  

 

Bladed Comparison. Stiff Structural 

Dynamics  

 

In the following can be found the results for the thrust force, the in-plane RBM of the blade 

and the generator speed for the comparison between the proposed effective wind-field model 

and WT setting as per Section 5.5 and Bladed. The results are for three different case studies: 

15m/s, 15m/s with 18deg of pitch offset and 8m/s, with TI of 10%. 
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 Thrust Force 

 
Figure H-1. Thrust PSD comparison between Simulink and Bladed with 

mean 15m/s 

 
Figure H-2. Thrust time series comparison between Simulink and Bladed 

with mean 15m/s 

    
Figure H-3. Thrust PSD comparison between Simulink and Bladed with 

mean 15m/s and 18 degrees of pitch offset 

 
Figure H-4. Thrust time series comparison between Simulink and Bladed 

with mean 15m/s and 18 degrees of pitch offset 
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Figure H-5. Thrust PSD comparison between Simulink and Bladed with 

mean 8m/s 

  
Figure H-6. Thrust time series comparison between Simulink and Bladed 

with mean 8m/s 

 In-plane RBM of the blade 

 
Figure H-7. In-Plane RBM PSD comparison between Simulink and Bladed 

with mean 15m/s 

  
Figure H-8. In-Plane RBM time series comparison between Simulink and 

Bladed with mean 15m/s 
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Figure H-9. . In-Plane RBM PSD comparison between Simulink and Bladed 

with mean 15m/s and 18 degrees of pitch offset 

 
Figure H-10. In-Plane RBM time series comparison between Simulink and 

Bladed with mean 15m/s and 18 degrees of pitch offset 

  
Figure H-11. . In-Plane RBM PSD comparison between Simulink and 

Bladed with mean 8m/s 

 
Figure H-12. In-Plane RBM time series comparison between Simulink and 

Bladed with mean 8m/s 
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 Generator speed 

 
Figure H-13. Generator speed PSD comparison between Simulink and 

Bladed with mean 15m/s  

 
Figure H-14. Generator speed time series comparison between Simulink and 

Bladed with mean 15m/s 

 
Figure H-15. Generator speed PSD comparison between Simulink and 

Bladed with mean 15m/s and 18 degrees of pitch offset 

 
Figure H-16. Generator speed time series comparison between Simulink and 

Bladed with mean 15m/s and 18 degrees of pitch offset 
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Figure H-17. Generator speed PSD comparison between Simulink and 

Bladed with mean 8m/s 

 
Figure H-18. Generator speed time series comparison between Simulink and 

Bladed with mean 8m/s 
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Appendix I  

 

Bladed Comparison. Active Structural 

Dynamics  

 

In the following can be found the results for the hub torque, thrust force, in-plane RBM of the 

blade, out-of-plane RBM of the blade and generator speed, for the comparison between the 

proposed effective wind-field model and WT setting as per Section 5.6 and Bladed. The results 

are for two different case studies, 15m/s and 8m/s, at two different TI values, 15% and 20%. 

The generator speed results also include the outputs from 10% TI. 
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 Hub torque 

 
Figure I-1. Hub torque PSD comparison between Simulink and Bladed with 

mean 15m/s, TI 15% 

 
Figure I-2. Hub torque time series comparison between Simulink and 

Bladed with mean 15m/s, TI 15% 

    
Figure I-3. Hub torque PSD comparison between Simulink and Bladed with 

mean 8m/s, TI 15% 

 
Figure I-4. Hub torque time series comparison between Simulink and 

Bladed with mean 8m/s, TI 15% 
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Figure I-5. Hub torque PSD comparison between Simulink and Bladed with 

mean 15m/s, TI 20% 

  
Figure I-6. Hub torque time series comparison between Simulink and 

Bladed with mean 15m/s, TI 20% 

 
Figure I-7. Hub torque PSD comparison between Simulink and Bladed with 

mean 8m/s, TI 20% 

 
Figure I-8. Hub torque time series comparison between Simulink and 

Bladed with mean 8m/s, TI 20% 
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 Thrust Force 

 
Figure I-9. Thrust PSD comparison between Simulink and Bladed with 

mean 15m/s, TI 15% 

 
Figure I-10. Thrust time series comparison between Simulink and Bladed 

with mean 15m/s, TI 15% 

    
Figure I-11. Thrust PSD comparison between Simulink and Bladed with 

mean 8m/s, TI 15% 

 
Figure I-12. Thrust time series comparison between Simulink and Bladed 

with mean 8m/s, TI 15% 
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Figure I-13. Thrust PSD comparison between Simulink and Bladed with 

mean 15m/s, TI 20% 

  
Figure I-14. Thrust time series comparison between Simulink and Bladed 

with mean 15m/s, TI 20% 

 
Figure I-15. Thrust PSD comparison between Simulink and Bladed with 

mean 8m/s, TI 20% 

 
Figure I-16. Thrust time series comparison between Simulink and Bladed 

with mean 8m/s, TI 20% 
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 In-plane RBM of the blade 

 
Figure I-17. In-plane RBM PSD comparison between Simulink and Bladed 

with mean 15m/s, TI 15% 

 
Figure I-18. In-plane RBM time series comparison between Simulink and 

Bladed with mean 15m/s, TI 15% 

    
Figure I-19. In-plane RBM PSD comparison between Simulink and Bladed 

with mean 8m/s, TI 15% 

 
Figure I-20. In-plane RBM time series comparison between Simulink and 

Bladed with mean 8m/s, TI 15% 
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Figure I-21. In-plane RBM PSD comparison between Simulink and Bladed 

with mean 15m/s, TI 20% 

  
Figure I-22. In-plane RBM time series comparison between Simulink and 

Bladed with mean 15m/s, TI 20% 

 
Figure I-23. In-plane RBM PSD comparison between Simulink and Bladed 

with mean 8m/s, TI 20% 

 
Figure I-24. In-plane RBM time series comparison between Simulink and 

Bladed with mean 8m/s, TI 20% 
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 Out-of-plane RBM of the blade 

 
Figure I-25. Out-of-Plane RBM PSD comparison between Simulink and 

Bladed with mean 15m/s, TI 15% 

 
Figure I-26. Out-of-Plane RBM time series comparison between Simulink 

and Bladed with mean 15m/s, TI 15% 

    
Figure I-27. Out-of-Plane RBM PSD comparison between Simulink and 

Bladed with mean 8m/s, TI 15% 

 
Figure I-28. Out-of-Plane RBM time series comparison between Simulink 

and Bladed with mean 8m/s, TI 15% 
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Figure I-29. Out-of-Plane RBM PSD comparison between Simulink and 

Bladed with mean 15m/s, TI 20% 

  
Figure I-30. Out-of-Plane RBM time series comparison between Simulink 

and Bladed with mean 15m/s, TI 20% 

 
Figure I-31. Out-of-Plane RBM PSD comparison between Simulink and 

Bladed with mean 8m/s, TI 20% 

 
Figure I-32. Out-of-Plane RBM time series comparison between Simulink 

and Bladed with mean 8m/s, TI 20% 
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 Generator Speed 

 
Figure I-33. Generator speed PSD comparison between Simulink and 

Bladed with mean 15m/s, TI 10% 

 
Figure I-34. Generator speed time series comparison between Simulink and 

Bladed with mean 15m/s, TI 10% 

    
Figure I-35. Generator speed PSD comparison between Simulink and 

Bladed with mean 8m/s, TI 10% 

Figure I-36. Generator speed time series comparison between Simulink and 

Bladed with mean 8m/s, TI 10% 
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Figure I-37. Generator speed PSD comparison between Simulink and 

Bladed with mean 15m/s, TI 15% 

 
Figure I-38. Generator speed time series comparison between Simulink and 

Bladed with mean 15m/s, TI 15% 

    
Figure I-39. Generator speed PSD comparison between Simulink and 

Bladed with mean 8m/s, TI 15% 

 
Figure I-40. Generator speed time series comparison between Simulink and 

Bladed with mean 8m/s, TI 15% 
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Figure I-41. Generator speed PSD comparison between Simulink and 

Bladed with mean 15m/s, TI 20% 

  
Figure I-42. Generator speed time series comparison between Simulink and 

Bladed with mean 15m/s, TI 20% 

 
Figure I-43. Generator speed PSD comparison between Simulink and 

Bladed with mean 8m/s, TI 20% 

 
Figure I-44. Generator speed time series comparison between Simulink and 

Bladed with mean 8m/s, TI 20% 
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Appendix J  

 

Single Blade Element Separability 

 

The Separability for the individual blade elements of the rotor PJ9 at the blade station of 50%, 

75% and 90% from the root of the blade, has been explored for rotors speeds of 90%, 100 and 

110% of rated 𝜔0. The results can be seen from Figure H-1 to Figure H-9 and confirm the 

existence of Separability for the single blade elements. 
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 Rotor speed 90% 𝜔0 

 

Figure H-1. Separability for a blade element situated at 50% from the root of 

the blade for 90% 𝜔0 rotor speed 

 

Figure H-2. Separability for a blade element situated at 75% from the root of 

the blade for 90% 𝜔0 rotor speed 

 

Figure H-3. Separability for a blade element situated at 90% from the root of the blade for 90% 𝜔0 rotor speed 
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 Rotor speed 100% 𝜔0 

 
Figure H-4. Separability for a blade element situated at 50% from the root of 

the blade for 100% 𝜔0 rotor speed 

 
Figure H-5. Separability for a blade element situated at 75% from the root of 

the blade for 100% 𝜔0 rotor speed 

 

Figure H-6. Separability for a blade element situated at 90% from the root of the blade for 100% 𝜔0 rotor speed. 
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 Rotor speed 110% 𝜔0 

 

Figure H-7. Separability for a blade element situated at 50% from the root of 

the blade for 110% 𝜔0 rotor speed 

 

Figure H-8. Separability for a blade element situated at 75% from the root of 

the blade for 110% 𝜔0 rotor speed 

 
Figure H-9. Separability for a blade element situated at 90% from the root of the blade for 110% 𝜔0 rotor speed 
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Appendix K  

 

Commentary on Reference [42]  

 

This appendix concerns the publication Jamieson, P., Leithead, W.E., Gala Santos, M.L., ‘The 

Aerodynamic Basis of a Torque Separability Property’. Proceedings of EWEA 2011, Brussels, 2011. 

The paper has been included in the accompanying USB stick. 

As understanding of the Separability property has advanced since the above paper was 

published, it is considered appropriate to address some points previously made that no longer 

holds. In [42], 

1) The inference of the functional form on (12) and (14) from (11) is incorrect for the 

following reasons, 

a) Basing the derivation on global properties, the 𝜏(∙) function needs to be 

accounted for. The 𝜏(∙) function although weakly non-linear, cannot be ignored 

as in the paper.  

b) Basing the derivation on local properties would require higher order partial 

derivatives to be correct on the locus of equilibrium points. However, only first 

order partial derivatives are guaranteed by the local Additivity property. 

2) Figure 7 and Figure 9 extend curves beyond the domain of Separability. In this way, 

they are misleading. 

Hence, Separability does not imply the functional form in (14), see (4.21) and (4.23) in Chapter 

4 of this thesis. 

On this basis, it can be established that the majority of the discrepancies seen later in the paper 

stem from these previous observations. 
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Appendix L  

 

Matlab Scripts and Instructions 

 

The procedure below has been followed to study the Separability property for the aerodynamic 

torque of the 3 rotors as described in Appendix A. It is assumed that the 𝐶𝑞 table of the rotors 

are available. The Matlab scripts are functional rather than optimised or elegant. 

The instructions are written as direct commands to the user. 

J.1 Instructions for Matlab Scripts 

1) Run Matlab Function 1. 

2) Run Matlab Function 2. For this first run of Matlab Function 2 it is not a problem if 

the range requested is not known yet. Set a big range that stays within the size of the 

variable ‘torqueoriginal’ created by Matlab Function 1. 

3) Find inside the variable ‘originalre’ the lines that hold the wind speed range between 

rated wind speed and cut-off wind speed. Note the numbers. 

4) Run Matlab Function 2 again. 

5) Plot the variable ‘transformationreal’.  

figure 1, plot(transformationreal(4:end,1), transformationreal(4:end,2), ’+’) 

The first time the variable is plotted it will be noticeable that the resulting curve changes 

its slope’s sign. Identify which points have changed sign and remove them from the 

plot. As a reference, it is normally the first 4 points. 

6) Use the evaluation tool available for Matlab plots and evaluate the first column of the 

variable ‘selection’ within the plot created in point 4), use the shape preserving 

interpolant fit. Save the result in the variable ‘transformationreal2’. 

7) Run Matlab Function 3. 
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8) Run Matlab Function 4. 

9) Run Matlab Function 5. 

10) Create the following plot: 

figure2, plot(tlnr(2:end,1), tlnr(2:end, 2;end)) 

hold all 

plot(make3(2:end,1), make3(2:end,2:end), ’+’) 

11) Check that the range of values selected by ‘tlrn’ satisfy the analysis requirements i.e. 

broader or more stringent range depending on scope. Adjust manually the ‘tlnr’ variable 

if required i.e. by adding extra NaNs or by recovering information that has been sieved. 

Save the modified ‘tlnr’ variable as ‘tlnrREDUCEDcorrect’. Only the pitch columns 

that have torque values that go above and below 𝑇𝑟𝑎𝑡𝑒𝑑 should be selected.  

12) Create the following plot: 

figure 3, plot(tlnrREDUCEDcorrect(2:end,1), tlnrREDUCEDcorrect(2:end, 8:24))  

hold all 

plot(make3(2:end,1), make3(2:end,2:end), ’+’) 

13) Check that the variable ‘new3’ does not have a false first row value (0,0), eliminate as 

required.  

14) Create the following plots: 

figure 4, plot(new3(:,1), new3(:,2), ’+’) % this is function 𝑔’(𝑉) 

figure 5, plot(new33(:,1), new33(:,2), ’+’) % this is function 𝑔(𝑉)  

15) Use the evaluation tool available for Matlab plots and fit 𝑔’(𝑉) with a shape preserving 

interpolant.  

16) Eliminate possible undesired zeros in variable ‘xround’ created by Matlab Function 

5. The variable ‘xround’ has the real equilibrium points (these values are based on 𝛽∗).  
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17) Evaluate ‘xround’ on the 𝑔’(𝑉) plot. Save the [𝑥, 𝑓𝑥] generated as variable 

‘equilibriumincrements’, the first column will have pitch values and the second column 

torque values. 

18) The variable ‘equilibriumincrements’ needs to have the rated torque subtracted to really 

give the increments. Run Matlab Function 6. This function will generate the real 

equilibrium increments and the function ℎ(𝛽). 

19) Create the following plot: 

figure 6, plot hpalternativa((:,1), hpalternativa(:,2), ’+’) 

20) From the plots of functions 𝑔(𝑉) and ℎ(𝛽) extract their equations by doing a quadratic 

fit with the Matlab fitting tool and introduce these functions within script Matlab 

Function 7. 

21) Run Matlab Function 7 with the entries related to the 𝜏(∙) function an errors mutted. 

22) Create the following plot: 

figure 7, plot (e5f(:,1), e5f(:,2), ’+’) %this plot shows Separability in 𝜀(∙) 

23) Define the 𝜏(∙) function as previously explained in Chapter 3 

24) Introduce the 𝜏(∙) function in Matlab Function 7 and run it with the 𝜏(∙) function and 

error entries un-mutted. To see the outcome of Separability with the 𝜏(∙) function plot 

the following, 

figure8, plot(tauf(:,1), e5f(:,2), ’+’) %this plot shows Separability in 𝜏(∙) 

25) Run Matlab Function 8 to generate the error contour plots. 

J.2 Matlab Scripts 

MATLAB FUNCTION 1 

%this function simply transforms the tip speed ratios into velocities and 

%cq into torque values in the cq table generated by Bladed 

function [t,torqueoriginal,cqv,vin,top,torqueoriginalin,v]=original 

load cq 

cq=cq;% the column that holds the tip speed ratios (lambdas) goes in  

%crescent order of lambda which means that starts with high velocities then 
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%goes down  

R=input('Introduce the radius of the machine \n'); 

w=input('Introduce rated rotational velocity (rad/sec) \n'); 

[row,col]=size(cq); 

c=col-1; 

tip=cq(2:end,1); 

vin=(w*R)./tip; 

zero=0; 

v=vertcat(zero,vin); 

cqv=horzcat(v,cq(:,2:end)); 

t=repmat(vin,1,c); 

torqueoriginalin=cqv(2:end,2:end).*t.*t.*(0.5.*1.225.*3.141593.*R.^3); 

top=vertcat(cqv(1,2:end),torqueoriginalin); 

torqueoriginal=horzcat(v,top); 

disp('Remember to save torqueoriginal as torqueoriginal'); 

end 

 

MATLAB FUNCTION 2 

%creates the variables transformation real (contains the exact wind velocity 

value for the equilibrium  

%point in each column, and states that the correspondent pitch should be the 

same pitch of that particular run),  

%originalre (which is just torqueoriginal reorganised with the velocities in 

increasing order) and selection (contains  

%just the lines that we can work with; the one between rated wind speed and 

cut-off (!! not exactly, is the ones that are  

%between the velocity values of the equilibrium in transformationreal)) that 

are need for the program torquelimofunct 

function 

[transformationreal,originalre,selection,x1,x2,y1,y2,m,l,ccccc,x,y]=pretorq

uelimofunct 

disp('Check in originalre which is the pitch run that first have the first 

torque value under-rated, that is going to be the lower limit of valid pitches 

for the equilibrium, torqueoriginal'); 

start=input('Introduce the row number of the start value of the range of 

interest from originalre \n'); 

fin=input('Introduce the row number of the end value of the range of interest 

from originalre \n'); 

Trated=input('Introduce the rated torque \n'); 
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load torqueoriginal 

[rr,cc]=size(torqueoriginal); 

k=0; 

originalre=NaN(size(torqueoriginal)); 

for i=2:1:rr 

    originalre(i,:)=torqueoriginal(rr-k,:); 

    k=k+1; 

end 

originalre(1,:)=torqueoriginal(1,:); 

  

x1=NaN(1,1); 

x2=NaN(1,1); 

y1=NaN(1,1); 

y2=NaN(1,1); 

m=NaN(1,1); 

ccccc=NaN(1,1); 

x=NaN(1,1); 

y=NaN(1,1); 

for j=2:1:cc 

    for i=start:1:fin 

        if originalre(i,j)<originalre(i+1,j) && originalre(i,j)<Trated && 

originalre(i+1,j)>Trated %this finds in the torque table the value 

immediately under and immediately over the Trated value. This is for the 

case that the exact rated torque value is not in the table (the most likely 

situation) 

            x1(j)=originalre(i,1); 

            x2(j)=originalre(i+1,1); 

            y1(j)=originalre(i,j); 

            y2(j)=originalre(i+1,j); 

            m(j)=(y2(j)-y1(j))/(x2(j)-x1(j)); 

            ccccc(j)=y1(j)-m(j).*x1(j); 

            x(j-1)=(Trated-ccccc(j))./m(j);%exact equilibrium wind velocity 

            y(j-1)=originalre(1,j); 

        end 

        if originalre(i,j)==Trated 

            x(j-1)=originalre(i,1); 

            y(j-1)=originalre(1,j); 

        end 

    end 

end 

transformationreal=horzcat(x(:),y(:)); 
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[r,c]=size(transformationreal); 

transformationreal1=NaN(1,1); 

k=1; 

for i=1:1:r 

    if isnan(transformationreal(i,1)) || transformationreal(i,1)==0; 

        k=k; 

    else 

        transformationreal1(k,1)= transformationreal(i,1); 

        transformationreal1(k,2)=transformationreal(i,2); 

        k=k+1;  

    end 

end 

transformationreal=transformationreal1; 

[r,c]=size(originalre); 

[rr,cc]=size(transformationreal); 

selection1=NaN(1,c); 

k=1; 

l=min(transformationreal(:,1)); 

for i=2:1:r 

    if originalre(i,1)>=l && originalre(i,1)<=transformationreal(rr,1) 

        selection1(k,:)=originalre(i,:); 

        k=k+1; 

    end 

end 

for i=2:1:r 

    if originalre(i,1)>=l && originalre(i-1,1)<l 

        hh=i-1; 

    end 

end 

hh=hh; 

selection=vertcat(originalre(hh,:),selection1(:,:)); 

disp('Now plot transformation real, fit shape preserving interpolant and 

evaluate the velocities in the first column of selection to find the 

correspondent pitches, save x & f(x) in the variable transformationreal2. 

Save TRANSFORMATIONREAL2, SELECTION & ORIGINALRE in the directory'); 

end 
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MATLAB FUNCTION 3 

%This function creates torquelimo which contains the range of torque values 

%correspondent to the range of wind speeds that the equilibrium points 

%allow us, with the wind velocities being substituted by their equivalent 

%pitch*. 

function [pb,torquelimo]=torquelimofunct 

  

load transformationreal2 

load selection 

load originalre 

  

pb=horzcat(transformationreal2(:,2),selection(:,2:end)); 

torquelimo=vertcat(originalre(1,:),pb(:,:)); 

  

disp('Remember to save torquelimo as torquelimo'); 

end 

 

MATLAB FUNCTION 4 

%this function clears the table torquelimo from the values that we are not 

%interested in and reorders the velocities to have them in increasing order 

function [tlnr]=clean 

start=input('Introduce the column number of the start value of the range of 

pitch of interest from selection \n'); % the first column that precede all 

the following columns in having values of torque under and over rated 

load torquelimo 

tl=torquelimo; 

tln=tl; 

[r,c]=size(tl); 

for i=2:1:r %this loop converts in NaNs any value under -1e6 

    for j=2:1:c 

        if tl(i,j)>=-5e5 

            tln(i,j)=tl(i,j); 

        else 

            tln(i,j)=NaN; 

        end 

    end 

end 

tlnr=tln; 
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ma=max(tlnr(2:end,2:end));% find the max value in each column (that contains 

the torque values for a fixed pitch angle) 

for j=2:1:c %this loop substitutes with NaNs any value that is in the column 

under the max value of that column 

    for i=2:1:r-1 

        if tlnr(i,j)==ma(1,j-1) 

           for g=i:1:r-1 

               tlnr(g+1,j)=NaN; 

           end 

        end 

    end 

end 

[r,c]=size(tlnr); 

for i=2:1:r 

    for j=2:1:start-1 

        tlnr(i,j)=NaN; 

    end 

end 

end 

             

MATLAB FUNCTION 5 

%This function generates the variable make3 that hold the points of each 

%run that are going to be moved up to form g(pitch*), new33 hold the values 

%for the function g(v), and incrementx333 & incremnty333 hold the values 

%for h(p) 

function 

[make,make3,new33,new3,xtround,make2,S,vec,I,vec2,pos,sop]=overlap3 

load tlnr 

load transformationreal2 

value=input('Introduce rated torque in Nm \n'); 

make=NaN(size(tlnr)); 

make(1,:)=tlnr(1,:);%puts the pitch values in make 

make(2:end,1)=tlnr(2:end,1);%puts the pitch* values in make 

S=tlnr(2:end,2:end);  

  

[V,I]=min(abs(S-value));%This piece finds the closest value to rated torque 

in each column (for the torque values matrix), locates their position (the 

row where is found) in vector I 

%This piece is going to get rid from the I vector, the repeated positions 
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%as well as the higher index ones since the mean that I have no more useful 

%data for making the add up later. This will be collected in vector II 

[B,in]=max(I);%B has the max value of I and in indicates in which column is 

located 

II=NaN(size(I)); 

i=1; 

h=0; 

for j=1:1:in%it indicates de maximum value of I, that is, no need to worry 

if ones start appearing at the end  

        if I(1,j)~=I(1,j+1) 

            II(1,i)=I(1,j); 

            i=i+1; 

        end 

end 

II=II(~isnan(II));   

[blink,blonk]=size(tlnr); 

for j=2:1:blonk-1 

    if isnan(tlnr(2,j)) && isfinite(tlnr(2,j+1)) 

        h=j-1; 

    end 

end 

h=h; 

%%%%%%% 

[row,col]=size(S); 

[rrr,ccc]=size(II); 

vec=NaN(size(S)); 

[rowI,colI]=size(I); 

if II(1,1)==1 

    %for j=h+1:1:ccc+h-1 

     for j=h+1:1:in 

        for i=1:1:row 

            if i==I(1,j) && h~=0 

                for g=j-1:1:j+1 

                    vec(I(1,g),j)=S(I(1,g),j); 

                end 

            end 

             if i==I(1,j) && h==0 

                for g=j:1:j+1 

                    vec(I(1,g),j)=S(I(1,g),j); 

                end 

            end 
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        end 

    end 

elseif II(1,1)~=1  

    for j=h:1:ccc+h-1 

        for i=1:1:row 

            if i==I(1,j)&& h>1 

                for g=j-1:1:j+1  

                    vec(I(1,g),j)=S(I(1,g),j); 

                end 

            end 

            if i==I(1,j) && h==1 

                for g=j:1:j+1 

                    vec(I(1,g),j)=S(I(1,g),j); 

                end 

            end 

        end 

    end 

end 

vec2=vec; 

[rrrr,cccc]=size(vec); 

   

for j=1:1:cccc%this loop completes the vector vec which due to the way it 

was constructed could have missing values inside the interval of data of 

interest (each column has an interval) 

    for i=1:1:rrrr-5 

        if 

((isfinite(vec(i,j)))&&(isnan(vec(i+1,j)))&&(isnan(vec(i+2,j)))&&(isnan(vec

(i+3,j)))&&(isnan(vec(i+4,j)))&&(isfinite(vec(i+5,j)))) 

            vec(i+1,j)=S(i+1,j); 

            vec(i+2,j)=S(i+2,j); 

            vec(i+3,j)=S(i+3,j); 

            vec(i+4,j)=S(i+4,j); 

        end 

    end 

end 

for j=1:1:cccc 

    for i=1:1:rrrr-4 

        if 

((isfinite(vec(i,j)))&&(isnan(vec(i+1,j)))&&(isnan(vec(i+2,j)))&&(isnan(vec

(i+3,j)))&&(isfinite(vec(i+4,j)))) 

            vec(i+1,j)=S(i+1,j); 
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            vec(i+2,j)=S(i+2,j); 

            vec(i+3,j)=S(i+3,j); 

        end 

    end 

end 

for j=1:1:cccc 

    for i=1:1:rrrr-3 

        if 

((isfinite(vec(i,j)))&&(isnan(vec(i+1,j)))&&(isnan(vec(i+2,j)))&&(isfinite(

vec(i+3,j)))) 

            vec(i+1,j)=S(i+1,j); 

            vec(i+2,j)=S(i+2,j); 

        end 

    end 

end 

for j=1:1:cccc%this loop completes the vector vec which due to the way it 

was constructed could have missing values inside the interval of data of 

interest (each column has an interval) 

    for i=1:1:rrrr-2 

        if 

((isfinite(vec(i,j)))&&(isnan(vec(i+1,j)))&&(isfinite(vec(i+2,j)))) 

            vec(i+1,j)=S(i+1,j); 

        end 

    end 

end 

  

[r,c]=size(I); 

for j=1:1:c 

    if I(1,j)>=2&&I(1,j+1)==1 

        pos=j; 

        sop=I(1,j); 

    end 

end 

  

[r,c]=size(S); 

if sop<r 

    if S(sop,pos)<=value && S(sop+1,pos)>=value 

        vec(sop+1,pos)=S(sop+1,pos); 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% this piece of code aims to create make3 which holds the points that are 

going to be moved with their correspondent pitch group and torque (matrix 

form) 

make(2:end,2:end)=vec(:,:); 

make2=make;%This step serves the only purpose to be able to visualise the 

vector before and after the changes, not really necessary 

[r,c]=size(make2); 

for j=2:1:c%this loop finds which is the first column with data, and from 

there on, it finds in each column the first value below rated and the first 

value above rated and keeps them, converting into NaN the other torque values 

    if (isfinite(make2(2,j)) && isnan(make2(2,j+1))) 

        for g=j:1:c 

            for i=2:1:r-1 

                if (make2(i,g)<=value && make2(i+1,g)>=value) 

                    for ii=2:1:i-1 

                        make2(ii,g)=NaN; 

                    end 

                    for ii=i+2:1:r 

                        make2(ii,g)=NaN; 

                    end 

                end 

            end 

        end 

    end 

end 

make3=make2; 

[r,c]=size(make2); 

for j=2:1:c%in the case there is a missing point to allow continuity, this 

loop finds which is the column that should deliver that point. The column 

that holds the closest value to equilibrium between the two columns in dispute 

is the one that will provide. We are looking for column j to the above rated 

value and for column j+1 the below rated value 

    for i=2:1:r-1 

        if isfinite(make2(i,j)) && isnan(make2(i+1,j)) 

            if abs(make2(i,j)-value)<abs(make(i,j+1)-value) 

                make3(i+1,j)=make(i+1,j); 

            else 

                make3(i,j+1)=make(i,j+1); 

            end 

        end 

    end 
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end 

for j=2:1:c 

    for i=2:1:r-1 

        if isfinite(make3(i,j)) && isnan(make3(i+1,j)) 

            if abs(make3(i,j)-value)<abs(make(i,j+1)-value) 

                make3(i+1,j)=make(i+1,j); 

            else 

                make3(i,j+1)=make(i,j+1); 

            end 

        end 

    end 

end 

for j=2:1:c 

    if isfinite(make3(r,j)) && make3(r,j)<value 

        for i=2:1:r 

            make3(i,j)=NaN; 

        end 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%this block serves to locate the pitch* position of the very equilibrium 

point of each pitch run, but I'm really not using it, its just curiosity. 

Even more I already know it (2,3,4...) it had sense in the old mode of 

section moving, now is just a reaffirmation  

[fila,colum]=size(make); 

j=0; 

i=0; 

m=0; 

for j=2:1:colum 

    for i=2:1:fila-1 

        if ((make(i,j)<value)&&(make(i+1,j)>value)) 

            x1(j)=make(i,1); 

            x2(j)=make(i+1,1); 

            y1(j)=make(i,j); 

            y2(j)=make(i+1,j); 

            m(j)=(y2(j)-y1(j))/(x2(j)-x1(j)); 

            c(j)=y1(j)-m(j).*x1(j); 

            x(j)=(value-c(j))./m(j);%exact equilibrium pitch* 

        end 

    end 

end 
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xt=transpose(x); 

xtround=round(xt.*100)./100; 

xtround=round(xtround.*10)./10; 

xtround=round(xtround); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% This block does the shifting of the fragments, the final position of all 

the data points is in the new3 matrix which will become the function 

g(V)(stored under variable new33) 

incrementy3=NaN(1,1); 

incrementy33=NaN(1,1); 

new3(:,1)=make3(:,1); 

new3(2:end,2)=make3(2:end,h+2);%this puts in new the values that are in make 

in the first column that actually have numbers 

[r,c]=size(make3); 

z=NaN(1,1); 

inc=NaN(1,1); 

incrementx33=NaN(1,1); 

for j=h+2:1:c 

    for i=2:1:r-1 

        if isfinite(make3(i,j)) && isnan(make3(i-1,j)) 

            z(j)=i;%this vector helps me to check that the program is looking 

into the right positions 

            incrementy3(j,1)=abs(new3(i,2)-

make3(i,j));%ATTENTION!!!!!!!!!!!THIS INCREMENT IS PARTIAL EACH INCREMENT IS 

HAVING AN EXTRA PIECE, THE BIT BETWEEN THE ORIGINAL POINT AND THE EQUILIBRIUM. 

incrementy33(j,1)=incrementy3(j,1)-(value-make3(i,j));%this is the value of 

the vertical increment from the rated line at the same pitch* as the point 

we are considering from make3 (this is excluding the piece that is of excess 

in incrementy3) 

            for ii=i:1:r 

            new3(ii,2)=make3(ii,j)+incrementy3(j,1); 

            end 

        end   

    end 

end 

for j=h+2 

    incrementy3(j,1)=abs(new3(2,2)-make3(2,j)); 

    incrementy33(j,1)=incrementy3(j,1)+(value-make3(2,j));%here there is a + 

sign instead of a - sign because this value is the first one and has not 

been moved, so incrementy3 is 0 in consequence I have a problem with the 

sign 
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end 

%This section assembles the increments, necessary for getting h(p)---

>incrementx33 & incrementy33 hold the simple increments and incrementx333 & 

incrementy333 the sum of them which allows for easy allocation while plotting 

for j=h+2:1:c % c is columns of make3 

    for i=3:1:r-1 % r is rows of make3 

        if isnan(make3(i,j)) && isfinite(make3(i+1,j)) 

            inc(j,1)=make3(i+1,1); 

        end 

    end 

end 

inc(h+2,1)=make3(2,1);%!!!!!!CHECK in make3 for the column h+2 which is the 

line that has the first number--> in this case line 2 so make3(2,1) 

[r,c]=size(inc); 

for j=h+3:1:r 

    incrementx33(j,1)=inc(j,1)-inc(j-1,1); 

end 

incrementx33(h+2,1)=inc(h+2,1); 

incrementx333(:,1)=inc(h+2:r,1); 

incrementy333(:,1)=incrementy33(h+2:r,1).*(-1); 

  

new33(:,1)=transformationreal2(:,1);%this is new3 but with the pitch* 

changed back into wind velocities 

new33(:,2)=new3(2:end,2);%just gets rid of some zeros that are not part of 

the set of data 

disp('Now get the equations of g(v) and h(p) and introduce them into 

difference33') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

end 

 

MATLAB FUNCTION 6 

 

%This function calculates e=h(p)-g(v), a gives back to ways to look at the 

%data: as a full matrix with each e value related to the pitch and velocity 

%value (as in the original torque table) or as a two column vector one 

%holding the torque value and the other its respective value of e 

function 

[g5,h5,e5,e5f,v5,p5,t5,tau,tauf,errorMatrixTau,errorMatrixEps,errorMatrixEp

sP,errorMatrixTauP]=difference33 
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load transformationreal2 

transformation=transformationreal2; 

Trated=input('Introduce T rated \n'); 

lower=input('give the column number of the lower pitch of validity \n'); 

upper=input('give the column number of the upper pitch of validity \n'); 

load tlnr 

make=tlnr;%it has pitch* values instead of velocities 

velocities=vertcat(0,transformation(:,1));%this are the velocities that 

correspond to the pitch* values 

  

make2=horzcat(velocities,make(:,2:end));%holds the velocities with the 

correspondent torque and pitch values, in a matrix (the usual matrix) 

v=make2(2:end,1);%this vector holds the wind velocities 

p=make2(1,2:end);%this vector holds the pitches 

t=make2(2:end,2:end);%this vector holds the torque values 

v5=v;%the following three lines are not really necessary, are just a result 

of different version of the program, for not to overwrite 

p5=p; 

t5=t; 

  

[rr,cc]=size(t); 

g5=NaN(1,1);%the next three lines are initialising vectors 

h5=NaN(1,1); 

e5=NaN(1,1); 

tau=NaN(1,1); 

errorMatrixTau=NaN(1,1); 

errorMatrixEps=NaN(1,1); 

errorMatrixEpsP=NaN(1,1); 

errorMatrixTauP=NaN(1,1); 

  

for i=1:1:rr 

    for j=1:1:cc 

        if isfinite(t(i,j))%if the value at that coordinate is actually a 

value 

             

           g5(i,j)=-7114.*v(i,1)^2-

2.0465e+005.*v(i,1)+1.6399e+006;%Substitute by the g(v) function that you 

want to use 

           h5(i,j)=-14696.*p(1,j)^2-10140.*p(1,j)+1.9571e+005-

1.15e5;%Substitute by the h(p) function that you want to use 



346 
 

           e5(i,j)=h5(i,j)-g5(i,j); 

            

           tau(i,j)=-2.2372e-021.*(e5(i,j))^4+1.8647e-

014.*(e5(i,j))^3+7.6695e-009.*(e5(i,j))^2+0.84856.*(e5(i,j))+1.5665e+005;% 

substitute by the tau function that you want to use  

            

           errorMatrixTau(i,j)=abs(t(i,j)-tau(i,j)); 

           errorMatrixTauP(i,j)=(errorMatrixTau(i,j)./Trated)*100; 

           errorMatrixEps(i,j)=abs(t(i,j)-e5(i,j)); 

                      

errorMatrixEpsP(i,j)=(errorMatrixEps(i,j)./Trated)*100; 

        else 

           e5(i,j)=NaN;%if the matrix torque doesn't have a value in a 

position then neither e5 will hold a value, so we put a NaN instead 

           tau(i,j)=NaN; 

           errorMatrixTau(i,j)=NaN; 

           errorMatrixTauP(i,j)=NaN; 

           errorMatrixEps(i,j)=NaN; 

           errorMatrixEpsP(i,j)=NaN; 

        end 

    end 

end 

e5=horzcat(transformation(:,1),e5);%this adds the wind velocities 

e5=vertcat(make(1,:),e5);%this adds the pitches 

tau=horzcat(transformation(:,1),tau);%this adds the wind velocities 

tau=vertcat(make(1,:),tau);%this adds the pitches 

errorMatrixTau=horzcat(transformation(:,1),errorMatrixTau);%this adds the 

wind velocities 

errorMatrixTau=vertcat(make(1,:),errorMatrixTau);%this adds the pitches 

errorMatrixEps=horzcat(transformation(:,1),errorMatrixEps);%this adds the 

wind velocities 

errorMatrixEps=vertcat(make(1,:),errorMatrixEps);%this adds the pitches 

errorMatrixEpsP=horzcat(transformation(:,1),errorMatrixEpsP);%this adds the 

wind velocities 

errorMatrixEpsP=vertcat(make(1,:),errorMatrixEpsP);%this adds the pitches 

errorMatrixTauP=horzcat(transformation(:,1),errorMatrixTauP);%this adds the 

wind velocities 

errorMatrixTauP=vertcat(make(1,:),errorMatrixTauP);%this adds the pitches 
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[r,c]=size(e5); 

e5f=NaN(1,2);%initialising vector 

tauf=NaN(1,2);%initialising vector 

k=1; 

%d=0; 

for j=lower:1:upper 

    for i=2:1:r 

        if isfinite(e5(i,j)) 

            e5f(k,2)=make(i,j);%torque values 

            e5f(k,1)=e5(i,j);%correspondent e value for those torque values 

            tauf(k,2)=make(i,j);%torque values 

            tauf(k,1)=tau(i,j);%correspondent e value for those torque 

values 

            k=k+1; 

        end 

    end 

end 

end 

 

MATLAB FUNCTION 7 

 

%This function will use the outputs of Matlab function 7 to generate the 

error contour plots for the Separability property 

 

load transformationreal 

x=errorMatrixTauP(2:end,1); 

y=errorMatrixTauP(1,5:24); 

[X,Y]=meshgrid(x,y); 

errorMatrixTauP(errorMatrixTauP < -10 | errorMatrixTauP > 10) = NaN; 

errorMatrixTauPT= errorMatrixTauP'; 

figure  

[C,h] = contour(X,Y, errorMatrixTauPT(5:24,2:end),[1 3 5 6 7 

9],'ShowText','on'); 

hold all 

plot(transformationreal(:,1),transformationreal(:,2));  

  

xx=errorMatrixEpsP(2:end,1); 

yy=errorMatrixEpsP(1,5:24); 

[XX,YY]=meshgrid(xx,yy); 

errorMatrixEpsP(errorMatrixEpsP < -10 | errorMatrixEpsP > 10) = NaN; 
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errorMatrixEpsPT= errorMatrixEpsP'; 

figure 

[Cc,hh] = contour(XX,YY, errorMatrixEpsPT(5:24,2:end),[1 3 5 7 

9],'ShowText','on'); 

hold all 

plot(transformationreal(:,1),transformationreal(:,2));  

 

 

 




